@@ -159,7 +159,7 @@ def time_series_nth(self, df):
159159 df [1 ].groupby (df [0 ]).nth (0 )
160160
161161
162- class Incidies (object ):
162+ class DateAttributes (object ):
163163
164164 goal_time = 0.2
165165
@@ -168,8 +168,8 @@ def setup(self):
168168 self .year , self .month , self .day = rng .year , rng .month , rng .day
169169 self .ts = Series (np .random .randn (len (rng )), index = rng )
170170
171- def time_datetime_indicies (self ):
172- self .ts .groupby ([self .year , self .month , self .day ])
171+ def time_len_groupby_object (self ):
172+ len ( self .ts .groupby ([self .year , self .month , self .day ]) )
173173
174174
175175class Int64 (object ):
@@ -194,7 +194,7 @@ class CountMultiDtype(object):
194194
195195 goal_time = 0.2
196196
197- def setup (self ):
197+ def setup_cache (self ):
198198 n = 10000
199199 offsets = np .random .randint (n , size = n ).astype ('timedelta64[ns]' )
200200 dates = np .datetime64 ('now' ) + offsets
@@ -203,18 +203,19 @@ def setup(self):
203203 value2 = np .random .randn (n )
204204 value2 [np .random .rand (n ) > 0.5 ] = np .nan
205205 obj = np .random .choice (list ('ab' ), size = n ).astype (object )
206- obj [(np .random .randn (n ) > 0.5 )] = np .nan
207- self .df = DataFrame ({'key1' : np .random .randint (0 , 500 , size = n ),
208- 'key2' : np .random .randint (0 , 100 , size = n ),
209- 'dates' : dates ,
210- 'value2' : value2 ,
211- 'value3' : np .random .randn (n ),
212- 'ints' : np .random .randint (0 , 1000 , size = n ),
213- 'obj' : obj ,
214- 'offsets' : offsets })
206+ obj [np .random .randn (n ) > 0.5 ] = np .nan
207+ df = DataFrame ({'key1' : np .random .randint (0 , 500 , size = n ),
208+ 'key2' : np .random .randint (0 , 100 , size = n ),
209+ 'dates' : dates ,
210+ 'value2' : value2 ,
211+ 'value3' : np .random .randn (n ),
212+ 'ints' : np .random .randint (0 , 1000 , size = n ),
213+ 'obj' : obj ,
214+ 'offsets' : offsets })
215+ return df
215216
216- def time_multi_count (self ):
217- self . df .groupby (['key1' , 'key2' ]).count ()
217+ def time_multi_count (self , df ):
218+ df .groupby (['key1' , 'key2' ]).count ()
218219
219220
220221class CountInt (object ):
@@ -236,7 +237,7 @@ def time_int_nunique(self, df):
236237 df .groupby (['key1' , 'key2' ]).nunique ()
237238
238239
239- class AggMultiColFuncs (object ):
240+ class AggFunctions (object ):
240241
241242 goal_time = 0.2
242243
@@ -261,22 +262,11 @@ def time_different_numpy_functions(self, df):
261262 'value2' : np .var ,
262263 'value3' : np .sum })
263264
265+ def time_different_python_functions_multicol (self , df ):
266+ df .groupby (['key1' , 'key2' ]).agg ([sum , min , max ])
264267
265- class AggBuiltins (object ):
266-
267- goal_time = 0.2
268-
269- def setup_cache (self ):
270- n = 10 ** 5
271- df = DataFrame (np .random .randint (1 , n / 100 , (n , 3 )),
272- columns = ['jim' , 'joe' , 'jolie' ])
273- return df
274-
275- def time_agg_builtin_single_col (self , df ):
276- df .groupby ('jim' ).agg ([sum , min , max ])
277-
278- def time_agg_builtins_multi_col (self , df ):
279- df .groupby (['jim' , 'joe' ]).agg ([sum , min , max ])
268+ def time_different_python_functions_singlecol (self , df ):
269+ df .groupby ('key1' ).agg ([sum , min , max ])
280270
281271
282272class GroupStrings (object ):
@@ -532,38 +522,21 @@ def time_groupby_extra_cat_nosort(self):
532522class Datelike (object ):
533523 # GH 14338
534524 goal_time = 0.2
535- params = [period_range , date_range , partial ( date_range , tz = 'US/Central' ) ]
525+ params = [' period_range' , ' date_range' , 'date_range_tz' ]
536526 param_names = ['grouper' ]
537527
538528 def setup (self , grouper ):
539529 N = 10 ** 4
540- self .grouper = grouper ('1900-01-01' , freq = 'D' , periods = N )
530+ rng_map = {'period_range' : period_range ,
531+ 'date_range' : date_range ,
532+ 'date_range_tz' : partial (date_range , tz = 'US/Central' )}
533+ self .grouper = rng_map [grouper ]('1900-01-01' , freq = 'D' , periods = N )
541534 self .df = DataFrame (np .random .randn (10 ** 4 , 2 ))
542535
543536 def time_sum (self , grouper ):
544537 self .df .groupby (self .grouper ).sum ()
545538
546539
547- class PivotTable (object ):
548- goal_time = 0.2
549-
550- def setup (self ):
551- N = 100000
552- fac1 = np .array (['A' , 'B' , 'C' ], dtype = 'O' )
553- fac2 = np .array (['one' , 'two' ], dtype = 'O' )
554- ind1 = np .random .randint (0 , 3 , size = N )
555- ind2 = np .random .randint (0 , 2 , size = N )
556- self .df = DataFrame ({'key1' : fac1 .take (ind1 ),
557- 'key2' : fac2 .take (ind2 ),
558- 'key3' : fac2 .take (ind2 ),
559- 'value1' : np .random .randn (N ),
560- 'value2' : np .random .randn (N ),
561- 'value3' : np .random .randn (N )})
562-
563- def time_pivot_table (self ):
564- self .df .pivot_table (index = 'key1' , columns = ['key2' , 'key3' ])
565-
566-
567540class SumBools (object ):
568541 # GH 2692
569542 goal_time = 0.2
0 commit comments