2222 "e" : [13.0 , 12.0 , 1.0 ],
2323 },
2424 ),
25- ],
25+ ]
2626)
2727def test_groupby_dropna_multi_index_dataframe_nan_in_one_group (
2828 dropna , tuples , outputs , nulls_fixture
@@ -65,7 +65,7 @@ def test_groupby_dropna_multi_index_dataframe_nan_in_one_group(
6565 "e" : [12.0 , 13.0 , 1.0 , 1.0 ],
6666 },
6767 ),
68- ],
68+ ]
6969)
7070def test_groupby_dropna_multi_index_dataframe_nan_in_two_groups (
7171 dropna , tuples , outputs , nulls_fixture , nulls_fixture2
@@ -105,7 +105,7 @@ def test_groupby_dropna_multi_index_dataframe_nan_in_two_groups(
105105 "d" : [1.0 , 13.0 , 12.0 ],
106106 },
107107 ),
108- ],
108+ ]
109109)
110110def test_groupby_dropna_normal_index_dataframe (dropna , idx , outputs ):
111111 # GH 3729
@@ -132,7 +132,7 @@ def test_groupby_dropna_normal_index_dataframe(dropna, idx, outputs):
132132 ["a" , "a" , "b" , np .nan ],
133133 pd .Series ([3 , 3 , 3 ], index = ["a" , "b" , np .nan ]),
134134 ),
135- ],
135+ ]
136136)
137137def test_groupby_dropna_series_level (dropna , idx , expected ):
138138 ser = pd .Series ([1 , 2 , 3 , 3 ], index = idx )
@@ -149,7 +149,7 @@ def test_groupby_dropna_series_level(dropna, idx, expected):
149149 False ,
150150 pd .Series ([210.0 , 350.0 , 20.0 ], index = ["a" , "b" , np .nan ], name = "Max Speed" ),
151151 ),
152- ],
152+ ]
153153)
154154def test_groupby_dropna_series_by (dropna , expected ):
155155 ser = pd .Series (
@@ -176,7 +176,7 @@ def test_groupby_dropna_series_by(dropna, expected):
176176 pd .DataFrame ({"B" : [2 , 2 , 1 , 1 ]}),
177177 pd .Series (data = [2 , 2 , 1 , 1 ], name = "B" ),
178178 ),
179- ],
179+ ]
180180)
181181def test_slice_groupby_then_transform (dropna , df_expected , s_expected ):
182182 # GH35014
@@ -213,7 +213,7 @@ def test_slice_groupby_then_transform(dropna, df_expected, s_expected):
213213 "e" : [1.0 , 12.0 , 1.0 ],
214214 },
215215 ),
216- ],
216+ ]
217217)
218218def test_groupby_dropna_multi_index_dataframe_agg (dropna , tuples , outputs ):
219219 # GH 3729
@@ -244,11 +244,9 @@ def test_groupby_dropna_multi_index_dataframe_agg(dropna, tuples, outputs):
244244 (pd .Timestamp ("2020-01-01" ), pd .Timestamp ("2020-02-01" )),
245245 (pd .Timedelta ("-2 days" ), pd .Timedelta ("-1 days" )),
246246 (pd .Period ("2020-01-01" ), pd .Period ("2020-02-01" )),
247- ],
248- )
249- @pytest .mark .parametrize (
250- "dropna, values" , [(True , [12 , 3 ]), (False , [12 , 3 , 6 ],)],
247+ ]
251248)
249+ @pytest .mark .parametrize ("dropna, values" , [(True , [12 , 3 ]), (False , [12 , 3 , 6 ],)])
252250def test_groupby_dropna_datetime_like_data (
253251 dropna , values , datetime1 , datetime2 , unique_nulls_fixture , unique_nulls_fixture2
254252):
0 commit comments