@@ -530,22 +530,22 @@ def maybe_booleans_to_slice(ndarray[uint8_t] mask):
530530 cdef:
531531 Py_ssize_t i, n = len (mask)
532532 Py_ssize_t start = 0 , end = 0
533- bint started = 0 , finished = 0
533+ bint started = False , finished = False
534534
535535 for i in range (n):
536536 if mask[i]:
537537 if finished:
538538 return mask.view(np.bool_)
539539 if not started:
540- started = 1
540+ started = True
541541 start = i
542542 else :
543543 if finished:
544544 continue
545545
546546 if started:
547547 end = i
548- finished = 1
548+ finished = True
549549
550550 if not started:
551551 return slice (0 , 0 )
@@ -657,13 +657,13 @@ def clean_index_list(obj: list):
657657 cdef:
658658 Py_ssize_t i, n = len (obj)
659659 object val
660- bint all_arrays = 1
660+ bint all_arrays = True
661661
662662 for i in range (n):
663663 val = obj[i]
664664 if not (isinstance (val, list ) or
665665 util.is_array(val) or hasattr (val, ' _data' )):
666- all_arrays = 0
666+ all_arrays = False
667667 break
668668
669669 if all_arrays:
@@ -692,7 +692,7 @@ def clean_index_list(obj: list):
692692@ cython.boundscheck (False )
693693@ cython.wraparound (False )
694694def generate_bins_dt64 (ndarray[int64_t] values , const int64_t[:] binner ,
695- object closed = ' left' , bint hasnans = 0 ):
695+ object closed = ' left' , bint hasnans = False ):
696696 """
697697 Int64 (datetime64) version of generic python version in ``groupby.py``.
698698 """
@@ -1064,29 +1064,29 @@ cdef class Seen:
10641064 bint timedelta_ # seen_timedelta
10651065 bint datetimetz_ # seen_datetimetz
10661066
1067- def __cinit__ (self , bint coerce_numeric = 0 ):
1067+ def __cinit__ (self , bint coerce_numeric = False ):
10681068 """
10691069 Initialize a Seen instance.
10701070
10711071 Parameters
10721072 ----------
1073- coerce_numeric : bint , default 0
1073+ coerce_numeric : bool , default False
10741074 Whether or not to force conversion to a numeric data type if
10751075 initial methods to convert to numeric fail.
10761076 """
1077- self .int_ = 0
1078- self .nat_ = 0
1079- self .bool_ = 0
1080- self .null_ = 0
1081- self .nan_ = 0
1082- self .uint_ = 0
1083- self .sint_ = 0
1084- self .float_ = 0
1085- self .object_ = 0
1086- self .complex_ = 0
1087- self .datetime_ = 0
1088- self .timedelta_ = 0
1089- self .datetimetz_ = 0
1077+ self .int_ = False
1078+ self .nat_ = False
1079+ self .bool_ = False
1080+ self .null_ = False
1081+ self .nan_ = False
1082+ self .uint_ = False
1083+ self .sint_ = False
1084+ self .float_ = False
1085+ self .object_ = False
1086+ self .complex_ = False
1087+ self .datetime_ = False
1088+ self .timedelta_ = False
1089+ self .datetimetz_ = False
10901090 self .coerce_numeric = coerce_numeric
10911091
10921092 cdef inline bint check_uint64_conflict(self ) except - 1 :
@@ -1127,8 +1127,8 @@ cdef class Seen:
11271127 """
11281128 Set flags indicating that a null value was encountered.
11291129 """
1130- self .null_ = 1
1131- self .float_ = 1
1130+ self .null_ = True
1131+ self .float_ = True
11321132
11331133 cdef saw_int(self , object val):
11341134 """
@@ -1147,7 +1147,7 @@ cdef class Seen:
11471147 val : Python int
11481148 Value with which to set the flags.
11491149 """
1150- self .int_ = 1
1150+ self .int_ = True
11511151 self .sint_ = self .sint_ or (oINT64_MIN <= val < 0 )
11521152 self .uint_ = self .uint_ or (oINT64_MAX < val <= oUINT64_MAX)
11531153
@@ -1445,9 +1445,9 @@ def infer_datetimelike_array(arr: object) -> object:
14451445 """
14461446 cdef:
14471447 Py_ssize_t i , n = len (arr)
1448- bint seen_timedelta = 0 , seen_date = 0 , seen_datetime = 0
1449- bint seen_tz_aware = 0 , seen_tz_naive = 0
1450- bint seen_nat = 0
1448+ bint seen_timedelta = False , seen_date = False , seen_datetime = False
1449+ bint seen_tz_aware = False , seen_tz_naive = False
1450+ bint seen_nat = False
14511451 list objs = []
14521452 object v
14531453
@@ -1463,27 +1463,27 @@ def infer_datetimelike_array(arr: object) -> object:
14631463 # nan or None
14641464 pass
14651465 elif v is NaT:
1466- seen_nat = 1
1466+ seen_nat = True
14671467 elif PyDateTime_Check(v):
14681468 # datetime
1469- seen_datetime = 1
1469+ seen_datetime = True
14701470
14711471 # disambiguate between tz-naive and tz-aware
14721472 if v.tzinfo is None :
1473- seen_tz_naive = 1
1473+ seen_tz_naive = True
14741474 else :
1475- seen_tz_aware = 1
1475+ seen_tz_aware = True
14761476
14771477 if seen_tz_naive and seen_tz_aware:
14781478 return ' mixed'
14791479 elif util.is_datetime64_object(v):
14801480 # np.datetime64
1481- seen_datetime = 1
1481+ seen_datetime = True
14821482 elif PyDate_Check(v):
1483- seen_date = 1
1483+ seen_date = True
14841484 elif is_timedelta(v):
14851485 # timedelta, or timedelta64
1486- seen_timedelta = 1
1486+ seen_timedelta = True
14871487 else :
14881488 return " mixed"
14891489
@@ -2035,10 +2035,10 @@ def maybe_convert_numeric(ndarray[object] values, set na_values,
20352035
20362036@ cython.boundscheck (False )
20372037@ cython.wraparound (False )
2038- def maybe_convert_objects (ndarray[object] objects , bint try_float = 0 ,
2039- bint safe = 0 , bint convert_datetime = 0 ,
2040- bint convert_timedelta = 0 ,
2041- bint convert_to_nullable_integer = 0 ):
2038+ def maybe_convert_objects (ndarray[object] objects , bint try_float = False ,
2039+ bint safe = False , bint convert_datetime = False ,
2040+ bint convert_timedelta = False ,
2041+ bint convert_to_nullable_integer = False ):
20422042 """
20432043 Type inference function-- convert object array to proper dtype
20442044
@@ -2102,45 +2102,45 @@ def maybe_convert_objects(ndarray[object] objects, bint try_float=0,
21022102 val = objects[i]
21032103
21042104 if val is None :
2105- seen.null_ = 1
2105+ seen.null_ = True
21062106 floats[i] = complexes[i] = fnan
21072107 mask[i] = True
21082108 elif val is NaT:
2109- seen.nat_ = 1
2109+ seen.nat_ = True
21102110 if convert_datetime:
21112111 idatetimes[i] = NPY_NAT
21122112 if convert_timedelta:
21132113 itimedeltas[i] = NPY_NAT
21142114 if not (convert_datetime or convert_timedelta):
2115- seen.object_ = 1
2115+ seen.object_ = True
21162116 break
21172117 elif val is np.nan:
2118- seen.nan_ = 1
2118+ seen.nan_ = True
21192119 mask[i] = True
21202120 floats[i] = complexes[i] = val
21212121 elif util.is_bool_object(val):
2122- seen.bool_ = 1
2122+ seen.bool_ = True
21232123 bools[i] = val
21242124 elif util.is_float_object(val):
21252125 floats[i] = complexes[i] = val
2126- seen.float_ = 1
2126+ seen.float_ = True
21272127 elif util.is_datetime64_object(val):
21282128 if convert_datetime:
21292129 idatetimes[i] = convert_to_tsobject(
21302130 val, None , None , 0 , 0 ).value
2131- seen.datetime_ = 1
2131+ seen.datetime_ = True
21322132 else :
2133- seen.object_ = 1
2133+ seen.object_ = True
21342134 break
21352135 elif is_timedelta(val):
21362136 if convert_timedelta:
21372137 itimedeltas[i] = convert_to_timedelta64(val, ' ns' )
2138- seen.timedelta_ = 1
2138+ seen.timedelta_ = True
21392139 else :
2140- seen.object_ = 1
2140+ seen.object_ = True
21412141 break
21422142 elif util.is_integer_object(val):
2143- seen.int_ = 1
2143+ seen.int_ = True
21442144 floats[i] = < float64_t> val
21452145 complexes[i] = < double complex > val
21462146 if not seen.null_:
@@ -2149,7 +2149,7 @@ def maybe_convert_objects(ndarray[object] objects, bint try_float=0,
21492149
21502150 if ((seen.uint_ and seen.sint_) or
21512151 val > oUINT64_MAX or val < oINT64_MIN):
2152- seen.object_ = 1
2152+ seen.object_ = True
21532153 break
21542154
21552155 if seen.uint_:
@@ -2162,40 +2162,40 @@ def maybe_convert_objects(ndarray[object] objects, bint try_float=0,
21622162
21632163 elif util.is_complex_object(val):
21642164 complexes[i] = val
2165- seen.complex_ = 1
2165+ seen.complex_ = True
21662166 elif PyDateTime_Check(val) or util.is_datetime64_object(val):
21672167
21682168 # if we have an tz's attached then return the objects
21692169 if convert_datetime:
21702170 if getattr (val, ' tzinfo' , None ) is not None :
2171- seen.datetimetz_ = 1
2171+ seen.datetimetz_ = True
21722172 break
21732173 else :
2174- seen.datetime_ = 1
2174+ seen.datetime_ = True
21752175 idatetimes[i] = convert_to_tsobject(
21762176 val, None , None , 0 , 0 ).value
21772177 else :
2178- seen.object_ = 1
2178+ seen.object_ = True
21792179 break
21802180 elif try_float and not isinstance (val, str ):
21812181 # this will convert Decimal objects
21822182 try :
21832183 floats[i] = float (val)
21842184 complexes[i] = complex (val)
2185- seen.float_ = 1
2185+ seen.float_ = True
21862186 except (ValueError , TypeError ):
2187- seen.object_ = 1
2187+ seen.object_ = True
21882188 break
21892189 else :
2190- seen.object_ = 1
2190+ seen.object_ = True
21912191 break
21922192
21932193 # we try to coerce datetime w/tz but must all have the same tz
21942194 if seen.datetimetz_:
21952195 if is_datetime_with_singletz_array(objects):
21962196 from pandas import DatetimeIndex
21972197 return DatetimeIndex(objects)
2198- seen.object_ = 1
2198+ seen.object_ = True
21992199
22002200 if not seen.object_:
22012201 if not safe:
@@ -2294,7 +2294,7 @@ no_default = object() #: Sentinel indicating the default value.
22942294
22952295@ cython.boundscheck (False )
22962296@ cython.wraparound (False )
2297- def map_infer_mask (ndarray arr , object f , const uint8_t[:] mask , bint convert = 1 ,
2297+ def map_infer_mask (ndarray arr , object f , const uint8_t[:] mask , bint convert = True ,
22982298 object na_value = no_default, object dtype = object ):
22992299 """
23002300 Substitute for np.vectorize with pandas-friendly dtype inference.
@@ -2343,16 +2343,16 @@ def map_infer_mask(ndarray arr, object f, const uint8_t[:] mask, bint convert=1,
23432343
23442344 if convert:
23452345 return maybe_convert_objects(result,
2346- try_float = 0 ,
2347- convert_datetime = 0 ,
2348- convert_timedelta = 0 )
2346+ try_float = False ,
2347+ convert_datetime = False ,
2348+ convert_timedelta = False )
23492349
23502350 return result
23512351
23522352
23532353@ cython.boundscheck (False )
23542354@ cython.wraparound (False )
2355- def map_infer (ndarray arr , object f , bint convert = 1 ):
2355+ def map_infer (ndarray arr , object f , bint convert = True ):
23562356 """
23572357 Substitute for np.vectorize with pandas-friendly dtype inference.
23582358
@@ -2385,9 +2385,9 @@ def map_infer(ndarray arr, object f, bint convert=1):
23852385
23862386 if convert:
23872387 return maybe_convert_objects(result,
2388- try_float = 0 ,
2389- convert_datetime = 0 ,
2390- convert_timedelta = 0 )
2388+ try_float = False ,
2389+ convert_datetime = False ,
2390+ convert_timedelta = False )
23912391
23922392 return result
23932393
0 commit comments