@@ -478,7 +478,7 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
478478 < span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> _apply_instance_norm</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="p "> )</ span >
479479
480480
481- < span class ="k "> class</ span > < span class ="nc "> InstanceNorm1d</ span > < span class ="p "> (</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
481+ < div class =" viewcode-block " id =" InstanceNorm1d " > < a class =" viewcode-back " href =" ../../../../generated/torch.nn.InstanceNorm1d.html#torch.nn.InstanceNorm1d " > [docs] </ a > < span class ="k "> class</ span > < span class ="nc "> InstanceNorm1d</ span > < span class ="p "> (</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
482482 < span class ="sa "> r</ span > < span class ="sd "> """Applies Instance Normalization over a 2D (unbatched) or 3D (batched) input</ span >
483483< span class ="sd "> as described in the paper</ span >
484484< span class ="sd "> `Instance Normalization: The Missing Ingredient for Fast Stylization</ span >
@@ -551,10 +551,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
551551 < span class ="k "> def</ span > < span class ="nf "> _check_input_dim</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> input</ span > < span class ="p "> ):</ span >
552552 < span class ="k "> if</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="p "> (</ span > < span class ="mi "> 2</ span > < span class ="p "> ,</ span > < span class ="mi "> 3</ span > < span class ="p "> ):</ span >
553553 < span class ="k "> raise</ span > < span class ="ne "> ValueError</ span > < span class ="p "> (</ span > < span class ="s1 "> 'expected 2D or 3D input (got </ span > < span class ="si "> {}</ span > < span class ="s1 "> D input)'</ span >
554- < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span >
554+ < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span > </ div >
555555
556556
557- < div class =" viewcode-block " id =" LazyInstanceNorm1d " > < a class =" viewcode-back " href =" ../../../../generated/torch.nn.LazyInstanceNorm1d.html#torch.nn.LazyInstanceNorm1d " > [docs] </ a > < span class ="k "> class</ span > < span class ="nc "> LazyInstanceNorm1d</ span > < span class ="p "> (</ span > < span class ="n "> _LazyNormBase</ span > < span class ="p "> ,</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
557+ < span class ="k "> class</ span > < span class ="nc "> LazyInstanceNorm1d</ span > < span class ="p "> (</ span > < span class ="n "> _LazyNormBase</ span > < span class ="p "> ,</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
558558 < span class ="sa "> r</ span > < span class ="sd "> """A :class:`torch.nn.InstanceNorm1d` module with lazy initialization of</ span >
559559< span class ="sd "> the ``num_features`` argument of the :class:`InstanceNorm1d` that is inferred</ span >
560560< span class ="sd "> from the ``input.size(1)``.</ span >
@@ -590,10 +590,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
590590 < span class ="k "> def</ span > < span class ="nf "> _check_input_dim</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> input</ span > < span class ="p "> ):</ span >
591591 < span class ="k "> if</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="p "> (</ span > < span class ="mi "> 2</ span > < span class ="p "> ,</ span > < span class ="mi "> 3</ span > < span class ="p "> ):</ span >
592592 < span class ="k "> raise</ span > < span class ="ne "> ValueError</ span > < span class ="p "> (</ span > < span class ="s1 "> 'expected 2D or 3D input (got </ span > < span class ="si "> {}</ span > < span class ="s1 "> D input)'</ span >
593- < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span > </ div >
593+ < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span >
594594
595595
596- < span class ="k "> class</ span > < span class ="nc "> InstanceNorm2d</ span > < span class ="p "> (</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
596+ < div class =" viewcode-block " id =" InstanceNorm2d " > < a class =" viewcode-back " href =" ../../../../generated/torch.nn.InstanceNorm2d.html#torch.nn.InstanceNorm2d " > [docs] </ a > < span class ="k "> class</ span > < span class ="nc "> InstanceNorm2d</ span > < span class ="p "> (</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
597597 < span class ="sa "> r</ span > < span class ="sd "> """Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs</ span >
598598< span class ="sd "> with additional channel dimension) as described in the paper</ span >
599599< span class ="sd "> `Instance Normalization: The Missing Ingredient for Fast Stylization</ span >
@@ -667,10 +667,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
667667 < span class ="k "> def</ span > < span class ="nf "> _check_input_dim</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> input</ span > < span class ="p "> ):</ span >
668668 < span class ="k "> if</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="p "> (</ span > < span class ="mi "> 3</ span > < span class ="p "> ,</ span > < span class ="mi "> 4</ span > < span class ="p "> ):</ span >
669669 < span class ="k "> raise</ span > < span class ="ne "> ValueError</ span > < span class ="p "> (</ span > < span class ="s1 "> 'expected 3D or 4D input (got </ span > < span class ="si "> {}</ span > < span class ="s1 "> D input)'</ span >
670- < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span >
670+ < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span > </ div >
671671
672672
673- < div class =" viewcode-block " id =" LazyInstanceNorm2d " > < a class =" viewcode-back " href =" ../../../../generated/torch.nn.LazyInstanceNorm2d.html#torch.nn.LazyInstanceNorm2d " > [docs] </ a > < span class ="k "> class</ span > < span class ="nc "> LazyInstanceNorm2d</ span > < span class ="p "> (</ span > < span class ="n "> _LazyNormBase</ span > < span class ="p "> ,</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
673+ < span class ="k "> class</ span > < span class ="nc "> LazyInstanceNorm2d</ span > < span class ="p "> (</ span > < span class ="n "> _LazyNormBase</ span > < span class ="p "> ,</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
674674 < span class ="sa "> r</ span > < span class ="sd "> """A :class:`torch.nn.InstanceNorm2d` module with lazy initialization of</ span >
675675< span class ="sd "> the ``num_features`` argument of the :class:`InstanceNorm2d` that is inferred</ span >
676676< span class ="sd "> from the ``input.size(1)``.</ span >
@@ -706,10 +706,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
706706 < span class ="k "> def</ span > < span class ="nf "> _check_input_dim</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> input</ span > < span class ="p "> ):</ span >
707707 < span class ="k "> if</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="p "> (</ span > < span class ="mi "> 3</ span > < span class ="p "> ,</ span > < span class ="mi "> 4</ span > < span class ="p "> ):</ span >
708708 < span class ="k "> raise</ span > < span class ="ne "> ValueError</ span > < span class ="p "> (</ span > < span class ="s1 "> 'expected 3D or 4D input (got </ span > < span class ="si "> {}</ span > < span class ="s1 "> D input)'</ span >
709- < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span > </ div >
709+ < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span >
710710
711711
712- < span class ="k "> class</ span > < span class ="nc "> InstanceNorm3d</ span > < span class ="p "> (</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
712+ < div class =" viewcode-block " id =" InstanceNorm3d " > < a class =" viewcode-back " href =" ../../../../generated/torch.nn.InstanceNorm3d.html#torch.nn.InstanceNorm3d " > [docs] </ a > < span class ="k "> class</ span > < span class ="nc "> InstanceNorm3d</ span > < span class ="p "> (</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
713713 < span class ="sa "> r</ span > < span class ="sd "> """Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs</ span >
714714< span class ="sd "> with additional channel dimension) as described in the paper</ span >
715715< span class ="sd "> `Instance Normalization: The Missing Ingredient for Fast Stylization</ span >
@@ -783,10 +783,10 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
783783 < span class ="k "> def</ span > < span class ="nf "> _check_input_dim</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> input</ span > < span class ="p "> ):</ span >
784784 < span class ="k "> if</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="p "> (</ span > < span class ="mi "> 4</ span > < span class ="p "> ,</ span > < span class ="mi "> 5</ span > < span class ="p "> ):</ span >
785785 < span class ="k "> raise</ span > < span class ="ne "> ValueError</ span > < span class ="p "> (</ span > < span class ="s1 "> 'expected 4D or 5D input (got </ span > < span class ="si "> {}</ span > < span class ="s1 "> D input)'</ span >
786- < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span >
786+ < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span > </ div >
787787
788788
789- < div class =" viewcode-block " id =" LazyInstanceNorm3d " > < a class =" viewcode-back " href =" ../../../../generated/torch.nn.LazyInstanceNorm3d.html#torch.nn.LazyInstanceNorm3d " > [docs] </ a > < span class ="k "> class</ span > < span class ="nc "> LazyInstanceNorm3d</ span > < span class ="p "> (</ span > < span class ="n "> _LazyNormBase</ span > < span class ="p "> ,</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
789+ < span class ="k "> class</ span > < span class ="nc "> LazyInstanceNorm3d</ span > < span class ="p "> (</ span > < span class ="n "> _LazyNormBase</ span > < span class ="p "> ,</ span > < span class ="n "> _InstanceNorm</ span > < span class ="p "> ):</ span >
790790 < span class ="sa "> r</ span > < span class ="sd "> """A :class:`torch.nn.InstanceNorm3d` module with lazy initialization of</ span >
791791< span class ="sd "> the ``num_features`` argument of the :class:`InstanceNorm3d` that is inferred</ span >
792792< span class ="sd "> from the ``input.size(1)``.</ span >
@@ -822,7 +822,7 @@ <h1>Source code for torch.nn.modules.instancenorm</h1><div class="highlight"><pr
822822 < span class ="k "> def</ span > < span class ="nf "> _check_input_dim</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="nb "> input</ span > < span class ="p "> ):</ span >
823823 < span class ="k "> if</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()</ span > < span class ="ow "> not</ span > < span class ="ow "> in</ span > < span class ="p "> (</ span > < span class ="mi "> 4</ span > < span class ="p "> ,</ span > < span class ="mi "> 5</ span > < span class ="p "> ):</ span >
824824 < span class ="k "> raise</ span > < span class ="ne "> ValueError</ span > < span class ="p "> (</ span > < span class ="s1 "> 'expected 4D or 5D input (got </ span > < span class ="si "> {}</ span > < span class ="s1 "> D input)'</ span >
825- < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span > </ div >
825+ < span class ="o "> .</ span > < span class ="n "> format</ span > < span class ="p "> (</ span > < span class ="nb "> input</ span > < span class ="o "> .</ span > < span class ="n "> dim</ span > < span class ="p "> ()))</ span >
826826</ pre > </ div >
827827
828828 </ article >
0 commit comments