@@ -285,8 +285,6 @@ def test_apply(ordered):
285
285
result = grouped .apply (lambda x : np .mean (x ))
286
286
tm .assert_frame_equal (result , expected )
287
287
288
- # we coerce back to ints
289
- expected = expected .astype ("int" )
290
288
result = grouped .mean ()
291
289
tm .assert_frame_equal (result , expected )
292
290
@@ -371,7 +369,7 @@ def test_observed(observed, using_array_manager):
371
369
result = groups_double_key .agg ("mean" )
372
370
expected = DataFrame (
373
371
{
374
- "val" : [10 , 30 , 20 , 40 ],
372
+ "val" : [10.0 , 30.0 , 20.0 , 40.0 ],
375
373
"cat" : Categorical (
376
374
["a" , "a" , "b" , "b" ], categories = ["a" , "b" , "c" ], ordered = True
377
375
),
@@ -418,7 +416,9 @@ def test_observed_codes_remap(observed):
418
416
groups_double_key = df .groupby ([values , "C2" ], observed = observed )
419
417
420
418
idx = MultiIndex .from_arrays ([values , [1 , 2 , 3 , 4 ]], names = ["cat" , "C2" ])
421
- expected = DataFrame ({"C1" : [3 , 3 , 4 , 5 ], "C3" : [10 , 100 , 200 , 34 ]}, index = idx )
419
+ expected = DataFrame (
420
+ {"C1" : [3.0 , 3.0 , 4.0 , 5.0 ], "C3" : [10.0 , 100.0 , 200.0 , 34.0 ]}, index = idx
421
+ )
422
422
if not observed :
423
423
expected = cartesian_product_for_groupers (
424
424
expected , [values .values , [1 , 2 , 3 , 4 ]], ["cat" , "C2" ]
@@ -1515,7 +1515,9 @@ def test_read_only_category_no_sort():
1515
1515
df = DataFrame (
1516
1516
{"a" : [1 , 3 , 5 , 7 ], "b" : Categorical ([1 , 1 , 2 , 2 ], categories = Index (cats ))}
1517
1517
)
1518
- expected = DataFrame (data = {"a" : [2 , 6 ]}, index = CategoricalIndex ([1 , 2 ], name = "b" ))
1518
+ expected = DataFrame (
1519
+ data = {"a" : [2.0 , 6.0 ]}, index = CategoricalIndex ([1 , 2 ], name = "b" )
1520
+ )
1519
1521
result = df .groupby ("b" , sort = False ).mean ()
1520
1522
tm .assert_frame_equal (result , expected )
1521
1523
0 commit comments