2727from pymc .distributions .transforms import _default_transform
2828from pymc .logprob .basic import logp
2929from pymc .model import modelcontext
30- from pymc .pytensorf import floatX , intX
3130from pymc .util import check_dist_not_registered
3231
3332__all__ = ["Bound" ]
@@ -206,7 +205,7 @@ def __new__(
206205 res = _ContinuousBounded (
207206 name ,
208207 [dist , lower , upper ],
209- initval = floatX ( initval ),
208+ initval = initval . astype ( "float" ),
210209 size = size ,
211210 shape = shape ,
212211 ** kwargs ,
@@ -215,7 +214,7 @@ def __new__(
215214 res = _DiscreteBounded (
216215 name ,
217216 [dist , lower , upper ],
218- initval = intX ( initval ),
217+ initval = initval . astype ( "int" ),
219218 size = size ,
220219 shape = shape ,
221220 ** kwargs ,
@@ -241,15 +240,15 @@ def dist(
241240 shape = shape ,
242241 ** kwargs ,
243242 )
244- res .tag .test_value = floatX ( initval )
243+ res .tag .test_value = initval
245244 else :
246245 res = _DiscreteBounded .dist (
247246 [dist , lower , upper ],
248247 size = size ,
249248 shape = shape ,
250249 ** kwargs ,
251250 )
252- res .tag .test_value = intX ( initval )
251+ res .tag .test_value = initval . astype ( "int" )
253252 return res
254253
255254 @classmethod
@@ -286,9 +285,9 @@ def _set_values(cls, lower, upper, size, shape, initval):
286285 size = shape
287286
288287 lower = np .asarray (lower )
289- lower = floatX ( np .where (lower == None , - np .inf , lower ) ) # noqa E711
288+ lower = np .where (lower == None , - np .inf , lower ) # noqa E711
290289 upper = np .asarray (upper )
291- upper = floatX ( np .where (upper == None , np .inf , upper ) ) # noqa E711
290+ upper = np .where (upper == None , np .inf , upper ) # noqa E711
292291
293292 if initval is None :
294293 _size = np .broadcast_shapes (to_tuple (size ), np .shape (lower ), np .shape (upper ))
@@ -303,7 +302,6 @@ def _set_values(cls, lower, upper, size, shape, initval):
303302 np .where (_upper == np .inf , _lower + 1 , (_lower + _upper ) / 2 ),
304303 ),
305304 )
306-
307- lower = as_tensor_variable (floatX (lower ))
308- upper = as_tensor_variable (floatX (upper ))
305+ lower = as_tensor_variable (lower , dtype = "floatX" )
306+ upper = as_tensor_variable (upper , dtype = "floatX" )
309307 return lower , upper , initval
0 commit comments