@@ -7780,6 +7780,8 @@ def groupby(
77807780 For finer-tuned control, see hierarchical indexing documentation along
77817781 with the related stack/unstack methods.
77827782
7783+ Reference :ref:`the user guide <reshaping.pivot>` for more examples.
7784+
77837785 Examples
77847786 --------
77857787 >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two',
@@ -7938,6 +7940,10 @@ def pivot(self, index=None, columns=None, values=None) -> DataFrame:
79387940 wide_to_long : Wide panel to long format. Less flexible but more
79397941 user-friendly than melt.
79407942
7943+ Notes
7944+ -----
7945+ Reference :ref:`the user guide <reshaping.pivot>` for more examples.
7946+
79417947 Examples
79427948 --------
79437949 >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo",
@@ -8094,6 +8100,8 @@ def stack(self, level: Level = -1, dropna: bool = True):
80948100 vertically on top of each other (in the index of the
80958101 dataframe).
80968102
8103+ Reference :ref:`the user guide <reshaping.stacking>` for more examples.
8104+
80978105 Examples
80988106 --------
80998107 **Single level columns**
@@ -8273,6 +8281,8 @@ def explode(
82738281 result in a np.nan for that row. In addition, the ordering of rows in the
82748282 output will be non-deterministic when exploding sets.
82758283
8284+ Reference :ref:`the user guide <reshaping.explode>` for more examples.
8285+
82768286 Examples
82778287 --------
82788288 >>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
@@ -8372,6 +8382,10 @@ def unstack(self, level: Level = -1, fill_value=None):
83728382 DataFrame.stack : Pivot a level of the column labels (inverse operation
83738383 from `unstack`).
83748384
8385+ Notes
8386+ -----
8387+ Reference :ref:`the user guide <reshaping.stacking>` for more examples.
8388+
83758389 Examples
83768390 --------
83778391 >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
0 commit comments