@@ -2223,6 +2223,7 @@ def to_html(
22232223 encoding = encoding ,
22242224 )
22252225
2226+ # ----------------------------------------------------------------------
22262227 @Substitution (
22272228 klass = "DataFrame" ,
22282229 type_sub = " and columns" ,
@@ -2233,17 +2234,98 @@ def to_html(
22332234 is used. By default, the setting in
22342235 ``pandas.options.display.max_info_columns`` is used.
22352236 """ ,
2237+ examples_sub = """
2238+ >>> int_values = [1, 2, 3, 4, 5]
2239+ >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
2240+ >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
2241+ >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
2242+ ... "float_col": float_values})
2243+ >>> df
2244+ int_col text_col float_col
2245+ 0 1 alpha 0.00
2246+ 1 2 beta 0.25
2247+ 2 3 gamma 0.50
2248+ 3 4 delta 0.75
2249+ 4 5 epsilon 1.00
2250+
2251+ Prints information of all columns:
2252+
2253+ >>> df.info(verbose=True)
2254+ <class 'pandas.core.frame.DataFrame'>
2255+ RangeIndex: 5 entries, 0 to 4
2256+ Data columns (total 3 columns):
2257+ # Column Non-Null Count Dtype
2258+ --- ------ -------------- -----
2259+ 0 int_col 5 non-null int64
2260+ 1 text_col 5 non-null object
2261+ 2 float_col 5 non-null float64
2262+ dtypes: float64(1), int64(1), object(1)
2263+ memory usage: 248.0+ bytes
2264+
2265+ Prints a summary of columns count and its dtypes but not per column
2266+ information:
2267+
2268+ >>> df.info(verbose=False)
2269+ <class 'pandas.core.frame.DataFrame'>
2270+ RangeIndex: 5 entries, 0 to 4
2271+ Columns: 3 entries, int_col to float_col
2272+ dtypes: float64(1), int64(1), object(1)
2273+ memory usage: 248.0+ bytes
2274+
2275+ Pipe output of DataFrame.info to buffer instead of sys.stdout, get
2276+ buffer content and writes to a text file:
2277+
2278+ >>> import io
2279+ >>> buffer = io.StringIO()
2280+ >>> df.info(buf=buffer)
2281+ >>> s = buffer.getvalue()
2282+ >>> with open("df_info.txt", "w",
2283+ ... encoding="utf-8") as f: # doctest: +SKIP
2284+ ... f.write(s)
2285+ 260
2286+ The `memory_usage` parameter allows deep introspection mode, specially
2287+ useful for big DataFrames and fine-tune memory optimization:
2288+ >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
2289+ >>> df = pd.DataFrame({
2290+ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
2291+ ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
2292+ ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
2293+ ... })
2294+ >>> df.info()
2295+ <class 'pandas.core.frame.DataFrame'>
2296+ RangeIndex: 1000000 entries, 0 to 999999
2297+ Data columns (total 3 columns):
2298+ # Column Non-Null Count Dtype
2299+ --- ------ -------------- -----
2300+ 0 column_1 1000000 non-null object
2301+ 1 column_2 1000000 non-null object
2302+ 2 column_3 1000000 non-null object
2303+ dtypes: object(3)
2304+ memory usage: 22.9+ MB
2305+ >>> df.info(memory_usage='deep')
2306+ <class 'pandas.core.frame.DataFrame'>
2307+ RangeIndex: 1000000 entries, 0 to 999999
2308+ Data columns (total 3 columns):
2309+ # Column Non-Null Count Dtype
2310+ --- ------ -------------- -----
2311+ 0 column_1 1000000 non-null object
2312+ 1 column_2 1000000 non-null object
2313+ 2 column_3 1000000 non-null object
2314+ dtypes: object(3)
2315+ memory usage: 188.8 MB""" ,
2316+ see_also_sub = """
2317+ DataFrame.describe: Generate descriptive statistics of DataFrame
2318+ columns.
2319+ DataFrame.memory_usage: Memory usage of DataFrame columns.""" ,
22362320 )
2237- @Appender (NDFrame .info .__doc__ )
2238- def info (
2239- self , verbose = None , buf = None , max_cols = None , memory_usage = None , null_counts = None
2240- ):
2241- return super ().info (verbose , buf , max_cols , memory_usage , null_counts )
2242-
2243- # ----------------------------------------------------------------------
22442321 @Appender (info .__doc__ )
22452322 def info (
2246- self , verbose = None , buf = None , max_cols = None , memory_usage = None , null_counts = None
2323+ self ,
2324+ verbose : Optional [bool ] = None ,
2325+ buf : Optional [IO [str ]] = None ,
2326+ max_cols : Optional [int ] = None ,
2327+ memory_usage : Optional [Union [bool , str ]] = None ,
2328+ null_counts : Optional [bool ] = None ,
22472329 ) -> None :
22482330 return info (self , verbose , buf , max_cols , memory_usage , null_counts )
22492331
0 commit comments