@@ -178,9 +178,9 @@ For labeled, non-time series data, you may wish to produce a bar plot:
178178 plt.figure();
179179
180180 @savefig bar_plot_ex.png
181- df.ix[5 ].plot( kind = ' bar' ); plt.axhline(0 , color = ' k' )
181+ df.ix[5 ].plot. bar( ); plt.axhline(0 , color = ' k' )
182182
183- Calling a DataFrame's :meth: `~DataFrame.plot ` method with `` kind='bar' `` produces a multiple
183+ Calling a DataFrame's :meth: `~DataFrame.plot.bar ` method produces a multiple
184184bar plot:
185185
186186.. ipython :: python
@@ -195,7 +195,7 @@ bar plot:
195195 df2 = pd.DataFrame(np.random.rand(10 , 4 ), columns = [' a' , ' b' , ' c' , ' d' ])
196196
197197 @savefig bar_plot_multi_ex.png
198- df2.plot( kind = ' bar' );
198+ df2.plot. bar( );
199199
200200 To produce a stacked bar plot, pass ``stacked=True ``:
201201
@@ -208,9 +208,9 @@ To produce a stacked bar plot, pass ``stacked=True``:
208208 .. ipython :: python
209209
210210 @savefig bar_plot_stacked_ex.png
211- df2.plot( kind = ' bar' , stacked = True );
211+ df2.plot. bar( stacked = True );
212212
213- To get horizontal bar plots, pass `` kind=' barh' `` :
213+ To get horizontal bar plots, use the `` barh `` method :
214214
215215.. ipython :: python
216216 :suppress:
@@ -221,16 +221,20 @@ To get horizontal bar plots, pass ``kind='barh'``:
221221 .. ipython :: python
222222
223223 @savefig barh_plot_stacked_ex.png
224- df2.plot( kind = ' barh' , stacked = True );
224+ df2.plot. barh( stacked = True );
225225
226226 .. _visualization.hist :
227227
228228Histograms
229229~~~~~~~~~~
230230
231+ .. versionadded :: 0.17.0
232+
233+ Histogram can be drawn by using the :meth: `DataFrame.plot.hist ` and :meth: `Series.plot.hist ` methods.
234+
231235.. versionadded :: 0.15.0
232236
233- Histogram can be drawn specifying `` kind='hist' `` .
237+ Histogram can be drawn by using the `` plot( kind='hist') `` method .
234238
235239.. ipython :: python
236240
@@ -240,7 +244,7 @@ Histogram can be drawn specifying ``kind='hist'``.
240244 plt.figure();
241245
242246 @savefig hist_new.png
243- df4.plot( kind = ' hist' , alpha = 0.5 )
247+ df4.plot. hist( alpha = 0.5 )
244248
245249
246250 .. ipython :: python
@@ -255,7 +259,7 @@ Histogram can be stacked by ``stacked=True``. Bin size can be changed by ``bins`
255259 plt.figure();
256260
257261 @savefig hist_new_stacked.png
258- df4.plot( kind = ' hist' , stacked = True , bins = 20 )
262+ df4.plot. hist( stacked = True , bins = 20 )
259263
260264 .. ipython :: python
261265 :suppress:
@@ -269,7 +273,7 @@ You can pass other keywords supported by matplotlib ``hist``. For example, horiz
269273 plt.figure();
270274
271275 @savefig hist_new_kwargs.png
272- df4[' a' ].plot( kind = ' hist' , orientation = ' horizontal' , cumulative = True )
276+ df4[' a' ].plot. hist( orientation = ' horizontal' , cumulative = True )
273277
274278 .. ipython :: python
275279 :suppress:
@@ -329,8 +333,12 @@ The ``by`` keyword can be specified to plot grouped histograms:
329333Box Plots
330334~~~~~~~~~
331335
332- Boxplot can be drawn calling a ``Series `` and ``DataFrame.plot `` with ``kind='box' ``,
333- or ``DataFrame.boxplot `` to visualize the distribution of values within each column.
336+ Boxplot can be drawn calling :meth: `Series.plot.box ` and :meth: `DataFrame.plot.box `,
337+ or :meth: `DataFrame.boxplot ` to visualize the distribution of values within each column.
338+
339+ .. versionadded :: 0.17.0
340+
341+ :meth: `DataFrame.plot.box ` and :meth: `Series.plot.box ` can now be used to draw boxplot.
334342
335343.. versionadded :: 0.15.0
336344
@@ -350,7 +358,7 @@ a uniform random variable on [0,1).
350358 df = pd.DataFrame(np.random.rand(10 , 5 ), columns = [' A' , ' B' , ' C' , ' D' , ' E' ])
351359
352360 @savefig box_plot_new.png
353- df.plot( kind = ' box' )
361+ df.plot. box( )
354362
355363 Boxplot can be colorized by passing ``color `` keyword. You can pass a ``dict ``
356364whose keys are ``boxes ``, ``whiskers ``, ``medians `` and ``caps ``.
@@ -371,7 +379,7 @@ more complicated colorization, you can get each drawn artists by passing
371379 medians = ' DarkBlue' , caps = ' Gray' )
372380
373381 @savefig box_new_colorize.png
374- df.plot( kind = ' box' , color = color, sym = ' r+' )
382+ df.plot. box( color = color, sym = ' r+' )
375383
376384 .. ipython :: python
377385 :suppress:
@@ -385,7 +393,7 @@ For example, horizontal and custom-positioned boxplot can be drawn by
385393.. ipython :: python
386394
387395 @savefig box_new_kwargs.png
388- df.plot( kind = ' box' , vert = False , positions = [1 , 4 , 5 , 6 , 8 ])
396+ df.plot. box( vert = False , positions = [1 , 4 , 5 , 6 , 8 ])
389397
390398
391399 See the :meth: `boxplot <matplotlib.axes.Axes.boxplot> ` method and the
@@ -464,7 +472,7 @@ When ``subplots=False`` / ``by`` is ``None``:
464472
465473* if ``return_type `` is ``'dict' ``, a dictionary containing the :class: `matplotlib Lines <matplotlib.lines.Line2D> ` is returned. The keys are "boxes", "caps", "fliers", "medians", and "whiskers".
466474 This is the default of ``boxplot `` in historical reason.
467- Note that ``plot( kind= 'box') `` returns ``Axes `` as default as the same as other plots.
475+ Note that both ``plot.box() `` and `` plot( kind'box') `` return ``Axes `` as default as the same as other plots.
468476* if ``return_type `` is ``'axes' ``, a :class: `matplotlib Axes <matplotlib.axes.Axes> ` containing the boxplot is returned.
469477* if ``return_type `` is ``'both' `` a namedtuple containging the :class: `matplotlib Axes <matplotlib.axes.Axes> `
470478 and :class: `matplotlib Lines <matplotlib.lines.Line2D> ` is returned
@@ -514,6 +522,10 @@ Compare to:
514522Area Plot
515523~~~~~~~~~
516524
525+ .. versionadded :: 0.17
526+
527+ You can create area plots with :meth: `Series.plot.area ` and :meth: `DataFrame.plot.area `.
528+
517529.. versionadded :: 0.14
518530
519531You can create area plots with ``Series.plot `` and ``DataFrame.plot `` by passing ``kind='area' ``. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.
@@ -531,7 +543,7 @@ When input data contains `NaN`, it will be automatically filled by 0. If you wan
531543 df = pd.DataFrame(np.random.rand(10 , 4 ), columns = [' a' , ' b' , ' c' , ' d' ])
532544
533545 @savefig area_plot_stacked.png
534- df.plot( kind = ' area' );
546+ df.plot. area( );
535547
536548 To produce an unstacked plot, pass ``stacked=False ``. Alpha value is set to 0.5 unless otherwise specified:
537549
@@ -544,13 +556,17 @@ To produce an unstacked plot, pass ``stacked=False``. Alpha value is set to 0.5
544556 .. ipython :: python
545557
546558 @savefig area_plot_unstacked.png
547- df.plot( kind = ' area' , stacked = False );
559+ df.plot. area( stacked = False );
548560
549561 .. _visualization.scatter :
550562
551563Scatter Plot
552564~~~~~~~~~~~~
553565
566+ .. versionadded :: 0.17.0
567+
568+ Histogram can be drawn by using the :meth: `DataFrame.plot.scatter ` and :meth: `Series.plot.scatter ` methods.
569+
554570.. versionadded :: 0.13
555571
556572You can create scatter plots with ``DataFrame.plot `` by passing ``kind='scatter' ``.
@@ -569,17 +585,17 @@ These can be specified by ``x`` and ``y`` keywords each.
569585 df = pd.DataFrame(np.random.rand(50 , 4 ), columns = [' a' , ' b' , ' c' , ' d' ])
570586
571587 @savefig scatter_plot.png
572- df.plot( kind = ' scatter' , x = ' a' , y = ' b' );
588+ df.plot. scatter( x = ' a' , y = ' b' );
573589
574590 To plot multiple column groups in a single axes, repeat ``plot `` method specifying target ``ax ``.
575591It is recommended to specify ``color `` and ``label `` keywords to distinguish each groups.
576592
577593.. ipython :: python
578594
579- ax = df.plot( kind = ' scatter' , x = ' a' , y = ' b' ,
595+ ax = df.plot. scatter( x = ' a' , y = ' b' ,
580596 color = ' DarkBlue' , label = ' Group 1' );
581597 @savefig scatter_plot_repeated.png
582- df.plot( kind = ' scatter' , x = ' c' , y = ' d' ,
598+ df.plot. scatter( x = ' c' , y = ' d' ,
583599 color = ' DarkGreen' , label = ' Group 2' , ax = ax);
584600
585601 .. ipython :: python
@@ -593,7 +609,7 @@ each point:
593609.. ipython :: python
594610
595611 @savefig scatter_plot_colored.png
596- df.plot( kind = ' scatter' , x = ' a' , y = ' b' , c = ' c' , s = 50 );
612+ df.plot. scatter( x = ' a' , y = ' b' , c = ' c' , s = 50 );
597613
598614
599615 .. ipython :: python
@@ -607,7 +623,7 @@ Below example shows a bubble chart using a dataframe column values as bubble siz
607623.. ipython :: python
608624
609625 @savefig scatter_plot_bubble.png
610- df.plot( kind = ' scatter' , x = ' a' , y = ' b' , s = df[' c' ]* 200 );
626+ df.plot. scatter( x = ' a' , y = ' b' , s = df[' c' ]* 200 );
611627
612628 .. ipython :: python
613629 :suppress:
@@ -622,6 +638,10 @@ See the :meth:`scatter <matplotlib.axes.Axes.scatter>` method and the
622638Hexagonal Bin Plot
623639~~~~~~~~~~~~~~~~~~
624640
641+ .. versionadded :: 0.17.0
642+
643+ You can create hexagonal bin plots with :meth: `DataFrame.plot.hexbin `.
644+
625645.. versionadded :: 0.14
626646
627647You can create hexagonal bin plots with :meth: `DataFrame.plot ` and
@@ -641,7 +661,7 @@ too dense to plot each point individually.
641661 df[' b' ] = df[' b' ] + np.arange(1000 )
642662
643663 @savefig hexbin_plot.png
644- df.plot( kind = ' hexbin' , x = ' a' , y = ' b' , gridsize = 25 )
664+ df.plot. hexbin( x = ' a' , y = ' b' , gridsize = 25 )
645665
646666
647667 A useful keyword argument is ``gridsize ``; it controls the number of hexagons
@@ -670,7 +690,7 @@ given by column ``z``. The bins are aggregated with numpy's ``max`` function.
670690 df[' z' ] = np.random.uniform(0 , 3 , 1000 )
671691
672692 @savefig hexbin_plot_agg.png
673- df.plot( kind = ' hexbin' , x = ' a' , y = ' b' , C = ' z' , reduce_C_function = np.max,
693+ df.plot. hexbin( x = ' a' , y = ' b' , C = ' z' , reduce_C_function = np.max,
674694 gridsize = 25 )
675695
676696 .. ipython :: python
@@ -686,6 +706,10 @@ See the :meth:`hexbin <matplotlib.axes.Axes.hexbin>` method and the
686706Pie plot
687707~~~~~~~~
688708
709+ .. versionadded :: 0.17
710+
711+ You can create a pie plot with :meth: `DataFrame.plot.pie ` or :meth: `Series.plot.pie `.
712+
689713.. versionadded :: 0.14
690714
691715You can create a pie plot with :meth: `DataFrame.plot ` or :meth: `Series.plot ` with ``kind='pie' ``.
@@ -703,7 +727,7 @@ A ``ValueError`` will be raised if there are any negative values in your data.
703727 series = pd.Series(3 * np.random.rand(4 ), index = [' a' , ' b' , ' c' , ' d' ], name = ' series' )
704728
705729 @savefig series_pie_plot.png
706- series.plot( kind = ' pie' , figsize = (6 , 6 ))
730+ series.plot. pie( figsize = (6 , 6 ))
707731
708732 .. ipython :: python
709733 :suppress:
@@ -730,7 +754,7 @@ A legend will be drawn in each pie plots by default; specify ``legend=False`` to
730754 df = pd.DataFrame(3 * np.random.rand(4 , 2 ), index = [' a' , ' b' , ' c' , ' d' ], columns = [' x' , ' y' ])
731755
732756 @savefig df_pie_plot.png
733- df.plot( kind = ' pie' , subplots = True , figsize = (8 , 4 ))
757+ df.plot. pie( subplots = True , figsize = (8 , 4 ))
734758
735759 .. ipython :: python
736760 :suppress:
@@ -757,7 +781,7 @@ Also, other keywords supported by :func:`matplotlib.pyplot.pie` can be used.
757781 .. ipython :: python
758782
759783 @savefig series_pie_plot_options.png
760- series.plot( kind = ' pie' , labels = [' AA' , ' BB' , ' CC' , ' DD' ], colors = [' r' , ' g' , ' b' , ' c' ],
784+ series.plot. pie( labels = [' AA' , ' BB' , ' CC' , ' DD' ], colors = [' r' , ' g' , ' b' , ' c' ],
761785 autopct = ' %.2f ' , fontsize = 20 , figsize = (6 , 6 ))
762786
763787 If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.
@@ -773,7 +797,7 @@ If you pass values whose sum total is less than 1.0, matplotlib draws a semicirc
773797 series = pd.Series([0.1 ] * 4 , index = [' a' , ' b' , ' c' , ' d' ], name = ' series2' )
774798
775799 @savefig series_pie_plot_semi.png
776- series.plot( kind = ' pie' , figsize = (6 , 6 ))
800+ series.plot. pie( figsize = (6 , 6 ))
777801
778802 See the `matplotlib pie documentation <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pie >`__ for more.
779803
@@ -861,6 +885,10 @@ You can create a scatter plot matrix using the
861885Density Plot
862886~~~~~~~~~~~~
863887
888+ .. versionadded :: 0.17.0
889+
890+ You can create density plots using the :meth: `Series.plot.kde ` and :meth: `DataFrame.plot.kde ` methods.
891+
864892.. versionadded :: 0.8.0
865893
866894You can create density plots using the Series/DataFrame.plot and
@@ -877,7 +905,7 @@ setting ``kind='kde'``:
877905 ser = pd.Series(np.random.randn(1000 ))
878906
879907 @savefig kde_plot.png
880- ser.plot( kind = ' kde' )
908+ ser.plot. kde( )
881909
882910 .. ipython :: python
883911 :suppress:
@@ -1392,7 +1420,7 @@ Here is an example of one way to easily plot group means with standard deviation
13921420 # Plot
13931421 fig, ax = plt.subplots()
13941422 @savefig errorbar_example.png
1395- means.plot(yerr = errors, ax = ax, kind = ' bar ' )
1423+ means.plot.bar (yerr = errors, ax = ax)
13961424
13971425 .. ipython :: python
13981426 :suppress:
@@ -1532,7 +1560,7 @@ Colormaps can also be used other plot types, like bar charts:
15321560 plt.figure()
15331561
15341562 @savefig greens.png
1535- dd.plot( kind = ' bar' , colormap = ' Greens' )
1563+ dd.plot. bar( colormap = ' Greens' )
15361564
15371565 .. ipython :: python
15381566 :suppress:
0 commit comments