Skip to content

Commit 7f78743

Browse files
author
Shen Li
committed
[WIP] Adding distributed pipeline parallelism example
1 parent ad775ac commit 7f78743

File tree

1 file changed

+288
-0
lines changed

1 file changed

+288
-0
lines changed

distributed/rpc/pipeline/main.py

Lines changed: 288 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,288 @@
1+
import os
2+
import threading
3+
import time
4+
from functools import wraps
5+
6+
import torch
7+
import torch.nn as nn
8+
import torch.distributed.autograd as dist_autograd
9+
import torch.distributed.rpc as rpc
10+
import torch.multiprocessing as mp
11+
import torch.optim as optim
12+
from torch.distributed.optim import DistributedOptimizer
13+
from torch.distributed.rpc import RRef
14+
15+
from torchvision.models.resnet import Bottleneck
16+
17+
18+
#########################################################
19+
# helper functions #
20+
#########################################################
21+
22+
23+
def _call_method(method, rref, *args, **kwargs):
24+
r"""
25+
a helper function to call a method on the given RRef
26+
"""
27+
return method(rref.local_value(), *args, **kwargs)
28+
29+
30+
def _remote_on_rref(method, rref, *args, **kwargs):
31+
r"""
32+
a helper function to run method on the owner of rref and fetch back the
33+
result using RPC
34+
"""
35+
return rpc.remote(
36+
rref.owner(),
37+
_call_method,
38+
args=[method, rref] + list(args),
39+
kwargs=kwargs
40+
)
41+
42+
def _async_on_rref(method, rref, *args, **kwargs):
43+
r"""
44+
a helper function to run method on the owner of rref and fetch back the
45+
result using RPC
46+
"""
47+
return rpc.rpc_async(
48+
rref.owner(),
49+
_call_method,
50+
args=[method, rref] + list(args),
51+
kwargs=kwargs
52+
)
53+
54+
55+
def _parameter_rrefs(module):
56+
r"""
57+
Create one RRef for each parameter in the given local module, and return a
58+
list of RRefs.
59+
"""
60+
param_rrefs = []
61+
for param in module.parameters():
62+
param_rrefs.append(RRef(param))
63+
return param_rrefs
64+
65+
66+
#########################################################
67+
# Define Model Parallel ResNet50 #
68+
#########################################################
69+
70+
71+
num_classes = 1000
72+
73+
74+
def conv1x1(in_planes, out_planes, stride=1):
75+
"""1x1 convolution"""
76+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
77+
78+
79+
class ResNetBase(nn.Module):
80+
def __init__(self, block, inplanes, num_classes=1000,
81+
groups=1, width_per_group=64, norm_layer=None):
82+
super(ResNetBase, self).__init__()
83+
84+
self._lock = threading.Lock()
85+
self._block = block
86+
self._norm_layer = nn.BatchNorm2d
87+
self.inplanes = inplanes
88+
self.dilation = 1
89+
self.groups = groups
90+
self.base_width = width_per_group
91+
92+
def _make_layer(self, planes, blocks, stride=1, dilate=False):
93+
norm_layer = self._norm_layer
94+
downsample = None
95+
previous_dilation = self.dilation
96+
if dilate:
97+
self.dilation *= stride
98+
stride = 1
99+
if stride != 1 or self.inplanes != planes * self._block.expansion:
100+
downsample = nn.Sequential(
101+
conv1x1(self.inplanes, planes * self._block.expansion, stride),
102+
norm_layer(planes * self._block.expansion),
103+
)
104+
105+
layers = []
106+
layers.append(self._block(self.inplanes, planes, stride, downsample, self.groups,
107+
self.base_width, previous_dilation, norm_layer))
108+
self.inplanes = planes * self._block.expansion
109+
for _ in range(1, blocks):
110+
layers.append(self._block(self.inplanes, planes, groups=self.groups,
111+
base_width=self.base_width, dilation=self.dilation,
112+
norm_layer=norm_layer))
113+
114+
return nn.Sequential(*layers)
115+
116+
117+
class ResNetPart1(ResNetBase):
118+
"""
119+
The first part of ResNet.
120+
"""
121+
def __init__(self, device, *args, **kwargs):
122+
super(ResNetPart1, self).__init__(
123+
Bottleneck, 64, num_classes=num_classes, *args, **kwargs)
124+
125+
self.device = device
126+
self.seq = nn.Sequential(
127+
nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False),
128+
self._norm_layer(self.inplanes),
129+
nn.ReLU(inplace=True),
130+
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
131+
self._make_layer(64, 3),
132+
self._make_layer(128, 4, stride=2)
133+
).to(self.device)
134+
135+
for m in self.modules():
136+
if isinstance(m, nn.Conv2d):
137+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
138+
elif isinstance(m, nn.BatchNorm2d):
139+
nn.init.constant_(m.weight, 1)
140+
nn.init.constant_(m.bias, 0)
141+
142+
def forward(self, x_rref):
143+
x = x_rref.to_here().to(self.device)
144+
with self._lock:
145+
out = self.seq(x)
146+
return out.cpu()
147+
148+
class ResNetPart2(ResNetBase):
149+
"""
150+
The second part of ResNet.
151+
"""
152+
def __init__(self, device, *args, **kwargs):
153+
super(ResNetPart2, self).__init__(
154+
Bottleneck, 512, num_classes=num_classes, *args, **kwargs)
155+
156+
self.device = device
157+
self.seq = nn.Sequential(
158+
self._make_layer(256, 6, stride=2),
159+
self._make_layer(512, 3, stride=2),
160+
nn.AdaptiveAvgPool2d((1, 1)),
161+
).to(self.device)
162+
163+
self.fc = nn.Linear(512 * self._block.expansion, num_classes).to(self.device)
164+
165+
def forward(self, x_rref):
166+
x = x_rref.to_here().to(self.device)
167+
with self._lock:
168+
out = self.fc(torch.flatten(self.seq(x), 1))
169+
return out.cpu()
170+
171+
172+
class DistResNet50(nn.Module):
173+
"""
174+
Assemble two parts as an nn.Module and define pipelining logic
175+
"""
176+
def __init__(self, split_size, workers, *args, **kwargs):
177+
super(DistResNet50, self).__init__()
178+
179+
self.split_size = split_size
180+
181+
# Put the first part of the ResNet50 on workers[0]
182+
self.p1_rref = rpc.remote(
183+
workers[0],
184+
ResNetPart1,
185+
args = ("cuda:0",) + args,
186+
kwargs = kwargs
187+
)
188+
189+
# Put the second part of the ResNet50 on workers[1]
190+
self.p2_rref = rpc.remote(
191+
workers[1],
192+
ResNetPart2,
193+
args = ("cuda:1",) + args,
194+
kwargs = kwargs
195+
)
196+
197+
def forward(self, xs):
198+
# Split the input batch xs into micro-batches, and collect async RPC
199+
# futures into a list
200+
out_futures = []
201+
for x in iter(xs.split(self.split_size, dim=0)):
202+
x_rref = RRef(x)
203+
y_rref = _remote_on_rref(ResNetPart1.forward, self.p1_rref, x_rref)
204+
z_fut = _async_on_rref(ResNetPart2.forward, self.p2_rref, y_rref)
205+
out_futures.append(z_fut)
206+
207+
# wait for all RPC to finish
208+
outs = [fut.wait() for fut in out_futures]
209+
# cat all tensors into one tensor.
210+
out = torch.cat(outs)
211+
return out
212+
213+
def parameter_rrefs(self):
214+
remote_params = []
215+
remote_params.extend(_remote_on_rref(_parameter_rrefs, self.p1_rref).to_here())
216+
remote_params.extend(_remote_on_rref(_parameter_rrefs, self.p2_rref).to_here())
217+
return remote_params
218+
219+
220+
#########################################################
221+
# Run RPC Processes #
222+
#########################################################
223+
224+
num_batches = 3
225+
batch_size = 120
226+
image_w = 128
227+
image_h = 128
228+
229+
230+
def run_master(split_size):
231+
model = DistResNet50(split_size, ["worker1", "worker2"])
232+
loss_fn = nn.MSELoss()
233+
opt = DistributedOptimizer(
234+
optim.SGD,
235+
model.parameter_rrefs(),
236+
lr=0.05,
237+
)
238+
239+
one_hot_indices = torch.LongTensor(batch_size) \
240+
.random_(0, num_classes) \
241+
.view(batch_size, 1)
242+
243+
for i in range(num_batches):
244+
print(f"Processing batch {i}")
245+
# generate random inputs and labels
246+
inputs = torch.randn(batch_size, 3, image_w, image_h)
247+
labels = torch.zeros(batch_size, num_classes) \
248+
.scatter_(1, one_hot_indices, 1)
249+
250+
with dist_autograd.context() as context_id:
251+
outputs = model(inputs)
252+
dist_autograd.backward(context_id, [loss_fn(outputs, labels)])
253+
opt.step(context_id)
254+
255+
256+
def run_worker(rank, world_size, split_size):
257+
os.environ['MASTER_ADDR'] = 'localhost'
258+
os.environ['MASTER_PORT'] = '29500'
259+
options = rpc.ProcessGroupRpcBackendOptions(num_send_recv_threads=256)
260+
261+
if rank == 0:
262+
rpc.init_rpc(
263+
"master",
264+
rank=rank,
265+
world_size=world_size,
266+
rpc_backend_options=options
267+
)
268+
run_master(split_size)
269+
else:
270+
rpc.init_rpc(
271+
f"worker{rank}",
272+
rank=rank,
273+
world_size=world_size,
274+
rpc_backend_options=options
275+
)
276+
pass
277+
278+
# block until all rpcs finish
279+
rpc.shutdown()
280+
281+
282+
if __name__=="__main__":
283+
world_size = 3
284+
for split_size in [1, 2, 4, 8]:
285+
tik = time.time()
286+
mp.spawn(run_worker, args=(world_size, split_size), nprocs=world_size, join=True)
287+
tok = time.time()
288+
print(f"split size = {split_size}, execution time = {tok - tik}")

0 commit comments

Comments
 (0)