@@ -39,7 +39,7 @@ and labeled columns:
3939 df = pd.DataFrame(np.random.randn(6 , 4 ), index = dates, columns = list (' ABCD' ))
4040 df
4141
42- Creating a `` DataFrame ` ` by passing a dict of objects that can be converted to series-like.
42+ Creating a :class: ` DataFrame ` by passing a dict of objects that can be converted to series-like.
4343
4444.. ipython :: python
4545
@@ -51,7 +51,7 @@ Creating a ``DataFrame`` by passing a dict of objects that can be converted to s
5151 ' F' : ' foo' })
5252 df2
5353
54- The columns of the resulting `` DataFrame ` ` have different
54+ The columns of the resulting :class: ` DataFrame ` have different
5555:ref: `dtypes <basics.dtypes >`.
5656
5757.. ipython :: python
@@ -169,7 +169,7 @@ See the indexing documentation :ref:`Indexing and Selecting Data <indexing>` and
169169Getting
170170~~~~~~~
171171
172- Selecting a single column, which yields a `` Series ` `,
172+ Selecting a single column, which yields a :class: ` Series `,
173173equivalent to ``df.A ``:
174174
175175.. ipython :: python
@@ -469,10 +469,10 @@ Concatenating pandas objects together with :func:`concat`:
469469 pd.concat(pieces)
470470
471471 .. note ::
472- Adding a column to a `` DataFrame ` ` is relatively fast. However, adding
472+ Adding a column to a :class: ` DataFrame ` is relatively fast. However, adding
473473 a row requires a copy, and may be expensive. We recommend passing a
474- pre-built list of records to the `` DataFrame ` ` constructor instead
475- of building a `` DataFrame ` ` by iteratively appending records to it.
474+ pre-built list of records to the :class: ` DataFrame ` constructor instead
475+ of building a :class: ` DataFrame ` by iteratively appending records to it.
476476 See :ref: `Appending to dataframe <merging.concatenation >` for more.
477477
478478Join
@@ -520,15 +520,15 @@ See the :ref:`Grouping section <groupby>`.
520520 ' D' : np.random.randn(8 )})
521521 df
522522
523- Grouping and then applying the :meth: `~DataFrame .sum ` function to the resulting
523+ Grouping and then applying the :meth: `~pandas.core.groupby.GroupBy .sum ` function to the resulting
524524groups.
525525
526526.. ipython :: python
527527
528528 df.groupby(' A' ).sum()
529529
530530 Grouping by multiple columns forms a hierarchical index, and again we can
531- apply the `` sum ` ` function.
531+ apply the :meth: ` ~pandas.core.groupby.GroupBy. sum ` function.
532532
533533.. ipython :: python
534534
@@ -648,7 +648,7 @@ the quarter end:
648648 Categoricals
649649------------
650650
651- pandas can include categorical data in a `` DataFrame ` `. For full docs, see the
651+ pandas can include categorical data in a :class: ` DataFrame `. For full docs, see the
652652:ref: `categorical introduction <categorical >` and the :ref: `API documentation <api.arrays.categorical >`.
653653
654654.. ipython :: python
@@ -664,14 +664,13 @@ Convert the raw grades to a categorical data type.
664664 df[" grade" ]
665665
666666 Rename the categories to more meaningful names (assigning to
667- `` Series.cat.categories ` ` is inplace!).
667+ :meth: ` Series.cat.categories ` is inplace!).
668668
669669.. ipython :: python
670670
671671 df[" grade" ].cat.categories = [" very good" , " good" , " very bad" ]
672672
673- Reorder the categories and simultaneously add the missing categories (methods under ``Series
674- .cat `` return a new ``Series `` by default).
673+ Reorder the categories and simultaneously add the missing categories (methods under :meth: `Series.cat ` return a new :class: `Series ` by default).
675674
676675.. ipython :: python
677676
0 commit comments