@@ -2066,7 +2066,7 @@ def to_feather(self, fname):
20662066 Parameters
20672067 ----------
20682068 fname : str
2069- string file path
2069+ String file path.
20702070 """
20712071 from pandas .io .feather_format import to_feather
20722072
@@ -4772,6 +4772,7 @@ def drop_duplicates(self, subset=None, keep="first", inplace=False):
47724772 Only consider certain columns for identifying duplicates, by
47734773 default use all of the columns
47744774 keep : {'first', 'last', False}, default 'first'
4775+ Determines which duplicates (if any) to keep.
47754776 - ``first`` : Drop duplicates except for the first occurrence.
47764777 - ``last`` : Drop duplicates except for the last occurrence.
47774778 - False : Drop all duplicates.
@@ -4806,10 +4807,10 @@ def duplicated(self, subset=None, keep="first"):
48064807 Only consider certain columns for identifying duplicates, by
48074808 default use all of the columns
48084809 keep : {'first', 'last', False}, default 'first'
4809- - ``first`` : Mark duplicates as ``True`` except for the
4810- first occurrence.
4811- - ``last `` : Mark duplicates as ``True`` except for the
4812- last occurrence.
4810+ Determines which duplicates (if any) to mark.
4811+
4812+ - ``first `` : Mark duplicates as ``True`` except for the first occurrence.
4813+ - ``last`` : Mark duplicates as ``True`` except for the last occurrence.
48134814 - False : Mark all duplicates as ``True``.
48144815
48154816 Returns
@@ -6233,8 +6234,8 @@ def unstack(self, level=-1, fill_value=None):
62336234 ----------
62346235 level : int, str, or list of these, default -1 (last level)
62356236 Level(s) of index to unstack, can pass level name
6236- fill_value : replace NaN with this value if the unstack produces
6237- missing values
6237+ fill_value : int, string or dict
6238+ Replace NaN with this value if the unstack produces missing values
62386239
62396240 Returns
62406241 -------
@@ -6665,6 +6666,8 @@ def apply(
66656666 by result_type='broadcast'.
66666667
66676668 raw : bool, default False
6669+ Determines if row or column is passed as a Series or ndarry object:
6670+
66686671 * ``False`` : passes each row or column as a Series to the
66696672 function.
66706673 * ``True`` : the passed function will receive ndarray objects
@@ -7357,6 +7360,8 @@ def corr(self, method="pearson", min_periods=1):
73577360 Parameters
73587361 ----------
73597362 method : {'pearson', 'kendall', 'spearman'} or callable
7363+ Method of correlation:
7364+
73607365 * pearson : standard correlation coefficient
73617366 * kendall : Kendall Tau correlation coefficient
73627367 * spearman : Spearman rank correlation
@@ -7556,10 +7561,13 @@ def corrwith(self, other, axis=0, drop=False, method="pearson"):
75567561 other : DataFrame, Series
75577562 Object with which to compute correlations.
75587563 axis : {0 or 'index', 1 or 'columns'}, default 0
7559- 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise.
7564+ The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for
7565+ row-wise.
75607566 drop : bool, default False
75617567 Drop missing indices from result.
75627568 method : {'pearson', 'kendall', 'spearman'} or callable
7569+ Method of correlation:
7570+
75637571 * pearson : standard correlation coefficient
75647572 * kendall : Kendall Tau correlation coefficient
75657573 * spearman : Spearman rank correlation
@@ -7939,8 +7947,8 @@ def idxmin(self, axis=0, skipna=True):
79397947 Parameters
79407948 ----------
79417949 axis : {0 or 'index', 1 or 'columns'}, default 0
7942- 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7943- skipna : bool , default True
7950+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7951+ skipna : boolean , default True
79447952 Exclude NA/null values. If an entire row/column is NA, the result
79457953 will be NA.
79467954
@@ -7976,8 +7984,8 @@ def idxmax(self, axis=0, skipna=True):
79767984 Parameters
79777985 ----------
79787986 axis : {0 or 'index', 1 or 'columns'}, default 0
7979- 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7980- skipna : bool , default True
7987+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7988+ skipna : boolean , default True
79817989 Exclude NA/null values. If an entire row/column is NA, the result
79827990 will be NA.
79837991
0 commit comments