diff --git a/test/common/case_utils.py b/test/common/case_utils.py index 03eec2627f..f8803894b0 100644 --- a/test/common/case_utils.py +++ b/test/common/case_utils.py @@ -1,7 +1,40 @@ +import os.path +import tempfile import unittest + from torchtext._internal.module_utils import is_module_available +class TempDirMixin: + """Mixin to provide easy access to temp dir""" + + temp_dir_ = None + + @classmethod + def get_base_temp_dir(cls): + # If TORCHTEXT_TEST_TEMP_DIR is set, use it instead of temporary directory. + # this is handy for debugging. + key = "TORCHTEXT_TEST_TEMP_DIR" + if key in os.environ: + return os.environ[key] + if cls.temp_dir_ is None: + cls.temp_dir_ = tempfile.TemporaryDirectory() + return cls.temp_dir_.name + + @classmethod + def tearDownClass(cls): + super().tearDownClass() + if cls.temp_dir_ is not None: + cls.temp_dir_.cleanup() + cls.temp_dir_ = None + + def get_temp_path(self, *paths): + temp_dir = os.path.join(self.get_base_temp_dir(), self.id()) + path = os.path.join(temp_dir, *paths) + os.makedirs(os.path.dirname(path), exist_ok=True) + return path + + def skipIfNoModule(module, display_name=None): display_name = display_name or module return unittest.skipIf(not is_module_available(module), f'"{display_name}" is not available') diff --git a/test/datasets/__init__.py b/test/datasets/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/test/datasets/amazonreviewpolarity_test.py b/test/datasets/amazonreviewpolarity_test.py new file mode 100644 index 0000000000..0d71529ec6 --- /dev/null +++ b/test/datasets/amazonreviewpolarity_test.py @@ -0,0 +1,82 @@ +import os +import random +import string +import tarfile +from collections import defaultdict +from unittest.mock import patch + +from parameterized import parameterized +from torchtext.datasets.amazonreviewpolarity import AmazonReviewPolarity + +from ..common.case_utils import TempDirMixin +from ..common.torchtext_test_case import TorchtextTestCase + + +def get_mock_dataset(root_dir): + """ + root_dir: directory to the mocked dataset + """ + base_dir = os.path.join(root_dir, "AmazonReviewPolarity") + temp_dataset_dir = os.path.join(base_dir, "temp_dataset_dir") + os.makedirs(temp_dataset_dir, exist_ok=True) + + seed = 1 + mocked_data = defaultdict(list) + for file_name in ("train.csv", "test.csv"): + txt_file = os.path.join(temp_dataset_dir, file_name) + with open(txt_file, "w") as f: + for i in range(5): + label = seed % 2 + 1 + rand_string = " ".join( + random.choice(string.ascii_letters) for i in range(seed) + ) + dataset_line = (label, f"{rand_string} {rand_string}") + # append line to correct dataset split + mocked_data[os.path.splitext(file_name)[0]].append(dataset_line) + f.write(f'"{label}","{rand_string}","{rand_string}"\n') + seed += 1 + + compressed_dataset_path = os.path.join( + base_dir, "amazon_review_polarity_csv.tar.gz" + ) + # create tar file from dataset folder + with tarfile.open(compressed_dataset_path, "w:gz") as tar: + tar.add(temp_dataset_dir, arcname="amazon_review_polarity_csv") + + return mocked_data + + +class TestAmazonReviewPolarity(TempDirMixin, TorchtextTestCase): + root_dir = None + samples = [] + + @classmethod + def setUpClass(cls): + super().setUpClass() + cls.root_dir = cls.get_base_temp_dir() + cls.samples = get_mock_dataset(cls.root_dir) + + @parameterized.expand(["train", "test"]) + def test_amazon_review_polarity(self, split): + with patch( + "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True + ): + dataset = AmazonReviewPolarity(root=self.root_dir, split=split) + n_iter = 0 + for i, (label, text) in enumerate(dataset): + expected_sample = self.samples[split][i] + assert label == expected_sample[0] + assert text == expected_sample[1] + n_iter += 1 + assert n_iter == len(self.samples[split]) + + @parameterized.expand([("train", ("train",)), ("test", ("test",))]) + def test_amazon_review_polarity_split_argument(self, split1, split2): + with patch( + "torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True + ): + dataset1 = AmazonReviewPolarity(root=self.root_dir, split=split1) + (dataset2,) = AmazonReviewPolarity(root=self.root_dir, split=split2) + + for d1, d2 in zip(dataset1, dataset2): + self.assertEqual(d1, d2)