@@ -59,7 +59,6 @@ class Spectrogram(torch.nn.Module):
5959 >>> spectrogram = transform(waveform)
6060
6161 """
62-
6362 __constants__ = ["n_fft" , "win_length" , "hop_length" , "pad" , "power" , "normalized" ]
6463
6564 def __init__ (
@@ -157,7 +156,6 @@ class InverseSpectrogram(torch.nn.Module):
157156 >>> transform = transforms.InverseSpectrogram(n_fft=512)
158157 >>> waveform = transform(spectrogram, length)
159158 """
160-
161159 __constants__ = ["n_fft" , "win_length" , "hop_length" , "pad" , "power" , "normalized" ]
162160
163161 def __init__ (
@@ -244,7 +242,6 @@ class GriffinLim(torch.nn.Module):
244242 >>> transform = transforms.GriffinLim(n_fft=512)
245243 >>> waveform = transform(spectrogram)
246244 """
247-
248245 __constants__ = ["n_fft" , "n_iter" , "win_length" , "hop_length" , "power" , "length" , "momentum" , "rand_init" ]
249246
250247 def __init__ (
@@ -322,7 +319,6 @@ class AmplitudeToDB(torch.nn.Module):
322319 >>> transform = transforms.AmplitudeToDB(stype="amplitude", top_db=80)
323320 >>> waveform_db = transform(waveform)
324321 """
325-
326322 __constants__ = ["multiplier" , "amin" , "ref_value" , "db_multiplier" ]
327323
328324 def __init__ (self , stype : str = "power" , top_db : Optional [float ] = None ) -> None :
@@ -452,7 +448,6 @@ class InverseMelScale(torch.nn.Module):
452448 >>> inverse_melscale_transform = transforms.InverseMelScale(n_stft=1024 // 2 + 1)
453449 >>> spectrogram = inverse_melscale_transform(mel_spectrogram)
454450 """
455-
456451 __constants__ = [
457452 "n_stft" ,
458453 "n_mels" ,
@@ -566,7 +561,6 @@ class MelSpectrogram(torch.nn.Module):
566561 :py:func:`torchaudio.functional.melscale_fbanks` - The function used to
567562 generate the filter banks.
568563 """
569-
570564 __constants__ = ["sample_rate" , "n_fft" , "win_length" , "hop_length" , "pad" , "n_mels" , "f_min" ]
571565
572566 def __init__ (
@@ -673,7 +667,6 @@ class MFCC(torch.nn.Module):
673667 :py:func:`torchaudio.functional.melscale_fbanks` - The function used to
674668 generate the filter banks.
675669 """
676-
677670 __constants__ = ["sample_rate" , "n_mfcc" , "dct_type" , "top_db" , "log_mels" ]
678671
679672 def __init__ (
@@ -764,7 +757,6 @@ class LFCC(torch.nn.Module):
764757 :py:func:`torchaudio.functional.linear_fbanks` - The function used to
765758 generate the filter banks.
766759 """
767-
768760 __constants__ = ["sample_rate" , "n_filter" , "n_lfcc" , "dct_type" , "top_db" , "log_lf" ]
769761
770762 def __init__ (
@@ -858,7 +850,6 @@ class MuLawEncoding(torch.nn.Module):
858850 >>> mulawtrans = transform(waveform)
859851
860852 """
861-
862853 __constants__ = ["quantization_channels" ]
863854
864855 def __init__ (self , quantization_channels : int = 256 ) -> None :
@@ -897,7 +888,6 @@ class MuLawDecoding(torch.nn.Module):
897888 >>> transform = torchaudio.transforms.MuLawDecoding(quantization_channels=512)
898889 >>> mulawtrans = transform(waveform)
899890 """
900-
901891 __constants__ = ["quantization_channels" ]
902892
903893 def __init__ (self , quantization_channels : int = 256 ) -> None :
@@ -1012,7 +1002,6 @@ class ComputeDeltas(torch.nn.Module):
10121002 win_length (int, optional): The window length used for computing delta. (Default: ``5``)
10131003 mode (str, optional): Mode parameter passed to padding. (Default: ``"replicate"``)
10141004 """
1015-
10161005 __constants__ = ["win_length" ]
10171006
10181007 def __init__ (self , win_length : int = 5 , mode : str = "replicate" ) -> None :
@@ -1063,7 +1052,6 @@ class TimeStretch(torch.nn.Module):
10631052 :width: 600
10641053 :alt: The visualization of stretched spectrograms.
10651054 """
1066-
10671055 __constants__ = ["fixed_rate" ]
10681056
10691057 def __init__ (self , hop_length : Optional [int ] = None , n_freq : int = 201 , fixed_rate : Optional [float ] = None ) -> None :
@@ -1197,7 +1185,6 @@ class _AxisMasking(torch.nn.Module):
11971185 This option is applicable only when the dimension of the input tensor is >= 3.
11981186 p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)
11991187 """
1200-
12011188 __constants__ = ["mask_param" , "axis" , "iid_masks" , "p" ]
12021189
12031190 def __init__ (self , mask_param : int , axis : int , iid_masks : bool , p : float = 1.0 ) -> None :
@@ -1313,7 +1300,6 @@ class SpecAugment(torch.nn.Module):
13131300 zero_masking (bool, optional): If ``True``, use 0 as the mask value,
13141301 else use mean of the input tensor. (Default: ``False``)
13151302 """
1316-
13171303 __constants__ = [
13181304 "n_time_masks" ,
13191305 "time_mask_param" ,
@@ -1389,7 +1375,6 @@ class Loudness(torch.nn.Module):
13891375 Reference:
13901376 - https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en
13911377 """
1392-
13931378 __constants__ = ["sample_rate" ]
13941379
13951380 def __init__ (self , sample_rate : int ):
@@ -1659,7 +1644,6 @@ class SpectralCentroid(torch.nn.Module):
16591644 >>> transform = transforms.SpectralCentroid(sample_rate)
16601645 >>> spectral_centroid = transform(waveform) # (channel, time)
16611646 """
1662-
16631647 __constants__ = ["sample_rate" , "n_fft" , "win_length" , "hop_length" , "pad" ]
16641648
16651649 def __init__ (
@@ -1719,7 +1703,6 @@ class PitchShift(LazyModuleMixin, torch.nn.Module):
17191703 >>> transform = transforms.PitchShift(sample_rate, 4)
17201704 >>> waveform_shift = transform(waveform) # (channel, time)
17211705 """
1722-
17231706 __constants__ = ["sample_rate" , "n_steps" , "bins_per_octave" , "n_fft" , "win_length" , "hop_length" ]
17241707
17251708 kernel : UninitializedParameter
0 commit comments