Skip to content

Commit fae5180

Browse files
committed
Undo unintentional formatting
1 parent 5ef4fb8 commit fae5180

File tree

1 file changed

+0
-17
lines changed

1 file changed

+0
-17
lines changed

src/torchaudio/transforms/_transforms.py

Lines changed: 0 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,6 @@ class Spectrogram(torch.nn.Module):
5959
>>> spectrogram = transform(waveform)
6060
6161
"""
62-
6362
__constants__ = ["n_fft", "win_length", "hop_length", "pad", "power", "normalized"]
6463

6564
def __init__(
@@ -157,7 +156,6 @@ class InverseSpectrogram(torch.nn.Module):
157156
>>> transform = transforms.InverseSpectrogram(n_fft=512)
158157
>>> waveform = transform(spectrogram, length)
159158
"""
160-
161159
__constants__ = ["n_fft", "win_length", "hop_length", "pad", "power", "normalized"]
162160

163161
def __init__(
@@ -244,7 +242,6 @@ class GriffinLim(torch.nn.Module):
244242
>>> transform = transforms.GriffinLim(n_fft=512)
245243
>>> waveform = transform(spectrogram)
246244
"""
247-
248245
__constants__ = ["n_fft", "n_iter", "win_length", "hop_length", "power", "length", "momentum", "rand_init"]
249246

250247
def __init__(
@@ -322,7 +319,6 @@ class AmplitudeToDB(torch.nn.Module):
322319
>>> transform = transforms.AmplitudeToDB(stype="amplitude", top_db=80)
323320
>>> waveform_db = transform(waveform)
324321
"""
325-
326322
__constants__ = ["multiplier", "amin", "ref_value", "db_multiplier"]
327323

328324
def __init__(self, stype: str = "power", top_db: Optional[float] = None) -> None:
@@ -452,7 +448,6 @@ class InverseMelScale(torch.nn.Module):
452448
>>> inverse_melscale_transform = transforms.InverseMelScale(n_stft=1024 // 2 + 1)
453449
>>> spectrogram = inverse_melscale_transform(mel_spectrogram)
454450
"""
455-
456451
__constants__ = [
457452
"n_stft",
458453
"n_mels",
@@ -566,7 +561,6 @@ class MelSpectrogram(torch.nn.Module):
566561
:py:func:`torchaudio.functional.melscale_fbanks` - The function used to
567562
generate the filter banks.
568563
"""
569-
570564
__constants__ = ["sample_rate", "n_fft", "win_length", "hop_length", "pad", "n_mels", "f_min"]
571565

572566
def __init__(
@@ -673,7 +667,6 @@ class MFCC(torch.nn.Module):
673667
:py:func:`torchaudio.functional.melscale_fbanks` - The function used to
674668
generate the filter banks.
675669
"""
676-
677670
__constants__ = ["sample_rate", "n_mfcc", "dct_type", "top_db", "log_mels"]
678671

679672
def __init__(
@@ -764,7 +757,6 @@ class LFCC(torch.nn.Module):
764757
:py:func:`torchaudio.functional.linear_fbanks` - The function used to
765758
generate the filter banks.
766759
"""
767-
768760
__constants__ = ["sample_rate", "n_filter", "n_lfcc", "dct_type", "top_db", "log_lf"]
769761

770762
def __init__(
@@ -858,7 +850,6 @@ class MuLawEncoding(torch.nn.Module):
858850
>>> mulawtrans = transform(waveform)
859851
860852
"""
861-
862853
__constants__ = ["quantization_channels"]
863854

864855
def __init__(self, quantization_channels: int = 256) -> None:
@@ -897,7 +888,6 @@ class MuLawDecoding(torch.nn.Module):
897888
>>> transform = torchaudio.transforms.MuLawDecoding(quantization_channels=512)
898889
>>> mulawtrans = transform(waveform)
899890
"""
900-
901891
__constants__ = ["quantization_channels"]
902892

903893
def __init__(self, quantization_channels: int = 256) -> None:
@@ -1012,7 +1002,6 @@ class ComputeDeltas(torch.nn.Module):
10121002
win_length (int, optional): The window length used for computing delta. (Default: ``5``)
10131003
mode (str, optional): Mode parameter passed to padding. (Default: ``"replicate"``)
10141004
"""
1015-
10161005
__constants__ = ["win_length"]
10171006

10181007
def __init__(self, win_length: int = 5, mode: str = "replicate") -> None:
@@ -1063,7 +1052,6 @@ class TimeStretch(torch.nn.Module):
10631052
:width: 600
10641053
:alt: The visualization of stretched spectrograms.
10651054
"""
1066-
10671055
__constants__ = ["fixed_rate"]
10681056

10691057
def __init__(self, hop_length: Optional[int] = None, n_freq: int = 201, fixed_rate: Optional[float] = None) -> None:
@@ -1197,7 +1185,6 @@ class _AxisMasking(torch.nn.Module):
11971185
This option is applicable only when the dimension of the input tensor is >= 3.
11981186
p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)
11991187
"""
1200-
12011188
__constants__ = ["mask_param", "axis", "iid_masks", "p"]
12021189

12031190
def __init__(self, mask_param: int, axis: int, iid_masks: bool, p: float = 1.0) -> None:
@@ -1313,7 +1300,6 @@ class SpecAugment(torch.nn.Module):
13131300
zero_masking (bool, optional): If ``True``, use 0 as the mask value,
13141301
else use mean of the input tensor. (Default: ``False``)
13151302
"""
1316-
13171303
__constants__ = [
13181304
"n_time_masks",
13191305
"time_mask_param",
@@ -1389,7 +1375,6 @@ class Loudness(torch.nn.Module):
13891375
Reference:
13901376
- https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en
13911377
"""
1392-
13931378
__constants__ = ["sample_rate"]
13941379

13951380
def __init__(self, sample_rate: int):
@@ -1659,7 +1644,6 @@ class SpectralCentroid(torch.nn.Module):
16591644
>>> transform = transforms.SpectralCentroid(sample_rate)
16601645
>>> spectral_centroid = transform(waveform) # (channel, time)
16611646
"""
1662-
16631647
__constants__ = ["sample_rate", "n_fft", "win_length", "hop_length", "pad"]
16641648

16651649
def __init__(
@@ -1719,7 +1703,6 @@ class PitchShift(LazyModuleMixin, torch.nn.Module):
17191703
>>> transform = transforms.PitchShift(sample_rate, 4)
17201704
>>> waveform_shift = transform(waveform) # (channel, time)
17211705
"""
1722-
17231706
__constants__ = ["sample_rate", "n_steps", "bins_per_octave", "n_fft", "win_length", "hop_length"]
17241707

17251708
kernel: UninitializedParameter

0 commit comments

Comments
 (0)