@@ -245,7 +245,7 @@ def pmt(rate, nper, pv, fv=0, when='end'):
245245 years at an annual interest rate of 7.5%?
246246
247247 >>> npf.pmt(0.075/12, 12*15, 200000)
248- -1854.0247200054619
248+ np.float64( -1854.0247200054619)
249249
250250 In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
251251 today, a monthly payment of $1,854.02 would be required. Note that this
@@ -424,7 +424,7 @@ def ipmt(rate, per, nper, pv, fv=0, when='end'):
424424
425425 >>> interestpd = np.sum(ipmt)
426426 >>> np.round(interestpd, 2)
427- -112.98
427+ np.float64( -112.98)
428428
429429 """
430430 when = _convert_when (when )
@@ -562,7 +562,7 @@ def pv(rate, nper, pmt, fv=0, when='end'):
562562 interest rate is 5% (annually) compounded monthly.
563563
564564 >>> npf.pv(0.05/12, 10*12, -100, 15692.93)
565- -100.00067131625819
565+ np.float64( -100.00067131625819)
566566
567567 By convention, the negative sign represents cash flow out
568568 (i.e., money not available today). Thus, to end up with
@@ -913,7 +913,7 @@ def npv(rate, values):
913913
914914 >>> rate, cashflows = 0.08, [-40_000, 5_000, 8_000, 12_000, 30_000]
915915 >>> np.round(npf.npv(rate, cashflows), 5)
916- 3065.22267
916+ np.float64( 3065.22267)
917917
918918 It may be preferable to split the projected cashflow into an initial
919919 investment and expected future cashflows. In this case, the value of
@@ -923,7 +923,7 @@ def npv(rate, values):
923923 >>> initial_cashflow = cashflows[0]
924924 >>> cashflows[0] = 0
925925 >>> np.round(npf.npv(rate, cashflows) + initial_cashflow, 5)
926- 3065.22267
926+ np.float64( 3065.22267)
927927
928928 The NPV calculation may be applied to several ``rates`` and ``cashflows``
929929 simulatneously. This produces an array of shape ``(len(rates), len(cashflows))``.
0 commit comments