|
79 | 79 | if TYPE_CHECKING: |
80 | 80 | from pandas.core.internals import Block |
81 | 81 |
|
82 | | -_agg_template = """ |
83 | | -Compute {fname} of group values. |
84 | | -
|
85 | | -Parameters |
86 | | ----------- |
87 | | -numeric_only : bool, default {no} |
88 | | - Include only float, int, boolean columns. If None, will attempt to use |
89 | | - everything, then use only numeric data. |
90 | | -min_count : int, default {mc} |
91 | | - The required number of valid values to perform the operation. If fewer |
92 | | - than ``min_count`` non-NA values are present the result will be NA. |
93 | | -
|
94 | | -Returns |
95 | | -------- |
96 | | -{return_type} |
97 | | - Computed {fname} of values within each group. |
98 | | -
|
99 | | -See Also |
100 | | --------- |
101 | | -{return_type}.groupby |
102 | | -""" |
103 | | - |
104 | 82 |
|
105 | 83 | NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) |
106 | 84 | # TODO(typing) the return value on this callable should be any *scalar*. |
@@ -811,27 +789,27 @@ def count(self) -> Series: |
811 | 789 | ) |
812 | 790 | return self._reindex_output(result, fill_value=0) |
813 | 791 |
|
814 | | - @doc(_agg_template, fname="sum", no=True, mc=0, return_type="Series") |
| 792 | + @doc(GroupBy.sum.__doc__) |
815 | 793 | def sum(self, numeric_only: bool = True, min_count: int = 0) -> Series: |
816 | 794 | return super().sum(numeric_only=numeric_only, min_count=min_count) |
817 | 795 |
|
818 | | - @doc(_agg_template, fname="prod", no=True, mc=0, return_type="Series") |
| 796 | + @doc(GroupBy.prod.__doc__) |
819 | 797 | def prod(self, numeric_only: bool = True, min_count: int = 0) -> Series: |
820 | 798 | return super().prod(numeric_only=numeric_only, min_count=min_count) |
821 | 799 |
|
822 | | - @doc(_agg_template, fname="min", no=False, mc=-1, return_type="Series") |
| 800 | + @doc(GroupBy.min.__doc__) |
823 | 801 | def min(self, numeric_only: bool = False, min_count: int = -1) -> Series: |
824 | 802 | return super().min(numeric_only=numeric_only, min_count=min_count) |
825 | 803 |
|
826 | | - @doc(_agg_template, fname="max", no=False, mc=-1, return_type="Series") |
| 804 | + @doc(GroupBy.max.__doc__) |
827 | 805 | def max(self, numeric_only: bool = False, min_count: int = -1) -> Series: |
828 | 806 | return super().max(numeric_only=numeric_only, min_count=min_count) |
829 | 807 |
|
830 | | - @doc(_agg_template, fname="first", no=False, mc=-1, return_type="Series") |
| 808 | + @doc(GroupBy.first.__doc__) |
831 | 809 | def first(self, numeric_only: bool = False, min_count: int = -1) -> Series: |
832 | 810 | return super().first(numeric_only=numeric_only, min_count=min_count) |
833 | 811 |
|
834 | | - @doc(_agg_template, fname="last", no=False, mc=-1, return_type="Series") |
| 812 | + @doc(GroupBy.last.__doc__) |
835 | 813 | def last(self, numeric_only: bool = False, min_count: int = -1) -> Series: |
836 | 814 | return super().last(numeric_only=numeric_only, min_count=min_count) |
837 | 815 |
|
@@ -1909,27 +1887,27 @@ def groupby_series(obj, col=None): |
1909 | 1887 | results.index = ibase.default_index(len(results)) |
1910 | 1888 | return results |
1911 | 1889 |
|
1912 | | - @doc(_agg_template, fname="sum", no=True, mc=0, return_type="DataFrame") |
| 1890 | + @doc(GroupBy.sum.__doc__) |
1913 | 1891 | def sum(self, numeric_only: bool = True, min_count: int = 0) -> DataFrame: |
1914 | 1892 | return super().sum(numeric_only=numeric_only, min_count=min_count) |
1915 | 1893 |
|
1916 | | - @doc(_agg_template, fname="prod", no=True, mc=0, return_type="DataFrame") |
| 1894 | + @doc(GroupBy.prod.__doc__) |
1917 | 1895 | def prod(self, numeric_only: bool = True, min_count: int = 0) -> DataFrame: |
1918 | 1896 | return super().prod(numeric_only=numeric_only, min_count=min_count) |
1919 | 1897 |
|
1920 | | - @doc(_agg_template, fname="min", no=False, mc=-1, return_type="DataFrame") |
| 1898 | + @doc(GroupBy.min.__doc__) |
1921 | 1899 | def min(self, numeric_only: bool = False, min_count: int = -1) -> DataFrame: |
1922 | 1900 | return super().min(numeric_only=numeric_only, min_count=min_count) |
1923 | 1901 |
|
1924 | | - @doc(_agg_template, fname="max", no=False, mc=-1, return_type="DataFrame") |
| 1902 | + @doc(GroupBy.max.__doc__) |
1925 | 1903 | def max(self, numeric_only: bool = False, min_count: int = -1) -> DataFrame: |
1926 | 1904 | return super().max(numeric_only=numeric_only, min_count=min_count) |
1927 | 1905 |
|
1928 | | - @doc(_agg_template, fname="first", no=False, mc=-1, return_type="DataFrame") |
| 1906 | + @doc(GroupBy.first.__doc__) |
1929 | 1907 | def first(self, numeric_only: bool = False, min_count: int = -1) -> DataFrame: |
1930 | 1908 | return super().first(numeric_only=numeric_only, min_count=min_count) |
1931 | 1909 |
|
1932 | | - @doc(_agg_template, fname="last", no=False, mc=-1, return_type="DataFrame") |
| 1910 | + @doc(GroupBy.last.__doc__) |
1933 | 1911 | def last(self, numeric_only: bool = False, min_count: int = -1) -> DataFrame: |
1934 | 1912 | return super().last(numeric_only=numeric_only, min_count=min_count) |
1935 | 1913 |
|
|
0 commit comments