@@ -106,7 +106,7 @@ def group_median_float64(ndarray[float64_t, ndim=2] out,
106106 ndarray[int64_t] counts ,
107107 ndarray[float64_t , ndim = 2 ] values,
108108 ndarray[intp_t] labels ,
109- Py_ssize_t min_count = - 1 ):
109+ Py_ssize_t min_count = - 1 ) -> None :
110110 """
111111 Only aggregates on axis = 0
112112 """
@@ -148,7 +148,7 @@ def group_cumprod_float64(float64_t[:, ::1] out,
148148 const intp_t[:] labels ,
149149 int ngroups ,
150150 bint is_datetimelike ,
151- bint skipna = True ):
151+ bint skipna = True ) -> None :
152152 """
153153 Cumulative product of columns of `values`, in row groups `labels`.
154154
@@ -205,7 +205,7 @@ def group_cumsum(numeric[:, ::1] out,
205205 const intp_t[:] labels ,
206206 int ngroups ,
207207 is_datetimelike ,
208- bint skipna = True ):
208+ bint skipna = True ) -> None :
209209 """
210210 Cumulative sum of columns of `values`, in row groups `labels`.
211211
@@ -270,7 +270,7 @@ def group_cumsum(numeric[:, ::1] out,
270270@ cython.boundscheck (False )
271271@ cython.wraparound (False )
272272def group_shift_indexer (int64_t[::1] out , const intp_t[:] labels ,
273- int ngroups , int periods ):
273+ int ngroups , int periods ) -> None :
274274 cdef:
275275 Py_ssize_t N , i , j , ii , lab
276276 int offset = 0 , sign
@@ -322,14 +322,14 @@ def group_shift_indexer(int64_t[::1] out, const intp_t[:] labels,
322322@ cython.wraparound (False )
323323@ cython.boundscheck (False )
324324def group_fillna_indexer (ndarray[int64_t] out , ndarray[intp_t] labels ,
325- ndarray[uint8_t] mask , object direction ,
326- int64_t limit , bint dropna ):
325+ ndarray[uint8_t] mask , str direction ,
326+ int64_t limit , bint dropna ) -> None :
327327 """
328328 Indexes how to fill values forwards or backwards within a group.
329329
330330 Parameters
331331 ----------
332- out : np.ndarray[np.uint8 ]
332+ out : np.ndarray[np.int64 ]
333333 Values into which this method will write its results.
334334 labels : np.ndarray[np.intp]
335335 Array containing unique label for each group , with its ordering
@@ -392,8 +392,8 @@ def group_any_all(uint8_t[::1] out,
392392 const uint8_t[::1] values ,
393393 const intp_t[:] labels ,
394394 const uint8_t[::1] mask ,
395- object val_test ,
396- bint skipna ):
395+ str val_test ,
396+ bint skipna ) -> None :
397397 """
398398 Aggregated boolean values to show truthfulness of group elements.
399399
@@ -465,7 +465,7 @@ def group_add(complexfloating_t[:, ::1] out,
465465 int64_t[::1] counts ,
466466 ndarray[complexfloating_t , ndim = 2 ] values,
467467 const intp_t[:] labels ,
468- Py_ssize_t min_count = 0 ):
468+ Py_ssize_t min_count = 0 ) -> None :
469469 """
470470 Only aggregates on axis = 0 using Kahan summation
471471 """
@@ -518,7 +518,7 @@ def group_prod(floating[:, ::1] out,
518518 int64_t[::1] counts ,
519519 ndarray[floating , ndim = 2 ] values,
520520 const intp_t[:] labels ,
521- Py_ssize_t min_count = 0 ):
521+ Py_ssize_t min_count = 0 ) -> None :
522522 """
523523 Only aggregates on axis = 0
524524 """
@@ -568,7 +568,7 @@ def group_var(floating[:, ::1] out,
568568 ndarray[floating , ndim = 2 ] values,
569569 const intp_t[:] labels ,
570570 Py_ssize_t min_count = - 1 ,
571- int64_t ddof = 1 ):
571+ int64_t ddof = 1 ) -> None :
572572 cdef:
573573 Py_ssize_t i , j , N , K , lab , ncounts = len (counts)
574574 floating val , ct , oldmean
@@ -621,7 +621,7 @@ def group_mean(floating[:, ::1] out,
621621 int64_t[::1] counts ,
622622 ndarray[floating , ndim = 2 ] values,
623623 const intp_t[::1] labels ,
624- Py_ssize_t min_count = - 1 ):
624+ Py_ssize_t min_count = - 1 ) -> None :
625625 cdef:
626626 Py_ssize_t i , j , N , K , lab , ncounts = len (counts)
627627 floating val , count , y , t
@@ -673,7 +673,7 @@ def group_ohlc(floating[:, ::1] out,
673673 int64_t[::1] counts ,
674674 ndarray[floating , ndim = 2 ] values,
675675 const intp_t[:] labels ,
676- Py_ssize_t min_count = - 1 ):
676+ Py_ssize_t min_count = - 1 ) -> None :
677677 """
678678 Only aggregates on axis = 0
679679 """
@@ -721,7 +721,7 @@ def group_quantile(ndarray[float64_t] out,
721721 ndarray[intp_t] labels ,
722722 ndarray[uint8_t] mask ,
723723 float64_t q ,
724- object interpolation ):
724+ str interpolation ) -> None :
725725 """
726726 Calculate the quantile per group.
727727
@@ -733,8 +733,6 @@ def group_quantile(ndarray[float64_t] out,
733733 Array containing the values to apply the function against.
734734 labels : ndarray[np.intp]
735735 Array containing the unique group labels.
736- values : ndarray
737- Array containing the values to apply the function against.
738736 q : float
739737 The quantile value to search for.
740738 interpolation : {'linear', 'lower', 'highest', 'nearest', 'midpoint'}
@@ -865,7 +863,7 @@ def group_last(rank_t[:, ::1] out,
865863 int64_t[::1] counts ,
866864 ndarray[rank_t , ndim = 2 ] values,
867865 const intp_t[:] labels ,
868- Py_ssize_t min_count = - 1 ):
866+ Py_ssize_t min_count = - 1 ) -> None :
869867 """
870868 Only aggregates on axis = 0
871869 """
@@ -957,8 +955,9 @@ def group_nth(rank_t[:, ::1] out,
957955 int64_t[::1] counts ,
958956 ndarray[rank_t , ndim = 2 ] values,
959957 const intp_t[:] labels ,
960- int64_t min_count = - 1 , int64_t rank = 1
961- ):
958+ int64_t min_count = - 1 ,
959+ int64_t rank = 1 ,
960+ ) -> None:
962961 """
963962 Only aggregates on axis = 0
964963 """
@@ -1050,8 +1049,8 @@ def group_rank(float64_t[:, ::1] out,
10501049 ndarray[rank_t , ndim = 2 ] values,
10511050 const intp_t[:] labels ,
10521051 int ngroups ,
1053- bint is_datetimelike , object ties_method = " average" ,
1054- bint ascending = True , bint pct = False , object na_option = " keep" ):
1052+ bint is_datetimelike , str ties_method = " average" ,
1053+ bint ascending = True , bint pct = False , str na_option = " keep" ) -> None :
10551054 """
10561055 Provides the rank of values within each group.
10571056
@@ -1221,7 +1220,7 @@ def group_max(groupby_t[:, ::1] out,
12211220 int64_t[::1] counts ,
12221221 ndarray[groupby_t , ndim = 2 ] values,
12231222 const intp_t[:] labels ,
1224- Py_ssize_t min_count = - 1 ):
1223+ Py_ssize_t min_count = - 1 ) -> None :
12251224 """See group_min_max.__doc__"""
12261225 group_min_max(out , counts , values , labels , min_count = min_count, compute_max = True )
12271226
@@ -1232,7 +1231,7 @@ def group_min(groupby_t[:, ::1] out,
12321231 int64_t[::1] counts ,
12331232 ndarray[groupby_t , ndim = 2 ] values,
12341233 const intp_t[:] labels ,
1235- Py_ssize_t min_count = - 1 ):
1234+ Py_ssize_t min_count = - 1 ) -> None :
12361235 """See group_min_max.__doc__"""
12371236 group_min_max(out , counts , values , labels , min_count = min_count, compute_max = False )
12381237
@@ -1311,7 +1310,7 @@ def group_cummin(groupby_t[:, ::1] out,
13111310 ndarray[groupby_t , ndim = 2 ] values,
13121311 const intp_t[:] labels ,
13131312 int ngroups ,
1314- bint is_datetimelike ):
1313+ bint is_datetimelike ) -> None :
13151314 """See group_cummin_max.__doc__"""
13161315 group_cummin_max(out , values , labels , ngroups , is_datetimelike , compute_max = False )
13171316
@@ -1322,6 +1321,6 @@ def group_cummax(groupby_t[:, ::1] out,
13221321 ndarray[groupby_t , ndim = 2 ] values,
13231322 const intp_t[:] labels ,
13241323 int ngroups ,
1325- bint is_datetimelike ):
1324+ bint is_datetimelike ) -> None :
13261325 """See group_cummin_max.__doc__"""
13271326 group_cummin_max(out , values , labels , ngroups , is_datetimelike , compute_max = True )
0 commit comments