@@ -129,7 +129,7 @@ def istft(
129129
130130 # pack batch
131131 shape = stft_matrix .size ()
132- stft_matrix = stft_matrix .reshape (- 1 , shape [- 3 ], shape [- 2 ], shape [- 1 ])
132+ stft_matrix = stft_matrix .view (- 1 , shape [- 3 ], shape [- 2 ], shape [- 1 ])
133133
134134 dtype = stft_matrix .dtype
135135 device = stft_matrix .device
@@ -214,7 +214,7 @@ def istft(
214214 y = (y / window_envelop ).squeeze (1 ) # size (channel, expected_signal_len)
215215
216216 # unpack batch
217- y = y .reshape (shape [:- 3 ] + y .shape [- 1 :])
217+ y = y .view (shape [:- 3 ] + y .shape [- 1 :])
218218
219219 if stft_matrix_dim == 3 : # remove the channel dimension
220220 y = y .squeeze (0 )
@@ -253,15 +253,15 @@ def spectrogram(
253253
254254 # pack batch
255255 shape = waveform .size ()
256- waveform = waveform .reshape (- 1 , shape [- 1 ])
256+ waveform = waveform .view (- 1 , shape [- 1 ])
257257
258258 # default values are consistent with librosa.core.spectrum._spectrogram
259259 spec_f = _stft (
260260 waveform , n_fft , hop_length , win_length , window , True , "reflect" , False , True
261261 )
262262
263263 # unpack batch
264- spec_f = spec_f .reshape (shape [:- 1 ] + spec_f .shape [- 3 :])
264+ spec_f = spec_f .view (shape [:- 1 ] + spec_f .shape [- 3 :])
265265
266266 if normalized :
267267 spec_f /= window .pow (2. ).sum ().sqrt ()
@@ -317,7 +317,7 @@ def griffinlim(
317317
318318 # pack batch
319319 shape = specgram .size ()
320- specgram = specgram .reshape ([- 1 ] + list (shape [- 2 :]))
320+ specgram = specgram .view ([- 1 ] + list (shape [- 2 :]))
321321
322322 specgram = specgram .pow (1 / power )
323323
@@ -363,7 +363,7 @@ def griffinlim(
363363 length = length )
364364
365365 # unpack batch
366- waveform = waveform .reshape (shape [:- 2 ] + waveform .shape [- 1 :])
366+ waveform = waveform .view (shape [:- 2 ] + waveform .shape [- 1 :])
367367
368368 return waveform
369369
@@ -587,7 +587,7 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
587587
588588 # pack batch
589589 shape = complex_specgrams .size ()
590- complex_specgrams = complex_specgrams .reshape ([- 1 ] + list (shape [- 3 :]))
590+ complex_specgrams = complex_specgrams .view ([- 1 ] + list (shape [- 3 :]))
591591
592592 time_steps = torch .arange (0 ,
593593 complex_specgrams .size (- 2 ),
@@ -627,7 +627,7 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
627627 complex_specgrams_stretch = torch .stack ([real_stretch , imag_stretch ], dim = - 1 )
628628
629629 # unpack batch
630- complex_specgrams_stretch = complex_specgrams_stretch .reshape (shape [:- 3 ] + complex_specgrams_stretch .shape [1 :])
630+ complex_specgrams_stretch = complex_specgrams_stretch .view (shape [:- 3 ] + complex_specgrams_stretch .shape [1 :])
631631
632632 return complex_specgrams_stretch
633633
@@ -654,7 +654,7 @@ def lfilter(waveform, a_coeffs, b_coeffs):
654654
655655 # pack batch
656656 shape = waveform .size ()
657- waveform = waveform .reshape (- 1 , shape [- 1 ])
657+ waveform = waveform .view (- 1 , shape [- 1 ])
658658
659659 assert (a_coeffs .size (0 ) == b_coeffs .size (0 ))
660660 assert (len (waveform .size ()) == 2 )
@@ -697,7 +697,7 @@ def lfilter(waveform, a_coeffs, b_coeffs):
697697 output = torch .clamp (padded_output_waveform [:, (n_order - 1 ):], min = - 1. , max = 1. )
698698
699699 # unpack batch
700- output = output .reshape (shape [:- 1 ] + output .shape [- 1 :])
700+ output = output .view (shape [:- 1 ] + output .shape [- 1 :])
701701
702702 return output
703703
@@ -876,7 +876,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
876876
877877 # pack batch
878878 shape = specgram .size ()
879- specgram = specgram .reshape ([- 1 ] + list (shape [- 2 :]))
879+ specgram = specgram .view ([- 1 ] + list (shape [- 2 :]))
880880
881881 value = torch .rand (1 ) * mask_param
882882 min_value = torch .rand (1 ) * (specgram .size (axis ) - value )
@@ -893,7 +893,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
893893 raise ValueError ('Only Frequency and Time masking are supported' )
894894
895895 # unpack batch
896- specgram = specgram .reshape (shape [:- 2 ] + specgram .shape [- 2 :])
896+ specgram = specgram .view (shape [:- 2 ] + specgram .shape [- 2 :])
897897
898898 return specgram
899899
@@ -925,7 +925,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
925925
926926 # pack batch
927927 shape = specgram .size ()
928- specgram = specgram .reshape (1 , - 1 , shape [- 1 ])
928+ specgram = specgram .view (1 , - 1 , shape [- 1 ])
929929
930930 assert win_length >= 3
931931
@@ -945,7 +945,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
945945 output = torch .nn .functional .conv1d (specgram , kernel , groups = specgram .shape [1 ]) / denom
946946
947947 # unpack batch
948- output = output .reshape (shape )
948+ output = output .view (shape )
949949
950950 return output
951951
@@ -974,11 +974,10 @@ def _add_noise_shaping(dithered_waveform, waveform):
974974 error[n] = dithered[n] - original[n]
975975 noise_shaped_waveform[n] = dithered[n] + error[n-1]
976976 """
977- wf_shape = waveform .size ()
978- waveform = waveform .reshape (- 1 , wf_shape [- 1 ])
977+ waveform = waveform .view (- 1 , waveform .size ()[- 1 ])
979978
980979 dithered_shape = dithered_waveform .size ()
981- dithered_waveform = dithered_waveform .reshape (- 1 , dithered_shape [- 1 ])
980+ dithered_waveform = dithered_waveform .view (- 1 , dithered_shape [- 1 ])
982981
983982 error = dithered_waveform - waveform
984983
@@ -989,7 +988,7 @@ def _add_noise_shaping(dithered_waveform, waveform):
989988 error [index ] = error_offset [:waveform .size ()[1 ]]
990989
991990 noise_shaped = dithered_waveform + error
992- return noise_shaped .reshape (dithered_shape [:- 1 ] + noise_shaped .shape [- 1 :])
991+ return noise_shaped .view (dithered_shape [:- 1 ] + noise_shaped .shape [- 1 :])
993992
994993
995994def _apply_probability_distribution (waveform , density_function = "TPDF" ):
@@ -1020,7 +1019,7 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
10201019
10211020 # pack batch
10221021 shape = waveform .size ()
1023- waveform = waveform .reshape (- 1 , shape [- 1 ])
1022+ waveform = waveform .view (- 1 , shape [- 1 ])
10241023
10251024 channel_size = waveform .size ()[0 ] - 1
10261025 time_size = waveform .size ()[- 1 ] - 1
@@ -1060,7 +1059,7 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
10601059 quantised_signal = quantised_signal_scaled / down_scaling
10611060
10621061 # unpack batch
1063- return quantised_signal .reshape (shape [:- 1 ] + quantised_signal .shape [- 1 :])
1062+ return quantised_signal .view (shape [:- 1 ] + quantised_signal .shape [- 1 :])
10641063
10651064
10661065def dither (waveform , density_function = "TPDF" , noise_shaping = False ):
@@ -1231,7 +1230,7 @@ def detect_pitch_frequency(
12311230
12321231 # pack batch
12331232 shape = list (waveform .size ())
1234- waveform = waveform .reshape ([- 1 ] + shape [- 1 :])
1233+ waveform = waveform .view ([- 1 ] + shape [- 1 :])
12351234
12361235 nccf = _compute_nccf (waveform , sample_rate , frame_time , freq_low )
12371236 indices = _find_max_per_frame (nccf , sample_rate , freq_high )
@@ -1242,6 +1241,6 @@ def detect_pitch_frequency(
12421241 freq = sample_rate / (EPSILON + indices .to (torch .float ))
12431242
12441243 # unpack batch
1245- freq = freq .reshape (shape [:- 1 ] + list (freq .shape [- 1 :]))
1244+ freq = freq .view (shape [:- 1 ] + list (freq .shape [- 1 :]))
12461245
12471246 return freq
0 commit comments