@@ -1793,19 +1793,19 @@ def ewma(float64_t[:] vals, float64_t com, int adjust, bint ignore_na, int minp)
17931793 new_wt = 1. if adjust else alpha
17941794
17951795 weighted_avg = vals[0 ]
1796- is_observation = ( weighted_avg == weighted_avg)
1796+ is_observation = weighted_avg == weighted_avg
17971797 nobs = int (is_observation)
1798- output[0 ] = weighted_avg if ( nobs >= minp) else NaN
1798+ output[0 ] = weighted_avg if nobs >= minp else NaN
17991799 old_wt = 1.
18001800
18011801 with nogil:
18021802 for i in range (1 , N):
18031803 cur = vals[i]
1804- is_observation = ( cur == cur)
1804+ is_observation = cur == cur
18051805 nobs += is_observation
18061806 if weighted_avg == weighted_avg:
18071807
1808- if is_observation or ( not ignore_na) :
1808+ if is_observation or not ignore_na:
18091809
18101810 old_wt *= old_wt_factor
18111811 if is_observation:
@@ -1821,7 +1821,7 @@ def ewma(float64_t[:] vals, float64_t com, int adjust, bint ignore_na, int minp)
18211821 elif is_observation:
18221822 weighted_avg = cur
18231823
1824- output[i] = weighted_avg if ( nobs >= minp) else NaN
1824+ output[i] = weighted_avg if nobs >= minp else NaN
18251825
18261826 return output
18271827
@@ -1851,16 +1851,16 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
18511851 """
18521852
18531853 cdef:
1854- Py_ssize_t N = len (input_x)
1854+ Py_ssize_t N = len (input_x), M = len (input_y)
18551855 float64_t alpha, old_wt_factor, new_wt, mean_x, mean_y, cov
18561856 float64_t sum_wt, sum_wt2, old_wt, cur_x, cur_y, old_mean_x, old_mean_y
18571857 float64_t numerator, denominator
18581858 Py_ssize_t i, nobs
18591859 ndarray[float64_t] output
18601860 bint is_observation
18611861
1862- if < Py_ssize_t > len (input_y) != N:
1863- raise ValueError (f" arrays are of different lengths ({N} and {len(input_y) })" )
1862+ if M != N:
1863+ raise ValueError (f" arrays are of different lengths ({N} and {M })" )
18641864
18651865 output = np.empty(N, dtype = float )
18661866 if N == 0 :
@@ -1874,12 +1874,12 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
18741874
18751875 mean_x = input_x[0 ]
18761876 mean_y = input_y[0 ]
1877- is_observation = (( mean_x == mean_x) and (mean_y == mean_y) )
1877+ is_observation = (mean_x == mean_x) and (mean_y == mean_y)
18781878 nobs = int (is_observation)
18791879 if not is_observation:
18801880 mean_x = NaN
18811881 mean_y = NaN
1882- output[0 ] = (0. if bias else NaN) if ( nobs >= minp) else NaN
1882+ output[0 ] = (0. if bias else NaN) if nobs >= minp else NaN
18831883 cov = 0.
18841884 sum_wt = 1.
18851885 sum_wt2 = 1.
@@ -1890,10 +1890,10 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
18901890 for i in range (1 , N):
18911891 cur_x = input_x[i]
18921892 cur_y = input_y[i]
1893- is_observation = (( cur_x == cur_x) and (cur_y == cur_y) )
1893+ is_observation = (cur_x == cur_x) and (cur_y == cur_y)
18941894 nobs += is_observation
18951895 if mean_x == mean_x:
1896- if is_observation or ( not ignore_na) :
1896+ if is_observation or not ignore_na:
18971897 sum_wt *= old_wt_factor
18981898 sum_wt2 *= (old_wt_factor * old_wt_factor)
18991899 old_wt *= old_wt_factor
@@ -1929,8 +1929,8 @@ def ewmcov(float64_t[:] input_x, float64_t[:] input_y,
19291929 if not bias:
19301930 numerator = sum_wt * sum_wt
19311931 denominator = numerator - sum_wt2
1932- if ( denominator > 0. ) :
1933- output[i] = (( numerator / denominator) * cov)
1932+ if denominator > 0 :
1933+ output[i] = (numerator / denominator) * cov
19341934 else :
19351935 output[i] = NaN
19361936 else :
0 commit comments