@@ -37,9 +37,9 @@ object.
3737 * :ref: `read_feather<io.feather> `
3838 * :ref: `read_sql<io.sql> `
3939 * :ref: `read_json<io.json_reader> `
40- * :ref: `read_msgpack<io.msgpack> ` (experimental)
40+ * :ref: `read_msgpack<io.msgpack> `
4141 * :ref: `read_html<io.read_html> `
42- * :ref: `read_gbq<io.bigquery_reader> ` (experimental)
42+ * :ref: `read_gbq<io.bigquery_reader> `
4343 * :ref: `read_stata<io.stata_reader> `
4444 * :ref: `read_sas<io.sas_reader> `
4545 * :ref: `read_clipboard<io.clipboard> `
@@ -53,9 +53,9 @@ The corresponding ``writer`` functions are object methods that are accessed like
5353 * :ref: `to_feather<io.feather> `
5454 * :ref: `to_sql<io.sql> `
5555 * :ref: `to_json<io.json_writer> `
56- * :ref: `to_msgpack<io.msgpack> ` (experimental)
56+ * :ref: `to_msgpack<io.msgpack> `
5757 * :ref: `to_html<io.html> `
58- * :ref: `to_gbq<io.bigquery_writer> ` (experimental)
58+ * :ref: `to_gbq<io.bigquery_writer> `
5959 * :ref: `to_stata<io.stata_writer> `
6060 * :ref: `to_clipboard<io.clipboard> `
6161 * :ref: `to_pickle<io.pickle> `
@@ -428,8 +428,8 @@ worth trying.
428428 :okwarning:
429429
430430 df = pd.DataFrame({' col_1' : list (range (500000 )) + [' a' , ' b' ] + list (range (500000 ))})
431- df.to_csv(' foo' )
432- mixed_df = pd.read_csv(' foo' )
431+ df.to_csv(' foo.csv ' )
432+ mixed_df = pd.read_csv(' foo.csv ' )
433433 mixed_df[' col_1' ].apply(type ).value_counts()
434434 mixed_df[' col_1' ].dtype
435435
@@ -438,6 +438,11 @@ worth trying.
438438 data that was read in. It is important to note that the overall column will be
439439 marked with a ``dtype `` of ``object ``, which is used for columns with mixed dtypes.
440440
441+ .. ipython :: python
442+ :suppress:
443+
444+ os.remove(' foo.csv' )
445+
441446 .. _io.categorical :
442447
443448Specifying Categorical dtype
@@ -570,6 +575,7 @@ The ``usecols`` argument can also be used to specify which columns not to
570575use in the final result:
571576
572577.. ipython :: python
578+
573579 pd.read_csv(StringIO(data), usecols = lambda x : x not in [' a' , ' c' ])
574580
575581 In this case, the callable is specifying that we exclude the "a" and "c"
@@ -730,6 +736,13 @@ input text data into ``datetime`` objects.
730736
731737The simplest case is to just pass in ``parse_dates=True ``:
732738
739+ .. ipython :: python
740+ :suppress:
741+
742+ f = open (' foo.csv' ,' w' )
743+ f.write(' date,A,B,C\n 20090101,a,1,2\n 20090102,b,3,4\n 20090103,c,4,5' )
744+ f.close()
745+
733746 .. ipython :: python
734747
735748 # Use a column as an index, and parse it as dates.
@@ -2826,8 +2839,8 @@ any pickled pandas object (or any other pickled object) from file:
28262839
28272840.. _io.msgpack :
28282841
2829- msgpack (experimental)
2830- ----------------------
2842+ msgpack
2843+ -------
28312844
28322845.. versionadded :: 0.13.0
28332846
@@ -4547,8 +4560,8 @@ And then issue the following queries:
45474560
45484561 .. _io.bigquery :
45494562
4550- Google BigQuery (Experimental)
4551- ------------------------------
4563+ Google BigQuery
4564+ ---------------
45524565
45534566.. versionadded :: 0.13.0
45544567
0 commit comments