@@ -5222,7 +5222,7 @@ def nsmallest(self, n, columns, keep="first") -> "DataFrame":
52225222 Examples
52235223 --------
52245224 >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000,
5225- ... 434000, 434000, 337000, 11300 ,
5225+ ... 434000, 434000, 337000, 337000 ,
52265226 ... 11300, 11300],
52275227 ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
52285228 ... 17036, 182, 38, 311],
@@ -5239,43 +5239,44 @@ def nsmallest(self, n, columns, keep="first") -> "DataFrame":
52395239 Maldives 434000 4520 MV
52405240 Brunei 434000 12128 BN
52415241 Iceland 337000 17036 IS
5242- Nauru 11300 182 NR
5242+ Nauru 337000 182 NR
52435243 Tuvalu 11300 38 TV
52445244 Anguilla 11300 311 AI
52455245
52465246 In the following example, we will use ``nsmallest`` to select the
5247- three rows having the smallest values in column "a ".
5247+ three rows having the smallest values in column "population ".
52485248
52495249 >>> df.nsmallest(3, 'population')
5250- population GDP alpha-2
5251- Nauru 11300 182 NR
5252- Tuvalu 11300 38 TV
5253- Anguilla 11300 311 AI
5250+ population GDP alpha-2
5251+ Tuvalu 11300 38 TV
5252+ Anguilla 11300 311 AI
5253+ Iceland 337000 17036 IS
52545254
52555255 When using ``keep='last'``, ties are resolved in reverse order:
52565256
52575257 >>> df.nsmallest(3, 'population', keep='last')
52585258 population GDP alpha-2
52595259 Anguilla 11300 311 AI
52605260 Tuvalu 11300 38 TV
5261- Nauru 11300 182 NR
5261+ Nauru 337000 182 NR
52625262
52635263 When using ``keep='all'``, all duplicate items are maintained:
52645264
52655265 >>> df.nsmallest(3, 'population', keep='all')
5266- population GDP alpha-2
5267- Nauru 11300 182 NR
5268- Tuvalu 11300 38 TV
5269- Anguilla 11300 311 AI
5266+ population GDP alpha-2
5267+ Tuvalu 11300 38 TV
5268+ Anguilla 11300 311 AI
5269+ Iceland 337000 17036 IS
5270+ Nauru 337000 182 NR
52705271
5271- To order by the largest values in column "a " and then "c ", we can
5272+ To order by the smallest values in column "population " and then "GDP ", we can
52725273 specify multiple columns like in the next example.
52735274
52745275 >>> df.nsmallest(3, ['population', 'GDP'])
52755276 population GDP alpha-2
52765277 Tuvalu 11300 38 TV
5277- Nauru 11300 182 NR
52785278 Anguilla 11300 311 AI
5279+ Nauru 337000 182 NR
52795280 """
52805281 return algorithms .SelectNFrame (
52815282 self , n = n , keep = keep , columns = columns
0 commit comments