|
| 1 | +#!/usr/bin/env python3 |
| 2 | +import unittest |
| 3 | + |
| 4 | +import torch |
| 5 | + |
| 6 | +import captum.optim._utils.atlas as atlas |
| 7 | +from tests.helpers.basic import BaseTest, assertTensorAlmostEqual |
| 8 | + |
| 9 | + |
| 10 | +class TestNormalizeGrid(BaseTest): |
| 11 | + def test_normalize_grid(self) -> None: |
| 12 | + x = torch.arange(0, 2 * 3 * 3).view(3 * 3, 2).float() |
| 13 | + |
| 14 | + x_out = atlas.normalize_grid(x) |
| 15 | + |
| 16 | + x_expected = torch.tensor( |
| 17 | + [ |
| 18 | + [0.0000, 0.0000], |
| 19 | + [0.1250, 0.1250], |
| 20 | + [0.2500, 0.2500], |
| 21 | + [0.3750, 0.3750], |
| 22 | + [0.5000, 0.5000], |
| 23 | + [0.6250, 0.6250], |
| 24 | + [0.7500, 0.7500], |
| 25 | + [0.8750, 0.8750], |
| 26 | + [1.0000, 1.0000], |
| 27 | + ] |
| 28 | + ) |
| 29 | + |
| 30 | + assertTensorAlmostEqual(self, x_out, x_expected) |
| 31 | + |
| 32 | + |
| 33 | +class TestGridIndices(BaseTest): |
| 34 | + def test_grid_indices(self) -> None: |
| 35 | + x = torch.arange(0, 2 * 3 * 3).view(3 * 3, 2).float() |
| 36 | + x = atlas.normalize_grid(x) |
| 37 | + x_indices = atlas.grid_indices(x, size=(2, 2)) |
| 38 | + |
| 39 | + expected_indices = [ |
| 40 | + [torch.tensor([0, 1, 2, 3, 4]), torch.tensor([4])], |
| 41 | + [torch.tensor([4]), torch.tensor([4, 5, 6, 7, 8])], |
| 42 | + ] |
| 43 | + |
| 44 | + for list1, list2 in zip(x_indices, expected_indices): |
| 45 | + for t1, t2 in zip(list1, list2): |
| 46 | + assertTensorAlmostEqual(self, t1, t2) |
| 47 | + |
| 48 | + |
| 49 | +class TestExtractGridVectors(BaseTest): |
| 50 | + def test_extract_grid_vectors(self) -> None: |
| 51 | + x_raw = torch.arange(0, 4 * 3 * 3).view(3 * 3, 4).float() |
| 52 | + x = torch.arange(0, 2 * 3 * 3).view(3 * 3, 2).float() |
| 53 | + x = atlas.normalize_grid(x) |
| 54 | + x_indices = atlas.grid_indices(x, size=(2, 2)) |
| 55 | + |
| 56 | + x_vecs, vec_coords = atlas.extract_grid_vectors( |
| 57 | + x_indices, x_raw, size=(2, 2), min_density=2 |
| 58 | + ) |
| 59 | + |
| 60 | + expected_vecs = torch.tensor([[8.0, 9.0, 10.0, 11.0], [24.0, 25.0, 26.0, 27.0]]) |
| 61 | + expected_coords = [(0, 0), (1, 1)] |
| 62 | + |
| 63 | + assertTensorAlmostEqual(self, x_vecs, expected_vecs) |
| 64 | + self.assertEqual(vec_coords, expected_coords) |
| 65 | + |
| 66 | + |
| 67 | +class TestCreateAtlasVectors(BaseTest): |
| 68 | + def test_create_atlas_vectors(self) -> None: |
| 69 | + x_raw = torch.arange(0, 4 * 3 * 3).view(3 * 3, 4).float() |
| 70 | + x = torch.arange(0, 2 * 3 * 3).view(3 * 3, 2).float() |
| 71 | + x_vecs, vec_coords = atlas.create_atlas_vectors( |
| 72 | + x, x_raw, size=(2, 2), min_density=2, normalize=True |
| 73 | + ) |
| 74 | + |
| 75 | + expected_vecs = torch.tensor([[8.0, 9.0, 10.0, 11.0], [24.0, 25.0, 26.0, 27.0]]) |
| 76 | + expected_coords = [(0, 0), (1, 1)] |
| 77 | + |
| 78 | + assertTensorAlmostEqual(self, x_vecs, expected_vecs) |
| 79 | + self.assertEqual(vec_coords, expected_coords) |
| 80 | + |
| 81 | + |
| 82 | +class TestCreateAtlas(BaseTest): |
| 83 | + def test_create_atlas(self) -> None: |
| 84 | + img_list = [torch.ones(1, 3, 4, 4)] * 2 |
| 85 | + expected_coords = [(0, 0), (1, 1)] |
| 86 | + canvas = atlas.create_atlas(img_list, expected_coords, grid_size=(2, 2)) |
| 87 | + assertTensorAlmostEqual(self, canvas, torch.ones_like(canvas)) |
| 88 | + |
| 89 | + |
| 90 | +if __name__ == "__main__": |
| 91 | + unittest.main() |
0 commit comments