@@ -735,6 +735,7 @@ def std(
735735 self : DatasetReduce ,
736736 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
737737 skipna : bool = True ,
738+ ddof : int = 0 ,
738739 keep_attrs : bool = None ,
739740 ** kwargs ,
740741 ) -> T_Dataset :
@@ -751,6 +752,9 @@ def std(
751752 skips missing values for float dtypes; other dtypes either do not
752753 have a sentinel missing value (int) or skipna=True has not been
753754 implemented (object, datetime64 or timedelta64).
755+ ddof : int, default: 0
756+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
757+ where ``N`` represents the number of elements.
754758 keep_attrs : bool, optional
755759 If True, ``attrs`` will be copied from the original
756760 object to the new one. If False (default), the new object will be
@@ -803,6 +807,16 @@ def std(
803807 Data variables:
804808 da (labels) float64 nan 0.0 1.0
805809
810+ Specify ``ddof=1`` for an unbiased estimate.
811+
812+ >>> ds.groupby("labels").std(skipna=True, ddof=1)
813+ <xarray.Dataset>
814+ Dimensions: (labels: 3)
815+ Coordinates:
816+ * labels (labels) object 'a' 'b' 'c'
817+ Data variables:
818+ da (labels) float64 nan 0.0 1.414
819+
806820 See Also
807821 --------
808822 numpy.std
@@ -814,6 +828,7 @@ def std(
814828 duck_array_ops .std ,
815829 dim = dim ,
816830 skipna = skipna ,
831+ ddof = ddof ,
817832 numeric_only = True ,
818833 keep_attrs = keep_attrs ,
819834 ** kwargs ,
@@ -823,6 +838,7 @@ def var(
823838 self : DatasetReduce ,
824839 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
825840 skipna : bool = True ,
841+ ddof : int = 0 ,
826842 keep_attrs : bool = None ,
827843 ** kwargs ,
828844 ) -> T_Dataset :
@@ -839,6 +855,9 @@ def var(
839855 skips missing values for float dtypes; other dtypes either do not
840856 have a sentinel missing value (int) or skipna=True has not been
841857 implemented (object, datetime64 or timedelta64).
858+ ddof : int, default: 0
859+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
860+ where ``N`` represents the number of elements.
842861 keep_attrs : bool, optional
843862 If True, ``attrs`` will be copied from the original
844863 object to the new one. If False (default), the new object will be
@@ -891,6 +910,16 @@ def var(
891910 Data variables:
892911 da (labels) float64 nan 0.0 1.0
893912
913+ Specify ``ddof=1`` for an unbiased estimate.
914+
915+ >>> ds.groupby("labels").var(skipna=True, ddof=1)
916+ <xarray.Dataset>
917+ Dimensions: (labels: 3)
918+ Coordinates:
919+ * labels (labels) object 'a' 'b' 'c'
920+ Data variables:
921+ da (labels) float64 nan 0.0 2.0
922+
894923 See Also
895924 --------
896925 numpy.var
@@ -902,6 +931,7 @@ def var(
902931 duck_array_ops .var ,
903932 dim = dim ,
904933 skipna = skipna ,
934+ ddof = ddof ,
905935 numeric_only = True ,
906936 keep_attrs = keep_attrs ,
907937 ** kwargs ,
@@ -1692,6 +1722,7 @@ def std(
16921722 self : DatasetReduce ,
16931723 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
16941724 skipna : bool = True ,
1725+ ddof : int = 0 ,
16951726 keep_attrs : bool = None ,
16961727 ** kwargs ,
16971728 ) -> T_Dataset :
@@ -1708,6 +1739,9 @@ def std(
17081739 skips missing values for float dtypes; other dtypes either do not
17091740 have a sentinel missing value (int) or skipna=True has not been
17101741 implemented (object, datetime64 or timedelta64).
1742+ ddof : int, default: 0
1743+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
1744+ where ``N`` represents the number of elements.
17111745 keep_attrs : bool, optional
17121746 If True, ``attrs`` will be copied from the original
17131747 object to the new one. If False (default), the new object will be
@@ -1760,6 +1794,16 @@ def std(
17601794 Data variables:
17611795 da (time) float64 0.0 0.8165 nan
17621796
1797+ Specify ``ddof=1`` for an unbiased estimate.
1798+
1799+ >>> ds.resample(time="3M").std(skipna=True, ddof=1)
1800+ <xarray.Dataset>
1801+ Dimensions: (time: 3)
1802+ Coordinates:
1803+ * time (time) datetime64[ns] 2001-01-31 2001-04-30 2001-07-31
1804+ Data variables:
1805+ da (time) float64 nan 1.0 nan
1806+
17631807 See Also
17641808 --------
17651809 numpy.std
@@ -1771,6 +1815,7 @@ def std(
17711815 duck_array_ops .std ,
17721816 dim = dim ,
17731817 skipna = skipna ,
1818+ ddof = ddof ,
17741819 numeric_only = True ,
17751820 keep_attrs = keep_attrs ,
17761821 ** kwargs ,
@@ -1780,6 +1825,7 @@ def var(
17801825 self : DatasetReduce ,
17811826 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
17821827 skipna : bool = True ,
1828+ ddof : int = 0 ,
17831829 keep_attrs : bool = None ,
17841830 ** kwargs ,
17851831 ) -> T_Dataset :
@@ -1796,6 +1842,9 @@ def var(
17961842 skips missing values for float dtypes; other dtypes either do not
17971843 have a sentinel missing value (int) or skipna=True has not been
17981844 implemented (object, datetime64 or timedelta64).
1845+ ddof : int, default: 0
1846+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
1847+ where ``N`` represents the number of elements.
17991848 keep_attrs : bool, optional
18001849 If True, ``attrs`` will be copied from the original
18011850 object to the new one. If False (default), the new object will be
@@ -1848,6 +1897,16 @@ def var(
18481897 Data variables:
18491898 da (time) float64 0.0 0.6667 nan
18501899
1900+ Specify ``ddof=1`` for an unbiased estimate.
1901+
1902+ >>> ds.resample(time="3M").var(skipna=True, ddof=1)
1903+ <xarray.Dataset>
1904+ Dimensions: (time: 3)
1905+ Coordinates:
1906+ * time (time) datetime64[ns] 2001-01-31 2001-04-30 2001-07-31
1907+ Data variables:
1908+ da (time) float64 nan 1.0 nan
1909+
18511910 See Also
18521911 --------
18531912 numpy.var
@@ -1859,6 +1918,7 @@ def var(
18591918 duck_array_ops .var ,
18601919 dim = dim ,
18611920 skipna = skipna ,
1921+ ddof = ddof ,
18621922 numeric_only = True ,
18631923 keep_attrs = keep_attrs ,
18641924 ** kwargs ,
@@ -2587,6 +2647,7 @@ def std(
25872647 self : DataArrayReduce ,
25882648 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
25892649 skipna : bool = True ,
2650+ ddof : int = 0 ,
25902651 keep_attrs : bool = None ,
25912652 ** kwargs ,
25922653 ) -> T_DataArray :
@@ -2603,6 +2664,9 @@ def std(
26032664 skips missing values for float dtypes; other dtypes either do not
26042665 have a sentinel missing value (int) or skipna=True has not been
26052666 implemented (object, datetime64 or timedelta64).
2667+ ddof : int, default: 0
2668+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
2669+ where ``N`` represents the number of elements.
26062670 keep_attrs : bool, optional
26072671 If True, ``attrs`` will be copied from the original
26082672 object to the new one. If False (default), the new object will be
@@ -2648,6 +2712,14 @@ def std(
26482712 Coordinates:
26492713 * labels (labels) object 'a' 'b' 'c'
26502714
2715+ Specify ``ddof=1`` for an unbiased estimate.
2716+
2717+ >>> da.groupby("labels").std(skipna=True, ddof=1)
2718+ <xarray.DataArray (labels: 3)>
2719+ array([ nan, 0. , 1.41421356])
2720+ Coordinates:
2721+ * labels (labels) object 'a' 'b' 'c'
2722+
26512723 See Also
26522724 --------
26532725 numpy.std
@@ -2659,6 +2731,7 @@ def std(
26592731 duck_array_ops .std ,
26602732 dim = dim ,
26612733 skipna = skipna ,
2734+ ddof = ddof ,
26622735 keep_attrs = keep_attrs ,
26632736 ** kwargs ,
26642737 )
@@ -2667,6 +2740,7 @@ def var(
26672740 self : DataArrayReduce ,
26682741 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
26692742 skipna : bool = True ,
2743+ ddof : int = 0 ,
26702744 keep_attrs : bool = None ,
26712745 ** kwargs ,
26722746 ) -> T_DataArray :
@@ -2683,6 +2757,9 @@ def var(
26832757 skips missing values for float dtypes; other dtypes either do not
26842758 have a sentinel missing value (int) or skipna=True has not been
26852759 implemented (object, datetime64 or timedelta64).
2760+ ddof : int, default: 0
2761+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
2762+ where ``N`` represents the number of elements.
26862763 keep_attrs : bool, optional
26872764 If True, ``attrs`` will be copied from the original
26882765 object to the new one. If False (default), the new object will be
@@ -2728,6 +2805,14 @@ def var(
27282805 Coordinates:
27292806 * labels (labels) object 'a' 'b' 'c'
27302807
2808+ Specify ``ddof=1`` for an unbiased estimate.
2809+
2810+ >>> da.groupby("labels").var(skipna=True, ddof=1)
2811+ <xarray.DataArray (labels: 3)>
2812+ array([nan, 0., 2.])
2813+ Coordinates:
2814+ * labels (labels) object 'a' 'b' 'c'
2815+
27312816 See Also
27322817 --------
27332818 numpy.var
@@ -2739,6 +2824,7 @@ def var(
27392824 duck_array_ops .var ,
27402825 dim = dim ,
27412826 skipna = skipna ,
2827+ ddof = ddof ,
27422828 keep_attrs = keep_attrs ,
27432829 ** kwargs ,
27442830 )
@@ -3458,6 +3544,7 @@ def std(
34583544 self : DataArrayReduce ,
34593545 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
34603546 skipna : bool = True ,
3547+ ddof : int = 0 ,
34613548 keep_attrs : bool = None ,
34623549 ** kwargs ,
34633550 ) -> T_DataArray :
@@ -3474,6 +3561,9 @@ def std(
34743561 skips missing values for float dtypes; other dtypes either do not
34753562 have a sentinel missing value (int) or skipna=True has not been
34763563 implemented (object, datetime64 or timedelta64).
3564+ ddof : int, default: 0
3565+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
3566+ where ``N`` represents the number of elements.
34773567 keep_attrs : bool, optional
34783568 If True, ``attrs`` will be copied from the original
34793569 object to the new one. If False (default), the new object will be
@@ -3519,6 +3609,14 @@ def std(
35193609 Coordinates:
35203610 * time (time) datetime64[ns] 2001-01-31 2001-04-30 2001-07-31
35213611
3612+ Specify ``ddof=1`` for an unbiased estimate.
3613+
3614+ >>> da.resample(time="3M").std(skipna=True, ddof=1)
3615+ <xarray.DataArray (time: 3)>
3616+ array([nan, 1., nan])
3617+ Coordinates:
3618+ * time (time) datetime64[ns] 2001-01-31 2001-04-30 2001-07-31
3619+
35223620 See Also
35233621 --------
35243622 numpy.std
@@ -3530,6 +3628,7 @@ def std(
35303628 duck_array_ops .std ,
35313629 dim = dim ,
35323630 skipna = skipna ,
3631+ ddof = ddof ,
35333632 keep_attrs = keep_attrs ,
35343633 ** kwargs ,
35353634 )
@@ -3538,6 +3637,7 @@ def var(
35383637 self : DataArrayReduce ,
35393638 dim : Union [None , Hashable , Sequence [Hashable ]] = None ,
35403639 skipna : bool = True ,
3640+ ddof : int = 0 ,
35413641 keep_attrs : bool = None ,
35423642 ** kwargs ,
35433643 ) -> T_DataArray :
@@ -3554,6 +3654,9 @@ def var(
35543654 skips missing values for float dtypes; other dtypes either do not
35553655 have a sentinel missing value (int) or skipna=True has not been
35563656 implemented (object, datetime64 or timedelta64).
3657+ ddof : int, default: 0
3658+ “Delta Degrees of Freedom”: the divisor used in the calculation is ``N - ddof``,
3659+ where ``N`` represents the number of elements.
35573660 keep_attrs : bool, optional
35583661 If True, ``attrs`` will be copied from the original
35593662 object to the new one. If False (default), the new object will be
@@ -3599,6 +3702,14 @@ def var(
35993702 Coordinates:
36003703 * time (time) datetime64[ns] 2001-01-31 2001-04-30 2001-07-31
36013704
3705+ Specify ``ddof=1`` for an unbiased estimate.
3706+
3707+ >>> da.resample(time="3M").var(skipna=True, ddof=1)
3708+ <xarray.DataArray (time: 3)>
3709+ array([nan, 1., nan])
3710+ Coordinates:
3711+ * time (time) datetime64[ns] 2001-01-31 2001-04-30 2001-07-31
3712+
36023713 See Also
36033714 --------
36043715 numpy.var
@@ -3610,6 +3721,7 @@ def var(
36103721 duck_array_ops .var ,
36113722 dim = dim ,
36123723 skipna = skipna ,
3724+ ddof = ddof ,
36133725 keep_attrs = keep_attrs ,
36143726 ** kwargs ,
36153727 )
0 commit comments