@@ -50,18 +50,17 @@ from pandas._libs.khash cimport (
5050
5151import pandas._libs.missing as missing
5252
53- cdef float64_t FP_ERR = 1e-13
54-
55- cdef float64_t NaN = < float64_t> np.NaN
56-
57- cdef int64_t NPY_NAT = get_nat()
53+ cdef:
54+ float64_t FP_ERR = 1e-13
55+ float64_t NaN = < float64_t> np.NaN
56+ int64_t NPY_NAT = get_nat()
5857
5958tiebreakers = {
60- ' average' : TIEBREAK_AVERAGE,
61- ' min' : TIEBREAK_MIN,
62- ' max' : TIEBREAK_MAX,
63- ' first' : TIEBREAK_FIRST,
64- ' dense' : TIEBREAK_DENSE,
59+ " average" : TIEBREAK_AVERAGE,
60+ " min" : TIEBREAK_MIN,
61+ " max" : TIEBREAK_MAX,
62+ " first" : TIEBREAK_FIRST,
63+ " dense" : TIEBREAK_DENSE,
6564}
6665
6766
@@ -120,6 +119,7 @@ cpdef ndarray[int64_t, ndim=1] unique_deltas(const int64_t[:] arr):
120119 kh_int64_t * table
121120 int ret = 0
122121 list uniques = []
122+ ndarray[int64_t, ndim= 1 ] result
123123
124124 table = kh_init_int64()
125125 kh_resize_int64(table, 10 )
@@ -261,7 +261,7 @@ def kth_smallest(numeric[:] a, Py_ssize_t k) -> numeric:
261261
262262@cython.boundscheck(False )
263263@cython.wraparound(False )
264- def nancorr(const float64_t[:, :] mat , bint cov = 0 , minp = None ):
264+ def nancorr(const float64_t[:, :] mat , bint cov = False , minp = None ):
265265 cdef:
266266 Py_ssize_t i, j, xi, yi, N, K
267267 bint minpv
@@ -325,7 +325,7 @@ def nancorr(const float64_t[:, :] mat, bint cov=0, minp=None):
325325
326326@ cython.boundscheck (False )
327327@ cython.wraparound (False )
328- def nancorr_spearman (const float64_t[:, :] mat , Py_ssize_t minp = 1 ):
328+ def nancorr_spearman (const float64_t[:, :] mat , Py_ssize_t minp = 1 ) -> ndarray :
329329 cdef:
330330 Py_ssize_t i , j , xi , yi , N , K
331331 ndarray[float64_t , ndim = 2 ] result
581581
582582@ cython.boundscheck (False )
583583@ cython.wraparound (False )
584- def backfill (ndarray[algos_t] old , ndarray[algos_t] new , limit = None ):
584+ def backfill (ndarray[algos_t] old , ndarray[algos_t] new , limit = None ) -> ndarray :
585585 cdef:
586586 Py_ssize_t i , j , nleft , nright
587587 ndarray[int64_t , ndim = 1 ] indexer
@@ -810,18 +810,14 @@ def rank_1d(
810810 """
811811 cdef:
812812 Py_ssize_t i, j, n, dups = 0 , total_tie_count = 0 , non_na_idx = 0
813-
814813 ndarray[rank_t] sorted_data, values
815-
816814 ndarray[float64_t] ranks
817815 ndarray[int64_t] argsorted
818816 ndarray[uint8_t, cast= True ] sorted_mask
819-
820817 rank_t val, nan_value
821-
822818 float64_t sum_ranks = 0
823819 int tiebreak = 0
824- bint keep_na = 0
820+ bint keep_na = False
825821 bint isnan, condition
826822 float64_t count = 0.0
827823
@@ -1034,19 +1030,14 @@ def rank_2d(
10341030 """
10351031 cdef:
10361032 Py_ssize_t i, j, z, k, n, dups = 0 , total_tie_count = 0
1037-
10381033 Py_ssize_t infs
1039-
10401034 ndarray[float64_t, ndim= 2 ] ranks
10411035 ndarray[rank_t, ndim= 2 ] values
1042-
10431036 ndarray[int64_t, ndim= 2 ] argsorted
1044-
10451037 rank_t val, nan_value
1046-
10471038 float64_t sum_ranks = 0
10481039 int tiebreak = 0
1049- bint keep_na = 0
1040+ bint keep_na = False
10501041 float64_t count = 0.0
10511042 bint condition, skip_condition
10521043
0 commit comments