diff --git a/docs/guides/02_paddle2.0_develop/01_quick_start_cn.ipynb b/docs/guides/02_paddle2.0_develop/01_quick_start_cn.ipynb index 6609c9f2fed..e5cf36ecaae 100644 --- a/docs/guides/02_paddle2.0_develop/01_quick_start_cn.ipynb +++ b/docs/guides/02_paddle2.0_develop/01_quick_start_cn.ipynb @@ -40,7 +40,7 @@ "id": "54e32a09-1e8f-4bc6-a3bd-1eebd621fa66", "metadata": {}, "source": [ - "该命令用于安装 CPU 版本的飞桨,如果要安装其他计算平台或操作系统支持的版本,可点击 [ 快速安装]( ) 查看安装引导。\n", + "该命令用于安装 CPU 版本的飞桨,目前飞桨支持Python 3.6-3.9,pip3 要求 20.2.2或更高版本。如果要安装其他计算平台或操作系统支持的版本,可点击 [ 快速安装]( ) 查看安装引导。\n", "\n", "## 二、导入飞桨\n", "\n", @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "468426ec", "metadata": { "execution": { @@ -127,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "id": "93d0c8a1", "metadata": { "execution": { @@ -146,17 +146,17 @@ "text": [ "The loss value printed in the log is the current step, and the metric is the average value of previous steps.\n", "Epoch 1/5\n", - "step 938/938 [==============================] - loss: 0.0344 - acc: 0.9313 - 14ms/step \n", + "step 938/938 [==============================] - loss: 0.0519 - acc: 0.9344 - 14ms/step \n", "Epoch 2/5\n", - "step 938/938 [==============================] - loss: 0.0336 - acc: 0.9748 - 14ms/step \n", + "step 938/938 [==============================] - loss: 0.0239 - acc: 0.9767 - 14ms/step \n", "Epoch 3/5\n", - "step 938/938 [==============================] - loss: 0.0287 - acc: 0.9806 - 14ms/step \n", + "step 938/938 [==============================] - loss: 0.0416 - acc: 0.9811 - 14ms/step \n", "Epoch 4/5\n", - "step 938/938 [==============================] - loss: 0.0070 - acc: 0.9834 - 14ms/step \n", + "step 938/938 [==============================] - loss: 0.0084 - acc: 0.9837 - 14ms/step \n", "Epoch 5/5\n", - "step 938/938 [==============================] - loss: 0.0521 - acc: 0.9842 - 14ms/step \n", + "step 938/938 [==============================] - loss: 0.0838 - acc: 0.9860 - 14ms/step \n", "Eval begin...\n", - "step 157/157 [==============================] - loss: 2.8749e-04 - acc: 0.9836 - 6ms/step \n", + "step 157/157 [==============================] - loss: 1.7577e-04 - acc: 0.9844 - 6ms/step \n", "Eval samples: 10000\n", "true label: 7, pred label: 7\n" ] @@ -164,16 +164,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 7, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAANiklEQVR4nO3df4wc9XnH8c8n/kV8QGtDcF3j4ISQqE4aSHWBRNDKESUFImSiJBRLtVyJ5lALElRRW0QVBalVSlEIok0aySluHESgaQBhJTSNa6W1UKljg4yxgdaEmsau8QFOaxPAP/DTP24cHXD7vWNndmft5/2SVrs7z87Oo/F9PLMzO/t1RAjA8e9tbTcAoD8IO5AEYQeSIOxAEoQdSGJ6Pxc207PiBA31c5FAKq/qZzoYBzxRrVbYbV8s6XZJ0yT9bUTcXHr9CRrSeb6wziIBFGyIdR1rXe/G254m6auSLpG0WNIy24u7fT8AvVXnM/u5kp6OiGci4qCkeyQtbaYtAE2rE/YFkn4y7vnOatrr2B6xvcn2pkM6UGNxAOro+dH4iFgZEcMRMTxDs3q9OAAd1An7LkkLxz0/vZoGYADVCftGSWfZfpftmZKulLSmmbYANK3rU28Rcdj2tZL+SWOn3lZFxLbGOgPQqFrn2SPiQUkPNtQLgB7i67JAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJGoN2Wx7h6T9kl6TdDgihptoCkDzaoW98rGIeKGB9wHQQ+zGA0nUDXtI+oHtR2yPTPQC2yO2N9nedEgHai4OQLfq7sZfEBG7bJ8maa3tpyJi/fgXRMRKSSsl6WTPjZrLA9ClWlv2iNhV3Y9Kul/SuU00BaB5XYfd9pDtk44+lvRxSVubagxAs+rsxs+TdL/to+/zrYj4fiNdAWhc12GPiGcknd1gLwB6iFNvQBKEHUiCsANJEHYgCcIOJNHEhTApvPjZj3asvXP508V5nxqdV6wfPDCjWF9wd7k+e+dLHWtHNj9RnBd5sGUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQ4zz5Ff/xH3+pY+9TQT8szn1lz4UvK5R2HX+5Yu/35j9Vc+LHrR6NndKwN3foLxXmnr3uk6XZax5YdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JwRP8GaTnZc+M8X9i35TXpZ58+r2PthQ+W/8+c82R5Hf/0V1ysz/zg/xbrt3zgvo61i97+SnHe7718YrH+idmdr5Wv65U4WKxvODBUrC854VDXy37P964u1t87srHr927ThlinfbF3wj8otuxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATXs0/R0Hc2FGr13vvkerPrr39pScfan5+/qLzsfy3/5v0tS97TRUdTM/2VI8X60Jbdxfop6+8t1n91Zuff25+9o/xb/MejSbfstlfZHrW9ddy0ubbX2t5e3c/pbZsA6prKbvw3JF38hmk3SFoXEWdJWlc9BzDAJg17RKyXtPcNk5dKWl09Xi3p8mbbAtC0bj+zz4uIox+onpPUcTAz2yOSRiTpBM3ucnEA6qp9ND7GrqTpeKVHRKyMiOGIGJ6hWXUXB6BL3YZ9j+35klTdjzbXEoBe6DbsayStqB6vkPRAM+0A6JVJP7Pbvltjv1x+qu2dkr4g6WZJ37Z9laRnJV3RyyZRdvi5PR1rQ/d2rknSa5O899B3Xuyio2bs+b2PFuvvn1n+8/3S3vd1rC36u2eK8x4uVo9Nk4Y9IpZ1KB2bv0IBJMXXZYEkCDuQBGEHkiDsQBKEHUiCS1zRmulnLCzWv3LjV4r1GZ5WrP/D7b/ZsXbK7oeL8x6P2LIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKcZ0drnvrDBcX6h2eVh7LedrA8HPXcJ15+yz0dz9iyA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASnGdHTx34xIc71h799G2TzF0eQej3r7uuWH/7v/1okvfPhS07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBeXb01H9f0nl7cqLL59GX/ddFxfrs7z9WrEexms+kW3bbq2yP2t46btpNtnfZ3lzdLu1tmwDqmspu/DckXTzB9Nsi4pzq9mCzbQFo2qRhj4j1kvb2oRcAPVTnAN21trdUu/lzOr3I9ojtTbY3HdKBGosDUEe3Yf+apDMlnSNpt6RbO70wIlZGxHBEDM+Y5MIGAL3TVdgjYk9EvBYRRyR9XdK5zbYFoGldhd32/HFPPylpa6fXAhgMk55nt323pCWSTrW9U9IXJC2xfY7GTmXukHR171rEIHvbSScV68t//aGOtX1HXi3OO/rFdxfrsw5sLNbxepOGPSKWTTD5jh70AqCH+LoskARhB5Ig7EAShB1IgrADSXCJK2rZftP7i/Xvnvo3HWtLt3+qOO+sBzm11iS27EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBOfZUfR/v/ORYn3Lb/9Vsf7jw4c61l76y9OL887S7mIdbw1bdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgvPsyU1f8MvF+vWf//tifZbLf0JXPra8Y+0d/8j16v3Elh1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkuA8+3HO08v/xGd/d2ex/pkTXyzW79p/WrE+7/OdtydHinOiaZNu2W0vtP1D20/Y3mb7umr6XNtrbW+v7uf0vl0A3ZrKbvxhSZ+LiMWSPiLpGtuLJd0gaV1EnCVpXfUcwICaNOwRsTsiHq0e75f0pKQFkpZKWl29bLWky3vUI4AGvKXP7LYXSfqQpA2S5kXE0R8Je07SvA7zjEgakaQTNLvrRgHUM+Wj8bZPlHSvpOsjYt/4WkSEpJhovohYGRHDETE8Q7NqNQuge1MKu+0ZGgv6XRFxXzV5j+35VX2+pNHetAigCZPuxtu2pDskPRkRXx5XWiNphaSbq/sHetIh6jn7fcXyn512Z623/+oXP1Os/+JjD9d6fzRnKp/Zz5e0XNLjtjdX027UWMi/bfsqSc9KuqInHQJoxKRhj4iHJLlD+cJm2wHQK3xdFkiCsANJEHYgCcIOJEHYgSS4xPU4MG3xezvWRu6p9/WHxauuKdYX3fnvtd4f/cOWHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeS4Dz7ceCpP+j8w76Xzd7XsTYVp//LwfILYsIfKMIAYssOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0lwnv0Y8Opl5xbr6y67tVBlyC2MYcsOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0lMZXz2hZK+KWmepJC0MiJut32TpM9Ker566Y0R8WCvGs3sf86fVqy/c3r359Lv2n9asT5jX/l6dq5mP3ZM5Us1hyV9LiIetX2SpEdsr61qt0XEl3rXHoCmTGV89t2SdleP99t+UtKCXjcGoFlv6TO77UWSPiRpQzXpWttbbK+yPeFvI9kesb3J9qZDOlCvWwBdm3LYbZ8o6V5J10fEPklfk3SmpHM0tuWf8AvaEbEyIoYjYniGZtXvGEBXphR22zM0FvS7IuI+SYqIPRHxWkQckfR1SeWrNQC0atKw27akOyQ9GRFfHjd9/riXfVLS1ubbA9CUqRyNP1/SckmP295cTbtR0jLb52js7MsOSVf3oD/U9BcvLi7WH/6tRcV67H68wW7QpqkcjX9IkicocU4dOIbwDTogCcIOJEHYgSQIO5AEYQeSIOxAEo4+Drl7sufGeb6wb8sDstkQ67Qv9k50qpwtO5AFYQeSIOxAEoQdSIKwA0kQdiAJwg4k0dfz7Lafl/TsuEmnSnqhbw28NYPa26D2JdFbt5rs7YyIeMdEhb6G/U0LtzdFxHBrDRQMam+D2pdEb93qV2/sxgNJEHYgibbDvrLl5ZcMam+D2pdEb93qS2+tfmYH0D9tb9kB9AlhB5JoJey2L7b9H7aftn1DGz10YnuH7cdtb7a9qeVeVtketb113LS5ttfa3l7dTzjGXku93WR7V7XuNtu+tKXeFtr+oe0nbG+zfV01vdV1V+irL+ut75/ZbU+T9J+SLpK0U9JGScsi4om+NtKB7R2ShiOi9S9g2P4NSS9J+mZEfKCadoukvRFxc/Uf5ZyI+JMB6e0mSS+1PYx3NVrR/PHDjEu6XNLvqsV1V+jrCvVhvbWxZT9X0tMR8UxEHJR0j6SlLfQx8CJivaS9b5i8VNLq6vFqjf2x9F2H3gZCROyOiEerx/slHR1mvNV1V+irL9oI+wJJPxn3fKcGa7z3kPQD24/YHmm7mQnMi4jd1ePnJM1rs5kJTDqMdz+9YZjxgVl33Qx/XhcH6N7sgoj4NUmXSLqm2l0dSDH2GWyQzp1OaRjvfplgmPGfa3PddTv8eV1thH2XpIXjnp9eTRsIEbGruh+VdL8GbyjqPUdH0K3uR1vu5+cGaRjviYYZ1wCsuzaHP28j7BslnWX7XbZnSrpS0poW+ngT20PVgRPZHpL0cQ3eUNRrJK2oHq+Q9ECLvbzOoAzj3WmYcbW87lof/jwi+n6TdKnGjsj/WNKfttFDh77eLemx6rat7d4k3a2x3bpDGju2cZWkUyStk7Rd0j9LmjtAvd0p6XFJWzQWrPkt9XaBxnbRt0jaXN0ubXvdFfrqy3rj67JAEhygA5Ig7EAShB1IgrADSRB2IAnCDiRB2IEk/h9BCfQTovZf9wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAANiklEQVR4nO3df4wc9XnH8c8n/kV8QGtDcF3j4ISQqE4aSHWBRNDKESUFImSiJBRLtVyJ5lALElRRW0QVBalVSlEIok0aySluHESgaQBhJTSNa6W1UKljg4yxgdaEmsau8QFOaxPAP/DTP24cHXD7vWNndmft5/2SVrs7z87Oo/F9PLMzO/t1RAjA8e9tbTcAoD8IO5AEYQeSIOxAEoQdSGJ6Pxc207PiBA31c5FAKq/qZzoYBzxRrVbYbV8s6XZJ0yT9bUTcXHr9CRrSeb6wziIBFGyIdR1rXe/G254m6auSLpG0WNIy24u7fT8AvVXnM/u5kp6OiGci4qCkeyQtbaYtAE2rE/YFkn4y7vnOatrr2B6xvcn2pkM6UGNxAOro+dH4iFgZEcMRMTxDs3q9OAAd1An7LkkLxz0/vZoGYADVCftGSWfZfpftmZKulLSmmbYANK3rU28Rcdj2tZL+SWOn3lZFxLbGOgPQqFrn2SPiQUkPNtQLgB7i67JAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJGoN2Wx7h6T9kl6TdDgihptoCkDzaoW98rGIeKGB9wHQQ+zGA0nUDXtI+oHtR2yPTPQC2yO2N9nedEgHai4OQLfq7sZfEBG7bJ8maa3tpyJi/fgXRMRKSSsl6WTPjZrLA9ClWlv2iNhV3Y9Kul/SuU00BaB5XYfd9pDtk44+lvRxSVubagxAs+rsxs+TdL/to+/zrYj4fiNdAWhc12GPiGcknd1gLwB6iFNvQBKEHUiCsANJEHYgCcIOJNHEhTApvPjZj3asvXP508V5nxqdV6wfPDCjWF9wd7k+e+dLHWtHNj9RnBd5sGUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQ4zz5Ff/xH3+pY+9TQT8szn1lz4UvK5R2HX+5Yu/35j9Vc+LHrR6NndKwN3foLxXmnr3uk6XZax5YdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JwRP8GaTnZc+M8X9i35TXpZ58+r2PthQ+W/8+c82R5Hf/0V1ysz/zg/xbrt3zgvo61i97+SnHe7718YrH+idmdr5Wv65U4WKxvODBUrC854VDXy37P964u1t87srHr927ThlinfbF3wj8otuxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATXs0/R0Hc2FGr13vvkerPrr39pScfan5+/qLzsfy3/5v0tS97TRUdTM/2VI8X60Jbdxfop6+8t1n91Zuff25+9o/xb/MejSbfstlfZHrW9ddy0ubbX2t5e3c/pbZsA6prKbvw3JF38hmk3SFoXEWdJWlc9BzDAJg17RKyXtPcNk5dKWl09Xi3p8mbbAtC0bj+zz4uIox+onpPUcTAz2yOSRiTpBM3ucnEA6qp9ND7GrqTpeKVHRKyMiOGIGJ6hWXUXB6BL3YZ9j+35klTdjzbXEoBe6DbsayStqB6vkPRAM+0A6JVJP7Pbvltjv1x+qu2dkr4g6WZJ37Z9laRnJV3RyyZRdvi5PR1rQ/d2rknSa5O899B3Xuyio2bs+b2PFuvvn1n+8/3S3vd1rC36u2eK8x4uVo9Nk4Y9IpZ1KB2bv0IBJMXXZYEkCDuQBGEHkiDsQBKEHUiCS1zRmulnLCzWv3LjV4r1GZ5WrP/D7b/ZsXbK7oeL8x6P2LIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKcZ0drnvrDBcX6h2eVh7LedrA8HPXcJ15+yz0dz9iyA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASnGdHTx34xIc71h799G2TzF0eQej3r7uuWH/7v/1okvfPhS07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBeXb01H9f0nl7cqLL59GX/ddFxfrs7z9WrEexms+kW3bbq2yP2t46btpNtnfZ3lzdLu1tmwDqmspu/DckXTzB9Nsi4pzq9mCzbQFo2qRhj4j1kvb2oRcAPVTnAN21trdUu/lzOr3I9ojtTbY3HdKBGosDUEe3Yf+apDMlnSNpt6RbO70wIlZGxHBEDM+Y5MIGAL3TVdgjYk9EvBYRRyR9XdK5zbYFoGldhd32/HFPPylpa6fXAhgMk55nt323pCWSTrW9U9IXJC2xfY7GTmXukHR171rEIHvbSScV68t//aGOtX1HXi3OO/rFdxfrsw5sLNbxepOGPSKWTTD5jh70AqCH+LoskARhB5Ig7EAShB1IgrADSXCJK2rZftP7i/Xvnvo3HWtLt3+qOO+sBzm11iS27EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBOfZUfR/v/ORYn3Lb/9Vsf7jw4c61l76y9OL887S7mIdbw1bdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgvPsyU1f8MvF+vWf//tifZbLf0JXPra8Y+0d/8j16v3Elh1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkuA8+3HO08v/xGd/d2ex/pkTXyzW79p/WrE+7/OdtydHinOiaZNu2W0vtP1D20/Y3mb7umr6XNtrbW+v7uf0vl0A3ZrKbvxhSZ+LiMWSPiLpGtuLJd0gaV1EnCVpXfUcwICaNOwRsTsiHq0e75f0pKQFkpZKWl29bLWky3vUI4AGvKXP7LYXSfqQpA2S5kXE0R8Je07SvA7zjEgakaQTNLvrRgHUM+Wj8bZPlHSvpOsjYt/4WkSEpJhovohYGRHDETE8Q7NqNQuge1MKu+0ZGgv6XRFxXzV5j+35VX2+pNHetAigCZPuxtu2pDskPRkRXx5XWiNphaSbq/sHetIh6jn7fcXyn512Z623/+oXP1Os/+JjD9d6fzRnKp/Zz5e0XNLjtjdX027UWMi/bfsqSc9KuqInHQJoxKRhj4iHJLlD+cJm2wHQK3xdFkiCsANJEHYgCcIOJEHYgSS4xPU4MG3xezvWRu6p9/WHxauuKdYX3fnvtd4f/cOWHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeS4Dz7ceCpP+j8w76Xzd7XsTYVp//LwfILYsIfKMIAYssOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0lwnv0Y8Opl5xbr6y67tVBlyC2MYcsOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0lMZXz2hZK+KWmepJC0MiJut32TpM9Ker566Y0R8WCvGs3sf86fVqy/c3r359Lv2n9asT5jX/l6dq5mP3ZM5Us1hyV9LiIetX2SpEdsr61qt0XEl3rXHoCmTGV89t2SdleP99t+UtKCXjcGoFlv6TO77UWSPiRpQzXpWttbbK+yPeFvI9kesb3J9qZDOlCvWwBdm3LYbZ8o6V5J10fEPklfk3SmpHM0tuWf8AvaEbEyIoYjYniGZtXvGEBXphR22zM0FvS7IuI+SYqIPRHxWkQckfR1SeWrNQC0atKw27akOyQ9GRFfHjd9/riXfVLS1ubbA9CUqRyNP1/SckmP295cTbtR0jLb52js7MsOSVf3oD/U9BcvLi7WH/6tRcV67H68wW7QpqkcjX9IkicocU4dOIbwDTogCcIOJEHYgSQIO5AEYQeSIOxAEo4+Drl7sufGeb6wb8sDstkQ67Qv9k50qpwtO5AFYQeSIOxAEoQdSIKwA0kQdiAJwg4k0dfz7Lafl/TsuEmnSnqhbw28NYPa26D2JdFbt5rs7YyIeMdEhb6G/U0LtzdFxHBrDRQMam+D2pdEb93qV2/sxgNJEHYgibbDvrLl5ZcMam+D2pdEb93qS2+tfmYH0D9tb9kB9AlhB5JoJey2L7b9H7aftn1DGz10YnuH7cdtb7a9qeVeVtketb113LS5ttfa3l7dTzjGXku93WR7V7XuNtu+tKXeFtr+oe0nbG+zfV01vdV1V+irL+ut75/ZbU+T9J+SLpK0U9JGScsi4om+NtKB7R2ShiOi9S9g2P4NSS9J+mZEfKCadoukvRFxc/Uf5ZyI+JMB6e0mSS+1PYx3NVrR/PHDjEu6XNLvqsV1V+jrCvVhvbWxZT9X0tMR8UxEHJR0j6SlLfQx8CJivaS9b5i8VNLq6vFqjf2x9F2H3gZCROyOiEerx/slHR1mvNV1V+irL9oI+wJJPxn3fKcGa7z3kPQD24/YHmm7mQnMi4jd1ePnJM1rs5kJTDqMdz+9YZjxgVl33Qx/XhcH6N7sgoj4NUmXSLqm2l0dSDH2GWyQzp1OaRjvfplgmPGfa3PddTv8eV1thH2XpIXjnp9eTRsIEbGruh+VdL8GbyjqPUdH0K3uR1vu5+cGaRjviYYZ1wCsuzaHP28j7BslnWX7XbZnSrpS0poW+ngT20PVgRPZHpL0cQ3eUNRrJK2oHq+Q9ECLvbzOoAzj3WmYcbW87lof/jwi+n6TdKnGjsj/WNKfttFDh77eLemx6rat7d4k3a2x3bpDGju2cZWkUyStk7Rd0j9LmjtAvd0p6XFJWzQWrPkt9XaBxnbRt0jaXN0ubXvdFfrqy3rj67JAEhygA5Ig7EAShB1IgrADSRB2IAnCDiRB2IEk/h9BCfQTovZf9wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -213,11 +213,12 @@ "# 加载模型\n", "model.load('output/mnist')\n", "\n", - "# 从测试集中取出一张图片并将图片shape变为1*1*28*28\n", + "# 从测试集中取出一张图片\n", "img, label = test_dataset[0]\n", + "# 将图片shape从1*28*28变为1*1*28*28,增加一个batch维度\n", "img_batch = np.expand_dims(img.astype('float32'), axis=0)\n", "\n", - "# 执行推理并打印结果\n", + "# 执行推理并打印结果,此处predict_batch返回的是一个list,取出第一张图片的预测结果\n", "out = model.predict_batch(img_batch)[0]\n", "pred_label = out.argmax()\n", "print('true label: {}, pred label: {}'.format(label[0], pred_label))\n", @@ -672,9 +673,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "py35-paddle1.2.0" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -686,7 +687,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.10" }, "toc-autonumbering": false, "toc-showcode": false, diff --git a/docs/guides/02_paddle2.0_develop/02_data_load_cn.ipynb b/docs/guides/02_paddle2.0_develop/02_data_load_cn.ipynb index f5447234b91..478d98cacdc 100644 --- a/docs/guides/02_paddle2.0_develop/02_data_load_cn.ipynb +++ b/docs/guides/02_paddle2.0_develop/02_data_load_cn.ipynb @@ -100,6 +100,7 @@ "source": [ "from paddle.vision.transforms import Normalize\n", "\n", + "# 构建图像归一化数据处理,这里的CHW指图像格式为 [通道,高度,宽度]\n", "transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')\n", "# 下载数据集并初始化 DataSet\n", "train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)\n", diff --git a/docs/guides/02_paddle2.0_develop/03_data_preprocessing_cn.ipynb b/docs/guides/02_paddle2.0_develop/03_data_preprocessing_cn.ipynb index 77958d1b304..56c45cdd3b6 100644 --- a/docs/guides/02_paddle2.0_develop/03_data_preprocessing_cn.ipynb +++ b/docs/guides/02_paddle2.0_develop/03_data_preprocessing_cn.ipynb @@ -446,7 +446,7 @@ "图 1:数据预处理流程\n", "\n", "\n", - "图像、文本等不同类型的数据预处理方法不同,关于文本的数据预处理可以参考 [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/docs/data_prepare/overview.rst)。" + "图像、文本等不同类型的数据预处理方法不同,关于文本的数据预处理可以参考 [NLP 应用实践](../../practices/nlp/index_cn.html)。" ] } ], diff --git a/docs/guides/02_paddle2.0_develop/04_model_cn.ipynb b/docs/guides/02_paddle2.0_develop/04_model_cn.ipynb index 3b8496cf087..42d3f616364 100644 --- a/docs/guides/02_paddle2.0_develop/04_model_cn.ipynb +++ b/docs/guides/02_paddle2.0_develop/04_model_cn.ipynb @@ -538,7 +538,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "id": "29bd4185", "metadata": { "execution": { @@ -576,9 +576,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "py35-paddle1.2.0" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -590,7 +590,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.10" } }, "nbformat": 4,