@@ -169,8 +169,8 @@ class Series(base.IndexOpsMixin, generic.NDFrame):
169169 Values must be hashable and have the same length as `data`.
170170 Non-unique index values are allowed. Will default to
171171 RangeIndex (0, 1, 2, ..., n) if not provided. If data is dict-like
172- and index is None, then the values in the index are used to
173- reindex the Series after it is created using the keys in the data .
172+ and index is None, then the keys in the data are used as the index. If the
173+ index is not None, the resulting Series is reindexed with the index values .
174174 dtype : str, numpy.dtype, or ExtensionDtype, optional
175175 Data type for the output Series. If not specified, this will be
176176 inferred from `data`.
@@ -179,6 +179,33 @@ class Series(base.IndexOpsMixin, generic.NDFrame):
179179 The name to give to the Series.
180180 copy : bool, default False
181181 Copy input data.
182+
183+ Examples
184+ --------
185+ Constructing Series from a dictionary with an Index specified
186+
187+ >>> d = {'a': 1, 'b': 2, 'c': 3}
188+ >>> ser = pd.Series(data=d, index=['a', 'b', 'c'])
189+ >>> ser
190+ a 1
191+ b 2
192+ c 3
193+ dtype: int64
194+
195+ The keys of the dictionary match with the Index values, hence the Index
196+ values have no effect.
197+
198+ >>> d = {'a': 1, 'b': 2, 'c': 3}
199+ >>> ser = pd.Series(data=d, index=['x', 'y', 'z'])
200+ >>> ser
201+ x NaN
202+ y NaN
203+ z NaN
204+ dtype: float64
205+
206+ Note that the Index is first build with the keys from the dictionary.
207+ After this the Series is reindexed with the given Index values, hence we
208+ get all NaN as a result.
182209 """
183210
184211 _typ = "series"
0 commit comments