Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 14 additions & 14 deletions test/torchaudio_unittest/functional/autograd_impl.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,38 +29,38 @@ def assert_grad(

def test_lfilter_x(self):
torch.random.manual_seed(2434)
x = get_whitenoise(sample_rate=22050, duration=0.025, n_channels=2)
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
x.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)

def test_lfilter_a(self):
torch.random.manual_seed(2434)
x = get_whitenoise(sample_rate=22050, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
a.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)

def test_lfilter_b(self):
torch.random.manual_seed(2434)
x = get_whitenoise(sample_rate=22050, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
b.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)

def test_lfilter_all_inputs(self):
torch.random.manual_seed(2434)
x = get_whitenoise(sample_rate=22050, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.lfilter, (x, a, b))

def test_biquad(self):
torch.random.manual_seed(2434)
x = get_whitenoise(sample_rate=22050, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.biquad, (x, b[0], b[1], b[2], a[0], a[1], a[2]))
Expand All @@ -72,7 +72,7 @@ def test_biquad(self):
def test_band_biquad(self, central_freq, Q, noise):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.band_biquad, (x, sr, central_freq, Q, noise))
Expand All @@ -84,7 +84,7 @@ def test_band_biquad(self, central_freq, Q, noise):
def test_bass_biquad(self, central_freq, Q, gain):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
Expand All @@ -98,7 +98,7 @@ def test_bass_biquad(self, central_freq, Q, gain):
def test_treble_biquad(self, central_freq, Q, gain):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
Expand All @@ -110,7 +110,7 @@ def test_treble_biquad(self, central_freq, Q, gain):
def test_allpass_biquad(self, central_freq, Q):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.allpass_biquad, (x, sr, central_freq, Q))
Expand All @@ -121,7 +121,7 @@ def test_allpass_biquad(self, central_freq, Q):
def test_lowpass_biquad(self, cutoff_freq, Q):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
cutoff_freq = torch.tensor(cutoff_freq)
Q = torch.tensor(Q)
self.assert_grad(F.lowpass_biquad, (x, sr, cutoff_freq, Q))
Expand All @@ -132,7 +132,7 @@ def test_lowpass_biquad(self, cutoff_freq, Q):
def test_highpass_biquad(self, cutoff_freq, Q):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
cutoff_freq = torch.tensor(cutoff_freq)
Q = torch.tensor(Q)
self.assert_grad(F.highpass_biquad, (x, sr, cutoff_freq, Q))
Expand All @@ -144,7 +144,7 @@ def test_highpass_biquad(self, cutoff_freq, Q):
def test_bandpass_biquad(self, central_freq, Q, const_skirt_gain):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.bandpass_biquad, (x, sr, central_freq, Q, const_skirt_gain))
Expand All @@ -156,7 +156,7 @@ def test_bandpass_biquad(self, central_freq, Q, const_skirt_gain):
def test_equalizer_biquad(self, central_freq, Q, gain):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
Expand All @@ -168,7 +168,7 @@ def test_equalizer_biquad(self, central_freq, Q, gain):
def test_bandreject_biquad(self, central_freq, Q):
torch.random.manual_seed(2434)
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=2)
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.bandreject_biquad, (x, sr, central_freq, Q))