|
1 | | -from .pandas_vb_common import * |
2 | 1 | import pandas as pd |
3 | 2 | import numpy as np |
4 | 3 |
|
| 4 | +from .pandas_vb_common import setup # noqa |
5 | 5 |
|
6 | | -class DataframeRolling(object): |
7 | | - goal_time = 0.2 |
8 | 6 |
|
9 | | - def setup(self): |
10 | | - self.N = 100000 |
11 | | - self.Ns = 10000 |
12 | | - self.df = pd.DataFrame({'a': np.random.random(self.N)}) |
13 | | - self.dfs = pd.DataFrame({'a': np.random.random(self.Ns)}) |
14 | | - self.wins = 10 |
15 | | - self.winl = 1000 |
| 7 | +class Methods(object): |
16 | 8 |
|
17 | | - def time_rolling_quantile_0(self): |
18 | | - (self.df.rolling(self.wins).quantile(0.0)) |
| 9 | + sample_time = 0.2 |
| 10 | + params = (['DataFrame', 'Series'], |
| 11 | + [10, 1000], |
| 12 | + ['int', 'float'], |
| 13 | + ['median', 'mean', 'max', 'min', 'std', 'count', 'skew', 'kurt', |
| 14 | + 'sum', 'corr', 'cov']) |
| 15 | + param_names = ['contructor', 'window', 'dtype', 'method'] |
19 | 16 |
|
20 | | - def time_rolling_quantile_1(self): |
21 | | - (self.df.rolling(self.wins).quantile(1.0)) |
| 17 | + def setup(self, contructor, window, dtype, method): |
| 18 | + N = 10**5 |
| 19 | + arr = np.random.random(N).astype(dtype) |
| 20 | + self.roll = getattr(pd, contructor)(arr).rolling(window) |
22 | 21 |
|
23 | | - def time_rolling_quantile_median(self): |
24 | | - (self.df.rolling(self.wins).quantile(0.5)) |
| 22 | + def time_rolling(self, contructor, window, dtype, method): |
| 23 | + getattr(self.roll, method)() |
25 | 24 |
|
26 | | - def time_rolling_median(self): |
27 | | - (self.df.rolling(self.wins).median()) |
28 | 25 |
|
29 | | - def time_rolling_mean(self): |
30 | | - (self.df.rolling(self.wins).mean()) |
| 26 | +class Quantile(object): |
31 | 27 |
|
32 | | - def time_rolling_max(self): |
33 | | - (self.df.rolling(self.wins).max()) |
| 28 | + sample_time = 0.2 |
| 29 | + params = (['DataFrame', 'Series'], |
| 30 | + [10, 1000], |
| 31 | + ['int', 'float'], |
| 32 | + [0, 0.5, 1]) |
| 33 | + param_names = ['contructor', 'window', 'dtype', 'percentile'] |
34 | 34 |
|
35 | | - def time_rolling_min(self): |
36 | | - (self.df.rolling(self.wins).min()) |
| 35 | + def setup(self, contructor, window, dtype, percentile): |
| 36 | + N = 10**5 |
| 37 | + arr = np.random.random(N).astype(dtype) |
| 38 | + self.roll = getattr(pd, contructor)(arr).rolling(window) |
37 | 39 |
|
38 | | - def time_rolling_std(self): |
39 | | - (self.df.rolling(self.wins).std()) |
40 | | - |
41 | | - def time_rolling_count(self): |
42 | | - (self.df.rolling(self.wins).count()) |
43 | | - |
44 | | - def time_rolling_skew(self): |
45 | | - (self.df.rolling(self.wins).skew()) |
46 | | - |
47 | | - def time_rolling_kurt(self): |
48 | | - (self.df.rolling(self.wins).kurt()) |
49 | | - |
50 | | - def time_rolling_sum(self): |
51 | | - (self.df.rolling(self.wins).sum()) |
52 | | - |
53 | | - def time_rolling_corr(self): |
54 | | - (self.dfs.rolling(self.wins).corr()) |
55 | | - |
56 | | - def time_rolling_cov(self): |
57 | | - (self.dfs.rolling(self.wins).cov()) |
58 | | - |
59 | | - def time_rolling_quantile_0_l(self): |
60 | | - (self.df.rolling(self.winl).quantile(0.0)) |
61 | | - |
62 | | - def time_rolling_quantile_1_l(self): |
63 | | - (self.df.rolling(self.winl).quantile(1.0)) |
64 | | - |
65 | | - def time_rolling_quantile_median_l(self): |
66 | | - (self.df.rolling(self.winl).quantile(0.5)) |
67 | | - |
68 | | - def time_rolling_median_l(self): |
69 | | - (self.df.rolling(self.winl).median()) |
70 | | - |
71 | | - def time_rolling_mean_l(self): |
72 | | - (self.df.rolling(self.winl).mean()) |
73 | | - |
74 | | - def time_rolling_max_l(self): |
75 | | - (self.df.rolling(self.winl).max()) |
76 | | - |
77 | | - def time_rolling_min_l(self): |
78 | | - (self.df.rolling(self.winl).min()) |
79 | | - |
80 | | - def time_rolling_std_l(self): |
81 | | - (self.df.rolling(self.wins).std()) |
82 | | - |
83 | | - def time_rolling_count_l(self): |
84 | | - (self.df.rolling(self.wins).count()) |
85 | | - |
86 | | - def time_rolling_skew_l(self): |
87 | | - (self.df.rolling(self.wins).skew()) |
88 | | - |
89 | | - def time_rolling_kurt_l(self): |
90 | | - (self.df.rolling(self.wins).kurt()) |
91 | | - |
92 | | - def time_rolling_sum_l(self): |
93 | | - (self.df.rolling(self.wins).sum()) |
94 | | - |
95 | | - |
96 | | -class SeriesRolling(object): |
97 | | - goal_time = 0.2 |
98 | | - |
99 | | - def setup(self): |
100 | | - self.N = 100000 |
101 | | - self.Ns = 10000 |
102 | | - self.df = pd.DataFrame({'a': np.random.random(self.N)}) |
103 | | - self.dfs = pd.DataFrame({'a': np.random.random(self.Ns)}) |
104 | | - self.sr = self.df.a |
105 | | - self.srs = self.dfs.a |
106 | | - self.wins = 10 |
107 | | - self.winl = 1000 |
108 | | - |
109 | | - def time_rolling_quantile_0(self): |
110 | | - (self.sr.rolling(self.wins).quantile(0.0)) |
111 | | - |
112 | | - def time_rolling_quantile_1(self): |
113 | | - (self.sr.rolling(self.wins).quantile(1.0)) |
114 | | - |
115 | | - def time_rolling_quantile_median(self): |
116 | | - (self.sr.rolling(self.wins).quantile(0.5)) |
117 | | - |
118 | | - def time_rolling_median(self): |
119 | | - (self.sr.rolling(self.wins).median()) |
120 | | - |
121 | | - def time_rolling_mean(self): |
122 | | - (self.sr.rolling(self.wins).mean()) |
123 | | - |
124 | | - def time_rolling_max(self): |
125 | | - (self.sr.rolling(self.wins).max()) |
126 | | - |
127 | | - def time_rolling_min(self): |
128 | | - (self.sr.rolling(self.wins).min()) |
129 | | - |
130 | | - def time_rolling_std(self): |
131 | | - (self.sr.rolling(self.wins).std()) |
132 | | - |
133 | | - def time_rolling_count(self): |
134 | | - (self.sr.rolling(self.wins).count()) |
135 | | - |
136 | | - def time_rolling_skew(self): |
137 | | - (self.sr.rolling(self.wins).skew()) |
138 | | - |
139 | | - def time_rolling_kurt(self): |
140 | | - (self.sr.rolling(self.wins).kurt()) |
141 | | - |
142 | | - def time_rolling_sum(self): |
143 | | - (self.sr.rolling(self.wins).sum()) |
144 | | - |
145 | | - def time_rolling_corr(self): |
146 | | - (self.srs.rolling(self.wins).corr()) |
147 | | - |
148 | | - def time_rolling_cov(self): |
149 | | - (self.srs.rolling(self.wins).cov()) |
150 | | - |
151 | | - def time_rolling_quantile_0_l(self): |
152 | | - (self.sr.rolling(self.winl).quantile(0.0)) |
153 | | - |
154 | | - def time_rolling_quantile_1_l(self): |
155 | | - (self.sr.rolling(self.winl).quantile(1.0)) |
156 | | - |
157 | | - def time_rolling_quantile_median_l(self): |
158 | | - (self.sr.rolling(self.winl).quantile(0.5)) |
159 | | - |
160 | | - def time_rolling_median_l(self): |
161 | | - (self.sr.rolling(self.winl).median()) |
162 | | - |
163 | | - def time_rolling_mean_l(self): |
164 | | - (self.sr.rolling(self.winl).mean()) |
165 | | - |
166 | | - def time_rolling_max_l(self): |
167 | | - (self.sr.rolling(self.winl).max()) |
168 | | - |
169 | | - def time_rolling_min_l(self): |
170 | | - (self.sr.rolling(self.winl).min()) |
171 | | - |
172 | | - def time_rolling_std_l(self): |
173 | | - (self.sr.rolling(self.wins).std()) |
174 | | - |
175 | | - def time_rolling_count_l(self): |
176 | | - (self.sr.rolling(self.wins).count()) |
177 | | - |
178 | | - def time_rolling_skew_l(self): |
179 | | - (self.sr.rolling(self.wins).skew()) |
180 | | - |
181 | | - def time_rolling_kurt_l(self): |
182 | | - (self.sr.rolling(self.wins).kurt()) |
183 | | - |
184 | | - def time_rolling_sum_l(self): |
185 | | - (self.sr.rolling(self.wins).sum()) |
| 40 | + def time_quantile(self, contructor, window, dtype, percentile): |
| 41 | + self.roll.quantile(percentile) |
0 commit comments