|
3 | 3 | import numpy as np |
4 | 4 | import pytest |
5 | 5 |
|
6 | | -from pandas.compat import lrange |
7 | | - |
8 | 6 | import pandas as pd |
9 | 7 | from pandas import DataFrame, Index, Series, Timestamp, date_range |
10 | 8 | import pandas.util.testing as tm |
@@ -216,41 +214,41 @@ def test_append_dtypes(self): |
216 | 214 | # row appends of different dtypes (so need to do by-item) |
217 | 215 | # can sometimes infer the correct type |
218 | 216 |
|
219 | | - df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(5)) |
| 217 | + df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(5)) |
220 | 218 | df2 = DataFrame() |
221 | 219 | result = df1.append(df2) |
222 | 220 | expected = df1.copy() |
223 | 221 | assert_frame_equal(result, expected) |
224 | 222 |
|
225 | | - df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1)) |
226 | | - df2 = DataFrame({'bar': 'foo'}, index=lrange(1, 2)) |
| 223 | + df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) |
| 224 | + df2 = DataFrame({'bar': 'foo'}, index=range(1, 2)) |
227 | 225 | result = df1.append(df2) |
228 | 226 | expected = DataFrame({'bar': [Timestamp('20130101'), 'foo']}) |
229 | 227 | assert_frame_equal(result, expected) |
230 | 228 |
|
231 | | - df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1)) |
232 | | - df2 = DataFrame({'bar': np.nan}, index=lrange(1, 2)) |
| 229 | + df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) |
| 230 | + df2 = DataFrame({'bar': np.nan}, index=range(1, 2)) |
233 | 231 | result = df1.append(df2) |
234 | 232 | expected = DataFrame( |
235 | 233 | {'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')}) |
236 | 234 | assert_frame_equal(result, expected) |
237 | 235 |
|
238 | | - df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1)) |
239 | | - df2 = DataFrame({'bar': np.nan}, index=lrange(1, 2), dtype=object) |
| 236 | + df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) |
| 237 | + df2 = DataFrame({'bar': np.nan}, index=range(1, 2), dtype=object) |
240 | 238 | result = df1.append(df2) |
241 | 239 | expected = DataFrame( |
242 | 240 | {'bar': Series([Timestamp('20130101'), np.nan], dtype='M8[ns]')}) |
243 | 241 | assert_frame_equal(result, expected) |
244 | 242 |
|
245 | | - df1 = DataFrame({'bar': np.nan}, index=lrange(1)) |
246 | | - df2 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1, 2)) |
| 243 | + df1 = DataFrame({'bar': np.nan}, index=range(1)) |
| 244 | + df2 = DataFrame({'bar': Timestamp('20130101')}, index=range(1, 2)) |
247 | 245 | result = df1.append(df2) |
248 | 246 | expected = DataFrame( |
249 | 247 | {'bar': Series([np.nan, Timestamp('20130101')], dtype='M8[ns]')}) |
250 | 248 | assert_frame_equal(result, expected) |
251 | 249 |
|
252 | | - df1 = DataFrame({'bar': Timestamp('20130101')}, index=lrange(1)) |
253 | | - df2 = DataFrame({'bar': 1}, index=lrange(1, 2), dtype=object) |
| 250 | + df1 = DataFrame({'bar': Timestamp('20130101')}, index=range(1)) |
| 251 | + df2 = DataFrame({'bar': 1}, index=range(1, 2), dtype=object) |
254 | 252 | result = df1.append(df2) |
255 | 253 | expected = DataFrame({'bar': Series([Timestamp('20130101'), 1])}) |
256 | 254 | assert_frame_equal(result, expected) |
@@ -379,7 +377,7 @@ def test_join_str_datetime(self): |
379 | 377 | str_dates = ['20120209', '20120222'] |
380 | 378 | dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] |
381 | 379 |
|
382 | | - A = DataFrame(str_dates, index=lrange(2), columns=['aa']) |
| 380 | + A = DataFrame(str_dates, index=range(2), columns=['aa']) |
383 | 381 | C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates) |
384 | 382 |
|
385 | 383 | tst = A.join(C, on='aa') |
@@ -535,12 +533,12 @@ def test_concat_astype_dup_col(self): |
535 | 533 | class TestDataFrameCombineFirst(): |
536 | 534 |
|
537 | 535 | def test_combine_first_mixed(self): |
538 | | - a = Series(['a', 'b'], index=lrange(2)) |
539 | | - b = Series(lrange(2), index=lrange(2)) |
| 536 | + a = Series(['a', 'b'], index=range(2)) |
| 537 | + b = Series(range(2), index=range(2)) |
540 | 538 | f = DataFrame({'A': a, 'B': b}) |
541 | 539 |
|
542 | | - a = Series(['a', 'b'], index=lrange(5, 7)) |
543 | | - b = Series(lrange(2), index=lrange(5, 7)) |
| 540 | + a = Series(['a', 'b'], index=range(5, 7)) |
| 541 | + b = Series(range(2), index=range(5, 7)) |
544 | 542 | g = DataFrame({'A': a, 'B': b}) |
545 | 543 |
|
546 | 544 | exp = pd.DataFrame({'A': list('abab'), 'B': [0., 1., 0., 1.]}, |
@@ -861,7 +859,7 @@ def test_concat_datetime_datetime64_frame(self): |
861 | 859 | df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) |
862 | 860 |
|
863 | 861 | ind = date_range(start="2000/1/1", freq="D", periods=10) |
864 | | - df1 = DataFrame({'date': ind, 'test': lrange(10)}) |
| 862 | + df1 = DataFrame({'date': ind, 'test': range(10)}) |
865 | 863 |
|
866 | 864 | # it works! |
867 | 865 | pd.concat([df1, df2_obj]) |
|
0 commit comments