|
| 1 | +import logging |
| 2 | +from typing import Dict, Sequence, Tuple, Union |
| 3 | +import torch |
| 4 | +from torch_tensorrt.fx.converters import acc_ops_converters |
| 5 | +from ..converter_registry import dynamo_tensorrt_converter |
| 6 | +from torch.fx.node import Argument, Target |
| 7 | + |
| 8 | +from torch_tensorrt.fx.types import TRTNetwork, TRTTensor |
| 9 | +from torch_tensorrt.dynamo.converters import SourceIR |
| 10 | +from torch_tensorrt.dynamo.converters import impl |
| 11 | + |
| 12 | +_LOGGER: logging.Logger = logging.getLogger(__name__) |
| 13 | + |
| 14 | + |
| 15 | +def or_none(args, i): |
| 16 | + return args[i] if len(args) > i else None |
| 17 | + |
| 18 | + |
| 19 | +@dynamo_tensorrt_converter(torch.ops.aten.batch_norm) |
| 20 | +def aten_ops_batch_norm( |
| 21 | + network: TRTNetwork, |
| 22 | + target: Target, |
| 23 | + args: Tuple[Argument, ...], |
| 24 | + kwargs: Dict[str, Argument], |
| 25 | + name: str, |
| 26 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 27 | + return impl.normalization.batch_norm( |
| 28 | + network, |
| 29 | + target, |
| 30 | + SourceIR.ATEN, |
| 31 | + name, |
| 32 | + args[0], |
| 33 | + args[1], |
| 34 | + args[2], |
| 35 | + args[3], |
| 36 | + args[4], |
| 37 | + args[5], |
| 38 | + args[6], |
| 39 | + args[7], |
| 40 | + ) |
| 41 | + |
| 42 | + |
| 43 | +@dynamo_tensorrt_converter(torch.ops.aten.div.default) |
| 44 | +@dynamo_tensorrt_converter(torch.ops.aten.div.Tensor_mode) |
| 45 | +@dynamo_tensorrt_converter(torch.ops.aten.div.Tensor) |
| 46 | +def aten_ops_div( |
| 47 | + network: TRTNetwork, |
| 48 | + target: Target, |
| 49 | + args: Tuple[Argument, ...], |
| 50 | + kwargs: Dict[str, Argument], |
| 51 | + name: str, |
| 52 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 53 | + kwargs_new = { |
| 54 | + "input": args[0], |
| 55 | + "other": args[1], |
| 56 | + } |
| 57 | + rounding_mode = kwargs.get("rounding_mode") |
| 58 | + if rounding_mode is None: |
| 59 | + return acc_ops_converters.acc_ops_div(network, target, None, kwargs_new, name) |
| 60 | + elif rounding_mode == "floor": |
| 61 | + return acc_ops_converters.acc_ops_floor_div( |
| 62 | + network, target, None, kwargs_new, name |
| 63 | + ) |
| 64 | + elif rounding_mode == "trunc": |
| 65 | + return impl.elementwise.trunc_div( |
| 66 | + network, target, SourceIR.ATEN, name, args[0], args[1] |
| 67 | + ) |
| 68 | + else: |
| 69 | + raise RuntimeError( |
| 70 | + f"Target {target} does not support rounding mode {rounding_mode}" |
| 71 | + ) |
| 72 | + |
| 73 | + |
| 74 | +@dynamo_tensorrt_converter(torch.ops.aten.fmod.Scalar) |
| 75 | +@dynamo_tensorrt_converter(torch.ops.aten.fmod.Tensor) |
| 76 | +def aten_ops_fmod( |
| 77 | + network: TRTNetwork, |
| 78 | + target: Target, |
| 79 | + args: Tuple[Argument, ...], |
| 80 | + kwargs: Dict[str, Argument], |
| 81 | + name: str, |
| 82 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 83 | + return impl.elementwise.fmod(network, target, SourceIR.ATEN, name, args[0], args[1]) |
| 84 | + |
| 85 | + |
| 86 | +@dynamo_tensorrt_converter(torch.ops.aten.gelu.default) |
| 87 | +def aten_ops_gelu( |
| 88 | + network: TRTNetwork, |
| 89 | + target: Target, |
| 90 | + args: Tuple[Argument, ...], |
| 91 | + kwargs: Dict[str, Argument], |
| 92 | + name: str, |
| 93 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 94 | + return impl.activation.gelu( |
| 95 | + network, |
| 96 | + target, |
| 97 | + SourceIR.ATEN, |
| 98 | + name, |
| 99 | + args[0], |
| 100 | + ) |
| 101 | + |
| 102 | + |
| 103 | +@dynamo_tensorrt_converter(torch.ops.aten.matmul) |
| 104 | +@dynamo_tensorrt_converter(torch.ops.aten.mm.default) |
| 105 | +def aten_ops_matmul( |
| 106 | + network: TRTNetwork, |
| 107 | + target: Target, |
| 108 | + args: Tuple[Argument, ...], |
| 109 | + kwargs: Dict[str, Argument], |
| 110 | + name: str, |
| 111 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 112 | + return impl.matmul.matrix_multiply( |
| 113 | + network, target, SourceIR.ATEN, name, args[0], args[1] |
| 114 | + ) |
| 115 | + |
| 116 | + |
| 117 | +@dynamo_tensorrt_converter(torch.ops.aten.layer_norm.default) |
| 118 | +def aten_ops_layernorm( |
| 119 | + network: TRTNetwork, |
| 120 | + target: Target, |
| 121 | + args: Tuple[Argument, ...], |
| 122 | + kwargs: Dict[str, Argument], |
| 123 | + name: str, |
| 124 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 125 | + return impl.normalization.layer_norm( |
| 126 | + network, |
| 127 | + target, |
| 128 | + SourceIR.ATEN, |
| 129 | + name, |
| 130 | + args[0], |
| 131 | + args[1], |
| 132 | + args[2], |
| 133 | + args[3], |
| 134 | + args[4], |
| 135 | + ) |
| 136 | + |
| 137 | + |
| 138 | +@dynamo_tensorrt_converter(torch.ops.aten.relu.default) |
| 139 | +def aten_ops_relu( |
| 140 | + network: TRTNetwork, |
| 141 | + target: Target, |
| 142 | + args: Tuple[Argument, ...], |
| 143 | + kwargs: Dict[str, Argument], |
| 144 | + name: str, |
| 145 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 146 | + |
| 147 | + return impl.activation.relu( |
| 148 | + network, |
| 149 | + target, |
| 150 | + SourceIR.ATEN, |
| 151 | + name, |
| 152 | + args[0], |
| 153 | + ) |
| 154 | + |
| 155 | + |
| 156 | +@dynamo_tensorrt_converter(torch.ops.aten.rsqrt.default) |
| 157 | +def aten_ops_rsqrt( |
| 158 | + network: TRTNetwork, |
| 159 | + target: Target, |
| 160 | + args: Tuple[Argument, ...], |
| 161 | + kwargs: Dict[str, Argument], |
| 162 | + name: str, |
| 163 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 164 | + |
| 165 | + return impl.elementwise.rsqrt( |
| 166 | + network, |
| 167 | + target, |
| 168 | + SourceIR.ATEN, |
| 169 | + name, |
| 170 | + args[0], |
| 171 | + ) |
| 172 | + |
| 173 | + |
| 174 | +@dynamo_tensorrt_converter(torch.ops.aten.squeeze.dim) |
| 175 | +@dynamo_tensorrt_converter(torch.ops.aten.squeeze.dims) |
| 176 | +def aten_ops_squeeze( |
| 177 | + network: TRTNetwork, |
| 178 | + target: Target, |
| 179 | + args: Tuple[Argument, ...], |
| 180 | + kwargs: Dict[str, Argument], |
| 181 | + name: str, |
| 182 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 183 | + return impl.squeeze.squeeze(network, target, SourceIR.ATEN, name, args[0], args[1]) |
| 184 | + |
| 185 | + |
| 186 | +@dynamo_tensorrt_converter(torch.ops.aten.unsqueeze.default) |
| 187 | +def aten_ops_unsqueeze( |
| 188 | + network: TRTNetwork, |
| 189 | + target: Target, |
| 190 | + args: Tuple[Argument, ...], |
| 191 | + kwargs: Dict[str, Argument], |
| 192 | + name: str, |
| 193 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 194 | + return impl.unsqueeze.unsqueeze( |
| 195 | + network, target, SourceIR.ATEN, name, input_t=args[0], dim=args[1] |
| 196 | + ) |
| 197 | + |
| 198 | + |
| 199 | +@dynamo_tensorrt_converter(torch.ops.aten.rsub.Tensor) |
| 200 | +def aten_ops_rsub( |
| 201 | + network: TRTNetwork, |
| 202 | + target: Target, |
| 203 | + args: Tuple[Argument, ...], |
| 204 | + kwargs: Dict[str, Argument], |
| 205 | + name: str, |
| 206 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 207 | + alpha = None |
| 208 | + if "alpha" in kwargs: |
| 209 | + alpha = kwargs["alpha"] |
| 210 | + return impl.elementwise.rsub( |
| 211 | + network, target, SourceIR.ATEN, name, args[0], args[1], alpha |
| 212 | + ) |
| 213 | + |
| 214 | + |
| 215 | +@dynamo_tensorrt_converter(torch.ops.aten._softmax.default) |
| 216 | +def aten_ops_softmax( |
| 217 | + network: TRTNetwork, |
| 218 | + target: Target, |
| 219 | + args: Tuple[Argument, ...], |
| 220 | + kwargs: Dict[str, Argument], |
| 221 | + name: str, |
| 222 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 223 | + return impl.normalization.softmax( |
| 224 | + network, target, SourceIR.ATEN, name, args[0], args[1] |
| 225 | + ) |
| 226 | + |
| 227 | + |
| 228 | +@dynamo_tensorrt_converter(torch.ops.aten.where.self) |
| 229 | +def aten_ops_where( |
| 230 | + network: TRTNetwork, |
| 231 | + target: Target, |
| 232 | + args: Tuple[Argument, ...], |
| 233 | + kwargs: Dict[str, Argument], |
| 234 | + name: str, |
| 235 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 236 | + return impl.condition.where( |
| 237 | + network, |
| 238 | + target, |
| 239 | + SourceIR.ATEN, |
| 240 | + name, |
| 241 | + args[1], |
| 242 | + args[2], |
| 243 | + args[0], |
| 244 | + ) |
| 245 | + |
| 246 | + |
| 247 | +@dynamo_tensorrt_converter(torch.ops.aten.clamp.default) |
| 248 | +def aten_ops_clamp( |
| 249 | + network: TRTNetwork, |
| 250 | + target: Target, |
| 251 | + args: Tuple[Argument, ...], |
| 252 | + kwargs: Dict[str, Argument], |
| 253 | + name: str, |
| 254 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 255 | + return impl.elementwise.clamp( |
| 256 | + network, |
| 257 | + target, |
| 258 | + SourceIR.ACC, |
| 259 | + name, |
| 260 | + input_val=args[0], |
| 261 | + min_val=or_none(args, 1), |
| 262 | + max_val=or_none(args, 2), |
| 263 | + ) |
| 264 | + |
| 265 | + |
| 266 | +@dynamo_tensorrt_converter(torch.ops.aten.select.int) |
| 267 | +def aten_ops_select( |
| 268 | + network: TRTNetwork, |
| 269 | + target: Target, |
| 270 | + args: Tuple[Argument, ...], |
| 271 | + kwargs: Dict[str, Argument], |
| 272 | + name: str, |
| 273 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 274 | + return impl.select.select( |
| 275 | + network, target, SourceIR.ATEN, name, args[0], args[1], args[2] |
| 276 | + ) |
| 277 | + |
| 278 | + |
| 279 | +@dynamo_tensorrt_converter(torch.ops.aten.slice.Tensor) |
| 280 | +def aten_ops_slice( |
| 281 | + network: TRTNetwork, |
| 282 | + target: Target, |
| 283 | + args: Tuple[Argument, ...], |
| 284 | + kwargs: Dict[str, Argument], |
| 285 | + name: str, |
| 286 | +) -> Union[TRTTensor, Sequence[TRTTensor]]: |
| 287 | + return impl.slice.slice_op( |
| 288 | + network, |
| 289 | + target, |
| 290 | + SourceIR.ATEN, |
| 291 | + name, |
| 292 | + args[0], |
| 293 | + args[1], |
| 294 | + args[2], |
| 295 | + args[3], |
| 296 | + args[4], |
| 297 | + ) |
0 commit comments