diff --git a/testdata/dnn/onnx/data/input_concat_const_blobs.npy b/testdata/dnn/onnx/data/input_concat_const_blobs.npy new file mode 100644 index 000000000..988e07f97 Binary files /dev/null and b/testdata/dnn/onnx/data/input_concat_const_blobs.npy differ diff --git a/testdata/dnn/onnx/data/output_concat_const_blobs.npy b/testdata/dnn/onnx/data/output_concat_const_blobs.npy new file mode 100644 index 000000000..3840e6287 Binary files /dev/null and b/testdata/dnn/onnx/data/output_concat_const_blobs.npy differ diff --git a/testdata/dnn/onnx/generate_onnx_models.py b/testdata/dnn/onnx/generate_onnx_models.py index b09ca5fb5..234118f73 100644 --- a/testdata/dnn/onnx/generate_onnx_models.py +++ b/testdata/dnn/onnx/generate_onnx_models.py @@ -162,6 +162,24 @@ def forward(self, x): save_data_and_model("concatenation", input, model) +class ConcatConstBlob(nn.Module): + + def __init__(self): + super(ConcatConstBlob, self).__init__() + self.squeeze = nn.Conv2d(2, 2, kernel_size=1, stride=1, padding=0) + + def forward(self, x): + x = self.squeeze(x) + y = torch.tensor([[[[0.1, -0.2], [-0.3, 0.4]]]], dtype=torch.float32) + return torch.cat([x, y], axis=1) + + +input = Variable(torch.randn(1, 2, 2, 2)) +model = ConcatConstBlob() +model.eval() +save_data_and_model("concat_const_blob", input, model) + + class Mul(nn.Module): def __init__(self): diff --git a/testdata/dnn/onnx/models/concat_const_blobs.onnx b/testdata/dnn/onnx/models/concat_const_blobs.onnx new file mode 100644 index 000000000..fc223e764 Binary files /dev/null and b/testdata/dnn/onnx/models/concat_const_blobs.onnx differ