@@ -235,7 +235,7 @@ def get_tau_sigma(tau=None, sigma=None):
235235 else :
236236 assert np .all (np .asarray (sigma ) > 0 )
237237 sigma_ = sigma
238- tau = sigma_ ** - 2.0
238+ tau = sigma_ ** - 2.0
239239
240240 else :
241241 if sigma is not None :
@@ -247,7 +247,7 @@ def get_tau_sigma(tau=None, sigma=None):
247247 assert np .all (np .asarray (tau ) > 0 )
248248 tau_ = tau
249249
250- sigma = tau_ ** - 0.5
250+ sigma = tau_ ** - 0.5
251251
252252 return floatX (tau ), floatX (sigma )
253253
@@ -1240,7 +1240,7 @@ def get_alpha_beta(self, alpha=None, beta=None, mu=None, sigma=None):
12401240 if (alpha is not None ) and (beta is not None ):
12411241 pass
12421242 elif (mu is not None ) and (sigma is not None ):
1243- kappa = mu * (1 - mu ) / sigma ** 2 - 1
1243+ kappa = mu * (1 - mu ) / sigma ** 2 - 1
12441244 alpha = mu * kappa
12451245 beta = (1 - mu ) * kappa
12461246 else :
@@ -1375,7 +1375,7 @@ def logp(value, a, b):
13751375 -------
13761376 TensorVariable
13771377 """
1378- res = at .log (a ) + at .log (b ) + (a - 1 ) * at .log (value ) + (b - 1 ) * at .log (1 - value ** a )
1378+ res = at .log (a ) + at .log (b ) + (a - 1 ) * at .log (value ) + (b - 1 ) * at .log (1 - value ** a )
13791379 res = at .switch (
13801380 at .or_ (at .lt (value , 0 ), at .gt (value , 1 )),
13811381 - np .inf ,
@@ -1409,7 +1409,7 @@ def logcdf(value, a, b):
14091409 - np .inf ,
14101410 at .switch (
14111411 at .lt (value , 1 ),
1412- at .log1mexp (b * at .log1p (- (value ** a ))),
1412+ at .log1mexp (b * at .log1p (- (value ** a ))),
14131413 0 ,
14141414 ),
14151415 )
@@ -1608,9 +1608,9 @@ class AsymmetricLaplaceRV(RandomVariable):
16081608 @classmethod
16091609 def rng_fn (cls , rng , b , kappa , mu , size = None ) -> np .ndarray :
16101610 u = rng .uniform (size = size )
1611- switch = kappa ** 2 / (1 + kappa ** 2 )
1611+ switch = kappa ** 2 / (1 + kappa ** 2 )
16121612 non_positive_x = mu + kappa * np .log (u * (1 / switch )) / b
1613- positive_x = mu - np .log ((1 - u ) * (1 + kappa ** 2 )) / (kappa * b )
1613+ positive_x = mu - np .log ((1 - u ) * (1 + kappa ** 2 )) / (kappa * b )
16141614 draws = non_positive_x * (u <= switch ) + positive_x * (u > switch )
16151615 return np .asarray (draws )
16161616
@@ -1691,7 +1691,7 @@ def logp(value, b, kappa, mu):
16911691 TensorVariable
16921692 """
16931693 value = value - mu
1694- res = at .log (b / (kappa + (kappa ** - 1 ))) + (
1694+ res = at .log (b / (kappa + (kappa ** - 1 ))) + (
16951695 - value * b * at .sgn (value ) * (kappa ** at .sgn (value ))
16961696 )
16971697
@@ -1781,7 +1781,7 @@ def dist(cls, mu=0, sigma=None, tau=None, sd=None, *args, **kwargs):
17811781 return super ().dist ([mu , sigma ], * args , ** kwargs )
17821782
17831783 def get_moment (rv , size , mu , sigma ):
1784- mean = at .exp (mu + 0.5 * sigma ** 2 )
1784+ mean = at .exp (mu + 0.5 * sigma ** 2 )
17851785 if not rv_size_is_none (size ):
17861786 mean = at .full (size , mean )
17871787 return mean
@@ -1955,7 +1955,7 @@ def logcdf(value, nu, mu, sigma):
19551955 _ , sigma = get_tau_sigma (sigma = sigma )
19561956
19571957 t = (value - mu ) / sigma
1958- sqrt_t2_nu = at .sqrt (t ** 2 + nu )
1958+ sqrt_t2_nu = at .sqrt (t ** 2 + nu )
19591959 x = (t + sqrt_t2_nu ) / (2.0 * sqrt_t2_nu )
19601960
19611961 res = at .log (at .betainc (nu / 2.0 , nu / 2.0 , x ))
@@ -2307,8 +2307,8 @@ def get_alpha_beta(cls, alpha=None, beta=None, mu=None, sigma=None):
23072307 sigma = check_parameters (sigma , sigma > 0 , msg = "sigma > 0" )
23082308 else :
23092309 assert np .all (np .asarray (sigma ) > 0 )
2310- alpha = mu ** 2 / sigma ** 2
2311- beta = mu / sigma ** 2
2310+ alpha = mu ** 2 / sigma ** 2
2311+ beta = mu / sigma ** 2
23122312 else :
23132313 raise ValueError (
23142314 "Incompatible parameterization. Either use "
@@ -2435,8 +2435,8 @@ def _get_alpha_beta(cls, alpha, beta, mu, sigma):
24352435 sigma = check_parameters (sigma , sigma > 0 , msg = "sigma > 0" )
24362436 else :
24372437 assert np .all (np .asarray (sigma ) > 0 )
2438- alpha = (2 * sigma ** 2 + mu ** 2 ) / sigma ** 2
2439- beta = mu * (mu ** 2 + sigma ** 2 ) / sigma ** 2
2438+ alpha = (2 * sigma ** 2 + mu ** 2 ) / sigma ** 2
2439+ beta = mu * (mu ** 2 + sigma ** 2 ) / sigma ** 2
24402440 else :
24412441 raise ValueError (
24422442 "Incompatible parameterization. Either use "
@@ -2759,8 +2759,8 @@ def logp(value, nu, sigma):
27592759 at .log (2 )
27602760 + gammaln ((nu + 1.0 ) / 2.0 )
27612761 - gammaln (nu / 2.0 )
2762- - 0.5 * at .log (nu * np .pi * sigma ** 2 )
2763- - (nu + 1.0 ) / 2.0 * at .log1p (value ** 2 / (nu * sigma ** 2 ))
2762+ - 0.5 * at .log (nu * np .pi * sigma ** 2 )
2763+ - (nu + 1.0 ) / 2.0 * at .log1p (value ** 2 / (nu * sigma ** 2 ))
27642764 )
27652765
27662766 res = at .switch (
@@ -2898,7 +2898,7 @@ def logp(value, mu, sigma, nu):
28982898 - at .log (nu )
28992899 + (mu - value ) / nu
29002900 + 0.5 * (sigma / nu ) ** 2
2901- + normal_lcdf (mu + (sigma ** 2 ) / nu , sigma , value )
2901+ + normal_lcdf (mu + (sigma ** 2 ) / nu , sigma , value )
29022902 ),
29032903 log_normal (value , mean = mu , sigma = sigma ),
29042904 )
@@ -2939,7 +2939,7 @@ def logcdf(value, mu, sigma, nu):
29392939 (
29402940 (mu - value ) / nu
29412941 + 0.5 * (sigma / nu ) ** 2
2942- + normal_lcdf (mu + (sigma ** 2 ) / nu , sigma , value )
2942+ + normal_lcdf (mu + (sigma ** 2 ) / nu , sigma , value )
29432943 ),
29442944 ),
29452945 normal_lcdf (mu , sigma , value ),
@@ -3103,7 +3103,7 @@ def dist(cls, alpha=1, mu=0.0, sigma=None, tau=None, sd=None, *args, **kwargs):
31033103 return super ().dist ([mu , sigma , alpha ], * args , ** kwargs )
31043104
31053105 def get_moment (rv , size , mu , sigma , alpha ):
3106- mean = mu + sigma * (2 / np .pi ) ** 0.5 * alpha / (1 + alpha ** 2 ) ** 0.5
3106+ mean = mu + sigma * (2 / np .pi ) ** 0.5 * alpha / (1 + alpha ** 2 ) ** 0.5
31073107 if not rv_size_is_none (size ):
31083108 mean = at .full (size , mean )
31093109 return mean
@@ -3437,7 +3437,7 @@ def get_nu_b(cls, nu, b, sigma):
34373437 raise ValueError ("Rice distribution must specify either nu" " or b." )
34383438
34393439 def get_moment (rv , size , nu , sigma ):
3440- nu_sigma_ratio = - (nu ** 2 ) / (2 * sigma ** 2 )
3440+ nu_sigma_ratio = - (nu ** 2 ) / (2 * sigma ** 2 )
34413441 mean = (
34423442 sigma
34433443 * np .sqrt (np .pi / 2 )
@@ -3939,7 +3939,7 @@ def logcdf(value, mu, sigma):
39393939 TensorVariable
39403940 """
39413941 scaled = (value - mu ) / sigma
3942- res = at .log (at .erfc (at .exp (- scaled / 2 ) * (2 ** - 0.5 )))
3942+ res = at .log (at .erfc (at .exp (- scaled / 2 ) * (2 ** - 0.5 )))
39433943 return check_parameters (
39443944 res ,
39453945 0 < sigma ,
0 commit comments