@@ -245,12 +245,6 @@ class TestGaussianRandomWalk(BaseTestCases.BaseTestCase):
245245 default_shape = (1 ,)
246246
247247
248- @pytest .mark .skip (reason = "This test is covered by Aesara" )
249- class TestNormal (BaseTestCases .BaseTestCase ):
250- distribution = pm .Normal
251- params = {"mu" : 0.0 , "tau" : 1.0 }
252-
253-
254248@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
255249class TestTruncatedNormal (BaseTestCases .BaseTestCase ):
256250 distribution = pm .TruncatedNormal
@@ -275,18 +269,6 @@ class TestSkewNormal(BaseTestCases.BaseTestCase):
275269 params = {"mu" : 0.0 , "sigma" : 1.0 , "alpha" : 5.0 }
276270
277271
278- @pytest .mark .skip (reason = "This test is covered by Aesara" )
279- class TestHalfNormal (BaseTestCases .BaseTestCase ):
280- distribution = pm .HalfNormal
281- params = {"tau" : 1.0 }
282-
283-
284- @pytest .mark .skip (reason = "This test is covered by Aesara" )
285- class TestUniform (BaseTestCases .BaseTestCase ):
286- distribution = pm .Uniform
287- params = {"lower" : 0.0 , "upper" : 1.0 }
288-
289-
290272@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
291273class TestTriangular (BaseTestCases .BaseTestCase ):
292274 distribution = pm .Triangular
@@ -310,12 +292,6 @@ class TestKumaraswamy(BaseTestCases.BaseTestCase):
310292 params = {"a" : 1.0 , "b" : 1.0 }
311293
312294
313- @pytest .mark .skip (reason = "This test is covered by Aesara" )
314- class TestExponential (BaseTestCases .BaseTestCase ):
315- distribution = pm .Exponential
316- params = {"lam" : 1.0 }
317-
318-
319295@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
320296class TestLaplace (BaseTestCases .BaseTestCase ):
321297 distribution = pm .Laplace
@@ -346,30 +322,6 @@ class TestPareto(BaseTestCases.BaseTestCase):
346322 params = {"alpha" : 0.5 , "m" : 1.0 }
347323
348324
349- @pytest .mark .skip (reason = "This test is covered by Aesara" )
350- class TestCauchy (BaseTestCases .BaseTestCase ):
351- distribution = pm .Cauchy
352- params = {"alpha" : 1.0 , "beta" : 1.0 }
353-
354-
355- @pytest .mark .skip (reason = "This test is covered by Aesara" )
356- class TestHalfCauchy (BaseTestCases .BaseTestCase ):
357- distribution = pm .HalfCauchy
358- params = {"beta" : 1.0 }
359-
360-
361- @pytest .mark .skip (reason = "This test is covered by Aesara" )
362- class TestGamma (BaseTestCases .BaseTestCase ):
363- distribution = pm .Gamma
364- params = {"alpha" : 1.0 , "beta" : 1.0 }
365-
366-
367- @pytest .mark .skip (reason = "This test is covered by Aesara" )
368- class TestInverseGamma (BaseTestCases .BaseTestCase ):
369- distribution = pm .InverseGamma
370- params = {"alpha" : 0.5 , "beta" : 0.5 }
371-
372-
373325@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
374326class TestChiSquared (BaseTestCases .BaseTestCase ):
375327 distribution = pm .ChiSquared
@@ -412,42 +364,18 @@ class TestLogitNormal(BaseTestCases.BaseTestCase):
412364 params = {"mu" : 0.0 , "sigma" : 1.0 }
413365
414366
415- @pytest .mark .skip (reason = "This test is covered by Aesara" )
416- class TestBinomial (BaseTestCases .BaseTestCase ):
417- distribution = pm .Binomial
418- params = {"n" : 5 , "p" : 0.5 }
419-
420-
421367@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
422368class TestBetaBinomial (BaseTestCases .BaseTestCase ):
423369 distribution = pm .BetaBinomial
424370 params = {"n" : 5 , "alpha" : 1.0 , "beta" : 1.0 }
425371
426372
427- @pytest .mark .skip (reason = "This test is covered by Aesara" )
428- class TestBernoulli (BaseTestCases .BaseTestCase ):
429- distribution = pm .Bernoulli
430- params = {"p" : 0.5 }
431-
432-
433373@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
434374class TestDiscreteWeibull (BaseTestCases .BaseTestCase ):
435375 distribution = pm .DiscreteWeibull
436376 params = {"q" : 0.25 , "beta" : 2.0 }
437377
438378
439- @pytest .mark .skip (reason = "This test is covered by Aesara" )
440- class TestPoisson (BaseTestCases .BaseTestCase ):
441- distribution = pm .Poisson
442- params = {"mu" : 1.0 }
443-
444-
445- @pytest .mark .skip (reason = "This test is covered by Aesara" )
446- class TestNegativeBinomial (BaseTestCases .BaseTestCase ):
447- distribution = pm .NegativeBinomial
448- params = {"mu" : 1.0 , "alpha" : 1.0 }
449-
450-
451379@pytest .mark .xfail (reason = "This distribution has not been refactored for v4" )
452380class TestConstant (BaseTestCases .BaseTestCase ):
453381 distribution = pm .Constant
@@ -496,45 +424,6 @@ class TestMoyal(BaseTestCases.BaseTestCase):
496424 params = {"mu" : 0.0 , "sigma" : 1.0 }
497425
498426
499- @pytest .mark .skip (reason = "This test is covered by Aesara" )
500- class TestCategorical (BaseTestCases .BaseTestCase ):
501- distribution = pm .Categorical
502- params = {"p" : np .ones (BaseTestCases .BaseTestCase .shape )}
503-
504- def get_random_variable (
505- self , shape , with_vector_params = False , ** kwargs
506- ): # don't transform categories
507- return super ().get_random_variable (shape , with_vector_params = False , ** kwargs )
508-
509- def test_probability_vector_shape (self ):
510- """Check that if a 2d array of probabilities are passed to categorical correct shape is returned"""
511- p = np .ones ((10 , 5 ))
512- assert pm .Categorical .dist (p = p ).random ().shape == (10 ,)
513- assert pm .Categorical .dist (p = p ).random (size = 4 ).shape == (4 , 10 )
514- p = np .ones ((3 , 7 , 5 ))
515- assert pm .Categorical .dist (p = p ).random ().shape == (3 , 7 )
516- assert pm .Categorical .dist (p = p ).random (size = 4 ).shape == (4 , 3 , 7 )
517-
518-
519- @pytest .mark .skip (reason = "This test is covered by Aesara" )
520- class TestDirichlet (SeededTest ):
521- @pytest .mark .parametrize (
522- "shape, size" ,
523- [
524- ((2 ), (1 )),
525- ((2 ), (2 )),
526- ((2 , 2 ), (2 , 100 )),
527- ((3 , 4 ), (3 , 4 )),
528- ((3 , 4 ), (3 , 4 , 100 )),
529- ((3 , 4 ), (100 )),
530- ((3 , 4 ), (1 )),
531- ],
532- )
533- def test_dirichlet_random_shape (self , shape , size ):
534- out_shape = to_tuple (size ) + to_tuple (shape )
535- assert pm .Dirichlet .dist (a = np .ones (shape )).random (size = size ).shape == out_shape
536-
537-
538427class TestCorrectParametrizationMappingPymcToScipy (SeededTest ):
539428 @staticmethod
540429 def get_inputs_from_apply_node_outputs (outputs ):
0 commit comments