@@ -123,9 +123,9 @@ They can take a number of arguments:
123123 Because it has to essentially scan through the data again, this causes a
124124 significant performance hit so only use if necessary.
125125 - ``lineterminator `` : string (length 1), default ``None ``, Character to break file into lines. Only valid with C parser
126- - ``quotechar `` : string, The character to used to denote the start and end of a quoted item.
126+ - ``quotechar `` : string, The character to used to denote the start and end of a quoted item.
127127 Quoted items can include the delimiter and it will be ignored.
128- - ``quoting `` : int,
128+ - ``quoting `` : int,
129129 Controls whether quotes should be recognized. Values are taken from `csv.QUOTE_* ` values.
130130 Acceptable values are 0, 1, 2, and 3 for QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONE, and QUOTE_NONNUMERIC, respectively.
131131 - ``skipinitialspace `` : boolean, default ``False ``, Skip spaces after delimiter
@@ -147,9 +147,9 @@ They can take a number of arguments:
147147 - ``verbose ``: show number of NA values inserted in non-numeric columns
148148 - ``squeeze ``: if True then output with only one column is turned into Series
149149 - ``error_bad_lines ``: if False then any lines causing an error will be skipped :ref: `bad lines <io.bad_lines >`
150- - ``usecols ``: a subset of columns to return, results in much faster parsing
150+ - ``usecols ``: a subset of columns to return, results in much faster parsing
151151 time and lower memory usage.
152- - ``mangle_dupe_cols ``: boolean, default True, then duplicate columns will be specified
152+ - ``mangle_dupe_cols ``: boolean, default True, then duplicate columns will be specified
153153 as 'X.0'...'X.N', rather than 'X'...'X'
154154 - ``tupleize_cols ``: boolean, default True, if False, convert a list of tuples
155155 to a multi-index of columns, otherwise, leave the column index as a list of tuples
@@ -783,8 +783,8 @@ to do as before:
783783 os.remove(' foo.csv' )
784784
785785
786- Reading DataFrame objects with ``MultiIndex ``
787- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
786+ Reading an index with a ``MultiIndex ``
787+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
788788
789789.. _io.csv_multiindex :
790790
@@ -795,7 +795,8 @@ Suppose you have data indexed by two columns:
795795 print open (' data/mindex_ex.csv' ).read()
796796
797797 The ``index_col `` argument to ``read_csv `` and ``read_table `` can take a list of
798- column numbers to turn multiple columns into a ``MultiIndex ``:
798+ column numbers to turn multiple columns into a ``MultiIndex `` for the index of the
799+ returned object:
799800
800801.. ipython :: python
801802
@@ -805,12 +806,12 @@ column numbers to turn multiple columns into a ``MultiIndex``:
805806
806807 .. _io.multi_index_columns :
807808
808- Specifying a multi-index columns
809- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
809+ Reading columns with a `` MultiIndex ``
810+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
810811
811812By specifying list of row locations for the ``header `` argument, you
812- can read in a multi-index for the columns. Specifying non-consecutive
813- rows will skip the interveaing rows.
813+ can read in a `` MultiIndex `` for the columns. Specifying non-consecutive
814+ rows will skip the interveaning rows.
814815
815816.. ipython :: python
816817
@@ -820,8 +821,8 @@ rows will skip the interveaing rows.
820821 print open (' mi.csv' ).read()
821822 pd.read_csv(' mi.csv' ,header = [0 ,1 ,2 ,3 ],index_col = [0 ,1 ],tupleize_cols = False )
822823
823- Note: The default behavior in 0.12 remains unchanged (``tupleize_cols=True ``),
824- but starting with 0.12 , the default *to * write and read multi-index columns will be in the new
824+ Note: The default behavior in 0.12 remains unchanged (``tupleize_cols=True ``) from prior versions ,
825+ but starting with 0.13 , the default *to * write and read multi-index columns will be in the new
825826format (``tupleize_cols=False ``)
826827
827828Note: If an ``index_col `` is not specified (e.g. you don't have an index, or wrote it
@@ -958,7 +959,7 @@ Read and write ``JSON`` format files.
958959
959960Writing JSON
960961~~~~~~~~~~~~
961-
962+
962963A ``Series `` or ``DataFrame `` can be converted to a valid JSON string. Use ``to_json ``
963964with optional parameters:
964965
@@ -1100,7 +1101,7 @@ I like my string indicies
11001101 si.index
11011102 si.columns
11021103 json = si.to_json()
1103-
1104+
11041105 sij = pd.read_json(json,convert_axes = False )
11051106 sij
11061107 sij.index
@@ -1433,18 +1434,18 @@ And then import the data directly to a DataFrame by calling:
14331434
14341435 clipdf
14351436
1436- The ``to_clipboard `` method can be used to write the contents of a DataFrame to
1437- the clipboard. Following which you can paste the clipboard contents into other
1437+ The ``to_clipboard `` method can be used to write the contents of a DataFrame to
1438+ the clipboard. Following which you can paste the clipboard contents into other
14381439applications (CTRL-V on many operating systems). Here we illustrate writing a
14391440DataFrame into clipboard and reading it back.
14401441
14411442.. ipython :: python
1442-
1443+
14431444 df= pd.DataFrame(randn(5 ,3 ))
14441445 df
14451446 df.to_clipboard()
14461447 pd.read_clipboard()
1447-
1448+
14481449 We can see that we got the same content back, which we had earlier written to the clipboard.
14491450
14501451.. note ::
@@ -1510,7 +1511,7 @@ advanced strategies
15101511 xls = ExcelFile(' path_to_file.xls' )
15111512 xls.parse(' Sheet1' , index_col = None , na_values = [' NA' ])
15121513
1513- Replaced by
1514+ Replaced by
15141515
15151516 .. code-block :: python
15161517
@@ -2430,7 +2431,7 @@ Writing to STATA format
24302431
24312432.. _io.stata_writer:
24322433
2433- The method :func:`~ pandas.core.frame.DataFrame.to_stata` will write a DataFrame
2434+ The method :func:`~ pandas.core.frame.DataFrame.to_stata` will write a DataFrame
24342435into a .dta file . The format version of this file is always the latest one, 115 .
24352436
24362437.. ipython:: python
@@ -2458,9 +2459,9 @@ converting them to a DataFrame which is returned:
24582459
24592460Currently the `` index`` is retrieved as a column on read back.
24602461
2461- The parameter `` convert_categoricals`` indicates wheter value labels should be
2462- read and used to create a `` Categorical`` variable from them. Value labels can
2463- also be retrieved by the function `` variable_labels`` , which requires data to be
2462+ The parameter `` convert_categoricals`` indicates wheter value labels should be
2463+ read and used to create a `` Categorical`` variable from them. Value labels can
2464+ also be retrieved by the function `` variable_labels`` , which requires data to be
24642465called before (see `` pandas.io.stata.StataReader`` ).
24652466
24662467The StataReader supports .dta Formats 104 , 105 , 108 , 113 - 115 .
@@ -2471,7 +2472,7 @@ Alternatively, the function :func:`~pandas.io.stata.read_stata` can be used
24712472
24722473 import os
24732474 os.remove(' stata.dta' )
2474-
2475+
24752476Data Reader
24762477---------- -
24772478
0 commit comments