|
5 | 5 | from nose.tools import assert_equal |
6 | 6 | import numpy as np |
7 | 7 | from pandas.tslib import iNaT, NaT |
8 | | -from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp |
| 8 | +from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp, Float64Index |
9 | 9 | from pandas import compat |
10 | 10 | from pandas.compat import range, long, lrange, lmap, u |
11 | 11 | from pandas.core.common import notnull, isnull, array_equivalent |
@@ -181,7 +181,11 @@ def test_array_equivalent(): |
181 | 181 | assert not array_equivalent(np.array([np.nan, 1, np.nan]), |
182 | 182 | np.array([np.nan, 2, np.nan])) |
183 | 183 | assert not array_equivalent(np.array(['a', 'b', 'c', 'd']), np.array(['e', 'e'])) |
184 | | - |
| 184 | + assert array_equivalent(Float64Index([0, np.nan]), Float64Index([0, np.nan])) |
| 185 | + assert not array_equivalent(Float64Index([0, np.nan]), Float64Index([1, np.nan])) |
| 186 | + assert array_equivalent(DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan])) |
| 187 | + assert not array_equivalent(DatetimeIndex([0, np.nan]), DatetimeIndex([1, np.nan])) |
| 188 | + |
185 | 189 | def test_datetimeindex_from_empty_datetime64_array(): |
186 | 190 | for unit in [ 'ms', 'us', 'ns' ]: |
187 | 191 | idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) |
|
0 commit comments