diff --git a/examples/pipeline_tacotron2/README.md b/examples/pipeline_tacotron2/README.md index a5f30d1d18..5487dc6278 100644 --- a/examples/pipeline_tacotron2/README.md +++ b/examples/pipeline_tacotron2/README.md @@ -253,4 +253,4 @@ python inference.py --checkpoint-path ${model_path} \ --input-text "Hello world!" \ --text-preprocessor english_characters \ --output-path "./outputs.wav" -``` \ No newline at end of file +``` diff --git a/test/torchaudio_unittest/common_utils/rnnt_utils.py b/test/torchaudio_unittest/common_utils/rnnt_utils.py index 31887b2beb..94ea300ef7 100644 --- a/test/torchaudio_unittest/common_utils/rnnt_utils.py +++ b/test/torchaudio_unittest/common_utils/rnnt_utils.py @@ -5,6 +5,9 @@ from torchaudio.functional import rnnt_loss +CPU_DEVICE = torch.device("cpu") + + class _NumpyTransducer(torch.autograd.Function): @staticmethod def forward( @@ -240,7 +243,7 @@ def get_basic_data(device): def get_B1_T10_U3_D4_data( random=False, dtype=torch.float32, - device=torch.device("cpu"), + device=CPU_DEVICE, ): B, T, U, D = 2, 10, 3, 4 @@ -263,7 +266,7 @@ def grad_hook(grad): return data -def get_B1_T2_U3_D5_data(dtype=torch.float32, device=torch.device("cpu")): +def get_B1_T2_U3_D5_data(dtype=torch.float32, device=CPU_DEVICE): logits = torch.tensor( [ 0.1, @@ -360,7 +363,7 @@ def grad_hook(grad): return data, ref_costs, ref_gradients -def get_B2_T4_U3_D3_data(dtype=torch.float32, device=torch.device("cpu")): +def get_B2_T4_U3_D3_data(dtype=torch.float32, device=CPU_DEVICE): # Test from D21322854 logits = torch.tensor( [ @@ -550,7 +553,7 @@ def get_random_data( max_D=40, blank=-1, dtype=torch.float32, - device=torch.device("cpu"), + device=CPU_DEVICE, seed=None, ): if seed is not None: