Skip to content

Commit 2ad0e96

Browse files
committed
Generate Python docs from pytorch/pytorch@0df2e86
1 parent 6205cdd commit 2ad0e96

File tree

9 files changed

+173
-173
lines changed

9 files changed

+173
-173
lines changed

docs/master/_images/RReLU.png

5 Bytes
Loading

docs/master/_modules/torch/cuda/random.html

Lines changed: 18 additions & 18 deletions
Large diffs are not rendered by default.

docs/master/_modules/torch/nn/modules/conv.html

Lines changed: 24 additions & 24 deletions
Large diffs are not rendered by default.

docs/master/_modules/torch/nn/modules/distance.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -410,7 +410,7 @@ <h1>Source code for torch.nn.modules.distance</h1><div class="highlight"><pre>
410410
<span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">Tensor</span>
411411

412412

413-
<div class="viewcode-block" id="PairwiseDistance"><a class="viewcode-back" href="../../../../generated/torch.nn.PairwiseDistance.html#torch.nn.PairwiseDistance">[docs]</a><span class="k">class</span> <span class="nc">PairwiseDistance</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
413+
<span class="k">class</span> <span class="nc">PairwiseDistance</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
414414
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
415415
<span class="sd"> Computes the pairwise distance between vectors :math:`v_1`, :math:`v_2` using the p-norm:</span>
416416

@@ -446,10 +446,10 @@ <h1>Source code for torch.nn.modules.distance</h1><div class="highlight"><pre>
446446
<span class="bp">self</span><span class="o">.</span><span class="n">keepdim</span> <span class="o">=</span> <span class="n">keepdim</span>
447447

448448
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x1</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">x2</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
449-
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">pairwise_distance</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">keepdim</span><span class="p">)</span></div>
449+
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">pairwise_distance</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">keepdim</span><span class="p">)</span>
450450

451451

452-
<span class="k">class</span> <span class="nc">CosineSimilarity</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
452+
<div class="viewcode-block" id="CosineSimilarity"><a class="viewcode-back" href="../../../../generated/torch.nn.CosineSimilarity.html#torch.nn.CosineSimilarity">[docs]</a><span class="k">class</span> <span class="nc">CosineSimilarity</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
453453
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.</span>
454454

455455
<span class="sd"> .. math ::</span>
@@ -480,7 +480,7 @@ <h1>Source code for torch.nn.modules.distance</h1><div class="highlight"><pre>
480480
<span class="bp">self</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
481481

482482
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x1</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">x2</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
483-
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">cosine_similarity</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
483+
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">cosine_similarity</span><span class="p">(</span><span class="n">x1</span><span class="p">,</span> <span class="n">x2</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span></div>
484484
</pre></div>
485485

486486
</article>

docs/master/_modules/torch/nn/modules/instancenorm.html

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -478,7 +478,7 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
478478
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_apply_instance_norm</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
479479

480480

481-
<span class="k">class</span> <span class="nc">InstanceNorm1d</span><span class="p">(</span><span class="n">_InstanceNorm</span><span class="p">):</span>
481+
<div class="viewcode-block" id="InstanceNorm1d"><a class="viewcode-back" href="../../../../generated/torch.nn.InstanceNorm1d.html#torch.nn.InstanceNorm1d">[docs]</a><span class="k">class</span> <span class="nc">InstanceNorm1d</span><span class="p">(</span><span class="n">_InstanceNorm</span><span class="p">):</span>
482482
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Applies Instance Normalization over a 2D (unbatched) or 3D (batched) input</span>
483483
<span class="sd"> as described in the paper</span>
484484
<span class="sd"> `Instance Normalization: The Missing Ingredient for Fast Stylization</span>
@@ -551,10 +551,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
551551
<span class="k">def</span> <span class="nf">_check_input_dim</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
552552
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">):</span>
553553
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected 2D or 3D input (got </span><span class="si">{}</span><span class="s1">D input)&#39;</span>
554-
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
554+
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span></div>
555555

556556

557-
<div class="viewcode-block" id="LazyInstanceNorm1d"><a class="viewcode-back" href="../../../../generated/torch.nn.LazyInstanceNorm1d.html#torch.nn.LazyInstanceNorm1d">[docs]</a><span class="k">class</span> <span class="nc">LazyInstanceNorm1d</span><span class="p">(</span><span class="n">_LazyNormBase</span><span class="p">,</span> <span class="n">_InstanceNorm</span><span class="p">):</span>
557+
<span class="k">class</span> <span class="nc">LazyInstanceNorm1d</span><span class="p">(</span><span class="n">_LazyNormBase</span><span class="p">,</span> <span class="n">_InstanceNorm</span><span class="p">):</span>
558558
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;A :class:`torch.nn.InstanceNorm1d` module with lazy initialization of</span>
559559
<span class="sd"> the ``num_features`` argument of the :class:`InstanceNorm1d` that is inferred</span>
560560
<span class="sd"> from the ``input.size(1)``.</span>
@@ -590,10 +590,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
590590
<span class="k">def</span> <span class="nf">_check_input_dim</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
591591
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">):</span>
592592
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected 2D or 3D input (got </span><span class="si">{}</span><span class="s1">D input)&#39;</span>
593-
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span></div>
593+
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
594594

595595

596-
<span class="k">class</span> <span class="nc">InstanceNorm2d</span><span class="p">(</span><span class="n">_InstanceNorm</span><span class="p">):</span>
596+
<div class="viewcode-block" id="InstanceNorm2d"><a class="viewcode-back" href="../../../../generated/torch.nn.InstanceNorm2d.html#torch.nn.InstanceNorm2d">[docs]</a><span class="k">class</span> <span class="nc">InstanceNorm2d</span><span class="p">(</span><span class="n">_InstanceNorm</span><span class="p">):</span>
597597
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs</span>
598598
<span class="sd"> with additional channel dimension) as described in the paper</span>
599599
<span class="sd"> `Instance Normalization: The Missing Ingredient for Fast Stylization</span>
@@ -667,10 +667,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
667667
<span class="k">def</span> <span class="nf">_check_input_dim</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
668668
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">):</span>
669669
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected 3D or 4D input (got </span><span class="si">{}</span><span class="s1">D input)&#39;</span>
670-
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
670+
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span></div>
671671

672672

673-
<div class="viewcode-block" id="LazyInstanceNorm2d"><a class="viewcode-back" href="../../../../generated/torch.nn.LazyInstanceNorm2d.html#torch.nn.LazyInstanceNorm2d">[docs]</a><span class="k">class</span> <span class="nc">LazyInstanceNorm2d</span><span class="p">(</span><span class="n">_LazyNormBase</span><span class="p">,</span> <span class="n">_InstanceNorm</span><span class="p">):</span>
673+
<span class="k">class</span> <span class="nc">LazyInstanceNorm2d</span><span class="p">(</span><span class="n">_LazyNormBase</span><span class="p">,</span> <span class="n">_InstanceNorm</span><span class="p">):</span>
674674
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;A :class:`torch.nn.InstanceNorm2d` module with lazy initialization of</span>
675675
<span class="sd"> the ``num_features`` argument of the :class:`InstanceNorm2d` that is inferred</span>
676676
<span class="sd"> from the ``input.size(1)``.</span>
@@ -706,10 +706,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
706706
<span class="k">def</span> <span class="nf">_check_input_dim</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
707707
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">):</span>
708708
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected 3D or 4D input (got </span><span class="si">{}</span><span class="s1">D input)&#39;</span>
709-
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span></div>
709+
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
710710

711711

712-
<span class="k">class</span> <span class="nc">InstanceNorm3d</span><span class="p">(</span><span class="n">_InstanceNorm</span><span class="p">):</span>
712+
<div class="viewcode-block" id="InstanceNorm3d"><a class="viewcode-back" href="../../../../generated/torch.nn.InstanceNorm3d.html#torch.nn.InstanceNorm3d">[docs]</a><span class="k">class</span> <span class="nc">InstanceNorm3d</span><span class="p">(</span><span class="n">_InstanceNorm</span><span class="p">):</span>
713713
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs</span>
714714
<span class="sd"> with additional channel dimension) as described in the paper</span>
715715
<span class="sd"> `Instance Normalization: The Missing Ingredient for Fast Stylization</span>
@@ -783,10 +783,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
783783
<span class="k">def</span> <span class="nf">_check_input_dim</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
784784
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">):</span>
785785
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected 4D or 5D input (got </span><span class="si">{}</span><span class="s1">D input)&#39;</span>
786-
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
786+
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span></div>
787787

788788

789-
<div class="viewcode-block" id="LazyInstanceNorm3d"><a class="viewcode-back" href="../../../../generated/torch.nn.LazyInstanceNorm3d.html#torch.nn.LazyInstanceNorm3d">[docs]</a><span class="k">class</span> <span class="nc">LazyInstanceNorm3d</span><span class="p">(</span><span class="n">_LazyNormBase</span><span class="p">,</span> <span class="n">_InstanceNorm</span><span class="p">):</span>
789+
<span class="k">class</span> <span class="nc">LazyInstanceNorm3d</span><span class="p">(</span><span class="n">_LazyNormBase</span><span class="p">,</span> <span class="n">_InstanceNorm</span><span class="p">):</span>
790790
<span class="sa">r</span><span class="sd">&quot;&quot;&quot;A :class:`torch.nn.InstanceNorm3d` module with lazy initialization of</span>
791791
<span class="sd"> the ``num_features`` argument of the :class:`InstanceNorm3d` that is inferred</span>
792792
<span class="sd"> from the ``input.size(1)``.</span>
@@ -822,7 +822,7 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
822822
<span class="k">def</span> <span class="nf">_check_input_dim</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
823823
<span class="k">if</span> <span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">):</span>
824824
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;expected 4D or 5D input (got </span><span class="si">{}</span><span class="s1">D input)&#39;</span>
825-
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span></div>
825+
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
826826
</pre></div>
827827

828828
</article>

0 commit comments

Comments
 (0)