|
| 1 | +import pytest |
| 2 | + |
| 3 | +from pandas import DataFrame, Index, Series |
| 4 | +import pandas._testing as tm |
| 5 | + |
| 6 | + |
| 7 | +@pytest.mark.parametrize("n, frac", [(2, None), (None, 0.2)]) |
| 8 | +def test_groupby_sample_balanced_groups_shape(n, frac): |
| 9 | + values = [1] * 10 + [2] * 10 |
| 10 | + df = DataFrame({"a": values, "b": values}) |
| 11 | + |
| 12 | + result = df.groupby("a").sample(n=n, frac=frac) |
| 13 | + values = [1] * 2 + [2] * 2 |
| 14 | + expected = DataFrame({"a": values, "b": values}, index=result.index) |
| 15 | + tm.assert_frame_equal(result, expected) |
| 16 | + |
| 17 | + result = df.groupby("a")["b"].sample(n=n, frac=frac) |
| 18 | + expected = Series(values, name="b", index=result.index) |
| 19 | + tm.assert_series_equal(result, expected) |
| 20 | + |
| 21 | + |
| 22 | +def test_groupby_sample_unbalanced_groups_shape(): |
| 23 | + values = [1] * 10 + [2] * 20 |
| 24 | + df = DataFrame({"a": values, "b": values}) |
| 25 | + |
| 26 | + result = df.groupby("a").sample(n=5) |
| 27 | + values = [1] * 5 + [2] * 5 |
| 28 | + expected = DataFrame({"a": values, "b": values}, index=result.index) |
| 29 | + tm.assert_frame_equal(result, expected) |
| 30 | + |
| 31 | + result = df.groupby("a")["b"].sample(n=5) |
| 32 | + expected = Series(values, name="b", index=result.index) |
| 33 | + tm.assert_series_equal(result, expected) |
| 34 | + |
| 35 | + |
| 36 | +def test_groupby_sample_index_value_spans_groups(): |
| 37 | + values = [1] * 3 + [2] * 3 |
| 38 | + df = DataFrame({"a": values, "b": values}, index=[1, 2, 2, 2, 2, 2]) |
| 39 | + |
| 40 | + result = df.groupby("a").sample(n=2) |
| 41 | + values = [1] * 2 + [2] * 2 |
| 42 | + expected = DataFrame({"a": values, "b": values}, index=result.index) |
| 43 | + tm.assert_frame_equal(result, expected) |
| 44 | + |
| 45 | + result = df.groupby("a")["b"].sample(n=2) |
| 46 | + expected = Series(values, name="b", index=result.index) |
| 47 | + tm.assert_series_equal(result, expected) |
| 48 | + |
| 49 | + |
| 50 | +def test_groupby_sample_n_and_frac_raises(): |
| 51 | + df = DataFrame({"a": [1, 2], "b": [1, 2]}) |
| 52 | + msg = "Please enter a value for `frac` OR `n`, not both" |
| 53 | + |
| 54 | + with pytest.raises(ValueError, match=msg): |
| 55 | + df.groupby("a").sample(n=1, frac=1.0) |
| 56 | + |
| 57 | + with pytest.raises(ValueError, match=msg): |
| 58 | + df.groupby("a")["b"].sample(n=1, frac=1.0) |
| 59 | + |
| 60 | + |
| 61 | +def test_groupby_sample_frac_gt_one_without_replacement_raises(): |
| 62 | + df = DataFrame({"a": [1, 2], "b": [1, 2]}) |
| 63 | + msg = "Replace has to be set to `True` when upsampling the population `frac` > 1." |
| 64 | + |
| 65 | + with pytest.raises(ValueError, match=msg): |
| 66 | + df.groupby("a").sample(frac=1.5, replace=False) |
| 67 | + |
| 68 | + with pytest.raises(ValueError, match=msg): |
| 69 | + df.groupby("a")["b"].sample(frac=1.5, replace=False) |
| 70 | + |
| 71 | + |
| 72 | +@pytest.mark.parametrize("n", [-1, 1.5]) |
| 73 | +def test_groupby_sample_invalid_n_raises(n): |
| 74 | + df = DataFrame({"a": [1, 2], "b": [1, 2]}) |
| 75 | + |
| 76 | + if n < 0: |
| 77 | + msg = "Please provide positive value" |
| 78 | + else: |
| 79 | + msg = "Only integers accepted as `n` values" |
| 80 | + |
| 81 | + with pytest.raises(ValueError, match=msg): |
| 82 | + df.groupby("a").sample(n=n) |
| 83 | + |
| 84 | + with pytest.raises(ValueError, match=msg): |
| 85 | + df.groupby("a")["b"].sample(n=n) |
| 86 | + |
| 87 | + |
| 88 | +def test_groupby_sample_oversample(): |
| 89 | + values = [1] * 10 + [2] * 10 |
| 90 | + df = DataFrame({"a": values, "b": values}) |
| 91 | + |
| 92 | + result = df.groupby("a").sample(frac=2.0, replace=True) |
| 93 | + values = [1] * 20 + [2] * 20 |
| 94 | + expected = DataFrame({"a": values, "b": values}, index=result.index) |
| 95 | + tm.assert_frame_equal(result, expected) |
| 96 | + |
| 97 | + result = df.groupby("a")["b"].sample(frac=2.0, replace=True) |
| 98 | + expected = Series(values, name="b", index=result.index) |
| 99 | + tm.assert_series_equal(result, expected) |
| 100 | + |
| 101 | + |
| 102 | +def test_groupby_sample_without_n_or_frac(): |
| 103 | + values = [1] * 10 + [2] * 10 |
| 104 | + df = DataFrame({"a": values, "b": values}) |
| 105 | + |
| 106 | + result = df.groupby("a").sample(n=None, frac=None) |
| 107 | + expected = DataFrame({"a": [1, 2], "b": [1, 2]}, index=result.index) |
| 108 | + tm.assert_frame_equal(result, expected) |
| 109 | + |
| 110 | + result = df.groupby("a")["b"].sample(n=None, frac=None) |
| 111 | + expected = Series([1, 2], name="b", index=result.index) |
| 112 | + tm.assert_series_equal(result, expected) |
| 113 | + |
| 114 | + |
| 115 | +def test_groupby_sample_with_weights(): |
| 116 | + values = [1] * 2 + [2] * 2 |
| 117 | + df = DataFrame({"a": values, "b": values}, index=Index(["w", "x", "y", "z"])) |
| 118 | + |
| 119 | + result = df.groupby("a").sample(n=2, replace=True, weights=[1, 0, 1, 0]) |
| 120 | + expected = DataFrame({"a": values, "b": values}, index=Index(["w", "w", "y", "y"])) |
| 121 | + tm.assert_frame_equal(result, expected) |
| 122 | + |
| 123 | + result = df.groupby("a")["b"].sample(n=2, replace=True, weights=[1, 0, 1, 0]) |
| 124 | + expected = Series(values, name="b", index=Index(["w", "w", "y", "y"])) |
| 125 | + tm.assert_series_equal(result, expected) |
0 commit comments