@@ -1502,66 +1502,72 @@ def test_parse_trim_buffers(self):
15021502 # `tokenizer.c`. Sometimes the test fails on `segfault`, other
15031503 # times it fails due to memory corruption, which causes the
15041504 # loaded DataFrame to differ from the expected one.
1505- n_lines , chunksizes = 173 , range (57 , 90 )
15061505
1507- # Create the expected output
1508- expected_ = [(chunksize_ , "9999-9" , "9999-9" )
1509- for chunksize_ in chunksizes
1510- for _ in range ((n_lines + chunksize_ - 1 ) // chunksize_ )]
1511- expected = pd .DataFrame (expected_ , columns = None , index = None )
1512-
1513- # Generate a large mixed-type CSV file on-the-fly (approx 272 KiB)
1506+ # Generate a large mixed-type CSV file on-the-fly (one record is
1507+ # approx 1.5KiB).
15141508 record_ = \
1515- """9999-9,99:99,,,,ZZ,ZZ,,,ZZZ-ZZZZ,.Z-ZZZZ,-9.99,,,9.""" \
1516- """99,ZZZZZ,,-99,9,ZZZ-ZZZZ,ZZ-ZZZZ,,9.99,ZZZ-ZZZZZ,ZZZ-""" \
1517- """ZZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-""" \
1518- """ZZZZ,ZZZ-ZZZZ,999,ZZZ-ZZZZ,,ZZ-ZZZZ,,,,,ZZZZ,ZZZ-""" \
1519- """ZZZZZ,ZZZ-ZZZZ,,,9,9,9,9,99,99,999,999,ZZZZZ,ZZZ-""" \
1520- """ZZZZZ,ZZZ-ZZZZ,9,ZZ-ZZZZ,9.99,ZZ-ZZZZ,ZZ-""" \
1521- """ZZZZ,,,,ZZZZ,,,ZZ,ZZ,,,,,,,,,,,,,9,,,999.99,999.99,,,""" \
1522- """ZZZZZ,,,Z9,,,,,,,ZZZ,ZZZ,,,,,,,,,,,ZZZZZ,ZZZZZ,ZZZ-""" \
1523- """ZZZZZZ,ZZZ-ZZZZZZ,ZZ-ZZZZ,ZZ-ZZZZ,ZZ-ZZZZ,ZZ-""" \
1524- """ZZZZ,,,999999,999999,ZZZ,ZZZ,,,ZZZ,ZZZ,999.99,999.""" \
1525- """99,,,,ZZZ-ZZZ,ZZZ-ZZZ,-9.99,-9.99,9,9,,99,,9.99,9.""" \
1526- """99,9,9,9.99,9.99,,,,9.99,9.99,,99,,99,9.99,9.""" \
1527- """99,,,ZZZ,ZZZ,,999.99,,999.99,ZZZ,ZZZ-ZZZZ,ZZZ-""" \
1528- """ZZZZ,,,ZZZZZ,ZZZZZ,ZZZ,ZZZ,9,9,,,,,,ZZZ-""" \
1529- """ZZZZ,ZZZ999Z,,,999.99,,999.99,ZZZ-ZZZZ,,,9.999,9.""" \
1530- """999,9.999,9.999,-9.999,-9.999,-9.999,-9.999,9.999,9.""" \
1531- """999,9.999,9.999,9.999,9.999,9.999,9.999,99999,ZZZ-""" \
1532- """ZZZZ,,9.99,ZZZ,,,,,,,,ZZZ,,,,,9,,,,9,,,,,,,,,,ZZZ-""" \
1533- """ZZZZ,ZZZ-ZZZZ,,ZZZZZ,ZZZZZ,ZZZZZ,ZZZZZ,,,9.99,,ZZ-""" \
1534- """ZZZZ,ZZ-ZZZZ,ZZ,999,,,,ZZ-ZZZZ,ZZZ,ZZZ,ZZZ-ZZZZ,ZZZ-""" \
1535- """ZZZZ,,,99.99,99.99,,,9.99,9.99,9.99,9.99,ZZZ-""" \
1536- """ZZZZ,,,ZZZ-ZZZZZ,,,,,-9.99,-9.99,-9.99,-9.""" \
1537- """99,,,,,,,,,ZZZ-ZZZZ,,9,9.99,9.99,99ZZ,,-9.99,-9.""" \
1538- """99,ZZZ-ZZZZ,,,,,,,ZZZ-ZZZZ,9.99,9.99,9999,,,,,,,,,,-9""" \
1539- """.9,Z/Z-ZZZZ,999.99,9.99,,999.99,ZZ-ZZZZ,ZZ-ZZZZ,9.""" \
1540- """99,9.99,9.99,9.99,9.99,9.99,,ZZZ-ZZZZZ,ZZZ-ZZZZZ,ZZZ-""" \
1541- """ZZZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZZ,ZZZ,ZZZ,ZZZ,ZZZ,9.99,,,-9.""" \
1542- """99,ZZ-ZZZZ,-999.99,,-9999,,999.99,,,,999.99,99.""" \
1543- """99,,,ZZ-ZZZZZZZZ,ZZ-ZZZZ-ZZZZZZZ,,,,ZZ-ZZ-""" \
1544- """ZZZZZZZZ,ZZZZZZZZ,ZZZ-ZZZZ,9999,999.99,ZZZ-ZZZZ,-9.""" \
1545- """99,-9.99,ZZZ-ZZZZ,99:99:99,,99,99,,9.99,,-99.""" \
1546- """99,,,,,,9.99,ZZZ-ZZZZ,-9.99,-9.99,9.99,9.""" \
1547- """99,,ZZZ,,,,,,,ZZZ,ZZZ,,,,,"""
1509+ """9999-9,99:99,,,,ZZ,ZZ,,,ZZZ-ZZZZ,.Z-ZZZZ,-9.99,,,9.99,Z""" \
1510+ """ZZZZ,,-99,9,ZZZ-ZZZZ,ZZ-ZZZZ,,9.99,ZZZ-ZZZZZ,ZZZ-ZZZZZ,""" \
1511+ """ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,9""" \
1512+ """99,ZZZ-ZZZZ,,ZZ-ZZZZ,,,,,ZZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZ,,,9,9,""" \
1513+ """9,9,99,99,999,999,ZZZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZ,9,ZZ-ZZZZ,9.""" \
1514+ """99,ZZ-ZZZZ,ZZ-ZZZZ,,,,ZZZZ,,,ZZ,ZZ,,,,,,,,,,,,,9,,,999.""" \
1515+ """99,999.99,,,ZZZZZ,,,Z9,,,,,,,ZZZ,ZZZ,,,,,,,,,,,ZZZZZ,ZZ""" \
1516+ """ZZZ,ZZZ-ZZZZZZ,ZZZ-ZZZZZZ,ZZ-ZZZZ,ZZ-ZZZZ,ZZ-ZZZZ,ZZ-ZZ""" \
1517+ """ZZ,,,999999,999999,ZZZ,ZZZ,,,ZZZ,ZZZ,999.99,999.99,,,,Z""" \
1518+ """ZZ-ZZZ,ZZZ-ZZZ,-9.99,-9.99,9,9,,99,,9.99,9.99,9,9,9.99,""" \
1519+ """9.99,,,,9.99,9.99,,99,,99,9.99,9.99,,,ZZZ,ZZZ,,999.99,,""" \
1520+ """999.99,ZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,,,ZZZZZ,ZZZZZ,ZZZ,ZZZ,9,9,""" \
1521+ """,,,,,ZZZ-ZZZZ,ZZZ999Z,,,999.99,,999.99,ZZZ-ZZZZ,,,9.999""" \
1522+ """,9.999,9.999,9.999,-9.999,-9.999,-9.999,-9.999,9.999,9.""" \
1523+ """999,9.999,9.999,9.999,9.999,9.999,9.999,99999,ZZZ-ZZZZ,""" \
1524+ """,9.99,ZZZ,,,,,,,,ZZZ,,,,,9,,,,9,,,,,,,,,,ZZZ-ZZZZ,ZZZ-Z""" \
1525+ """ZZZ,,ZZZZZ,ZZZZZ,ZZZZZ,ZZZZZ,,,9.99,,ZZ-ZZZZ,ZZ-ZZZZ,ZZ""" \
1526+ """,999,,,,ZZ-ZZZZ,ZZZ,ZZZ,ZZZ-ZZZZ,ZZZ-ZZZZ,,,99.99,99.99""" \
1527+ """,,,9.99,9.99,9.99,9.99,ZZZ-ZZZZ,,,ZZZ-ZZZZZ,,,,,-9.99,-""" \
1528+ """9.99,-9.99,-9.99,,,,,,,,,ZZZ-ZZZZ,,9,9.99,9.99,99ZZ,,-9""" \
1529+ """.99,-9.99,ZZZ-ZZZZ,,,,,,,ZZZ-ZZZZ,9.99,9.99,9999,,,,,,,""" \
1530+ """,,,-9.9,Z/Z-ZZZZ,999.99,9.99,,999.99,ZZ-ZZZZ,ZZ-ZZZZ,9.""" \
1531+ """99,9.99,9.99,9.99,9.99,9.99,,ZZZ-ZZZZZ,ZZZ-ZZZZZ,ZZZ-ZZ""" \
1532+ """ZZZ,ZZZ-ZZZZZ,ZZZ-ZZZZZ,ZZZ,ZZZ,ZZZ,ZZZ,9.99,,,-9.99,ZZ""" \
1533+ """-ZZZZ,-999.99,,-9999,,999.99,,,,999.99,99.99,,,ZZ-ZZZZZ""" \
1534+ """ZZZ,ZZ-ZZZZ-ZZZZZZZ,,,,ZZ-ZZ-ZZZZZZZZ,ZZZZZZZZ,ZZZ-ZZZZ""" \
1535+ """,9999,999.99,ZZZ-ZZZZ,-9.99,-9.99,ZZZ-ZZZZ,99:99:99,,99""" \
1536+ """,99,,9.99,,-99.99,,,,,,9.99,ZZZ-ZZZZ,-9.99,-9.99,9.99,9""" \
1537+ """.99,,ZZZ,,,,,,,ZZZ,ZZZ,,,,,"""
1538+
1539+ # Set the number of line so that a call to `parser_trim_buffers`
1540+ # is trgiggered: a couple of full chunks and a relatively small
1541+ # 'residual' chunk.
1542+ chunksize , n_lines = 128 , 2 * 128 + 15
15481543 csv_data = "\n " .join ([record_ ] * n_lines ) + "\n "
15491544
1545+ # We will use StringIO to load the CSV from this text buffer.
1546+ # pd.read_csv() will iterate over the file in chunks and will
1547+ # finally read a residual chunk of really small size.
1548+
1549+ # Create the expected output: maually create the dataframe
1550+ # by splitting by comma and repeating the `n_lines` number
1551+ # of times.
1552+ row = tuple (val_ if val_ else float ("nan" )
1553+ for val_ in record_ .split ("," ))
1554+ expected_ = [row for _ in range (n_lines )]
1555+ expected = pd .DataFrame (expected_ , dtype = object ,
1556+ columns = None , index = None )
1557+
1558+ # Iterate over the CSV file in chunks of `chunksize` lines
15501559 output_ = []
15511560 try :
1552- for chunksize_ in chunksizes :
1553- iterator_ = self .read_csv (StringIO (csv_data ), header = None ,
1554- dtype = object , chunksize = chunksize_ ,
1555- na_filter = True )
1556- for chunk_ in iterator_ :
1557- output_ .append ((chunksize_ ,
1558- chunk_ .iloc [0 , 0 ],
1559- chunk_ .iloc [- 1 , 0 ]))
1561+ iterator_ = self .read_csv (StringIO (csv_data ), header = None ,
1562+ dtype = object , chunksize = chunksize )
1563+ for chunk_ in iterator_ :
1564+ output_ .append (chunk_ )
15601565 except ValueError :
15611566 # Ignore unsuported dtype=object by engine=python
15621567 # in this case output_ list is empty
15631568 pass
15641569
1570+ # Check for data corruption if there is any output.
15651571 if output_ :
1566- df = pd .DataFrame (output_ , columns = None , index = None )
1572+ df = pd .concat (output_ , axis = 0 , ignore_index = True )
15671573 tm .assert_frame_equal (df , expected )
0 commit comments