@@ -163,7 +163,7 @@ def __init__(self, lower=0, upper=1, transform='interval',
163
163
164
164
def random (self , point = None , size = None ):
165
165
lower , upper = draw_values ([self .lower , self .upper ],
166
- point = point )
166
+ point = point , size = size )
167
167
return generate_samples (stats .uniform .rvs , loc = lower ,
168
168
scale = upper - lower ,
169
169
dist_shape = self .shape ,
@@ -748,7 +748,7 @@ def __init__(self, lam, *args, **kwargs):
748
748
assert_negative_support (lam , 'lam' , 'Exponential' )
749
749
750
750
def random (self , point = None , size = None ):
751
- lam = draw_values ([self .lam ], point = point )[0 ]
751
+ lam = draw_values ([self .lam ], point = point , size = size )[0 ]
752
752
return generate_samples (np .random .exponential , scale = 1. / lam ,
753
753
dist_shape = self .shape ,
754
754
size = size )
@@ -817,7 +817,7 @@ def __init__(self, mu, b, *args, **kwargs):
817
817
assert_negative_support (b , 'b' , 'Laplace' )
818
818
819
819
def random (self , point = None , size = None ):
820
- mu , b = draw_values ([self .mu , self .b ], point = point )
820
+ mu , b = draw_values ([self .mu , self .b ], point = point , size = size )
821
821
return generate_samples (np .random .laplace , mu , b ,
822
822
dist_shape = self .shape ,
823
823
size = size )
@@ -921,7 +921,7 @@ def _random(self, mu, tau, size=None):
921
921
return np .exp (mu + (tau ** - 0.5 ) * samples )
922
922
923
923
def random (self , point = None , size = None ):
924
- mu , tau = draw_values ([self .mu , self .tau ], point = point )
924
+ mu , tau = draw_values ([self .mu , self .tau ], point = point , size = size )
925
925
return generate_samples (self ._random , mu , tau ,
926
926
dist_shape = self .shape ,
927
927
size = size )
@@ -1023,7 +1023,7 @@ def __init__(self, nu, mu=0, lam=None, sd=None, *args, **kwargs):
1023
1023
1024
1024
def random (self , point = None , size = None ):
1025
1025
nu , mu , lam = draw_values ([self .nu , self .mu , self .lam ],
1026
- point = point )
1026
+ point = point , size = size )
1027
1027
return generate_samples (stats .t .rvs , nu , loc = mu , scale = lam ** - 0.5 ,
1028
1028
dist_shape = self .shape ,
1029
1029
size = size )
@@ -1121,7 +1121,7 @@ def _random(self, alpha, m, size=None):
1121
1121
1122
1122
def random (self , point = None , size = None ):
1123
1123
alpha , m = draw_values ([self .alpha , self .m ],
1124
- point = point )
1124
+ point = point , size = size )
1125
1125
return generate_samples (self ._random , alpha , m ,
1126
1126
dist_shape = self .shape ,
1127
1127
size = size )
@@ -1202,7 +1202,7 @@ def _random(self, alpha, beta, size=None):
1202
1202
1203
1203
def random (self , point = None , size = None ):
1204
1204
alpha , beta = draw_values ([self .alpha , self .beta ],
1205
- point = point )
1205
+ point = point , size = size )
1206
1206
return generate_samples (self ._random , alpha , beta ,
1207
1207
dist_shape = self .shape ,
1208
1208
size = size )
@@ -1276,7 +1276,7 @@ def _random(self, beta, size=None):
1276
1276
return beta * np .abs (np .tan (np .pi * (u - 0.5 )))
1277
1277
1278
1278
def random (self , point = None , size = None ):
1279
- beta = draw_values ([self .beta ], point = point )[0 ]
1279
+ beta = draw_values ([self .beta ], point = point , size = size )[0 ]
1280
1280
return generate_samples (self ._random , beta ,
1281
1281
dist_shape = self .shape ,
1282
1282
size = size )
@@ -1381,7 +1381,7 @@ def get_alpha_beta(self, alpha=None, beta=None, mu=None, sd=None):
1381
1381
1382
1382
def random (self , point = None , size = None ):
1383
1383
alpha , beta = draw_values ([self .alpha , self .beta ],
1384
- point = point )
1384
+ point = point , size = size )
1385
1385
return generate_samples (stats .gamma .rvs , alpha , scale = 1. / beta ,
1386
1386
dist_shape = self .shape ,
1387
1387
size = size )
@@ -1474,7 +1474,7 @@ def _calculate_mean(self):
1474
1474
1475
1475
def random (self , point = None , size = None ):
1476
1476
alpha , beta = draw_values ([self .alpha , self .beta ],
1477
- point = point )
1477
+ point = point , size = size )
1478
1478
return generate_samples (stats .invgamma .rvs , a = alpha , scale = beta ,
1479
1479
dist_shape = self .shape ,
1480
1480
size = size )
@@ -1610,7 +1610,7 @@ def __init__(self, alpha, beta, *args, **kwargs):
1610
1610
1611
1611
def random (self , point = None , size = None ):
1612
1612
alpha , beta = draw_values ([self .alpha , self .beta ],
1613
- point = point )
1613
+ point = point , size = size )
1614
1614
1615
1615
def _random (a , b , size = None ):
1616
1616
return b * (- np .log (np .random .uniform (size = size )))** (1 / a )
@@ -1708,7 +1708,7 @@ def __init__(self, nu=1, sd=None, lam=None, *args, **kwargs):
1708
1708
assert_negative_support (nu , 'nu' , 'HalfStudentT' )
1709
1709
1710
1710
def random (self , point = None , size = None ):
1711
- nu , sd = draw_values ([self .nu , self .sd ], point = point )
1711
+ nu , sd = draw_values ([self .nu , self .sd ], point = point , size = size )
1712
1712
return np .abs (generate_samples (stats .t .rvs , nu , loc = 0 , scale = sd ,
1713
1713
dist_shape = self .shape ,
1714
1714
size = size ))
@@ -1813,7 +1813,7 @@ def __init__(self, mu, sigma, nu, *args, **kwargs):
1813
1813
1814
1814
def random (self , point = None , size = None ):
1815
1815
mu , sigma , nu = draw_values ([self .mu , self .sigma , self .nu ],
1816
- point = point )
1816
+ point = point , size = size )
1817
1817
1818
1818
def _random (mu , sigma , nu , size = None ):
1819
1819
return (np .random .normal (mu , sigma , size = size )
@@ -1905,7 +1905,7 @@ def __init__(self, mu=0.0, kappa=None, transform='circular',
1905
1905
1906
1906
def random (self , point = None , size = None ):
1907
1907
mu , kappa = draw_values ([self .mu , self .kappa ],
1908
- point = point )
1908
+ point = point , size = size )
1909
1909
return generate_samples (stats .vonmises .rvs , loc = mu , kappa = kappa ,
1910
1910
dist_shape = self .shape ,
1911
1911
size = size )
@@ -2002,7 +2002,7 @@ def __init__(self, mu=0.0, sd=None, tau=None, alpha=1, *args, **kwargs):
2002
2002
2003
2003
def random (self , point = None , size = None ):
2004
2004
mu , tau , _ , alpha = draw_values (
2005
- [self .mu , self .tau , self .sd , self .alpha ], point = point )
2005
+ [self .mu , self .tau , self .sd , self .alpha ], point = point , size = size )
2006
2006
return generate_samples (stats .skewnorm .rvs ,
2007
2007
a = alpha , loc = mu , scale = tau ** - 0.5 ,
2008
2008
dist_shape = self .shape ,
@@ -2095,7 +2095,7 @@ def __init__(self, lower=0, upper=1, c=0.5,
2095
2095
2096
2096
def random (self , point = None , size = None ):
2097
2097
c , lower , upper = draw_values ([self .c , self .lower , self .upper ],
2098
- point = point )
2098
+ point = point , size = size )
2099
2099
return generate_samples (stats .triang .rvs , c = c - lower , loc = lower , scale = upper - lower ,
2100
2100
size = size , dist_shape = self .shape , random_state = None )
2101
2101
@@ -2178,7 +2178,7 @@ def __init__(self, mu=0, beta=1.0, **kwargs):
2178
2178
super (Gumbel , self ).__init__ (** kwargs )
2179
2179
2180
2180
def random (self , point = None , size = None ):
2181
- mu , sd = draw_values ([self .mu , self .beta ], point = point )
2181
+ mu , sd = draw_values ([self .mu , self .beta ], point = point , size = size )
2182
2182
return generate_samples (stats .gumbel_r .rvs , loc = mu , scale = sd ,
2183
2183
dist_shape = self .shape ,
2184
2184
size = size )
@@ -2257,7 +2257,7 @@ def logp(self, value):
2257
2257
- (value - mu ) / s - tt .log (s ) - 2 * tt .log1p (tt .exp (- (value - mu ) / s )), s > 0 )
2258
2258
2259
2259
def random (self , point = None , size = None ):
2260
- mu , s = draw_values ([self .mu , self .s ], point = point )
2260
+ mu , s = draw_values ([self .mu , self .s ], point = point , size = size )
2261
2261
2262
2262
return generate_samples (
2263
2263
stats .logistic .rvs ,
@@ -2333,7 +2333,7 @@ def __init__(self, mu=0, sd=None, tau=None, **kwargs):
2333
2333
super (LogitNormal , self ).__init__ (** kwargs )
2334
2334
2335
2335
def random (self , point = None , size = None ):
2336
- mu , _ , sd = draw_values ([self .mu , self .tau , self .sd ], point = point )
2336
+ mu , _ , sd = draw_values ([self .mu , self .tau , self .sd ], point = point , size = size )
2337
2337
return expit (generate_samples (stats .norm .rvs , loc = mu , scale = sd , dist_shape = self .shape ,
2338
2338
size = size ))
2339
2339
0 commit comments