44.. ipython :: python
55 :suppress:
66
7- import datetime
87 import numpy as np
98 import pandas as pd
9+
1010 np.random.seed(123456 )
11- randn = np.random.randn
12- randint = np.random.randint
1311 np.set_printoptions(precision = 4 , suppress = True )
14- pd.options.display.max_rows= 15
15- import dateutil
16- import pytz
17- from dateutil.relativedelta import relativedelta
18- from pandas.tseries.offsets import *
12+ pd.options.display.max_rows = 15
1913
2014 .. _timedeltas.timedeltas :
2115
@@ -37,6 +31,8 @@ You can construct a ``Timedelta`` scalar through various arguments:
3731
3832.. ipython :: python
3933
34+ import datetime
35+
4036 # strings
4137 pd.Timedelta(' 1 days' )
4238 pd.Timedelta(' 1 days 00:00:00' )
@@ -74,13 +70,14 @@ You can construct a ``Timedelta`` scalar through various arguments:
7470
7571.. ipython :: python
7672
77- pd.Timedelta(Second(2 ))
73+ pd.Timedelta(pd.offsets. Second(2 ))
7874
7975 Further, operations among the scalars yield another scalar ``Timedelta ``.
8076
8177.. ipython :: python
8278
83- pd.Timedelta(Day(2 )) + pd.Timedelta(Second(2 )) + pd.Timedelta(' 00:00:00.000123' )
79+ pd.Timedelta(pd.offsets.Day(2 )) + pd.Timedelta(pd.offsets.Second(2 )) + \
80+ pd.Timedelta(' 00:00:00.000123' )
8481
8582 to_timedelta
8683~~~~~~~~~~~~
@@ -135,8 +132,8 @@ subtraction operations on ``datetime64[ns]`` Series, or ``Timestamps``.
135132.. ipython :: python
136133
137134 s = pd.Series(pd.date_range(' 2012-1-1' , periods = 3 , freq = ' D' ))
138- td = pd.Series([ pd.Timedelta(days = i) for i in range (3 ) ])
139- df = pd.DataFrame(dict ( A = s, B = td) )
135+ td = pd.Series([pd.Timedelta(days = i) for i in range (3 )])
136+ df = pd.DataFrame({ ' A ' : s, ' B ' : td} )
140137 df
141138 df[' C' ] = df[' A' ] + df[' B' ]
142139 df
@@ -145,8 +142,8 @@ subtraction operations on ``datetime64[ns]`` Series, or ``Timestamps``.
145142 s - s.max()
146143 s - datetime.datetime(2011 , 1 , 1 , 3 , 5 )
147144 s + datetime.timedelta(minutes = 5 )
148- s + Minute(5 )
149- s + Minute(5 ) + Milli(5 )
145+ s + pd.offsets. Minute(5 )
146+ s + pd.offsets. Minute(5 ) + pd.offsets. Milli(5 )
150147
151148 Operations with scalars from a ``timedelta64[ns] `` series:
152149
@@ -184,7 +181,7 @@ Operands can also appear in a reversed order (a singular object operated with a
184181 A = s - pd.Timestamp(' 20120101' ) - pd.Timedelta(' 00:05:05' )
185182 B = s - pd.Series(pd.date_range(' 2012-1-2' , periods = 3 , freq = ' D' ))
186183
187- df = pd.DataFrame(dict ( A = A, B = B) )
184+ df = pd.DataFrame({ ' A ' : A, ' B ' : B} )
188185 df
189186
190187 df.min()
@@ -232,7 +229,8 @@ Numeric reduction operation for ``timedelta64[ns]`` will return ``Timedelta`` ob
232229
233230.. ipython :: python
234231
235- y2 = pd.Series(pd.to_timedelta([' -1 days +00:00:05' , ' nat' , ' -1 days +00:00:05' , ' 1 days' ]))
232+ y2 = pd.Series(pd.to_timedelta([' -1 days +00:00:05' , ' nat' ,
233+ ' -1 days +00:00:05' , ' 1 days' ]))
236234 y2
237235 y2.mean()
238236 y2.median()
@@ -250,8 +248,10 @@ Note that division by the NumPy scalar is true division, while astyping is equiv
250248
251249.. ipython :: python
252250
253- td = pd.Series(pd.date_range(' 20130101' , periods = 4 )) - \
254- pd.Series(pd.date_range(' 20121201' , periods = 4 ))
251+ december = pd.Series(pd.date_range(' 20121201' , periods = 4 ))
252+ january = pd.Series(pd.date_range(' 20130101' , periods = 4 ))
253+ td = january - december
254+
255255 td[2 ] += datetime.timedelta(minutes = 5 , seconds = 3 )
256256 td[3 ] = np.nan
257257 td
@@ -360,8 +360,8 @@ or ``np.timedelta64`` objects. Passing ``np.nan/pd.NaT/nat`` will represent miss
360360
361361.. ipython :: python
362362
363- pd.TimedeltaIndex([' 1 days' , ' 1 days, 00:00:05' ,
364- np.timedelta64( 2 , ' D ' ), datetime.timedelta(days = 2 ,seconds = 2 )])
363+ pd.TimedeltaIndex([' 1 days' , ' 1 days, 00:00:05' , np.timedelta64( 2 , ' D ' ),
364+ datetime.timedelta(days = 2 , seconds = 2 )])
365365
366366 The string 'infer' can be passed in order to set the frequency of the index as the
367367inferred frequency upon creation:
@@ -458,7 +458,7 @@ Similarly to frequency conversion on a ``Series`` above, you can convert these i
458458
459459.. ipython :: python
460460
461- tdi / np.timedelta64(1 ,' s' )
461+ tdi / np.timedelta64(1 , ' s' )
462462 tdi.astype(' timedelta64[s]' )
463463
464464 Scalars type ops work as well. These can potentially return a *different * type of index.
0 commit comments