Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 35 additions & 16 deletions torchtext/datasets/yahooanswers.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,15 @@
from torchtext.utils import download_from_url, extract_archive
from torchtext.data.datasets_utils import _RawTextIterableDataset
from torchtext.data.datasets_utils import _wrap_split_argument
from torchtext.data.datasets_utils import _add_docstring_header
from torchtext.data.datasets_utils import _find_match
from torchtext.data.datasets_utils import _create_dataset_directory
from torchtext.data.datasets_utils import _create_data_from_csv
from torchtext._internal.module_utils import is_module_available
from typing import Union, Tuple

if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, GDriveReader, IterableWrapper

from torchtext.data.datasets_utils import (
_wrap_split_argument,
_add_docstring_header,
_create_dataset_directory,
)

import os

URL = 'https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9Qhbd2JNdDBsQUdocVU'
Expand All @@ -20,16 +25,30 @@

DATASET_NAME = "YahooAnswers"

_EXTRACTED_FILES = {
'train': os.path.join('yahoo_answers_csv', 'train.csv'),
'test': os.path.join('yahoo_answers_csv', 'test.csv'),
}


@_add_docstring_header(num_lines=NUM_LINES, num_classes=10)
@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(('train', 'test'))
def YahooAnswers(root, split):
dataset_tar = download_from_url(URL, root=root,
path=os.path.join(root, _PATH),
hash_value=MD5, hash_type='md5')
extracted_files = extract_archive(dataset_tar)

path = _find_match(split + '.csv', extracted_files)
return _RawTextIterableDataset(DATASET_NAME, NUM_LINES[split],
_create_data_from_csv(path))
def YahooAnswers(root: str, split: Union[Tuple[str], str]):
if not is_module_available("torchdata"):
raise ModuleNotFoundError("Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`")

url_dp = IterableWrapper([URL])

cache_dp = url_dp.on_disk_cache(
filepath_fn=lambda x: os.path.join(root, _PATH),
hash_dict={os.path.join(root, _PATH): MD5}, hash_type="md5"
)
cache_dp = GDriveReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_dp = FileOpener(cache_dp, mode="b")

extracted_files = cache_dp.read_from_tar()

filter_extracted_files = extracted_files.filter(lambda x: _EXTRACTED_FILES[split] in x[0])

return filter_extracted_files.parse_csv().map(fn=lambda t: (int(t[0]), " ".join(t[1:])))