|
31 | 31 | config,
|
32 | 32 | get_option,
|
33 | 33 | using_copy_on_write,
|
34 |
| - using_pyarrow_string_dtype, |
| 34 | + using_string_dtype, |
35 | 35 | )
|
36 | 36 |
|
37 | 37 | from pandas._libs import (
|
@@ -3224,7 +3224,7 @@ def read(
|
3224 | 3224 | index = self.read_index("index", start=start, stop=stop)
|
3225 | 3225 | values = self.read_array("values", start=start, stop=stop)
|
3226 | 3226 | result = Series(values, index=index, name=self.name, copy=False)
|
3227 |
| - if using_pyarrow_string_dtype() and is_string_array(values, skipna=True): |
| 3227 | + if using_string_dtype() and is_string_array(values, skipna=True): |
3228 | 3228 | result = result.astype("string[pyarrow_numpy]")
|
3229 | 3229 | return result
|
3230 | 3230 |
|
@@ -3293,7 +3293,7 @@ def read(
|
3293 | 3293 |
|
3294 | 3294 | columns = items[items.get_indexer(blk_items)]
|
3295 | 3295 | df = DataFrame(values.T, columns=columns, index=axes[1], copy=False)
|
3296 |
| - if using_pyarrow_string_dtype() and is_string_array(values, skipna=True): |
| 3296 | + if using_string_dtype() and is_string_array(values, skipna=True): |
3297 | 3297 | df = df.astype("string[pyarrow_numpy]")
|
3298 | 3298 | dfs.append(df)
|
3299 | 3299 |
|
@@ -4679,9 +4679,9 @@ def read(
|
4679 | 4679 | else:
|
4680 | 4680 | # Categorical
|
4681 | 4681 | df = DataFrame._from_arrays([values], columns=cols_, index=index_)
|
4682 |
| - if not (using_pyarrow_string_dtype() and values.dtype.kind == "O"): |
| 4682 | + if not (using_string_dtype() and values.dtype.kind == "O"): |
4683 | 4683 | assert (df.dtypes == values.dtype).all(), (df.dtypes, values.dtype)
|
4684 |
| - if using_pyarrow_string_dtype() and is_string_array( |
| 4684 | + if using_string_dtype() and is_string_array( |
4685 | 4685 | values, # type: ignore[arg-type]
|
4686 | 4686 | skipna=True,
|
4687 | 4687 | ):
|
|
0 commit comments