diff --git a/examples/3_NeuralNetworks/dcgan.py b/examples/3_NeuralNetworks/dcgan.py index e7eaaaf5..2de85441 100644 --- a/examples/3_NeuralNetworks/dcgan.py +++ b/examples/3_NeuralNetworks/dcgan.py @@ -82,7 +82,7 @@ def discriminator(x, reuse=False): # Build Generator Network gen_sample = generator(noise_input) -# Build 2 Discriminator Networks (one from noise input, one from generated samples) +# Build 2 Discriminator Networks (one from real image input, one from generated samples) disc_real = discriminator(real_image_input) disc_fake = discriminator(gen_sample, reuse=True) disc_concat = tf.concat([disc_real, disc_fake], axis=0) @@ -135,7 +135,7 @@ def discriminator(x, reuse=False): z = np.random.uniform(-1., 1., size=[batch_size, noise_dim]) # Prepare Targets (Real image: 1, Fake image: 0) - # The first half of data fed to the generator are real images, + # The first half of data fed to the discriminator are real images, # the other half are fake images (coming from the generator). batch_disc_y = np.concatenate( [np.ones([batch_size]), np.zeros([batch_size])], axis=0)