|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +from typing import Optional |
| 8 | +import copy |
| 9 | +import itertools |
| 10 | +import os |
| 11 | +import sys |
| 12 | + |
| 13 | +import torch |
| 14 | +import torchao_mps_ops |
| 15 | +import unittest |
| 16 | + |
| 17 | +from parameterized import parameterized |
| 18 | +from torchao.experimental.quant_api import UIntxWeightOnlyLinearQuantizer |
| 19 | +from torchao.experimental.quant_api import _quantize |
| 20 | + |
| 21 | + |
| 22 | +class TestUIntxWeightOnlyLinearQuantizer(unittest.TestCase): |
| 23 | + BITWIDTHS = range(1, 8) |
| 24 | + GROUPSIZES = [32, 64, 128, 256] |
| 25 | + |
| 26 | + # Currently, the quantization code in quant_api.py only supports K values |
| 27 | + # multiple of group_size. |
| 28 | + # TODO(mcandales): Generalize the code in quant_api.py and add tests to |
| 29 | + # cover values of K not multiple of group_size. |
| 30 | + def _model_setup(self): |
| 31 | + group_size = 32 |
| 32 | + k0 = 96 |
| 33 | + k1 = 224 |
| 34 | + k2 = 160 |
| 35 | + n = 47 |
| 36 | + layers = [ |
| 37 | + torch.nn.Linear(k0, k1, bias=False), |
| 38 | + torch.nn.Linear(k1, k2, bias=False), |
| 39 | + torch.nn.Linear(k2, n, bias=False), |
| 40 | + ] |
| 41 | + model = torch.nn.Sequential(*layers) |
| 42 | + return model, group_size, k0, n |
| 43 | + |
| 44 | + def _quantize_model(self, model, precision, nbit, group_size): |
| 45 | + quantizer = UIntxWeightOnlyLinearQuantizer( |
| 46 | + device="mps", |
| 47 | + precision=precision, |
| 48 | + bitwidth=nbit, |
| 49 | + groupsize=group_size, |
| 50 | + ) |
| 51 | + quantized_model = copy.deepcopy(model) |
| 52 | + quantized_model = quantizer.quantize(quantized_model) |
| 53 | + return quantized_model |
| 54 | + |
| 55 | + @parameterized.expand(BITWIDTHS) |
| 56 | + def test_export(self, nbit): |
| 57 | + model, group_size, k0, n = self._model_setup() |
| 58 | + m = 3 |
| 59 | + activations = torch.randn(m, k0, dtype=torch.float32, device="mps") |
| 60 | + |
| 61 | + quantized_model = self._quantize_model(model, torch.float32, nbit, group_size) |
| 62 | + exported = torch.export.export(quantized_model, (activations,)) |
| 63 | + |
| 64 | + for node in exported.graph.nodes: |
| 65 | + if node.op == "call_function": |
| 66 | + self.assertTrue( |
| 67 | + str(node.target) |
| 68 | + == f"torchao._linear_fp_act_{nbit}bit_weight.default" |
| 69 | + ) |
| 70 | + |
| 71 | + @parameterized.expand(BITWIDTHS) |
| 72 | + def test_2d_output_device_and_shape(self, nbit): |
| 73 | + model, group_size, k0, n = self._model_setup() |
| 74 | + m = 3 |
| 75 | + activations = torch.randn(m, k0, dtype=torch.float32, device="mps") |
| 76 | + |
| 77 | + quantized_model = self._quantize_model(model, torch.float32, nbit, group_size) |
| 78 | + result = quantized_model(activations) |
| 79 | + self.assertTrue(result.is_mps) |
| 80 | + self.assertTrue(result.shape == (m, n)) |
| 81 | + |
| 82 | + @parameterized.expand(BITWIDTHS) |
| 83 | + def test_3d_output_device_and_shape(self, nbit): |
| 84 | + model, group_size, k0, n = self._model_setup() |
| 85 | + leading_shape = (3, 5) |
| 86 | + activations = torch.randn(*leading_shape, k0, dtype=torch.float32, device="mps") |
| 87 | + |
| 88 | + quantized_model = self._quantize_model(model, torch.float32, nbit, group_size) |
| 89 | + result = quantized_model(activations) |
| 90 | + self.assertTrue(result.is_mps) |
| 91 | + self.assertTrue(result.shape == (*leading_shape, n)) |
| 92 | + |
| 93 | + @parameterized.expand(itertools.product(BITWIDTHS, GROUPSIZES)) |
| 94 | + def test_valid_groupsizes(self, nbit, group_size): |
| 95 | + k0 = 3 * group_size |
| 96 | + k1 = 7 * group_size |
| 97 | + n = 47 |
| 98 | + layers = [ |
| 99 | + torch.nn.Linear(k0, k1, bias=False), |
| 100 | + torch.nn.Linear(k1, n, bias=False), |
| 101 | + ] |
| 102 | + model = torch.nn.Sequential(*layers) |
| 103 | + m = 5 |
| 104 | + activations = torch.randn(m, k0, dtype=torch.float32, device="mps") |
| 105 | + |
| 106 | + quantized_model = self._quantize_model(model, torch.float32, nbit, group_size) |
| 107 | + result = quantized_model(activations) |
| 108 | + self.assertTrue(result.is_mps) |
| 109 | + self.assertTrue(result.shape == (m, n)) |
| 110 | + |
| 111 | + @parameterized.expand(BITWIDTHS) |
| 112 | + def test_invalid_groupsizes(self, nbit): |
| 113 | + group_size = 16 |
| 114 | + k0 = 3 * group_size |
| 115 | + k1 = 7 * group_size |
| 116 | + n = 47 |
| 117 | + layers = [ |
| 118 | + torch.nn.Linear(k0, k1, bias=False), |
| 119 | + torch.nn.Linear(k1, n, bias=False), |
| 120 | + ] |
| 121 | + model = torch.nn.Sequential(*layers) |
| 122 | + |
| 123 | + with self.assertRaises(ValueError): |
| 124 | + self._quantize_model(model, torch.float32, nbit, group_size) |
| 125 | + |
| 126 | + # TODO(mcandales): Consolidate with the reference impl in test_lowbit.py |
| 127 | + def _reference_linear_lowbit_quant_weights(self, A, W, group_size, S, Z): |
| 128 | + N = W.shape[0] |
| 129 | + K = W.shape[1] |
| 130 | + W = W.to(torch.float32) |
| 131 | + scales = S.t().unsqueeze(2).repeat(1, 1, group_size).view(N, -1)[:, :K] |
| 132 | + zeros = Z.t().unsqueeze(2).repeat(1, 1, group_size).view(N, -1)[:, :K] |
| 133 | + W = scales * W + zeros |
| 134 | + return torch.mm(A, W.t()) |
| 135 | + |
| 136 | + @parameterized.expand(BITWIDTHS) |
| 137 | + def test_accuracy(self, nbit): |
| 138 | + group_size = 32 |
| 139 | + m = 3 |
| 140 | + n = 7 |
| 141 | + k = 64 |
| 142 | + with torch.no_grad(): |
| 143 | + activations = torch.rand(m, k, dtype=torch.float32, device="mps") |
| 144 | + model = torch.nn.Sequential(*[torch.nn.Linear(k, n, bias=False)]) |
| 145 | + quantized_model = self._quantize_model( |
| 146 | + model, torch.float32, nbit, group_size |
| 147 | + ) |
| 148 | + result = quantized_model(activations) |
| 149 | + |
| 150 | + # Compute expected result |
| 151 | + weight_cpu = model[0].weight.data |
| 152 | + weight_qvals_cpu, weight_scales_cpu, weight_zeros_cpu = _quantize( |
| 153 | + weight_cpu, group_size, nbit, True, torch.uint8 |
| 154 | + ) |
| 155 | + weight_scales_cpu = weight_scales_cpu.t() |
| 156 | + weight_zeros_cpu = -weight_zeros_cpu.t() * weight_scales_cpu |
| 157 | + expected = self._reference_linear_lowbit_quant_weights( |
| 158 | + activations.cpu(), |
| 159 | + weight_qvals_cpu, |
| 160 | + group_size, |
| 161 | + weight_scales_cpu, |
| 162 | + weight_zeros_cpu, |
| 163 | + ) |
| 164 | + |
| 165 | + # Compare results |
| 166 | + torch.testing.assert_close(result.cpu(), expected, rtol=0.001, atol=0.001) |
| 167 | + |
| 168 | + |
| 169 | +if __name__ == "__main__": |
| 170 | + unittest.main() |
0 commit comments