@@ -132,6 +132,16 @@ def array(data, # type: Sequence[object]
132132 rather than a ``PandasArray``. This is for symmetry with the case of
133133 timezone-aware data, which NumPy does not natively support.
134134
135+ >>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
136+ <DatetimeArray>
137+ ['2015-01-01 00:00:00', '2016-01-01 00:00:00']
138+ Length: 2, dtype: datetime64[ns]
139+
140+ >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
141+ <TimedeltaArray>
142+ ['01:00:00', '02:00:00']
143+ Length: 2, dtype: timedelta64[ns]
144+
135145 Examples
136146 --------
137147 If a dtype is not specified, `data` is passed through to
@@ -257,7 +267,7 @@ def array(data, # type: Sequence[object]
257267 # so that a DatetimeArray is returned.
258268 if is_datetime64_ns_dtype (dtype ):
259269 return DatetimeArray ._from_sequence (data , dtype = dtype , copy = copy )
260- if is_timedelta64_ns_dtype (dtype ):
270+ elif is_timedelta64_ns_dtype (dtype ):
261271 return TimedeltaArray ._from_sequence (data , dtype = dtype , copy = copy )
262272
263273 result = PandasArray ._from_sequence (data , dtype = dtype , copy = copy )
0 commit comments