From 01d3690c5ba4ca1308397ca198ce5142522efbe1 Mon Sep 17 00:00:00 2001 From: Zhanlue Yang Date: Thu, 11 Nov 2021 13:30:01 +0800 Subject: [PATCH 01/35] Bug fix for layer_and_model documentation (#4069) --- .../basic_concept/layer_and_model_cn.md | 20 +++++++++++++------ .../basic_concept/layer_and_model_en.md | 20 +++++++++++++------ 2 files changed, 28 insertions(+), 12 deletions(-) diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_cn.md b/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_cn.md index 9872d55e8f9..0f89e8308c4 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_cn.md +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_cn.md @@ -303,8 +303,9 @@ Tensor(shape=[10, 1], dtype=float32, place=CPUPlace, stop_gradient=True, 同样的也可以使用 ``register_forward_pre_hook()`` 来注册**pre_hook**: ```python -def forward_pre_hook(layer, input, output): - return 2*output +def forward_pre_hook(layer, input): + print(input) + return input x = paddle.ones([10, 1], 'float32') model = Model() @@ -313,10 +314,17 @@ out = model(x) ``` ```text -Tensor(shape=[10, 1], dtype=float32, place=CPUPlace, stop_gradient=True, - [[2.], - [2.], - ... +(Tensor(shape=[10, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + [[1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.]]),) ``` ## 模型数据保存 diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_en.md b/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_en.md index 3a667fc8c33..e96637cbb05 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_en.md +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/layer_and_model_en.md @@ -311,8 +311,9 @@ Tensor(shape=[10, 1], dtype=float32, place=CPUPlace, stop_gradient=True, Similarly, we can also register a **pre_hook** through ``register_forward_pre_hook()`` ```python -def forward_pre_hook(layer, input, output): - return 2*output +def forward_pre_hook(layer, input): + print(input) + return input x = paddle.ones([10, 1], 'float32') model = Model() @@ -321,10 +322,17 @@ out = model(x) ``` ```text -Tensor(shape=[10, 1], dtype=float32, place=CPUPlace, stop_gradient=True, - [[2.], - [2.], - ... +(Tensor(shape=[10, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + [[1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.], + [1.]]),) ``` ## Save a model's data From dfab71f05825eb5548c5f1237a41471c83063b49 Mon Sep 17 00:00:00 2001 From: Chen Long <1300851984@qq.com> Date: Thu, 11 Nov 2021 14:39:32 +0800 Subject: [PATCH 02/35] update docs (#4067) * update docs * update docs * mv multi_dot to linalg * update styles * fix ocr --- .../paddle/{ => linalg}/matrix_power_cn.rst | 10 +- docs/api/paddle/{ => linalg}/multi_dot_cn.rst | 2 +- .../basic_concept/amp_cn.ipynb | 463 +++++++++++ .../basic_concept/amp_cn.md | 42 +- .../basic_concept/amp_en.ipynb | 453 +++++++++++ .../basic_concept/amp_en.md | 88 ++- .../basic_concept/autograd_cn.rst | 4 +- .../basic_concept/gradient_clip_cn.rst | 2 + .../basic_concept/gradient_clip_en.rst | 2 + .../basic_concept/tensor_introduction_cn.md | 5 +- .../basic_concept/tensor_introduction_en.md | 5 +- ...model.rst => load_old_format_model_cn.rst} | 0 .../migration_cn.rst | 2 +- .../01_paddle2.0_introduction/update_cn.md | 4 +- .../05_train_eval_predict_cn.rst | 112 +-- .../guides/performance_improving/index_cn.rst | 7 +- docs/install/docker/fromdocker.rst | 1 - docs/install/docker/fromdocker_en.rst | 1 - docs/practices/cv/image_ocr.ipynb | 722 +++++++++++++++++ docs/practices/cv/image_ocr/image_ocr.ipynb | 739 ------------------ docs/practices/cv/image_ocr/images/image1.png | Bin 133262 -> 0 bytes docs/practices/cv/image_ocr/images/image2.png | Bin 93944 -> 0 bytes docs/practices/cv/image_ocr/images/image3.png | Bin 508150 -> 0 bytes docs/practices/cv/index_cn.rst | 6 +- .../cv/{image_ocr => }/sample_img/9450.jpg | Bin .../cv/{image_ocr => }/sample_img/9451.jpg | Bin .../cv/{image_ocr => }/sample_img/9452.jpg | Bin docs/practices/index_cn.rst | 2 +- docs/release_note_cn.md | 123 ++- docs/release_note_en.md | 116 ++- 30 files changed, 1968 insertions(+), 943 deletions(-) rename docs/api/paddle/{ => linalg}/matrix_power_cn.rst (86%) rename docs/api/paddle/{ => linalg}/multi_dot_cn.rst (97%) create mode 100644 docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.ipynb create mode 100644 docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.ipynb rename docs/guides/01_paddle2.0_introduction/{load_old_format_model.rst => load_old_format_model_cn.rst} (100%) create mode 100644 docs/practices/cv/image_ocr.ipynb delete mode 100644 docs/practices/cv/image_ocr/image_ocr.ipynb delete mode 100644 docs/practices/cv/image_ocr/images/image1.png delete mode 100644 docs/practices/cv/image_ocr/images/image2.png delete mode 100644 docs/practices/cv/image_ocr/images/image3.png rename docs/practices/cv/{image_ocr => }/sample_img/9450.jpg (100%) rename docs/practices/cv/{image_ocr => }/sample_img/9451.jpg (100%) rename docs/practices/cv/{image_ocr => }/sample_img/9452.jpg (100%) diff --git a/docs/api/paddle/matrix_power_cn.rst b/docs/api/paddle/linalg/matrix_power_cn.rst similarity index 86% rename from docs/api/paddle/matrix_power_cn.rst rename to docs/api/paddle/linalg/matrix_power_cn.rst index 210b41e61c9..c1f771a92f0 100644 --- a/docs/api/paddle/matrix_power_cn.rst +++ b/docs/api/paddle/linalg/matrix_power_cn.rst @@ -3,7 +3,7 @@ matrix_power ------------------------------- -.. py:function:: paddle.matrix_power(x, n, name=None) +.. py:function:: paddle.linalg.matrix_power(x, n, name=None) 计算一个或一批方阵的 ``n`` 次幂。 @@ -41,17 +41,17 @@ matrix_power x = paddle.to_tensor([[1, 2, 3], [1, 4, 9], [1, 8, 27]], dtype='float64') - print(paddle.matrix_power(x, 2)) + print(paddle.linalg.matrix_power(x, 2)) # [[6. , 34. , 102.], # [14. , 90. , 282.], # [36. , 250., 804.]] - print(paddle.matrix_power(x, 0)) + print(paddle.linalg.matrix_power(x, 0)) # [[1., 0., 0.], # [0., 1., 0.], # [0., 0., 1.]] - print(paddle.matrix_power(x, -2)) + print(paddle.linalg.matrix_power(x, -2)) # [[ 12.91666667, -12.75000000, 2.83333333 ], # [-7.66666667 , 8. , -1.83333333 ], - # [ 1.80555556 , -1.91666667 , 0.44444444 ]] \ No newline at end of file + # [ 1.80555556 , -1.91666667 , 0.44444444 ]] diff --git a/docs/api/paddle/multi_dot_cn.rst b/docs/api/paddle/linalg/multi_dot_cn.rst similarity index 97% rename from docs/api/paddle/multi_dot_cn.rst rename to docs/api/paddle/linalg/multi_dot_cn.rst index 8dc63f4a419..e6200eecbdd 100755 --- a/docs/api/paddle/multi_dot_cn.rst +++ b/docs/api/paddle/linalg/multi_dot_cn.rst @@ -3,7 +3,7 @@ multi_dot ------------------------------- -.. py:function:: paddle.multi_dot(x, name=None) +.. py:function:: paddle.linalg.multi_dot(x, name=None) Multi_dot是一个计算多个矩阵乘法的算子。 diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.ipynb b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.ipynb new file mode 100644 index 00000000000..e5a5b2106b8 --- /dev/null +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.ipynb @@ -0,0 +1,463 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "# 自动混合精度训练\n", + "\n", + "一般情况下,训练深度学习模型时使用的数据类型为单精度(FP32)。2018年,百度与NVIDIA联合发表论文:[MIXED PRECISION TRAINING](https://arxiv.org/pdf/1710.03740.pdf),提出了混合精度训练的方法。混合精度训练是指在训练过程中,同时使用单精度(FP32)和半精度(FP16),其目的是相较于使用单精度(FP32)训练模型,在保持精度持平的条件下,能够加速训练。本文将介绍如何使用飞桨框架,实现自动混合精度训练。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 一、半精度浮点类型 FP16\n", + "\n", + "首先介绍半精度(FP16)。如图1所示,半精度(FP16)是一种相对较新的浮点类型,在计算机中使用2字节(16位)存储。在IEEE 754-2008标准中,它亦被称作binary16。与计算中常用的单精度(FP32)和双精度(FP64)类型相比,FP16更适于在精度要求不高的场景中使用。\n", + "\n", + "
\n", + " missing\n", + "
图 1. 半精度和单精度数据示意图
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 二、NVIDIA GPU的FP16算力\n", + "在使用相同的超参数下,混合精度训练使用半精度浮点(FP16)和单精度(FP32)浮点即可达到与使用纯单精度训练相同的准确率,并可加速模型的训练速度。这主要得益于英伟达推出的Volta及Turing架构GPU在使用FP16计算时具有如下特点:\n", + "- FP16可降低一半的内存带宽和存储需求,这使得在相同的硬件条件下研究人员可使用更大更复杂的模型以及更大的batch size大小。\n", + "- FP16可以充分利用英伟达Volta及Turing架构GPU提供的Tensor Cores技术。在相同的GPU硬件上,Tensor Cores的FP16计算吞吐量是FP32的8倍。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 三、使用飞桨框架实现自动混合精度\n", + "使用飞桨框架提供的API,``paddle.amp.auto_cast`` 和 ``paddle.amp.decorate`` 和 ``paddle.amp.GradScaler`` 能够实现自动混合精度训练(Automatic Mixed Precision,AMP),即在相关OP的计算中,根据一定的规则,自动选择FP16或FP32计算。飞桨的AMP为用户提供了两种模式:\n", + "- level=’O1‘:采用黑名名单策略的混合精度训练,使用FP16与FP32进行计算的OP列表可见该[文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/amp/Overview_cn.html)。\n", + "- level=’O2‘:纯FP16训练,除用户自定义黑名单中指定的OP和不支持FP16计算的OP之外,全部使用FP16计算。\n", + "\n", + "下面来看一个具体的例子,来了解如果使用飞桨框架实现混合精度训练。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.1 辅助函数\n", + "首先定义辅助函数,用来计算训练时间。" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import time\n", + "\n", + "# 开始时间\n", + "start_time = None\n", + "\n", + "def start_timer():\n", + " # 获取开始时间\n", + " global start_time\n", + " start_time = time.time()\n", + "\n", + "def end_timer_and_print(msg):\n", + " # 打印信息并输出训练时间\n", + " end_time = time.time()\n", + " print(\"\\n\" + msg)\n", + " print(\"共计耗时 = {:.3f} sec\".format(end_time - start_time))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.2 构建一个简单的网络\n", + "\n", + "构建一个简单的网络,用于对比使用普通方法进行训练与使用混合精度训练的训练速度。该网络由三层 ``Linear`` 组成,其中前两层 ``Linear`` 后接 ``ReLU`` 激活函数。" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import paddle\n", + "import paddle.nn as nn\n", + "\n", + "class SimpleNet(nn.Layer):\n", + "\n", + " def __init__(self, input_size, output_size):\n", + " \n", + " super(SimpleNet, self).__init__()\n", + " self.linear1 = nn.Linear(input_size, output_size)\n", + " self.relu1 = nn.ReLU()\n", + " self.linear2 = nn.Linear(input_size, output_size)\n", + " self.relu2 = nn.ReLU()\n", + " self.linear3 = nn.Linear(input_size, output_size)\n", + "\n", + " def forward(self, x):\n", + "\n", + " x = self.linear1(x)\n", + " x = self.relu1(x)\n", + " x = self.linear2(x)\n", + " x = self.relu2(x)\n", + " x = self.linear3(x)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "设置训练的相关参数,这里为了能有效的看出混合精度训练对于训练速度的提升,将 ``input_size`` 与 ``output_size`` 的值设为较大的值,为了使用GPU 提供的``Tensor Core`` 性能,还需将 ``batch_size`` 设置为 8 的倍数。" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W1110 18:42:02.362493 104 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1\n", + "W1110 18:42:02.367755 104 device_context.cc:465] device: 0, cuDNN Version: 7.6.\n" + ] + } + ], + "source": [ + "epochs = 5\n", + "input_size = 4096 # 设为较大的值\n", + "output_size = 4096 # 设为较大的值\n", + "batch_size = 512 # batch_size 为8的倍数\n", + "nums_batch = 50\n", + "\n", + "train_data = [paddle.randn((batch_size, input_size)) for _ in range(nums_batch)]\n", + "labels = [paddle.randn((batch_size, output_size)) for _ in range(nums_batch)]\n", + "\n", + "mse = paddle.nn.MSELoss()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.3 使用默认的训练方式进行训练" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.24519622])\n", + "\n", + "默认耗时:\n", + "共计耗时 = 2.926 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # 定义模型\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # 定义优化器\n", + "\n", + "start_timer() # 获取训练开始时间\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # 反向传播\n", + " loss.backward()\n", + "\n", + " # 训练模型\n", + " optimizer.step()\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"默认耗时:\") # 获取结束时间并打印相关信息" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.4 使用AMP训练模型\n", + "\n", + "在飞桨框架中,使用自动混合精度训练,需要进行四个步骤:\n", + "\n", + "- Step1: 定义 ``GradScaler`` ,用于缩放 ``loss`` 比例,避免浮点数下溢\n", + "- Step2: 使用 ``decorate`` 在level=’O1‘模式下不做任何处理,无需调用该api,在level=’O2‘模式下,将网络参数从FP32转换为FP16\n", + "- Step3: 使用 ``auto_cast`` 用于创建AMP上下文环境,该上下文中自动会确定每个OP的输入数据类型(FP16或FP32)\n", + "- Step4: 使用 Step1中定义的 ``GradScaler`` 完成 ``loss`` 的缩放,用缩放后的 ``loss`` 进行反向传播,完成训练\n", + "\n", + "\n", + "采用level=’O1‘模式训练:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.24815702])\n", + "\n", + "使用AMP-O1模式耗时:\n", + "共计耗时 = 1.294 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # 定义模型\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # 定义优化器\n", + "\n", + "# Step1:定义 GradScaler,用于缩放loss比例,避免浮点数溢出\n", + "scaler = paddle.amp.GradScaler(init_loss_scaling=1024)\n", + "\n", + "start_timer() # 获取训练开始时间\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " # Step2:创建AMP上下文环境,开启自动混合精度训练\n", + " with paddle.amp.auto_cast():\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # Step3:使用 Step1中定义的 GradScaler 完成 loss 的缩放,用缩放后的 loss 进行反向传播\n", + " scaled = scaler.scale(loss)\n", + " scaled.backward()\n", + "\n", + " # 训练模型\n", + " scaler.minimize(optimizer, scaled)\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"使用AMP-O1模式耗时:\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "采用level=’O2‘模式训练:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.25423336])\n", + "\n", + "使用AMP-O2模式耗时:\n", + "共计耗时 = 0.890 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # 定义模型\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # 定义优化器\n", + "\n", + "# Step1:定义 GradScaler,用于缩放loss比例,避免浮点数溢出\n", + "scaler = paddle.amp.GradScaler(init_loss_scaling=1024)\n", + "\n", + "# Step2:在level=’O2‘模式下,将网络参数从FP32转换为FP16\n", + "model, optimizer = paddle.amp.decorate(models=model, optimizers=optimizer, level='O2', master_weight=None, save_dtype=None)\n", + "\n", + "start_timer() # 获取训练开始时间\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " # Step3:创建AMP上下文环境,开启自动混合精度训练\n", + " with paddle.amp.auto_cast(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # Step4:使用 Step1中定义的 GradScaler 完成 loss 的缩放,用缩放后的 loss 进行反向传播\n", + " scaled = scaler.scale(loss)\n", + " scaled.backward()\n", + "\n", + " # 训练模型\n", + " scaler.minimize(optimizer, scaled)\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"使用AMP-O2模式耗时:\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 四、进阶用法\n", + "### 4.1 使用梯度累加\n", + "梯度累加是指在模型训练过程中,训练一个batch的数据得到梯度后,不立即用该梯度更新模型参数,而是继续下一个batch数据的训练,得到梯度后继续循环,多次循环后梯度不断累加,直至达到一定次数后,用累加的梯度更新参数,这样可以起到变相扩大 batch_size 的作用。\n", + "\n", + "在自动混合精度训练中,也支持梯度累加,使用方式如下:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.25602019])\n", + "\n", + "使用AMP模式耗时:\n", + "共计耗时 = 1.026 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # 定义模型\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # 定义优化器\n", + "\n", + "accumulate_batchs_num = 10 # 梯度累加中 batch 的数量\n", + "\n", + "# 定义 GradScaler\n", + "scaler = paddle.amp.GradScaler(init_loss_scaling=1024)\n", + "\n", + "start_timer() # 获取训练开始时间\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " # 创建AMP上下文环境,开启自动混合精度训练\n", + " with paddle.amp.auto_cast():\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # 使用 GradScaler 完成 loss 的缩放,用缩放后的 loss 进行反向传播\n", + " scaled = scaler.scale(loss)\n", + " scaled.backward()\n", + "\n", + " # 当累计的 batch 为 accumulate_batchs_num 时,更新模型参数\n", + " if (i + 1) % accumulate_batchs_num == 0:\n", + "\n", + " # 训练模型\n", + " scaler.minimize(optimizer, scaled)\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"使用AMP模式耗时:\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 五、总结\n", + "从上面的示例中可以看出,使用自动混合精度训练,O1模式共计耗时约 1.294s,O2模式共计耗时约 0.890s,而普通的训练方式则耗时 2.926s,O1模式训练速度提升约为 2.1倍,O2模式训练速度提升约为 3.0倍。如需更多使用混合精度训练的示例,请参考飞桨模型库: [paddlepaddle/models](https://github.com/PaddlePaddle/models)。" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "py35-paddle1.2.0" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.md b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.md index bc96b6736a4..646e01ecd37 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.md +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_cn.md @@ -1,6 +1,6 @@ # 自动混合精度训练 -一般情况下,训练深度学习模型时使用的数据类型为单精度(FP32)。2018年,百度与NVIDIA联合发表论文:[MIXED PRECISION TRAINING](https://arxiv.org/pdf/1710.03740.pdf),提出了混合精度训练的方法。混合精度训练是指在训练过程中,同时使用单精度(FP32)和半精度(FP16),其目的是相较于使用单精度(FP32)训练模型,在保持精度持平的条件下,能够加速训练。本文将介绍如何使用飞桨框架,实现自动混合精度训练。 +一般情况下,训练深度学习模型时使用的数据类型为单精度(FP32)。2018年,百度与NVIDIA联合发表论文:[MIXED PRECISION TRAINING](https://arxiv.org/pdf/1710.03740.pdf),提出了混合精度训练的方法。混合精度训练是指在训练过程中,同时使用单精度(FP32)和半精度(FP16),其目的是相较于使用单精度(FP32)训练模型,在保持精度持平的条件下,能够加速训练。本文将介绍如何使用飞桨框架,实现自动混合精度训练。 ## 一、半精度浮点类型 FP16 @@ -57,6 +57,7 @@ import paddle.nn as nn class SimpleNet(nn.Layer): def __init__(self, input_size, output_size): + super(SimpleNet, self).__init__() self.linear1 = nn.Linear(input_size, output_size) self.relu1 = nn.ReLU() @@ -91,6 +92,10 @@ labels = [paddle.randn((batch_size, output_size)) for _ in range(nums_batch)] mse = paddle.nn.MSELoss() ``` + W1110 18:42:02.362493 104 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1 + W1110 18:42:02.367755 104 device_context.cc:465] device: 0, cuDNN Version: 7.6. + + ### 3.3 使用默认的训练方式进行训练 @@ -120,10 +125,10 @@ end_timer_and_print("默认耗时:") # 获取结束时间并打印相关信息 ``` Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.24609220]) - + [1.24519622]) + 默认耗时: - 共计耗时 = 2.819 sec + 共计耗时 = 2.926 sec ### 3.4 使用AMP训练模型 @@ -138,6 +143,7 @@ end_timer_and_print("默认耗时:") # 获取结束时间并打印相关信息 采用level=’O1‘模式训练: + ```python model = SimpleNet(input_size, output_size) # 定义模型 @@ -170,14 +176,15 @@ end_timer_and_print("使用AMP-O1模式耗时:") ``` Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.24609900]) - + [1.24815702]) + 使用AMP-O1模式耗时: - 共计耗时 = 1.324 sec + 共计耗时 = 1.294 sec 采用level=’O2‘模式训练: + ```python model = SimpleNet(input_size, output_size) # 定义模型 @@ -212,11 +219,17 @@ print(loss) end_timer_and_print("使用AMP-O2模式耗时:") ``` + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.24997652]) - + [1.25423336]) + 使用AMP-O2模式耗时: - 共计耗时 = 0.933 sec + 共计耗时 = 0.890 sec ## 四、进阶用法 @@ -263,10 +276,11 @@ end_timer_and_print("使用AMP模式耗时:") ``` Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.24623466]) - + [1.25602019]) + 使用AMP模式耗时: - 共计耗时 = 1.020 sec + 共计耗时 = 1.026 sec + ## 五、总结 -从上面的示例中可以看出,使用自动混合精度训练,O1模式共计耗时约 1.324s,O2模式共计耗时约 0.933s,而普通的训练方式则耗时 2.819s,O1模式训练速度提升约为 2.1倍,O2模式训练速度提升约为 3.0倍。如需更多使用混合精度训练的示例,请参考飞桨模型库: [paddlepaddle/models](https://github.com/PaddlePaddle/models)。 +从上面的示例中可以看出,使用自动混合精度训练,O1模式共计耗时约 1.294s,O2模式共计耗时约 0.890s,而普通的训练方式则耗时 2.926s,O1模式训练速度提升约为 2.1倍,O2模式训练速度提升约为 3.0倍。如需更多使用混合精度训练的示例,请参考飞桨模型库: [paddlepaddle/models](https://github.com/PaddlePaddle/models)。 diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.ipynb b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.ipynb new file mode 100644 index 00000000000..22c12fcfed1 --- /dev/null +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.ipynb @@ -0,0 +1,453 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "# Automatic Mixed Precision Training\n", + "\n", + "In general, the datatype of training deep learning models is single-precision floating-point format(also called FP32). In 2018, Baidu and NVIDIA jointly published the paper: [MIXED PRECISION TRAINING](https://arxiv.org/pdf/1710.03740.pdf), which proposed mixed precision training. During the process of training, some operators use FP32 and other operators use half precision(also called FP16) in the same time. Its purpose is to speed up training, while compared with the FP32 training model, the same accuracy is maintained. This tutorial will introduce how to use automatic mixed precision training with PaddlePaddle." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 1. Half Precision (FP16)\n", + "\n", + "First introduce FP16. As shown in Figure 1, FP16 occupies 16 bits (two bytes in modern computers) of computer memory. In the IEEE 754-2008 standard, it is also named binary16. Compared with FP32 and double precision (also called FP64) commonly used, FP16 is more suitable for the usage in scenarios with low precision requirements.\n", + "\n", + "
\n", + " missing\n", + "
Figure 1. Half precision(FP16) and single precision(FP32)
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 2. FP16 Computing Power of NVIDIA GPU\n", + "\n", + "When the same hyperparameters are used, mixed precision training using FP16 and FP32 can achieve the same accuracy as that of pure single precision used, and can accelerate the training speed. It mainly attributes to the features that NVIDIA Volta and NVIDIA Turing use FP16 to calculate:\n", + "- FP16 can reduce memory bandwidth and storage requirements by half, which allows researchers to use more complex models and larger batch sizes under the same hardware conditions.\n", + "- FP16 can make full use of Tensor Cores technology provided by NVIDIA Volta and NVIDIA Turing. On the same GPU hardware, the computing throughput of Tensor Cores' FP16 is 8 times bigger than that of FP32." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 3. Automatic Mixed Precision Training with PaddlePaddle\n", + "\n", + "Using PaddlePaddle's API ``paddle.amp.auto_cast`` and ``paddle.amp.GradScaler`` can realize automatic mixed precision training (AMP), which can automatically choose FP16 or FP32 for different operators' calculation. After the AMP mode is turned on, the operator list calculated by FP16 and FP32 can be found in this [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/amp/Overview_cn.html). This is a specific example to understand how to use PaddlePaddle to achieve mixed precision training." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.1 Auxiliary Function\n", + "First define the auxiliary function to calculate the training time." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import time\n", + "\n", + "# start time\n", + "start_time = None\n", + "\n", + "def start_timer():\n", + " # get start time\n", + " global start_time\n", + " start_time = time.time()\n", + "\n", + "def end_timer_and_print(msg):\n", + " # print message and total training time\n", + " end_time = time.time()\n", + " print(\"\\n\" + msg)\n", + " print(\"total time = {:.3f} sec\".format(end_time - start_time))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.2 A Simple Network\n", + "\n", + "Define a simple network to compare the training speed of common methods and mixed precision. The network is composed of three layers of ``Linear``. The first two layers of ``Linear`` are followed by the ``ReLU`` activation function." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import paddle\n", + "import paddle.nn as nn\n", + "\n", + "class SimpleNet(nn.Layer):\n", + "\n", + " def __init__(self, input_size, output_size):\n", + " \n", + " super(SimpleNet, self).__init__()\n", + " self.linear1 = nn.Linear(input_size, output_size)\n", + " self.relu1 = nn.ReLU()\n", + " self.linear2 = nn.Linear(input_size, output_size)\n", + " self.relu2 = nn.ReLU()\n", + " self.linear3 = nn.Linear(input_size, output_size)\n", + "\n", + " def forward(self, x):\n", + "\n", + " x = self.linear1(x)\n", + " x = self.relu1(x)\n", + " x = self.linear2(x)\n", + " x = self.relu2(x)\n", + " x = self.linear3(x)\n", + "\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "Set the parameters of training. In order to effectively show the improvement of training speed by mixed precision training, please set the larger values of ``input_size`` and ``output_size``. And in order to use the ``Tensor Core`` provided by GPU, ``batch_size`` needs to be set as a multiple of 8." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "epochs = 5\n", + "input_size = 4096 # set to a larger value\n", + "output_size = 4096 # set to a larger value\n", + "batch_size = 512 # batch_size is a multiple of 8\n", + "nums_batch = 50\n", + "\n", + "train_data = [paddle.randn((batch_size, input_size)) for _ in range(nums_batch)]\n", + "labels = [paddle.randn((batch_size, output_size)) for _ in range(nums_batch)]\n", + "\n", + "mse = paddle.nn.MSELoss()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.3 Training with Default Method" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.24072289])\n", + "\n", + "Default time:\n", + "total time = 2.935 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # define model\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # define optimizer\n", + "\n", + "start_timer() # get the start time of training\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # backpropagation\n", + " loss.backward()\n", + "\n", + " # update parameters\n", + " optimizer.step()\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"Default time:\") # print massage and total time" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.4 Training with AMP\n", + "\n", + "Using automatic mixed precision training with PaddlePaddle requires four steps:\n", + "\n", + "- Step1: Define ``GradScaler``, which is used to scale the ``loss`` to avoid underflow\n", + "- Step2: Use ``decorate``, to do nothing in level='O1' mode without using this api, and in level='O2' mode to convert network parameters from FP32 to FP16\n", + "- Step3: Use ``auto_cast`` to create an AMP context, in which the input datatype(FP16 or FP32) of each oprator will be automatically determined\n", + "- Step4: Use ``GradScaler`` defined in Step1 to complete the scaling of ``loss``, and use the scaled ``loss`` for backpropagation to complete the training\n", + "\n", + "In level=’O1‘ mode:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.24848151])\n", + "\n", + "AMP time in O1 mode:\n", + "total time = 1.299 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # define model\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # define optimizer\n", + "\n", + "# Step1:define GradScaler\n", + "scaler = paddle.amp.GradScaler(init_loss_scaling=1024)\n", + "\n", + "start_timer() # get start time\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " # Step2:create AMP context environment\n", + " with paddle.amp.auto_cast():\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # Step3:use GradScaler complete the loss scaling\n", + " scaled = scaler.scale(loss)\n", + " scaled.backward()\n", + "\n", + " # update parameters\n", + " scaler.minimize(optimizer, scaled)\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"AMP time in O1 mode:\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "In level='O2' mode:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "in ParamBase copy_to func\n", + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.25075114])\n", + "\n", + "AMP time in O2 mode:\n", + "total time = 0.888 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # define model\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # define optimizer\n", + "\n", + "# Step1:define GradScaler\n", + "scaler = paddle.amp.GradScaler(init_loss_scaling=1024)\n", + "\n", + "# Step2:in level='O2' mode, convert network parameters from FP32 to FP16\n", + "model, optimizer = paddle.amp.decorate(models=model, optimizers=optimizer, level='O2', master_weight=None, save_dtype=None)\n", + "\n", + "start_timer() # get start time\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " # Step3:create AMP context environment\n", + " with paddle.amp.auto_cast(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # Step4:use GradScaler complete the loss scaling\n", + " scaled = scaler.scale(loss)\n", + " scaled.backward()\n", + "\n", + " # update parameters\n", + " scaler.minimize(optimizer, scaled)\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"AMP time in O2 mode:\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 4. Advanced Usage\n", + "### 4.1 Gradient Accumulation\n", + "\n", + "Gradient accumulation means running a configured number of steps without updating the model variables. Until certain steps, use the accumulated gradients to update the variables.\n", + "\n", + "In automatic mixed precision training, gradient accumulation is also supported, and the usage is as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False,\n", + " [1.25853443])\n", + "\n", + "AMP time:\n", + "total time = 1.034 sec\n" + ] + } + ], + "source": [ + "model = SimpleNet(input_size, output_size) # define model\n", + "\n", + "optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # define optimizer\n", + "\n", + "accumulate_batchs_num = 10 # the batch numbers of gradients accumulation\n", + "\n", + "# define GradScaler\n", + "scaler = paddle.amp.GradScaler(init_loss_scaling=1024)\n", + "\n", + "start_timer() # get start time\n", + "\n", + "for epoch in range(epochs):\n", + " datas = zip(train_data, labels)\n", + " for i, (data, label) in enumerate(datas):\n", + "\n", + " # create AMP context environment\n", + " with paddle.amp.auto_cast():\n", + " output = model(data)\n", + " loss = mse(output, label)\n", + "\n", + " # use GradScaler complete the loss scaling\n", + " scaled = scaler.scale(loss)\n", + " scaled.backward()\n", + "\n", + " # when the accumulated batch is accumulate_batchs_num, update the model parameters\n", + " if (i + 1) % accumulate_batchs_num == 0:\n", + "\n", + " # update parameters\n", + " scaler.minimize(optimizer, scaled)\n", + " optimizer.clear_grad()\n", + "\n", + "print(loss)\n", + "end_timer_and_print(\"AMP time:\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 5. Conclusion\n", + "\n", + "As can be seen from the above example, using the automatic mixed precision training, in O1 mode the total time is about 1.299s, in O2 mode the total time is about 0.888s, while the ordinary training method takes 2.935s, and the training speed is increased by about 2.4 times in O1 mode and 2.4 times in O2 mode. For more examples of using mixed precision training, please refer to paddlepaddle's models: [paddlepaddle/models](https://github.com/PaddlePaddle/models)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "py35-paddle1.2.0" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.md b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.md index ee31dc70ba1..6c5f15edfae 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.md +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/amp_en.md @@ -1,6 +1,6 @@ # Automatic Mixed Precision Training -In general, the datatype of training deep learning models is single-precision floating-point format(also called FP32). In 2018, Baidu and NVIDIA jointly published the paper: [MIXED PRECISION TRAINING](https://arxiv.org/pdf/1710.03740.pdf), which proposed mixed precision training. During the process of training, some operators use FP32 and other operators use half precision(also called FP16) in the same time. Its purpose is to speed up training, while compared with the FP32 training model, the same accuracy is maintained. This tutorial will introduce how to use automatic mixed precision training with PaddlePaddle. +In general, the datatype of training deep learning models is single-precision floating-point format(also called FP32). In 2018, Baidu and NVIDIA jointly published the paper: [MIXED PRECISION TRAINING](https://arxiv.org/pdf/1710.03740.pdf), which proposed mixed precision training. During the process of training, some operators use FP32 and other operators use half precision(also called FP16) in the same time. Its purpose is to speed up training, while compared with the FP32 training model, the same accuracy is maintained. This tutorial will introduce how to use automatic mixed precision training with PaddlePaddle. ## 1. Half Precision (FP16) @@ -55,6 +55,7 @@ import paddle.nn as nn class SimpleNet(nn.Layer): def __init__(self, input_size, output_size): + super(SimpleNet, self).__init__() self.linear1 = nn.Linear(input_size, output_size) self.relu1 = nn.ReLU() @@ -118,19 +119,22 @@ end_timer_and_print("Default time:") # print massage and total time ``` Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.25010288]) - + [1.24072289]) + Default time: - total time = 2.943 sec + total time = 2.935 sec ### 3.4 Training with AMP -Using automatic mixed precision training with PaddlePaddle requires three steps: +Using automatic mixed precision training with PaddlePaddle requires four steps: + +- Step1: Define ``GradScaler``, which is used to scale the ``loss`` to avoid underflow +- Step2: Use ``decorate``, to do nothing in level='O1' mode without using this api, and in level='O2' mode to convert network parameters from FP32 to FP16 +- Step3: Use ``auto_cast`` to create an AMP context, in which the input datatype(FP16 or FP32) of each oprator will be automatically determined +- Step4: Use ``GradScaler`` defined in Step1 to complete the scaling of ``loss``, and use the scaled ``loss`` for backpropagation to complete the training -- Step1: Define ``GradScaler``, which is used to scale the ``loss`` and ``gradients``to avoid underflow -- Step2: Use ``auto_cast`` to create an AMP context, in which the input datatype(FP16 or FP32) of each oprator will be automatically determined -- Step3: Use ``GradScaler`` defined in Step1 to complete the scaling of ``loss``, and use the scaled ``loss`` for backpropagation to complete the training +In level=’O1‘ mode: ```python @@ -161,14 +165,64 @@ for epoch in range(epochs): optimizer.clear_grad() print(loss) -end_timer_and_print("AMP time:") +end_timer_and_print("AMP time in O1 mode:") ``` Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.23644269]) + [1.24848151]) + + AMP time in O1 mode: + total time = 1.299 sec - AMP time: - total time = 1.222 sec + +In level='O2' mode: + + +```python +model = SimpleNet(input_size, output_size) # define model + +optimizer = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) # define optimizer + +# Step1:define GradScaler +scaler = paddle.amp.GradScaler(init_loss_scaling=1024) + +# Step2:in level='O2' mode, convert network parameters from FP32 to FP16 +model, optimizer = paddle.amp.decorate(models=model, optimizers=optimizer, level='O2', master_weight=None, save_dtype=None) + +start_timer() # get start time + +for epoch in range(epochs): + datas = zip(train_data, labels) + for i, (data, label) in enumerate(datas): + + # Step3:create AMP context environment + with paddle.amp.auto_cast(enable=True, custom_white_list=None, custom_black_list=None, level='O2'): + output = model(data) + loss = mse(output, label) + + # Step4:use GradScaler complete the loss scaling + scaled = scaler.scale(loss) + scaled.backward() + + # update parameters + scaler.minimize(optimizer, scaled) + optimizer.clear_grad() + +print(loss) +end_timer_and_print("AMP time in O2 mode:") +``` + + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + in ParamBase copy_to func + Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, + [1.25075114]) + + AMP time in O2 mode: + total time = 0.888 sec ## 4. Advanced Usage @@ -204,7 +258,7 @@ for epoch in range(epochs): scaled = scaler.scale(loss) scaled.backward() - # when the accumulated batch is accumulate_batchs_num, update the model parameters + # when the accumulated batch is accumulate_batchs_num, update the model parameters if (i + 1) % accumulate_batchs_num == 0: # update parameters @@ -216,12 +270,12 @@ end_timer_and_print("AMP time:") ``` Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, - [1.25127280]) - + [1.25853443]) + AMP time: - total time = 1.006 sec + total time = 1.034 sec ## 5. Conclusion -As can be seen from the above example, using the automatic mixed precision training, the total time is about 1.222s, while the ordinary training method takes 2.943s, and the training speed is increased by about 2.4 times. For more examples of using mixed precision training, please refer to paddlepaddle's models: [paddlepaddle/models](https://github.com/PaddlePaddle/models). +As can be seen from the above example, using the automatic mixed precision training, in O1 mode the total time is about 1.299s, in O2 mode the total time is about 0.888s, while the ordinary training method takes 2.935s, and the training speed is increased by about 2.4 times in O1 mode and 2.4 times in O2 mode. For more examples of using mixed precision training, please refer to paddlepaddle's models: [paddlepaddle/models](https://github.com/PaddlePaddle/models). diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/autograd_cn.rst b/docs/guides/01_paddle2.0_introduction/basic_concept/autograd_cn.rst index 3951f03c09d..fcf36e1d774 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/autograd_cn.rst +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/autograd_cn.rst @@ -35,7 +35,7 @@ PaddlePaddle的神经网络核心是自动微分,本篇文章主要为你介 .. parsed-literal:: - 2.1.1 + 2.2.0 本案例首先定义网络。因为本示例着重展示如何使用飞桨进行自动微分,故组网部分不过多展开,直接使用高层API中封装好的模型\ ``vgg11``\ 。 @@ -291,4 +291,4 @@ PaddlePaddle的神经网络核心是自动微分,本篇文章主要为你介 五、总结 ------------------------ -本文章主要介绍了如何使用飞桨的自动微分,以及飞桨的自动微分机制。 +本文章主要介绍了如何使用飞桨的自动微分,以及飞桨的自动微分机制。 \ No newline at end of file diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_cn.rst b/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_cn.rst index 5f32441212d..7d5cd89b959 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_cn.rst +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_cn.rst @@ -20,6 +20,8 @@ Paddle提供了三种梯度裁剪方式: .. code:: ipython3 + import paddle + linear = paddle.nn.Linear(10, 10) clip = paddle.nn.ClipGradByValue(min=-1, max=1) sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip) diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_en.rst b/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_en.rst index b6d58570b4f..31fd73f8b11 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_en.rst +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_en.rst @@ -20,6 +20,8 @@ By default, Gradients of all parameters in SGD optimizer will be clipped: .. code:: ipython3 + import paddle + linear = paddle.nn.Linear(10, 10) clip = paddle.nn.ClipGradByValue(min=-1, max=1) sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip) diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_cn.md b/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_cn.md index 3eb03db37b8..00efa373a39 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_cn.md +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_cn.md @@ -81,8 +81,8 @@ array([[1., 2., 3.], **Tensor**不仅支持 floats、ints 类型数据,也支持 complex numbers数据,如果输入为复数数据,则**Tensor**的dtype为 ``complex64`` 或 ``complex128`` ,其每个元素均为1个复数: ```python -ndim_2_tensor = paddle.to_tensor([[1.0, 2.0, 3.0], - [4.0, 5.0, 6.0]]) +ndim_2_tensor = paddle.to_tensor([[(1+1j), (2+2j)], + [(3+3j), (4+4j)]]) print(ndim_2_tensor) ``` @@ -473,7 +473,6 @@ x.logical_not(y) #对两个bool型tensor逐元素进行逻辑非操 ### 线性代数相关 ```python -x.cholesky() #矩阵的cholesky分解 x.t() #矩阵转置 x.transpose([1, 0]) #交换axis 0 与axis 1的顺序 x.norm('fro') #矩阵的Frobenius 范数 diff --git a/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_en.md b/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_en.md index 9e44ad029a7..f9dfcde4c58 100644 --- a/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_en.md +++ b/docs/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_en.md @@ -80,8 +80,8 @@ array([[1., 2., 3.], **Tensor** supports not only floats and ints but also complex numbers data, If input complex number data, the dtype of **Tensor** is ``complex64`` or ``complex128`` : ```python -ndim_2_tensor = paddle.to_tensor([[1.0, 2.0, 3.0], - [4.0, 5.0, 6.0]]) +ndim_2_tensor = paddle.to_tensor([[(1+1j), (2+2j)], + [(3+3j), (4+4j)]]) print(ndim_2_tensor) ``` @@ -482,7 +482,6 @@ x.logical_not(y) #logic not operation for two bool tensor ### linear algebra operators ```python -x.cholesky() #cholesky decomposition of a matrix x.t() #matrix transpose x.transpose([1, 0]) #swap axis 0 with axis 1 x.norm('fro') #Frobenius Norm of matrix diff --git a/docs/guides/01_paddle2.0_introduction/load_old_format_model.rst b/docs/guides/01_paddle2.0_introduction/load_old_format_model_cn.rst similarity index 100% rename from docs/guides/01_paddle2.0_introduction/load_old_format_model.rst rename to docs/guides/01_paddle2.0_introduction/load_old_format_model_cn.rst diff --git a/docs/guides/01_paddle2.0_introduction/migration_cn.rst b/docs/guides/01_paddle2.0_introduction/migration_cn.rst index f04a2ee8835..94f9e2ee60d 100644 --- a/docs/guides/01_paddle2.0_introduction/migration_cn.rst +++ b/docs/guides/01_paddle2.0_introduction/migration_cn.rst @@ -66,7 +66,7 @@ paddle_upgrade_tool 可以使用下面的方式,快速使用: 开始 ^^^^ -在使用paddle_upgrade_tool前,需要确保已经安装了Paddle 2.0.0版本。 +在使用paddle_upgrade_tool前,需要确保已经安装了Paddle 2.0.0+版本。 .. code:: ipython3 diff --git a/docs/guides/01_paddle2.0_introduction/update_cn.md b/docs/guides/01_paddle2.0_introduction/update_cn.md index 2e1c44ab4ac..7f367547d13 100644 --- a/docs/guides/01_paddle2.0_introduction/update_cn.md +++ b/docs/guides/01_paddle2.0_introduction/update_cn.md @@ -558,5 +558,5 @@ https://github.com/PaddlePaddle/paddle_upgrade_tool ### 2.0文档教程 以下提供了2.0版本的一些示例教程: -你可以在官网[应用实践](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/tutorial/index_cn.html)栏目内进行在线浏览,也可以下载在这里提供的源代码: -https://github.com/PaddlePaddle/book/tree/develop/paddle2.0_docs +你可以在官网[应用实践](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/practices/index_cn.html)栏目内进行在线浏览,也可以下载在这里提供的源代码: +https://github.com/PaddlePaddle/docs/tree/develop/docs/practices diff --git a/docs/guides/02_paddle2.0_develop/05_train_eval_predict_cn.rst b/docs/guides/02_paddle2.0_develop/05_train_eval_predict_cn.rst index 789be2a9394..3c2182c9b33 100644 --- a/docs/guides/02_paddle2.0_develop/05_train_eval_predict_cn.rst +++ b/docs/guides/02_paddle2.0_develop/05_train_eval_predict_cn.rst @@ -7,7 +7,7 @@ .. note:: - 高层API实现的模型训练与预测如\ ``Model.fit()、Model.evaluate()、Model.predict()``\ 都可以通过基础API实现,本文先介绍高层API的训练方式,然后会将高层API拆解为基础API的方式,方便对比学习。最后会补充介绍如何使用paddle inference进行预测。 + 高层API实现的模型训练与预测如\ ``Model.fit()、Model.evaluate()、Model.predict()``\ 都可以通过基础API实现,本文先介绍高层API的训练方式,然后会将高层API拆解为基础API的方式,方便对比学习。 一、训练前准备 --------------------- @@ -137,11 +137,6 @@ numpy_ndarray_n是对应原始数据经过模型计算后得到的预测数据 除了通过第一部分的高层API实现模型的训练与预测,飞桨框架也同样支持通过基础API对模型进行训练与预测。简单来说,\ ``Model.prepare()、Model.fit()、Model.evaluate()、Model.predict()``\ 都是由基础API封装而来。下面通过拆解高层API到基础API的方式,来了解如何用基础API完成模型的训练与预测。 - -.. note:: - - 对于网络模型的创建你依旧可以选择Sequential组网方式,也可以采用SubClass组网方式,为方便后续使用paddle inference进行预测,我们使用SubClass组网方式创建网络,若后续使用paddle inference预测,需通过paddle.jit.save保存适用于预测部署的模型,并在forward函数前加@paddle.jit.to_static装饰器,将函数内的动态图API转化为静态图API。 - .. code:: ipython3 # 定义网络结构( 采用SubClass 组网 ) @@ -153,9 +148,7 @@ numpy_ndarray_n是对应原始数据经过模型计算后得到的预测数据 self.linear_2 = paddle.nn.Linear(512, 10) self.relu = paddle.nn.ReLU() self.dropout = paddle.nn.Dropout(0.2) - - #后续若不使用paddle inferece,可对 @paddle.jit.to_static 进行注释 - @paddle.jit.to_static + def forward(self, inputs): y = self.flatten(inputs) y = self.linear_1(y) @@ -214,9 +207,6 @@ numpy_ndarray_n是对应原始数据经过模型计算后得到的预测数据 # 梯度清零 optim.clear_grad() - ##保存模型,会生成*.pdmodel、*.pdiparams、*.pdiparams.info三个模型文件 - path='./mnist/inference_model' - paddle.jit.save(layer=mnist,path=path) .. parsed-literal:: @@ -284,101 +274,3 @@ numpy_ndarray_n是对应原始数据经过模型计算后得到的预测数据 .. parsed-literal:: predict finished - - -部署预测模型 -===================== -其中预测方法除以上两种外,还可采用原生推理库paddle inference 进行推理部署,该方法支持TeansorRT加速,支持第三方框架模型,支持量化、裁剪后的模型,适合于工业部署或对推理性能、通用性有要求的用户。 - - -四、通过paddle inference实现预测 ------------------------------------------ - -paddle inference与model.predict()以及基础API的预测相比,可使用MKLDNN、CUDNN、TensorRT进行预测加速,同时支持用 X2Paddle 工具从第三方框架(TensorFlow、Pytorh 、 Caffe 等)产出的模型,可联动PaddleSlim,支持加载量化、裁剪和蒸馏后的模型部署。针对不同平台不同的应用场景进行了深度的适配优化,保证模型在服务器端即训即用,快速部署。在这里,我们只简单的展示如何用paddle inference实现该模型的部署预测。 - -4.1 准备预测部署模型 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -要使用paddle inference预测需得到paddle预测格式的模型,所以你需要在训练过程中通过 paddle.jit.save(layer=mnist,path=path) 来保存模型,注意在训练时在forward函数前加@paddle.jit.to_static装饰器,将函数内的动态图API转化为静态图API。在第三章节基础API模型的训练中已加入相关配置。 - -.. code:: ipython3 - - #模型目录如下: - mnist/ - ├── inference.pdmodel - ├── inference.pdiparams.info - └── inference.pdiparams -4.2 准备预测部署程序 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -将以下代码保存为python_demo.py文件: - -.. code:: ipython3 - - import argparse - import numpy as np - from skimage import transform,data - - # 引用 paddle inference 预测库 - import paddle.inference as paddle_infer - from PIL import Image - - def main(): - args = parse_args() - - # 创建 config - config = paddle_infer.Config(args.model_file, args.params_file) - - # 根据 config 创建 predictor - predictor = paddle_infer.create_predictor(config) - - # 获取输入的名称 - input_names = predictor.get_input_names() - input_handle = predictor.get_input_handle(input_names[0]) - - # 设置输入,自定义一张输入照片,图片大小为28*28 - im=Image.open('./img3.png').convert('L') - im=np.array(im).reshape(1,1,28,28).astype(np.float32) - input_handle.copy_from_cpu(im) - - # 运行predictor - predictor.run() - - # 获取输出 - output_names = predictor.get_output_names() - output_handle = predictor.get_output_handle(output_names[0]) - output_data = output_handle.copy_to_cpu() # numpy.ndarray类型,是10个分类的概率 - print(output_data) - print("Output data size is {}".format(output_data.size)) - print("Output data shape is {}".format(output_data.shape)) - pred=np.argmax(output_data) #选出概率最大的一个 - print("The predicted data is : {}".format(pred.item())) - - def parse_args(): - parser = argparse.ArgumentParser() - parser.add_argument("--model_file", type=str, help="model filename") - parser.add_argument("--params_file", type=str, help="parameter filename") - parser.add_argument("--batch_size", type=int, default=1, help="batch size") - return parser.parse_args() - - if __name__ == "__main__": - main() - - -4.3 执行预测程序 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.. code:: ipython3 - - python python_demo.py --model_file ./mnist/inference_model.pdmodel --params_file ./mnist/inference_model.pdiparams --batch_size 2 - -.. parsed-literal:: - - #输出如下 - - [[-1347.5923 -1156.918 -774.73865 3387.0623 -1553.3696 107.96879 - -2631.2185 -701.50323 -1094.3896 206.71666]] - Output data size is 10 - Output data shape is (1, 10) - The predicted data is : 3 - -详细教程可参照paddle inference文档:https://paddle-inference.readthedocs.io/en/latest/quick_start/python_demo.html - diff --git a/docs/guides/performance_improving/index_cn.rst b/docs/guides/performance_improving/index_cn.rst index 241893eca6b..64faa2caf93 100644 --- a/docs/guides/performance_improving/index_cn.rst +++ b/docs/guides/performance_improving/index_cn.rst @@ -2,6 +2,11 @@ 性能调优 ######## +你可以通过以下内容,了解飞桨框架性能调优相关的内容: + +- `模型量化 <./quantization.html>`_ : 使用飞桨框架进行模型量化。 + .. toctree:: - :maxdepth: 1 + :hidden: + quantization.md \ No newline at end of file diff --git a/docs/install/docker/fromdocker.rst b/docs/install/docker/fromdocker.rst index aa25d82d3d7..62905f664d7 100644 --- a/docs/install/docker/fromdocker.rst +++ b/docs/install/docker/fromdocker.rst @@ -5,5 +5,4 @@ .. toctree:: :maxdepth: 1 - linux-docker.md macos-docker.md diff --git a/docs/install/docker/fromdocker_en.rst b/docs/install/docker/fromdocker_en.rst index c0b2b487411..af6a1a7fafe 100644 --- a/docs/install/docker/fromdocker_en.rst +++ b/docs/install/docker/fromdocker_en.rst @@ -5,5 +5,4 @@ .. toctree:: - linux-docker_en.md macos-docker_en.md diff --git a/docs/practices/cv/image_ocr.ipynb b/docs/practices/cv/image_ocr.ipynb new file mode 100644 index 00000000000..d3b9c516c16 --- /dev/null +++ b/docs/practices/cv/image_ocr.ipynb @@ -0,0 +1,722 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "# 通过OCR实现验证码识别\n", + "\n", + "**作者:** [GT_老张](https://github.com/GT-ZhangAcer) \n", + "\n", + "**时间:** 2021.11\n", + "\n", + "**摘要:** 本篇将介绍如何通过飞桨实现简单的CRNN+CTC自定义数据集OCR识别模型,数据集采用[CaptchaDataset](https://github.com/GT-ZhangAcer/CaptchaDataset)中OCR部分的9453张图像,其中前8453张图像在本案例中作为训练集,后1000张则作为测试集。 \n", + "在更复杂的场景中推荐使用[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)产出工业级模型,模型轻量且精度大幅提升。 \n", + "同样也可以在[PaddleHub](https://www.paddlepaddle.org.cn/hubdetail?name=chinese_ocr_db_crnn_mobile&en_category=TextRecognition)中快速使用PaddleOCR。" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 一、环境配置\n", + "\n", + "本教程基于Paddle 2.2.0 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) PaddlePaddle 2.2 。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.2.0\n" + ] + } + ], + "source": [ + "import paddle\n", + "print(paddle.__version__)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 二、自定义数据集读取器\n", + "\n", + "常见的开发任务中,我们并不一定会拿到标准的数据格式,好在我们可以通过自定义Reader的形式来随心所欲读取自己想要数据。 \n", + "\n", + "设计合理的Reader往往可以带来更好的性能,我们可以将读取标签文件列表、制作图像文件列表等必要操作在`__init__`特殊方法中实现。这样就可以在实例化`Reader`时装入内存,避免使用时频繁读取导致增加额外开销。同样我们可以在`__getitem__`特殊方法中实现如图像增强、归一化等个性操作,完成数据读取后即可释放该部分内存。 \n", + "需要我们注意的是,如果不能保证自己数据十分纯净,可以通过`try`和`expect`来捕获异常并指出该数据的位置。当然也可以制定一个策略,使其在发生数据读取异常后依旧可以正常进行训练。 " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 2.1 数据展示\n", + "
\n", + "\n", + "
\n", + "\n", + "点此[快速获取本节数据集](https://aistudio.baidu.com/aistudio/datasetdetail/57285),待数据集下载完毕后可使用`!unzip OCR_Dataset.zip -d data/`命令或熟悉的解压软件进行解压,待数据准备工作完成后修改本文“训练准备”中的`DATA_PATH = 解压后数据集路径`。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 下载数据集 \n", + "!wget -O OCR_Dataset.zip https://bj.bcebos.com/v1/ai-studio-online/c91f50ef72de43b090298a38281e9c59a2d741eadd334f1cba7c710c5496e342?responseContentDisposition=attachment%3B%20filename%3DOCR_Dataset.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-10-27T09%3A50%3A21Z%2F-1%2F%2Fddc4aebed803af6c57dac46abba42d207961b78e7bc81744e8388395979b66fa" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 解压数据集\n", + "!unzip OCR_Dataset.zip -d data/" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import PIL.Image as Image\n", + "import numpy as np\n", + "from paddle.io import Dataset\n", + "\n", + "# 图片信息配置 - 通道数、高度、宽度\n", + "IMAGE_SHAPE_C = 3\n", + "IMAGE_SHAPE_H = 30\n", + "IMAGE_SHAPE_W = 70\n", + "# 数据集图片中标签长度最大值设置 - 因图片中均为4个字符,故该处填写为4即可\n", + "LABEL_MAX_LEN = 4\n", + "\n", + "\n", + "class Reader(Dataset):\n", + " def __init__(self, data_path: str, is_val: bool = False):\n", + " \"\"\"\n", + " 数据读取Reader\n", + " :param data_path: Dataset路径\n", + " :param is_val: 是否为验证集\n", + " \"\"\"\n", + " super().__init__()\n", + " self.data_path = data_path\n", + " # 读取Label字典\n", + " with open(os.path.join(self.data_path, \"label_dict.txt\"), \"r\", encoding=\"utf-8\") as f:\n", + " self.info = eval(f.read())\n", + " # 获取文件名列表\n", + " self.img_paths = [img_name for img_name in self.info]\n", + " # 将数据集后1024张图片设置为验证集,当is_val为真时img_path切换为后1024张\n", + " self.img_paths = self.img_paths[-1024:] if is_val else self.img_paths[:-1024]\n", + "\n", + " def __getitem__(self, index):\n", + " # 获取第index个文件的文件名以及其所在路径\n", + " file_name = self.img_paths[index]\n", + " file_path = os.path.join(self.data_path, file_name)\n", + " # 捕获异常 - 在发生异常时终止训练\n", + " try:\n", + " # 使用Pillow来读取图像数据\n", + " img = Image.open(file_path)\n", + " # 转为Numpy的array格式并整体除以255进行归一化\n", + " img = np.array(img, dtype=\"float32\").reshape((IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W)) / 255\n", + " except Exception as e:\n", + " raise Exception(file_name + \"\\t文件打开失败,请检查路径是否准确以及图像文件完整性,报错信息如下:\\n\" + str(e))\n", + " # 读取该图像文件对应的Label字符串,并进行处理\n", + " label = self.info[file_name]\n", + " label = list(label)\n", + " # 将label转化为Numpy的array格式\n", + " label = np.array(label, dtype=\"int32\")\n", + "\n", + " return img, label\n", + "\n", + " def __len__(self):\n", + " # 返回每个Epoch中图片数量\n", + " return len(self.img_paths)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 三、模型配置" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 3.1 定义模型结构以及模型输入\n", + "\n", + "模型方面使用的简单的CRNN-CTC结构,输入形为CHW的图像在经过CNN->Flatten->Linear->RNN->Linear后输出图像中每个位置所对应的字符概率。考虑到CTC解码器在面对图像中元素数量不一、相邻元素重复时会存在无法正确对齐等情况,故额外添加一个类别代表“分隔符”进行改善。\n", + "\n", + "CTC相关论文:[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neu](http://people.idsia.ch/~santiago/papers/icml2006.pdf) \n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "网络部分,因本篇采用数据集较为简单且图像尺寸较小并不适合较深层次网络。若在对尺寸较大的图像进行模型构建,可以考虑使用更深层次网络/注意力机制来完成。当然也可以通过目标检测形式先检出文本位置,然后进行OCR部分模型构建。\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "PaddleOCR效果图\n", + "

" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import paddle\n", + "\n", + "# 分类数量设置 - 因数据集中共包含0~9共10种数字+分隔符,所以是11分类任务\n", + "CLASSIFY_NUM = 11\n", + "\n", + "# 定义输入层,shape中第0维使用-1则可以在预测时自由调节batch size\n", + "input_define = paddle.static.InputSpec(shape=[-1, IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W],\n", + " dtype=\"float32\",\n", + " name=\"img\")\n", + "\n", + "# 定义网络结构\n", + "class Net(paddle.nn.Layer):\n", + " def __init__(self, is_infer: bool = False):\n", + " super().__init__()\n", + " self.is_infer = is_infer\n", + "\n", + " # 定义一层3x3卷积+BatchNorm\n", + " self.conv1 = paddle.nn.Conv2D(in_channels=IMAGE_SHAPE_C,\n", + " out_channels=32,\n", + " kernel_size=3)\n", + " self.bn1 = paddle.nn.BatchNorm2D(32)\n", + " # 定义一层步长为2的3x3卷积进行下采样+BatchNorm\n", + " self.conv2 = paddle.nn.Conv2D(in_channels=32,\n", + " out_channels=64,\n", + " kernel_size=3,\n", + " stride=2)\n", + " self.bn2 = paddle.nn.BatchNorm2D(64)\n", + " # 定义一层1x1卷积压缩通道数,输出通道数设置为比LABEL_MAX_LEN稍大的定值可获取更优效果,当然也可设置为LABEL_MAX_LEN\n", + " self.conv3 = paddle.nn.Conv2D(in_channels=64,\n", + " out_channels=LABEL_MAX_LEN + 4,\n", + " kernel_size=1)\n", + " # 定义全连接层,压缩并提取特征(可选)\n", + " self.linear = paddle.nn.Linear(in_features=429,\n", + " out_features=128)\n", + " # 定义RNN层来更好提取序列特征,此处为双向LSTM输出为2 x hidden_size,可尝试换成GRU等RNN结构\n", + " self.lstm = paddle.nn.LSTM(input_size=128,\n", + " hidden_size=64,\n", + " direction=\"bidirectional\")\n", + " # 定义输出层,输出大小为分类数\n", + " self.linear2 = paddle.nn.Linear(in_features=64 * 2,\n", + " out_features=CLASSIFY_NUM)\n", + "\n", + " def forward(self, ipt):\n", + " # 卷积 + ReLU + BN\n", + " x = self.conv1(ipt)\n", + " x = paddle.nn.functional.relu(x)\n", + " x = self.bn1(x)\n", + " # 卷积 + ReLU + BN\n", + " x = self.conv2(x)\n", + " x = paddle.nn.functional.relu(x)\n", + " x = self.bn2(x)\n", + " # 卷积 + ReLU\n", + " x = self.conv3(x)\n", + " x = paddle.nn.functional.relu(x)\n", + " # 将3维特征转换为2维特征 - 此处可以使用reshape代替\n", + " x = paddle.tensor.flatten(x, 2)\n", + " # 全连接 + ReLU\n", + " x = self.linear(x)\n", + " x = paddle.nn.functional.relu(x)\n", + " # 双向LSTM - [0]代表取双向结果,[1][0]代表forward结果,[1][1]代表backward结果,详细说明可在官方文档中搜索'LSTM'\n", + " x = self.lstm(x)[0]\n", + " # 输出层 - Shape = (Batch Size, Max label len, Signal) \n", + " x = self.linear2(x)\n", + "\n", + " # 在计算损失时ctc-loss会自动进行softmax,所以在预测模式中需额外做softmax获取标签概率\n", + " if self.is_infer:\n", + " # 输出层 - Shape = (Batch Size, Max label len, Prob) \n", + " x = paddle.nn.functional.softmax(x)\n", + " # 转换为标签\n", + " x = paddle.argmax(x, axis=-1)\n", + " return x" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 四、训练准备" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 4.1 定义label输入以及超参数\n", + "监督训练需要定义label,预测则不需要该步骤。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 数据集路径设置\n", + "DATA_PATH = \"./data/OCR_Dataset\"\n", + "# 训练轮数\n", + "EPOCH = 10\n", + "# 每批次数据大小\n", + "BATCH_SIZE = 16\n", + "\n", + "label_define = paddle.static.InputSpec(shape=[-1, LABEL_MAX_LEN],\n", + " dtype=\"int32\",\n", + " name=\"label\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 4.2 定义CTC Loss\n", + "\n", + "了解CTC解码器效果后,我们需要在训练中让模型尽可能接近这种类型输出形式,那么我们需要定义一个CTC Loss来计算模型损失。不必担心,在飞桨框架中内置了多种Loss,无需手动复现即可完成损失计算。\n", + " \n", + "使用文档:[CTCLoss](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-beta/api/paddle/nn/functional/loss/ctc_loss_cn.html#ctc-loss)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "class CTCLoss(paddle.nn.Layer):\n", + " def __init__(self):\n", + " \"\"\"\n", + " 定义CTCLoss\n", + " \"\"\"\n", + " super().__init__()\n", + "\n", + " def forward(self, ipt, label):\n", + " input_lengths = paddle.full(shape=[BATCH_SIZE],fill_value=LABEL_MAX_LEN + 4,dtype= \"int64\")\n", + " label_lengths = paddle.full(shape=[BATCH_SIZE],fill_value=LABEL_MAX_LEN,dtype= \"int64\")\n", + " # 按文档要求进行转换dim顺序\n", + " ipt = paddle.tensor.transpose(ipt, [1, 0, 2])\n", + " # 计算loss\n", + " loss = paddle.nn.functional.ctc_loss(ipt, label, input_lengths, label_lengths, blank=10)\n", + " return loss" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 4.3 实例化模型并配置优化策略" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 实例化模型\n", + "model = paddle.Model(Net(), inputs=input_define, labels=label_define)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 定义优化器\n", + "optimizer = paddle.optimizer.Adam(learning_rate=0.0001, parameters=model.parameters())\n", + "\n", + "# 为模型配置运行环境并设置该优化策略\n", + "model.prepare(optimizer=optimizer,\n", + " loss=CTCLoss())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 五、开始训练\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The loss value printed in the log is the current step, and the metric is the average value of previous steps.\n", + "Epoch 1/10\n", + "step 526/526 [==============================] - loss: 0.2182 - 13ms/step \n", + "save checkpoint at /home/aistudio/output/0\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.1953 - 6ms/step \n", + "Eval samples: 1024\n", + "Epoch 2/10\n", + "step 526/526 [==============================] - loss: 0.1394 - 10ms/step \n", + "save checkpoint at /home/aistudio/output/1\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0416 - 5ms/step \n", + "Eval samples: 1024\n", + "Epoch 3/10\n", + "step 526/526 [==============================] - loss: 0.0296 - 9ms/step \n", + "save checkpoint at /home/aistudio/output/2\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0327 - 6ms/step \n", + "Eval samples: 1024\n", + "Epoch 4/10\n", + "step 526/526 [==============================] - loss: 0.0150 - 9ms/step \n", + "save checkpoint at /home/aistudio/output/3\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0228 - 5ms/step \n", + "Eval samples: 1024\n", + "Epoch 5/10\n", + "step 526/526 [==============================] - loss: 0.0102 - 9ms/step \n", + "save checkpoint at /home/aistudio/output/4\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0161 - 6ms/step \n", + "Eval samples: 1024\n", + "Epoch 6/10\n", + "step 526/526 [==============================] - loss: 0.1300 - 10ms/step \n", + "save checkpoint at /home/aistudio/output/5\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0164 - 5ms/step \n", + "Eval samples: 1024\n", + "Epoch 7/10\n", + "step 526/526 [==============================] - loss: 0.0199 - 9ms/step \n", + "save checkpoint at /home/aistudio/output/6\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0121 - 5ms/step \n", + "Eval samples: 1024\n", + "Epoch 8/10\n", + "step 526/526 [==============================] - loss: 0.0060 - 9ms/step \n", + "save checkpoint at /home/aistudio/output/7\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0133 - 5ms/step \n", + "Eval samples: 1024\n", + "Epoch 9/10\n", + "step 526/526 [==============================] - loss: 0.0084 - 11ms/step \n", + "save checkpoint at /home/aistudio/output/8\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0098 - 5ms/step \n", + "Eval samples: 1024\n", + "Epoch 10/10\n", + "step 526/526 [==============================] - loss: 0.0100 - 9ms/step \n", + "save checkpoint at /home/aistudio/output/9\n", + "Eval begin...\n", + "step 64/64 [==============================] - loss: 0.0109 - 10ms/step \n", + "Eval samples: 1024\n", + "save checkpoint at /home/aistudio/output/final\n" + ] + } + ], + "source": [ + "# 执行训练\n", + "model.fit(train_data=Reader(DATA_PATH),\n", + " eval_data=Reader(DATA_PATH, is_val=True),\n", + " batch_size=BATCH_SIZE,\n", + " epochs=EPOCH,\n", + " save_dir=\"output/\",\n", + " save_freq=1,\n", + " verbose=1,\n", + " drop_last=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 六、预测前准备" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 6.1 像定义训练Reader一样定义预测Reader" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 与训练近似,但不包含Label\n", + "class InferReader(Dataset):\n", + " def __init__(self, dir_path=None, img_path=None):\n", + " \"\"\"\n", + " 数据读取Reader(预测)\n", + " :param dir_path: 预测对应文件夹(二选一)\n", + " :param img_path: 预测单张图片(二选一)\n", + " \"\"\"\n", + " super().__init__()\n", + " if dir_path:\n", + " # 获取文件夹中所有图片路径\n", + " self.img_names = [i for i in os.listdir(dir_path) if os.path.splitext(i)[1] == \".jpg\"]\n", + " self.img_paths = [os.path.join(dir_path, i) for i in self.img_names]\n", + " elif img_path:\n", + " self.img_names = [os.path.split(img_path)[1]]\n", + " self.img_paths = [img_path]\n", + " else:\n", + " raise Exception(\"请指定需要预测的文件夹或对应图片路径\")\n", + "\n", + " def get_names(self):\n", + " \"\"\"\n", + " 获取预测文件名顺序 \n", + " \"\"\"\n", + " return self.img_names\n", + "\n", + " def __getitem__(self, index):\n", + " # 获取图像路径\n", + " file_path = self.img_paths[index]\n", + " # 使用Pillow来读取图像数据并转成Numpy格式\n", + " img = Image.open(file_path)\n", + " img = np.array(img, dtype=\"float32\").reshape((IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W)) / 255\n", + " return img\n", + "\n", + " def __len__(self):\n", + " return len(self.img_paths)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 6.2 参数设置" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# 待预测目录 - 可在测试数据集中挑出\\b3张图像放在该目录中进行推理\n", + "INFER_DATA_PATH = \"./sample_img\"\n", + "# 训练后存档点路径 - final 代表最终训练所得模型\n", + "CHECKPOINT_PATH = \"./output/final.pdparams\"\n", + "# 每批次处理数量\n", + "BATCH_SIZE = 32" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### 6.3 展示待预测数据" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAABmCAYAAADIx5U3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztfXeYZVWV/Tr35Vf1XuWuqk50NxlBxcCgMqIYGJURTCMiyQQKJgyjjAkZTKCiSMuYEBQBRWRARQX0pyM6oyMKAhI7h6quXPVyuvf3x97n7v2qHtVVDNCNddb39dev7rnh3HvPOfectdfe2wRBAAcHBwcHBweHpQpvT1fAwcHBwcHBwWFPwk2GHBwcHBwcHJY03GTIwcHBwcHBYUnDTYYcHBwcHBwcljTcZMjBwcHBwcFhScNNhhwcHBwcHByWNNxkyMHBwcHBwWFJw02GHBwcHBwcHJY03GTIwcHBwcHBYUkjupidjTEBAES9SLit4TeojP/Wsyt/zvHyu8GBrwcHB8Jtw8PDAAAbFNtT+9ttEd7mLzJw9mLjbJvd7zLvcbPvfW+BfT+tnsdCn9HsZ9PqWQWz/m8qa3FAJJi7v8eVbfitygx8P0AQtDrbEwdjTGBgEDGqTwTUJ6Imyn/X9RH8f8B/SfWDlttml3mqzLYy2n/lipVh2bahrbNPEMLjunr86ALVWlu/S/+RTjWnnq3PYObsNR/MrP9bXWexbVVqMPdI+7yD3Wx7tLH67XhZ9+tNddFnNS2fkZlVJvBbjDCe58H3ffh7QZ8AgEhE2mqDO7HHHwFfZT6w3wW7ybQY9x0cNFTTCr8P85Ut5DuxqMkQHRBFT3tH+Pf0zDhVgP9OqzOW+Rtg65pMSC2ny7T1zDPeHG773Oc+R8dV6GOSisu5GhX6P8vbyhVVtoB6L3Zy0ooym/0059unusjrPVGwj1SPMfb56Wc0ewzS9x6Zta3Vc7DnqultfGDdm3u9dv6jpl5mpo0OmMo1muoJAOlkHPnynn/KBgZxJJGJtYfb8tU8AKA72QkAmCpNhWVe+JGlJxxDLCyr8dPS2xr8lGp89zEjnaISVPlcdM73v+tDYdl7P3U27xSePER7nOoar9J1GkE5LIu0mJBVQeU+6rNPFb5DP2wFEVVqBwMqq8/bC6UsNut/OYNcu6L2D2bNI3QN7Dns8b5q2fYMUT5C1y7CRzbUc6iHk0IzZ//Z0P2lsz0LAJjisbJ50KX3GueJcz3QbTrC9yBPwvBIX2oU59xPe1saM4XiPLV64hAB0NmeDv+emqY+kYgmAQCVWiksi/PtVfnlRtWLr9t1xGMwK13MDLHp0znPgf588/yFbNuj09ZHRmSeMv1sZveBRU/D53mXpkWZrVd7m2zL55tPlWmXL1I+56O+wPayqMlQLBrDQE8vbvjhdeG21SsHAQCVAg34nloFDw72AwDGp2ea/geAeHuGKt7VHW6rVKmDvOtdNJAHdekwU6NDAID+ThrIG3WZDQUebQsWZPVbnGXQBC1WYPMMg4ZfSd20ahWtrt1iW/AYWS/N3HrGGnTupskQX05v82fV31OFlsUxvGyLaibD7si0Xl1NYSr8KavaD7x6tukKNfN+xRQO7RrletG5upcNhmXdvcv3CvYtYiLIJDK46T9vDLetXEkMTaVI7XdqSiZDa/bZh8oq1H7rFfn4xZIJAMDMjPSTSJS6qBej/xOppOwfp4lRucyTGbUkGgaxrCe//mQAQDYqk7XxzSMAgO5kFwAg7SXCsnqVzhV4ii3i+Vc9wpNSVSYfAzuUyDBqfLuNdqpEpS3MHjR1+4rzci6uZr92YKzz6StqtK5H/KZ9oqph2HPYsqaB3Nga82TIlwMbvGNDtdFanX5XLfMXka92nN9LvU5t3K/LODg2Rs97+bI+AEAiJsNuuUSTl0xbak4dCjPUfmIJmQDXmF2KJegcM6VcWPaCY47G3oCIZ9CejuKXv7ot3LbfvvsDAMq8gCmVCmHZ8hX0XCanqc1WqzLux2L2GasXHvC2gJ+LfqnhF9Sf9T9g7HGYvQ8Aw+/LNPiUenSxv+eydrKHHrOjs+o137hfb1G25xFpWvI0o9WEp9VYPHe/hX3rzJwDZZ926iaYnJwMtyWTNOlOJGmM27FjZ1j2gqNfjLHJfIvazYXTDDk4ODg4ODgsabjJkIODg4ODg8OSxqLMZLV6DUO7htDdI5ohL0I0XzJFFOT0uNBXY+N8HJtTMtlUWGaiRHtOju8Ktw0M9PJ1iKrPTY6HZStXkImkXiZaOGpkHleq7J5qXJgJTdDKXmnRykw2e/9Gq8vNa/56tGUauzccsaUDvnp+tuot62z3Ufdnxe8JNsvUqopSZXrZi1odhtg6Gkzxx5PUVrqy0o7qOaLPN2x4KNyWZq2F59H+k1PSHuJxg3Jtz6srG0EDuXIOq1evDrclEmR2MqzyX7FiRVgW8IMsFsk8ottxnU0rbW3KIM7myho7KoyOjoZF7e1EC2ey9Jw2b94clu07uAYAsO2BLQCAQ/Y7OCzryVI/K02QqaK9U67X3kbnyhXF/FKpkkmvYc1kRut1rI2V2oBRDcVjO5Thdu/Hquo4NEFbJaxpSuvHQscE60ChrSZWgDvreACo8c/5dG3RBI1LdWXaarDQwFMmrWSSTGEJNgEbZUq27d3jWsSTYnpcteKpAICd27cDAH7y85/Jcfy8DNsJX/ril4Rl9v1GVB1yRaL842wi7YhLH8rlCwvSTz7eaPgB8oUa1q6Tdu9x2ymW6PsQjckbmZwiM2KlSn2iq1vuKR8KQlRfny0S02/XbjKtTFuzn44u43cfWF3YQscWurY27fhmMW9h7+QjgnmU680l/LzCV9LiXYTQz8WbtU1/j2bbtOW4UonGEN1XoywlqFaprKND2s/o6MyC+8Te+SYcHBwcHBwcHJ4gLM61HuTunG6Tw8bGiNlZt5KEr4loV1hmV7+VMgni2jpELD2dJ1FpEBFx4BtOOhEAcNVV3wEAvOLYF4dlZRbVxXg1lsuLKCrTJqJbQIk6w1ovAjyznX+W+HgwQ63wf52rzq1ngl25WglJW3sCzHOvdZpzR9RKyM7SraC0Whc2oJpnr6QG7e8rAWoqzavugqyo7Uoc7JqcbhMRcLW68LXb4wkPHpKRZBMbsWHDBgBABzsJdHVJn7Bi6oCfXVS5TJZZcN3bv2zO/lZI2tXRGZZNTNEq2wqp16xZE5a19RLbcef//oXOo/rI6mXEYpV96p8z09KX4izMRVT6eCxGDcPzaDUWMXOFpB637UhDeT55dI6Iz2XRuW/MCqcVQQbWQzdtsyt9e4aoXoDOZpl0GIGgeVurJl7ndzE+OhFus+9stQpX8PCmjQCAW267leoQk3s9+mgSLzd8Ysh6e3vDsnvupHewetUqAMBrX/WqsKxconduRfO//fVvwrKdw8SEZjsz4bZYkt51rUHvQjOvfb09GFNi/T0FzwNSKWGDAGBsYgcAIM0eZh0dck9jY8R22mfXaAjT7LUcR2et9Rfof29mi4Kb2nEzw9HUTsJxW2/1msvMnBLFTmmhdrPvrh8oFngvgjfPI23ub7O+ly3KWtsrvFnXafGiW4Vg4W9BX1/fnHPlp2gc87z5fOEeGY4ZcnBwcHBwcFjSMPPZBmfDMyaIecCGh/4SbrvtFzcDAPITbPctyyozyytjL0armYaR1WaRV2PtHT3htvGpaf5Fc8mBZcIkHfUPzwYAVFnLsHKFrHSLM7Nm/ItmYBYbHGH3559Pc7QnYd2OW7pHtnDFbwWrc4gxe9BoyEot5jWfeNcu0YTd/9CDTdvqvhx3zMtfDgBYvXqfcNuGjZsBAGnWFhWKEk7h2c85CuUq0PD3bIA5z3hBHEk8fN/D4bZKiRiwBAdMsbZsAIhGeGXTTe1+bGwsLLPPUWtRJqZppT+4fDkAIKUCbNhj7RPIK7Y0xiyMYVamv1v6S4NjfMUjxLzpIWB0gs7Zv0JWXqM5Wrn73tygL1YrEWE3+mhDVmVR3uaxwKeUkBg4YQSGFpqehbjptupfwTwMp5nFEAESIiKepWeaTktcHMvUDI0MhdvaszSe9S4j5m7rts1h2e9+/3sAEjKhr1fGtWOOOQYAMDVOzJNtAwCQSdO1CwXSb3V2CvMXidH70UxJpUZtaSLHoUyicrO/+u3/w0Vf/AK2btu2x4MuRjxg5867w20BM1gRjppbV4yx/QZlsxyXS7FbsZiONmUxa/xtGu9tI4jO2deYAjSCecc7TT3ODRsRbgtasBCW/Qnd9bWm0t433bPvZ+epw57DfK71Cw8mtHAd7EI/l4FPz09/c2y4hoFBYl59FZG5s2MFGlhY0EXHDDk4ODg4ODgsabjJkIODg4ODg8OSxqLMZMaYIApg19B94bYc0+opdpVMJ8QUFo0xPc65M6byElm0bzmJOLfsFFfhtgxRhja6ZK9ysbzxRz8AALzl9FPpXONiXoi1oioXhVaRMR85gnRLN8LZe7aIXN0qInRrLMbG9lgy4q2u+8h1rqko4BbpBFH7Kf5fR9S1EZkD3mbdgwHg2pvZ3KpMPYPLyTV3204yVZx8mqRuOeCgg5ErBqg39g4z2QP3PBBui7Dy12P158SotNU40/69HHl9y5YtYdk+HJ1aR6BOtonpBgAeePDB8Hcbm20OPpjc5scmVOgBFqNWObVNVEWZrhTZDZ5zlCWSco0CuzfXPDFjRNIcJsGbm7jFiqOteSzekP4fr9O9erxPOS7935qoIi2aV427VV1bJWYdp6NMz44u3dA5EMNkfN6c4+y5CpwaQo+FiQTVXUf8rjbomRQ5erKnzF3tGXqGVvR/zz33hGV33/VXACKqfv7zjgrLKuwqbMseekiFlmCzka5XxI6zGTKvzRSlrRzxnCOQr5TR8Bt7tE9EIiZobwOGhjaF23xO+VLnvErT09NhWZpNhX29FD5ldETCs4gYVo1NZp5QKnOiU6tGFGHzW8txOPTJ5z+lHRvfnjOhdp91/qZzcj/xeHw0apy0v9lcFvjd2BshYvPd8CXc6cK9HnX4GIE/T+u1zhz6uzI9TdKZvmUkJRhV4+26tYc5M5mDg4ODg4ODw0KwKNd6z1BSPTsTA4Aory4DZkIaDZnBz3CQPC9Ks+hsRmbBI7tITGjUzD3OyS57uml1VVb5a2JxWiXt2EGrhnhUWIVYZB6xF6PltDCcxepZfXNe96DVkeFxMpeUHE12pvx/YYEebdat3c9tJedYqzzjra5rXU7n5qOybrLWzRcAChxGYXqK24hKKRxjxiTBLtf1qtThlceRgLqokq/aVbkNvnf55d8Myz72sY/h4ku+0aK+Tyw8E0F7vD0MIwEAjRo9j0yGmBsdBMw+axs0rL+/PyzLz9Azq9WkPXey88HWHRSwb9PGjVLG7t82yKNm2np6iWUdL09xneS5dvVSX8oxU1uPSlnPMhL+bp+Q/D6NKLs8s4Bat+2gYV1r6Z1qQtQPvY55jNBdaR5Xd7tfTTXnhmcZKPpbpUdDjM/lh/tKmZxj7pUs0ZVRIRss6sys6THIjnEpzixqlP+xdeyIcG7G/h4RQh/0muMBCAtUKUtiXJ/PuXM7uZ7vu3ZdWJYr0n415WhQY3bKhrCwgRkBoFgu7hX5+nwfKOSBnTulDVnysaOD6tvXJwLzCgv6dw3TN6GhKEFp0y0S1YUMUYs4CzYvXqAE2N4sCrEVQxTYQKEq36L9RvnqXJYZstv0uVgw7dkQAIplFV9yFlDPDhOwlyAIPQ2kfuJ8IM971u2g6Xs2hyVaYAiEeSwoU+w+r9t9s5t98ziYTBqUKgu7rmOGHBwcHBwcHJY03GTIwcHBwcHBYUljUWayABSTpK5yQnXYGDBTLKRWUYWTCaKyrJmsUhHKLZPmqLwqr1i9RtRkpUq0ZHtGTAj/+I/HAgB+/f8oQusLX/B8qdg8ZrLZ5HhzZE1Lx82NcuKHOWdUzhTTbB7z1dkl95k1G7SoUysqMayopgZbRC59RLSK0NJKEE7bKi2jANNxBq3qQGgou4SlUHflOQJyQmjJaJLeXTTBglplBo1Z6pnbQaUo5oIG53aycUgAoTunOMnd2884MyzrHdgfu89I9/jDDxrIVfKhqQoADItoSxxdOBlTz4dFt1ZAmk5Kvj5r+tBxhkoFMr+18X6veMUrwjIbj+W/fvtbAM35evwqnf+VrzyBNigR7uQ09dUkxwGbLIqYdWqCzD1+Uva3YuqAzRK6TzWsUwHT6UaZycHxPgKOu6LflxUv22amRZM17mdFpX2t8wH2KcfqckB0lpmsps5VnmUm02Y8+5hrZWt6Uv2G23ig4plYs1iMTXbaTFbjExfy9Cz7usVMZt9TMkG2IpvrDQC6ushcVInReDEyMiJ1iNDdxpIypkZ4fJ2YoL5Xqcm54tEk/BZODXsEAbCsT3KTReMsnM7R/UVV5gEE1LbLJXqe3Z0y7lerLWL1gIX4oXJej3f2vCx816Jn23paRYa2v40d9/WncdY5VZ29ULCtdrd1DWOuzRVX2xx+vtmtrnfPILSJqThNdosyIRreamZH5NZHziOqbhXbLpjnmfT0UH8ZHxdnESvNYXUCYmq8XQwcM+Tg4ODg4OCwpLHo3GQ0A5TDpiZpJdnfzSKmuszgi2VaJUVZ4RiPS/TcAovmzj7r/eG2SILKq6yYTSRkJl7K0XWuuPxbAIAf33hDWPZPL9oXANDJLJVeWRc5sqt1cx5QeZ82PkxiVC1iteLwZQO0qpmYlFVznTNZV3kFftrp4updrNDq8qYbf0wb1ErBCmLTnH9reFii2q5aTdfRUWbzeXaX5VlzKiXsQYSZBRt+IFBL6m9+kwTGSVYreiqxz4knnkTb+oiRs7mxACASp/dZzIswvi3Fqyhenb/tzDPCskw3h0Ao0P65soiHuzl31rf+g+oyrfI9pQ3N2JMsoE4pt3HrUJ9QEWdtri7LilimZa+EanPW7bNV9Fz7/sK8awr2/nReqyOPPJJPT+dfNiBtdXiUVtk2cvJNN90UlgU+sRE//yVlSI9FZYX8tGc+i+rC7vaRNqFgggQ13EJd3ukV37scALB9aBsAoF+JX5P8Tk977SkAgO4eyeVVmaBz2GDDVciKLR5hFoz/rqn2GDATUlDC0yxHdJ7YQkLjL3zm4rAM08QwZrqo7e2sS3iGMz/0PgDAsoFBroR0zMIk7ZeNNDuBAECe+0JK5Y5Lp1mozsPf1LSsTs877+MARMw+OiohQxIJar/pdhqfKmXp66kUsXMf+tdz+RoyRja481XKwvYkuA4BC29jCWlj1XoV/l6RsY8Q8aSNF1lgbtuh9nS2/hfpJL1jv67YUnbQ8ZTI/2XMjqba5q7lSwXa9rOf/I7PJe3eNzRmllgUb8MhAECtTm3Ijqeekefqc9gIowTUb3vTWQCAsRE6l45enkpSHaZy5PRw44+/G5ZVKrR/Ipnge5d2b8d5G8Vcu4/b8UJ/2yzj2NZGbebVr3613E+t2TIRVbkGb7iBvp12vGn1fYnw/hMTMn63pcjSo5kXq/8OquxAVZP7eeExlFu0M0vfi43K+eOAgw4CAFxz7dV0vZi8y44uGv+2bqYcj/r7nCvyu1MCavuYomxd0M+oXA4W7FTgmCEHBwcHBweHJY1HFXRxaJsEiosGNAMtTNIMsloSdqG7k1iITDv9PzYtK/tT3/IOAEBP/+pw29A4rx7iNFOdVKzMgQfsBwDYxQH4vnrppWHZX++gLPdHHHEEAGBmSoJ27bsvsUYTbGOMKMWD1VhEtZs+r1ymZmgGGonK6qZ/BeU+KRRplXLCa/8lLBsdo/u/9dZf0j0HEgytUrVB3WjW3KvyFo2NDwOQ1QoAdPfQCrKdXde1fXT9+vUAZKWQVAHzxlhb886z3w1A2dsBrOaM5nfvouf3P7ffHpbNTNPz6u+R0Ac51gP9/Jaf07lUZvoKa0dW7LcWALBl5/awLFxtMGPwtS/Ke0pzjqrlGZr5D2/ZFpYlOqiNRNS7sC7FDV6tRRRTuM/ap6IGwF9AMK3HExETCVJoxx//+Mdwm83Z1paid1MtiTYqzwynZdCKeXnvb33zWwAADzwoARyfcfgzAABXfOdKAM0B+E54NWU/t2zE8PBwWPaLX/+Qf9F6J5mWLOFXX/N9AEC2j973qGI4nv7cZwIAbrjlP8NtD22lQI/7H7I/XWdoR1hWzdH7Huwk5uU9p58dlvW0UTsvMXOTygorm99BrFaGdRxeUt57oYu2/WmXjDMpDgfw7YsuobpPS3v8yNupvUeYQTzv618Oy3b5tMr+2HmfoPOU5Lh2FhdlwjxZsoZcsZYYrofv/Wu4zYtwpnge8774xQvDsmKBWKYYB5pNt8vzHh0hjVYmQ208N6Nc65llv/BznwcAtCk3/wqvtsvVucxQlbVBgcpNdvBTD0IN/h7vE56JBDEkMbRL8vUVKzTuZDqoPcbjwkYUZugZ+FV6PtWSZk1p/5NOPj7c0t1H+1/53cvmXPu0U6j9capMXH2VsKUF/14AwAE8bu3YuTks61tGY67tQ/Go1K+rg9j7l77gNeG2oEFsTCJCdW5X77sWsqrU101UvomXrP93AMC6femcuYp8Ey2b08UhMzS7aAOx2sCsets///M/A2jOgfinP/8ZALB1M93jKaecgtm48cYbATQzUDZHnmEhnmapfbaMDG0Vy0ZXlsYQ+3k49sUvDcvSSXpGP77ppwCAzIC4wB/M99HOeQF/cdstYZnNtxfqRyPC2VS470VUwFNbfZ/1qTprff+ydS7oooODg4ODg4PDQuAmQw4ODg4ODg5LGos2k0UAbHlI0Z9MscfYZXC1Enh6LMz6/f/7LwDAf3zjO3Icu89//iv/EW5r66JjTznlrXR8VARrY7uIau5jE9PXvioU6fU/+BAA4A1veD0AIKqEwwGr82w+rEZVhGVW9GYFjgBQyBOFXalZ10flGp4kCvuoF5AwbO26A8Ky4RF6Dj+5mSjBZFGoxFicc7SxKSyTFdPWFIck0GK+DjZf3HvnHQCAG264PixrsKuvFXoPDoj76kknncz3RdSjjfwLiBDOX0amipQS8NZZAJ2KicjulJNPBABkOT/c8Se+Kix7aJjMF9/70XUAgHVPOSgsK7HZpFGi53zFV74elsXZdTbKubGWZcVcOMVu9hEl9KvZd2YFcnF5RqvXHbpXmMk84wUxJHHfX+9T26hKM1Nk5u1QFHoHiwkndhEFfuqpp4ZldW6buk9edx09Y0tf61xZ1jx29NFHAwB6+oTSLgTUriwVPpMTUXFvH/WzKRbAJ1V7vPTy9Xy8CKirEaLfS0z/a4Ei2JTTmyEKfGbnVFj0tje+DQCw72oyVRdKKrJwju61jcNF11VIhaE0nbO+j9zPeRd+BgAwfDeNPVefL6awFRFq7zkWnm725V7P+waZ1Ypc9sl3fSAsW9dBdc5w+3/wwfvDspUr6Bn1D6io+cNk1rVRFD7ykQ+HZXWODD0zQ/ff3p4Ny9Ip+r1ziGw3hxx6eFh26inkhLF6H3pGGzaIyLSvl/p2uSqmFDGT8TgWkbZy0NP2HjNZFO0YVmayBqi9J1JU71pNidWnqc8P9BwGAPCV9vekN5AJdCYv4+n3r/8qAKBSlxxUFokovbfXv4bMZdk2EfRffu3H+Nr0PP2GmK9GxujdPvVpT6W/h3aFZaefSufKJAbDbRd//tsAgGXd9D5e8Yp3hGWFHLWBjm5q7wMD0mcvvuQ8AECpzFKOtPpWcb+3Aurubml79lu1a5fUywqmrYD6+uvlO2HlClY4rR02jjrqqKbz//CHPwzLrJi63KA+Yb+7AJBpo3GsJyv9EvydfP2r6dv7t3tkHPzLHXfSuTg8SLcyuSFF3/bnPIv7ggpT8ctf/wqAOBVVVPR8pOh5OTOZg4ODg4ODg8NjjEW51ltYpgMA+lkUVWNX1B07RRTbxgKq5x75HADAs488Oiyr+jSj3rRDxJtegmaCn/3MRQCAd79X3O4POoRWDbuGSOAWjUvV38DisF/ddmvT9QAgbYWZvJoNPBEVW+H0rmERqnV0W0EYTTfTbbKqf+GLX0b31U5izl3jItROZ0n0NpWjWf2ypmBSLKrk2f3YmMy2Ozutu6LMSx++jzJe/+IX5BZdr2tXXJq5f+QjH6E67JK69y+jd7FzJz2jnh6Zifdxzqlxj2bk0xNS9/Y4vYtSSVbU1/+AGImpAon0Rgrynp59zPMAAK99Ez33U894i9wpB4Xr5qBzNe0eyu7U8bgNDyACecPLbZ0TyONgXSrsHfY+GBhEUFb5ppJ8L/Z9aybFiuFt8EUbVBEQV/y6EkImOfCkXTVqF167grS5efR1Mhli9PLM1K1bs39YtosD+3VxO85XRcQ9MUxt881nny7n6idmY/soCeVvvvlm2X+M2tHQEK3c+zMDYVkPu8RWOfiiZbcAoCNF9UuziHlGBQsssuB8ZFRWwX++n1acT1+1BgCQy8mqvsp9vMGC+7gK2TDFrriG3YF7B2R1PzlMdU9z33vqU58als3kiEnVK/EMs7dnnvEmAMDl3xZWu8Tskg0UWi7J/dicjJOcr0/nSurhTO07dpAofZ81kpusmKdzGEXee3MC2Ok+4eHR5zV87BDAwIfXxExbt+d6g96HZoYCvzlw4QP3ifNJboYDfkKsBFF2colYplg9E+Nzf+HcZPZ4AGjUaFujQc8slRb2zjrabNpEzgJW/AsA//E1YhfbYtJ2shx6hJsXrrlKLBVnnU2Wiolx+hY+9KCwfVl2IojaR6PS4lm2w44lRRWUdmqKnonOc9jG3ybLApVVXsd6nZ6vNZLospUryWnJBn5VQ3R4zYAF1AcccGBYNjlOjNfYmLjbZ5JUh7/9jVjVQw46NCxrMGvc3U33vG2TOERY56CuNuobQ+MqFyI7/mTYClRWDhvmceRvHDPk4ODg4ODgsKSx6KCLngcUlft8hW3lnTxTTnXJbLvCq6OREZr1zRSElUl3kT28u0tmuqOTtGre/0Aq04GVHn6IZtc2HcGXVcbyU0+lVe/hHEyut09ceIeH6No2iGA6JeccHbfpJCQw1xRrcVJpqteLXvxPYdntvyP36WP+ieowPCrMxgCnF0kKQYY1AAAgAElEQVTwcVFfVjd1XrFG2GUw1SarjgizJBPKvfmaH1wDACgW7SpKVplpXp1u3UGrjlRKBS5kZifL76CsjvNY+9TbTbPtbYqVGRyk57V1o9j4c+NUPrCSymLtsjIb5mCaM5xKZcXqVWHZgw9RoKxvf4NcwSe3iLv3zT8mW/C7TiZN2PSMsvnHw2Dvso3ZENNC1rY3ckQLgTePRM9q3SpqqWZdYr/1LQo2Wi4Kk1SwQSgt81IU5qXM7EoyQW1hZkLKsglqo+Osc1v/dQl/cP5HyQW9EpFV6SSHXnjKukMAAKnjRGP3058SSzQ1wmExYlLmcXiFzRwocXmfuAWDmYGAgyAm49K+Erzy/8KXvhBu2/8Q0qVNbGJWq0v0ZqkqM2r8d1K56Zc5qF1bmoa6M99xVlj2zU/R+StlqvtMTvpENELHFQuyrbuLWK/BFfT/qaeJu/IA6/ysRuMd73xXWDY8QuzSAfvTqrkxLu/CMoUDy2nM275NVsFdHZbZnbtmDTNR6G1z9tpzMIigocQ/jRq3pwi132yH6GGSMWqjI9yGLrnkq2FZNMJal4iMZTbYYM8yla+FMT5CrEU8xsc1RCvzTzxu3/47Cn+ydfvfwrKVK+m7sHYtvYct7JIOAKtWUFiXsWHV94pUn9wUvZuUCn45MUrjWluGxvlbbvxVWLbpYWJQeno5wHBB7su2BasBWrFC9KCbuT4vOuYl4bZMhliZNg6bkc1IChjLMll3fR2wtlyib3aCwxu8+lWvDcuuuYa+Pcks3c+994oGaDnrU+sqZMuJp74BANDVQf1xeLukk/n6ZTRmvfud7wQArDrg4LAM3Ed3cHtPdci48crjKIzCf950A9+LCoD5OAYVdcyQg4ODg4ODw5KGmww5ODg4ODg4LGksOmu97wM6KazVI5crRHF6KieKFZJ2dhItn2oXimuahVqZDjFpVTkD8CuOIxdxXwnwBpiaPpldvjlIJwDge1d9EgBwysl03M6dQjWnOCqtb/2zE8q9l8WO2ayY6qamicI+653k0vn968Tt8OGNm+g5cN6agcHlYVmJaf9Kw7rky73GOau7dbtNJGUOWqrQc+hdJtE5x9lc2NtLVLLniSnsXe8hytEKpweWi2DVRrq1AsFSUSjYlSvJxXTLZjKvDXZLCISR7WRK3He5mLtsZOxN95GgMO/JuXr2p/3e/34yBWzcJc+7f4CeSUhlKzr8bW8h89iXLqC8Uh9WAvkRZeKZAyuqnif78Z5CgAANNJpcV61rfd7mY1Ku9Tbr8tgIvb8mQTRT2VoIbQW8r3kNRb/V+cc6O4kWt+JqnQvtJz/7BQCgj91Z779X3MbbOWp5N4sXz//QeWGZz3L14oyI6btZjD21g9pXf0aE+aPbqK2m4mRmGNougv4qC4WfcsjTAQAzY+J2H2WjTr1o6XsZVJLsPr5rTEzHEY482830/7QScWYb1McDdtedGpe6p1Jkckil23kfEZKmOYt8o0wmbe36G/E4n6DK21ZiF/edQyQkX7tWzH6jYyQgt1GAr7zy22GZjVh/5jveCwDoU9nc27LUNnIsLu9UUeAh1ognHQI0oCKcwERtNG0a72oq910QtIVHAcD990tbTXE4k4RyMMnyMyuW2N0+0GU0rlnvap0HbqCfxiYrHM5kRa4wNU1tezpP9WrPSF8aGiaJRntKsiUUWdC8al8at4875kypQwfV2Wf39FJRzN5rVq3m+6exwfekfgc+5SkAgJ1sEtu+dWtYtnZ/koIMLJPvpQ2XYseLqnLisE46dlwaHBTx9zhHtrbRpf26NDR7/lyV+tDaNfuGZR5nAjAZed7j7EAR89gZaVTMZO//MDn5fPT9NM5fcKFEbB95mKLsd3DmAa0fmGFHgyq/u759JDzC2IwIrR9r7H1fFwcHBwcHBweHJxCLd603gFF5qgxTQwEHSKo3ZHZarbJwmN25q8qlNJGg2b1lIADgvR+goFgpFjv7yp1y+w6aJZ/G+Zu+8bWvhWUvecmxAIDvXX0tAKBWlTq87oQTqF7MWI2pPF/LmcXYpkSLq1aTa+uvf02BIleultXfCOdOKzCr5Sv3eS+e5PunewxUMDTrAm2D5BWLIspMJGkJMzIiz8HO2ANeDc/MCGvyifPoGXUy42KDLwKyijrrLGKPurqF8bIMQ1ea7rmkjsvEaIW8faOsRFYeuAYAkMxRnctJudeT+R2UYnSP/b3CMiVZlPdOFqr+8OtXhWWFaVptDPTSaqpekPckLpN6fh7M+n/vm7sbGMRMrMm13opo7XvUucm2bydWoYtzk11xxRVh2Ws5iJrOMD2wjJ6tXc2+9KWS+8cKLRPMCN2ggq7lc8RGTNSJjRnsldVVnoNB2txhQ6Oy2prI0aqxf40wlfkytb9lWdq2YfvmsKyXA2fazN7/yu0TAGpF6v/bt7ITgyf3FTXUTiLcrBoypCDgP9auXRtuu/2euwAA69aRCHlfVWY20Sq4xgEckylxiLB5nh7gYIbPWyMizhEOQTGQpeO0u34hT+NENiOM1fr1FPLDjk85LbiO2rbJ2b4nxTmAuz8uuuhzAIB4XJxMPvqxCwAA+QKvgvuF6fVVBvAnFwKQi7+MGTacRoWD4JaUE06jQm2ho4PeqWVPAaDErJrvy7OIsbNFudicmR0A0sz823xbmmXN52n8sUxqVLFNUe5Dk9PE+CxbLf0l0kPva8tDEmahp4MC7h57DOWnzCSFsRndRe2qq4fG1X95jWSTv/IqCmra1k71nFKOLNbJZRkHRdW5xu6/626qpxIT11jIbNkfTwUIXreWGB0ryh5WQST7epn9sXkSVXDHcWZc61E6dyMqzz3CuSU9I/04zvUp5Ik1PfBA6V+FUbr2BZ8lRujzF3w6LPvAeR8HAASc76y7X0w9pV00Xtrv5eROqbsORfBYY+/7ujg4ODg4ODg4PIFYvGt9BKhUxd4bYUbIutYHOrs5uw0aQzNyLyI22gavGnp7ZQV66XoKbnXiyRTGv39QNCw2A3uC9Tf1urL9t9G1jzvuODq3KvvBD34AADj5jW+k+mKuHkPbU63r/l/vppn4ZuViObhS7KcA0Nkts9nRcVpR2EBYcV9WlFu30jkOeyqtakdGpH4248g3vyVBu2ZydK5kkl6PTtXxlrcQK2PdKT/7WbHDWg3U15g1e9ObJBhiZydnzJ6kWXdfp6y+8ryKzabk/fi8Yimy7gVGNDGXXUqrmzd9kHRVk8rdu8bMmF3d2czKANAWJabqxH+h0O3XXnl1WHbsSSfikbH3ztkDBKgFtSbNkF2VWndW3ebsc6lVqA3YIJoAcNtttwEAjj322HDbpk2kU+vnAIbZrLAK9vxFfv5aM5T26F2WWZOzsl/0MF6F6rd9MzE23X0qXUgHHZcvy8rdrvA91qIN9qjAhRxeIhalNuqpIaVeoz7bwexRVDG25RmqVw8H/IR6DkEj33TvAPD0p5PuaPh+0rwN7RA2a22Er83pZBpKtzg9SczYCtb3Pfjgg2HZmjVrAAC1aWKG4yrVSSRqWW3pq2eccQYAIJuxTHde7U/t/v2sj9BhQSYnSUfR0UXb6orlqLJeo6OLmELLIgNA7NHFxN3jMDCIwkNFvW8/Su87FiN2wWo5AaDAjJ5lbCyDQxtp/4hKUVPgNDKZjrlBFwszOT4XPeOGohwT7Wxx4P6ZiMpxcQ7tEOdgvtPTokkr51mfOSABMQtT1Odu+jF9X176wteFZQP8PZmapvfe2yN91rK59Trdo84KX+e2MMJBUdtUCJbVq0lrpPuEzWBv2R+domLDBgpxYtu4dq23LLNlTfXztkxaknWFlrnR9Yuq8dhGAbHu76W8WDHst9BaAN7JLvYAcNEnSedrs2QMK/YnlqRztbdxiBiVjqYI+dY81th7vzIODg4ODg4ODk8A3GTIwcHBwcHBYUljUTxsBEBX3cOqiIiKKw2ioWfGieZKZlSEyDTRY3mfcwAp2i/gnESjYxvCbSuXU/6x71xGQsOz3v6JsKy3gyjKap6o7HNO+2JYdtUPJOcZABiVtfaNJxJ9WWbXVS8q9Gy6g2i8F/7TCeG2n95M+c0m2Ow1uFxMY0M7iY5MclTUeE3uNcLmiDYW+5ZVvqe1+9Lz2r6TcrM0Rchl13rr0g8AfX2WZiWq9pz3iQv6LhbnpVJEq5/7bx8Nyz7zGcrsHeEcYP/x9fVh2dlnU+bldMy6l0pusmiK6lOoCqU8EVLRHNU0KvcaKxFVeeX55CL/7nPeHZY1OOp4W5bOee45ks358m+Tu/HDU9RWhvuVO32MI6VWhBI1LCRuRGjOXlPZixvA4xiLdLFoYLokbuNtLGS3Qv72tLT7AouR0xypWUfXLrGJJKPyDwUsirR3PjEp1+nrX9Z03LHHSzu+6Rf/CwAo5ulZ7xiR41IcCT2SoP9jbWIe2jRBIvrYgFD7k5xRvsbi1E9/Rfpe+zKi+d/1VqLAy0Wh3JczzV1g2n96QO6rWmY6nk1vUWWyqPH7rqulWpWV1mUesb5/i4QYOOe1pwIAdnGbHY+JeaaYpjYdBFSvjk4xJU6VqT/3ePQuxnaJW7DNrVdvSF9N83u0GeNnip7an+71i5d8n849JWaWz32O+mWdIzLnclJ24YUkOL/oIhJnjysHD8RJJpDuUlHm2SQaidO1bU40AJR/cc8mrAdAuckaiCEVl/dtPGr3+RKZ5GOeiKv7OWPA9o3URiPqFnwbhV6JsQ2bxYxvx3mVm6zBOQ597l++tO1GhYTCdvytBfLtqXF4ha4sibjL0yLf8LjRVaIyXsXaqZ8UG38GAPzstx8Jy17y3PcBAAa7n0v3UJI296LnnwQAuP1PPwIADOUkwrM1W8UT1M4mJqTPxtlB5+CDRaD88MOS8wyQfGQA0NPT17St0VDjN5vTE/wc8gXlhJOm60yV6drtaTGhR9ikXZ5RMpkEmc6KUyy1yMi3t9Kgdp5g83OjLCbg976fvgs333ojACCoy3GTM2TG86wJvS7fJS9K5yiovG3dLAif4KwJEdWA2rMp5POy73xwzJCDg4ODg4PDksaiBdQxGEznZPVSqtGKK5lm98hOWcVM5mg22psh8WdJuR/HE7R/Ugm0imX6HYnSTPLqa68Jy844418BAB4L3bJqtW0z8lpXPJ3ZdudOElquW0tBq8YmRND7iuNeDgD4y5/vDrftGqXZbHs7rfQmJ4VBCV0ymXnS4mArbC3m6Hl0p2U1YAVx3T2cJTwvx1k3XRtAD1A5atpTTdcFREhr66WD9lkBte/PzXBuBb4Fzv9jWQUAGBqh4GWdSugXC+hcht3nh8dF4Jbl/QwLgz/3xc+HZR/9OK10R8ZtAEiZ1VsRn72HV79acuL8/Ec/BwAc88IXh9usuDjHrukl5aKezUYwnd87XI8DBOE9AcAMr1DsCqxXua5uYhdvP0IsQZvKlXf88ZSTR69QfvrTnwEQYe0rTzg+LLPntwHWIkpA/fxnUZ6+239FeZESgTyrDK8Ix3LUhqaHRIx84H7ERvzhYekTnWvp3ob4OiklAM6y4DIo0GqxOylOBYaFk708NowpcXAvv9vaGK22q2rlH2FX9/32Eff5//rLXwAA/7gvZZa3ATwB4NqvXgEAeOXJJMzvzcjY0Ma5+6ybckGxMo0qvYORUVoFL18hbu2WOQ1U5MNJDoa6zxpyu+6OyXu1ruJ2ta3F7M95znMAAHfdReEBiiqkhH2U93Nw04MOOkiuN8VhS8rKKYWfYTIi4QP2NkS9CDqTnaGwHwAiPrOkHIC00ZD3vXEj9Yk4yF09kZRnV61YF3kZA9vaeFzI2fAF0mMy7X1N+0ciUlav0buplGlbz3Lps5s2UR+oJKgtdCTFSaDKvGwkLnUwLLCfyef4b3mnv/sz9bnTT6BxcWxYvpf9y8hKMDlCz6ZzcO64b/Oq6Qz1mU5qa3/hfgAAa9as43vlPqi+EzYnmXUSOviQQ8IyG7rDlmmnDCuujmfZXV9FzpzhQJMJI+8nlrCBi+kc2pHEhhvJcwDXHuWolJvkHHL8zapB2vjAAPdDFttv2y7Z7lceMsjXkW+bFZV/5zsUxiUWlTrMzJQWbEFwzJCDg4ODg4PDkoabDDk4ODg4ODgsaSzKTOYDKKKBiici1zY2i0U5wuh0XsX4mKa5VpXjSOQLMveKMZ2cSgutnmf6ss4RLmuKor5/418BAKtXkbmrkBsKy7o62LTCwrqdw1J26D8cBQDY+jcSqgW+CLWWceTkZz7zWeG2TAfFRKmUiZ6NxkRw7UWozh1M9VZV7qAqU+42hs5NP/z3sKyvj6hbK4i2sZIAIMbPTQsnLQ1sqX1tqluxggTQlhrVcUls/IwYJ4+z+cEAyWPTzUL0ksoN1MaxZSYLEg01w4LQcTaJxjtUDCIWu9bYtJGIi8guX+bYOmzO7O+VPEw2JkUuV5hzXzbWhY6+bLd1s8AypoRwMzMN7B1GMsLUhNyLbeUxprutGQAAejnOUIKjMb/g+S8My/q4zNLXGjZuzS9+8Ytw2zHHHAMAWLmKzDbabLuS84cV2bypc9/5eXrPHTbmS7eY6u69i2j45z7vGeG2Ozb+DQDwo+vIbD2ocq295pWvonOwOHh6eHtYlqnTPXZ0UF2SUZXUsNpMXnsqFlPco99bN0pMlXUrKc5Kntvxjm3bwrKXv5zM3ddzBO5nnnhcWDa8nWIIWXPZofvuF5bZ+E82v59RhPrMNPWdQw4Rs1VHls4xNUV9Qou+bZ+28aO0aN6+45e+mOJHvec97wnL2vvpWT78IIl5/3qnmCf/+YQ3AaA8XxbWrGBj0BglFm0EDQR7gVuB7/solfLwfRkgk2w2tLFwYjEVZX2AxuGEIVNQVcWVCbg3KZ+Y0AQkcXW8OWUet6EA8j3yG1SHJOfRm5yQiPvLB8l8FdRp3KvmxVnDPvNqVfpXpTTDZdTH29Niatr8ADm5bNtKbS+ZkP6Saac+7hkrgZAx2t5PH+cHm56S6/2N496tWyexjiY5FpyVh9RUfC0rxl7G59qs4hNZ+UQ7m5P1OBzGHuJMEjMqR2Ga49BFG9LmpriOkTpt27hhc1jWsYYdrXi8L+XkfjJW7sHmaBOTcxo+/yjnADzw4APDsp3T1O+1CXH//cnJ6c1vfjMAkcQAwOjIJH50w4+xEDhmyMHBwcHBwWFJY9FZ6+sA2jplhVdlt7exMZr1VWsqQ+86Em0ND9Nqrq//gLAsx7l4JqeE2fBY+ORxFNCZkjAVBx1GYkqPXTIj7bICmpqk2atlUlYul+zC9/2BXIy7Omll3KdEc2ARX7ZdZpk+C7rtakDngpngmXghV9SH0zmyJIRLMitTVYxNWz9de2aaZrzxmHI/ZFGwjZALAEVedVghdHensGfDQ8R6WXGxzl9TYbf2FIvT41Gp+/IBYmiGdtCqtq6EzesOpJn1yBbJpzQ9whFSV1Ddq4GsOsZ4hu+xi7YWi04wm7N65Sq+Z1lZWPdOw2Leg/d/Sli24gS6/x/96EfhtreeSZmghzl7uadEo54HqNRwexQGQF+3RPTeNUQrwzaOsqvF8TV2L2WSEcmU9CXLhOncTD5HUy/z+7KrQAC45ZZbAIhAd2C5CBSHJ2hVNbCCVttW/AsA0YDbDEeLjylWpqOLVn9/uON34barf0LvZIQF1x/8tw+HZXGf1lMre4hdyW+TrPWDabp2fpRXf2m5L8Nt2wouAy10ZaH9cvVMTSetvEtT9GxXr5D+gp3UL1/NoQW+9fOfhkVdzAjZVffkLqlfwNTu8AS1e7sqBoBsltiDXbuEZbbPy44N8bjU2eYiS7NY3Kg8UTY6r422a92eAWCU8zcddRSFB9Hv97rrrqNtSlDcliGW4cCDaSxNt4uQdG9BAB/VoII2FTk/nqR2nyvQ89c5FbPszj0+TCLyWFJFOGarQkONP9M5YlN6llnWXtrv+C5qaw3QuBqN62RWVIdag9qXrxg3jpaARpXH6KgwPQ0bXqEhTFciSn0tkaS+VKuJBWHVSuoLWe5LpYKw8JNcd3D4h5oahwvc7scmeIxWrvKHPJUcB3JFFeE5S23BCpV1BPVpFnZbB5b2DrmfHWw5SSYTfB25L4+Z+VKOntXggDgVlAtUvynFJC3ro/IyR572IO0+t5Ouk2lr5zoJM5Tgd55mtrWsvpelEp3rC1+gcBOf+OR5chwzsNbSAQBxFlPbPqsdlK6+5ioUi8qEMw8cM+Tg4ODg4OCwpLHo5DcNA5QaMqsPOGdVRw/pAsplmaWXyrSiecfZFBgwEpHZ89EvJPt5Qs1m3/QmygA8xczLRE60E8PjZPNMpmlm+JVLvxyWpQJabXTzSrJcErZk1QpiiXxelQ3tkOzw115LWe5tZmQAiHHAq2SKZt2jozID7ewm++trX0OBHE1EHp/PrMe1136PzuM9FJZtY33DctYmjE/I6rTCQQZPPFFyc13CQe2sdkhnXraMUJgZXa0yLQMxOkrnt66XADA8TPe9YhVpJjxls79/A+mpzj1PAofZQHxfuowCN07lZXXjtbM+IrRRywqmq6+X60wrhPPPvyAsq5Vo/5UraVW/6T55Rk9ZQwE3CwVZ+WzZQi6VpSrnsVsmrF4kAtT2vDyC8vUBTVnrrYurXZXVS7LqifDKya7GtDtsg1lW/Qysfd9mu2/LCItp28LyAVqlRhUTWO2k824tcl6sTp13i845NkLnLClX+fRq6kM9DWEoCkkqf/+/ngsAyJWkLawYoHf56z/+NwDgoBVrwrKPfZmyVJ/2+jdQnYpKf8c6sxjrbgo1eUYN/v3hd58TbnvHhynw6GGD1KZ3bBa9x75Z6gMTvKJ87rOOCMt+fS8FxUswY3v+++ScZobao+2XNVUH65qt9ToTE7Zfrea/hUm17sDWFdm2XUBySNl3rUNE1LkR93T3cZnUweZJ1HWos/Cuj3PNlVX+LxMGu9izCIgbCsc2AAgiHFCUma2ocn/u7aT2m2KN3Xe++42w7MTXnwIA8H1pc51d1AfqdWs5MKqM2m+1Rtf2AulLN/zsUgBAobIZAJDtFBYjyu7iG7YSq3DGqSeHZX3dpEH51rc+FW5Lxlg/NkbniqncjTX+njR81kGm5Dl87wc0tsdSHHpEseo2e7zVIU2qjPbTzMZcc42Emzn11NPp7vn7oEMZfP7z5NYfMkMqV97atWRlqXDA35tukgCmQ2x5iDBrpIN4WpZfM5vfuPxbAIBXHUesbFta+rhlqmyQ0gHl3j/8EH1zkjyGjapv4p133wkAiLGm6ay3ShiNz62ngMyWnQUQ9o4c5zvMVWV+UirVQ63q7uCYIQcHBwcHB4clDTcZcnBwcHBwcFjSWFwEag+Ip4BqQ8xKltbtsDScEXq9wcmFCjkyCfT2CcV/7z0klnvwYTGVFJh+9yJ0/r/+7Y6wrM50Z5SjgHZ2S9W9SXbJZxFWrSLUsXVZj7Jbb/+AuHpbGjKuRItW3Fyt0PWSCblOe5rFZUUSwaWS4j67c5hMejGO2JxUwutahcMOsKu7zkeV5PwrfZzjCQBWLifx8QMPEJX4hc9LhOcPfvCDAMSlfsvmzWFZMU80YYLp5lPeKFSvpQqHhynSas0XQWJPLwlHragNABoeVfK1J1KU6HhW6M8vfeUSuv92uv93nvWusCzF9z2yi2jgFcsGVRnd67YNZELoyohgdcPDDwMATjrpjeG2P99FdOkhhx1Ox6ekDrXa3pGbzINBOprCjm3iUt7P7qwx9gfepcImrGWTiRdQmXaHtabPfVZK7r8dO8g9d82aNQCaQynMsOnSmtx0tO9KH52/0k59Y8qT6yTYjdX0k6gyFxUeeahA7+2CL18YbpuoUV9Y/93LAQCjKu8WpwzDun5qs9f/5MawrI3NyN4g9ftMRUWNz1FbLdU4z5Sn8gmxqDrZKwLqZxxIYvudPG709UjbKTE93tNN22Ya0mdTbEKYGiYaPqYi3rfFqD1u3EBjUH+/0P8dWamrxSfPo3ZvBZrxuFznM58lE4oVdq5cIePMjq3U56ybc70idfjmNyhf39QEjUVazJrtJtNbQ/XVGRbZW7NsUeUmC/YKx3oyWkVNgExWTDNTOTLTFyscqTsufTmXo20TE9TOupXYN8M5DmcK0kbr7FRQqdl7l7aTiJIZznB7z7SJOaVYvx8A0DAcnkFJJtrTZII/5NB/pOMDqUN+itrj644/N9yWylIbuPrar9B1MsIrnHDa26h+HFqgu0fqPl2iMT0eoX42MSrXsc4EHR0R/l++l3V2TFq/XvJN2sjzNvq9zjjw2c9+FoCY3LU5/kUvolAPPpvHzz1X7ssK+GMseh7aIdHpv3gRmfgmR8U8nOVMDRUexxJR7VxF2wxfe+Rv94ZlK9fQeDHBYSoynRJ+YIb7V22Gyr74ZcmFODZDZn/97Y2wyaydnQl8/9FxPI4ZcnBwcHBwcFjSMHrGuDt4xgQJD3jggVvDbfEozV7jMVqVTU/KyqZapVnmhRfRbHbjBlk9pzgo2eSMBJ1avopXZoZZjx0PhGWHP4PEVwccSKvmI4/6h7Ds6byCtKuyFcysAECJXc9LRTqnzTkGAMPsZrtunWSm3zVC57AC4PY2mbFu2kKr9Le9jVy+faXMauPzWnfYoC4CSjvj38lBpHrUqjbGTNSEcn0ucubvH/+YVtmaDfjwh8mt+cEHaYV8663yLoaGOMBeL7FMZ7JrOiDBsez9JNtlZVbgldZpZ7453FZjt/k6Z6uvR2X1lc7QqmGU2Z81q4XJGNpM93jl10hY55WErahN0wp+VT+tmutV5S7Lrpndyp16guscWIYhIquOw484AtP5OuoNf49qRqNeJMjG2nHrL24Jt9mVWpTbkBXvAtJGfWYAurKS3+rFL3oRgOZVnF1B3/Jzyt2mxdUnnECiRSugtIH4AODSX1I7HNpB76NfsSzVIq3Ee5fRtg1bJXv3VddRfp9qQv5LR2sAABmiSURBVNZJFY/qajiPns3HBAAlzmAdYTfgVd0icj/zVAoamE1Qe+kKhCUsbOd8fQExiVEliCx30D3/aWRzuC3ZS84B3/wCs5JTwk5/+kPkoDHMq8yrbrs5LPv5H28HAHz3yu9QHVR27GCEg092UPvSeZXsqntsXDLZX389PVPLrurgmKtW0Zhz3nnnAWhepdvciaeffjoA4MorvxuW2XEpzgyxZj/H85YpDzeFWesTHJJBC6ifceQzUIePINizqeuNMUEEUczMSFiC6TyNhz6oT/f2Cgu3fQu1p5WDTwMATI5pl3dqVyed/KpwW3cftc0rv3uZvWJYdtrJxFJbPe7V35WAe6bjjwCAFf00/u4YkXafjBFrV5mhsem0f/lMWBYDB7pV+f2KVXKKiSXofgoqYO2yPgqCWinTOP7Vr0sA3jWHURsr5oklSbc/OywrF2h/O1ZHFctSKdNYGVNjyaWXfhUAcNttt/H+wlR++9vEOFrh9FuVCLnAWep/+EP+VunxhpmhSWZudXtsYzbmk584L9z2iX+jXJRVDhny8pceG5bZoKY38Xesc0DyYR75dAoVMM599qHNEpi2UKD7r7MFyotKB/Bj9A5svwGAMrNS2Uwn34/s39e7FkGABfUJxww5ODg4ODg4LGksihmKGBO0R4AHH7g93Obzyq5c5GCFMWFe+gfIhe+uu4jh+cIXvhSWTfLsV9sKc3liico1mrle+Z2vh2X5Ms28DQc+++3tvw7LOqu0Wj78cNKWLF++MiwrcHoImwk4r1zEVzIj9OC994Xbutg104aBr9dlNZBM0GrvlFNOo3tQgcPsc/z+978PAEjFxZ3SMj02mF6xJIEIk0mbOkN0GKsPJFfOLawZuuyyy8IyO9O3wRa12/3ZZ9OqyLodToxLcCzLFlV5ZRlNiU4qxy6wqS6x8Z/0ltNpWzcxf1NFCWQV5VWsXYl88qPnhWVrOeDl+Fayxw90ClPgcQbqOms8EsoVvByn+2jS0LCLqc9LYx3Qc9+DDkcdC5vxP57wjAkSiOKyS+QdHX00BdCzgQW1K7UNQGbZvrhazVn33te97nXhtgJrRGJReuYN9Xws+2ADVWr3/pEoPePBftKdjI0Ii2HjG6ZSdL31X/9qWDY8RYxIvEMxG4auGWV3Wx34rTND/d1jZqgyJWXnnvMB+sHu45GqMFfZgO47zZoh/d4bnDF7xBP2p62PGLSxLcQ2fOtCGUsazE51csqRjTPipvuJL5IrbjsHIi3vkLK+ONU9iNDxk1PCzlo354hKd2FZvQsuOB9Ac9+zv21wx/EWfe9zn6MgcnaVDwgjNDpC19YZxEusAUu3CWNltRlxDsRYUu7rhz/7cJTqZTT8PcuWGmMCA2B0TMIf1Hy6v1Sa3rfVCQHA+q9cCQB411kU2iMWEbY0ymywFxUm4GWveD6dyzanQNb0JU759LOfUtBQvy7jnIkRmz7N+iUdbiLw6Tq5SWr3y7slQPCxLz6D6y7jlTH8fiPUP0sleQ83/5jY+qlJuse2rHxj69jB/xPjmCtIP7P92QZbTKdkPLaWimJRrmN1M5/+NIWw+N3vJFCqbUe2X1mmEwBuvOkGAMA+7GL/8INigbHhWdraqc3aMC2AjFVtKenHn/z4JwAA//5J6hMVNda96IUvbDpOa9/KnHLlLk7/oy1ExTKNIZ1dnBqlrlJO8avWLFiRx1LLouuwDV2dqxwz5ODg4ODg4OCwELjJkIODg4ODg8OSxqLMZDFjgs4IcNedQsdZk4k1IeVyKlKxzTXGWejrSnCc4XxgmnL/T6bvjj/+lbS/cuGPcnZ3GxlWi4qzETnHXMye78nfQcu5IG9jVi0wLfYJ5ptDcpZlVNW22c9YhcQME2z5c8vNAt5NE/v3yPdqEef8OtZ1HgA4AgKUthRV9pmu8TaVqBgNfia2ehFVhyjnEoqze3OiLnWIc2bjqG+PV7mdDLUbHVm0ynRxwFR5oISSBx92OMp1oOHvHWayu/8s2catqP1FLIjWpo86ZzUfGSH62eZwA4Aim8QintDxEX7WVjgdjchLSrLp11LG2kymTTgAYIK5bS7gF9jwpKxh7HuXbRWf6hzj0AtVZdLy+Dr2vS9TAvgH76Fs9/vtQ3T8mHIpT7GfRbJu6yfVKzMDXlC5v6p82zYKQEqqgBhf2za1ojw+1NjMFWlxXJp/16P83Fomu1vottnw5v4O27t6N+G2uX01z+LouArv0eDx2uYF1FnrD336oaj4NfjBnjWTeZ4JYlGDzVvE/BJP0jMrV8gckk6LCahconv64kUUeTriSdn730em1sBI267VyWSfTFGj0BYQG1UlYrL8v5h0DNjE5PH3whO5Agw3RJ+j/vsq51vAY5KRbw48MoF5bEKGL+Y4NLi/+1YCotqLR3UwhupQV+Y/tRNft0Ubatl2CBdeKOEw7PfxE58gM1ZT/jHuS21tdI82fAcAXH45hc8wHkepV+a1lctJSP6+974v3JabIvnKxRdfDAAYUFkCjns5RVDv7aMxwfelDtb8bPPXbdwkYvZ91pLUosrtv1qTd19p0PNOp+W9BsbODawpUfZfu+Zg1OuAv4DvhGOGHBwcHBwcHJY0Fs8MAbjjjt+H2xo8U7Or37oSSdmyeIKWag3FDFkBna9WsJ0dJJy74UbKlfLGk04Ny7Zto9mrzeGj3dpjEZm98m3Ncxe7mf/xbFvmkYtlhrgGyr1vzkqyifFpwQwtJh17y9XDI/0NJNmNXselssyAInFQs2yRZ9kDdcnw+dJGRSIg6tMqVhgizRpxGe8fUZXIt5NYNJmUFVmBA3oWmE2pN+RCBx12xF4joI7Dw6aHNoXbrADS5vzRLM0/PJvyZh188MEAgL/9TcT7vV3U/stKJJlJ0+rS9lMbpBMAKswE2bJAif077co2zLGlwO3L5/816+dzW2hiDvloy85q934r6J8a55ABFanDwUdQ+IsH//AH2rBCWKNEvfn/iKpgjfN7VVQXsm3T4/Ye1d2F/7f3UYt4c46z+ycVM5TgqtZars5b9ME5/bJVP51vvFgIMyTHR1kkrbPWW9f6UqXINZA6HPbMw/Ya13oDYNPme8JtmQ4bGI+Yl80qWGw8xm2cRcxdHZIp3YYqSCSlMbznvWcBANo4R2K1qrKSs0NPe5raWm5GWALPMjaWEYqIU0i4jRmipiHaskZeWW0roQm+sFloUD/2aiwED5JqR3ti7meJHZiLR8cM6XHG5sj76Ecp7MQFF0iOSGtxiXA/0TnNbKDHCXaEWM5sEADs2Ep11cFduzttPjV6F5Nj4oRwww1k6XnzmynEhmZ4rIXH5gPsVuFmCiygtrntEiooMnhciiiGPM9MkCW/bJ5QANh330McM+Tg4ODg4ODgsBC4yZCDg4ODg4PDksaicpMFABoAOto61TbipqzmMxIIZVmr2zgZRKEVFB3Xt4zoUh07Jp1iE1WN6LGxUckds2KQ6DrP0LnGxyUuj0nPoqvnNWM15inT5d6svxcJXyJ3zhVC6/oGLfYxLfazmHVvi2TE62xLCJSZ0Zoqm1K6sLnE6se9pssETf9rITQ4tg7YpKXzxDRsGV+6oUS9NkpvpSJ2DLY2Ic2xeXQEas8sTF/+eMPAIGZiYQ48AEhzzrZjX/ZSAEBD5cP65S9/CQBo5/xLmQ6JsxVLEZ2unQqqAT0PG/w2DhWpmUWSMRZQJ1Iqt1yenz//3WSY5XcZ8HtrKPOP3earZl9jWj3Kgu22tPT/MY5C3sl0ebRD6OvNLKDuGaC+u8sX04K1wllmX5u9rAm8yTUgbEds0oWG13Sv2oQedi9r5226Dv1fD1r1s3CvOeeaX0Bty7wW2+x55uuzsu/MBEkJjDJZ1mzsITY3xWJKLb4XwYsC7Vlp2+McEjrFwun+AXEcMKB7iMeo32zcKNH7P/JxirjvqwZ5/r9/HIDEb/vMZyRadJr7wK6xnU3nBoCU/UjZb5Tfahy2in65ngnYGSZQ5tTZbcbXpjraz2eRdPO+ze8+8OdpSy3HN/OI5a3MZDYGkTU3AsC73/NOAMA++6yec5x1wohGeWxoyHjc1kZtTju52HaeY+ePbJeMDce+/GUAgPM/RSa6M844IywbHOQo/Qk618atEpOqv58iVRdZJhFRkbhrPObpPl5js1gmQyY+z8g79xZB9zhmyMHBwcHBwWFJY1EC6qgxQTuArSrTfIwzYE9N08y/XBN3xQavBHv7SBw1Pi7RLO3qOdMuwqmZaZpJl9gF99Zbfh2WHfU8iurbv4xWFL6v6h2RaK9PCBYicPbnZr2e103XtFiltL54858tRXaPPMdN8Co/aMH0NImkzSxmYZ7FrGaGPN7Rbov4UbWf4X3mHocst6MpiURaqdHqrKOHRPPVmqzW1ux/6F4hoI4YL0hHEvjNb34TbrOiw8kZcjvVq/c8h5544AFyOz7yyCPDsjLn90knhOGxme+rHNk1lRCBuXVrjXMkb32dRo0ZQP5bP6WQJGFqTTtit3LKtqtDK2S0kZgBYL+166gueaqLHk/GeL/BQcpJNlmUd2sF05xqCDHtfezbsBayzf5uhP8rxtE07+OrMivut8xTXDFetg6lWDPP1IxWzg6M+caBluz04lzrkzHLqEu0ZnvF/kFaPdfUyn1wn8G9RkAND6hWZVweGqLI4QXOv6VdoyW3HjFJNto60DweWNgccsv6KEry2896e1jWxg4H55zzfj6nGodDAa8NLaEag2WEQoZodyEVZpfrwdOOeZFZf7c4o1edu7Flm2gO+TK3XLISAMKcWKGxFUYDQC7H4wY7Nu3cKZnp99mH8kwWc/Qt1qxRsUDPz7LAgDBQOd5fhxExXL8KZ6+/9NKvhGU2598555wDAOjuFkapVGJGjccnLaD2mGUrlYSlC9hs0dlBonkd/X31qv0RwEWgdnBwcHBwcHDYLRalGTIGSMU8PLz5wXCbte+ls2QL7m7rDcvyvFqM8gw0kZYVmPV0m86rvCOsB8py1upsp8xm1+5LK9CJCVop6MB0JtA2zN1hflYn1KEsaNX3yAxO0LQynK0jUMfZmfd8rvgt0cr9stnlvblCtK1q5tFAadu2XSDNOnNTYYsQBtbt3k7EfS3ssbu3en7MfNgccgCQ4KBqdnVTUXnlBvp7sGt87qrxiYaPAOVGFf3LJSP78BgxoNa2XlPPtXeQWK4JXp394IbrwzLLBBz7Esn8PDbDuhF+VF0ZeWZejLpvPGHzlkn/qsSbmSHN+llWpWHmMjDW3V7JVBBLp/gcdFx7v7jI/+lBCjbZ1UUMbywhffGWP/4XAOCoo44CAHS2q1xLVjfGf+vWb6saVXXwg+a61pQvvq2X3eIpdsrGJIzwWXUsynCvUGOwGzYgPNhumy98RquF6CwKC1ADztyxxLb7pjxMrOnYto2yps/kxT08nUwjXyliT8PzgHS7wdCQ5MPr7KDvgrUEaNdoG6phZITYApvLDQCiMXpvNg8XIHnANrC26JPnfSoss27f69cTC2H1MQDgBdYywddWrLV1yQ/sJzGYq4tpHqMZ4ftT7KLH3zTrfm9aBeBl5r2uXPLDXR4dM6SZYcuIWdZHP1PL9ljW7SmHHBqWbdj4MACgu0OYmvD8HFqjqNpYlPU8UQ4MWlLBkG0YCPt+P84BIAHgnnsp7MLFX6Icg5d8+ZKwzAaMTHOQV81ER5kFiqq8lknWodlvjs5o39WVwfTMfEGZBY4ZcnBwcHBwcFjScJMhBwcHBwcHhyWNRZnJGgEwVfXxxjefEm7bvHViniMIlhjMZlSuoSpH4FRWG/vbb2F9unCS6OAPfviTAICoYiyDR+n9bvFYzgjDaLiP4TkfSzyygav5OcxjcJsXs125W8nCW5VZWXBctcgiM8/2Weo61zDbvXrPIYCPfdatDv9uT5OIsFAmmryu3IKtOcm6jTZZEZm+HhoR88L3r7oGADDOucyaorja0Ab8t6feVtWKRPnvhioLa7NQme2c/ihvLpuhey1xUigbURYALrrkywCAFxzzAgBAPS9C4NmNIa7qZ+WS2mnc7l7lSqtYwOp+vOadgTAQgT1XC0MHyuEwuFDRbKsW3Gp/i/kcG2a/BBWB2kZ4V/tYcXG5zs4pyvxRLBebIlLvKfg+kM8H2G+/g8JttRY6YYskR5e2oVi0T88HPnA2AODCC9eH29IpepvFogonzrDWNxus/tL1XwrLykVuKQsYnJqsUWGZ/lxGmguVKcy3RS308nPQ6nXN5z8zT5kO1MyWRFgLa73FYNnOkQ/yKkWb9ZqvtwjKbpUpyhIOGy2n1Te7jUPqdHTSmLdzx645+2QyZArTQu1LLvka/bBhN9RjT9gurhUW9tHztmRSDiiX6/M+Tg3HDDk4ODg4ODgsaSzKtd4YMwpgy253dHB4YrBPEAR9e7ICrk847GVwfcLBoRkL6hOLmgw5ODg4ODg4OPy9wZnJHBwcHBwcHJY03GTIwcHBwcHBYUnjSTUZMsbkd7/XkxfGmC5jzA3GmL8aY/5ojDl0VnnEGPMXY8xP1LYrjDGbjDF38r+n8/aDjDH/bYypGGM+MM81v2mMOeTxuyuHxxOuTyyqTxhjzCXGmIf5fM94hGvebIyZG3XO4UkB1ycW1SfeyOe52xjze2PM0x7hmn/334lFudY7PO74NwB3BkHwKmPMQQDWA3iRKn8PgPsAZGcd98EgCH44a9sEgHcDOGG+CwZB8Nb/W5UdHB5XPJZ94mUA9ud//wDgMv6/CUEQvPwxqruDw+OBx7JPbAJwdBAEk8aYlwH4Olr3ib/778STihmyMMa8wBjzG2PMjcaYjcaYz/IM9488w92X99vXGPM/vO2CVisGY8waY8x9xphvGGPuNcbcYoxJcdnbjDH/a4y5yxhzvTEmzduvMMZcxufeyPW5nM9zhTr3S5md+bMx5jpjTIvY6004BMCvACAIgvsBrDHG9PO5VgJ4BYBvLuQZBUEwEgTB/4JC8sz3LH9tjHkW/84bYy7m5/BLY0wfb382rx7uNMZcZIy5ZyF1cHji4PrEgnA8gO8EhP8B0GmMGZy9kzFmszGml5/D/caY7/F9/FDd78u57A5DbNNPZp/HYc/C9YndIwiC3wdBYDOb/g+AlY/wLP/uvxNPyskQ42kA3g7gYACnADggCIIjQI3gXbzPlwF8OQiCwwBsn+dc+wNYHwTBUwBMAXgNb/9REATPDoLgaaCZ9lvUMV0AngPgHAA3AbgYwFMAHGaMeboxphfARwG8OAiCZwD4E4D3AYAx5nxjzCtb1OMuAK/mfY4AsA+kcX4JwL+idZiuT3EjvNgYk2hRvlC0AfgTP4ffALDJZL4N4MwgCJ6OvTeepIPrExqt+sQKANvUPtt523w4EMBXgyA4GMAMgLOMMUkAXwPwsiAInglgj7qyO8wL1ycEu/tOvAXAz+a5f4u/y+/Ek3ky9L9BEAwFQVABsAHALbz9bgBr+PdzAFzHv6+e51ybgiC4k3/foY4/1BjzW2PM3QDeCGrEFj8OKC7B3QB2BUFwdxAEPoB7+fgjQTP43xlj7gRwGqjRIgiCjwdBcFOLenwWtFq9E9RR/wKgYYw5DsBIEAR3tDjmXAAHAXg2gG4AH5rnPncHH8D3+fdVAI4ypJ3IBEHw37x9vufosGfh+gThsewT24Ig+B3/vgrAUXzujUEQbOLt1/wfzu/w+ML1CcK8fcIY80LQZGghfeXv8jvxZNYM6YDhvvrbx+LvS5+rASDFv68AcEIQBHcZY04H8IIWx+hr6+s3ANwaBMEbFlqJIAhmALwJILEnyJ67EcDrAbzSGPNyAEkAWWPMVUEQnBwEwZCtjzHm2wAeUSz9KOCCUD254PrE/H1iB4BV6vQredu8VdjN3w57N1yf2M13whjzVBBT9rIgCMYXWg9dpUdxzF6HJzMztBD8D4TKPPFRHJ8BMGSMiYFm/Iu99vOMMfsBgDGmzRhzwHwHGGM6jTE288tbAfxXEAQzQRCcGwTByiAI1oDu41dBEJzMxwzy/wYklv6/2Gk9AK/l3ycBuD0IgikAOWOMFdU9mufosPdgKfeJmwCcaghHAphWH4lHwmpjzHP490kAbgfwAIB1xpg1vP31C7h3h70XS7ZPGGNWA/gRgFOCIHhwgXX+u/xO/L1Pht4L4H3GmL8C2A/A9CKP/xiAPwD4HYD7F3NgEASjAE4HcA1f/79BNOV8tuCDAdxjjHkA5PnyngVc6ntMz94NoBfABXyNAWPMdpD9+aPGmO3GmCyX3WyMWa6ry/8XABzBwrdjAJzP298C4BtMy7Zh8c/RYe/Bku0TAG4GraAfBvANAGfZA7htN1WX/38AwNnGmPtA+o/LgiAo8bE/N8bcASAH1yeezFjKfeLjAHoAfNWQ8PlP9oCl9p34u07HYUjVXwqCIDDGnAjgDUEQHL+n67U3gTvIK4Mg2GSMyQdBMMeTwRjTHgRBnn9/GMBgEAQL6YAOexlcn5gfxpgIgBEAAyBx9U+CIDi0xX7tQRDkeaW9HsBDQRBc/MTW1uGxgOsTu8dS+E48mTVDC8EzAVzKA9YUgDfv4frsVTDG3ArgbiUEfSS8whhzLqi9bAGtZByenHB9Yn7cC+CbQRDU6BE9It5mjDkNQBwkYP3aE1E5h8cFrk/Mg6Xynfi7ZoYcHBwcHBwcHHaHv3fNkIODg4ODg4PDvHCTIQcHBwcHB4clDTcZcnBwcHBwcFjScJMhBwcHBwcHhyUNNxlycHBwcHBwWNJwkyEHBwcHBweHJY3/DzsqlFH7/CXaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.figure(figsize=(10, 10))\n", + "sample_idxs = np.random.choice(50000, size=25, replace=False)\n", + "\n", + "for img_id, img_name in enumerate(os.listdir(INFER_DATA_PATH)):\n", + " plt.subplot(1, 3, img_id + 1)\n", + " plt.xticks([])\n", + " plt.yticks([])\n", + " im = Image.open(os.path.join(INFER_DATA_PATH, img_name))\n", + " plt.imshow(im, cmap=plt.cm.binary)\n", + " plt.xlabel(\"Img name: \" + img_name)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## 七、开始预测\n", + "> 飞桨2.2 CTC Decoder 相关API正在迁移中,本节暂时使用简易版解码器。" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predict begin...\n", + "step 1/1 [==============================] - 7ms/step\n", + "Predict samples: 3\n", + "文件名:9451.jpg,推理结果为:[3, 4, 6, 3]\n", + "文件名:9450.jpg,推理结果为:[8, 2, 0, 5]\n", + "文件名:9452.jpg,推理结果为:[0, 3, 0, 0]\n" + ] + } + ], + "source": [ + "# 编写简易版解码器\n", + "def ctc_decode(text, blank=10):\n", + " \"\"\"\n", + " 简易CTC解码器\n", + " :param text: 待解码数据\n", + " :param blank: 分隔符索引值\n", + " :return: 解码后数据\n", + " \"\"\"\n", + " result = []\n", + " cache_idx = -1\n", + " for char in text:\n", + " if char != blank and char != cache_idx:\n", + " result.append(char)\n", + " cache_idx = char\n", + " return result\n", + "\n", + "\n", + "# 实例化推理模型\n", + "model = paddle.Model(Net(is_infer=True), inputs=input_define)\n", + "# 加载训练好的参数模型\n", + "model.load(CHECKPOINT_PATH)\n", + "# 设置运行环境\n", + "model.prepare()\n", + "\n", + "# 加载预测Reader\n", + "infer_reader = InferReader(INFER_DATA_PATH)\n", + "img_names = infer_reader.get_names()\n", + "results = model.predict(infer_reader, batch_size=BATCH_SIZE)\n", + "index = 0\n", + "for text_batch in results[0]:\n", + " for prob in text_batch:\n", + " out = ctc_decode(prob, blank=10)\n", + " print(f\"文件名:{img_names[index]},推理结果为:{out}\")\n", + " index += 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "py35-paddle1.2.0" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/docs/practices/cv/image_ocr/image_ocr.ipynb b/docs/practices/cv/image_ocr/image_ocr.ipynb deleted file mode 100644 index 95f6699855b..00000000000 --- a/docs/practices/cv/image_ocr/image_ocr.ipynb +++ /dev/null @@ -1,739 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "# 通过OCR实现验证码识别\n", - "\n", - "**作者:** [GT_老张](https://github.com/GT-ZhangAcer) \n", - "\n", - "**时间:** 2021.11\n", - "\n", - "**摘要:** 本篇将介绍如何通过飞桨实现简单的CRNN+CTC自定义数据集OCR识别模型,数据集采用[CaptchaDataset](https://github.com/GT-ZhangAcer/CaptchaDataset)中OCR部分的9453张图像,其中前8453张图像在本案例中作为训练集,后1000张则作为测试集。 \n", - "在更复杂的场景中推荐使用[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)产出工业级模型,模型轻量且精度大幅提升。 \n", - "同样也可以在[PaddleHub](https://www.paddlepaddle.org.cn/hubdetail?name=chinese_ocr_db_crnn_mobile&en_category=TextRecognition)中快速使用PaddleOCR。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 一、环境配置\n", - "\n", - "本教程基于Paddle 2.2.0 编写,如果你的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) PaddlePaddle 2.2 。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2.2.0\n" - ] - } - ], - "source": [ - "import paddle\n", - "print(paddle.__version__)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 二、自定义数据集读取器\n", - "\n", - "常见的开发任务中,我们并不一定会拿到标准的数据格式,好在我们可以通过自定义Reader的形式来随心所欲读取自己想要数据。 \n", - "\n", - "设计合理的Reader往往可以带来更好的性能,我们可以将读取标签文件列表、制作图像文件列表等必要操作在`__init__`特殊方法中实现。这样就可以在实例化`Reader`时装入内存,避免使用时频繁读取导致增加额外开销。同样我们可以在`__getitem__`特殊方法中实现如图像增强、归一化等个性操作,完成数据读取后即可释放该部分内存。 \n", - "需要我们注意的是,如果不能保证自己数据十分纯净,可以通过`try`和`expect`来捕获异常并指出该数据的位置。当然也可以制定一个策略,使其在发生数据读取异常后依旧可以正常进行训练。 " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 2.1 数据展示\n", - "
\n", - "\n", - "
\n", - "\n", - "点此[快速获取本节数据集](https://aistudio.baidu.com/aistudio/datasetdetail/57285),待数据集下载完毕后可使用`!unzip OCR_Dataset.zip -d data/`命令或熟悉的解压软件进行解压,待数据准备工作完成后修改本文“训练准备”中的`DATA_PATH = 解压后数据集路径`。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 下载数据集 \n", - "!wget -O OCR_Dataset.zip https://bj.bcebos.com/v1/ai-studio-online/c91f50ef72de43b090298a38281e9c59a2d741eadd334f1cba7c710c5496e342?responseContentDisposition=attachment%3B%20filename%3DOCR_Dataset.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-10-27T09%3A50%3A21Z%2F-1%2F%2Fddc4aebed803af6c57dac46abba42d207961b78e7bc81744e8388395979b66fa" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 解压数据集\n", - "!unzip OCR_Dataset.zip -d data/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "import PIL.Image as Image\n", - "import numpy as np\n", - "from paddle.io import Dataset\n", - "\n", - "# 图片信息配置 - 通道数、高度、宽度\n", - "IMAGE_SHAPE_C = 3\n", - "IMAGE_SHAPE_H = 30\n", - "IMAGE_SHAPE_W = 70\n", - "# 数据集图片中标签长度最大值设置 - 因图片中均为4个字符,故该处填写为4即可\n", - "LABEL_MAX_LEN = 4\n", - "\n", - "\n", - "class Reader(Dataset):\n", - " def __init__(self, data_path: str, is_val: bool = False):\n", - " \"\"\"\n", - " 数据读取Reader\n", - " :param data_path: Dataset路径\n", - " :param is_val: 是否为验证集\n", - " \"\"\"\n", - " super().__init__()\n", - " self.data_path = data_path\n", - " # 读取Label字典\n", - " with open(os.path.join(self.data_path, \"label_dict.txt\"), \"r\", encoding=\"utf-8\") as f:\n", - " self.info = eval(f.read())\n", - " # 获取文件名列表\n", - " self.img_paths = [img_name for img_name in self.info]\n", - " # 将数据集后1024张图片设置为验证集,当is_val为真时img_path切换为后1024张\n", - " self.img_paths = self.img_paths[-1024:] if is_val else self.img_paths[:-1024]\n", - "\n", - " def __getitem__(self, index):\n", - " # 获取第index个文件的文件名以及其所在路径\n", - " file_name = self.img_paths[index]\n", - " file_path = os.path.join(self.data_path, file_name)\n", - " # 捕获异常 - 在发生异常时终止训练\n", - " try:\n", - " # 使用Pillow来读取图像数据\n", - " img = Image.open(file_path)\n", - " # 转为Numpy的array格式并整体除以255进行归一化\n", - " img = np.array(img, dtype=\"float32\").reshape((IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W)) / 255\n", - " except Exception as e:\n", - " raise Exception(file_name + \"\\t文件打开失败,请检查路径是否准确以及图像文件完整性,报错信息如下:\\n\" + str(e))\n", - " # 读取该图像文件对应的Label字符串,并进行处理\n", - " label = self.info[file_name]\n", - " label = list(label)\n", - " # 将label转化为Numpy的array格式\n", - " label = np.array(label, dtype=\"int32\")\n", - "\n", - " return img, label\n", - "\n", - " def __len__(self):\n", - " # 返回每个Epoch中图片数量\n", - " return len(self.img_paths)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 三、模型配置" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 3.1 定义模型结构以及模型输入\n", - "\n", - "模型方面使用的简单的CRNN-CTC结构,输入形为CHW的图像在经过CNN->Flatten->Linear->RNN->Linear后输出图像中每个位置所对应的字符概率。考虑到CTC解码器在面对图像中元素数量不一、相邻元素重复时会存在无法正确对齐等情况,故额外添加一个类别代表“分隔符”进行改善。\n", - "\n", - "CTC相关论文:[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neu](http://people.idsia.ch/~santiago/papers/icml2006.pdf) \n", - "\n", - "
\n", - "\n", - "
\n", - "\n", - "网络部分,因本篇采用数据集较为简单且图像尺寸较小并不适合较深层次网络。若在对尺寸较大的图像进行模型构建,可以考虑使用更深层次网络/注意力机制来完成。当然也可以通过目标检测形式先检出文本位置,然后进行OCR部分模型构建。\n", - "\n", - "
\n", - "\n", - "
\n", - "\n", - "PaddleOCR效果图\n", - "

" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import paddle\n", - "\n", - "# 分类数量设置 - 因数据集中共包含0~9共10种数字+分隔符,所以是11分类任务\n", - "CLASSIFY_NUM = 11\n", - "\n", - "# 定义输入层,shape中第0维使用-1则可以在预测时自由调节batch size\n", - "input_define = paddle.static.InputSpec(shape=[-1, IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W],\n", - " dtype=\"float32\",\n", - " name=\"img\")\n", - "\n", - "# 定义网络结构\n", - "class Net(paddle.nn.Layer):\n", - " def __init__(self, is_infer: bool = False):\n", - " super().__init__()\n", - " self.is_infer = is_infer\n", - "\n", - " # 定义一层3x3卷积+BatchNorm\n", - " self.conv1 = paddle.nn.Conv2D(in_channels=IMAGE_SHAPE_C,\n", - " out_channels=32,\n", - " kernel_size=3)\n", - " self.bn1 = paddle.nn.BatchNorm2D(32)\n", - " # 定义一层步长为2的3x3卷积进行下采样+BatchNorm\n", - " self.conv2 = paddle.nn.Conv2D(in_channels=32,\n", - " out_channels=64,\n", - " kernel_size=3,\n", - " stride=2)\n", - " self.bn2 = paddle.nn.BatchNorm2D(64)\n", - " # 定义一层1x1卷积压缩通道数,输出通道数设置为比LABEL_MAX_LEN稍大的定值可获取更优效果,当然也可设置为LABEL_MAX_LEN\n", - " self.conv3 = paddle.nn.Conv2D(in_channels=64,\n", - " out_channels=LABEL_MAX_LEN + 4,\n", - " kernel_size=1)\n", - " # 定义全连接层,压缩并提取特征(可选)\n", - " self.linear = paddle.nn.Linear(in_features=429,\n", - " out_features=128)\n", - " # 定义RNN层来更好提取序列特征,此处为双向LSTM输出为2 x hidden_size,可尝试换成GRU等RNN结构\n", - " self.lstm = paddle.nn.LSTM(input_size=128,\n", - " hidden_size=64,\n", - " direction=\"bidirectional\")\n", - " # 定义输出层,输出大小为分类数\n", - " self.linear2 = paddle.nn.Linear(in_features=64 * 2,\n", - " out_features=CLASSIFY_NUM)\n", - "\n", - " def forward(self, ipt):\n", - " # 卷积 + ReLU + BN\n", - " x = self.conv1(ipt)\n", - " x = paddle.nn.functional.relu(x)\n", - " x = self.bn1(x)\n", - " # 卷积 + ReLU + BN\n", - " x = self.conv2(x)\n", - " x = paddle.nn.functional.relu(x)\n", - " x = self.bn2(x)\n", - " # 卷积 + ReLU\n", - " x = self.conv3(x)\n", - " x = paddle.nn.functional.relu(x)\n", - " # 将3维特征转换为2维特征 - 此处可以使用reshape代替\n", - " x = paddle.tensor.flatten(x, 2)\n", - " # 全连接 + ReLU\n", - " x = self.linear(x)\n", - " x = paddle.nn.functional.relu(x)\n", - " # 双向LSTM - [0]代表取双向结果,[1][0]代表forward结果,[1][1]代表backward结果,详细说明可在官方文档中搜索'LSTM'\n", - " x = self.lstm(x)[0]\n", - " # 输出层 - Shape = (Batch Size, Max label len, Signal) \n", - " x = self.linear2(x)\n", - "\n", - " # 在计算损失时ctc-loss会自动进行softmax,所以在预测模式中需额外做softmax获取标签概率\n", - " if self.is_infer:\n", - " # 输出层 - Shape = (Batch Size, Max label len, Prob) \n", - " x = paddle.nn.functional.softmax(x)\n", - " # 转换为标签\n", - " x = paddle.argmax(x, axis=-1)\n", - " return x" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 四、训练准备" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 4.1 定义label输入以及超参数\n", - "监督训练需要定义label,预测则不需要该步骤。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 数据集路径设置\n", - "DATA_PATH = \"./data/OCR_Dataset\"\n", - "# 训练轮数\n", - "EPOCH = 10\n", - "# 每批次数据大小\n", - "BATCH_SIZE = 16\n", - "\n", - "label_define = paddle.static.InputSpec(shape=[-1, LABEL_MAX_LEN],\n", - " dtype=\"int32\",\n", - " name=\"label\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 4.2 定义CTC Loss\n", - "\n", - "了解CTC解码器效果后,我们需要在训练中让模型尽可能接近这种类型输出形式,那么我们需要定义一个CTC Loss来计算模型损失。不必担心,在飞桨框架中内置了多种Loss,无需手动复现即可完成损失计算。\n", - " \n", - "使用文档:[CTCLoss](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-beta/api/paddle/nn/functional/loss/ctc_loss_cn.html#ctc-loss)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "class CTCLoss(paddle.nn.Layer):\n", - " def __init__(self):\n", - " \"\"\"\n", - " 定义CTCLoss\n", - " \"\"\"\n", - " super().__init__()\n", - "\n", - " def forward(self, ipt, label):\n", - " input_lengths = paddle.full(shape=[BATCH_SIZE],fill_value=LABEL_MAX_LEN + 4,dtype= \"int64\")\n", - " label_lengths = paddle.full(shape=[BATCH_SIZE],fill_value=LABEL_MAX_LEN,dtype= \"int64\")\n", - " # 按文档要求进行转换dim顺序\n", - " ipt = paddle.tensor.transpose(ipt, [1, 0, 2])\n", - " # 计算loss\n", - " loss = paddle.nn.functional.ctc_loss(ipt, label, input_lengths, label_lengths, blank=10)\n", - " return loss" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 4.3 实例化模型并配置优化策略" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 实例化模型\n", - "model = paddle.Model(Net(), inputs=input_define, labels=label_define)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 定义优化器\n", - "optimizer = paddle.optimizer.Adam(learning_rate=0.0001, parameters=model.parameters())\n", - "\n", - "# 为模型配置运行环境并设置该优化策略\n", - "model.prepare(optimizer=optimizer,\n", - " loss=CTCLoss())" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 五、开始训练\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The loss value printed in the log is the current step, and the metric is the average value of previous steps.\n", - "Epoch 1/10\n", - "step 529/529 [==============================] - loss: 0.0891 - 9ms/step \n", - "save checkpoint at /home/aistudio/output/0\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0830 - 6ms/step \n", - "Eval samples: 1000\n", - "Epoch 2/10\n", - "step 529/529 [==============================] - loss: 0.0199 - 10ms/step \n", - "save checkpoint at /home/aistudio/output/1\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0353 - 6ms/step \n", - "Eval samples: 1000\n", - "Epoch 3/10\n", - "step 529/529 [==============================] - loss: 0.2133 - 10ms/step \n", - "save checkpoint at /home/aistudio/output/2\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0259 - 6ms/step \n", - "Eval samples: 1000\n", - "Epoch 4/10\n", - "step 529/529 [==============================] - loss: 0.0133 - 9ms/step \n", - "save checkpoint at /home/aistudio/output/3\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0210 - 6ms/step \n", - "Eval samples: 1000\n", - "Epoch 5/10\n", - "step 529/529 [==============================] - loss: 0.0110 - 10ms/step \n", - "save checkpoint at /home/aistudio/output/4\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0130 - 5ms/step \n", - "Eval samples: 1000\n", - "Epoch 6/10\n", - "step 529/529 [==============================] - loss: 0.0150 - 9ms/step \n", - "save checkpoint at /home/aistudio/output/5\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0111 - 6ms/step \n", - "Eval samples: 1000\n", - "Epoch 7/10\n", - "step 529/529 [==============================] - loss: 0.0039 - 9ms/step \n", - "save checkpoint at /home/aistudio/output/6\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0093 - 6ms/step \n", - "Eval samples: 1000\n", - "Epoch 8/10\n", - "step 529/529 [==============================] - loss: 0.0100 - 9ms/step \n", - "save checkpoint at /home/aistudio/output/7\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0059 - 5ms/step \n", - "Eval samples: 1000\n", - "Epoch 9/10\n", - "step 529/529 [==============================] - loss: 0.0096 - 9ms/step \n", - "save checkpoint at /home/aistudio/output/8\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0061 - 5ms/step \n", - "Eval samples: 1000\n", - "Epoch 10/10\n", - "step 529/529 [==============================] - loss: 0.0066 - 10ms/step \n", - "save checkpoint at /home/aistudio/output/9\n", - "Eval begin...\n", - "step 63/63 [==============================] - loss: 0.0054 - 6ms/step \n", - "Eval samples: 1000\n", - "save checkpoint at /home/aistudio/output/final\n" - ] - } - ], - "source": [ - "# 执行训练\n", - "model.fit(train_data=Reader(DATA_PATH),\n", - " eval_data=Reader(DATA_PATH, is_val=True),\n", - " batch_size=BATCH_SIZE,\n", - " epochs=EPOCH,\n", - " save_dir=\"output/\",\n", - " save_freq=1,\n", - " verbose=1,\n", - " drop_last=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 六、预测前准备" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 6.1 像定义训练Reader一样定义预测Reader" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 与训练近似,但不包含Label\n", - "class InferReader(Dataset):\n", - " def __init__(self, dir_path=None, img_path=None):\n", - " \"\"\"\n", - " 数据读取Reader(预测)\n", - " :param dir_path: 预测对应文件夹(二选一)\n", - " :param img_path: 预测单张图片(二选一)\n", - " \"\"\"\n", - " super().__init__()\n", - " if dir_path:\n", - " # 获取文件夹中所有图片路径\n", - " self.img_names = [i for i in os.listdir(dir_path) if os.path.splitext(i)[1] == \".jpg\"]\n", - " self.img_paths = [os.path.join(dir_path, i) for i in self.img_names]\n", - " elif img_path:\n", - " self.img_names = [os.path.split(img_path)[1]]\n", - " self.img_paths = [img_path]\n", - " else:\n", - " raise Exception(\"请指定需要预测的文件夹或对应图片路径\")\n", - "\n", - " def get_names(self):\n", - " \"\"\"\n", - " 获取预测文件名顺序 \n", - " \"\"\"\n", - " return self.img_names\n", - "\n", - " def __getitem__(self, index):\n", - " # 获取图像路径\n", - " file_path = self.img_paths[index]\n", - " # 使用Pillow来读取图像数据并转成Numpy格式\n", - " img = Image.open(file_path)\n", - " img = np.array(img, dtype=\"float32\").reshape((IMAGE_SHAPE_C, IMAGE_SHAPE_H, IMAGE_SHAPE_W)) / 255\n", - " return img\n", - "\n", - " def __len__(self):\n", - " return len(self.img_paths)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 6.2 参数设置" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# 待预测目录 - 可在测试数据集中挑出\\b3张图像放在该目录中进行推理\n", - "INFER_DATA_PATH = \"./sample_img\"\n", - "# 训练后存档点路径 - final 代表最终训练所得模型\n", - "CHECKPOINT_PATH = \"./output/final.pdparams\"\n", - "# 每批次处理数量\n", - "BATCH_SIZE = 32" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "### 6.3 展示待预测数据" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAABmCAYAAADIx5U3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztfXeYZVWV/Tr35Vf1XuWuqk50NxkBxYCojCiijMoIphGRZAIFE4ZRxgQMBkBFkZYxISgCisAAihL0pyM6oyMKAgJN51Q5vhzv74+9z937VT2qqxDoxjrr++qrqntuOPfec849Z+291za+78PBwcHBwcHBYbHC290VcHBwcHBwcHDYnXCTIQcHBwcHB4dFDTcZcnBwcHBwcFjUcJMhBwcHBwcHh0UNNxlycHBwcHBwWNRwkyEHBwcHBweHRQ03GXJwcHBwcHBY1HCTIQcHBwcHB4dFDTcZcnBwcHBwcFjUCC9kZ2OMDwBhLxRsq9VrVMb/69lVfdbx8neNha/7+/uCbYODgwAAK4rtqf3tthBvqy9QOHuhOttm17vMedzMe99TYN9Ps+cx32c089k0e1b+jN8NZU0OCPmz9/e4srV6szKDet2H7zc729MH2ydCIWn5Na6wxw2+rlTebR+wm0yTNu7goKGaVtAX5irbE/qEgUHIqO+ET9+JsAnz/1V9BP/2+T+pvt9028wyT5XZB0T7L1+2PCjbNrB15gkCeFxXjx+dr0bw5uNb/fFONauezc9gZu01F8yM382us9DxW2ow+0j7vP1dbHuiQ5adQ1Tr1Ya66LOaps/IzCgT1Jt8dT3PQ71eR30efWJBkyE6IIyu1rbg/6npMQCAbfZJdcZi1VaSEI9Jo50q0tYzz3hHsO2iiy6i40rUcRJROVetRL/TvK1YUmXzqPdCJyfNKLOZT3OufcoLvN7TBftIdfOyz08/o5mNXN97aMa2Zs/Bnquit/GBVW/29Vr5n4p6makWOmAyU2uoJwAk41Fki3vGUw4BaG9NBv9PTmUBALFwHABQqhSCsmiEfpf5wYQjcp6q/T48CaPNQr6GDcPEHAfW5xq/57Ntt36iHx+hOcr0s5k5hix4yjHHuzRNymy9WltkWzbbeKpUq/S+bKaO6h4woTYwiCKOVKQ12JYtU8U74+0AgMnCZFDmBR9ZqnwE0ikqPILobTV+ExUeESJGPhQlv8znonN+5P0fD8o+9Lmzeafg5AFao1TXaJmuU/OLQVmoyYSsDCqvozrzVEE7qQcjo25h9gNJZdU5v0xSFpnxW84g1y6p/f0ZfVXXwJ7DHl9XDdOeIcxH6NqF+Miaeg7VYFJoZu0/E7q7tLemAQCTPH9onIjQe43yxLnq63E+xPcgT8LwiqBQy8+6n9aWJKZz+TlqJVjQZCgSjqCvqxs3/+SGYNvK5f0AgFKOGrenZvz9/b0AgLGp6YbfABBtTQEAUh2dwbZSmT4a738/NVq/Kh+RyZEBAEBvOzXaWlVmQ75H2/x5Wf0WZhk0fpPZ5hyv3PCLqJpmI2WzazfZ5j9J1kszu56RGp27YTLEl9Pb6jPq76lCy+IYpjLCetVmd2Rar6qmMCXutmU7mKlnmyxRI+9VTOHA0AjXi87VuaQ/KOvsXrpHsG8hz6A1GcYvf3V3sG2fvfcFABR5slYo5IKypct6AAATU8SClsvSxiMR28HV0OXzNp8HfP0FDr6g9Rm/AWOPw8x9ABjuo6bGp9RP0v49ezUme+j2GZ5Rr7naeLVJ2e5HqOFT1ohmE55m7W72fvPr12bWgbJPa4J+T0xMBNvicZp0x+I05u3YsTMoe9lRx2B0Itukdk8vQiaEVCyFW//rlmDb8uXE0JTy1N4nJ2UytGqvvaisRGN6tSQfv0g8BgCYnpZvRyhMbc6L0O9YIi77R6mfFIs8mVHU2SCoz538lpMBAOmwTNbGNg8DADrjHQCApBcLyqplOpfvqf7F3bEa4oWaKpNFg/28Sn82dbuNdiqFZXyc2RT0mBtl2i+qVoS2+1f59CU1bFRD9YZ9wqrR2nPYsoYJv7E15slQXQ6s8Y41NW5XqvR32TJ/IZmkRPm9VKvUv+pV6f+jo/S8ly6h8TAWkalIsUCTl1RLYlYdctPUfiIxmQBXmF2KxOgc04VMUPayo4/CfOF8hhwcHBwcHBwWNdxkyMHBwcHBwWFRY0Fmskq1goGhAXR2ic+QFyKKKp4gemxqTCjd0TE+js0pqXQiKDNhouEmxoaCbX193XwdoiUzE2NB2fJlZCKpFokCCxuZxxVKu6bf52dCEzSz4Vs0M5PN3L/W7HJzmr+eaJnGrg1HzOqirp6frXrTOtt91P1Z5/cYU9CVsjIzsMnFC1ubs/C6NaYzo3FqKx1paUfVDFHjGzY8FmxLsl3Z82j/iUlpD9GoQbGy+x0kanUf2VwFq9csC7Z5/JDzBeoL4Yg82IlJoodLZaKCOzrlGWQDhxB1XzON/7ot2E2mmWlrpiedLuP+4lt7/3yfI11bm3bqZj4ee43H72nw5/Bcbyzh5xW8kibvIoB+Lt6MbbrvzbRVyHGFAvWJqjIvhNlEVC5TWVubtJ+Rkel5+U8+1aj5NWSKGaxcuTLYFouR2clw5MuyZdJf7PPP56lP6LHd3ntLi3KcYhN+hYN3RkZGgqLWVjJ9pdI0dmzevDko27t/FQBg26NbAAAH7XNgUNaVpm9PYZxM2q3tcr3WFjpXJi/ml1KZTHo1ayZTpmbf1t+ncdGo9uWxHcpw26lHyuo4NEBbr61pSvtUBsE6NqhIW9dtoMaM4wGgwn/O5esZjtG3Wre9GjukecqkFY+TKSzGbhFGuVfYb4DHtYjGxfS4YtmhAICd27cDAH76i5/Lcfy8DNsJX3XMK4My+35Dqg6ZPI2bUTaRtkWlT2SyuXn3iT1zdHJwcHBwcHBweJqwsNB6ULhzskUOGx0lZmfNcnJ8jYU7gjI70y8VyemppU2cpaey5EDnh8QR6q0nnQgAuOaa7wMAXnvsMUFZkR1NIzzzzGTFUTDVIk63gHJgC2q9APCMfe5Z4lPBDDXD3ztXnV3PGIdyNXOaax4dM8e9VmnOHVLsgF25Wue5clVWPuUsR2DUaP+6crZLJHmFkZPVg111gMMwky3i8Fguz5/PeCrheUAiIWwQAIyO7wAAJDnCrK0tJWWjtIqt1WnVWKsJq+Y1bTMz1jXzjL83M52CGxpoI8PR8NqDNqq3eo1lZlaJWsZqR+3GOMW6r1b3exC8OR5pY5+YMTY0KWvOzXozrtPkRTeTm+B239PTM+tc2Uka/zxvrli43QMPHuKheAMbsWHDBgBAGwfOdHTId8I6U/s8noRVGHGRHa67e5fM2t8GHHS0tQdl45PExlpH6lWrVgVlLd3Edtz3f3+h86jvxsolxGIV6/TNmp6S70uUHXMRlu9eJEIvzPOIOQk19C8u4/4SqqnIJ4/OEapzWXh247PtRBFkYH/ohm22z9kzhDVROZNl0jICfuO2ZsN+ld/F2Mh4sM2+s5VKrmD9po0AgDvvvovqEJF7Peoocl62Y113d3dQ9uB99A5WrlgBAHjT618flBUL9M6t0/xvf/2boGznIFkH0u0ypkbi9K4rNXoX2hrR092FUeWsPxccM+Tg4ODg4OCwqGHmspfPhGeMH/GADY/9Jdh29x23AwCy4+wLUZQZdZpXAV6EZm41IzPrPM88W9u6gm1jk1P8F814+5YIk3TkC18AACiz3Xb5MpnV56dnrIIXzMAsVDBk1+efy+dod8KGWDYNGW4Sit8M1qYb4ZVSrSYz8YjXeOKhIfEJe+SxdQ3bqnU57ujXvAYAsHLlXsG2DRs3AwCS7FuUy4ucwgtedCSKZaBW3/0CcyEP2LnzgWCbzyuTECuEVhU7ZvtbOs16K2rVEoloFRGLGW2toW1bSi88a19jctDw53y3ekk5Oxw42OY3YSEs+xOE62v/MXvfdM/1enqOOuw+zBVaP38xofn7/M13aPDr9Px0/7JyDX39tKKuK/XZ9rZlqGH3iy56xvOjiGP9w+uDbaUCscIxFtayPk8AEA4xA9ZJ34LR0dGgzN679kUZn6I+0790KQAgoYSY7LH2CWSVBSHCLIxhVqa3U74hNda9i4aIjdafxZFxOmfvMmHoRjLE8Na92eJg1qcuxGH04Zr0mzBv89jBpxATDZxAlaSJT8985ByafXP8OVh/M4MhAkQ2JZqmZ5pMin6aZWoGhgeCba1p+sZ3LyHmbuu2zUHZ737/ewAimdDTLd/6o48+GgAwOUbMk20DAJBK0rVzORrD2tuF+QtF6P1oRr1UobY0nmF5n7Dc7K9++/9wyVe+jK3btu2yTzhmyMHBwcHBwWFRw02GHBwcHBwcHBY1FmQmM8b4YQBDAw8H2zJMISY4fDgZE1NYOMJUIOfOmMyK2m7PUnJY27JTwiJbUkSjW8XVbhV2fMtNPwYAvPP0U+lcY0KlRprR9wtCM7XYx1eQbhpaO3PPJsrVzRShm2MhNrYnkxFvdt3Hr3NFqYBbJGNEYyb4t1YPteqzPm+zoZAAcP3tbG5VtHb/Ugq/3baTaNmTT5PULfsdcCAyeR/V2u41CYRCxm9tAQYGNgXb6izlX+UcMlNTU0FZkingnm6SihgZFikKcYZV78HMIRsxS51a9YMQm9+atrkgJp//lT5r6vacMbX7jPM3nJNNOB63BaPahP2bzWV+vRN7IsTZfBdrQ25qwV5PWCpDUJ+j9VonXd2HpqbITaBnCZmIRkZkHFyz+pA9ykz26IOPBttC7PnrcZTAuKp3lM3D3ZyNYMuWLUHZXqxOrRWo4y1iugGAR9etC/5uYbPNgQdS2PzouJLjYEfeMqd7CiuV6VKew+A5R1ksLtfIsQxGxRPTXijJ0iHe7GRG1jnamseiNelf0Srdq8f7FKPyTbQmqlCTLlvh5lTV1usZx2mV6Znq0jWdFzRIUOnNOs6eK8cphPT8IBajumvF73KNnkmeVfY9Ze5qTdEztIEwDz74YFD2wP1/BSBO1S99yZFBWYklJWzZY48puRV2L9D1Ctm5R4rG1um8tJXDX3Q4sqUiavWaM5M5ODg4ODg4OMyFBYXWe4YSTdrVCQCEeSbtMxNSq8mMbZpF8rwwrSzTKVkZDg+R45RRq9koJ/br6qSZZFHldIpEaUa4YwetpKNhYRUioTkcIBlNp4XByk5PxRvzuvvNjgyOk7mk5KOxq8e/hwV6olm3dj23lZxjzXIqN7uuDcOenXvHho7bkEYAyLGMwtQktxGVZjvCq8MYh5dWy1KH1x1HDtR5lXzVrkCs0NiVV34nKPv0pz+NSy/7dpP6Pr2o14FcFti5U3JE2UVlWxu1554ecRwssaPm0CC1/5pa6glT1iQBUcAQNYmftfmOfOWA7c1YGjZjiHwrAKdyy9n+WFfnssyQ3abPxQ7TnpUAUKtniSVnB+qZMgF7CPzAg1TqJ06l8rxn3A4a+u4slmieEghzsMWTHD5vheaAmWH2jexqPG5QKO3+yA3PhNAabQ2kVQCgVqH2m0oRc6PFIm3rswJ/vb29QVl2msaRSkXG+HYOyNm6gwT7Nm3cKGUc/m1FHvXz6eomy8NYcZLrJG21o5u+Lxm2XlTDUta1hPrv9nHp47UwS2OwA7Ue7/2alWCgfqmNBPVAnYK/m/rzMkeou92voppZzbMMFP2v0qMhwueqB/tKmZxj9pUs0ZVSMiYWVWbW9HfZfvcTnIHaKJ0KG+wU4nylvV3iCH3AG48HICxQqSiJcet8zp3bSaJk79VrgrJMnvarqOCbCrNTVtZF95d8MT/vr6ljhhwcHBwcHBwWNdxkyMHBwcHBwWFRY0FmMh+kv1BVOaHarAbMJDtSK1XheIzoKmsmK5WE2kolWYFU5RWrVoi2K5WJQmxNCV36T/90LADg1/+P1Chf/rKXSsXmMJPNJAIb1WYtgTZb0aEe5GFSeYRMo3msrs4uuc8sRdqkTs3o9aCimsxroub7uGimRtHMIZy2lZoqntJxBs3qQKgpDtaaFYayrPYaEyo6HKd3F46x86Ayg0Ys18vtoJQXarTGeWysNg8gFPckJ7l7zxlnBmXdffti1xnpnib4wJIeybUUjrLjdIa0t8JKZR0+qeAWC/QMO9uljZfLTbR6wA6WgUekfrf2vOzQqJ2ewX83U4a2fxvbxvUwMOOcqs5e4LCtdrd1DfSlZjtX29xMdbNb/XofH4FNTOk02S3KjmF4q5mpyK2PnMOpupmOlz/HM+nqIvPM2Jg4AVs3BLY6IRKJzjpud6Pu15ApZQNTFQAYdqItsLpwXNXbaszYQINkXHJYWtOH1hkq5Mj81sL7vfa1rw3KrG7Xf//2twAac2vVy3T+173uBNqgnHAnpuj7FWdtvIm8BD1MjpO5px6X/a0ztc/ma/0WazbQxrZ/5ToC1oXyWZ9Lj2HWedl2Ie1cX+G+mlcO1FU+wD7lSFUOCM8wk1XUuYozzGTajGcfc6VoTU+qPXM/8ZXulTWLRdhkp81kFT5xLkvPsqdTzGT2PcVj5FNgc70BQEcHtftShMaW4eFhqUOI7jYSl3lGiOcc4+P0PSpV5FzRcBz1JoE+zeCYIQcHBwcHB4dFjQXnJqNVkRw2OUGz5t5Oduyryqo2X6QZYZi9uaJRUQrNsSPp2Wd9JNgWilF5mT1mYzFZnRYydJ2rrvwuAOC2W24Oyv75FXsDANqZpdKriDyrWNqQzj6V42bjenK80w571jl8SR+t9McnZIVQ5ay9ZV5tnHa6hHrnSzSTvvWW22iDWgxY578k598aHBQFzxUr6TpaUTOb5dBAXkkmErJSCvEqysoP+Gr58J3vkINxnD14PZXs6sQTT6JtPcTI2TxAABCK0vvMZ8UxviXB6w1eibz7zDOCslQnSyDkaP9MURwlOzlP0Hf/k+oypXLbJA2tBuPsQJ1QIbI2oD6mVJhtXiK7ArSryj0RIU/aap4dByNheoY60tn6mifjtPqpV9UqmIMRPOW8+Wpe9SZaZq9bCjna9vOf/o7PJSvxuqH2UWBnRxvmCgCVKjFytu14Rp55ncOBjXKgfvfbzwIAjA7TubQqbSJOdZjMkDPrLbf9ICgrlWj/GGerrqk2Z9u0VafV4eM2FFf3Y7uStNnL3/CGN8j9VBpZ2LDKIXXzzTRO2LbTrC+FeP/xcWmrLQlitTXzYv2//TIHi6gU4i8/mvIotnO29I3KqXe/Aw4AAFx3/bV0vYi8y7YOCh/euplyd+mxKJPnd6ccQu1jCjOTqp9Rseg/4dCLpwSqbvb9NlNZt+8hyEWoYN+bzmt1xBFH8Onp/Ev65JkNjhCLYNvorbfeGpT5dWpDv/glZUi3/RMAnv2851NdONw+1CIUjB+jwTxXlXHuqh9eCQDYPrANANCrgiTiPM6d9qZTAACdXZLLqzRO57Ci9GVI+4qGmAXj/yuqv/jMhORUgEKaFZ3Ht5Cj8Ze/cGlQhinq46kOGo93VkWy5MyPfxgAsKSvnyshH6vcBO2XDjUGRgFAlr8PCZU7LplkR3XucpNTwmKed95nAIgz+8iIyOjEYtQPk630zS4VpQ8nEsTOffzfzuVryLyhxh+kUlHYnljSjrP0vCIxaWPlahn1eQYzOGbIwcHBwcHBYVHjCYkuDmwTUaywTzO63AStqsoFYRc624mFSLXS79EpWdmf+s73AgC6elcG2wbGeEUdpVnjhGJl9t9vHwDAEAvwfePyy4Oyv95LWe4PP/xwAMD0pAjZ7b03sUbjbHcPKeuutSeHdZg+rxYmp2lVFgrLaqV3GeUDyuVpdn7Cm/41KBsZpfu/665f0j37IvxUKlsBK5q5dqscLaNjgwBkBQ8AnV00W27l0HXtM7B27VoAsoqKK3GwUfated/ZHwCgfFAArOTszQ8M0fP733vuCcqmp+h59XaJ9EGG/YF+cecv6FwqM32J7eTL9lkNANiyc3tQFqzAeXX0za/Ie0pyPp6lKVrlDW7ZFpTF2qiNhNS7sOGTNWYwQoop3Gv1oagAqO92gbmQH0EcA0OShylfomecaqO1RjQqbERumpZQ9TLdb7mgV8O0/0knHx9s6eyh/a/+wRWzrn3aKWcDADgtIK69RlbBufpDAID9+B3t2Lk5KOtZQu1rcJDaXjQs9etoI6byVS97Y7DNr9HKLBaiOre2SsboSrBapr5rwtL/L1v7HwCANXvTOTMl6f+WzbGZsPWq0QrsWcE9ve1f/uVfADTmtvrTn/8MANi6me7xlFNOwUzccsstABoZKJv7yLCDhWYf6swCD2wVFrcjTf3DdoVjj3lVUJaM0zO67dafAQBSfRICfyDfRyvne7rj7juDMptHKfCVC8n6tMRja0gJ2dnq19kXT2et712yZo8QXQyZkJ9AK/74xz8G22wew5YEjVflgvgLZpn1t6xyPitj4bve8U4AwKPrRMDxuYc9FwBw1fevBtAowHfCGyj7uWUjbBsHgDt+/RP+i55xPCnt+NrrfgQASPfQOx5RDMdzXvw8AMDNd/5XsO2xrST0uO9B+9J1BnYEZeUMtfP+dmJePnj62UFZVwuN/QVmbhJpsVRkd1BHTrEXkBeXsTDXQdv+NCTf3gTLAXzvksuo7lMyRn/yPfQNCDGrft63vhaUDdWJVfn0eZ+l8xTkuFZ2LkoF+RSlvyxbTQzX+of+GmzzQpwpntvqV75ycVCWzxHLFGHx5aQaN0aGyUcrlaL+n5lWofVsebr4oi8BAFpUmH+JWdlieTYzVGbfIF/lJjvw0ANQQX1e3wnHDDk4ODg4ODgsarjJkIODg4ODg8OixoLNZCEAWx5TJgGmEyMcRrhSObN57Kz4+//33wCA//z29+U4Dp//0tf/M9jW0kHHnnLKu+j4sDhCjQ4RrdbDJqZvfkPMBjf++OMAgLe+9S0AgLByHPbZY9Xmw6qVxVHLOtlZZy4AyGWJritVbDiwCg2PE1135MvIWXL1mv2CssFheg4/vZ1o8nhe6PVIlHO0sSkslRbT1iRLEmgH1zamah+6714AwM033xiU1Tis0Tp69/dJSPdJJ53M90V0vFU5BcQ5tL6EaNmEclassgN0IiKOp6ecfCIAIM354Y4/8fVB2WODRNX+8KYbAABrnnVAUFZgirhWoOd81de/FZRFOZw8zHmAlqTFXDjJYfYh5fxase/MOo1G5RmtXHPwHmMmC6MVg8pMVgOZfGIJus9KRTkhTtH99XUdAgCoK9/fk95K1PZ0VtrOj278BgCgVJVcThaxMPWXt7yRaPh0izhqXnn9p/na9D7qNTFfDY+SefLQZx9K/w8MBWWnn0rnSsX6g22Xful7AIAlnURHv/a17w3KchlySm3rpLbW1yft6tLLzgMAFIpstk6qfsnjjnWg7uwUE63tl0NDUi/rMG0dqG+8UfqENc1ax2ntiHvkkUc2nP8nP/lJUGadqYs1av92jAGAVAtR+l1pMZ2Bx4S3vIHGmb89KDka/3LvfXQuDvvuVCY3JGgce9HzD6P/VfjxL3/9KwASQFFSqshI0PN6ppnJPOP5EcTx8F8fVtuoStOT5PrQpkwmbex0Pj5E/ebUU08Nyqo8Xuvv1A030LhjzZw6V5Y1jx111FEAgK4eeQ85n96vNZlOZ8SpuLuH+tIkB4XE1Rh9+ZVr+XhxoC6H6D0V2EysHdnBppzuFJlKp3dOBkXvftu7AQB7ryT3jVxBKdBn6F5bWC66qmRGBpJ0zupecj/nXfwFAMDgAzT2XHuBmMKWhaifZLh/ba7LvZ73bTKr5bns/Pd/NChb00Z1TvE3Yd26R4Ky5cvoGfX2qUwSgzSWWBWFT37yE0FZlZWhp6fp/ltb00FZMkF/7xwg0+BBBx8WlJ16CgUmrdyLntGGDRKM0NNN37tiWUzuYibjwTQkbeWAZzszmYODg4ODg4PDvLCg0HoLy3QAQC87ClY47G7HTnGKbWGnwhcf8SIAwAuOOCooK9dpNrdphziqeTGa2X3xC5cAAD7wIQm7P+AgWkkPDZBDXDgqVX8rO0z+6u67Gq4HAEnrhMYzd98Tp2LrOD00KM6bbZ3WSZJm4skWWcG8/JhX0321kuPa0Jg4aifT5Ag2maHZ9pIGgTV2IOMV7+iorEDb220Ir8xL1z9M2X3vuINCQKtVHXZIq9lPfvKTVIchqXvvEnoXO3fSM+rqklVED+fXGfNolTo1LnVvjdK7KBRk9XDjj2n1NZkjx9XhnLynFxz9EgDAm95Oz/3UM94pd8oCWJ0ssFXRIdMcOhqNWnkAcZA3vLTQebI8FrBTEl/Y0+DDoA6vgYWzYc/VGq1cNTPk1xuFCx99WBztM9Ms5AZhRMPs0B+yrJgS9TP1KJ8z3HA8ANQqtK3GyZoTSVmV2aCCTZvICdQ6/wLAf36TVo0tEWGG0iyzwJHeuO4aYWXPOptY2fEx6vePrZNVXJqdQ8P20ah0R5btKHJOorwS4JycpGei81e1cD+0LFBR5bCrVun5WkJYly1fTgEaVtBPNcfgmj47UO+33/5B2cQYrWZHRyXcPhWnOvztb7RaPuiAg4OyGrMBnZ10z9s2iaOrDYToaKGxZWBM5bjiIIcUM95F5YhrnrFrVQODUPBuASDO/duOgZpJsQEiVnzRiioCEopfVQ7zcRZjtWyRlnqwTKPN4aavk0pRe8oye71m1b5B2RAL+3Xw2J4tixP3+CCN1+84+3Q5Vy/1p+0jFDxy++23y/6jNLYODBDD25vqC8q6WDqhzOKLlt0CgLYE1S/JTszTSiwwzw7nwyPClv75EWLenrNiFQAgkxH2t8zfvRoHoUSVjMkkd2TDshHdfdLXJwap7kn+Hh166KFB2XSG+oJmbFNs0TjzjLcDAK78nlh6CswuWfHcYkHux+YpneAcljqnXlc31WfHDuoLe62S3GT5LJ3DKIOWN0voVH8nPMw31+cztbc5ODg4ODg4ODwpWLDooucBeRU+X2K7YDuvHhMdsgIt8UxweJhWQtM5YWWSHWT76+yQ1d/IBK0Q9t2fyrTY2PrHaMVppde/pjKWn3oqzfAPY+Gs7h4JVxwcoGtbEcFkQs45MmbTSYj41iT74iSSVK9XHPPPQdk9v6NQ0aP/meowOCLMRh/pvA4VAAAgAElEQVSnF4nxceG6rPirPDsPcchfokVW4iFmScZVKOd1P74OAJDPW2ZBZtRJnolv3UEr8URCCRcys5Pmd1BUx3ns+9TdSSvQbYqV6e+n57V1o/i9ZMaovG85lUVaha0YZDHNaU6lsmzliqBs3WMkHve9b1PY68QWCW29/Tbyj3j/yeQTNjWt/GCiQQIE2cYrP9PErW1P4ogMQqgp559ahVfEIVoZpdvExh6P0LsZHqZ2dtll3wjKwiH2fQjJe7Nig11LlA4/Y2yYVmrRCB9XE9+Jf+Y2es/vSOph6/a/BWXLl1MfWL2a+tkWDkkHgBXLSMJidFBW57k81SczSe8moUTNxkfoHbakqE3fecuvgrJN64lB6epmMdWc3JdlA6wP0LJl4vu2mevziqNfGWyz2c5bOBw6nRJpf8sy2XB9Lc5Z5KzYMZY3eMPr3xSUXXcd9bN4mu7noYfEx2Up++JVlTzFiae+FQDQ0UZ9aHC7pAn41hUkBvuB970PALBivwODMvAqfcc2Wukm2sRH8XXHkYzCf916M9+LEsCcp1jcMx3eHLdp/T9LitKz0gnf/S4982JetVX77i3zkhfmpcjsSjxGfXB6XMrSMRq3x9j3c+23RBLkgk9RCHopJEzXBMuRPGvNQQCAxHHyTn/2M2KJJrmPRyJS5rHkyGYWSlzaI/IRYAbZZxHEeFTaQowZ4i9/9cvBtn0PIl/N8U3ManWID2aizIwa/x9XYfpFFnNsSdLn/8z3nhWUfedzdP5Skeo+nZHvRDhEx+Vzsq2zg1iv/mX0+9TTRNaij31frS/fe9/3/qBscJjYpf32JXa1Nibvwo4NfUupD27fJmxpR5u1dszmcYKMRXrbrL0eH44ZcnBwcHBwcFjUcJMhBwcHBwcHh0WNBWetr9cBnSjZ+iMXS0SreSpPkHWaa28nCjLRKgTWFDsvptrEpFXmrNivPY5CxOvKKbWPabiTOeSbhWsBAD+85nwAwCkn03E7dwqtlmAFzrqNz46pUEZ27EqnxVQ3OUV03VnvozDnH90gobjrN26i58C5nPr6lwZlBaY4SzUbki/3GuWs7jbEMBaXOWihRM+he4ko1o6xubC7m2hGzxNT2Ps/SDS8dZzuWyrOeVbV0zrNFvJilli+nMKut2wm81p/p0ggDG8nU+LeS8XcZZWxNz1MTrZZT87VtS/t95GPEO25cUied28fPZPAvKNMRO9+J5nHvnoh5dD5hHKQH1Z09ixYp+o5MoLvTvioQak5wIStSiq924rKaeT7LcFRAPDIIxK6mmDphphypk+nySyUL3C4va/L6B3a6Gqd36evl96DdRxOpcU0O8kZuqeyVK/WlNDxA4Nkjm5NiDJ8nh2aV+xNbfS4o8+UOrRRnescnl7Iizlj1YqVfP+c9duT+u3/rGcBAHaySWz71q1B2ep9yezdt0TGBisNYR1iy8o51wYk2JD6/n5xCB1jZWurLl1XWczt+TNlMi+vXrV3UOax6rlJyfMeY8fYiMeBFyNiJvvIJyig4VMfoTZ94cWixDu8ntST21hlXduFptmBtMzvrmcvkUcYnRZH62cSfPioodYgcWBD67M2b58Kre/qIvPO6DC9qwaHaDZ7aUdo68D7xjeSSrrOP9beTuZT61ytc6H99Od3AAB6uC088pD0vVZW8u9kJ/cLPn5eUFbnEI78tASYdLIz9uQOanu9KQlWGdlG43ciSn1jYLsEuZTZUfhZBz0HADA9KmH3YTbqVPPWzCsf2jiHjw+NijtFiFWfO9lMPKWc/dM1+u75LOswOSZ1TyRoLEgkW3kfcU5Pchb5WpH6vJaICHH/Taq8bQUOcd85QI7kq1eL2W9klMYsqxZ/9dXfC8psFocz3/shAEBPj5jJW3jMy7BzebvKjADpvk869syvi4ODg4ODg4PD04SFh9YbwKg8VYapIZ9Fw6o1WbGVy+w4zOHcZRU+F4vR7M8yEADwoY+SUFyCnZ3rKsR4+w5aOZ7GuWq+/c1vBmWvfOWxAIAfXns9AKBSljq8+YQTqF7MWI2qPF9LmcXYphy0VqykML5f/5qEIpevlJnuMOdOyzGrVVfh8140zvdP9+gr4Scb7mkFwfJ5cUCLxWmWPTwsz8GuYn2e+U9PC2vy2fPoGbUz42LFFwFhFs46i9ijjk5hvOxqqiNJ91xQx6UitBrYvlFW58v3XwUAiGeozsW43OvJ/A4KEbrH3m5hmeLsqPo+dsr7ybeuCcpyU7Q66esmhqGak/ckYcR6fu7P+L0nzt19UOimPB8rHVBiwc+CCjiolej5tLVRzjC7KgaAAq+W6nXpXxF2LC/mGzOzA0CSWU6bb0uvnrNZetZ2hRxWbFOYV8sTU7T6W7JS2IhQFzmXbnlMwme72khc9NijKRdfKi6MzcgQtduOLmpD//pGySZ/9TUkVtfSSvWcVE771qF/CYvd6Vxjj9z/ANVTORNX2JHZsg2eEkNds5oYHet4OahEJHu6mf2x+a+UuOMYr6SrYTp3LSzPPcR59DwjQ2SU65PL0mp4//3FSTo3Qte+8IvECH3pws8HZR/l7N0+5zvr7BVauzBEfcCODRM7pe5aiuCZBAODiIk0hNZbJ1o7tuncZNu3E6vQwbnJrrrqqqDsTSy2GVZirH1LqM1Y1vNVr5IccdYhP8Zt/GYlzpnNUBsbrxIb098t7T7LYpA2d9jAiLBy4xlidnpXCXufLdKYvCRN2zZs3xyUdbOYbL1GbejfeMwGgEqe2tj2rRzY48l9hQ2NDSEeSmrSHOHzP6tXrw623fPg/QCANWvICXlvVWY2EWNVYQHHeEKChGw+wEdZzPAlq6QdD7MsS1+ajtPh+rkstfF0ShirtWtJBsd+szPa4Tpsxxy6x/EJCZjhTyIuueQiAEA0KoFXn/r0hQCAbI7Z0l6xftQr6qE8ydgTvy4ODg4ODg4ODk8bFh5aHwJKZfGBCDEjZEPrfZ3dnENpjaFVqhcSv4Uar6S7u2W2fflaEnw78WSSLO/tFx8Wm4E9xv431aqyc7bQtY877jg6tyr78Y9/DAA4+W1vo/pitu1Z+xjY0P2/PkCr080q7Lh/ufgUAEB7p6zwRsZolW3F4aJ1mT1v3UrnOORQmsEPD0v9bMaR73xXhOymM3SueJxej07V8c53EitjQ4y/+EXxTbA+UN9k1uztbxcxxPZ2zg48QSuynnZhJLI8Y08n5P3UeRWfZxs/jNj/r7icVvxv/xj5VU2o0NYKM2OW8bDZxgGgJUxM1Yn/SukMrr/62qDs2JNOxONjz52zGxiE4aGk2Mh6mJgDm63Z+q0BQI5XapaxsQwObaT9Qyr1QI7TA6TaZosu5qYzfC7qczW1lIy1MrvKrFEsLMdFOWQ3ysKlU1Pia1DMsi9anwid5Sbp/d56G/WlV738zUFZH/edySnyn+nukhWeXaVXq3SPOit8lX13hlnsrkXJTaxcSb5GmzZtCrbZDPaW/dEpKjZsIDmHVatWAWgMrbfsgV0N6+dtmbQ4+4tY5kbXL6zano3utuHvBZVd3fZ7y3a+j0PsAeCS88mn0WYEGFTsTyRO52ptYTkMlWYgD+lXzyT48FHxKw0+Q7Yd2nejx2E7VlRKNC5aYVkAuPvuuwEAxx57bLDNtoteFjBMp6XN2fPneUzSPkNJj9pYkX1ylvdKe/RKVL/tm4mx6exR6ULa6LhsUVgSywR77J/Z36WEC1lyJRKmduWpz2y1Qu2qjdmjsBo3itNUry4WwYV6Dn4t23DvAPCc55Df0eAj5Ac6sEPYrNUhvjanWKopX96pCWLGlrHP67p164Iy24cqU2QtiapUJ6GwtfTI9+uMM84AAKRT1vqTVftTf/oI+9FpqZyJCer3bR20rarY8DL3vbYOYgqtZQUAIk9MJ3pe2HO/Mg4ODg4ODg4OTwPcZMjBwcHBwcFhUWNBnFMIQEfVw4qQOBWXakS5TY8R9RtPKf3HJFGA2TrnO1FUuM/5V0ZGNwTbli+l/GPfv4Kcqs56z2eDsu42ou3LWaLtzjntK0HZNT+WnGcAYFQm57edSJR+kcP0vLBQj8k2okJf/s8nBNt+djvlNxtns1f/UjGNDewkij7OSsHRitxriKnXFnb2LarcNqv3pue1fSflK2pQA+XQehvSDwA9Pdb0QOaLcz4sIehD7LCaSBCFeO6/fyoo+8IXKItxiHOA/ee31gZlZ59N2ciTERtyLbnJwgmqT64sVOV4YJ5hpd+w3GukQBT01RdQiPwHzvlAUFZj1fGWNJ3z3HMkw/mV36PQyvWT1FYGe1U4fYTVg0tiJjDsNFkL0Zy9ojJ614A9Qp/Xh0ENESSi4qxuPLqvbIHMjxFPnKt7WR19+0bqNyoxNepWcVs5Yxs2i5m6bdMqN1mN87nVE/xbKO1aiRyFbVur+NLPKhw225Emh8vilJiqvSI981JY3k2klRzr87U/AwB+/ttPBmWvfPGHAQD9nS+meyiIWeIVLz0JAHDPn24CAAxkROHZmq2iMRoTxsclxDjKwQgHHiiOnevXS84zQPKRAUBXV0/DtlpNtVU2k8T4OWRzKuAgSdeZLHJW7aSYRkJsqihOK5eAGNH3+Uk2K6dknCnVqK/aDOq1olD7H/oI9YHb76Js6X5VjpuYJpOKZ00jVemDXpjOkVN52zrZIXycFeJDqgG1phPIZmXf3YsapgryTls4uMMGt7Qm5VuQY2fkJCs1a8X5AptIUipPnc/O83Y0GJ+Q6/T0Lmk47tjjZWy/9Y7/AwDkszT+7BiW4xKcHSAUo9+RFulLm8ap/Uf6xBw3wc+9wkEMn/+6fI9al5D57f3vIlNpMS+mo6VsDs2xeXiqT+6rXGSzLZvewsq0XeExsKroizJ7WnOXxY/uFImBc950KgBgiNv7WETaRT5Jbcz3qV5t7dJnJ4v0jevy6F2MDol8hM03Wa3J9yvJ79FmjJ/Oe2p/utevXPYjOvekmOMvuoi+VVVW7s9kpOzii8nh/JJLyDl7TAU9IUquM8kOlXmBTaKhKF3b5kQDQDlJd52wHoBjhhwcHBwcHBwWORbsQB2BwVRGZmqFCs0u40kOGW6XGdtEhqb43SlydCuoUMtojPaPK6fFfJH+DoVpVn7t9dcFZWec8W8AAI+dP9NqZWGzVNvwVJ3teedOcipbs5qE3EbHxaH3tce9BgDwlz8/EGwbGqEZamsrzWonJoRBCcKUmXnSzsHWiS+foefRmZTZtnUS7ezijMhZOc6GJFqxMEDlbWpNNFwXEKdBWy8tUGYdqOv12dmcrTNjjvPl2BUUAAwMkzhWu3J+jfh0LsPh84Nj4vSZ5v0MO0Fe9JUvBWWf+gzN6ofHrACkrHStc6O9hze8QfJE/eKmXwAAjn75McE260iZ4TDcggrHTadDmMo+dWGW80XYC6E93h44bAJAqM6rXxaWq9WExdi4kRiOKChcPRaXdlIu2RB5ed8tLfwMMjYsVdp2qrWnYf9QSMqqFXp/pSJt61oq8gebNlGfKMVoZdwWF+fPMq+3Q1Gpg2HHyelshv+X9/C7P1MustNPoDYwOihjQ+8SYkQnhunZtPfPbuM2r5rOUJ9qJ1brL3/5S7BtFWeutk7Puk/YnGQ2IOLAgw4KymxIti3TzrbWuTqa5nB9pZw5zUKTMSPvJxKzIq10Du0gbMPIsyzM16WCMjITnEOO+2cF0m77+jhsmJ3tt22XbPfLD+rn60g/tg603/8+SVZEwlKH6enCHsGWAuREbfs5AEwzk2WZum4lcbCJQ7zrIXqPLSp/5PHHU+42vWr/2c9+DkAca193wvFBmT2/FeIMKQfqlz6fclfe8ytqszFf3kOKmcPRDI2rUwPijLz/PsRG/GG9fCfaV9O9DfB1EsoBOG3baI7afWdcAm0MO9h38/dyVDkHd/N4VxklpqysGOIQh7rvs5eEz/83949/2psyy1tRWwC4/htXAQBedzIFq3Sn5HvZwvksrZxFTrEytTK9g+ERGhuWLpOwdmtN8JXy4QQLBO+1imQKOiPyXq2kiGVltTP7i170IgDA/feTPEBeyazYR/kIC/4ecMABcr1JlvIpqkAtfobxkMgHPBE4ZsjBwcHBwcFhUcNNhhwcHBwcHBwWNRZkJqsDyKOGkidOri1sFguz6u5UVukZTNFcq8zaKtmczL0iTJ0lkkIhZpnSr7Lqa0XRcY9s/CsAYOUKMnflMgNBWUcbm1bY2XTnoJQd/MIjAQBb/0bOm35dnBeXsHLy8573/GBbqo30H0pFoijDEXG49kJU5zY2f5RVnpQy04tWQ+fWn/xHUNbTQ+YM6xBttZIAIMLPTTuJWdOIpTG1qW7ZMnKAtuYCrcFgtTwinDzO5gcDJLdTJzuiF1S+rBbW0ZjIiXpoip3fxtgkGm1TGkTs2FdhGjcWFcfTbJF1RNic2dstOWesTksmk5t1X1b/RSvN2m2d7HQcUc6h09M17H4jGT3zQiGLel0aQ5zpYKuFE4ko9dw+anMxQ3RyWenK+Lw2Uf7/gQlIdHW8WWWex7Q8pO/Va1SHOOdHmhgXdfGl/WS+8qv0jstZcUy3ppxyWUy5pcI0l5FJpjUppqbNj5JD/7atpEsSj0lbSLVSX/KMNfdKe7T308P5waYm5Xp/Y42vNWtE62iCda+sKbyidFOsM/YSPtdmpcViTcWtbCbQbS7QHmLV/GmVeyrJmlvhmjhfTnIdQ1XatnHD5qCsbRUHlXDbLmTkflLWtM1mBhORcxo+/wjndtr/wP2Dsp1TpB+jTYj77ksBHe94xzsAiPkfAEaGJ3DTzbdhT8HkuDxr22ojbBa15mIA6GadoRirMb/spS8Pynq4zJo5NaxuzR133BFsO/roowEAy1eQ2Ua7Mizn/GF5NvnrfJD1LLWvNqsN1immuofuJ3PUi1/y3GDbvRv/BgC46QZy5ehXudbe+LrX0znYOXhqcHtQlqrSPba1UV3iYZXos9xo5PSUFlOU+/jWjdK21ywnPa4sj+07tm0Lyl7zGnIBuZEVuJ934nFB2eB26qvWXHbw3vsEZVb/yea8NMrwOj1F/fegg8Rs1Zamc0xO0ndCO33b75zVj9JO8/Ydv+oY0o/64Ac/GJS19tKzXL+Ogj7+ep+YJ//lhLcDoHyQFnbMslplRgUV1Pwa/Hkajx0z5ODg4ODg4LCoseCs9VUALe0ymy1zKOjoKM3AyxWVtXoNOTIODtLMtad3v6Asw3lHJiaF2fDYGdBjZdzpgjAVBxxCjmMehymHWmW2NzlBKzrLpCxfKhm3H/4DhVN2tNMqoEc5koIdW9OtsvKqs0O3nW3q/EjjvDrNZfL6cDpHmpxD48zKlBVj09JL156eohlrNKJCctkp2KqBAkCeV+LWEbqzXdizwQFivaxzsc7pVOKw9gQ7p0fDUvelfcTQDOygGXxVOTav2Z9Wm8NbJHfM1DCrBi+jupd9WYmP8qrX43BU7Rg3zmzOyuUr+J5ltW1Dng07Lh6477OCsmUn0P3fdNNNwbZ3nUnZ0Qc5U7OnHOQ8D1Cp4XYbfNRR9ktoUSrh0Ti9h0yO1Jx1/rg0h3OPDZJzYCSuFI6ZQa2pZz2VodVY1xLLUMqqZ2yIVt41UBsKR3UyK6pDpUbMU12tpDgKFrUyt8ewMD01GzZbE6YrFiZH3lic2lqlImzpiuW0gkx30KqskBPGcYLrDg7rrag2l2Nn+tFxbo8qVP6gQ8khNJNXCs+cydo6Kmtl3Cl27LbO+q1tcj87mCWOx2N8Hbkvj1nIQoaeVX+fOIsWc1S/ScUkLemh8iIrT3uQfpzZSddJtbRynYSRiPE7T/IquqjGhkKBzvXlL1MY8WfPP0+O45W1ZXUBIMrO1Ok0XUcHY1x73TXI55/CtN4LgAHQ0ykq90MDxCC2sBq7DhipsAwBE++IJ+T7YtlhncOvzhkGivy+LVsIAHfeeScAcdDtWyqO7IPjxND0LSNW1jr/AkDY53GUMyhEVD9r47b9h3t/F2y79qc0Tg2zw/XH/v0TQVm0Tv14eRe1l+w2yVrfn6RrZ0eYJUzKfRke761jvq8DIri/LFXP1LRTOy9M0rNduUy+IdhJ36o3sLTAd3/xs6Cogxkhy85ODEn9fDZ3DI7Tt8Cyp4C0uaEhsbzY52W/l9Go1NnmIkuys7hR+QStirtVZbfyGAAwwnn+jjySJHP0+73hhhtomwo8aUnR2LD/gTS/SLbKWLwQOGbIwcHBwcHBYVFjwYk+agYo1GSl63POqrYusoEWizKjLhRp9vbes0kYMBSSFeVRLydbYUyt8N7+dsqKPcnMy3hG7MSDY2QrjSdpBvr1y78WlCV8mtl28qy5WBC2ZMUyYonqPAMd2CHZ4a+/nrLc22zhABBhEbh4gmabIyOyKmvvJJ+EN72RhBxNSB5fnVmP66//IZ3Heywo28a23KVshx0bl5l4iUUGTzxRcnNdxgJe1ndIZyO3jFCQBVrNqO1qa2SEzm/DkQFgcJDue9kKsg97yo/lkQ3kT3XueSKmZ0XHvnoFCTdOZmXF77WyLTjw25BVfUdPN9eZVgEXXHBhUFYp0P7Ll9MKZtPD8oyetYoEN3M5YQO2bKEw40KZ89gtEVYvFAIqe0AcsU/cUPAeAcAPsVAcr1jCKvy5u51Wqgn2nfj+D74dlJ34llMAAPW6POv2DmItq1XLkhpVRu29XKFre748u5t/fjkAIFfaDABIt8uqLMzh4hu2EqtwxqknB2U9neSD8t3vfi7YFo+wX8AonSui8tRVuO/U6uzzlZDn8MMfUzuOJFhmQTGINnu89UOaUBntp5iNue46kdY49dTT6e65L2gpgy99icL6A2ZI5UCyWb5LLG56660iTDfALGuIWSMtzmYZTb1i/faV3wUAvP44Wm23JGU8s0yVFZ/rU+H9g49R/4pz3x1R/f++B+4DAETYp+msd0l49EVrbUZvYUost5bhPFaZsozFhUI18MvbnTCgVbbOWm+lEOw7qhaEHQsxw2ZZOy2bUGPLgx4XrB+YzXbfkhJm346PS/uon4UVO15up/NuzXNerHadd4vOOTpM5yyoUPnkSupnXTVhKHJxKv/Iv50LAMgUpD0u66Px7dd//B8AwAHLVgVln/7a5wEAp73lrVSnvPJJZd/LCPvd5CryjGr89yc+cE6w7b2fIDHeQ/ppnN+xWfwC905Tux1n5vHFzz88KPv1QySeGmMrxgUflnOaaWq/9ltVUXWwEh7aX2d83H5rVvL/Yl2wshFWssKO54DkGrTvWsumVHlg7+rs4TKpg80dqutQ5Ubfw7nmiirfmwkEYHYNxww5ODg4ODg4LGq4yZCDg4ODg4PDosbCFKg9IJoAyjUxK1kKq81S00aoxBonUslliP7s7hE686EHyYF03XoxleSYavRCdP6//u3eoKzKJoAwK+O2d0rVvQkOyWfHxEpJaDIbsh7mEMbePgn1ttR8VDloWefmcomuF4/JdVqT7HCZJ8fQRFxCBXcOkkkvworNceV4XSmx7ACHuuvcO3HOSdTD+WwAYPlScj5+9FGi17/8JVF4/tjHPgZAQuq3bN4clOWzRJ3H2ARzytvE/GHp88FBUlat1MVJt6ubnOSsoycA1Dyq5JtOJJXoaFro3K9+/TK6/1a6//ed9f6gLMH3PTxEdOmyJf2qjO512waiSztS4py3Yf16AMBJJ70t2Pbn+8mEcNAhh9HxCalDpbJn5CYzAMLGRyotppnJDJkk8yVWYI1KvTMZ2jY+Tu2rUzn7pjif23RObB1VdhYtVSwNL6RvLEy0uvHoXaZaxJySrz4CAKgZDrtV5uHWJJkbDzr4n+h4X+qQnaQ28Objzw22JdJkTrv2+q/TdVKyhjrhtHdT/VhaoLNL6j5VoPYbDVFbGB+R61gn0ba2EP+WsaHKQRhr10puPasobFWNtbr6F7/4RQBiStFmlle8gkJ462z2OPdcuS/rmBlhp+eBHaI6/JVLyMQ3MSK0f5pV6UtsHo6FdSAJbTN87eG/PRSULV9F/Xmcw49T7RKGPc0O0JVpKvvK1yTH1eg0mXP0OBNik1krO4nW63veetaDQTKcwI5tElLey7IHEdaNGFJSIqvZZOL5VKZlE6w7wF7LJR/mjh0UGr5q1SoAjfIi02zOtyY3rYBf6qHzl1rpmU16cp0Yyx2YXnrHmbC044EctYELv3ZxsG28Qm1t7Q+uBACMqLxbnDIMa3rpvd/401uCshZ2rfD6qb2nSiqTQobG70KF8xF6Ku8c95d4tzhQP3d/CkDZyd/Sni4ZTwtsRu3qpG3TNfmOJdjUPDlIJq6IygLREqE+sXEDfZd7e8VM3JaWulqcfx59C6wjfzQq1/nCF8nUbgMAli+Tb++OrdTXrBxGtSR1+M63KYfl5Dh9n3XQQ7qTTG819f2aZid7a5bNq9xk/rwD6x0z5ODg4ODg4LDIYfQqalfwjPFjHvDoo3cF26JhmuFGIzQDnZqQWVy5TLPMiy+hFd7GDbJSSLAA08S0CLEtXcGzUMOsx45Hg7LDnksOifvtTyuEI458YVD2HJ4t2xnoMmZWAKDAoeeFPJ3T5hwDgEEOKVyzRjLTDw3TOawDcGuLrOI2baEVybvfTSHfdeWt2MLntaF/flWcxewqeCcLq3WpGXyEmahxFeaZ5yzHt91GKwq98vnEJyiEc906Wg3cdZe8i4EBFhPrJpbpTA5NB0Qwzt5PvFXYihyzD6ed+Y5gW4XD5qucrb4allVKMkUr6RFmf1atlFXbwGa6x6u/Sc6mXkFWZpUpWq2s6KUVQrWsQsg5XLlThY6Oc519u5oKyUr8sMMPx1S2imqtPl//uKcExhg/hDCmpyXcdCpL774Oqn93t6yutm8hZmh5/7MBABOjOuSd2tNJJ78+2NbZQ+uVq39whb1iUHbaycTIWX/ca38ggnum7Y8AgGW91NZ2DEvW+niEVmOlaXoPp/3rF4uMrvsAABmiSURBVIKyCFjUU+VtypcpACASo/vJKXHOJT0kblcqUpv9xrdEbHTVIdTu81liSZKtLwjKijna37bLsGJZSkVqF1Y8FAAuv/wbAIC7776b95cV6Pe+RytJ6zj9LuWEnOOs3T/5CfdLNd5ZZmiCV+SaeWxhNub8z54XbPvsv1PevTKHgr/mVccGZVas7lbus+19kvvviOeQVMAYM0OPbRbBwVyO7r/KbLsXFkf3eoTegR27AKDIrEk61c73I/v3dK+G7wO+P8803U8Rwl7IT0dacdcddwbbLKMX5nE1pt6tHbfrzAB0pCW/1TGveAWAGe+NmdY7f0H5DLVz9QknkHO7dbS3QnwAcPkvqQ0M7KAxqlexLOU8tZPuJbRtw1bpL9fcQHngyjHhDkoe1dVwbkmbtw8ACtOcRZ3lIlZ0SuDHmaeSaGA6Rm21wxfmPLedc1j6xK6HleN8sY3u+U/Dm4Nt8W5qA9/5MjP1k2Kx+fzHKWhpkNvcNXffHpT94o/3AAB+cPX3qQ5VaUP+MItPtlH/0vn3LDs7OiaZ7G+8kZ6ptThoccwVK+g7fN555wFoZHNtPtHTTz8dAHD11T8Iymx7j7LVRPfLsay1HgWbgqz1MZZk0A7Uzz3iuaiiPq8+4ZghBwcHBwcHh0WNBTFDIWP81hCw7tF7gm11nsUW8yxWGBHmpbePwlrvv58Yni9/+atB2QSvCLX9PJMllqhYoVn21d//VlCWLdKM1bDI02/v+XVQ1l6mlcFhh5FvydKly4OyHKeHsNmxsypEfDkzQuseejjY1sHhyjY1QrUqK+R4jGa2p5xyGt2DEtOzz/FHP/oRACARlRBjy/RY4bB8QYQI43GbOkNsziv3p/DmLewzdMUVVwRldvVrxRZ12P3ZZxNTYENxx8dEMM6yRWWeRYcT4ieV4bDwRIf4vZz0ztNpWycxf5N5EXcL84zdrs7P/9R5QdlqFrwc20o+Kn3tsiryOCt7le3ZMRX2WozSfTT4C3DYdZ2XAVrQc+8DDkMVu38VbIzxDYCRUQlrrdRpNZZIUhuyfkIAsPbrVwMA3n8WyRhEQrIKDjPz5YWFCXj1a19K57ILXF/WLwVOb/Pzn5EYXL0q79REiDmcYv8lHUbs1+k6mQlqz0s7RQz12GPO4LrLuzGG21GI2m2hIG379tuImZycoHtsSct4UsUO/k0ryUxOVoZ2lWjFFpMqU7llZfN5uY71m/n85yk0+Xe/EwE8m0Xeth27ggWAW269GQCwF4fYr18nbLOVomhppb5hJSkAIMptuyUhzML5n/ksAOA/zr8AgAimAsArXv7yhuO0T0ORU67cz2kdNBueL9LY1d7BqVGqKr0Ov2rNguWZJbbsiJZt6GhfsUcwQ54xfgxhXHGZjFtHHUUCelZYUIdSW6FKy4BH1f1aGYg3v/nNwbYc+4hEwtTea2rMsO3Kirfq8P7hML2H/l7yOxkdFhbD6hsmEnS9td/6RlA2OEntKdqmmA1D1wyzLIMWCG1P0bv0uG2XJqXs3HM+Sn9w+HioLO0r7dN9J9lnSI+FtTS952FP2J+WHho7RrcQK/3di+X7WmN2qp1Tjmyclrb92a+QZEMri/MWd0hZT5Tq7ofo+IlJsVhYOYyQSndhWb0LL6Q+ob9H9m8r7jjW5Ht00UUkNmrZYEAYoZFhurbt3wBQYB+wZIu0e+vDF2UhxoKSOTnsBYehUC2iVt+1BcExQw4ODg4ODg6LGm4y5ODg4ODg4LCosSAzWcQYvz0E3H+fUNTWZGJNSJmMUiq2ucY4C31VORynOB+Yphf/iynt449/He2vQvjDnN3dqmBqp+J0SM4xGzPne/K/33QuyNuYafZNk338ueaQnHkcZbVt5jNWMrFBgq367HIzj3fTwIg//r1aRDnnlA2dBwBWQIDyo0OZ40MrvE0l70aNn4mtXkjVIcz5taIcyhmrSh2inO07XLfHqzw2htqNVtstM83ss/nIV87DBx5yGIpVoFbfzSYBz/iRsMHmLWJ+icap3sUSmUOSSTEBFQv00L5yCSlPhzwp+8iHiUL3jVD7lSqZJ+MJehHaAmIVJEImzb+FcjdgqtjjvuGJaRaGgxzqrHBeV7l8fH7+RvoXPDKBeWwaQF3McagxhV235m7Vjj2qgzFUh6oy/6md+Lre7G1aO3ZGn7v4YglztmPBZz9LZqyG/GPcflta6B5tWDYAXHklhUUbj9WHlXlt+VJyJP/whz4cbMtMkqn+0ksvBQD0KUX0415DyrjdPWQKr9elDtasYPPXbdwkzrl7rSazcpmdPssVefelGj3vpMr27Rs7DlpTouy/etWBqFaB+u7uE2wme+DPkm3cBnq8gh2itemjylnNh4fJXGPzGgJAnk1iIU/MtiEef6zjdDgkA1ec3SGsaVGbybQJBwCMP3sc9nlQq3lSVjN2LJRtpTrVOcJyJGVl0vL4OnYsXKKCQtY9SNnu99mLzLajKqQ8wU0mXrX1k+oV2XKYU7m/ynzbVgUgIVVAhK9th9+8PD5UuD2GmhyX5L+rYX5uTRNAznfbTDTp4/5cfX329yvL/SSqJG9qPIexuTJ11vqDn3MwSvUK6r4zkzk4ODg4ODg4zImFM0MA7r3398G2Gq9e7Ey/qhwHbVk0RtPSmmKGrFNpXc3W29vIQevmWyh/0NtOOjUo27aNVnQ2X4kOa4+EZEXHtzXHXexi/sezUllbLZQZ4hqokNdZs+YGxqcJM7SQdOxNV9SP9z8Q5zB6rdVmV0GKxEHFskWeXSmpSwbPlzaqBRPCdZqxC0OkWSMu4/1DqhLZVnKMi8eFpcixoGeOV47VmlzogEMO36McqDdtfjDYlmqzwnjEvGxWwpjRCDEo1om5o00ypdsQ1Fhc2s4HP3QWAKCF88GVyyorOQcvtHLm68y0rII9y9hYRigkDvDBNmaIGpqjZY28otpWQAPqwmahRn3Wq7AjuB9XO9oT03urxXZgNp4YM6RX+Tb30ac+ReHEF14o+fAsuxxiD1md08wKPY6zg+vSpZL1e8dWqqsW7etst/nU6F1MjIpz6c03E6v9jndQ6LRmeCybbfM8dSppjRw7UNvcdjpDN7jvhRTzkWUmyJJfNiciAOy990F7DDMUhYdNj20KtllHeZsbTr+/F76A8mYdeOCBAIC//U0CWro76JkXlTN9Ksl9iL9dVrgWAErMBNkyXwXAtFsGNMixpcBjbp1/aya8zuNjA5vOR1uLhQ7vt0Euk2MsGVCSOhx4OEnCrPvDH2jDMmGNYtXG3yFVwQq38ZL6rNjx2uO+EdafEP5t76MS8mYdZ/ePK2YoxlWtNGVxm3yXZn2rmn275vqGzocZkuPD7CSts9bb0PpCKc81kDoc8rxDXGi9g4ODg4ODg8N84CZDDg4ODg4ODosaC8pN5gOoAWhraVfbiNOz/m0hX2j8StVqAhCtnFMUdc8SMiFo7Zhkgk1UFaJER0ckn9KyfqKwPUPnGhsTXR6TnEHNzWnGqs1Rpsu9Gf8vEHVRzZztCK3r6zfZxzTZz2LGvS2QEa8yb+orM6M1VTakOWJq2PqPew2X8Rt+a0dosI4I2KSlcyfVbBlfuqYcGK0iaakknC0z60iyDolWoPbM/PzLnw54YaA1LXpZYywJnWDH6d4+cQg1oI4SjZBT7MaNolT+yc+QurjNowUAF/zHZwCIVtUXviBq0ckEmaSGRnc2nBsAErZD2v5Yb9bmrKemXM/47PjvK5rcn9EO69pUR/vV2Um6cd/GtunX5zD/Nn2X5nHLm5nJrAaRNTcCwAc++D4AwF57rZx1nHWuDYfpeGvWB4CWFuq/2qHf9r0MO/WmO2QcPPY1rwYAXPA5MtGdccYZQVl/P6svx+hcG7eKJlVvLylV59kkHFJK3BV2DNcuARU2i6VSZOLzjLxzbw9Z2hoYREwkyAsJAEnOY3jsq18FAKipfFi//OUvAQCtnKcv1SZ9KcJtXAfalH16T1YkPQql1MzPLMIO1LGEyreY5TGJ/29wVuBm4fNYVlPmH7tNdUtU2PwaZoftlqS0hVFW5m9ns2q4TWxbm9mBuquPvmdDdTH/WSucbaLa7GXbQEO4TDC2spsDNLyGe9VtKOj+1veh4Tr0uzqzzzdg9rnmdqC2ZV6TbfY8c33HZN/pcXKvMcpkWbHaQ+yWEIkob/EFYA/pPg4ODg4ODg4OuwcLcqAOG+O3AtiqMs1HONvv5BSthosVCeGt8ay3u4ccBsfGROnSrhRSreJMOD1Fs/8Chxvedeevg7IjX0IKpr1LaJVdr6t6h0TZ8mnBfByc67Mz/M4ZkmiarNybX7zx36aOp48/x43xisZvwvQ0OEmbGauoOSbumhnyeEe7LVQPq/0M7zP7OKS5HU2KOm+pQjP+ti5ymi9XZGm2at+D9xgHanhAuSxtcGCAFGFznH9Lh0ZLziRa/VoVXaDx3i1sbqAlPaTY+p6z3hOUtbAj6TnnfITPqdpc4MBrQ4bVstYyQsEScVehsjPLdUOx7zc04/8mZ/TKszc2DaNtlLeYXS4K7ICseq2jsXWMBoBMhsLhbRDHzp2SmX4vzpaez9C4o1mjfI6en13dA8JAZXh/HR5uuH4lzl5/+eVfD8psLqdzzjkHANDZKSxCocCMB9Oc2oHa49V5oSAsnc8UbXsbOd5qVd+VK/aFj93fJ0LG85OhGH7zm98E26xz+sQ0vQ+9es+yHMujj5I8xRFHHBGUFTkPXDImDI/NfF9mFetETIIurPxBlNXt9XVqFWbF+X/9lAKShN+DDsRuFpRtWUT7vqwSMwDss3oN1SVLddHf2FHer7+fcpJN5KXPW4dpTkmHiFapqFupF9lm/64FvxULbxr3qasyG/BimaeoGhpsHQqRRp6pEc0CgBhzfRubWmwWFlofj1grk6j62yv29hPLWlEMb/9e/c6B2sHBwcHBwcFhPliQz5AxQCLiYf3mdcE2a/NOpsk/orOlOyjL8sw4zKuyWFJmmzb6cyqrcvGwP1CaM/Sm22WFt3pvmm2Pj9NMWotwGV/b9XeFuVmdwA9lXjPcx2dwfL+ZfbTJcXY1OlcoflM0C0luDHlvrBBtK5s5fKD8JnblGWduKGwiYWDD7u1EvK4de+zuzZ4fr/JsDjkAiLHQoF3xl1Reub7eLgyNzWZSnm54HpBsNRgYkDxH7W3UByzrqUOjbQju8DCxBTZHDwCEI/RcbB4uQPKAbWDfovPP+1xQZsO+164lFsL6xwCA51sWlq+tGDobku/b7u/P9otpbI+M4F2qVaPH/deG35tmYqPMMlZVSH6wyxNjhvSK3zJilvXRz9SyPZZ1e9ZBBwdlGzauBwB0tglTE5yfQ6bzJWlzYfbnCbPgW0EJv9rwXvt+P8MCkADw4EMku3DpVyl31GVfuywos4KRSRbv0wxDmFmgsMrhF2c/NNu/dEb7jo4UpqbnEqB9elCHj2KtjN6lkpF9cJTao/XBqqixprufmN9xZvF+fPONQZllAo595bHBttFp9hvh5tWRknHEi9C7icZs3jJpq6VoIzOkmXDLqtTMbAbGhtsrNxVEkgk+Bx3X2ish8n9aR2KTHR3U/yMx6V93/vG/AQBHHnkkAKC9VeXks76U/L/ugbaqYVWHut9Y14qKxbf1sls8xU5ZTcIQn1VrUQZ7Bb5ou2CNg4PttrkkZZqRMzMoLECNM7O/r3YsbcjXx75/27ZtAwBMZ0VGJBlPIqv68FxwzJCDg4ODg4PDooabDDk4ODg4ODgsaizITFbzgclyHW97xynBts1bx+c4gmDJrnRK5VUps6qnstrYv+tNrE8XTxD19bFPnA8ACCs2zn+C0e8WT+aMMFD+fBLP+WTi8Q1cjc9hDoPbnJgZttrMLbxZmXWBjKoWmWeG2z5LXecKZoaS7h7U60A262OffQ4ItlWa+AlbxFld2spO6PiFj370bADAxRevDbYlE0RX5/NKJpZhrW9WmPvytV8Nyop5fmrzeBEN1qigTA8NocZCZQqr26ImfpCz0IxxnytWYI4yLdTMlkRY5rzapGG0crR2VqVos1Hz1SZiu9YKrywcsMogzcanFpYPaWsn08jOHUOz9kmlyBSmHbUvu+yb9IcNp1aPPWathdqabB89b4vH5YBisTrn43w64aOOvdasDP5vTZKzea5IL6uq4tStOcnKCzRY1vlZDQzL8/zRNdcBAMY4l1mD2reV++D/PTWClW0wAf9fU2VBbebrej7rQUvjTqfoXgucPNAqjwPAJZd9DQDwsqNfBgCoZsUReGa/jKr62eaug8bt7mWutNKMV/fjNe4MBEIE9lxNDOIoBlOD+QZXNBtomu1vMVewz8yXoBSobdYDtY8NQilWOWBLmcnzxXyDIvVccMyQg4ODg4ODw6LGgkLrjTEjALbsckcHh6cHe/m+37M7K+D6hMMeBtcnHBwaMa8+saDJkIODg4ODg4PDPxqcmczBwcHBwcFhUcNNhhwcHBwcHBwWNZ5RkyFjTHbXez1zYYzpMMbcbIz5qzHmj8aYg2eUh4wxfzHG/FRtu8oYs8kYcx//PIe3H2CM+R9jTMkY89E5rvkdY8xBT91dOTyVcH1iQX3ibXyeB4wxvzfGPPtxrun6xDMYrk8sqE8YY8xlxpj1fL7nPs41bzfGzFYn/QfCgkLrHZ5y/DuA+3zff70x5gAAawG8QpV/EMDDANIzjvuY7/s/mbFtHMAHAJww1wV933/X31dlB4enFE9mn9gE4Cjf9yeMMa8G8C0AL5x5QdcnHPZwPJl94tUA9uWfFwK4As37xGuepLrvsXhGMUMWxpiXGWN+Y4y5xRiz0RjzRV71/ZFXfXvzfnsbY/6Xt13YbMVgjFlljHnYGPNtY8xDxpg7jTEJLnu3Meb/jDH3G2NuNMYkeftVxpgr+NwbuT5X8nmuUud+FbMzfzbG3GCMaZKPoAEHAfgVAPi+/wiAVcaYXj7XcgCvBfCd+Twj3/eHfd//P5Akz1zP8tfGmOfz31ljzKX8HH5pjOnh7S/gVcN9xphLjDEPzqcODk8fXJ/YNXzf/73v+zaz6f8CWP44z9L1iX8AuD4xLxwP4Ps+4X8BtBtj+mfuZIzZbIzp5ufwiDHmh3wfP1H3+xouu9cQ2/TTmefZk/GMnAwxng3gPQAOBHAKgP183z8c1Ajez/t8DcDXfN8/BMD2Oc61L4C1vu8/C8AkgDfy9pt833+B7/vPBs2036mO6QDwIgDnALgVwKUAngXgEGPMc4wx3QA+BeAY3/efC+BPAD4MAMaYC4wxr2tSj/sBvIH3ORzAXpAB+6sA/g3NFaw+xwPzpcaYWJPy+aIFwJ/4OfwGgE2w9D0AZ/q+/xzsuXqSDq5PaOyqT7wTwM/nuH8L1yee2XB9QtCsTywDsE3ts523zYX9AXzD9/0DAUwDOMsYEwfwTQCv9n3/eQB2q7zDE8EzeTL0f77vD/i+XwKwAcCdvP0BAKv47xcBuIH/vnaOc23yff8+/vtedfzBxpjfGmMeAPA2UCO2uM0nXYIHAAz5vv+A7/t1AA/x8UeAZvC/M8bcB+A0UKOF7/uf8X3/1ib1+CJoZn4fqKP+BUDNGHMcgGHf9+9tcsy5AA4A8AIAnQA+Psd97gp1AD/iv68BcKQhO3HK9/3/4e1zPUeH3QvXJwhz9gljzMtBH6z59BXXJ57ZcH2C8GR+J7b5vv87/vsaAEfyuTf6vr+Jt1/3d5x/t+CZ7DOkRfTr6v86Fn5f+lw1AAn++yoAJ/i+f78x5nQAL2tyjL62vn4NwF2+7791vpXwfX8awNsBcmwD+ThsBPAWAK8zxrwGQBxA2hhzje/7J/u+P2DrY4z5HoDHdZZ+AnAiVM8suD6xiz5hjDkUxAq82vf9sfnWQ1fpCRzjsPvg+sTcfWIHgBXq9Mt525xV2MX/z0g8k5mh+eB/IVTmiU/g+BSAAWNMBDTjX+i1X2KM2QcAjDEtxpj95jrAGNNujLGpY94F4L9935/2ff9c3/eX+76/CnQfv/J9/2Q+pp9/G5Cz9N/ju+ABeBP/fRKAe3zfnwSQMcZYp7on8hwd9hws2j5hjFkJ4CYAp/i+v26edXZ94h8fi7ZPgEx3pxrCEQCm1MTp8bDSGPMi/vskAPcAeBTAGmPMKt7+lnnc+x6Ff/TJ0IcAfNgY81cA+wCYWuDxnwbwBwC/A/DIQg70fX8EwOkAruPr/w+ISpzLFnwggAeNMY+CvPw/OI9L/ZDp2QcAdAO4kK/RZ4zZDrI/f8oYs90Yk+ay240xS3V1+XcOwOGGnEGPBnABb38ngG8zLduChT9Hhz0Hi7ZPAPgMgC4A3zDk+Pwne4DrE4sai7lP3A5ildYD+DaAs+wB3LYbqsu/HwVwtjHmYZBP1BW+7xf42F8YY+4FkMEzrE/8Q6fjMOTlXvB93zfGnAjgrb7vH7+767UngTvI63zf32SMyfq+PyuSwRjT6vt+lv/+BIB+3/fn0wEd9jC4PrFruD6xuOD6xNwwxoQADAPoAzlX/9T3/YOb7Nfq+36W2ae1AB7zff/Sp7e2TxzPZJ+h+eB5AC7nlzMJ4B27uT57FIwxdwF4QDm9PR5ea4w5F9RetoBWMg7PTLg+MQdcn1iUcH1ibjwE4Du+71foET0u3m2MOQ1AFOTU/c2no3JPFv6hmSEHBwcHBwcHh13hH91nyMHBwcHBwcFhTrjJkIODg4ODg8OihpsMOTg4ODg4OCxquMmQg4ODg4ODw6KGmww5ODg4ODg4LGq4yZCDg4ODg4PDosb/B4eLlFHS9zI4AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "plt.figure(figsize=(10, 10))\n", - "sample_idxs = np.random.choice(50000, size=25, replace=False)\n", - "\n", - "for img_id, img_name in enumerate(os.listdir(INFER_DATA_PATH)):\n", - " plt.subplot(1, 3, img_id + 1)\n", - " plt.xticks([])\n", - " plt.yticks([])\n", - " im = Image.open(os.path.join(INFER_DATA_PATH, img_name))\n", - " plt.imshow(im, cmap=plt.cm.binary)\n", - " plt.xlabel(\"Img name: \" + img_name)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": false - }, - "source": [ - "## 七、开始预测\n", - "> 飞桨2.1 CTC Decoder 相关API正在迁移中,本节暂时使用简易版解码器。" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING: Detect dataset only contains single fileds, return format changed since Paddle 2.1. In Paddle <= 2.0, DataLoader add a list surround output data(e.g. return [data]), and in Paddle >= 2.1, DataLoader return the single filed directly (e.g. return data). For example, in following code: \n", - "\n", - "import numpy as np\n", - "from paddle.io import DataLoader, Dataset\n", - "\n", - "class RandomDataset(Dataset):\n", - " def __getitem__(self, idx):\n", - " data = np.random.random((2, 3)).astype('float32')\n", - "\n", - " return data\n", - "\n", - " def __len__(self):\n", - " return 10\n", - "\n", - "dataset = RandomDataset()\n", - "loader = DataLoader(dataset, batch_size=1)\n", - "data = next(loader())\n", - "\n", - "In Paddle <= 2.0, data is in format '[Tensor(shape=(1, 2, 3), dtype=float32)]', and in Paddle >= 2.1, data is in format 'Tensor(shape=(1, 2, 3), dtype=float32)'\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Predict begin...\n", - "step 1/1 [==============================] - 10ms/step\n", - "Predict samples: 3\n", - "文件名:9451.jpg,推理结果为:[3, 4, 6, 3]\n", - "文件名:9452.jpg,推理结果为:[0, 3, 0, 0]\n", - "文件名:9450.jpg,推理结果为:[8, 2, 0, 5]\n" - ] - } - ], - "source": [ - "# 编写简易版解码器\n", - "def ctc_decode(text, blank=10):\n", - " \"\"\"\n", - " 简易CTC解码器\n", - " :param text: 待解码数据\n", - " :param blank: 分隔符索引值\n", - " :return: 解码后数据\n", - " \"\"\"\n", - " result = []\n", - " cache_idx = -1\n", - " for char in text:\n", - " if char != blank and char != cache_idx:\n", - " result.append(char)\n", - " cache_idx = char\n", - " return result\n", - "\n", - "\n", - "# 实例化推理模型\n", - "model = paddle.Model(Net(is_infer=True), inputs=input_define)\n", - "# 加载训练好的参数模型\n", - "model.load(CHECKPOINT_PATH)\n", - "# 设置运行环境\n", - "model.prepare()\n", - "\n", - "# 加载预测Reader\n", - "infer_reader = InferReader(INFER_DATA_PATH)\n", - "img_names = infer_reader.get_names()\n", - "results = model.predict(infer_reader, batch_size=BATCH_SIZE)\n", - "index = 0\n", - "for text_batch in results[0]:\n", - " for prob in text_batch:\n", - " out = ctc_decode(prob, blank=10)\n", - " print(f\"文件名:{img_names[index]},推理结果为:{out}\")\n", - " index += 1" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "py35-paddle1.2.0" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} \ No newline at end of file diff --git a/docs/practices/cv/image_ocr/images/image1.png b/docs/practices/cv/image_ocr/images/image1.png deleted file mode 100644 index 8163e6d5df9f251b0c421cd9991ad6707fbd9297..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 133262 zcma&NV~{4n5;ppdZQHgzvt#bqwsv-G+qP}nwr$(C=kEC~ex7stiR{YgsE+KctctFB zsxnMoRvZo*8yWxrz)4DoC;|YWiU0IbNbrC6?y`<`007p|LReT{QdpQ!-rmO4!pZ~y zkO)gkflyZ(L-##NRz}t&1XdKX$(Mj5Bnw0r{8dg!O$0@nh>7eUj;EvA*Azji>Zl?z zw}ckkL}+NHa9M3qms?*?k8V}k2?cf9UgK%gZFBv}<#0U7MZxki4ai;SOBu6Q&;i^R zg59^?>MsW-Dx;qvSnF42=o^v;kK;6B!o(g(fv^<>v3TAH9ff`9eg1 zZ=v8cA~mR6YzCk=0*u)W2r!69*^;eFs8okp?}y6`>6RScu-K_Rgk`zSpPPU<60`{b zqz#`;GyrC;{p?lq2w~Reyg}Dgs1qfCW|@3(2@xNHVo?ZVMkg}L_uXRga=T&g=|?Xk zYphJaro4w^z4!(Ggf7{^q1uOv5KSD-yb35i^hoPg+uOqPs9PAiiDXiHrw(LrDUqni z1Z>hxg+?nJVc+wF$!EC$Ri~I(0me$rXtoe9kad?nOA8a;@+K=^P!R*R2%iFilP;W zH#n_NQR}dZREb|(d!P=o9FC`QH;e7gS{n>*7J+k10kIzUX~f@cDyu?{R?SweQ%%6; zmHUge>sM1>tC9)JVLYuJPy|R1FfqCuH71w;(ee2)wC{OFzW47gLwHXb#N#)H`cHCz zr&J!}MMR_xT<_ipfN|S1PNOGq1El*RMi-g#D9944+8uFs;}^s=rI9{-r5{M-D4Z*h z03xVRpE@E4@-OIA*azC+3k~>UKMj3;N+1(`u795zFr|;P3ij*|l8cWEMA2(u3#1La z()+j7o4b!?7G&F(A5>5R63>8eI26nMv(D^OOTY2KSTQahqf zxN5G-DSjh7pP%lpnmoKymPQPaRP^CNS|*IhD7!jLTC|D5!&Tf$RGN|UTFpwN?*+A5 z_(~j)7!*73>3*GE?C4$;JD}{CnZA_Wi#r`xylsEIzMBKSS2N%&eJNY=S7g^fs6g6& zRw1ao%-R6kP+REhV%dHi;YZ)R_6f@)$L=NN^q>Rw3!H_{+t;t#xY8N^xzL&Zydz1^X`KABPlB>#HR+Lk?k=L`Zu+Xr0Gmlz{H=kN4pIxtU zQoZP2_DJWS3L7penoDdfYRqaRU#DBA;m)!aN60UkhdGr#TY5}*^muexhrNnh=lz@a ztbHYQ#eFrgKI25m-OP=fHO4Kpa*c@?P?DGQSC*99~~xRE=l zUn7_y7?anX7h({<=QtoWP!NnK6KOGW$mEbVkqVKzl131m26q690;k1W>AZSmU=tOL z1BMkADHZjMrNi>BKgkTwHqE4Kpl##10?J{>jAg?-Wt=cZm2kZWKJXO`6PyAs!1&3b zw759NI_+3|#=fAspv&UWV9S!W#@&!$x^*n`K=@$wuyi~!*+Gkm4up;zv4lQC_pOgr z&snLh3RV%cWMpB9Wl+|*X}M;)W@ciOWUgY>G;?0fwv_%i%c5(&eXV_DxZgB$iZ%l~ zW5n6b%E*4w8tMS+9 zNr9DEQM4x0`DE!#b#`@I^@fg3%rXI=v*X?A@EpTd<|e3hlC|2_*|ov7!xqk_o-3zE zC@;I)=A*G|^uy z4)6|0x6fPK>(T4gvj_LEccl5`GZVsB)#ux{))x=3I?x%A7BDw39mt!XiXVc1Wk8@H zkAJo;F4tNnU*<_)b>IE2aGy$Gw(ZPq z+TL%Zz|hf9G$amJQ(mB&^c9w6kITzCy12&C*U_gqg#66>Lxre=Sv#YVDr^^ub#_f` z9Rd(TSEdTX>*4j0&!g87yMhDLp{y{oLAkIUydQERP6LhpE0GWp6GMl1 zSw&4nr}>S;*u$hTJQT6tseF4v;gaE`MMO!7>51(mO)iF~gKQ`~3%mfeUeG{v(b0oXa%h1_S0f7}kI>bJ6QgaD1 zKa)vmat)siswPfhAVWv{)=+Boy7$C9#2yaM8=0w@SzKRjV{ISzqi$zzAw}==xE2%2 z4`mA_%@dg>WcAUWJD+TCeD@M>@L>6=h31ruz9BEFMFICbM_>KE{p0;E3-QHxnbjOR z++9w=3z0)C*{DHiUz{j8RHB|IM#%ihPJA%GgohBmq*+p$=^iwjEx7F39N(VM{Air37PT}Q@At~>D$Z3KR8y+G zyG+N^9ggsiGFB8}!pH`>?XkPv@Zq>RDY((`(rEq}#E#ILuCCtx z+wP$Or&&;Ww*K!YI=>y;1=mF1r1iq|l5_>}k@WHNO7&H80YQwwN?=S-`L*_Z0vCcA zB6Shlj^)JnwErF*oEZE(V1&TI@y>?-ZgR-L6Qhn_#%t;7xW;r|7c}x7gMoMRH=fNY zXO#P{)=lc+Dgi}S_b=AYyfgLv;@W~iiCp$xCYSf}&t;rL_X&KCSx!yQu2Ww1Qp3}1 zO?D5y<%4BK$EjD{Ui?ha@H5lZ2t9-@za81(_*q3~1xB@~-k+Xq*RSKKMjSkjAdZ~v z@vf)+mj0c0>zNMWRwZ|}7wb2^1rL=Tp6~9Ofr^9Euh@?&gnfcdZ%WtK%eeiyk?EkA zvzUn-b>1@X^XEqiHT9Ju0rKy;H<{bWANw(y z12rB!k523BsH?6Q@|)i~8}ly1H_lyVJpvCzZvzS476g(6H2hrNmY=w9Z?ZnRK0T2P zCkVJ;jOuffG63CcP~U9e8Tgc4HiP{4X%2bBCq5_NULV7!F56sJpjsA4-$6HkNFU2M zx%ywC1^o){atctO#VxN=%W&d_t>1qmz-@Q~UB13*CIN(Oz_*gyJ3B3PJwGU&1%@pE z^KrEuHkBaA8*nXLmBnQ#upRU#zQ+p8p1*$MAPBdAKNtisL&lIPj;Q}FI;>38B~5?- z2K+~d1b_lz1Hk@iK>vgv2d5{p|8vFulmEQ)f0w|y z!2fRz(8OGj|5pc${--M0a?0<21(dCXh64bAPWB%Gl2jzU1ps~lBt-<3U4bsUEE34M z>`yS#-VU=g)LtI>GS9M!Qjq21;uV;Z6nA$--_V=vPGAe;XW zsLKOS!1S}#lKcG+044llp==7CCH?QPC4*uOm`@s9^34EE|L+hiYx-YC{b(d}u@b9E ztHC$_huv9NsVX>DsQ(UaN#LnmM>0FM-T&dNpQ*g%-(1Q6j$J8abMPXXunHiK|6!Lk zK=BXAZ{Yt9wfKJxtRtxn*ZM!~{%a9Uoc|Tq)_Bl#!856S%ijNP^*3+>29ZAm0=}cb z$J$K$$IA^uz1Dd$_+G@dAtHG#+2Js^i?BR(j4Z6hhi%cj;I=4XX=&-L@$lo9iKWl)&rTj5o(p>V z?BB9|KMi^8^x_c~|N6A+9rA1a*Lwvfg>I-Il+k?7=U9%T&x?zXSyO*J<9E_hU?0gh z62fHtchYq}4@WBVbdK<69J6xGY`T3@oC*IXqDLr(x)VN-%KiL6WmUDame$5r`9B9U zab02%@LebFMPdHa3fln)`vK-Uk43Ii^tPckD`2;)e-TLJBBYPuJj?@_gZ@J44d>QPD*Z)R= z$V72uOtJRtT$(oQeSSYa7V>a%&VGJ7hBprVo{QlHhDv>nXq{ZwO;?L-Vf=1E{A|60=fN(u}Mli+b^q%pHJgNG535onmA1jXs~u4_et-psErzUm%V4cFVC)M zMM1zWlH^Dr^pq?w5L#1r1%B1f$Y7gIeBtysbe-{t5~M1Ol|jrLbh=;XI|5x$eLget zbqkBH9$};+@jR9xtQaaix~oT$-96vSnDi}maC)5Dd@FIu%4?o`n1~(>-pg;Fthc#2 zlS7p(VUT922Vhe0fRD{QXc4r>PL+=JW6!-jV~3VvdjeRT(3%lnvc z6C8aI5;E$Nk47mxatBVa6^W%3|6;@zDC1L-LrdQ?S08u%H`KN+YI>HhF0V1SUe`7@ zF8IG+53cJxao-B}cKT@WRB#e8}^|7l#OP(6T1%E05fgH3br$}w1Jm>kY78W6-HL}M*r%17KRW!p&5LZwMxV^-jZ}bllJoYSoN#*4Nc9SB;h$pJC%hGem>AnC{(=TrgX*Ca=Qx5hIeQ z_J};cy6~l<&E*d$R%DCG;=6bj$ z!b*jbd;Vo+ltJ7 zZfyutxj3_d(%qp9d!6{e?Jos^dpvlW6(_$u3!l_^-F&FHxa2s=wDmq@hkUZwZ3THg zkzeXhvZW9tJ51GfWHv_aaAB^ZV+s-8IlP)OadF_?>9ygjktAO1Bb}reOiqe#PEa=U zzLXlVx`$A@$Z*{j;RD9Xw+%I44*!}&60+^G!IF%lO_i^xnw8sFHo25w>%=fLdOS>; zSc=0ivP%8zS$)p>a<31O<{t^gFtup!YM_OS=)l3A-leo*s+q~U&mokp@ikcGs5h33 zPM$*9{Bl8b1-^*r=kpVhZchg--GA+XHeGaxLQ%o=&a&PsF;`1)JQn3=dT^5n*8?yZ zqlx|+k@)MRC<)?HO$5#s6H_4>(9&F9=K_5rGTVP4j#^^3<%2b(A!k)tee|zKAIdxg z92iZhM?Cq*Aj0=O$Ots;A?Wx}3yOa&^4~`OUQ|0%f5d~~f|K5Y!;1eN>UlL`p-!^J zOn^st=^**q^Smp0Gc4C0CMf1)(_=LLOTiS#WT9gFDkgr%EtvwBjDK+iAj=bdRC=57 zA5LJF6?H=nEz$uOe>Y)_lk6q({?2y6BH5|wh}k>^o`X9ci+X*HV3zBX9Rl+_6ZcxO zGx2aqaPAn4+D>I$A_7GaAugyMU7xe{F&O)+RCWuTH9J(!%Lo_7KH(l zakIZP)MOb*h^eI|M395`BGS;mPtFO_=)4loH%NqL+$ck#BNRm@t?67P*?5H+1ZL0o z6?kcHrqr4>uZs{YafDx4coCJHuJSl|;%MJ_tMP8}c!=VVZoEF8v2o7feQ(v;c66_3 zXtFkQ=+H{Ak&To~f&iHxZ$noti(t@`pvQ=h@N{udE*|d;q%OJ~`^_dMLwX{eBxq44 z;1AjE)GNduTOoRG;0w%{O#+*oxrEV~at8#XbDoz{vgeDA;NUf>VMIw;L&;reVlb4{ zh9lYcsO{=)77iIMaVXNz$SYQ_md_h| zfyiM@wD+8C537DpNlZZkE78pab7K4G6;~_~d8)V1C5WoPF?}rSkFyC6 zdIAu3yLosvy*lxbHCljOe)j_sNZ>;d>@?e1rHR2;l69ObP&S?~kw8hdcizz>D0ED`}+sUZqqe$=l`Bavw0wavMFzhfn z++FY`Cp+sDzTE&pdl}HxT>P8>t9%K~!>7Vm)WTKY8zC!?C$(Kcza$TyR>~wza}aUT z=1P?Zz&ng!+FJ&r1H$rZ$Wx6fjA77FuLe5zrC;cpB1*tjx9qVeZJiUu7gk>#pjZFJT zwYmWp0k6K(v$}_<&*3+=oE+PO#Mg2zo7v?EjqT%k@w^}cKJU5r-9yY%^IIG&o^ZOb zY>k?^XmX26msNKW4@6HD*W;9BiGb1fn?6K?F+~=EgTS#S%aX$6OZ_9}MBVuj25R~Y zl+CTbp<$(dpG$r_pWM?&x--Ss^UbGoh+cb6&yROY%S)}6-ow#Kd8C2X1`l?|GMtr0 zqnf#}3QuiT+emszq21qNu@)i_QvPUj^qePNkfD-f6UMI@ldATRND9sE2Wv0eCQ38m zRw6Sw;gB`p=4~P}QJHpw>jXlzaL?t(>cltD+apC^BhvwsiS&MA`tQ+FPjc;cs!wJw zDXGCBz20QoIMrbwj--?!vR~OF75;-g@1~`80VuL^Htts=>-IVlubhwHig{+d$*#jO z-toNFz=lq|y1J~aJ`^HL$UV`5+Y?N<++V!rt_l&Kc?*W1H zZMTmsL8dlo^8}WW&h0*n+s25p1wu>kA`+}b*$+G@->RxAr;g&-t=)eAeeL-fF|sOf z`q}3te_6JY@Ht<6XbsLyEzs-UvN~Am8F1Xa{RzLGdPU4eJ;pzo2#f5sZEP$}B~bt-&XuxgbPG3xWIkHM-)=ko5Qm1P^s`*GTUC$SuwZjuQ_P z|BZIb7}qy?u#iX(NPk&hB%k7*-jL)V6u=Zd2~Asaba$f_G}BN7z>DqlRv$c$+Tiof;Nh0;Rj}J}3W^hmSiQDCm zhwwqrh464(!2t*hf86z7Uy?+X0VQk(8vBm=X|WBw=0E1@G?Q6zjx2VXQkMAc)pv^C zT-^5v1dsP?V{Ro3A8K$Yd$%arZpiDu!T<-h)8DAF{$rj(=Friv_~y|0iwwVBsxdLd zLIqhq1KIpZy8Q)l5XLu7ReKs9|uJs znqYl9K%L=9_*8j=ZVuD<*P{zjqrSPgxS0745$`JO^nUjklio8i@j{!d@8<(``kik%60M~j+9fII2dg` z@Qh4wl~rO?EI$F}0R#_iU5LOuYL1z3Vt8545<#LcqTSUcydV-6J*}WBa!}4B0jiPNr_$gVfyG?7VW0Mfhv#> zG(7p5B>1d?))xouLBsuq|MG|P?O2v_3Gb%5#FY_e@*8Y)6n(e&Yt*16`A%i)^EyD_ z^fU4E-s6Q>=AUN6j z^sF1^z?4OtPp`TzsAVItZy~pvB%iG)A4jlGxX?+AZEnahq~|>khWsdymz`!H$jnjE z4zfZR5~)C>Iud**5`i%#hAq{qxNCi#g#}Qlt8+~d?-_zq4ggK`kb4HnPq1zozUTh1Ioa?)}qpOI+%UV6R zXG+Aw@dVzzkdZM}P*N<2liTdAs59cyIFNfGjQeTDSikvuQVlCf{7eQOb1*&U4eA>V96e#gJbguU>U$=1e1m_9s06VK)4>Y+8yHZ&h*lEIV3Re7aLc0@Fo?eZU} z>HgDGNRYsa+kBfN^LN3uo%33xu{Wmrb{f0Tv;ecab3ICQhu1)o#9L+oe1T$&*Ern| z5@7J%MahZ*JL&9 zF?5_!u25~+L0`2SNfR|X`JoVY#4+{RpkP^fCKD%k_(6FXE)s2`Gb#Dt>QSa+n#8lP z?PMS%#!+VCDGul?1S8bvE5L_FJ&F%IA(dWLX&BIj&i|e&;2~JW)mx>-!6xfj^YNtj z(Iogb_rSpxT+83fG{VQnzv#))6}y~jGn`S*#w=_5qaYxg>HHBQj!m)Y>zL2wi4`rg z##Wo(1}P?l>wt^yZIBAhIb77Ty|3)wVhbzXQ;;QtU!op;+DBp|1?^IP@D=ibUBimd zUscX`X;oQv<>qnkhU(gOf|+UBWXXvAFz?={G;+1-Tl4u)c`9RUb#w~HkAg@AohrI( z3Ef31L1bJoD3tYQ&Yl5aWSQ&R!rr&R!B|iS(P2x$j;)_-CU~f{s zQf*=!gbXiE z22Al4e3l4&=UmZ3nSLxj>Ov?e!7GYc?pUn|GdM1K{h{bP7zTn0eSqp6=)rkxeB;nX zi1hB8+4R^(kU9Qd&oG+>)%>mM5htDq`KED0`%Ib4YN?+E^r4!gLX z5ZW~o8tn-N5&*Fbjpxj-#`}gZZ zNB`P5B_C4~2_>a`7>=XDOGHoZ<<`pQ~F#Aik=A= z9c$3_pdzKWEo>Ug6hyIDueg_D-OkqL#|ef?oOkQy{(uCtGX=ru_U_U!?)t=<`);@I zQs0*vK(5$@HSdXN`onZb-6qnf=VP!&7Cjzh!aYQ{B3plEn()d}8y4Tw#$UyK63^^< zAa$lsKf!o36p&X_){tJCi={}?4^L2-f=snp@iNto>e@yy7qKTy@Qu503k(w|sd>JN z(jR9t(Swmp3klF;ve~vVFmmB6VA4R3xH=3&7&-dH`~1Cx9-=z+RKky=@p-O;iF(^~ z8g)e^I0?0%E}ZZxeRjXAp_t2z?esi$*Iv{a&3R?f$(+cFUMx*d|w z&^d;pY+UI15b%k1L^iY{G;d;;Hmq-ePPPf zl9CxRwiZwLrAP8zCHF!E%Lez-q@DlvB_m@JGTsgX50sOf7mKI{>7F*% zmg*Id;Y(>^X*Z$5h)|t&hYYbcCF|&~>(TuT^cuDp+`_drh?Wx_dQmpQZB$985T4jKqtw zs?)wjvEEL&p;g2f=bxqM(;|pm5A#^uvGJDKG6i+@_YriIhLO{8~hqn zz@CbEhrA_ZT>5sB~qe{@J z^lc)25pd)p1%-sPUftUErS(=f6JkUZ2y-ce zXwS;v$D>S2v8izWdct`!yE3;zQYBVMr!FJCotq2nDbv^pgH9v`)1F!sbsD^)$uC#s zAQ3)>)4Gjbmfox7{|HiaQfoy&3lYmBAjmjX6A)eoP)q~=b$>? zF$9vVs4i@XU|FX!YEHhVH#WWMqX}y!22f|y#*hQhgKn>B9sDXR}q|8L(~25m9?5 z_>#9bn+M8ePNOYC}r24Ul7^OEz6Rigx%h)*J+PK6S+ z>4kPh=O0e_oKNcXckyIprMz?MP`MIXU!+j5yHw>~2;7(Wv1N8E3(&u-)Bje0GU=S( zh*qvJd)FK+``)Kf!B7`JJiqrlu~AiY^Y!!2^4pEY_^~BFFmyq@V?X7_3b1Q^Og%g~ z1$%f_4+Ke|G_LYFrnNa|2`WN7y=BWuQydCGVTw->BfiI;RkYO|0c9S=QAIK^V1@x? zCy@N5&Ne?B>*cf$XI>VAl8YYoB#k$PRQ3YXnr(cq4E4w~r{J~Mh<}bbpJ)q5{7VI! z2o8S-U2AQ_s4tcbdgAIe7B&nS0aWJrNa0*DC`;TOK2S~S#1FzVSK>v$?>W2G<5DBS zvWKO`rOMSWOgwY=c$A_$4xR^F{2XLQ)ZGu_f0lz;hD`XGfr~7-UgCw!ea18)WA~*i zEgqQsL_}V}weYNe@Ygb-!abs+jq5WVtX@n{^lMK3jagP^H0;GWjhZtI^{*e&8S#{{ ztCAIusRIRu&eBVyjV}g#0fFs%qPYFCA<66q`jlLnuE4-TY)$qrUcNA~-d4FZbDM?g z$&NtC_c;8$>|!(n{I&SSO*8XlP(^jgZ&n!&>*87P`^=0z5q|}lyF<1~8{j-qN#F#P zT3_Si6@pO{oyEay_K|eiK!ySr4fokTJ%DQaxNh?ruqY-vIsE2)Sxq_A@tyowQ5>+u zaQb^iX(uH2f+1*u3J!(4Te^az5rv+D39ow9<8%1cuHbeVek@i>0YKvLfT3ih`?Oo0v_sZre1ae3F8*Zz_bG85J?nQEJI3^|rB^-=g!THs@uy-JbzQLyE5H4U!gPP|SHE%5sSA#im-F(P;Vo`{6k$*26w^W?`Fm0e;*|!^ zo_FuB!TCxd!yjp0o8NYa106^8^r1eFr*U`vU67-7Tq%I3h*QLd9vytC==X+?nE2k- z1OJ9HT&3Q%If;srMR{J$p2fg(;;uEp8!etu1C!KsF)^TsW~F6(;}BXdS7WnV5fxvq zt-h0=@YX(A6GeSVg|_N;-0I$WlG{6RseZZentg0vns!R_*W8E9e%B`Z$VFsPJK>i? z`)N6csCSY60jp}a(Z>r1}D2B9Ri3WNK!g0+*ql21$vX9ci88RjJ< zoW#(1OxH;~S0Mby$xPMnoQDq5`tmqP7@X*Gnpkt$5Xir>n+N!#TH;2v$8TgGG0PKB zY}`J(cV$(lQjGdj5G6~vjYbfi`n5+!fPk2~VF+(LrCb+tvT!9H6nbu?4)~#hv=%;3 zmajJ05s2L#911p8?7rj#p16FcT3CU~!;OBgN3R#+sdz_LmHcL}RPetUjpv%2N9N!s z^0Qb`N|U8X*2wF)Rl3!1i$x<*E4h9+o^Xe9vb2^ppwnS=h)1dK3|k=qVFZ_=l14q0EXrT3t0?GBF@J-amPOd zWcjP+`r*6^72as%!D`+<`-G0*Dnbid;M<&PgC)4YO2R)1Zw;~A`nRwl`6saO8MT{2 zj=)oV2)7<5R&(08^e?c8{~^irZG<-ju5|L8(Io9+{0YKJq>LLZ49aizKSNMssFQU{ z8QtsiyPmNXh8odrjpe>3H2ihU0B%eIj7LY=8wQ5=%@r|Ks$W3}o>fXX!pgZf+-yV+ z#Iof!=-=Yl%~sV)LWPZ=L~AzU(ntx%?KiQ!d=Spi+z?cNyRor>H2HmeCf3qkqd1t_-HQ`7bC0Y+!}q8Dh1|z8!@_j@6s9>4~Dw} zmN7Jlu9HZOJCZ6`N|#k1{CeBB&`-5-oY8fAigx0>{V^(165AvHCY0<~? z4XGK@bAg)diIwCqm_@_G+-L^XVTe4t2xhalyEX1)BAS~B@XX_ef?s5uOhyQDpkbdP z^)@E`DS~3=sB-*W(P4TFb~Ahmuc&GS#zy;t)$hL* zj^gbgmvh^?F2n>c5+{BFpSQyQ$mtyCnqTOYby?T&t7p0%S8NYZAAwQq=eSw|+S|3> zqVAmc2Ky!>o2X$(DMk%{_7PkjhOJxLp0nmu?cR&zXubM}MQ%i1l7|%Jvk5jkcD$Tl zs^`LT5)xRjMjdT}nv)JrNh&TpIrUd>%o&TJ6}h@l*)K^IEeqb&IuHb2XI*n)L#VYd zb1hphP{jhPV@PdOF7Cs@_dFqjrTeeDV>_+xWfRBr#AcKk77<3E%twlhq!}4#J^wJi z$BuEl?_2~!^>OW4_SnjxDn4uf22DO#LP$;xAqz3UI;hc8 zLaFnYdl*)C*{_ihA4J2STuXxy>p_qy);4SJptWICP<@txNa{$nxUOLW1lXKKb{`jR zmV_GxG4iCXy_WedUdkiO$a=+0pi;3;#%E7Hh&|E){>%rfO+MVLZME z=arRU3w0qfxeKcCPXTS_o@5CpW!A&o1V*?I!F2BVa*&|2(PN;*tj{*l3eOEeV|aZ4 zd*6I2y!^tj&nfIkmSyFIF5sF;p7>AghLDr*xy7i;LF} zQH+I3jg#}f)gW8^mlu*7O|VdssR}7yxkv_ICRP|JV@n#vTs!(*BGdr7&rFcqmpX~6 zE2rXFPG>k+QY zt&}**(<6La=W{>hNmOOC)n9Dr*2HKRYX>)2Z%dE*y35?~qUI6HWzmt4;M*693C^2= z^_dTX9WOe_zd0~k?^y|Y3GUv~SmhQ!C&Wsty=cc}djh0lvF9V>F}x_7Ybh4WA+@<@ z{<)#zy-&e0!SHlr&I?*ihv6J2{5Llb9(h2`d|>>7$=?(*_n)%eCDXpmN!TR%igJuk zdFr4+hY!<2J9LKxE(n!SpY_rF3>06OJxCqrG!+aM(=WO{PUAA>t8pN`fAoBdFNzwo z;FsVQqqxoJ&;}+V8ywn9;z^Ji@rMt<)3X}5b5h%FmB%@8m`=N9!`f%kYl#tBRre*o z!$7E$ZIur`-LzwaQgp~`Wf?PNyu>aATul_Y3$Ebc&2)SPd|fxp@UwL@26o-wOAl9w z4#uoDriozpsIxvW9P=a(XVO=307q4Iu;|F*GaNg3x{t2gQw9TDSqlL@pvDw4=58$z z1fv(FN#7cSPSi~Pg_LE!i7!9L21ZKX^?-deG0K)j)?-&2L2!G1Virv)gTJWr6NKu8 zrYjZYHE=-F7J2awzAPxt2B1{QL^BR&2Fmu-aw&q_5-+lNQ9ROJpgKBZT3S&AlhK1T|1{EH5SCnab_~wTFT$|-dV^{Ahnm4pQM%Rk@-et*dP;agvp`w>RgftDda?I!%$x z-%y*NOW_^~PC6@ja`&Bd_`lPw@YO%`;jms6#vM4{G9J}ylN3tZ*SsR zv?%?6&p33&F6DTm^AxoPgz@e};(oNxm$mTujbHZL{hZTG7o6j!;)<+4$ER9n zvS1E{Z9n$7^wo2jX2!ZJ*_S`Fn5py+q#$?_yXQm9f(rzxJz2wYnRFM zYTM>A((6cQSMXTBSY#1FukE#&6vrs$@2V(doI|L-bPc`J%;uWmnXGOSthCdo4AoPT z#f<4QT5xERw+!8M$KN3dTXDxtK%X~>^R@Tn%#1IX&KP%U76xPtG_<8`->4bERud%U zV1T%+z)f@mrIA33MJ(*F#&*wy?UbXwN7wtiOTpU?XK6l$mUx|ug5M1$5j2eIipy7^ zDm2ZkE-+~>;BfV>2l;)s3LGn?XC+V86=E86Dw^@-iWGC&W@SIzt9I4E3}BFCH7es@ z9lY@^2TwAw0_b1fRorr7fRXd1HM@ zCPHFwj3ZCUgWp805$}^cMp};JKMX`J-6|EvvPW2QSQzO8(MK}}niY6{5qq+e`%-3P zp$}7{`$d~iuZIV(8;Y<=wqEwzzH@8Z^iMmY{RFCf@4<)=|2i4;Q{UG|@u3uF0qwr2 zj7tCYbn~^SJHmD`<+eK zXO*><3)$YO0InGix1%ryH$c}vri#$cgL8rXffz^Kb4FS1WS?F=n;hpNIUR}gCR~if z38nm~GI1}RB>f3o-j8F$*~cYv8DCKo=dHrUndAB8dO{b?a}F& zznBM~ymPbOw_FA=bRjxR+dk}GZudYi5F_~Ul9mhm`cFR^l&-~|Y$fLOtT15s&b)oz z64%j;{Hl{m^;(&)aVJU#BMfoDOH`)j{tTcTOoScN8Mqq$y??zc=;Sx3bAMUrcsCyz z&>#E6+v;ju^s3NWU#q_jdgVVEl1z`O8JBNv%X5-rP6fLMd+C*6wM$VRG}CjRGqAN$+4Ww7JD;R z3PKfpW;a`K-_SNJU#^h(zX&_Wuu9`DUT533C)=2esYz2!*m2@y+iu6nHYeM*o4m7a z?>fELxz5M)zTcnE>%X40?%%!4j>fexgCqti^fNq$a5Qz4&wF;<}jNraOArG2c zFupP!%5c2IndPBU@|b`s7gijGLY$i=|8=%LhemrL+gCM)QIi)?zL95|72uVD_3`tk zZUO4^KUDS`Q$ZNJT1iA|Wr9&CxDTcF;v?$?N}!{5)m+9Ttymx1UJd5gqw0aO}T zgu}B_dyF66q4Mt9jV6%aUd`%$HtVi>dJJQPVqUNq%c>n$<~YbVu8IO5T8b18Y6o_| zw^*b5G{;L1Ob5Y(^gDUHOWULD7txcrb| zl>e&#sRPIQ8apH# z?{%k^&L9z*pG4pqiIzARP&zz}tfp}#)YBo$R$Ld*NtE}OAj3CO_b!wTr01ftgkanW zJ0?izxCpxr0KMhGSnw?l$31H5!A;}3;+`QcQ@Cq-stnyO_@|9LM5-<}O{69Y7E=IPp0_ubxN^9+SG>saPL-Bo*&&Sfer}fT9{a4dH{6k>{#h+;f@)>> zm=(7~g>r86vt`*rD)vYk*h)U6${BA5ONB{GR3<)7lNm6RUaV9jmXDxzj03y$m?9#S zfWGoMlbAd6`H={!jd6o1I=QkPG{xkFT;7K&=uVYgUb*iP+xTG;?y<4hw9pt&zE~B* z+Yv7Rs)XFyTzs~P!jy-f#`SB8qCD6-2ofn)x#l_(G&*VAA>DKdgxRO!4{Ps@Zw){?|~TcMR=S-^F((GaPe< z-Adz}^U7p)@xA#5S!{*+PKH~c+YtknonK;a)3k0xG$v5o?ZM)9`~0v zVg~Xcjcw)%XB`4_nsd>VlM7m4+^dddiD^ocVv0D?L_XJv^`^_6WIb!ViiC8>slJY;LxZ>T5$eYxr#F z5%RM&t(BbX0WXLa$75y1d+V%=Vj8HpdJ5%Gg7RDNg*4O24)Pp+SRb}we;dT5hts_X znuB$5kWF|LXslSsv8Z-6kHMvAxj7?0-YEL~e|%bK-P=lRw{PO*bupK?*TiLI$2#{9 z+9|)_K@csYpW<6expp$|yHRSUEqwoZOPGmyX8e6CaQ4!+1NPEbCLgqst@Kti~12BPqZ>JIU|+fHn|T2x_&S;x5h?3C%FrBV-NEr8S_*iy*~ z2or-5T5zo>m5tLNROn6W%fGk5Ip)j*b(*nSp!PgzZKDCC@1yDPMGh>my6bx1N>m${ z)k5Zz#3je=BeMsP^Y=Npkv&fQ{Q*dXm1F$8ay_{v9mGuf&089IhM;c!dm&xAAWVvl34dRYx*!~o%ZIS6+dFp1 zC4GOm2X51$)o?320rE7EP>hI~=Xm845iu#Dl!*HA{7?0{E?~iNI{Q z7@~OYs0SDx6CV-Ng0;%6%*a)0lzw%+^5G?1 z1$ayXcqKh?Xw#*s*LhR`M!S223_0jM3V|8%d zuH*V(q*SvH5N2*#T1??H?qBipFQ4MhDQOcAinNWbQT!yN+S_AhRRGXnRLMa4+oo7? z(Ihh$e3efD=X|$2T1!V&goOdQN^3bQ>Lf$!;DrZWjDkg7a3_EXr>qhIq#>tW<6{UJ zzmp2<@JDPwyt(vG#rl6PfaJU2JH#ZaYNT0rLt$2Uh-e>7G^;)njz752M&SLLEvq8S zQiS{?YCT@jr$|y~|FTOpvwTNvn~Qq0hh+WNv?PcGsbr3iqx}=cL^+kn1}lOc zG|8{ox&qWAOeG%2w>w|%nD|p-kZdtDeoTz!w@(q%w*;@SsonEt15)XXJCyk6Nb0gT zImvEr3R`Po3SX*-PdHJ&28@5T`|YG_l0xhbgst~0#b2@9z_fp$Dq!cnb}>5<>8eu_XllM| zJhj@m)3%OoC-*Z21P3i*&6nj!&sw;xD^&-ar*{a zl@xcsyXQj?eU7gcM{RPchlx+$;LA1Dn&^#_JB`TBDR`~<(%H`M^7REG!S7xqehI&Q zmeAW<&Mbmam8Og0qk@Y8_m6(^Kl)3bQ-aXOLz%hi%^hMTi2aczDb*^@D7^ zbu~58GI=cp@iZ8>1W&)U5|}*4Bt8s3dPF(2i|Z){`_j4tUH+O64idv2{q*&5K=qLi z+K7B-XWpJF>X^a-hMH%^!`6LEM;+MaKH|7S6@tJfo$i5?Lro51t3;fq6Nid`Wp9s5 z?Lj$4_>PL}0ZX#px&eezy8Br`UM{wUqa*xNJUCFLD7_%F#&(}pW={f{f59I;0oqu+ z?}Q>s&_?_pdetBU?q2awQCm`QOtlnSHZo^+0tB__QQ=ALYEuJ*+}#zNHvy@?XO9sB zCDPP>O5X`O0bgGYCK5~0FZAcBLOGM|N#pde;z#0aIDBA#efil-|AI-_te)M; zwNI*__ehEyg}=)_@cPLCAS^iuF^)z%=RgqLY#d@6mfO(?8QX9*c_w9qP54`gw2J4 zYT=OY)EB-Xx`DE36$n@FORO?C@&*zhblQ9$5v5M3BlY|IEnep4C4GN@^RrG7^;1uf z2%PDIo;U%(%Jn`tTKDqR-_j?Dy}@$kd`13?37mY(B1;7p{C-7#z1>nrqy-=R_*%!+ex z$@WtHs;#oIw|nki&JJ4%;!3gk;7&v;PIj-f0ltgws%@H`-m9zsrcPa^FTcy=zs5ea z7ewG|T6dHxoT3f+7`V%J)-$XdJB%ov_0@7^uqpan4~j$;c}HszXXxTJRc~;nVEPsH zKlBOpa80Y9;INcWN5{%H=%Rmr>5$EYh<%sfi3re_$?wg)2P$|JVrt}GDzmh8C z;_H5J2Zw)8aDu_V>oq3xNt-gY71P!#+f6yeJ&3qZhsXOdeTS8RjW*h4_>A+C?K|`) zw#e1{pih{%vE=;`(B&9YkdsWG3I+7-toNe!1E0s?pT#~D%6j)BHKc9c)HOQWc$x_a~R)wQ?cv@cD%#($RuH`jU?1BXT+w3N-9 zq)ixm7rHHOhpsS8jNqy<`KwDartXT4iaBM^+)lKd52-_ZJ7!5?486=AiQ1LlP;>CB z!2Q>yjX9cYL+%){r@-|PgHJuBP=<5YRMS%(JyMvyvd>Ss(*U@{d=On0Mgq>2F-5zl`XAn{gLYj;4cO{12$k?^JP|17J z9$I{0bifs~$jkRj4d{mEdP;5yX@7YqYA;t{x3*@{-hpq*jCupP`{8bE&dRz zT@!~KjH`1{2lxGHLEhEs8q2sr>&m0zJ0H?c9z40z@vroy!+@?}1!1Ai8RE>uSyeOZ zH$kL9ADW9`|4%%I*WY%Sjr2EBT0yM+!r^fQr$Wl$wRbUZ+JdJ{V;c^T8xYxlc{}bu z@Qv;i4?^vLMQwTmVK%cfu4q#G)}Pt{Domfa%MXQYdUr==Wi4nH(6B zf%}wWDOOBOQ660Wo}-m9lH-6w`LtT`V?taAL35~Tidix*#F^FKHq8t$f|TtMrP*Jf zldK&6zDaLde8Y?$V?O>jt?te<5x6ZN?Ss`cNvYYSW*2a2seW+rCg#Clo@kF)0iK?M~oz)1=e5N=PpdDA@} z7o5|*3^(>RO0g!%It(w^)^Pdt^IMG~33Bpo*TM=?J8Fl%c*-l_=4~W*D~h)#tJ-pf zF3U6j3o8)#R@!ymuo&lVD=0u|Rv!FC#xu_RHL3o1t;swNyZntcsAB%h9m21ho>&J* z#~!UN>$34&rb2qS>aV9vH7XMg3Q}m(VXi7Xrl4UBB_)^~{K`5kA;lBPXrqI@Z&TH< z!^a`tA$XCO-Y%K-J^abo^;H=WUbwBpm-D2^2JhzU7hXbX)sI_tkA`CO^%-|-yCf~$ z^Mi1NJo0wi9B})KUD@kSueC*i>V&b*hfKG7a}JKXO~CH1_m|VQue{uH!#}=Z*FCbZ&wtLC_wU_ObHi%t{`>dQZ7el91Yg%BEne>kt?+j2M*PqO z+1BP#XmK_l`}eV#I2r$adJ%4;vHAGTFgp&m$|XH>dngMCh2W%6^lAS2PKmTAV0tXS zQcY}JhlnUda6Rm%woM&N>X_PE44|V%K7(X4uLkJ_tM*_PF zyufvTMth{BiL6nt2{wu_v8#0vzVe=1cJlKq_q7F&QqG|3uJU%(i&S#pJe2w7d(*)? zYhWmg9`mvn;f(!WGqc>~579~~9PTqbs4ZTaQ7su+JX%b`-r~8jP+*?mXZ3Y=F5iuL z<#kV{nqj9}8Ff#)Bk;6#Y0TN;I^I|}RWmR?CR}yS$C>u`a}U3G91J=@_%$F{Ehvl} zLQ4qa(}(yCVPPNw9pCci&}9mOr~7a;aHwEMO{@-%n|%bP4hcg0nCdjVV*XQ30zW1l z!9yApHXX?3&e;_T9(rnOBD>y#twcyOP9O8X5f_`AbDEe?N*MY+F@wsdOA3e7Z+1v4OvgQPFiV zJX9{EG)rtHHX&!vdfz3HhxKIA!AKeT>m0)nQivcmi7X#iC%+(r(3S~4CvcNEQd zk0FU0F9Q$d*%;2SkGsLNd{OD&sq>m+LcuYOzp`XGI+k(zF2!&4e*69flHEQ zMPl{j!7IOD5qke_#0+;UA_MaFAE4U_VPG*DBp>2ulQrkP>UV<|GeBP~w}YH;H!_<+A7PF+QMKz zvT2j?iQADusdKm@T)M*-^FMl)j?Hfz2<~Q-DDMQ}{gh`$yU{qK93nDajdl7NC&uRs}1$J%RRw ze^K2}ZB(S?Gn&uHtTA&0dki~@cFDL^aG*(R2IK z7u&YRIH}W(5W&dE?CL#0c>C|+@{@|hIJ_Ws3s2@OI%g;s#i`B@W~r%w1M%I>XgvR$ zcuf|zEt^Tg!0*fBTih{d+?*1zv6~cjqc4b@!7Qv0Sb>8oR~$))sVb6ufe~>QhF1{} zDaNwd=VVx9_m;{b^}d+f!Q0@%5%D`lMLjF?B6$Zhx~*21O^4CL%uzL{eBe1*;lIG9 zIg2F%i{o+r7h7NCQg&xm#{CTFEoQL_im!bp`Sj9cstlL^Ca?FW*W+tU0Vdb)CQ)kN z?n3n3(thOCO|)Ttsc-aD%1mG;za(jHQ)9}X zp{R9{BdGK{*SqLM*Cfxx@i5ra+wiD;R4C`1Og#$SQ(}i<g-0Pyz0LpE$jD)P%R^ zu1rZ)2AFP!60V6+M)7U`$`&X#sfUMxJ_tzB;TlD2Mf6z%1`B_L>(GSdWroE^4*rB1 zk5F+RVP^imsY2mYMAJAaoxbExw;O@?ng0oo@;HT%fn2R6PB-pVX?>}SXJg+N#wLm` zX_Ax&mHjM;^ZreG(^op+9q^3E7Ni(Pxngh!X~D`@N@kNkT8BoMNrEBT{>NmA*Oi73 z4lPAx0{?8k`pUum?>n{M^x^@u=P@K|W@inC>H!r0=5H5a_f}OfJ4PbVaUd(tyu zk}0H`N(!}hYr9X{<em8ysof|G%2K|DUq(Dki??3ggP@3*I53OM+I4R^~B!4t3_UZE#X` zmXC(Fpn{ECr+qfZl+5djiT`em@pR2#p=5M``i5itwDbeRI}CY5b{61}*~vu=t|5p{ zZhdwKuwn1D-gaTw>T!E;G-o%}=hW(&8F6SM^2nTZWPnFqb8-(rQm}_pmPJ!F6+*OrT&ryUN_c0&ssvZp)*%Fv zNvokrJF@Jbj3^;f=#qApEFEA{^MkzjH)tQ zHd82j9}?C%5G1zke#iDoly#xRMCt>({KQmnf1FNVw4}-o**OsXj~Kr{#r|G;V^6Vr zYe$%M5IIcP+WcNg0-L~jR!3FT)c2QpV;IZmg&!7&-KT<&2YgCYtUvYZg}=8PU_j)U z%cSMpjVFq>xhn0=^WD86rcHlMz*#e3Q<@SmO_pLh-HF#W!+tSlf5J`t4?|($0+I^P zoybk!e3n1-p2Qi2UeJg9xZ$iTuV=W#zRW+g;FVVUK zek#AjK71aatgt;G_pR!nS_K`d5nwWbX#Vxt2+dH6zGZ|pzrLFxEBeZqoYSie;^s(< zV>)X%`o4X1K*^pHckKOe6i(z%&fq=G(T|cBg@P_h`NC9*)jDr!dH#CI~l(2AL^t5@4@Er$Lqth+2~P3c9#u>pDW)%TRxQ8vd9w zn$tEA)Vy_icXP9Iw(ENS;U?+pii>vrv#A{O*!U_@gW{WWGO{F2o$#P`5^L<4C8S>= za(Jh?k&>Y1JAS>9Nw5~{8IbI7{n3bDPQZLlxW>I%krsP;{LZ+GH;ipq>rT9~wki=R z40*=hnH%D~!of38XhKJlH72R{NE?c3^J$)%)$Bar4mo`O4ng$Ny}Y}=&>m`e3kRQ@ zoyMWlm>>xQlR@AkSdK)HZpR}O?#}+n>>V#{XN&sg_9=JgE?2Ym_{vOJ{HJpY(#FXk zEb&SNI{!9XX13*Pqa!CCPL6hOy&@;J$Zee~+D}#GqhoY>@?8b~mo*~%F(XC>5^(yv zv+G69bYb=CernksgG03Hz3E2RJ6!=xqHiW)q=tOn%=Pn)G5B6O1!pc2YA$C$9qHHN zmgL7vz}L=CQDC~SY)(HL=yUC#@uNr$?&+n2d- zieC{*j3w8^IeM2UQvOf!D(Hd@_sL{v>(>ptf-nJ?%d$w|s_4bILgUQ*=Qu*~rmu}5W z$|mbV!P6eWCE?Z2+Y2;sh-C;5N-YUnE|axQwoWicGd$xj+DJg&<2G~cY|r)jD-6?-9v+lG zJT&(jFgkNi9RlLgXwe6dypo$GFL zIu3gZ_*}k&FB1EwSvuq(LYTq+}!Lha{0 z+onS73AMsH?P9p1(k>J2)51_ah~}R;Ic_bm0mXl&0d(DUm9(TsDVFN$rZSGUF@&13(a77;l?N1Pd z7hi964f34=_-xff_W;lPfT?l%sD){Czq_2a?x%5b=Z|;0cS$z@ToGS4ILlX=M0|S1 zeDU#XCi+Q7nQU(zfgz=)Jg0*(_D_*lt<0B5iCzP_<@jtutwDx5^m57-s3~qi+&*)z zKU2D4h+1>IttimS1VkMEGlt2S{EA|qe{Awp_Tvyy%V7~I#2 zZj`4dgJ~#|oE_WRHr+R46^o3_P*+_oc!TJRDr2O3+{~`yZ92ZAf-w+M7kb<)EUJQw ztz&AP!x42{W!mVb-zy|tX^OHXwNrPB4*k-3B#cq>&`=~v<)N*{l<#sQh{&7a6{FlS zn={o`C@uYD?h|sdrQtITlNesdy~~})3Vx*aV90LpQ~&u?*emOu)9s?HPyl zBeg0v#`gjVij+6}ZC^~Dm0g28y~Y+w|33FNX+d0d1i>iwB)$YAaye{ehaiXMIRkvp znq@#u>`sCttD~L{2=c?_gd^BwkrZ=&nc0t#4~9-*i;l>g6{_Blftzr7Siv1QOj}w! zL99c$_)=1im%;|H6`BPQj8%~(XH%wtxD`3IgC-^<-Yn9s1=x-%(MUK?9A=rry20U$zj!DOO_n%KnHCRZOS1pYMc$-j zRNJ?=X~0_u>)q`2w51w2qqWH`Rt^Xs_7;KE zUum!0*H7-U2>n40TQk4!mMV$P7hS!5QnUN-bJ}fGYIx8p+NT3x@?-4>@ZSDZmZ+XG zA=B%L_1S&nh{JPtWF!lki#S*_8ZkQ?=GU8EgB)hv za)Q1ro=^)Ep2xVC0!I;y4;Islo{kbCrTJbQ<3EHrJNyxHj*R6|9@veN$}!2edw~P} zIbcIF;X;&rDnICNcD0Q@7`z0Z9fA&XHtR_hO8J$){u6dbo4(}xr8mtMCe!*~*`8ea zEn?b$?c{VnI_c9YtBzSr^@qf_yjuGN6J}rsECO_n4&|3G)Zy_eXG-jf#c_ScgaeNc z4{a)<&xQTNE0}oaR$G%iz$|&xwfs*xt%?sUu!57*8w#ZDG!aoRe% zY~5(tpBe8+1qh64Kg?|0WaP&JW81=B(ZSkTJKmodWmD!&vF%Vs<_RkC8r*nQ(CN#Q(wY-q{_Lc_V&wI83_3d$gikNiiYOweG(-LN_(5DJ$KTPow9l4Kde{$5Oef6TewVv*!-on}Gwiv;7K1cdNigAzQJtAR13@KZ{nz_(6=tjhW&o z!&U}74&%R2IdSH$@ap?;fZoYg8h?EekpPx+WH!0ds*AfVW1{Be7j?j9pqsk zftd5gABq2bVY7K;;IqF5YVvlo;C3h8IRQ7jAGxv40%-|(zOxlRs_Z3<&`iJnY*42?xnYMeo5|}zEpz}^mySc?&PfG#8y^V{q@AIVr-E7VJtbBU`*{<cclMcSejaALjqPHQ zoE?I__^TwFl?v#58yinh6qpV~%=MCe2Fumci>DO8N#yX3|Bd(53&h}zB$XE~SUV-9 zYZx^c%I@4xI+;5yKBUjah&fNt;237%&;8pTOB04m?!ZLytc(Ib~GdXb^1(f<5INk)uTD(;8j)f%=PCY>vC%MtoJlGTlCx8 z(S5mlNb^Qkc@_DJXJ71_diKgm=!N>V$KA_I`h|wzMHj!{4E3@6EC`FqX!5zJb!F;e z;R33~CS!n7Y)ya+;*Z^LJ>f+mu_HG6yK(2Q1FukS*l7E(K8Dv0BmJ)KMTs=oXz2Yv zR7Q-|oXH;$7PWGGA6kbf0p^6)!6r3`c3xh?%D!8>U#qoqpAg^sN(jsVMRs$K)?kZU z(M6tCGD|{9ecY8K$E&%BQ5sg^X*&k7;SfTD_kI2gYEZLN<-K0dLK`FY zq_&l4+ZT5)>k{2RvAYd3A!ENz>7qu&giR0sZQKG$z9pA!K+o*|++Qzn(IdP)KFk>< zU;F}EGRY zw-~n6D+UU>!)Y{NM>C}U(`?R#(+(SHaD%|D9Q z-)c0eC3Ob(Xa2^)X&$O!v&?fW*?6JRG<3Va?WR`TNxLF{>XX|oSA_V@rl zwu^n-id}B_Jc1x?xnbH-R1*IjSwIf#JbsQF2@Sm=a{JCLzA^2t*>!__KD;(huN2L( zkC1^K&r&a2SEcQbTTvGUDx!|;V@yTXi3d;)>M~WjCm0!Jl9dc%-vZin5_lfTS*nou zbb%ykE@RJ1Me^r40pAWV%estI+CH9qA7d{&Gf;Jh+eW-{ZbpY42)9C`$tn_jj@fa_ z)=qMkKv@}XZI^zBULeKh3xehJ3uYaIwVCJJymdBycrO~!Intlp7=muhh76#z(jD|H zK@!!n_3*U=R8^x$!)S$najJ|gNNP~^{0kourg&OvuoTemHj-{Pg|3dS-uZ$XTJVoA zZElxQ7xW+7vY<{CQB<7A)^0iTC$r}o_VeGxv!YXD*%rJv+AhACIPw(TcPC#!)o(+7 zE1iXdP{61SzF>SftT6}5)y7|6ZP$tIF`vt{D-v+W{<={niH5pbVFx-dK^PZK$Y&D9 ziSlHW8O-}5>Kt6rSxZpH?wVW(6Oq-vz16FgNkrgW3C#Lk$1VF>%NV-XpWv>C4e24`vo{7?{OgEO%HLN|lXy@& zqJ9+dC1f{Zh4M^cYoP>3vK+5Sk&UH7pQdA<)^oUgRYhLbu*u*5XTEtT)qWNpLHxdX zPUj|g5b%}*Qt><4g^|6fF)F@@@3G1*oHw-*_(yArf2?#Wbor+6Sp9M3x0vOzv00Rq zv`7r35_4XcE^(kbMy9K9brWZzK&H!KN4+)O(KQIPyQ{nw$ZXV#)>PdX`F>L;K^04m zbeq|a_Ow#+*hc=A;kN{S1EVwVD0v=TeW#8DnrzMBH-Kk|@#H(|wD=}&1ck(s4M2(S zSJ(UJZoXx&{bFxmTP@#XrIb^H#!@Z3cLKOOYs1A@P0{GRBI=JPYS9B|$ldd?U1~Hj z`>y~@Em7>Dyy2Z#cJ~PusE2tKvGeyEwvW2cJ089=j;=b>QUQ*UV(#6!b||O!=gpfJ z@Bg}Av`BsVZ(IgM*2$;6e@p{D z+AqL4?PMt0LZT%B0kx>+x4$Ph^TA=+J#3`1dn!P*e|X;6&qJr5GT%u*aQmlcz1!B1 zpi~TemuUNO4Z`}i8y>A?cjnBuzk4KhSCH<@3h4Xw9)gm3yG149eYIpmCP>28N_?|* zC0_UF8#J||(H-HNF_K|xN@6?o~z)?&4~dEfYn)SVqsJ`ziG2o%)5~Cr&;4*hfJedR4bM`^&gMA$LvI zSB*HP1^*nKr#EU!L{o0c^(z4a2MnT~#?K*nblObK20>YZe5>WpgPJ9d_8f?%^!jI< zFUKl=t6=cvhfhTM^G|7qqp!luEk!0&by@^TM=b<7#`zAiq}b4likwh?Sc#LkYqq;u z+*F1NW6z;P`;z`ZR{3(-=Lh^c4RtjbP{zZfdQ*&yFo#*@^C=x=1YPJvUL#A>q%DwM z9X-{&zHOL;hTT9I_JzIY+Z&Sl;%CVhn&%6vvuolwmd8i_f|%LQ(i?V`?9uI+ciDqC zfNkUPKKV)4LwaL6&>yT9iZMy}{pxJ2miLB>RrP|Svg;#NSZ>R^V<`z_vt*n?mKhwS z(+-rV%H$UApDqz5GyfX&QzpHHRuf^t)aMqjPhfy4iB}K1YpEbAbS&Iz=7=Lw~sv|dT?MmQH>1}}^Gds5tG{jo%Dl;FY8=PMEm zP91u#Xn1nm1{z^>$2J8(3V%0%C5|>RYQSxatW?GOZ8pq<5|;FZ1pIl_VEbH6M0~Bs z%6>z6B9}(elps=XG-0zwucP+Yp+S#B(-SFb^z7v*{^~4SkV@&58Js5yn!71Bwpi4j zEX7?JfuThrT?WjS&?ZheTRL?`&JKYU4d z=ubEcOVsK;!#wmlmQWIV;WF$p-o98MzA3e356gnQF2U-L{p9Z>`4&@L zowx=OLT6AlH)$VPWQr-Y()A4ue;@oxACl&JrU7Iud%WJazwg4Nl;$s z*a&ZRp0<^F(u9P4E%5(h%gl?t+xcm|+h-c$5D*|?$F{cbzl4s>grHIL-bo;GoSZV& z4j{YlDB!>37ZckvLvYZ6k7PFtpzxo1Vp`^6JA#zc9=y6Ay%u>Rkcr~O97}}r+!TZ@ z%sf4dS@ZeNh>)`tNGdQZJlXiVdvy`beg0yg3V%=8+C|97tnl1nc@gV+jrG_V9PpF8 zElSPdU~4aF#eCFAwpDkEOEK^jxP1FXcH7?lDgQk9m-sTDnMj_7Q!8henB9#(I=hih#sD_k!dP71&nrFg$45Ov&>R zl!H=gjmx-8E0jdC>Dscq-q-u$p&Xx=U=da_7}d0LlOCOU3d%}(8|;4`ELqLFL%v7s zF5uzRZ(BYB0t^zFg}W^bT!bq6nR4$HPcx`O0eut>2TGNe3ix0;yp8~DxKw}5_#&;B zd;D991LxW9GH4%0h8}p)j%D{k?E}aePWKRU%aW^U-vRoYK=xO)fwWAUiQG)jJUP1s94PpgnYaGX zczwO8Kee3|<>++%T(t;Ha-b=CX9s&63CzNhWZ*Y=c>r(x;fc{PA@YA*_X9i5mVS`>A>km1j|FRDQhue+^8m zDFaN){Tw=s=l3>~LcYaA%S_Z*{+Kb%r}05BzMAPH%4P`;>~;JpD3q8A5O9wK8TEkV zj?thu#EmFpv)}?g5_8@cHUfW-q({`Z#~LhxKDF7Rc=u&ONo2zAGvGwvI4C97gt+Us zz6MzfG>GSVKIhG}p$OPcW#FUfCS5q~XY2v`H${y*MzXf|Be|9V{XD?tpXkD0O6CTB zp-+(Niztv(Vz><~>I$b*=$qWgW#OWzYdDXVC%G*=qc1N@?=ZATDF%L1*ZCk{A>|*a z2@27dKK-)#z%ZO)*7d{1k=MJT2eVO~bRWsK)dc3Jkr4>A(7K*7Z;*grn;)T_49IvM<{;FC; z?Cvu8a0}X<46d8Xp?7T@x^C`NT?Kf(t@Y0(a0l7D!gH5M_l%sB)R`V#^ip|01$f)z z)+ln%eGap_0y;NP&tfg9>K)%n+||^)#Y1#398`v_8q+;c6{ViPpF~wSp4INsT)I9e z2>XX;N2+-DyTg>WqLoSDh0O8!tiHW~YdXiG8I-q?Fo1?=^ZZL+MJTEie}n3Pk0?H` zHt0eQ*LwJOIEv{0Y1LO-a>Q6tLf^Z7>Kz9CBjmTIsLBa^0V%p!-bX0fo+rZutsLox zjzMNpw)8Q+3>&^JGdrD}Em?m1X-n<1)d|^#VAFQ~#9wN@XIOPA^Ke*Q$G~iO>!lpO zLf3P!i1 zfbS#V?~E%uZ}jJ!-|WW7qApb$=C7_d?88Q0Fa2gj+;iI>oN);71^bSe&V~sDj8ArR zAu+4Ph)dLiI}w|*stj_WLFhMKU8YzrS z9r%N!m8Ib1R5kE$ZAO38F|QrIJ6}4z&)sHv0b^Mr>ZBF(r9!@pC8foMOT*#y7&~=r zs%ZKhW)X__HX*>OK)y~1fn6*A{w@D|@psChO3SxIQbE|23e@IN@ssIhesm`0N2B_` z=Hn@ai!5P>x>cc+FMBOmJ%C7kB!1Fil~2n9Ghw3hvpC;oM+G(6#x>DWg&1E?^}GYO zx2^|~7>P&jhA7rHY2`Oh%HKycQ-yw_Tqwad2%K0x5on$D6SxEk*>QgI7I`^+r+em@ z2wBkjtwLl{mlE}6@TzA9cw*c9=7rd_^@^1F(sI7c*0OU|?Z|?E;=H{LWO)VZc$iYq zzKt{}0LEfuk2ndVR)3Mgdq)5WfYf8-&%aAamkw6U67E-%rVu|iyFV~yty9zIREf{W zeq};p3(8}5jYzGD&#(y^z@xtnEu($v2jHrmg}hsxG(py-bwf>6t4Ld)jdwwP?wQA)UHXANWAoaJdEn!JA6|0e|j)mkC>!fcghEp zuCbOXN#8d=k4o8D+8!Q*sI!_{z3&|-tRup!H#_HA>BfaC(o#7=WEKQu0hI{3IkZA; zLiwp-!HT%U)Q;_pX$IH6gXsH@0IT(auhD|>hP~Riqyb^5tS=2AySC|d4{%=mG1g82EFFa` zgfB(jwxLoOd-r*zI=VaN`UmhmW~-PlQ5p6ka$jKO3QoA1D^mQ&*L}~Db*<8mf>Pko zU@oDs-TZ!?AsChky|AzE{;qT%)BUR8VsxPd^G#Xh$8;9|-}CgaU6I(UhGvGF{`{oU z=TpA&!9iyvAu2k)R&xcJ92^T>tn3QGre8torp2*kX=Nup@j?Gg)1HL&ytVaPeH%TW zp7II?Zfj8__-p~ySyRB{^^=CV=x>GC-*I+P2^)9?LrV=Q5U%^Ku3M%2&eO)6WgE>N zExSaQclf4Mi|YPhhNv9Wq;sI0G9dmYzCbu5MQlBv#$~a5+9Go3tBabFA0Ul!9hQYjC;QuHOkB=c{qDRxHRmrN z-eCnb5&Bx+xqWZ-ys-t5G$q41VveY^yTH_ZHiGQYka;(sbK%xCH6kUW?6<98v_9V+ za>A7V!`NBI)Dd@S94k_+xLfg3+#QO$yIX04Z1V1h zO*YxDlbOk6GV`A~=lq`Mp(l>;kP6K=f}9XtQ^x|FR&W%6q(b`Axj#Mwy(!>EA5Ajk z6_nr-+zGR$P!i4pOktuXI>U<_LZ+Bt>J=H?kzQh3FS}?0T;g`Qk?F@!gZPUDMv@v+074oG3=--!%+qD1jC z)kEc^8Lj@{7{bYkQ>0E@s?~Vs=9Y%<`t^g1zLPXGyen!nUkTCi{RDVL*0D;zBr`swvSDSNFRkyIK8Iptk>oUyeS1h%(s#_29l9rs7$so-#tXW4 ztzX5f2NPKp9rs#BeCIV%O!Al z5J{|qrCP38;XNjz8H8;lkHM5iFqAEi4>+0meRG;kh6w)|Y52p_2?(PwlC#RSY9>#( zkWK3=Z%WW8F9c2Vz&~@=0&kXK;({_Dq;s7@EOnA#WG|DfjZVgL7T~Id*3|jXzQ`ez z0IswV_+DYFu7-8y73ZtbLCt*I^6m8aQZlb?7a!tP3#sAu(uPM(QeUY6q5BJEq=w1DEHX5#9E&zv>6Z>&}zLF z>9l0p`N#w}F>y3&uQ+)2ATuyq{c>MN(W5`mfu2h1IOpxbjq1#50q!SeEr18f!bgwJ z2lz1Vsc^Y=o`P9laa~}pGHFgrHn+JCC0+){+ua4{s$`u+F44M2e>4sFdM#>FQgv@?V7(xhDa+J8(26njgl8zVp(mh{N0C<5cYasxI6w=`IbNoK4`lw z*d5RAgft)Ty3nQ#f7{p7{XN$?rl zU9DFr!5s&2P0%a&NUGV19o6-~uy@c7W*ER~a@J}1m^`s_X0lcfDkZ@7ZEv+1PhtRm`vW4pLBnuy`IvbBSM$^@jK{H)OwQ z+Ug6Pqa@qtfNKki8G79I;)xhY6-Zm%6H}Qn2EtNck_ts(54Iq6p%@XyrA8`|qQ3@z zL&@sHK6(QzLXme8Ehcvdp99<55MCoXq-1aO4IyKI>pop4Lg(t3h1bBEZu_=~nMykI z(WvM0t5ka9Qp82|<3rrjdt*k1o-=_)`?d1@gUb3yVdAH2cNqCn> z^W(EtgJId{G_|M?woMo5>?0!#Aa7A2<09{mtO3Bg&cWcaQ-16Rm9S@4?Jy-H^)^W2b?iZ<{w}?!5gJQU)d`^%3K|+3edhVx2k>>z$O^$wNc)Znd~-;eTp$mb;;*QXiktrMf2%TQv0EXkRjEdHuiBRDe4rKZ=%A`0)$jg+Ftkr1>C+_SZ2kr9;f#= zXt~R&&6hq8)nFfiJdiY6jE(3hRv2IAz+g@T(FO*g*ySSfQ8l_ zI1?m}$)YJ4$y|#f1AOA2>=I+od4C&Yf!YXE64_aOTnT2OiEW0-~ z`e$J#i&Lw8xzuN}E}qdf&@gRIFC#&D3q0KEJN^wVjWg|VsO!gz4(l!BkdjPC;1Ym-u!vt397U7j$2s__%u4zNOri;TNL&m`1R?ZD zqjyyzx_HLO06w~;Wc~&<_@s^*Bsq>B0lJMyLkO2>;!3R6vWMRcm2#8)2?m+_9loZ#t-2-@u$J-QXO%g^Aoc<979MdN!k+Xd9dI4bhf+wK4?uDZ@GUL)m+Hh|aB*zYuQkK|b{liZIM zWi$BG09E$f@=UOU7RMop>`5Lf7w7liSiGr`A;xQpbOb*wugAhH>ueT~h1>*Cr%>$x zj%^_!A;&X&a@Q1XUsPn7XC)ZPiPNeb3~o`~>9(|xj2q7`L#^_@i}111;;^8!2$Ndd zw|>vor7V()jsv&fs&GxzLwySfCI*ee@ZAd}I*Dh2qG_b5OC==)iW<5dCak}hj@X8x z$Wpz{&Y=9rezW0kMBhFeZt(e1c zi;dX-W0(IN(^cCo;-Kus1vr;G`hT4DtZx(69@mm!U1GBN&sqOKe)1>Ng~+g2DQr%)7LOVSU67UCbO#D`ymweTr6xR z^*REJ7TcjssFj!&&sy!^l+jXQGJ_Y(GI|(+48dcUJ>s7>)QhoIRuXkaZS@Ck_q%pj zK#q7~Duy^|r_nVO_n^`Z&Anu&AlfX+r3JdbQEC&}QXEazhbx(VB*B}8s3U|<;gOI? zGnL^QCs7CicMn8FyK9im%YnYZ^$+Kb^>Ud4p>ZUkwg*bFlh;k}J&j;g8cyaifBLjoWL{||P{Y+5%3T4V3gEhqr8b=%~Nje}J!1E6^g$VY~Pa`DXh*W8*$it7EZ^3+2bF*9yEYoDD_d zQDM7?fEJ$IsIhG^0(!qjptR*_KHkW(A28l2Yen%g1I@B?$Hwfq@_PW!V|L2nhaj)t zZxk&n6Z2i>{g)g8!q%)L&-uO*U$o*Y^;qlXT5#2tZ>4#_MoV^xUMB zEG~AtUu`7(Y0pQ=l+ERRKQ`ZC7egjoRJ-YoU0Efp5d>_p%rest%O5x;J9zjfD5G{5 zCH3_Dukg%_8on#{J&mV3qV$c2SP4aNMKJM=kgr$I^=n$Zn0i*6qR;5E$HXe^7D(6R zG0&g{z9GshvjSF%dp_OlOn*&ksorAo=}V)fq+*WQ>>_-;CyH!v=O-qpqLm| zEADe(@9dXin1{R|x9C&&JgMMX#6;I+w)WsYkgiwI>~)cD?kf#^X?%y;;!$@!xFQR9 z?vjF;(6~B)x|~Sqk@^8u7kN>JHtw9iP?7$S#N`94-|np8d$YjVvC<(|L}Te1(9gO? zm~j1BSb8VFWxVDwPbZGKAS6U$I3tl;rzAA|7^CA$WMvQqZ>6-KQeo$u)*~yyF^?X# z1Muw8T@YgL$REp$v4q>X!-Y56-_o|JFe5E1c0>z#PswiDXz_~798VM8YK^=w*boKp z$=^P^@!~Kho0HGRolT&7`X0varUPj>w^pBSx@~+?rF@#! zj$0msJ${%SlxGR>Mob#I9n|nypDRW9dw>?+E21>k?k$vekW^|jp8xS10qCx<{CSPubhxS z>jFgb4SvR;gD?5#e-c%Ee@@;IgohV|?o`U!`1Z*F%`Z!0V>!w9^I6KoG`bV+#+ee( z-RUODCvWQD@oR1Ep#^VDM^^k^F{T}WRZqtlpuK&!|PbzLy8qxfi=#r&7KCRA?hi z$;kNZMg>7RB3YkoL$DlHF#fK`O}Pr0fKa)mLBHD;ae^s9k8`C2T;c!lIU=Ppo051% zUd2{g1ZY(;A>_-0*pNHj9k#qb*JdHY43|s69|fGUV5ltgl{X!_4#Ga|t(y<8sEoYZ zhyG4U1CuEhJnYeh(R6g&+?J5M6NjcBX1H2{??va=0hC7iAvCD3b9GtYdbueoKs4++ zdmuOs>yw7qi^QWiIPOQ!a3J#G^IKT?k(8~y6Xwat-RQagTRkT=@FkZ@J&N;SzOAax zTkJZXuf^z!lC!wEW-ouVxA=<--sB*G(d@U$ju4WIYI_~;%gqj;Z=r($@FX{(_1#HU zm;zxt{~A08x9?|@7WR1Wysz=-qRXI2_e4S(-ML0{Y8s^6L~JAJxT%mJ#7%Ut5s)y^ zgqW>6{hrDMjEHDlO67Nv2JXbTeZlW=&TZVlY0B&T1Mx+8s`K9Wh~26jf$7;HOVG%$ z6g@TQp{$4&1zN`DsV`S`JABE_G{!_A&sL%D{Ta@(!pQ2b^u=ML#i0H9_>c3UCnr{- z5(>Y^#cJt}XcHndHiRbQx9UwHvk!eDPfzOOxxn*wpax)d1;`e*EWnV&(Ik?{5IuF|ia&w~j^iAEy* z-${>BSYGgALRz1I$9D5jwrCxJd_|v`zcGj&9u!^xMri3i*{+wnqOvtW`=_bd{3+*5 z9b~T7;$#nOlqbLKV3hjB@aIU73)|(nVO4VzLeC7MmAD|5CZnXqUP6L=*mlnF4EWZ+Hb4D8kXQp zI^I1q$q8)mI7tZrhG$-)G$-5N=LLOe`bDbjfNMo@%R!pJ(CZ+1-Yf}PUx!$n^1JF6Bq-2MI|Dq`*lU{0AfVR{(Dm#aQ8+TV)q+uAo?X!DwER!IpPd~nNR_}ADO#H1tR$6bqF^1FUkGJ!nQ zBj9W!y~=xilO_l4SDrr^|5`iUb&u*0T;1+NkeLtp)`BoNijhWC)-+i)Xq=r|^J#e9 z?T=jbr}=YakU_0%&I%%SW*Rsj;_BV10>1626G&7pxZ0Tr{ zBBsEesLA#ir>N513u6zHpgL9zJE-H$rdTs%m`M=zJD); z+yi)kkAOQoBghZ8b4Y18H!o*Ve>efXnsrk|S26H(t+n#GC;MIE?nsH|pc!c0;bn2h zNdRBdhJa40B@8?(o@d@@o0Ii99@{#OGV(0tE4e~vIp^YLO~DbvfcLE*1~{7zP&Rfh zKT+>w{8 z2O7&F6Pbm84O@WiUVHz9=kkVu?5W53GQWvUR$^gaNXe8C%EiT9DbfdbA#F(BMf*i)-d}F}8gUi0wI2zsG&!{L3VY^Zjx=aI z&1*~2K3z^um$5!mozBhOVm%W?@j`w+dGB;b zA0uqMbP$IdMVFtS{LV{XbO?!C@VpW5eir$7pQedt3hxeO}Kb3wv4qw+=FWS^zU*Dgz=e;jFur59pnTn3PaR)8-%68m~x28+T z&HTpO+QzRjTv(AQcv-oiNta-zKP%-hTE|^ySkPvgo8*_6w)Z`w4x=!b z$e&v9ZCO#8__62->1z52q{JN#IjrTFk@byJWFrt{^S{C#G563vYS0{}QSw{wE~zR! zLf6#&^^h5Z;dh}UO0y!1V&+*G0E z1;|L^W4N`cRk}80;p8jTu2-1r#x7}P3VLe-?foDug`e}NC2*mVz6RQYXroK06c8DH0L0QONNcs_uRbHHla%fO_cra`+ibzrQR zZQ!MVvAcZ(pPM2wN|_DTLLEy(2``n>W}KtP-2m{e1iz@M&O|l}&TN*1mnkbiRb>&6 zY$5Jh2l`ah`=fl2Ef%%qeH-hybOu>FLM z&jIy*L);^#Kn^J0mzPkkqAXE6)340ptWCcL=IHPeQ!rRX@JsN+{aJoQJh>rIJ#DhC z2e_omz~=MSMgy5%biS*b+spf-5Nn;K9IBBSt0AGC>p|`m zMI{@J8X9Xow5#Y*{TZRWngYb}4ad{eaUvO0i9og~aRlhp+RnG8L~4p_{1mxs#+)ax4) z?|pVBh%HoqTy5EoiA+_*C`oj3kZ5=U+%pg&*?^@!j-I zNMLuk9879W8a+Dp5fRP*7{}HcY$c_fx0!V)Ae#zAaDen>P%YVwY@!)WV6WVm#W%JwTRz&F7BtetuRs%(;YB><;YI>s0^<~qL>SRGui3u?W3uwsWKwl6 zY)gi-N1;UA4vq1w!fUIFJ4nK(sad5gZ&`TEwmnq?LrtI!%5OwnoA0yPZ+X8hr)KEf z5Y0x&saxTu4+PO}X!OUuBTXWKq4jb}om`H8(m{K&$i|K)bh=7m&T$r-`AAc|E(HMs z6!YXHovhg>flo-Zz^-ys^w@F$L9gScscxpldzAzb-rRUH%T zLLSJds{l8Kw$7%_27hJ#tg@FSCQ!tlqL|D^naAa2DOd&JTEaS9vrMU#1%wudN3O$1 zpJ}eY(}r}~vHqL59x{Tm!ecd1iEM?i&!eK<=;!O=n+X!~U!?iu1GW61^Z)48m73(( zwE#makfZ*7_cpL1_1xjsjMA35f1s^!wpJNfjAtBlYQSeOg-!c?&xeoP_LlbLB9p}z z{ZA`nsfZCO*K;NUK@-TpGGrAkMo?OLw;-EY8C_-RLBOU(N&)N65uzz= ziEhZ+{zDq^b#K=(?LJNA1}^MOG}cC1t)mZngNlWW|{7j*N&s zrLOoHXOHk+P^D%b`#ZpDs{7|4RD1(i{)j22)vC(@SF^@6&=}OPTgxyIepq>q%&m67 z-YG^6>60P2nqy|ml#fA`10DbVAiBcj3os-y5Oek?#l=_>}#-Skc(`EK_8tyLg28iUFWG zVsWK+Wj(_uJOZ1n^Vdabg*t0=D;bi-xb4jyt=8(`8RntF{Gc^uw|lbmGzK}$?E%Lv z_A$Joqee#=P8p;@We!Zwex)rjD356zmP}GwCNk4>>iSpaPQPbQf0i;eVGc1;P+Ank z?RRX8<3e%I%Aq93tATPAbN|kH_Z9PNRG6E(CP)VLv!Dr)XSa2Z9|8SRYt1ePS(nj$XgKb4p2Z`qXNsoWuE|2nPZRX8KH|Pu ze1QXKzg~c5w%-MS1!}N%T5!K|2PmXI+(aV`*oX6n5bcKnjgW}3yY8j6%1n~p-e$@W z%8^q|uggmlag(sEME7BL@S8=#mxpmz)X`6$2!}jl8VM|HoMs=fn6<5+eH`@FOP{1oz zqvQQa2Zc2fBjBmPb&SnO=G3`GYa6+ctNu8m@X2OJ}q^oBHAJ)xQ ztaEZ>>?&3C?V@RFF>=?$bfz5rkE9+DG$QW)R5-Gl)RR>JA{4BqprbS%D0g;rB%4y5 z2MacQGRN^vfFMIicbCm{ldb{>8`}ok6CH6TIK#n$j(hj|)&FybH1Alh|uB!f5=m1wB?w_8O^aILmyY^GJUM zUBPToo;s2)!PI-I-RWX=K&R+G7R+F659WAM#6sM&^?$- zcAF&$yF;v^Xvr2Ee(}q5JOUCOU7ij-22_h2z8)W39VPAh*5gXaJv;k!pL?;_t@Pk$ zbCF*?y$D3A+HQ5KW=Q^(g9W*drX@QgS`t&nTmPm4cz(881|3)sWh%x?VCU5JZ)3ny zUo$F_G_~epVj%(E+j&0KjDBZU?E(4AA0J+Jmu~2m-YB!pJGC zmv2v95zs~!XYqt8DW%E4IVLd|Xrnm=mRLVsMY~iCm{btpgP7nAjy7) z?T}J|k=?q*zXp{Z@2`vf!hfZ{NPXhwcB^X~N=6-yMx|djwf(@f3I`c_S^>SmgAX)Z z00rF0w&GH!-HN2|0L78FQ}C`FtQhxh0(`c+=P!lrmd#WF<@G`Si62)QJx&5dH9_`M z2%8l!F}W<$H6|nV`C~M%Jw)jcR#fpR?^1uP$dxI^OAG{a@4ojafzbvLTDL$<@IA|u zj4xQs9-_~uE6;OK)B~84Cy?4IP~-Jm;+1+o4yI=F`iC#&Gy=1n2Gsiyy-CNM-ykAL z?OqxjMbwNgF<1`d%N~RjPu14ZbzzA(bn7^4fz4I@DY~DR_9OLCtw0LD<=A2c8BQ3S z##St@#HGxC?1rG?l3sRh0WWXxEZnY0cM~|~#wy?6Y+0c8Q?+L=6hsWjNYgPlzPmEE zduSnR)l;bKm}>a`(j@XiJPMjH-{i>bMnFFfr}yiM>m4k^qMaPl5b+j*ZrqsZ|I9@f zO$TOug4_mbQ7s_634}?)!y^J$+8{@hn#=;(Qo#q68zsKC&nNSF5LQlTvF?nR3$cGt z37Sk2Ro#)F&~{Dn(21Xf{kA->(#wTis6jXnyK@A_rzE`JwUGJ#&cOlDd|6H;d=mge zEd9YoaAs`9bfq}BlFfNx-5ZXYG4^Y4Ad?Eugqj_?^eK|AHVbjP`)RS_c4pqI3Ws*p zc8?=xI7aLBKs6V#SDFpZt58%W?2K41YoR_2TVw5w{y;Yn%hOc}fc#Cu<*7G9J=2Pm zER_l6=3os`vWXPUwX;0)5_8s&qeJ@+~sl6IRaiTiLeJy+^BvD_k zLmtF77%5}f{K>wY`vx0!;hdo;XR$IfI(Gzr`+fbxo&K!y(}2_5pS~FnRg^%$3#un% z1xBceEIU_pIQq-iU>4AKCCn^eo38?fcPiKzeDR`vMp#3|&9I>pB6S=)qKRwQk3L#^ zyrd+!vYt{qUqL*iO?^R+88MF7vU+(2+#|h8F#*rDBbJ|P(Jtx`h{X*hMB;@X+02ah zk_Aq0dY-!Gz8KomMy{5?x1aQv>GKGkH-Nn&OP4l_a#hZHovMT7u_Wt`xrOqRM)G*r z>5cS17U}IM*dQV_F0IjJqvFEz0UVQQBggB&G*$&Kn)!vl)N8HHwpMw9BPFETnp3Tj zcQM;2GFFcbs7#|lg=X3?RzeIKZju;;o#tzirsHh zKF;f7a4_K{vLnQy>%n$T#4Gk1uhw<<93lQ(g9;Kw)Q1wUzd~_uzf$gK({EU82Rlkl zSQ8LIp@7p-$DVQ+@abAl()@ecnFcp;9Ww%Ah#(xHXG zV>dUGMpiV)geXC(*64N6(O$s*7~W~KMx)srs)G?v z{od#yV)GM`KmahR@(JT`24P1e7VuL&$$@Z_w}Gui7)fr(^_=s4g38x`-&j*?WrxeX ze<-K-LgcqN>6ue6|Hx1L;IA|r{hs9{;?6V8knjQ&oG=;5Vdm^001Cf?@NMf!_EFC0 zQl|P1XMgy`gi(qbPX9Mukyld~&5Y75%3lU;V+;i#F?UdkA0O+VTm9!v5|u|FA=z){ zFZ8Jjn+?qoD!jGKKak^0*nt0<)sM4b!zO=bh|HJ-Zw4TUX+s5OP7^tuO^e^WcB3j8I*4m=(` z*tcK}@Cu6`CKZBWYFGRG2Ey{V;BZ@swft3gM|z=b>Vyh)u)CbZ+=dYIOQ?HEW#hMd z!UT`A&g%_26l~sy0d>{_+^se)4he{vI=V@lgNBrEzQ~p2Mca90N=zJi-|vuUmB}io zxFm?9NH#?e#pmMDj>1ku+6T<*tAr4FuFVb4g?tHWPb zHsyk8V}_aUzMx3ZDhkm0fr=k_LHhXrPF)ya?x0CNIyg7VHEU}IQCweWpB3zYd0B^a z_I2CV%aUetJaF&O5eSpqvg8D^_jyrNrf~#c`I4+###2s}`2d^c$H_kEklpAbwhM^_6{NTmkZ%YeEl^lZRTP7@89LFHR$gm; z&E^Q?7`cbLm|mPg-DbA<``2kckQ{12LZ+DPX&(shl)DKM)22<9j&nkAx_*6lx0Zc; zT`Z^+{XglZ|3R0?KEeB<^Ct?4v?$u^ix$trg$_A53*2QKKs@)!e&BvrmBS?xn`iWnOt>3Q6X`< zm0Z%CBP9Ym8k8BG!JzKF<hKzGW3ElDuGoyTPyVs^BwMdm)Snqs9>&IOpWVd9BfUve+=6oSVzv& ze7`bbnKsjLM&xqb)b*2=ZwmIvlQ>i>2|{@@Srf8we?-m^ii3XURKK&B-^h2oZ`r=t z(8#C3gsdf%=aBIgol@+Jb2XV^3Ot>6(Jm`qo zDR6+NwHQQM9Hwo@`qnbNgyY5|`#P31qAyCcjf+vygIlAS;qH@xNYLf(d59WrP!P$# z8P=WJ_YiN$uDQPCb~Qt7M>d&{;qCfqKh6x{Pb$F+{#1C1p(N7JlnT0RE z{PD9ma`^ePfv;qTMs3!v!|@HWyd)U(-T`%$zG+|~qBe#lAc{fH9FxtPm36rkJDjRE z#C7q3k@nEG;&v-FI9OZI#~kfd8xNM1ebBOpq01I~$tFP!R3v~0Rc^l+x==LbVyr#H zhyB_(qSW6T246+1Z*mV&o7q!b3F3B4w3v)kZn;R#r$_Eh)-rmhlc9#>Rpc9QVeNMI zJ86_PXO77^96y3o41QO3r=#2ddN3N9{-d>_<$JOc_xqTZ4exC%CW_{}joa&aruY2% zayka+q9TZ|j8!0M2kO-fw5FZO2p|?7%I6>epLFxu?_4*!Vq@x~4ru*u`RWHuW;Q6@ z8!mUZ&gSu{N&BZ4^JRf8FS_$*=F7z-8f=iE@oLY>3O`<8dpK@byBNp7i9cCwZIA(# zL3Ubc)JzO9H%P)gJB4{yu^^z5su6!fy1KP;2yY*5Di18cOZrUwjNO7K(y_C`+lxkJ ztlIb)Txz)RhcXsjBaF4DiL0tr35C^gIpS4BO6K6e;qd?v19niaWoP)-`$!Nui^|Ua zG;wa{F5`B`h^fX+rUAPFY9_pRjtA05mI{Z95}u@1vnSO3q>E13l9S!}3{`2h|5JeY zrp4RNko$D6t$WyhqXUb-1(;6a%i$m+`Hz;!EZx9xN*v3SyWMx^0ct+XK-N933)O$9 zK@wT6Zmx6f9c~8O66+$5`T{#ryw9XVT>KSb%F_(bGXEX%U}-PVopRZOyfJ7SJSXIr zbJ9f{cx$~0ktiP1S>VBCGCt_2Qcf0@{%r5ejbSpy&FAls9rUyG&tCehgtyHuz54FR zU(+41Ns-u*Ye7OE7Mb+rb9J6^6=m$2l#uS}P}9}Y0&x)streJ6#0Tbfscd&9Zzqrn z_`Otmk=vav1UQj#$PHwzR;xs!=nPgnkvjbWROJ73;2QPqGQ$;Bkr`lkP)D@l)YMk) zq^-y!e;m5}%C~Y%0@_UQ8+RhKPIU|<%%?3oSm5)>3Z{?Wd7|wUW{lW@WM%td!c$+` zq(Te%=>f6ORqw>PfU}3~!#ua&@_W{f=e3OHaYwlU(TpKRkZrt^iV#P-@S4_n^nGa7 zw5eH)dUyZ@3Y;QJ`2V1gp7nF)GPf z^~_-Ek)QWV^8A{!`--)byZhEDFE58;zqLHtMA0t0iF{xM63d~L5(ZQT`g)^fC5-~_ z<^#y)#a@x5wv4+oqMW|P~XMZ-V7OhAsUx$2#HJmII*U;BqH7y^Cb$UhB{ zb%98wwmYSYV{ity)B}jd#w#<`1J8u#eCyiO-%3Bxe;%%*sb_a#$1u~usvv`GzL@T3 zmHzw@JXJt^ASx`PST{HM3(Ha2vfBuF)q4f>D;zN%m9 z(9R||v1v)ILD4wUDQ6AE#UM>AX!7>pS7R#y!1=-!+X)#VHMJ1TiZ+j4_|CT?hxe<* zPWl7k{f!VDZ24f9+};+>ybXh==`Ci_Ns~J}&q3q9D@jm`!qW1>5>aZb6Gg8FCoXrN z)S^c`c)ht+`SqmpP0!7zLvS6>!qM`i=}FBIW8~O9V}0w2>w8t9-;V*J7%2p*7i&%W z4)(v?932hZ>|$hswKtwl)Tlo)Od6hcNC-Or8}h)KO})CA%&vU<_kPEX(}C?ju0X<| zYY<}zmxxZoY&|yQ#p+3bM^SjM$$X5U&nZ^X{QTac*I z0y?nUmKj`Q3bj$c7hpTjxQXaak?91>@66I-uk|eQ*gw=)zUq9iv%{J_PQ!mv1rz4Q zu5A4Cn|7S>EsJ+b*9EPuBvlTY5^-c{q;k9R9+7yCgE3$!b+LHTzDSvjF1)03J7{dY zo_m;0mlB|hy$2zbsU3OHFgT%9#qKp(VTZLnhS&r|P7?0Yj`$o>g(&G^{Iul=&_XE? zf{{;4AvV*;S?%mp_Br5x*H?JIy!%;mJhsd}uhsDZ%9Uq934ObkJ&+$%NwRn9na6)Z@O=mHSfJrkt>UtJfYIgAHw=nQz%^6%&<<*C#hdB z&q?x0xt16)WOJ<3!A~#(h#Q92D{Jz&PojgQM!W4rql5zAsu#CE=Pucu)IIJJ5NzaM zC3xY(V-g#@)Idp@``~rv|I0YS*+h2xsR^IyY;Jk6M!y^m-?5kx!&exc+}!+2*Ow~2>+8QX z5Q)%8$V9~X{wJkJ9xwYvs9qqgzC&WjX?aDHQED>ENEbJ`)YgnL=8opuWBKBGhfCx0 z0>gU&mjMCQbfa0?Z71aV;3K;M{ZaKf%)zJC>tcH^d{DsFOktnzs)q(d@lY45`m%|! zL7-_AeVm6!{*$ovM3jBp6^ITSbx05Omdk9lvorSUj9)S?wCoN zs$^+e(jxZaIa~X7ZKwRRcK%oAF7>tC0V3tdbL?)OxuJ(XOL6M&4#5DWuiZuF=kagu ze8`*l&?*7$u45!!ZbQ3?G3&`sux_Nw@xsfB?L0#*G-_D4pN%D>u5>^!#C8@pgRAQt z*b-Den->mOSMmA{R2wPt7uip%2W2jnlM;zeNAK+U3H1RJN1D6;PS@-8aFjNyfIrT8 z-+$D5DD79S$8X^UskU~0t%)OLj!?QuLcEq@$bw0~pm3Caq2d{&_4DMSutU9DPJ9YT zx^~5W58dVf2*gF-{v?bx*B)8U-Oa>9tWxqhR&(Q9->HlXtz>Cn;lSw$oW`8&df1mO z?)4~;W|QtvRVzvAFbO&%cStNd^LOnO~kD}r;GItVz9Op5LXS&vuF4+C3OP1Bnru4 zLHz-yDESzuCH{m+nE&jPM{vK=FsB^$FZgcECC`$}H$sL37! zRW$u{oeG=f@39b^ry5wuO>pI>tMB9ZzdF~akh7#-i6aNSjC|(#a5`a98DSXN3bxmP)_&TE-=>n$klI4#|J{RV z6@sQiZ5Dsq4RxE#a@-0-K#a`1iDo$pbuV%(-s;b*;AIHd3OP0-^ZQ^Vs=tM8qmv!G z%Tyf0hU~i!ab@{-7;;nxT`&nj}G#0VJiP?mGiDZ4FWhK^bNVx4lOz zS>nWOx`-*BKdzyvEaK)Yc!nGZYbil;$yTg{l=0~Km*0C?ak}ZN!vzuW+gU z?@~pBP|q{5u7}V@AvFb~o(ST7KOCgqacjSQhOHU+2#gGLP{7?zf#Nm+xawg6uh4I- zr)@w^g6UNZ?Vw?fC#X|-!elj*i?)mm`7C3h-8%WpX%$YXS>k}*_Vo>XJn^Rkq~L9{})Ee~C=#R}SH0u7#&tgIkD@?D^ejC4z^r9@7l zZ&=I*slz7clQzvR6JcKlp4S!;9@nlH4uH!-mA~-dce}Gf{#6pw z2dlBgBL0zBlfOo8&Dp&CnA#A^@jAeuYoGf=pT28(#!4#S7OPM<4qP~j{ez!gUfg?d zNaT7>0|=YRY_&#|PZe~u&#W6qdq!(7{W~{u9sC3*)O~4(?C*f$%PH)VyRB6%Ryx-C z_3r=_AC?F&CX!NOacrN0wbd;Hykrt|)fD=Di4R|(Q zCvcgcQG9eAnu?EcYN3AhZOY$7x7II@y8kc2&MK&`AWXNoI|O%^-~@MfcXtWy65RFR z!QDN$ySoK~ySsCM0}OMk=041wy7RiLyWe`Z{cC;wn1Lej6pJ1eaFdPu zMjyjWJl%~Ur$ASlgZsy@$cB<>TwBz%;{7J%B|}=>uDn)CQ?KBy?tSdfkO7F3pJMM0 z1GlrAp5!P4)+0O9HXkf`m*^i6I-@uw-sk5+bCl6 zo}vKA%j|6Ss!i7;#mU8E#R@JCaUO6EcHg8FPoarbt-RgvIqtfvb!@`8*qd!-wZa(* zt~adAz3+egg1CvS0$L9}$E-Xwitd=roJw&6ba=-vDR1TT=)I{k!F(l~eHF+5jWVG~ zaffb!Su^gXwy?njb{I*}csGi@#R^>_kjVN#WXP8#@wN6R{_eVXAfjo_zHMa}$wp&i ziU?nb`e|N@I1p@-``ajNWKe&(_2PZL^rJK3_t|X=;(7oMGnbx#@p}27*Fs3Ky&KzE;`;1_l>~zBPL!Q2t1+3!w2+YZ$e+fVsF|)R| zt(7EKJwnq?!H~O~`z9t5WW3-;`?zc$5D)Q;)2%^+J&C+2so5Pmn=TVUU)pSq9%|*% z;gh}3zuM_ZshKsffIZv4&8rFzA~<X<{5lR|VKzTt1X>l8T90e|*ga zrwi*J0!fNdjZJ@Z+ zT_W|uH*z-kPeE8gp|IPQ)!01ms8f?^694wb`%)+G@7$lbM_j(n zb|*2c{a#RQOZPkdkW2GLQhP)%%@nYExy%yzf|iyE@L6~4TE0CyQ2MUl-oisr3uA_d zsT7N8d{O?ke;iTdBbU!-*2O6`XL!J3Bx|Wi?m3|`9*FPIyAE(oQy6dr8Sxp5;NTPT z_%yvruT!bJ%Ywi@&h-SMNbZL^0uK1#4E2xbn4HBy(d~(TMr6OK6h$pDB0N-*X+~I^ zH0}Ui(TN?xPevyMO2aS@rQ8y&RM%yE*E2jpFBFF%e0=wS_J)SjWkizNsm-TIW(e+_ z+#Tvh(bgS;_LU{uD7lo^hGc6lvJ5o;*!Zo|DKg}jU9tIh>0d1zj_aF>Bo#OM=EBb& zP6sd`KQaG%u%ns{AZMu9HBA1Z2-_TVU|k9FsTmLk@`j;{>74?U_2sW(afFg8ve0)D z+q#5(t}JmmKcD7n4SBj9UxGSv-&q9~7~F)Hehlebl#d~o4NKh=ghW&dn4J#!OSV!n zo$Xb;JXX`B3CN!h#MPo2SfdK%uJRr~U3>A8Nkf2g9bdoiKE5@6-XS5&B1M3tI#paY z6Q?al59&yf!Vy_l#|cB>UA6WslSrK+S7vreBi&hT$|%^9w`q8_LpvEtW*|!W0`=iu z`nsk_o#*0`WeF1g6H)YgKQ}@xD^MIv1|}nAFAx)+v;zRg{imL}`Ub!yN05g5)j&Jk zR@J$!b9%QYr=!Ur>){@S1GqIG;=b%_n+60OLiq;kW+scF&&x?r(b5!6>Hg30*n~XH zJ>vDH=RUn7!8h6C0UGSefYu+#0R%8gEZCr3;nm1+kNnOB&(@WcA?h zRG~YCc^W8zt|GLo*_)OrKyz-un271dklMh%(EXAbC|7AwKj~o8@(n?jLf_Fa#An8E zG6y#8#i0s#?g4}27HR=-Y92n??MkJtDn^0{Py3>2y7a&KQ-I&=SWL-x&i~~CNcuer z+iJ-|KxpQIvHF)po>S%Z62!sOUpR#U8T6x;pRp}F0au>ZY@xQV>rjE40U>^$^>imw zpAT;ckCdxZz;I&St#AKtlLI)u4T0`>{5lioM9p`yzM(OJk1NKFnl0~R`%TRS4?ry1 zF-$ksQHR0q80(S&iq<>=lruvXl04icwKYB2nnZs&9XWO4y2aiwB_Z^|xLdk*PHBeO z=X=O#;Ok!mNtE~w=|rbFqFzW^N!mqc=&r37KPeozbpNkq?(g(#$m=9rG+rn9)l4NWV!!#bzmUAaNR!^}wI+Qn+!E1c60zbm1d7-1w@v zt^LhGUG5CBslNIP5=CZ8(`kfUOtH#Y21cGLM_!B1c{^g_mS+*@{L+@TaEcIKaO~z{Ci6`fELL7OwI#`lKbZZ|=$u>ov zCMy3vWLHBt;j5xha-~d`!jBBm-#CJeT3poAXCsuUnlJ!RqaXy7WX4k}#Xa{TLKqCeONg~p0quVQ z1l-I{y-PnFNd298v*v2UTg`7vz;daF%r<86bo_K5a(vT1 zs`N^QUhCt-=i~n5>+R;eLTmsyo2}@vA=xN})Owsur0y87n;^7Gc5T%0PF59T3`O4) zVZl7X`mOwQ2<~k3UxDTsW!yPX0Ed7@WT)Z2kgnCDNi0d;R)mq7st%N|*Izy+W8D}* zGG=bq4U}3d%y9R~^OI@^Ge+MRz`+o+|A(ae@6D*EgEF%qa z1-3lok!A?jwG90T1v!0r+EME1A}u;`-_B-NxFK&<_Bt+iiO7FY zl=!ziCF7g|&r8iB7VdG}vZiSSi6xR?#jn4KBT?WQ{XyX}(K>XtO+W5CkXvQSdvNVo z=x%?N_QBnD5Q7(A8Q17(v&|CiFLzNRz-Xln)_-X?_%0G!)a8MUl@3sz;EaLh(uCDu zZp~V{s9_;&#*?^G9+(qmOf=eH;V@3nQx*Q_34=sy245GgglxN%^YAm~o6V4UHNG1z zhfRJmwSPL2+cyJxj_-qN0^pdn#ykogtBHYwrrS_A(H9%oC_yZCWEQ}EgO`yR>ZW`c z(v-3FcQ^{WtI)`v5bUr;YU3RQd}UDJN^pYT=&u91uu%jt$-U$pWQ7n6x9EQQ^VL`> z+pdLvdK|9(f^0Ccj!SzxH`(Yen#hbKh6S!x4ii;hFz|5I{o6FYl&fLfNvs!mVoq^K zPFhxmo$wMJJmMf$c;4E;9|jimYjpfj-Bba_VL#=}%4ej|U%FQV5;;#Kf%Ff@px5KZ zzCN&1@^|de?_pSSK;;`cpg15)oAs|}FJJv&fJTI9$cFR@eEVY99vM}|R)GqxYMP5obaBRID5eKexV>>TjaY{d9jns9Jj2Nu8r ziZB*&(`=s53&$J;S^BIB> z3xS&8Nj@g#xKK-rX4T8f%UMn9mUEIvA5LCtId8tkg4>i2;SI4z=P=9$B;J3Z&v8; zI{1QTx|#^rF$@XXzxidoKh$oCbh6npxPY7;X5Eb%!^)*Eyv|5;i0np3BHv;3dU#Oo z1mn2Fgo0J^h9Ygjh7C9tKO?@bg%8Ft(c>1uh>A2d!y}LF#F1p6xAbTI-b7dM< ztM=ir5bPo*A=eWYVfDDg;l3DMh zC}<}LNoH|$q(w5*tXQ<$`D z^s4Tf{syTDt-T9jdMMnx-f-r25TdcHhqlizcsrRi9NQwD%d{?<6HarS;<(wR!+82~ z9_S0S)y*%;r9$saWispnivRlK)zCTi*yeVs+FaN+6G7n`fkGU6c|UzOo6D!CV8ci1 z9}#G;bGsU6o+nnF8I*S0z($n#keL3hHoCx|`FEHGLr-&<2Dg@OoiQH~1NE8`#h?wH z5`){pkBOceYP86gHa7wWv}~Lb!a#o$8Vv6rWM@@^glak9zGU@hyZ$-3nbjy4oA;sD zB@_|yKZnCKj1e?H=yA>)C#`VM0ye)HYBu+4xI(H{7h`t?=KTqN6L2XDv=alBYQ4s3 ztou~?MvZ1{x~JOm|HQQYAyB-@Y9SFM_?7d_wb?eu)=}Z}%}D&Uw6xs5gt%H*m|!|p zFWS5e{r&PAaiQ2XfyJ<=Iv*^xxGlw<+5*%H4fEASSwM(|+1r_=Mg+>l^E@3-);75MpS5}$lXAW>xfK^hXm zhEGWe)G!d?m0nJsfnicNs;y+{vYLj$GdY?45g~U`;Y@lc2vVx4h_tn3z~hF*>}l`} zvr3#eO;Jmz(@phrF5tzO#W?i-VLQK=ltA$3>u%>>Y7j#uN(VtP?e)Z zWzeN*%-NG?xoT7MsXtUHgwOLTT8WaR!}qoWFw#)e8V9R8y&Uk5p{>YcreOi~yY1v_ z>SWqdzz|;F)RejV!-^r12(whCsPG&?27sn(jnC#h<*a<;o7zo2cN5VEGH&m@g**AH z7DLzCfTJH|uM*HMG_Muh0Gc@cF_5XF>gW>qV%g5VvYMYwah}xM5K`tbSrk|7{%#}p zddTp=#DDXv6{Tx1dD^j+iXxwCACYI;(}RsGXf0GxRZ~B4&_G|pS7YllJGX5;E>+i; zBhCYWjW*%|0TBFx&`9_^VgXUl@31IC^PjdZB6Cm&RHIj;6DYANhl2p5c*Iv`pkLZY zXsO95N^_m?nZXBJKpfZjhCysf124o+|cl-DLnu8PNG(&FDqIV7e#_Z@M!%__&;*#nundkfK<4=3P=A(#< z{Nq{Qxu^=iDOcJ4?3A`b16<yy_xK5;v?Khs%#rKPueYl8O?cNCQ{<;57i%&T3>;^YfIT{GdYptgTk*SxfRQA;5{!nP`%BIJIMT3kN@ znkV6py6g3-mLo>@;Ck=fO+f>a`~u(rikYdY;pFEPjk5MBrxY1!2zP{bwKe3A)r`Xz zi-*>=lcF`n2s_H$LzKm-Y4_U))t>!=kh!!r8}RU^bIeb-!9&`5O69ppkBl>a@^Ee%KcFkgYa+y-5AS3X&U=7d zT2fql;cBN{JeD61rp`J5WGi%}R*s`(c@JTsyL2fu$i9IhSlmn=NZHu}%aq$a&e@+w znc072bcSv{gI~3hdE$%3exAq728fR|4=Q3PAz8ZqdWts1Fv7*uRG%%NZ|x}D9(c&b zjnCv3wfBXI+*%2@_QPe1>V5LU8P&2&w>J4YHdaHO_4r+~Z%p!HH?{%)=rZY@S-BH? z^-{AZ`#=yXZFG9p5mvM=BA;t-pP1q4pD2rr@%tUrqcls1hFxZr#zz*TLJbs$RwAqK zc&i+bbW3>8o{0ZoC~cKGKF?yI6A1!$&>0;FWL20cl^n{CA)odV#S1#hN)SwT^Jr&r z8FQEafZ`n#MNuU=S(#uyYkY}`K{Z`Cb{=ipOiCW(w%erbo5(y*6hg-GH=%ABdzJoj z8L8iw>xS=~Tl($C;bw&*#f*%&9UvR&DR9$EJ>-G@T5;fcGXoemX9dJ1aU>MvyaNB6e8(Yk5l;S@Rixt*xD7@9uXDW!-w}_V z-IVx{P702ih9)@TO}=|^q*&j^YdOFEJ`|$jl}&O88#9F(Ijy9R*ZB=`1Sh=sP!WK5 z=a}+O5yKHg41-Q|4FPo6A_0Fjwsr;OBkz@~tA|4fyF!$tGRGv%{<-O|&xPmPb~W{S zVlrb`w6BdJVLsK?+6@74@_)~u$PM)cbJ*%I>V8!c`iuSW;$@U7)E(A2nM9QFrKhF9 zG8lKpGBXzEhZRx;20>hnwI2z66}{}$T~aiCd9llT9#Vyp2?g+Ot=Gn^pP<2S(7lc< zZH&YhM$7R5DJ#STxaHJ;JwCu*(_~~@NtAa;Y}t-|1a%X{3{FX}dZnvTf%F_9T`(uG zQ7N?STVkSQC2L-|$!xRGgh!L|+$P3@M!z5vUSUs-T!%% z%pl<|$v5VYHmv+l5mtcMZ<8?b~@rDSiAaHm24ifA8RhG%2FVFUOEdF_SGF6rKy~)U}z4J=ueSm}*5(?Np$=bF= z6c$T%JAVn%Io!Tjy|`5eWdW^hY@Yk+x!knG3t zKr-iccxzoX)4#_s&0D_Kve@S@KfY$b3yx7r?~RBd&=-eoE`8t5;2-)) zvsz};Iu7C9$T;g+cb_sME?cHBsaBj`URh$Z!=gU*W}wU z8fx5Z@CCH_c*U-d^*94>yw>qg%OjQ25q9X?OfSZENP{Nx=M=7f%KS0(RJtcwI##Lk zU|xJ9$mc{uN*JknxDv51Q^Aj?K8{ zgs9tY$?SJ3G+^w@TEDs=p@E|~ZG%EqME-oH1?E2@24!LXMVXN>#P zW+&Jw{ve4B>(4+noM^q|YCQy&rU+D^6%-ZGOXy(_t)huMh6?v)Y%Ijr9IXA;ne;u< zR9BLeU3%gl0)#P=Dwtpt)tBl*Hn4g_Z%OH*u|iTIY3G? zC?@~$IG9e2oUFPwI)SG$YLSX@WFsQ?%QQk&XMAKw49{R&F?9ERd#2!Y?_o6gan$zX zc7IlbCeId86id+o;Ogmml+mFJF8qxoB5EK=FQG8~6%WYiC10eCSzrwYH+=JJ34PAiwkq>rGx7ey z79I5ves}DQ8SK@J3SV*!EZ*oJMHo%AY!qdGP@=1rtR5z=;ZGkTRM?Ix?oj5(=p081 zZUMW-9}C?#!P%t30V*NoUokx&xa*YlewE$Zink1A@s(HRvveL#(M z4h}wx^s)1NES8D+7MP3VlTDMjHSW)IkrZ^9f79{L%8{-+VXD*V4-*w_4zb?ZXsseu z-nz$wU@(8w;L7%C{S^{2=}545*k8bsbLDXA)Ez(0`OuMR()Np7jy9dKYv+mBRvE7J zP5aEn&YKefM6&TDlO{f^GKXxpX%FK{y;u!FEJsMEqs)tB%(!nJfJ--0KU;N}M+`8< z!Y=Za1F6>aW0$s@Lcwh`p#=91^#priUCER~4>|1TuBF~x7n z5mmE4+w-qwpk(02o_w#*gezi2E`wOZSVz+;TX*NWFS%*d6lkI>aCZ|R+5nomYMmRR$B^|j zcjJhKXpi=K?d;o~BHX*S9Z0Za+m4GqAIGnqfCmYepJ+7GOwRsZo*k;v-j|h&2$7b6 zElE3f2&5k)xSTgfl3(N?;Ho&N&vB0$;GOBXr&j@;f@t*nJ6L$@&T5Btaq)U0SyWhI zErS;JVD0Rz)^%6f>+tV`rSPQX+dmYf>=Ru>7Dwa}Zr`wAz`x3>PJWAQlk+kOzDk*0UL>@oWDajNXWflt|sT z)*nPM);ZQ=cc=!qPg&_d{@Q&xUi7H|63Up3LeEkgds|fHX_e{6uNB5f7+RS2I|i>? z#W3E=oO|j4a^e^70FO9Te1Tyc-)|bev~kO3I(mM^q!5qjdbis4%$Md=05i06DiX~k zGxu6;^Bl#=23@j5)DRc((3+h}k#5Yf+lI}qrEimU{u=Zx?N@HKapnws_D9PtP`h;a zY2V^%t`nsQ0?ZXTuBA<(LpalN#_C-ZP;wmN?153o`u)bK>`uC`R;|^sP7H>a;bv4G z!e-h9r=FTCS$zm9*?ded3MaBUYonT`fkm(&Z|HR!sisMjl#UY;v~bTulMbq;rLD-} z2{|2;XM~2W`nJYs-<O8zIIsv@G&N7 zrFV(EETazciyMOI8^Y}?$7C8T+z@{SJQymN>}jFX`VOw!GZoOh6SPtaJOiG8$xsWX`%XhP%Y6o+ezWM} zCb}Lo8Z85PJ!5~DEc1YKs25#<^6-$za+QcrwenyFcmhTaf4>bukC&B|Rk|L}RBEYi zY8&X(U2Xg6*VIzxk)jB9ialXHc$KBSeMLn@F-s$u2j9Wx2{UPL!St$V;Tbh0a}#zt zh@QZ|PT%IUU!OVi?{8i6kIz<(cO|2qcDMxl+-JQsEq3q=!8<}c3VXB#cpd+$ZlEt5 z72^_c-hjE=?{psE+mafl`o?puvO*8e8`E)!KI2XcUMhFX&VwOCZbYc-I0d^5;32~Wl=@MmZjz(?@G*7Y5wA% z%S{Q8$2t$+uEf${pxwOFonrmu4fIb>v-S`U#<#Sxs#Ggej5?+k(qB*r^Sl~20OP_& z2tFF->fkF~eaYdIN}8E_TQRW}#M>7;?Ux`>g=H7owPes|>&pTg`CRm%tsf*d;_z(f z@4x4spWpK>1gt;OQ698^dHFdAd+4uwm{4M$q^~Ae7OHI-Wc*fXKbX`WbATDE4xI zKHqATHGhF9o+@H)XA;-GcI4#(moGyD1HliL?S$x`GWmW7hoFYsiArd*%E76rT-~0~ zT9R5F)tUMb_*OLjEMZQvd%18zPw`I=f&Q0l0O|fw3H-@y6Va=@a+Zd~kqnI2;m$Ks z+)oC3g)~_)!B?lR;E8ux%PXJUK?j=Y=AVAD^Q&Z5)!eKf;ROU9)Zm2PofQ<0a=fhI zXcO97j8fGU2~PgF%U6GZ1Dzhitkg}22*!rO9U{HrPCv*6q9}ZcKj$DER7NI-+-Cpg zHc?${%s?HwN<$iJbKN6*!iq91lRV1-#;g`#R;tsRJ__L2cWOx6fwh5Uqbh7ae@l#> z2UzJtqYrVie_}iYimsEorQ(QR3_S2V?}4io=Mr<;GXYGT0ylp{fd?W}Etuk=U)=dlV2{-}fmPY3QxWOWwg2AI3!z{o8Tj1T z&~I+dCK};dcxtG8tK~c{UXsKuxi%$Czy1yWzVX?05M3asv#NpgRCV} z7T7?A8Cb6rwfYv>_h&5{-OawrU~9MiU8JlTmDawMXiZlo;80WT1lwXLc*tTe-A%h~ zCDGLYY?l*5kb{sS&s9}c@L?~8w=sYX!gQd_evA%j2`k+TXhKhshj(n28%NeI9Div2X}ohk+9?7G zpqvHf<=35_!jF zSZ1`lG$-t7E7$}sa|<;F{$4Nl?S?)@vW(<+0~;H4?h=PNl#*lFMk-kzgS#I_2LFPy z*Me;8Dl?Xn4_M%y7`NuM77E-5nDJ3HQODD?3G?I2rofYvrnZCR>5ue^i+=$14taKT7^LR^RP9piHW5R~^P$pwju>mnk9@AG2H)sKYO4yolD4ib`cjC5}K zOro2)taDbitmW-p+`P-N=Q{EF@m*v(aO*_yQS&g%*4$j&+}yJGu6kjBIX*U;S230( zcP@YKB!7FXEf=8lJFp;8+<2bp!>DcDxm zcOw@Q?&!AT**v*`2PuYBwJQd#x{~Y9cY@O%-+J(qHikQrwOo>02ad|Pp*gxPmXmM$ z7(RS#jiJOoHD?&LV4N)0$VPuyrTD*6Ar>C}4UI=jVE-_dZ8014=)b%MeFjFgAJ`L& z5W+7DfqBQ~(6cH$S)>3=M+Fjh2V99_>Ja zWayBG>&xKbjVwh(7AB(eqrE(b+wQ#X(Rv|_8^cY%k-|run`>&%pgoD%KfVl0!K6_d zOC4mmYyCCQaMu#)(BRwUe(v#_7Vy$;9yLo)$bU0P()F!x=OJqwL~W4hjLJ>7?ONA$ zS9#}7;)Y$0x>&^>ocs2Rscdyota-!DcfRIs=#$j95h^y7opCB+H_Cf6f!|HPHk692 znr2fFNPAkE?0k8T^ZI+9S-)0%4Rf@0@n6qt^TW$6&i4~Yp2LrbJdoPjq+lv;?--7X z7iGPb(&#FzkJc=W2J?4-GkqQ9OV&OkLC93>7_W%m!#80_Sny`p^RrgC#!Wa zm1a7Qj$nOsaW##pZ2EH>ri40o=%$eVb6p@SbCtb37c)jLU5;9K9{F$xa){96=m%L} z-x{0*-F+%$0AdmQv9SbidT)4Q2_Rm9waQ)xd(x-tc7))z!{=2obv|V7rik?vrig4Og6ixA(+(4-)H6}3n8K9#qp;;hHx-rvjH7Jh@P0wFtN2VO0Fmep) zypr-YWd(b<ykij=Zn zS4q5tn^p!lnw%b!jxcZL_^JtotnE8Z$1WfAux06{tcRFB|fnU1zz_m=$cYJ@nIqZ_|3bhm|rp9d~dS=TO+v{KWFK$f=^lao(MBF*XPl; zi$Hkj?AV|Z^yn2qL!!|a8)0igdc@FBC0GB?frt)BHJ2-P`*!jLSQGX7%DyMk9Q{1H zyAzTDcf700#pY9%91H~O9L&esCo)2Ku(?U2O*T-tiQd84LBObRq9t58s2*3m5b&1b z@1bBX;=h5s0_@Ft(n5cXb#fetckjg0X7Pistvj&qUV`Yh&85kNBF*e+_oM{IA@c=8 z!@6jYO%ee&4Su-@`Y+s-=ewt(J-Ggn3*_F5hr%8xby5)lF(7Zw)3oQE=HGmO$&k7e zQQ9MXtAQNO4>)cXd?|{8WqVoQ^o)gHmj>O$FcAYae4e>Z9vd1sbZpAZBKQCBy{49( zrh0=t-?dHslu&QfjjV#`V4j77BzK%oz=2kPG7#SdT@l#B21VE2r;`F6dtckApu{64 zvd(f&(|Y=cr{q(AtOuhg3= z__lWZJqIt4Bf#c-d&M(N%hq4ouaJ@QfRBwV+fUE(Rk`LthhX+pkzn83_qq8`Fkq&a zbB?QEmi<#K0Eq|M1nGdkBk7HY^_@AfpxR*-PoO7j}f?fV%sim;#70)4pzm8ry;3rch$u@WUg^3tk;??)}(ZeWIlj0)KkFB_VtNQ~O_2hjGN$?#2yjrKJjo2x7fy6}A? z7Q!a17WBWCjYH;G!>BMJfuh?=U!}>mK2$9z)Px_IRU?OJCkdR-7{qdO98zwx!A<`{ zhytoyyo9C@T|B8s1?Ng+Jl)qSpqg@$Uq%+#K--@JYt!sKpKoeHG3ioLGmW&(3`K*& z5kV-BL@>NaZn!5bb0+!!{lkvu7so4d>e+JM5$*XuH~GJP{P}QCkYsy_x;#rf{mv>yH8C2?qNoQ+n?xzq^N z#F*V$Sh5lxAD#W%lFdl#OBzuNo}D+m-j#<|YDbvtyu5h+^-jcaEX!ad5^Z%k8Num! z=ykvOyseeZ>$p%`<5+sEC{%a++ajz{ea3y1Q6t+xfCII5wM>x-trus=<}XCDNiD6F zxAP2654sCm_lQ*Tf{XuB;dxX2-pHjHy3$phJA`*2qCVo;_;%majMLk-01s1d8T-Jm z8a<>d{yAjB9Vx5$pl>`Wf=m(fRg+gCC&e@1`$#o@dWe2Pf4x_nuqV9_1dpd&1#C`Z zL;f%}mMhn??@n=^$uRN_bwYFBdo|9Da&)O^aD=6mh7Tq5aU>omiaV$9)DeWt6ss3#> zL*!C9)p|naE z;OPJXWD1fj{K|eB@3qR&@wrrSIT!a*GkyF#vFD^`r=B&{m6N3C*XY(ACJs5 zCT~Z*PA6#sRrN*==9BAMCCKi*Oj?T*C=c`r7 zLwmdGQugDP#g1ICE*E+sSF&yLn#02QgxOe!e|z-aK&k_Gc+a_^bz&FaV8m zfkM+mS|dp@VE)`dBEgtBoE-xx8%053@iMuW7QB5|S(00F1yIY>Wp@B#&jhC5h+kE? zyX3DF9dvWWGaq>8ps<73b2R|m!YwnVx?)itwgCx`(B7_V;dH>}XvPFb**94xZ)gP= z;v2k>#wCxB2LgYkBgAX1s^&9n#oygTm1b1}lMF>}XAd$4p5F_Z0omCk{FB!C_(~I!QCSuIjDBW< z>bmxfwzo2`C;(ELjj+8=bDb`0ozF~RsR7SwoXb1x5tl;(_1FoU@og#H&g>EEQTU*3 z>TNL+(WjdpsdF>ZFmh8a%<5cpp^R)Qk&#eE< z%S;Tjq3k4sEr4BOfaWMEJCmzfcvrZUewMQJuy(b9ZCg#$^`seS(0CQ)oQh~J7#N^| z?1I?ei;eRt9rCbk9O#|!A=~Fk%jF%0s^UBEa=+qrF;jaRWZsY;1vB{#FWgZNEEnuE zUXHpD$&g}ypiDny|4ykViBhjciBM?oFCon-w^QDlK3Z2fj>J#Nj)`o&HN`x^B1gbB z?X_}G_R~QmpTlOU2bCU=a_7}%@40=nxKC|uZN}i$4*~EKZ2|RhrA$FH^q z=9j0tjp}_1AB?C`vW;&><`4)VIU6Yr0bh{p2F2GIqqjqswcSKD!U?91HwJ`5k7> ztZUudi^$tzFB|xrr`DC*t`nv`mVy2S4SQB7C0?k77I@6B_&ttG$|V$8mc7Az=7s+R z*?zUmQkVUrwg^E|$hPWe{<(H1$ZRUIi&{2JI!5Sn2yP>qD&vY~S<5V)&8Ac83dMp= zXcrcYh5K|h9`!&?nZ@VWy%+PsO{tD2WFV~I zrGlVIu_g#+ou2Gav|O3924z?W{m(P4vbQhC5kE~flE48`$;c!sq3WF+%T;Z;iT>Ir z*hMGtdT&aLy&yY z?#cyvwj}A%K%cT=F@Iz~&OMLnrx|(PzcuvvJX+$IX*ClcXdG24o{s5ww6fR?c53RO zF@bsq`(^sYiQq+B!NWqPCnG7mx++6|2jm8S7*o^4b64B%1$p0#V^%Hq{ zFu}~7SFzz)bovTj-h3M>G#N%xxF-<@YhTJls!J@qKKb0iC~dU>yuAdwaDCXj77TB< z6~x@68(uqwmZWL}jKHj;3%B%}**H1R5LE1EWO!zgw7C+`8O<5=jSTX)u~~$R8fb5R zjLe4Z$fJrX@z*_PjvfvkmOhptN=hYh;LJApXYGP&*=qF9#KmbUTNWe>u?ta2qRsn? z-qLJno%^tqH{UPB&5K)KBa1(8SbwBA>TanKJfU^OmHS88OUH@C3x{ci2yXJz!45Zr zDgNj{!w3J~xNGu5-p6Fw!oNI2J4)Z{oUBvF-up$j=UTo-!jqQP)Lofzr8ENhU>|xG zY+Ul&>GS=EoZgQ--4rMBfU_mJ)Ai5MJQ?_By`R*GJp4HmxQrCK@H5Afd!Fr^@(<~7 zhaaZC#1nMY1h8i*Bd`bp(Efe);`$~=5M7b$YkR+mfOweExc4Udl{A*QnNiR_VjE|Y zIdCyvlGmaZ*aQ}dBUPf;1qMgioJjXSaWPu(X(T3s%uiImyXEJtmJn_k#S-+|Q7pQr zD()+{sn%)3xpgQ)Q9}Ly++nzSh2I%^Eju&=6E?fG%37k@S3N>w8$|os1E~39rBggQA zQyYFK9AS*cHAOzP2M4Q5W5R~{o@}(Bu?8aE^q}mf&yFo(R7c1Gf897JGwoP=qz)3jbnJ(qmWcj5?17e4Q( zVd_>zH9YPX_5n!+(>qGrHgwsb!(6ivwau&yp!drJA}LAauVjM zcRKq4e0(UG^;;|4Y;&f02TJuya}jfs#5Uo+OUV(8?86sTzhLp~z6f>vkP&)$Yh7Ue zEfh)l)a7RL!|#4psT7l7Mhf11gHr@|dXRn~ew_5PViM;EHKCEmTQ+ck!wB2>4sBmk zE}lATZgu?pb-MHPSLSh7K#5KryVXo7v;VDJx|2<-R^dLe!DTB{cgT72|`z6IuBWn zJsDS59gXh6)9I;i0anKObP{d4hZ0b=j-ZBa=ID|5QJW_|`GR{WUW9sLzwTzMh)oJd3J?^ZQ9_yZx3bIc(NLA2l$ zS!7A$DoG#8B^ASJfM&jk88J2;>wb`jD8Y-~mVS&`Ec%~e<4~~3a1^uAZ%4UhF#d4; z>*LIPdPS22$x&o13VI-@{m#OeO2GZWhR^Tfx5RNI0h7X!m~3%3(|{2v)ij*Huof%Z zBy@oKcyrkzet@h&aN_k)xv;-)#DY~DzSrG91u{Vkf~KsABPD&E-34DP-0cvAw*#a; zw8EqSZOx(o3ab+=IeHjKu_D4(`YNaag~6AzV-8HpWDSur(ZvVpE?P*k#!l^pO~N+# z_F@6550XgLJ@d2tb}Brgjq<-}GAOgwv;GdSJEi+iH*i(4DiW-AQ^XcVIXdWz#$-~Y zG~A5zt`L^Ks={-;Yh7=Dn|EvfTeDYQ(asp~FjbQeq?J-(8A!awnU+TK_ExGFlNk}) zpx{mr&X6X+Hwg?Z&l$REusGk#5v`+pApoJ7*p$Qm!tPlbEY4kmYJg5Tj=5kTyD9{n zoHAH=*nzI!;~&3Y{mCZm^O=^WXTlLoSqk4;Zih{|mI*_-Bb30muT)*a8+cVVb|~2? zJ<+$23{mgW)a&P8(G}V7+C;PaXpqNde6lSl_QRrT9H%-|>PexE>;eo_zf-$H%=7D*BtS1!6XIxl@ZY;1ts+8gp1Q}7G>^U2Pg!YE4n{4(83O_S0`rW|o+9S7 z0V-BhLhZqu5+&}x*-(j@&`Rn^x35g_E$gaS%yuq}P@k4(T$~-ZoEwr&-N!4ZQTM5m z`%rhk3nh#CsQc+n8KSq#n~rClLKP>D>NKUaCiMss`!y#V#`_`Fuqen1xz(-jH1eW# z)CuAAR#cW?GNV^DiEOp7B&#vs=<~Pgy_~Abm6xYFw!DY_zHyEB*n4J}g&N#cjfFZf z8OMNE^vlx-`}2bF`=TsGIdz!_I0&WC)INZ=LZcp-l_4Ayg-fV4lT$_?gP1VQB|br8 zU+jGp_#>SSiUa_9`Mnhj9VK~8<`S}?BljxvlJf=;NkYL;u%4BU6k_zu6&8WN5~Qa) z3QgxMn))7rl=JSt$DZnuBB=0fb?L#Q!x~QTq?4`czbTRey5z4nblC87KV6c3T1%Pg z*9lIE;&3}b>7~qqb-Ego`z!)~km%U1W8*MI(gkR<9-ss8CY#mHn8Rs(n=!Kc~ zg{GXWiEV+}jw^0VHPXE(+B4;uzcE(ZRLQ)mIuFw-TTsw@dlWuN`*R}tjUekAcOI(; z4kBn=Eneq$rnV&r9Hpf{p~XjgZkvSBvcYcajyI+snN0il^R}JyTF;j-KQ6_7=BWRb z1z_r0_Dof}I-Z|h{f^msU)P72&nR#EZy_K@WW z#Zr$!UGE_B^OtpeJ+bR@{!(98TWkE>7y2_RJbhP%Ph+XLXnyeDT-jp$V9e}l=W~78 zTo#tOg%UCUU)vhHlEJ(Sx{tKurPLo8!twXBN(j!l^THl!!)dx?m^TI*|D?2=Cz0P9 z0ApN>y*A+!)l6;NGyg;kL-taX@qL#o@HIZ9d*g#ePKX(y8otm0t5y-W5c}g^1X-|k z@X6%1z%AyHf}2RS=hx!OX=0zwG1?%cut6&kVwqZ0p%GdQ(ykTJq&wONY%_i`Y_`s; z#PHY&R&GscTx}Y@x#?ENGGz;*7tA__QlT!{?}KC$w$HK1pO@Byla`79F8}i1u96mj zylx)5s$u=#)wqk%)01r7#;VyRd{E{DYgJ!aN-L&ubQZrD3bnlr=pvAP!6EsIKWqd&5t-VtJ$CC5r!6hQmg8cqs}oA3)5i4>_zcGJH=AQzVF7U z<4`;)$>~7m*OtRvMV31rU=ErTS>N3p06ZDHMr20QWd2~_6uhFs1);puC4P)`8JX6d zG-muEK`@S9m7$dew~gE2DJIdSq6PZq12sCY5O7Tl_T&vp)rOPUzV0TFpRiHac2f~idE*L{dqARrR7W@h7gx zOnw9km45Y5=j|{S7H3gq8IbiJY`&dJ%T~i>hfAgfNNxCkA$u4V+KSGtgeOUK%H30o zMS0G>!1EaIBC=corF(hs3lv`eprKe(^`>1gi`mYe!y-*&=)U=D7r?R+8pSXRr(d>8 zkWzYEzB$jZ3R)QmU%}^3vM8GLJmmx-ul2RTXj6Y!=;NecBl>X=ls(9ivFkEvDhZtU zRFX*1;M-!+?GA6w+iEA;_ue`=i@abyxPIB`?hSP#?CD9&S}$SKH`5c*|8bX!b(`Lq zgRr8xL%`pCy}LRvI(oCPf70jC;U)kDbN$(jLD{$p*erH)DOrg!7@+E+D?@qt)_sq2 z^oc;Gn?Jr;$YqHvll!@vez!e3QbXby&)BIIR)R5vD@aojfkF`{=8L&m=#n0#He}i+ zhC%uaiYuT3`=+v&P-)sicQES*XzWP*Pq)LS z`)d_LWAoyM`pf0}xVx>lcj`nGz{)xS8Oq3i+eWY}hrO_z?W<~wiq#+3X zE$V8+B;(@ze5g{@dDYnOX9%h-quvZwO0hsFpW@dq@4sa4g$?DHMfKyv`{ywG2AWNs zD>57Joa(F!jD6kux}6@--4Iq(dYL>7xx`ZB2NpY4s*9?WgQysE*p@?hN3I>(%npwO zE231a`|3f;3Mwe|Bq}tYWhu)^#Fd$UIC?PM_U%t9qQbV2v=#|2)fjaweU`7?B^3vR zUQ;LkDrNd~$R`c(E6uc9H_k+7J~D%xbtXO~av$gOlsCz1twgdvK&6tIo}498fe~l| zc=-HM*g&m)d92XX0Y#(?Q?5XLyT<4ArDPE{WaX$@9#&gqo**I~)HcF)ooudVY?Mdk zCd5Fr)!(VuPGyK)#iwKCCDL6_OOm9|v)TBmBjLdKlZF`ND+leSeUh%&I0T~!M0mhq zCze9Qs+0(Ual;!AI!wY#rWF72h5&CBcGa7^u`>s=d0-CQi7{ps=^z-_1JJ`x(BkTqJz-GlXuDl{v3x;Bnty7{@(eB???CZz^CLjp~k zsZSmRd4rmg(H^pYNLAzK&jx_Q_RVGy_^wY}eraHL7!R(p>#?15v!pMV)(qM94~IDJ z((x$@r0I0G;P_@f=>pO76}-9+K05-Vzo1o_{u;-uaJT5Gwo)i3vviq~rmV zG*Su4^@TpXqlMEJx?VvI7ncV}v|uh*lz*m+)g1v1Mr%EEHlo?ycp0;F=fN!4UAefP zq8KK5SJII(jdtr1-bZ4 zG*{{DR7z3k_$^zTfbAo_^M|i!EVLC;KiM=- zgNaXuOc}*|S8F`q*b;u_D~f!?W;iiW?FDU%mGP)$laT1(qU|F7EP&DH=+)$+|Au}d zyc&=-K=ZLwZiTs^wtBD76AZ`uX9*JY-3tkI6ucMpnJCsJ} zGs7>q*!0T@?rofX19nd#YO1g!B?Rgpe+D`U^n211cJbtGpui?1KEe8iPRMI=@Fgf| zT-RepU2bVo6D4fPNsf9#H&W|*1}PE=8anNic+86;+Z%D>{+?9epGhG2%;wmw%@bF$ zfb`x>Pzj^EXc?zU^uM$Wna~>N4|R9Vu^o4%juq@?DEPgY)73w1dr48Z`@U(sY@>fj z+`=4ka9uX^1oFzP`;%7n5dwGkFE<8tx!JU^WYNbHS!Y(3-+OSFkrLQs`w*cK8E|i~wrBWH zb~_CqP#2C6C1ER+It2wBxi#Fb`%K5YbWe1Io}^(YX2Yf7#% zv?d_L!a%C`LW2Td0hJtg(|uxBN5zZ3TG%+*&C3uG^>J;3SUQGcsD2+E#RId7x!<=| z{!`DHCK!CWZDNN!Paut2{UiS>FHJh*$8haZ@pVxL)<2O9ulN)^v8P3KYmf zPvXnW<}k9lxfem%A|j?3DEMJ$g?X^plIhrZbEvAKU6eKyD-EJ1B&D1v^r1H6$naEr zk31+8nENhp!&flyL?BWa5nH1RH!kE+!{)YP z9(3>}C`TLPDQHpVj}6AS&jfn68o6avgw{OXSB|D&eu>34VGwt%$ifVaJ5LC|Nyx%M zK2C&3iQ*k=9{%VjXVVz6sE&gRhGpgNpk?k|iKE_C{%kh)GpL^e5t>R?PhpudZ%BC? zU<6gSB33=#sb8?HOt$8}G{T~U@28p{(Dwxf0I)c9Yr%zcLPS zY1Gi}itbYl>1@e+G9~O zOwpxwhjeVa4>--yp6l);gE5HgsDT4S3#{fAuo1av9a3-5WelRxc+l7V-sJXwA1NzT z%(K7Jr9BuT@UN-USli0Kiso9cuG#n1ZWAicdKt3mxv7C*!`nxMGd9MmxbKOfCbhf| zb1Qt=vW^Aw34f@+t7zbS9qv6k>5HD8b5jkU1mLHy$+-7D9*T!JB*dl|Y|X;JkO-nc zxiLAeBHhz>Khv4^8_cNf@<%T7S=kw>>-Mt=Q3oIl$3kIInD?l+M5FRH2tK!&v|S4S z(rHfeeV%lm9Y2j>M*BkJL-a+Tx(+FOz-|Z*B^Dp5=w=il#a=|cCZ<8%|4^N8xvV|U56PTwk zd{;7Yp}T$|y3HcGbKy04ZG4%x8~7hnWCNvLk>+LBD<_&9Eqg7oc-JM~d-g8!-v0fnk^&qI=D`4>&(-%43R?t<;_2$fRU-lSHBmnAN&QIcqEk{sE}uC{HBd$9bi zBQk>Z@a_RZyI3c$Yd*a8F}t=`kYmjk`U7J(nB?iu&X^$iIkt?TtXAsI;6f!D3MG|H zJW0YViormZs;e%@cNBJvWDs4PdV=Axd?@`><#o2%=2vvz08oS-RrXUYXs)9RsS{?a zC`hXPn{OIbU+a_L8B^6U89l#JWx6iN1R<-NSdveS!IR zMssc~NhlLaQWr4B&nQE}VSHV4(WU38$8(-SlXEbyqH{qeN9!o11bu6IdQy^Tx{1=< zzV;LX8yHigpUV~%Z7X0(Cm{QXeo;7x4xz@{JvHe_`8TxjDk=R1!eMVL<@?oTF7l4% zD_Uo@8fA}qcr^RQ;Bz~#li);LOB?_H3CjB4(vB|+>l8tPFH1|cwfO%F`BEOS?&isR3P0P=91 z%~g^3Fqrhowpg=q=G}XG5V(0%`(vKk$dkiQc*Ygg9A%rnA&j)=@zW!Q~&;w8z)J<%N~6Y{ZTg==C^h4&LUi|HV4JQpcXy86LD? zX+$bzeIIg(Tf7O6!Lj?grECkIPw-6fg$(bB`i5;r9L-a#)G;Z=g=d=amQwCD+WCBK zGfK!I1WT~%#3Iw3)34Y0LRzvp@n@#y!cPN|3~=piQmUZE?%xb^#u~Wos6V%(2u?%j zz=dTWV!Ou7?O=WEj0!?}-owYoT6CHTJ~1g|d&`9qu*$1}MPo8g zNOBSj(jd+yr4opi{4vjGO`hs!jt;$?|M`wNeMaenH;**#N7qNFKhcB54hC;=2VgP4 zs)KulD0ql2e!VK*-qpEiyuewnZ;49?hK-aebHy<%e({X@-arZLwvUbLXAXFQV#>3t zq!ZU`+58PjPd~pZ$#Fn{uzTn_3*RFWQUU}+?FS>2rl!^gz6EqBqnn6U9^Ug2lgXBy z^!!PxRR<9VWN+o`NzM&l6TRb)K%Pn8v7Sg>QOL0OMop1zoA)M6uk*J|wS-ELM3koW zW6?cf+UOLHlqg}X8$0&}d^4^Hy6KCdvNf(Q{sBKsvt5~ddK;5x5J<0f@r~0x_E0CY z8ji3xnV(n*O*X+pTEtIj=+uS1MX0U_cr;qxe`G=c0(U;NdFY!&e-ACAc8SViJvdv` zIA=4?We>kJkJ^KZj!vT3Q~zV=mMZ{J?|b>1U;b{XlmTQVB}@G+z43N-rpn~I|25w^ zH6_iB6H=?c19)0$cG&(0;<`xx57`!0!6QoPfR3jKT>``FrgHf3O2OPG_8H*wTZjTw zK~S81bXs!M1Y06_BG)6p`5)e}cD=<I<*pbWgw#$P#&y^UL zsJ=GF($Qua+#<;&Lu_xXtxoK3imoWxi9DkrbbmTvJ)m!BKyA6%?QajO5i`W-SGm>1 z<4UnA@OPm*Taz-v6(RAERp@(>>{PPCUuX5!iwcWqS>cnw72I8(nV%JRN&~kY2f<_( zX!xj`E5rqO6VWr(<7NVudb|htgWK8QHZeuXPR;$)3^mK?w^U8Icgn0&qPb-%RiTk6 zkmrtmN#=xS!)rDbi!TD&lY(z7U8h{mWrjZ$0vZ14IY)>%C4{+fIw6+qbk_gtjllj(!mU?Bbvj zrN-?TYgAi!91F!VJ@jP-St-sApt_uMZV|A-|N86I{|shABui8wHf+0Xa{XwyrR%tF z-+{iv+7GVW&w3&}=UAUGdP3m)D#&TxldOzW&hoh;)=%e{is=M0LYYt$7*pc+6UGvW zxriDV5KuZJ#Dit@>9J$MGHfuGO$S(xTJUJPy*YQ=sCFbzt9KXtmy(#?Mn|4yt3P{K zyKLbR@VWlb!fhdz2|O88h#=x+`3b(w>%Yy%B7HVm96vN(`f73yuGg+9`!^+0V{;=$ zvaiCkqrl|H!b)&`wP6}<%D1+rT}E4`QFgzs?LTh58(5_Y)lrSTJ<{-aZfCa5JH2gfd?#WnVz4&11y* zTFyga);k*zCEm(z2lPFgFe$Ag+&7=hQZR2+(*D|bv>vNA(Qd7I{un{bM(TI`T-UbO z*dftU;?VNw!YwfVOu^J0On`_Z^SE}z)e>D-Gfg}(XmYgox8=z8s-fjuXpI$}0X%KS z%W~yQFN)>Kse@oko?As);PT)2p;Q#9(Y*0gls^E)%dcPrg!gn1L5t^;Ht{QKKxN11 z9r7-BKJzbSVGu{#0aC@MK%~YUm9bckxNFNj)Q#?tXFjHRS*hPj%jcUxD&SJ&9;=8a zmGZk+!4p2Os7NVmgg)iE5ZeCJ6&-yj-Pr6(sq68cSXYk|qJAXp#~g&Q5<1`{7LA8= zS&yaEsh)qF!K*}=m|XwS*z=xW`0)x9$-h5^7DQ1Jp0;I&{{h!}MSfe~k+IVf`#THq zt8OEry+8Cua<|)sQ(jSQZNkD_rs5(a`_axGXNIw);v55Ukv4vay#)`vhWL;6V(%%c z-2guFUMqi(G+1%s^fL3n76z_5HYw)^1hg~{|H@pgAB_|dQ{zaD|NV6MgXyKERN$N= zkmO256R(5dIMe^nX=GRADVCHD*d(e}s3x&R@KQ(K>ZNN7{LQl7z@sCLOU>OxPgf`+ zY2Lvc_$;kxm%L}v5H#GxBFNo9w1Vh&C*1ZJ`|A&w=+ojhO7OEhSyH;7_H?v}K30v%~`(HD7X;mX7Px> zx2AgK}Vx6(I}SKgjmST{bD|7W~k7xk5-e6ud4iloHJ< zl%4d-Tn|yBe&W>x|D`3{5ALIHz33HsYC`oS{>jyTADw}M?^_`=ZnhLo|A<Hkza|lz#Dx%{8c$A>;B%@EQmUj zK>NpI1BEH@o~Wvc96;{pfDr{n8p_6J=UglOf^T(ZJ8XGHU(`D#gj;^GAIvia?>E{@ z6Sw>uw$ZV&@|k%9-9>C$|0CN^cU_wVW7_zY9oR3P3Q1X&dh?uw4yP24gA`l@@pgbn zA9>36JVWQ@Jo|Yf`>v2ptjG2*PLno2Yxxi?6(l*f3P;Un{N5MvW?oKGrHzyv`gaO< zqh4eVWVjg)!zFdfp<>E{NIm$%D*8%SK&!KqWPyt6?%yewDBfT?(cf_r1I=sciEm~0 z;5`$aTA6hynJ2qoEO%IXZ2wynCEs_hW%ujKDdPP@Jh)p$nv?mj-h!Wl2N|cMU=gKG z3oqo?Sm)YYNbNDE19+U6Cc|VB=kP1=Fqk1;YQ%i1B{9}b4l%Vl9FoBubf@Y+o%)h1 zQ7n)+*smHI7w*3;+k^;1fXCStY20BMdsqFh8P}L^N{sJ?9tAiBS5r}dKJ#1Xg>BEi zt?@|2x996Cmiid@+-TT1wwSB21`&@avgpsOLqQLAg17l*owAx_eFc=+ILlg&l(r1^E3wsRoU&5L&cw8eQGIb z<`(bg^m`tE#kH3!&nQ=DqQc?y0wim{vMg{N<tp2LGdvJxLm#G5T)>yPM&8< z?&MioDvbRYBgSX-`tBH6DsLMaH`702mcXX!y_8$mw#}>s1pRTd_er@h4_pheE7j%) zW+v&}nYRWP{87X6_dQ#_|F;ptN|-QRKem()Jc^osu%P2#k?eUzgtyreU+?>^w|7l| z)!%Pqvdf54$y@D4%Rq({nOeb!zzQ&sk8lZ5N*wlJ=%c^dMvAY7I;CVmO1gRe=ztLFUHM=Of$fTnQHbtD6wE>H z`~Sj)?va4%cPJK|Lwj9dn#0;NWy;M4sL|nYaLvTbY_vchbGM)O8xlHS*{Os@DtaeL z*y&y2=8Ijm6O=2P0?-4(ClpPe?@U_)cwBt8Qja$yaK~3L0x}tt;V-**M;FebO3~A* z_#yB0Mraar3;hs^gt5gl_|j++Q_vO~A*F0~b?gP=oJU{B_!l0XaOh)y-7VOr$uAIi zY3UR&gMA)JdFLHbFsEP^yQLN+nY8pgA znC}zhgPolZ8bKDrE**4cxIWv4%Hc3soelH?Eq9Osz6Jl1 z5(yz|yyv?b+*yvJZGb=W5g6_QVu+Askp4>|=u}B!{=%>>?1RMW=ui6-|L${&$9u9z zit08ZHX6&aGBk}t)lejALFJy6q9##FrJs9~f0DXq@R81jf16>c^HD<<0${zL@6vsH zHv24^lK<7@An0?|J@29!Z!np!{ul;9^6CNSD69Pa7=?cphI+H+Uz<{cty1HD;fTf*r$|a`Z$*h11nr9^DnX>li-LU9!_pCrVQ0KGc6W(`{Zbo!*%7SU@`IAWkpD z?;-vt=CgF2zE%FzCE>0-{k}l7zZw2t*NOZkIi`5CfXe6aosbe#|JcIlT;g86#FyMq z4q8xX+!suI#RMsQ9!tD7LEIEzBFhr&xhEe==}{>u3@=_&1Sb#)rYJx&Un)586|*?> zUKg!EaLVJe6^efRdvaa+W<*e5K;QGII>UxwdgXYQCzq+){|`=tW}MS3{uD*n^96Ik z#0@dA>kEFV!WjzGnkvC5wB2y875(b3)G;?0gLvdfvQk(#>||4VC|uRXF0R>BiN>lv zBLeD=hWpR**ZYz0Nd}Fu+V9Jp%VPq|b_vP)zRe>sIQ^M}{3{)2j3`=C5y!2#=r9 zt8J{+f3LH{!~D!)_*dUkSD@H88gBDQs(`x`yyK5YN5S#{N(JDOQV`NUeNX^;1n@`H^+K5DN+F`uO=3ncCK|BCKO0)6}f&u!ad3S+b{ELR@rHlrXUo^kk2Yj^xrX#&r?crhsTgs4t z5g7X+baDr2T{-`QGnQNAUYt$my5Ohys*17Or0j2wXr&Ih;%9a>d_Q9EK5Jd5=KD^& zWeHp3wSK~Q(AgDnHR1=3)T;A5LjXzNeaDJal8EMHQ8gU1DnD`3a`rEmSYQ<-GvdiS zn?&R#47#f6f96A*Tl&P=`%6-Hc%9os)wgr(vj~hKLrsNkFd@3ovL=J}RA@>LHl>jS z(cO5ZY)Z}v|7nPq)_tjEzXcPnC=kC8<>*1s-p_Jh>i8@|HIoLj8fOlIh7eZ>y;KWI zPj}(`Y4i8Ta**oh{e~kjhZbMHA1VoITrR{S^lXpL%d%WX=Ci|Wq(|8vOycVoPY^%D zd&w?pW@a3abk@H zaz7)uD`2Xm67a&MM+9Oiwts6o2wN~8;TwQ@6HXh7;fvF36+l=Kc;D*wc@to5M|q#w z2*z}ME)Y0oSc-kN7?zrWM)ek|0fD& zNVS==AE0|r_ecVuH?9}QvJRs1#WWq6UNwCA_=n#4jLyon)xY0FnPH>gK5|oC2_`3L z;B7}s9enIYe=>Uf;@5q+JCFY1)+;8Fg}8a0ief)5JeV7#}A zZ)wPe9tzu^(E1L2hOwJ^r#9yOPn;bj0=hHb9Ue|$?{gCoyP(S_!^Mow#~)X2`^_$DBT}H;SibJ}CHOE53ic)NT6aTrCrie`srYY9+DQfM(yYyWc z0XFP?yo0*(`_(ljA#(Ae*(%pOxBE}>8M@I%yx;nQ`0xWU>aB{8;8|+~1FM6%rz3-_ zqbI109Htw$oL?pif^3gzgt=`3|06)m#3vzey#5YFvg*hV*VAz{x8!6NR4f}pNq9Ul zyg91>zOVnc((mmQ_im!~vfvVQ$bUR=PxP=lVQ~TkrK>oY&EZSn8ic0ZMQOlW8jm*4 ztv+kR>uC_@1B+Yi2a?E5zOTWjQlWIJ8srF6EfonS*caktKEfB|6@HS|f0w~UwZcAY z@leO*kJqVt@G-i!?VXMJ#yYAV{`ceaF2{v-xhvbUic#)AN>!eAR;8y- zf_dM`tdT7*$;Ts+ge*f>-kZP%lOc3L1cKN+e#r9o8(`}nB(~jFwJ#z6%tg>hD8@v| z8Vthz^}q2*4i#V*Vv@(GPxqP$8kq)w95~@WWS)m~PL7)r9KMDqgYRtV$Jw6c=yO>j zCk>RaR&1V^|L8}3x9G%jMVO{~VY8UuwryG?5IPc)m(t-r zH?P4vTbt^O_@TVHL`CAA&7`E0(Xg@HKeW*e&`sM?XSd6SJzs6_bYNit=2^T0D@}3OLM`k>3f*1xX zVfMVHVSD?Wx}gvXwA>Mv8|0PkOz zoZ_w8!oAa=M{mp<)eIG3sDXj)j;2hIJmB;C&R7oSX`rRO!ce>VO(II0C-I&rydw6z zxUB_UMJ?f1aQnXP-D{b~t-zN)JQT(8to&=pn3hbHuRzQsazo70j&>IL+mDz|y-i@m z4-c)OBE+VsYZ(oH#&K6>19$vb_EoG;Bk7Js>L`p-p%U0q`ZxIp%2-NeAHgL?jMszr zQ<|e^B%4iD-?WMpxo1&-&6ADVTi3IIv3sn~kc~~n@Z~@a*wsUz_z^{_ia8JyWKu?j zXcL1l5HG-xz@C9j2Jh7~yKY#HaE+8{ApB*MqOMfvkBHDI#*hc`0K9%o0=`s(OHewU z!)XJ`1mSMzKQS!vq8(&j?E(IKcc3z9B&MA_gWAq29B*hbTObzw?aG z_3_}%E5eev#PcmIK01E>%6V#uAaSFJ<9%3E_)8f63sPH|Z805Ldcxkr=deAO(&Olc zwDpx2OHf^Ua0!`=ki#U^#DkyYWd$W0OIsPr0wLKjXAn?_Kt|*^Hwk^u_Cp_?mhkW| zY}kYZ*-%R^?XLfHY)>8;(^SuAI0!D-GK$B(;~ANR<5rGiB2&m5%L{~`*aeHYLHa`T z>`WYIj%21>5X7Z?K>4Qq~=GxZb#*?6?T#Yw*{Ey^HMUjK;ds*tSxWqt7F?UI4~p-8Q`qO- z3?y@q$IACZI@K<#HLfDSkdDuFc?&?%QP_%h*j}d)&t>c>&CqAdW;d21y^LLWQF&oC zh9lo7U}@LBhoOffu9M4GWPoL0QX^N3BBWckAK z&;7_R7EIW*U0N}mc2!T)>whQe0wzyb{B9D zIGBHLS+L!Gb(+9Mo(ndE{Q-5P>kFkc*Cp4VQdi-*b`V0e)bHgA)a6qez^g97`jGAV zm>l@`%jd|FoP8}Z>Ok5VCc$Rxx4R@$M?y%c(_7r309TTFqucx6%Mx~Vei<@9(DybA z8&O5v8@``MXm>?Jc&8h`8_H!x<3EL$=Wl6>oxt@ zVG&RI!R^sRzNJWkKy&nLHawngma($Kib&NXV2l)5lPLk}Dl$gf#hgbCt};f#=YUK> z@rn(P%qPm=yPWMs(?2a^Ve(O=xT3;g64RuKhHK$)TU8BKX}4;F>lo0{?}0Ds*u_TV zJ><&pRQFaK@c8BKsujtqOCQC_SzLc^FNb{9GzOH~Ax?!&T>yf%?F7``#OH05RGJ*f zieh=2Dtzsyedi}dP54(BdLj)>!7JOI`n-T6jrG!g!vG|oq5DAnS=KL z5T^-rgRoD|(ptMa-Fow-;=tfP7;s^47YsPYo=nMn@;j>Rkt@$>&^7eJqZM)pZCBs# zC|TRc?~3UJd!u}zcGsMLnxAQCu?_nt$7^}!Lr0<h=N@>e7sxBh7tACUU;K0>MYl;)1Y5GvE;gjm zgAXx3?|V_e;4ba}Ng`NK+Mgllh0kLwVaYvwa@Xaqf#sEIm&BPH*q|FG^)0r+L0F4^ z2s`k~aAzZk)`tyDT)sitvD(BzldBkx4*kLhOK4oAi(u3U2VkZtvu$!k@c>zrY9mcb zuwSfnh<$#F(QNNoW!Lv}tAl^BfjRE&*X6flx_E$oz^P=+OB=G4BI7WZJ)GT_x7{)z z8vmHEz3xsQ4#nh!X&dBx+l9;sQRGlGF9W>pb>XldjRgC~>#4+f^_F;4h1TYq`ju6C zAAw>>3a&P|nA3PDtr1tqvji)gat2T%4BL&Ny#h40%N4@zNJpw}T=e`D87*eiD|R3w~49yw#i%u|dIU|h`r@yrb%$r_TPRq$tU3?UkfhdY7sG-!=u*DrOW zFZqRVVu_vTcc}b*jaGBPx^+muIwvaZciatK=H)p%-HzrwB7yb~J4*=_&8k+ZccCaQ(EU`HB0TmgKN#8qedlGO_n)Us4C4}|)larF_V19-a zVX}6S3yJ#u_;Qc4OEsVZW^M_=wGxnY>hbk{zhkb0@!=G%l$v2&;Ih)Ujas(C?=J02 zi@_dT!i+%)#P>|*6es-~KYFCoBkICEokz{@4#iD=ywEt7Z95n-;F8XgQ=8lt4so=Z zu=S*w5=`ITce`2e_;UqAA3U5(sDxYAkDE<4FSvN8(wKiA zF}{Wqd%XIuVr+iGZJImd120K2MJa-AUW!}5$L$qdq&h^62w+WgUh;Jxsl4;Md9PAQ zfW?V$Yg^!^rpu{)snXM5+oK^mo0l5}*hU zG1JJR`Ke%A;$g)os=Z`4CHEN z5RlpA6iW8b09}#)OXk!6#EUvt@p)R>o|smsB1v&o%VKE^0{Rm0adkJY+h1&tO@d2N z9kYII7eqSfB_Hp2C&mJ!_*`>JXkcGQAj1C5vz?)M0w$tS$jGst;q+y#GfkD`*IS-!?Q$h|6YhdhPY%!Lw}hY<|mFIGIYm@^zbYbj#>gZ_|J@OFkA zNoA8m-5^|x6}g*Ujq}~S5(}TNC!fqF22SgWz0`XneBjG)3wXq~-Yw+ZdJvyKi$@j# zmKlD%%({PT3~8OSSiK%|B9m{owcxj+dX~<%0GY?o`(OauJUu zbJo2)4*dq#(XF6b=ihgSAmbC&Ad*rh9}VHp z80rVm^M3MqNXyc4Uqm@~bALL13fxx&y+{=JKP5+^a^+O{YesI@I}-QlhmSwF8Q0sc z4ZU8LeAs3Lce|P2Eja(Ny4eG+R1Bw0{=(6NN`PK=0Y}D!iz6Ih@_`Z8`AV+}+)RySqbh*TLNe*Wpm-*1aEYovQ!& z+SOINt9n=WT5CVg?`cZ~2>nNhn;0!Mz*6?}NYu!u-`W~?oxzRYo&fifE5BG+k?6iS zD*J{kUJLQ9*$&q1cJmkNEq=L7Wb6lV*_Ep;?!cAcupT;esO&sa>{ZId7fD{P-&IHS zm<`_!&h2{iDqWV2t_Vv%9mkw{V6e5N0XaRoz;+L6d-l3F&O2RV9i4{vxEvC`HT*Rl zYK{onz$ zq7EvwykpQBal0ZXuN(G&civ{(9=ZsjP>FI7?>qg45JDk5 zxYO*F+esTkAt*kKx+Lmx#&DwYb4^zp_nI^`Ll(w%M}{4}EA#LaX?ZjqpULU@EXpTv z)|2i)0S=xmv zdrg!P+%<0Rb9bt{T8Ot3lnHF)Qhb0VCS{N8Ud(E-DYDu5!G*d8 zD7xE4HkMqLyp(I=^+*52eM$1iQ!G2WEf3GO*V?3+jVdRp$ya3myjbZu_e-4p-i1Wg zaGKu@`9GB#V*fcyg)qjHC^Mln5n-?BF&?O-splj>@_l&`Il#=VGw*?>A(HQ%YC)$6 z+|kdCASzRaUlBdN`F3!l$s~yxpYnwnjDCF=g)3gEeRA@NaiKf^N7C0fqZ+WmP%KZ2 zahSbA?!-GgoeqT$JdF5FiSk!t%g+q)rmpzAP(sbHn7_M}R{8hBVb4qR7w&QGT_&TE zlLl`Gp^leS?b&xn1&hBBE>LA9;{f&QKvg=&lql_|QTG;%UnBvP6Pg9*qtsa6!SBVa znA?6Vl>dkw$8QX8 za#GPJKllHY%CL#aS5o*JDTdbxg; zKaFZC9!^INW|Bd#dV=6u_w}RJMibkr<90`UC&K83dOXJzA`nIjK9Pm6NzoU)5@ao0 z5UbuUkdbNWp><;q^u_Gg}UqYD-OO zJ|?4v>%^>SoRcqe8o$p)im=+92L9i7w}EPxzafIJm*Z^+dAVKCc^ z#v2+AiuksC{qD!N6A9k^e^~%W?+^E;tX*Yb890P}Aml^J*Xw3P=y5&Hch-#86{@}9 z_tb;9`ZTETes5Cipa;vOChL;J)@yZQ^gaPXoI;$EY$>6-OatJ4W&tv-Z_B49Ht z8)Cd4Bj%FK1{Itl4AZ#%I26J!iAE>LBJhEI6?u&ttGeIt1bAPxf#b>7CS^i3lh|wy z72x+{^lRCoK1)=wwq?e0aTshFA-!`ckKMX+S+P*FIraLyEBD^j=-JJx*J$x8GheGAU>_fvfUTc_o?y35!Zof zjveCHCq?%JmhDV_cRlGb%j{t6!p5~#z*>CQ%+S%%2F=)CgAxZ1 z0ecUw*B%NVUi}!H`at8EWff~nc$O336g|ws$m?1BPlUv_vrxzfuLg; zx-+%(YyV;XY$bApwHI*^8_%pG)N`qq!V#4MGEo%*KANG0_WgQWYw-m72xboh(k2N? z=p6&Qxq^})9r%HAVZ^ZZw+he^@D*Oz{%uq6SHX;_+KEu3?v<~ib=P;Wz;n<0<&9JS=o4$7@{R3m9ni8kLJ&E;m#mE=NIVCfQLYyF*I&2xkSBms@*?JD! z$@~}-s-GzdQ>6GA8-blxMoY|8$ZqA;k8sKMQt`UJ4j<9~5SK#X_sVpXmpUcnqFSyd z@LXQ1XFlUz$(oIuiAiW8gz6IMo74}7iC9(8)5O;Cg&R>Y_$tt#rks`;vHG3x<`?-A z$r4(6e(Kc4ls;9B>nd>6^(8Wn!(sXekSAnMS#F7&oSNYN>9Ut^p~7blZ^_wTZqDAA z`Fy5~H8bwnG@z-DaPML0P)Q6`Sp7LWEAAfv?4>^D{P*Jq( z2@}fh-iLSBS(Hd}V}oZ|Afmu{KT7}ijT&~<*XKSS-CA${T%E~xliX#FMTk)xZKcL7 zNz;PrFP$}x`ttBlS-r%8LYX#|aXhMpgj!R?Hlf<_CoHo(emw4c$PxUnpF;FwZr<`-bcq7tgFcra{{?HLc&y44OOb7$d zbFLD{xvCYRv9&bG4lRcKnMXXE{t7F$)Sq>^>Gez04>BJWzhnhP;93U--vfc4D^uHZ zh~^e~Rk70#cM0aA$>g^b)1G{b58wT?fEpL3Zbq&RuiEU*XsAGp?ue& z%hrLTAL{z6^-isrWXS)L`Bny;^RD+a}V+6B?GH$2@dWYveA&Knk9rBk1ZPli<- zEoo*W%K_5Z4mcyDnM#vWKyL8`Ua4--2ODhU%c#r?|T zn?i`2?+X|I(}Xr4c>JgqBfsYYNoV~tO^7C=BKGzu1JErZ*^yvTv$}kK`WonBCQ#s^ zzIaDyVm4Dab}(z1?YZo5VqvBQwovg}z|+BFOD$B(er{oyF%je>6vN`8+i{&zX?r^) zn8m#+8PG;ZW(pK1e~gEyfS)Fzb$J1sj_tllt1oB(ktSQmwj~|~%NHpqLP4GAbbihXPZucPg-E7ajEQ&g;>VkOM-2cC@I$jk}@k%yMoz0hjnUNBBbH1m_A+-QgXoO+|IiFfrFEAj={ z=|lcwcXGyN07Q@=6sSCt2QqTK!*D;eHWT1jYEQ7Mc zB53Wy_lgsP0&x3F4x8tXRWChh^~>;F)X&38(c0@8gklDpGz|C%h>WM4oLQ-l86SV> zp|sxF8^80)upqLrl~qXMF5dkt32mpUtv+1uc7tdmN zmB{?Ytf&i~r&tb*oQssI;vB5`>-@v`F%LQofzm}*+HRNP5|+y!KbzN74p=kf*}%tn zuTjyl7+01SD%STNRF;>xxYtA&J9AVI`US>o`E1C5f{7cQ3oK>wuK z>bm^7{!|+Hle^`s@r-4a+@E*Nms;1o7IsVq^!yc zAAja7QY3K35a5`}!0FT0`!~z@ zZaq2R90j^zf^Ld}NBM6;91h(%1vmIAXB?QdKa*5Tx*|V(2%#|d8dUy%DMjuFaAB~o zSqNuq*ZHdM%>8kg>E_GtV8iH4ci%{QqQk+n$83zY03MVylTQTNv!?Kg>jT&GR|Qk=K3fWoVw6?fbhZ$@PSKn;hhk4sN|U7zRIlT z?=wHp5nx)EmlMXe7B@m zh)z_%ymv0gxPs^0?k2O-5DBH0U^JPdbiiI z9XU_7T!WZspw2}8P^w7=;Wj}j?f@Q;ogIqr=QNkT81NgAnWfXL|24np zzY8608h(!x$Z>=)xk#Ye^RG^_Xj{X4v5|!!ARfKPrdZP>o}zGjrLHTXt3GWMFjVLm zuYEILmSfxNbN2VRoOQRh$XEp2t9-=qe*WHIGOVW-C5$PieE2L{F@gujm}fQg!J}_5 zY`Y2ToDUsHd~-0&>>fU>Ax^}_xVvhBKF!n9tnt- zq-W=?ZAKIq>`_}Bv}ivXpMJdUMGTR9i2`n1PWO&;Sc5n&6LYx_lb8Ma6Nj!QTfwH4;{VU+l+$rbeZgU;#EYUVm8{i%vBgOH9HPIj9IANP04m^ z6=tX^&eH=d0;gV2{h22QZLr*o#O;5p&t>%PGFfML$N? z@sEF1JbL`xUd65D2;f|Z9{wEEFfzH#m@mthl#N1aadF1uZM)XtDP!m${Y{kUr!dnA z>XggNfM?djl>iv#H6XKv+r#9hLVSarMcW-}70VmB zOGy~Bgy2c(PG3@B_6^Gz5+ZmvfBRX{- zGoN@NfXVlw-5rEE$NR!@hxYPW6n9+X;8HCh8{_I@wtPgmo%t!zqnXN1x|{t-AVjic z`kb#Ir7Om<70IU3L4n^BRxWUk1@ix0-q0jsz=HWN2=HAF{iSi$q7bpZ1A&rd zS-|h`qkNFC*w~=ISbwL-(G#RpH` z+zUh<#JSh*Qu$PY|8DiT*NML_$A*p$>f~0Xqui=BL1K>as*C`wjX!*FxGFkjI6Wd%AI@gf&u zr;8wZ>mMy6*!Dq&Ko}{z4($g|JGHd-zo7!IXmwzP zF>w3-3YvyQ%}Wy+2PUtQA!xxz^uyo=PngT~V^g`P$7MI^u#B!S;N?={(Yco*b&)`r{XQl5 zLgp6U8uPt&z-QiSVgAul@CZ>n!rJZoy!pr01Z9hs{Y`l8%=R_t1oh@%VWGz9$;l5u zyR@`cU!$@9qr}G^WV`|3Jy3fl^rZFO*#ySy*dnH}z;rCTDJNx<$ZM*A8SlB4YYee+ z1p*jjxN;xy-;byDE0Iju12w8;+shwb>@~2ur;52n;Zp)R?#sJ%e!{BTxlF|_Nm`dn ziE{+7HZB>tj>mi{%blCPlubMI-X|d+*%si!Dt70)fG7i=_a-d@jvk< z43-}ewnaUzltb$pN`$^O`~26MjIEDpR_n3JPuHE118u@4VC~KdOKQ$@Y#6s!hi@KDivRq|{KzLz+=>FOM@5uZ(y~fnz|chDvRNRqSo>Rkqr->rXl;cq0Lm=Z ze|2}~ioAzP{z;U6tj8T1X_Xdia-0G!Rs;@xIY-_|Usd_K+We5?F3@enI}_=~nRW6@ zX|wMndKU6JK50_&s{KqxLFoNwEN#v#U?!Yk@+hf_?c~_4iv?-GtRTpbeM+ho$X8WN z@p?#q)Zv<$&Cb#02wJQ+qu)_5GGF^azp&!lqsnOpWhYa7t^L!vB6N6Wu_j1f^dpi; z<S-*IHcv=ihu`Ok&HI>v#RTF9Pc}cPJph~JwDN(0?b#qiSP;`1$Pp@)FybU95rEc>x9pNYaePNl4k(1efWTBWS zMkp*mcl9NJX31A`JutlQd=dV(MtSv!+@6m9S0v_t7plDMY7b1V+)+ zm6?yLJ3pGO$6T9Gr^d6fh}rgXa6cxp$G1bKgOHzFQ!)4xq6Wv?ng1r*o!rR@FlHT& zJ{>UY{0JY7&!|?*4H8@rxqYj?r?c@`m-e_g>R2A%XI1~q7#hdCT>I7Y*D2JEGrm8S z_I~6F#mtMoZq4%`l{Pesn?n-NCgLb9hNc5qVv6v_wjs$1pHL|;w1H&B(bfy{1u3sssL!r!ku z2+_M=9PEc>ko@bsIxbtUK`67^D2nVOG(cPu))Jq&sUfJ+BTt;{&QC4TjN!OIYFt$dzv1y>0*+4Jhf zRt-bim*hz(M4!u_Ro?bc)`KZ_n|n*9HU}FlJFJ4RT-7*}9*NQo7I?^o^ML4y_i#XSSUEX>}N&0Ele2_eks_kkX6S^cEfexvF zi?}t*5!@>gpBt&69xIx!TbP!!@gn^*skCymfWD4zSk&O(-aJ%Ef&cpaLIRCS7Jb9` z1B-J}LgdNy=G`!~;zGmV)Lwe$K-(>d!CRIeU6E=4{;4DA+G&eo1F@BOx`D;w-e=Si z@VNC*g#zhow5^Jd(EIG2gViH!8?-V93fUzDVIs$ebjCAp)TTU&Q1+J(sk;-tWI6Sx zhtLU9WSKQt_2JKk4?PaBC_(P5ZcNk_Y`|-?=Ublw^ekH+b;4SIeAM~AyHl_o=}h$p z8yQ9BF4-CP3LcAe&eszYivk8ytRolhpW0=DuC{B(cLgb>hH6N9nlvWPrx;(-Sa@>Ug{O-2i3zoMRBMGqWeMG51Ti*Lw;QmyW74b z=;D;0<_&>?+jl-vZDGzxI|a z_oqpiu)XDM`D^yR>kl}u0L5Q$APKz#W-Siyd8R`NuolB~Dtc9BpqfaJqiGPj%j)b` z-!3>z@p>uM7u{lM(HnZAQ$Lnbi@0w_79S(L_CQ+!YlVY0e-n~5ySFrL*Yp}0tl68z zwrAOP`Hm!?lsxrJP<{{jPUD&~^4zlI5<*WEv@T9v}Xn1l`@&s}Sk$DTtsM zQ@jp+IkTK-=EoxyFtHm$aLZ9earg#<r=l1&FS2o5eg~z}BTt{qbYtnkKLo_zyOe0@#7hl<>gDS-J2!*}4^@K_ ztP~>OkU*uB(IOr`uDv{Q8*|p>E2s2Nm=0^up)Ξz3Lm*}5Dk?5{*nh)Bh7YJsmrSDVW9uC>@tf;0 zJ0lm;l796CKqBw-C|8CSaA+sU>9=-FX|k#jqXDIhO-R!?Sh3_C@z;`*IJ@0aHgcM& ze6faca(kRQ8oxd2b{t3_#o2r%- zw(!_P(^_+JR ztIm;%_;9<>7Pcjnh7$w6xPwpb#?NOb9bJD#HhJGSZg=IY-yso0m;Fs>!YSS<hLLx3=w2h~%o!(twNR+lWfyD|Jn0m29SKOtBL&8lDeSqnKYBsYT9DdXlh1Ds?OY7Ejqdw|wpZuBEpwUu=1#;B#8%$r za9t=gW@00Y19EB?u7SQiMt4frS5wbz#nesjqERj9-qa+>|6_v3-$>@Zzph9h40tCV z*tRWwcieVyXJC8J9bs)>&A+5B{VPhD2=JQqk?{N5qUlxUl@WG1QDZl!vTc#9xpm;V zk{ZZ4(&Q0PSKd;gvP&4P@rj{S(e>&bN_T&a<*FfHyqaxwkFG|wE9n-zBlq}XExi4{ z6Wc_N=&jBDLlJP1=+G3uq%g3n{mko@^!qdo>~Z$n z73!V2mq20n(jPiC>WP9xYyfNbH`j}j^kx`8#I)x4z}o4mW?`@RZKt^0yw7r+Z;Q8) zw~gjt(#cZB5d~v)d!bl6P5V&Tz&nij4@ zA8stu@eQefneI(P%h=aZEs|U(cC`jp7oD80_w|=Ozol7Qya8sR!Q;P>PNr(P-$;Nf zPpNx;AR{5C>28R+h*ynwe%pKT1oC1Pk`mOiZ^{^#F@|MmVV4U4T=!eB+9WF?!)Zs$ z02Bjx{bfIBFSV>!l&seA+2-Ng{k8P~VF8WPvsE8{;h`BgJtI~%F6ZiOw{ee&hOP<@ zK0t@EKl06*?gdrUM+FN@bs)3dn&XfIv}ww?wEN2p?6+S7SN1KdI(R9M&Q6!>e&Eeu zAvG3!bQrMK;h=$>9TRPt8~3ah!c9*EJfl(I$cl;V+a&BBnBzKJj|}Jt%(ya97@1ZN z`$t$jDWUcM(7ep)l1cE3MZA*YVf=O%MHPR@)b4OF#S9*>U#pF2siIL;_#NLEOWCFp+^0KPhX*iz0^&*0)az2s{pe}@<{HbNTQsIlolW#;KFio zwli?qKw#TUctxw8jSxU-jpDSTkFXn+Hsczo0Fzxow)W(n7G8`^$$5e}#KKMnQU@CI+$Z@Nr(^lvT2EAs(h5q?$+pL4QivW&#yZT!IXIwrWaBP=5BNdqKfY7KF`(C zu?+Fb@RDX~lzXe7k@=brx`6TvMt1a{4I90 z{#^KDKMu9I;1~X5V02R{UC1$1Et)koAQPX$y)RS$D+$Q}a>lkFwnw@yQml)-kb~F# zybV7V(&C&L0AUi+p6V5D&EMEQr~zL?;wl4PeJb;-c_x+#O5&u5Nar<$^$2P6HZVnZ zTDA#%Yx*n994>1rp^_jlWFc`Hv9m&^J#0U?w{*-kg_5Fjz5CI@?lRi$X@W!L4m7Ok zaxeZy?Eft<^|>Xft2BEFPna(Iuz%Y5Ebt4NAK7w-|Nh1nQitQv3}LJq!Vc(O$WlvDH!hjYeN|Tl)U=uoFE{ zoB;n*k`UXcEn4)&ZI0~^4M09(U3?$nJdQI_lKq2?-fSXMh`^CK`vV7gaGkNwf25Zn z99y;on-Kd0&f9JO1iPi1zmI`Wj_ZOpSrPPy+OZsPjr1LDe59Ldd+F{@n3s6^{M-RD zU@~@_Efq=>8!s*7IXUqVVQLLRS-o63+(fbF>Z$_N!V=AVB&hk?Ym${a%6En49r|cj z@KrJRFZ{C`Lif+}XULlm#&O7}7m|B36yMcaqCoW!Ikw9c?an;MBH((B@z8d9y)k+& zu^48y*OmQ!G8jrg{H23rLXp2SMk$CnbCk}A`Q&3VlD~Zo$8{#)(ZKbt;d-lonh{yU z^(((0`)OlAs47iP?ij0h<1S)494XaJY^>+!-qjV(vARD@iSc6s(99mHq%Y$eF;vAbawqBFC%9oJ8 zqaUylT)#|ap77m}@~t7Eo>jF!sNeTqo6)Qh)FwjnSJjd6kp5*Qn7&e$;nOdxuJMVl8QUm6MO+TSsJ4z; zD`d?Q4ucdMD_?98tf-1;iX#zqJJ$@-Ss%kIV&9$u-WK#9mV@kmUftaBb>_nRG}6-z zjBTT+Ttj}wMd z5a8RUczU}sYJ58}KxjH6KpbF@>xDV|;|uG?$}3bR+vR<~gIT1c)e5+DXLlK_q%=eB z=jhj(Ygm>uqDZOq=hQx3cZbFox7xm*^R*Hf$V+vqMU#UrCb9q|q z+7MUb{@6Nww%2D!Q-Qf5d^mkK?+f7V8j#Hq_d27%=KS`O{pPr=E&E75iZ(*8q7#!1 zzUBkdw74>EL$T5Ro*Y+seaQ|gx$wU5+)ls734H3Ws?Z*~u>aWD(<`mZn7tGIL@wH@ z6p@?7zZ?xxMTR|OW}Dk(d!6P?TJ#w2r2qIDZ;b_q^w#y*^w#*?S37mL5#-wT#vpiE zzNOJXe`t)fG{)Ao_6ntVi#>dC_yC;ix7@juCj3+d6@5NZX??qV1)Q)RqUt4PM%;sa zYMShCu1d9A!Pgfs>vw`SxI;RA+f@YrYf?DNgm5oB_^ZUAnEsV{5;JMvoMgi=MH)`K zEzFKu02#{d=hqe09jKI@@zE5-p7cHuPt&=0nd=lY=24LTh2b84NE}P^AQ*K{=dG4v zM_Nds&49Hc3XKqpwFvn}d52Ng;N1MKmNxOaINewbe9K}*A-czn$Tw0irvJ1<6-kB? zB*kC$w!9!tIC$-tE3iv~_=gjxt1RDIyV9F{X!SDH=gFaNx zXEDqFxkXuxRF(`j!G*h@jJ6SMDzHC72r&88lbt5AOg6!TX1bt435F2na!3meF0NFM z_wxc~WFdS1MaoG2_N|$Fp6|w7UcWfe8#$I~hDrOLCj*WeK|MySqska4L43*B@v+49 zxafeXxY&=KQz9DfDfvu*7h)%)7S&79>~Z_M|ID2v6Dkag%Gdl`x0hGaRn>anMi746 zjX6$JP2wamlxX>rJgofAANxpEM(c;&OQwRr8U6j<~Fw zIK#XFn{OEVoWfWqnNsxl*Vc-e0;Cp8ybjGL=?}k~=^kML6fZfR2lR{=BQyl}Zm`e1 zQFB_@9PTA>o?zF~AtQz3RNUg$3!j6w^>FpC@ade1_Wxb~$t=p`;^2?L2toDl*%YPkrF2rCHhe@o&jpl4(ebQi7Cr(zg_T2B4VIeN+k2B3g zZb-7j#wZrW6zs*<)=HG3i(v=F10P+Nq84_&<^CB+IFWzu?8ud$Sv-Vb3TNvE^N=I5 z3({a$ALg)YSxVid1#YL&iJvVm@u2#~ANOZ74Q?%c?}qz_K;JAODM=uVu*alGniR!4 zktpp;rFV%B!0V2#$~W)!(Z21 zzd{{I#dwpJC?Z2v{WEI%{2gW*74k$Z;(F@-m;-tpfwBWJ5kyJw{(YQ3<^60$r?F7w zxU0I?7C&V2|3Up>G?QDCCpLsSMU`uJV~y6IirZq}IZW5PNX91=&nlOCvqSO5PqT1A z@zOJLe!B>|=yDH@QgxOjhC9QiI&-)#Ft%FF{Up`b^G9s+8@4zFeC;529}OKfciv~L zmQQW5lC#9jfZt6=BG14g{ZiGmLf0vZtE8~uccGoehew^DBG%QYG%N!0B~x}v9X(mo zwn(!5NLxk1A&F^cq8$;}bN4j$?n-1EjO~gL*+o5F*yE(_*rth=a9Bv&eW$>f_OA$k z*|)16l;l>|jYr+VD)+F#Om7du2|(Em$dhHYZT2Loz|G)I)oB!-M*2pZJI5GL=)2H& zT_RRoqn+>BR>sSn)fI!AFF6d#j=`UCH|(D^qRC!4y5OfI>=W5!*bEkZWxqzOdpmTv zU%R+^K8I~9v~v3W)LeGx4PjboX=$?z zZ=A+%ZQ>IOc9khR8TfccjmTLc$jTClC(jUnr`jB^3-1utQ}S&85Z)<~`VstQ@|I{# z%!eFQtSrJM!FCv|#4rYM`z$0AMUgH&EPh?H6AZKMxYasU@5L0xpMB3D|Ecqw>ADeW z`}S4e)uVF=3%8AjV+~DMb|c1Tbe{R3(%eov;IyL_?#q>$!{U*U$Qp;kDJs&{1A5{` zezd4djN6Qv2HmyBdp?6VjR`gUq2n9u0;Y^7Dt_V+Jk#c&jD7Xy33*ipZ2YvU>n;3T z2;sRCxm6%wePN~}YM!=TH{4dGs|>C$xmr1?a_+i5vn8U{MIGC61Ub0h7{nOHvSm=;(#Z#Jeukjv?@uFl{%V3l zbAo%+S)BF35HpLl$c_N68HA9m{^bp8r!?+#wHf;btokVTTLvtaHt+yABX4p^Msr)O z#oj?el#`cIWlX3a9>yy4R2QDFuCJ#Ou=@{fA)}dGox+?RgxTjLa_0(2OZ zT6WJFsdU}$?b_{e7~%dNHDApjm=nm+)w>u`9&dAl9dX-}!~0D&RYI5T<%3JX{n*P~*l};DuqB=+M0;<>mdxcpRO(D0$33n)QFKCeiln_dxfvC81YrP+Y<{&AlL z|5FED&Ziu6^Xm#?Q`69}+3FF6y7AcjT`1uH;3vbfofxO%LE~;AcKL zS`7=uEd3;D(@^l3V{AjMH!zHFBbU9#v{t&;(Kbum5OUic`YqWOhO+{l$^s%*waW#x zyG)g@nKvZuaCbKNu5L^mHqU>?`RLN%(eV1n19c~tdOufKo5yrJ{bzW9?wj;T&Lm|j zbyI6qw>GC-!0+>!>MHn2wAeVt4C|_7NMSp=I`zK?zkDi`(@ygx!|zyXF7>MjDIj`Gd zEz02;vXVyytWxL*DO#(~Zz#q&GNRw#vs^zjdOp0|+F7BZOlMSZ4~!#ot|8uaL%Z|W z@>=T9=~r%YmK2f&c}sZ#_5<4PZAP@l=(peMM_l#W_PsoP}l(WPRUG^ zix%9;32-Iz%Ick|`dpZ75X!BKSx(iMd@uE>vPqPoskM*=NlT05ao+GbYF>C~ zC?2mNK_NZe@*70=%w-ghuh{)yq0+_R_w9?;XhRNuNmS7Xy(t#UaKYZ1%_v{sY0_7- zQ7qasvN&d(zPf-~|32W!xh-CV1IZf?Xdc*!f@}cm#H?Cpb6tv$k|?d%0(&;ILQC! zB++1y*J|>f-|wnM{S>MYYM>3YwH#VO>Bx}moD&N1fx(_}RM^bWsfB7(vIW+woVp%n z+@a$*)&rAI_xuCzf0ThrJ+=!1nL*l(=})%`&OBroXWu)tH%OU;t-$P^-+wK1D>FuA zlAU%DOq^a0n)pU{lP)~J<3E1n_X{pQ90J7@2H5GHcUWAz+`|u+i9nb@O ziu2D}GDuTBk6skWgyMaxyw5Ca5W9t-y=s7shAn&Q7c$eTU3h2V%V3T@f6rRAVTWU{ zW)}9o?|4tY`QFn`y7`WbU5ChD4WmsLk5Vh*zsWx;0#p%ql>b&&Rm~(<<06C@>XdFf zjX;)oa`YqhmzV1sXjk3kKilWco$dz9(N>c~~>E9^cf7R$l8fG_@*qqwe# zahePR&r0$xio^w>PK8MCe(gCZOl7#T>PEU#i?k&&N8I6?n;!1c$*ca=9pEf zekOfPf2~BGo)+z^d&>1XHL`CDq(->@Xe(?~Ah1?C_ZHyQ9cV8q8IUvD#9e95gnXf<2^o zAC|IMd^haFN^g|@PQNV9=t6e4a!zG`r4djF9Lo{z`R z1JEx{%vV#+^=v&(R>o~?h5A@z?W;=+l0)Y{-pB!~4gN%{Vzl&x9*!Lw&qqhW^$go1 zGr5_USkao<;ZfGIm{TY8`iSYPZfJ8e>db!lD5lmZi%**ammnv^`L*pZRH6A-R#IZ| zfDyW(oSVY8Nuv>dZkcAOJ~n>gOKBoJ77*kMSR(*Z_&GXYP)rM%_^k7>gIrMr~+-nAr<{tpXhS{AUHnG8H=oJw{!NtEh~&)th&Wa6Mi&Yqj+{ zX=>F-V}`?s$)3dtpQpC#&sg`yv^(cR6BzBN{2u#=ZAzKRVYUPBmSk*6E*6~cQ$jy6 zZwx`#`3xvGFSBFHBkV5!_U5V}U_rp=Bplr%EY_ws9~+oBNXQC}N3`X6-M%7N2g7>6 zNA%(X)5H`!G@=vVxa7ho#35G3-X~{Gp1@zhPWz9|r`GP&@L0ZfQPvZt;>t3;zA?O* zpD2`EO9?fwWM0MS&5e=pd&Z)$bX}cBs+;QESJZiBZa7XNXg3idQe$6GSdLl zbTT80Zy4RXbAX7-6q+1VcF{$84}hq@)OGSQN~;^wv6%r5*6q;Fm@P}Ib}yJNIitwy zzw6&5Ky{nl?&@&(Z(*~Iz%MAJ*TK=gbq84|up7`@4IRulzx1Nxe)b#y+XEl6cHO%N zK0m%UI)Jxm*Es`6YIOR2klQ_=sbKTzCcaF)yr>=Ey>E421)INbeP^Vy^jeX|ZQtz@ zH596g8Rtm?ll0;0p$JhzYe_78On;h{J>^DgH5t2PavVl8YBESEhKLC-_qv}_xnxWo zFNO4tf2+hlV!y9e_rCa=A_>`)r>?bley7?^xcX(46GP%yAQMK|S=gWD4RZ*ShwbW- zqnV1++i~=p?)~4>efav>6?_C_^GRV>Mem&@{NC+2lc1>JHI`SsVSbL`?==-DfYbG^ z!i&7as3i^2>ANSFzjqT$xi|8qN;S*DQ7j#CS}j9QR(ht7dy7R zapMRJX0@fmb;wZzuj`OE@B6M%HTQ!d!|FsyJw?Lbo8tZ#znQPE9>khkl%wx-hl2f^d0WVFKoQPtJe$dTWRneMQbbI98>c(DUEzew{1-Gh*6C`%4= z*yBmU4en>Ip_F%5bV7*Ge?xV+^MrgML;i*c8pfE=Ncxr@+? zVZVB#^1PSi$ z?#{uT;0}S{?k)!nZo%E%?Z9wnYHF(Pojdc|)xEoFKXljr*IM5?fL+#TkYcNU+|n#`Doq|eb@N?_Z4rv|}>&Vo2e#dE2%Z0e+VwIpkSzCCzUb(MWN7bYJ9ugzz z+QR*?ie&`R_Ah0T`TeA`ov>G6{bw4Q)98D)Fc zwU+4Ysp;~IXlG<`L<1f72cv=mfz&1;3y7Lm$xhEzZ;q_C?av*W5gBVw;?Sczb+XAr zI{)+d*APp+y`i`h_7C-U=WGYLWLnR1xFc0E%%V?rNZBQRO2LuXc*y6Ic@J4U=5qiLr7`J^lh9~`I!a3;@XSX@# z>h2jrF&U1uZj|HA-l*f)^FKrRU=D`cCLs^d+h1YWWI}}<0rDq)JiP`3AbNt=c_&hv z{6=NEaJADb+1tC=Y4;CXZE4dNuaDWOj-L0dkD3lYhEwPlR;#o6{C7n1Tp#tFNqVHA zC3=sj<+$V3cF(K)7$0Su>bt)!-7_K|Yqyy30UE_e!o|)vF#O$JCGI@|Y=?d0)-CDV zwLRD0|CMXqW0rJhOu5%jjb3{NI#K!+z79Fg$CqJ`EzDMhb9Igxpi1I{#jTdur@wH& z?-4)c)niq|fhd-hS7!Q&(p)eviPh^+~xsW`aRmJ)$$@$X7{yx|%=BMLzwh8s%) z%kyxb-Kgk_XF-bes^ve1^v=Jw`|tns*l(zt5f%J`60glgoLwGQfm=!aHFBM-2!m3Q zoBnN{^@&)}mVN$9w6e`ln#*Ix&hPXkVnjP4Ze@Ni$IOUHLMgvYc=Y194ME-|1u*M> z(wes|LuGO}$zd#Cxt%Z9px8o5j-9|kGJT1t#axQM@UgANdcl!$LU?putjj*fQS(|-+?)W=~{|4^=*RcLv(@CUe zG~tVD7J5Py*m5lS&{VHBP zuV@VhBa~OVKAENc}qfBun@!K-FjH~0mNf*+R^N!I!_z?#u)R^ zkB8Nn;|w9i9`#*?KZejf$au!ca+5)d6RdQ;=cy6RVw0LE=a`}DKq6h24Xp$x3*T5F zuWU-BPHN?7537!Fj?s^B8DoJ-sMEsIMz;8M>^aRK;cs4zG`~IWKtebCNc2fE`!`ik z0A_gJ7WU9SuKUd>QJyu|u9_H@P!RQ{bv}3j>@pHybf4dh7Vkx~cp+CJZJ7u1-B}TkmKEzO0F>EPb0`N@LIRKF~;MXbx89Xs2$O1Smz>v`W09xut zBo38nlo-WMC9ttXnP;>#8kUu~gHWen?Vd43=NF%mbz?y1p(Yzu*oVlcxmn%?084th z7|mv17rp|p$;M~2WK&S+bWs~$mz{os?D)7Dy1*A5)_EEF7picj8{B&aJV3btIX$7Oq$tPK2IXF^G}$NtnhJBTcmH-75>|>a>Kx<{!ebzP8u^o z@-n9)cDm2<2@_!2yw3q1Zw77V1_+Y=ac`GmxbB5tUKU?} zJdSLp7#JRk_T|#N=Z^!(>kRA9PtI0~4XZSCVobcm?DCA4+wPTKP@zR#XF{kN~ zre)2MSj@9^d0vEJ(v}9s9T!GOsG~tGk9WC%HCi-nT{yaT`^!@M^F->`9aSk!fo25yIUy3F@ga&J|6xm*BgbzB1so%K66NNx2*@+wiY-vs~DBLC$zpQ{RU5XN!ovuL1sZOqhD#O*~4#j(riP!mT^vc^YRk&e>=TR3f)zt<3;7)MGOr2Vvr|? zGJG@eyvDCtaVa6F>HGfnydtzQs7Gl}Ks)=|kWF z#!2;L$wnfWcvWNTAs?2o$TrsbG_;c0o@5NR4XI=0QO~tZ+t9Vm2SSS(sm-o)#s#4VVxoGBCdnLATk3(lXuxk- z#bUuPUxx&?c1E||-!)j6N@_k6LmtMuE#j@JLRkFO zbnWO@-*&L~6)NYtd3@ozi3FcDOdSXq98n`cyG|=edwdRIlW^x~NOpBdU;s#)&PRMx zLUg3tTQlAINQJABs|B)^ybOX@>X1&)o$Qm@0shM2mof1=(IHs{54-D|*_u72E)!L# zBsbcdP@_s(HiGcyTyJ~B0m@W)%cW`=0%GV#JX7X$08cu*f_O-r_h27S6&+es!hVfm zdOaHKW8Ao`x?^r-8Z5|w;2@}J0{alw1Bq92zg{+b126lvdj+1-E+9t_so6Fh1(CRq1h+Lzm|SCiepr@&vXI*WvD_+HE;_N#pdlLRT3u>T~#Iba5I z*ss6Q4tQP5`E8`Vjq!3CcHiCHaOBP#CN=p6wc38dXaAoXctEc)z-(oEvOlvxo4D(0$e17rQ0j40cc}zljR* zXAJQm|F5DgBjiZBUM-j`mnzi!Gy^Z~ZBx_k@6^1+va8NG?P16`1LTxJ$@nq)Sl79VHbE7FWz0-a@)EixnzWE}_T5 zSg=oMfWs!n;*C(#L_$7znjD;HI@BhTtbCuLY3k)PVT*|7=FFSD2>T*okBdfIW>lwS znES?xXtkFYbv?H6YHgu7(657g;-%o8zJbN{mG%R~p{J{8w(QhItI=z764{S%W@IC1 zN?%YzZ>A||@nDZj1H$&9w=0zQTs-3Zw@MJb;drvrgj+M|FNHn z!tBAF!k(h@fQ>r|c2A+(8SxAz-sc}oF8fYK5$tgvGrjktz8db}WjTt6ED0#3_tv2G z1m_Xsyt>&+;c&dE07#6l^~zuvqQO`jj1?&+N@wHnxHZG(h{ukzBQ;J_3Q0itw#)H> ztl{!dusI@EBOZ87&G84y7mmU{M7QbjDuCzMEZDZrPy|!+Q z%icLjiHU8vaoiFrwHo+d52-=K#5fHgs*u|^%>K31srN>o4%`tOn+@zwB#VG=LdL`l zB?uaLq6{o?hcn^zCy9G0=x2Yk3Y%ph+<3*`d`(+#xqPb**_*q@*Cb+Tfz`@ajfNIN zEt}aY!Ql!iR5Ug;gNq6$H@|7&2%7<5ai#4XnR9VGHw$(-Gr@!dmfW}og6OcMsmZ1x z!x=GR+kD9kR!=s3pDWh88V=6^DlzDnf3TY{6;@_~1UK9-iWmZ2DPq6MTqFkF!{pJRLxZ7hrH#dRDZ!>pJ)Ly zSo6_EKFk%?4qfhabD{zT@j`oPeRC~GV5+(*`xT+!YMBL7mY(GssF1+>U@!9GimzwJ z0|S$ACVG;irJlTBoH!h&L382G#^AtSN&-o>FH>-WN+!-7IWv^744GI$PxXc1#2%j2 z6`}8Q9EKT1Kc=A++8{wRxBkXIZ*m|bMFRPb(!K2xSRva3K6e;0wZOT8BvUTE4-YFM z1(`;;e=R+@TUHv%+`T!qD6 zf@J`s_2*w>Bs?L`S!j+L8v6Id=oWD$Tz1|N;qQ?KM7;d*4Vf}zfJ-81-wRJ5Qr&Zu zD2yfM{IeE4YOjove~Xm{!3~CK$?^sNg(A#+p-poZES< z9f71+Dmdv;Oe+PPuRL`4j`i`_6>{3*gY&EdWsGP3IDmH8U(RPg=GgXmj(2bNN+8u~ z5gb^V79)jeE)(!LL3txIGr%(9FO7B}t*~z4wy}-PX&*Lwd{X3;SI$~r51p|g9|6{# z=B4`uuzl0j;Yk$81Gu@!Z&B$;r;malpXx zKZ8`u?sW5{mTJWuuw9A^!twhEU89H}Ws4>TcI;cg!`e#z&ZA+0IxR<#8)T+)h9oqC z)ljTl5PTT>8gV@l22Dnl#@#KWfJIJJkk7PBvipbD74om$`pK^}zWgoi#r}a{R=o0{ z7ws4+wPE1pv}IwO#SSfkUDC5W$bDyi<^uiw>al&Z`!?1w@It`f6_Io8NugyxZZy#8 zgwr-&eDBXBbR0)KvcxvSn>qNdH{&>OA1OZ4QW6{e3Hn(TI$fxp-Lz({TW&+G zTPrS)->KZ^^_+)c6!a#YS-{VLE6JIWCg{EapLsJxdG^cGZlvagA(d{i5+Q$Hv+>!m zZHAu4t`(DgT*8Bt&q0O>hv--2?Ml(47t{2tshJC|LenT{dp_%>2^@fdK~vCg-_ zdM~?fgW{p;8R&!@z9mAc!VE5d&^-Im0ADiXEugFdc%kMX%0&YZ^(2#yJo?T|q18<0gge4VSDa+IeHziBS_Z=eb7j{QhRNK)gOrV7XQOG#_}X0apU4>VyDz z1yb2Z0W07|Angew96ktv7K1Y0*R=2}H3T|yXkZ3?r|)|*dP4|XjR@J*YOJaes*aXc zRXRfM$ELvT_R)WbKS#uDaQzWvfH zsR$XJX&K`uSs;DWIKthh;B~9+E!VJ)ue1tliGue?%W8+dl8(rlTw7^pS~RKt0j-O7 z%Vwb%!4o@!u7+oiQC6@CYc8xl?_&^vL;}4g@TM#*LA2+pi2nw8%X^tc6yqW>|3RA1 zy!*LNsY3tM(~lbG8s2z4Q!)xQjYb~N#LJK{Y9i<7g1qC^PD6X%;8J`i522E${6 z-sJqXUdhK`!Z~fmEI`nQjKBUJU|^P`*FsQy=SG*I_IRJ|#Q zsg?Ls;`3=ldXBkb&W|ur#W^m5u+Ky(5J6Y{sJMGcHNWxcogTPOF|1p)marB9Q^Bo*FWdia=Bgn32dIv(hV~y}y37T$ogT-L@o|{;v2sVXMPAoq^ zk6jt7_Jo@G?9T1O@nrFH-vY|F8K?FM+5%d6Dk zHlt)jii7D^v3(Eutvf5xO+8%fl)M zPPsZEE-S0iqSWv-t>1mAg!9#&9KzwMN(`@VTqK87ms%p?8L=+blc55Rg9dOPR#6Vt$(eJfk?#w|S>=&*gjh=;) z5_8_2!o`qXt`9|Y_((_x75@V4Y>U^3`^9#$5V=c*vWpusk*1D$(mDeTJ6rm8VD>+7 zUC0H_ehN`6E?7w9()zjhz40@q#uH@p*Vy}-2g2D~hyZ2_PQNmKW%S3Rh8V5Fv+J=> z^vs4F&@+68XP0S`=I$!6^G%Jcik{@F$VN*_LOfqA!^3|War~DHo8(BvNOzIA2l zES448ZGh8;#lF z_Qll4u-Y6|00Q4Z-KJ&Y9x*ONsBKX4)oQ`Kc*+BA8`G;^qEFG!^GIrd#nI>4ID(BKb3`dxAKKfS7Mac0MvDZTaK6jpSnkXMC$qQ!^4fYr~ zF&A6zCqa@1mix`m;=R|)V1kO7N^=>|%Y?v6=>wsi!k!^6vi5BCvW(sLJ!6^-s+hA~ zL<|)}F(XiT@LHWFj?5n%M=2RgZ2$;0B1b9u)H|+2DvnXF!~e%K{f%5OYrJ>tYvd0= zh5+*`kuWw+jc1L1kn=zJz;{d|q*t|E{{EGkgbLj|T&12AWWAI&a%tOQz3~}ye49{) zaT{FJ2B%hEPkQC+1B60AUChZ{1bj9v$#J|pJ!alhr$GkQRBMx0vd$T!^Bc_gx{|jK z0!H3@#4Ndxmj1TpXNJdrI0YK)op!MCG7N~@)h~WvuI5#0%)!9d(_7%H~0PHfxsXUdveCCcQ{o_U!wuITup_UQf&s?S+ zWCp2n1!Oix@nz&A)8Eq%+JOxIca zEDo`~?w-N`@o%WUDR)e(&o9*YsX!WC{=oNd7(mK^W9wi&4c~JC5v7rtMJZ zTN1D-St2ML&_f(x&DdwguvneG%ur?R#HX|nul#HGJJj%aj#iBK8V`@_@}kSV#q%pT z;DFyBQ9GOcK};PW9@CII^(%ninmZmJaQSgT*CrR$>}vOo@s1n3>(WcQ@w4-wBl7pP zU#QCAoQlkH;YyENfU0MhPlP7%_|a?HPz4nQ8c`q07Vp$LWY5IrHV!gpb;7=pmK||c zns*~tA?vkQ?*2R!a4*wZ)Z34}Hi^9LNX3&TQu!irQkngdXIqaGZJ|S=&`xzp;(+i)sZ96h z_*T?E0s@`&l(}K5d=)z+X?&dRL7Kqf^odxf?$S3!Cf9J|sH|(an%w@Vb)G>9#n(Nr zYI#{hJ6RpkFwo`n;M`tDrp#KLBg~J6sqpB?B--UTkmMJ)Nt|kP;GA^d5Wp~+M4lyp zIR1%%`iUM6WwVC~1BKIpSWq#J;-U^o0pXwn-U<1AyEN2u!GqHXoO6Mh{|0kA+s>JO zHS(D47$sENL&%OJeog)jnI!Lz)ZnCBRc6icsF}c16gub5cZth^bk-TzX0FDn}(2AE=q+PaoRDDLYYd804;+; zhQGZ_zkYqsSCt=9Rdc;_HS)w-1F*V|(Wlscv(khU;BdD!=@!X!#N%iMBtyqpl3sMb zEY!FkPL&1|Q4QKu5NDFd+ljDe1blKxdH(d^sZl)8TojQJ?_8M1Z<{`XmJF6=!jiYM z!3(`?b$^9Ir)^iGx{IzjqpA|p>Y-uJY@mX4OKQp>iI_>~6%%{@tf?K0C3b9&Xe;#G ztdj+)`kSY)B>lC+jvTD$3=tdtmEz3oVJTRQ41By!+=RAVqfgl(Ac_3tJSJ^O(s7bp zJP9scBE^9ayyL8RUUZ7*&(z#6l>zf~=i_+4p0`-oJ~wI;J+ax5h|qN;eMaGW*5f_G zuTJtRMs1q&`hHVHTVHA0aBhXh{W7Xa8f6QNjq%}Rwbdb{kI`DQu_JLZwUlu;jR6)S zC&RSZm!dKsj)TQaM7N4ph8-9_2qs}wwTuXGwY3HS05^-b$C+WWFs`x9sv@2BMdy`F zIe`k{4wK77-o>QE1nex%SpagFNL(RB=R5Oo0nO!at452N!XYZ8jEdNR zPHZ$9!YQIc(Ifn^rzG1$gK(3|@PeOf((JqJH-7D6`31}2$f%Mln4uGiP9>gWbhHlN zoeSvhF+}9J9HX2BIOkn8MObBNJ4742p8%RT*E9AL!%v{E->~i7%zAvTVF~|iradF} z0sc)r@7&M{LS^o*><%jrVlKtr|Gj!dKi`jwD{VIzFh6|BeBr((!q|1fk^eMQFNL+@ z6i_5kDWAbJh1KaulOj&^ z4a@l}=}ZM~U0GQ6Fg>bm*pL99&2m$USdg!UN7k);GXlbk;zpbKSxE?XIlC+=_RDn& z=+*lhOHeGD+BOUz9bNcy@7^Cg1Y1q?Ll=buy<}K#koTuY44i;IWhqcBEAjmV$&HrU z?{VV$LUo)X<+-(^LYU&m+nR?mP7KpXY3VpR^moxQ0w!mr({Ovk!7mywED*%@Bfql8 zEBI4z1qlm;kA*lZ_b7~rKIpFhO$_EqCdr2&VYu1hO#aycp%s4}zSxRpGX`Su1wD)tc8@YzJI{ zlqd$U;Cv5%J0z5Z6=|C_1(*s+Z%bt;duR=c85^5fpqp5j4JE)0R*Cry!eFu22^A~5 zH4rd$77<+NcGK><31GzDR5#3~Z_D(g>g=^VSBnl?dZr-k{>ZC_g?D`hQ*RRTn(%CN z`hF=#Nv&)0Le7SpImYKKB`2vT>`!8^VvqMtXh|XuKRp<_bOz5(wTt(tQyXAm4n~pN zwX!|?Qw#4941ek!9Yp%theEbH`D$f>kv|bWzFLmD@iZD;;Z==)t?D0tkUMzF%Kr_q z7p1Jm#y|&ekUR^9a88q}-{(gn5Zqcfu3S&2r?Vas6G~AYMQGIFzcKd%*9wB`zD6Qm z-k&bD=Y6~xONNOuJ{wN3orQYsZzx!s42i4|+p#{=*dhFtH-uvj`qp39+ef{z-=`Ho zwCCWIs!X3O&qoUN)hOHl%J0GMci&a0m`yiyjW4`@7GApN_w60P&^O{=t%q&c@Z!1o zaygTI()kF2?|;@2G9wstI1Xw~qXE)y_iyTEFnk>YAD`#i zogsuEA@}%|Yd9pl@>*4<6(tm9WHHH}>PNiz9PwqV`a&zskbmbLLMKHH`v3k85R5k` zW&ib2r(JLTOb*Y$;zC>}le(K&lk0;_bD!!ZB4Nc2LlAHDSV&)-VRs7^+wb~H{DCj! zI2r{wCZ?>0>Az=FUU)R_nSbOy8>jtLha0F!8QqmKsYR%zk{C&WL=fI4K<6`!xc%!9 zyhBqJHH5JHaw^dWoL3ozM^7T^mK!es9tyYgd3Ymd!T~CfFtjbvwbSIjpX2&?5;(;()#iGv z;UR^O1-Wcvyd-*?OjP?NTG*?6fP)^ znoG~}hu;ZPnZ*)(>FVI^R^Y8~cK915bV#s~{t>VpT)uaD{h9`(eJsgUBi+fw-was; zoTfcv+iWux@#kdhIg1{f8%DiaxfZj|w+OwVplouyI5KW)zQ&IWOp1v}XMKJU=IdUR z$o$n{7B;sv-f|4X3HF5iShsaWIkSy8^>>{zX}_bI$x4$2L0&C3YcUt9Tf+51-Isfl z9bmUkTNFFMj5@Z4k&vwA-s$k1c+bkI94q}laV`I$D!+Xz?k!e*Db=$1mP_~l!MpTG z|A%&MKy_VO{QtZ41BZcKwD>h$VLFd#ep_r3dbL$I$2PZF5q}cjepIz3mJ)3nWPz>e zCYtB+%4fe3L7ttpk&-AEvj|Brv5!(`ryg45&p+3be>>Kk*#FORLiGryDP%DDTh3d> zZC~9w5$E7C$D{xwn`p8D@X;rGoD^S1hB~z{PVvQ71fDxG?}LXsj|(Vy9nVffZg#qU z5+UE(tyuUY&mA`o`*1lbvU3EmJGh20M@+RVX}y*(Xthj)*G~%FtOOAQ98!`NR6t9p zNxTL+?kk=cw=n5odPH;F>;1Fd>O8JLBZDB=?-paLkq@s=p(-;nDVxL`y|zoH7=*pM z8?`m>9`gzJ>~+8nZyfmJ#OHpgdqM@Bb{Biv>y6bt+}GuH^+>N8j$E^$$5ZODM5ZP} zbcZf0aPDr*B#z7yQ&;X!eQ1Y;9_eE0S}*qm~@YnnGdmC zs-+D$fk3Yo&`K&eWxpe#5D;_l5xq(C!(lbE+~;Wq=L-0hr+w_%Sjq7m-f{l;mmxsX zY##yLo9B3dZ#zvQ;H?<`eVpY7Y<#v6#0F;4Y1eB9jurGj(VNZsqy#vRmMbnlAg?>eiSA<% z`HIiEJElYu z5|$2IG^QJ-&;i6MO=GQP^J31tH~(U!m%d+6$;98CL%e3D)#x5yeExbgTnUE{e%o4{ zxHl8Ae~s}|-ebZ*Z#wUO-;YVW=rTS9wO+|x$vctz>?K|!iEBUSwyh(p%z$*Ex;U%K zdy#^JF4=FYEP_oVR{Zofjj&kYBxxc@M|uP&wr*X!zZ|}xgZgP-UF8d-f0 zqFpDJwqk88^A8IvpE3=OG~Z+p3bTAN;v9c*v@00){|MMt^*_R{H;@IIemmnW$w_Iw z_jG7k&1qw~_Fp!LdPND%d@wkE~^D@vc6R-kp1r?tNgqNPaw*dAjUmQ0!;3yA*vSaf(@UyX^Y6 znlwTW8Dwg1KmLO`p9O|YM6GQ4F{5 zsDI&c|LEc_BqQ#1EG9E3f*`e%N+O1boInjqTim%}o1_;FQPA7_8ql8{lniP4FUxI8P;ukInDQ_Apc$eAt146}W$0mcS ze5xs}of>c~nWj~TXJ}D{9n{yfl@b2Iu~Bt*OT{R5jny5F?Ty65DKKXsG!W4sl!Y*m zZ{-5;V!PS8u-^5<{_q>*R($M$PEbV~A>)DOiUUA{-9I{-7zp63|SloS*5%w>E6C22 zp_aa6=A}SsyLqX+0?l-A(wpH2BH z>K$a8ud`L{dfDYs(BaKeBY<91tInFimYb@+<>7zmAw333DM?!2YP1`3r|IFQCkP!4 zK{Lc6{byU5&R-%UG;z!F%{f98sn1+Em!^jNE>H*6SBUvyM7%9EXbJ;sG{ThSDKXcQ z2V2=G%pfbyBuVJqEYNgGSBm02sFt&;n(Zc>%MaPW5>+R{V`% z+=&`H$jD#L_m)1fKs?ytVxx=LsYucL1N_)Q_I?E{YE-t$z5@{(oDM5AMyIAq7zJhq zcE|pe4zV#cO@GE2qDh(P)-wg(OM3J-CV>6o@Tl8pgWY;hb?__P{#wb9> zJfF18Mxn=@=yqJz;Q&5|^^=WHx}d9x!v>|t&8M#2v}ADF3a)~SAtY1R)mNp?kz&vj zx#=srwp*`k(!}WjnL%Qg)Wjwaa54J|l0ZMu12M;v9lwa({#jE<<3N%V`?_jg4~el9 zg*UWzvF)R#DtfSsfOn4%9$gj?$=fj)86iXN*DbEy7z^0c;esR!48a<(Cci91GA7i6`f=BgIky zRK~q%dIOtZvLb!*pKEZscK$la(PI24UCLnmP8nL;u?apGUiSOGUxE-CsVhc)YGPpw z1-I0;fRAWC@>GIm!zcP&y)){_*s=z&C|38wjs#QsK7aW=&HF7auxP_XS$Gdya~9=! z0A9RjY~Lu!1rdo&d+WWCzdUc6rD8(p?8?Sdlp`!@Tsln-9-Ts@x6XiGGniZsOCzII zZ!jT*$WMx9l_yUq&v$mc(~C>==&6P0>F3fp4WvB!j!%9<9K*8Q9Cjk?xhVMwueTue z2Q=SXh4|CokX}sedu(;b)cE%PW0Wd!7m{rQSjq>(vmIWsrU}jSw1Ka~Q30-XArf9$ zsA*13kOct~&@rWhSbT(fQm4NN?)Z8qso~VShiDx9w(*KMF@8LGL92P1YVzHBg(Y~K z;ks*ws02nrwIKd261yXs`?~qtY8O9I$`=VbsU&CvddTxfF9L75oUjwX@QtT6O^eD^ zrzVmM9-Hnk!~=Yv{k{7X=S}%ddVuAm*4?o;AV~!YEd^?bPRtH6%h69ngkD#YC>chh z4j7rTgNfv;4}C5~hjX0CDU}nr8r*-o!IX~V?91o0a4p(&83vk$|LJXP>3w!tPPMrA zOO7E>H^Tk4nD5=fgoj+FCGPZXzINR}1o}uzL(ynN zmSn`+R}AMnyp7TEE*}J>-D?sRc~0H(Vqhv?|AYd%?{I2*k-=;flFb0Y)Wsl+R3Nb~ zzeP^`&Z*b|-|r)`LSMgL_)h+HES0^)e7jDi)(F%V+BN8FXo@>k>!0t?yMNO3z17~5xmPx)hT6Q>=Hl9Vr<{H;O1&wmy}Z+475K7x@Y9Q5s1|}D z_u?Pjg_8>klxFE#W$pT$Q?Ho%U4#j{PZ!Y_O`H;Rjy{`N^tydZUiXsYceC`4r}9K9 z*oSvk#WK2Aq^*`_^r_A##5i*R^5=H0Os{9w--+4Yr0+{?RfOHWuGZrm({<;O?HI_g zhP`$&oEE+pUz`HcRkI`e`C-Sl+iP~SHjr76H|xZ8CE}2oo?%p?8)@01%TA18M$fW`rD53*0yvvKgIdX1?(~1xezne4 zRgorP%_1{jA$NYUA2LuUO2k82CCZm*U5dMZ<@Y?lh1ocy(O()C{uoZFB3F0*tB7P; zG`Xl4=!NET^WN)uGIF@}H@e%S!pUcNmjB5=FaY;1&5I`OIqjP2@!$)$s+p!|U{~K@lKhI0y zs)m)b0a#)6H!9ZrWO6R`(SqWWiR?9w1=prcsDE=I%{H!5tIxFh%##M{xFT`ObXF)) zYv-(#R{NG`g`uSI_{~lke@Zn5vZ#$r6*|89%2g0}+a5+M4sFsu%nR@6e*rI8(^eQd z6*5fD;meGz{p#3snxnGLktm;A=>mPRh%z{Lm`Bj$v>*|CW&b*V@Q;G*r`5ljF#xYc zv9le|f~9Gl&tS7Vgdl4~F1*<|82qm47`^E89s;!Q^FBGXg%IN| zR@+)lQRPT&(6?EhDlHZQ=ARvA1FXfQMlh<3^^Z0$bVqXVE2sCAQTi{=&JGxuFj-C` zWq%^6L$KO6+rjB9Y;D`P=}tupomGbjP#hx(iS& zF+fPsn*2T0teL6QcdxD51a)9C=?wc{m#V}?Q@g>aQVBMXm^^-DLxbLqKFUAW)e!JL z%gO67iQiZICZs468Nr@4J+brQ17NiQ0kkKHA!Pk};<^zL4c2q%&Gdj)N0_^Rhq()k z`}|$s1c{m{vcBq%4(92Ji`IwbwA2EMEl>w@nDWDVj5Vb$K%JD*}5d~CYq!| zCxHZXa%ld9dkDex15|;zE+cZjXK36ZWWQoL$LzA?&h&d4y4L+({#g(zJ)5nH+0E>B z{Q#HRU5CQ5}pFD#ByR8rRxFak+Hz4`+{mty;(t zzPQ8biJ%g6iJJzrVDCpjB?Ad0M-m}@m&t?Mg9*ONX?@)yTI54>E6o#`10+{LLKp?e zSR^=Xj8Qof6BE}nUB!Hstx-9`X2|zHMEXZ5ELB;ObH<6x>BX^_ABW5col$z(FaQvF zGpR>kJ$J$y#!+6Lu=ziPqoL!T^}#25IVrSTsBtVIgB~GK#KX{Qq`mgUovHE?6VJa| zt4^P?;9%P3QTnL_S@*dF)!W1sniE?;Ha+RZtYuDIl6l{tMC;#=Dpd%bA)7 z>VgKl%LP#Vw506U3haalB881)w`+aS`C`741?0;jbNZ<$OhScpB|+c&;N2>K(k3B!8li)hXKT_4V%&h%sKvnwV&gi^lirLut)Ij1 z>RgI7DjSR&cV4`MuI+U+-JT+_dlw;g_AQ0V{Yv=RCJ6C@ujg8cp`{y7|IUn~ZUOu0 zKZ4JnH4(cPJ>ZrP(#>}Y@Iq>nDA^}YXzr7r;2@bNMX<*_R+143#l2#Im4uyW8~w}K z@I(X-(3F)OqJ2L%4oQ+g%8G;esy8XJT;+dr;Q*g~Xf7rq!Oqa7FODm=!VpEPP;c3? z*ELA?lcHNkPV$H49?wAG+vMzE6$73($9Cb+^n4G_`zr>fqmHt&+rKbGrVMFijwy+xor06PkdG z6SDSep9$DpX|A^dv)s?Z1&DGJ75{MDg5Deal3Zn zdeFs`mr!mkHe)u0ELa%i%tNQcUq{h@x5KhVl1D;H(gVFPMUj}jgt{3@`Nx&ezbKw1 zLqQX1d24jY5AQluu{tE-y7v!Yzp(A5-u7TfgdHg;yHv$p3>L4~SaQX2+(A0N=|23s zq*sk` zqy)jr3#d-nzaxZlAP=$T?Y_3@== z{3T=I4nIN<3aN25OoKtPE_JvLnGQ@D;01^5QsEQH&7C15WjoNc`N^np=mD_iHLBo@ z=8kY-D4D6x8{Vb&U_|xHe4aT%)OsRcNS?AdIdfwN3@l9f*1#s;f^-shV`-?9rq(_iFlONDfjN|?su}jLd3rbZ~tVmgtY-FoA1*${JKiO!`wx~)UZ&BD(`0EPK=yTZP6ieJrG`R*M)0CIL9KF?yz> z80|~d`qjHidWdbQJa{|O6jS*#~_h>zYRh==|+r>Z3FwJ)Q z@3vPPlWuNcGr^vzGnRM%uzGLdb>psBJJ_Y3M&39)a~qW<@iG}=w{B6CxkG)7A>+dtach0(Q2EAW>()vE z2b@lJmeh`_*+Bn}_YPI;zt8_ut@k0~$-!p)jg%Wlm8|mOPA3+6eg0^sz2oQq=<6$^ z;#!)u4-!0RaCd?Sg1fsXSdies-7UDg2MZqDU4t{YySu|MgADc!@4dgi^`6V0y%uZs z?(XX9lBcSxbULcaHGK6sn%9|sjDA1ci1cU>k1Tc*jo_)%E_1mmU6*%TWmo&mE+0(0 zgeh~gu**bYB=Zp8m!1!aMUtxaFgK+p$?CN~(|xB>cu%Sq)(pth68tdF(9{)=E&yya zxnaiQs-mrT@|7h?*pPU#*h%gSO3cJ}8?;5|g4}0egk9e$(hP`gGkSS~?akk*MvD@= z*;EKq^%=YWG~OX(dhl9sP+2_?GcIbgM|J&K0wPTu3M@0lZfCq$UnNw7)upoMV};ee zg>cKdAvu!t$Y4a1xX$scxa_A#Xhkl6Z0Ma1bsAjv(21*fS&^!fCubqQUj=6Qs1FIk zxbb8O`xZB+Y%l$Jr3EVFy_0Et+)ItM_P^f_yB@!WX2`}4eF8XKset6#SK9QOeh0U= z)-=dBv7sx!!wK`eh;6xgM$36VJq&^s8txqQooaWa^jJ3sk(!+|?Z99Wh;$ZATA%o` z?hx48#kaVcUZO0ljAU*>T!ZrjTuIbjSK< zvT(;3z-MBAXdx9}fl2^*opQUd)o%-nvEAK0%8#eF5{-$AjJW~T9*&Ez|Lnwm(E@4J-gkLr9)4mV#CL4d z#m&NNTaQ--V|P_?w;YijVt?a6M28fbFc9qEVtwH%!hxs z1WH*5L9}N?g#Gi#S041@z0akTvwb>7n{VTIkJ@3Y?-?i>jubM&`#)#WC=VR`esqpA zB=u0+oun<=_Nn3Qd@qqJD#D2Xh1JKlCe4ipU*cX*q1Bui_@nV736a6B+2A2e{r7o_ ziP+n$IF&?4T<~9596`8Rz3i%ns{{ypKR$Eg4h1s8{;q#$ZIbcs`7-q(4xVpJZAYZe zwNSwQ*2dlR<0OLs39i54;Zgi`ki{{-?0QoxHK zDw+)bevFva3*dU1%R4EsMGx?|ZKvg*2%#IA+UCX${m`wL({;}p_o_U%!0S2yczu(x{~hVUy*azKA@OrrkB_s!@{RK`0- z@%u0m#l@R#Jp)+3QmtYicCsk2oI;y>m>lo1KxJ!2A%8Fsw>}nP`lS$ifNkL`{Qx=`DMxa z^A``T)a(P{i00UDmlzRF;k^M?Yk!;lliaV&ExQ}$ZQ2JXtwO1&^P@aj!8gQ+RpFYWHqn9?y_suYN}OooZR z=SOgi$n!mw($8*s%;BIgy6G!Iz`9yMVV|$+A(O`*;5R74Pj#n!ZvuCqwER;?-@473bX1#n32$>L6#Gf= z$_13n85qGpI$^YG{|06?ldRIIxT1Ez>;+tCJwGB)@atWlKjm z^ulF8ihmA6Eb~cIjpF`sIHACbr!<_4Os22N%y|ZthdI7d8nTOQ%an-aPJQzal|32d z2{N`^e2G*{OcoC?=wc4#%NpV1GU(^cz)w$}Si-~LtXp}5N{`;+nQ!);LbDSeNB2k5 z`eNxE9r;F!6w=zDoe5>Iz^%@QrWCIpVU=}6zwH^fI9?mv5f1I{rgMs1tZ{|a`XHs& zxg3o^m{zRFUG-|pf=KKPpWpPT0`f%G3q8DvyPoCNOlrBsCZq?JJ|*7z3mE21b{k#O z`mJuBk_h*mO=bjwB`_yWpNz+OBHNbzjM;2MQ(lP3hH}#I8RpvmkYz+PoWs$HF3`}Q zDcoM19V-ax!GSy29@^{&Qg;loax)AUYA$Kb=>56AJG_SD5yx6O!u%T1cDI&~`2ef5!IWV&TL)=@1=EFe z``dgt3IC9sI8?oY=muBZMH5w437d=#sZcOT16Npn>XnSgK~x2Uqr^ur%{>@9VPss6 zQ9F$Ww>_$=M<;%}Fs%}~w{4a^lizuBiuf&7uJn3O#A&7x_4*BjG)T+RyCdE7!&dpCMe>hc*Bcu)1j+X{E zQQ*h6S`B70&s3A?w0Y}RhaVGMkuPu%X`ExVMW7MyMMX?E9r{WJ-=)^esXW}m# z1l}+qZU=g;pJ=`ym{{s5oc9G_z31(Zsl+M63!X z(+I4L+g`BMlnCG%Ub?jOqhjMK!Ohly>3?s>^?OW5=K!xHnS9E@5T9Z$KB>`BXuvc9 zcURs2S1*7y1Z_hT&M#S^DP{XUJslB+lK|#fX=Q~NW6GH$(iqk5``Pz*ntros(8hBX z?-Tr${=8ob^*qdW7cUJaesa6p&>s*8j;Jv@gj<;diQ%O>g<+O;!O4llcpspX>|!~f zlTBb9sP#&10h2!RdYOq{Bp0;^Fzlm-s9nZyGyn6~C`|oTKkP<8WruV}IGzLUk*w4K#cH=4>pRmN5@roZh@b+W04PlK7*E5P@73{dD}r&ewIj8 zb3JujF0LKD;YU!wB^zCJZ&(I-oy&ni$d0FL`vibGaJ>u?Z+^ebr>`elpj5@p~Ars91M= zUkPD)wMx@l(d!m3-Q?s_tqIFkayZ68#{zksd(|P999mooPcGAll2^>xPp{A9%yIT2 zXMDiv)5O%y`>Z|8A8{_qf8Oy_)>WD|>pyQuzSdCBKamHDjH*?PwxBZB&-)@w5J0nQ zv*7pSu^iPB{Fyk}5 znw+!tMD3%5NWNr8t#>B2YsxV2*Pd3reU(-}5rC_MOp>6`!lzU}o3|OedS4yio_Q~Q zGrb|nA;C9ElPhH~zk$U)QAkkJotC0VP|XDbqp}}ARW*{_Wm%>I;L{iEWX+h$GqPy% z{PoYLhb!Y_Vz1|!jdjS4*knDJ&>THNlqw#H2KK)`O1NR=7_wKuX*2Zy{RhyuYR-{p z@*2+LEkgh6C;s!#tQ91iQ!;r2F3`qde-k5I+s`$6wt25K(C9$%+( zh;9+WtEor?G;bBXPBMW&P@UD{$EJXC zP7Ii3sxCa$HmaKtu@CiaGPTh+2Q&qtP0~M|ZXj*sRkQisupuRXwjw}Q((@dx6EKjp zy3?>tD3eQl?7I^<6{w`O>li(LVc)MWAr$+-ymHfbBI&InoPN|zo)-Bn?+w@G?8FtR$M$_AbNMMHdg8|o&aBbawn)g&9wyp^7S^=+2opHx zAqO=rN7A~%#$8obV0RY{nG<+%*9pMfJCdnq+a8(N@DP)m)Ry9dEq~x_C)R>%AI_xWK$J3U9#B6-gg@4xE%FeW%-9N_jvu#;PnjMInGSmOL<6rr?a36 z_eA;RSLCDC8uH<*>_aHlH}AV%NNlv~;(p5KaUKSl)0lK~U%Q^feJ=1-x;DmQ3R#1B!EpAy;Fe}(S z%oWg$v*kTrY|CoEFuXtJfw_EF{_MYeXZeTTYuRG5H-S3N-F?$n#eHu$;a5kO#>TDY zFX!r%7f@q<(uslm1%tiD!3xZA_<^xf?->7|E)1*PrbDGQ%P>4o#a^Z7%$iD)jzb7C z>~fg70sA9DDydCo%|+TEd(3H=F`GpNQZ)qm%n@fWoW+a;TKvJ%)Ctp8Ab8wP1yx+xL#=p-ZWb1>%tO_=_4-ae|Od+x5D<%LUscDwxi;Dy~}UuN6qv|(^pw^~gP z!WHQ2(yf(yuAdavx_$O4bhcTS!WUZ1cD{HpGl9H#`dzdhw#$$U>Dh$)RkH`m7c@>j z-b1FOp3O7+q$lS4SM10F=zJoC+YgOfLBBrWWmSn}w@q$X3)jqvT-FCuSMp9=RQPH3 zvgzl5i#r((34d`(&X2=&Hy(P#hV#fC*Qh4I7=UetSrPoFvcma9~?RD|>Y~pqQ zX>qPB;A>Y8W+nh;;PBFzQ+>V%E#s>Uo5T8ED>^)6r$hY%5H;ir@Ev>=k*?X|P3`yx zYcnOri$n$1kA_hmUF{7d-|qHsRNU@T0bale`m$y*Sf`OtXtisVYM(NhCnlZ)VvGV4 zbB}Os;<+9Qo{oy(ncs!=PIsBMakk-2; zAYE9UZChohifNx7ZiL`>HnyMik)LdMO-pednS_y_qLT?O3BBC!`hJ0HHeP!#vZ-r7 zk!UzwLLDK`bXt3QGD9nCTsZJ?SBF(v zG2lDZm-9%^wRQ^e?_|}QJss(6i7nhAcmetq?Hw)&6kUBAWkKON*eu3Bbks{$S&J)h zpxk9wKE3SdjIA;8b7YH!3M%W5_`R)MQ{g4++_ufd2N_jPAj=Q@rJ!#}G%R^@`k(Ob zE+lBiaBx+Gp1<4;7sSmeTc)h*nS-|fdXR> z^v+A}M;2kRT2E``kRlMd82i`fS?rf2c-D@qKwwJaom=eMZXEeB`i7sDdke`o`mSev zYWw5Iom`X4z<7HTrHjuy5RZU3*?t)`pT^zPZ*~_G{N69+B3;a~hYbMt%Y0%>yT)Do1^U)RDo)Y;yy}3*d5lwlublvBp=RUfPH-xd*cMq~t;^Q0`%OpPD@DP^+`! zxvF{o^xpmcYIps-d2^cYcH%}Ch+ZoX13I4#l>Fn=?W67S(+bBP8$II6ik63-EGgJ~ z9VRJoU(!MnX~;s}@M=l|!=0`32-ThT%RkEqD`tnf4bN4Ej2?n|C#SD3x38|vq)(3| zC~Vz8tBhf0a(#xO6L|q~Mx|dGV*XA-_~q4ME5)Y0rLVf#$^c8xoCyYm<SIQLgF>8N_Exz78=tW%VC2Tc75ra@>2-kS+OU_n;tjyWOBA z2R;V*?Y~lq6~i>Wm{LsZh1PqsP&kVW9Bb~ZlDEB}WI0ap zs0Y7K0DPYQWu=1B@DaQnian=&^Vb}?^3JB~Ikq3~yBP(XWqtVdJc^-hDd!!|F0x6(49|}_er{^Y2ti%RU(ts7cs>|8yhjgK<^!Iw<36 z*7v?IfD7*l+DlKz$>~y=ek!p`1X|z-L&Z(~Ft9WT) zoonz+%|BIPekQ#v#L9X_HVXV5WC|irD<0eULn+5s)6!2Nr;a)LH;euqT@|L0gwjl~ zKKm@19LH%BtcEm^FCS;TuJ`fV4*^4GzceClW z8==HG8XMjKd_UuVHvQF*6NEO(Wuupl%q3WG;d!FfQHV(bbha23PeP^6O<8zyFcw%Flxp}pA z(^6ewaD5h5FMhmKyL@8tBAY4ld^~AJyG4yvA(HCk)aP~N8|BY;{bMJmMGCCm7R2GH z>JZ*LR2!%HSk&bI%L9L{!o}1Col5ejzDIEIP+!j|&DFD6$c#zYqZ^h3iNLMX-P|l& zG7s)SL`F;ZnPYgHh1sicc_tmMu$-)rP6`qDlEAiW-1_L!D_w?Icp}Df4}WVsNzdvXq`^l`n7b<5kHV6G$eFAAFkl(xwLkm8oQfOMUngvRH69has? zt|QKaArlkH!s?`h#8f!6OI0SaghRrH-r3sOM(>D9{Fr6pAQ7E1#To*>4KsKXM>){C z#1{^pEaBe89aIe^4MonQWJqh)X75(ZHH%`D;pQm{UVn4zc~VjMVMNH!3tcWAd`AB4L;(2Iffr&}$ekz&p0SHf+k8TyZ9XU>iW9-3d)ncR z9`T>OPHCP2!{Mz1|K-{ZT`eRCboV9W5oBT( zfJz{NTj989#?wlmKUjn z{yaCDJKnjj3D|^{-7HjmHITB!waKmPEsU(uS9NG;N;(AY*QYx}nEkq`DInP?qj@r0 zmh(sJE{rb8+m<+@uL|9!2co+BW$c|g-r0{oC>E}(B&*g0q~yth?0Tr@7jm1#+P zm|k%n$y8cF+s>}ZFpn#czp-Lr{;=cA3X|Wv z;W?c8>)=j>Nyf*~^Tsf%(%pq~Ut4?k1wONoRbhbfuAR32uj#HCa*Wkh?#juyrgMTr z+l%eZ4dR38(6}2;K;ILn-fXjQ=&`dW>qemDjC#{+dv-Hiy;g97p+AOyJQ83mJvFOIx3bIfwOE9)ntRnyG)6MBYF?R}yGwydhz=v&P z=EaR>jP;;4Y+bm7w$^PLgH0nImoXYZ?;u~RQPL2#40_u5RZb4hB`q;1C16wM@YY+K zfSupHqKX8vrU~Fqn;ITSS4@y6k;!M7?-|@VkIsdB?7I+q?l(~%CDi7I&1v;Fyt@j* za8XHCvf@*iyGv_wx&F4HSIzX|Yqod_emZqDj1bOUXcjU|_M6in331*qV2f<8cvX#U ztQwj_X-v>2j^Jc{IO&r3tclT?)6U6X8rR5BLc|KGoS}Q{mdo0SlgzapTzRAh zOnQRX>S$iI*R#Hn69(mghdtVYN#}9iT~Qu1ezmQ!EX}v%f~hL3*HnL05CQckSOBEg zo|){~$h=GK?0k-C;e@#51XdJn;f!#ZHRRN$@ zsb0-Vd&1sA5;y`~z#y5+*>csG*h8^MDl^8ReBpscwUFGAdcC%VOL418aKBlxmg+p7 z2^eiXG!L}xi^;Ah&W9sd@kF>h%x(voATrH-l%q)Kds))bZlupm7n;P{U~)OcOC-?g zm>TcTKvmBxe~r9@-D0djy^t~%@=H*?9GwWrVAM^k&2HVWSe#_jms4P-vuGfe(2HVq6fHLhVEsg0 zd{3i%sIl67pm1%7{CCauzv>JxfF@b@Gf?o~Rh;B^CHO>D zU7UQhe}w^|Q=Ou!VKMZy=3I+8R1tZ0Sx?qmwrzV1<>@fu>2(04F4I{EU%x!vOuD~5 zU;3XO0NrK|4>kG^vz(RP|GvYYQ%bozUv0jcy_^(&w7I+L!&r2&QTE^PJao19J^g0w zvqd80)ga)sCriHutq;?-I}|rrJSg_gY zeIHvH(!Tdu?GS)I((n}O)%7x_sk9Cqrs5AMyh4}1BnVqd&mFg|Trs2Nv@z5nCtdYCXM z&vuxro>vWtJZp~SRYvO^@6`h24%J;TDH{0*_d5m*XFM*2| z2)!6z^0++dx3CUHf##9?FTFQceIG^*FE$<~+!wC+uQy+Ao7Y8NA0{uRWymY{RIRtD zsYUKuCtY_sAI9yW9_ncY5k>}RNaUq(GS0`5fyAc z+oM`XvL-Usba?uJ2BvY^Haa&CFX&LQnpNq5HTdVrQEo z1;f7Hb-(II&@c=2t(HfH=gN?In##j^hK!%uSK=Vl1~G_Vgj=Ku5(m6 zvm*a<;D47VA<)Gta|;DX<`Y-7>_oPqjF^Taho(pWrpJ^AWr+oK`E$v1`y6oQ>Rba> ztsH>{{}T=987Ze%{5*v^h@uH)D1!Paa^mG;T5$h`^|>6wxo9>bs?A_L)?t9uX9~g! zc1JryGR_bLa4+>c_92AF3rbdk2m{-l;98l$d5$GBOC6Y?;3>6m`w)PYH*W;aF$KdO zetn9mOYSE|!-rh&i&od-St|mwgzns$EFD!2Bz$k+mC118?AagdV|i-L#dr;iLYo;} z;hDMZkxgH--C^d+o>{)EErJIb55H4aVE60GBa`Lse64%;rf$MfWca2VuA)8M@(mS)61?(#@lxk;AV)l%$4aiRs1O;EacC_Gw%PXP4X@KL zVNIUV*|YCg@~KG`Ri@s#MB_Gr*s`m07yUvCZhFzfz4Pvlk#Q(MgfbRk>y#{Bfx?9r zGqh06@+RAy1RbdcaUc%2t+k25X*pXZ_OUM>UHg@ODPG2|KFUMwZ#z}VQP;s8^8CEI z`Lgf^`OWum%E}0Pcwi(y+p`a#iP6O1vLb-VW}wZ!J05rNyO%sW8KaqvDx{&}#81O; zG~aYhg5uN5n5evcqfl1=Cy#4La;M91c+tVItT001Jf|UKChg=TgTi<3oW5!zrgoUU zAtJMrP#7ws7CQrj-8T)yQZ?E_Wo#JFv#x&>z3-c~VVjYB$(m4ZJ%3+lLsEdF6VxDf zq5TQIghF6!3F_3GYo5rSwwu;XqFkLE*F_X~u-pi-#^oYwthHt_XV zmf(EtyvD7IdUrteQ(@6KRYL={r&SyhP0QaAlnOVD(oY#PY*qHjg~A zQZ+sJbe5RZwBoJGtB00hD zsXnN9(ifUhJ40@}o)EaK@Wz?B0pSXX=}_(IVWZ zM5tdINb9q|e~{l%GR?AL@*Mm3ZsW1=Xh8&ve9jy5X~(DfIgo4;8-@t#Vk?tOh}SUSm{gN)zKFoyDz7PW3+(HIHe)9}`zUMGc3VHiUKeV=}q z&!3LiVz5%e0#VlRw&P!*1eEUK zJXltSo;Bk$K5b2vU}1t{F?Tr$auxEB3xZH$1M4K0%C5~q^j?{7^Ou8+jQ{0|c!%9QvI z{8(@v$7@cbEGdPxUW2FFhyW`R%M37QyrCpjG;VGn3fx3RJ}4e1T97FU6MaVNzU7jv z4#g;+WXDOEuACHXB6yx%vi~E2K`yI0DtP;<>3*m2b zt&ju^<5)4sh>BkwQ6(^t1b0 zFte-}d{TDGZ}kDe!3ln8*k?(Ggy}bfp=g{Tj-%W^w54IyD-?!s zgf_ayw1jzKcaEoGE^YBS(DaM>zQh+wPy-J*$_2zFxUWUN!+=;}2fYcpf`?}QAECAK zX7186tE-GPri=YXK1o`Ct zkXa)*;~efVHvJv@LDb9RE1)%?4~P^RfV8QWlKE;UQytyOL*;}ln6e>e+P97u$K>g0#w)S~s0c+}~E zG~`rrq!EbpgJ3IZj@Do-{4P^1^w91UAre?DyAugMLM(>^3(Xc%!SM1iQygh+NA8_| zYVv~3;ypBfZH5B2O-r0lOz-U%cPM6rU#{a8xnnUw5|V#u{=>8}P|IWv$CgQ_I)~sy zpp8Nk#*>9GFQ@`_r+eJG^AIHX?I&4*^|80-^gH0pE2>1;REP`WV@UQkn9nQZqTojH z!?fWs6c77u3pI%fbAEgqF$YU#E<^~c2s!3s3GvM+h+86_2Go9_L2-h03?TR(uft+8 zMXCTuz$Fp?YZd3AAMSXxwnb+2opv;!j$cl9_&oxtI^1<#MLpo%2rfJfFtB1zobl5? zBZEh%`LGe+&E_{>U+#X9>kvdEAs&As82<^xkQvk_-P0oj&|~x`a`c6f>+Ez*$Yx;S zAdvQn6Je*a3bk0ux@TWbiWeQOgy>Q1bR<=&mtECq`JJ zea0b)Q58F!$?No+R5BNFexL%^$&Wy1G{?PY+^;7DT{F${Kiadn3CnZQJ|w?0e?k+V zD{a#<=ddEb=o8OqptTkCfKPI(CqiHSS~W(G#fyt6`=;4#OHSu;B*Y_Lelu0BGzO-} zJ^-}3)LkPRcuqlg5Kp&o;oO(s^hYNYHCeMTeiySbAe3xM^!5-x9<|grE?$uS4;MG3 z*l4OWSlSMFo2}2qWM}f<{<6Bg!y9CNWdPXr&{AE*Z%|J-lUuH?Ot= zpoxAWnMV#B1<*>@;%Xt`GnK_lXllHJ`7w|N5zmrC4H%Y_(J6#dnKU5?Sc}ba72|-! z!4X1@SQoa|E2-cAY!(L$U|DPU3ht9rSw#WjEEiYo#piNJ`ZjJau98`sKS1?u5t2tL z=(Lo6L;Epr4(D_h=Xxnv__udQpftTBoh~LXo$pcVIImZ_0aB;3`*8C-&RNKm0x0uV z>F&WXPYZhbi|IHn{#TQ7bLK2f971hXxBO0DPujc&U+wDQ5s85`Wg@CY+ghqF97p_~K2)j*(zf@Q}9fHV^Y%{!@sIE``tD z>8ZQ9Oy5Xcz8M2?Jf+>j>DEtGBahWtIYPqznFITUc_vH15Q8};bryQcS4Hyx!l~Ha zUU)oq6ZRxhENXoOUxIl+wM{G%y&*sXZ9ofz>0%VFFk4Yyz`i{kGHgm)&3Sce8KxM6VDLq_Lo?rAW*0b7?++w@F3Ou)fXSCO{93jUgn7XER zdLME#LV${SwN-I@#oSg67j1}%iYC4HuD3UuTRZ^f_%H{TdbCaILHcQU6)Pb?P|QFZ z*_2aRVX1OLtb#(NFzg?kF4ria&K|jAk%SzDTt&Lr0!4JZ954)dS3AeAW-ItxbyQvN zq=76Yv0{Rl=KH^yf~J&+b;FDdOFg;Fnimy|Bju#*iL?%q*ngK%ScormaEqP*k&=l# zghgU*A{IK&)k6nUi%YQ5k1F&q9DE~ zK>d*)NI$le-mN4@^^T6{$S8^258{Y}`{tvbPBPBM9EBQrC#Ss_kdwO&tEx<4xun$q zT?&~(y=c$ywrAfg>lGyC88|HGY2V53P_=TVEQDoiDiFJ(djd@X^YXrt6}R-h-bh?S zyTIa$=Jlr5W(m^%F1Z4lnWXR+3ZC(Tm*S;BBB_1!lf{$_T5ME=XbjU-FE4+eOS2}p5X<3>)7m)G zH^N=i>W0j>$1$w`T z2|vf94#w`?0fISz8qK$n;(wNxQo0{ak@6K<*YUe-<4#M1&@!PARi*?5WONRvT|s3k zVEPWSgxD#{^MD!J8FSPhqu9V~6$3O5B4JEYG$<-S)D<$ym&yS(avuw495H*bo4#)! z*i(E%&X&lan&NEYy8pJJN{6+S-dsD2)dK4DB5+yO*r||u-%^nJ*yRM6a|hy z^jt~`z++SWwW8UBt%Hx)*4sdnHd1adfzLFPD*mLNAdjYFieXHTL~AD9gQUPpqfn8U zCpfZz%`3qdbd=ELfyC(9Vh;Kx*XV@Y8gwSM5j|cOIXZk$L5H3Cm-LaYl}#v=+cW4% ztz_r#w6!}Tpxk%wE8at7Sc}AM&qjiy-Ts$~WOX+WhZ!xNEUkA&^ZXu-B6rC=AAWu= zDv3!*)6>#(lwyg()i5U;E){BFV}V05CC}K4ds->GT}q{$gd%RgWhkJ&@Ep!3N+UDu z=ilAM&halGTK&J%aG(IU-s8*Tj}Z0l2@#jX$I4g-GCvUY^A6aCU)|4r%~57v0|bj5 z^|GbtGi`tN!E$Op&*JE78xL4Agz=RYb~O;HzSm3XK{t@q`>6!2f*7Wwe@s|#b_eAz zG6l_NhgzT`Hwpft_oahU81%KF>8IwP&kj!R9~uOX;O$a+@@BkAiSo?IBi(LFO@8abqNfl=(H;vK7Bj;06oRnE!~7o2p1M+adb5HtOg2(tu!-`>uuFAy8#{$q`*q%xXR z-&MFU3I6_{YdxEcgczlNdHpBQ^2J&Z2@`sL8|#%a!hwtggPdOsXzLWSu;^_HOivJ8dIrwtYIP`Kw*jEOEAumkeSqxtp|U5El}pcB|7@seteo>?@!v?$0vN()DubotG|=O-n@}Q zT5Z+KcdS9zJ#v|c*m=XbcCW9OHOUr&zh=I?CSd41glKG<2M;*2l5@!7Z|p><7$~=F zGuZ<YOm$v^oCsg2Ii!I4hWd4ASnXV(&wj$a9al>gGP-j<0L7bxM@!>Jg zi%a;|DUqjb3~Svt$+?6z;A0+*!4a|yM1k)ZpFhwB zgkT{Ki2RmB4FUyl=-kHG`Q`yVnVOt^Kj=7!2r=8`ejyRc z+vJYu9AmOCrDwEhKiLGj>{bQt_v0-@zRx|dB`p97SQq<= z*}faxPh8Bl8Sh-NfyH6&uy|_BR%EtI$g4g5Ar{v2C@<{f)Mn);A-iSbqAM?u(!WCb z+qjyzY#~Kj`SUIjZt2>TVt~ zY)QXj7Ylj%ghd@KEJ()`yiZQsr6DJF=krgx zs2X@!bLzKi({r7f42Vo&W8w{_GuR`FLFulyWKFj}uJUXL6%mb(MKc_w)2SNczx~ID zJH>*I2`0#$;L|qpf}#Yj&6|GSv_A3DwSg<5rkxX3ADd8wD3!|dkC8=^jLiR@j~{_8 zlbrs)cMEfPv#s61b(Nba+CrTj?QlrnQ{TS?{S%H$dCi}gB8PCvH`@%C;v8vOI?lc_ z4(c!7TuI_?_@PocAGy#pgk({?cEVXtXP#5(wmK|IGc#%eMOT>Ppyz$R77!nW#g6>@ zav|Ze_f#&skMnlQYbe~!2TocT+~?2>p1t#I(pOc2cOo)KlU@( zYvLV`f;Yp9JZwFobJQ)5tjI~F6QX1#4lTf0`goR7^G#8;uxe?%l5Mn0A8LFru@H ziY-t5yHM+Yu>AizV2|-z)Gu0TL+;;lU!VgLh*2OHVX4l%MLhm(THilG;~Ol4beI3W zw0NXwium9eB!=UZ|APQE&Sgwmyt&kl>J@2@*5}2no`7kOT|bSQFgcp>Yy4xH|-Qr*Q}bry;nzTX1OX z*Ua3x^S+s>RDFMbRhO!+-W>MXXYJ+tS?ds_ASa1~MS+EYfPf<{CH@fs0d*Jw0dWBX z4Sps0>x*LqghzU&Vqyx?Vq!E3cGgCw7KR82QbDot=;}(nB;K2G$^;rTNFPP5v!rln z=>17VgbQhyX)&M2kP-L>Q);WW*Mu;sI;e<`j1x!H(C8T}?v)x=WK>qNlUU?8VPbAI zlzCXUSRdTHwci+c%gA*xgpe`X9^Y%HsEu&^4fVMGm+pjrj55jg;|v7-47?s)B2Y$z zt)6~10;}KtVt?{3f?|!DmU8Xg^gSq~Md2Ghg7-I(A$(>O*N9|2ndNkHv6j(hOK<;R5NL?XGT0xrd60@ zq!5QWy`R$Hp9Dk@(uDW)Cl{``Mo?z7JUV9Y*$XYRFuEP|{1E{L2$=_t+u{(}1&Y)5 zuR|||lulaT>y+Br;PR`R>bZ)iFncC^PkyWPOyz^$9NS>vSH*RTWBwq8RA&T*LUr=U z{0T`}R4n!ZYF$w$;$ty7+GJ7O=#6)hrfcMhQ7@?s>NSS9qmXobjrQmw>9}?D?fpE= zv<7I5`yfvTr!-nTbai4qLtZgPW>NTBl^8 z`uiO1z{!dh76ImtLw>EeE6@n|X1$OS5FqR+A| z;ayszK;)jUKgXSU{DMIo=La28fPbNW_l)>YaoMIRL7<3DijhS)E3ayHc(ep$nHfTC zKq&F4$%qw@i@+{d0~U}`#ZS&SCzOY7gomkI`;q!GwV~2_qsEjQc^A+;k(z1PZCvJX zlqXw4e%pgYx0Dt6=&KafR%C~<027jzC;?*EaQ%{x&SNJ3V|lTUXQQYFxThqzp*@J< zw3|Ls5!hZV=gDvjgSBqz)#ol`*b}tqYiY68IHN{kM3{okK0l5B1-RywY0|SDpqh6{VP;GL;g=yb2`{x4m@w zRvTTr89}V_u5~DUW->Ih*zSv4OKSSHN?Jg9*o`WoraxupkS=4n{nX=Ps`Bzxb>xX) zN|mEw3ODZZ&uGRWPku3?&qUtn16qvaR2Ya$c}lfQsd>N|!raZmHSP6EhFoh=thR_D z$gN0pB=XE;Z++J{b~doQcapO_Wt;VIJy`HJt~e@h7!W*UGGFe7gj(aYEq5clT=0kl zw))Q^x9o=N5HPI=n30#d;V;b!qaQHo>*5ysAcywgxF8DQqlmVv<0BIYVH?S$4RznbN%b4leKLi5?u(p3^%Rk@&C~`_3u&^=vfh)goog6*!5e@gB85Tu ziRMQjs$R&OXI2GceV{cWG$x40=Ows!oE*5{`K42bAjsf@9m7?$o|MN&!~*~7uhm~1QXCS; zq}?PZ=rkkd;rmmrjM4hQ&UnZ`{S3q)M0=s=@S>IoB=bl@Dp3UZZd%Uto7OjnkFb0< zW%oiM9-k!HRQZyOiI4J%hYBE5Q&XVnl}XrSl*!;|;qXkEqv~$UgnJTTFz824&PYsk zPIYQE!wlOD3ty_0BwkkDPwcJt+vBIvr|zfDGmrKoX9O%W&$aet_WAbvXP}Nue6@T} zQ+xR&_}2N*9ocsrc0W4oJ3tyd=HE8NHhgik-a6mmJbky@wY9#@HZoh{EO%G{kY1D% zQU>L>DtIN|N#A~X6#8j!=@m*SYUqBbQm7nqmQOPxlx8+#K(|aJStLBOCG*RtsAY%m zGT*a5Q+^0F?Ox-wPwY=XPnb-k{+x)j`iKxmQ=r&sYWAYocON1Kla*8BelIHEo`0m~QC)(P5M_$eK)%ylC;F)fs{Psw>IT?}q}HnT0><$TrP+!@G+ zmZp_LN@umL!zZW(og9v~evEL;r_7;P#agM&Zy$U*u%CZ22XcAi9w_kIb?(%_T+u{P|LhO`d3V1HoLWTwxMqLw#Fr()J+8^kK&U&2V-aZ)xy9=Wa=CuF zf9}rr!!y)m;G7fhw&dpOPV<%@NgZ(;Q4@&|i4FP6N5u!vx7g2Lgx@#K=IPt%6v33u z_R{v_C9!sENXy*xTrNKAbAfN%-`JFexH%obTg@+v%8SdB%F}G1zY>>aANvRP1QI{y zbukh^EK8c?nsDFSt6+<)?z!wai^R)H$y!qkTOGF5?=GQmW}JDgL7`2Jtmnd6q<8RR zrhB9N?p4|wfRo4iWw&kis!>;Jka4Gc&?4nM1MQnnz>a{dN;Kzzbu0BkNSZf!>5sfl0T64oK=r$L4;Ld}=z^{iNRHN^Dmd z>2nSfEt6WCg^n+a0bXiKS=w|QkfY|si)7N}kmn&YB#j(8b(i)9<)cJ*rM2Y z>pokT6jc^6FTR^ot=~U7|F&=JX>hOJ{M|ru`l~#D4nMzB*S=Z7d1>i_WrI5qM zYz6l9bIj-S@A`PWyf7XrnBf`+f4DkTfq*!1Y9Jo&Wcl((J}_j{4{Et|OM#_46POOBbP<5g$FWofNcW+!Gv zja%S~i`Uxd(0B`z2U-Q{YUB@EK z3fd@EujHn7VRa=q>aNntf7ep>y=ZmoHsZPjZ-si!lgZ_BFLGt1dnh1$JG?(#U7)~o z=loPkO?@&)h~aMJ>ce?)S>u{~vk z_<*2ufa0Bo1jUVC;`x*X8{$>KKNEEHZu8PRYqrU7K`iIO@a}X)5O3$|V^FuG9n~%3 zD`Z4L9GeH{n+4O2&dXYcpjiv}JKx@x4It3)ApMeFSX`{DXuT(F%GRqxFzHiU`N~J<2p0^&|zVyE^Q<$i|{bUKtMsH zKtP3$5aAyH;*o*dBm{&nrU)qiGe-{o{qPe3|2*9D&u^p*q<_so9nL`h z*BEi(VQSm!pZM@EOdBbnJpuv={lf=Q`s4Fo2nfOm(&8e@E{J=n=-vh@iM6dmf`V^3 zx!NAtdXpm}V$v~5cLf)({Bh`>!|rYZ+k_{9#wT|FYu0CLkcWV$fu4`gG9$ z{>*>RfK!6RclgKW(BL7WoC+w^qx=Wye_2LYc$4xkzy9ZNjn>;c4IL}~kMv?}H6j0% zH@`3ABLLs?iSRPPe`DnTPDX^Ey#B`G|NYB9uSR@9KyssE((?V&wrMg>aDS83-Ae+BRHS z(ErH%|5KL#W+wlqEPqk7e-HmpS^hsNOGbEG5|24d?#+YOQOHHn(9p0L&6PFOa4!^8 zgnKo{V1aef-|SZyNKk)s+`nH~R9e|h?bXD(D>No^zv*?Cw_msD>9m>ZjLWl~anyR6 z!!a$*m}*ewI%rv>{aPg-X&t=H(Z-KJCR_EnTUWCKP6oKnb9tM4 z7j6%nlhIxZraZm+^x+`OnQP#LNjf*vK#@tgmvRtO}JAZE3YdRUKT7nE^%ctxg9MvwToBFHC1miD%a~ zyWXn`S5b?vEtyPnKOm=I{^Z*9eXKyqa=9bmJe&HKN!`Nhmml@h6XvImV~Xb$;b7Ll zUJ7oP+g*^5nW0?bEBZD1{y|ZZi91I}$4_lpEiEky)wG~VU2ilogPIqgUQ9@kZ*ygd zM5W)I<}uK^mo=YL*xkv{U^`>V9l9@Gi{3&3*L%et6i=RfzsiybsVuFlshKVU-I`s) zrLTABvB|$5-+E)%>&0G4p&-JTGo==*mx?857X%>)%acteL2ElDpYTqBx#DCHW5GO} zoSnZMe);&b>^Nu15EnaP$3z-cBPs)!(0$NdfT9%Y2%WJclZ{r=+JAmDae{^C6y z?S1nh*cu-#`uVmqsH0^k+bt}&e55Snu~wiTZX!IRtbAhk5y;WU2WVpw3b$n*+Ic|h3St}%NN090Ed-U?>tMaro~x^O!D3IyMZiM zREtbHDTIo`DgwU{s%b?gooaVNQDzVR>~;B_8tq8y_WhpP3V#_utoV7kd5B2*$tAh9 zr6mve2Ynje^9+#teoebd@9Fla7$_IWRv{DuPV58Uoupd}UG>WQvJm4e7@ohV5K?kw zcAl-Zbh^9RoE?#*rYusm5mNUeX(b#Vx`&nB%fuJ8`@Yf5IJ5-XfIN=6Q2TqGpJA<1 z5XJNt4P;Dn=cRi#fbXvt@%%C&$WDp2=zN}&jSIwR5FYHEDgE#o&^>H&yS?jDU=^^D zJuSA9H_g5Co#zcOt{p^x^m|&WOomwZTK)#Tm1yU5L+Bvd4-fFh7JH}DYc02|u{@%l zV}lim{b%l>@rL4FMMyaCYI_YEbSb)`_fECtPM`1XT7(z@DcnkSlS1xpkC_6ntsXz! z*#Qh=t8T(wg#Ga{p4S`OWggqb`JfPrPoov3+IGG4z2J*^wU@WLyjof~jy7HmeiD?Y zEg_q<9L@Qt!Hd&gE)hJ#xY{E1`iVb?cUcsO2ck z8bvkzW{nYB0&^1V&2DS!+V%!86}th@04Jt}X=>rATQzNSlg z%Q!}P&Ul!u^KW4ft|sDuxXeXDH8GL#L6th@-W@kgHnSi3w4a{Y3A7>2r?VseJpmV{fBcJjltJzBNZyJ2!bzI$2rOk& zfN?+B;re|4{H)ANP(7%B(4XYhDRt+0WqdPhhRZq&h@92_#5S_4(u0pfy_`n@eCV*GHswQ6eB;Bbq) z-QaEQ9b``FrvM!&uBp3B;e4R%TfQrxC3Lq zd%E^{PQ|2M0T^f2J|-%17*VXW-XM`q*l|ffR?;F92dOj|!qEs+J1q3o3T%RBCWB!F zLtNKQBZW!}zCV_;V17QLP3hAc9!Ka^2dWfjhFB}0K+8adH6hsCE`Nc7*E!tErVknq z)9!Qz2UHg^HQtLWdD%)Y}dDcYc-!6g0})4>?5O^}e+iKd{vkJi)Lly8evico~iKlPDGY z0KyHW&@eibrquNYXh=Xb_N>kOi5IqI+Df{ zI44J3`g*m~DaCzTNqmy#3ES>Ot?DF2q#S$2!&TDQE#)yX)HzS~{D6<{M0H`+e&{XZ znCw6ZPLg6~L$A!}Z5|_gXn9{07gwLWd!8r&8jrX2wLalZ zb{FcYr|VUlR;#(6whgICrWGu000&k&Zp>?yq)lA1z;(?D`zo?qJ>zJ`oc86k3RB zP4|32f_y4fx#Bp8e^zt> z`Q^i5bsSv^M6b;98ZXi@WT(h0xn3`Gj^%LM)r*4j#<3l*-ov*WRZCln(^&$)_)Z1A zg6Z{^Yu~Gnhi)Du$T_ii4mFeWy$Ox;FPOuONb|vN#s=U*XC0Diw~ZNt=0sCNcA@^H z8k)rpjdEqEN-{u5uRt~(I&fi`!Dny1g(6c?#@xk+le*XTLT|AY+9xHJ*|HZYNrl-m z3jS5On1qxh@eR7$%b5PuBWttD0Xms(su~1CVcRK&*28Gd*fgGqacQ3JarYp(2ANM>HOZ3Ybb;E zzR$m5IX-ZlKcs>lkSd^F(OalaV%LRo&zU@sCdmKI-kIEwfjk(s;pQ9`zE*yvm+QAd z`Ro$OeA|ItxU-+W;$r(a(+V;HV`qX}65|-BMv{)>xXSI$UWbHKI<&9?w1z}#kh7O1 zzcPC4hpOviBB33pVo-|eR^4>!6}6s=c690w+$W-{8%d6ep@uh7I|_xSj6adU0|vuCPw`wG6A{Q(j!!N4tZCM4KVH#POnbK8uBCjC_UkIXH#dU;9R z)%wj|t4|imW@6q7(|WGl?Wnc#5m5(JR^Sh>H;5a8;h|XC6P^fsUX85xvlVIy^2bL# zn((#m1C^p>=~7y4+&o*}gl7V_fh;2?`N))j?=;_3fCuS9y$%&LobQnNIi);)(uB_; znD}VqjQF~WJ+4v_!W<(Q{k)pA5y~}$u`c65J;eV)QS0z48kGl$n283_@G4!_KeA{3 zb)9zyOrL+Y^c1FC5WdI=mjn@Cqc*p8VQj4`<^_3zR&=$A5+pxT2Yugx&N1^DWOwn@ zw3P$wHQFEw3ZT+}>UCymui%(!WlcN0sm|0v!bo zn@*y5%qJevUq^+6c)w7BytzG*ygQSi0iiPEhi} zi!_c-^5W!JRd8ByNlj^|u!wKHQLjnc2hYZNl`-Lw(Fo8UKuRv8KL$~8>nPLh$Y zr>rW3I+Nnyqfu57m)Uw_oBpw78u{9+3N1_++QggGT}qwcVb_RF8tvtTS{L}b&V?H! z&VD&hW#)Q-MRU1$+sO!cd~?~5pnp*KZOcLnp-M^aE&b&|EXd*N;_mLERVX7|^Xj`w z>io}{xvYhSt0Ctk&9P+7SoHKwh-cvXd-XH>ki8}O8#v6s>m0Ao9+lXrO;%odyz04; zX#CmvNa$`=XkeZnrM2^TbJy3+r0RyepS0?A>@t$tlvW`2o%_6C6hxPbtf-XzE2_}# zL*71!n%%Ts6gH{jZu!e`Pc#dX{PcRA!^>2|nFg)-Jr?`xAMa~jj`Zy7&^PpyOsanN zPFCJ9ts)DCnJVM`PozR^2!U=Oi%2jYP18$sJ6@V7D}%LA>B77}TzLOq1E=7%o~{Y=6tz)F(RQCZzj3@|v(ON6z|QKs3i75- zl-RKR8jimzrgn!XEQBydXS~--6tp|x3+J_U)9djdtCe+Z+awr`^J9JXk6#=~#+-k& zd|3a{!g_F~odW>v3gx$+i$Ir)YYdh{ZE{%%Mil%+;VDiFf({d@RpsF2W`pCMw5HB}7Lj zRx6of3f5xR%x}2iEJ!#-SLY47b&+a?!vh|ZF{`#e{;3=^42h~?6)jLTU8V(kEmBwMTFYF(ZpQ2UqIr$>dO z>dpK~(wWer1u*#Y`h@sl!<^jq2|KpszF}%HGO*@@4 zeM`PW)-)4Dgk+e*eY#)Nt%Nh9QgQ{Um$c*2fy(LCU4~G&rwm{g|O4_Ge9|Ro{D& zxGnYuM!P3D(?}2z=w5>USLw|%$B%0*EWACa@hduBw`Y*L4#*~{pGj)xO{#P0kzLf&; zT|D@?{q6}V3Vy2TGc^yX!GfAI|UoqkxAIX8>ObcJoUwy`bw&NM^&?Piu8uN%l?RY z4BB;9T>~ji_qw~<&};04DJ9p#50Vyh<1*zKk|eVq zCvq52u)a{a5EY5rWp_#9I45QO0BG(t3`nkP2cEO#j6UU%{4oQR;>a|&8dsDZ#W zkk$>|iXCLo?Ml8C`&uIQ@rI{Aw#Jw9_dNl$kD0n!3W;{PiSm=Am;LmR8Ek0BBtKFS(p|^{x*Zt>sL?d2qtxO+VEJmPtIeGBFA>LMccet}u$Z%*ea)HcMEhd%yRd z9r9c~wCG+H7Q)dowTm%{|PVx}Zieu9xfxVi)@acNFD?zf;koJTd`Q4fQW5H_0vp!Of=0_*(kuOJo zkectSwWRrwZ8eJA*3D?jAtE-Xq>(rV{5_3*iQsd4J`0^oV#7#Gx)UOzb@aCQ0)BrM z)DE8f@tt%2eX#>ey|3X`%XK)Li&yy*D{?ZFSU7;X4pi(G6OMngeCOqdK}*ZT<*}ob zj^!JyX^d9Kka&T{7Z;h4h~MEB7sLKC45ZcWN-a&0Ayej$jMyI5w)b1yIHoNGOnxiJdvMc)a04TG4Bo5w;OUd;?4AKqoofDNZVGO18 z3EC<`Gaq!Bl=f4l7-J@S-Xrsza&Sp?bJ^Z)0%#m2Q%m4_*sxm~kvErQVq;b>(ow4! zh<8aIcUgK!2r;uw-}r>U8MlcY@cD2l=Y2fd1?x`L`a~BgZVfW-8=806?vUuHYa)o9 zA~icNV=Ej=u-F+Z*lzy_@%+gH$qfRl=khZdemew1GDm21GM7Bpzn4tKZyRJF%8!GP zk!SFTPAQp=bPg?Pk94-r<`b`P-zv1^*x?~IE2p8H{btxNMUfH#2K4H962kF;%tC_% zl=K_xuna1>@zZBIbf0fZa8-ok@o5y*MUe94c{vKP2>8-nHxhkqRpKL2I6uC*`Src3 zGD!8FK((8$=ha7&8OX$D1#6IC<;S}f(pHm7(a^h*)mxu)w+*aH?ih(0@h6ykl@4PJ z%NnY41i6MmFN!3CW-C9(#1`)`gveGvjoTA|wKunY>E*}GOTO3x+8PE6xSk${A_oTu zzK2>k>iLf_PYT7V{o`xC^{Gu0^g4k2u=$+TxPh(>MgGMn1BA{s_;MHUvc*9E?br1@ zZGc~hYfIg{lV-U?Y(Qh9Hiqe`YhSUK0egsM&~-2i_3j9rsz*(iQ*iPE=X##A{0&C7 zq%Iw-u-!~(!SUzyYlTJf#p(7P?LBbwuF(AzbU*Of*O#EJswo4%A0cOBONrvmr;Go+y zmMo_lmEAsP6wR(sfEFUSm~FVmCPypL)m6gi;V`-u!iy9Vk$>I*NY9Au-FACL~3ls8zwre}WpWsE8zJ@e+x=$5k z?b6$8o_hIlWn$!eQR6qdbU>@yx6~f^yf_5lMiGssL&9OSP?=yZ?_-iQdqwu{()yL)l%gEhU~ioyXn@A=XO34s ztKmWb%cFg4nVH6gv(hZqUi$NSc*>mF6fMVR+Ov)uBfR2|LIZLc@lbpd-KPB^B39>7 zr7*|q9yg9jB*;{CSLY~=AL}nWwvz6T!tsYzAb*Yz>+#fkq9Pu?BVPvkDiIHQL7 zyCO9l6LE9d{q=@*bI`R$xmN6WZm~MC9ouU|@+WM=XKBR8d1>KzlfjHH7r-im42@YAzb&xd#2Wp9-@Nlq(-;PFB<{nMGm_wD|%H-mJe zA7~(L6ioRXO2Zdjx+2Jr?DpxgJ)5a_`jv$&6DKw+Ursu^J2>WWC!yxFuvQ6$RDI@7 zC~aY#j2+ZHOYFJE*dmlpucZBZqev(n;?<|v*ko}T;6xwA6&!1LT8#p+h?L69=xTk( zCDjuvl}|m9em%GOfy7u*ib?q^>sobBf-gxOt3iPl)2+JpWQ;wV8>3eRgsxj1bBjW1 zSUAuh4T40*DwWW3wUI1)*Jaq70GZm-HSLDApitpVNHHzI3lQjR>>9(8BX2=S^Gbo& z9=2H8(Hu??%F7?TEs9Js_3U*o2y%lfrj&j4Joa`^a#8Wt2_#7p-163-+9B8k44;Kx zoU7!h=S2c2gGyjJA3+&Votu092@~wJHjzeoh46~T_Z$~X*T>}*E zSOJZ?=5;n}Op;pU^-FY6wPHuDZ?P`)?PiKk7T(pu9K?RqcLiPmCYUR-n5iz%1rRWB zgS7#}#DJ4TC{ZZ?0&mN&01lKoI)Z9@vFfJi^t}wEX$16UdLB;9TgJ4_>HdVgS}p-9T2Ubv}twQ#7m*y()D?a7NRLAkf4N zQ4vR{w@*oQg+5-3U=G+L6aDh;e*n9%wcdQMNzo)b^Q^eJgNT#@O7K>bC} z>-|h2mLE~>>S0es=}Hif>RN9HPgAJ_V4}T}jY82jcbRx#rh&en-X%t7CJzmhZ)hK3 zkrYZov?YZ(>KNaFe^aVQ!ot28aE+2O&twOB^slJJjgH7@^wvxz_zygsDKQ?y+OHo< zm&4SH$VA$|;#lpnud&BhAyBZDdYkO%rG7*R7O=RtuAbG8n7hWS{?1gtCA%iRRTGE% zsl%{HyT%({(ABPLPfc7ayu|Kjm{E+p>U4WH`K3N-Mu(|~0?6)az?Q%HmZ*-q(9eUM z#p`M{PDQr>r8(rvf6GTb)M*~x>Oin?-FVo-Kj09NzTzW#8l6_QfSl9sEWaPKXkeL_ z>ZGBbpmL;h(J(pvkT5N=iy#ASMOr*uZ7laNV)Q^N!HyI|gbE-AXDy1Q=-KFcDTkIO zv>m)L(*9Qf9?XTRSwq`t{{{u@f|EgbOJCX>(BM+D2#&0bN^wvH;O z(M=jO3Utv{%J)|OclaBE799Ydj3JVZlFQOrX4j%{)mI` zzT)c^iBqO0yWIv`pSF$vwLIX;p#IPgVR^3P2O;%X&y2^6SH1J3w)6U6KWXQO7&(DC zBq8e*J@y8A-J~MCZ_f`te@iexT^$=Ahl8lCOSj8&HvPN9a-=>m`bqw0XzW;Ljielb zu`62evh2}M?`wG11UaIR<2NNEkr&vo$FV$ZL^J4<#*^P)JKHj*zGXBb|E8iLMd7w=vRcr{nG1R9MDKJDit z)((0s-gNZiNi@79$yGg%ZiT(Ere_|w>IXqx&Br5YB4TsQ=EQSzr$@#byl4Xw>6zm@r8-!0Xz ze&qsAnI$#Nx%A9vDlHgJKlRJaY+a>1#3*Go;CUS<;t74o5oWP(~##jywl$o_QsE3`l>UXIG>ObB#{I%2MZg zW)gQRUCWkOOZ~;vhby_s#uSc6Yq(5YEj#qBO)Etga@b^j!92Y6G}dr14kKj!MOwo4 zRbSXw*6&{ks{>0(9AcAEZ9h)i$;Lp(JAlTi#C`GCl#qhq+(e9r^0UiVKVUyzp69n- z28Cd-%8Q8?$r^WDV5{|KS|q(YYTO~l89Yc?*PLC7LfPa(02@+(SJK-oiIjDBEfLkd zL=pB69&Im9jbT=VT(JeGNs&3wWI*@KX>)eD+nE{M30#YM<(^E1o0d6Zjalb&sDWx7 zwtv19lR3gdJu}`RM8|>`{oPu5xb<$}P(a5+8-UWYrRIl>i)doM`28kW;oOjMfY=zFL{58DWsGE>ffU$U-c{b0B zv66f2q1B7w;KHM0M=4+TBASwQODj-L%Uep)-j;qE4gz-wk|O%jH;0ICUyoG6;O$~E zpb+#C-&YrD$Dyjh>{H!a&lVbKp6)PWw+$>IGjGF+aP%t*LVY?I0Y^a!R)F{Jz=0yU z>%&&Bm6oLwE8Ewd@?NmfrmlPsXSN7dou)Ty>j#zuq-!TX#w9NBQhI&@q61iEPJlh6 zeFpIEqafB^?F{*^0N9p;P9?y3k~JXetnu!l@;Ty8x=Uv+Ke%GExP7~#+86M#To`Hy z{HKtklL5{Tmg?tNy#N}7+4%5t$t>strKsKaDz+Vt=Am=Yl($^HlR`T1K8q zpX!|->KSE{U<}7)R(qx=Kq{_|Ly0;MT5n`PjI|>)#DCb-IoW{W+PtGuCNs83gw>)W zNkT}iET!CnCjft6(oq{af-XV;YU5J`9-Py!<#~>w`x1hUi3#T{KdkH)8H`J)ZpVW> zT{(N-)8UeA-AU8^=A!c*kSh10TkS1#@T;fRD-HWQRI$!_)zC>9J|we}mo**B*vIp1 zn^c;_80N5&8*(y%_AA%Ewo6Rv(r(kaH^nSG;4AF}ixTsvJd{lGz(;9tBqtk|vi3x+ z#mw+Fp8WKYK`h&@J@B<;$e@W2dx)%MFew{v?810x@nBbzE@WHpefd<(crNQO7|Tm4 z8EAB1TTK&wJ#an3r%jSvXxy^ohkt$?-`bSHVKBZp|HQwcUNhrm<0qQMRtYe#}~*efpYP$tEb{kIj|ipN07iTLrj4l-P}ov(VE>; z>Ak+1=CNzoNj}8aUp+3y84Cnw`Zrw;_HyUAcbrcJi!Sxtr#^iN0KDMU$+RySq)9*H zG>MDFLz$X|1GB$aSI*kcVWp#PG)eRsKn#s+u`0}JT^EQybMNK)N8k?T?@%f}nKhDz z1Dlcn_2DrKq=}`po({vvZvUAxN8+cGjluSLKN8Vcj8qP(YKFXGvX0@7{=+0&!xQFe~6`mMeAcROnx^Rp%DhvzfpfP4QCW{`u zTWvrK9KSb<_;@?5fJTVU3|cJMfd&Il9Wp$AoKV559zSzge~U!_Y;f>tdT5u|Tc$&y zdD)Iq$XM?Y{N?We)89`EG0)+h{!t#R%2;q)y=;j7=Oase z69w=3mj;k9qyC2m{F^F5Sp@hoKOJFR?6+3jzpy}9nm|~Xqqkc$=l2uDU+&S(!lcQN zKPAlY_ygTc(r~)zuhjF2{*EgAjld7waG?ZwBE{hS?egEf61_A6V)Juq?ASlN)8G@t z;Oz|2udYu_GC@)hkV6i~Rmm;sI?-C|g44 z#>TSEQ2rg}a)I?#}r-@Cm3qFQZl9t#UoGY%6W|3TL45^z~JrIFVB1{VLtY7l&E z>EN=K%XoqI2aD(nfm?*DAcq!omzwyQ= zm+Vgl!2vgj^|PjYwm&>Alo0+jTO?V|KWM0e4qQX~cU=`V|L`<2Mx>fmW!$d6>i<7Y z_+5aoO6+t&|Hjm@glw&gT=rnXM}70U+Sw$weWy`BP4MDt=Jg0nIFUXw&&s=t(fA#& zEHqcZn=5Z|YO_oDPZRNkM)f9z%Euerqh!oq?fbL^!tE-YjF$ZOhqbvpPMB9Vx8^s+ zBZcM}5xcheGK@NPAXe>taV~bIHF-Y)mV59sADoaFsowPKIPZxTmF?S0jVOckv5m%N z72Tob`sazCKoHkd%bDr7(~2XW7zU5Gt~(91H&FgV9ts*LJLW}u*~W*X@&eFeLv7jE z<~vvH{o?N%hB_N$@cC`u7=CrE+wWy<9;VT!Z6X18{357@j6vpwlI#P9->=pf+8Fih zguFC<^G6vL7%2|J7Rg*S?AnX_CEDjzjjyLB@5_e{)TdKgO8vNSQ$sLfB>V|6gmo(k zhTB%A-}(i!sP31S-P@+#8g!w}HWaah8M*0)HLoo}w(W7@yXMlW|3&gU$Ao(cBM=-m zGQq0rsq;bF=ey(W7Z7HzUHw_hZrhMKUfA9+34}fZ!(n{!b)3g+KFx!eDxTX^UW8Q5 z-Ksp=;o$j2_MK9mdzNu%elm9~XU_s;_v`8PJ~+7~C!6uzCp;f%Sp@7;>Dxis%j7IxT=+yVU@vBso;16;@niETQuKp?8Mw_<6aQW6!ifax z0(qQ88@qPJ(A7b$qEq^}+j;`$59Y&w>@(NGRTm!mXu`5TZA5I5ytn*|H#riYHR9iQ zj))N>fCyAH`b=pF4p}hNv9{VD5~wM_x!D^;>VO-<%L0tG^Hl!Xs_PyMeRsLV#ANm# z`glIQQr@l48CI3@27fcwzR>hB!CKMG@RBz5+PTJo>xu%oxC^b~3%&lNr=mqBXKPO{0zQztd82!uXhs5ce*Zcf8Q8OVw5I2)f zHJ?^$sss*e-tQE&NOx5#&a9o01DMpN+E3k_f-!~F7MovyhaS||r&nf)^ul6*!rNn; z)_#9%y{e?5bmly5mJIe2C=1?|EVeni>1ErGCMMngEG&csPXFpzSO3>A`cK(1Q6fz) zRQ0B{I^>Qks|CnVwiq;+M#n-}nYg|Os|?l}VIOF|O0p~^Z_h{ zwT|_UO}5I(r&Z;k#ondWH4jOXvo@4+Vd?}t=ieA8oFR^3VFPNpcitVH7#WXN$<{i$ z8Nn$zZ=Rhr?pl73d7A;luhmwoa`g0t*Z`Wk!!g}8XDj!l_HI_06ydf<*bWOw{~`7# zNOc00gH+BwH*Ac1R@awV&WTQ&mZ^g0*XXrV(8E3_HHFt<*;x(Ihvz;K`2O?V=izkW70R`7XX|Qnk7S|dh4YkAUH+Md`9;@cQ-mlu-`5!7 z?+B-3tNjOSIx(ewMK+TB^Zg1Ud12%*yP%vf_#Kbr5U98OxaiP+H=w@+jSr%5Ba8l( zIco4bcmAFCI7?i za$Fs3IhYVHhWM{P{|^z&aL4RMFDN^Mxmw*hJZ_GB_GNZK`+15G{C&Y??I)T)3FEK7%Ue~N zTY=l|V8a@-mHIa%t;vGmU`p2|DyJdae#>c{6GmJF`tT<{8`}G|PNPn<(|qS4{&4l3 zog-JWII`lB?fx4K1#dJ%IhAntF^x0us-h`)%?-CPJr?iJVDU7 zb-FnfHE$H=ens@A1?4qw-ITMJSKYkJB;mwQ!1;=j5xnQ6Xz$mpbKPX~r47G9I%;Cw z8+LspiqNa$ajyzQTSi~ z3xE<&!1NGalXmKRd~GPcQXYjdceSK(J#}GK8CN?rT)Z>GS7e#6BD$%rslqTZKVqd# zY3VfiY`4Sd?gg|qM9%$dytayTAfvYCw@*6fenK;Y7XqI)!tG{K=1XjU2o#w=4ZrBK zWfYv4UN9?}<((cHl%Fj-bm^=;u&9#1IVot;BtCt;(|F7>IrrG;jla=VqpGG*m)Q0w_gfNO8FZqAx_?yMfX)}gdFea%)()4`4U@3^L02|q`qTga!Ji)Msk zdfd+NE3H660=b+t^+q??k0(M)$Ra|D@`^@l1#kUp_NVmX8}J#_o=8$w8(VP?^{2EU z7rmb9T5MP__k=i>y9^%$&x^qHP5Utf#%v-^Akx^ zXp3DYV)i2GaV>&HXfGu%S_~Q2%omQBOSG*v<(#2C0G5eEOYk?@7SCX_;?29Y z`it96?*bp=2GWt49ch}!F9{^-tP=s# z%@d~TQ^pfz1XR}r;z4N7A!-L0gd~qmJ}`QpfQJ(R%c5sN>?Kq@&)Nlb-&B`P02!WEB8F=eRcPS#Q5{tG?E9 zF6WH=CJu#K(3N{$w#<5J`HJo?L$(?Q^?lKoxA7jn z23<``cGdfLKI6raeCI8Fg72_r&mh1<_B)vC(B32#VQlK-kQHDm18h5>M>jwSizxLf z4D7mxak1_@aT9BUv=r`f=OR543(Y9hWmcQybk#Dii2DlmH9Wt?8LB#8s^qFqVi&#{ z&1&r#gCVo*UzS^|aHsRj0hk zSn-2lX2_^%^_rlm&1vcV;uC&E(xsVIj3>vfl-!iYcTicO2D^lX<5P`S&}3YKB<7pv zBU=8P>*j2R8PeVdc24nv9y|rTHWZA_n?C6ab?KK@LzQgc2s2vuiNR~oSG+$Wv!)%c zikil&4_Eja1(M{mSgz%+dd@Guj}{jObS=rW(Y?+#oqA#JrO&D?-iz-LfSS13S z=Nx$$hM<`qC-N+0SKlPfC-=nuz|A_GH_wEn{SKmzKEfrH8xY&mNGCgC;C0ipUBQlT z0fNHZS-wF$nLr=py0T|1-uYL*d4d0?O0aC&uUc<)?WNg!Fp(z)!#79)=5DO=a1e zJ-AJG6uDj_mc0W)wz=N}KdHU<>akJ%+-uZkA>`=J?$%2xe=JSgNs?Ol-!$#Omku17 zR?E@1UNC8t{M^>}Ga1=7KP%m{IGZa+4Tz@4ctGXdogeHm3Ldz}!JDomSPwyoLsWEf zl1=AbUMnqi;GVdCCX)*(8Wh?!p{w6O@p$crSjr!Nm}N~Dv}!|V)7@4vt46!5XjR9h zeE1(PklrES-AdloywQhGHDWp6xHNf~1aJbeW~G_XlKzpd+{SS;rRuUw-+Q1V5$C#g zRjr18XPBX}aYb=cvW;r@pD+>&=GZN8EY)LEObXXlbgSUQP?C~@F z-#W(mMMl-e{JLpxKJB!=Q(~!&rQAle5u=JD8cWDcr&>VbAMU9s0vcv0bhoWg6 zCjYYHZ9W?5I#0^~uoma-^6dbHnu78urpIE%(K1DpqVtd&cIJ4!t^gMDEJmo1= z>KgD`&=%``y`|0|d8_2VS0ubBSuOCX2b_=zKQCn`*V+S!41dB|0~mwQ6!(9X&Z71xL^}<-bU8L%BxIv&bN_QLcmHan^tQCe^DBm`JU5>QME1RGQ;K#*6f41-(!w zK!c$1ETRy<;k>Op#Ml`HmtM4OSn{itL~Y8~dk(VB*(?>*U*85wS72K-;EjWai?`u zGWOo&X9_6nsR(>i8tC=uDw1<^;2lC5_{joL>Y#ol3wBnRVe&aP8V{um7S-FI7Zl##$Dn0uI_|ohu=n zrJ^K@XtYZ}k8t}trqlhvnFsKURL^!T4VF)9DFs^Dya-yN|D#pSxobx9-LcF9&*#_9 zN(jlW*cqD-p!E&UdOI7q0i|@V?|7i~+TNxUKj8f;mIk5ei!}JB5o612f6}X#?uAgQ zGUY${Re%ZzYziDH3^^D$=h|%hSG(mm9EzoyiWG6$X{1s`Ab&O zo5b8%py?LwJHNSHs?v1%>~lHqNI{^z3UkJyfhC`)Plf48LyY0U;Mx1D+Kg;7yUAAP z;TLw3;YNQ+(*OK;PWCTq7e~{^`)%r_AK26#%?dfGMxYAlV6()?Yl+*xsa+k875(;8 zJKKTD;)&fQ>Ej=DK8$k>BLS)iVrO4(5zxh0I8U=@Bzgu5R1#A=ehgaAaeD_+g`WQ$ zS=#@)aK4Fpstu=TH?k_v1X07WuNW(M#+{`?c$}Sl$ih~^0LspaER|PGxtQdSGx~IF zV547ja?ER{rLXUB(xz+IlOCN@+wCXkkC^DxzlWxye!DYz6qQ@j%qemf=WA!Kt-WI$ zlM1t3Fg1lPEFkP8Oyl+}<(9ad007R4!(DZ;GPW(_H;U*T`yEL$a1omJ42S#?(@1yi zq2<)KN@B2}r=Dphnf@TLPY7?N{HkZ9>`+B%4}*f4(qH1^uBJ?dTiU1n|~Xz5>Q=+3#)ynJhIur$B&_FO12od%Cs zhOylvjkIHg_fmmuC2?3m@nz?PjxQA-VY>!?zv`&JFYFQ71$#CUi#jx@cu5e zuI@H;Z6jPX7c$oq$i%XF(0U~SE$I}@QjQ_H_XpPaKUEDLV6Ixa;4maU$0Ul^4tp}E z@;cNXKiGKX@U42m-?hb!#8}9=4qz-CZcTr&3#W7({%KeX_+f_mfQgevX?FU||HhXj zH%~&1SOh+t%!$7W@pbA)XuD(P=TFz&)UOSBHA?DsIA&6w-o|~0SHWZT0GU_8wJs<) zwPFI(N-t}o8c|$+V_I?A8d8IjmGBxoW*5PiHCnADLXgk73mGP;zDr%^4VGN2{G^## zt=xhn{NA$a<-_2n;H1G-diFUrb}hv))iJlF!R&!&;*G2+#^U+T?^0F(rh)yNw-KJL zajGBVy4?>F1c7a&YpRlaUQpK#W>+qczi&6uG{mJIvHNL1+Fbsedz%TmVPgI%u_Ex} zc>CdGGuuS+yd`#2V$C1_;7Z#8_6ss3h%JqLBI`$pV~O+#%Z2(~DKPoDIymNvU&;dY z_)${69TRFsac7+k+^%<|Q* z3@j}%bJ$z757QEBE>J1@ga?prRDHcoE2^fPy3=I5O1;_4`pDSoHjFPTs%!_Na`H9c z6ASsQ)t4-TaG0RLP~3V=LG^1V%eOo_Df4}e9gNSFBM+KOa@>A3KS|m{&&|!2Er`jT zb7*h#%n3bVSz-E{E5>p${U4w6@7hl6eZ9(U(rp(#|33NQuz}8D5elCJLCd7{?}EyA z#nVKAULrGX0OKXaSS*dLtcoRj=V!7OlwLfYb3Y%R_jqR3gxHcEL_{WAgUCkvHkwaK5j5k?rBD(mp)61C>LF5`nQMmE#l`UV`jGM4pr6|_m~X)_1@)K9^#LPg^FZ0Q-B zXHR*V>Qk}Q?F8!boT~5f2*6Ld#Sz#mJk{byF0|-gIy}fhWQ9ZMgxL|ZL^v?jGZw_0y_=k=409WA(D6bs z{cQ4ezxOwaIf*Gat&QpaEj=k=qdmX8TZJ4a>F1d=@*B<&AD*Q)w#RC17!&LwP;72I zFZC2#siPdPQP~UoA3893{w=WX^F66y(+R|`ttVFy>f!sMkI6ga4L2$i!h*V8y*tNe zgo$5g8UZqmts%xVgugOP+dhB8+|@5iY0R0Yng@Sv#&+iG?74XJnKCNj_yJ<1XPa#= zd9Vcc2k0pXaHkXS>ch_cGu6GV!{@E)Q)ZFdY3EfUHW9|A@DR`Jbzqz^2s@$BeW_zj zUIi{T6%3Z8+;|dHBvvsAYDh%4Tucu}_@a6|Y4{cy!N%ArizV<&+q(mhw&BV%&-EFE zrwjXv*QdGZ&k?_iMgI|#W<9PE2)gCCgCR7Aw_6;B&C*X5mBT!(+8Wp0%7<-sd*kiY z9#mQ(*Dl4bd6a)AR-+JV@a zF3rfg5vw3^)hynzy|*C6+PPLfQgwlbnOM!Ofh%`@QH!MwID20|D%nrDt(dnpWld~v z{j1Nj3b)ZW!JpYf#12c!h9wAj&2=h=)z9R;X?UlyDk1r==l;IRM#hTF))Srj#lpxk z1_0Q?TvG0-Isd%+l8!A}autCrEtfbo7!ZJ4dadQVofAp1H-Ma@`% zf9~*n3o)~G$jW&TMMTZ30&_v6>HaHtgeXGb{|+AiD0mK1(Oud!Ni~g^2;=zKNs`$A zSJR9yLD_6lO<8OMDielXc;aM=%2;5-@x-KQJ2c#LtY$dk!fxnZK))J+f_4+|iS%@N zCG{))CFYkbN1ouVxnfDr&l0#oNEc@U2G9;WH#RL$6ODQv)f;exv2Na!Xc(CSyWKs` zUO%10#w6@|2h^*Op}JJoU#^Kj8uLS~fbNA$755|cxvGG~@<40LX(6Y1dx#gk10CExr<&95`H9$Yg}^Yu-_! zGo5%(bn$m_>frv*0aCn#S;>b^`qG7X`Z+ow{Og1BmHl|i^Ju{HO-vDliuO%qG2yT!4rlQHnK0S;M8F5R=PPv zBR^>B*#M*9dkKEmPG!aA)xGCmgbH#wPW7A}9BNS&sQ9=m<%_s+C-WSg19^s_BiBc! zx#F!swk0NK?B2w4Jx7bu%NI4&jGkdq5$FZ8ltayU_C*H&v?5Neb*aI%<{a`RaY;F6 z9ljA7P0#BMi(KuvEb>Wtp%tbxKW96;gHzgQ%_~91CH(srE!EF}1J>r8*tq{6|92zU z?MaoZQqkqs7{Y5cxK@rLZQEfNz=pKYzXT*og3A|T=K>3V7r;G^j!W0JA;JYCgO|(Q z+8VXMJu{0MnfC30y;-i|_NS%Fl2_t~{Mo0PjfG3E`?6i^|7b4?{-OH2QeFq=%iQ{q z$^qIa2>%IYa4PdHMHdq-FkfQ3gJ#MKr6OIzqTm`%TN9B3ne78mPaNpt75 z%-txTbJr@FO3!DKJnE1jlL-q+>{8UqAK&NuNKJi_uCB&5Uw6UL& z8g-1P0#pPhryG^kHN=*DEt^@hM=OJuG?H^0Ws}gdHw=@C)LRzE>m^kPbSpT%YItPetDo*W?wI8Jg@{(b)4{}Y3U5`>45t^@cGI9ym3by6zk%EhAt1g%18Y7#%G4d?u|P8Xe-Z9jCpJXa&-Z zSuGkr-d@itf-?(B-q~DfJ5)9-Ws^cw!JH(M3T&U18$^Z=151*yTMZ+ZJ*Z7O8ox1O zFGx!JKAqm!7v}ko)WH{52#e;fAt!b;0n|pVBQi0M^d$m4wz`^ zDitB@ckYO}%7}up*4+|vcd;~e@DMUblfHQfGJly|>~83<;W~Jlw%_NF9mEJq zLLYmaB=3NWOWbbrMzHa^d86x$H9nC;7AB%}G0-`B>56)e7^f%ZaOe?lthbj(7^p1N zq_Ga;k_m7_pUZl8~+ z_?N7~SaFY^z2#Xk(VIM!EK-9`Od+Ku&gJ#1O_4VKM}_6}ep5#2VxA?4Hd{X98lUXt zB@=Y1>FX>ps}hW)^L`_Fw0CnnH`(mb3D6W-&+>86G@!LKA1d6w2Zbv$zi#=l2W%<{ zzfMi*xRlv(vQI4VZ^h`rm<*m(p3;09Hr+sN#UncPo3|%v{H|Yl<{F<&+>jAFR zFRRF`nyOUbgGkihIxJ*z+z89uv*G`%MP>{QDUwTX-@C$}ZV2$m^z^8k+fI&~gYu+@ zh|?J6Q~VAFcNJue2L4y`jPd;-dUn8*`TXm$_eCPl0R5VhY=t<Xboq4O_iwYr$R+C)}yjp z_p%t*W9qTC3`t%y?9m2WgJAKwO$trT>OWFvIl}%`6QmKVRf`c+vuca(LAAl~Qiqy1m15wEe2EiHO&MAyMdyF^DgQ7lNq> z2b^rPJyC<`Hb$*FomIF&7Q&NFsy7W}k-FsV)VL1qI_oDNLz<9W8iu2TF)9s2)4wUY znVBuPpcIcwnxNW&-KSQZ=8HNezfHGv$vJ&@uLJ+{XfcP3Pvn!p=43NHbn(Lk$gFAW zSN}$suYVjoWvxbO&y@?EwHW+?bgpy`I-B6NFutC$8>w@)_>l4Bq!?9fx>_z)tk$X< z_4*&|-d~75QtU-ZxW^V2bP@@;PEFDYK5Y*AQEcDbytyaJa*H1kYz^eLRSdl)M{6yl$)vBYt`7HRE7Y{>XS(o+^>D_Q zVTZ+*rh1o7^2#HfhIf^RiW&>o&EgM9s5jeW>{gir@48(xI*t^$==&C%se_Gk24hqq zuMqqul`r@9T-xE}bD?;C8udXH%~LQ)I_(nIS6mO8-32XEz(1$8{!(PS&w-Uf0y%fQ z*;`M_GXDH`W^sLIs7EnGoggC@&UT%wfL*e4f3sDZtK$Ed!oT3RKR(K{ zk){CX{hn+6f4}kj%sA6;P;Xiu`>&s~a6jBW8w7ovFW8-L8mtF6c%|3XTEmhyEN z+C)(!oV4dFPqEv(C(v)f@9=n;xEPS3{%gH}PA1<*mN>RnUL#8Ht`9Nw?y!pGHU;!r zA@EUKDibIaAI&N1O3C-(zByj$;+?|;ULseX?U}{JF$YB_WR`VmxiLBk3Y z*yBJm3N-P#XI!a;IO{iWrY2MSfg(=_f3w{#)5weUzHIB$znVf8nGnT7bs&ML<|L96 zRQ)~k`;+)L{id*M+r4H}c+y)I1KOJh=2(_~2?~MEJ;XPr^LOLrQy^7YqGPh_r-foZ zEB4v%up)8?RPK3$7xqrUynJkpDrlBA_R^?d&%XJeiKj+n-7#%*&)&%@_Wzd`|KDdH zorLW^d`U?CGMn71)I_43ho=(WAt{z$+Zx1b-;YC5QTiy}WxOO~@oP!8< zb$z?sp~Z)TdpySV)3a=_+k>cBloL%82B|8c=f`uO^FWm992dSwBnp|wJb;roP|aN@ zocOBk@em%=RK$7eFnED?3CNy!2@60QKbu+B+Kkj-|NBWwYJzk8foGPlnoZ3^?_5dH z%-qHU&XLK5?Zvf4Zho(do^aV<56Fb?JB3x!zZMk!>T-fQNU?pqBxKX0d8#2u<4Jz~ zWwppIx3|oX=F5w$A{T&VZerqdfVDz3XiaTTz0-oVxR-#jzPC-)%RN_q*Ac@pztHib z`Lg$J^O?$GFD>r50+X%Ui)uV|_0Qj0vyVJ#&9>Q~cphD><*Ezs{-w&A9CiENujazm zd_jXk=_c%qZZlPzoV;ZwkBI;bpOW_C6<~NisjZR~)OX;wAsLrO_uScr5#GDzKTh%O zXe_6ID9y1m+An?OmK1|jzNNf-csUx|zlthra2fBy!4gVOEpV+h%1@;1kFQ=iIPKJw zLj;VY{+grx%f=r)^=tq6L2H}kBbPTvWVh22i_xG)qfi*_lD@90f_f9v>-TToXKFzK zz#~@3O7GJ2TAZX41H)C9_n?r2gT|R?D*TgUror0=xb}Kn-3uoToe$1#Kyv173967R zq!G|#`_n+tUfbIr-zAK`6b1hzj;+J8Y zu{=Dl;ie);+;Puvmm<2#>f@$ZtnB))6skQdWbIC-Z@4AFJM#E90mzjj#5Yi(v3!bg zZkvIIlU)NH)BM{&KMx3aN0C(~hXBWhL8x+BTvy=`yCXXAO%%XEc5@fs`je^1TD&i6 zH549gR2q00H-zdEhsGHNywkbDr5-M8z~+>K_QbE-3$FeqF6`h8c0wsuLub`TEe0Zg zpeD=QK;0(LWKS3Z_75&9>+)>xDsR*;_xq0B1#KqnPQ!!DDrlaaI(QiEz;+;Vr@sx> zWRuyv&8y+ZGrm3{!H;`W(jqa|?v-v*qJ*2oqH8lp zyHq1z_O33p_Xbf=UgOrLA+I`5V@p%;P&$@27y{H`tKGZb*QjTrvIP620=tZW_QsfB z?_ZRLD=gQ^Z_L)+J{iiVK$^^8w^E9+4~nG%7O{$C`0Q4gA5+8<6LLAqJt8-Av?h9LT|tlRdOJI;+HZL9$jd*QOZ~VB@*72t2&h+fkp|yV~(qkiq@)d1FX6DqLc9 z;${1s`5{hG;*D&M%Oh{cI%B@O%)41j(pG`!pYg3yBBA(lLytY-pS=2dBvBy!is~52 z2bdA2X{YPUtIJ*?73Qk@IOe_q(>yILpPTzi`ERc1DC4$W%*VTmn~8Y?h8Ic~CDIzM z50e*&^jdd5nPG~2o_=G&>0@@eK@yd{*mdHl&U26(_lY3B!yL4$6-;`Q4Eu->;xq?l z;R*evGQep&0Je zq3M+JTlLle=V>C4H4bkX-SKX#&4m17-~ z$+Y(py*XuU!q%tDfu+5AbN?mLdN7}Zv^(4ylgzhge||lfC#Ln}_c0kT!{z0s_^ z?^~w7hKol%De(KPO)ASu*N%O~Ue&9!T=pJ4tyXDO1l+3FBjp`zP)sDhsf0aJ^2ON`QTp0F(7=2UEFp4fw?l8Cs@2%h_TkVN8)G5VMwG!i5MY4)) zodXrKcauR)J?itx33yIT*c_m5?jGYn6Q1kGo$?Knr2o*7=1?)>fa+IIb&hH8r{Z_{ zyuIkGjbjdY-dEkC9QhXoh$J40 zllu00fTQCicB>D*->CEeWaI(sMNcXSMfqb~frDIe|@R5LgInkr< z?&saWYWgPGJOiZghC2kxP|;^um%@ab5iZ%8nVt#A;2T-h0&*~pv|1-k>C+Ik zo2{Dcq88~y0k?64yjIZ8Fh;VyNQLpp-MgQ?ahe_UgF2S>8{d5e@`m&6A`r9qmDFgcy%xr9{AGhrls zF_!J#R43yhxV8Y7sg!$MZ!B6zq(N@ds?s0v&X6FB>44=luot|im3-8AfA3`~H_l+B zjQEx5B~1gMuC&2RtTabM(yQA{Oa#Gr?8#_DHdo=e|5^j*+|5r|kmk4A{^tqC$`h-K zt;Uo|95Vd6WDI5&-|j0|;)curyoYP{aa>(qi7?7=L%4o$L#qlfW7{gZfNlQ(FjN7H zp%2aU4MlH8QE?8+np2lPteK0J-tYpgw0!LMvYFQ^xV$r0r5|f3pGmtRdzJxuV`*qG z?5p?e1@Y^ZfLN!v41*T?6{~74)f|$j+$>BS*=BIia8sFSdoOR}vI*N{EpqbsD`GaY zf#X!U&qO?Sh~2&2h9~=T5ep8R((=F%qGCncfD*vW1imd+eTAHR_I8QnW@d;kHA(3G zFBL2}STnRq>kxIQLAiT(_LlQoS@K(9F7Z)wrQtSZ{BZ$W{;gLE%h(wm8EIGRDEqOQv0&SMa)sm1RH}-q-=Xj2T*WeF1bmkbRUXaFL|SHt zh@`6bRpGfk$2Y94pF;+q0bU1+H1gbW#`h9-lD7pizFVez?8=`%Md6hQ7uE9N{L|>zY&`hX5K;+3ZVtkt*yhL^B%l3fXRL$VlAxL-*T9EdydTo*ErF zm`*tld)Y*b!F#(~D|e1eg3XNLJ47!~7& zpS{Ao*mnkh`cL%uGm>-=Qp5)ZeD9}*J;b|qJrB{ID5!cB{5fGIQehsj8+JxnTkJeR zlaa7BU;9A&_S=(YPY1vbbcpw3I+WMsv%pKz$Z7){)65sv-wnatnlyPrmqSgrUGeblW`UbIIaA)1WNxPdxOL^l+sMu}ES!5-z+R7g+V2ZWNDrH=}Bad8(f|*qq zrZDHgv~4|3#li1BieCaTC(mpIPaeZ6 z8*b&}iHlGZtW(Yh9ztVMx^DTsDBZcaoHtgQ_fH84ki`crzF#}eq!)4NV8vcDMcD^H z%z{%wHs|k2yL0w-u4Yn>K4={RRZS@s6@rAu4|=V>z)JGnE!&*o=&{2FF{uP0_Z>GW zsgXTVv*Xk9Uj4HYmiXZPZUJpEUko*gwNM@4N5RRPUjDJRFCA>iIruLBg?!(JR%T?! z53*Cz-F)_}39;?OB{5r#U8h)HbgPy@`^r4;+;n2K`Sqx;xvFNihLqcQm$A8P$fRGd({`7yX<% z@(o}DTX81|6Emzdg#IPn80$x~ZvAUS#>PlR5BGaA$Y7j;G3e zrVRw481+>0$8*;vYYOa z!b91=#CdRaOlQ8}K-WAm?8ZrqN$H|c1X{XyWvveypA@+L#m)cAzL|wbRG{54TU7mvwyk5Vanjd$h+2G&kypZMkeP4WB;kN zWvn>QPfXSJ3M&+G6*|a#ZhGM%9V#=tJ zY2sqT&jL1%ZW~Jw?z!inSmC+%Xf|CtmGK-H^ah@Br8eRvre%Bvr<(Z;6&8I=3C=!0 zC%y%pgE>?i(BEd=tV|0^RDNR-vi`DM=N|PF&&6f%*B*Ng{b9Zhd)p|L0xPM|Rl65Xq4@eeF9k`C@I`xy{hvZ!Q*Wf5HVEa_(V?>rr74X61x z?U)!)UvaC;7__ad6;mUne_F2JM_uvN~3!GUN>k^oUVgPHFoQX>^I?<#FPPqW00* z13HQ4j1nvzT_K!IH}++NwEG^dLYm&_YrLK^;q+sOx<{?J?3{hSuEBY)#-YJ;7FfC2 zP}%ad<(pU8BrK~Y8wj_)knG!~6Mym3_&ay=EnUjLU=jl@oD2J-Vb$~9@n9kDoD488 z_r-8eDms>OH#k+PdW3K5blc>2tk&ZUR;%Iw!3$b@bDr_ajD+?0j`*MK-)*~&-G;%q zPGY87Qh!6kC*SGf*dEHbTe5h&yds+|u`p<$quH*5g;kR%Y~M!(e=_CNb@cFt)Y$kvrBF$UyyPqz>nxI0ozAG}3j>$JTC$3skv+FctaPpTx-f;NC9Bq2|tq^A1 z(;7(IGOegL3}!-X8h0C(&{(e>JL(!$+fYDRtRxmK5Dbs6u7a#T4mkDj}KSlDe8@T?atCggB41ovrGX;LBwidPy(J|)l@#5tRP$u zja7j?Vdq81CX;k5c`7ebX#4Z#!>95|PW>IxFN@xoDSq{X3f*%A5As3okj-|+lo)W& zO!t3YKf<$Ft8w1LPFna65&jzP4P*9W|EN#8pzfOX8p*B7zbz?CM0005CZ_fq^I?mQ zoGJX#trgl7EkUiE><+)JP8NWFR{@$h94Kk3|S7~v7+OsUYb zXHH7^ePy3*l0cfGiFUQ_BMZySPz>zYP(yh4*)}z=*-Nw}aEu=Q2=ZocP`3K!xc(g? z(_7}RG1RR42w2~KgPqsW*#hcLRv{njK_z@}gm^|W6+P!12&i0Fjlq8rWmhToAAkQ4 zM^))zX7mhS;2Q|0XSw=?@(N9(bil;z!GbkZflYXE_&K!LxdUk^7uOB z`_0dmn@|TMEl&K3AQ~w~u4FLvO~Osp;{fae(@gco;dM9CjwsT6t`ub(p7bA05ia*s zG1R3gWhUhY_}q`3+P2go8zt$l$q72b?=jZ%`Cmn$W=kvOBeH6o7q8z-9!!^3EXnv3 zZq92aJh(>WjU=Q-$VwFTsIphNOJtjT1+sq>C!%4?!hgNmrp_I_iF#>_LUbSBL733u z2*%x_yI=oKs)CRVv92}N%l5+2o-^7_N!b}qi|N1wbkt` z=|^b*Rwm!8qXwL#=}f%WW<#aEZ$FX_ECe}F_>f+$F9m=u-Uobmaed6@rIDqX4lOJz z#b$MX;(}m)`Jkwl38xXZtL^v{pnT#J2rU$ZjXYbJirof`CM#J##h4kcLXIxse&;HF zh0%n^nZ~O4ULufnUh>4Ws(Twi!t#CC@%v&-Pz^RAsw-|&SI9}mLUi*y??5bCvN#rc zT=Sq+?b-cLUbb-ZyMwl_PA)j%N`8TXMNeRz4HA?UYowk0TS5xS=~QIBk`fZu`H!_L zvd?hDF!!i=*F`8tGK16+q9x+_o@?}Dd&6RQWa|k8$8VfsHodaMr9DvVf{2_?kP5dj zvLpKUbQNss39WYys_#D_f_?6v?dV{g3m87z*R9NDkaj4J^Q52BvL_7DlkH6LbC8~BrlIGkvZsVfE(Io7Yygpf!9QKO4l(^_^ zR9lp|;e2cc;{gz|;A9e5Oi^LEhjLtGH>esPr7v|5aMnk{xL<_2AJQLif*ApueC&+* z0JO;lo%C2p29;5a%a&3QTxE}KQ>HARw*pj1IT-G0hDPXjhD*$rpYpKhu0|2RhEg_M z_J&EoDomY?>m5T|2d#H@H$TK@%HfJX<|Q>%$0QcU_)ag^nw55xX3)jaOq)CyFqKTI z%^Fz?aH7kGNibgfGrQ;5lI(d5#}O5wPRc#q;TKJS>8dfqL6Mu;Wb01yG-lG$P)1$q zRDb-a(sHA}ni%#oS9phK1aI6OnK(q+w`3#lgu=_!BsyE=hjh{e(> zMKZ-ASN>MN!WiQRyb=xn8@_{hl2_e|8k4`sL3@;gfr}?nkb`D%M}Nn8M&K?7a6K9J z&}pKJUWj9}GGWvv`McjZ;eNCciKE7;>$B!ZbVC`$MCf5RyyOSLjLOGC-U<8ahF^`I>+|l5&8yO!PbHY+=Q(jx^G)6dHPhSB5hQ<@pK@P7h{G;`c z0t2F-l2nFeHg+F99YK6wtI`qwx83{+6QIm4i?b#Zc+w4V?ZW`|I*%FgPYno%kYFwWA>eM-0?!svsQudECImeJ}-~$M9`t zEWZnNzJsZn-fVm5$B^g$6FXZ|;$wl4k@4=bAgBc4gWl3#z{&5hf9DsynVGOmiRgN} z(Ko-E6&*nWr$w@tb>)W%8W2}fj(+jUjED+XR3nFF4SID{Sk;>Pk68_8eGr_cq~3p7 z_T%2=$@93rm4_0ZFzRFaNpxR@Cf`34hUdi_RrC6-k0jC5X~UO40)7E+X8IbBspB*k z<+ozPT`AdT;NCAuw_J}mWun<=bu4KY9CSlh^$+syANh&_6!*U31GPloiXs7NwVy)Q z&GnM`m90k{97?~P62Z?_Z*{7)y@V`mJO{$(z1p(=5F%x8o6ert;|9>Nmq)a1Jb2LN zwh+x521eKp#=X6ghW_YA^*V3t9C$fORpgset9zYo;8mlUsN>4WN) z(tP&*#IUxy=~H1w&Sb-hpf576N&1DGqD9iVYY9U>xaN0K{+B03G}xrskO0n{M^qs9 zg*qW7DKzz8FuRU3xCuSHngRR@e=Z#8ByO&OwF*Tn@=x71tz4C-bJSX`l3NMX>0hfe zC?2yen2BYfCX(#1jL69uW$??PJG4|jkJ9I!5Cy?F!}Hys-W`I zc_3r=H?r7XNq9)6>d&=|gnoQW{1X%PQ}WA)CeHWEb1eU1Ai8o7SK8THdrp3qQ^WMb z8XgwD#h&)mt2anV7o_C4IcDB?{r^slC5LYcV#XuRBjIGH+S6!o%URKYo07-|+S<=S z+SmA*xaZx+KGLK$5t2P4^?CJ?9K)H}30>ga$)&o_3Axbmzc$~Q-f1O5Sh+cAR|fhAij@6Hv%Ccx8(CsGnUw5_syFm1J--g6*!8n zW)PZQIJQ~sMoaDEkj%D&u?}z4gJTtEZ{Zr}Advez6@#42zeE%)EuW1X{P)ie3wyT$8H92c^>$+=u?KfM&{fwY{CrJC_!dzLW#@l@{<{V zk6lDdM15@EeU2d#Z%SZw<2Uixd&A9?k&mqV9<{)v@#SzC;pUayAAa{BVYuz{1!FjG2?P8j!1dKl$zid1ZG}GS6#jwvrzENIKQ@m< zoW4fWRvMB8pTvYcA^%ZwQn^(_eCzUCtbZ><7Z-?3}LVy@$Vs7WrV~(8dV|V@gZ4-YPF8HTL z$D3ct*^T7v>Ua<~{NDB9urT>oM}iH?=FsP{k-qQOp5wG?-P?u`9P8XUdf9kD)Dx1d z5=~Ds-qCS;aJ`0o&2v=XHf$%ar!+-{d6v;i3NQGfps-S3*jot2geb|#AS^ZuvnF=m z+%CAa5+ajO^H)dlJ5k~emZwk@cQ&n%x+Y$DFef}tfIPsvwQzyw@|c0v*+0$K<(>}WT)W=c zTpx(mwVz-onH^VcDdlna^6IvgZh97vQSQqG$$LK}W2qw;Nf0Wt;`Uw`Q`l^bu=(1# zcLI`haSNyw+-O>!m#INoo~ZnBvq~|T-Ml!D%~6doVJRTxu3B7Q=u5N?ryZd|m8OA> z%ERYv<&VRCk9zOiWN6#Vkc^s}b5BtRLoA^@sj5Q!;*lU13iUVl2>O-o7#_HoiJ8r` z3=I7C@WE87LFgd?WU)JqlyNo9*GMdTS9dqqgFIX9z>tdRR4f9q7;jo|!5#dHq6G9D96U#!ygx&C^c zZU6NMD#WPyJQZ#7M~uOyo%{!>n)-QXAy{rYPB%|k3s8fE!nhtiJDYf&Bw??hiIIve(cTqMmgna|-8bZDnbA$ihw z)}zeG)g}>(G)`NX9pc#g6mjUX3L5Y;ieiTz*-9ccF&BgG92?^10jQlQ@}4E{XF zu@HaEU^}19$y~9+KewlhEh=-*Vz3QfkY@K$|3>j$66Z%YpKo}(({vzpXkr9KOcFv{ zKIH=pc3#a`9y8=OV-y+uDobVf?Ri~n`bCrXwXwo#I&iBjz@b{3LFmts-oQ13z9KBk}#`eLn+Yy%;wh=rc?h%_v#R~$tdY9LEGL_6`7oiBYYch~Ov zNG9($6_;E3L>|t5kdv{@4uvQ@tf*VTskjkYo?0Vc#i7=NIt94djeB6Sql>vIl-?_0xjjPG$-fqB#(n#W zJ*S%~L{OQGqnl*D`8|@QPUDw%(fIU+k|M|tui1>1++M^`RNi(g&awqU=-4?z6UCY? z#$X2{c6`>KtjXes0mfA=qL_Ox09T%msC-D^tpDNm8iN2j?I^(0?C5th5v2*q zI}ld+r$=)xn?%BlBswUi5cXE-JRrAqR}ek!{{uM7dvz!WvywGaC=}(!^~Iw;hPU;} zQkigg^fj+c5|LE=eKWjV=Ml<-Pu2oq8i3-&`abfyGQ_&*fS%0J^TUo=jGuOXKrZ&sei4&)kh`)7@{gkhE7gP2U5 zQdju?4D~|Q1Oh!kX|nV=lT3rWNUqEKslwX?!^H&~T34Urou52YPHyEsQC89888GvX zHv_nMClPE={GStaU%uK4r_C1{k4wBgj5;lkT%x}o4 z-w0R-iCj!7-!*!MrB1;?LL(QPU%%KEN*5bJ+WO5G{lI~a;x+~#(VSpvt*FONCZyc} zUIt|*!Nau~MgEEPyLWs=6SLs8oWC?OV^i9`&UjdK-0#+9a)s7=GXsfRQ~$5A-JbMtP#2KBUs4U z^$0k96nv{w){a($QT>`-Y39jk<;1?vV-jKA30hkTPSn(Mn8seA7tNmbp!|3|cnmm) z*77!S;s+_v+Fw}i7!A__XV{T$Pp~5e528e~W><%5@fJbnFOtaiyR+B`hSfTiZpGX6 zgpgI@__}uvl==Gd7P}Ingm!%@>;yK2;4*y&dKNAFIKVjc&6d!t+-z_&bqe7-dEee4 zPkC;+eA5I4?t5#n-rM|4kz(Uh4dxDt7y4gSnA}TE(~VoJ3XCb$+1=3vfAzS?mSl9Y zGGFn4xvrdi4mi)B4CwzHKv@`?(s7o4_&<1M+ZvjZc-9+2-p4#yOFs&~VWy$PG8Nl5 zMC>5I^nIQPab%7@a7h?--<-sTPfe63q-w<$hO)Y0zL1bPx=o z&tD;Tx~uE|Wmxu|=|Wuh!>Z!3QHC7b$}CY98P{5wzK9YJgmsmoYz^>5WrtUVUz&iZw( zH7qADPgROuIHdVqSnKbUhzoIao_6aa%+KT_ON#`dx)Uu@7$D|MV02eFkila6ek)VB zkp@B~vXqVzJ3Mo72WMVI5HXxK4wwZyl`NZ{#?yN7)*cI4bOQnY{C86GyGs9m$4)2* zCsRy5rl|>|*Pr2T2X+0h&L{TDO1u%H%YXJc<&-(#L?+uv0qX>bRbwr|%C1(P{W(s9 zHQu@@5C6Nv0JrIANj*C&3?Wcj)B(-%J2HVhUQg!sS^?|?Ci{FmZ8-*2t)v!{?(z3M z>4jKw)ES5ZcxK;QzMc4aP`wt33BdBqquwA2S0C8UFIHpjl%O|G)7LMv?c;w3a5bCH z%X@uS(Mo4+>dq#9O4c#q(O8S!5j}UyHa|ovOY(ml<|!EbuW#RGz^&;@UcqNrFKZ@4 zFfEb6H&Y&GaV~PkT~b;M`^Y*N_bRu1~#J>ygJO!Gs`ey(OI+(vSne>(lJLNiL_>rIbAnj7**r10V+ zuo>PJP6}(pAdBXIo}G#c$M_i}_5=2U3ONGz#XidH2Vp}ROyZdVz0~%!jzY2h+MH>B z!^coSK?lC2Ek>oy4Ja;kVhpaMsegA$UoOOddJ`Q%WkalGC3?Jiq2)88G3oDaz%C(X zj_>hGxR&;mG+YC2H1a@uHF6m1SRidof2&B@phYnbX!M z625v`z92`6H&w_~)DehxfU<93{35-bP;T`DaN=ARIcbF*pk0@*i$)z3*^Dx6c;9X_ zfRg1|FG4{IkryPhBgK?V<5~ajgDIpb%d^Q@tb;Ts$hl0GvZVD+M(3a;eHpf0f{7$@ ztCLkGqGXim({jlC-O>8jV+kLb&TQp0Bk9s3m78xLu882;*ahV?vvUQmun&4l!!)Ev{*MCJ^O|`5Ix0WS9T|>J}oXP1* zlg79GMiuE zTO*XtmN@{~G?$2jw?Rsy$c2*c%*PY(z;+}MkkZp4&eogaL?IkW!7DKOUs%GEUC@oj z>RQ#N-B8!^%!Dem(k`0XE#I;)jFt~kEV|hp3tvhJDg&MnD&GY9w+wU*x!OBx|ApcG zlQI%WeD`^lD>L1P4b3@tYql`5oG#8R^cjL+0{pll*{(F7#QQv6HQgdX2y=K{c&WYO6nbMh; zSb7g7^m}X1UoyXNA#o59B?HGh0K-4Glq^@K9q}Y<9@(`IdKO^*S0+mcdK9LP=kB^A zpLuq}(h1%U#PfDnLsBAec0`5}@(#Lbqi20jc#Db4xz9JjME#Yp+tpwjn+1B(op}R} z1`9|v?E1JeA^1(g>;&h&NecOQ%0_p zVVPAnF%1n^Fi$<<0spsHHl(ees;tG-3Xn}O8z@q>59LXxEZJsrRw_w2Ah=9#HBp?M zP7j9!6(2cFS-fi~hw3fxpLR$L#WDOFKrwLPH6B&MMEpnUL_c04=-E#$eWxbkLE%~? z!fn>s3B?xc4_CJ|ub?sppqmN~#)(QgE94E>La*I;CL#q$LKZ{C zGF_SZdV)~(R}nL@M^o^S9a*>fFv0KVe6(n#3)0rd70FxnH~rMZh>0ZJ*=Nk=UUpsE zuc#DQ$HrE&>i|uxdnkMkzIl0oSf&>i%#VO>DK-n9ExAA2C9uv zFf_(3Hns?IHlM$Hk$=I)m~L2c*w7$6;C6A}459SNSu#7CW$EdKE`bFSXVUalIVOBj zSs5M;Dc{X>ciWNvFhkCVpqR@K4!Rs0c!k!A#Ety1Y6)Qr?iJ?eH}&_Y)nGMpP)bxu zh&b1#k)bAa*u)==foDGD#lGH-j8J!U70zxC+mZyqeD0TO=c6j!E;>GFG~?7ml>)pO z;CDnfzk8$J%^}wiXZO?-Ga);0WX=>e5wlu+%A&xCP*9Mc8y!VGT?;AX;Lm7~>Uc;h zw>^GqeE%J|^k+@wZPqjOvfe+9goXz&)=k1m8|Lx<54#Ct_|fI2pOF`icVG4`V~wM# zldANK(4tyT?CzSozL;Xy-Nl5*)c+(}4BXLHG7J-b@}!7#SPD^O3_-Y5rl8BOukAhA zd;t!&BHgK;k-)N2YQM%XfI!-J?*7*cW#t37*kei8*Nw%MT>d#UJg{IuM9cy95?%yF z1}$f!YLi%8Et1F&IwL$h%z=z*0y7p3cEU791OGHRnsjOYVjWzK!A{H`*-XGiuQl&U~Bs` zON2cO9Q#P}{-;d-=L?-cvB~WwhJ|B^XagTbo)C6(3gHR2XdWP1dt3RRV1aJu{}48O zIPe-(F<`oHGE#XElT|wv_aMNW@1=e`KV)VO#7)t^v-%5UI=dhDM z!AdTd;rR#sEF5JicJMlOZe>@1d#}Wxsmol62qT7*S%}d6H)zcP6&%5c1(J5tE1SIf zVftMPcg=%y_00Nx&dZ{u@V*eS!Z9I)l|G|aWzlyJgfgZ zPGZ5>gO2HM-E+SH7lMj&c+n!!9(9G-BfN81_v=^-FsCa#p{jfwuf^wS5$@$8S%bXJ zSTx>1=Ocbc%0UL5!vCT)9?{GA&qhL`YOUY7A*42PBhoc?2UDH~J`3NA_h(f^Me{FI z7M?F8v=;y_Wk@PnUf7mLIh*>Ath5;ummU<1I}Bjo}M#|9&^;5$ZAK31w!K{BP5c zG77}a%(x;TwRI3TZVDi+1(w?Ewv6_i%CdzUaj@g|e}9)jjO2P#PgzsYLG0H!9|2>3 z%1WbM>^_BX4iKKL;d0F|c>OGG{Euk=zuF#bU#`#J6IdE$49cL_%NmrPP8U}_Y{`XM zH&*tRtu{O0tqMWT$UjboN1N@S6P7)G9OD)xuYbuWz8Ahdrt_w1O0Yg$Bek zn%5mIcN$o-qGqkeq*cWZPT|3)od~ru8BWnwApz!Zy`3?#n@JXjq-FdAWdLnLoch2j z%;>a5Ip$a4Nvz)UtHHx%Zgk5WHm2x-e&L@+wsBSs+M5XddtExBXh@+?H1GfR9}QvO z#3&)N2ntbyY?}ct6w0bU=AKpe1OCx-q@5$umCmgH=9h4qOjP(e2qb+{u1*BW-+!#F zr7;GgkrLf+WM_ao8^N2(96|Bu)_R4xTqmLcrbqJ#Q>1f+ z=GDuFBvn+=aJVU%I7#(0$ZOVEd}RvG2~qym520<1etKaQB$JKOO62n9_)Rj6f@2 zP&Wo9U_)sc)ucwtvOpb*C;(HS!wj%=dpY9B@JkiG$9Huk=sTvHqxZA#WCnpC zzU1FOu{-e`Sv{6)+R!B(W2K?n~vJLjkd46!Cq9Eb`oeeuCbQ#?b3r> z8Pa3}qTcrWgJ&oh2X`*4O21j30PP{9!a7lnMMdY=jR)Ew^g(WIEXq_$FN&0m!Mep>mTpT0-%OkRHI$+rf8cu04IK#m2N1BvEfldKz% zVX0!U-_`m}i-zco@4wEP$_y_I^FJMbnZG%ryFG007STU*A#jwds~1WrcR~jVWxA)A zsiD)<;Ej*{`cxM^@4EJC&v8|$#-YU)zl151D-L{t_hE#4#(ZM{i-^_5gHe`8jyUr$ zipfY2Ck1LG90n7@#5H?CEgZ$6`_XEkTJlS&c8iiT5Bnh2e5PoK%)|tj26H@B_IBB} zkha2$o#<>J;M2i!bo=cNf7q`*7mv05Q>}mA8kuj#jq^H&uCp4tQoR~@ejIJzMsdE8 z9a6bJ0;zy2z;7Z;A=ROCE2}0|a47xJ*5q;APui;Px*mXEm+Wt)x-%p7n2jNqE<^lx z+Ba=eR@SPDJuR@c5CE*NeJk1s>Z$b9S+bHN%tuqCgCRA!q|(BVU^o0B#sxpBA)(=8 z5&|Oz^ykX2*@bx&Eyxhl_K1;ylE8IUXX=4IJgikpj?oJc!oB~09==avTWudNzy^P}Q^;zSV`y+TU)QEPZuwfs zhoghNDy!CQ75ETqtt6f77p2$X_8R%DRkFdPa^0M}G}#l>@{&m<5+V6YpT9Qhu^WLH zkEoPC>gw4_3UoygBcoKNsyW7 zk1o7+87vo_x~{S|Mqc!l2sPR7O@^A2=OB@NDupXzeWuXImYb9QcxM>R>uNM&(ZPX( zLSQdr_3N$1H%oZ*$3es&dsvH+JmlJfyIy46&i}>;HFy!EGda$0FtYfMuX@DPs+q94 zqC@YO)vfV!jQNH$ZW3`4^m`P|k_rhn;#VUK;5}sg&q_z%Ac#s*N7V_WvzCO8K|(dD zCp+_i*O*@_NVP1_WJu{KQ&DpUZ7V`Vk%k6rJ(AwclHcSiiAHE>g0Xbo zO3<~lP#Dcv=qo(Q73UOVCF1Hm&!wC%p5PG9$f)iN#+vKu3W$tWoLw1H=0y=T7a>~7 z&iw;9eZHDX%XuQe2*35t)Yb_KxJniNOZ_f6EfGG}@R;zD+6IF2AU}P17UmPnd0&_( zLe;o=A5Hxa9-n}AMNZl82KUV7^!(>Ie7Z<=)2NhNdQDl2H7m;#hkD~t^7uBC)337( zA4;h2Zaiz2NF!O`+*lKuHDq93Kk=-=YkO;{XvhT6(77({<+>cV_;AW-4bGk)JZ&Ky zQa~EUhsPZ`nPfz+ZU-8(D!!k1!!bl*Bff9Y29!`J7}d3YD+yg73edI>NP7l?iuIVq zoJ(}*@y>Ju-8^y;z2cO_qPY+k&!0QI?r=gRWP3MX*VgdHSo&K=?eCz= zD)^!r>sO19IxqN$Ef0eCwp*wn>}k@_=nc+?6(?(1_J|#=k9aeBngj^!wl}f0HeLP} zKuXKsHoe=f18^bn#^J}C9Fz;I=9m{0!*9sRv8C}=z(O4rA$ zA3jlId(>F5e1EVIe6ZUb%ck%swjM${8){AheG^(A>a{aq+~SYEiwpw+F;0nvA=y33 zYtjDDHl|bzR?=n$lW9^(Os}}??k*7q(q`rB%&(Rlhi4Iq=COEX2aOur;?f%QTJps{o5CT zYkQ~qAr&ajV~{aJwAl?fcl!#(h?~k_VrLwG# zLZW;cWv#b|#y7FSm;yHl^Cs8MkQ#+XTdzdXsi%fiC!sAbJ))Tsu|cs(b*a{L^8Ppl zyTk#t_&x6y0pvruq2G&yXHfe?BjoNUuh0fue4#hM;&5Yy2l&-I7-@#`Xmj z_9^QZ%8T6Is9)ZDmMc~5?viXjQ)O;X4{YBuF5@OTcP4x{OizETwrvh-!%H3c_!{T+ z0f!-TgNS(^w9GB*4&(kWitU7KQ_vqLc9A`X&=z|=Rze#yvpf;msF4uonxXAEA{$dM zvhfH{WH{_9hK%g`{%$Gp8d`s2Q7?+=`7L$#Nzjvkg|MW%`d(J&?+7{@;fCPABOYJFBgxXpxnd&Ntm0C`m}a@0@y9mgrYDzyOR~XeBhW8hHJg=+ zFXt1fQn>&ZpDQ_pxW2Srw?ht>y|+%5@6&l^?}y({Pnfp+M6G%(_~c;2s+_*|uS!p^ zv$KXv0ws6`ex&Za!g8MMGZTPR$dz^_#&I8GVTnA8id39;QfxMnjf&v=8&A&BjDXPi zg7U1&W~r$UKE>N8dL;(_n?*>>gP6r|WcJ~X37mO`%mFt}7$Jj76U55?E zj?A?`54QF!vo^T(L zhGNG1C>DjEbXgS=@J@1DTM#KPPz864^b9}3^JN7^j?kfOSMZYor?Md?uFbp^1>EEX z27^FRqusbx@fUI$UMlIJ1T=b}CM6kMnEZm1?G8@&xp(o} z+*~|nII7aM^9nBBT`(zkE)!#Nb_~x^$VOjwlJX@o$K?@BaieiHcN-pu%r)%jf46DN zS@!5m_dZ~H8DFK=gn{T8Oi5_4^)-TjlV*Y`m7(mH6fTQz!lyS2zQ_`8O=p&XC{{Zw z*-0TnWHx+s*E2>M=JFLL4r<>I*Y2FY>&Ko>jmbVXq4w#QbOD1f+!S;-Xw~> zV|FFSmmI71pwizePwk5^5^+*{NS)~$nIy$+79R9gr)yM^v-vv6>ttaKm(3^X2nlr? zigz;v^uR1;>`1tPF#EaL+hYFE$77QC1g?WK4}S(2Sthf-CH++HZM)Vw5JM&BC9L9O ztDpAxbg{qKD{idB`Fm^1;pcd;u!O{v&smyLvvIkYC@OHlDMAE`K z_I|MJk^P8`0tw;thF|)wbxJNSKkBgf-ANSFY{PFbf3Xr{$jI;pP9J$^%L*YR0>t!Q z(x9hAFRUK*NTogq)p53X!wS3HioI1wJYy9x{f$()q9OrYy8dF5Y2VroZjspV!1spv&=4t);ZYAO9r48>=TgG6(mxZuYoNGJ9g5wfsBgQZ+> z^Id9BGLD^uPzKWr&xw=y0(m5zKsZ?Q29RH{N5ee!t!ee0&32k1e^_drLO79Bq@+cO z*rnN79Z`i`nS55hdoJP#6S%fe{mhr=YAze%=~Vj0RGUE$iaSf6@)^!}Iossrn^V^j zQU3rHSLQDYG%oDn>`3}c@^A-bZ060>Ti8b#vJOv!;CyWeWALA&>~5w*Rr&lQf>*a?40Xp*cGO z?v=E|D2F}Vg&+xGX;<^hL$RRE`KJQ*l#0sN+oK69IS^jWhT<6MN#-)ut#-}-twCia zLX7zIU|#!DOAz?Vb!k5J>re4#SUGH>=a)F^oizWTpT1W}OCH}!^~(!7>)LjL4%-&L zS6>dKiC%BrU%iT>MP!qQ`}5D{E8`9Bu5UzF5Gg2KfQeLGu%9Eal!=gXw8tPX72Wmh3hD8R8tU6@Ewg z9&6r@Hbr13(+lO@?p>-KxOjs`*=0?TgOLzR%54UlLp|gef1zBcfItp{4TkOn&&V04 zc6icOEN-5FvsP3UhpA~Yxt68(f}KL~v!tH-?SHYB$MA-X`Wxpheq{1l;w=`(%Z2A< zMU?2iHjl-CZKFD4}3^sdw&MaS%Lrz9m+cd*jbHn-O83%-gG!X8b#G$`U5 zOHE+wmZ)aWbcz}KL?W^g$|_|I#%JLo4x(}SHOkQV_3Rql<;`oxmu3{EUWK(ac*=(i z^F%-OSCy&AVW%0e;ttznbW*1s0A2&+xy435{~2k zpl)>#1Z_CrZE2XnjOMbC{pT!Jic!x@Uo}0zR-p&sBQNJ3JS>lk3;*gN={#yray|d1 z31bN4AMp`hyo_5BW5rTm@9p)K80@wsE<3C~t%<5i^I7GQ`)YE`#W5GtNy{U^8H$eG zi1SrJH@@NQpeIByg~&4=^i~8g#pKFGljbKtbo9lf{;$998l$54G3;xJpBGb(!klA$ zs?DNj)cN^EqaI8)20Y?mVuBbRc32h~`Y}8!L!LA8YR&gqz$s^u5wXjms+Vj}jrF1> zB#nO`0x7@eUSvdP)dK@bL%C$hu2pXDN7Uli2 z-!OidC{$}WxjwI=eYG-Wb$ncIgw^`ar+iBqD>ICyEDRMsOjf}=A#10KvyH;Hx#72^v(3ydl)yn~84zSlHr>x#Bx6 zrOh|OZnHHI-FL2o0uA$T*$4W3C9cUZh$uZ3u$(D^l@IyEPiG8T3#l3n2>GY}i^gv& zq!ZJ>?UlkdZh^1=Q9MX4TfWJ{U=8O^`?a(0H8ic@WpYtYM5!Nd}<``Y4yTF;|+E4s{?Z#$V&kHdHst;{M|t?t2l=qYZG#xc1Pil;wY>B(?I8aNP?(hgYk9zHNcFQiw2~+^UH`@)&Iu zRHG9K&OB_X@+7=<4_6R>4T;QA@OxcrB&Krf!z=K$z~f(m54>asQ1!{ZnBPyl>|aen zMn0>*=$9Zdj>jF@2Ro0>!(TGv%rwj#zhXz6YBhgu>_$A&-H*Jm9n_v&6S;r;At`dKg~@o<*8VarF$b|Xg_0;|BuCj>Ep*7tc%cfQa`W1|?Kw-FkxIGLl%sx;f4A5Kf8#+I8+M_?9wEI=Fl-Pj$k$#-gvW+M zsCFWX?6s4GJ2OHwlyAWVDQr#)dy+w?VFNDPWL00$Oz)P+)rB-+OiR8GR*9B+IQ6E+ zifOilqZu_oNh~R6cGR%$4>5*$I+XN9B$h{Y5c6HO>rrt621}!Z&$+Q zv7<23#&b7Y{=MiZ?gof@l=w3|6ZVrny!5a!RqVOn9eO?;IpQaBV!U=}yoe!;_1J~z zM7O~w1YpsGU~?%0fSuR){as^iy&=>1Lu#vM6QqOU#@A|^r`_X9Npj>H^Jpk)6_sxf zLpWj6<)%a5r6buo(HFjC5c-cF7%n8gS~hHKnB-_qg=Xenh-J?BykpUj&m<7SL$cYrj}H$i4hA%2zIbN6wV9}lOtE+!V_UoIfzcn!Uf8UbEPnG7 z@4y_YialyRmn--2vaZ%mOsw>U#|a(HM%vcrlN7`TqE7$ob{6JK#`F4a_~MdHki~0= z42VtI=vlb*-5DfBVSw8SqT`9e@>CGQ7ga0xOat%Ji)Fn0g|Wkc`}%tBoNrJ>$A&1AiXPY@&^=(mwBpO#sAP6T_%2yP#XGTYN3cSJ4B?_6;BYPj1 z!Jg-EaG-0VHOGZNKgUZ%^f}LH-49OfrHLdC7-fySN+sn`;6n7rcg4Kn5$47j+C|1M zns6iK+uYpz$`qxBEfCTA3)LvsnlOT|khZmVNaXr+Tbk9J9!bo@E%MbBL6}$Y5Z7rE z_y#r`96Y8%Ud!YAjg{h@RRc#fDX#N@fqfqP_8>7vz7^}nKNhn8rAL$WsohgX)U??x z^KqFm^JWiOaH_kwyMKO@1{es1o&J&;#Bp4jLit8#_4z1| z`;1zW|Buvc`06=-YlrXe44%fTJZ{~)-20VUiTfLnW{Z9 zEb#75;qn29ACq`Xan{C?10#wi>ybPNycZVsj~!QfI?4c~OA?6a{h~tS{!ft`cu|#n zpu@-7IxbY{HZB6)$gE`5>L~bQ_4v7HDI>L9uZ3V>!Z#1{%x;zmeU=JvHt4;yp7Y3A zemMQ3`^Q6CKb4*ZQBFQHD}en(Y!66{cvkQrDpyFI3FN$|kEa`6b?|f@iT%df!j`0S zrzZ;Le%UlN=7m1C^Hxf>IS6~G*V&ok{r6D?QRlF`B2u~E9o`z^Sn+=GZ)FISw>QUG zZL8kYqJAq8Hr=%zo-+1Fr@~Dg}*Af@)OKs{$2+=oZaqo%o#~H0>+BCqOAO<4MdZz6_ zu?y6*m{t&tMjsO=nIZWckPVpC2iPhQyBRJ5^mV%E_7Me&msox+fZOVN{_HRd(4nk& zs3MzDa123K++Eb^5fOYJH!igX-H8)Ez^@o?t9qO{8^%!Zer)fI_;EA0kKm|cpRG{o zK&X_@?FxdIJR$PHN%45
Dkx6ixVKp3o*v-|R80rk^!y75*x2(h9Fz%^?eGDL8! z;`<|n;HT$;vpEVZ*lv)PAlV`m>_{MxkTuMSVF*1K~6>>3A6c3|t( zxYYmYm>&zID-A{M|Lg)l(jb3?UC$E)l*!USICl^NgZVTiDXgkn0~S(kd0 zVICy`Ce8#B-tElYVSf|l^NhFs96HhC9lP@|CPEa<*y;94L6QD4 zdXV%E4`dL2eYtt6P%g}bpC)snBM{--mTIz-tbT=Q6Z&0}ul+g-3t^V1Uptp6tC=*; zWs7iF*v|3~9(;c7lIYBMmePBruw`&2 zAu>-42Z4;(#Rvf`h%IOLlbB&4um4_Z>>9S?XNLs_DKE)tn0aI~2DW(|H}Wdg6cske zl*F4#0$)JNsV-jfHjf)a+I%v{9WJ|S*CJ-XuQk;xi$(PO!s?^v|JFd-+dcP%1L+;r zF!`O4yeJ!)>X%ZgJ>lVAyL;JHvWI#HZ()U4ko7=hw=Ja_swI^BgRzwwM*nkn%OvIaul@(=Q!R30Stj=)C(%ugV zGg^LbL%yAT7VP84Hezt@I!k$*;$~X|Z&ps^!o%>g3}WoI=DZ{oj5cHq=B;K7D@ZVw zj#rc63)~D4OAkpa(xZxsk05-_Dn4i+-W&k$jHE5{5-=CaVY`xZ{K!Q^#5K6$q#oTIVuwLAiqW3}m z!TeGE5+=ET#l`&{5u{v}(g7rTG8R31x9m9yzvZe*h`vPo5s_)rrq8^|pX(`s9^Bru z*w_fRsxm+ZI3Ad$fhoxs!$teE*874r^E(Hb&@qv)L@^C6y-Rt5TDU2iw-7RQpr_-_; z;kWGttJVs%LBdZk=)*eYK`roFm_|phSp3>* zGnQ>GgwKQSL`6LtrOpUWqKb$x3mOkb{^W4Lw_4y&%Pug&=k-`!hESXTk5k%eH#fVE#6HC0oE)9PYE18S3If; zK0eyuxE(FV9n;)TiP*pHI=aon8{tYS0_-l`9PC+@6dOVm@6JZ%JD2YXkzg0|$D=>) zPAGvL_fVg!NYDBw#W|cdsye-kHMu(1U9w4OFa3m1f#wQEfno|L!fp1b>PU>jPZ*g_Y3Y%?*lUOHEX;g?Y#aNGrpe8x_*cRf%0z$t zivLyh^M2la#Qk_qA2#o+d=qYX2@Ks~*&WiQcG@hp6gmCtW90*VxL>bi&xS5fM(edM zEjf9t6N$`F;ifJ0{q`~>u4(l+=co40 z(-Uhqo3;A!ra8l-RO(FqTJ}U+tLp7tZ1lZUtotFyMS>gHj2G-)3D{l@UWvXh8kzow z;Y=4}Sr#pwbKcJGhSvKqG8Khh*7)ic3pVypEMHXDceA-HDOu_6RU|HVt9*fF*JO|* zA2TDJITl#ND~aW|9U|{qba{|$2ErSrA1}gP^P0q>fX#mnZ@%8t)bQkdF!(z?%DewQ zyIVWGCp#MqqH;HP?kOW!FMQ(FxfZ-eK3F%pga* zgxs?*#qW}rGG6D^7KI?21FkPA@BHszt$OJ(J5SX-fCz%M_Ak+nW#qfCl1L1^ANV#R zS~-q>^8iX(seRZ9Al+ISdv}xDdYK33_QbPV%4XMv@C^`Zt6uZ z!vJgMBerzcHgE=$AVt9X!J>@svS5uuv~z6xnl$AhiXbeqwcO`I*3hBVRf+D}Tfr{A zb0qPNH@&JQec46tuK{<58Jrut4B&^DogsIP?zxSP0LXIfjQ)WBQNzuznW}G4Ld_bE zBCo+PW_Yy4_9dhq?Y|glsX4D{zNpA^YfxcZa0m9*8Cna#MZBcRB1VF;271=9>YDIH zy(-PQYV-c@3M8|u!d|$Bu=WD5U_Wh6Pn|*-oz(tth{a*XmZ`&1s&zQ;` zB?Wz9-G{}=(}km>*Y*BbCKyA5Q^WxXQ^$(1x-6hl^kykDceY$!W|<;Q+Ed~O1w7pJxX;EePTz?ENm1|m8ytUNzWdD8% zte-fX?aM85iGiph-@K{`D(o}9iM(wh}BlFh^I-i(CP7fi`kw<06Kh&wk=FRpztjA;=g~4^63#FC+$mXaYrpruGRQ{gRX*Mjr zi9Bh3odl=430Ou&0%Z;M||DMgfj&B0#7X{fZ1VFwgZ<1 z!rfx%TS+h3^!!Y>jfe3PEgF9oU@X_mW4cTXC%+LD#K>w|)ulk4w;&4J!Ecev4f?fS z{Dm>D(%Q_m=hNm-yykDl63XCwBvu2)!wG>rl~qF2U2)2f10AA^7&|4U{Y8J*7j8Ix zT5w^_DI8ULnw_z(Zw9X-2622y`!4r+_<5{FFHn5o*u;^bRr*du_D#V8&)h3)Hb6F` z{m3TZ{wx3{shV3!lgXe$qU+Pn&G3Fkqd*=9@a1S=Kt@Uwet7_!(n8Ef;s=BD?@BFR ze0E1oRU#8;vZYm{0f0>2gE zG4c<_&fxwBH@W|ZueSh-yIazS1Azb`xCM77Sa5gOK#<_Uf(-8NuEB%5yF0;QaCe8n z-St24-n)DE+pVwa)USpq2Ife2KTmg`Zh;%C8h$M(oX+b<0{8jH-;JE~^eLGe$Sc%r zu4WkRH;^?9`mXWL5ZsvhTQ2%cit#Xj2!5DVowe$bg0lb}`iF~w$dl1**LZ7!wh^f+ zvtaGO2rS8WCyr&7)o5cEx7*!1t2ZT26XGX73^pe1^)qHI4olIAXOv80Byev~TD_RJ2)cj^k>z2UnrdYW5SO}GBwsJZm;Qte1_YOQtE z`eNn~e%({m(l6c8?SR^6z2QeT(uOJo`$eJiM|@{CT{`BEUDtAGDQPSzZ^+yuTCEI2 zYU#O;v4^ztsXf7t8g+E@RoCt;#Vaq4$0^*7y}!TA|Ndg)(bw2?ljb^eLZ$k({cd%Y zX@fH@Klkk*S~6b`bp7V zSsEz+t|V@JX?%ZvUy5t6%nXwLJe7HK(;LmC_PY8gMNPWqXsC~u zbj1XIIi57m8l7JW)G3`wQM%1Lvo#ouv9+L^AO7bwemr@H&JEFA6?;d>Yg(+ui-f_${O?iZjx!g zY(ALyfF}D~e^b-{9HF+t(Ms98AifpDZxPS$`NU~+0BwKXzrx44^tIA4ul`sDKYxSi zIUEm${#gw1st)%I&y#f3WwCgq!RfiKocjc(4|}C$m`g)3n^vVHmc4!Z=st;-!qwq~ z?fT2hS-58$;p)@-yU3GAfwG44B4=O<8maf4gx9M&D8d9j*|M;bjAx+vw`I5$)*u{? z`r@67=a6V_?tCdyqkd@8u^Yv$k(1-W!u}?m@KctvwoVOhXs)G{(fnq&AEmwT0M*j! z={_9sdM>KBs~-x2Z0rF- zeKCKJ(y%OBwjO1x&fYEJjPk-&!l?7_%v$g_aN zM4?|Jk|0m}PG_7kpeQ1E`E!5}Prm2rUaRtZ{6P6~Z)Y{!agY;3Ub}$}FxPB*v%PlOUB{jx z-!Zy_QUo*!+GKaE&?kr+$XWeW%SO#WNn7g)&^;C1N$Sx zV@a@}dO=k|g={~=$zS}6Bh4r;TO`95F0~<}%@Ss4aoR(0Zb!q#(jpfQ_Sg%zmyk8_ zHCK0uapjGZOf<6)i^f-2|5J&z6w>W*a`dZ(htiZ=USL$knq)kayDJ3xnmS_6C&<#W z6W1_X){Jdm*IVJ~k0)6u!<-pI8`eerDayi`RM5ozd z!ECdlb9m7!lM}Z}H|UA2fw=MPLo0t%bE8@7ZwA*RJRV63G9=I3nzRFgKH{iaYBFgJ z4<|biIPYa70nJfHnG$Q^vo~g4Pp<2TB@-!qhmhrOvmMFEgLal0YBb|#MYjY%-HPdy z=DRHP+BHTfyshxJyw~T%Ps#r6;ncSN8_p0J)M?r_$EfP_iJ?YGKd+qCmsYygJR>d_ zXlDjao^~*fU5mc*?jeMxULmD%vvBN{rE`s0LfL6JPGIC$>MGCPuCMlQdM~Up1c5x< z`JeYz+qBDgJnzn+lfIV2X}TX>olkq-HZ5KCad7I$m$Yo`& zu>o7uK>(t)U)xIVW(uxluL)kR^_-`4-mOM;<$~QYd7kOq?OuCp|9ql)hmhaBI`KK4 z@4i;2AO0cYPr#_dR%5D`?9|=Yg)I00Idc3X`2sKcp9k`}$9A#qFJ=s>5k@=TaU%iz zWa*Ff4?`(bY3a|>59_l!9{1rx)tJZ54(X56^@MEIT#Fl=AM{T6zbIAw#8xi1D_Pb( zNDEIWXrmcykKXip=}7RPY1ZHx#s~pzzWW2Cu9cc9h8`Ka57~r(R{mhq6<#kP3n;z3 zzTAb(9v$^fvi(RV07+)$0u^%iJkRGOkv)PWE$kcvUrF$+9cf#VYv(Be8QpXY<^Bm4WZpF3x&s;b{-3`m;YWHX1 z4V(oBw|}~9$g%Jv9ZG9Mm%BWdBSrxNNG1E9KH!;He?RunR5NP1$gM?* zS!RuGm+N*iOmf_TU8*t+e_XfJ+J0{3vE{AK|4Dq>L^}%<_jq6T#n`j=`nk4%i^qhv z5PF-KG^76NY{mXs=kFs56eQnWwWAWxXg+iM$V`crF-48%D!~&E8xaP^UF7oOeBNdC zT3IUh@Lq4Yv4{6hZp1h3s9T3jb^QPmXc0eNz0ulqY^!inUjd@dii)KJnsu6{Y4P_w zuicbJ3VC%%r?3+3GuJXbGC0D$ z;8+nJg1t{VHi9GLzR=T#VLa*C<;$9Q*Uj4Ql~dovjHkztZo&qCF_R{g7sXogyPJRG z+ohelag!A;?0|1Ay}7l#HJ*kF{ly3>{S`$!q9JzH5~O|cm3KOHmOdJny*v$LgL9`1 zG#8}lYEi3MUFR|Zd5?gLr}Ln?@Oj!L&(l+GX7#~hmHFUVEX{nVg^v{y%b>@~P355z z^diM~mG8-9@m}X)KfyrxePI-vPK)6Z^AH&XDv|e3l8%S`-Hmkj^HXm^DbWV8{j5+H zA`-f;CN-);^T3~^?iyChO?M2UwKKiiMHH7Rs;NpMxHfC`onAMN9UXYS};4V%8mN_!=9amxkRh_-;hdf6F-prjPo4=H3uTN9{Gp^Mb>>FU-d3$=T6@pU zmb`M$Q`xTbVQTUb2V;D8*QcLSTJ7?72cgzYBE_}#9+ZrtZXCDhqbXEuaSmq26w3&}em|4Yq4(_=`f%|$6?y=&!FBjxLI z-bsN$+7c~1cf4;aHx#@N0X9bzWg1B8>=zHDa$9e<4dyvfT9-7Q;^KAJcM3B`IGqa- z5_)`m{E5}oa+Dxx0aCcaA{<%MDC7}P ze|ZZ)6&BvN2u!@GQpskw5Y_}fyr}zesGH>lN~Pa^tLhb1iJF5WM#F^4Hrkt0~Sc7^%hg0 z&w1uSLjMnpBE-F{>~@#j<_g%+S2zPM$SJXp7V&b{t$4R)FTI`3&N{HV?5O5Y8;Li| zzrt(rLnU)N{_{ip3I8JT%=30b=g_OERfJ4`DsGR%(w?ILUjvM0a9_7QpJwnBR4LQU zJ>j0P+10IvYv_Cz&-Nw8^SSS;aNiiB_W=|+Bj}unXRYn ze?Z&PYA)&t9$r7VQ$V&f-envvH>*n7Z(m)E^6Lx&f#DnxRa#nFHZM;%z>(Bu86*#k zj~MmIc~BwJlp6IW05zl;mVp&r^4+FC(f%c z%-3nh&;(!u7bOslw)Rxr?+KBocaJ`n53zA8tCqQR+?v}9Ocsz}+OQA)c<|HDM8s1# zNNkGZTE!~R9VqbPWmg=9Xw8KV`-jRlXvKYBBf_5_pbonjBvpTOxr@snQnv`Tjt3C2 zJ5!*f(e`(L3aksL@htb!R#i3gvlU4YHt*v=agTtO9{o`Ky3jgTImh>p95u?U zS;=cY?*=|>x2k@L2Wi-BpzZke$d9U?;rZOPn!29qhbshL!K1xd=ns(mu9ZL@jEi_6 z=HN*79m;N~y|-e{^|K$*`D5XZ_dKIPgf~>kpLcx4?prs{9p+#dR3(pvarN*-fr<|< zR`&W=qB?G&oL=zK;cY3!y&&(mI4aTK-hKy{67>!f`suO!$2kFu5E&)rzS(zg_r7tx z>a|@s+;!1c49NixrEQA;J7F<^W$f=BPc96&&)3)OszJ*y`=@;pdWywg5efne4e zAsVFb62^NTWiG-Qp)?QcsMg;>|Ka+}o}Cow=+l0vb~YQM;A}qrRi)m&(Wv}SfqoH4 zGR8>Q#KmS1!OL3NiZcthoIjL=E+1M2*!Cn!7;bUP6DE&NZZEz19sXMdvUd(3*Y}`TrOn@^bets>P?h=di>C<2Ye)Cp`_j?*Cn4!Dpr{P{g z{9yszz>ElJu}p=0WgdBQ;)uw?euCeFQm|Wc&1$hM1oA~=%f?y3ZcT~53=PTuFu@6N z`&pS&n6Rok=ypg?+n1I#I8qx+r+wgRqLcUBr}D6+19o9NG8cdipRdK#DCk+dc{S(TA7Vnd>jQ3~(H z4s!gg#VAdsh%&yoz-3icRuHqR4?mSNxg1@OSK)NKtw8BdPEO9Pt)139+1;J!5xHqH zB(@OF2=IysvJV28go8t!r`(ZZ*%tH4G=Qvm@hOXU8_w$LES8n>x5cEL%VPNtb|^}8 z1|eIj^0wvWcLieI{11oKJ5AvNeQj-Ra+vhyQLJVv$x7Cf+Fh9Ey}lD)D4iC#HxI1?vIx&HxmvD3wYxvPJIlN@-0UMRcOTib!R zOEWVRM@L6x$SbR}#&nuoTwGxS2#Pq-TN0;q4Cq6|=A=kM91*4EcfnaLikR-;YP0rH zV;>?=Oc0yn%a#Qr6T{ir^P+Xw58W=2=mBhlw$2M+^^#G?;zFnm8FzSZd%D+xs zR8m*cUhP-`Vwr-9HZn;nF5`LgUv#m&KALzSdGp0jw(rOy*_6YL;us)W|*o9LN zNGETHM6T4Eh8&;&k^jl8n~i7Gb^1L%oRE`=Ng<~gS-q-&Bb2%Az+*=?G&yuUV`Fh6 z>69-cKif{wPJ<6m(BdvqpDE&|@@WuAp>E!?skdais}WTD<&oj=I=)9&r}~`Ee1Y6^HmG@P^hA?7^!qRI z&NeQbD8AZfLlOv7-r+}uC^9vC;!xCh~zs`1cQ*&u*5crr>$TQZ6Ot_(r z0bL`*pPaS1(QCG4#ROE_?O~UL$ZqcA7n|w`aak=ytrrnTE}-mMk;j;v7KJW3&6i8P zjxV>_^>OjT_in4ZdKuB}p{rY8cR^>IxW<%FFOlM!#n7FQN0V55!NxU0M=j&OGqMn|-_13;v{Fku2(ygD=_i;vB6l}bNG zn|b!op7f7#d9uFQdKLyz+5^u|9>2$NCz-yak%+%2W8B=}Zs&wUXk&V!7yYD>5)#?F zxVY2J6uyG6U&klxUQw(xz5Gby*F)xXw2C`JOG&TJoiC)U$3{vYO$!5zm zcXnXWi1mlZ zYEt=19WD^rH_f26$av(uutxkpm*yRu43;-H+cdCP<@+G$IbU?)A@b%vwajA<@%0yn zC?V|)1@8{nOMa*GtdjFPmFe@zhT9T*Pm%~gJk^}aYR+Q>UBPtVc9|xQEHR(zqmio zFv-azA@j7lV7}`{x{=1A-C+9X*fc=36|u|R2tPo5JU-}pk#RQburZS#^6@Ye;n~&o(}>X68{pesq3_<{kV(EZo$&YAp*Ef z*UwbQ(eH~Gh`{F_63XEyFE3|@x1m?7c$ZI;R{WXJYQd)gz&kuFsu_6JND;KEHpCJg zlx+Lx6%+~0H=aOxnjg;3-HS~BWjGmW2ikop0^5E4GeFbouh_iJUanM!r0ex@9AMNk zCR;qRX}db1f%HGb^;LAesnNXXJ!QSA$(SI$jL^6n-JeT`^U74CZjq3?PK0qBo&5+xl1MR0SlL;wZ`+-26Jgm4bfMMx( zb%4d3;$k3153%+G>qk6DF27$vYeATSu$Dcxv|;*|^{5DS0__F9HoLe#TQRz#BiT^& zBJ|T&kV&H}q#-wj@M}Qe`wd7-=A_Ex0%Fw1pf{7Mo$9u{CZi zb~n(3Xg$@&mM3<)xOFXALfF((;UyH*9>I zuh8?oyt=~Hv7M_@%f$6Jhiby7@B`3VEVgv=T3D(~iD@8rt|wb8)8KC z(3f5xAhhbs#EzYFDa&nGwi4_^vz(nDxWvv!oQ2+OrAS68gYkT*vrcoJn8&@)thJ7S zc1sHh67YEhMQb|(%=O+}0>5d^m}^_)r;gLQf0>hZ5xfn!YyBTvSRfTrG`0`tH+lKU zmea?JiRpP0w+V22K3eGnde+$zgiy|L!kGwYk~%i3v+)M9&5@s6$UDVF#nnd4G8gC!xPkvnD%>vZLkw@Jr_hxY!dIOvf=c~p4BqwW) z<6U6meP*!-xO02_E137+JZen@DvgVgNVSZBCDbPiPb3{&-<|BF%_h2AnJO|MA`8nNyL!MeKEBFM_?KM9xQD7#^qaX+;TFm`qyv3NP3#H37$|x2O|4i_V0*VFL{H zj*CkFhV7X;5F&BH$bq1{P==Nac!t~UmWz>?;bivWRj2MFj868fT0jjaNnI(pInMoF zemdq{)712|B-mJ@j1luiQf3IFi$5pMfMF~4I02|Ywa|e{rADmT8l!>Oj}#n6KZE2N z%#
FCp0DAe`oO#uEBo%eVM}|s5S(Ba`Po<0|S7+f-bq=^^*f6xCP z46sH9^?X#B{moHYA%1q7Pifs&BGU=+?{45C*H+SwcT7z`@C{tNz#XazJ}%1F0+YcV zuGMtsm2r5UL;E8B`nm13&1}+Xo8yCL{rQ!wWUAsrGJ%`RgKPD{-QrIf8X8jk!J8$L z(D(I5DJE=dH%v=XCHbfYZcR1{V_D@zPR44-*);byRK|dyx=pl40D|Hc2Rr zZF%|Nc>Tx!PiQm>NCpz^)l#Bh@B9lgcTgj%sbMom#`U1HG(_#c2jU_3SWH(3~zjY|M+vm zU9(P@42Lml;wOlYyD^z|9}SV8!cSpt1G|KvQFc#7#j8+uT>QSq1X7(;**tZ8)3MB& zkTytFsC@fhkyx%?W}XsS zHc}|EWX6P$!H;k>Fi!2HMQLD_2liFNd)r_DSM$d4RLc~BB|ef`r69{z^Gu$GX8E>< zOQyd*MsMB$Mh)1M#m{k$+T&C}Q``8@4(9CXs%Cr&n=4nhZ63+Pyl_J}kiOX_^UEXt z$40~Oo!+ll4-V4giQ-&BXUW|5X9pe`T#6x>cp2|P2lZ7>JS5VoH;Ei6O(nNqxY7!Q z-S_qN6`QNOx09Dou(P)>qQX~1(ZHHgw7l|S(Cs#dot-Or3c=VSuE~C$n>!PV_<{t% z^K~Z-W>d6Hp55|X|1TWI2$RJScbpW?cw6pv6gO6E`Anmh`!H*OFbj@7mdI6IkNz8g z357y#JquQ4hzSUZ>Q=&bwo*+$>0z|`y3Un*_2cD9pGui1w&Z4o!0DyX4V`9828@a;9zCJc1xn8p>4@WQc3 zYW(slG#TmgS6?m36ex&2!G(=~kC2f^M*x4Bszu&uhqjacBVv=nV9)BM6;ByPP(Q4o z=2(S*=ow9`b{5L6ASp|vGrt3oi$-|>DY1I9LurXxWhbDxv{n`o-#nfa0AS|$oRFZs z&pf^w^if=y`*Et23bFjEtxYw|3L&~#s60+gN>(H2^NmJQ+{V^ax_3vOpn-R!lo!ysC0Pd4eX1 z*{GITui>H<<p*{nIglkv)TShj-$lf#6qo&v1pESih5Pfh!eLS(4;B~ERAbUV zi4lpbgKy;A_A;SHRL<|(yW)2?kY<3o@hJC~?yL+BoT2S%0=fEyxgC6=!(77znt(y+P zH{ohBC9YJ|o>o9+=gIgF&i89xoP_m|UteQRx&g4t1!`@%dq#zk^n4~r$kVi4wMN|e z*N~iSQzYPsJZ)F7cg&38zYz-+SycHPruOz7HJX43o4KqIPAVYR2zCPdyNb<%ZE(nb zTS-S4>{V2-Y`xD{p1yjEWg4^Dl6a3=Tj%>d<1l}CI#nV!;jOx#EF9fepJ1OB5x5+)?#1~>EjkveMMQ+6qp91CMn@S2Jc8d34wr-BxTazF)1JJO z>#alo$iE`wbhJyO!!+)6(e`aE4#nhI=eeOx*FHP&{X;vY@LAh{vL5!oc%l{DR&k~U z8fNpI$n^5C(WVmwpIKh0)A_S1!}@UAG|K4{H>z<;>MQO(IB7pW{|A+Wk1i!CnD!g^$(=P}44lE>d7efet}N!D#D!<1 zAqWnI98kUY#wMxPxj7|cSKOrWASLYUuO?yfa}HWzYr?$(EH+jWvGeO0d|q+Vx0N<3 zZx;NG+*ysKh@>x4!;5--drpM&<*UcusZ9M03-Z?Hz!DbhJjENG_2!h$XzQ%p<(gw< zMZt5RM;<$1xsQRoPjSEFv_egsgj#w?Sc#-au4wC$AORd}#gum0yb7pQ6BG_mRpNWj z2!JA*AdXjSRN8hFh$@ZPc;^ojEub7fU6O!+kkGWjeW+7mA3lcG8in;1~WsmqD7#{tVmW{PGGiwFfW&4lv}4=tN^s-SdaY{vFu2pSktnzWJZ(B zOMR$re38q81im3A7Bnw@#$yq*(nUr^$HFDyP&5oZzE_$kL+kC20bIJ?C`4&AKB7B zrw+0SfY8ZI(%TAI9Y1p}2R9Y!*VzjRt+-@wZ!gBeKua3~WN6o9vs^LHYFE5p`|Dff z`Ql+>Vq$$i!DIH>e9`I>&&g~VFc9~}SOM}-{G(32V^B{Ek}1CcA(e>US>xb#o1W|d zI(HVUM)&|CX0Wq)9(9mVX0(1?%(*Qsn(n>D%cWIS6IVFm7$WHN*ILs$Ht9{d}R||MWg?XtRlf&=xhKpx8`~BhWTB(mmHIm=2`#G%`b1zGU?`~vrc?USMDa{o4`u~m6I)a%w$#jzY**3e4Ot!u|O-&l-Yz1BO3l0Rh2+?ONw3( z18KJI;su>`DWMC5#CX8|a}HamQ|L8*-X)6kHvL?;t$^I~X_$pA0b}ze2)b{{MM&E1 z%ANPytEz;*;@YB1YF8U_lO$iaV^Vspz$LNVZ0;ux!mZH0@iQCe+(XFW$qK#i8G)o> zM18k#j*EScHWrE&W$`}SzVX;n{@C?j;Yn_Rx;Mg2#(45ZCleZqiUuEp12oMEQGAII zz;)V!=1NOTCuU}hpbju-Rdzd*Wy`1{&b_@zJv303j@R=M)9nwVDYzxe@lNEogi{{fCA`sx(w$<>^kGiYjGZ$ND)R)w)^7G!xNXiJeJfOeZM)S{i~Tgt~p)dT8<95 zjZW5#ei^Wt)>K>C1-K-(4yOedJdCWXZ0c$2)XjOF?r~{=rnGh040J2UYC?ARWCq=K z5birs5o7ny&Kz>YVgBS=*4SP{Zuf%|EKbsUuFlhgAB?S0Qs?Kt38WLZoq{h@ZP0KS ze>0hchcXZ`(;&u$bTT&1KU}PruVDP;-s-_Iet_H+P2>gh2tjHmd?@B_UVwCl4}P;Z zS^=~X%D^VX(|y3?wm%R8VjEmWpCT;K`SHVapF`iyZT851s(v8f$B6~!`#QhDJuSp$17YF$;OZ^wp1`t zj9hIRN+YOW&0{0C`gbjWiUygs%N~d0aEYXoF?3`o59J_8<`?H_m$OB~NaTKwz0*MRQc~78{X??~t%jI9_}JH2xZ}pHQxKsG44~ z0dtdncyWSw5iYDxJK9?i|MKgm_<>bd%sZ}WV4=uFP?t$KUpr}UN_XmpkP$9PJpqHRIpf)nNw4>$vo5dZ1Gxi z8@lY_$im%HA9ezDB__^nZXGI}CCT9H((y>Kj*}SwI$c{e6d`{oz-`Mfv;itmvL;~BJsLb{RJH~ntu=g$) z{6o1*_Cx7!CSwHMyZzY^n6w}A^aeU=Q09s^?(#hrcmPM0#BX%b1hT@^d1GwU(Dl|@ zUA0IWasVo*vGK)F|&nXhB~zi(97V?!NfS(rT_4c;kihB^T%5&?Y|&c<7{wl zY2xYoQduYowUSOEkA3H1@b)@JDlU~0sgI)m{Y{XEKvhw*$JQKno(+;q|4K%N~mvP3^#`W^;s#)e*+=@XDuGU}d}ssr?m z^3MLY%_%!ncjkTh2z}{B!1KQXE_Xt@R4bH=i=IbveJ4t|%2&Kdw?0OK;|3HKk7LV_ z|Bi5YPm+Q0Gz)}WT~qjRfR}j;Z_P%NVe z-y}qZ+OHAIHfDLm&#Kh{mp(mHv{gSEXZ@{p5$=VcV_UPUZ2xh$az-H&pKqIdgJGPr z;N+vZ`fnVRbcx5N1W$41%Vr_DZlWT_DTXKuXDf&^k4l~` zLuD$&%~l}f6vF2JIZOZdlQH}?S&MY2GcU}G;3Kv)CZ4c}BT26{9WxFtD}1mJMw zM_~@a$!i&WwIL3Ob&g?*DQh~NlzUT{?8qK+)*`$ame0Pj>k4W@)6?II^n;5#_*poJ zDp8F2{wgF1Y&q`Gi*XRnFuXg3hB!ZLG1urj!8c0t#@F%V{J&@M4@zSc2G3;_Sq-+^ z!8WTMoS7jKldVzy6oOJqY;MecQen>B5I|*d2ykBvpk+2=*QZI$j*zWuV;^nIGgJ}$|ln^Gi%^c;t8Yo-cnd`eAMNq@v6bNicy5-r&IjjCeyc}l)eD^xbGh@RK{T0edEW`MFHCL|RS(V%0#SwKn$;^!X2qyOb=Ze3*S^Wx}v0YG*qXA?; z!{;!qv$|uN-chn8Z)97a9bEllp&6g}2B%l4fYDi+z;UhCf+p0^&O!q!(Ilr;En$gX zIdhUhZTgijJEOCNlFfRr^^!@D)j63ItFAT`FY3opmKoMtjBCB5I01kYUvelr7-hoa zbj}o@Vt~YtLorO3pp?;}!u|whtGJ82y1Ydv7eeKbKY0lKMZfnbe)Hcp^3|UFuaV;Z z=7eVTk~r$`oCE!yoq#eVi4LkXp!WAFtD{5iOl=ApB#0STli4_HKuLUps0AlOT9T1k zB=hkAiq#OAG{^yeJvZYjbM+2Lj3#Z=5tg;PR#1jz;pNadNd^?<`nFQvGXpL;&Y2v( z!i1>-Nx7CsD6`jhujj6}kGRugzpT%jxjGN*bsAu357PFgd2L3wR@?#8hTvb zLXdL&eQqs#*~$FIdB@0#^UKPS_rpnaAYqG+!_fluvQ}!9(Qu>9@jZggti~!aJQmx? zbwcDO*w%1_Ld7cwZucUvR>_>C%GT;()n&8R;jwpcpz4|s#qvdq zq{3qS!&$nYFQ+&1Q66g(Z|WGVW2;e#uCn>fp1VA`a~PB?m*fSr|r-Qqh*ciNx!e;Ns=fU9;(nl?{uNs(sbky zICSJ$uS_=;LKrgNXU$(g1CFvn0uM;eDeJ-6bb2o~uJvvQ)E{>zKg1${abrrXK%obU z+IKEq%gMHjDJJLGjXTMt>epz|60rgrLO)EIMiw|zbR}b!KI~(i*^COX{%XbXBqFWl z;9@0-CBmiDXVCJg{Ie9TK1c-o%_re%EYSdDmO4COw zKh4XP?R~%lvAN*(Ng!w394}LT2}G0>74>(? z#fSVckpZHj!9+6~q)*CJPc`^AueV%>CgV##X#Qo18I3SSfQF&P&o(cMB1(DnMd`^m zvew=V=o3KLmU1@}b97#u09p+!&w7Sl-;&ftM82Ju);eE1UZIX;DIpA4v7IJCQ}lCP z2m5C! zAlft?>+SD05BQFQzsY5*jv9@(l3$+f_l}O@klfc=tK52|!1*i1JBK`A4<3>C9;MY} zzz|1?2QZXKq{#KB-f)XT;sWJ=`oFFgbYd` z7r~>^DacIKhs+?Swhov~Du%*82y>Ep8Q(b1MxId6CV*m%X*0M*`wG|agFtf;1J?=c z`G=27%ruAG1Hr;KEMNa-eko6|{>A=j)YimjaEP7+5{66v+;w%CdmCHW>3;1>dI*LY zR$gb)awVNpV%=nrNZlKJ-Jk~UGCT)rQTbc0Sc&K1PLCK*Uv`5|!%f8@FB@|lg+c4+Eur$;BgeskL-c=}#b;!V;8?-ayZ=cQx1>L1hD3A$7aCm;l@{ z#9+?ooJ@atBk1QB%hF&EKk@Tk=DJ=I9CT?ovLPI&Cx;D@van91KE- zfE6fTPDJxUK0Qrn=OE+vXp<&boMq5yZ2x|&^kSQ=EBy}TS6dFD+e@<%&Gt6NdD5uI z2*&8qzd0%QTj#l#Hkl-=X2qZgi@ zo=~TIM6sqAtT1t=p~c-70%}zxi)BN?FC!v*bBn8`-6sQO7#)aq6TE)pt{KQY^~)yD zQvp~`!v4Z7t6X5zTElT18Bud6Zpd-=rE7W?g-bK1DjXzeir|_5+Q*zq>QOjq7~05L zU>VY56i;S!AY&gRSk_Ob(rc+33LZ?Yhz`av=7ZaUrJE5|=JPmUE@VK$S>Lntm?r7_ zfZ7Pj^X9=&mswltEpWTcqo9U=FpLyS@mx>qVnz>?{Re*!F+e61v6rj9^AW|sM7+u) zH0j>5-#~4m`(Y zSYin^?#_Hwo79l(#qOc94TKwQyRx^B4|6Mg-ox;yZC*=Fc|VSw{T=eO<#_0|-wbVS z;Jc%bJ$XoR1@_*<6B2R?z0DkRRbkk5$@aXY@&0;`z=eej8!tJG7Vna(-)0ZDMaX$OA0V?VImTow!gX zT+gDlJQ=64qd~@CB~qQxv0Y5F{WMEA&M+*!HSqrZxja(+Uc&NYGKZ@UQ$!e8s_kIc zsBtY_&Q7ClrtrEZa&wK9Rc5#ifmgtu4_bJZWiaA)d!W{|V~ekS!&o{tODzB~S=n%~ zyE=}AaE`&%;izW*O+J|*mS8F+3S|2(O?u9bgB$XHK;Rp~pETC--H<7Sy_x1>3uq(o zC3ws01Ck66t&&NKAW)&fH|UEnbw+f{5JWci1ECB#KSyC? z?i%|FC=+RN<<(Wl2uL}zTGN<+gHX0P*$6i>J%pJF>wGlklk>+?iFSy4VTBh!C!bN4o9NT0kwm zYdEHAQP^LP&dM0@`$4EDs9nZVDapEthfd5OHQgA`M`tsxT7-U z;$~vDq7Gyq98_Em=IL-ZHmcml-h6m$KII67xQm#)={AI9(J%FlR#+{y>Kqc`)xmYi9Fy?_bG5G&tW2$BBLq7RJ0|Y)63= zDT9>XT51>T2%aUL-G9VLftT%_o;g%1ZpDlxW`p+ffNn_`Eap|qu3Cxs>4B^yWj!!W z`oad$kGTJZ;sWJ&?cCRZ+vWC5%qGvtR;seBI_tp$S@>BpH_AZH{qM9+%EGq+z6~VU zUVW9o!p?9cC(0vBq6SV5^2X*>=W5j;F>695O$R4*rTGQi~7-Zs|%7=1z?wKlOx?bSt;HQjl!~FVmMKSMA0Y9s-{;&$ko+lK&qOf*{N$b9eYEi3~0f#bHix-B}63mo8?8S}n`?V;J)wLaMB-3@G$6mb}o zfm%4TP%V%Kcf?ZF?PJa6Q*-d*$}vA1%@}c5q!6j!qa(!OL!3m{aqxP^{bfgUt=mVy z8YZ``ebU{ctgKRz{Md3~5({*k?M{e|lx|Ztusu0Y(Y<$L*t4o|LS!}{?QGDuZGwOD z3!^+BUzR++55IGe(&toE&aewN>Mo)o@Emz?B=A(}{q-BOjSAE93oB zKqr}bL>lb5Ft<6PyN`F=THVL`fjW%nTw~1Gkk1Q4rC{9L997)2fXWv_Iv;o^*`)qb* zCxH^UfZ=Dl>EyG}8Q%FG78p~oZ(KvS%<>%-J>SAij{ckLAM)?+{I^7Kl#W}os%7ME-9#Z<3JS0rxtZ&Yf3 z%|lqUYGz2zIs%3qCOM`XwgO+&hu63rM|a9Rl}u?r0`?Iv+r>N%iCJ(r>!ADzFxhIS z_#+6!h6RD=hL_Emf(-tUmP=LyH_IR+kg>8H3WWnidrR~qd)Y?Z5b|N)Am{pCbpXiJ z@YHC)Kw-43nh<0$qKwzsyzohpgzMLJ&P^`m_Cl>+gMr*N9i*TxpczoFr$JNxHGPH? z`P5x+?+FjcbU54Cha_LYGc(0XTh5d3FrY#1Bv9#VFmSH%lN-rv)9l4iLh|CQkuEZy zS~yb?O2VW%0#E^DDwc~W@CZ#ZKKY1pf7$ZeEmi)R@9aUdx!>JpH_ALpN`g94t+G_x z%p%j0&+bg2ifNj=w82Ov=5;pN!AJ_pB4MZT+azo;K5anG$amSFf4`z|oCIxuXxa1_uiC(lUxRgi_^ncmen^ar5}os6?kK@m`+hc) z?|vyNczH}ce9Xa|GZZP@}~_O+Sv*~$)=ijzl6s61y!>xQm6b5*|boGU67 zU8a19hCQwTn9H4FM_ZmW#&suw$F|k!r{4r;U}LvfTy=|!E>Nc&;xsFZ>m&5W5UYJ$ zqcjGm)A!_KLi@=^z%*0TrGB;OgBpHC_s7~#Z|(A4^5x5~&gc4y9IK##QK6RWFy5*S z7}bNNo+h`M{MUTfXbqw-;rSH;mCe_yOegcz@`KqCd?tYSJ?x&vLjG%L?Ne?Bz8`xzw!sS^ua%!Ll_A5 zL~NQDZBM15g8EI>Q?x1C^4l861;&!nx&^cCjqRUDHPVT#Y=*URf{87xm7zFWn6qDR z!qwGPWg6nUA!4FjM%7~r6?ReK>I(rph`JgYUV$4qqaIp}`wMys%ZKKS`XYu(U=;qxJ~x9<=E!55|UsD1EF z9{CEEt63u1J0UD5$S*(nwJY#3J)!ULzKGI@I(Zdjphv{X!@-5gMYjidJa+bo0;&Vs z^?(|W+PWg^EWXBZ&8MN_*UH{E-$M|F+2QyQkGB_n)Db$B^~ma7LST6ZnWMmqIKnia ztvsD)hyq%7+t+1m{J#mHhf@$6F2GG$T6v$Z&*{=SN!xvTbL-LUsrA2^YZ1J3>%0j)O><=MFnz$pq)qV7O z{;BSj*sv6V;@;al?*|PPWqj00F%AjmD14-`eTfL^+o)`MD_%@qI9;KdqADfMk|l#* z&TeUka}CP)0OwykjA-MtKEKT;XFd-;eR%)Gt$t3Duis> z?m4QYpl^1Ria%%EuBd{oZ43!gjfu)jO1r$@W3>kr`+D!0zn4pMOovA}qIH)UDJU83 z9mZD;qRSldoBkmJ3mxo`i1%d@B^SFr4vpUURf{d>--v!wM`$$H3^Wjl{qTmiWoI@3 ze$%#$%a)m}?Nqmo^6@UhmxY9+cfC5}8e0?O0n}+Y|H4M)<#KmM^BA$`X4>?@_wmq2 z1O8{K`FI1LS$G-@%i)2v%yzPNdxOZCFIi!Cz0ZKxugzk~cd+L%Z25E!8{3yKyj{*E#Z}N*?rSx znhdBYX_Dx=$`gzNpQ7kd+8@&Q?L+ut3$*eN_O57_h>**TcvO4W6fT2_BM8xhPS zZ{!h-pxZwD0`cRzNj_Cys{PwfVXY9Ic@7pk>9^@6)d1QTu(FJuIMTMZq`RAI20I?( zsGB&C8O_^Bs?nc%t&drLSZ$^9AKma(m~lofU4E?#rYGuK3aY5958}7pakyXdE*S|3 zwmyLB5(7V4LU(hn+u;aEU8d9<4AufqBpz>L?$TglLhi>0Sn|#j!P_36gW|`*ppBPu zUIf>r`Ey&72@wY-FhZ4lVVIX~(ax)=Dr&!m*{ES9`uyfrR+Q`QVpSDuOhjXpoyJEB z;KML;=SxF~R@E}B^EPsBR|{kiLKsEj--Ovg@r?+^&ce>=JoengLPtqaH_oQIqqZA) zyX;FE?>nOgbM{7AIc)*TSadWr$H}dGY9!zW$8PN>`s@KCZI8C&9m*lyf=aOD3 zT4-eP@V6I4ehv190kHn_MWnUup{tmLcq!4P`Q@mlNaRhQney%LD%#m7!G+d?191$w zD)>On2BW}!F2PUi?gyoB-uU|yx-%12mZgP|bvAfJiwKPr;PW((!CIpcJVCyGfxlmi zI_iKO^oZh~E!x2@k||!^R<&koVQZ`YbDqW78RXDUmGJt}`3Gf5)D8!aoEK)KA~Zhd zB1tXd%o<%g%;nN*(e^Kh<^Ud1xkqs(lIDSTK@fc7hm4P=G0V$=lDzCrz%`K zF@?~vS9r4mF*WRiJ&YZO2kj->FaVD6*L{BmI}uz#AvGgz}#S5WJ3A*;AMODaK z=Gsd1;VA{q5?^}cGvWgRQEIGlDls?AQ2@=FqAC!Xoz|fc<#Rns9nvUjuZlA6A(m%PZ9mYMR|V( zr&j*-{F8a(PmK9f6U8eyB!LP`x*i-bP4cuYciZdy;SaFbFO?dO_FcuVCjK%_f=JkeqY47)pINsISQF7&?klIZrXDZPP%}#M@RX2lCu0(YB=tTTK$P?p z%R1}C^DLV_v*GsqpaOzQgyVM@ntChu(T#YmtjTMPtBu))j{c`F^*<}LzghoC86(ct zTBl$(VXFE(TyGH_d;Qd^=YCVQ_VNH}m5>U}UPq*(vg0`-5th?#rdE#VK-Oo!(JQ-8 z(b@LZlIEgJ3SNrmx5^B7IhC%TCTCTfBg|_WI1>`cjk;Q?V#W%b z*U-0PUxT~NE)JIR!$w~fzt(#bcBa^#w=qbCgVw*A2ZN9RO|pA`PSa3v@|k-LQ^daD zAmj&>yI2>AM#um@L@nhjZkbn?m&=a)|)n6r<~Cj$&v zic2SslRYN6p(DWpK@lHB?HM9@J3p*8rwxSw>b8y5K};FU_j_lyrpUus10v!OBHn6;28cuUgPe+rF?2HZNM%R3UiOdq2?s;LcVdC8}a zxgZt(HGC3sxj##pwwwFH_jIs)4pxcRv<|&8n8s4+Ai*AsRjL%sd)Svc_Y5*8Lsn0A zCj#jWBG+2YMk@%3*X+TV5HP{Y^sVx#sTYpZ_Gp}cz<~chbb#IGr{)=o;R^bW&NPft z3P$6AnY77hn(5*%Jq5OP&C-F_H0Co?y`=pIr*jP49arO;DY$OAl+lZC+X!MALh_|KE#Rw*94kx|2QL-)T}{Htj!O zeyil|NH73HnxTBO9Iqn8@2fsW_r9{AJnF&KBPccE? z34j}WD$j$y=QLM+92%F&$*PiuoJnCV?#}s*;H$_xpBa8Phs|MQu{x5GAc>XPzVr0p z$@Mi+=-vH&I@%G?!$4BpO_{YYH)5i_8vg%2HEcCL18_H*Vd9OM=h~q6Q0}@%FlImWKoCSmk@_T7GDaGv$F$qsID(wrZ%y& z-{j--Cf+Khq}?xEWdhJSe4dLJ6Q?@X#s&`Qp}kavi`$Fq>V^yXoo-%lsbNe3Q2|3i zx<8wmvy`T6=V{|6RmEe`EgCvnNzIPIbMzqyU3us=TZ09M4L8NNP8>=|P=WIg_~(*` z( z_usDp=<~i2e0R(DRhH9oI|sY59G1gzj?=c0O^Y{Zn)MY?v62QlFul^-?QoMshuev{ z0PNdS;HDMU?PDwLbfZ?qaJD(qze?rxexo%nZq=)Dw%BG{j=-Mm)gMjeu(6RKqk;dX z``qMBS?5)O_Efp)U9K?Y=aini#;*m)+r|XA`>H~)QRtjWl1^*AdRZvRpJBiN{cuwL z-P*~_{b}Zcgr4p&=VS13b92M*~?5AAqXs0uF5xUZY_(E zUP*9^BcIXpP0!hYkrhU-K`ARMLxri{gdWcf=3x{`O{86gZKlO zS_)(+Rd~hEI!Yr23KRb3&dvGu=OXLm2uZhK_B8f=i@$e>I3(zKHWnkQRBxp*Yl-z6 zq51egYne20Fy)&zJ;WQN)>n3qvtzOj5r-7Wtzn5KvUq<-O#UV9v~K`UZko>VT_{6& zG~}>eIY2eV1mZZ-$Mtv*g|(A1klnO-uF%!q%q4x zlGeMvczZA@@yR9WVq!sOzXy1CP?PWP5`sKn?#P(kvJ*dsDz(;0m1#=S4;f1XYLuB$ zOu0H=Na`PEj)y<|AV!vfjB$pD$^gkcwF1xH0}aT=(O84ujohSW1GG?IsQ#F~`$0cv zk@0W_l(KRYy*QZMcAsg?Y|i`s9noP8$khiUj(Q7g1(k_s{-An2U$ga)8F`Sk{NK>1 zR9V2|^&+ZS^=P7Smy=(y4ZUChc5Cj)vl9s-oyeTN4)OE z?wi^q>+G$5S;bl+zZ^lTIh^tP~=6{W@|Vq946LpJ{wN zBw4Rg7fiH(8iwZvr0gUCc(Im+CFX%QJ-Bg(S&B^!Sk^>;71Nd-Fn?(~kTQM(9F?XF zDGd>$d^56FX0!_Jb4vm6T)?=0fHmk+(rv`AfxT~&6gx=9F6L;hw2sgVs~VL!_39Nl ztwy;f=W69Cr>d1fL$VeTD~9l6%`5VSxOji|>-=?^{%u4O%MpBz?hlg-;}X>S%mi*f zsPomG2BO~t37ovYo*?u6=yJG7SK&PCwnFWhX-Wa+ni7`Nt2&p>aks$qMiLHC! zvMPCb#8cPV%oGE$OiC>)4TgGO^=KyT z9C`2l44)H=*%rrq3$FCnlOW+0zk`}UdW@w?;nyRv1(BryZc($~IgN?&S{Usm2_$h- zRVry|FmK?S%JN#b(%Z#Iikaqr#i+jTpyH3Uq3&-)PqP zq}>kb!D@qy3PkwUJ_B@IjmJg)9U(G5)Wh7L3RC~|I!zE#H_JbBa!q+@(|Q&Ck|s2B zByOuD`m?jiOtt0Kw+*+S+%MN-M^{rHe+==I#8X#D5fBilLSir}lY^?%m@2G=rQc$) z=B%DQIa96Ugq6BQA1iPhSA<*7cZ)wwxM*9Z92?D5dnRBOVSmX6q~N8Hrv^t?5V<`2L@oNXcLGwbR~E1j#I&%D_`=}KQr`Z z4?&cEZ=?H4b!+?b8d0CzirY89BYnxd6~``_X^a!T2kkkGbj~$A{{}m&VL<`E_y70k zmNB@!>bu1%t*((T-J0Qbg1#<-9n6~te=`{UVMV%wG^`OVZSfcHj?3`l#YB1VD7&Ap zEKDTjsO{AX_Mg}+X)T72AN-W>0`ye+^>b`rtf)-|Sb5KY4CWI9WHl5fN@Fa0^aKL= z35CxZ>fRq7)3Nu{KW)O%BcutNwxR5#eNA88S=Dy8R7K2Q z25U2oUw#G8*8kycR}x12D{bx%AIyedIr1I9O$vO)*7eR{?Hk6sAlcW(1jg_^(UntE zt>>+ibNoxL`Ym%4(T(e62W1|QFD7l94qH8aCq1fK8_#tSFod4L{l{C8o`GGa;B=5i z2}2$Kf_MqrCK@a)@yRvW7!I%gn+YM@R2CG8{OdEo|GX*S0$$1%@3BNlPAsLm=w^^S z`$9mefkBI7fZ*}7htWp+CSFQ5B}>^K4@f+s0k*$yW8(Z^MoT=f$zP|qq^IZP`>i&u z&STG%vJRi+AezH+s@`jTCsvL&`Ggt=)M({vZVuz$z6gJ?{=+$n2-TxuW zUDPnb;Tz`qd%y&rHyS*@uS_?TTehJ?RKv0;X8EZ^uHC}%HV}~IsX+D@v%51Ik;zga*X{t8HTt*37 zZo|-hxBt+2a;@nX`Zb5pB?m}pl{JLZwNW4^sn3~JUNF)7?#ljpPQ8t~$@S2s_oK(K zLlnflm_{W*_AyIcTkq6lo|;9r@id-mLC;5*b7y<|DzUaf?ywZjX~<8Yu)`%RMccQN z@a^Rwv;HDwMDrRZEE$<=sV*6?b@B5nBAAyWm~##_Z{NH;#SatFH9sDaU?+Kx0tf^kjG}OS zwud~b3<8!f27>&ZbDV`mXQ&rmS(wZLw((Tts7`50(NI2XV>Ah1#c%NQS6Nxqq3B7R zThd&dz|TIl)XhyLL;X-vEy*FJ9RAiZKWNTw+?ID zl6rLoL8QJZ%dHgcWYhca&QVP)#=qAjMtWJA$BBokf7i!&gBi1oZq@iY61}`8^Sew*q?-{B4<%w60EdYVw z`T0Gio*Kq4ai6^rBbag{iWMRrX; z=xIa$NiKN-{QQHCX&;=nGxzE@YUh1+zNgih!sZp^=FgzlKZ83%egMqS?&ai4^@n%X zMlG%QM=cUc)aEP`DqL(jpawy8c<|e#@M!C<>VcnJDJMXrL{WNX8z3vmw(m;$(-3e) zfu>rC4h1|}ZmZvfT5C z76vnCO@+ny=R?_xvy*fSgN@E7!!EOp*2OyR8)^xxxrMo^j-_?$17C0!vrZ0rl-1f~ z!y{2ov~}YX_@aWF3|de^AqDm*nNXt+N13tJx-s!qE)dfRxXQfYhn&Ff?lfm(Jg(^G zxW$lXdZHb6qSkVoV!%x`zR=}w9ZDwfi2pxqErvN9k;2WUWm#NC+m-*F+ZMWR>QF>3 zZYSU4d^L}HW>1Y%!%AKXihL#TEB@NApAG+p(8YvBX;alM1sdw4sszr z$hf|-?#FYiIiCCWmy;fh3O0U@rK4!>Th*p}A^;hbm~u7>-zBF_5(`<$WL0aG5j1y3Hjm`3a~jyy$Sw)x=#%85 z47y!ANr_oISy+H4L?1w3FEJO{tT?%BeZ1VTO?T6g%MhT-c>GOcx&Z5M7$35AW~vAg zdtAtWP;qIy357f^2R#bSL3lSSoac)O5s)&~w{;!hoKU2-kK6`O2qAerWi2p|)S9wu z-`A&omQ>LuwxLPV)oLuPc?_B?KxG2A6Zw1;+aae;UC-?Skqff`SG&=vaNhIKJNect z2IcegG*><54uNb6s{ki+S3rOV8AD;AiH-r}q|(xuafaU%?%@s|3|R3Qz$3CJ9XoqB zmM4xnm2c{x5&)fzWmii8@h2U%t{UBzwWyUtY95-<+-@6ZGxw{WwaTDopRXV8h91HH zr%&?dVr2pVbvC<^m-7{$vXaxM^^>!C$g7#?r}Y-8r^_v3dVTFa4Tt0Xa=-IeZ9drE zj`V%(eq?OBT$FG=XoquO_p56N`DhGd^gn`Cf{4b2^Bb+2cE4Q5M0gj4dPYwfs5ObK`S?hCDF1J|UPH!9H!C$qu)YC!`}!FXwm>l{{C_uIMGxFj)UlhZri%B+Pu z+Eylw=DTN-0UPfwcPlY>oehh{lnW+yDx-0j%Ty`K_e|2_!F*dkoxmI7(?9kXIcC2% zD&-Chqdlv0oZ@0>YH}48zog;Fh+o1J)CPhai{6dIPho;zG!MR9V`i%F32z*Ox-1^7 zw&@6$fhn0EdQe<3 z`m~I;cFJ2Q7GdfXRLQ4ZlZM>7DCQ!5N{1YBU>T@H!BFgpXEO49x|A8EUVidccv~u| z?}rqtz{bo^k9S;lP@ivkU=On zQ0@7m8{9l&3;?I$#f_@rLAGP$jE?67%PGR~$E^A{RA*J`cFp6y}} zcaB+*1nS{~zq*;Fu!|B^Q&zUTlwu-lMEqqvQHQw6bYw*d%8n`!CCU;rWqNIk{k8E~ zG6seNMb17u^XmihG3)#P;)gL98Wd$TPRw5{ew} zp@7+>JEN_AQ<)VW&pzG``Tte4HCrr5Wfjl8!!OV)Q%94)6?-+gq|ut|Peci3s4Y=jLqwm0Mo_b}}P#?>vm+gtk-4wT+sG%B9YGGePGJbOkFEF~(e;-am6-@SBkyH+kUa(m0H zD(jMO2N4`0{9pZsl-ypVah#JV@d9fcifZs9ezLeGO^Sfs{N71x&p*BHEhlGtDA5{S7Ke>ob_K zw&v=DAP&o%xIjgJ>SI`W z)0XxIpyY^}Rlh-vT=7!)j#n0Qob*F;led`fObgTU{);;%H=7S*C=i8ueqH0=!+L57 z`WbPj@H^wWUGM*4_h|vLW2{(8d64 zzBKr!Z}h0)5m(Fl_T~E4pYc3$TO#<=3O(ZwKIHKh|F78jUv{d%-7iGtIQaDDRI~@$ z)lG2*hJGOpMSEih2d7l8^K1*4T9w0akUK&*^zEQX+Kjy=G>_?}tOq((!kUhwXH)f! zv9xl9o4UJeZOvN?Cc#|GA?r8J%#RIvmSp(5gVMJVTo622s1klMIH8oOyy5aXc*9se zcU&*`X57Yj3rd;nsB=gPZe+xD=Ol42)1l(p)0=9I1gRhDC#LrtSaNc96fg}7*IDng zxRmaDywzjA?sRDJJgDA0zBI<9bS6>p4kT{-etW<0g+FDx2eeV%R&4awn+ZGXlF6_E%IzOMLpy0zqU z3D)vu-Y8j$?0|oZoIx#u92!+v(XNFp?cAlSbVLR*bL%imFQFefER-*wXe#SC0CztC zwO%9Co-PV%fUMH+iHC!NTdHbpS&D}SJSYc8N+HNI4Us_Fk#M0p5Q+e7^b&#xYzQQ$ z_iRpD3;~IES;uJuT85>o4zIPf%ns7o50DHb&38jE_^9m2*Mm%Q=3Fa`;n4baOLN*^ zC`aJduYbbpE-zi*jvkUO$v;~$T(076w%fIMyW`DZ4hLF#^d79Wg#-P_`z@4N4eF1R zrlI+);BgR|gQe$bGSr1NbzuKa=}`00d1#pHEIVM@AlZTyReHk_`Hl=A>P??RiWb=2;`FPY zjQ9f3tVceBl9#YJAJ~7MS$Cn7I&;psJCDA-eICQfsyp74!`7fqo!#-7-{xFycMhEK z%X!_Mk2GOr1ryd9JFTAKiTdhQg~71tGXi6U@zO+Jj`EEbcZPrd+S;(2MQ>JeWgg|5Fh~lC z2+vAO8%l=>`2HY&uUb9?Je&Me8MHeA@EqM&mL(5VL><%G_6N%5 zTdm!CjT($yhROoE8oW6%kQ$#+!i)w{h0{(W@}!OrsB$=PJl;WTX--kjVqmK3D^Ls4 zS|*`4=c%(w2@eL(@;@$2K4t|+pw+uHyLX*j+oCfia=_i{diq>qN`<3JJNAM#i!Xt& z!F;tdRqp3XhB#Y9QK@Z~>MZ+_=M0S|OO*ly0*)$k@nz|4Jtl{I9v1~BN>ZAj8r>-t zmIsN6X0Gt(u}q^=VDbcKSINUdVQ(K)DG^JvS?Aw3h&QgL4n}>dp655|n&s)pnEy)r z8GHuFKd%1Rn;9*G=eKUp>uZ5Dn!JsQH@igZXC;YxSia~6kENnxwia}pQr?FosmjqI z0G?{f&zk$4F#WVJ+>Y{w%7`fQJvo-y9(|)C&@=2i?l!*%&tK$$Kti9$ssOG!)pA+M zoaSBy@=I$E?yi+%TV45R4KDM(Yq+P2q=a@BfQx-UbOF1xCbycy#2@IXXRZFu7LzTN z#q0$i1l+X5he=@?qN&82agya|8MwF<7eIr)O?!5SaB@1ycH87&WTK!&m|eA2G`Lwz zFpvL-r2Dl$o%eqE3wN?FMBj7m+?Rm-C+dfbZ!3u)zByg2JdU{R@t z93~!22WBE8xL7smSmj*iZ0;RGy;UWqhsLM-**7}Om+T36eA)|J4%4}0db4`yF>*rK zaJRuYbcd~$O$-7~UK!89BfqsX$Cb#=&JSS8&IZtR6_vv!2h?m1b%068&ytfF-}AG^ zK~)F#i`>IL8`PW(7YmiWfDY+4rQ`RPxAU&+90Yu=`jGcjk9!xz>pcuxzU+4Zuco3Z zsmrB`e&EMCTfEf$1AV!M*fKC^R-F6@aD8ZokPdi;fT7U`;N&?`K5WnxxY2)* zx*(nOdI-{wGk0v7-~vg$HF~6Fc?k2Zy=5)@5XMFrEE$d-Cb+Xm$y?iJ+vW_lS_-|v z``X@g&^(tbe6=WZYkD*zAcd9|uV7p(O32=87Z|iVXX`NMUr4x@`g+IlRI5Y>Or7EW zm}bNL6|r3ed+}?#=YdbmOf#DNT^9?+ao3^NsZr3@TF>T9|l@7a5ksy(q(tE9! zD(dr_U(5I3N7r@`zSDqDww89|g6deJ>hve6fKhjeT13u1^(@T3EvNNoyUDpOh;xKS z;MsX55?~k=p$!=4C+5q^K&mt;Y3YoN><}0ec1C<_WlVHZ@}n&~bF8cXvzw3ZH0Cb= zNIEL*Crv)b`b#YO9-F4_4qL_1qr~MG$VD;4W9FWEcE$HyoSq0VBEvJJ*h`86Q+%7~~p{Qo5 z;H*`hV)2PVNgc_#Frj8{fiLer7;icY=sQl*Q5rWz%A7uf$ZTO0@cVr?Z@CM*Esv8p zte=xToALZ2^u3op1Dii5rgWxYtkkk`qsV#C>6^^M_|2Sho&>eQBXzZ64Bp)=Xsh7v zW|?k>jKGz$lYwbs3cL+|w>RUG#5jp=rSU~R6VxEw*5Q!rIjMKJJ?4d?add-y*s3aE zcgS(FrjFJhH7>%+s(0PSuz%R2p&g?Ga!JyubB|*e?L3w3xW^RA{Ekq2*{sUR+>lp7 zIyo6=A_n2nTx?Ve5E>aQ&QE87dLUCO6azR{@6IH_Enh$pXM@$dSEf1J-MUW6g3>1}BBotTye6J5L?k=jNXhK_@ zZwW7xm*VYQpL71F$2-REyEu}W^cyw4f` z^-i^5q_?MjjNe0b)#v@^nr-&gd}q9e(Nr=`#Z~fKmQFF7+)GtwjalP6{jh00b2MEc zJ_NF876+%Xt*i$`-{R31%62C1wi)K8WZtG`{BpCr1SUrtL_7!gAL}3tpaGC3a@tKv zw1;1&N9?ej{_3M3kb1T4g-L01fRu8|l(RHbxn(L-BZ3Dd#varjqvDqP*omy+?361q8ycQ~>U z$fFIGbuH1a?jRkV#$axXwIT2QJ(pf_gurMzSohdL?(1}llb3qMlxj(2I zgg?B}y>3}*(Z3mn4dC+KL*FPooap(M6z@B&|9#c$eyC~+9y?!G3%`k0NkLyTPT@7o z5*M)gb>gUrgtS&^+fHBY=*ldRuC|6T zI>P7fv|+hn>68P?*>@{=6=dW3xVRLYG1V=oUkVi!ZawK7i)Gu7kj=uk)Qe{jh?!t% z==|gPRbkKH47K|0n_`xyTV+rCD`CCF=DDLIn-2+=$cin<> zMh(dI6XYhy=XPxVI8E?qU<*xUr>Fg@P-n2o$*9RveGz5{;^!+-tY@|diPYM32{~-b z+g^QIhn_}MJ_Ute6x&<9*H}`T%45!T)$xbuRx(m-7N#&_mbAR}4<=$iNf~-KV8hLl z2g(R7nm7LKwF-^laR@pT2 zKZuL+4#w4B$8b3s(c{I%w&Rh5t9N~w-eU8r%WU%*&xa3S7$>$5fjrPWH2%k6m<{C+ zlj&5Jd5{z6tS>q~PV5q7>CXp9d*(4#4$u2{Sz~1MTk8#9C#*4=G;P@5;oNIR9E~93 z=Udn*;>DAX=r7Lqp;tfO>jNzSgc%@Q!864_Hq>d-<5Z{>dvI~YV5?W8zI?Q7S;bi^ z8_zuOqH7<%hoh2Va972Hm9CAivbx0bOX)j0oiF<&xq^SYIS17{KJG}Uyo3bfQ~BD{ zET5N;otqnWYrc!QBz)769o=LhgWc#kK@JYOHlAbS52KF*RJtQ#u9X=@a#IQDI>curr;pp4!zu&h`wL5t%`J3^;3?xb5)Zvn9CSw&lj)Pf6tknu*(H>?3HeGt- z;=ij(WJE%u6o;mMQNE|`I-RX)}Z+VH;#ce@U<6AQF|;b413 zIYii8Z95#yQk>0lJi2l2OhOOA`$`Qvmu{Pjy| z`jrmn?t}J!WfeX%3qAARRErh;_m2D-UJWA>5)zt1E-dH0UHR*jscG^vX7;yO_-OD% z>o$_1HV&3Pe+B47*yLXydhY7~o@Vn4MVa^5@;)Ht1l;#O-nwqh+p@+)wcXA4E*#s{ z>)Et!3_A|k{dMC3d|0-yl|cRPs{LI);Lz*rzRIm%$#vxMDj_2(ga6U$;NfMO#us6&nf`V$Bo!Tl{TtxP(!&TBRnjNP!;X8_QC~G??dnCKc=^>(1KhtV1aLUyUrF1! z(wP75^VA8k&yf>xS{EM3je7j+C>9BQ#bH)Gq8=0d`_cSMH~2N+8z9`wr#MRd_kZ|t zkt?XvIBabuTJ2cGt5%9zSRxOO`F$fkkng*^e6`K<@che`66`yfE{JMQ?0sq4JfPid}E==qGK0p$kZ0L61zkfcmXfYlEpR# zI$hJhCdf@~CZQ~xpY@1@^K$+17Y@ni7k}R1ulxB0Qel*q$H)uTY^E-|8!}L?@VFlW z2iH6H!%)zxfiMX~(E5+67hT`;dyJE6^zyh(+LcZvqKg2g_KaYIw#PHl|GIDip&z7d zJ61#H?eyZ$kQ%T3t^AD;GSV2`7eS7_)@u*NjYt68kcxn30Abt;bUZTpYlY)(5z3Qa z5#jyn`g~0A#yiBamc|+fvvY9}Ggu)}RC1-$_Rp>U>x8uX<5xTzg;(E@h|6bHJ_)ov zZ=Bznx-z>&?eCN2PbO*^Kko)(X<%&kCk!)QwT=lr?MpPE4(eDbGOm9e#?P`JAmKaf zY@i`<*{5X@>b7QeI7=8~``9So6BFZuIR$%m*rD|Ex!vLWuQHSZ31Hg7X0h{GB#^r< zL2ZOBg)2FHO|I`;`vkr=yNgKJ zWS}DW!;}sGb{pIo*?+Gbz|UDGIaKRl0|CaUAcsqQ&e!{)nU#QcUAuEB?63Kz5`=|EUefOW%=M^7YG&jD_ z6zD4fmc~oz=`W2hnOm4e{OOgOH+LUTHj4|#g3r-N#RRA%-td4mMv3+Pb`dHgD%>k!2C!nBwqqbFoR_pPny-{F1`NqX@s(X3*$d;CCpLwRXz(e zqyC%^pY2kzOLd~&yf5oKi+^qcl`D>-8ntC=-t#8z^M3j9((6A(YXmtKIee^dWC?7r zL(AJb6^#XV&n#os)fJm{GnISae-i;24gCo`i6nx(_nqMtR# z&eS_Qxi;{;*LrQMlfcf9Lcn9DrRNWPwzc*Kj=qOK_9@|S?^obgM{5FzH67@D zm=b6_ZL7J++uzodE?#>r=s{hwFiP4f--NCrhu}Wz^iB8oRUh_J_Ws zMaSRF0+j{7a})$hfV0$&|9KbuhvjQfVry^^Eisnrytf`+AcC{1JGv&MKEG|(P=3Fw?xy8=Kf4;9XYV=o z?%MzyS=N7ZI1(*ZSd|K*ihusQp6>5qWE**9(WM7J?_C!DWM5ykY6TCdCGIeRb>FAW zmp45>5+UgLa`R=oo=b3eXcP+z7ppwf#ljq-SU5paf3{2cH z2bk=pt!o9h1`?hzeREvA^vEV)+ma(Dra|U~xcMR$P@({*3^c-l0XUPz{=s+oX&ed| zn8bmtsk%aCFYE?@@<0Hv<;ZZqWLFQG;c#w2AuyE=7iX-Ped+0=qZ*BH-ysF8!&8=f zf4A?BeHvevA`gfoN>3INO3p6@f`FdCRJJEmwlFzod)=t3*P z5mCb842%PVd+AkZ{b+>SaP! rmrcj%*Hq9_;nBc=gdlwa571Kl&1zf^tx8UO$t0ssU= zBt$o7j@PVO006T0_DV`RFO`&7b=;h7>>aED0M*aQsl;z}`yK{uro6dl#7gk`nez`- za#ps`hl&cttlW=CpC-}X`xM1ws^9h}np59H@A=r&gZMwJ?`>c0!K{DhR#x&qbokXo zO1jlh9^l;KypNM~-x!qS0Aq#$xf5-veQvKz0qCEE=(CmJ%54Z2;0xWYWdoAvp z=f=Cfx6A|ZhM<-QGIjy4{ur3NskxfHHji%6`AG!``l&cf#eK^+J_FDiO(^UO1awky z)@JLo>i(v!3}%!f@lA=Unrt%ZqWiEUmzzk{6Se>Vq<3!)Q~^evg5C7Lv)-8-gWQ_c z<4#fqjtT`avQiy~#Z$A!^$uhdulmL_<+hNa`Fr)eoXhJT!`01TZY~tkZ|&dvKF{Qaq;+IS>ORra2wC78iv02lNspHPtdr#p&?$aP zm+)&^MU(J0{~(LSGp`3|rN@slo>3%jD6817)1`kEWVWg^8r}X%VD`yo?{UIo5i?8o zkbn;+gRHjw^^8M*jamXM%#tC|!W;>CzoELktK@S~)2CXh;TnX1yoYLEe?0oAB&M_8 zsZ#7ISn^m%+)qaZ7Nd)G2Bq_T4JR%^S=y(gDB(aj|-rAvB*jTL~Wp5hhjG1QoF|sLnO) zHm(SGYSSV>lD!0v5kC^hzNj*9CA8bha1ubD-2--w)**t;?sA5rwUu6^6;+6-2WzXRnVR(=^_qfQW)`y3rNOE@}X@>VbKI>|NnsoIlQ6m!6EXeWI`eY|fMx+S+|dSF8O+w{pE@s#$~tvkWsE|UWPUv1gxyaPj=A^T z_1x=cO=8Vv`~y8@_;B3ZOw9LEw+O$Mtei`|?68VhoIbU2C{yRK1xJPZ-@B#E6%}i5 zLDNx8dPk%5ej*j&M7GfkhaALn2{=o+78@-+_6IOgm??}!G%!~|q*>ulTb-^oc>OD{ zD=-=aCwTl&o10eh6LMo`<95(a#t(>Q^LvT_9;ywjKqZbH5TN#5a5p-}nY?wS2Ozi< zkYET8od>n-#+lvYM23B!gZWV*<`szdIV~+HN`pZ$z2rVXd8%8_+TK!u?kU_(BRl2| z-!-Ht2sX5k;{;k;NZw2}WXOWyFX7oIP%bkgkfYV!1!zJr)9P3Uk!k~vf|i2hZYipg zFuh~#jwE~^E%C&Ogn?AySpw%%ikFJx3B1pvI1>ze34W3pelAt1c|6st-TQ9+mK%k= ziqj)Z0{=Q28rY>n{~_qxcdsqZq*%96RS{rTsLgk*-Q5N%(~FjvHx9MeH7#`Y-GHQ+U{D75-Zb%aNz zNBZPTKb7gn#_@|c|L;v@l8FXC#{oOb6LWU?N0?V0Ts8O2)yQ6`rYjmM&uZEKH2LZA z`r?=08~Hq(b?laQx1e`u5aG;)(x>_Z%52VNS;J`cor zl&X`udWnx9i+MMM5WW>d7=wz@jnM-A2yOxxH*T1Q?ulSYhv&$^I%`al|S+Dtl2csltS88x}FOsUsj#X`?wPKSBN_B;djDQDdYul;<}TQeImmi1>0g1 z`V(eg_bL}~`m9t{qRrxl#xd)$!|~Kc&tM}j?L*+hd(l%5d-$#_=qe>jP4o#%!lo?k zKhV7^s$TdoYcp$W?VN0<=kRA_2PQi8%`wZqd9Go$p{KjuCUb~4gFa)~fvd*B_&3UE z9$e#$+CzOswbYi>`hRe?8mSVfEdLE(Q}8D7==J{PR=1<-VI{pG;pEY@9xCN4^*M_> zi(e{l*lhUTX6!KP3CWWHWmT0ov2`oY+*j)EH%!(ou=Fv~iB|ep;d?jp9F+6F7zynR z{u+U0!|Gx4rp|HGEV5o6M_b)v0*jdox15rl3>LTd-|f3EGAx+;Nccy}i1{v@SowT8 z#w}IN9w(;OrY@9Bmki8zOE3C|V90BL(kacMfzuHP>OJtxX5@&!xxg~PGN=WLtv^Se zqt5)Lx*;)kgJ(jN_%a;!$`~(A@D{iYG$xQD-~(ZU^@1rsm4<{WN`K0BVU(QBl+E01 zgSDX%N^Q>dEeo>?1ysCGWqykMBHLx;FnvYyZfIn0w-+T$xz308B36wuFf2_ZXT^n_^>?x!7=9m*RqBms$z4s9+dB5L1 z*R#=cC7dlG=M{iF?{Uprv+2tEY}={*d70^&{gK2w!*O!tMks4H*p&v^>_IE#<&rHkAlEl~d)nB4}eYbrh@-N02?FZf*7flq_3}jlf zRelLr#))EO(W+Pq!XIfr?KlO4A~5>-A!unNzCEbDzukM{YXMUxOx#qe*)x11rVE^X zKkNZsf;xvQZB}N$Z5n5Yv30j`&I%dqOPi3H@!M~&&pK}3M19lF$^l=`yq{T3?kcBw zDqv?~SL3qO900lBJ$(?&<5f0kY*>w6DRwQ{(XY}^g+ZEa`oFm&nUNVY zuV=Vtyxu(56Dh4StPNP~IbA)S;SS-!I0`OS_;k$2w#TN56FL?zI@HuV97phdY9i9C|*+Q(Y-!^wxsmy-Smd=-!_Ub}?C_00|mK+=W4atr2O1I~3 zHqr5=_-67y{C|uwLYQO}@n!Pm^*I;5aF_Tor3i}^ODTT#Y?C~KHbQMTzJbnD_H^~) zOL$WFS%)R1xcG%A^M&=gfOOnj<|3I7J|43|JHNwvF5+mI4jjLVdgk;>9aZ?M9itMd zwagspmdCxg(UY?i?+UfES286b)7N_m?k$@XIkq|FaD?Y~*i_Z&Xn8iA`NQ#tlE$sT z-z#57^1IK3P(A#_W^%4<>;2m$O(it27v>+~**^G<*lGqQ@i6h6rT*sA)!O#u3#XAr zr8-?d1B??^cEVo|E`8Nf-cho)g^#~1qg-WKfN=Vp?7!(n=3;9oM~)r2Rwp~UAy)1tQkm~`!_l5$D*1s z><605^W)y#2VTv#aQWj$*p9>&dzP0hJaUqd4>(3FRtstdg~teNQZf<>z8xFX0GRFH z3d$xJp-4rDzWZ@8EUrU!D(e~43Vnat?2_vPtN@b)b@~FHw}JcF-#R{;uqcr#=C}o% zTnzm6A?oqOqNZask+V#wHy&R;2w)W@IDEOZyj=Smeoft!_r4Zj*Ke>asuxCbKxE9Q zH#x0Fxcu-`_N0Us?ikz;qC9lG6p*Kl=)1>(Yu=! z8$|Ns)1%5a`H_f*D5A$aHDRVRm5*tY-?uf?@o+~rabY&)Ep?r+;NvA<8Bv$Oa=4DnF`1Zstn-yf%P{Xd4>TnadUMI27_e_0EWh#&wrqwt9Q zZp8mN=w=$8|JNie?EZf=jp&HSYvxV6+m61Df67W>L>YhT9?k`r3>ux+iqV)IJF+d5 zC{|TejMjAjX=-A0)fxFyA6fIz>WIa4dTt?8h;ZfuMjaD1TBkz}77_eUbE*4~JJ(RL znTImYik@~>uZ|q!A1-_DUoSp4WT$N`vOMO)FK`g+ydY}Q zG%=>Qer03V{(~Kd>h=PgHN1#JUAZ*5#y~~C_J;|y&Xs3e!H&l41250lT3D^c36FvR zI3v77-S(XFKU^uG>?0x`fK&4zlaiQ`(Csqvpw|DPO+|jz?>3?GHsXYb$5Axsa-UVB zN#I$KCm>swrZw7EE8=mT2a8O-X~+NgBjY}ORFL%>p2xH}vD zTM!bMIJb)103gdyv(4fTtlShHXH@YejZ zSC;=11!*0Vqk;P*)GUrb_!9Bf_Kyep5F|fyN6VFnj&-X|0dlCkUz<)(QWN!&ds~E} z1y=mg$6+0+iKS@x9{kTbG(i!!5UG~*Otj{wKVm7uY{WO0PoMs97wUmJH+keedGzQB z-ajQ}m92@2`dA1|nMNF&S_x6oA*NhRtm_Mxe$2MKS6S*UaQ{!nF<2=xCtZ!w#m9jg>4H z+1oCntCAi($BDU9%4cJa@WjEL4ZTjxlJ0QFBK}i0d?*$R{CR??sdRnoW4vJ z1*G}=2u%HywF91M&6Dev8Yl=Mrr!KkAnr4vAf8`UiDm8$biCA@plk9sB+Cl;%^a@P z@|J_x&n!H<<*oKimKIr1#!&SS&0V_}#)BTl-%}uC9z^lx3-|79i@&fhE2~B(%XSaV z7laMXrV!av!1Ao_G3F0wnv5;g*hPTHrF7;D(1f|S-+-(akkF$pnp*GXT~ib@rcOor z?62j7{6wq4y|J3qyE9!$rqwyuxXpPUb8NrYM8;C};`J3~q|8e9vO}Z(?-PhC9@M@Kz`K;saIt-4Fo%Wt~mcIcsx) z{DlBJB5`xY2=K)G|K0E3_oc`vgY3W>@T}g!B2PBvozwBcu`A1vjdA3ehof~F%C%t7 z2);oOS&kg^|7-LrWVg!8ljYilErlYAEbifoUyzBK@dZ7o7dR{ z>?wVFmF8ZT!oW|Uo~=>xpgo|ij|+?Uf-6e)z*oC*uX11x#B$z>A6GPY(*Q0`=3FWi ztp1LW6d`|Os7HtBE(b{0qHU$udU@;7um&A#fu%`GyoiQG2V5hci|;gFKaixnuFICb ze3kMNAtK0E__6$4=U9hd|IUTn$vC$-$oX1DSySc%|J`M}mRb~IKi zNK1)7#+k?8U~XJ3Carr#`p)l3h%Z;l!HYau`P%w2UcN$p*|*rk7qy*FQtoVZjAdY* z;#3Y?O1++F|JS1r(10wbEmXhIfA1Ass5%&Ue_LGuocfrmAfd`@ODN_%3*ssK@V zMGE+MZU(ueIx;tB7{z|tAs;MVn-DB8_Sb1|5M;l6qPaY&C67Nj8(PK|<16ec=~23v4mk<(QN9j- z@5Pck3a7_6K6louB3H@e+IjbK?0y#debQ&Q;>uSv#k|Q`{xsgnWj^{Ja1-))-ODx> zTpL-c%@ONF@WLv&y9<5pNRe5zdh&>fiKOOk7`oKu-C%V>_{F%TU9>?Eh?D z1pWs_KH5T`^>rwtrqitXD&B7k-4;t1A_oFA6N9Ep!9rCO#HMjF{}bR%z~s-3X`^S~ zFD(MSfNIBr4YMs?#N$WN;jbB*D*9Tgr@Z=*G=E0Sa7BP_gBP~q04-i;_efJ_FB*?s zRFRj|{s!;&5ixIBD^oEh3zWO(-@+^_rcEYkuWIx2F!NrQgyKB8tVa*vWO6Ze3sURz zwa(h`A0=AeVYY}p6%{l3_P@#57ES$#-(zo7pn2DI@D2K0C4=O<#&n0$$AjQ`V!6ZM zv$`Hxr>yU8uVH#ldfgL2u+W)ZghRLAsM|OH^wLx5mmQ&x9g;xTH z2L;OZKWt`u>kq!kW&uFFGmInChr8_bXcFC^i}r6lBadRe(xjVh>`~ea(x{2y!;fai z-)=eNUKdtu|g*eMnj--qRm{JS;6xYZQ4<8lob9F}7=+_vLM%YmfAj&;VM~ z*-uw`Ee7l+9X7>uedc^UeTB`ruE!s-T)RqR*AwT}%`e6?k?@1SgZV?4AD7CyhdCNz zUC%hlAga@FqA^}%+wXohUE3mB+rl|xynHcj=tN|Y6hU_a$7aC$HfL*SN7l)meLC<8 zXXaN(bM|tc@+RQ{Y$vt$pbt@S(jVJv!x2CI%acO+tfnvWSLbI>LCspwZUVktXy@+KlKb^u6CDD&Yk*U6T_-;mAHc~b+F{gLmS z*LupDB|pTUe{BHoJBx}ORvASO293$)!bRu>%$LipiGl?3$^8ElsUvoufo2bfEd2R1 z4o2r38re?je=ZG5RxlM#2j=G&0x?Wv-zR`DLkWyjw*rQyU{J7$NU_SV-ZX?J?%FK0)bp%RSQ?&a zO}zSg#f2inmeQXFao z9)_?uWKS8{yNQX}=P<4)=IvFqLr&-P_SnUzG$V-*)Pl}ggP|H;r=_(euD zI_#wXq$XJEn=sWi9(}K)*dUaMbn0sJx)UuF{bvqVhwHEL`YF3=^Ih~vu?)lvkbAEk zBMm;d3@F?ueHX{Vt|7x=Q}CitO^s!TFby#-mv01?H>6h|R$kL&I%QkaoZ- zwR^XDUGrGVdZOj+jjwIzl2+tzu?jT@Ox=IeP1HW;>Dab`3w4r%Nue@J?o>Lv9=mS9Umk0*=D#UToq1hopq6MwS zOEEc0a4gFb7*~w4|5T3SDj}a*S&}`nxp>>te>zebi{Tv$q7WI>Pq(sm!yM zW4(qx7+&3W&?Yy!3OXU>$c*2BZKs_d|jgR zXMNg`%0(o<_e(SHhKVdUEXtDQ@^9wQ4Jzp=vzHZ1AE?~R{#BcrfuREaUlqe3!D#yJ{|L!SD7&plakt6Y?vQY#1jXe1-ZW9O@^BLBa*vYFpRKV&r! z*{Ju`2~~X%}pe~Ri>=_Xert^MrO-FlQJW6JmGbT zD%hKK#1es+RtN~DxV#Ry;|oBhA`TYn94$DkE68>srExdc+^vtTzS_*qX2IhuEF8X4v0k;Uan|wmE@bu!i%0yYS|8 zDJ(oSob+KXvYl{g)t6;oYkPiy>998_jNFUvw^ez;txz-C>b4)KZ1ApG1& z&vN$#`8el6v37f(&gq~&V+e`WFO=vwr-k_mgQLg|$HVAEAJjxSH#i?nlN%sPb@?Gv z_297H7kn@#bhtY8`>iL5wia7xEIV^|Q`{SAlUkg>!d-)iPqMJ@A+Ly)nP@#NCWBuQ zi$srkb$|6W7<9C`Ok;WjSWv660~>(qz|qG+Zvw!~uV*Ti{Tcpn0^v3i^K&FCGY2*v zrR2)SLlt*SXg(WOs0%cUC`#x!+LYPxWz>{T@zP0p!h%Hy5cM}dou}K?WS7y*Fub>A2YWA z(f~tvF*^~B^OTR(ZQ?Ntn+lvontL5_w;)HBXnO+lbq9JUEYaXt_?RiK5_aqQwgBBu zi;wdOjhS!~qr(YV3n2^$9>^Gqk_x35)z#NGd`s`_Ts?Jvre`CMyGu=94%kD|jUa~_I*ct32v@T|MK@EybA#7PtfTzHE-yJ>~oxfj2aZ9G!%C^%gI zi|%aVy}Xo;vw||#*Ne%{&{kIhp|uD=1N~*LZXmQ+trp^-`G-lfZl|ZY+h}SPRc7iD z{A%X9A45b>yxV*jCNS8bJS?oou>-jYd=VK$549-WE7JXzvCjRvPFXP@;Y&OHZXT=` zl?7Az_2(2gQpcVlr-_HtH5<_y&?ny#Dm-K~m}&cFfJe(Jrybi~CQ8J46fshQJFUM! z<~g3M^PP6YRYHR)!VE8R0;-H0`61OmpAGhd4$tbK`^TGq!170J5@8TF8~NJmF20sj zW=98$Yd-h+c_wGq+8TQ&_sQZV$pgpVS_iysE~Z&U6hfoxV5c*&48oZeV#HAEw!)pN zh($%Ol$RM?_(u3;JCb{3I@RT74XfYkXSM|ZN=rp6=Dz7(=VNcuWL5@pxvt#|n$!w$g(nNE z4;=IRawK&!e^@);DwNgVtRIurw58WaC(9zuUAeQO#Q${h=%Q2PcC%qYP9c2Po7cFU zTSpu@0dBBrDw~Xu{9z&!vL=8@Ys0LOHEGj4M;R|rF+^0W7~V$i6n|RS-@f8`eWHDx zltTxm_V4E^w4&3?Ubp>L`1NvU?$#<-1w4&!+J5+tC6~;ei38LJStYs zgzOujQ1+6p)V-G#H)Z$MlF0lmURcCLZy|9C{LVj@D;xJm;@mjmOT z#;^cNJ>I-i$e8F%kM%_wRJwrmXzHSA#C3%=7p=I#o~g@|u+WaOa#YcHdfJ9 z(ja?UUJ)fgZewY9rzdacQyU<}H>OGOL5g@4OQqnd@cA2ho2{XJaF>#V?wPVT(U+W? zg;fAWR1>$DQDH0myKMx5_wM^_S-3;Zl$p({h{RT3aC8nTj;r)2E(fQ}xh&fLFH{?l zWzRbQ+|jP4ARW6T*B$5wLaZ#ltV9jYA8Iu0DUHxiv#!}nw;Q|{)?y#0yjwyc!rV&N zp=~>-cQSWL@B}w@KaEEUG6ijofJ*?L0d)}M+KA?btxoqGd{o`cHcjo#^HXD>wBcs) z?&BvbFS@I55tgB-dsLv1cTTc)u+-&f=+c#g<}^G{X1I#y51$4#;M@?Uf1tPY)(R*_Hk5_=!n8kho>>UqdL*lIl%oMU(v zUO06R$}oEbQ|h9BtEXm@!YyjNp? zmn{BHz<+kY4Ju4Okb%`}8PnPxyRR*BE+aq8Td~dry>QXg%#TZP9f^hY{~UKU7iq_8 z$JXgNF?1Ao=z1UV%VUxwZu8LXGV{q}toW|os=}%UCS{GnA>8t~D3(UFj_;*h*}K%S@8Icd}-m;fkJkr~$o|%Lqcx6`QKDkn9by<93u$r%a|WmbhMxfFAL9 zA0f>l+mSh|hL~h+jL*aJuO(aIH@NnODO@(*V0GJgr;(`NWM?C@V3TTjaflT0myKci z+p}x;(DLp7q!daZbA3=%cuF!~5f?UnJ8OnckW3yk^*uJ*H^J1>m;t^ttbGm~IG@AF zpenTKb`=cfCbTe<@GTxjSzUYm0H))eOd8Fho%u_r5fP9GNv+DoR5`>GGJU(3D;J#q zyK^SnA+=*B;Nd{Fk#8c0Q)OXQs*H6WPsIwg(HUXYcG$cE!Ihl*rbYQh480_G zoP%4&@2AKA2s4@ZXf3&u@07?DM;rS5?c%x#exVJ8OILZ7)Dn}bkgfyvhCv?EgLKd|Pa&4dwM&PKys z2DEf^PRd5B(|W?z2!q2XEp>Ze+klQpcHQmUWO^~y4T~i6X{pemCPGfc< z89q)d9}tz@*d7HPt4K$y7*ykU1Qx7A!K-z>ef-zr$qKt&5WvIjYvI^EW(+a9x$m{NIZ=qX04*TcD8#9)2?$D)XwHGeed0Ib8C6 zAKCDpCMs|A=V@((Md&!i&hXzqFJ|?8SgjFg1%49Y#0K{KL88A6xrho$C4LdQZ zrmj5M{smH)R`uYl1KjX|NgU<#gs#4=7B<AUlXPIu0dIgT#0Q@-``++ICMfO*MR|Qld8{DkhsGaozcWsT=Elr_ zUfLp8pp|J|{*1R7XS#1de3A_5O5jLk>l?QKNce~3U&~+hT-zP^%`{G@b`E4HMvXsV zfQvV8Yf4%ubQ5?lpPDWwV^2xzaxUw0KEiM4<1r`i#`*jl3I1?KBL1Zt&e>*ZyLTm| ze@nF7S99Y<7S{P11^@Gp_uX|ZE-kcTdM33kzcQ>Xzwrw`hf z`S%EN!%F)x%9veW%xt#CSCc3GN~8$uNL~8*aVkV=?}pacPjZW=Mx>}j$aC}9?=RF> zE#AztTWXE|mvFq^%FcZ44To8NOrs*Dw>09@4X!k!4S1aBvi*iG1yX=n(1kidy5<8- z*NZF0FGX4ofAB4$Eu&z2`_hmIA_^9A#(P1SR$reVSdvD0L6`cg&OtG<-Oyw9iN}ATK?zGT7);zFbNa zd)~rvpkVllok-i!C;e2Uea#lKVTnB%9+9kqS?b?)uwAEK?j$(`vG56L-@V4^Dm74jBRa$4{4LJ-F-dFZazIpigC z2&Ibjh^&%QntZ*uDbZ}u{Jf&25{ClFji&ACHHI)eh1nH06|6k4rI%Z{NyhU23D5p^ z=yy}-`RL6R@{@hH;(#TUxF7N^X5;)ANXM6wOQtWyOuqF0jRESML`ID#hK;2&hdvH> z(;Q}Fty_ucD!0k0n9Sq)BCC9Ki|q^3jC+{u#MJG*W-(b<+2iyPjUdbo>mwN~D4&Je zV;Gb=IoI!L#8pA50tQ$#!KOatRr~!q=%-pt(zeXRv=B_VqivlB@gh9|G60xSQxQCUc{4Xkn4jz^^P9 zqY*VXui1gNiwU+=WHfSM8T`FzQuZ{0IdFQgaGcEVEihO=y${~-LO_qW(?I@4D4|(r zC4hq1;{w*7xbL=iFrQUSCM#wwUp6lf@IB}sD5h!3JUz_2kx(R6PsO3f;)ZeC43s5` zKVLYVD&afhV)TCj_KAqdoO}yprCWaUo44n`y9@>LhUl*TE)%J^=xWv5PFToKEy^B0 zrh;xAs2|Db_+WoW+>o7&q7~&Yq$3xQpa%lse|(w3o+C*I2UrGzPKnnS@RW>Rtt1`p z|En4d5iL?to>;6&sA1D8(}G#OiY604d4&_k8lICoo>qfOHD?rUcMpyA2e!6ArBas^ zvd5aXBCx2qFUA1~mk(!si-Efk`r55RS0E{%uV_P|=ilyCopb&WV{nh`)K17ygh zRegWk%Eh>b;&9<#1;&G0H@P@8J!lziUv+Sbw+}i-3P64N39oNh`@U1_9kdpa`gd<4 zJEE8_U^efH{81-0^Qo?4G1A;C(A8Utsj+s@NKz zYzftezAD9#`GpNJ)ISxIS`{;CG+fO6BwQ|;dOoJP>8+U~>7NHceF9pNHfjkKb#`om zSjUEQe25${z;&w|aNFXxLO*ftHW{EnaO;x*1pVfeEu9%rI4-R)+Ax!3vt!2b7oo65 z5I&Ta5zHYjZ(X?bcI5~pe+c5@kR^S>)1g1@01~4NK!Ct4{#aq!_c|phy`Y1g{9umL zRs==Jw8F&k+NgX(k)IioTT|JHC_VFIYiv2%K;Wl6U?7V8oezDTFzYMd*F9t{vuouV zv`8Dl7xWa4Z-&pgIBag>_Dcb%&CytqagEj6wofdQwC~tH&eFN?;R7VIiEqotFaLQu zYylQIJb?WxxHziw`%pDIVi1##nSJNEYZ|`uq~g;5m#v>N)j^iiW8THL;Uk^Wi{^VY z_Du2j8tFXq(}lY0t9c^!KpA+;GaM$FjA6U5sq=jS#I;erO5pY| zXJSstitzWkFIh7ROR-PUX)lJ^mxvyiFx-Q_`bMl_^JL1CwO0h3U{XNaHwo5j8^cG! zv#(AJ>Rw93scCh8H^ltyd|kDB<~Xi;d+0V1mgi8T{67?~ zFW(bJ?3s~&Xl;dJd_D_=ELEt4`6^ZBQ@XlZT=sBsz3hpoMaVEB19`lY)<6(>YR8jmt$okXr;J~sy#h>K2eg3Q$ItW9ceO-+|y&3#0&U#K8nD%)*HS&t)KHRnnx0wRxX{Lnx6wZ*R$O}8!ThqJ>g4DbLIe8sdRY2p{v=bC z$5!>O3}K`K4#{J3w?cdK=I;BhuV0gnJijx;E9U=@YCFlK-L~bD(L?mul+w76I|p%> zG5Q{hYXLGN>>l*^>g4>h$kU1XP?Sw~X^Cey5B^gN&(pfW$iLu&NrMY-IyD$% z#!^)RX`x*=NnYOoEiXEq4|M%@d&XH>GqiMIiLe;m;k;-y8nYWCH^55T;J}sc;HfyB z2=nmq;8IJ8WUTJ{!c=S5Xr4^IEU1ULyf;*-6XBnEPR=$cfsvpSfQb2R1Zs0wM_-=W z>b`!!c57f$@C8YKg?QzhHjD&?YtO#x{d+>3*7lh!u=1ux^-!-UxESd$GnIZjXFRX$ z64W^mF`#Xd9YL;qsgv6%b)pJTY^|tex+}`e3tkB#enN4Go-CC6vv@IG>l6pYtx?l% zZLNW-fAc_;rCPP27|(h&3YlKQH*=Ow*ZVi>{X!-i8%Ret=QXH>j@8hQEQkQ`yX>(G z5Yal02^hhwqg?3dF0M^0MUlRNSU-?REt{LQMp2(Bw zU~p-^UCXQ_2tphXVN*f=T4wzbWnUR-Py_H5Rif&>rvQ<~pUHXFPt|q#_0@>o+m)9~9bW~DDq8&uGWIj` zr|W+{Y=@s??9z3A`z?^gvA7NKdj8sNEZh($Zf4;eKlIbzmroG`8SkNhe!rCdY_H)vv}pJ3-p2l|Q4j^@rf`C~ zm4->Db1|pmhg^lJhmWQ&ji`kkJN2m0gk#DmnJa35P$rmMJ%o?L_U9cJ1TkxdXpO@{ z<$Hx9G{G;4u%)jy;HB0QLthTBjC8_ZgMy8>n^ZeC=lbJ&mOc=F*1O6#cJfe|6u3qU za0C%e_Z|P!JV?I*IfAlr02;%eT}e)*1OUc64&Tx}RkPB)c!&T(7ZoGR*&c4-{E*c= znQdieptiyUnM}OhSytw`uoYFg#&!~!haKyuJs-L{L5cU#piu)~s-7+l-v=YR11Vxz z6?YU8)tO67)LUZ3qmGvEH zNO2=wH>fON{ngM{ao$%MgO6DGI9e`_v-*OJSP>U5Ok|5;fL5yMTHqu+87S?&_+`y- z8;z{ipEG@i^Ld9$OBX0^wza9E;L@^3bAvYaByNH-4xSPngL{6oX=omAtS!O-muCsP zksSr4_9-gRrOB?8tim`x1_8jH8SaWddUK)?L7&DInBTQQ$q5Kcxdkc<5^Y`23~N&|3wpsr;gHXI`GrZ^?XXph z$l8M8lkO;A6^*S?%K1aMm7gqLbs~riTV}#pzxA1!>2+iQu4GV62GhQN`VZQ=3#yuc zUJ@mfkrnY!WPquZXwLn_f?PNG0mD0slfS$@U?#y3OkobhZ#b91#1+dOZ0HMmPV~FC zO`pTmD(_x+%yAQu6v0qKrdy7;rGC4>QyFLwxEUo8jD|+lFa~ghHPf79zdox%`RE?q@$9 z9KS7a)C*wqI-HiJUI+zCT4gr%otqLADckj>*#k8f*YEIg-n09mKFdv3o+QOf@aE_3 zoUj)PQ8E+M{~t|f;n(#4z5R{ukZuqak?w8@X~hpncS(1{2&GFp2S})NZ8W31ks93~ zIclW${Qe&Izp(et>(q5U&vKa7aIEP=tlAB*{`qm1^W1GRPq#!0GvO}`D=FuU+KVKu z5EYvA`~1OCHkYl)yt`rQ`nEI~Uqfq(U;!Ed@HFQD^5_BjW{b1_9!6rirfw4wSBj5t?#lFfU#<|6k6Gi>Rp7=0c#UU4)vk~`% zdmL|x`-9mHmUOi&4^Hj3;(de+HYN(_ACtWloBY#+ICT02hHNBJGCdkv#4S;+ z2Ke@Pp_Wx<2dlVg`<=;{NfBm$ALig2trDXKeT-^C$)R}Nilm|a^f4}jfYBp zUdvNg{{DAc=@$38&FFh)-Qb_dqc>{dxYy1cRC|PgO4(X|60PQ0X00K?os_u048i-W za-k5lg;H7JyLy6-aZX;#@k#w5le_PF&O5p-3JxTL(Csge1AmcB9wa>;Z>e-&0+5ZHASEPoW?#Sj}R0foyxjisd;OZ zTTeqEsG{J9+%}~tmm>()?=wH^TD=|a{0|cgdvXRW_)BssHAm`yja6fHXt={7oBO_r z)n69I=|D4EsLdvj(2Rx2@yX2vvY>A4(WQ4`Gi=$w+Y{bTpwD~kIkKn~?RHV~9z!P3 z@|tkX>nx?-g_PY&#V>3+cQd$O0%Pk1N0voDkG5JI6&CaCM)KF>9%hQgMAw64A(d|$ zqXuZ7U~X&#{I?U5WmX3~H^pW*e;LcGnR&?;9$#v>dos+%komAw3+~y>aTSAIvXaIgT$Q(hc6-ZYxN;5wq&p?}H8qNwI9cy|-p8VXDso(bHT+SU!aRHb^xc zju+nF=Cwb=OUUxR^JMPJ$mhp4r?G>18SfLsfD8EWM>}V}s9mrKKN<^&2;M_L(5fyvy*yOpccH^U+~pqfJl3lGK&FiWd52 zFAT7tqhHnvmND(~WEzK)q?baO{1&_HB#9xNraCO$4EVbBCf5kuZbgFOaJzlS6T zS6@Bs2rV!8F}@RHn#i^@#x$;O##0LR>+f{p!CH#?7;gGefXV)o8f#mI;~v;k4jjnJ zsj=JYfX~{|_M$8K;lo<8^O!mE2dg9t5 zHvZO@Ln*Qbaq@iYjV^4{3Y~^=3)EUYkm7T}=l#*^(H}>*lI1W->J7z_>W9T0rtxan zN9^T$wAYj8d)P@?C73Tp`E#P{Kd$VRMxYB4$YQ(zIQ>4D@XJD<(b70Wk1m?|9&<#eN>z z@lOTkx1Ns>Awe58+>w>p)ZAIhOdOuLGS^#@rn(u{>)_Am8mV`pz$(=g+eszw@x}rD z&LSFaRNwiMP?5{KU|ul50y-?vn&LZLo&~fGlk(ck_RMHXREiNy7LZ$h?a)n3iXKmO z%KHzb#GogV8a{*I0_zbIF!ISt6!0voqDKn*ejO|O zgEwn*=NPZT^h6hN=R95IAxHZ!+`eA+r*>*eeZwI`TQ4?b`^oB%8-YQ0;BF6FG_M&H zY#P!5vDxWduO~)TWLDFWt{`!J`uobsijUk_$0DMRG$}D;4=dgiZ8S^looM=nIhmb| zLInBKkXg&}O$ggTLGy%akfy)uW~w*7cFj=;)R`AAvWIv(!K9&rwa^V#&XGqeyQ;MPkU^V-<1~GXSj7T>d`I3qFHtI5&}2a zc#zSr1U;w&?*Ll9KZ)7NT6LPW#H|G`bWJuE{UY*qnhO`ccxQW+&v#|nX1p%9U?Y?s zmPJ_9@aHv1BrZRnQdm-*RxWVA;EhTNr(!AFd(F}28eiGw33R)j_lSJAY+ZyPKlvEE zH}60o)qLtB^+!thmA+3svkI)>^i?zRpd#SY@U!tVy_6rhR#;AwiWWEi3p4w5?#lMB zs!;}L55e%Z;RS8wv%=VM16`YglM8$>N^#%uS*QSI90WI2^c)n9mk(f7=)!Gzkm?c_ zWVQ{B8XQjdq%?Lk|6StaV?a>93vQWDaI!RI=d2jyvf!8`{pa#XuYS| zi=~RnlL6c6&7Pq+^*J_8e`fSHKdlnZQX+-62pWJB*H@e7f1vU3M#=`{Br)3e+J z);5Q+^-K8|!4D3d*A73i>kGN-=WVRU3dDN}VZh$O=h6U-hxKMJnbv!@*Gnc3 z607G4f7ajSq9v6OtJMP~{IEI>Nn|*%@d~~*UK$_N8>g$&Mey~Q%1*J34?2MbJ8b-b zmuPmL+Df!m{9EdJ+nDQp3d*m%fHitpHjd})0%_$BRW9&R=;I3HW9EUkY!UiF1&o== z)!9{L@rMG8`|mI8OWW9R#CzxTJTUE5KI7yh>35>G$77cX9tP^RTF=#jNJPJu7}_v| z_0ycQnVb}VCcu-fH(7YSN}T|0akpT3|FQiv$fb%=PHn#G-!^(AR8ZgmfzuG686l=1 z-#k(#N9_s<93DXgbExJ9^NjH$EMg;Uy9KOVN7g~W=wB&{BUOmJJHnfPactGp% z0EG_g2Eeo4vm_f!KJ+sOHNH)sZH=XIz!|;+pT*Cq*v?OJk)oh4i+!&BrlZGSS!HEM z-|Tx-D~X!c048G!qR>+9U5i+%rLjA4Mz|#>DIe&+Qbo{^Ir-SicfEN1&CX_n>S4w- zTT1?$)kphEKR3k}jOO2gj2@IykDfXH)X$G3oG|VZ9gJ7iTLS=W%@JY1*y8)LAI$+Vq%2DT&4=*#_zNHfGuzIa;`;bcVrki8y)m)^)dPpKOO3k z;^Pb$Bj3fPx9G&j+Y}8DOIPX1{w*6B2d~8bM$!CT93qsCQC63HG3Pa+<;fyWvMtM+ zLBoOy8@yl0Q{xv0qwe9WizMf#mvR=(B`Yz!_(eCiI5^{4LWHT#6S z++&%3aj87BrRqn?_VXoGt-l<$1{Ib}0bOM=lI}!p^&ymhxolZGwe8T)=p+XbPx_JoI>fh*0!{A1sVBA!#?`Y! zp@Q@{SMByFh1gg}zWXpcE)f#l=?E?4>PaDhS!YAXkf}!sKpgmK^XQ|~x;b7FP_=#& z6h-5>PAv+Q&tptX%-TrNk`}umO~EaAhBBJF(^J}*p;3z{@Z?)hgETwJ6o~9&wzmD% zcK%2lVxa*zK_lv=K?AasDUZb}i9eAxzM)Fxc%z76R+`)wE-wMvY^xtTPmG7VM3xEd z09iKYg!I%#>|*C+Q1ye4f%ToTMTpvC7%VQ(z@Eirn5w2xhEeObD^@+u7wZE^JfM#2 z_GZk-mVA;2R?eLnPdPCcgZ?}8+fS>uQtyLegik?R@K0XxB&u*BP!pnY)+mcYJL5D@ z!e=+wW1YHlnoI1r%zD1_nSjds^Dim5?YujmDH#Z1T1+-|giQrKJzc~)zuq+;2S!HhXJ=O@2q z0As~u5@XN;PxW{~Wm|dzKLXW|pfnP5LL@w8~{)fTU zT>NT-LC^co_wv;)744l7e2_uZPF?e;aMKQARfW}b-_CP?i#TwQO5-diF+pS5YANEZ z3XO=em{e|-6-#XM)zKw^5AvA=HypF~pc`}I@{f6zNq_8FlIT{k05WPcB28BPu2_NT z@8<5o!{BCcGnchEKE}w8;J5v6SJ5<;(3o>QziEi>kL0`gt4tIa;rem?H(tbi|2b8| zbtn+q7)?%~;ghm2wod(i7W0aZuIKZxn?N`@4-zS<{g4diH2ylO`1VC)Tc4CfmAdpL zE=G#bZ&G0>T?jK9F}HiKR@2!VeGB#%ES2f|q;R}`^IcZJ)vvZb7CWq%edzRaEu!ML zQ4K@=iISUq@5#cX(Zd1SFUorZ=&ybd`(qfH;L5D8g0L9ANjQ4___V!68O+e|Ov0{+ z2%%*%Me|&lXmgOqT!9v?C=G%&3rT4FG!`~HVPT~Ep+YJ1n_MR|_xtb()k)<_+|x;& zhXLn7oEl7p@Ysxo(ZP`n_p9TjK^@<{BQNB+Rvq&FW}XR})u~^0Y}<|Gu*Wu6ADb24 zlGD4sN?yGdR>?offnV7ee@4cw?fkhC?^d|R8Ee97loUdwa|G_QU}K!Wa@l5ky6Zp^ zT^*Q65m(VD)%{D^20}@RvN(G`FCOMS_Pa=TA3ItoBb^oR&pHHFr%djas2bCb1C|J# zJw4&x+ocdc2SBq1{&7_E7X15(mjPTj#7dg(Hn5*8DPGon>F>M2oA+&6b(NP!yRAPQ zh61?YDZx2{x1(QW1PHyDr^cKy;AdM*)bkXixhnF**!QIF8xQWYaz^x(j zuVk0QIHwjyS-Vz_8Ws((e~5k3VB8-!!y!?gI0;p+zX6oWrG6{CeC1T?sr_`|7bTNc zZ6VMOZc%$BY)n&;NxP%Hqp57IdcFBl`nF8a?!f#o63gkFGgxsXZ4 zJk0~d2Tim(d$kQ0sgd%Go%tmBd+Sa{xQutiB-Oi2`Py!qJ^Oock>k(CW}*vw>%W=Y zb?%OzFD^ggb_pT>M);OY5Eo=|Aak=>)b!Z5k6GLQ4AKi_&4 z;sIk>*k*Wkp!8%}U?pT_qH;<1si_Vu9ZHSMV};xbL>~dKJTl^*qSKX zb75>VqLu2w@A^|JV0D1M6}N4H0{G|m(HR11V6+?^(BiGQCwmbs$vJ=2Nzz7)GH9e} z-q|`@sVCz}0F-l_RbwWVVau5`#Q71VtBEM<*iy>X*DtAf_A#Bs^5cxkT4G(Q^Q_i} zXVWwPXXL>i$YdX}?O4LS_SG+X={`tnzk+y~1N`h;>n$dC^PC-0bmRBYI>Z(vpTvL0 zCJD_CU~3FRDc3}Fh2_$i>HMOKDrVauhqL=_@A47ZXvJZvmPU3Km{Feo^7(4zR@>~5 zju$sI-?WgV4SHW)Bc&}TU*Rh>Urg9)Hn?W6vt^yV_tnpTgs_o5^$w0kiMGy%77kq5 z(j+#0VDEeTc2z(ED`h$&n7@)B7EEnqWE{2A^PaCR_&Q>%BPDSSm28y=eFOb95^t0x zCFZF>r>8AJv_m(aAYZok^<3y0@wX54`T+Eq*(hnWeJ(;Gsh#f;O-3igo;>6UGZPPm zk|BVZ)9~xm?X`+nQAVP&nRN`fNil$#=8f|rMaXBpY&)Zq*bKp)9{$h4qk>G!UObFC zlE@6A2z^p>FoN9II$}|)&r)ETd)4#5kz0IG-A_Yr;x}1>Z#@L8NXs_Q6?EKseb@zr zbP+g^dzts8sO%S5cHpZJa9azuniR7ILOr@vcy=U3_ zzXe|hR?$t6RMt_bT^pLpLBw0^cJwme=s%O#h)gZ!1~H&%8^biuDo_3Dh~v3SlI~v_ z+cYmH!In?Gu@z&dd0&*#NpnJ3(^O_+n=hhUJx4JQN2x4|vp^h2jhS*|G^ZG0=O5Hv zUs#05*~~VnF}Beh6_jS~9J~9;Mf!j$vb)}*!(NF}NFdReKY_lK!?e%}oA5&rqm_d? zf(ZPLd7A!;jXB}Y+Yu`Ln2$xIJYD+5q`2c#??o*-Bpp+&NNc#3&CQ^IY9)HudG(fX6h^O!(e$rA(tm`Awbb$n3i$*?A`sz^Gc>Kk=NkSLVh@`GjV z578qU``r@Y8M_XKT@JsR)w1myZg9EBh%FJ?#~pm>Jl);2kY%Unx*n@=_RcyTuB_^+ zvFB^1zk+-yCP2OZ$q@p(D>pkrr?$D90o`D~+mWR?z#f*(F5o<^l8=>%A@Vi6BIGs@ zv!?bDCjT~x!i0HGu=8W*I)#o)I?z(@1P~KHfIdFpYDG8zd!iSwWvlZtYg1D zCif7fC2g;%acl_RFTLg7NoWV{pFDLTVnAsE}=J|ZRc--CVArP|+@ zWUGn-R~$YiDFj<(zBRu&HkNf-hXYxO-Tw>fNu-O9?FyINQRWVQX}b7M^8bDr9YR^A z`NS#PIbvc%Wf`L>io^`LCJ$T$fmM!voQQlxKfag8+dLamI+&2O#lk6D!pOnFy>lB`_v@CmAa?QiDyoj7YH~3?B zUKW}~F`Mji&0r=?-lDm+k^G?YHYq}5aBl|(=lHllY6U^XqcZ|C1R;GLAdNTe&^)TL zW@mU^B^S@JQ;wyQo4tOpf??M2w)W15q&8ch zxhn^K(vMlBLT8S7h3KSR%r;$k_Bm1RIS0=EtIh08&2_vsn`YADkry)f$<52@a&H@w zg9Xi#m5S-mxjecSu0yqrc-)&wP1{FtkOO@fA?4)meP3H5F~CT4iwoWXeQ|cY73?w2 z4HXVVg2uxoB1i0bUdfM(R#e(py?MGG*K2EIsQkc5=SeCf%|pJw#t;9k;g;fY7#l!XDaTD_Q=0dhsoT1eUDE?+;lZzOX@d%f#-&vJD zw>A~!J<;Z6i-k)V$HZ_jF+VA6Jxh%{$$>kJA88m>kt&(f;(LAv8hs#dG-_#=M~ z_P_81ng{!jB7#Q_jA)7H znh!gy;*k4yro?hXLNjCM4a-41Eko%X)xoOh~JgsTrI?eu7S-LC*iHKIGKUR$J| zKSh6tI5ML2Q02VBGZvfHZ_zFW>gx7Crd*t1?*EVzRY8Q8P*~%{O{`eIK<>!b?>c$) zqvzVyZ%;d~ah2^J9L&6aY>~qSo+|UMeq~^mo}hqr!?`N>-~xOR-|P_xt585S*S*(1 zJ%HC%%tsu+?#j`P_7c$4Jjz&s%V^WDhjt0*!oAyk>Db>o@iE{WbZ5h6%frRP+l-%& z%NoYy2RH_4Z!jDH;%$gSDQ}|#uU<}Uqe?JoDwyRXbLSZjQSBS4>4eTC{_SW1^ye(H zHbTpW={F6HJ{|3Oj|ja+R`l1-cqIEmf6yuy&D0{fR}woLGW~aKmR2~nT(4g-)4!){ z62T;0wxbV66$7n%PHivHpPQp*d|~~HSl)dcx5HIG`cjT|25gGExc*`Y-E(#@)x8U^ z5|;u%c^)@oC2PDbJR$&}>ARS7?r8!!G>77=N2KoZHREa{B*@sv#KL3)UgZ+Jgi7-D zl|7tqL0*G`%^yni136#;9sYhrT#IjlgtIr<7&6Y|$~VQIAW(Y|Dh};(5~DvKs>iJ7Mq>?P&pBahXRwYBSLEB4jH2Pb zlhnfEvJiYpckcK@Dvfko-%HVGBC}mDj&gTuz0w*L6N(D#fe@O&xD78QXQ_Hj8J+*Qo>XW&IFC zYz6KNXeG8fNekgNGkgu97+#G{Sa%7v-vIwpbL-WjcohP z21UvozE2!RzozHJel3v380-bq@tVv>c}zY^kCsYMPppRpAvEc1OWnzdgSq){BeG_C zXsor@^~I+{7Dr6d@8^SZ=$S*NVohfM;XHCRs5*V4C%6dNhT(fBBrt|TD#_z4pUI`> zz5JXzugpdA{r`*_eARC$U4&VWmUz>Y4luQ@bc~Zk`01EYST)AFDk|~jmKFm)+3?74 zvPz>Sl-Inz1KPQrt_5}y09h~(;$C{1h;uO%h)iz7WZ5q9sa|!YkyfLY8}2pRD7?&& z;E)y(f6Wv-K02FMK|T_5IOsoE2F>8U5t<(dYn3OVx}Qy2S>QW`KwBBnnk1(DhsxKr z-`*MpZ@*SxEImRn{on4PIyC;%Zj0J`Q)yU}RIB&_pmH9h7D?YStpA=TQdIG3+E%*K z`1&x!&H=u8pL#xBbIF)Jq%gPn#p?dpeYB`bUYo><8f3>;YDm_E%^#y@V)VGqw-Ged zE*I|m6AhR=JN#V2q=4^_B$b`ph3e5xLMJ_QCNP_x7e|Geg6GX-;i)m3UU70jC@`(P zOT;Qh1|Ti@Tq{{+8br?W9u4Vwo*=_Bk2w+=E>>YJBO?Sa!Wi^%+;aT-~rJ}_SXrgp0LoIzmOq#}nvb8<{wccxG_OYcZES4ulFqR$DbW~`z@ zH}Xp+WT^R=Y%i$T81e_->6Ak4cvnRF=gLWOYa=U!o=#v9B64YM3i~~5l>4pazW$ii zwzJdNeMiyB`~u>=W$8TU955mQ;mS!=fBV@_WXoD>p5whP$H;ke)~BB}V(B(K5#vX< z5Ep$^8(he7%R5;6O#Aj%yI#YDNuWvV8Dav;acxBF&fQ2yA0XfQ$aT5|Y5Z<6;Ws%z zUVAz*p(r&NzJ!*_O}8BN-&V%SQ{eqVnal!r+qQ?({T!>jj4~vLvGaSLZ}&SO4*I^n z36s6y(u#v6V1X0=CBxJE*9a-5tFVd@e2!zwy^y9npMz$Wt$c{JliK~)oD~Q|=i}~F zll@uIQ{S6}=?cWD+S3lNCNEAw!0-H#r9JLj$JWbXd`n269=s*UuyrwB({X@_hN0>u z*gpon%p$!V95Bhz7gMsHpRsQ1Im{U}yO0_nbl4vzPX8U3>ZqlNA>a?Z!IJ3`2G}`Y zS(JK@^`6Q7u%!v8{NTdk2 z$Xu_3+<&`(|JTaxAkuOk4crgkb3gkOKN5q!Q?}_}s*v9l{kKV!bpZ7?vOg4c*oxxI z`Bo0dg~P~O_FkqRRG)}LQO52NXDZX%tiUQ4_t|mpz1C&un3GK5%+4Tzv;fW78U3b$ z7Gr7S$}{`p-_;IOk1K1?u>kqR{K%;3ouSF|e}Gn3A=<%fZt#R}vE+bx+xH;G@h%6z zN%h~m>ODE9-_5oH6wu9*y~ayc!oX1Dx=c53SoTb9DAmS9@OAygnW!1%YoC4ENgcB< zuVG|0XgFez4Et_%L7^-o>wU?(#+$ek-r}1MTcfJzYyZend1}*nXhg4{MkgNBmjE;R zws~pmxP#DTqop|g4`s1A?IQ5g84DZtJV#>5Xl%)MoiOT~*+HHxfIHhyFfE8aB)HpX zI{B-l)YEz5gw`z3Ll^hVhhz<<{`p3Es;adFDoxovSPb>YQVjGb)D~i9Hpx>p1teBX zTVHH-a1(T(@_E|cx3zW(jDHBG3mp&%<1WX5KC<8tsg&GR^Y_Y1?1M<0AuVf%9OFTC>+&dDZzO@R^4lNfyY zy?K=jEo?y1uE^NDRL30_0^haOI#Tqf9{;$dd;r_>^)!2|fC)jlX%N&wjWvvJx0y z>x}%hLIo9&zRUL>s+!naT{mQe)~{Umwkn4+f_GGgsoexGqO<_5R%A~gweejx68+Du zRV@w1q%a>LfXOB1w~$S5j}lq?1sgsxkmAw>aF)_?3USTKWsELb64&W9 z$a^&JgzODo-oTNg=672$r3VwcjmZB7LDlk5^5>zOJIB+|_Ts!-K3fc<-wDnGjqo6N zIJ_3xq+A^Gv23Cah8mi7D|A%ofY(+ixt~1m&jL)>#*y3i=pRg{5}LdCjw2-UrxT%{uec_N^qvW}>y8lQp8~CtE4Bbj>ww5^0 z%zG~d`HCa{0U@zAzSvmSe!ZF4keL5>l^)r=0WoY`kvN$=3A}{Rw+&M~fA5n1{VC|d z!xnNAc&TyRJt94SGJUe@?6a9?S+G&+#6jZ`)Vc@aWHGUtKBV*#)ywIv=uAi)PwpZP zS4C_~T;|`bu3z9on-Fx7fbl*`>^*xhiYP~Hid4BjvSy0C>zwRh5jR(MHgyt_c>czX zV2Kk0MCBlMC_|J}v|0@~<8!Yscp7Mgw6SAd3PX3e4B`2eIhO2FL0?|HKk5Bn^Rs>^ zR6{!WF*48Tv_aooAXG>|59G!=5To}*cboqA_u`}R)EbQ)st;%dcr(*CN$#ZTxI?s& zE{}6AJDkGnm{!U4uz;bDW{HFgx5ZQJT(?w*MpZ;Te%%Db zDJQ`Z+B(Dl*Em5%d}dCt&KaKt10i1okZr$Cxf>L*IGhG4KW^TvxGvOtRJSwQ^QxexYiSKKKjr{|IsAC4WAA#kwkjdzM+kY(WR-q$WEK(b&Ijilb(CLK6= zU}Pe|A>gLmlF{?H2;eW`Jg{t4xWW!w+O$DOE5yI6|Bo4w;rIJYiS@_{&TI;y|0T9J^(mHBg^V|-+zoY;=GrkK9VeNjT@ij??Jgd4^yyZ>*)$a7@a%E{iXbDUV&-+&J;&2o`u^V3yJ%p zi=}dzbBOne>Y&HbD#X7}wRPs5j~%{*%ar$kH}3gI!utbTJOa8JR&rQH*e{oQak6lM zR?7LMW@V#A>1Hl0vR!U_c#(o@8CNTu5IXQH43Ph8F)WR0Q*qHMe=|Mgq%aW+vB^rg zlvPgEm^fxiUCvQu=fS5^dy5Zs7I9o#N>~c??2Qw*CH5hD_10>g?xRKlZ5?$|7Y`O* z9of5GKry%lv3Z@yxw_`XIUmd%?&TTK_eJfeGuJsXH_ni%u+PGF%)IMZ=!)xnvA3u1} z{LF$yHg+*ZnQ3C_LbWnNXYNd6xk2zuA2Lwz{ZRZD?xz?TFy zOL{Z@H8VD}Y>P6{QSHzSxwvTo``XK{QmPsAzZr(`XIY64U*VXOKmu4Pjjb%<;JG8d zLXT8@D`^{r#(9T$>wb)BhfG-0LmzresP=BWOQ7Zb|EPBtGJh|cBbEt@78RL$`=Sib z7gq~0wK*At;e-o=DLqTMhp0OrI_}$JN7zk5I?iHsJHtqQXGh94pg$JyY`aS8wrH+` zhbHqIuBdQ1o?{V^G1P)z z`VdHFLholTL4AhF<12@z<0piU!lC|sJRS&n7!V-f71Y5ek5xz*klf`Pilx5{Fs8fJ zo+uue)Hr|vVzuz{QM^u?-GQ6KP(yQ+w`em}lS4WmbVRp$_BEG~YF>)r^(j>+vJdy< zH^ZIqC(Ct3zkALCAW_=^=y2Z5Uo}T?)5BJiyPZpn|!?;e z=I*AV{~>6!;%gj)%5fDUmEK(4_?yj{^ANxlL0C_4A*!UccZi8UXVDAozVtO)jZ{ks!$;?Q2fdS3G7vum z_|{|>LgTnZX)VMA<3}*5&1BS@p^JP4BRd!;iH8Nyi-3tl??HE!a2FD_uFm!#=i8#| z=9Rq$spL~Flgk6ZD%gR|NrIcmSVyj?YS+=7-1Xys;k3Fg+rV&L-M9KbqEXACXZKV~ zX#w2MOl|9A$0>UGGtxmrZ1C&f-{A>4E45A@W~Ly=iG>e<;}UA}7S9O^Cq07A-YC7) zF(ZkS{Vh13vXV0Q)9!aiDN8JQ$f%3`08>DU_x6;CGnF#im4IIEym!#HDZHf% zfMTxC&`C%5v@fC3v^#POxwXKe&_W1fGND|7oItN%|kxl%b{% z|EPTPH?PsR(qHGKVIK8zO#UZ1B7Bec5ombLI>H2S+RbOzFDFoCLjpI6gU`Zsgr5jH zU?ne~Z1jM#vUG!xxaCof0`^2K$^Gv(d1@0ran(Me)FhK0+Qz`%f4~I?;t*s{3Qseb zshn6-;W0|h|w=c zM>?^(;V~{&Z~V|)k6w(CyWBqM?Dr6TZ0Hhn;~lOsfN2bVY%oyn;%86SAc~g zaXYsnQoFmyO{~r&-}*M(FW^h@kmZ6EyZiInI2n+_Xi|0Wk)(F(JV7vM0aLBWQpr^Z zR1JayKTBDJ5^3dbuLxR? zgF*yE+Slanfsj#A)Cf&$86#>rXz{be!B-!F7@t(3nsXnGEikYfoJ=WVpTc?kre#|`jX5h|VV5tGpNJ*!6m zEff-owhRewM^{ZK)%JW&qdyR7-~L?;m|_T2Hz@7Z9T^4yOJt%a86xDRMDj-=_tI zLRh5YX`b+wJbfay&5A(Ev!>V|=Qo`2YcU!!&lkN}v@OOP*XL1honx1L<3+i^L0ZZL zf6};4W`TS3D}qmZICd#pFREZ1E0(HfWx^WFZC&U;ZGjFXc(jpBLmKs*kq;L32_{dF zbK7uqI(px5^gmR4XcX0bY@Hl~Cq5}R=ki z{U0=*`O;Pz3#{8I*PERlNK{038cdzd6Olag!vBWpf%aM>f%VI6&Dt180p%dhQ6=2} zk^y=YPAr`Xtn(|;D6m}@2j*L&(W`l!jkdk|gO`ufLeBi!Rh#bD+{)c=Mu$>vhFu}d z$NT^dHQ*QWQ@@FTwo8BM(*xz|YvUvv#;(?f>0*;fzoUiP;!dv@_ayK9G2_sXQ&Ur( z$g>S2&Cbuj(%qZS3BTRCYH+)x;sWV7WiPA502Iv>s8? zQc(Q0B0lY2oM5K1Ln2$g?{jD+iF!z&&s*1ofVI1l8LO=LhOSUTqQGNO*DZi#P+P)0 z;+y{K5r>ovfGzj03z2HKG=~m)49U+IpYkr$u$im4i@G?=)bz%!D_4h?jJ_5stiY$c zYVSYrtOpV5Z0N#z8vCv8=5@fTI(p+&_M1PWO20Kd0VhsTzvM zYCWQvL0dQ(>~yb!lw7q-+kguOZ;tH)x6S8vC)^Tfqp zox5DR)tl}ung0+}lIy)08Mwz-v^E_{gogMT+FK-fyj+JqCOC)pYj0(zywqV!ez60z z6RBaM^??0=b-b@C{W9z+?!CLy0DAd0nvaHlIo;cNHKPUKnZ53CSZONrJ>zz{n;AMC zIkjQ<%pVYpAvhocpqrX0zc{#ToS!Z;y~A#})A_lKxn2$Eu6gE~5h^qa&Y0gNrH8!@ zkwva#X19Xu7pwzM0%{Wr)FoT4{>_aSjm44 zP`ThOt)pY`#gz!yqnlWSUzUnOR^AO4QamVlcOFO@?Y`M})f)_k$-Ps98kIJ-wn zQt84sd@>u+=|E|x}JY8ttw=HnZxJ*CelpFXFNf-poxT1Xit~Uy! zV}9|N1&LzBpHN<3YsLoqlYxq|WAFZXUn;`<2}Mqgag!WC6Kkcs>olCN*TR=AENL}v zr7>!VPe3roM=p7wAy>ENt-Zp+hp*{NyT3gP90ad;jJiI2wH?*<+YS8evGfTfcw2Ms z6OQiE4Wv5kkeK6H*a}!qEUGQI`9V`#x^QP$PD5FMWASABA^EGFKtdRvTol0T@6%&5 z127$+0kF*p1FHa2F%-g*sc)kChl)$}p#l+ zXrc!z+%=f|lQ}|mihrW9Tc4Zl#3g^JAhHU&nB?Oha%o)Oy-DAH=q%W^8x<8k@S}0x|k(OpPJ4 z)v{X?|Kxs!gcDHhO{VRHKfNM^mUG)IDUp_7EZZ7Y>aDl7dU@8NyiWy4x{7^;)W~DW zp4sVZaM{bV&m27bNjN4L3g7>T)uLwipK1Gz&*XZ0LKBp=-CqbeY!%TOSL52D}KYB;qz3<-JR}`mE znW+B$f(N1$*Oiza91l7OML$(nFt)QGb#5rA;|7k;=Ih~F_-rg42!{Ac=VkRoGUnVf zNCnJ12CSt)h)>9cN{3?%9MFFVg;ty4S3SF;7jX04Wxk*IzNEYI0we6RcKOI*MH-HR z`JCf?O~bwgBkDwzFsSi%UR5pA-n1tSko|kfy}oh|y>dU@Fgic6=Bv5O_{#`j+JF5R zORBuGTp@T=MfRDaMjl#o<})eJXj z8ToM;=Xb^=MTG(ZhI$$pnw`R4M=DY)Iny{7Z}WwX<>;k0f$I=Hw*!?H@c^RL3R0&| znd4=M)YWCJD}V%giIfDUW$o2}dS#R+h3`TmfWe9`g>G->3VLG21H`rV88Dokbo}|; z!2o`O0Pi9WSeDMpOdlPyEzN@kS_zMqBob2PI7su^gbiH)h>LMT(6R6>x+&bSWd@m! zZm%<;{ma@MGwdZMvn1xOlk{V%PSk)1*o|y6({mS5+W@LDv&P~e&o>==So1n9Z1|aS z8-FQZ835TVe0i)+i=#=q*z$GdByagrA3y21jcHgfUzIH{Qj^hO_>?*klBIM0a90xF zgN5BOBt`;YNpR^;0ARZDP~L>eqX*&s8e`Sw>+=I8y}q#-_%RajXM&5TK)dx#!87&p zgW&pxe5H#|bK;n0cYF@loB#?KZKH|yn|&P)7n8=M?Cc!01>97$T)&k&_0MB#Hyt5!_ChrnP>Z62_+>MH{0sDd3GIWzwI zbY4gt^x9Bf#k6=`c@mKp=a>38L0>7etDI}N>VYazwdd1VzDcG+4Q$_bye^+)wIi19 z{QG!1aYbz^3oB3Tluyd^FnHd?5iWOLp$FsPq2Q+ZX`+W8+CGQ(8NpzQDfxLb&t+~4 znS-&6WkL=r56#%ihNxxuS^Pf$2toJ0OoK+tc0Fb@I5B5n zSJqazhDH?aXD4dJ7POQ#%=rx@R|c>Min}n8t|JIIdhtX$IdK9_WNRATx;x!IerM`L zW4pMtlCBX1Y{%dZBBEOtpbp@D+t}UNB0#lkoxpdcdKdj|OH&J{h@L)~rY>DzE4RV4 zZ}h(O&asD6hbF@SF8eN!sbl8f*4ampFn-M8S34lIZq#^8$u+_5!t{D{peL;Wzyww0 z4#AZ_WKGTkd9!A+byVQinr*tP zl>5PhkKor$KKhrn?{*OoZdvd$nq%6>F%_- z2mdy{SJ3We836TkVf}z~z<}+{kvbZEfHmM52~O&6=}V)V_oh+}df{(w9}v4#$8F)< z3+eN(J(0D?n)=VIUe5Ed1%bd4RuEr0{h9Rg>1XKED(2)p>3h5WkF;&`DB^(?;Qu0d zmk8#DRvAHpTi+=NsxJaL_1VTP9PbC_HUO3_&g#Sfs9;Ue!o4y=5&h#eC+}(u(D&x} zX$J0ghz-VF(7eD-3g@Oy0OY4r2bK_7^Mp+2659MLHLN2P1gO=9(y)@VeTkI@WtSH$OX#KxW;^1h3FP66_8!vs<1Wf*gBs2R#(#S$S9`%6@(5% zF7_E<@3+Ow5Mkf_b{x0N}*nZ4VG`?ny7x=5MXY(=5(xI#8|dWTYP zCxV>zm-Dlc-!o1{K3QPEsWCS^4`CsfHqr(MHaKvd0|9CRXU*YF-j8~0Q&8nm&|}gxT_0irx4_ZBWPkD}f0DlEd%h<<_Sj=NU-ZlTVg7Dl zIJNZl=l6c^_i`I*OHD?XSNm;*dd;&1Qr01zf--59KIw@5dhX|QpZi?a;tL+-m-MJf zRzoc47o2;|V1R1q6<$PN1$Xwv;CO;K-4YaZeC%T%OM+Tyu%8Mjti!eg7T;B1}mt1QIweWxVhkuxbL(-rC!7@RMbHncji&I#l>x665h7+b&lF~7nVg#z|T%MEE!lkc2%J2~fxLMXwz7BbFztxdE#abB8VA%sFV$K86J z=kh~ZqwU~#rB@c^;{lFV5p=o;Z(VlzX#d zF^}h_=u_lhpXaUm6Xm1a#_{W$1EQ-No}7ZsS27dXbG{g8%cV3kJ5SD-fM(FwdyU|5 zvujuIeSR*T#nih3py|`Z_vVMPSv#naDAfR7w&@z!+?O`>ZcdNf@xP^&aRS5<@)tQQ%|D#Jd@hlbA5Enc-k{^R~qc*hY$sK7cW+|dnu#Y~uhU5l8Aqg5^eVyb}FtMjMR3fg6Tce^mlPx$FCV3NHA(Bh{l zzib8Mb@)|ZMe|=RA;cI2w=0AI7y`x&aOd9i%hiQ+ehvTyV$>a=wYp3mu4A6uKoi>z z=oW?b4{T0bwvPa^5OUzlerEb~6LbRt)pPppsKdK80cJ;g8XW3NgIk*s`|G$JOcL$> zJjkt$fNd3iY+Ct25SUfbD0c!F2g(C!Ywu2!%JQtaAagsi_SPQE!*9lV0PQ{Cx)t!O zFL~2fpLWrPJ3DfCJHUGlA8iHwr>4eAv|6x3xOYTN~8iSB;>nr;|e*KEU>1lC0#+R#8R zb>P)SeD@GCbTT(f@THA$z*D@b=>|9(6mJFL)BNHLZNVV~0dA@I;>qXO9`Th_ zS=8JTD+7Lnt5u>45P`lX+QtH+QmLj3mnYI^R|rH%ooi~}r#jXoTFoKLpn0BnGFSh0~dIIxZb zum1*fJr;gm^W!_E_=)=h3zPTWEP1_H@0;a`YmqOGUKhkzhwa#=+i3}U)E){v1sg$& zN6SWv?;hhLXc6?71fFVSLn|A3)bN`Es2A(ZH?IG&yh)RHL9r(0rtxvMrv((_x0BHT z06+jqL_t)=e%_W3K6n(Q8Ej9Dtr~c@@Y45Ke`PhaYQwEd6L_P?tKAoXTaWDs-1NZ? zfERRo)C^yMsK!{j1b1qG)d)ZO=%ZQttMJ18z#|A+CYnD15(TM#-uvG7X3#Fk3yTHY zaJw_zB@_;*J+@EMQlum5{Ev?I$#QWtzu!&8Yo43pp0wJoDe^`8V`F2PhYBGCv?jIS z3TG6CNUQUwm|`9WEedh$pOzlZF$F5}HB90KxS>IhG735j66d^hOpD1evpzN8CdbKh z{nH&Qll2Jti_ze{W;@PXkA9baX>t#E&F*zs@wy*{Ls}qsE{&Emncw8R6wv#9Vqzj| z>a|F5u9|!{V2#Uh|pC z;Jx{+`EXr-k>^YRr$v0A&t5&2j-Ggtm)dd~>K{%AM()IP{@$$B)$jPlGtZI`Xo*Y0g_obe@WSP@1Y$du0pm9Iq~Et~KUT)= z=`wqCzi{?Bz|(3P*|9Zk86p@C+uo@Ootd9ZFC2R|ow#@$pLc$Q0E$LrU#>4?&>{w{ z;roB`)R)qgixd192xFTsUms9k;uZYbJKKi+y>A7(nXJIaoaMGB%T0ZRRC*@ z0JmY&FWjx^G(oS^2Y(EfD+CS1@t$=ARlUPX5mh)`)@EA=XhyYYBx6WhjAYcbrlBe(-`xy6(4sos@4vINCj7prl$Q(FuO*S z_}TQz+2_;eU->L%|BDC)=qrl=8KIdw69wi8LRk#Mzcs+Qfd+ksmIxYnX6jVlsh|o- z7r^V{0DBO6RnXES;2|&HsCy+%Rnf>Jcvxk;>v=xQA2i?sf5844k?QNqEXd~3G!a|E z#R5$u6w@65E&VF)3-GR|WhmXg|Gxa}%9}QXWk z)S4?ukry3E%^Fy?_-yG~(7+m_1&fg~l9CnLnV`HD6Rlb-FjjDnXWID*PY@K;u$0ka zqsUY`3+j% z3Rpy5j{-M?(S7iPAIyMCGv}ZG`Jd1Aee|Or&8FuHS8dn67B!RW$&daE_zezM1Z__| z@k9nn#WM0q@U9=a`-}_J463IVT+?NJl;xWN&Ftgh!-q4NQovwYKl<=nPGD}{puxVG zG^aKWf$wcK>q8 zlwbR`U&|V2+fv(H1k=)C`Jl<~Zx0~C|uE6Li2a?YND6;W1R|KwCWIGd*8OqBVhJu9%)o?qbA;d#8}98dG6eIY)tmw`(D!m zz;guzYWTI>FliN_yMzAkn(RxXX7yTTIENf_cRP?LL4$qpnic|HD?Y=)^Wrf#bc6ob zu1TH-4eOgO<|*Eb{KfmlYjJKF&m&*)depc6TI3J9%opb#O;IL}`Qlsri9AuS*`l5| zD`GxVlq;Ucy_{j=&(}Q%ZYY3nPOE>9XKzeA-au&MSeWyp4US6lv(rRte}OHnE@tqs zvu`}zx9=Tj%Qpi6R?#pYOD|16olecYn$FDPUp}*%zV(64sXWX}6R_7nQ`d%hy8Do~ z3pfE-Eofea<27DfOElGjCb);K*veJ?jFEogXO0(c_9a%U+KK6IJLbWyn9YM2C`-^R zUaakISBFXeu`|!5$;)Thhr2r+#J7EH(_W0tJJZg(XElJ$`E>N`2`uyhj|4r_w|k9XXDz7cTWfvUcl*rbS+w8h*rE>bY6LU2i10_{ zyn*`$3FNnY^FaU;ChnlM27dfx&0wfXAI{I6!u{YVnp74*1c>WEQ?Kv8c%}v5T@!F> zoq)ANDaQp+f==bM)q+)kFtf1&NCGVK`k>G7&_HwCF`t@Qe%Ufz&36=K>07n2$WX$) zl@2t}{X~6VM0>ARo@)*)U%wc~9F7}~nZ z>FmszwAeD2+WMiNi0>EKM(wHN|C;(bhFM`kG2oA(#q1uCsc$y@SYr!5FH&U&!ehgG z)7a*lF{9^46hVM{hP#cLKY*R3fwXV?U1<~M++~Cp3X#4v^-Oy0;!AAZwv2B&{^8qh zOSh7z6IX*8{_8{CTcI7^0nimJ0H0Ia8ZH8TyVLH0{dh_=CH)G2^vU*xS^|(8bTA7E zvf(}3wp~339q`Gh{RmxJ6f9)X1ar;$HO03N{OQHiyvi;MD**kH(c7uF2aUO4n2ITd zbpT)(q>TlK`>GS{k9n-$e+zZB5skkcp1M=ITMO!9ZnKU65FVdg-Gf*c-t`bNL8JaHcTpNsz4NE;m3;6Q-`u}JhCC7>|*Ui4#R zbbYD?d>{Y#$1|AIL_8La0uF*Yr`BN1iKK5b&w(RIBMd zfwrLB{C@10U`S24(ZR>Y#xh7Vy1V}N0(*gzLE$uW7tE=hJ#^?$?t<+Iohrr0!z2&Q<$Ol+2D1$1z5MP64oK8 zcSit)5ehNX>_)rN^p&J&-=isbwZ3fJk7JBY^gZ|?D0ObQWuCM@{`lirfT5s40PZ|> z9NcBV-3t^(N%#7C6~;Kv6kf;+1uE8QKI`z@E#ef$I9`HhgU>zo*khS=>GR`!)1+ND z3wdXBe*@p?vhb&W`ltC>(w|;{?;OwsU;f)4^9!hra__mc7$+gNjXW=G?Sh`Cxr+H|IS~?RA%sCq7>aF6^iD%ilN;9>ulwWAxSh9&JY( z@!g~JMDlxF^Lotb;{BjM%EjFAXrGJ6^?9r(%G*xlFXr=F&{1sHYyVz~`*939qD;`~ z_h>inSte+RYa7RJJPv@MZhUguzVV3p!y(Y*#c=(q6E9CbZ}1S!EMHB>&b^$DoOzyr zS<6JC?@dFS2LU{o0kdEET6-5LJerxyk#Jb?%s~Jlb15l(@&l~ zl16UbmjO&q`{uM~+b!Aux1|&5EWzxiS8xTGzsSM?pal3E>Dz)|H-ZN=k;?>Ps{yil zx{w@W+TQ|t(j>d5i-_U~Gs@g60ai6b7leUTjGxCZIU167`~m>$o6#!YOq+eQU8O!F zhiA#X>P$e8KuTceUTaNFrHe2CJpc6lZw{095nk|easby58fY?Jg(ksSn?L$&U3cW% zvxpDouo75-7w&OScK%fW@GWR*TLp#$fm5w}g$U`-pZGkM0>>F!>T!~&EoNK{dL|%t z%eoeRj7pSUVcWe0>Mmi*t~J4hX?77nqHVN$eZ*k}zz!bJpK6X-pauwfi4Wkv#wy#= z-Et`H+Omtf0iFU=K&@M|sk0aFjSh~b-T1VZsB8iK@o6Hyi#YSb6ySZ+$o_QK*n`X| zf*8V@4&oYIT0T#GE({PnC~P5ri@^yoGjB&|BURaKTM#Q?^*eRRx3c4g6+#tZfPHAg zHGsk3gM{4-G%R)s{O?syu7X=MpqGIG3I*#9@pLY*$hvk2}N~{^hMqD(Nwp zV}4dK5ZJMKH(cXKlDrk>WgACOyqG!d<(b&sGR~OzlsDrXzzEt9ylYiLXZV|GM)=`# zt=4_%;(U&Kuz9dQ-F@JJG>TBHRPi}=;iRyOsnd=>znXmJV{(qc_bS4N{x-H##C5}G zJo616<~HOb4bybyWu7b9!o&L;X@dhB9FPMp0%P&%_gE0RaMX0zPcaDsB9EX*a4CSa z9>2$eGZv)9vTt@Ci%^eI#yb41(hOVxqS?9kyk^_QGC_OsTCp9kYx4b@zxkV4Qyurb zF2K>RTn%<4ubblNxoz04K*v6M?omy;Gzw(L$Hz0T1mjUwdOa7g2Vk_U*EN$5O}D1Z zYRm<4n$-)?|M;U#=1=o(FbvX{vo@LdvD{K+q$5;oS+-hhJg)-eyhdQUp-he9$x#U#Cv3_@pqg$xQ6Ox_P#^o94M@JGvp z;Dh%~?te6?PK&Oj?!TAyZ!gL{$AYA8Q1+W@A?$wyIk6 zoFHxq;B(|W=IxU&(x`#Zh$_Ercj{oPF@1RbXLS2Xwx4_cvRq`US!oCdo_Fee{M_w2hr?H|7_Yc;EF3+dRU=hG9< zekv_oyOMTbzJ2JPZ%exe_Yg(D8DvdAYk^a%+EeGamvrm5uK(Yj=H+p*m-c~4Q`Le)V5J-_6 z%uM$IVgjtOg`WK4RZKq}BVUyGAp(XwK$~@FsxeNs)j-g}?)3;QFnPm-e7V9nQmymH z$n5TKuR8(woHn4BvDA`5K)t%Oz;}Ki(Xcz`vM_`BAVHdDYhs_bGeisAg?3wTs|APV z<<)6?`!Uzz;j!>cc!76w_+_qw056n=3b43mH`;$Z;c4| zmn#?3+_mL&zCHn{W*&48rQ3GhogTdP5d37f1r{qlgKD(31@O6%=dIAvfEW7Os}*-l zt1!>;Hr7IeF|eFM7@r+-ac-CBKl5m2c{(jEGnVqP!>#wQGVl?zBRna(wdmiT4KZL` zcGW5a5-Kw84RIRu06o;CnQH zj_1BFT$Fllp2#P_@OQ!FHNk<&e5Rrqrfr*YoI$NAp`p zT+`HBQ*Z?k(q|h6gfnQHATR1Mzgl6f7X-E5^ID|hd0bn6G>@NR`_X5w2mgxsigiRe z@0$Dx~@><@>c*8GB5wHzige*o@O*az&1>w)zP6; zW1)_An8o-7Kyyd=GG@~589kS}djZu;ym;`hzGv(mX&b=i((EKKfrSR(QPXJjbpRtL zIxi&t8KFCaNZM-?Oai=G(duU{AmD;mFp<7_F}87CdeA1i1Q39<01SAF&?L{NlNV1C ziTpVprf_q+fXFoj-h(VToOU0#|@=g`>q_7EhGhcI=s z7kS*_4ybGJ2(Y~7LivspMVU(ikm=D!9*Q@Wp;r8RIG{;WDAsTWjrUSO4A|1>Z^q(yLfd7$8mMF+Ynm zE%?W899}jw`xm_Osj+)O%W8L8Tc%F8h=Wc|%H_35mNlqPONe&(RKkB;afFmezZ~_i zvI@Q7-Y-07PS0JSYLeU*punCGq0q!UY-MJSw+xdfWtP* z)o`z{a)kvg#Db{te5Ur^w6uZ-T|N>oV!m-Lbq%oy#AxB->_qy1zxY=Kv18sKIM56} z2Wf=Ix>{hG!*>N)ILzQO(Sm@b2aA<$JcEO;yp}dMu*}dDz-H+SKb!fOxygVy&Emqw z51zc(NE;kzav+|ESWvpKkHuo}$nRb^uleFwTv$fluk;voMElk+m~i2$*}JK@kdFLb zFD_nVp=;S9jplnZx{KF6H$|U4k9MM7+mar?`w6Xm@WC=B@0p6c3n1vd;Fb6D?<7af zpZ%;)(i1`PqK>Fn`hvzNr!Yd3d{YE7lOHDQGDZ2I+oOP2b8(Y2S+BGnI&>&s^H0>{ zxq=TrQAZI(#x?W3RSLS}Xc_6UO|O}}7RR_2dAx3a1hqx*X&FD!*Qh_rdvE=)B5{SM={S^U0a{$zw&$Zzj*XK==VH6_RAzMf`@)D@+H1|v|RCCl#6>F zgJ<50bIbUN@%OstalKe?G2i<9j&GzW6W={r*6Y!3(C5*6rWjk#<60cOwvoOuIPk_y z`5N~pFQ{Eq3nQ*SKsm}ZAifh5*^y1#Q{UuJ)@Ei&=_UbvC7TZS4j>iP+?WvFckg{L z-HcCi8B=8+)(pJR`f4KFN?n@QW^;YO2~d?5n?Ibq#sDo`qfT+JAVGlAiY9Ljps7|c zN51CyupY6kV4>;GBFt09v=DyS6x;zIf~@ z>aC>d%hT!FvQfm*<^y7;=cm$ztET`h{CJ|VoSHtLo_^u8m}vI{zL!vjW3ms`DnvUt zN8L`l%LFGwLy1PVw_{7XW%M?-fx9^i2aIUn0`Tj{Tz;YT8UWPuLFijbPrdl*^ct=S z$AD(r#c>vj0U%vB@~`l0t=4#$NI&TY$jJ1AK$quqyY zO}cYrdc4a$w;yV`P0kN9lhfe=x+L;Gx)N9b!0r)TFfOrrO9nxnoKmGMrmRHib3#ZeoCtgV1TRRA@hnC!D zlzvF(nywoZ>%h&Wj4+~tfU5%Ej4R=D(}^~{%JZR+VwE{oBmP2V!R-&>7s4|G-v!-m zNTM2Rj3M(}7YHbU1_TR?)3s|WY5dCNG>jn5B1(&3TNX;>@%0+XA4F69IBxvdWp-@* z`6lOp&p~lvC_Ca>aiJMt$@{Tz^=OJ`E9&`5pRp*HE8$NpSS{}Y)%*U&zgdblVsWeX z+VW9Hl(7!;#wXgeoO!)&@;uU;Ey`oT9QovjCfS1JFwIsgY7*22@5~=<*|y)qyxDW} znyk-t&!;~1scgC)+sjFx+U`g}Tank^v+fw9u#9k@acR?x-+H3&#dGWNx}N|)MV=cp zP0hak@J7(re>(!ZS;jsT>kB&H>KHV{{os$^gO1=`^wB<>Y)9HG6MeOe*G-;B*(ekI z@_sR&->t`FyZ}w#wXBG1*5!H76zAr*9>=XXF1q$BmI<0XZlrG<4%|=x@APx}G^gPk zOmtqp;RDZ?>kmMlumDJdh~0bh{i&~qEvlfnql=&(1g<-K`2?ox&tV3Q8Wf-O{rL3W zy7z80%LA;_g`X_!o#?7~X}AXP$Pf^~;CT&mVohsn8Jv;<;Nu?Fb^MXDHWTn?5H7*1 zG`ir=vzipg(I-y9k_zy>^;kxspzt zJ4xjEIkfcC=>@jLn>cYYO%p-CwG+sM$$mT76CE-B%> zgFVmpz{hsBygQPfJ@;fn@lF3UZ>C@PY71aBXEzC-GdhC-YLo?X`rI3Z-e~AGg2J_7 z&Rhc^xz%3@(ABowm9`83#M1f!x>^zL&slZSY3LeyPK$ zO-TeXR6`BC)H&&ZZsN`Zta;g?6|ck7<@yYodD>(Sb>bdTh8IThuVIZLP{gR5x~Pr1 z>2g{|lUoHK_I42zuUuh2_}NsdLJtA@hPt*PC$Q}%?Ir1EuBn+<-je4MeaQcuav*ts zda|HGRG(>u7K9XKEJv0Fwrm6Fc7TFX1yWjVWdC#f22XT>aFp~@SMX9ph-75?c7#t? zrZ1;6=T87^sSg>=3Ltk5fB7TlzLd^3PC|}?DaxZES8GjJI_ltu3NT)W25E0tyMsVxcv1L!{#!{dKnjk#~`)dV&_m+kU0C+bvA<{rV)hUspb`XbWZ?+2hx&%o=E0HF-LaVfcKD-8FV9kIXD#p4u!0~; zlTB$HX3l9%fHy(b%DXMy_HApaf8ka5{3?B7&g#O!K=?z(fBIzKn~PMxZ~V|Ph#P5x z1J^kai$=ftY`7@&nu|t(o1jF~YBjYkC}W`+3(4a16z5Ub^(Ow)2iv!hGW}AX-_hdKNnES5lYb|gv*^X^$)@~oH zH|myd&jk|p=ZPntNCrO>km}QJJ%VnN`OIHDFV>?;zxRz|u4%nnvl-A%fA>HC^FPnm zqrITr??ry+%D;j?L5oMrNAi6ypbomc=eZxZ%9C$lLhd!&_v4(kuL@O++Fu+4`R{l0 zJ7?szeLZyOPwk9iHO==^lf z?Ay05*CXBX$ejfY=w}c|>6fOUG3tn8&=lWquJ1SF9(dg{j!l5(lP6DR!J6CbnWQ1;iagFY=?NZslpgQ<{5ofi zw-J3Q*5kSLS%)dcGH8?*U2L51#>X%PAFMCtsda3mZ#)j%Pyiq7^XH*Bot#@u2x1N% zfcy>cptce%qz2>L21e6hFB6mpLGAC<(wTH=dXl_lOsJRA__lrNZhXmy`?qJG<_12^ z6#+XBl-g7tA3#s@!7;d-s!O4hCcL)EPYg|QH?L*T zmGiZx(V^YxU3Y#5X5I4$8CU?2zoAwUt?nBB=z~4mQeW2q8slsDy+6;kb(3k=j@@Xl z*)nWXCG`T*RuZQ3iwGhBhqVeO=tQ3%>fMn|z01(m-owkCdvj~EX>JA0Gssty^#0C) z)IW&80;Mvc>vMp*4*cISmd`-4Odz_U?vZrIP5AQxqBW831XRteOaZF+PDFUE1Gn7oKH>oLggAJ=d;j()&mQU zhVxQxP*0AK4=}wxqm=+;TADfh>U?%aBZ5K*bAJA8I&b^$k$4gdY>x=9&5%JfJb%usvsx(>?7&&`RTw)p$^DygFkoge`gxlG=Nrph!3-b zXVu3^%Z%=h!F0#IhtmGNw_*LlJk#QVxk44x&AhKKry2Tr*`SV7m-2RbEo^JogKvEs z0=P}x!)e>lXxg)5ENvbjkQ3M1+ORS~h_qUtOS7w&(z(f#>Fgw?@dSk!+O!3F?oR{6 zlqgpfz&HcyiEpWLr9Yio`#o+$J8yxti=YY?K&xOfz z7lm$hCRp{l(X)-xedy4kFU#k>Sgb}_%YUUQ+Kpq>vA#~*iMBjOGM@q1)OPAC?gH0^ zZ!Bt~9*;(OcOm@?zwirru`CF7%dKDk^V7t&(+bjV4>7V}T43eW=>2tBH2HN0Z z0wN=kyYP1p_t3z(*tRY6OGBh6?}Faw^==y`P_%yUnLHYGU%+6U(ko309c){3dcmBa zMNNGq@7ZS5B|qE(?eO8l`T9c-J(PnD>f;`~i(}Mb+g_7qft`DstKBuZEt_CCQnV9w z{AWQ#@FK=0+EoZ67*k;2UhEG){BQLf=dp8a z+{@l_-j9!UNwd2KDBL*2oVKidQnT&%Xw$qVX^d+DtSoO3N9l0|@*_X;`VIukE+)uxK`{{j!F#<;0a2JLUHbng%i|MVd7xR2I&Vy&x9p@hHhkgG0 zzyJHZ?W51skN)V7=Icc|%)36>f5*%BoBUR=<&GPUzdIK=zK)U4p~4jbwE-)=u8>Zk zZ}PbmSi5DPbHSJv3Z0@&X;e_66^zgBCqMbgOr!26!B6u>e+;r{a6yGCF~_9Ox~12^ zl#Z#}LrPzi^H{8J{n)MV|Hk*PFAm&L0Po}CqyNU^|8E~4?=~l$FF5Zv!AhGxuV~lW z0iP8Dl^r>8B)xd#`Lv7%ZV)ZqeFq*)d$$sxj-XsVmzufjS1dr+=eCMQzRW`d3dsbN z06Hb=0}uE{1!QoN?={N_RO>vHYNI>w7kB?|gS0ixm<5*tE?(SdYJ1xI()jQ#0AzqR z+PxJt=`Wx9B3q)pm=>27(*d@Wdx(HxL+lMda9}ts?3zhi@Y$~N<8dp&#HKO1KXd6w zdg&A<^$SzkqZ52Sl;c^K^`5>TRkyG2&5qrw(uucXgC{{;P6P6KQocE{NLY?pPA zAZqj*&{cxg{+=!L$sY$^*nHaYH{VqDK0oI9w}UO)YFEgu_ycVyF~7EN9!u}M<-eu9 zL;JE|z&+_rd93^+Fa$W}{n)uxLKCccwtTL#HQ6iYo=KHg7t+k?Re)!AsvsPYo~|<6 z$&}b?Oml3}8*10=8UZjA3{SE*{nJPPIh_TNuXW%Hjg}eGGk^0yGM4^c2v8f;Dd2TG zz#0}9`hk}*wbu9k{N+=Cxe0(bpxA%3CD=tDn}r8;=v0tnptKw$4KS%Xy@9{B0rnaQ zO>W+NTN>>LF!t=AEq|1e#=?hXw!&MfFX66n8Ow)-ECgsUr)t&3bd1;sXU-o_GfQ(U z9M;mUyYEN?fOG@WtrA!*u|vYb(nb3CWIBN++-UTWgn)th2M^sMFV8))I!}#4U#Tx5 z7&wo`25}Vlt^`7@wW0@wNCw99oCyn^-gcbTl=FrA=H_=LU8`Qk)!=xVW2?Oy0*IQz zFkbfaD>LkLK!a5PJO2dKt?Q9o+YqjGrlrcQ zAe3tIWXcB~Q7)-3p_AlPYiu%iS5n+uoE62D*~U7kOeCfN#bdhrqf zzn-=ZjIblazO-}rK-$8y(%ZS2E%F8v@px&cjScqZiED9&Z5Llj7cWnwsjHJ|c4iuj zms*;?w3K>kgX!J__Y)0&7`KRS`Uj)2s%S$n(}q<6T%sdd0`P3hQx;Iog%>>F9bodi z=NmtCnH?K{zR5Y@a}dviM;D$hZrut?EwPJF7q|ij0n+~c`~MBF3UK4^x}N|p|Iss6 zTzr~0@)zqU4o^J8abIvE2oaP^mkVF%k7Pc-3v#62ZQi^V9~a+h?*xJZLqCFZ-=XG- z_5zsy;xGPURQ+YgSoBBRL5Foj3O)-w1bgOoVarOUd5 z?|!#Uf!!bc!5`#BzU_KlzxZGM)nCm(Q}AF~KR!{Pbqef^HviuDzBlLfk9?8d;uyuv z=yQDkpE=40`|q}dAN=44)BpG%|07o;J@!iw^`Q@aCC#F--md49 zybV4T^LuVP^2=@96f~$Iw=ZgE4;(m<+ZE8;C$;S3Di7f!|(|jQ@>Cg(csDWhB-G*klf!X`1saM!i?isYV=Q2>b6V2P*Y!A1o zJe;a4l);2qEpqnp<;CM<76jDFq_(%qZ86)@w2 z;8tXs6dRphASz%flh=n#b7P~U3+6SqUII8Bz5H7G!s*YZRUYI{G>7->yAL4Sn}$1x zJdZhW1MPJO!Q2`Is++D)rSsQLr`hEzJg}{4e8)}c?RP(vcK02C7wp%aAsPPEK%pKa z^9F8v`N*?rer^$;`MFf?=}#jay8t>!_$Xnd^cDmjt!Uq|x28Yv4?5Q{7Z=8W_uvt% z#q_-jh^^qi-`d%m28Va0zV7YZf+zVeMfukpDeAcX&F}OYYA8pItNiN_fWwtwqpdWk#P`OrLA&}m+v_$0j5^DKXKv!s{TeVjguu@9RX#;SN zT?4qY3ZJM+A%aE=&g^}>xgS~^f+l_g@Chg~N_c%LwiuU-Cfei*~%N89LK+u#028@?|a=fztH^v-! zOF)HJ)YsgLopQ{GcrnXT0jcE`1}Nb0`2n$}lc$fdW#LiAWRZSh4ZFsVy z+xm8;mI{ke#;O4_cRbse_wN7hM@fYoS7@`wwtfo${~9q42rt0cVqHKzWrRb5`#J(H zfxi*ybr;B14*0pRqJ3vyf$Z+`^66)>oH&`TEKCx3avuJ(wII*mKyQEAxqUS47`i!a z>0|yOD7$cViiOo_+J^>6sgiGI=5o3K52xp^tySAsUcFgEg zZ(3zsDu!&@S%{pNk=g`Zi`Mzm>_k1I5aA1Q2yce!N8}cFmhTulfBzPCl zsl8PzsDHKq*D|J95POX0%j;k1^JTthKkAI~alKgg`t}6xY7^a_D?nz{W8LO=ZJ_o` z4O@WFSl|nI1VJv^i^)2ot>VI1{zM8;=r!BW=dj+ooJ}zVkc3 zGYbdQ=mwwchvkD8L5Jl-!*9QANAPPsmNlQ23bv;efqASW+WL>i-txt9mkzHvhR!j~ z^dnif?Fe@DE%#%d7;`n~zyJHcpRE!+x8L%|Bxn-g+jr@=ueR$rxX-=j>)tcjNBig2 zcnVR}a@yAb@Z^2Hncr`W!rdE2&adAmHX|H`lYN*27>hcKrPnuAR9*=PCZ`%NK<;9Veo&pr2~ zv9YmyT_Mo1W5=?P#clfJfo&N_LIIB!3yzKN4h3D#83mr^^BJ%mKR&C@ABA<^`@jc2 zklTFhvB&cJ#ysX%D4;8cRypRAZfVp-LrWO@=5_n!eEr+M{o8Dr5p&x9MPI*`;}d+| zIR4ji;D!SDFJBf5G@4hKlPtRV(Pz>MUYuwy?46jRH_e^(Q!jTRU7I_VKKJsc)0wL$ z2p*R3tG+4SLEy73T|0PF0wBOYYXCi~ZZD%X&t}2AoblbQ145SYckWh8&%a6;4I`$- z24AzSH8jGjtqb@#&p=CS_OZ>ryR@xoc%`wD&CnqYfI<=g&`yTd0Q@o!oRGHK%9dWe zJZ$~El=0PVbT1RhevbP1p}@?YN0YqmX%^r2=MhA_diI$#0pQ1*I&Egp_f4C60ZUiY z%d?-S|9}rH1?m8}8S<;e>?Ib!z^36e4Um87wHJWI3JBhjw)gD-f&xMTS88(g8<&My z(+HJri>4oU(>lR>8sY=mdRhRflj->hgd+V{eKRu#@XR5Bk@k_ldA$7V%Y{nvSQ$%T ziT%3I&74FS;g2|N@S^YO>CI--q0QBISuoZV2sDK$t)SqM!ENd8TkcD{mPb=ZKR$ZY zC!lNxL<`{ST1f!P8}0QR(C-YI_PNTe!;7E-_kgaQY3ImIxGwYn{^xKnxB}QdowdxZ z1O_az{n*%!1Ax`Bw6*|kfN9P2SJp5oN4s1ij(~0wvS6$8;3{PPZ(;(jX~lJ zJg15OEc55+#0$h*z*T~646E!mV1PpZ`Mho2yfwY!)`!!!&M_=J;4|(7_3UHMO`f+p z5#zJjI|8#+BDlYF>I>=l<4-LIX|Ozk2#bJ`2moq~uk%0ucwzRR=PP{|$itw_ z2Wd3L4_nU5*vI#LbK}nj2fj%;5R1tCI}8tE0eaV6cjX17*W+37Trg#d=P2^$i~KRq z`fG9Tt&UND9E_+|G4f7=Cyt6i+1C?Ap7juv)P5iw$*|MpPVy(mzTO@=#F3?tzIo#q3mU`;rG$e(JYAbdGXotn$Np)Q2yCw(B~Ky=WN{5BE+$@th^TRkByCG0Pgec^Y44W z=TaezbKCce$vXV*yT$kl3Ua*WJ4!Qs=YsW0Lor3$#cLbqU*8=nOIl+8A zt5?k1Re2SyB(IW;OVp4H^hyAzOZfA?dgl3b`s(Qnl(%f!oo?U%4uYg%wg-68ta=60 za)V#Bw)QZI)wHU!<;M_H=E?aJ>GQAsKY+vTyfs$^+wrSQmjDS$&dX_X?oxW@~s8(US(hJcct;I2U1^| z2;+dbvVcs^g22`6HjsE^4JokQNZv-GZ$+rlfnenF{4uuunocjFiC%?gYN_)BPgzGP zj}b2kPrR-Mx!HeyOu4q)n9D#9)h!^Dml$OP!X-@H8-Qk%!(6*w6HIf9x>kf4TiKKT z9S6USzAm99_D77x0~QV0Re?OK@Swuhbl32CURs&YRt}xahczPd5A+PMtn9D(g=Zuu&r3V%Eh z2raGP27!io_~z8zHk{{+8toEoy3{hCaSvJmm1~%^=Xno8pPE0-d_-_S90jA$XV&q@ zm+~6I0WBIF*W3>E<#OB;z^}G0XMxbEsaN6OJX&>v$|2zD#L8lBj(7`1h{xR=26U!f z13WuysmD?^l{?+vSwWPuu#K|N-y-iXq?JVkU9{p>c54V#cJ0}l_H5q^KlSVKnRUTM zpEd7io`Sh)SM5CW9gx3$U>kuI_b~s^$Wx~d4c+|%xL9f9V+s!o#^fNEz;q@aN+DIE5_@?E+`ez}(?^zgX zl5TQg>mpMSB#=`BWEnp$B3&qZ^m%eYSzO$HHJEC<(WU{s1l)p`SkOv`Dd>@A7s&3h zt_Do{OdeefyRfz%wOwjMUAPPET&PDM?R)sKx|nxC?ZRHom?p9w1=j16bz6r?`t_(TRT`q5gy z(c-nBFp!=7(E{P)AOCpPAX>&ewk?g)5xn(W4YmE$nn2eCfvOry{fvvry!Oo$^%U>F z)w$&&#kogmlD6QR^m$!?EC4d#n%})HZGvQhl>lB%s{IXm)MT62dmbGR`S53d_Gek+ z8ruSDa&O->ITr}tdFP#3SfYux^Iv+b(>5c;bD^oa0v*T3xgnjJ;H$weChM@gH2mW~ z{$tXFTTtel8y_FfT3Uq&YGO6zR|w;CXOi~dt^K!O3IswB8-0%QaSUF{ zTc0KC^P1(IOKRSoPd-})lQhW>0lL;lhYk_{h;fqNk!;KF)>Y(}&x~^{uGx-46@>?$ z%VUK!&KWI7v=*@)lXd#M`d%`x-=#yEoLjb494GTcUxKcU<2MEezJ>ta2ha~Mj_YUH z#udP-iM11(dB<&E+|@L-cmd7(-=`POKa-~MMb@Xcy^9}*(kfu(#WX*&#Qx7KOkDiM zG3mW$?>n-IuNvW&Hozi#xlgi}^z7_qKmqjw4&9S_u0{lLKwJ%tSzn1r3fxfLo-JZg%_*lAHJqO@zphMr19^Cf`z_5{?{=#R{ReZ@?(Ns=z z?CIGACc^Bw3xD8Jf9hT9PY1W&n|7g9e(J@4NmKX{AHV!8{hv#hc1)(*#^08G+Nl^2 zg)~m!3Dvp<)Zt}KQ)|E{p7E)p(nFv$en9AtLW>mw>1jTW{dXP?f0hK_$OHVfp#ROq znRN=-^7tvGfJbV0yRa;1X>_N>D*(mq_&w8yreMY&8a_ZyN4!l&Dy~4#;&yXZQ6=D? zf#M8`*T8(c3IJZA{}UHZv)$c`>Gb8JX>nN}^m5utwD*JTI&g6JU1@6%ixvFMt$WMx z*3^14n%dcgbY}Jl3RfbLPM%HAR6d{Xyy^aQ^T>Vz$@SBB`b|9sC=|-KVA)_K^A^Cp z!QXP<=r6C*ENEzBPx0QKPR#R(n!dvPfM5NX%-_26u5|a<14LaP0*nq|vQ2=%I`b1# z^BR0q6F-2(#9ibW9X?3#KK;2})Utqc{@Zc-DHWI*WL_^-X414Y3ph|tmoZ$ZWe;485c!btC~^v;9dnhq}ChlLD6f*yKA z6o2Q<()?`RKJnD_u{^#l3N5(P)zX`T0B%N5v#o!3+P!se+P&>2#-Wes{443`>7(gO zN1n>N7@WQ7WV(0%L-c1`mIJb)002M$NklPz<`Y2siKOOJ0N_Gi@MJqtXV76e`RGxa1Ra94sK@J;F^^hp>vCcL#1l_s zaA*7h`zIjL57v7EMf)Z2P;l|R-}}9p4%-)eO-xMW#l3ZFma7@QK+k?igC^>_68!dW z|8^EqSk8L^JUl8i5D06IE+C2|2o5cvLI}%7-(t)ouh-Y77#ELkmZGk>A9cia!Ii+( zc_q#AP3@#Y7Bd0ed{ z?t9(uCeIyfttvcs&RR!|zx7L_$!or!e)xxfIJfC{+m80*+`Q7Df4o)#f_seRBbRq9CEPNWJi z76Y|ac%W9;FB%13+PCA@yq|cj0$?RLSq^#zpk7(Rl${ppWq`Ln=xC%{P}#KsHUw|W zXiMkx2gg@<&4&PO;wqYIAIA1&qMI+F4F?po^Ki7H-OfM&WLrnmx3Drt;IRvsqx+J> za~+Lr-s+1sR?q-em#<|F;wr#y5kbS!6|{n-xwL>u|6s@7bpO7?>AsuZovMqNW#7S8 zbnQ!Nwst9f;pk^*s|*MnN^d)WU;L*1sj<+Jwqt!z+w2~*OX=y?=CZH$smrgV#rakI z*tY=S_hj&d%mIkRj~dnp%{|_ENddI`@Wa0ypuc5!2uy~i8bL=d0q5EQKCAd9Ye}GT zvWah+;~>xhk~OvY*T=@-X$m09jFUnAY82{d?PYs0%+Wh}LCJ5pE)U7XH|m6EYS?RP z*8%OVwAlhpEr4JB;Fr@P0*=Xa?%G5;eThipS5D!3ekLuiO=r#U=FXAy_S+xKRt$rk zfJij6HG~lDAkH?>+WwK-Q|p6`^nX8H$tK&2M2CO*^fT%F6P$1pz;le94Mx&-ekcdG4W(Bno=vZwd@)rqX>X}@rGDZr z40Y^EU3In!1o&!2u*$tEJS=fucWXL?6uUM9K702vf80h5F3Q;J;4uSvzM_Vg!8r>3 zT<>g}>Y7SjNI)iyWj!>(sLzWKbq$UA659j53V{D&YT1OSV3zIm zN^I%3>)k8_d(!OmJPR7OC0tucM=-JPW}a@ke=Ggi#8{xMVVgJWAp}dR;7)QHA;?p& zJ&|`U=p<%B8)JL>z6Y>qxE+a$lHR7P06!H?K@Zw~MKpqUEijx!2J~xZd%l|pwpeHE ztGKH01f)v{8qQ1}Pv0<)p{YTP>yq--7JN9((L{0AP8Ob!rAJJpx04yYw5u zS}mMy2r$$PYXK1^`?lv83A_X!0(!O5CVk=WzWeU%Yb#CmL%<`TSJUS>YTg^#ddoHhJHBUW@O+i+thwAM-^SFL@r<;=GtY&ZCU{5HJ_{8|}&i z@B7_Pq{u66wxvaZyAH@FfwIZC0-D_mjLc&h=db@|QIKWw z-2C#^Hl-_gW!-+_`Oyqs06#W1mW2vxR*Pd{zb)$={*LeXjxV!3a9o@#ChIgsJNXNL zq&0XKdE$HIiR<>mq!7tG#eBu@#p_YWjXVY|^4W2c*CzWRuRS^sOhKzhug7hduQ79i@eY{Q`@T= z*!{X&F~u&iby;;0i6=^NjAdDSH;{-=0UUT4@~XGd^!A>efHC*}6jbn% z0r(s}`+VwY-IU&b=eyDaw_tw5c@;qUz&-BSxmFlV_2Z_V6O%hgvguz$g^D+G>I+VHJW0_YoJ^ z+`a!^pxQwk4E*s^h|!jX8bC4rsUbG`*YSX7`L935&G8Y4Ht%{xy|VD0rm5e((5Wq7 zVc7(~d4clLXI{VWI{dH0C$+o~iq^l5U}J%;0neq=S6;*I;B=apA`+_>5%`@8jC;CE zX=GqedfUzaJ>9wMo~&tYREcMRy11(s`k4=kD>SFygWvlj@BZJ@7mj>}NbxTc>})a3 zFP=%CdFo_3wc|@^_XvBK1LB9-o^b0Ru>(2>prs>q!2brp4%-OMHpZ?70}tVg*4dhR zdI!Mgn5OHe4b8f1Xxqqz%lHr>o?AeJL+;ym6_WW z+C6pYczXWivuTd4);fs^G0-){e(blUvCUW>K*K%z-kv5ev4`-&>D1a?ORt=NHg%!V zerW$AX{3E8&k$r`YQ6@)Um)n*zrOT;0g%xEbTO8=fb89VFx|fA9s)+<1Gqx`1l8M0 zdPpr=dpOou5;&|(1Nz6phpqlriL5`pG{t8+U0Yypdd7BQ>R66Izl5242S2={j>*tS@++5Ve&e0f{JQaXg995J__rL0MPnRY6sq+R%&CbK zsHnyCeP z|KczHBGc>^VS-creFd@tC{2c4(3@ZS1#k9Iji>K%`S;l0$@wdr!coDSPAzTCHC&`QtzSW*N1? z3X*Ksz-L;3_-vV9A&&HFxnaBJFScVD^966@gKheGGdhBXVjkNtjg5_E8s4hh`Z{x= zuks&hvEQ~W-#kX_0OJ7!P0o3FptV9Id1D#tFrO*YS6J)Eqt21?VcV@8D(b<=}@TWCOeG8yv=YZO}%>eQq!0{vL?%I7kC}`RN zlxi5=b-hOLx;eJ5`rIq6m}bA40q3smx1{@S{g$-7lkKmlNB?tudRqaUm8Dhow#Gyn zvwb6sYnrd-*q~#Z(9k}3`yn*0XzKA-o?X41o;vbmx_W|uE&z{RgS*oscYG@v-yPsf zz-D)Qx`al#wpvYnBYkQ6)@|wZ#aE%PJqJWv#SK8s`Q)`rn32;Cnrj1=U7Wc{d(eb{ z!n|b`CXF(_+Xx=sdFQudR(>M&wjqSrv>hSOQm`3gba z&cDq3=}nu^=ywB1xA%{yyKZ_LLYz_Ru4APzfNwiNh|u`1!K15adaDSCvY|Mx5G8!J zk?YeLrY&QXUyT6P**Ug0W3TiTG}>+(*UPqk9n3|#3x~PJ$2wTj zo6~)0%zN?2(CuLi7XrV3?xk5`3t$aWolc*9<)4{%o$223x2OKj;WUr``B7XJo__Vy z1P+|wUO814>X@(ZOAp@i2qyVE7;h{s*wRt{DxmRa2>A>&x=@E7euo#!#5Oo_=9Q#% zi1f|OUrw`&vjo|@mbd0B@w~KeA`)*WKR%4@D&u{PxDMB@5?vW98?7oTEF2y4)^_~m znez*{QPi=F(Zb;hF)Zq+<=gPz=P6CcE*_=qG;`_-f}V%czQLQI^q}AC=J&hp>CY^W1r!2o z{qC*ben_{`sOA3zX7cji=-1L@SxvUhYk373(kLht=vu!3KtYFq(f$eC!#rLZOwww7 zYN)^e`@cWa7Jc`A29w7)_qrzMf@uXA z_E)~Bkrc2AY6SQKYW;~7%9u2jmp^J(P4d|9^1$*6OY~QlXSSu#LsNZu>zpydd_ujIrBJ&9An$GecKIzgn-Xz^zVD$`_kChST@7fSKj$x zJ=W{dHca+I`W#y$lN&cdTFm2Iu#cw5pTF=YX!X8*QNU$iEE{vkJjFJn?2SG~e?3Z* zJdkcdu+N3hvSTGL9B;?YBu^uGFZlBRvG?Xdeq~pk=l$irD3#iGsWK&1m1?!iTa|6F zMKPXU01wzq5I_(VBVY)Kp1~%F3E&S`fPrbVMF2q%EQ48t4nwfGA#hK-ZMPSia=GkU zttwTiv`eWal}bsu|9&~2&w0NiJ!PwmyBW)c`*)?6@4dU6d+xdSz2E!ZbMCpuW&e2A z_dy1ioYZ}MIKK3c-~?Ju3i?zyKGEB~`Q^_% zP89guzVn^$jC*OxErh^-n?pKc>~(Ro$L3q_PxIh4G*G)9t4!FV!1Z!nE_e7m|v@* z>_t0`|9Q8oE^Aq@y8${@-HVplHO>owFSo@y3kdGUk=N{1UY;oQSK(Z4J6mgQ>czV@ z{}uo|v2Gi1cxvf5n&Bg?S-(&=;wgTW>!|U>t@(a88p3rr=~9?#fqR);7-4Vt0oK3I za|{6VHw|wt8@mATXlrd;-{@fZ#y1X?2^@qy@$`Qw6X#Fj9UVXpf6MUc7Hh1w#v}ek zw2pYfou6P*;FHkDd72L-FL(8veXKX{TI?%teBiC+ZTJ6cW6-p+eaixTC_g~9+J3c< z^UaxZ@c2{Z#naDXC4gyEtXbw|jEuX{?h1aJXhRqL(NQ%H$d=beya$;Cb8L?;EMi{AB!GLXuV-to2k-a>CSS%&UyIpsI;cr!_n;+TW-avbv!~0a zp88}teD=B09Gn5TeI}OYOnzbl6bsooopZ^%1@vmTYQFy7{#~SM0<;<}Ob}(QoGWH{H_K-F( zQ_cbS`WBHHzJ|uP>?xZYTVj}o^FM$yzVVQy78;B-9I6Rg8?>*1|AQ_xzXHS-OCyBk z?k|4n%5*jH0>DL;&3@)3=v1^KseU|YF=*Bi@r%+J-< zH(lxg2)=vQYs(DI-yX+rLsL`v#)b04p-)iPWjwmyjU&Jd<*_IKGkdhZQ2KG)*jO0A z+2Ho_CYE^IvH8Bz&(Z;AdHl6wV&nS9sl(0j;F^4fNlXOIEo0Ju=2@0`{3piq1tuhP z@WL3PO{UNX?;Nd$4sxKYCt>n8C zIuhte;06igho5H;KPCkkY9=-17Tg*H96IbWUO-{+o%V4wLu#ru|E+(#nkKz}O33ob z+sY4A@AX9O-t1ZeJPdI3W8M#6%OrrYJ>IL?QcEXLG6)83kL&j>V-Ps2(G?ixhq>pJ ziEF4`CvQE*CHPZr`2nxos{}P zYXOyJ@9wXz_S_)w5fIsKX-MC8DRcW?S=Z%czbYp+-uAy`43?9>ENkD$OPy}E$vi2i zESqihY|yEqKym;6{o(OmS-FHldd3S%1=fZft0_lmP^j$p-t=i2~`!i<)^SW`63Yek#VBd5v>|P)D2A zzp`D%b;8${1jL-TCOCHZsu!g5*u{0&BJ(BfxT;=X$qGL_MEX!^W4+AFV+c^X7xUen zn*eIONV-_ZuCuLvK$Tk9rXaNkFr`B}?|BGfZ*Tx}?4^xHwE?Jg>#m-DeA1%$kg|c_k-ty3$Xd>6FM(YT`fQAzU za0__FgdVVZVCIE6 zaX(Jo+&>#LXs`(nB0q%iKBMLl4ZME!dja+QgyC?nfp&ExJa?D%Xio$DQ>|O*fidBU zAE%HmGp~Sl&C);r(mw#AS)Wmg z0qLp+FDo4MZD+FPt~>5x&SRlGhO@rODYit@d;Su8#`o|sDgX4R+q;DpoAu^>%*4#1 zWuKd8%Z(nqtuLYJWf|J$y>BaDch|ox7dA|Vnfdd8%G1-w;C8WG0r2&(tYY)#HD&F3 zWRDyIP&4VF>Aw>gU7Xz}(7oHil_3|~-JotQ6x0+iA(w>)+o4@O6Kmjmv2ws`VOck_ zmXQYd=AS0>zDTRd0qG!D2M=@626 z2amDM+u^@Q7MRX6kxK3fmZtl+ESq@B5$21LF_j`VZ$t0$&E#JkJ~> zg6E5|V7rj!lI>tTIqI5>gKoy*=*a3=ny>^PgRHgh?qYn=sIK;8kXrj5X2lm-7tdoI zt`bJ6M&A(^=XL7h2Ns&B4dZ1S%TXHh>_Wg+eFInqXgT7O(8bv5!SUk7naOhEJRba+ z7`iYy!H@OHvJOiQ`$-v)QDG94x$W@Ygih#4pd*2m67XH+dp|$;O;_vghom4#?UBDD zZgHiyJ3kWr;D7kxhvOsJH1oxKFMdx}*7DzeFHeT#&wIZY@&nm>Kh9kjsxvX;-ILj~ zX&#mp3<>c4@KqZw(DNf)^VMJe?_= z>^6PM&H6H*=X$>--8^Ty+D0t^>;q+LpE$k*M}jlAjC=q4-yh>l?WhwP0?!2JYAFTa zzwisc5Mx(si=X?sp9_AhEBTSG>zM`jf@i^;A%ULW=XGFbe;90k%2*Rh#;pj}oAR?hWteCE7zohiU0)9Z zUB^eZL7?q;*ZG{2B90MhWqJF`vF0RzmNBkz7brW4V(?x^j&3RFcyVlKIiWR&<3n0L zGxnKdMRRzU8#&RWwTOM;t_GHO8$q94dGYylY}fnJ$p*)v6FXWF2;_Y~**`w7w$q6@ z`_plv6T@8IIsotU(FQ|GZP{zJb$s~q_{GP(V8D-Q&4azF z9w`PNT2{@qeQ1aJoFT7%+yum~)%N>a&7=TAEoc)Es2O+ztvoBE(dhBx2r(oQp17Nw-7Wq6r3v<7KUc2eaendgm2xj@u-A_;qY6o| zWUNUJYi`R5{GrWjoB9CwK0E*g*Xi;Wp+3EZYX;URo7Zf|%zr;-<7{UKXlF4nn)u#w znl0vzU=F;5nX``g275=!{d->z7+O~@&Q9?_VqVkX<1n zEal}((+>oACd9U8lyDnACnIK>u2W_`crRPkQD5v!kM`8%2o2Za1G1ZVKHsut8({La zya*>)deAC+c8-^^Eq9jPn_g2!*mi9V;O`WBhqrJ#sEK(mK)bK6H-5;N<76TLZ3;^# z>|nPKT!KbFTG;{3?pZQmpHl)2t&=@#%I?iOaIm+h+_C3=wh%m7j-EJFjvalutVXUo zx7}7oR%vQ3LPw7FtuMha!DehZ>(2jP{sHH)a$wvtZj=Rx9r@xkXz4O^Pa{s2LGa=n zW`bhJ*6jd%W>m$Hj#Ev!6)pme_3!a=tzNK>7cwz^=nv$iwmn|JazsV)(4sEK(Gr8T z**8}Xoq4W&?DHQ%*^gsHcwb^t=dSJdme=onGY%5BFu9`>H)ok}CdY(R3!b;E+gslD zCZYzH%X7y+hXeeDa$)XFIe+pzYyNTkHfVl)4y@e~&J`cPi~evIW?A%^lV=O8*Vm7M z&tw2`+v7ES^JK$w+@dY-D|hT<>moGdSMdiiI6TT2-iY=<%@@la@Ix_kWudHDyE%ME z=vdMT0j9so!DG*sPe1!HCYxB>$d+_>Y<+!s%boAwd1DsZzUXBFfk^@7H?>>j(Tte<330-BDW5PbW&Nbqj=b$;9sLML=2utEa$=fV$Le_PZD z3V=*Acow|sbjfQ!7JV-WigRsf#$|ezT~XaD-kLu@+Rc>Lbvl_R)BP}4Yx|z}yeG8j zt~vF-UdDHZS~NkM`87MXodRpk#q|X4nr1)V-w!|(7%BtX;~}6_7C-i5KNdhq+5!cG z8b194SjKt;&4PWwv>(~Z$B%j^1QKXQLH6oU5PTmBFdNWrOYnq^5@ZbcD0K~}_gLPQ1pzoW$>6>lLbX8t@U4eu>)a2&n$t#1tv@Pc;D;;lc&q<~v+E_kEKa-v1>=DK(L$9gn-b`1RKpZ;n1CCEt}%S*>e z9O>FV>B+lou&iT93yri;N!iGo{8+E!LOBc4?E`5_$Nut=C&!OtO1k!&lQyo2R<_2; zi)YuxYmuSclF$A7_XiL5v+K6yA={q3%8O%O&AT-0rwr0HpLsGEw=yKHmGSla%#-JO zn%67iy*J#fKI7!cv+{CWIN7DF3{HF`a5j&i-RIn~nEf6Z`C~oGOaSkMhkd7}Tsh~M z)klWl**;BKn9nip*p!A7F^)s!Y+qWR6Dj7mU!~>bir`*99q)VJ`>rjckr(+)IyzC* zgkE0N?t9j%!m;GI$v*U5U^_EdKIwSwgs(jb+&TcCvg6}f5beo7K9)jnL1Kj#tAQH> zj)6)f2QVFtF8B=a0T2ev0}TO%Xr(bTpF=C_8utbEVV^^rI)@4OuH2U%=Zwr`GUuFOJ>8oge@mSy0Hw-50D>LxOyj+<>TdMQC)i~1|!VG^4 zruW;1Hen{;Dl?7Cn9R?V$zYBl_LZU5rqVHSJc6i;*N{IhZdZ|9nrH(Ae* z6e)-1LjX%YUt(SS$T`K)hqE}f#Q3wrsrgLVGq#%v1%8~DM**wQrycXlSOu`wAIJ!Q zEwuBjOJ~_cw2X-fHWEkkJO|G>T0%OpVyhi-a`Z}Q{YVDI-H0HBjLywL&-ZXe!R zwy|gX-ZgiX%j1`05@*#AI|nS|qy!%WJ(#;|>hHLckuK`!>A@_LNsv|Sr+yi}ARn6J zraXZ5`}pxZa_l7>?@h4$g8s&;V;#VBlwARsDFX2FgAC~PUFw92{Q|4;lBN4-PZjJn zL8&rxq|;j@kV5 z#>xQN`$cw7a4mlJK?_M&@(?U>e}f^F z6Jm>))1R4qpkTJ*tjmxz&Fdt98g=`@kn-_t5OfN@97h5^ zWoCH~+hK5=dZ>YQ{0I^)m(~EulV`!CL0)n~L0M?_ZJm}iUzSNelvPezcx}jb#0`Ip z&-@wZIpdOMJ#FQ6=2>~pd>LQA&ui<+^gL%;@@o5>*vMdCD^tVR*jOB1Ti#G_lh;m` zd1T1)rU~%%M{u){`Ft(}-X8T}eexk4&-;0XGvv6jec49)*2$ZCFkih5^)#=Ohn2Ef znXhyI&tC$!4#4}K5|r>l0xt_)0u&NcUB`1|Li^!Vwp@F-j`lQLv`yh~OO5&L9M0G< zi=CNe8@9Pim_W1b8$f&ski7_ap4Dc0hIQdM+}gZhdl>*k3tV7;v$NCy4}k2_RrGv3 z*n{jxt;zmU<0|zLXCBv~6DR0e?4BtX=T75Ud0GzvrXeFzjv4)I^f6Y>7(US&wLa|c#U$2HeA8${qE86@;|-xe*t7{qWw5d zVUpnL)#>s%_U}G;?29?<|M(y4h;Hbr zN!1ho>+X09ZRO+0mY^|SX6<-C%OR$h&f{JDAZxsF=tmR!@Nckr4eRN33g-(Mxv8xc z+(OK`37U-tNdD9Y(ezGBu9}RO;);^k97RZa^;+3)JmW zh*&$X96-rF10lqyK`A0z{;7eEV82nWVvP?w^8tc;us~?xtKj7m&y>dxeWIK=_aZwh zP+yC+cbJ(!F#cfKHnOYC&#<7ur3Nl5(fWf)hXnxog{ceWrPGJX%jchCi@t+pnk^8W zP*|FGtg-DK+vu?ffpzJV<=N-IP-ZU7mD@J%Wgq+9Wy9)iSQ-p5iKB%B`FWP)+=(43 ziE}IoaB$E!IZEs7?1KVms1nZV`h4q=aY}mh3@jUd%mfZc_$nw z6ITC@Io78^s?YkE5D4dtq@Tve!Q-F*6l?20P5%wBC;TSH#g4KIAirz-on_0{mGN{nm5+&fG?JF-8H_iNrs{?)n>39}o&+ID$M||4%XzO1Gmq!IHqH7? z&$7mup8QykQyZ#mNi?xyD?iq{^7 zyiPe8XI%!#wV@hMev!j&iXBz zd}O|r_tG;MU(cU$nO?uI(^{Ecr;&A8Hu3LQ*d2L>g=d)VG)u3rro%IuaXht^trU^9@zkNUQJcmYxqxJQHdVnTbRL+`?n{VlSrO3unu@ zS+-(Z4IoBy*+9F!*tk-Tu^0B_{7Kd~&!e3m;srYj03C#0FWbePFHaqN5|H@?_H;kT z`sa&S3joQfa~_9xEdc(BD{P;2=`=tO(_y!eED=abK-^a)QQiQ zm(aYcEqBlBHLKQ_W79K$S@y8Uyz0oYgXQGuGi8E3(zkBd!d6>5(cteYJ2460$+lY~ zz15amdK>T2W4jLV(8vd%62JmxJ-X2XFJR)0$~Ls#3(III(eyVdN0V6ok4ay66Gy_x zQw?qfW~&~GYn_-0&P)?n+J7uvSYX0JjkxzZ__I^vWyFQ^1A3kp#C9VeND~1+n2ozT zfads1tgE(cFB3IamjId*PvOP<$#UV!8RXBlI)j@4#rLvjJ&UBdXZLn!K$Cw}W%AD@ zfYiwg*QetwKKOJjn8)?wT};I2Ct(iX0&2%~bY}_owb$dk4&qu&$TR`xlJ4eu4)6HO ztgD}8zj$mu@XIj7Y&q#nT<9y|rQaTo`6Oh_%WA0v}24WEHIc2gL_ zs$_sI6d4P%tmU6$;%aL4TzU57G>+(=E2G1k7PHu=bM_59{Z(B!oMUuRO9 z53Bjgk7v`oPM(vt=RBle&u?DuJu<&>c^FrxX}llhhMb6qo7$hupJh$T`m*^y}%#N9MJBhRpAM)@6P}(#ZITDD2=?DsnDjI)o8_sIN~H)NdgS#PFgz218*oqXQ1 zT;@%_@@%|$JZHPSzge*Ey8O+vGH=o{E!$8(8*g34<+w7=khH72>*c*q8kyEPf9*=( z)&Y3NxxmD=xZ%~Dd-0v?abv%Cp92vdKt>Pdn#`+p7WufZ`XrvDPo6!(I$r?r01qYu z+vV3n22Gc{T-+VtR3~IZWgBb4x3j0T8n_ngcBwgfF}iW>`uVxD<%J7Rmnoc~^|5ZZuQgQGZQP{I6Q1mQ$~+p*6KL3< zIq?)cU50NSINGF%u4dS7@dk@{z#lAwm~r=yt_^^Gxj9*0n0x{(*C;Q)^lUkC=5U$D z{2zqJe%O1;>-N3{`m9TS`fQnI&AV&ThlV$nO{_1C^PnUxe&lDWOBNJYx${a0hI8zIm zNgz6h6W9C?8S>&%s~ryQ$e{*WE$0%zZJM@8+liDW69Mg+8>k47se{A*P)puTKd6lk zr-IhskHrJp;)_dH@R!&R$~jggwAV`qq>^OjhjOwijn;IANiIYPR_l32 z?=Gu{M#`ZhOhlYI6wll=lTr&b$BvB6{sAm-@SV`WVnk~WmnQV{tZ(7@erV+D%HAt`@fUG|Z5UrJ z7cQS?i@+($PL&fE4wlnL*OcS2Sbtu;&Je!|++=#DS#D)8E$OXHTX~=5vrMMf>3glyC>=}b)jdDRGp}oU zHH{Y7=LdT}^R7X4{j_B?bx&t#Y3iIb@`E|~$@rD;jZF9K5x+AvIaw}2h}YQ;uaj@R zT)VE`HSVtIb}g>_XnwDD*764H&UQpZ`%m(aaW|7)=E?f&d`dIRc=q1(Y-^^Q<{>}w zp6Sv~zOo+ADMR_nHh68k4*%Sf{ta(h`5R0+OzI>!Dsp@@t&oLm&E3aSgcZ zoim^D)|Gr@KUg+3=bFO1-q@`N9W$mG^6d3Wer#K|({=Eg!sn8M%xhiNYrf<)>DJ@w z*EdW5Qf1Ab;b!?v%lJHJT*}ROj|}pi_j#`Km~lxb&)IJ8>-qCK`@nRA_2=POlI}_x z=F9kcn(+o{8>A!sdY){bahcCNbw13K?OB;G>6)J9>(^0n`;YPUG_MU=uAS|MQ|7Oq zvrNW$|K(n1*?JkvcEZ<|1a2LG=h+f83y>JffGd7{K(=ad{hsEr2*4$X(ZOA8Lq-k} zRxcoYsCO0Ga!lcw;T#-xKX6Rl0Ggx2XaQOGI)e6apns$c115&hUXNh5yoK%F2Jljk znmNp=L*q$34rH~>J(%UL9$;${Ksl;HOoq>u&s_LKd9pkfCg6IdpXJ|l3vJ&p6A3em zXwFxcotwu16N90t?ZMore-Q8WXfYdrqW&Q?k*v9QYr9p0eXPY@g(I_7v6a}+AbWcc z_p@gIYI*#N|D}BT@s9uwrvP~TD4>O2w`yzIz4Oj;-|ep}dpF)wj-gc?1pHk_TRDg` zv^)2_hVAOM0m>%I%g4W1j^pI+?8PH^mOoey9(k^8Wv%hsU;8gH@n;97&plS2e(Fi~gvYZzducB-aneO$akZeaLbw7*`^^^seFF`I z2t8+`oeAxZ8A7u!vetTe09oN1pcNA`PH52A^lOti*Uk&vV;I=ifJwhc)QY>U+@-LB z0Q{YKu{?R`vuIV1k?sQdZnW8Z*^=%dwlqVlir0NG9WrMeFll0&oPcOL86X&kKi^l~ z3O9Z{&12i`f9jRLXoepiwn`a!2<9+TM*!29%0K(k6XkPkNw(aJF9L?iRhDV=5A)c_ z(hOh{u&i18GcP^~zyDAc2d^R{*3Yqyf7jMK&`@iZSUCiAV!`pP6@++Qjw*Bc5H_Wh zFCqBKAA5grfcOz7qj)gZsU!StSw9W{z8#bPuJYDoC^Ohs#SR4wuh7^XYQ@ z%2E6t%$I4j-_6;prEdf)hdvfM%r4@`u&->uf#MFd_IoznS#IC552uV9Dc@IiuDZS4 ze+OIX&wB8UUBDZVy*fdd%QpX#AkR+7s>$7jE$XMxWFXD zQTms$h-rQw79~SGYYuGv5Ugig#vK|&FI*qj_sX0mBFH1=?`ZY<+bjr3j3S;N&=5OdW1WICI$?^yPW2t*mOrEJW^`42#FSFE zoQ#J2G{cx03$llK_O~5vxd>{Em7yh`iL6+U{5PcT3EUo#hP{HxXv$q5M)xLJlry4K z4c5n28&(wp|9y83kjIP3)0_1T=dzjjU4w&gV3DbRG#2OxNjMBrc&UFJX~+E0E5j8g z;cT`cJ&2kx+nN={#a*r$O3&z%f)#dtCWOGKVIx?!@JxZ5|ES3##Rc3dU~zuu3Qhbe zg4gy!H+tt>vd?w^GN2E{%4Nxk3GTb_&(_Pu@8wx64u*?*RdxHzsjQD>g{_V?9q%ui z_b^Q)NiuD?+g`#cddy>UVArZ|63?pcY#I2*Z-K609T=d$#N+?3TCDemV1%K(oc4)qC5xStbS@U zBo<>3bW4tkUKv4=RV!7@o(kU#)mKVdvg!Rlb5pP9%ml^z?TrXLEx!*9zQcR1>MxUj z1Un=|r_X-wIe2K(x-o51oiM}Wkm8yo@wFfpEH(W$x2evSXubc$vZsaF-8REXSDa(I z-wa(cO%@2Spw4DxGcbKAoW+qR*kYgiV6MfG*2yC2uRs+9ybJHK$l;V5cm;!`55^oErOcAxDFnFk@C4eYY+ zQG&y0M!i!K#R%3iPX+<#1qopwy~n1|a9m-uOlAA1DhChET5&scr*@=E$w#|h1K0hS z)K(oLZtycQRhEHUCuOAG<@q$w#f#k=n8a+F@_v8bOMgZfLBgzuMU#ckMYF*sGG(p& z2IUmC$>WtGNqns06vG2G&AN0Hp!c&&<=jfoj1=S^_#u_2DVVQQkexcWY3^JUk>yL5`LCiwli`SgkHFJKID0y=pK{h`680%)e5Rso?o0kBmeY>LH*(W1){;%Rb9GS0W`HB~ zTi<%sZ^y6K@-zMf6@gU<|E>J-W=dO_<6X&KTwKTlhNl+K7kh{L3u=uGqG7CvoEH;WF&zmc zIq*9~fkL4Xqu{en|1zKq<9`nvE^B zj^{C!soRokS%R;&P6;yq#eo#lK<9*B9m#&5upSx;G0?dMHO~DO40T<<->tP|_(~!9 zOSYkyeQgEdXXl$^XQ2xM03q>Ufn5veSjNU({sUS-KvwlxY>v0x78TdOkNbJSoZU`a zf1lh;-KHP{hz6O6?~G41*Yd2^sh*d=kl3|(u&6(i>5KlD)W%_(T8j3mo!1oIG`-Rf zI?}fqZ-)?a!|q1d&1dI6gHMX01z|NAnkfwe$?e9pUQ6vE(@jEP_5>&2LB`RmQQ(z! zzidyn))B=)+2VQGSaRsIE%MR1?`rK%K}}@m-u}Jb%H~G(?NS&{5RR{1VpzofX6x~s z=cQ&8`SfH2Ri9f%^R5>2Yb9UbJKoR#93Jqs;rK+hVwN;%uDkB40s8tDFohQ>J`9sT4SQgWhg|)ez(@w+C9RB~XMwZY+RjVbC<~*Gb2!$HP)mV( zDp70{LI-B@mj|71>XGxg(Q+*DQnb@ik-p85P-zf zV1^>9%V3KxSDN3(q&}+wKg3023w`??To?UA8YLPJeBa{U(h$7N9N|_a0diasqR|abo8vd~+ zh}(x_vDs6r(Yu!jTH|M$lJ32nr{=VpNfS&~haP`uTvnY~=a=$I+j#nG*#z--iKKOa z_@we4`n<`_6?M;OHo&JDQN5!O-{fjRWwR1YrCx2U{*GVK!7h_AC_cbe#LqmPMEQN} z;&7c?rz!TVh)KZDkW5}Syv_}uDonFj709SfjfW9%Wxt{E1qQ=Itm<;QZDt}&B$s#{ zZ5ZIC27EiL&4qJyc0kU4RUnFyXf;M;zr)AyoU0`8AhE<1Wh-*_g3<{B9v?N0uWJxC z=D4`D9grT%@{Fh}x6N~GC;SC$-z8S_fUxMwg!VH{H4))h1>dS92@DN|+pXfH)9=5h zYb*}RE@hv;6J&*X>bKY>8seAJ$zb~rU6qY??dmU%b4x|MH zpOQ|GFtOwTn~J78`#mX^JJS~a1VdkK=8KD(Mzep*hgver9fot%S$Nz3N+ zxO(|h0q91PYx&uPEW-)lZ5;dfN3v_IKOgy&PhY zdb|>5aaEuzW*FfbcNSbl|M9f)VYxBw_ir+P0SBEJ&sCuIy;i`!Z@|8%x-*C`lKwU+ zC$LmJDzh^$Fr}Yd{5ZE{kR8or8@ZcrV&UB8PXD(9M}7X74KN<~h2rEOw3IZalcl^~ z5#Nz-8qpu(mXL8jN~>;wbI1WmB>_n9IIJ!3KPB1xH*K_7oI+Ez0mJW4a6mL6=F*^VRS(YwsqwJPo#pM%g- zlney;zuJ@W`JT@gAwPu`n|>ZKbS*5R$Y#|7f<=wOoBgMfyc77o29|qrz)YXS_u1In zw3haYs?0nqS6aI)?vWIK_J8u>6M`&8`EnA`K>y}_*N=v45^5iv@=>t**SMLZRGif; zo@QUT$oxj*442iI2XDq5BSU@FkGghgKOAPN1A3;hHfLY?Pv&a#^C$)8N%8_~MOrVLA4bDA;OPr=!` z*Cb_{K1KagKWcIBUaIPhzV#NjZ8=&JB`Bj@%k>S?#i_w;%&-GeNIoUm;ig(%+D(~8 ziwcD3TRr=X$xl?FbLAs)jMR zX6~r|Sv11hMg19U*~g3OMVOlU9MQZg_(G=lwlVdEtp=`u1G&7QwCb!Jw;79oDc?`1 zl4h&v!#H}W0mEJIaXp83DzU9uXD*JC#97l3OMGUWKRHL!inUR>xvM`^|i{0l&89!oQ zY#7b@b9^?R<%v`;s*ef^`0n=FRe)!A3`oz@2U@k z-#VSJ=k-a>{=4#n-PKDSB4`K7Xu#7?Q~)53Dcb;7Eregb0(oeud0M*af22 zy2pLbtO2^;PKZJ!$44SHN=Zs@M1vi--m~%>RkFA-(IpILTS`H6_hjTF>V7({2}4`s zJ%?5exI9QIETzZ;S5zY1>v}cGt3A-YwNBrZHS56TwYIi#1nwti{gb8asOmFOwL2-7 zKF6=@(sSSyN!m{ov%Ud|*=N@_txwr@QUxvq4_6$^g^*btl%atL{P8X(s{F8Oogc#! z#R=l^0;EqFO{zi8tc9+HlWI5{oN#V1KPy&j-PjtTN4@!4??%6^B}gM8qwsuDUUZ)34bbONW7}Pf)}M>&DCpjRCLBRV1vj3Y`|8 ze6~k_J;+RE$Ub$OIX|6oyVlCG674JlJ~d&sp%~C^oW2?p9VXV1%$Bz%1ucU@j=#tg zl_>IvJRtO|s@n0fSh399cwhO{{AHS0uwUJn5_;cfZ?}Um?`Fag8D1?HT$Q<#^Jm&- z{&GcJjoS#*peIVR-EH3uIc}uqRqOM=TYY)m_yf8~*Q`SOzL$99oVlVffTf(;zm;w8 z+B=~;jbtH1`1d)h(LXDo8st44#X@46F8|Vgwg{5xXUCIIA{9wM|70=Vm*F{~hgldI zc|>3C?FlbZZIAv-obvKwdB=Sv+?~*Kb<&ZN|EXl1dQ1A5zMS#dp~FlNzrobv;jJlU z>+s^;_cYI^82c&WY5Q-J6$91nhJl&>xPDOy2?od`7p-e`MmF-dmno?D22Mqq-#iFS z!pmjQwdIHVBo}G*tZ|HX#*591S9{s}9Qe>Xc9cs`Rg2ZKFMeNU`mXLKss}Tz!J;l$CD*)NBIsw+ee8Fq|+9b~@7# zvnDWHpY*>%-drL(FA!6dY57!fRav*4DTwp+bw-R!n;&e%Lx6_Z(Egg_n(z_2%tm*& zDBE;~0=KsNU)@HeY#1GoPjSN?4WWai3Bm`owfC*#I{L{k^s&@nSVB(w?6H9g?!6g0 zziz&t100lY;3Dr0ev)U`bhb;?QKrYyV+gOR`gl9+k#~x=dNt}05Cxntk5s(I3`gqgRDb70iAS!@W@8b#-KH4jh5j#U{EwV`I9 zWA2d;FR(Xzif|DxyGXyE<_O<9uHJ}<*Sng%xHZ@>@d*&L)i`UAKWrZitv;AV+L&de zpHXp92s?iV0*jhK6PVZ^jIYCz{jDfsR`n%aL%#SFO^!B`$^|QMvdC{r6SBEd(8y-! zha~fJ0#_a?aBmak>F!epli8dBz7=sR+()&#ka!2Pdm`R=ok5^^idSn6+C8#kZw%`} zX5)^GH?US|<3hF=l?BKOgN|R{N%aeM-pYYoJrx^3YjIZQm2zRMpqVC+%GA z_|12Xm;KSn^lev)LpQOU7Wc6(Jj^EF+oQ?9^4C2k8a7O%zn`f4oa7xtii<($x?XUk zF=p#3px{J4fibm+(^kAvmH8^vo7=qme${s~oYDHX((B&ZH&2vGC{r9{X7)G1)IWoIl@BAjSBB{)6(bbe)pI#o;gxvU3`>VAyGM z!#7zN%0ea@`q?k*gfPvxG(P!+xu^EdbtnH}?0&_1`fB-rH<(v8On=je{Jl zw$38fon2Q3XebGOL`gxJS3;qU;XDEaML(k-%Yz9Xvt9MK5Pn>_`9&2(LgkPK?Zxi% zVFPy-WA12V8P03~O;n8au9<$$Qm|88M)MP7xn}*K4y-wUgSagbq;RV!pw+P2gyZ~W z(lBtAm>n|fUI4bilIzY#6=fa?yg6|M7aFrGH>qF?^o7M z0sB=X0v0ACmZzt^@*JzZt|{@KDZNH6}_j#5ybO+0_8 zMw$Gqp=a@U6aTzAXaYZ4YBmv6rnTMSVdt0haUI#SR+>?uVtqw!{gjC~cdDzNB@hyb)?9wxWHj6^HP*f&>JeWG;w0)y{ zM5U#oBl_Hc3Y18ICgf$d&46s;6w_ncYtcz1W?G}k4BA8QUdODPhk5ubzWev-mjcB& zfUc`sW~V4wYTzAYnsj@OoZfqToGa(;=W&4-_ zR3fHSwvJsOxFDY1h+doaz;LWuQ?`amdnM@S{#}JgPvPdfRSr2h)B?iv9P6IXZ}q5o z+>qDXQuc)VqA@`u*E)2r67&f2hCh`Sj2tV{Tz^D^)lo5O+QUVh1FhAFT8ZgGQ~N=C zwHz^GDGpNJ-*%p4Ayes2xk5x^hj*osGB&js-Caff3ZZN&_(fk1D6?kzD+H(3LIb$w zTID^haa3<@ul9cfciV`Qux-oz%=wEE`^f;l_bJTj-aAo>_b$T?PWoDip;o67$7e_N z>xT1Mpqc%5kwc|lZjVFxqw1Yc30AzH)fb+8*6CK=^_MN5ZHh+F#(}^e83-C_rdFPb zRA1M^A3wVh8oGbDRKAWF4CxvtO6hTVM0_{H#VO*g{=eKwzm({kg?C6ckXH{n?v+?9 z9cAKD%0W(Dz@df8&p!H9q-yb#pwR=mv(IcPDGt*B@PO3kMPjjTpU}F0N(hE3COh>w z;%~IPx#7pD#mmG@u#$6jT{)!%u`iqxE#GY|uaf%oW$UMuNI$GM@Ob~P-&R3`@X*nH zUo5Tz=qn$0RdkbYex82{xc)D${d5xvG(yTG(8ut+qVHPUR~bKlyWua0^|TG#dS)qn zTcu>b7Spf&9I8lAzoZ>m0=fw$8eYbn#Hw&mkhzY(LxWu==4Sn#BJ4v*(nHl1i#mck=hR4QwsKe5?ybhyo6+MAM)wwvnri#lcNlq$&$oPt>3g@{qkuDDa<3ka$m&#fU291Y}$ENCuN( z2TSrQ@Jsr#Ds-`UdoR~8B{0p*H8no+i=NhZ1$7gx9-%$gBGFdu5VPB7EsCnQ5gDV$ zVx~5sDlQt)rQMo}!%f4s`kK)g8sbp_On|!ytk+xfss$cLQ zNlXpzsLP|qvr+svESe+y@4-OgIogSY?*fv@xQ5Uq&kmtTU<8m9UR&$v@fV zFW71d&aJ@6Qha=DOv1qx!g9kx2*JO5LoiM(Na#Wk1`rYdJH^mGL#EvqQeYUYM6R_3 z=q!J=vHVaF0Qov04x?>nU7LJ*E-)1Klk<7@J=Y}KPjz76lGqAhz0OeEDTcA5KAz4^ z&nbE1KF`Hyj2EzAk}&cGfHaFLuky|gwl!z&BIp`qp#J0C=?B_VVwVjD3nfKC@|@x1 zWG@r)&*Dhtwa>{~*&M5h#XH?I{tK*Qf>wcBeynG*sMX7_%cG)PAqf!Ga8TISg!JIy z>Z<3Yu913k{Xc$Zi_aO)H+`jY0kiKB!HgS*y+@a${YixqBJ2Jr9Xz4IuCsAxxE*`; z^}7{pr2320fHOYk`RFs@KmSdqX@Do@Vt)KrQ|I z^rdM*mo?ZJ>SXJWS;JN=Cj&ew>vE^Ua(1dJ9mY{orOcsG{yzKG3I}T{bUUOsJ-6}S zt`b@Uygfe6O|-txA`xk4e4%|HqES|uJO9C@{rs{Dg=l5JCg}&KH#Cp&p3hYX*(pjB z6t1kEPF%Jh5t)y2Tj=T>HMdGQ}rCc8=!#mwB_mr-37X;mce z()(Ok3JGA{G|EAj`!J;6iqfKg5y5-Mr$z{R*?af^C^s=KB6XL0)0?n2 zus%@n=)Xx|c9*6Oco=wEI3&gcYIv2oQ@>}UHE!K}ruU6HJ@F?*R zuU)LD(O@l5?%e{exlMShT>ZQPj3Yat`{fwizJ`8?X9i_=fN1t2fA}bVvdfgV ze#J?o9Hpf2*g`mZEEYx89$YB(ivF}OIo!2F?b!(V@S&_|4T@OBtlyZ&pfaMSTCRy3 zzz3a|8AhbklaViXzjb;3rP)dNF6Spt9Kj6+mCUaU+wEyZEkvh>v~)=HJbcWq41eSl($LCW-^Z zK0(&Dy|KIygbzE~stQrMaz!TBKM3X?%Q?jCiy9qlQv4ilAfGYP;D{3&J|-dAO4~He z#><_I!Lv}@V~0r9^3B3y-scMU zgYMO~EIeql=Lp4qlwZlWXQjD3;PdWzFO~IIBIMK3F!lFQISJs2;3JnyyByBQ>Gv_N zjF^08WmVURI_y_z&|@PrUu(DL!-8fj(G80jNnNNSXL;>C0|nA$)-eAEL?cm1`%-JO zD)0ZjvUBeU0}}ODH}uQyZ*?>Wri=LYTK}1gwNdWJH;q(>Y(2)pz&-!L~c*(836kt^qYH!9+`) zIln_Xf-+Ad9<)zmCsF2Q0^dy=cIdhKk5pWlWEfdY&u9NP!(i->Vx%1*c#C;WH`ULJ zPGOK5Q@k^|A|qn;YRP$V!#d=4hsE#M%*br8MBEV$Efqp@w)`|@1%r|%9p^B_Ghj(9 z)t3KLrMmv=CH+QNUy18umEMAr9@{j3R$F1sRJ*i~KTWH$CqE-|=!NY9ofokn1%=&O zoaeW%gRk;1aYO|5*aLQu{h+DYa+9xOV?g|!<5Hww^1eY^yr|hvtsk5LVDjStA)m6( z!Ds%Oy*)hx+>k|%^EQ{~?cc<~p6MnP=}E-v-U5h#P4}Iy7^{V*NbIL5;?^{}22Vid z#$3SCq|9xvPXIzM=%!)q3!?j~AffRw&!+G;>trtu+LgMpyrhv%EIAz*nUA*-&E{w8 zG^5ZolwsX@rD#+ZpPQk)YY6pa`$?}BfJ=4YtzfWuaMU(t-e!em9`K<+jXUOruHfI0 z9J&NDg2G!++5Hc?I;NGcpdC#RMH=SD7iQ!Cf0vHgFQP`)M(d$ zq{@U9xv|ka#$~~%ezNB&pC{x9=)KoAvP}@dVU%K!=#nE2*{;S)iSlf{zIi;Se2`y%zS?KPo@^i%*&fSTI$qHD$Ly$R~o%VZn~P* ziMzCgL8n@jPL!|j(?EaK{#fOvJVj_17LzOY!WJ&Vn29%6f4A)z8x{k6Jd&lkK#XSe z#cc%7_%cBgYv1ZrE;ijg9@so;VsXB2Yg5(wfBc1?s_h#?C!atAa`g)(BJ>rMUXv-5 z5#r%To#<#MJZv*(UR!p5at5b5flsD1G#?+l%)AQrT4`6B@Ycw`YLFo3{OiT~cfIjN zTAJ*zj}DdXPhtl`HI$Z`RyI#jgmtyi2qTvv z0S&0*{RIfbkqlo4!aZ%8pru-7;*S|Gn&%C|ocdsy~SDX5Ri#Z!z(MqsK?E zd0R8$N&{04Xe*;0SQ)iroBtyx)Yrl`qLxprYo@{0vsBT&{Y;6KEpcoh_=96JNI4dt>a1THUNo-pka8LS12oII- zkG9QXMgJNinIo-T91yxdOW}Q{Igm-U^DqVvKkEu}@i&sMP^tt<nOq2|tlgr)y*w4y!6(upUpSzdVQ9lBcA}`pzgnNmF9{B~Z*0166DHrK-Q{}F zOW^!+PulT@@5}G319EK)jUXp&4exFjDgEtwYBsC9!W&klXz|aaZ~r}F3%S0xBQ2<8 z^RPMMkLNL^fx_ct+^vjWM0f(dTMh$E2%ZSnzIGoE_9wI*B%6KovtLi3^7yGfoNdVA zw=Ufij^9$=vcf!@cz)fBkqae<2l8?E!sFl7={WBx)7wr|?=IVN+A#HX8fIGUC^I`) z#{mo_Iw`nj9r=}ig9HtKQEx4u3i6aaba*r{CLZQdHmabmtOrdn(FFx5U9Y_yNuqG~ z{=u}yd_yp%KZ?t`ZT`l)tEjd{b=PvrcE81b;0kUfDE)%e#LlWhqE{QK1W0-pn-hMWZrtOpt~ME68Xl!9ZnzU_5~Mm+2n2prn{ZG}iW)>D6@)){+Lq)l(8Bpgl<vedq;DV$;3AXo9Yy%#+VLx!$X?PKTUSK!5UqC1vUTOFX?>z*`J~-15hz+e?@a# zScNZzenR0&B;Cu{{$4gK1@nx5)CWg@bg*qBpH4T>rb?fB;A!}3v7ZdHBT5NNl2^*4 z?|Tdi!?Ya7c<=Ahm%UAhzp_rZOFFu=r^IpZ+XdhnkpY59f_=GH+Xn7j%F-LeNp?xa zgCh=$ROOP4#D4oYW&xvrS4&rc=X18IM$!+~J}GLhze4qMg#~;(n7Mn3?v>LC-3107 zge^CWcx1r_`wBa3wbKZ_!lnR(fnbNVnHZ~=X{5cO$O4Frr4BF(w3?y(p9J8}W^IP| zxGkCL-x4}~f;s&DH?|zRVOb$}eIVbud&LC|ZZDKHk|mhHH5Q8o;iQ7Yl0n#xVY*e*v^pcka`Mm6MT3_ShF?7pn~lU zLnMy&*T|F5n$gX)O|_X^LYhNil?Ss44u_8y$&vWFc!ZOVD>kZ%JeQ!IJV!yaz3J@V zii-GN*BLhw@D!_LlS4-%&8t3sCH3an6Pfr7fK`&a*Zk472^pN$QIvjm&{uSu-0*im zVj-aAAAM2Zljlq+{UnBBTPudIeEeRXQ>dd|8y*F>{2#ln`+NDGoLF~v^5 zIKZwo94^_!ob)cPDMIHF)qvOrXmB2sOK7(OC^8=A+^fR)i)gCc*t}`dfS2~X>+pU7 zn)cp7NqrP9?vVf>vohitK5bBszvTWgrNyg|y3qO+H9ewsJ~f|uFW8;J@I2jiJ?UPJ zgS(wd%x~1Xg^KCURYIlT^T*ZO3tcTsDeC>JDvQ3}+Oo+=D%iQihl9P|e{H?j5@ zoLGM>@&0KN&`vb{lv^!UjFiapAZ)P{XilZDlN3;grY&6RCw%kjWmprYY%uLoADYy9 zHSAOCAMwmhm%0CKA|*#Ly87%==ZY463k_2W+|s9m>Tp?_IVaasb&D;Z#t3#rw7s0* z${3ARP$5J;ToThGV-Kug0mtYll_jBXm90|}giO5XeDr(#@58B2h7-0S@t_?(d0)7$ zSNsouM&IMUDrTYSn!u2_St)|Au7RUePv|%8+>BdmW0F0s(-gWS ze(zS(5R&65?@YcsuY@yb3BZjk7vZ79z<^Dq9M8lko^vCf1_t9FBv@LXJcEg99^V^r> zIPD+%%3mF-GB_*D6Uy8wh29bgu@Blv?VsJ0d81&x$)X;M-eB_~ zEPmx9K`T9??xw8s>E1vu1$}RLyuxvleMcxqJzWs^#bIIw2niXoU*OPm-k00|M$h zjheso|;W)TC>%T0u}W?>JO%*KO1GXUx)%WQRv2)8FSSB}$R zg!@;nv9co@>l;UP){<0$Q%iw9I@C z_vG4nTK{bge`p9a+)0ngmtb={1{Sq6G>ZXY);*QcVXe1@U2n);BikA1V9& z63oYDoE%UC#Zy_Wz9xgq*pWrkPG>%@w}U$ zHr~c>m{C9})65jEuM=byfv+G)EOoR>ocQ~H75a@4Au8)d=KaO+U7+W1=*<%FnzQ}) zl8(?~xwpQ1Iwv~XQ?YRCkYir)?t)}N&G2Vl|}qnu(8jz;OXa@^iN|C18!dNIFZwPPZ{;uC9)L4NOw$SOkWTWcPHD!bWy&rHB;~?cO70kTmQG8z)ObB3 zSG8L=b55Nk_JM-SNB_cEI7>99)fR8N(0B0U%*uF8*9AM{%G0*6q35uEx9lkk3sRQnqD&}`++CTxz6lB`^Mqbz{6H8b;cC=KPjS8 zmTP;&noL_le^kXTHhOPImhi(IAPLws{gvw_Vn1O2N4`XVn4HKQ;kd2719h2wy7lWt z`nriahr26&?W!O!U3z+qSIaOiVK?aMamnQ^P_mp@d#N_7^(IQF|gr*#frSRE^;tW8gM#vL2`)KmRb;H;)(2P?gIM$v;RfsEy4 zBu#3Z%W^*24n?G`k5YQXJgIgsxQI7?Ry%gTNdGV^FiRY6(e5(U4Ks8ZX$zM8DKeo{v;|v7($urL` zxf}}g%2))ruXe&C!S2urqEl*>59;dVV{59xzoi@e5{0U}ZbNuSboEXuCk^AvhRa9P zlliLk2exybLXQCGnS-}$rpg%~tX}K^P9Jr_B@9d1cWL=U)HCjF{h}$4j?%B9=ejf} zzNG;R#Ee)Ej038a@47GW<${ywC^*rHP2}LOh70PE7q;NEYG9g{qgs^LSEf!36mPjTC4q!zo8tJ9j|d~J`#d%D8V@8 zm%6%2INv{><$0X*63%ZFl}#_)TbiEi*M4$fbh^XuV0w44{O_M0<)q`MslQtrUvdh* zrvsl$;^$Kq8nLgICb>e`a-!C@*}MGyzUp!ITw(uFOB>iW$e0;WdU>XDZEAPtmV(2o zpWLC_a=G`7)kSkZuqWUVJ4EZN6I4I9P6e7>F9`_e>i< zx8wteT5})+iEaCUwyOch__O5WWXkoMw~8|3$BqZL3oZp;G@{oCb>zn*wR~|r4N{?B z^s0^UYMn>*p`?l#Mn~SaJX%G43rptOQMVq-FJkr3`zU5A;WB-Wy!;5f946xu8gSGqI%2^Qod_*?7l>QV z&s_JEwPshfg|a6}_Qmrc7oLSI%}8Bn9Ta(nyJ`}i20Ug*O{4X^8ELgCaOoZ{fBF!f zW(kT>x>v+f6w5xk)#a&e!DDWZ`CtRMnJ*FUT#B?Oilw~cCrSf-5VPh5zuUlyS%Vq@ z&so($e942qXkK|-Qx!ZyjF&OmQEOmUYRhNZY=4)px1htHbV4-x#4cdD7WP)puq}zl z4)#97Fxob{RDSFAM&hRNLQP(*r_@=z9HX>X$XWR}(sW3+;@&&d!`*kWQ?u{vr)KnQN-hBbtPO0CDRz^12 zC1|C(E+$z1cDV4;yWw_Gag`=U>~FzP9i{ zi?`XhY3G14QP1^PshMpCb&m5UzWTt#jVvDo8|0Eue#u$TSaR=6G!cEpV-b3U6IM^%3_C-vDg))l-SyM@hwPTK}s7V)O}`^nb=^iL<7 zJj)*7UU1l^sqXG(M>INQJ-3 zV@0B1&6#G0MwkIn6cV*%+IBlcMxx+fTSX>3MJ279I857q-^5I&43L-f$k!_4@XI7gFP7laGnBNsJ|%>e7J@7Mf| zi8?-t8$3hX=tW8z^=hiwIR=(lLmOQc;jBiN!*0=9mnwdOzNdwPR{+(JEKUxA%b}(j z+)9$+REhep&r&9P7B4*s1P%~JA8S#N(kn;`;Z5e=1NGp#DsEN|NmD%a!D{)u1N3J-eG?8E1@|C(n_uZKR+~SrYR^=C0WI^y6SPwE zcecGWFX0z2Phu1jOmcrlIxuZ&Jb)1hgSryvhC1t9gxXW z2bFFIakt?GZo#-qw)G8l%76ckt?rKLc#V$iVtaGQQeGa@)XZLDW({>3P|QEK&oXCl zxc+L)VXjZ(yt_)HADXA;>;s7S+Wsh&IMvydAIvk70FGvVOdtHu&)hGFd7&C!6Vp!@ ze@6(E!7G#z*jl<+QMogNC@(dxE$|q|zd^m{%8ovtMg^uiog_`m?60j<;${jn1y(!t z2Uw3=iqqxH29~SEFqwz3ZmtdWkiazzZe=SBV_w1ko)l5=>`5CCDB;4CEBPZV)s3n<$XqQb&r~~B3uZ@E%r|G zs7?1wy=~@MO+T*nDvqb<=HXgUw1-!R0pfCY>En*!BX@H zbPx49QU+q&8>1&qqId+8+lqa4}^O+9mBX8W@$V+NI3oso&HLPC-bg;T(I@?c`SDY1cRUk1R(;2e%W3X-_`< zq?Z!@MQ{7Dv5re+V&*pEWJ<0`i_i7jGc7IuI<^*200_tujG$0({P%Rw zv60%soOdJB|Cj$>V{VE&zQV0^o0%7%Y)IBt^fCaz2{F12%tR%l=8k4X#|LK_Jg)U& z20}TLn?xoHCrR~5PQe#~?eg6OGYH;MAEEc`*{gzql)_uRmcxnem=)WbI5+%Xgvm>S z=JOQn*d9kVzf^iY4SjVyh6bWe9-d#V5&|$6cFFA5NNhy>YnfSq1c3U z2PA#<-tcti=7;O)6NMsq-vGdVYe7@z)hu|{yA*#Gd1M@eI;)cMtNWJ=O-}yYeI{CAUtyAh&`!IgmAxEotXR;OXAwXv=+U0TF6GmzpyR`v~t@38UU^rqR+VJs$H zeoj_>gj2{GRSosD%iI(~YNqoxukSxr<1TeFpVa3`ot74JZSY_I8|!v*1sAwtl}M(- zi(y9Bibcsl4krydJL$*gb?roeB?q1NUoZ4}$^dbc6m$R9P$D%3{7AMYLV zNl_-vpt-<|rsX7UvzcKwpje)X3xi=-rSQyI2f<@L)#vdoh^HY`>oaV@qf-SkU{^J+^h5(oGoJwhE^N&NDe|Q_WtBkK^uZRnc3&wt}_ZpvncQ( zf8C}{sb8#1os1-Gb-P1pU?z<7g#0V}wH1)I(nZ8Kgp^KLYe_>Y(fV*FGtCVxAgIQV zjDb*AVe<9-ozgCobda#Q;{lpD`=rd!c#7JY*FB}ko9H)5uxV*VA=d|ypHVhJl_L5h z<`CnNOnKcs#FZuwvG2f6VybApOC!HYMrSB!ROVTv9ZcV_mPJQ+XbfBkuQ(3;l1!9- zNF?#&f0%mjcevWHYj{Qt!rUT=I!ch6DA5fD5j_aeyC8ZmQ3fNDAj&8~LUe-YWk&C! z2BR~g6LoZ>jPkjk_j%vr`vdm=Vejia&huJpoof{bTH3@T5{61$vjj@;D*CYF)t*ay zSa~(5=BOfQGac>VE|33xw@tmNe=H|L{K)=Cbx^z-z&7Rw%wdQvi3yJ7fl}7ne}l7x z?Y4MC$!nC5bUaO>Z~2O@6UvhN*l<}DwK2FS+cdB@=a<^CK#hr<`d->ASUEY6gGf%* zma(7t=!|)uzU4oG8^9b#WC#WmjRK283F%2RSHUS*>{D7J`hE_%)96HonZRz=fQIL zR`Xzdf{(){(an%-e~I@#18&wn%X?pT(Hl40>j$27Zupn-MNe|6PEF;pa#>l;0@Z!Q z>^0%Lxq1|(S=Eh`={U0EZ{5@Qmy=Z66uybG%>gWav-*Z}=S3EYzOLnJIK7wrK@j1?{eFOA;y2CrTc&?^!=m!|JO3{GGa(HPw2qc@@RTeDauNGKov9pYHF@}`^8te@JN z-<2N~aJ??v+%tfS!9AnjMHdr_%X%XC;}dEJr_CLQ>{#q`xb$&frlT^aHe7G}w3_TU z;sMsF2IYdZGs&Lxz*7ce<%-t~t#l=%|0sIJ5^S6jtnh0*U9 zDfEeF?Rks;i+vx=1Da6{nGnDRWg;a656X55a_^(X=&)2B_%%zIX$q?2Ggrwe^_QF`8b!a6?)fP%rF1cV$Ak`r!&3U4 ztt$4p)-%7sX^%Cn^bBUGgNoK}t;omMxS7_7Qs<603{St;;=v8$C^rmmtJdstLiiZ@ zlbJZ#pt5X`OOV-lozHm$MH2!Rg3ABITw9P&0+KHvc156 z<@J)_8_@%@ZYz2){n`CQ&--trOvrb3=TNTcOiRj*kCqZsDzm$;&sN7yY|t#$z&?Nl zywR}jauPRS*gB?Qbbl#a5Y9n0>0q!c*m9y6#FH-u@jK zct6kjt6Ogzi(6PG=Vqk^m0)Rg9&x*l<5~p$rp{md!WlGZe#c@1zy+6e?CcPXtE`Wc zgmrQR_dSxcePErylOeuxkQb8ANolPhee~jjTATIhT$&4Sg>&nKS2++)R zN!ul#Daz%WDTB)KQh{J_G1E6ix>`bm9w{fP%KPRhWe-MzjfvL+)$8?wqFnVq%qyR= zZr$#V-2CRTA(H+u`+vOvB72GJLpG!rw^W9$%f1Ucy89EAc8vrr9J6M%H{kc0D4lO7 zC`00b&DOpdoX7QXjUAw)_BWUA*Hi8R#$VL@`{MCn64H^;xC5FqGZlYGjE9*o^AQ`1 zE6ucyVP_XL{qhHD`U?(obev2AmE6(uLdbW?PQta`;I-)L_sWg3V=^8r0i3Ro(liS+ zyXIeEGP9RtW@dm2TI=k>9YN^{V&xr$hw-PRs$vxh>M$+&5-PD1ayDhxW-Vomm%0Rh zmnWr&y^CMIi!^AjR?GBF>WL-4{(-W@n`!hDfO%SNa1##GF(2Ww{3)b_&(G@0=;)+9IvxLF7g3^a~i!6&YJv3BA+%K6nO9avTt(u(Wca51q)VxGU^jNW}MJSEPNeA0`9 zIu$r>BXn3C*&Jva6}HcIS4TLtgFWJda&oK+^Sz+YM7A1TY?@iu=#Mvys zX~t!(Agv4(XI{8?g?AYLmI<#W06S!;#5A|H@d+TsjVImFMEz^O>v4-as|zzfl0Peo7fc?Z0yM>6XQn)=GFjx%{M?)Y zm3oT2RzT{vWK7}0$1lQL3sz<-*VOrc)It&kXAbltL;+N)JT{#ui@@YlU-yT%X?9sq zN6=p5v`GX7#-#H1C;wvS&Tz8#GXx45*XPeCl@^&!WkbmGy}k|pZyN-r%HOxLk!Q-j z-%jwV^>oS<`#0S^Q#$>d&$F42fUP%`nr7%IpT&}|oT2AvvW55DOBu3%J^vVqfwzDX zo~6}aB;F)g1=L~%{D+4+%%;4T{Q>EJ?4IQJl4kTlRR z5%zxsZ&m~wF>-w8^+ohh_!>-L%&;)};2=tSIt(A#1!5=|r?vbz|%eFCZ+lsb7y^y^t5^XV@g+k@~@zz{PFDH{*idPZ_7t^Wb) zr4aDF@6DiK+n=)Wn&2>$T;NHOGb!Lll@CbJfg-zrT4g`SQvn)B@xgweptN#(#52T! zq`RN!WnZNjM;vQ7x2u|IPE^O^7bi{k-m%}rU#r!T`bOd%-1k-?LxH|Q4^%Lla*mLV zMykLq*au>4WG@e8T)hv>_k4D*WSo?8OqqGQBk0R(7O*2HtDLz7MAq}}qkH6VdE5wg zjsF79r~;6?_;@k=Q=w0n!hHSAJUuHi_!VPu0Y?Uw=+m3uPQG-jHfi3Iq#!$7_36{? z(P;nhdEfoYi8_!`=>A*hF7l?MAt&FUvz&Qc-=2zVfP0qf?D^BO(vk6>O}Iq0Ga1XT zucA!WN5r;mI0-$COzCI%2jemQI$_I%pxMJ8;RGe8;<8dXvVRE1A@2*}f8i-VnC!w@ zg!m53c}|ZK2vIH_O#dVgKR7G=?HapkcV=&iZECZvu68b z6kz|$LejE-Rx6u(DN-^$1$oxux4Y)Kv%git#WGl`2FP>;;^UYf)0+kQme90dSZCUv+$PpD2?`XR)I1eW`$u$p;1gA;c8R$tNV6!7q^07S5^We%}bk zL?9d~qRhr5Y~93y`F3Iq`fl(LzBQuEGce*P1O zB^L~u9W>kf0K{0HchX}{r!B#1e+n}X2J)$B0HgGPt$h1Vwrv8z6Z(OVh7J#uL!$z{ zS+=rXp+TD@tsWhg=N($zS`92Fwh{#5$2QDy>U6>Sm8N(hDH@ z%9{=NdQCbC7bf(opImAv``SHFq#-^{>o22sf4+b!YSAzuBbZH2w$q(l-nNypNZYJQ>>8FuU@|$IN)_xe~IF^{-VLnQO!g1Ra$Yc%JG- zd?PEvA^ImQyz5Y8swvyr#0-^5Z$4@N!)}rFB=?;@)S_0=tLz0?H&4;Z7X@LpPR^&t zB4oA?`W_$TvENl5fU})@dO38JX|ZyrylL1_9cbaG0%?5)$o3z3zPd#uq(Gl_)Tty{ zl3!Z%K*gxhWiK4;A2AY63W7M8)wyL5y2*?2m6leLQVuLJGQ?*=2>!?&B_Qe>p(>44 zUKH1J?rrnqfRp+k_u;TK`f|lgLo?5h+T!wr7F`M4*q{5Hcf%jTXE{l(ybF}JOp}@7 z*=KXMH(y@-Ps#F!n%JfD!&NsztFBL!7Vg`Rs7yw)Bv)BA$xuQ>!7E>Vtc5uNGOiu@ z146E^>~=@8x27A_eQHH31o25krU!}Y179>%Z1HLqkUT{BHfK%9V`YN|WbQ&<@*1DG>$rO3(+P6sa4&Dn{=!^C zPa`JiblIqQ()5rZa=1S}MqV^!GYlzJkTLn=@Z0RaA5(YH2}33qboKO4_`fiH%tP)s zDcFCEW2uX%)oyxh)dX8tPkvp9K)juub9xb!bNbY5!-~;N)inqE=_)?<=0dk+JCA|H z5bx%``GqS`^M2o^dDNsQ(j>Nh%T~eZGJ@*z2DkOBbXQyBlWsD-U<0`j=>*@a^+{7j zjWWti8Cx1%3bQs{JKbs&RXjIOEFp@Z=##FoASPRslmr2;{)LS$Ycn-icQ)a|Hy?X{ z)0;A-6NnGI`M_`V=LhEv3AQz&wM+yPfvp}&ol7LXo-&!^bU5#~uXrZC zXo_;HntF@O;5k6huf?`9eo z#Qa`@r*G@A-l$^BpBI|0Kf4&ErM$+pGU9u>$tRU^rA5SY$iBTt;v57`-OTRzF}2(d zLS=HXZ_7y!p%j_0D_RA^iO?T1@v>UbR3A;yXO9)()c*su*tZe^cpTA8VsBqXt3Q(` zseB(+<;#!CR)7%C`ly6xMgI-jnJS~Ie&41FhPKD*>$lVY{ByqH zwH5{2f)EURdtxO<7opH7z27`eS<36@!Q4S)mwXq?Tnh~9nlUUzT|`48_(|f z(#^VZlY6wqn|03am!&bNezs^F8uWQ2=QWRQKuGk_#7u3>VD-p?-qgXCb<_T6P{G>} zb-1OV@2G(KaXaN~e_`o&+Ye#VPycl77dU6y@iiKnhR1A3Eg4E7tBEWH34I44sk3%F zf=N_H8Bk>tE(II;DI84~oZuue12xoCx?^hlry{tO<Vm%*P%w|`snFLP-}pYXrGFcE9}AiQH=8*5d;BI%DYp`dVC|2%~I zGwAlE;8HvtP4_-e1!r{g`$L)OyE4>^r`7ZLcaHkOV=3+?uJao7rs2ccBSYI=KkuSY zEAj1Aiz8FAZPNzsX3oxm60?d3Xtvjeu{PdmuGTAIKC{g*N&3`pwxOY`t|Ea(n?ZUaL_%qtL_r223#V;(7 z{*FCf?*6}+$q0;$sIL=r5C#U2b-j_4|7STN(;2>_eLbOlk?9rF47B24mD_6r|4Z_y z6R{&II{;)`;eh%tvC8*`_!{`A_5M7hZ#!37lnXvuQzQLcI$W)3Wo6Z_U!+q-)lNdW z9o4koiZ`QW&U^bvF#K=Z^<3Kpj=+Ved6i}VKxm*FNIou1@r}q;J72Ct@CFpEaomjq z7&OklhszYv(D1;`xm7s$n^j;F;f>YR!>vAgo3n4=HiEKn*0i+#wf#nlBH4$+^!Tf z?={HZYMB|Bm#O{jO0tSg6#4|Tkax32N$=^Ib@7cz_^w-@TRiqS1T+I)GtdUeCt0}U z3_RU^Tv`nBAOI)diS@q3(Pu0yl#9u6>hI+ql^InHXV$DMV^vbaB(OoL43g^)zedDm zFT~))j#uxA85~K~%p>UXUWUE6-z2tX+pl*hqHDVtdZHjV-txF)>lD)CYEn{H-YR(M z3Q-I`tv*Fn+9Z^=ATX_pL81vlyeFl`rezNF1p`pdNl%M~p;H!ANQ1#o--nDp*9LV%?zBdKPpEOt@w{!GQ7_q+u9iM0auz<4~i}yjA zV}4CK-W~jP8O)2@uU|Yg?;Yy$NfUI{D5B2#+$`5E8vF}vKQUg$43|yoMcv<;R3{Ea zvB5)}+V_GF1k%5yA$@~W=RP4*o!o;*Nwn@wfLSW9@n9tJF}-TZvQv{w*Xi)cO>on0 z`S@Zr<&OB=XC*#6^UzE&$AS<88t&uM7=4JQGJ4@An2z~u*s;N@RP7D(mJ6-d7vL^OM_ zla?#?6eWpx!lNNXBc9p~)PKoB0ik2-d46%^GHlYeoohs=(bxN2p-)O8@GttEpGI1Wh z>_CPc{2;H-kphVsd5n5+%VWUo6TYKk;!DZTWd?$qFT@&k1a&ifsf_41I|Z8QN=^w> z)V>!3Te@j8lLo{E$6z4?JcLK;-o540#4pY;D;FhS>a^fyH9eYK(y}lU<+=Qo`6;d__&9Ct7(Y{dsmqG5)U`d85W;~p>Mg`t5;NpTKd9E&}J z)814YTq1qt2?lmHQ8}IQ+_ZjkuRK+Gw~C^;Xn?+Hkydh2L2XJ#azk+x{&hYRGou~B z5N=uf5+|g)In6%Iloi-&iZcKz|3L3?AY}s??IkTq08-(jUWEna$Kcpa_U47 z+3_0l+ENBXfvDp$Ww!s!Rr7!XcL$|qOn2FDHd ztoaSQOoUwkP^awHiPl2oOno34DZ}^1Bw<>&v3fg;BQe>2eROaBew6 z{}o;;+@e}`P3Du&%3`StC&j6L8uK$kVNA9$dhaGyjXtJ!w2O54ZOFcxTL?#(ET)B+ z*7#*`3n^nmZ4o)_v2*5Uw-uVPv2#C8O4`Q5X=r9scyic;PndJ%kZ>v-zOVi^(XM!Yuk8$Y7nxV=R*I{zY#nuL zJ}NX%%649U<7|nx2JMH=K<#bn12!_u1N@L-@S>o2oAr=?kDeL z{=IrUv=MPEL%T>=E%(2($Y=s!Us;|k`(Fd9XX2kedVFt_J`J%Wrd=8y5XpXWL~O+= zm(6`dRD=*h_Q&>}zKI(c7nd%+4;y+rh8DWI#MD*m`P(2B^H-LE_4DyO> z<%S##gAN!2bQnlWYc^N__}P(=skW$t@IOY&c6OQlz|DBM^OZTZOAq@b&537MszJ}L zm%a%%Sk%0Y9VE_<-j=ey+t)ms^p+QI{zMM(jlKL4pgc7Jo?QiW^#$EAaG6;GGL6b-n|JcPC8xGqw)yb4)x_Ga**cEnwg^#ilD+WQic0`XZ%N{twRE< z7L<^3b^h*;XT&iB8<;VsX5lEMPV(Pvl}9v^MqLpCr(FrRq_cj*FK|5nk%0CwL;?bE z`sZo1_Xz8!9YNwLU17)H_XYR^LG+(BsfbfOGv!#A5JhJi+Rpw!3|DP6Lgf#E#a zL7rFn8K;K@6#Q;}6XsRkazEicM^|L7MfK8>a&gn$+WK`%@noP$3MTh$u!sNjc4U3W zCu?aVnGYf9{T@xjBB|>^Ve5Mr^C;Lduk(=a=PZb{toMxm5mE$=2yp&#C$cH3S=E`F zif-1~$V2pRW=vK38U(hK1cqWw>t+%Tdqwe!j>sAl{s?=I=JKy!(Y4{UMD093cz)UB z&3mjzy9_2$X+C$*Znf2&c;x-(?=)r93|5&-BD{2pCMbf^tE>fv|3?3hd zMFox;tUDyq`ngKH0@}Yt%n{;I&Prz6Fvv!0S-Cz93uCrgk`+qSu~!>gXQM(jfL`D* zbQvaj|~0KlogA&Nzy@C1&g6 zVw!?_TX3715u!OBW0!{IsOsSg32e?j*2H$!_H&T}O&5!*L*ab}vH zT}T39>M?#A`!y~@i5ktIH4S^0ktMCUrXU1u?HRO!EP}x}%YEO>A$SLm-8l;$Pt*Fw z@3d3Znt6KpY58y1MQ$rgYsg#ubf+A}jr*m9|;Z+gPI~_P;V=a8-je z;{fFhrrs5T?4-#nkJ70(Ro|0g=h3vwMRHeNJdF1(Z;n!BGkt)UPblcO!uLR(5v1p_ zkakW$W+S_t*5mf;jnJDyQ-q2^evX?9_#7_#(B{Bas&3k$OUA9y=*G|O8>_=?FSZQ^dhgbz<(s}31`ymf7)KF6UNYa?n$ocQ{_)HN z=r}Pa7RqMh0m;ftZS6;!D>&hex>E}-xyw+4%q_S&ZD(Q=k#6Dd5d%=cV}{|h4U_DY zNh>9%+w-r!Bc`^7t}VlVCw&~~EKkSBd^Iy{*#IK}$74-(VTzD)*F~y+jg$NqA+fTW z#qcDO&EKU=~U3!+8MHI!m`fY_0Fbx>Ya~6Aq&*6TUlG%L_y`4Kc2d^ zq|U-_Fwpl;=D%d{RUcElmYT7#+i%{cRQr}5R`2cni zq$HI{djj1ug}oS^ShD&3f;s~pdK1=b2(xRj=x>-Bk*hsQmh=AKmZNjmax|D1pDoM- z4FK}ZB0AvPs|~sRpNpZ_)1las(eHJ!it`M7%W!FV(To0LA0U0GeRNwk1K=|raB4<~ zF=qK?0xhYcRxvLkg;T{-zS`g4ue&Pc}uwq6Cg~L?n~%qRij4B zDrsbRNKwdYQrtcWN|jc6|Fys&no@;vFTotp71=Zcg%Qc=h*v-Ue!cZbw0Y}Cx>?*V z;q9I2pDQVH;&gsLqz?P1VVu9WhF4RziyGla(6i#!dhwQY=h4HfyVM0jL4cpbUF3vL+={x`pUg7g>WHMQagx-d`*F3d0jBHp<*d1MKobr0SD^J5xrQ0osE#tK`mz&LKe`f~XPn_KR3K2-wELpo0B1cb?NlsJv)BxqG z; zjxSR)B^!A8HnLF7xO&m^oV_d%jBFiBzfYFI$~5{yVHS0dSVDb0czq1obaYg*n=p^q zJWsYkRR(_>_+A;5kFuEiUQ^Hl`Rlp>YtmL;VH8b=CBsA0xjD3AsW8K<(yp1JgeijC zsX$51H<92<7p+hS9)mU0Ux@BPeH^lbIw{UA19!5ZZ#%$wJiH)0Oc|CZdP0_!cIaCibeMg^bycI#%z zP$ac@*7HN1xVE{ccmj=UqZYgnX9e>T~GYm=(1w?vEhqzK#p`Q`QU4~4c3UlHgKe%_1L%Pl3;z?j*m**EYXsRT$g(REl$2f4_qOs5})0X+ja9*@U6!9t9fKT$hQZ%LN`p-`_%+<@l|p0q27iLlZq@D@&#cnXJ8I=yLv(> zuY&nX6xDdAjX8654@$4#Aa(!JA?E0jK%aH8JT^`J30#|{ZnQ=wr^&;jEV=%GMDF0T z`eg+4gkA2EvNeH)jj#IMkeUD{jrV1tOi$;)y3t%Wr>7UJ0AuMjx6$MZOcef z#iHOGew=KUfQB#QE^dT0R5iNmBV_U#^YhlVV_RJl*~v~Vr^G7X;POh^?ZL{9M7o2q znC0@Lo$Vb_>TLaYT&`m`UNvu%i}We3f7ODWwtu!f7q!mTKPztD%jZI8BQQ6kU8u7e z0n=ue0$+!H=qkPDoyP_l5ZfI25ScswBX7NYl(n^BV7&Nv8oA#B!;pLe)gQK4u$X|d93}*p z5(TtpEKU1W!M!*quvOBjAhxc|ImJ;qI0}gro%IQsp>lj~HNDWgd){yD>}GDYGwqsq zd2O(>Ys66o&@}V-%`~(=$v+SXL&$Cn&=0UJD9iw{N^l7`f-*xc4t5S6d&%V-8EghG3HvGE>w)_+o_io6>>t_vuaW{ z-UIIwp;uR7h1*mdZ0#sEgOIz3h3l}DXNknaYTJ)yEPtA zv(w83=p&0~&Kc!~)0CDLnw#tyn)@cJP}8w}2JCT~L-t>{l>eY^kEb<_W2WHSL=#5> z?=5FIGy8TeS-{U!6`?pAZ3HqUe7~`AsH>q?xptn0<>JN%pO*MX1xZQr5=%8 zx--iSF1xrC=0|v5z#^(T*sb%DwP3Y@Tae1)tC<1~ z=Rl0dUd}Hk**1?g$_r{`M)_c~h^u}uR*}JhET832@~ST>PHxUOpW+sF!8w01AZZCZ zc(8TgIeEg_3b}6B8=+@CoV>Xh&@9wG_9@@-x!i>$wcjps{fBtB$5*V8(^jPolFIB>@w7E`)lxOP6Y)<{iEsn?+LBT+0|2FUc-kVkT7tRO8GfKD?p3a|=NNWvAmzKY#()iog^ zR5{za*F0YCW>FXg|K+N&i_xe^vin17_ps8I6H*sE5;kvO=~gQ?C_d8+p=7IlK1}8H zmhnW&m-VZR`$X8;OX!`8;cNjDYUc0IPFYEzDIbpc-=w;f#kx8zl?g5VzVosw4|Y!Hw9fvnzgS2 z`?Z|JR^7txW<@ie(;K=u_AXz`w%Za&MMzJ1=+x=d-AWQGYz>P4i*uiQfK-}3r^Y7t zVp`u`Z`q&FJ{wkHhrT@dd@`7c|7~{%IC&g${WD@MlYaPprB|M+e5DZ*+^yvQXEh?a z`HmOaNC8woPXTJxgU~O^<3&Qu3XcKs`i+PZoa{l+9Rd1%$X+)m@D2OtFl{*dMXtbk zhv}|qoW9|h%5@I))_c}~C=lb;q(P_A@j5b;zJG?1G!bfO7j`Jszu zuYW8F1%VzVN$`iO()&b#W<4}v^`fy)!t3w#Y7dGYJqM{UJ9>OjYF+B!;hxU$AfqJ9s67&0b%$w z#bgfT9;19Z+y$$gTv}pg?_~ZMqzEZ&QVI@D^59~>w8dfay_cpn%Cq25{ z`JvH7m1hmX1Uz^+al>Z7;#7e}P(tb%_o_QmT(;QPTa)1XcS*ZrFO8Qye}5rjS{;ea zvj7anHp!MMt(uOZ%?5u4hZxZglL1b-R-{@i50|F54?Y-N*%u^aPX=UwH-aXm7Rn4t zm?E@TMsZXO3t!Z!lZtIDD+I=HYV_$r<76D#92QZp72EV_Y z?c~^NIvj5%E_1LvA_beNz|3gqec7p?4Wzp{ZU~GV9yiJR}f`YC&OsD7G?ijdM2^b5xPi&vRbo|XKUE3A6xqD~;>QwI8MceIZ8pv%SOpsU?9qj8L7 zc0ciGlC8;xL=cM>Gs}Y^t-1QYe@V?hZQKz`H(?i$y3L(-Za@6fTt8txqRHM9V^&A-~E{te?M zm$azNZXpixh0QA>=3SE@1Lb99ljTMg!488{PQTiIA)lrAy45zvwGZw*YLyN0bD~hZ ztF@I2l-)0`DP1QWrs?9$lHE^(p##eMS1Icnq+IS){o^4oX4wyt$aw{E{y8HTC*(i> zmV4<0gGcX909#V~I7iqcGkyGIcU12$w)hS4&I8U+h)nq^1L9<|wg&HgXA49Z0)K^J z$BvaC+4ti^*J4koS+_W@iq9Px9WSX_!}0YXO#ZrxWOkSj+~S-RcDuKKQ@$S@x?9x? zvxF$`*2jtT7t0A;T4Q>jOHGYfp5)R8FaQlWf)Bn4fS~|}W$D9-tUf~iazc6H*n@ro z%JVRliTc^D+n~0yASgR^$wfX7rDH=J?EFt*S7rC`2a=S(x2Kl3ld)BvwibPqjL&qI zKb%BVFDD$2ECUa~M_iiSy<#B~QIZ22tgM`rXO1D9l!qOH)A`|b*(wd_<-6KCib8n6 z91b~y)2ITT$Zcz;IfXotV=)K@d!8@GmS}{#J(N zM>QviZ)?KxDepAw@gRC@_8rxogkt}_aMpkePq6Fr#W%v_^sZ`Y*6#Z>{To6P&x+ zvmkatOqTvrg6pcl79(HB4!T%hKQCcos7odoxPAAF+j#<7$_+G+X|Vo2y#06X^Ljvf z%1~_qLA1EQ;QqtBK-@O-U2w`q{}1t7!(Eu)DdAI}e6x=JWHUNd#Z4UVpl1jx~#VUUF~?@=M#Wi7DOO0CEIXtp_+t zx^!?%mgAYkZ;jResfN09xt_?qp4gW4qM__BFy_W(71AChZay7dd#;5) zV(y^0JOcaP+hX!J?x6#ewdU=#=>%OcAwhDBlTI47_8w8VvFS;5@zY&>&b$!e=R6ud zjbB{OpJ@16IDzh|TAPhOds}8qLy-QZwZ%KZm*2#Fo+8zxyukDbebH>M_s*5VNN>7e z7R1o0vu`xh)NcY2%c<7mdmM21crrNdc4thbtVG8(p#KE^=Dk!*0eb_Sqem?{a0yB0eWL`Q?RMED zvMUl2l0W~js?2+8Nlne>Fa)TL1b?6&7F%KfbSJn~z}ETN2xneMEhj~I^@H2V6g`a) z_My_s%SE^U8HhDh_i32-(fbsEQ_h|p)Y%QvAqb!7wwb!OOvcXYfKZgL=z0gOt5~`` zJ*i}RHift&!sO$;R_~veRJ3A*o<}tQOBj88w;)0tk}mFgREghjTNDFT4$1pJ%IT6{ zz+vZ*Ptbo!4xdD*k?r1>-xtqdA9+E{Lz#cJya+oUa@&EguA>JcAwPo4i&g4RPA^tC zMrN;SU#>D@m>vBG`Rn|%+W!K)Vo(Sl1;M=pdPfJowa?867U{nj2BYKN5P&0R@B}dL zz2(J#;Vx~3|Hr{7|CMu3O7qe)ZyC1W#{)}x5qDatx!4CB5;4-lsVPqmB{7VO@b4J7 z;vm;iC#P?Io7@Rn(Si;em!L5Aiu;}T`m=x%k|)Q@ZG(XKIJsFq0+r^FiYT37(12#%w=6aO{bVC+z z*~OPf)?9pWW6_^8F$2-}d;>y9izMZnLw4;*`!8CA9{2v9OtCG}l02@(#Sp$Vx3^Hn z+A^ANZz!dgHjHrRLlA+|eCXG_hNKBk%07=X9Enk0W{a*7M|z99yyJ}*_U~7#{ldfP z6bq@l_8Di%r5q%7R_>DLJI?bxGg3=>2pC~pbQXjnKf8U`EJi~DY>$67-+#}(qE z$C7PYG7kB$U|9a_H;K^S85uq;@AwyR>2r^ zpG(@wrhz5oK6qomhK@BLwIFt>mvq}Mjd`3qu=N^vaUOb@z3MyRmh03~E~|qQNn`$( za8K;t+_uk!!TOaBK$`v3SI z%2$xlgE{sZ{8Z%1%pe#ZG(!>j9cydIjq?<8Tod3}Cv8!m_~XhOm4wcU)NnYEc>Y*q zp39hZwy z<9}s{Av!n4g5LKIE~5t687?(B*p&>nSAq@ewEJ|~Q)^%Uk+1Z^2IMGwz45<32rqb| z!o@4ut?X48Pkw*?8Q_U6Ysebj`e6Jt3JR?3VKe_uebXb+I=XXzh5{X{ z(_GhfjfIS^R}vB*9fh-I6Mz}vn(ajJWH8-$j-m-%tv;T8x$hke_9yHgwg=gSMj=aK zq`OChf@gWtM!#;7EiaO#y8PBCR6;_k($xJ+OJ-47(?g_{AT%L!Kp{Wn49Jc6Q~ zN+Ip^&GCExEm4N^u61t_KDvz-??HfT0fum!T6zx$AuC6)#*tC@gM9lX*U1d>3(l# z5P9K(YdwfY3kMac6B-N`OkR-g4BssX{R9Gz)M~=#eA0<34q;dl%u;q>d^7Qjz^D$ ztsX?#f5g3cu*9d+3{BX4jtH<zY*7&4VK?2VNH2wev|vNymsAHFqlZ|FeTGR2W{ZmI9lOyC z&TXTBvj#%0o=29V>apkgW#8R04F2j2(g)IozOkI0`TqdtKp4MkPyGto-;Js}_!dyl zF?c0Fv6zD{JZeo|eCTDSyE>IeoNi=kU$s|0lp1ski8)|W=jpje#a}N(<wrW zK@Ol@=^~_{x+02_7-~?(QNqx=gZBKxr{ctSv+@AfmptcctNHO42-6GHOK?7kFh{#m z1jP8^D5P>ZS0MM*;bc*m2m6Kilb>WwWr%#0wA|t(&L_~Uy7e@VC(yt_AxWCYQzlnQ zA14L(-^qN0RZ3RD$;1rQ)q5(udu4PVbb`-w((`szekF9?oEcrY920)$@_GXCfiE{# zgGwH66Xzz0Cmr&k-#I_ftk4Kjm6S<*g>Mf_GFI}Y$|7>E;Gpt2pOlmoDvxO0`#?=M zkW6wU{6HuzwmE9)K&Jqmq*#2fi!;Gp<-Wr29E~L6ab7*;#r+cl9xAD2sJy|$qM88O12W{#DXaIBoE&-JAOnCGgRu=&a0L!RT z!~qtGk_kaKQ4y>R5{O5ac z@QZxmjePWJKgFff1zvLw^d4e_fc(y2y2?DeRI7*H5lnLMhr2X_y|FqYIZ3=)s>V~ER zd-c&6h-2nx16FoF{_&4Hjpsi1x%PK|_jeB7s2_4<)fiyT1POKj$VWcnfHJJvvjR_> zK?g9%WE1IWOTaJf#smlZ{QLU)Jf33@nPh-(YzSaIAKti6_lf97QSWrSJzdw7neJ;` z|I5Gpi%+5eoN<6(KrKL-HjloM&PzIYr@nCn9`$Dxn>P5b|N1Zc@P|KafBL6?>V1Ls zVgd(k1|~7kW`JJE06uWE0sVtM6!G}9HL^zg0)ChPp^eeLVDbd|#L*6){NyJ+4f#k5 zt*?Lm>)xL~{pn9T&$J^GgCG6qM}2DweT&H+v@&>Z(7t&2%U|yNqon~2>WhnZ@|)~W zCV^+51Oh8w_^Ro-ccXO-wpq~?(Bxg9XV(YFfM_mA)3ilLjs3x!q&7ZneFCmEthOp) zuF#;Dj9#WX-&-&oO3K53fFJ-~s^ygz4CLIg3Jz(d=iK?SevFwNjd~&xkS{zg;0G~* zJRqgg00D^=^wof!mjaMSag-tOozv>KHiauzX%v1kX09-VW_MegUsPyptK~70ZMUg1Azq%ag|RQm7W!Gz?f>MYsDzo zw^uR_>(+yibsw}la+TWN*&-&!t?UVDz`?!-{qiL0hfu&^s+o5^-lPJ z4icn2y&%dH%^dBImINhfzkRLt;42N>002M$NklC zyx`*=jznB_@T>D)dq1LW=o{X5T>4MU9P|*pet2Tp{iMy4;waMND!CKy@yzrYT09|> zl#}F%GKo)9;F|o%9>+DFa*1D9rsOp52`A90q@By_8TBXVQvuQ_KS6$_KlDW^_XHv8 zwvwj8ymBSZlZFtKhx)m5I(G^fvH($cKN_&$UC;|LDp|85N%l&UV6k z!We~6vckOMI#K_VluLZl<4EOYkfV|u9-|z1;T_`Td&-2<=wDHivd=lEsboo9%2!yD zdoJk(y@=-`d3r33>HDA)e&oX^jKLm`dj`u9PF(fiIRcns@*rV2|_SQBB^saibkNbjX2vUtgb3a-ixA;6yDL zqjJGd@Q=?Ac|{n&pR@oQ!h_eCSb$H$0nMa=XAI8aP!VV4bKACU4sNIm0FPtX((OiB z!3!&$&<0phHtA_ofF8gaHD~gpApkvG&`Q$**a7}gQO7Yk@Xc?2)6i^yPs*bVz%)P< z5K4ODaPWYvsTZrNq-R?KXUQX1z#(NsT`BvspZ%=!NE|Z3F*)#;fBBaV?rB%bpgyE0 z4ck44XVspSd5#ifA|MWGhnuLz4g7s96;emHikg$CK#B&_`(;y zV6T4ltLJ1`&0E~xci(;9Poae@Xg?-$n8ZLnfL|PwGyv&e`lVm;RdVu^7M~vu;QxXb zyukZBeI(+cL*BQ%aSlwAOCiZ5z2_kv^-6_NTd#}a{9_ZeQc z@60CzopvQZ46?+GPdU^Rp7e5c)qeqDaBadrazj4+6h>Wxcj&VZ9kqJ$x?EFy5=JJ} z?eT+uf}sPbhL(fDN?MnV;;A3y@rP=-qYT~8$x&sy?BPA#1$9r6PC)6MP9@Cqd!+Js zL_#`}6XmFi3zbJ%Sk2cYO9>gMPQ(BQlMhj)DBY9vai>&XmO?5M5=oy@I0T5B>r>QA zA0@&(iUF9yD8q?rut2;fI`sKd7-w6Hq8>9~%5fk3vH> zFArKS2IWP}4#c6alDOw@jhC%3)Ih|ev+k^FAVW2vm0TzenZW~fP+q?lA@5M|09Aav zq>d2u4{)UQ0w|Ax8uU~MX^AI`-)o|UvWX&)Zb_fj1yGz&_(me$zZB{dVHB;&EdL59rqq4&zLYU_X+VUxvc>^XA6S*;Q1ydAH$waE$O5J6;(V1jx zNlA5smD+@9<>QVzYoDR6L{RxvHhk;WtL>US;!A0LTM5a$Fv_I;6+rpQfn1zMQbFBZ z9EXf>E-RHCKJ|;iSqy~Iagi^b*9kp^KQZV|)AD{Lo}x^A(lO9Wr;B2O2E39soiEbh z6MnY*=``7OB7u+-ep+q-cvinqdFBVGV-*a57wtfv$e#{N%QoWEVd?8=!*p2sI-Q>~ zxDP(VkMxliKhgqXSm|Sx6;MgN*c;6LYW9w^mzULZRykS01aQ#*!T}@zF|7R2?*JW~ zKmXu^4?2JaWTI}4+A^{MX!Z5=&Gk*_1kdmbjp)B=KucW2N1osTz5t`uj#X<^pP5j= zu_ql66q5n~oS+Gx7`vlBX$KHu)%N=9ueYu)*`G`K$3680{NcX()vr3RWM4B5UYS5(q9i5;2!|f|nPg!FAO7KiFz#t9 zKq~+~-W$Z>0Eg6xya0Gs?$I9DvuBTQlYmazkuTbYaPFgBf@V7X(|H|bp?XgL!cjJ| zgm3B)_YoI)xDWoQ6Lp9*$OMfBCN9`_&NcC@^s_e}jT5vo!qG;w6>W^{p8f1+d%lQ= zAG98z1wW+a8RGZ6=RME)2pK{P+QC~qS8VOL=bn3ff(Cko-*LwsK6wUBwt~7iD=s_9v6TGf)C)^mJjXr{~J|K5Jl~3|{r{F}T-%9y(u9RZx*ZI`?|d z*62C`ree(>OeIK00Mg$_PMkMYC7td8a}1Ihsrz8L^5OL~3fBN1b#w=~K6qC; zd`~W-jH*fNgL(Y)Pq*;nLHvodx+KuU73M?usxYqyVRF#tB}AEC5ncFbo;dyBC%z+5 zp9*O42mm||P*1q$pB4`4EYV@|4~u8_b+R>2xb3NCdqIBM;7bNG?52 zvaOK~0`G5;*3(teoYiv%D!fz(d)LwRTz^wWq5#Iuhi-h2K5`(eLRjsSfNbn5D6FIb zia&Aa6IA3yQf~(_=rr}mWkEbY(FDLlUm7MkpL~J{;hrJolV0GGvbba-3Lwpm%N$>k zOu&!^fXWA*xRAfoB@bc5af$F$9%_7lQ8c;3d2?e zv^AmR8ZEkW<}~TyJRl%<(=&z!kY7_3@1MH&y7=Z2MJWP)dB3m3hOr5LQh$oi45!kTLKhU(lmme#AvsfD_UZ$9*``W$vjCJv&$$P!-Q34SOOfR2hcj=W(oFX}}aR;SqlfFm4wam_mco`!~oye>>^zz>Ge z;EhQgGqa4}<*#Mm3A%4gkzN`6)eAJt^puT8{FgZe6@*zu9+mS)E zE&YXf(5Jr;j~|Y3%3zWv z-WT8c*0+2+2sRCfXEKHf2Yx)eIG$trcsvV)kv4Og1fJ;Lqb9KvvrRuAz#sF&432GBqv2K0WfK{TrP zo}SS?WoW>U`Z~!Hki|?b19N>C#S`h-Cl5%{CtkEDk3l@N73>+4mrcAHVBZT-{&-<3 z>xn(ho(nR2l3(LMIAl?0E%;idw?7VVlv<->b|0@P3u?#KqG;(0|E@F%H z4z%<_SD}hiI%ol0JzDqvQdT}PD2*Z^>>iUcl*wJp0MO}pKiSB(>I{FI$((4QpN|RH6 z@`;QDn3d^U-(Nr~{5$btSrC~d~X4*7`kDtY;={Lp9UKQKYxLrx-Aq2clL0rh+2$`%wS z3802N_XMbadN^X!^PWDvo3@r*c?bEH8|5vFAGVgDb;0Dxl#ah#pw+wimt3mHSz+o+3|Pd0 z*V*4+%Iz}uz7HdaRec6|>)(ZNF}Ml;sg^-|g^O!w@k`n=;XAI=1Gh*+eg<3&;vyY> z3b;y2Mq?S{34#T(BqyonLED((z4dgQwRB>PSvX>F$;DA+KR)XVLwUB$XQQUimv-}}G$|ah1jlA>)zy?5K+qP|9Hh_%2 zLb~8Roj-~oFJK6DTL3oTm3)8))P}4ipwF|P9T3Gt3m}#idiX$_Ao7rp zJdvOM%vjrJ@`3uYVhX55R;=9Phy3A#Yr=vCbXd8?;8?mI05Q@>9?IvM^u*ziEfYQT zDd^sN@4X&Rx^NisW6w0|^OOsZ0|NsdO?lKC7v;o#ycft5b&YhSjWX!d)E6Ucv^$eR zXiPvG7j=qz@A{uvrN?)Wu(Elhe-JhWY|M9E7CqK_3 zlP^p>F_{LahX$G$^b=I{fBxrx-pggurN6)5%MY4q`EVVwp{&eh5_qOaAbIOujN0fu z2+-q|qSq#4*<|61dkx%qO*)`a-1I%$?f6aav0b14yo{^?fEdi`p%;iO^5ApF>N!_L zh$w@7_IjgEO8_8}_m|Ayd73%_1kPIb*D<^(4jcrC0X!v>3VJ~jsz_4$AezBAJSaT_ zYaeXuufGt)i!Kv7qUF5EKc`b#SjXeXCm8nmBl1375aI9!-at;W6H6@woM$~vLE&{; z+2e&)D_&~_wrT|^;f;OrGfZF4FHc=lDZrS73q9JE`~+bufHnjJQa9Sg#i(%N znPhRWDwR&+<>Dh zo&%^W#wRzVKHxnW>yo0&=>txS{F>l^M^yANiYVL5&OdTOwn@3vP(*2S^3boDB+$QF z*I3bt1bj$ZE2EgsiW0R^A6iCT^6smdOdS>X!C^+j8Su|LN&o04{v67u{a`}eDJQZdj%%mxyea5ubuplcK@P-u zpG7$L)z^`RK_PJr@FJaG=uetn4A9-*-|rI#;cCi5Bdzek_Ml)q2B!H4`?=g zUgK)i+SwYx>OB)7fbh?J<}=2MH`)z6%WPSoKan2bOxaALVEsPqLeQ?CkX3(H?9o=i z(dW_7LFNCgZ+)xt5xl@7F4`kqmk8sTVnrR}dThr)RUiJL0c}nYz^XkHV(f)yg&&Lh z^fl7(qwOM(7nuFYB=8KBz#PWA;C1tnDSwg=4}P+`te1@*I3F^ja?Id=`vW%p#ar$A z%dfH0OJ1yjH7n($*9T46%Z@Dd;VNj=h2g$N(TYu~z{{G{&>;?kZMv#)HFH*{l~2c> zdD+TS1_>yGkK4I~jQH_EH7^6G`d(-aSUsGNfoL!a2a!OVmn@f+cwP8^vYyRB6W-jh zl7~|r%4`{65D!>W8T@b@l?P)rIxo%ZFF=yiTk_HhYOUnpd!uJ{#G7c8bf!9Is{uw} zD{;Egs&82`^eG2cUR^DlawI=cyBv8O6gogve!z>%h!2AJlkq;&IaF@z+`~vFJ;LKxp;XP z4|G>4pmO)*p6E(SUIqziv$^&nShNTW9uPG3#fg8a<_gmam%S}i9;>v}QSx&{3QN#aSPg?F^?Q1^AC(8c3Qu^XTwUuq zNiZ}h~O+owDYGiOw{FQWqLs=6rKu8QPCjAXsWQD%c(ckoJK+~To@7HiZ5|!=p z(Y=a`mH&i6h>#b4;8_Wv>FE{jaq<)o+hsjZuBE|5lkRKPzcrpxwBmuo&PM|3la+dv z32m=0%m^lPtuQ?b;sx3&2RX6TgZ`rxaF>0FX9rrmE2uYhPW)s7MRe3YiRKN20NM&8 z*y~Rg#Y2DX~3=aqc`W&{xo63jJ5;Z@+I4I@UXQ}XQe8s{1TIlWYM6? zebIN;skhT3W#W=targB4wBzIL2|IdTtHL6l@Q9Bz#D$BvxW^|x(xmBBheaL+ThPHV z=wi^wz>onW15^fmg!AK?AGFAa&!7%)!Kx4gUBF`u;DY}sEBxRk?lb?~5RbbOd46~<08;P`Px$d{M0xN`-AK!` zM>^;O+yQ;q31A|F>yUA}9iWE{u;LHTq=6^sv+55mR#Vw-z%}UsXxu|548>6&_ydrV z7dpWs0Gm~Jc;b9`CM8IVL-x1bcAL{CJwGN@sDFS;%8ehq0bF^AhdI1Kq= z!+~@FW!i+aIG%CZv%kOJCv})KVda~0&{&{N-~qnq`_bmK1rq^pe)F3>4do(lo}rK% z^dmjIh8!uIcH>kCGFJa$5Cg!=Qpgh1#f(V-s-3b@!`_T zi3~bkEpcKWVtP>Zq$U7JgJcD29L@_&KhAW=={#}$(VLez)M|ALFm(w)PvHP3fC9Am zQ6?acXuS~F&*~%Yg7^`D^`8fjM``?zu50wexyK(OQ$B!}v*ao-N&uoSXR~4o8lgNU z4W$0;hn&lzy3-WMN)Ss$7Ik@>9zS4v_dH^~-96T^c#Gm?A+|yEyhv5f!4L!q;~qex zTYw6a8?XiH0Hgq1m@JVMcdsjZw)r4XpQ6r-2RP4aKQ{oDNrLGi`I1S!X3`x=sT|VN z9yphy?qv;r4iuFHD(l4q69Ep^sgvk?yU8aH0LwwLcySt{m8X4Fmd?7LYj4<1gv`Zv zI_gP#BU3NK11jm_8ecAb>upb1D$e=Py{kn)Pe0G3FqY>_;tK%pGE*3R30YE)0&-V9 zy)U+^E~*FZir&9M<&WgJ?N_vq4VdH28vfwzk%8^BT@HF(jrH#bG9&U6Ps6-i4M`u}vh7%YV!^cnobfR8~?+^5qq7>hv?X~L0@AA@RC zF#$0#cw*4SppU^BgDMXG?pmjE)P9hfXZWuCTS^_#&oj+IgNfFsk8D{aU% z1O0H^N56=$bNSV2$wwO!jt}r-zc;{+{jiZf=y4w|;=+%?J@L_>BQ3P)zw{p_gV-9t zWCfrTz{JD^vY_wMC#ff3pD=(he6i=3X9c;Smd#4Nl<-iLdi9OAnkq%wdmx<$<;dvl!l#P$Wr@lNxluv!w4ggRD zJVAqYWp$Q)$hdDy4I7!WQcL@D4>+UFK|kb7xyS~-m{g!FWCWl`rlg~63rF2P zp_ScNzxvhA1F~R+m3{Kak%jb!q8dw(^ z^)Z?nv5_;w*4)@?i{~x3dJP^+dQsFgX_i=N1Rrd4_OwkDG~m~ZqoF}(zU$#HNyoNE zD!h%gE!NgJUuTUs>%*$^=Ib>0)Fi`He%6M@PTEXaU_m2q)?pQ)zZ#4?`d|=FEj3t~ z3rkWFR#$Gej>c}Aul@aecnbpXvr3*5f9%z-k(`(}K-GO(AaG=ASU6mJ58D=4qyCj= zMO7eZq&#Z>bNFt1VBj9RX5n>qMe8!*oim~XFU-d3j84(y9QB;Q3fK_91E!yu1z5=9 ze^ZMvv0kD|U!QBxUfo%n$+HJZtMy`HT6H{j@~};e4cf|Oeb&*^DNIwcQ)5H6bN{2Z zP=n_FrR~Wr}1gcB)>pXuot>uB$`RlRGitEorAaq)@NO8Tw(;B0xq#`C9bOdxb}Hm`PQw)w4+ zZ)=M+=QPL>cyu*=^$#8LqrRa2vn(iz)v z=mE`v#G^l5l8YWl<=P3G6s?kMN7PA%wMLSJxKOGohE5Bp}(+*L)&E9&%^$z{Bv8-t66xi3-MD6mJZsZ9Z|rUhBw1UtmR(K{k6~0jB59e80extfHGD+>F0oY0Cdz7AK-#| zGi|{Bcgm(-T(bhtsx>ak4Ve%|`INYMa4LGN+*a-kA z^BnR{fFJ0`HAl#O=tCcJYv}+lz%%Ontg!OD(~sbRi4NodO=O7-uq%KJD2wMARej{f zyMpwbch7!qctoul8wR{D0F1x-tH0_Kd!)lsJ8i;*3LqV|@OQua-Toeef7*e1v-*#0 zkslWHX;M^25InF8WCLl=0fvzSgxlkR|PdDmjyA$OiZS*n1Bc&93vl`Y2w$1L&_ChW@MN%?NQBM4QaX#a7kPakJtT;$-h~xAqiID_JU>k6%5hn^@J5Z3| z18gU@Bgv*3#j$R{(f$ud6e0Tuf?;ML&!5J_B z5X;9MToq<6P>a>g~d|0pKCfQ#!kZ1g#b$)1kZ9*yj zeiqZfFCE*}p>ABW&={M$cE$sHABkZ;keU~=zWB%LX zGuofQzPNC3!D5eDK-^o9uWRay?|b0?L2!q6Rz8Y?8kq?#g%QHnXs8ERPQ;Dz zOYz#7uK`d8OBwndnByZ~grNY~dB7l4DEMZ446myI!ZsEP3QE-;=-;w4*7dNEY3<`) zs&RtM+B3g*D5*@zk=K>f#u!~5wq|i<^Z_O9d)s1$DTO2{lVyK z-3Co%_y7b;)2O#@KCTU3ieqP9jN7BPV%{H17h&srV(-p_v3v88=&bExuJArErxxdz zqN%(mEH-JgW(QOA*uf6UV*G#Z-dd1HGW3KB@YreF&2-Dz+h&hjmZ zw%E60U+mj{C_0)ppdcf|g%^Updh)$q#7t#$>P8&D@OE^s-x!bXdm0873`K^m&UfDL zf?7U|q2B-(6RO#l0eAjF`-<~O(m02l$0e=v(reD&h2SD67v~nAi?UqYyI56HV!R6? z(;Iy5LQfDQh|q>qiJc2I4;NCNU4Z8z$~>0m**F()3E%}I*5P8?MY`a{IO}w=Xd46p z9!l-Jw|?7GUA}SFE91a;L4n~C5;+&+F5GkR>2vF}J!|2cQ$SiJt@GM@?W1LuXeTQu zS1RrHQPMc)iZoVo>%!l>9vQN%ynnBArpvSG95>6h9>-ST_VJH@{ObUg&ofV+vt6D& zj5m1gybeZ2Ck3piCT=jT;KjKvlfra6ckV3voeLr@M`n^Xz+QV8 zvV7;P?}fp6Z(jsJ=}gV{;F|@@v7eS9;8#May}E7jeeqpX>Mam;d<03pKfZt27R#5O zs`$G#n1EMcXRvIKy#Dm3KOKMRFa4#`R?Bo;El2Qc{nl%r@;&#NZS(9N>w3T!bSuHN zZ~yF{{j>5+#-DRZHE=i5+-BZEXHmUL4)MJc?`vs}TwJ~C{h`K7;%6x-_9 zn%}mY-g;!Xs)C>Iv16|Gf%C>RzK=31oKOA+3Fu`gCBw)x)gjwa9k+J9MuG1I3Ve6~ z-gk;M(=snHFqun!)b1_#mGl%RKOh0@8;+D_{>LVdvm;X^>}>o?O%`ELpP%V>E$k@@r{jb(MVlNyp{7#&WyyR zYi9uPH;{7n@_|v62gwmfQ?y1`^L)%NvS=*8nuP;xSB18YdN*y}6&-VI=>c%7*x=iE zo)hR9SITqwN89~ymHT@imX>-L3B`-N3lV?x_#r3FvQEt?Mob0H3vW$Y>{K%7?JN z34jd^7XXsN6KOU#xf0_Oc*(`wK&kk0Sya>)DZ(O*jQN`BID7N0IDP%K_{hW0MMo!6 zTYw!6j`clV+;_&Mo0nq8$oXjB+8Ol=Z3r5XUZ5#qM{2c`FLXdMw}@Kc?W^(TiDQN7 zv3Y$Ty%Zck3&2Vv+6b+3Ps!Op{#|_sqKyxBXL~2(A@FHL!igGPdp~Jhd{^jOe&D#f zf3P$NTELLwQ(2Ih*Z3S0hqWM2+YAu2e8>I9@Z~sh{`I(U=~PTCjK&C(@mZwOwJ?k3 z0>@-^U5vjonYqe5&^cc%9GF?8=!FO+vDPu^YO(S7vk>d&G^LQ zKO9~4eMRei9yRe=r1-Z+uf$7leJ(CuKNVd7!i|_k437@STPI$RtIUJtrxxRp?N0%k zS=_<=aW{Z^#!;;jEf|(z09?OyKF(e^6>a?3wzQx`WN_?uoH+efjLqJT%`mZQmYM;w>>bNIY^!VMokWAA z70<_*cr?JIX-E3h+19~(i8LQD+|t|?>pQkYD|yf}fmTZ~Jb5e5T{{6&W(FzsXj~k5 zGZxz?KTR{KSuFJq&kCa=^DEdpjtnT?d;o8qi=$AD6%Pb~Z1cY{YCcqs48z4G7v zK2fI&pnPVfF19>e(78xgt=2`Gk{m&Y;6<=3h<73GBHMcxyq0A?4;N`J!dzr|c0up$FpuhBykOFF9tPv8+wZl{l$2_#EJzkqTfS*+v&@aZ{@4F{eDaf@{D%DI zHJ#}NfgT3yO*)i_dw+Znf97X?rbs=NxGL$l3<0#N=f2~<^R~-!vwY9ip)GuR!M8}` z3<5W$r>n!KkTz#fWj;eP7_`OCU|H6kj`uP?+w9_seTS+w3@b+%Ndt!};c6ec5KmI@^|U)z9x& z-dfxm1^!Q`z=sOp1qOoP;;4>gYkARFm=}{!DCxqsI8;OAs@gY*2*EMZJr>bA%{qsa z`OL+WvAchF?Af)q0Qe=qo#lwpG!=i>EKM=^DukM`cyn5~^=;a`yosS2&M zPHAf$hf?4jTX)1`hrb`N2~6B-~iLX*wmzwMww*|1xU7Gb@uwWG@2tmt*VZ zP0`kZx;wz&`sDR^2`TFk>e){m`Mx-`^Wm5qn)SzO$WCe`0 zQt}1tahH&EH`KJm(sV<#H+Drg{Z;|oZn$OF65}+F#>2%sCjsauqhmu$?AdoX+M74h zJ`*jY3D6M-4;+aX-~6pOi3GBzb93xKg%|-PX|xYyfntA2F4V50Z%cf9>)Gz^;NC;= zEN1rr)PGoL)Y zn}OEd`vK4!x^u{*4vDD}=y@0s6JrxGJ~GAlH^c$@KZc6-@k_^%S0m{|J3_}~ws46F zQ`t#@aYZHj^tlu9>Kk7I-`2)6Py9d(Y}!+p6*qQWi!ZKMna%>&V0yQP>N)Wh^BuL<;4 z75whZt$3TVWyn1J#K(|yswVG3iM?~tVtMr7Q*q-is+kwxj=uIDKs@ElLkEC$1AYlq ziLZG0hXycTDiYieF2ACd-ufSypzjn zDL7`d1(p&+2xDdPY>W@H2Q3;T0^%C#)AVCy7RFLrKa%$!WNaE3hqvR>rOWjDqw)MR zKa7S4%qsjw$gC;5RsgI=7jDHD-}rTae0@B{yR-=a?{zKq^Xr?}!9>FQuXXVLtKDPX z(jds%gxNuF_g2R1VaEHb@!GK$VZ3aHk%8x98tuG>TgcRNuE92g4Eavz(Vpp7nUY>h zG0uL-Oy_sf+uxqATz^2pdG5T(gphPCsFU_#9LR-r^?b{8->L5vbj$SnQTeoNPS=XmO{pq6CE|4^@64!i}ZS(ztKXoK1x_5SQ@Bgp=aFjGf3T(H?FCgH<>CdDL1u_$8U-|eD%L-nTf$OMKU$}BMwr<)Q z16y~~u9dhlcp+Xn^_92-0NOsVhXqV$+`4`RDJOKKZ?k|B)uxxxIv%mvz*W0rlMgq_sgWVOR^$RV|TvYzgdP-@Go~y!aaP=>l^Y zzzV$=)%~Zy8h%LZrPBBrRLd{iJVQC7@#y}i;?S0dqaD)?rf0PDt&6d}!}051xgM9V zU5tZUj{p+8i)8uc@U1wF5L2wHss@JBbcG8}JTd_68-zZAQ+ABbIBSX{245wWa9g}DVos;6aB9NGDic=^r$ z6>pt;8J_|;B4XYz!>mxPU2SiEN})3gI^Il~IW++G=K7xKUAH${Yhd6okKK-K8LfdO z%8WXI7;y{O`!lUM>X~;eq!uFu!LPUOw~i-4d`1{4#WDP zOrOuQ9NUrkymqV&Nzcre{jki8%d);(=cHNo!!~3)Y=dpI?VdBf`s}sAG^Y37vJ6?K z*O@2jV7;c#er7(;)rWbVXVTK(yJX1rSVvx)FVkgPN@D)_Eb|)YeRUe^ux;7)`^{PF zF;Dg(%U(OLQQ&)x0>Aww{ciWn-&=qwpFCblJ~Aw7i^Pc+RJ+jPxXo`2AgV~OSX}c8 zBIbfCivzA(w=c!jI~P#{-X5Db^z*g2XZMS9Gy#N5_t~Wh)PqmO#T#ehz@Z~?u>W9O zIe(hPJ|7mA$9zJtwUtZDk22pbrP=ONz5+m~2WU1Zc?09tqiSx6s<*p5P@=i01l}JT z4*zNE?LYg&N}m33rY~YeTf6QTmZh%kGAF_L9UfX zbf6Xhr%LY~}&(k|_oX-Z72jKrx+uf>(C=VJTjopEIA z_r;Pnfql>e-spZi)dF!n> zfn>e2dtE$q@KJmkz<7YB^*Ca4j@OjA))f1T1d|3*6p$+D0=_~YO;6~z>nO-+{BY<_^pw&|H{->2P86LJVG=#81WkIM{cDoV@SM;#%^JPY%<5+JT>m6^-U8 zLwo%xJlxkd(l@kBXbRsCzX52L_z#-#Ki0QziJp!fII3eGX0%Xh<+_o-0fxhpJ|39& zWh*=91>YR==z$;jh?ap;D8{rne3S|1J8DCC&uN_t1ba=TXtc1WG%ET#Y5$qa@5K2V zr{anAI9Y_zRaxNJKvRt1F&J$30?=$C^ zXH}U!%NUTMkPHIznAUs-&!+RR?v(y3g;zpq+m#TiPHLG3^Lwm?Z=V9vHffx>jLY%P zg|cU9o9SIR=h$aHpI66a8TtHv=Pa)}pXDTwbgos`ZF=k0`I&aM30}?P920oT;K}l` zZ&{{!^Qdl*^<|%O?q&P)oawU-I^L4`WSz!Yr)79;uug;b+HKpHyf>}w)D}47$_0Ni zpJ&sV-|Os4o=xwyX)-R;X5K8b`gz8AHl2AgU$#GKU>eIeWSQBPjLWclEPs`kL1IEHnF9T~|KOc4V5Q zxz9~+nVGNp+Oo3^+1~75ruXb&*%_+)Y5FWD^O`QN^V^VZw5+wTMuG1&3RHeIK8#-R z4HdAv$Sw<2z?)JvJ`ud_02HP83!wZO7T!wgZM#nK3XT&Dvj|t>$mfNB1j^v2 zgCa`LN?9ua)8%>XzJUQU6Z{7)OzOVwOK2brjobu4Ux#DsC=L(6_yL$%p1_&cu^1X3 z!mfF;C?qTGwhs-^VTF$+rtkp8Q`m2Rfki}DeB|)+(Y4Z#eLLVCCw@!X?gMVxn^FCq zo{4Q;o8y^>pNaqd(yzsfM}L!@y0CHD{|p~!RSO+yXzzG(B|BsVTkjgc*D?~{MYSgA zvuf-50Vp6JCWN1C?e(R-&e`0rTRUWjyLgC~Zd^l<3f=F~yTln^Lf$#Qq%C=ja-axh zJm|N~fal#T^8czoh$rBdfbIM zLrrDtnkMG${QP9uDWC_N@VSM>7@ioRJ7|?Mq+byqfAmM9 zmG}kP>39h;7de(V9INIw-U`5{&J7)t!hnO7c z$;r_en!X;r^)i*zDw)C5U?}d64B-e6wL0o`j&8)kUAF>yO0LC|y zi*7H64wH*by)GUOu1vxkeET&N~k zQ9`0EuimBgw5`J~)0!?NB-Qu1c+2N5pnNWHa=|UIPW5B^;({(0jRGyxd1N`(VH;eu zrG(yl%gu#dF6eB3mTi8e{FbeBG8c&Eu|3u250a+ei)AIPl5X}f$2@7D{mwL=4Y_d6 zvt?CZXTEQB&hkuW83_cu_d3h;-n1V7_TT>7;-Ne3&t>qa>iu8-%YP})O`CnoYaMUt zaa*$uwM#tIHqkS?cI0lQWu6R~zxpgqtY5~{&;8ub6$fGI>@D91^Jkm0JRNfBQQP+* z%g~FsUgfL%nCYwQ^x8c6%=+`W*VT2It~ykwyI;Gi>&|jbmvv^IY_okdWIfp?<1)Wz zL$=H7Y=25+jmx^TuKecstU6?Qp0j?Rn?L*Ky>+a9ZhYpqJs$T9*}v*G`<M6dkuT-p6JJ6n_I}$vXB=u;e#qL1;!Km zP`rHn#Tc0xi{~DEJ~p+mWysBQ071M$qk=sPAXBQ{gf8r&>Z06DuqBux=ZS^Mc6y^S>L^h9t6$b*yw)x2 z$c=W>{uTCPZ@>;(xiy~6$`;{E02?LZN}F5RPV9j_kHo>94;IH@OKeX!i*5BhPU>#4 z71$(T?FbU?o{mj?)C3(3u^X@0Tl@AzV@rM9zIh`S#%JQ-{zv1PgTEKZ!S)_gmrzMY zQik-bWp4wj_Xnbde^3`(g&HeT-;)7SRlthDPm8^bt?`m@>?;{oRF$Q;MG=QAmUyM@mMfTD!pFc8rUuKns9!?u8Z=94+DTn%bLeJmoITA2z>Ro-Ux10R zwBY!=J)h3cngG!40H6l6MMh(Mei&K+a**y1GjD5Q47D&Gt@Q`g?XEu|^dc#+QAmpfTKgkw+SB(Q*#rT zQ8dKen`5!qOW6$B3Um29PX1nb<0Wdq?4lXd0-PQ`|M>qK-P;Z^7qE|nAqOF0zO3*K z@J$gs%LW0sbDo)D-XUpIOTct~t7I6sEnu{vbD?}-aK zw@}i9uwH^c``OPH;O;_NskRb%RovbFXUmo?rR1Vn`{w9Ca?d5>v)F63;hi*td#&&;27d(OPs=RB|O|Jwc6 zQ=pnoURN)urMctk4gxNgb&lm2m4`^G!dR+p3adCvBjGt2auJ{g=> zGK8E*f^xl{D-rj;x}8~ub5~F7nlPE({_Wknw|H{be8ciR1P9iU`Lfj+=iGC9F1O}# zdpm>ekO8Jvi1nB^gXQT#-EG?3Rx3e|%!8~m`H&)IL|%15f* zjvagVJCJ3#H@u9MY=hgrsm&nMQHG5nrS*=vyJxsZx%1!?pZG+1p8b$v<9E(roNcn6 zfq{WCAB^*`KlWF~jtow}f5v5c%W!uF=a6kMZ88%q+jOSSJ{b32A!(P-&6D}7$b(wGV^DHaN z$$RtUb(XhwUZcSG5(Pdy058?}Mid8j7PLO}pNm-DI&PI%agELN^gX{g+upZXd76i&3+iYoe>gBjPcr^~~eBlK4|`3tu-z3pyRiqyT@P-5B6jrb2Ci1rZrw(z0Z`u9 z!qLQH1&`UwfQPYVwim+|T+j78`>;K3Wt%n@@FUpc-$CWM1+cYk-B#?sJ8=#N7z8-m zz&gMjsIK&Xc@8IZbeGNn=I+LYt7i*6wsr3;z|XeB5kOK-#{n>N>|HOAYo)HhSC}&c5|-3-`*~UyGy1jz-Io%`w0>WDNkOSyYb;&A@(WJVOt?)eA6c3w_VuJRZOG z@~@&LJ{QkE^8>Me^TR-Y7!pk@rA;R<93#_I9N2X@);Db`K&P%2`#l&J`}-fm^q?ue z^!n%HE3dr}cd+SxX8$K*@5YB%%me;q#-K_*1JmTKcV3N~H*SM-1-*boIRlWS7Ek8D zFT9fj5>c;qJHNKrfwltb(RjpP0l+QJEW`#p??3V2_p$%{K|nSOA{LMWRQF0lq^*tg1KZ zXi+Jm43DV*8`{U$V;i{4I4ObknSE{KLbY=NKK21+43zFl?+F+yto>l>;G17i3`lez zaUHxZL36c7T!btr1qYP7mD}knr{a}!UyQ*~JOS@}JU;s1v(eqSku3sgIP>c4^>{z!ee&DGe!5QM0i*v|9wyk^W@W<|ycdHD5#h5{J zq@Kxp<>KYof>wgSegTlYzPB$9Ja~lmjiQ!+Jg!~85i?6;46a-YeK(X>4hEZJ#@Nev z~UfUz?olydwulP!CYJ4xqT@o1jB~;1V$4OH+coK3 z`{>c51zZbo+>**g^1#4AacrgJP-(Yd+ao1umT6ge7E}qYl#uKEPFr{v&X+D-DgY=H`s<;^yLE4@{IGyvVAv9>w?|uT;y3+rmODncY&kLwl`MyupeYbrAQN7$h|NQf%Z9dOFWWA*^-{Mboxp|%E)mbw>&-vVYL)KgUJfGQD z>E_vYU5Alw6DJc#X563oGk>ORD=0lOkLjhmXM^!swoE-81iBBqUf`WaZVC4f|KUF@ z?GTu|-I?Q{nT$btN@I5hF#P?$|MyGTfBH}V>B5MSnP8l@^wy)6gS%*0hx^d0A)%&* z4h#+d`9J^X_*ehxU&R9tJW$HZgj+ zO}C$OFLukc<>NxKW)%mK+&g(o^Qm_48qrmqL1wLE=FWp!mD_r8O zV?|v7ORB2-S$9cWR=7SVuGpP=4e+aFmE76U##T{yzE-M*4RwR7@ut~0d;3JZeeTWZ z?m^{q*TYEB+1`sKxp@|pVs^OA5UTN%X$1nfWhA%mhyC;;&&Qte{eVWKcKn#mj84S4 zo9Eek{Z;nV#shh4ZS;5Siki8)=tteTeQ#S)ldeMo4n9H6dJ2i+@pxtAWju>p-Y23R z6@RzMx;S_qK>VAr1vT@JKK%VS)9OP909$>)y@YQ_IK3qS7O7zWQQ@wzh!MeWQ=%3mh z<5S}?ieG?>BR5bbMwPpMBF0b$pXSGAd|^6<7udFo{jb~FJCL&8j(5(zflz!gp2UgT z;T=yQ;O#=~nNew+hbFJb*WUU9`)Y5GeK<+0L%Lgo>O&oB#*;{5>Tw8op#K5X0Gs25 zuY5kHM%aQ6$^D9AT9Dof0DK;=`YlM5J6N!6@7r6z-Lg_MCB8^+>(Jj{L~VVD{l{+( zUO~!^2lU>pNZs{pibRti&v_)eZS~HB4uB$FYB{XKg%B$?Mwbaweu$V+Wgao#xX_Nf zawUkbJS&eWxia(Ur>fFCySId?%t7XfqHAYO9TT^XajI2?TD5-W;k!Q$R_pjt#xg(t z+JZOIUYZ09q|O560DMU8-7;?h?TvcONPxPOkK#SRRNz(*J#`M};oB`iDBArT#^>sXG%>VcSao!-FoPg znh>tTiV8g`ojW7fhhjr_AFAYi)P)4qIgPZx5yn{?+5=s!U5tHqJh=CX*w()TiTD&I z2}nxuN%0C^_D7n=;s>AnzoVlL(+uA2*}4(@JDep?S8VIuR~*r4>)z1Ky8u&VOUD2- zfsp`%V;PX$3!|%N{f?Mi9Eq88Q*rIaEf@gfv~@}a3C4-{U%)Q^1TF)gp2C1B^M=t; z(ym!dk+zqI&Lrj~{gin^E}nCy@8!fFnNNPk+?j#yMq5WKDRDPm;GT;o z=c~bfy7)D?p!3Lk%TTIsknRF1)td$O0>c0JAOB-~?Q35v>8&e4RJPHwyslov<@M?` zd2d~Loq6-@v$gQv6j)8Cyq5_hIQrS2{n>W`se4lkcoOWcUd-n_u{N)rCpmWS)qF%*FT?7zAqeNv#mmc-SxJ zZuT$h60FMPQX@f7sjmpPTJt>-RQ}Ds`8Q)=VBlR1fKtJ|KfWJoy8Q7!{>S4ppZQFQ zwcHHW`(7dY@ALazSI1SCk@0!XXWkpK&U~KnK9hF&Tw1u-y&ms#PjUC>R^#Cx{iA|^%X@0E@{&zw0^7&i99KFDxT`u-RG!e1!gMf+gh|L`CF z!@JA{(|)_bHrTgndS%|~xTNjsxa#}Nx4OLQ`}8y&A8bc_~mVW;?aV0TEmH1!sYPba@GNZ%{`}qpCc) zFoG9uq|}tStUWGH!Wxl)@89uA>{>ZUdH@*@=kQ*?dFW((;pP90L%cJwZOhK+#bbIS zs_{*AZEQ2O4IqhR3F#=pNbuD}jMiL_y18aNb#ITpHq_*3TV3-UfO;lsXB(rlsW&!t z0{#KS;z0pjgJ2K|q`%WTYtu>B0&N}#RA0Y+5ozyA?A);r2WEJ*77GCE=cZ@N7G=XT zSJ?jQPT9YD5m^5w`@vtkdJEP4*+SGNw!RylxB-ZojkoYHzBpCKzTJS^mW8-JdNIbP zN8;?+qcM4P5XWrw@$iwy*+Oq!*{^)pu6=Q6;4wV&vz^u?YR<4L=4-~|)Ri}=X)^lp zhTqlE3t-o=ocp^^qm|H%89t8lP#53Rb1)j8YNL*c*wnoP@PxWKW&zrFgL4fCdZnu@Q}ft$=DALKH_y8``$SGNuak#4pvdull*y(PK{fzF$^ z?T(K<@UdWc%<~J7Tpc328w9`)L@K|ge*4W zg8~T#`^#TEdnpd>J-}RA&#(i08Q*nyjCbBSTH`o6TxLIZ?e?26rD$fp)${Tw_1BD{ z8HSu&&)r$Pi%H4$qG6*ny{W#PIn`7adaSFUDGP2GU@I_A=sI(xvZYYjnvxgZaTF}e zjBsrIcW)qQh2I&cl4Dyg9H0_s8;Pbp%n$07u1z@HtV2s=0gVx-oJRruq$%GyX-7T_ zspL12_rzP#y{DF22wX{Qg6~SmHhE4U;zG3=oOth|SKuwkQKDr~BIP_bR4=Z)_OJ}k zmTei9@4fjFoCwk_Q_!axeyYz`muorIWm%rVb6#hiSzq;iUYpiyL!Qgc+MjPp0qNzK zc{pa;k}FkInrv`C_OE>9D_=Jz#^;z<)4qDlO!Lh`j#HjZd%x?9TV1yE=8yfcKURR2 z^DfgR7_&UvC}215+i$cQwj`!x30j1Nr>iy2OpVyh9 z;MOv2Q*~Lk$$051;Qz1x^}iOzL$=kl)z>BSsz24w?{{4tSDiKE^L)Q&#`!$^?%Dfn zv)Tm$c7bZ9eeSvEiZt84ryqjMmvvQ_C+(Ds`%Hi=z4aX+ApW5r`k}Iugp3&JEv*IX zGFnVy`26QTAKSO%+!!W;W*wR-$PiHD;jjMHzgpU$NrMcU1mosa4L;lP2mZhxh$o+X zvOKpAnF2rZBR^8=l)>V-W!+v|o=h5p?bdPPFaPo{7flMkX~tPc`VR3v>nfSP#UIlf z^8785e?z+W%C|bc`u@GHzuk7+FaQ1G-mAP!o9FxW`P+F`ou>Nwe&wyjtx@3rWD0!f z06v$nWv$9utgKa`VD-n%m#(Oc3+niBQ*qh7w*7#rs#;V`T{N@kKYQasyngzv=pR5L z$McJ*o;L!B>rv|+nz|M%t+Ut~55@Vb$D_7yKKi@1@?)v`ujN$E0u?Rfm87+{^u(d< z&1}iCe(#y@kEei}VrT0ty3! zRkmkxulg0XYFl9MclYa7Rd;cg1wgTn2VfNU-aG^3jpDTH=FlbD(T>z}pnyuBE6FQ+ zYy)@3#wKE>VY1|JLOr>?y(`A~F==tDJV-W-1i!Tn2-V((%`hs*FfNLA0p8B1=Z5e$ z4j@JXIyrnh+G|m-M}@twb#pZC0sH{4TJZs}!Zui{zAxjw?(GZ5WiLLvS8vxtv8xuJ3qk=0x*Qs#-P4N=41c%{n5Q?3(Obh9SkYwv+v5CsT=XenO9=nhORhxh&_T^ zHx$5*sdoY2mb!vuU2w_n-0TUzB{p=T=EuLn7;~<1Pzww#`nre|oju^$xTi1_bjCK1 zR)XzYfjQIM0P|>pzAd#zXTui8i;56QJHG|EYL}?>u*Cb~dp0u4mUr*G!}f@@y^}2u z>Ejab)Hri$VSWr<3Hr#~QiGv}_pE`s@Il9%#ny6WG8($@X@Pdk>!)7joxpQ{UpLPI z?V1-bE}Gc1uvK9LGT{A$+Q`tizc6CT|Tqi4Ccv08hLG683fjm41&u0 z%2<%b=UJZj9)^s+-#OD{y=&)hp90d;kTi5Wy;gep#1l`HXG)wMGgZ$so%tM3f3FSZ zGx$8mDASe)zk@$n);B9hAg2^G(`Mba$N6ZyZS>x`IWRC#Ogfx@ZjbiZV~-V;Xn~)3 zGp+gZ9r3J$Slen<^`(u{cBQ-j^q>CIqVoOYKmOxoK3j&t{2tkcJgdGfvrOr(aT!c& zFu&JXPCoyz&eip1TLjr^I;3fUZSh*o1y$DF#?iTu{mH&$n=MC>uH^bxfAv>m-@bjt z)?HAqO1saWd+xcC+;SYN-}efhss_d|ioFYNm%;r-_2LsmX`o?ZD8`2O*Mt9%H#1B@e$ z1i0uFOVHj3;8apMIz1j2ui?lI$5eOk491JMJ`ZT502c96IHjs@tB=veTSTDVHu7=| zcVkzLJ?-|sHp=Hmn?tbH04S?h!VNIAEil7zx`kai;A(P=ZO;JUb$sOYI6beUIshg7 z{31;iG)y2Z7R+e_F4)tCwjTBV6&kbBi0w350PeFcASsew+Fp-SJi&o&wJevmN^CEq zzCS#ED-NJdu&HwkcEUJ7Q+h}{+wji)@ZqOo;L!fKHg-IYzVl*qBDMVZkd_Tn2~MV-GFyWFi&e@onosRA72fw}r zTQZp&l!Jyj^kR%;OwcNUlVE6;JTgA&0CV-_aLlQ%XjDKiff0bWRzQx;J}?4?iJB4q zfVy~eoTM8xW=xf)Q%o7N$`*J^>quLMwX)E0Tvni~TI4qs}}Fv zn8vI8-28ZSu_$Z;gu8W_Hr?H*sgI1@iP4FfSX##%w0JcSs7Ek6&3tB9VC<|%{k@GI zkPof!&PLkh!iITY4`3dex*2bt`Yje4*W&x0`N7!Pvxo7AQ2P`?64D(N^O;Dsh%ARVqQ+TcmG_L8|)L^LH!Q=UhNmUt6E|)p4ft z-i4>v&hHGFHW#=qOg%E*^qD`)_TI8QGM&$iPvGveTnJZ}k!6|B>nwA1IpqO=s?%lM z+WFh3K+-tJAjet11%e!Hyaj8oyz)x1^;LygNwRamF;v1Suo@T`co)Rwvv0o@_fMH~ zA={Yq&eV>(!M51GOq27$`)r5X%?a>q@1Of~f3D>7k8@GAc!K~g(#blITPDV|%h* z>5mFQZOcISwEH_{ZZ9{=q+3oMS3E*UyG|Jgm?0 zbVm#s1~OMX3%+G~s0CnMsV(8$yLjeXC$}?Uq0sH?)|L7krZ8u%@H?3q^`?E%Y zH43az;C)cwcOSs>aV<+@(NivC`TZ?F20T;b*NEM8EkJe#^{54aMGGHOkPYkm2Gp^i zj2-<0m=Vw5RBjsHGi*-<_&B`df!Mdn|v(|Jw>&CWM(ifUpq&AHL(x%@n&q~XZV3@ zq)c!u6|yx_D>lnD9RQwFQG*k`ExrA*wTVRv{}zy{&LQMB?&Qf6F*~^wPab?OHm%zs zi~-R!AW22?jX6MP^OjhTIRHEhXaMj+E1@2sq$xo?cIEW|rQ6sxzjFMg7#SOi2kRZ1I&o3u0<%_bmIrkB%c<1>97| zQ*h=uROo5@lxhcb(T2Q^acBf6O6T%J$&V{IpLoC{Oa{G)F9L8^Q0JzI0>-34We%0m zp`EgM_+h3`s!B&uOJ`qn()p~IXo#Q+Vj>Uo&3_idD3#Le!?JWir=Tzx=$|uICV*@l zT2#tYd&BAKqOGm19clU`J0c9n=63R79-%k*1wiNRyVp@SA7P=lDZ1A8z(m5<9Z7K? zrXOd|p1?!*-I(4qgDQ9vpcA!h7A-T(?UAuj7(mUjdE*ww2Y&|aSkTzegntAWJWP&7 zG!&+h>|Y){7w0dYh&|f};*mX%BVTW4#E_iR{yX?Wc=@dts2}HthuO}qX(R225yE>^ z&zxKYe9|1oM01Wsd_auhun{M8?JcP7&lV?*GNEK-374JAOVDNowe+%3qn3(Yyj!r9 z5oL_Erf00BEMv-Y7|_m60^Km>a0V%$cRn>jqa8R%Yg%l@>EpU+Zq>nKLyV1&#;uuK zNb^ZQwZu*l9XO|(jN4;3@Z>)ieH}Op8_7{6GH3|0t@<+HUK_P8D(`speCa**GQj+6+5(hAgk#ypKOQ7xJ8AZjm|e zK1&d8e9jxsf;H3WI8hJqs$c7X?dN~~=ZhM&Uf@6Tna`BH*p)Jy?k9ipCyV1WX_4g# z7`J@>3k-j6>zG_k~A>hHhLJ`ZNbBkahb-ry!QNIhis4MY=>>I zztzkMp9!=Dxb`{2>iiimEu^PR6dfY|=5PLH=(H}q#GB7FmTO%~-}U~k^j&p(pKB+t z<3P<1^d+F=U!NK>Z?X+ZbIlvv4MTt}!$60emg{r-p~T*?mLZdM8n24HWj+7=^QGzb zQLt}5=euS2-1(sCg--Ew!Y8ozncuRcUG{zLyhedF3anA!{ZQa{AHbJYZ2lls&P7Gu zUh!e%>s~yKyC|MS;x>zo`g%N7FCy*gK!Ula_XyWGssp_0EgC3O9MU!84D8&kV{!J< zTL5de8`<|rZ13Dx0D@I2?Vc<4$x6&BfUg#*xO+E`u~pTLo3~2!8#nX-l;Fq%QgOe= zM;$;)e!-@8*+YP$J8T`+wQgfOZ$n%kz8HhUw_@|AtvDDP09Xh{gb^%e0rlD&F9TX-CJX}vm#{xy z*QwL9DWr{y1~*%1!#;oMF5A7~*&9IG zjLLkycH^i%+vX)yfoGP+Gr!&fYjbaw^`r z_G)zWw8X(pk0@lN3>ORy%H*`?yPXCLuF~&`R4XH`QABynDRG?J$+;%Pinx_}W3jnRhE_+?m z2ABW2!o?H*)?G!fVU|&b#01=_k1+gH*YQ)HOp+J*xGU?2FH)bSKs*pS|V(}hZ#yY z@ABltRNNUKEPdLvN%dB26g7h>a93;@jN#7kH$6_CCxCv zoM&a9bpW>uv?b=hbJp1^1Ea7X=p&WTXJ-kQl<#b*9CV%dVp0Qr9j8e&f|!~(U*tQ$ z+;zd`;fJJvck}X}T$E8M)1tlm?HFzhmB*Fq5BRU`PH<-Xyf(NP%>}7x44Kw*b(}QI z`_=hN#(RHC|EnS_-;nit?E=@bT;vM4Qd(yGyEHW6y^wL{sV?7Z<1#+eWxloZcSZr} zXh^!|n0c=RQ}84BQsSx&@vr^buN8-JrW430eI6JXC}rfhXL%*^eg3f>hMa$SpJ&^q z8nZU~*%#C2bI(eSf97X?rl>$G@fAo45S@d9Z5a~INu8#t4xV}QJ@G!vRywTo)_3F2 z{@FiUK&2ql`~t>3d-lX%{EL6_8^D}p*oO-jE)?)@8&`*{*ZAr>SEu_h?yKA4?i2Pg znHttF^G1N{9H>s~Gw(CbK1-{=`*;6tVR%ThfAA0fLGk?Vd{U~O0N8YH181D7^_F3r zWhfQ@PygvZl|#moz+AQbfA{bHU74GXk7*5#v4%M4J%09A2al@Po7Q$DcrS(BD=+(>ack!_3an9JjRL0&<~=*)C)KeYzqEB*8*G% zU~xEyG_v9)oVaBc@~Gt2;eomlshpm{7ufC!KVJaY@whg45od2h(Z3VPU$gd{>q)$TAVq55+`BXV)vHa04zPrytbOY+q4LTO%hsJHS-1poc{~@I9$1c7Wfn&LSJ0Hcadn!&`d6T}>#NMrk zkd))~85?i#AuAMzRvOU;0Mk4S2KP%Jo0^ETx6Z;Wz;=8b$vHObO9D**XGa&3N!oHA zhj7e{IJyV|ERoHbwkkTpB)wbQ=jcb8JJ~=ICl>3o)hX`T*E`Fotf8p#||a65|#a zApMkA7iTYAqAkaxZ^PEux8pEo4f;$#1`Y#b8?-yH<6xY$L1Vg9yISJr@VU4&nBj1V*>o&o#LF<9G zLk+%RGKC--G<4cI9)*bareDrFqu&i*ck^!S2XaxykcQ;By3q0sCc<~kkZHWnIOFr) z=P4=Aco)^xX{*6o#-~K8x_tBJeV)x*oz^s#pJ%U4TOBfQwz2xz+Vyu%0qH0J668o* zL9b(y<6xX1UZ9h~xWDpO{z|#^I_H3Sy!M=PA@h7EXY*QahU)8#6G*Bq?VjSP@?2fF zWhlwj;n^oY`N@(^0B5|?)tx(cmc9zswCT?6z;Zr%_E6fZ&9rTBYcsdkb3by`y9Ke* zOS1#D5u~GF*L)eQ&vt2wpyc0RoFVCy^ed6S3x9G9bIfg@aqdcCoRVwR|BX|V!G3Sp zu%YxL8FBXA=NT+R!27}rFBAre<@nqk4pf0x8^UeeGXCVrlLf?UCvQl)`CLbV9vS|| z-}oCbFfdRw;;dh(xO3EY*^Z~4daCTAV3|tgogbE`Ge%7rWV)D7x~mo8P8{~jx!~CO zF33>ukOl&HH7wi?(6nlwn8tFQ2bPmG%Qmi^*C?WDXUXD|jPL%Dl_H93eG_!>^&IST)`T!?-W+A5WFA3c8}}6;u&iVnx>QuP0UY#6z$&ol z0LZmc7tk(io35mUnxXbLEe1;7H<`2C^N3vm-hf!p!5A*r9L8H%xaeq3u&!M|}e zW`>ZI)bvp2=Au4NR_a=cDyLEX;`(_)W53`~q4Q^#!ckXBK|i(w8jCgA>t;I{Kpr zG5hG*OIjHxx{7Ox-i}T2*ny{51kc5Vi)Y!^?P9dyd~k+s;1*Dq-#xIOE!ZB3F3c@z z<=D{hdgx&vua94eH!i#s*M`o=wjDcT$M&7kj5J@(3%CO?WXc;>Xx6s@@6mg=$E$CC zC0=~%%dzg6-sr`gqITZJ6^lydN&|NFcW&K8(mfr!Htr}|3-y>Euw11+nhcFJVQ}0u zS7CA#Fk5^9&@lZdl=0vyMF*cd~6^U(CR$SRiekOavH1s_)kT`s-1vH?D^FQzw!#5@Y~LoC)5G*KS{l ztw`Jt?R+>M*!Og7>E1`)W}55H0BlXj`&iq=OmQ*odxo^VOi7+PFKYD>K)tny)%~_u zE~NAUfA|*g9ym{AdQH)Sygv%${Kzq}G-)glRn1xYXBxe=>j~WF##M(LZ{w=-RHyk)ue07PJLi(+ zBsezi7k}{=i&lWr^lY1FgJlTdQ*B+qr9@fqF7UFgrZvucfnS1A<8?MCc-PKfDZg|P zgsYw4)^*k4#EBE%;AqX~w$b(q@KpoPV0{Mb@yPz>^AG!+ZLnVHA{~s=@t*yE2dAWJ z7#NNnI~H3phuXPwXGtf3&5-@bakCt+6Xg2bAgHcp2wB&QFXHoux*Q+#WSeY{fZsYb zVRIZ+gI5afGga!{qu#CLRJS*nKf$&4)-O1BoE*Pwhi4f#nu$~gx4v`RJDus3wI%f^ z)mMdI@NSR^pxwOM05T8O!WsqED6mF>50U~OI)Klgb|Hl;*YdqC2#Rj`kPo#VW}nx( zu;!>?k=~2#Z%0RGT)uuKCibw8I-bxMKodoJ%g2+{C42eNMdGexb3Ky#ecK0+(lkK%oe;Q|h@`WjEif57DFU7j`U9snp2V>useMm)jq8zQ-JnGE2 z!FFr9Db#XDrtidy$6jFH^tS--8{)|$Pe$TgLk+M$3Bm3YQw*UYD6QT()3E)RKDy?)9wgQOjijVC1 z7^?S2=#R7lSmEj1J+~JDvGzlI`wjYkYJ03>L-wWLtW7c+hJYPf`;@0Fzs*K&W^JqKm#i9?2dp2!xZxhUJhIH%^?McPT1woQt$B#r`bC2SUh#G zi#gEAcrtHk((v3MTNA!iOg*-2?&lfXC^6Q~Yxi6)V+E*ngy=Bi1-IxPqeYAN8UTH* z8ZzbOmet~73&t5HAD1p++A%sEAAR3Kq-$$j7qw^)=m2pZby%_x`1d+%~7s&Z|WtHb@`R;PI% z_qHt;z@Do^-e;P8=Di{F<$azro#)J3eZF73apjxs`!BujwJYO28>}qf%I<^#=1y?V!#w>_Z-({p@GsjW^zSmwAx+ z%$sE={jz?aeOO^Ny={y1)M=mK_LqL?mx?EMLATqwY5y-M7AR{A?mp|Pv}c_8eJ0>m zVr_o6{IhSCtI2_0{Jl?FsIqSPJ~z(%o*kDz@<;wi@loJbe9}@{XL*jDou)T@|^!l^_?r`b=L#iE?{>XJKqgG)K`~h zS!-d90&5glqrm&6z&+&hevA3`^RtfUM~go$aQOkNzZ-&h7E0dv=wlmioPnjOKjzJYwS8|{3qfR z65Siv8~1J97SBBLOzZ`CHL!)20J{M-_IbdCz3A!eMtZ#sJMs(hxi9{DY@|JUbH9U~ z`{lu_01Lf=4`4?>6mOn5hRttV?8M%@u@2RFS}jnheCnZvL=m>qHMi;NY1&kPq9n4@ zl_e9PnrmQK+#SCj=PzF<-nScD8gYU)5ts4wUANF2{dgwdfi$uW&{#k?ngR`a%*Td# zVsezl#uW4bC?V~f9s`^J65Wo=ZSERiWHh$8{a#~iKy6&r?1A=eF|lO~PrVo7t4F^Q zozHHHtu2@@@NWeGd5gXd-n|+7_ToekjRsYo1>%)?p#HYg&~c>wNMON{rAKo}A=HSd zb1u-c$~J6VL)?m2@RE(T-kURp3SI*QD8WG()!rHhY#Wd~JCF1T@1o5#6Tn!R@Ol~yV_wyEwG&=^}c?8Ki!M?AFeF!OE>d-fL8 z%(1Cnp^o{cBFT3j^abdow#5Q%QbOO1Rzm|@4^B+Z#`S5OzAfS`khuC*Hi|>a)Yinc zpcBSPLuY$z+jb}}oVgH3Uw=8abZ(AaTOKY_V`*|7$@Og{@Y{Di7+W^&gh>Lu7zdd_ z;CTATES834A)++C25l3bLJyg3aNP=RG==bWmcIU*N6mg}Vm?}79Bu6!hz%Xx(T4^| zH}A>SA+#F4_60oivztPr`?T`7(<6Ri%^Xk0SW%{0)CZ%+FHqJ$~N0yQ0TUK7@vpiSV7o5opZZih_uO*@964?R9RYE*u- zPj2`1Hs1QP4Yt$%{NNA%U;%upPb=jW)G3K|OE|BU!V4Cy!@8|cTX}=`0yV*@b*i19 zt+t?5TBwyKSzH`%bT| zSDNKJXFUm`-6l^P@lSvH(`Ec+?g*%pX(Jsx)O1jKo@0=0RqgzzfBL73`nk*y%@L&g zqmMrNZd&Wt6vD9(kY^d5Wg`5EKk+AugFERgy?^#+fA(Ewh?*h4@C(0C0JRz!`Wmn= zG8A$iSiW=h$dMz(rai~Vcxj*am)M$427zhaZNPaUqe{nkI@o&wa{wj#=5a1)0^oJd zQ_HIk-X|TZh!Dc&3nJNEOYg<)%Th1e&_d_HuHO43u_cu zqrm&4fUE5fFYxWEU@cx=z=u-uqPASl{3$PW#-3jb$`!x7QlK%=SS5dS$J1|=2+PAVb?*}`lc?5LPpKPyzE!*A{q(x3Lv<>2KzLm zcQvT9>nskvT=uu7U8F}tmj$-Y*Jy+4@02xz==0X?!I%StJbw72v3J)#)N=cQ2b8hs zwr1M5P1+CuT0N5VPMqhll^c$|+*WLCdJv#RdyxPh*t;hl-uYN;Y~BHr;DcSFhyK`aD3IU9*&`!WDAaU_+^IGplUz*=t)nhx}&s4_F8Woi|=n%{CAbr&hV5iLCR>w#=V`L33L>=Y?^sCe*^IAuc7>KJH`mF7XZL& zBGfD4hGuG5tZ(S1f2g$!R;k1BmJUwGWq@N1eZ>MF_4mGbcq=OTy?djhdtLFlpwEW7 zdnP6|EII}Hjr2vW44nziL)R5(*o;~{9 z@WXgoAkyvsHneYuXC8VM>kSwM9qbCB9}F2Sm=dtrBfc-#!fp{s3>r6e3pgJHK=0do z5Y34FFg!>rsin0K=%iEAdEt23=d!h6nH@Z!Z{s-DJa^#?<_4p2VE^IR1S4T(jyXgb z9x;u!JBQ&G~Va6=M0&@ zx=f$teO{ZV`pEbM4c=$_yv{m2o2ELi*VXlAn={V*YvEf{AnBFkZVqYdy{f|=+H4DY z4GF4zE|^u7I>AdyL33m?- z!G333bU^5#6kaAm&PU73zBxD49x%?sat(R5EzTF~^2lJkP7Xcp7qSocdzNMA`F?5c z7gwFWx~-Y^esS;h?3<;{Jb8Y6$uJy#09g?vL>U!|~4BZ?X^VU~K5ziXFVR*e;U! zF(F?mhCC~%7=wMd=ZA}hy%PDNu1&gm0LBtO9!9&Jl>4^x(^aHvg3cNw;ALe`djt;t zkf^e}0Tu8kP?4SAdn7jWY(`=SU=pwZz_f7}UM;aWuS1nxd2G|lI`-UtD0$l;w?fYX4XJph!Kagso!oP7tFV6PZL!YjTd0n(?*>J)+1g1{zp1vY;po~fL10!mzQVWEVb!LV@W+V ziHilHKXEid&-BF~01wm}FOKVw5LfmEhc+;jY@V|LHV|#5GUgQi^w`hcXTo4^N*kaL z>FSv~)@)@;fSGF0g9ntNi9l(D34L)G&0;n}ykpSX^#8N>=E0s_RUPlX^W3-RdAK({ zWKKFHVGIxxP+mQsrT(GT6EPCB)GD+DODu;XAnF5^awuOZ4xosorRBp36a*qtadLVuiRA9q)nuU*bEjzufVB6e1= zp9n+)h;vTn;77U0b7xCmS<$<$TswS2S;hYC0a^jns-Wi?WVywgzZQVLTjOoncq#E% z1+Y9}hHW3+;%@cg4W*}l085E++D#KhCt#2{?L}9o5)@|rm0Og+G7Y{2{nEUPFkx>+)(#S8m}&8!vRc%;3~>J)QBJ&HkhRZHH%n{=c^12wz_4B}S+T5G zqCq~JB0SJb-~Mh3@@(*CU~9ya<>--vc%ENcUbgi{{7bOI0?$Yr@2mjrX0~Zr!yr#~ zzK~ti$3Dxo^to>HhQWKDMj9h7PRK!F9xc`Ly!NO}>!E&~=XuP03)36#pf-co`7>{x zdp`%i#wQ5L`yLG*9jF`XWt%q#=f>xG=8Fu?KVMSd^6Al^_uaqUka3<1HvJh)W5_a-ZbUZX zm5cW^2iG*a4*WA+(oZ^Go6q&sPI!2(>9w*|i|c*k4W4IRJkOBlNz@#%23^Z65ikr}aF+vb0hb^?b_G_{^8bq?dKGKS|4Y^ZT=0@B1^DH+j#a zd5pIl&&{{64C$ybH)Q(EZ=Cn@XI_6^n9My2{a|} z!X$9<0DKHec@g?D1Z+4a7sPpVpd8PbbJrb>fyyHW-Q}4v+|@r6a&o z%M2juK_Hi4y1ucGNf50Am{<@piEuQdugWGa_$Hpd#HTv=w9n8mn41#^*lKC-FE;>g zEyAtC=BGSEV@#_=y}a~p^cm|159Ez#<*V?x(&M{*$orM_iAhunh#i7l95qY?-W-3TS*&##0BI)f{wgGMIL*`TwbW}D#xD#|B<&fh_ zwt;g30pj#anDyBi$5IA6mX>+y;XNOU9%V!#XG7Q`u|l}S`JD5gRS4BRc#hec5Fzbi zS>$V>txVfyf0qva3Houm*xx@CyhQt0zRCS#6>VE-8_#*PCFgq4cLE@i+dq8vx!(bA zD`?j%@U5^C-wx{rHkR25>WO@v=y6$v&r4X+z`B!#_T|QS4!Kw5!*x8T!ISkfG!E6p z#rc~9uRI1DR66<($9jBnbfLJsm-*{QX(c@ecZQ5}V43tXjo`z|eR|S*^SEv2L1Sf9g}8imkx(GH$;7Sr5yt*C#=;+F#Qp0M{|y4L95n zCj43F?5px%zI41MkAM8fe_XD={`$z{{lELWzl(MEP7KJGA?sYPi}Ch#oe4@uJ}gJG zb=JWp9#2h*q_*GZt36YdYMHAALJzRjEG^?S}I z%d}Zn%gFoE%etB0d)b#f_g===X-UuP%ni63d2xngw3r3(qp8k~`+$wm zDoem0T6GD}V|wd$Q=uUx+Vp~(#w-GulDrnAUA0H<>%goPaAf5>0qMYY0N4?L2>?%% zeL;e>LLDprzCfv`4Msr9Ed^f+@6}ipE4vjKq7`HN2cu`4oug zf{z8|h87z%Gw&<}`FWE^c4_+4qrGW^5HiqWq4LnJj4I(esS?3F$Z#Gfep*pD*%7RS z>YB~NUK!!m)x+-^mF*y{^0M|~6Fi8~h_jxtQhsTIiAYAc_fARbo=g$MJ zXI#kL4E$s)@_22zCWL0(=G_o-SFUYkaJs!*yYfm>F)6o~Wh5*YnLl-cMXYDB^qDG? zK2r)vx{^xLQKWQ<=2!7jwV~xyZE1lQFW3ijaAm1^o&&85-8WtI-3z48dr8M@&+7xo zdR_;M-gf}&(QALMdv&lXC^DEok9qF>EXTp8d8F;R@y+nUC6Mi%vR0NEr%W#-*Sw#l zWt-&D_&mQ*{>=A{j+r;h^Jqxgd0nUDy}a)+`w$(wwdRyxM{ z%TNcO%2mg3d-v`=Z<%1-m0##4d(aUx~7bc&or*Bw?FDc(U9*=&n?q_;!=VOZTDz-@?+aL z(PR4LJ=;V&ZkgwVjmsPAJec2~A&+@3f61f$&U|U{V7%$;v@$M;HUBgv(3HRnmOzDA zUvRb;pCNF71K=24GZ5q5%`hu2)n@WK#>|(!LxRuMRuB$SM{r2=47QDWm^r(tGbw$ zwsDVlCvC7)&}V>r^SuMeao@H4Q9ctLaKmScvIKV2!R)pJ@|%T@ZDRoQ2j4^iPF38x z=9~!;g%2&`1(=dIL{;UBf1V3+ZN~6sPon5M){l&kBUL5aNP~=&l6*9z7zAgTXlSMI zc6<&v*)XTi0C}bzu%VBM72~awve!Xe#lM;dxuT_!p)KqO&Zv;D<;lN&Ddb`sl7@*R z@ny89^^Ei^iJ)P0zG!<@{L3e8$|RJw0QPlhMb8vLMjxj>mg7VL8f>>@)I-0H1)UU- zjzv_<9jrSSlw&+Z6%;=xS`qq#-umaLv*1@NgI3zx365#|2opa(UF{Hwb?qV4=*6T% z($Zyc5tB}q$}1V__p)WVPak$m!x`$~e4LXII(hV&nPhi@PUP9fk^ub^bh8woZSU^Vxn^bQT#V&M zw5KMX)&Wt4oNPC)C{tId z(DB+qs9QlffOjyfCeinOI*77gJBW>M0P=Le=`RP&nnl;ks-H(;%|G8z0?OE6+xb)0 z#_6eDu#etj z<2J#+WeA*g(k3vg2lFL89rKyaI436rfjVjP*%H(%3)@}(E!%XS`%`vKgt$wAW%~TO zZJTM_N=+cIGdq_!NXK|X_AAe=uM;8Ca{|Tpfx83vc)bqUjYXPB0d?z!quVuP=S;i$TLA7mfU$T$5EnjX^ zCw*n+wuM?rC=c@~U;CS7dtaxL_8qMs1n4>xv< ziO_cWir-StVW8y(yYx#7dLb}iMC@9ksAxz|1gG|;)$9tJ`feC4Y59oMHGSCWg$uD^#+P{E{VATlg z7U0MPjdSCJk{@wMNe&*Q;7dKs^#e7@3o?sDa;^O2fMZmf%<_nwO=q3ds%wTF6FTHG zuPvs7G``NHF*MqOM$ER<(!mJ_Rt2l^F*FJMqklHpT4ZNJ!n_;sAhI-qegkOp`gAMCu{ZxCuPE#KspvH zIT|NqSv4kcmcz}MERidDkuUhCeP9(9%*;7*2$_*L>Js%((9|s^b>I)awKj>il5Bu+ zpebn}947Tuof{DIM*EUP`cV=4EBBGJT+ai9C1f$A2%7R5 zG@%!k6!c}`uFr2+9BAWi+1}3+`wSC5HVXtB@zz~_jZ_vM;t%JR5&t7?ShXm3uNrkS zWmVfo@+cEtAZPz}@+ICy${X3)-=xq^eOh^bXRw%=(rO0J$k#IY*w5b3PMWl_G(agx zPWn-X?c|SU^<5N#u)RFz_`fk!&$zO+KU8&ez^$XNYp=aF2ERv+XmwLL-%4QQfKh-T zP;oG7UVj2ewO#)71Z|wo$JBxf;&WhYyfhQ={BM-)|8$+|ZRB|l;x%hlGc1@={tnJR z@rh5wUg)OFd>##XO#ZShJbt~fkWM{coo2>gh*sY7xbWQcP7JvPo_mDbx6%Qc_XIQo z>Mya?r9b=bd-5Tgm!(hIGIuaNDzIPfWDwHD7RM{si*UaN=!vcsSzp#;-Sefug~k z3!L=G^71*(XVUAvXxrU}&1cv5z_DY;qK%~a!$17P(FUfI*UT^N><{%eHvU@`vJEZI z_LZOaz3+ViUjOKi{;2%@-~WAi$2;B;6Dhu%OmBZO)Ok$4t&4ro_nnhMPMEywUGEBc z-*($=kxyX#FaPo{5wGl>Ecvk?`?1&(&pu-x)SJJ2=$YUC=ne;e_=kTOWm~>|;*+2J zWcian`IDH`kw@=K&pxCxLML&g;e?4hI9UFh-t?w;|JnzfK+s8~y!-ro_OqXji94^I zfNtI3&_Z~+<`BD`4^+%I1gaS zAlCiO8S!Jg!y2v?E6dim|11{Oq;oB+pi5v9A3aCAya=Z?m2Q+T*}U&}(d#%$(-VIr zwu~s-BR|LZ0lFl_FHFNZMcWr4c|wC2rrv^x08f7K_yKrgv~BtTQs%2(QdPN@!B2h- zmc?cKVOzS$BXE>QX0>DeueW8VvCcNq2H(V)t|7xXN*mc#;LsyM`XZ}XL~jLYV$1dP zdBIe)luOWS@Er9aZOF{@(zJ|Vx{CKa0ILKWWlB8w$n@MgpT=awn=kVcRna6qNyLfr zG0yUok3Zz1{9G3e@Qe)h6Z=F1XjWwt7qaIV)qzgP-E@{mymX^2iAa9E7j^W$G%VXd zo#Z?0x_l;Xc}K&y_)t;=bFNF5^8KXM5MrFO)74)c$0? zOk3|ydC%kv<7*`1w4OiH3#jZr|M-vpSl;~RHwTYe71);qje>ar%%zuJ8sOW>BY|hu z!~9;GPK~Dk=i?v$c&r~E8X77`j~B+Zf-L*5c@6RQ2*pE}Q$C7({heE7p3 zjy3zf%YO1Ff3oQRz#RsD>Zg9{e7{Lnvd+n~p!gsD;UA*UNKaX7sURIS*tV(Q+~pj~ z&2sh1|Iv?rG(fsb6V$9r$4MJ`yyK2LLMyHXh%&Wb3E=lm+hXfQ%k{mg+-0m+1^n0B8kZpYPji;2^YC zyx0Zs;;LD-tL>~QiXkr9V!%$E9{>mO40_dO%`!L-O(kUnUg1_~SB;Osw)(Q_qi@YM z`HuX2Q_blM)!-z9j_K5!G*@nokv<8ihoL40&Ru06zd< zp`o;`s~SyC$zvLh(w80hVpvSNhW6G(83N#WVSOq&$&349o41;Xv3&9bFOrKAgMJRy z!~9y1W8l8a7<3;HmIj=Mi~<4KehqmOuP1Z0R;=_h&sSDQRX z+vsR703`V%sQ^~~qUsG=4W2`uArs|B0xM=N!JF|B=TR9{oJM~^p3!ckwa%3}wCmq3 zibpKKA1Rnr33GY-CiMu7KW&rC0vaMA5A-O{{-zazgfz8}JhY@+%gs7LqN3&K=VpDrpI7ZnE7*>< z8}bgZdaR0h$^MOJ1Mc&f70LI9M}q@#wO9^3hlhs)yr_k9J+Yui@FZw(Q0V~BAkF+q zN5CVP*W~n#Z+v3_BLR?chIlUh){u4~KarsM=j%#9xd|+61D%QqQc}LZ^;^FcATK9Z zQobqcJX%1W=ke__I2Jc8P)l!cLd#%%4A#Y<)>^P7c(QJ4`~~Lb_a{Hf zDS@wftb@Qzz%5-T9F&0*0#2go&`xle^%v9$R$Wq{4CKLQSDGLC(1*h6K>4X@w>$0#x;> zd9gn@5u~+(zw8^zKb`R9_{V(NS3S4h24$*zGQVwV8<@`t5P`cg(GtWw`7Sgr+tmqB z-+#%IYvrY*j4abF@?4XC*=3iVFIP(?`|Z2m{qEqw2`t-3nua0zWwwF&)aqNl?I>NJ z8z&Mh)3Scy7k(kyFEaDT=fXPJx6LOXby;M(=CLV(rUYKN1THFocddAstOMW#k*qdn zu*wTefWg}DWB>k{vgbE`t@Ix_R7M6_kJiP20Zpr(oLwXBE5!k@{?6QTN#QFb# zco`zQep=wc>;UwE5uAs4IpqYJdL>@@_LP!LqKvZy+|Nm~+Y zZT(J8Pmi-7IQz>=7v2OSdh`~PhADQS9tY}hC9q)~aRn;L%u6mt_2ikhMi6v40HyF! zgJ+9(m@hFaMsN!=HMx2s*K@sfZ2?T1L>W>maFucr@cAKEo`OgQt9~350BM3+07>dC zul@t%37lPz?8{e~%!s!_b8P`tUaAryKRhY71ez2VAM%Dot9nNX6;LssL8o87#Qku^ zatIu%Igw*!W@JhZER6cewsn=i3Jg*=?~&ih5EHm9U+`LykI5T(wtqxhS0tnM(yFwi zmVvw~B*i(Bp|3a*;o5Ucbs2)&;5p$Fpo&=6-v{53LiyR3m42gc)WJy}uk>0!13lSo zC4Qdu@M_m}5ZCH52tc{~xzGKa%o67|g|i_W+gPXvCEL;dNOp2W*9`v1Vjls{$Sv%1 zZZ)Eh7)S8FvXZ>*Oo9N+-fPG?)|Z=rqQVyhjqkI-Rhf!5`Bib>rsd&$zz&uh&xZx=M#< z4r27fP)(#b(G{iAjtZ%cxmyFZJTYB*S3Xu4aVj9H!PS0nN}J} zFXQq$X`056*LjRc{$xJW*=Gdrf=xA#J9q9Zzx~_49a>DmrXX8$aY2-QQ*G#P{Kjvb z_oQxrw6CdQ7PJfE?zrQQ^4EX;*I_CyaC0I_t)swG({(km(lgk1rK{He7k}{=une1E=X0zI^vTT%k-%HvW-1v$hf@zRvfc0r5v=@a8gU4>a!sa%29K5WoaEU zt@W+9U-FmlGw+$k=gal<%FUqW+~9rdu6(3@^UXI$d`=+PFO{EGGWw(#8X5|I?8n3|<9N@mc3j3}4TTmU8T5x%{=SFYSJ) z`f)&(W~!=b0r}@mr$sD&uichQV9E;wbO2$h#EYaFf0Mv;zT5Ld6G(?N3>3qp*+I8X zyF9wa-kHbPmWylGy>~!=ig-c118o6`TnqN*^+InPv-9#7V2f*$M4=wYYxxlg?a(?B z0q6;|9N#}PSQ!tT3!-?5M!u*Q_o7b3i~k~UU$!z>MwD+P7XnmC20)fR*8$)&9Y^aT z-3ZVYObRjhADQDG_k$PnH`1Fd=y|Vk-?9b6-cu%)Z(TE;Sppn#j zhH7AdVBC=Bj5oa(%E&ToFG0M)P8DT&FdaYJ#ArS|AshKIufcv2X3z3MoN4SEaT@_d zeaI|7nzvh4v@yw*hv~c*?a8^cWZC#>`UT#|gAe-?U^h&vgFot)^>BMMz4M2>%}B6c z$z${{BRH2g>AO@z*|=*$c;)9jvdNoiIkpK}NGGrD(AF!z`?A{)l%>_p@-(H7y1}@0 zmzZ_aQUz`JdHEV=nbuWLfd=cOb%O-8ppg&z)A@F%yyy?)wXOIc{VVE19`7%$^kq_h2GrOkGI%-pcZQpZEuiz^u zgQTZ9x?1A|XU1tA^4|BpH$ax)%DM{1)pQEj^${TOOtXB=&X5^m;Gg z@!E3aQ(!K@vVNMw87NE*{I`GmxARWf zGM`85;O|C!g?#K|AB*Q+Gi-Tx0z%Mv4?YTRzy0>;XQs6bL+15*VSJ{Egx`Wc(pMhV z!E*ttlQjmf{V8|b&-RkP49Tnc4Yq++Aogc>El?|Na2>rsJkvQbVtLYYVn=I>U;Wiz zjW(60@zPT6YQ|mepjAXpWJ*gOrD6McwBO0QebR|5HSxA_E{~B1CzTAAk@-BAw*B98 z%aw+_dag6V_rL%BG11_9`wXU4Hir6n-fte85@<@`o0ou)N#Bn}aJnO0@ zg4=e*u#&RGIcWk9o0vx{5BQJN&_IRP2Ebyd3sp3FvHqSi0u7KC9vtxV-i#b-f&~}? z4J`?HWm%J>rSX}lT$6^laa{G4Ni$LNiE2$^eb9%-)nw# zr)&XW0+`w^Nvb+YPx1nr(1=^4d^WV57G~d(Zx0pUL;|YS;L|gr9`jg9glyy-nZQBR zE$Xc7tiLisl_I>r+l+kUo304mECBpRXiTJP!HZDqpApw?OVCXZoJq6V6}wUADX zefsnvwp^br{e6pQDNrf$odN()j*U=W2Osu6`jqCV&_x(*m{|1zXwExv0p0i)qPESH z3oKFjIkqOV&Xa7hIC|y?AK{KNxMUR=9c_elA#Xdt-F~hWfU<^3Xwp8&ud*nh!qiU( zda=bFmLxONm^;Fw#dp!)1?Bd*NXTD%T?A!E8S{9Ucc*}8la}sCslNj4IO2Xh=OJwP zvX3ZFuPZW;fPre(-n#m1xy4>BaIziNg#>C;n^)SJ~(bp+i?+p(2{CPhIs%n=K zj5`SSTwvk=F$aAf{R!MnBMpOjjZd0MU)q*&AwCwy1)=7j^KGOkl%E5BWoxia1b7bA zHQUYhh@1Q|y#strodxjTPdR(c_Q>?#%rW!iQLyvtzy9mx=9_Ph_1}V#1QA(Y^1G0J z#=GX%x(J$F`wcsKyPJUGc=$g)$8UVAQG zClj1>a8krc41*x@)?07=Dh;*ivoDxNxk|_Ss)d(#`O$fuAl~*6=x5pHF@MrYUg~kC z`BsE1GihhpdF|2mFvw4a3-M-Nmq_SP?v6X|2st_FqaOw3pY5$|4PJlngC8un+;U6! zolqVIszHKeC;YC)1nH{^9Zo`>GZi_CdkEWeVo&>3t8_9`fPD zo%iflS-!kDfu++z*XV0Sp<_PZ)uuBfy|`%pX-c3effpr#>J9UvvcAAfyu$=M)$p|f z(E>`x%;9C)7jYZlK#&%L|9Q4&;$_9aJrrD=PtKn!2hZ&*pLz7o($~AFykZFsTiRKF zMcx*Gh3lzZM;qqY(C$PtuGwnqz)W7Sa$4wtgKnLylfrX z%C=)YlrvWD+xbNpn=hAcy{rtjO!9VQ(5X56qz?Do{t9goTZC!G9qWnFUiWqM!;7Yz z)d1BA0zt}X8R3J7R<;`X1G73yA6ou4fLjGV7GP@qsLia{wpUu<2|~Kf+EH1Yu%r+bUVykL08wS~d(S zX=7_S(z@-I0B8mo&rpYX92a)C^uUMfhAEHwnLZ{OJg3qDnc8Q{*z72v6S+b`aNXJt z?=8Jh1pq{St8#){>d8*h;KXVEo+*>F=PDlN2TOP7iqg%$7A!G3?0agUWthVZRv7*! z;c;Smh7SO+tr(nVpUDZI4!Xb+Tkm z4Lp5%p8U2?hnjxQXpU%y&Uvf>Y=8Sl%p`c<$tzoYyo`;H@*HCR+}>#+Tl@-eD2H$g^FIh1Dy!qntoPIYH%L(tWT6s z<(1S+IQVW_7~*}UAPFI}Mw(1(oC86FgGZnD92`1e6rii!&HI{un#Oz{4IceTC*wWl zJ&$?qv0ip0YW_Jdfs|hk&XtwzVLJ$*)wZhHHC?uwvKO#vj;*%W>jWW5IOU($7dmFU zc+Ye5WH}xMq?)}8JOtR;=6N(to+o|jBrQ$N1*>Yj1tn^h1+fAi*9BWQ&A@dimUT3p z^|Wt#)Wq3!?50s8uQpR>eri*VA08f#IL-0hCBZUHt4X!|Wgk~QYW#og*M2RwiBrQW zSQcPgzm&iAQ2yr42^HHyZL1(jz_)kr-q8HJW?6794^B=9(lxO+qzo)yCudH=2(|^y z(wA4mZMWSP$NZE0TBfo!$cK46+9#aUamzS0>6+&&2erSRn?HHa{9ao>CrezCpy{>z z+J~Gp5YP)0)#eLI-}k=v#RP*gGnl`ATzDQgzXg9R*E%Rm`Bd|5T=p^RBM?tMjnDq* zxpns1pZR|2mwqXLvvizDvQ7T%&;G0o4GqP8=_q3-#st?t{^LI$aoXV zTf(v4pa1!v$E1!X{#sLH|1pn!F17LkY@a7BIPAxk>tvJ8__XfG`YKAz^PLoMqN`3% z{tT9H``Hh4py%`CgpMKkjEm-m(^=GlpTASJ!cQ`4#7bS`-XFLP5QKx zd;%Rnu6uC1*SM9Vq6XdPK-h*Z^k{i*-!8nKw3lrg*h_ci zIzV96o?&4?zYr)3{w4s_r$-N!XAV4B4jtSN5X7MhrsJztv3tQK+sf*JO=WTh4e^v- zerbz2mS!+vqZaqMqtBGbcRf%}o;kq8M{DWpTv;yNd_%cp?WMqRD$Ha_CleVnXqPAG zd-ENW<>ct$vU~sDvX4R8I9nTb0BDESt}a(>zPb!_uL8q%P<}gnU}^^N?;GeT2X{Tg zYLJtq?{%xnivDHff4b~=<}2me%U)H^0oosb;&JdB6FYNfn0yhGzxj*>RT%o^$2&OM)IvOnM;t`iFdWWQm>n)2#vZZ7K=v%L*@Xc79&k@Cd{zfigc=a>+9QyE@% z1(q*U<;aNxW!JIYfF{<+(RXKAHll{TorxYN+}gSr%(BG9Hgd9U^xRlk+P9)yw(;t+ zY7x&E6B0~&uu?$ta#j~;(vNJG zAYaHXn0LK<^$xKwI)JRe9w%Je>#AT6Jl_W!@p<3)Jg=X5t_xEJk^D(|-j`+$7VGIvV|)&d&0Eix*Llpmrf-I?mVk0oJ{}DTG*a$5*K*J= zaLqxy=`x>MXhX`_^Q7hZHxo>smp&%#AH?Dr}bq3p8jlJu0H8&Ta zI0+!=a;>`8|N5{0T5h@JmH^P^vyNGI_Afz}07`AC07a0jH*w97)trgw1h_ZdbW?zPY5J2#Cj;D>!8P^DAp5HPIDzG)fWY@hfAmKqz1mm7Rkn?j z1#f@*+XL`v5-(5kE!cOGKr?LR=7fuuE?GCV@L7g{Oj+i$CI4RgGo8H3r*+o?Ah(6o zL7%h*-L_BiuN)28ww_y-OAai{Hjr;MxLO$KJkPdx^wCGp(=dGZnEyir96@^+a-e&AcAWrkIZBKzx>O; zj0p|fGy9_xCIW3OMfNgzqvOF`R^+k`pHu03?h*|_yZy>wUi*4lR@hc`KLz$Bw?H(F z?Poh1v|OpDGtPda<3lH(T<#$c)_r(*xZHQ&eX$-t+uO9+cIIt{rUaT2c;OPbxBwph z+#Riz!EKmV^HK@$idK`SpMfxr;s6IaRYT2Jx&>0x=uH_J&j4%{4FGhz z0mUoJmTNbc2cLQXt?9n9hC#s-&puMx2D-}C+g}qvf8W7<<@mY7<5RqA5mY@g7%h9fIC{(nb2VJaYK6xW4tgWhG6_~QPv!j5Q3o| zmI(}WBM(3z$;iMUNL%XAemdxu2ZA3zvwIBS5%7cB3s3x*doNN#*Ys7gI66T?>j+-j zS--7=vm>YXmHVH(vm7}79DwdjIdkfGSurpSc;7(UHHd`4ibMg1dYmT{Jhql2XHJz* z-SdgE>%gO>3#*60fn{ZEoCXC5lY7_`0a#{Z)%8CVQ3MJwOc2YzqEnqyO0dvsel@Z8b(@SYeu zR(3tJi%F-UvhC8V=sRc;0n&R9?kcCpj+B+l)|SCOTA9ftQQ+~@CrkS*v+6yq<=p7G z(zT=~mXGW^JiUcm)BhW{JsL?BrBfu7ZWt{pBBdhIC5-MKFj_)dV5372P`bNBa=-}5 zk8#7jO5{1GdvpOe_X`tMOMIs2yt7@8&?`z> zPRUh0Kkk6yUp#bu*j+=3cDaioXb8|dV1<4)9pHqn(Z07Ou+~FVslbo+`2TYO+~1ye z-GSU~9LZS;n>NJ~IP41L;@}v$!1AVHRCUhuNyHsehk5?$G`>bbYiv8Ao9l7LEmPLV zYLh~j>$>T8#6t?8t@g4Qb-}j78nQ4$XBhQt1Tpf{NR#0{h1Sv;Gmrt(dPl*m9=+@L z!afUw%-`5HeYtlZ<~Ca?FSYH^WkQT*DNPNdeWnGR^TxI#om&MiLL64JKUN3X|NMsN z@GQ%{Ub$NAS8xr1uTF@SkweT?s@FvdSJZtl|5XDbfcNW_IB*@8H*hW$@>vNohEV`^cu~-?V^}MlQ+SJg)1L2c7f5U|hkP0{2_~DhQeCnR;BK z;7^OTCyvF;LXzyO*jc}N9ozqF9*dG;ujeJG`#ag!;<)W;8L{+r&>LW5r268!pIIAt zKZ$%paQ)}oU-RSlLP!T#2VG&bZVg?wL-CTu@_mUTwIn$Lt++fdRjX1xypmRcvyLFi zm|n1en%{(>zGEtJnyd)8EMWELE$?N5VwlA5Y4>Ygsnk^UnbhQB?G&N?vlnx%K{n^; zWE^y=lJWU?-XKwvLd@eobau#w(H(T39z@Te)!t(P>9HQ|zO1L9#~OeR+;)6! zL|-+cE%Ih3tDuY%)SshTbtY{ri1Y(DAM7%{6-pNF*Jl0wa6KPAP(h-uXXXOlhttAt zB(eF{6YH~s@*86V9TSvK%v!vw_JAjEWPCQI^Ulo~=9`+CbEUh{(cS2;dQ18(tl7_0 zwXjg8ingEp2d1X;vIdlhen0Dnhx@j}*QYh{fl$c|tB1RM+5z`UlU3i|ep_<)+kGhm zBwLJ662;xGQIMjhR)?d^y!dD-U@!swM;ao*n1WqG1hW$4y8|Ko3(XG@#a!r9p7aHK zFEBC7XFEgpumi`XZb%6|(=&DRGUy2pCZHFvDk?&-s}Ogs2U*R? zgJx=Fhjfih4I0W?|7z(LaT^Xj8OF>AAW0X8I+e;EH?oa?$8z!fY5~%5P;<+~n}@bs zuGR#M{Hk$teFg~`B+dnCs(yEPMUBtvf!CD4ezx%e;8?dKr~h)T<}Gbd?yZitW!a2w z$>?4tgWf5&4e=lcVsb8b7K5YvV#K{b$cBZSi@0ozRlJ31_*MGhrvB|C-&ZvAxBq&D zR{oI+Bc|i6Vb`wPCI|KXDRh4DM>5*^-W9KrkX-Z(|={dz$vL-x-@(PTHv4cy8bzK!-wqw5poF8ddV@hMO@G= zuAde(p{G+pATF`f5JN>Nua{{=J#o|wtJu$LZV;Ug$yUD6;7s)DbQj>h3!!k3)B?px zuH{oqthxb+MZ@w4s3Kp!6%lLXn{%>m#NhAwGGEaq_`#Kt1tJnuqoi*(p_s z!oA_#faV3|=4N9hrxu8IMv+7uWN46cgV)8rMZ#w$)nejVOdlTP{g z=KV<$pA-@iyIc}!$E5%RgFDoB+Od^Vk33J6(xc3Xo0{`>EIfakYHa2Q7V0(C&Jt$Z z4Fl|*H#H^`@1IyGRN)A)@eRz+Cm|jnfX)V1#9AFMOI2%6h&t=?qrr4_#{zmtN{Lo; z%-F@CcK2INiH*)q1}Izf6JEx40kVIX&I59u=2b2mMyl~kirVA@u%*#Fr;eR%Z?pXJ_LJBNJik)WhIFP!6St({X zl2-F*b@CFvlSBh@eP%SltHO^rzv&O3Fr9uOX7Qj4c0s~?OrUH+&_xjZ*+j;Ds!XPg z9YEn>zCcx9J?2hXlc71|+5eO@7!G}}PR0@c5#jxUoRP~7aw9gNb}I6Z{?}{YFsO{< zXFJ~@;wMf64ujvOHZB}o1mUnUUiq-ajaur!8s;URhZrxgWug`9&mNyMN!wn#vFKtr z47a2^U8!$W(a#LQeC11IG14lh=eOa}hC=#t1Q5(~22@!KMh#Ek-ousJu{rz+^4IJu zr>@QC^-}r!Aj%7V|1$hfFda&juH)Rc zIR)yeSryJSZKI8Qs6gRe{rBH^JGJmxYmsrwzvtqAe(Zq{s?i%Z2SStW9u)dW1L9*( zJBD0dP8}P#4k8ZLqpB^U<_d1UsDb~aqb1US-VKuvtZ&6mWbIi14eH=YdmyyuUFgkU z9Z5>c)P_KXLjDcufKBss`7S_hWv6lIx$z9|N|1HliRgn#iDg9OH{cmi$-CXY`uL~t zd|=Uuw}4==c23@Pl!M2$Bn1DyqGAYf`02S2@~UM*o`^DQ&r5jq@7%PRq@c;@dU&ma zzP7Y^^?vnt-v%5hVv)mFHM#x@SVk<|SKKCf;Yad`S!-Y}RMLXU3sd04rc=5U-vBv9 zTQIN78LjH*!IIavzutad z_M0F*^(fe#ImKMaH^q2@mlbS_5z$XCJD>SZaOUqnzLj~(hwqLu{*hX2&t87j_U)xc zBG*2}u{Xi)L7*%$rdKri4Hli|ZAN7<;^Hkco)<||2?o{?W70;0smI$J{ z(o7C}jd?1c0EOY&og;3ahcG)956fHoH(5(5n=Qd!G}PkmDuH1oPKlzUSGVl_DnL1Egz>+4;=-PeDNW^Q3=lp7hn+Dpk@#W}P(HeQssb|EEZLa8NkE4XOu z3Z;CN8;d5Fq?#5p=Y1s(fj1NBnT+cTdM17bKJXeruO)u?ATOSy0(p@Ryg~;!ISn2b z$NHcSUq9-}+VI!YyM<6R_sIUfPeXdq zHI@(a3Ms?0Jvi0FjLL?T;004zYG=zBbf8xj zK~@(p!6T)nTVqWD*aK}hBQf(}fP?K~n4h)#^R6$}Wy$Oxlp%V>sD?CBbAyQnN+h0h zB?XUD=v_g^G`8<>2wus%G3GcI#(+b|l@8U-BphH(i6^@n|7KK>+B~L*PZ!MeYQ2;$V;VPPBpjclZ=fA$=?)MMiFg-^?$3`5f&D!;0#c}R8yVdDL{Vd@V1aE0Ee-Cvx zmkLr?WZ8s@O;O3fD7`NvGL;FgtM3^A+9Jpg>F|S}YWz8YM&nm zt*$uXi(QCK77yJ-hk-geVckb_vy<(mN}X}{c(Mc}GPy1-KYqEgg^$xgFLI30~z=@Nx0#6*}%#0jOJ$%Rgj45HL zfhrMoCwnLg&@43$+RzK+BAs5VE!V`n2oeN8*C|2^W)tohib+4n%PQnK^L{aMqSbKsRu0`U7Yc+&#C9bj)6q-!Pd}RC zD}pxB#K;#wbOGJPuui4k(0fDZou49o=G3xXp-AlSq`D3RSiC%-_)63%J0gJG7u79S z^gu&a=395&grx6s-h!8$9<@P(T{e5uy8$2{=SH%qXgTg12|_@MC-2**C7f;0F|7M! zy4f^{$Lt#{1s1@laXUZLAz7QNXw8sbAvlAH&fxio{H;frqJq$mr>v!ZmEI z&tPrr%^ExshW+)U6y6td3PSGk4bib(zL>in9%|ucY)yqQobQT` zwZ@+QT?6?!lC3PpVNa#4k4WCy=qZ}7+5;$-%(^4@ZQEulmh_=zMjy4ba``Q7fsJPF zkhzwBZ>PC(U&{u4HwF*ZZw#Hz3~=10KLt?8pQQ>x`>ojov&-6@cJTQdeT45Fq1|^b zn1mI5f^@}q(ryh4yfvbV2i79{m96;<)w5CO4>Mo#$&N|Uql&ZZTs50A)G<+bMatXu zK-qkRzeLtA<%s$v-}Ky-0^WB8v2N2ZwX1J}zFzJ7{-k?Zw`!}AB0%dJUA044Ljf{> zOW8E0^*(IjiTog*eW-(qO>nn@?{SZ|5#D!t+8(woW0LG(4bxZOq{-?^GnftmLk`G^ z+$Z4?=4}s_qhI06Cg5$0Bz%Dh-Yo_OqMKs?=c}t`WN0E+CROYHcs7E+HO_1!u1E^h z<(s{DKmcX>nf_OXE8^j4Ho;wk|JPmgQdkDqh9Lc^3=0oB1K^PlnG zb(92o?XVe#L$5q#q`+Ss|?`C2>{Mf#S*qQJXVtEE7avhSpE z6kdscD4YIoedwc%->&VPhm}kEVP6QF7QH3ktDI`J01;*&+W3fbeafLD{(@T=HS-}P zbeqJ{BXZbJ)?cRBB(JhZWwKR*?RSB?YlV1;5(zFq@~W%xb8kL1fJO8-<<+O_VDgDs zY8EB3&Afgw;h4rjWoBT7L378RqHh(mOkJmAzUJ1cwKkKi^a}OH&-O542)kbji)@rT z=-7=bL6<+0bX*D(YH7Mv?TzZpvd+M$MiuM6DVQNq=4tqD{IIW(SQV7)=1zxrd1Sm* z|L;??eC{X7(5|4>tsnFjm#?m+{c>guVB2DHjjWh0bCYBvl4z{ka&`ps(fL72{P7Jl zy}h4Kw{-?Pv)e5%(Hvu9Cx~jj~f-CW?z{U0^v-+==4`X^d`bd&$Ib(S*7h<24D0u#_ny@ead!5BnRsG#<8T8PHC1m)5@jg!%=#h;}v?_e~q7I#8ep7B_)z zG-^j zm+8ZW>Y?rPSh z-{@tn0rs4A5opd&azD)N6(=`uU2U)xy<+c-U-`GqMx_t@eyO5KC z?wSBs2CCCfYZ_VrxZ?eB<_t44_iS4wA{ntzU>}p1v|#3+M{SSQ!^)W&%mq86m^}a^ zJsbHvo#DD&#}o6Evz%I6kj1~+M-uAYVtZgA042s!u0*@OrkCEl?Tf%z9m3mG`FE12j?&y#=bBc-CQlRpR{!~qG^7a zB^0DEWZd|VMPZssY)3>Cc#qy1DLG2y?~IzJvQ4IK${oxQfl|ee@j&r>=W>V~$OV|r zVufWwZ<<;7z68!FYo*k3`udRAB5I8P(RYC}oZwJ?Z-}ge72bwZiY#TYBj{m%=3wy6 zjWRP)P6ch0QdJWS;5k71!pRq39rKdEZWtwH>nhRe6nm=AX@oQ)RrFSuEl znjFEWmwS@FwI>dj!SPt%7c2D{vG@4sE_x_v%;h!o&nR@YgVFyOj=tWQU(SK9qEKZY zN)u^`9m*nvP;Q22?@(bIUHLZEFZIctK-~}?3c`V#H1U!P11}SK%N*qGo)GjxfWp(p zzb@!s+N-IG{Y{1(#gW?Gvn$;kfjk)D4UC0_g3-Ne3w)YWl4T;}`iM7O3!|%a(OG zWMQh1iDz+v41u}=T@O1X7D2R+GDV}9uB!Kd>_hH_AmPfbO}cO{%|`7>tNG|~AR=8G znB)IQ+~)jV7tO3e1R@z-vZV&pl5Wab4%mF)IR|x?Hb>tp>Mt$3vUN zb*Y^yrURA_@t2QTS%^Yq9_NabjTqJw^XKdi3O5;&3U{bqG(}9mtu?VHbsI z<%!=zMKIP%Cg7i~K}!jn07vUj0$M{6RkP**0>g88P=9io8bXLquRzVG@>E92-$j*e zsoO+#BcZ+-;2DCK$T{88TI}Vcn0G)SqyV63HCdgcbmHmqp#nV2uxXO_unuqEf~Dwn zUQO4~7TeXqmfc@^_PX=06*>_%@7XbaQ+U zlH5;@lH5l&QSh(5OwEXJKtONIjKqn>(4NAva2SQP@SsBM+|8OJrR1P$pzRu{JBHob z{c{H1;m(oq(u6O#lq0+6@9iVg-$*y##u68XyjnVQ3Rf#9+~Dzb@Q4<3akV5{hY=w9 z%ztxam>49TWVGyWXJ_)EK2gZn@JrAXdx2;vZcSYQ`8DV83i zBo1{VTD(r7kX;E?|GIaF`tAU-?8nhBU==#t+;bNcge~-ut}!hz05{&0{_E|w^2z-X z*Ea4q+02;&Hhq0b58A_`Q$)J_d9GjIXHKTTSK}s1X?^>-oao{rjo#vk?N{&2ZUffB z9;Ck!-EdMzyGUN64L5JY zs`9_`T2(I#;$BbeEU&8Yr11h4IG5)}4fr*n&{_@PUO!o$O&c|N;;XV5lDd;&x5{MY zZC!qy*-x9V7q~(cNP}9jhtCKE2>7eV3<uglg*nekM^~;A8XR$! zRAX3~s_cU9sfm7_ZnNOla%YU4iG@%0B=wh(!DbXnf-Rvf_VI$nZ*0}f?6Y}Cn<6(T z1%KqS0u)$P)Zq{;H}KUvwPD^z1zRm#zGZoG&9jYF%Unfj;L89!g?SS1r;$!9 zGR+sTmJ#ikX1>-joosUc=+uUaCsL+*OLULwK1<1_`E(t=_hfVY>{Z60J+$mz?Mk0R zyMg+oL$30&&V+r03qKx`DLx+0$*sBLc<5 zxlxS8OY~Ex-17f`wYb1Tj1`L$XL~LjF1vIbkKw+abKb__sjJY>JW& z{&E|kATSuGdvt}$>$au(%|sm_t+WOOsEZ+^)f)cbOJ@UpDBgt?e+*tSz9hZ;!FEp@ z>4(4UH}x2Vt0II5$Xm+or-^;=U{ zO@o6NdIK(w(zo;z77gQb7HRw)*<>N4@5H;pyU75I=575>6=Uug6zH-B8((YN2tNJ} z+W+H7Fa9v2$L>DmTYcu~V^NyecQ6^HSyI5x&RPQWlC`ywKXNk_R`tbr`FZg34D}b} zD=l%brY?KdEiZnjez#=}85y@ixjIbDM*5a_btP|}<8^8((t_DXd&bXgQEC2L&^K5eGY|C4oZ{0)cfpQj13>zJer2nl187 z^S^v_~d%E$1rCyY2Yf60q z^Hq{j_y98)!mWf9Q_gKACdF2Lb7g9xZSW*-dd>E80*`yO*koV4y?ZdtdtGiMoILj> z_tUc|%hNHz$~vji{_0rsk=CW{>Y=fM&OrRX0E7iszFH@gMo`4IUXK5<_*O1QyB2Q2 zP&)Of!xgO_xI0ZD@MubD9pbCNB>P&v|i73PA>_Mwt50`W<@{^#^s1+@8tRBt5(j#iw z^A?&k7F7Q{?aM(;_r^)WjA*s64mK;WB`Y6sDc$nu&rR{$j>(WXF`74hP;`_g8RR}6 zF)^u=p}#Q4%gQ{bsl=q*(oe%1rKT@vEp2H8q_3n7fxg=fDk^-buLxp31AqyqFQ-Pa zG28q{pVQG+E+JgNeAMCtireUa6`RpcK|s>%qeJ?~skuIA5u z$H2+KcW7zw!f99N1B{kCMjcGPdohnL*Kv{mp6D zbq%bYKR5r^;%dmVlmZ$Kt-p4^ayP6xcnh)pS86@DWE%F1hr-KD%V&LQ zdvKsNu)Tv1mg&-WE=WtZ1nZFFV#j8Ctq&ymE?cpk2BM#lA3Ug34Lr0_K(3 zNLmE)ovauWu*noqr^~nfJ|+`BxG>qnHnFx&YD&s%n98&i7^<2rZSVAX?({D0D8SvR z921?3F#52@Q;~{5MLW>K7hB1-|1IH})bEz?XXLdXA=!4%sIb171l!DMvwB*i zEYHdvvroZYT5#U5o;Vc{gJEZXZeZP>LURFgE>M3oj;&uuhP!Xke@MCE3Mk^91?gpb zp%YkR9JI(M?B7Sq#AE3{TeSB_ZTKuw>N8{9`N;`AoB7@KG%YdbY_A=5YJcx(bd45G zm#T!YQ7*siaZ%8WO0K1-dCkHF`j(u>(I}V$V2j7sWz9Oa{wLJPR_31Y*U7uHogMOK z-GBDsAWo`1=lPqK3521`NR#Zqu+<}=Dv+s~N=c&xUKn)ABJ*z9Vc#+Fi5XDJp$2StN zA@|1kixMN7s@W1Eh&QfMf&FQy@5<*%^4RwdgQ^&&reJB*9SGNU$f>J`ZECqcNRLX$9&JX(}enB+~i2Y$Gu zV|O9zP%tTs-Bu>#?=baP7U&pW;eV8b~Ymj$}4N2FGdCI`^xQjT4& zSl*3x75)0jLEf8=V5@(8pp%oA3`;E$<(qzUtj-;BXMflBKtW~39jCuU?+rNj4`x|! zm1~%K{Vp;pX}0dnMtdJ15zb`Ub&Fr!A5Gq}aueM3Vf8)<&A-)5%QFAjCC5Gw;&9TU zdc>V!sQ*dWhsxm#xZxeM`IEhuGM-fGw0QC7mq+AXgu}KoNunhbgYXDUuzSFxF~La< zQyIJOsnJgIDz^=w&!Uk9arEYyMVMyFWS<<Ui!yvJc^TnW>yCr)&_qSz=2aX2o(Ze z1pq}QZnI!Y4Q8xPG#i3S(<)6g96-1K+4qpz?OXDP(Ocs8(w5rpY7v%2=YFaf>%d8H z&Po@ikV`wqrWKjnmYdgK-sJA$bI2tynbr@f+jj`Pvy}GDukAN3vtEB<=Q`6(?tolk z2RPZ%&HPNMsi{fW{ICsXh8^ZcV|vtsjjEWP<|Plj)@fd70TwB+8X&k30ap-gYFHks zJs(aMU+)!1{~~DiOU$7q${4$(7|c8$=48R_M2)IZp~_+dOm*TXL`~$a&imAO62Pnv z$Zvdw;N`_qf|aQT^8AIcb4&^UZ~>jad<_a@BD9Nte%I7!-vZSoYC$ zgF7VBp9|awCkpYaabW(hkMcY>FTI;tPJTsB$8w;^q$CV)2(hl96SM zifKH`vU^slx02>KI4v6VHGyNrVsY0CByVI=Ukkn28&IoT^Ic?>HNqa?|H+*!K) zMtElh=38VF(MP>wjq(v?Jo|X~>k5BWfHC_&rnaZ^#$ysXXvc$fUHz^X_+z{p$Kym<;*?BWW>-5fyVoxy&U&`6Sq#<5%Q^y0`cKYENKU0SS*I+-AJRI;&e&6J#mm?HYz?(N<3vx@sG znTM_RKcc1;)|9hU zK5Sh@n8wimk=Diw|1$-}vrTl|9N-_U%}-%Wb2yI`oL4PBOxdV*d@}9Tqryi+xCp>dZF}YEdT0K28{V$J8Jo}7 zO#}pI_xiU@uv$ciJ9N--tZ7X&p46qTjv$9*E*9>Uy>1zM>!RQKKr zG^Y5fTi2FWWIR$!sExV6g#|Dco3!=!@8Hled(ERWVCnatEv*l;m=twbKMS4ZfFPjb zZyV#Zf_O4wZ#!7AR*$c0ALY|20yaaOYV_C)QHM1&FxtH?n?DB-*&(l)wl?GDV<30z zSlJ|%7=OR3=+ldc)5nUOqcTeM8Mrj&pM7|B&mqbqO(v0?|JH1mONja0M!=40+wI$` z+?8EzP#O=pElN!$MP0_@zW^P1JjxqIy9fIcpSST=WRlAjy)C31rMg2l zOz6;|@=bAPnj~YH``=~5XO(j+*|yv3L+btS!8*;mBF2Yv87{4HA46&R-nj%-CdY3r z^R5RgCY(wRc_c)%VHZT(8{(z}ce6&M!Q~{Avq4!;-Q5Q-?NN(i#^rVMT6n2mla?*w zdp4Vc9m#EKdiU!sdLrnltz@(q?|l<}nrqN-tQAZ;K^SP5K+3%Ma9F-qjPzamA=F$! z4E>yKLXE-yBT|r(r+g1p2P*;j7g zlu4qs_VjZUFT<}VSn#rr-dre$E0Ui}Cgii`wlSG0;^yBa+%=6qJ?qFY?UVSw$16tE zS4ul=mjgO(=ThS6!r7-`)de0bO(K0lJt{q*IX`BP>XF&SgzG!J0gIkTxjZXvoqgii z!lrqu54OU|gFH9&n|HrDz}@Ad5LGE21$)aKMaG?{kAIL;quNd2 zL*_Vlx#-5!xNNpXzw|g+YR<%^I)TFUaSMltv`fgP8JK1HOa4?{68jyA&kA=j!bP=et4FIB}WU z^BA}!y#5fk!Ed;3aA+`L&wD1JaxX2f8{mdFFlb{$Y~(g7 zaKo_L|FPCq{;;v+n1_0d{t#yZu$WFo}t5GRs-T8Edg~@aA$36!V znp4G@5?^DAXElRQj{{su{OCBTvP|A}nf7!#tHus*P8sBkr zjYt0|`XndvEmFxcH0+`gFq&EkCpErQK&n7UT;GHnc6>?jrlV1<*a*7Xi5v%9* z@P-ZVv&a;TCi)=V$9g0~!eKMhXSz&6tU&+CEVNFzQ~UPlvTi1{Hu=T@*%H9{PJShE zS@_)&`+bPIg(*kd6v_5;@ETaex6fzy>R>OTAs zh!i;Er1(C{W#~%;HDp_5oLlg9Np(=4SkC*=yKloY$_v@QYAWbaNv~=ZINiBx52X}g zP)&!EdVAJSqFvE?&@xujdfnGB&=B;GCYPRE@s1in_%>?r z=55vcK{*52kOM@l7VfRl#}ig8;;sK1^YnJ+%)BbWBM$hL!azESMb?!UO2ErREn`8+ zxh26D15C&TNiT~Lfrk^kSx|20$74f13Yq7pwPjI`*CGiO>Cif+Ws1uRxb(HPw43;v zeLQwql4PFw%vt7$;Qk6rEc5-Mi$B6$f6wK^_y_IRvzYT#txtXrgYT;xR-c2w%kwpL zjcg%^);b(afYc#VII@$D<{uGV89#ih{Ixl#M#QOXFTJ@oU~PrCBF4z@LPQMv^oUA) z+Jv+bIul0hwa1%*Ipd_LicOeo4r|XmW6kOH_>}TxOW;+B z=|?Q({eou@ORdbUSUJaMwQP^Vw#7Z}U2hs}K5xa}}vq+sXHN34b12nSa#T z4fMnj^6AD|4#~Z^cq8+WmcZV~hNB7F62w670vIb(7<%>2ovqe?L}hi9P0;G|dwg{Q z!YPAx3@?d(?%7$AIt@lY%XK`@Uj02z1|`dqTC%WUh0eT%i6C5_ppG@aORyk2P?ikB^2*fqd6v z`_>0)#i=^bTw(=mYR}BMvF`LMri0b{f5HmGRF<0|}J_kUdD5BNrC~(V%;5 zmU@%vgyx0^Pr63iTZaPqYBBT%VqHToKK$Z$1%d3)x8~9ksU2H5$(SU+{t8DFv|sm&?P=@wq#+x# zTwC#;Y)h(spyJW*SLv(OD*7RN1&0aly3Cyf$iWVtLjz&@UN+RG&wzzL!J0o@c=M!( z^w7f~e0yV$wAIPjz^35UOrGZH(xZu%}NiayZz zRZ{A_8G~%_ncWj8*%{PEzO)H6!A4rkzW!Zsr6#vSj(uaX#(J+9zx;RUXa`qT9X)nD zU7N;FVvDS;6V2E8@bG|oDSYr^D3z}#c20iBUa6gFshkeWg__x`CA%RrBMXP_d*7G% zP38%8%G%(fjF51eX*1hz;htF{s+`u#e+R$ABVsF`|6 zZd2E_!G#nydd82Go-Cd)mz|@&HW~D9yg0kuEgq?@Y!Tx>2mSVh(wF$l18K9Djz5Mu8)UM*?jxRoPq7%&HlOigZ0^3Cf9szYTq*Whtu&55WyXs5=BPYwp<6s48wm1#FuCA-B`2<&<3wFH_ug{{2 z1e$&e7IExFRbjqN1c%BRDUlD*#Xcj-O8*#TwCWZ8Pls#3GY}BmI$V~x(E5TWg7dY*#+5$UT$27>XP~>*m{O`-yEb%kuiZ-e3uXDLi~j)r+!t+LxN?i z43tPkb+4NVO|qf=Hem{R6 z9*o?F{N5v7#va8+&syLYtx_ok1bdL;>(^BjZq?Q)0(i1Md)A(9K9EwN)VhP3I;Qw7dm&ES^aLUwv} zLu9rvbCrqv=aR#xI(YqqWi%#`Y#R0DFN4x+BbA9xesykqqjjE}B8zGjg78P${~ku- ze@*zE;K>WvxfIk?v-#(A+3%a)rstZZow4EkqDi+3e1pkl!~d4y{H1ffpv_0Sst9RM z>BM>NB)b#TdH4K447~p}m|(I9c0}Z__jEe={xoeFl>ZVgGEnRRvxa3%Zk|(2ce_81 z+SelsBI`@=hP4`MUuNK&O_(b*a+W|Kx0lOon@iAr4(p6CGsx+bawI+y)^YN~{q87c zAM38!?Wq|xo`#%JgX6uC+D^8Sn#VT_4&}NbL)75B=*AdQ^wN1^%;Oz2?)zZ@@p6ke z(b;-wAdP|>vrwm6B#3)tdZst#QP)Py^=QNU?Z*{68NT7EZ0KG|oCZmD43A;PZ2w5* zoh#}jBF3i!lO2L%6klqvKy&Rpuz{vqCP+IOO?s-SU{&b!_DBva8Y`QkzCUXxf9?G9 zzA1gVc%9@s^4nd#P9W{1=?xl2qGhLWxmU}XRX4j_cXYJ4TzNg<*Tid;JFceEQYgEO z49p~OqRMKz!_x8P2$JTT6RjRmWczM~FHjSVWua|8DLrp~^Xhj1Tz^I8?OD~JZ9NQaN^EbPY_)ZuFj zT}G#>EY!+=O~3j?CD3{by%mhPo8VY#wFH@Pj(lb<7;+G%!+)s7L+D>#^^Y{S&mF_x zUkKrHf6n=YbkPjjxbbG|<$56tB*eCgH^m<`%247a&fWRy`?BV8*$N-B~aDuIDZA0$rIq; zsx%-8()V2D{L%HJVYzL}b3RLM40UQ{f0Pi*-1j%PHCM*fIS+OJ_eqE-Fb+vXMt+}w zI;EmOJ`0PGuoQzPrb5>B@9~>?elV!=eRk&$H-Yl&n_5@=_JmxN)f^58R?J-*&P776 zuObLX?;hR@0`8D4HNXH|nl$sdUg1=40j^bx}wSg4_K$U}?wfPB)J1iMA@ zq2KAnRZZ*4t~AD)P2V6tw^FkGyzzf6H_{|K*cCrGlThWb9{_?`!c>N!xkh{{rOSUn`vV(NxuOZFC{s3ZFg8as}>aSPcFjp5DSQ zivRrrB_$=K5m-QAQM!9UloD7#lunUu$pw}Y1SFO229fTrrCGXrSyFQ8j?3r!yZ6pt zFt69loM+zWoaY?TQ#t9MAd}`<(RHXRjqq^G^_9asct(h(u7&)A8fR2G^%RSAEbaB? zSHy+JKj+7i6hqY{q05BP*ICWx$k%F+4{15~$I*V0Cj)-Y{|Z-sH?&h3-*ivgq1ZCW zGk!amx+U{;O+b4nw1X~|ABs9`+sEpqo91F6!?86lEu|>_3Rc#osrjstp`$V`o>~js zm_99RPu18a9CUtNixp09bHX=DQE$dw%XUBcjOgPy5-jpNur+>pFO2>9vKso0L^BH5+6Q#rgJE54Ui zy)yG^@Aq+m(2mH;BHqUBf8`^h{UeeoleSR~sk{5HU`?Ux14nh$DF+V^4~q3_xUt-D z+ly9C?KxK(OL~Kd@soF*OW3$nnUYDPwph=@H9Pe=NH6P)11^^^i2u3-^s0<;wfuis z0F_f-Krp-lAhEKeq78RsNOzjxjBF(Nb&NjtFu5g@iU}0Ni7H1!&F$t%Y$4mILzAKA zFZ5(kxZ0kmj-f^z0h7z`-dSmEQ>PZ3Zxo2=xJ00v%H~)Cdk$DgQmjIBto`JYH{!{F zeFkoQz|vr+(RcI1-)&VMUkPMy0;(QXo||v?Vs6$1TjtiLh3p7;7x1A zPc3O*aFxA>e%}CPi@C-I3GF{`;pNZ5S;vU*8AvY%k&8r?5E0(pZs}4ms1jXBCr=`^f*BL+ z&b2PlkSVvflNdF-+a)bo`wIcVoxO{2zvn)**`7l8&$uqjxXjbYW@k&p>(iz@#D^t- zP5I3Kij>uOyl(*9##bkn@I=Q4+4(N~%OM9W>x))w08fE>ZR#maIHT5q(>^>I}p< z=e>`NrM^y*aAq(W|5HA6pc^sY8ZKJ%yj_UO#cPf>YwNb{_V9Ic-M-~V!Q2u&pT=t=r;+)LmBJ*3&Ov-nq(9P6$%ZkTqo)Ll5Qpe$Y|13H@b0kLS^9 z_A48}Gx)?cd|t0Z3UODk2Se*3JFnhz6LXmJQ;H3V17Dv3Z{nqjAzA4xHOpZ=0cm66 z8lN!p)J@Z5Lt|CaO@X5~uUYUiW0lv3)&<;N?CY$5ojT^~5)-rU6&u&)on$3C?rET| zJdhqhhcG)%j6crV6uy#T0d%V;dPbw6$K11jK}j}K_B!v>-6jKf7Xebm6T2nti?WxUZX1* z)em9AgGR`K-VPUqrNz$_x&yjgu!^8M^a;ieG8!fV3h%2O0xe^3(ZD}J5x z!@x_xD0^DCA|sgxSx-U>(9kuT$$Y@ zbksd6gaIAUsh_VRWRrZgBN?l`F4A~-w2kfzz@*Z2Y_nU=V`iQaUEMOn0beHjzkg$h zH6YxED~{?k-lNwv5pLP48Eb=6{p5AWD*p_bA^87|2NESL9=2kq;lRI@t>KeF20yiy zyE}!x8zfih740tb)}x|CyB)OGcYNI}a=@Nj^7oRdX!VJL;RtLO&=lv~N#HG!cia}N5 zb*7xZ72DMe)AKP&n46<_!*9DFE(~Q+GZR|x!4T4)_Pe~2rFYA^W?D@lQ7e>X_ z)4q+*M=PWv)aYnw1^3Oy8r+;Xw8%Z22v2t$6^hKL7A}?zUW@eG50`#x;h1~l|&_*vlYbXMMXGoMS9OlSl5pngN*)#EDiCF_t@ME zg4YWjBP*z@9T6AboGzK_iV5T5fjnG^Y1gmJdvYdq2zSf^kZ1?JwZ?XUN*;QX<}PFx z9bs?IlxVm`7lUwryj%KFxh6USG!p$WpcQN~*Y;LFs&ejY<{yIhWSm|HoR?KrLVhb4 zb(v|};)hFJy6Ad8$ENSOCN8BaR}dI~oa&0mOuX=j%Ufov*5qR9B$z~3-%r$C)^FrZ zdthTjfn_)N+drTmb<_f+)&=~)L6Nhp4C?~JqJYz{I-Xq#_AM#wa7DUg5#|LyHZjK0 z33DALqsSZYmD7yXB3N8t(^l_c`@`ascXsGSh|~4&17MV0vr-m{FUH=+{a8=FiSu3d zXE@p=_Tt5`@aWx)0(x<G;mZ&AT-rsoUS8+T})uzBh$_;z14wm(fbuU*0jpg;^Wc z_dhn1+i}vjjzHq&shU@_5&E6V_Du^=;)>H4A>#g6BWzde_^AEuAEo8q56kuCcy)no zvL)A3gUt=Auw>XDK^Ee(Vbr?eQBh?rVY=^$d=r=E-1@<9BY46?9{grdg!pL##J(jQ zcp{@(du_*aUt&9vAxdHNzs{)K^?kH@tp-+EpSqA1O@FGyHt*H{tR-=7do!wQR9cCi z&_pe3;k0O8ykZpPb1sg3X&RmgdwT@mVcntwfuzj}S^ITK^A5M9j$=CN2^>Z7uiM~2 zi0kb^eMm(nMhk%?H&!k7m5Jf4+7qq7Ef=w1%Ye4H|B$s(da6@>AdKdy(S*7#DV2ZmC@ILoIJk#TUkz<0Fn$Wl7$~ zFfhE=c^jI!>R(Dv`~+^)xFKU_sC_AQiwIQ?%d>L%SJCoxrrRschi|Vkv7x7pZ4Th% zr|d5SubIuw{m;1x9vcLN!OPQ=7>u+qL${OrTR_u3mG*YHQ8G)bc+pv zLD`dqZl~wjs;?aw3J&37*!K@yd+=F@*6fnBdMpEhL8GA6^HkxuHkxWN3Mjfy`~c+# zVQjXC`7fjah%VWVG18#6*4qG-S$sXuD*3|hJNGxcAzhMB#UJ@)N{=cdc%t6Jkj=c$ zaM6fTqi{0s{_DB(u@!ts*LSl@wdPUpK@B0>--t+g@3(zlhUR%*7mvpfR~(pxLYHmM zsVY7ER%%$C8?qNn!!O=Q4wqUwIU!F#lr&a}0$_<^!p4v^xkN}BV>=o=YTjz5nRk0; z`ul?pT2}h@B`1$%>DNu@1AdvjB_DS7Z^PiqU{erI^SP7oTPIv}ck+V^dJiA^CLFk~ zEm)zUmo8H-N~46%z|Oh(d&)*9^7|$(U}AZZfg7><%zr110UC-QB8ssMCiZ9xOJHWw-#Y zth`CmxOV}?=C#w3XJepM-4}<)#*qU}vn&_iULdJwsS>`Yo6iq@&i6Y|+6=7b{=oxu zsq3^WgTG{d323UfTk!Qr2Bp3uwLD9>r(5-yHT3B23=FrZK6?A;rZKXIRcxRt(e-#$ zs*Fp3M}#h=gE3dn;+)o#dW)L(H}7_+QK71W2J{3+VZOBk>T|9!NKn#$sT}pCSXVeu zj-pYC46V+b`4zMxkC!mv4#dFu_Iv*9xd?(D@U1G@)LKmxYFM!8U0~^RLzC&dH9aZ{ zMV>C#)ZJ#%#VFu2yk>cG^}2<<{|}eSLvoq0`l&(sbxPUwO1Jd`YFf2tzB}F;A8gam z>aJYvwjOH%A3kEc0C5=TM=QKg2`*l@IS^S>eXC`h(ZHUknKZ$&D49@b!V(dvi*KnE zf>Ey>RkRadsBP%>`Fd#^L^V6tsI4msIb3naRxHJGXgTgB`Pk#wxHeQZ)#24)B7W+f zmEn<7JWOTevoo~)>Y%qdhKXxOWm4!qPwGBMDx=MO&yK^|#Wrw;5x*G!K)jxj{oh|G zC1}rH!r~U&WG_0fJeU@ZgBWOTi zk}EfP>r3=~FJf$=*7p0G+n^Ca(^l^ldlK$A^F@72YhlC4R?3$@4yY1xD;yq04wFZH zELP#tdQnLTIlwhDRLL7w^FLWY)LG1F3HvI^P9nf#VmQxWnB^4?-N&Ob*WX|!wJ*=Nl3y9EV%m32)S3Z=2g0dzZ`*(dY-(gX;nEg3h~2RZR`$Sjx7Yc>$}{W;>Y4|b4}|0(UA;yL1)v#O0Vh$ z$i#sg@fV%ZUfxHjmGlzDNk_^Bb#j(RYDx;xjpf1Yi*uWrIb^j%KqoODeE~iez67!^4Ct(K7#X6y-PTcMWevi31az7SdL6&4xmL}y)2=@$5#m(hX!Eij* zZk;AE*6C;x7aR^vYLsq(zS17*bllxf2(V6?%baen;|wZHcb>}{svPYQC8#kxP#iNO zu25E*WpA%WmIYKnN57lH>u_>PYKv!o!LlP{ikw3}EXcx;VxqGDsKWo*VR=(ROTM^v zA5k&28~BHu$X(ZP2Md4|d1C#0?*K&GJ6=jCT7Kk1NdP+u`zxO~Z7GH>??4 z?WM+}9r{WA8|vFuqE_%=`%Q8Cnroy$v{eWDniECwUGdsR zG_Ybl*S%HrpBXeJ%j7i_9n%)=59j64O~A*hRw-U^wsH7#p_LQaSTAhTbf4Pib{@_P z7p5*2bt;mlo*jtame&CTunnper?_W(Ghx)(=9n24onu31k^%54%zFh>(=Y#H%O4jZO%R8sdDP(6LJBlxHh6a^Qz}(bB``E|I;l+ zO~stG}pSxO#Jpw5+5?jYmgJ)r@& zBbOY8t$AEKdMo2?r<{v{a4qIb=8^3Am!`SLt~Gx-sLI)&sAWwHmx)Ua@b621q2Mn< zKWw(N4H{a`c#OI}f1`8ne!Xl+7y(^YhVLkkaJw{9Cd?b2!dWd1Moi7A5+SFRXsdas z9r~2~>MZ}5yC4^@LG+>i!b)OqJe>6NEG7EBh?a0@&y3L7NWH%Zc_ z&9rYi7%|W+`o;)Ie-zoZCN3JfKh*<#)iK-|@qh*>c$FuXy!u9Rx5DY7ioYJSXoQ#` zpPi*g;aSG#w~I?`w4SnP+#3C&e9?TRrA8<eMAy7B#G72K%G! zG{(Lr=IAhn`Qaj*OBptG`sRL&PnAtLo9Asdm_X%a-jv4)986EaH?)^YY&R= zR#X&I6=n)XGZ{Ya$ztB}y8M=`#!yh`m?*t%SUj{?6wQ%V_L#GTduyzan`3!t57h3+ zSAc>ZfxCV=Tp%wK3qcP%R?A|uXjid1qA9(UA)1uuiOJien=#$y`Qcr=1(9G&J_|Wr z*PFF(yFVvk6K4J{Xm`+Y8It$*LY9SW;|X3TENj} zcw*N~a1FK_a!|IERov@G<(p&;EgoZ42q6_`$#YXaz5u!R07|~_%GIRrtbqi|;5WUM zU!0KLT$KC@v0k_EAo`cS-mF>rIPzjLPF;q^JUEvqWK16%{(%U2deMaEfH@XuvILR^ zaC7=(Pes?gtTmb8G{>?qcn7BCgCrbLsmXwe8D;j==`Jw2(!Je=0Y22+C6b zs~@RfI+-ZT)OUO?9@S2Yl_gDXC`^|afStHk-VUlm3w>w#ps;HuG;R6=MaqjW`J<b%@%ljGg0mgvNLy(a#0L3UA_CeD%ntopzDFfk}Fq&^#Ts+6`} zPba;h#An>bS%%)%sr&R)^*(bbv`N5-q6~6_+Jg`Cjp^${GWKK*Ie5; zJ9$9s7(d;|`j$;D=h?;(oHt2LT*$x0W%xInAp|sa;r3-tb|8Rr*ksS|rxc&YyLIUY zGtQirvwWV&J6%V}KjvY5#LbM(suQx0-%v6}?PN@}UUJUiWEnffQfg0k99-83ob$Vx z%p^h@d)B8moWp`&!k<4(uJneOaIDdH>gJ z{?mP`swLeoOJk4EfXxV8ij1p>CjYd&d}>+=3v-0)f^g_sJB{ zij!+5&nf7Z+UYCkE+{`%eJuEELUf2vT~oxc)x)>el1qQN%2Sh{;SYGBha0}OO}}7! zU3zEL8@4Ka9LSjWNgPi(Rra$Yq=m%Q*ikfC1N(iDQB*=XMAbi014k(Ni0dC&bf7IR zM+e8T9!|~G;a0iKmOv!1ghHiD_gSDzT;%54KmG4s@zC@4_wjZ=|Dt!Ow0a_|$Mw!g zId)f#9?%we{uXKHkB(KD4DG14&$2SiqBH>7ZIqXH;vgakO-C3_L3W*h{0sK)p6fyR z#_t#POU!?EI~i^=qNUmY;ayhNmy<~9Yg*la9DQ5}zzc|}*vY9@A^7;w!#U`&??gRD zGAbT>&E8LSzckUFxuPN0IFyj?qS;E|7#5Pd)w!)#_fIozljOcpq1yY(PHLz(63^~E zP{Nb^_q$V0qNByf+)~Kr!9=Gz>i2Ez-Zj*j>`gMWg0HBpT0i&BvQqa{GjrVl# z&6jhczb~FN*znz`-PP%}q<23DT|3g>*}petQoDNwp&DU!L9%kHdjb{>51Y3+Tz5LF zwua!0so%Z#t36gU-9eALRlll%+&3NG%A-5Bm{5`STfX5_BqT9hXKME8&J*%*2z;!Y z$pSIO=10Q5fxXg`#5Gh^NE@lwk!`3YQj}u zG1E9VFfd2{K1S^!8j9}Ve!dkE!(ZDE*BZ@x?I<}bOHQ_a>(UbpR`d9o+O@%H&o?D~k$4^`W>@NU$R+Lp5PZ360t zz4CAmg}R;Ndj4eV5WWCD95(+rrS5f=D4TRIGq+EmR9>O_mTxa+kKiI^av`oiM-6flm*>j-EwM8 zWxJLg&2+a@5$E&ih{mz8?n3!1p{I8_efIdJ{exEbsp3_^+M{oqntga)=arpE?KXE@ z|4YNI<4eco{b-u)+o?7yKX=ZQg)Lp}+nPn16DJ8s4jIUlIp@5O-&I$O<0e&d@}!a> z!8CQl)LqHZ;u|UKjO}>>SJcM$6gMs**DVoM%bO{8K@hy2;s0g0pA#|C(*dajNS-BA zTm2O_RNdMD1|Rom_Ii({F)R=Ho)Y{1AvAf0nqnpDmA#q})Q;Q=g8dl@7=0c3cV-4H zU$Uo=PKOQ8mm|5wEg6TYkPPXA!6egIifPJ3H1Kh*V5uS6K$XX0hk|3=XQP??4T;4o z@By=+_swNPU@of?L4%nr_7}CC1PjBMuTXu#&!)ezaFi(d*~Wf&1Rb%~kf~dJd`7_Z zQ;GIUVyaj368y{vzp8&#kKQSJJh~xRUz(pIQ6I&3()j0#xx}4kwW0}qBtBZudu3eJ zcF}dr_wz|b9D-g1GQ&oYNo>_lH76@E-d?=Bl5P{w%5Z?iOs2c6XU&L)_hNSpPj_%^ z9mz^Q74vJECIgnxQu07es>MFR#X7Qw=iyN%nmQ1z zu9~F4e3-aB2?oID4}g7b;Kl4>r*>^GewqI-1!|0M3gX>;wn_GV82Egh1WqX;B)=Ra z#-zmJMLJB47dpH9|37 zK?liutLC5Bh&CUM4peBgAZX!$=thgesZ_?^Qo4@sgT%VWN+*+)LGJeJhw3^9j_)Bvab0OV*%XnpCvLhTR%i0)jkqu??{~;5 zDDxM7Va>${ypDjhrLFgsN*@dIc_N_fnM0Fj!NVTTG#B-yilq@+@d?T<52b& zSQOiYID8L<$}G{p$UIBkw1fliYwy(8rvrMINOpBHrCr9{*AK$Vttn+h0 z>2Ax|3t`jV+E3Hw(?h;T`jV>tqv4ms-3LVXgSSexYXgZ~ZX zFnGX?oP^OC--xFrWZzHwD97Nk(T1{AeZyhvEmpsMy-z9O(s|@J#mJX|1WlAd=xmm_ zb3R1tOqO?={pyOEBp-D-Kh_egf;qVUI|HP#lHs&>=H26 z3)L(7v8BCY-MT;}To)!!JR(VJrm+}h$w0jCI6fr#L*&sKDZ&bom>Osrj@Uqu;25{u zQZHWP=NQ5d1As!uchMGW>z~xGL^mbyzew{P2hgD7S4M<1edk&$@;!Qa_a!EhnqHqU>*fEJ8WNoa~SgdL@{sRWjb!BknD zoK{fo&+%>i@LEstyPM zXm$48FD*_@is>+@LTwF;;-RsE$KIg82t41OH4J3dcpE9XOtf1Zup&x$@=Ra+!1026 zPj+X#Pn_>9AW{C7X|sXo>wKVGQO5%L@~U8>2>De%Z?Ms^Eo{y4bzRyRQC-VbF@^t` zQmJgDz2$O=LjJ3Zf!M-24|N5xg2l`{%*+jvwy>R_KHcLMF_aAoJK=zO^x4DTFAz5vz>z1^yXUvH|l8wEO-bi@q-C zRShPSzbXLm97rR&12*&pCPWQyj#aID1~k{tDeym{4csL^Rp|N&N;|Xq)amwGLbgP> ztu=H`AuNfaQ%Sc;3W-l<=LqF1pHcn@wN8$`WE5=oBd*HZQeAlgPCHHglt3NL&}vC4 zWgkMdd`-F?l~}e*d4k2D%#_g^_Lu^7@mivROg4x00+{*DBlz)`l}Oo6Npa1N$l{wt zb|hJEOLCtRY~EsrUoC+r;`(&?P8^Y1k?f#H*4vYqSDLIKx;!O#dc)#iTF_>xdy{P3 zFciCKnRc99ka@)qZm6?$$r=tIOU3Nd_J892OgfF95wl$frFU?=e{C=XNa zibIUv#YksyY=t(@11if>Z36?3J9@vShe_blV0wmmHhKlbyz= z<7SzN1>MBC^eLynPNRWxtV-_vp%XrrkUCsY)nI~AaWxVH_cUYYm>G=JgX9n*3KOz< zx!C<$YSO8K8LzdbvwBZ;EQ2`=$6_}1w2@(n1xihN6}2#m5NmXQU=%y1=z4s``tl8# zrPrtS31b}J>UV(0FQd>gyEe{n*YvA90i`%M(rBmd$+GEdu&7m$5+(iB0oAX*4H-p@ zmZ~AG^!HS}0fcw3BGPAtvc{_z{k~aa#h*i_<0x+x$KGe)l`#n}=%eMZOyE6|NI30p;6 z?L^=Y%BX&2os4T1D7vliq@MXIHsu?NcFl0|qJ?wDKfwb3O0B!!Uwm*ZPSc?t``z_^ zm%2sE|I+8@&ndY-1}#O<{)f>AuaXx{YGRE;H^JMU1N80?P=bwbk;akqueQ)kMrXZYdeyO$G^+9kdDIY?x~@ z@|I|ZD!qN5L~f;`hGbu7Ce)aQm(A;3Ez5N*Iiq9E={KM8d;(sEjUADvM1ds zOaKmVN>QWJm7kbDQ=Md$uHrO}DpX$C+50WuH4wg$ic%F%t)X>T>%W^3n5-IEQ%)q{ z57YLYb6?}ngz%3@&QtNX^A@BcoYrh7zUWBm{(uxt#Gt}BOovmQX()yFSPaA`BWH!W zl28xBl^I&axxS?6FsbveYp99=gF#V?k;8c1!fOVWtMok4_AN__Y?W{pHNTu)Aaj^q-@D6dIb38b1ilL5BaPko5~)`O!s^_ejvYhL^-E!tLCRS+Mh!|&N{IadOC zo#E-!hBxT%eJY0BFVEUXH%>fth>o_l%Zws5rirVYefcFqX$BN6*T( zvDD*KOe0h>D3~gvII;Wn!}eQ(e(PLkj&P z%|t#a)M7EQJw@F#nbu;JZWyU#|AH=;!z_9w_*6wtUpj!*1-MVYwsFEe4cjcm>>vHU zF=7X){PGySUm5TS4q=my?Mvo?nyT2sEEYaVI}0N1l~36We@tr?!X=-eO>;6LGlflM z>of1^xH&?p^ELBzEUF+?&Fgp6P;A9b*kXk_0ixT~pjyQlH@3!t;l4Z5yS3WqINv1c zPAM%RHJnaWZz$FkcT%NVRlpCH#QnT)(Y&=Z(Jd|`uXX^Qr%Zh+c*@%1Ofz!xRqAOv z;CDM%_JeqQ5@yLKBGsr*EkxngCljvD|5Ppq&Nf_FPWtM=USx&V$?SLCA8vmIyQ;j5A@KcG9k>~@dknX4_I=-}X zXs1thXVAcjSP3&mVW8%h(oKA0Wxh{_Q%tYcSv8}sqvM`_zQ$EXMO~!vo6PJ;OlA$@U^(nu;z!Nn4uwqP?{=9Xzrb-!2@$r&5$!6X z%+VyZhGZ^e#--mIs_zKr-)Jb_m6EJg@hkxL&&N+ON6vORKYMXi%Z33f0GNNX?ylZ& z%R!v^bi>H4%OO5OexQIpMaG;%A!@#392wI*87lG@zwRg7EQ>Bg8+C`zYzT|VPzNGg1q?UJ>Gh}84b<>I;jwi6q^97YI?@V+5}oO)Gplr=CD z$)9C40Iq)l!n&x2QOGZVhog}7h5G+|2>5=wb-pJGK1T1hpzCVBC$ZtcQRV8ExM<6C zH?1+p407g4k@91hcf<1iB?1s~1`*A}8HZFgf>Z2@&-Z4jh^I~&+j)GC!%g+dvw%dV zEo&n;UMH=t-l&G-0dL}1!R4x!-XYCN0WN%TuwUM5>$*c#TJn$5*8^$^;XG{(cJo!N zy9ej~u%tePS;E^4QG1DU**FD<_9I&9#qK()5a=M;R;l09)p$Om|LUO%&YijuPk>gJ zDe~f3z|*%PO+lU<)F&wA z!*&;;Ec9bX3OT1=$_rz1PN(}aJ%Dbwvb-{|awTfQMHHdAxcAl~O%ye-bXA$TbU)tV zHTOBBpx)*NA~<_6u@73Ia1E_D!SPrZW#PVPC8L^cLQ0sp|1MmsC4^&f3!WSn7H~TE zdOz=Ddd znlbk6Hr&d?DV^dPp~9u@L3Z_V9wkM4`6~o))$!|S#U-ED5n8`6&KCoN>$#t9_-C}# z-igMYhQ)K>!A`1!=xW@s_u%31i#}SLY^7UeRID36!1|$15__ehrQCII(X!ieo;z6=LZfjTh3vOYYdII; zRw<_6ho_q{B#Csdr8f*&0-T0qLQiF6Ad`c#@;B%_B({wXz^pUedfA{oZ!Vb5gSkP+ z&-{b7S48~=hP;hP%e1z`r|!KU$MKiwLf3`8sqXvE{5x1unOGxA7QKazKA^Sn9ZQ3o z(jdifCj#z0a>xJ?YkY>5mxf^^vX?%u?*hYryCkBwY}0yj1SJ zytgLk?R?GN;&+w{crGp(wlujceex?>Wny!Ab>-Z5*=-iP#m7qA8E820N)4j@Z?ci` zxcsRql!@JvemHm461484){;?jcy593)$6?o%e))N?56mpn*du4H@;i5dUdMwn0Y^+ z8SJ0xDcN{`n)&F{c(Yp^J{zs8buz=R+P+uTJXn6eP~IbCRlvdf$e4b9s&r6Yc+q~E zj*9RgzNtR2D=$$#d6)8B?Y#BFuzU52_-&2-dd?3~J1UfRy`(AmRjWK7+$np59_6Xf z_;9m_**m%4sx>C}q$a$2uq|&DrcCc%e;aP3nz+N=?WvyK;AS*ywW#Ymaa5!RwW%5* z23?udgb{ESEJoWs-WhtyEjd13IQFTMCj5ee=QiGwPyL^JJzD8MTW1EJCRcLGxmSwd z-4|H~oS%FI_}Nw8ZT}@@7n_GG#Q}Q-jzk@!C%5^CGmcF7p@QcIs~Oyy1{`A!e^EMOGUJ`%=)i!6t4SD*AXba{w&p1Tc?HI) zP69VLfVe4iQk$Kh0RVoV;cpj@N%J4k1%D8yG z-SGZ3gA0ohJTe5gNd4bmR7W7tB-aQlnAPC)&v2RGEs^!{%HOvH+`P}CqsQ&U`ZDxj zm6rp8M>Jd2FTzP@S`%zrq&gJ5Ac@i%zH$+jH08Md@;I#><7{h_pZ}gkz6%GohZ5U< zm-&Qk;2c_4Q0s$SGm-IB{&}x%30JhXy0&j$c>QV^v|n@xx&RoKs`bzuu(JJDsXJFK zM7PCz&)gry}f8mTs_AqjJ=iwsIgR$hmV2?_c zpLbfMe8FA$r_qP&33PuSg|VpC%g*Kx?N?kJgW>MHLyn<{IFj*P`x2)w^1LF_SYg8I zslBKq{rJZ4jFUTL-LCaKA39kAqK4o(!=2^cK*2wp4n=MCaoIN)|0HrU_JKkwpEf2P zn^FFl^FEy>tCJ$O1y4WVQ7FehU~2p5g@iT{;IC_t5H~Qr*YasQK7&wXv6;rwr)7~? zkC>D+3c=|rX9Ru3Gn>|H8y$YEdz_~7bB3tH^xsLxAk}@-9JO6?kQVx)e zi!KGOx6wDh02>#^d=&+#scP#lAP|6*2~DsVYZ-~MrWIT{(fkP!)`aX@Q265b6Kfxs z)H~+{iM=#K&)43+XaCa1OcAsY8?NFXu_bFg0oy)M=R{I;-Kysi%5*>M5&xwoY)+T^y6Lw0K+c$`EKBw*rEljuvi%33(VJAxePoisWSzpi^A!$Pw`LLnl! ze1~2dqDvN%YMBzNTcaqQlg6Jx$Uw}8c-FD2grf`jQNkCA?DDt%=WZK&AqmEhbmzj^~(KNkL@V z@#39ouKV%wPMZF&iY8uhXLKmBK<>1ik-FN5z>vPdu$H&Q*PHg!c$Ons6q0WXMRN$@ zf(Gkk3S+Vc%GvaSpV}0OeR>HbH8NPQd5@7Av ziuwnyJ5G#AMNWP@I7pwck8*IK+dkL3`^kxJJ`ljM!1ZnL)uew^F!%9b^~}59tQ|R& z2je=VlzvB5%%!F~tVVj9$^-%^BS%Z+^?+P;`J)#6^m@bD6HqVoJge7^G=M+Uo%@ zgeis~T~{c7quh@BYRp8*+M-H@9M1s9SBssQK8%tulcb37Gx^r)ksTnDbWod5{3E`{ zigc-aWqZ5ynjH{Z3ApB={)A79c&$MGU2VBfjwtG{%_E1Mx%HW!s~&cxg4C%j33X5Oo*{1cjd)}~p? z99y5pE=JwwW{F=mEw&u}m=k$C5JyY3Yl>g|z3vF(SbJ#&HDUt5sG@|%DU{RN3@`xxW?2iKa z)!hi02^snM31+(^;6nZnYL>fV{SRrH$Zg{FYe-BkrBN6B5S8}syoi40bge=OlEfhdzP ziwNgm)deSilf7|OC&=f6s<2-Faf|Z#rInbQ!*-O5sf_y#JI^X#mCkury7D-)D%bC3 zFgtOKrvu!Sb1V@^l zip?~%UiEi9X~JT!!tHp~ar03<65UA0fcMaizf4{_zjc7HMQYwCsy5C{>XJYU{h7q? znXd)`IkDJ^>+kw20P9}@l<6oHY4{3s+pOQ>9FOfYt4Fv9;aM@W2u$p2{wPM^Im{N{ z88)fQ*ag?)p6)%8h+nfhYN}7DAvKsjGreV!wayZk=Jzk_?;VY*m62T(mfR@ z0%29_p62YUkW3SCG#cYZAW` z&NTMOz$18|JIbbE$VLqABS{owG#q5M_*8+XClh&9pqje&p`&=bLpc-5O7(r^cIC3S z@!5nO1pnk=W@>eBA8_&VX<*mSpoy;=eB#ZlY3x{+^)I;oKj~N6hfdTN!^ig9hSD4u zR=ndw@vSK>@0ahtj9d7{<1N=_Cvi(5Vb<^kn)na1uP?Rr)>)qwQU|5KcdKEGCY%G8 z^y)bgnSkrQtVKO4j?5*E>SK_BjwL*|Wl$Sq6YIH~gu`o{@#a5;tzP{7EbnVYHu9}6 z`HGFse@Lx}c=M`=MaQe?Mv^d%_=NzfNIM<~+QBpTbO7)j+CH;-ri!IPLhzi#Bw%{` zJk=mP$}!M%H9C+VA!2UT^4^F;t~Hy-DJkumbJ5fK_mOA0YkyJJz*Syn0~#d>kl|Fp z^FuuW$-~#y7kyvn5zMM{ob}1=$@K|d`;GNs2aMbrt~zro*y%RcZ3-%KJa_DVYnzbl zT1mpMtLDsVxP`xj7z&Z0Y~X|oT4RT7ylGX!aVxu!%T)H*C_ z<{4rIl^sox#6U6y-Ld>23uE^R=i;&#)NlRT13y*0+R$I@44|w3CK>x$Y$ZQaQf01) zx6M*7;u{xbD&oR9LQr%h3AMhat&RK7hHV~eYB|{dyG$=Ek&D7fMW?S_ z#pxSKUy%`C7Vh>=@h*J+8}W5bnTytWN2qp#7O&>fjCRKd5ej!3-P-nqxyeJLufc4W zocaal>hQk>`kip-`kL0_PUlx~42A5tz>e+)W#1Uw)CvU}b;`H9bnE@k!%d@A<4v&RZeY}3ql_BL#P zOscgdWgPwRivf#o#NP4lGeCn^_o;ey6>3*6BoLG4&~vEk*6C_{IrPAG^T5&1d*8f1 z+BQGtAiLns!|&1q4!G+C1X;JhjtifBYhz8}?>gt}E@PStr4Fp$PAVJUO!T7~ac$0| zaL3*e{Wr}kNXEV*dT>-XRXsYlz60(|td@ml{Z3O6bQpJi(htXfq7Q(>GmAZV*0qSM z)S4)VV5iJB0+NYsCNGARZP}o*fsjzEN9+HDuRcMXwq~B)$Hc$lq&BLdfAKiUc(Is( zy5N!~uY$z;`jw9i4^QerlfX>EI7g-d8}H{7>RyBAst^T{6whb8^4VFkpYT_{aEu4SGJUmj*08-4AlL=_ z{=Hl#ee5{9@MFQrYElH)>Tfha_C-ZX>S=p~nfX{)H{WT1s`(@k6jnl1f)T!;5EPxO zFPtz8xW#G?e4W~ZXA7KRmxuunC_7F~Us1;7^}vGA8Ll_;n#4A1TEPE=!o#1BIADU& zi-Os$_^GT%95DQ)y!VuhDmXj zJM}Y%jYqAKCYwig5(7Oyha0{A**^2S|IY!*kvqnk*>5!bYwp)gS>dj>S!hhPzl=1m z_17h?lWfs7sD9cp7LTt9G?-}+H1z;~#XD}WsyT&R{Q=tVU@`64L1q+|5^Q~UY9x&U z!5XvxGGG_i9XbvOk&D90?67!t{W|UFxo^Z%u;#glvIH9N(7_jHExG0c3C>6zwL*Wj zba=>$eiKC#u7?*p>-DoM`e8j6uYbbOTV^l#t@w89C!^Ch8x_agSF`MZNx@l3Ud zsk-3`DCdoCof${;j_Usd_CN{081d8zuwzO6T_}WWl`(79j4&y+ABuf+bQpo_P&sg5 zKY6No=n#vzTK0s+7417?#&jmHezI(51a!trx><~IVF5(>!^1-ixty{v!dVKx?#VI$ z06+jqL_t)ouw#Uaz%%E}EJFxhV`C#_S}$jS1by~}+NUb*^izI!{+{9t6)GBCjz7_5 zsJs0!d8DBK|A#&#Z`ANPMz}9mVMfid!l?Vfb6+pasN)0;bJI;XO$wdH%QNxR??(NN z8~W*%vA@j)jZop_{6*W^Lg&3N-o<*D&M zXqS9QUwY)H?b@u1_4BdL)`7q$BP`zI5meC418wCV=#F$5^ZG+pA8bF%)HV(QB3=V_lBbeR-WCSJ((B~T`bl}EeM|w~MVS^&l07oQH8lt=At(z; zTnNPk#-jhyeQ9^&6OVnSDZpoWv7ixv)}A`V?^oZh?}UlE*gqp&DK@Wl)|u5(VlqY9 z@-lfRebR1zaogYIb81n80~JB!uY2M7$%5OP9im;wyUGm8J~VWw%zNgu$_lRJDYN;_ zQEsh66d!%GwyE^AUH&GbU8b2( zX_OAbKJrNIwSsN#2UkO_RfO9+gw1w|IYX-+#`&(Lg4PRa$6b{9rC<7`upH4mUV&O6 z+C?0Nc1`nrysph_>O3$oP4B%@P^X|R-ZRfUGlX;F{5{x@Y@?WyK$8d3NrM8si%Tws zDR5`H`K+4@L_hUYKNUEIf7{#M7Qew~J?mLfRxTQe|C(#ADfirSPw>UxrF--H=?C)3 zwomtiZpWmf?YBA5=D_#Pf#WB@Lt{*MTC^&PISHz2IH!XSvY1LDgmO7Y}V{D zI5Jc=+`Ycseb)vicHHmEz<88_dKH6`6N&i<$1#{QnNvveV|5hMxgI{QYF=t7^+RR( zb>MRF=b$78!^I4mJw0e^nBes?$R0#nK91l$hgH?PHf{`4C_ktRmn>pZc$5iYZw#7W z;lx=#4(DBPK6FiIa_L^qy5g(W`zV9>rY&1BZM&t+gvO(2lXUau%`KN)dKrWF0%(CA z=A#oc=9B{nF$+R)K?ntI=#CBLK2~=xSania{FJAbF($DgtdZu#wbsLWfkXj}ID_F7 z3U%U>2d0~-V93XN^ZgIR>q+db>XFC$_Lh6@x;tn)g^x}LlZP?jdS}lGzBu^zFcDUm zQ{l89v%%Z%xUHPI=FGBebw3smOtcmDZBNPzv(l&w#m0mie)Aq$`4p%n7k<+ab-^S0 z0`NgAev96ymmeM`=K%6h7wRW1<_!Uuu!r}FYJ&1?hle+9EW3B@j(b*T^v$Dh0o&rQ zMTuT5tt@k59&!GmQ394Ya&QI#tJ`SYcWvH+3EWo9M^BHw<6br=Z!ozf zjS7Ud4v4zQALy|z*$-TdAT$5@wYBJqkGdTZS|`Y>HB0m@%5xuo-S-TxR{xR=@r7oz z#jl`;K4ZaxMg4=fzPp%!fYj;-LAOX;C<9L%q-cMGFLgl&c>4v2;`h-i&oW~1!Fqvj zLO!}@x<`Hk%hsGu#tL2v>Wnf@du@8(yUQ&4ru0~(?H!FR4}G_Qw)-Xy_*i-?+qMkjoVcoK8l~MWJH|jvx#C;{NVXr>v0yaH9p!g3z=5Ma!ulIKd}Oc; zb9m@1XpojAOF40R_RJXL>g1L>2y6fLx9=j7{2;G%5IXkGOT6=!)EZBEz>!D)vF@66 zF`NRA_3{*LO|^BJDSNnFJDXre}QmrqzCsF$}MaO~zS{=}EWsQ}EOBz!S_Bo}3RDpXEH#wt*~PJchjj%!LpI zL{B_-|MMH(@P;6uDabX;PU;lI-}%mWmd8Erad9}BDm;I!k<}xldj= z>t-E&6gs8faMshZnsJ7c7p5g$=^OXI(On6)16`}TYQ`=GSh7j)9! zbf!J0ss{?MLak&v_2AKz9fd4yq1rhtTYN_P?$xcieGD2->3z zkPcKnrpH7M>@mQKpY-Q&3had!T^MN!{C6-I-i0vh$*#BGu|CYDmM>qyWN%3f{%VjO zU;_A`pZTvCG*3mK8#-DinDZ6pDC;OE&ifH@Lb+kXU9m!+AH=iPo>fj=b!u74iKQXj zQ2%j-8z#CgD)0v(l!*e9Q_ZvwpLJ$g@|ypvbS_y2?_?CSWMDx4O@7?#Z5;Is9I}+K zixHOXXG_88FdwVWqb>0xvWmKQvI=~JI$y^fre{&sssHD%mD|~Sw}(SkF1+mWGXJzw zWmIdj$_J2%%n%2*e2l$U&wb9b%OX~&nOTP=L^t?5{6JFoqywfA=3UaIyEPFyxb>kj zh&HT~1(6Qm$I!spKHapj6MoByk1cTu(4pmXa?ON)E+5)yPE^3HP&XPvc2Avvkk7IY zQ-@Ep2XTni^9!!LqV%!=0%rq{mFeha;sSpyBepj{pu%exb#Oa|ZQ)|Yg!rImGyCB_ z$EthZv!7G?7R)bSW^rZnNhg)ZKjkT<4NR zvt{k%FYl+0P_!|3lm8>jS~V=}cbdGfA1hYF98rsE=q_sGYg8aAq}WrL9|`Xyf5!3ubpE+?Y4eT3yR?M`oq zc8b0r+e!D@MYC#=Lob7`2mt{{7=HI)S#`_TZYiJo)PFL8J-~#N1x;?^n9TyAxNUp2 zQ7&pKxEp7=YSa{x+-K|_Qw0_u)4C9{yTR*zc`Z0R5YN8m!jj>f_`2xpVy^w>2#W|u z=uIq7f3Q+(rkX6@#a-o;o)iu z{R*5qg;CR8T-Le&`mJw$YnWGCf3G&v_k?}nq|Z7^yEvsi$L!>fFba|8Q>!hU?Vz(R zN#9gI0KSiZrk3TnAsucVu#K+A;zM5QJk?(T+;Kn{`-t^A_uO-X-mIHA72M^8{PZOG zbdEckt_veyJgo4EPkdq~$3b`YdDGQ~`<8krzCPI>_1mt^fi?#o+Z;H40=#n{P3Rd!jul$ps}_Y18xuk-pc$+HQ#IYo#}D8m zN4ZXpgdVhQbLY9V*}U( zW=q@3`t`SSV8|27`4^lUxYh3L*s+}faSOtc*U}6zVH_yaruW7qQgb9HkPh_1ba(sl z8fB7sFg^}m`Qd7CC-s!pGtM|26Rf9k^5{m)M4f;RRbi8Ss@X$8WYX(tbt+Wjqe4BH zG9zCw31*VY#dE|f4B|(ce5`}776kGW3?XznWe6NFFzV{NA35Oi{RYgjzJkzr1(T{_ zJ{r?W+ry+|6R@+G2#9e(ssiEN8>#n2=Fdg<_pTvnJIp2+YE2Vn2J?KF5S+C6k*ab2!Kc zm~rZ$)=vR4K4QQ+>C$=Tf*;E2j^XruA2jTs9(xg%SMX6>#pLn7IdQg^g^njN0dO*> zpeoKGXzhe<-Hm+2KguCA()>6UO=eKXdl8tw!~(;AV|sZ2)4wtDSx>D#)-oY{DwC`8 z&p$teY5CBB0J;GI_=9MAJnhy=hIDE+XnAUZew|f&CmFXfnS3`BI{WDV!DQy?9H`?D zDooS);Jc_`UN(1>BM3+zWnto9y^83mPc6?|_?$4=Q?9N31uX&aPHq(JyW!O~%>8b? z<(BgK8*V6@p-J95;nXta)c*dM;5->qLMJO+uz=+S2kxMC_%LnpCHQ4MXTnD%oU3<{!ah- zGoLQk-|)HegvVW6UIZ_^D}Ho>n#KwA)G7o`+SewgpUW2lJo;@HV@Hb(_7UHsAJE4l zjdxi#iiX_wiL((ZGlQMc#{^)UaukdF2*oazZQHgL?bT6!|0_c){vf{_1#~Tv79hBv zeDX>(PbbB1-abEou)TfzP8PQqe|x*iAUGUr-M_B0-z%v1GS0de-eM!2wC>JnED9lb z&6yr!&MbacLyR5sNBii{RWrZ;;GXi(_O0M~9NRCda7a%lw*nTp_!v1xgb%=P1vQddMJTAKLAFi&{VG@(ui&AOeLaGe z!nEUT6X$orAK{bN(vW#HD|S3l$Wp_s3A#d%eMdTUZpV1lt6mjjkwVOxHESlvXz@1P z)N-t|_3&^wgO{ulU6V?OH+p(K zydoA^6cF9lEp5^wE*E6ne=qHtXDf_q4sMz9J9+Kt>6YQxt|068#(D{t^-I6W+wWIc z-02MaSO={R?^wU~+G|6zuZCQn*v?m9eRZV!4R%kw3otI4xbW!0jteZ(Y5RBp-rxMq-vm$P zzx?)~JL$3v_uboHy}w?;+eHZJwtrZ!7r*$$L6ZmFNxSnQ+uk;}orG~QN7H%h=wiVi z{m~yqTj$(FTJkrPylnez4zxM&*yO-5S^7B8@1(ASJ@BzV5;5NUygQj>cW~&GlWVVi z>OfGfW|^8`s*4{jvk=;6On1;74T1ZqoYp>n{yaWVXiO10@K~>o zF@!$}b%14ZtPmd>`c4EEQoK@Y3>YV?ezXFPL0sQ*%&TvjgS(SyogZjx?x4L7E$-b+ zGEQZ(ybb|T&8$`m3lNG|@)4WY5<;(JvNLm9Z~6Gg|Gj*H$=B(83}>Q2_JedU`>Qr0 z6i+Y#`37}X1812EcjvIWt+4%XOibL@rTJPeGHmC=uO{XfxK?Ej<((l;wQb~AD9eeT zlP)KO^XK=KOPC<$hsU~DKLzEb2*OSxHE+|D-4Cg*2VcR?JZhMG2_Iwy`&0k%A2E3h z;SXl0X;YB&qk1kY*REhIgqrT&|KK0Ik+*&%U0B$_Byp57zs^au`=PN1ey$+@Lo9N9 z5jYoaoHY3n4SI-kQR1ugvr#4x%b?i>2lq<8n~C4u@KM3_ax_=V;JpH^{B;tz1)M+g zjAxXmB2+6F`*BZg`C=wb3iy_x<%#X;1Vr3w;DtLtop(^q-ApcGQej}5FVHQ-h2ngZ61y=?4I>D14J}yH27c2fwXy-bKV-KKvOT}yZex3es?fc$W zb`pNZ|N38Hwc<}sVNaSmsmJ4KQzs_}nc(b#kM@)6nP}X4>n$;HyyW6bq8+7o7~T)T z!|hwQmfM(wJ{}E)+6ws*{hPMz^g71wUhq6r?z;W!<=~E8j~PCg@iae z0y_NFbvoAYtKgTzUw<8KCkO0H@^-TSx8jmJnQnX6gAL)o>s<78)BNqlHU**-bcc_! z@0@-;z{2XT-P_?di=77##DWY4@xV9| z2M=L=vS$aoFnVHK@q6KTSsgvat2@EzVTo=7v8(tSOJ`a3pL*zBT^N%O5#NAI_{W+* zwJ!Dx>!wid7@+Vh%p2eM#@H8Z-;sY=e+3@*3;Uk&^1%1+#YG=$@z*{0Y8=I-V69MP z`AM_*9rynFum3vQHq*0j>o;BI)6d_4=?bZy5-$A;ik4?y7ouPGvX@199$cnS>o-J` zcJpLEO1$FAyoUYOC}b*hx-Z%?6&yeEk&ndq?BaEk4)bLF4D0N#(x8Cucglrb1xSU- z{BBC?pZ@8emh1VB`<<3n1wzBps4t&v(~oh0u;tojrb)ZbdTVLmJ?MUC@_UoKvR*#A ztZ(Lx$nWEysrYm5-~zBGvTHi8b)i~$+d-Zw%xZcrto)ES)-P$+S5WTn?~g?v-?eBE zXZ92KyUQo%8{)L>)b?wM;k(~`h425Dy*B~#w5Se#tJmr2>FL>rfti8sSwJ?~L0M#z zAW;+{qUJGCQJ*}?6LVvt$^D|nCC1#uB<3cXm_!rT?=zajxBwCX5oOuI~3=_11Fg)Tw%_>QtRNr6fws8K@hT3EEDwE?f+-9Xj6- zt_-=%w&^v}*aZ~ZwdHj8-$gL%Nb}jxem0I==oUxk0G83keqksLU_Cp>F#ShA`q9YW zuq?0X%v<}psw456G?NsVq`-4ef#;8bXDo;_g>)XysMQATN1S?#>GBvC(11B(b}P$-^sy zVIM+_-rX8;aMzzLoalHxAAiiz$Cm4_zbRJnx3hbts3{0LMXq{AQhgd6}x#hU^*4xXy_dO7U z%x()8mCi2Di>b|-^I_0q1LdyqOF7`cLpUEgqjfjwXwcHh@9lT2+>J7}4I9?O#1F9xy)gzP2Q$wTI>0&+GX4Br7DRh6&DfaAvo=D9ZLuQl zs(dGmpVt*$f5S}-{40ZQ;_84eJn<2~DJ*6@@x+tBzK31wt>xC+?uf~N1FP^X@7%fb zX_qqa^<0}w$ldqc%fioH48lj2MT_^K{2R(S=X^KPpK!tnp{3Z#hKo+NWyOoV%EpP* z*~A+dTpGJZ)I8x`p~!3Lvfaw5uRSerlnM8Iutv8`xAdLPHH1q!G9Vpqym3YBD!8a* z8>vRcJsZm{w1;8Z;^5Nd>{fCO4|%8nFq9)=$9EbuP%+PTH1S@_4u;p#EDC1ZNsJRd zm5yzJE=L}9Ok9I=(M3OClDBJ=&q>piDJT-+8=E_Cm+}iIpTaJ}{!w?yL$Ao#}R|PIl^7A+r~HPw-d)g5XZj$rW-^2d6)Ub??Au6 zlxgtpEbficwnyrB#hMu(h?7meH~xYez=)5j66Qt!Yn#u>UA7n7x&E5`UdP7jLZMPh zHWeqZ?#@}CN`^fA(8J;0xN#G8y}n#??UhJKt)qQ<+-bDTnLCrZ03dC0>-LSbefk)f z`Hn8zI*dI1?bP0>WzH`BWw$BwB3_=CPh6s}rOk`ecG{AQU_LIw*|xR}Z7iGCt&jGs zVml=}WU{>3pnFOiOz64vi8q!xv*rbpGLK^LZiE+}H;uaI;Op3$&xt3 zpXs%mdAq>iGtme;>ovnn_gopvnzS(QG`2a*q8PbPnxv6q`Kc@@YxGMRrY%g=%!E8H1iO~F~=O!3=X*BCmj1o=SMzivJS*Ww+z2e8p~;zW$=cAXEKSa3j#iA zgsBk+;fP0;DdSAqlN6Ywz|KhlX133hpG<5evs1G}i(NuGC>gs7x1NiHTYxcP)sg)2oVguboXaIIMV9T*+{JMK z5+S-ZF$>1X4$g_5OrDQv?fjgay3_6o=WVy$9t@*OObl~3LWahj-R|xb(L(f-mGQak z)Y_@u%2{X*#&&2P3w)7;*A?stg$^JdnuY&4`=uDK^U;_;P+_6pMoU9qD2c4u{pg zcPk2{#7p|tv#a$?ql+3c1lEU)rsZ(5uC#)6(%D(X{amaty)rn`BxOT7bdq4k@zEyIE;aLDSj^KC=pOU3(K#c z?aQ6wjT<+x)Bch;o?*N?XmXajZ+he@-mZsu+M z8^5owmuGi&5oQK`)MWj`A70GP!>Q5EEQ{^XI)0EgW?2q79p?m~CSjd8r=F8ZXco3_$cQTF5lBlR$)r<49^7X8#h>e;ij zQ}I*Rg`(?z(|(gGE^VD-CqMglkL^sG)<<|f_EP)kilg}1HpR{N!{Fpn>7<#F-P>*<`>8fWFoJIcz@m9fw#4!wxo+s7@0Dcg&0egFOUD+7xLBCihm zX>ploq>=P6?}_xA7;K=8s9b2PIs0$#?e+J{hG$GY)9HZjWJylu5Rlvacj~& zaWsyP@9CHM=X>JfyKxiO47Z#b!^|twCqBkcCP}yPG>KQdG=5B%@iMOO>1TfW$DD?^ z8DBeb5}fgU*I&l4iCgBKX@#j%G{W2fl(=9&vWWL(M%De*LbNnL?=Buqq z{L&VmtVhG`LkvrQ{YIjGQ}6+A{fTILql3MH^v&+SwU&m#23cWdW|m8m1gmnXnEl84L*muj~pQ zoiYRi!If7^9Kh1*WA97(!QAw?+akgp3eDknZo`V)1m)dCJb9qzH@FF7+4$&6Q-X&y^kGz@3#ec>e+F_V*oPdGMc8@ z=58J3*MvU=asn?y>44&+o2r5g#&hD};OVZM4m{8maa*E!?ilcRX_>KLPNbRo5{^Iq_zb|VFt^i&Jkrsw zUIdVKA>o!=Zh}7hu*1Cv`BY|M{rV@+;c#3TTrv;~NtUyNG@H&vMy%P!D(hMZ;+_2z^pCq1@1zngpSUt89$y(<r`l{Fb zV)@afmy}_}=IKj@X)B&(ro#bG+9EXacut5sLqWc(MmMN_06~ehE9-x6yYzNt@}N#mBlgeh2-4yP0_LN?T>2%kRMP zB94rZP8e|`3GS&ZAZ+0%jEhbl!`QfCQ@QW{2a%$=7m1m>%A=1zQr13vce!QNigNXh zmzO11E-f!V;^=bZ%Z@G!7c61{Z4>>u;?1?cl4d!X7B8O{lF5EK%VhcVOU6K^LzB#f z{YHlA-%Oupk12aCE0hch-&mO}Fm}N4F;P($+L#XPFGk zaLe9|qrdUA#d)GTQ8WnBF;U(*?`F^(qbtz=2UXy%(~ z6OM2be%gt5<{5w|e*~sfM+Vj!Py!JEJzwv*J&eMHmmR zP*#O4<1v+;ZSVD!L2*ZQ3KKQQ2^m8fx^CX*a1QLgd+#mxz>vC2E0gaIuRB4WWtK4o zI1{%GoTc8SOlOCuotdRL2s2l+)dK6Txr2bK;Z8o>=~g?v;$+F-zm~Jgro8|rXglKj zo>_KMX?#UB*;e9=C0E4FnqB52qPdBk@ZoLjI70{4CW4_LW6JF!g18yRAB6`i;@Ej( z!+ea5FnNIKwDX;gc>B`9W#!4)PjVIBd_YLxI^at`lQEqLTvo4HUCulAKf!OLYFtIC zY6BwFin&U+MY}D69x#yn9dzKqoNFEkCQ-)S!9sEP>FhEOZQW9~bEh*H1pJORmFqz> z%Hu*qUoWEI?I@B{ycz#dbQ{Q6I}o{3jEl9ID$1pQoJD4EihonbAthy z($#}?lCZ6?%)GcvcBGbeaJzFmTRuMw%okpma@-F_KkKd z&F@`%H@XZ~axQ;C*?sZuQD4&CKijfrex<+Vaxub1fhX2IS=N#FQAh4p7Zix&ci7J2 zlE*|Ka=_^Z$7M^Gm0NGVtvvMLBf%t%(jKgLzg@qLpdGl&U=bl`HnV?LSvs&3G5H%{ zu(nVXCa&aR8}=;o;NW1nxAL2XOaPNb$P`Z^f?Dnblk6x|01;uts zmJGRr4h;Q0^5Qo(j8uurM18lSqHWS1qYuQxPhY&$GB49^ZMpzB1qD%l7xryaI40!c zVt411kdEo**o+c6DpC}H->nMsTwtQ>DpRI)^MlemaCu_Gzgt}bhlxKhgKwXZp? z?7rLX#HFvMFB2c><6|FYpJ9LDdxiz^cJiNW12O@YEBb5eq186BcsuAo|3N(a4^76K zNRx^F8J@P`=@yP{BlAwU%{U29JTtu3i!G(LAK@9Ej8vw{@TP5A+p2Mza59dtqL0K* z(`1w~UK2wCs)=9%tH7l|4_O*jqjfZI&l4AY&oH-F=4 z(iV@2X`A>PH{W$@5|8@!^x;{Crfqy-`6P^|volTNmGPT+7$@TiH{EGx+I+X1&3F^t zz8lB*P4~oi!^C4EO%u1YO_#K_oh7{!pS1N)+|r$KGcWB76Mm-Ef6`1+V3GnmCk38Y z23{u5KYFit++n5*jaNMC?ih?JoIo&yRb&%?Iz>g3gCTDX;>@2y8?qgj*A!{bMxlp0 ziYK0MVu)@#QM1#sqqM^chJiedt7yEtc8g)kUD=drQ^Y-8mM%42{f${vk&1E}_c(Q0zqE zD;)@P7^tH2GBT1(8d>fU7?xRFf%nFUBR)zgNUyjLTe=djle}d@ui*+OMedI~_V|z- za4|&9@-mV=Q+t?n&n(|SJFO!A`@5^kjk+f0d!Div`e~Npn;u zmC?n-*!*O;Wa3?HkWmWB0hrnjXZP5xu|ML8yzy&6Yxztg$7MM}`oLG`3)*2ZKmx}b z4b0Dat&#_nw_SyAZ7>E~gMqewds)Ph7#^k2tX#RWEMK;)EZmJN&tQz5psiW6CZsH+ zkrVrMXiax9sFz~~($8ZXgM)*#uesC#OD!npQUutAhAtQcQ4?**9_G=9A1$|WzI@)? zU0}qQ1;b&PwwkVcYMH@#bITkH7^K*;afo{8j)f4fShGF5%U2fzpo8?V!Sj1F=fEF( zlp_z6$2R5yiwbzmCl@}9w|Uc0ECTGa_rB%UTW+U}ccEl(-)K8G-FQvol>>{Qj?`rm6d*7P!opb)9+_2)hvTbA&s_C|s&09Cd@u7`dHpGJJ(AG`p%D9U* zKg`vJn`u8A+a^Ot37WeAkJj!4%Hm zPh(MXWNb^h@Z#@<^v@Zudjk>%3;0f)s3(QAWd_JI(0EEfGty4)cI-^%AjTsK?0Yg8 z`f2iAxAp9Io_@m6BomQoCfbHKjp5BSj?2PK|7^Ry=aUQa;^^3`zs7g*$UKCV;aNW8 z2|rEZZCu^?ZhYbDZ#gY*hGkl9<7J#Ihwu{z?dE%?O`P*R?M!Ey#KAJ8zjnHl9?h~P z9K(z!&KW<$d{6kM^{IV!EsybxGZ97;PKIS%?aV9jGJe7_kEBDw$#Bydp7c%sjBl7Q zeb?l>epzqY(kWpXrqQ;&Bp#)x=acZ7WzcON32$QB$@fVLOj2OyqCg!gqT%*^3yw`I`PKU;1(}-Q$m~E8oB1!t$MOf2Z8RnfS!TsblQEOIJEfcZS7x zgfbW>I$ko01q^87)n>zrBg;|vNC(dTGmJ4Ul<^?dh$$r^|3M}s5PI23>f@>!rk|ah z7gw@j7-enb1Pz7H&hpSEv^#f|R~&atIq={EIBu{#G%}lR(H;w9muw2m<4nY@H*G;% z^kdxB&ET;KQPJ(A?nHCGRPk^Z2-qp6031_5R2H%L9`e_0WtVK*h1LRQnX_k< zqmDTe1$eJ3Z+^=!mowk=hVllUUpn)Qa>}b;Rc2Anc9_hbsho=^PxF|{O#{=WPb)JK z$(N?9*Q_e{KCl*l&cn{=;}`^2*%4>gg$v3C#Ll;H?pI}7;vN_PCvGtSCwB)|BIfP6 z;Jxu>|K5&tMJ{^r@$!{Qokb~-mv9C`%zOyhs)6_*l! zYiKmTf$z9)T7Nm}@FPke%$c`bMEii&%8Jy+V@2V1^5O%I(mTGVaPcx}Bu{)t+V;Ux zPh&lA;W{_lg__&1x$d%Z_XBs7zPa7y$;}U!haO=Ep1K|Jn8euTvUzx2d34j-a_=K| zmR0xMTvo2Vt=#kA-DT|qcgInT2f3TOLLa$VQHl3=MPL=g9gp zG{!UXc-g#dU75z>*6jJc<*I8hDVJPv0pGv|`a^Y4r1&v7@R>NDu1vg?OX>v)Ul2br zZc!4M1C?!h9hut8QyaWvMKV|Cop)Z`jqZY}@jm?F568G7A(A=KZJJD{oqpQpmw9TN zZ`y|EyKYU!7mjYV$E$T+hFT5kYG`-i-gF*|^GTUeBfRh@G0m)g15fId`sa0bYA*MhF!RuT z`st@fTxlX+Z{n5~m7IAzPh-5KQFyfcvh0Ryn(=h|WSoe=k8t$MC*!4^aPr-{lEK)n+_}oys3vd~qo5>O*YaaL*fi-hFUjFs>BqM~RqX zkPgf$#d3GuUH#qn*d3)t3(M(eoX$DmwM8x4-qCvGQAe^%N@okx)*q76&0XefC&h}PA9 z%OdkaL`)8Bu9Q2OP~n)n>`tZ>In9neS7aUF1_#+;MpWFh{jNfLPpRRCsocqY6h9ZX zk_g@ipt2_mWPB$uir5;z4nPi0gjxiQ{^lEX#=CLSZP-L39djTvPmPSC^wXHe^yY0D ztt$s^>9BnH^0H*vdass?^J=sack)%_B`jfhJVTsK6LBb*@0LYcKEaiL z;%ZxwZk9_45wG|;?X=UP{8>QD;kn^%BoO>AtoPW>1h$h<)7*5^P32YVURCabX_0~Q z4rh;oIH?-Hny@yXz%dBTyZHLdo;@pIi@SH+dL~_^fJzJ0{G3c#kL>}|a`=7Oc5O?- zv#!!aT@u~Nkma`w-nBdzxYJN9C|#tjZ7=GY;|fZ|C=GGrjW?7NPB@+;3hT=%7EAU$ zc>gkgw_Ty@11tv6{>jvZkTw=3Wa!0#m#|$J^c(X?N^0CsoL=lU)hwZc43HmZbxSYX z2wxpH7u;O#T)nc)-*ry8bItAL!ABm1nMFAqiYC>CF}1&o#W0RKv70@Lv_;P_OgHIW zlN{s7jo*dGJVHWe$i+>U!0Z9>qdoZD`%9~54YSsj3$@l&1nCwv0J@k{`vkvl>)U>T zw7BD_jthzuMCqI8UtI{}8?tL1(~T~WwoY>7y1FqIK-;@e9yS%pqN%tI<1EJZF|NVe zx}gj#Tv8sne_gri8uVc7cVJmQ@KP2KYMZvLS7{aS5lx#~kS>0}cIPzG&c4U*&ptq- zpGM~QaU_+#@P#kLx2vChpMA3Z!|(mx@0E{z>|^o0stNw&lTVI5$0KLP6OJ&2o%tke zVWr7rcEx4b3p$$rnHzEl~c`T=HuN+&pY#I6==0<;R zKWqQy^=mFFeC~6fi}XvDEQzbZ98Z*@bKJ2%7AMEnq))TVy0fg2IX}&J-98%QHq(Y@ z<0r#1eWo*t^`a3s8DkeG)Ve=7I2cT-ci3B2%O!o&G~0^)j$>Xk_>qr%B+73*nfc%U z{ohBA&UrDWO79a+I3X0}ih~Ti8rRh|30 zhr71%q^S!J?|tukV@z?;#Kjn|@bh{(8b>8Nah-xx;W1}n}PRW((Zw_@CP4$DDs^RBey#Ygj$XJ zruUUINk0?jUJ=k^xHtXuGtNN4*?~-S6$u6ulTX=BMUmajQY?ETjG4QQ;_jq4W}HT* z0G)Ck9M9<2NtS+2qMXPonyQ9$&+a>@$SgUS zI0Sq+DfJai4KqT{a(Kfk>qB-31QsADxNFvtbUbbtSqo<-$zyYu(nP zIO(T52NJ6{-5F0?lkbK*5y(k`?>TUbi^d}XP8wIOS{3OQE?gLKY#YWAKg;Od@o}D( zG%m1+laH`1k4H4rdM!iR)6*L?lWr>WlU_L?aZ)4hnSU)?E$2P=+!J@X%Qz1*+0lrv zlf`ArmIJ#xm}wV5ETb?jlSeSjSD2Q=T^lEX;$>dK@X>8qGJoBs6NmIud_6?i$=gYz z3kkw=QtKqt_%D6w0fAGNOB{p|3=lX4{i$2=F^|QI)fPXi+zmKQmKnN*n)QdJ67Epi%R{}@7?T5JxX67EtQ(+Ls6aAu+5pr;@(W8 zT4r{a8S|!2aZ2)aZN(vQCpBxu4-8!#?w3fwG6|Jen@ z$=Xsccut$ev6Yz|)0)YVqPf$NNSa=zQ6BG+_jZj*<1_47Kms=b299 zdm7<4P3E2Uc>5$$w9}TIeT03Haow%;9`CxyT;sa%nas0k?OzhEw!5ZZ`qGzTf!hAt z{#ORxFvk}k?+4FuRM1Tv= z#&_&>kV8_V$T$jVXNCq9_?w3yckh;qfzIe#I(g8Zl;;9TDb21nb6Rf#wHQIvLMkmRT zY4i#cMpyCV-4^YhDp@!H06+jqL_t(m4n6FUa>$_v#Z_OPlbwntYsH&=R8+Lb;O^yR zN4_jXtejLVC(aB+rxoc{yYeQ)cxTS)FNXkUpMCc(vu4i>r9~=m`!1T-FT4EGa>9wn zmzS~1e$T!4lpAik9_IY95VdXxh9bs_T$`VhPB)QMvbU0n??yz6yAUZ3sLf&A00ysaq(XgtC5s% zhjTE4!CpEjso@F-4mX-0a7MqN{^0EH?oJ|W{)#j zX5%=lSS!Ku=4R!Dp8PJpvh5Qp!3Q5?aFIiYZi~BWp3eq$`7(9Hsb?wNr$)Zq*!j5a zbdWtq8BgT+8FQRfahX|0WLdyFMa*Pr4pvP)N6JaYReVq3h0luv!z;dbwx8YgD9l8o z`B^hIHfDZou!HuQOIw}B`ebMNHI`2S%UMJD9ajBCUw;$u6K(e z2vOEx+i_dRSt7tfxAEa9xH*0K_Qo*;4p9;7EbF=9c)3L1%u*-08F6=ep^|9tx0@O) z+K<-R=2)BIY6K*XeFf{$ZQ;=TaQE_iL=yM@gWTfkvu18A?)6WVZ@F!m*ob-Y50+1h z(|rjq9M(g2nFf7aS&?w(n-y;>=`WT!af5Wr-L6S>Gf6L=p@ydndxhB%H?<*Nr+xM# zw^#7m)qo6&(%a>kWj>@9GF!>^mE|8!GTytQVmBA3^CW#RJfDM3>vJno!)?LV0NM-( zWl)-328vPKtN={x?4e@z3T7L|DTSBLw$#Jks4n(>gv>7!HX^B-c;!WBVBN)03=ZAM zUX49efkJb#7T)IomjUk1Y_9)_SUeG>GD#kzK$>Li?U_qflVd0D*R=Z9OkFuYwr17| z(zeoWt?~xhTOkqv5R6dhnP&$frZ0b=<<4airSt9HT;Xp63J>zCQ5I^U@3`mX{lH4-P}Ako3NX~UqD^CSic_UrVI+}yX#QAZnwh{zO}8)Ue} zk&V{x-fP&KIIOVREFqWyo!NksF~y?mV+>MZyfN9b#k7a04Hp_!t?)M@2^`tX&Iz%6 zV%FQFGS^N>(7}Xc?wgroVPXdID2byaI$G*7Tv;_s&hB2xG(Gi;hkXjM2V#w;R5Pnk zGts>Clc`zpWu@l*%!-RCpQGBj(6^F%3)%O#1D|z$$$LU_2`K_xg3 zHo5jPIG=M{q6 z)+{y9ew?_5t;=N2J+*QF#%1BJ89rUC4x)l0CKXM0 zh~{z5$1g(1Tj<)P$QXGgFR$ej(w*^fjpIMy^Cqu_HQ4=+YZ61tYrc)eIXRLsJ5$SB5#hT`Sg zM0)PaK3N2^KcJ(dPtdh)>K8?;Quuo;eR3FlU)Y0pD$sU94|+?_c?Yme!#FHT8)!!~ zQGW^^laFI8ob9W#4TtegI9C;F4?*===qEM2KcwocrMIxkFzAPcwoG)?X~HKF&0ISa zy^`BV6c|E^N~!_z<8z%23}*+&oNFuMs8oOS3~=h{640`q;DYH|tpmF_H=%A~`^f~~1U(UCkP z1!}MtEbYo_1LN>A<``Sq%?+rzH#xMas@*AGL6mZ8;TyfI{04;8hbEi$^6H|`)e+?n z%|04ai||_DhsCpy4fAK;J4h3{y7h<6kL=K3;v{+}aqLaAOYN5nOv$l+YEQrX=Ppqi zTq9eWL-6Ue`7NgF=La5}KSLc>QNAF!Fu8^A5-t5Z13mg5*{pGcq`*S%jAP_$3|j6R zeQvX5j#n-h*;ql#S8dQGAU;Gq#(n~0Qnl>b2C3eTY4S44eT#1O9P`%kB6B#UjMeo^ zWTwM0LZEPU)c#%;^1PC7f40o$Vf zU14>M*iaT{C+ zV?kLr)EV5w;;U1%vAb)1BEvxXlO#?d`^i;+qG6wZkLnX&Q#D;YhU{a2UHDTmK(2C~#k3>0V!? zg41?v^#K76int1oziy-=Bm@=v;B zkhBE8{oNp-kwFV;5>DQGzG{sMo4VS>c!e(D|24}I(Ip^lyB)M1M86XK zd;-0`u2{COG|90Vh?o=V3hWKnmA&`ECnKKyNkdCWhL6o*5xw5fYH;`~it9sM_u*0V zm9N=)S(H|m!yNsyLkUkZ9WBTFR7;HKTHtp~X=jsFT+hFp_}qs$q9%cX$QiT!wbNuh zk&X)$aA{Li@eY~ujx)u(00A}FN|lR|_74W|iRl5E8_FYOwNM~YJ$hN@gu=8XWh-$b z?zOqtb=y@* zV>6BCF~jyOX?;RiqwvulQ(SEEYL31Xarx^SK$CD&P@BE5v)4_h40#fDS##wi#0l5{ zbaX_!iYoW~xRKeHK*u)=Pn4bihRE`{yc!9Q7_Wca1Xc!RzwLXu+K2K5OWoT)rs@Bv z{t+oRw7%Szx|@$;cXMq?ra`^R z03`&-x*67Zd0Z451Qk4rm1Q?qdmj}W;@_TEP^{qv6E~T}31w7=v;1Br2YPK;wA3)!)J z|C3m$UBETbX7lc6sv8|G?nhfi+BXKf`-~7xr%NWzWue!hP%(=HYo7X8Zh5)q%NlJ1 zc>AOEa|2Utv;_^Rg<-;3kHUXgii4S{ahtm(rhiIF^L^4`@_0|DGR<8_N^VpFCb!)H zvb0SKXBgwFdXF{SotzcbUmbs}%qV>GXbHXiN>{eYN^Cpg_~utC1wLW+Lso)6|7QeGNg>Du|JJulacMAP!8V1BwI(dcBp;t)1V+843g zi8z?H=l5Ghv*SeiG0QDHR_yU4u21m0H#wF_9HOk5 zdqlIvr~Z-ad*`b2=?ct5?_|t7#f&H2qshn^s_)-;KB+jg`mnqzqjNGozmm?>ax-Ed z8-g{qscRRf<_e1PG;%=XIR*b@bT`(^IPYLf1|<{SLE$N+$nCH}j}d zX%%0TL+2R+hwK^%m$e=H5KRYV+X^+C8!230u|%d;J3We>+s@Lz1ez_S+8cD12?GCZ z?Oqrmc9z|SUQzrNW?iUU^}p6Zd}6!3+hfA-Ls-#A*3fj5yfdiz;aHMlFQa(E4N)=% zQh0~8nBK<<6(IcWjq2U_fx#Iu36d0{C#VLIZ#R!2dSObJIJ$>#&y$yc1GSXyOquHcE;oq=FPFfY}<4xj^~(i+?SOE zLinF-!)Ji|m$y8>iK&p1ZuGNNn

cWjW`iai5YfylQh6+9~o3DcUd3!cWU zWl@V?t)x)wk(>zXrbiH%c8$dOkuvD1jl!iR!G+_$+w3mvfcVNHKTnT&_dTdr?@t|L z6GE4HNn{IdaDwW3M1|G?3}se#5Zu+*OOK$`TT&-_kE~B=I-8EU6=#c%b4P>ZCiJfD zDWi9F0UzoZ8`QRhXK|*_J|Lbt%yo$#YA=AlxNjfV5cg&?v4W>>v|kQJWFnS|DI32X zBRi2DHQ8L-4!dbPVpp5Q!Pi|`I<9o&1#jHca=kZ%UGV0%isUMO%ERivZB|v2^PakH zZ(Mp^4Z0XlP^E01VgC0Rg>Wr?1M-$#m#h3DpNpv$a#7MA-dK>C#bMu8Cp>KbKc7_h zKcCbrDkj}5GQuL=B4SVUGlVVt`YcX--)WFv-U9u z)i2QI*yYYsmjGh5VAPJXI8gyy4L0u@0{%5r-S3mU=f37pnDiQ{wH?)lapBY+cLff| zn)f=fptGQ-l`tEBy}>!zwxWxho;P*rgw3THn)ETO%$uJ|OzF$7hYk*ndF70(p$KW` zJQ)wV1W;W??OQf{e6cUm{Ifs7H1h`?{+ikH6Vp&}V>5cZf1;RTB7gYgGleE94@Beg zdp=Zrvq&i=u3MbU%LvcGXo0T8AKB%$S$q=DmhKX0MgJxi_WY}=GkL8k)^1zeceUg? z1YY-l(KsvH?$T+13Rt*5uw$5>cI8_T;{F{88!p_ZsDDmzI$ zE_~(1U_Sc0x#*}U2nk*Ut;;n<+zlx|YK-LxvH(e~h=og7D@zlnir3k_6oKkxA(GWI zb;&B;Rc}t5-iwOwLU+ag=s4EOxLpw1o+g=>EJMB~xNZ$AJLfSe!9W3_pSjI>+S%AujPJ}W?p zg3}iV+_oE$oWdNk&hIyuuZlmpTYUeBM&4by@y)hE;8~Lu&Vnu=>z@@z44t4!rR%#1 zqJ@I?#8L~Kuf4ArA0rgAR)PSFRs`BFtPSC`tX7WdKyrTtKk9q)ykX6!&URb0>Aso! zth20xWIY31pZJ}hjd?~`7GS^=Q}>v&Y5jAIgZYM9MO_zOX1em8c)}fr&WF4DX=mAk z`;Gsynj?xFAo4AfPeq^jyI?8CzpEOF^~IiAn~#@!$fq*SQ;am2W;`NfP zL9=*RN)XL7)%>a0zU7*O*I|`_%C;{@yihS|qm@lU$!!eyDP~swQP8sAj^Zw`*r{!g}4Lu=VIwY9b)6WY^M z{Qh-17Eoy27v@fQtor1@80Qece-vA7KlZX{X7Gef7q$z&ELx0m~x!5NDK_ao%8$X0>iO@_Cs>#-*< z%Lu5-=}hcubdZ>orY8P?6q)<|@#L-mWZQPoe3E8R5YAvA|5C?BUY-m_sJ(d#(Rhv^ z@ra-=7u^P;nen1NjDH!sZiMXhgLueJi2Vaz3vcMT*~zr|t>uPZl6!ppgtU}_~mnx3r!($VZZgCvZ6i+;uiO9!2x``Opnxa7E4 zjQVfSeqjxeM`yl}8`U&;gPxWDwnLDsSTaFz!Wz$7O85DYShLjUEb@WK*Q9?GG`_+ z+<1?C=zMk?4g|1cY%Lm-dvE)OKxO4pEt_u&?h$jPWUVVm^JWdqHKO@AG&;9O|U+gI6*>Or^ zB6H0~&O|?&@00v11@QV3Pet&rYT?|erS4{n3G|)x?w=;`Y_rN0Qkkub_Y6Ohy-I#I z<@XMgALd5=h|@e{7@WFv{%k(*l(~>;Z@#sLFv)O&>yQ)FJ(Ruz3|bX_9jsU3v+USb zl;kXn`ASfiWNHEXO*{3VO6W-ENZ>>i?Ax17hb8{r@LU22lF{1kt`Y837WVfW#<~89 zPrL4-qj}ZT!l^?4>3=-HA%%d*&FwUyr(SAc%XU~`Yu)74WCDFvAlwnswsu*`(G*w* z1KOm*R&|x7igNu9HSR{&5#s_~50_QMUbR6wGG%u@Eq+sL)jmd~21NSg|I#j={$-g5 z7%+n|9kwN-7G)jVbk^JrilRRHp6mB`KHTgM#P{r`@gxJIZc zd-pOW`1+ciH5nU!wlYIL$zoUT$jzp8Z-8}73_3@V64n;&ji#!top*Rx3FM%ClI^GX zmkTTq(7f-E;$`(OXdh3oy&wNR-r886FZ}Cvv7AL_y&SE*d4JSs>GaG&d;*X#3ppJ(Jb7qjq}64>t8 zy400V;@v=8vpaW^Ao4g{`@4|lwjmp~{l2{vH74G3iHEjKEDs#tjWA7>Pk^J5T`$d)lzt4TTaa&*nDUe3jJOr3l>BGa3``+jbi7} z%$Z~>wIY{!&o>i(>Bt3>XZlpOGv$D30@(omWkSdttJ8`qQ5WTUC7nuNOn?<|Em8h= zr|f@JuYOEX5TSR~jY~+L2tU{@GPZr0{i3mI{uv7^B|__{6m@(Lv|UAXscr2*0P5$C;Fd)2dUbclEQ9Yzv6|2I?E_!B7Yw8Cp(mMTc~O-?{M35 zmVZiqR`4vwa|RXBPkb$7y=&u@6MXXP%^ z|A6AN?I$Yp*%`xM(S=IY-!UHyv>)h2HH*6m4^;iZT6EN?1HKLi` z_C|7-nwwQxMxB%pi;Eq&_EvDu^mq<0&}B6=^7tD3f%hXIb#g~QXUEy05U>TQh(Is5 z=r7SDZppfX0&wAC*l%}IQAH<~HIk2pxjfD3X|&7VJY1=42o>(HMV9EXLp<&zoAf!J zgq|UT?msWKv2^Va!y;4!D&o(5X)uBGEPMTOp(x6LAoW%Y>SYWliTYX*}J=!Y%o@X@au#Dj2kGwKgN z$%27=N%w&lxOvCO0?FKR6afIX6Yo$Hn|=idF$+p$9`Zk5{uBnoT%no~3uLn6!h18nFp3*av>1F}+`cnon5QoLe zw&PZ<=O$j0N;Nj4w;r5rR>}PI)8(%E4dO&?0r$?XAY;ELwViJB*sv+lE4@9e!EUCR z(NrQmQL_=>eaPoEFT7PK0kCh^9MtP$;x*oO`C2M8r7UU9gS60RPDCzt?i;Bm5mwV-Z@ma? z$GB}(_kP64GC(`s2MviF(NlZ2LrgtHGCGd=aSqcR5K3Pg6@BK^i!E6((m|FT82`EO z1G8er9N-$H45%(Tjaq1hcbd*p{Fs$kR;STviAt>n{a85-m6`61Jb7iOOhbGlZzO9h9_+#ox1S zh9dvByy~r2XwDyOCVmK=<^;Rl5NiN{F|~1Z;T5Pz@*$m%Q1&&7h_X?FoG~`Zi3dDY z^3*3Uv)2J?@|M+sdX*IM%28HCl*4^4q$C;K;$bt@M>U`5egAmWf!m&|u zz%d-^FkE0^Dx>{~!}Q01XY1^*vpmYDA=uFod8OUDkXYet>Ig@7;hAl{oPD$PQJ#c^ zQjX;7s~5c#=!^4h_g(9P<1K#8g!Y`p`MHwAh_Q31#||{z&vu7f5X0HDumz{TiQF>( zeoGDmGF;V}l+`wwZpd7@^x5Y{E$znz)d=I_)g}u$r?>hZ7jec{@E=GNDgd`l>(j)0<~a+&GcO=v zw(E*@-Ym{@5aceynS&F)_)Q_H7}ME8i1#kNePdVGn>4ek3vIC-LX4ax7ZA7U$~eP$ zJWN7pZAxb|V^=xEcH(dFCv(50w<^)y4(LLkRo4|)iJ}@c6&IM#uVH*9pG1CtkiDF- z>$|pSZ&L7Gi&!?d79hWJ*qp+z(CiipzL`!LY_bxsdBQTIV+1%xvxwE1CKxo56%)!+ zi;ex00S<;cJLxZaPt=q2`qlN^<3tqy4qbm1=;O3b13k8`KgOq^)3Y7TG3yM1&$`?8 zcnEoo?_}nPxqrmjbGex#w0Wwbj_~hN#HqPmY=E|>@l`{M*RCp#&Y#~K&=5X z3M@>jPyxsF53y$8)_8wo!N3;2Pk^|eaQ3-J;8Zkw zqKSPub1}e1k`p;@DJk!gRDC^+5N8}f9Ah$=g1#QAU-ezOLkT-@KtD9wBUe*bwbs2rPQdh`1nn=HEM`#Jdd|4NVO8k#PyZ4v84 zD8RUtyKqOd7$wJh?>n#c*5W&f-IymROCW4F=y-RFNpSjrd)Y2F$wJa7PmQOYHre%} z&|dF!pIx)VLmsIq4f!Uo>UeSkuI4#$;;#Q}6S&)y8d_P33xgRllsJH?eB1iUGgE0R zKNr4H2eZ2m7~j1hR4vJqA}$qF6Z?dv6F{@z@+hZa3L0dMMFa-V^^iCDcohM!W`VzQK_8)uQQH6^iUZjLz_v@M}FC* zuqJNhiTCc%H+~;J2=n*@rNHQ#AM$H$i5{RId=ehMu{jG)COPaTWZUf5vMv(0rFFDp z^g4lh|JD8p{&0h)N54_t3U!A%esUYZf78Q9@K_P9wG3cQu@`%y%4K|&Bs z-1ggzb!{T^g=j2)z^W^RbDlR@#3i6`B>+67H=5pRLu1z6(9YS) zu5=R}k<6F&jx*fk$&U`7P4+R}eLt&4i4azl$HIEIT9$q&;5-_CVo#PKWH0?4hknFFNT{l4u)W z15y^?k(=PO?)^BWBt9%~4Xo9;-9eUIhM-t06rVUJG_4c0=6)=dV$BN;+=sLC^OUi# zD1UOEe5Z)LrKnl8vgH0-thVWdmA0d}%g2EY74$9QSiiavbI!j5d|8WOJ8Rz72%%t4 zA?T>i@qHPVxlf0P(^>#< zKDj&`kHRQ4ppC?S*J<#2r~TS9ujj&$TpyEk&;oj;PXHm#3ED67IU;dNVeEwT)fl5aVb{MF*+`&62n4R5-j&nHCWO1zO`TImvPrj zS?{0+jCHg@Zc$A=-LAy`Ulb4@&ND`${iIP(O1E7=le3Cc@!GACkZkw4iqJt*-+R4n z3_eC-o9LQUuY-l*R~TK-@yc)2;9BT3Z1d>{CICq!5uEW)+plPLO|^ z-L+`MWjAm6^Q)tH8AILTT~kPgP!AF8*=2R$IlDHjgu&f_jPV-06zl>VgN$iOQYTnmutqHlmlD9ik_8 z=$m~W2U_k3eJ5XKr6^ftRg1tg%?_Wb{;pnVR^uYfLQdIqUJz0S?{8&QDw~$%DcI`swA$f|b%|4U zo&Bnc^IgwgZtsNGLU{4HM9)o{`SB&= zDTe{&C#F<8+7l=LTRgb>LG!5JzD174>Ru0510Gg1B^aSM&I|tVy&D(99N^^F2*pT4 zM=&1?V%=v*2Y%GxZXX2R;;XgVz*3YQ3AEsowHxb>T0gTad$xpM{=;&*uQ0vj_d zBi~z@rUL>$F+zz*<6`&HLJSB;nh~MQZjVc!sU(T-Ka*DO6s|oD&Dp+-D%{4sl+0P`OK`&bk_?>}&d=<@nqE@r3s4wGf$P79KMXwujB8(Pz; z%*l}Ora?Ut6OZoD11o!Hu6sO21al0>q<2jk@tchbg(%9NI0C<5Z8JR`&2N8{3O|ox zw^t1!{!%MN?Q>Z5It*1L%nIL<3ni+Y&?Z%VSN2C;Jg_q!Yb2;s%Z0F;ohx7MvRV3iT2c}Vs%RnJ>>UWd0KIEh^^pwVCA z-wq*RH+Y`SDW~$ccY{v=bp8^l+r0vX_iU!C=bb6q3-B*jm%>t@iQgT=W!LS1UW5+= z{;pMuXa9Ej8?ib`!l@V@Nc}B#0r`C4eKqF!;-?ZmF2d%~isV0U|1(==9Nc)d19 z37aXMoty89NI9O1HDf!xs(ARMq8{Pj#HyAXY7w`Ld9COAcu=N()+p&hF1j1u8r6@vrhR#rc1`CsapAFdq&SiR zI^Jr_d`BjSFfWhcKKYk*4`$7Aan6Y@phomN_r=Uuo~nW z(YS{YNJNqPvSmtGlg)AIZ34m_CIcOu`n zI~u&B>o!oz2Nl zGVVv06Rn+{ogw?ah<4UCXiL`;=D53vSKhzA>|tdNkVr6ni6CjZI}acJy)4{%45-A zkMofbZ+jOHx1!dHn-I9N)3jYxcGJaAE|r~#{vr1<{h`g{1SC(@tJ;G+PTD)^-*tGI6O}ZWjk+M z)O_HN1~}WumvhcDk=6l6BxC+$XZoFZY5bO@{#yB*RTAG-V@w&f%R^r#brFr^tYSmt=@qMOedDt~Z78c!P;J5W z+$M#*6e=SPl?_`g+3Ea5P4O*bTS6TE@1zZWL`hM((|(NUgYLz6dQobUsbEwk?_qgn zW+iOb)`%$e(oY)3eenJSp7rN8^RITnxoN^@udf9E!|jQAt!Qo(`a#wI*fjZ{bs<8N z=70?6qSj3`d>l{QNnza?e_46QblU#ZyN1<@2h5su5T=Org#KBy%O#&58@djPYMWlQ z<4x+K&<3SDu){F~y1%ufaj;s<2rG-EkQK(< zNh*FIV_OMC5~JrhTbX3sJw<uMqdXYffzCG^phd>TllP}H z*Q2zI31v&l_JhJecb9H3?Fa_4G91mE7GKIW@I>#c@x+tIb)Kt)Y8W8uX7IXY)5IGk z`*x49^y3gvYm*`U;bAkH0jJdv=upIV-g?-nVV*{vvF@OqKot5^>ZLvlk4B`MG8$`32L0;ZT0&V1Z2+ zS=}T&Ev3!CbR}5Kdz)Xy?V1;)(&Y`GAK}y{R-h$Nq>bZz_nWSBBQNzN_YU(H&!*_| z`<)ECik!a=5>#3)SCsCd+6f5H;jP!OC|7fHm##|@B5;<@EvgwDL_1G!DP8R?IRD-U zu>W>Odk(Rr!?1A|4nn}%{M?MGSMoy=-}ZvHNzNAOSnb!O$u#nrm8NBqhZ(%6-N$8O zJh;f?{;``0(EpP8k#p4hTA9qT_Wct7Rl&`WfuN%1PfodFzH}f&(P@@u4a);3$$G8? zfcX#E+lIYzd8K9vU5(L#_juf%r=)HJ(EV#3zAD}o#y?|(Stl>`d}>iC@_o}@k21UJ znUs;wrcb;}psR}qmOuToO7;!`top!XGNwr8iO@6-tYp-nq~ zooq~M{oMZYx^*i#QN|j-`>(h2h30_PqbjVJyZI8jRtDyBz0fP0spj%Px@;B*3Nn~bWYJ5(j~ z9@4EHoN7a4L!Z_ILa!$1c=Q7UG1;c~jquFL^LNe&W-`#$fsYat=!c4)Q6A}T?7`{{ zh7SGc*)gg7$f&Z}Pt!X9<#3bTViGyQk4ObU)vPJvYt}epX;v?cGyD z#Abm@&~vlfCB%k4TA%G@eJ8}6Npybko6^tdei}pN)GO>Xqsi3iVWlQXdOx~GwxxvO zLRrY~g`AsBHfW8K$LMQ{hfhn2qNNa;am|*WngzqiXZ8Nsnd2ox;%}Z7tKXh&q!@RG z4Z^iMmwBZ{ z+swcq1!8vE;8AO^_C#;>l^mjump$-F$bGj~Z)24n*Cc`t+3(MKoQsK;jcU`o7PuvRNjU#<6cgO;ho5#bKiF}Y0`KiLl46$4zsDYB*h0{NdNkqqnxu!hCR^?%@2T3v zH*`{#PU7kSxDoi50W}Z2oM)-9*>J2b)!X1fYLj+_69xLg8h-)|91G&%!wYx20TMyVIwPDrBPy4bsncinYlK4J=s#ISd>$|HCW!~qi7fQ=54E{0I zaWZd`I-}e1hD2Dkl0t#wk8>5vdG{1cd4kVh;GG;TS%#~npm zkC?9nio}@1aJFeXop4g_**x&a6##jRBqlYz9 z7SJ>g5}Njy*^GBRV^=)OBdo-(Jh8;)dSk)Em;pdl1^e>uqN$-?M@iTMRlmycfZ>Gp z_-yN<>{aVWP=dI8>|yiK__=}8ZOo)znRmYRoNa*Pu>3x}5rl3ChNBY^Q z^Lu!0&iml;yIb#e__t-_&m4yayn@H%u3Ke(4d;zCKBq2{nD|eZYmVm`9vWHmFxkkT zH)@S^yEtHJZjD0@%&FEs`SsjDOV_SHh;&}?G9q0?HhW({3OqG_5&;A4%nEcX?zPYM zH%=t420m8ucnLIg-9ftOdI{CHopYglQkaa#`aoXK2VE*l(*~*UV-A*8T5?8h%4dZ@ z^*K2H7g$k?9X5y1kIE_Y-A@1PeW;^(D>eS>ZByeyrL1c)#y8wUzPnc2{qmvE{}8nQ zS@LI@PpC??X_=kX9L_xT*nTD9l%ZK>N+NPa!|@@o zgEoghV6I`hA=lCAewhdYdb z|A2y0OyGqSWU8%eR=TC8d8<2*_bS{`WPjvkCPd)Lql@*3wa?%!WaR~Xy& zD1{q+6!zJ&r8f;RK)PyOJ=K;-jM1{%=>oEk$ZUO68>@xn8*>E0NZEeV=PwD^A8Rs% z$dnzo*R2FCSESK;ei2zx!+f?ninsIxvw(Xr%{Oto*R;(q&hm{aRD zJoP0-^X@57uNH)Oj|>s7B*Q3HJIs$}py0={$cSFJ0yN92yRutJIIm}mp^ak4rgoz> zPrZ-&pxl_*TKWX%6oft+>iEA;^K)&x1i{wY4moezAPiS-RSI0~WprLANG4v)@O}3_sQ}f!zbiHWS0g7{iRFoMkL=hLqz|60VJZ8!yw!cgRlE5aO*maVT zm>FLW+0k=XFnhfNlUBUQ&oc>Qh#N4S2FFooNor+3!L z>Bc%St=5<|zLa3PAdtt|y4n4)2oAxZR_6f317}^_cYGrEOGt9Z`%k z7Oki&?4UjRdW~2G)yOZT2dru%W;tb^jB3kQjnnzp)X~}Hug=fBrk20aeYndu&4@e# z(Dr8_rh^-QZRZ9la5Jq3@1ush>eLkexXq>8)x`fR6bNfbD6kOqK76)Ig?}^lD&z7p zb2|7ei_DE%Z6LMgCBc^;DRv(QV$spZNOZ(>-RKRF7iV##Ik81Ojc1WnCZCQwpH>Mm zX6$N>Q^gtrvGtVGCJ}4L^3gbEK*y#HdT6rJswF7-^7qg&Nw0l}0@->EOaN-|$B*gLy~Tw8)=0RI8pz$lwtnaK+AQaLRY-LBwFpQ! zj~$MYRG5QVQ;zs^_80#_Qyflh$MVOmJfH64MA+Xg-NAt+y_xjx4(BWD#_Y=_*)fT| zausMryX5@!vB@h|-~hEQF>gRTbY3N$%(_ z-!2vSp^W$Z-(6wIWYUCQQ% zK7hJd&S0~;c)JpVZk+7n$nz1Xt?AUb#4DalL0+(0(zxLx0i^!sSjx#jaz!lLZ+WcV z2+KEbC0h1wvs;_1u^nMXCD1Iek0<(46tFP1lX|14mCs}(A01sg@=Dcs_wnK3;SBqU zshK~a^*z7QSo!{mwrlz?wevW%>)%gRg-kvZ2jo>#m$ZGR&6gMK^yDn>tuPny&XahJ zi0q~Fm9o*v=igs76@vfEK%MEEWS2GM_(EnttL5VYw+v!`EH%B3D^jQIRT`H7di$$^U#$z;xh{oqPK{(A3ien-1Re8_5fDu8z~rwsS}yCgCA zmSSlRHpoC3?K@oEBCE@O{zkAQDW63gBNfCASb9I*(+k2bHqM#j1yjZfPDyaICQ4IG z2x!~>1781r@OXgme*K^{j9`C+KSu6odalOPG6Fu;wr54K>G5)dEtsz4agoVzmK}m9uZtr9#-OXfmvc2bQo3#F(rSi-k{~iKg>n zuX?M+nct4+hi`&*>T*b82ef(xR(>WhVKfR;EJK0H-z0xB*DDZLW`*tpRfQ`$na z5^&EHg#JFwjV+7!FfxOk>YLX}0&mE3Ss!M9JmyFuc*-m+M1LZTMFTU3Z#E6wE_n92 zJYT%z?z=lJOwuSMK=ry%m?tUr1`pCVP22fA*PM$_zhIgpKuY_XFM5I*xQp3S!8_xy z=U2lvV=Iay_>*MjK8v!ct}7?;21DLI){;i=Td*@=WDe}VQ1i0grE_U3zX9HS$NXI} zQe^--Yc8<7)43M@R;V+c|Em^X2bsr>C~Uc5U64{A7;QJPunMr1R7fM;q0bE&i8Lof|lpuH-z7 zE#t%lq8)H07ZE?1l!nZ~qC##bP_1!rfVR(voru5b_33SzWTXX^{OBXoaaXv`j(atUD z@iulScsp+tk&^oOPqpRa*}Dko=#+$pGO!8gy@p63S7U6)U(1_+eC01ac(3=LEmHc{ z&RqQ-S89S1m?ph-`Wktcb=K=?PDgX88FagCa~^06DOQ;qOlz<@OsI99);I`f`U|Ne zu&A5t1hTYif89#kNF(2pmc)5!`u_`egb~r4VVC)0G7-iPuw_1;W zab~r8zFBwu%_@|Aw(GlEfoBb~+`}FOn(Ngi3FpQ?*ls0I@-kHhHNUSN+v4h~{@gfA zf@>M^wUrg8owCPUeR5+%E_JfI|BnUmxWx!@1#3+_Rz2QUH6T7m!KkYE!gt5PA8r28 zhX?4l@hY-&V|JNE@1*cjn+%3F;x?jR%@-`rQkVEF1bm1Vk&&_MSRVgi9_Wzl7mSyyHzfJKkj)L ze^P6b>wO!fibv?>+^&fBjA7>oHFDm^nJQx#MSHj;qzVTW*KlXMWoaKJr8uAtpj;Jq z4W|OU>!VyjopuJr<6hLco43@dK~Y7y^)6uN5@D0n{bl!+DjT)SC$Uxhot_0d5noT}0Jpe@2RPCb$GgpGS4?v1jZL8W*Gzi*+ z^vR$MeBt{$TEsh;9DAMUQ^ATqK526aExf!KaJ=FNGgGUPiM$BJGO~Jop_;;ts~#Yl zp{d?uLPa8a*@*xA^))Z|aqD5_SrVVLto`XzrIZnChbwIW`Dsu$ zZEhUbxdL0F6#n?MPCAUfnKHrgwTvdPfmWdB3!zKbeL}7OC=C%RL!D~gIG_1vq3HzG zTO5L1U>$L4W|uc>+}@?TuRgFO<5uDaF;>R``uo;>ONMVgvGbF%ji%0BwrAmMb;Rk0 z8pfwisgsy4wO+p+kXn@*X*|X0)vaGaSrg@J7Y${Aqt5u^EYQHDm+RJvFtsP88gY%Q z9&;ZicS5ndmE7Qt$_N=%_2N@~hR^h~L~gLp4H<|U(E+n1I&bS*`RY)MA0f_Nz0+&p zSCmnlK+MAb^kodgO~P^>`WnkbDs>txlKse`>TRC*3M27gUT<)jdk>X8-_XaWnaWp1>LC9C5Y6i z0bH+uoq<-1qZK%Omh0OlLZ>;}92iBH5LCGOv$byqh|*z3%`^U>&~iToq%sFzx0 z>M5)yh>bqB3EJouqdu$(y5uTilm`#9XNMV{qTlX?!~T|4DSJv2%lu`n1fVWTsv>L5 z_4F!DhV%6xfDN0G76l^aKGv0yjfxkj5gJ0X#^FC2HP^k))sHIHJ|}Fr07ozH zZQm(t`;SYV+zhcM%2BzYFMkmcihInOxS|gYfy&gxf=_>L&dsdZJw)t?4&>}@ToMpe zm}`K>>HuRes3z>ld+Fn!0geID0zOVSG)Kj&)(icf*zkSflr3r3H9(wFy=)+|F8AKc zKL3^^BkO8qdc=vS^JxEG;(}_x!|IdYYGf6UdAlXAP)q*GH_RSR_N>oiMF^iBGNLd| zdbXn5#A!Hf(D!i5dp3^%vRH{6y#c+$@7ZmOhY7mSNfk!zoVv{x94`G-5Tc86bSb44 z#Y7aFB^|dY9^DP!5JBUn!@>eitpgP>o}*oi+e@J`69tx!!>j5Pu0M5ZzQU1u^|5`~ z_)vCzHiMPnxrVd8HJa2sTI^1O$4pM%-gb@Xs2z(7qPrS)O9M_T~ODh@?Zl2dHn3^TDt9fL-Rl|>0kuw zy#Q1oU<^2I9sKduCYZ)pIfa#|@z*}oN&;YwqPESd_U^Q!#RDUKZs5qFiCaODv05*~ z@xGd0HW!m;NmwzelDXA&MCo(YK1~E=2*{P5#6?`Wsctt+(7Pb)-)Vj-9`U9 zyi&sdbJ7MT{}x%udG-w8mBse-!Kl!*V)?=J2B(rHNAO+(I_*XN(&*4DodXcR>%*SS z<7c+tA53ty^KkDN(s~JzYm5XHNpToI!;QIVd~~l5h=Qo#c;Jg#~kj0 zAnWz5TFj^|TJtX6E48*k%_Ixz=wY?7arxy++nTB_+2_y7(ocjJJ0g?1U9HVegwmQR z^RrFd2dJ}*+RLD60u^)})(+_j1NY^-*$l-yM9|~y`&ZbTQf}j|XCt{%xm?v6mg{?0 zXXsD|S>&S(>C#;(f3;n9C%Wg3G>p|ATL^Xb?ry&Qjyx?bo5*;jr$_4$VkdLy%KZFf zgNL1OIxAox-G+@Ou!P5<2EQ20sUN?IbZx5(cu2Chb~OhxtA7!hWQZ)z!o|Sy>s#9x zng8Wx^ID<$Cq{eF@&_w+wDkORIuW0>^KqVR{!C1?2%5XnEdJFF2S@6l5Kv`l8_c_# ziYNRgz5Ab}=RmnYU2c-&TQ1RDx2Wn@X#_ly`W2k1kE^l+Yt7*fsG>nSV~OU2L;Jl} z`~LJId~Fo$B568Tvf_fUBse>a8d8)s_4d zw8WGcWN$^?iICrGFXPS?=%5SS;3IlO!rRYgkm^u1}|#i1?3!mq+!SAV=pio{MVZq(DZILj*bCT6GB)sYIl1*}NOL_rT+zE?3*f zX?3jgp=^P{Llj$KjZxYOYgv=xijR{ou)mC?lWs(u*ti+{A)}T8FcWA}b+sSdB{kxi z`E98xwf*Q$fS&o6Ey9yHQ-4fs7ZcD~p{KL6maz~ZNs^^j82^Lymo)EJF=GWIN6zWv zes0Oh>QUZk?W)L`o_GRwx7RBS_P%2185L=fL6Oe19T%TQ@A&S!qZPz<3CTQ(5#h1h z678<*aelkP{8y6AJeB~zS;ye0>4U^5cO=PZy!+lNQ!iE1D{hne`t~DObn;TpC$7P}gdCWl5`!&ZO7uaUuFB06vr*(?E z`-}A-S0iV;cjA{vhH;oQq;IHkp0}_hxaz-m^5Dp1T#GB3vK{aku;i8`3m|CAj(7_u zODQ_hSu7^z7=oZ#Lk5S)1iQ?l)AH-Jv)k2U4FKWZ{QTmCHv(ZeZE2 z`VW0&-Tb%n^O!2Pq4)q`;vpHLQ0OpSZEJb7-s2qxTytmte>9zCRFq%T_C>m5B!&)Q zKzab_Rze04QMzI1?(S{`X&6dS=^DDbySo{Y?tb|{&-;A2Ki_Mewf5O(@9X+q=%A}) zs6uQcyAYP035g@5Mn@N}e#dw5`;q@3wYCDc)Qf7Wn6`^IRKX1MjbTc0{Ix4EE{czaRp4Fjm3-yLyo zm^6CFVLa6snxvP=?kYFG=xm3@kK$AfGGC)}pkA>em-hxE-omB4G!nE}u4{X-hJIMF z4W@q82z43)2PwOm*Q!_S-5ZeXrS}P83^BQVbd@DwvVI;Vy@%$N6uLj;YU zQ?70I{x~9izg0D4rVcgq!?1bq^i`PX*4*WmJ0sOO0jH+_jLrF%W|HG_658=^;}Pd* zKor@j1=So~Xo8%T)*ThShq7h=#PN8s7JB4;#2~A^fMgq%EB}Cbl}i=3`*iZ;d&F*9 zPF}O0-%6SjqgQRpf<3s}?nI(>f4jc&aV0FvfVqkkH!*73umoM`y=|_Z&ki%5IEDWc za%yb0>+odNPQpF6m04cMQPBFpWF&PlqBU`BRdS_6)DIri)+kXG?%e!Hcjn{?57C|rim~mo>KD+vEl9Nz@O*hNhd$o(?i+bgMsp6^m1+?$>gG%j zEMTUaflT-+I9!AI!!F>*v17VQZC?y(S|}q4+QoKfLYE9bmv4^V9v1K)|4`SZg4|*} z_B+}(KVA_GLwYUqNDV)5J~A`;4o<=_loFZuLd72wHB9QMOz@)fnOZq`OO8MM<;J9o z(Pk@qd|v(R+JR#eDERL~lQL;cxCRvf+#stSR-pYzQ_6om*@5w<-2twMDqCYBEW80sk3iO5JA;&4xXJd=aVUPugCSk0m-^|encKU3d) zE^{}SI>KspJ{1k;4=%>$8_YNS%fFv4%U-&3+8plcJtMj7|0;I5gKR^V{*7Ry!%vEU zh-A`4{Opd~Hwyde(mQIY(}`StB6q*?2dx)Nz4r>w*cJ^5JFB~L`rhE_70?E2V8k#R z&(13Dc-PGOe0JUyy-u#e%f&IBV>KINW37}SYyY0NSJpJBJGZ8BWE2&!_*}20I$y72 z(leBJRn&?1I=a(YGL`cJy-)rgEhwA`F)ObFKmJf1YcNsieK!rHyizO8Dpbx;Az|N- zdpcgg3c|=0`Dzau_SK#59OmwwPYIFc#{pw%8A@Kr2cg9z2SN$UjVb(H|qq zozGQEqm}M7X91^x)(Xlv0L{?F!bwTW36(L_fa+jnFAD*9)==;--VhsdZn-SAi#Zn* znIGZ8-&d$FQ5EgqWkQ>m(SK|-dVussJoADlsf1Q?~@;Y$sOwe5Gru1`}UEIzpc1?=%RB3-0h=33Lb{J4D)tQVUF=WEpnYT z4L6#$I{5vs>Wro0cw)UTz>O_Cb)Jks8u_@r-)OKWG1`<(%aBr+3$Lp_F4{g__@1R{ zVm3=CBPds(xgaV4vX_%DFHjUqtfY#?GaCfVAGkdu2ut?Uoue@i8}% zQec{9gAD?Db-n!53JxYwwBdL^$Mz7w3K=pQj{~zsokX<5#?Bu!$qbYOJcy|w8+7f0 zA9Rk}%9GI3L#Ttq8C-JUa;a$LO`!FL`03QgH)KJo2J=w4X*kv~r0fT)G`2y!`8y!P zda5rNO8HR>{{$-sTp65S6?^AtlUkOaKbh||CMOtq7T5VQoBZ-`=qTADZTy=WvJ?OC zB^P=MDtt1o>fi&3!KNT6?+Rsa+lczwJC4Joh;~EVTTio{{wJx^o-JNYBr4y9o1N>w z@~~|N^PDXL>A_865_CBgUg*6q!L@~|GPqi5IiN5T1|WV-&S&uIk2@-VJI}L@^H7D= z;xczc1m`O)^u z^Q2c_%c}^fvB_4^-K=q0L+g?JYq$-olvfw5^b2+m0Hw1~(E4+1##bRjUo9=RU1RA`!gxrG z%DGoq8*+mD{4Hn}^hd=EJ#t4vB^G4KoO8+_zXdQq2Hq*kuCtgnp;ep&h^@Rt%X_nO zC?P}t^7XrI%@U6-oX{%alZ|k90v$Jdl+)Q&($THCC$ARxYigrPR*uMVwG7dv7|Xiy=Z%eg7;;6{8L@>zdZ3qs!w+x z{1{tCuWybJfV*c3okQeWrb+gtF$X{PPE$YXS1HjYEY+euPm6P{Bw^hak+!P^K4Ntn z_n9`yh~QIw7aOvd^je%T{ba^6>QN6qZ9kC;MFkq&WEcX>*2P!nMrGt#&g?anvHDf5 zM1xyP_8h7&M`kr!64A9heZ_jh)mFFSPL_RN4R95kvz!2Mvt7mC5pS_gh|lp;Jn2-_8+{-h%>_ z-I;6M6vNxhnrOMFnsdf7gxNxx`kKIj&x>&YEwPv{#ib&1IAzRcZI5l}A=_!)b@)Ft zRa{jw*N6eyNCYzB%3ZFsyFB%@ zG};{dk(y+``b5;=1;-{j)$wG}(8<3FKYi<4m(}Rgjr{Z-uTyb(2^uZ_zilTI>J<(0 zF?nAA#t0k!4~sA=dvmP9Y%_Idj`l_>b25m; zqR1sSDbU*}wBFM`r&j_jXJ`p>&DjcEbql&>+&VBI9Tfm#Bm|BC3lIf5w=r>H#5a>9Qy}}hPR9r6^Cb~RXVz2U6cQG~A&4HR~>~UN~#q6r~ z6PSs%FG_)MrwSeZZ~s2B!qIW9_WmKD2D=3n1mTn0o&|&_J4DGBAdkfV6s(mTfUDdI<10)hw^;YFR>icQ z(>PN3%tE4a?<~RGZc2?qxN)8qit=a@xhK(VYsHP5s2>;Y%tTFZHcTBK@h|7Gr1{|D zG7Y$tQ%s|29Qfh~>)Q_!Up{w zDk8t3MSZ23(yxb}v1SiZrwx`jOcP9-#EX>i{|fwW{uu_@x2vFs7y{mWr|l0{-Tm!7 z-lKKuv0W5@Xp|7=TXyVqAA)0GlaZqmq(3g8C7~rsF4MV8ipvlU|GUm5htKD7`cExi zq^M_bsNHJ^QGjV)$7Hn9;byuJTTRTVFux>2T;8$;jq$O3uFYQH&^%V)Xn2cvlZbS3 zVV8!h>^0`0%G4wMSEO_qc~eApxv7swPvGA1-m=K&r&n`DH^1ReyKL9{es52)*u60w z_l=NBbg^CMzZqQJ{Apj$L95_O%ZU}^W6VA9=iLGQrV=*&-j&3AQ4A%;w!(klv;Qph zGDAbHKQ7*vM`!JLzC5_Ee4nrV#Lu)tmmUgg1K%7sJWq)~PPMZfSUg=-SCqtUbV7DV z?c4ObwldJ*w-0HiJA*&02^XnBi(VR;(Z6d3csmEHszgqC*dBd)>ZVMEx)wPM!`*~^ zLhGhtW9-_NXhP_^?r+EZS|6_Lo?WMH*fQDLvgR5+T~=Qrr7y3qWiwi~895_(V&1&M zo}0QUe{toTQ&=#y6wKW2!Dx2m=Kjm^ljO&rxi4M2D?R(~@91#i1>GKQCsSJANTH=! zwXu#t&Uk$g_YGq{9B0gIJf#8)wt5RUf7RQBCfzl1eI_3CitCJeA_d&%YLbuTAGCaj zVdCOtZ$ysjw+5~B?-wV0$IF~D%C^S-PpztR`Fz7|3~`O}V#6}lj6{p<@JW^M0Fn;6 z#96v6gfdwP?{14`&~P9_AlVX}cDtP!gdzrCN0a(A#zj5bLGjMX&|HxNe(YwZz-y+s z(=sLsfl34Z(vEx&Z{C~$vo~W^j~rL@^FKTi`y{!BlLl1NBKki+qu44gm*qD*)jvZl{?s?t7eSU1Rrf#bP1W}fp$JS2l52<1 zs9KokJh|5Cqxja6FviHBLy>5T8{fsYOgm5KDip`$1cC2Q z;H!bhdvYqH+s$WpoB3o;Pi^u##Dp^BTdJ5W48+@p|BwUNP$3oOkIKX2#bIDe4ITgB zTosP^&_ysS+zGZrRuC8|QZbxO^?80_Bwn&Bjy-tt6>J_j73>7W7uLw7+@QlvN`9U6 zqNDG4fJ8x6_bO59?A=w}i8O~`2ZRwDQ$dFuY98;?y?zk*h20fD87HgYbT-_u2u2sKLg-EKQq+6Ki1! z-28NBK6hh0{fq@_vF7(#T5fzk7k_rr0lB{LY|(jY;%&6|vfQZE>8WY7#HU(MW9*{c z(va=SPu@7D(Ufxo^xz}LwGK^LPsPF3*Fo6vN?-^cvIGC>HWJO8;T= z*ZB)8O+Rd0O3Q?NXd;H4b7-VKIAz0lt$G!>cIB5;?@Dg5*Tm~{?6sy{)_gX2HWBB` zTQjXCq7nC!!K+_PqA|{xCBUe+um>%i(Hgo?V6`iX7gRU@zQkdYNle5%U8OTr*YY#b z`6&=g&@hqB>o3tP@RVL0w!=0UW&oa?Nn8LIct z&CrW>vtDcL=0DTA!_4YS=@3T+l*g}=`kj&v{Y=r*dU4!s{q1&ZyI<*nq1P;uiiA(J zmglrL!tW!w`u@LE=ZpW3TVKc6V>Z1B!#8u4%%Ue$+wmCH{iTKF=`v0(V}g4>jFkn5 zO#x_9v8qgIlC_%3YQa8klNj|+6NGBWn>NQzZ!Ld9r2vH;ggrF&Q7P_r9hK4EF=qPC z!RTS_#_M@BX_)-@h}Uhqf|F)i=cb+yYzA+rB~PtaI)-YHszcm5m7i6hSd)<1-;%z( ztpTK`sYPAWRAsj(xe%e$*1o)C9n){;Z%i=B@+#Z{tci3XuEEuiU(tpo{D1SLog9-n z0z6Tfaik=EhiD?Vbb3koQ8cFqe)yA{QtRP;-L*N=QnxydT_uw}AwJpQfJ+VT0so=X zp@(<}I`FZK{nq45`K8v3$sg-hUGPyph6L^T^pAf8Di@|A>EQ>HCeVZ}VyIq$l4}KIR~W7;w;x#+LgR zXZ3nogmm&*#fGHYdTDtPH2He-9sAxi)xn|?Io?U~S?W*Sv{B$*pp^NV9HYHW>G);F zTYqxCcZEJ-`XL~q211*^z%SsWQ!bO+(*8Ia>Z6M6#A)@aU!CXYCHAzb-~3Z^S2K4&AtVk&zx6 zbpxDh*{c-)b;Y@Y-+?*7pYT1j>6B`H_Uv=oP)x5S?qO0ZgQN9>Z+(Z2OB4XxnMi?SHhz3Ew;! z-8=GfJK(DM+w(H7rKMF8o0NLy2haaTGY(I;z5K0&fz>Y}KYzou`u)79K#%LDB>C&v zw{{|5P7K;AGfRR3k?-MkOdg@q$vj%^H(mduvy*ty*>Rs#Rs@iYDsb%I?15+aN{6&l zK1bJoAQZH5M5M2pVf^M*<(rM(I%<Kz90gY1_*_IPOg8z+T;EZ7FsO+p z%%pr`WyuLvvs?>Af7H>+7j+m?k5Otj67~vif5Rw(#x)^Da2k!g5vl# z#qSUAW+>yH`KRInNH5=mE^|XGQx;KcqCli-Po6pQ7$5st87EN>ajgu@nh@&E+Q0L4 z?!9q`YA_EXZjy-HoxCM#XnN;ryn^rET+|7mvaYhk$xFu1T;=RQRFFgxI%)WoJ4@?P zz9;=~DQ|Utl_>Y6@Abq)Fy$nGnko#n3YDOQWL;-j z1sl^{uET70tPU#rw;;7CX})_u(;D;4n^;_)<%$y3!lCPaX?bqP05{?amcc3<9&NK! z4&Rl3d{|L`{0I1@n%%!@7}@%sRwP9#`*>PD|L~oivV(vCW~ui%P-<_bm`ccZNV6e0 z5d6l68TxK92-8}2Ydz2E@E?J$=AuTt57X>i1k^IRw|1ZQ1fA;}f|3>PCNU{pBdC0~0 zVJ2H9b;uZ`SUm|fIAeR+@Z1MPTW#Lk>EwFdA&TO9d!!GPcdbx+j6;jW->+VSh*A!d z9{CXK_l+(Gn|s;kIL8ME*mOx!_(07i(7ofPiB^}%s15Q#_N`($V~7-S$SW<2Uq9yD z6oMd*S}qvUjb7CW(N$}a>MQR=CNWjf^y#8}AVPj|8O}Akp9PFHCqL}2)WBPmMj97A zyR2F3oae=T;H&T^ZILtW+H81(!)8rHkR$OCv%i-}x~$=r-~Yk_V*eKwV0gMXu&Nwe z)0sIP)ccp-0>dV1_kzkkfi1+yP`EwkE%Ic{*t;l|(T@ft#ndU`3B7sL{4=Zl5>e`p z$Q_40ZL{sD(9lQF12y*TFu^iKLyjR^q+lvUh=*NL8^MzCs=6?Z)rOFDD#uOtQ&W9R z5qGykMO?%%o8vYeQhS|9S74NLz}P2sY^=oz+VUr?lXdP!i8^I}g>8ldfD1_m2W)EW z1oRJ^*o24Ub-3jl)EGkXvyuuXly{%2z^&t{?~PDO5dGr= zNR|xdoXyc^WS4|p#Y>X4@P-( z*(Ym;;ykA*zk~O++C*ur{4MeX0#G_O*@^g*%xO&oRPHBcu71}HHQwsB{KvI`MF+3t z-@9JwxAXnkJ$=Q_mleubovT@i6TRjD4;zj(j@D|&QP|z;`=&UQ;E|A9s}q7FbV?>{ zN><1dH=OPj=K>zFId=kbT=NvyzR$8}>+IYpra0bjdTLXY#RAo zxFr8HRd;eu)52HefuvY$LdBmfQp8Erw~qD<^c@l#6e*!_Mb<5Aa=+f6oG+I4c6rYM z=L2uJ&(Ab9=H01usa{=Hz|!5pGJF%MtL>DcjSz9jBUF1L=H(gyEe6)%`lx+gM{+(I zQ*SS*kUebGddz(8mQOD(ovUKRe^UdS2lc2tIES*#SF$Q?kdEMcfj$Gf3b=8|CBr&N+Gj*LCt6NtA{P}-A=qj{=W ztNpC<&SDERE*;HAtRrxFGAeZ9@9~7PtP^Rchu`!}QayBA*U+orKbw%n-BLQ!aZD1} z!8TwwC?oWL!~nrt%85mV#qpaBuOr;K3BC_YvDbFS-lZvNXu1}d8}R>5#LIUH$0@Y< z8}H#W!u7yhmn&%!VV0u-lQRQ+_!tNem9cN%u=ig7)J2V7tz zkmHOm%}NdsH`k7NzRmoHqw!}%6bC7NrNr(^g|*kC^Wh%OOTBq$ogCvmyzw5brx~dG z6oEFTTcgpZM%l-*hghTbuW zo7WgDRDEFHz*KMROD{k$PLzjt$JswkpMUBPYw$~A`CNs@Cb{m7XNA#+%b%LKbYvcJ zn)3cT9kssP{tn6ig|(6b-^d&m89onzfCNN{#Ot}@PiO_1gc97|LZ`mN(K^UYy> z;o!wJ*REWBvh2i(Y)3vM_fV<;-psBkC($Tv2n=s~Txw${&2Qn0(WaWFANl}4$6`Gw zx6{hHxhb=kDV*4Qwn*WnS;}r@WhPPvt~pQ6HhNk%Ta*N~dCy*(iF3oWrI)+PE+Zf( zvSMcm1UTlJc|4`*Pbn?`pc69S6|8wUSk)WnS=X@oEW*KoJ%TzQnQB?aBAV0bXrU4W6g1{MBBlfQ=2 z(E3ab_=YVQ&=>EN!gu1CRx>08Nj{7?;Y=q?4R3z&Nz+PGzTQ(`?yl^WCI8;z)o$Av zq0X~Yo;7_Osfs^xYm6ARw)2xnD0IfOZSpIOo+ zc7v-Zq`uv3L%|V2t!%7!$cCGEtClQ$2W4#q)jJ7&o)JM~yNSIUa~Ep#n;9qdWgMNu zeI~>=>H@pfaVKgUDF588>@DmKPLJAty+&-o-0wNWF@l@g3USFDrnVh{xmZyOy7Zip8$WB1Wc~m*_ZK3@{IEd*+#{Dmx@@a{~>= zAdP`HOE3(pK|UWbisPoyiVL2nu-k;(AN*^6U)xx~?{@f2{qWIBEwB-|rX%7@*rB?X zLnmKYj0++TO;5HO78kt`#FvFfSgV1d60vqmTn4hKV^8#>ZFySH@)WSwaV6n~3HlG@ zBEZC%Za0VdpT4DvrRpCSxzhCgGe8EK-%nh;in7e{*Vy|iR~;CLW(HL+@^$AJ7=M z7~J;!-pbUMuIhD|327l$syzm;V}cBS#r#nDzLDagUi}Br^cs(^9^3);%r-A8)Y-Qc3Yp1(dIU=pCv_m)1`9uz|tPbw`c|Uv|y$2AWzpze18(9&cgK zw*~~&%dV?9Qz_I!>@3qFOX!n8SlMHyp}4L1(kJoLVQ>#0I~|w}Re;66{|>r(QBAdc zHNLi{uXp)J{fGYDPkk&ct5O5;ap0aS4(i*^$xj_lgau8bu0;42rM)XpCTj^DYRo2U z69e9?;e=)A;|nsj@`U*J$u=I0v-q1upXJQjxJH)JtuVdAJbtw)xamhGcwE3BB#re}*BtksgFXS1S!&+ku;Ax`SAS3=y?hwr z00hw9&ghU}Z04ti`Y%g>D6#cHJ?HhIVDi1`0yH9n<{7U6(RJKmf%S0XTaA8Ko>ySU z3@$XQ(ffE(!Z)65CjV@EiNC^lvX#L<@86Gqim{t%wzTAv=a?}R*<*31}7VTC(zb7nP zo?Mx3|JEh&h2YS?S}O=-Gq@lnNs zJ!r`P5IJo1ES$`XuO_h`tqM{j*n@bRQIy~jk7KQ5J~%c16gb|o3!5usx2shtSgl2< z3Y#YmxVs%!#!a!h9lz6M!wQ>NHqxNxirhU?Ztl!I`a#7V3V#e$1=v0^R3kca?dg5H zF#{dnu^I4IAoFTEDuj|n`4H!&!3d_(VM39xsiZBPpTEZxZxuz^^Jg>ZM+&P)w+UlU z1JIqK44j6OMrXAbG3l^)ltn07{d9fB5A9?^b(khaThd2|QcZ=@03%gUC8|0qit`FS zAkzlfZmkX`&$$*4ENE8QkuL;zjm6e&2*HI#g}#7g4uisia<_LAYqkj%Jej zpecR~ozu|@T^16YOZ9UW%XzY#*1wxf33XKinBhnB#0W5>e5N(1FX|t9Q&c!p1%*=z z1Keu2C$*Tyf~HL%qC5JyrRfe1lbK825o5Ug%LF?X9Da<$Fc03kYZMoJne%ntYndVi zt^Fu7AsB9AuJ^%!wc5 z8|>IU?b=DLGeANZuk=G$g_aS*4oIM>jm|%z4dza3TNT(kq#x+yIP6l81 zY5Vm~_WhB9yM8+)vsMWl`;y9VUG5U{Z+d|)(5BWfH|Git0&KG`=-4H!Ij3H_#1`n60vpaYll3M{ zg^q+J9Fv%LI_vRqc*KYFWt~yp7eAagjl4cknLq#Hxn;8obndLiD<8&OMVH&&g19;pPStu zz8`{(3a&F06jEs-ZSDXy2f50VWfLhsx!sp!FI+ZBd?K5#@Y`xJyO&%im*K}qp+4_g zSrKM>XEUD283!!U)uN%@LA>B#Y42g_0#$RuXgre&vD?Q&Vu{wiI;Mxdn}~7;WjMfy zx9;YaXy-ihu-A(V5kVU9z+to>#kKUOW8@)jtE5`VGdQRB7+Zn?!{LF{@al7)&^|(( z-P#13VfbPjgeq<^a}&yqw}c*zou1Cr8JuBUTZt4SFoY!YAZNAeUdVlk5R|mbzNImw zUEI!XQIw>9lr!+9zTN~WJ@B@ulM%BZ%3r@o;PRQuPI_j)k-N;AClUY{IJvGKvSWEPfl%&E%MITA8Tp|Ze>&Z*4RQia<$6?kK*}TPy+WISiI;p@0UaR>68yPu?ypmtVy zE2q1$x#7~;POdifyMT}30lOEyFsD($e496z>EfEM6rgjD)qv;Dh`C=JHVvEt7+5TO+S}l&uCl!G`nc@Ih>eNlR-!wy@TZmHDN9d#0^BjfwK7 zx)0UqAWSmIUM7i<>cfqf!00GQ^NC6COk;7v9MDdCK?c0o$&*!I(B8|-;x5-5Vt0#$ z^Dn>EiqB|~cWf?Ds{YC@%@-AaVUFEwIp)7!Mj02YpXQKePm7TxoQskpXqtpu4Fxcg z^9DKWfbN=#h;XhCwYm@DiGfe6x?+m+D!mcjtcnCSKWsx01PpfM0;sT^2 z&j%TvzM2B@m@dHSEOJdlq|*lFOUiG4;m!?YVlnK$r5>kG#oPzRa%JH(EH2Ucf{Ro@ zAk+136DV;Apk9l^Zk-!N7x&;h{6Ph8v&zc4lwZ#sf!>T>xx9Rp6=*@feivcpXDF(QGxXHZL7?@`j`9HP*rh!ov1qvMx6^AdvfY|fb-eX zR|=L9sT-2ZM6`k!?sh$3DWOZmaiWmDpeiui^D{zsxC4?{c((F-`7EFXbjMR}Fpury z{|54TMsLoQ#2236zT;Grf^T)^%k;>5iKk#UlKCjMCJ z!q1MdRy9}RJV|g%8@sbXV?)R`O7=Ru`kKfjs-Q_o)z201__XJUnMUxS;6$V_(WEJs z0c5Q>7<88wW2H6LG2c@p^ zhmQMB)%G-)oz_LCI38x+SruBP7S@BYEj`A>?*DOtX1(XV)}gMv4A)w0S;K+DiC%s) zVxDy__Y^kbvY{Y^@~~C=CsWx2BzDy9A;3@ z@n3$e21o0SQFSnZw2i5yN(ddqA~&t+c5+&`SH9Y8q!h{lJu8Uun5?x(h%Rsd`+*bF zt()w`t_6z&>J-_gE-XZ80amFVBB;7dqpsgs=F;A0As(O$y%CA``zzqnB5QPl?D|hU zQ)x_7b>~dOG(~m|nuYG$)f@02t;6$CVNN!@<+7anZIC!Hx)cZQvCL^pQ_DH{kgi;0 z=hcM2(s*$2^pgEcf7fPXDhNKe9G__iQHgw872A9f7r#U?mV0jkVBuctA-M!StXp^c z+TcBSAG+8{K>LvUSjvfs2P*Qcyw;N0a$v&ldFSYzr}6{M(*}(U4Ns{Q{6CeV3LG(8 z_5AeWN456o6JF(B>?`Z0mu3yDp{-o*UfcU$cOqr|n|Wc?e;`WT_P)Tdj{(nrn110& zRmvdY0`F5$;mjIjAG|J$Ukl`N;|A37Z9Ee0NcXDo$ihXIoT0jlYYFY(Z zZqQf+F%fcZFCzJIZEq;=j)i19NOL`P2mpux z-!;=ee#PK$Cuy}{ALF(B2))2{3!oPPenH>j!e-3cC{)xy31N_DBQOS6j3&pa@hcU9 zzG!rghUm1Lgd9An>*mqa@BJSOfNQ28BI3j6b%L?4%YLV}E6$#Z9+mOn{yTn`Nbe-z z?*N7!McZb9kF`AsB8|az&G(PE4rgat9H+%h$F5izO}~*(e#R&@;(nh+{bW6Zq4kB6 zAp9zbuuNOPTz@ibJ?KH6^|X@e14O1J#?N|(po?i)U}_OAwn*bW+n~@?d>uv`l8J_|()9XqT+M&Jn1tg#lD{`GYu@ zoxc>tvPC~9gxamSKSjm5{Pth~cMj88-y0P~fPZoesMrS+E`41Bt!tPP{OnM?36|&g zw&2K;9b&Y>Q1AbC@b5;^cP~W?YJ63Eejg#&e;jAl#|#7lF&`!(4;uW!6DZEh_Gx|N(dxQ?9z9_=@vCB|VkeYA_bC=RUNqm^S{x6B*% zAS1(H+F&e8>+`;)OuL?<8JdPJ z*sPg3Tt2ykF#abm%3qz;&5dz@SGy!es53+F<%ADXob87KUgO-C@P5VE!aVCtIl5v< zGq~;;(rK!dvckL`rm)Mzsl8A&Frm27b&t<-C_FWgHuMw=(54Vs=C*r((nP4dH1I+_ zem?mt6QcM+@AM;f06+Vkf&7T1C=PxThpM3*zo?|T&Lm>I{rvp?^^6^J8pvZkgl25^{e@#M=3Y`Z-PK(?1h;q9Jk69u zBh@O5FW^P2GaTjA+a*QHKKLLfENQir zhZJo_g#o5Qc@D)=d-K2B(2*$(8ZsA`eT2(C9efGC?wWOHi=RU`^@@K8I z8J?g2(%0}`H(}7Q2%FR+=0tzJmd23spoKL1PrdtZ7c}S7t})#r zQ;zXeIomP8otM%RTcqU)eFXO*&;jp^<%b&3QtBIPHOYX(t#FF?TkYovFIrO?+Bnl& z;`imVER%`&^La$|^D6xyr|j3Sc`y@{2w!6zWCVUyjRf%hK`_|#FiNfTGBV&wbGE#} z!emeG6Pc~U>Z(hSvx^xqKJ1ajEtuDGa=MQqvU(=v&x z^+Hv{;5Fe126e+b$Rb_8xeFlq3IfmI4CH({4#FRjMH$D@V?g~ zA?Kt^b-{-}=EQq81tUF1p`>{B|BmEh35e%ZwUlvW=!~WtPA|iZ!LM(&kr?;J^TlSOouRw&MMl))7HO zY}_1QCI69Hxq{Kg zq?@pAyx^Xmh;UjC%iq5TexD8+k166Ya-B4aP24no5&&W0i7?V>urCbz@aS$*e7(Ogm2Q z*sOKbuZ!<0h|3Q&{2#eLkfgj@mRxw1VsYn1CJf)$IJaO_vKzEA2(RZxYQk79lI0|j zC1J#%XKLomJ+7WEudZ_Zn;t;6qnr*+5XY8niNwwMxGkTzNLa6t{bvP0Yr%0t6hqWW zTl08)_ zll=8!`R68u);S0_$d+skgmEa*m0_Q-)yqEppf_*LACb17i~DyhpJG^~k-L?NouA82 z^l0c!pLJ;5dX_&vD^+fux`iUSMHWb=oF$m0bhwoAH@-1x?zfg$BDoN0V%U3w-T;PB z-n;c==NmJ>1o$6^z_HhnI0GeIfn*qYQiZ77@|fL@J*eR==c>P-%>3Bc?>L|NvJMtH zbSRagnodWT7paXg`2*qt#b9Q(r;m&felBbFcKl8uGEDEd(WXy}i26}3_0rOkNH~&7 zn@7;Qd&5Er7%vT>Z^&_+9V(3I+umrQ@v$$6iMs|H2IxScgGJ|QlHm(QMn?wTl4fmD zowMAT;hw6=wVDR5r9EC&C!}a#aU)Q_Zc;c859uUQI_+U~c+kLr4y*dWzzP#B-}3k= zFU}-72Mgw9Y=>5-5+k*~754+a8=d~dq5d{(kI1#1n%$AD^tHVz$7dVqqYR5yisu!x z7f!i)(`(?^qKV}H1Ghj(zZc^R5X$ZOpYLj6nLgJOSuf`HIk(eqtWZxX&?@VvV`E#0o z%RSZ=GUod$%d{>DrA(apUcxP>%Y?VYkZR5LH4}Q;D*K#?*j$IE0!mGlR9k*=KP99L zmTz8z?^T`mw}hYXEGzb0?zt_dH9nVjFZ-HAwghKxgJ~oLB`kA$a{k;Fu2u*l`)G&#S&tEnL$2TF+y)tG+V$s7?!2|zxYdO~OmO)X7xeP@6UkoJ+g+>`J2$YN66kof8s_5E$2Pz9t<$dL*5LP%oG8q2~4L zH>3@0m?t5Wzkw=~i}AZ~PSXw%FEJbT@k;htFE7ychv3?tVbfmqwzsE-rbgPt2I_mt zzW~Sg8Eoi!5B0_-B4^o!+r`=qx0*%$<{NK9!atQxAPs1QFy2aeD}lw$t$0lZfha|_ zzu3=>C5c56#>s-nyn_w}Tm z^eLRF@msi#kBx^^VLhAjHxD0)e!T}orMZoxVQ9+;T|@4!vc}i+4LF-a(XmTiDa&}GCdDh|M^`z(y|lB((Sk1%A9UYVd)00|sEBFLTFzj*PIbR~1SoVoCA)HhAj!W{Fx_Q%#|d)BU96Jy(Z zqcSypm5<;xbgS3 z6ByCxtlwn8hTKsBMn*7K)Xs28Enyy)?cRgx5R90R?6Pja$P>N+IoA=%+DLp6n3gRk zH5f3aGydXbyjRQu;+S&r=m#z{kgRx;jBhBYWv7}&pluNgh-+`oZerKqmm_#*J*GF# zxof*D+j9MOVX78>kT%-k3(GVU7vH5nSx~qN`5{RPWeOXU!{~?zf0tcsv-QR|!YkAB zv(RRkV&;iImcy0XRtj@*P9~i4c$k>c9)1VhE|ynlIBBR8&6GlZi}Ss4g*J}yO;)X4 zok}`UkM4Y@qqo%7~C<@cuXOmHvrx?bgc{?2_i&R|`J zTweUR_$R0Jo`d=FWq%~XUKvcE^X9ruYh3P|5_p4c$}m^+z~jq`%lFxk<1)Om&3wGP z_}=H@dh@$WbzQC+eXu7*yne-kKQv(a-3;1?2OByxQya*eKvR(X2p3d zJE!$I*XKRgQ~ciN;x_u6=UvWgT{(ZQ*Lx0m+$`&r{qVQ*z%)J=r^&x_J1x(+`7jTG zc?kTU0|8O1OB2LZKv-BNKy+B#0y}b1fg2u3zJweLF7c{Bs@^T(I?~jTT5)Xk?SqF> zBk8JFu1?zyp~lp;GL=JEZ`-#&jX~s1Ks>m-sLDJ*`U7GTUq+^}0-# zRazr9R1jzq%)3C6dytgM&6il)%d_{UrskxB5f@0gxCc?qJB5A!%9SfqEnIU6>L;Ig zGJR&^bLs7z9l8i-CnFxzM^$>)y^~x|&GJOWZZ}+avd1iN{G9%$I5q3CCWh!RYuH?dQzgp8e^mr=AW%SGcME^_8!DC19!f zL@*tIzuwJ?)H+@4XoUd4N8e*zMMRH8pgrt)Y8y| z5WFglK^TvrVN%2BX}@0$^F&SJVE0k0H0$^ns(IN({04~w;AwO(dsATol`gLzX` zmac$ne*`Ae!!TvW&XY`s>bic zgm|Z^@Yh&1Ao5_r(PN)Mc=&$HR82M=!P~{h`2AY=qlQIzw0Av~SZ6#nPjU^7!Il_3 ze=c44@;{}+|KDGv%7OkgS;hPypQjaoy74F><7(zQcoFWb$%Xk-m@}-D%$vgBQp$J9 zbg_0!;*pDrOfa>SdlvgI<%bKlml1#yJ;9!m6BZK!gFf@P6 z!_Tm7r{2;ikGED-S}+Hjo**szj!-QS+?rPr7qGW}G{Z_|)be^7h8k-LJlaUBDMI)k zh}vy|<73^Jz}OAiMK@Cwz8^g8;voCcHNX2?so_2EV8Ud^g^-rYY=Og*7e{7ynYe{O(_Sw{9;(@w4slXfJKsU2|=d?U30h zajU2N%>0(PF=QgfyI$Tsdd?%0kcxm*a>!iF(r&*KPaFV_z)KqvLcms1(?Eow?Z;J>&b{ zKAP5d)|)>jN8>%5d9w=?(K-x*H19lkRz!{0s@r_1fn{m%JK zlY?alBja*>o-4&=`JCaF^LjUbu0Q9`ci-n{)8x6A<8pg)8Q#5ed~v$`TwJElxo^Jr zvK}wX$?eVW{GIa~m-FWO;^q9Gc?iry;8lgdr6b_QJwTpBegeUy+pG)mM`1%e^OH4} zP>2X*O~i_gwr}WMnmXGbl0MGcO8rQACCYkFpA4d@4kF=-4eR6BuqKI2)QXpKv`P&G z@)QJNErif45)O%Wr7FQdh_yLt0g-}O2Z5BCpmatdi&mKh9Ad1tvLU_s z-nXQMNVo61@BVb)aBn(AKedl@vv7luVCp-0JnWXf@{O+r@i+yMH3d;DG3W+-*PGrL z*Yl{gi)85J#tqkZ`G}eCJoR|$g-C1dXpcH3k!&_JH>FVsGYMKRrJrXZvR18Io8J1) zcLcJdH`Sq$^Xcj5o{3{l&@x<8($Y2zG+1` z@}^-MKli!Mr90nvci8J0ZxErfuR*{;Ak^awsR0Rk=hDRye-dfs;7@P-F6G`xjURDY1equt+&Kkx{l+s&pw-W_v{M- zzV6#wVpFr+5wtFP4jqg>Jo)U?0ml`qR;EU@7F1V^&7ApE%Dn1cvpU{O|WO@!Jj2zDdZoBVpTg&DG&Qz%zQyE7Dei)bf5{IWTZG%JhjtmV`zGS=Le!C z!>YBT4P^5wRM$oF`KlPpuosrP0v_QU5@I3FjAs^m{956=le%CUGq)yrl&moSLKs%} zyz8B*9Hz!V|3DfY8cl7?p{uUDCe>6_#j%J74jw@A(;1R^4S(*_eEJYUc){0$ zy+oYq^Wk5ipd%i2DYz^g`^R_5Gye;8&c%BqdJX(3s8-u)knOOuc6|jIgD{o(Hz#to z{l(Oa)1u*XXHv&yYtwn=*bJ-w9P5~VI7*Npm&2sg=K`@5C35GOioh8M;pH2@QN}}k z3ZLf~pE)Gq9!v;%kopJDq>-7?)X~(AK)WOjjE@B4rKJXqlT;5;U2W-<1mX#^a0Vx( zV`GD9Yw$}l0ChIuzK1cR>z z4V7l<1QzTYr7*|b3uH!X`eF8onR97$VwAO>v&Acs!c!CHp#UywV{dR&!Z!i1wJ)X2 zZ`hNVBbCA6C`mPAoVJ0+&e+LQX%2H08L8pGaT0_s^G@!xJ_I^ z96{!|j0M|~^IO0DlF9u3_rE{t$bYWKtn9t-eecU@t?$(cxu5xN+YPU5kMPQbyYn?O zL2^FxnAgj+ubiXiaSk}=gW*m(^P0|kp6BK_ZEi=t3rBEK0?H`q0ar{wry!48)z*aw+G->kFp`HT(&$G zyzZ6V*bc3Mt38;GLtxKw)znm_wQE*`(3PeZHpbTW1)!Uh4fYoHqpVlfCBkLJWlBf* z7Y*}WG=}<>NO|ZsZSpK?v9?DadL(Vx@-Pxxq{XQI9_c$8N4m5@94qOukE&XCK&;hb zJFOIZLFYoGkoECy745RW+NRd<{&lZ^U0MyHuR8e`zVMG}D+JKGwd;`1H^zd0y8ldY z><1xICm`M>>W(7`I1N#IInvW6h|~d8ot0cm*m@sErChanj~?rXC_G1ArQ0vOxGfz) zjaliu_w3sn8^q->N@Pq-(vAjH!Y|N& zH@(>N5ax3DhtYgE&*f%j9d00F)X$HAk^PW)p!8f&51W78=|DreAN_X6KXD|wMXd~j=uN zblbV)JUT}^?1SSXV?ks~^?S#Poi&vr@eZQKX$mZz#s0mB1~S(mV5BxMO;M{uTWLu08#$2l0wI^*Dn@o*$ zAi?Dj@eo`R?~|w;D=h{X^uhi}9Ql>HX84UpH>3W-w;LUQP5ddq-LA5Zh`hy9klQh? z&fhY=w~GE#sddeowCXSa8nYS3s~*A=C!rI4M^Xi*K;@m?^_(yK4KJ~b>^ z#|!E%t)hJp%Q9XehV?fxdTeLf^U{{ov0zDBcKz-6Eg6H6OFFep%K1(>i6PX|nTt@} z**);Xx|*znGV13Z0f#jL#kVQ75jv=tLfxh*-LX(hZo z8cgrrO0s2KWhrm1pUR?`Wp^$0f^_EDe=7iQSu6l;8KhpNw)`aR1>S{(-)oPQUQ; zKOc*^9QXSlxIZ1HJ|XrDFxax?+rXiZg}Q*4xC!(fIU3U4aC}1j_q_R@AW)U6ce8oi zbmL7lYc|d>&BxlQ&UqYo?!_d)yWYt4+`a*)J1bUnA-TSq^KKu*rvEIq^*1sGO|c18 z(GR5xH4tQ@Xd*Z+Tc6t+<(JS(Hz79*nGgB{cmVGI_7`6g!fYnP*oW7Lt+kG3Zo28_ zXs7D+<}I8$fMl=#EM^Klk;k&^ql9cN&eq03*!z%-G%+Xai*SaO5*wyc3cbZ2J=&KJ zF(+*6C@S)9?04RNM>ygET34VBcpiZQwCt~Z1> zgqyB}|0&exO($I3^gU*90)~c6lqsI$)P-`18D;`fLH#y_y*qGo9_w*BpeR)YF%7`b z5axnV;4?@kPaRJW-uDm;u7&CLH{6{%7vU>{4ZISy=;E*$_0n&H06C{tuUr-C^x=0R zswoX5R0KmrLrIg!t$o-AGiuAj52v@i;~k7kX{tgczKnKFGKa%Vg}A21x>U`)FK5hL zA7*Kv<55wG4~3Wk&|u_IGp3-v%;#i0?I$`29ox#|YbVh8An*WyPm)eEz)rcd;~itq z8ajtV!3%sJb1=nHJQ$ z6l7ni8jXOi_RCUx^D-piq@jL9YbaN-CN$Kh{?5kqVjE^Mi`&vVOpr>Z_!c+{WwydS zgS~@)C43(`S==|Uo4R?|-jdd}>B9sQC)8U|j1Oj(Fq$jjn};dl2@2yB_3fThsk-!R zx_)_Qs-3P#V}6#bIVDK>`JiJoH639wFTgBws_5#a3?lNGSjdEoj@mq`O2l4=YJc@t zf0aD@+%vBAoNaKOeBy~G;>awe-4YR*P{;(*_p2Y4p9wPCTpWCt36b0mj}~)nb*(CX zXFh+s7Z`+tLBj9v{_gLBf$VRIZ;2))*~R&7gTKX5KK}8KM>&?YZ{I%l>MbETm)LWk zl;HD{@XBq@^;w5ZYH=I=%DDGPfV!ua)nJ=;bv`)r%@Wt`9M#cG7< zz|XlT149Oinh}~zyc6Li@*4b>34qTcjBCO z`=+^r<`UunxlY^QQGo{IoWqW(rWGIh(1()8BTC>KuW&}q5$A$^|9Nmp34hDZ1fD58p~R9OORVhq(b@+nb1ed+f^{~DwG!kYY#_DP{Be;@>d)&h-@szbVh$WS&`4OaR7t8FTM%;=@~KG(C)$7b(7trvH}4Ng zujw1Hzkb`jn?uq!jGE`xXSYV)>Z;mctO&2GHeLl2Vi`ng1KJUz5Xy(rKJ4;u1vYLF zs@dB%`=ZM3W$V@l(jy~93BQD}8>Q;Nx8HUr#9l>gY-NEcGatxfJ63k%@g2fe2wAS} zwx1HrlSr6rkhISLN8by3;kUmBzXPXE!hObH0{!j9kAm%x+0lr@wo0UMZnV`^bx5LH z*zl140^6GE+VEjuTO1qvwr2I3D09i8r7!o%jn8vkRgqt`s56)v&VlpT(;qv2EOmF| zf1#t3e&eVLBI-0m`H{m%1F3uN+2=rf7exQ;`);JsJ9q2~hD{Ux5mv5T1uS4FFpgfT zW7e=4iws6TAy7iHsfkK_I0Zx|$U6ETj58T!PGdkK^9t4n4-nFnQ^x$E>*+g~7Mw=I z;jX*xN((@84uOQ90zoW~`Ha~L&x<;jVB3ExJ-X%5&;}6hIED?n%`ZHGHc$ z&P2*yUP*$o5yopK9Y1#@^-Z2gPxNj}t(9leg$lH58q3nILClN}R;Be_<*5~7SymEC zsA(LD_z+Co=EdEZY22EcDmz%a8DqzlIwj!!ru=>M%)#`;laHif=IrJCDBFaje)ApWoF(*pO@tR$ZxzY4EYViU@<{5FUmy>l1Qq{6< z_LtdI2cvj`vqaBM40D=Ae>yq|Be;Ah^$Z_Mb7w14LnUT2HH~N$oewPmnM-4=ALZ5M zslVb(I$txGPR{aOj`XHVB=b$xl&yrGQJJNmIuq@p|==s~Sa`3tMcaATz-M2R`tDkZ2ocU0%XRf=cPD#FLBy%a-U@`Ymy# z{kdgZh74fS=Qdi0$G%yoWym0rAeB&b{kIMYQlGcMMD}d&d+xa>@FDx>dyk%z5PZWM z-VlVk^(tI&%rZkk!d@K8JxoS~X>4aE+$>A;0mu56fBBaMQNTDJivF1AQitNP&hw`D zE=)i6v5$qcS*f|bh-G0R@qNuT*94QQmqd z2@JO5Pyh5!Bc1KE&tA^02OoSeG#TxOZE((bcZ_A!eE##FkKe|5s(HP zOB?c45LPuPA?O20i#(ZQNY-H z6-crYcH4OY#>`&wTAzrM9{=rwo1{q2i4&(lKo%C@PMl1Gg&hmit+(77o2s06RsFT! z6V^49TTub>^TLacu76hVP?GV15S)_cBXEfX2P&#hrv_JkaZ=J6qB$}3R zRw7bR)cr{3(TW|w=Z-t?Voudy^WOu5;23jYDm{fc#4e;W(;T5#j4+C%$RyF}oiGro zYi*Y4F%xrDJ9)KMy7(Ss;w;5+q;sZHI3ig;j0FE%4?UEcKo08ojwi_1(6c{XIR=BR zj(LM~$T=8F%GgzgDQ7HV-LN9>@<|*@{vI<5Q>+i@oK1z_%pO;BW`caTnW*f(2RjV(ru^X=cyp7 znOA8cU)q@JW}BGzRS>VVS|pNhEsp(U9<^dyULoZRgQyY)Z4KXoj9P8cbv8FLeKu`B zfCkL;M7r_%JJRaTE2smegv9b3&OiakoJT8Cn;z^B!Hn3klk_v#q4UjDz?7JwpXWyg zI0kG-ItwFWWadmdH*zdhoWxci|0^9$i&7`*?njRu#m@<@PGKSqF<)yME7FOxyKv4p zkQz=v;18Zn9d$5DyBmNp>oPr#c`5UNI?7m&%7Oj*%h#n-!v`6Qo-_j!v?Lf;^j$^^ zEuHb(We@NlyA*kej&bFFiGuAGVK4r!e0IH)kcjn!_oi`Q(K)EW-x2{5`4X1~^SNf{ z=XkjIr?~v$_%E5eL3WGc|UXAdl>B@i6V(-8MJC3NKD;+ z`|SY>30uqX%5`Rf%5sg9Al5;hj1B8hC0#RwtUm8PXgcdHhO70fy&%jb43(nGVD(w) zsA}C3|L)5&uvO94v0Sd-@*ErO`&H2wH}J07z5A}x_n-X9p9~v#>vx^De)D+GW9BwsxB^^e(9Hf>1DX6o~}uO+7QAc!>hPY_Q84V zJ}%CbRqn0N^!gES98^OWR;INc83r;@9FGhSRpZr|5dQ9;w$Hing)e*|m_jmf{`imo zIOa)igK50{?N})>_nUI=IoE#sw}1O(CxWK&vJLw5as0$h{3eaJy_V&BiE_WooF{NV z(%1)|WfUn$kzw&?fA(jQPFUD)%gE2>pAYj8n1{ft2Z2jR!1Jw3AnOK6Gstp?4pj;v zIUp`XQ`l4?*yD_Lkr&cTfxxIrtBU4To32I@xjKCtmEgVP^OnJt+L2GC3!rgnMm-ZDFbO~0GLDx|i zc0g0UDTaO#rvgJ$ha6T3r`ki;)88&-;eSKjM zCCB*0i4&nBW}IWO1A8q^8VV|}IGTd+{E;91k+cAbvVFB}-t{mqaVjDtlHlg%rsig{ z805uM0cvWhqfNHeeL_`nRqJ(*r#-!S?AN->)Lx$eHUhLee1nZhf;MB1;b_ZuLe8)vC)DWx^*2qbRhcf z95@E-uSDBHX=XU+0_iW|dx{N}Z^{W=n6tzydA~TLb)*%KwBIxD^{!2}*tD0eSeou_ zeoIK*mn`j!d2#jC8__mcMJ-BtRGXG)D)ilP+_igG%xT9^+jo&n;plOGE!faEa@?Y) z5IEO_<0Ql%ytpR~t0y4u`&cKvVlDmAxa-_RRo@iU)Y*BI2#J%&QnOx0|IJV02myz%~g!0bN#*PME~)$ zX2rVH+O!y3aMogoaM+2lMo7pDMq;_c^r5VZ(mLiz4dc_1)^=Z;7A@#T3XcZ`m_JpO zIN4;)*>`+z+I8&3bS3XEUwm~sH#!)ScKwi)AyKYFg}rcsflN1QpiNbEXyYIaADLnu zDx&w_-K~Q_FcKLt?Z9=IyZqNV9ub?>S$YxpZOd zOe*J_7@8VMGw^{*S$9BLA*`Ed1E*lH0ga=2kJ~%u7wbBz@%njis@2rhz$`!;33dB2 z7<)BnPPI2IN-Z^uV3xrgt!PaRB~8p-G@cr-a*m;Z`CmXqts z_u}lv<=`nLrne2b-No&&f0{ly-z2`=OMLHd`}@j}%g$x_-Z+U!O%1xcyF(RPJ7?pR znp<9OhxO$$yt}3<={30jN|3q7tKFdaf&`u8qC-8$M8aA|gK3Pn4EG+#$3FUAtqAuU zCHvZit4^)(!M@3?P#T{Z4H*{sZaVi;%gG_P*EIP#zq=Io+&1fe<+E|_Kkoa&L6{h_ zhJjM?b?erB&pDXO^X_F3hK{}C(g&TXTGI z-%R8DQ2Ouu6bH&7_cNE1YJ{(jfVw=HrAsVsWQCFxG2ND3c5 zyhAPs1k>?G)KTe3L7JGbH}63DiKp@NgDjNe*zKa4IlPKZ2hKN$(-l{2zytcKP?IjJ z00~4gYq=s}s%PsotgEXFX&-1Ih-V1|iH^KNvKJCdkS1VIz%6M6;bo~*V9FqP5=t~l zH1aU&&q}SAEn5~RYkS%Hbx2u}b|WpS0-3dqk3Ifa z`o=fD4p;nVAwY3LvwTVV>7V^zNSjZe!CP&01ybUd((otGhj(?oj`tlu#xc%g>C>P2 zbRc(b0;*4@?fG*_e>lsR}K8SS9IaEe~F!=eh^q-uV#ZsDpgcf1VJVNYMtjes_vFs3pVN! z+p6cQdZ#-6qQ#v-eA=E0)Z8mj4IQNJ=9VT1vI&ro$D>`h-gawxZtHX5ui&k3eQWCK zUJ?EYhVUXE+_LTiQNThcgXPSVXYe$yimbogFdf4KY|!?} zbon-Q|jj!*5Z_{t-UpMp2txk&-z-h&2PTvP3Z@J@CQTk#)J+6 zb^nf@^!y83V*_8iZcQ+iPBC^855jHlzCCdS;Sig+s`VQ;UICGWy*NZq?~y}HztTVi zm7>m;SMeLF{q5xDxk_m+>CE6~U|!*7nsC8?M-}k-n3R@5g6L z)i!??23BU49PT}o9(wp&AP=k4``-7TKqfi2ni)g0;&{9MvuDz#rp+-%B05iTETIU? z#;Z0mH>%QR7z4N8dOLBI>B+|)BVSp%eih%(-~JW;!C-cwrBcE-8%Pg*oI?x3KBxf` zW-X{Y^BC($kehT?0_Qb{KroaUE{>BSP92D`^$kHlkt!HGc!oc5`Y>zJ3~H2JNZ*k> z@>-^5X*i@SAh%Jd<@v$$Lq^I4kkeAW=Qgxkn(9^IL=Bw3=)pi}hb?CgTI!7EE6kbWr+d@m&y4de=-iWWWQ}zvu+<9V z%aFGB4;)W}Bd61pH7`^U6EIb`FP22dVJ4=^rI@ZwRWbuU-xLf$P0!av-}I8N!_~q*1V9Qy%)_M# zBK8sqeurK@8)RsDx#mhB=-5oDuM)~k?3mWe_c>oi{7vJts>3pmm5gR0;yLEQ7K*2n!jK5?K;oGQ?M|T=}xLK`zHW=KjktmZ1BQANi4B z1jww_F1|Qem&BX(S%!O%b@}Yw_1AS&cq)k({@OFE7On)>c4QdmyJ^j@v|i@DOnRly zTesqyhB9RcICkbYs3jmVX`Wn0e)hLa41Jpz{B6kN8$Vu!KejK2{G8k7U7}W^*EySm zzlFDiy=jDn{U{!L5=^bCwThCwqZ5s&D* zC}lczb#+5B`0X$*%fp|?qu-38w>ST-~<*;kc3!DDMA`e5c^V9*RY<1yy9b+|t^Z z)~s7aJ3YDtHPJDSWdcT*tzR2z%5FRp*mVX033C9MKa%^Aw5(%UTDiIl;%XfTVF?o8 z2Lj1hvvw6+)ikV*rCj-F{&J~rV zz;}20#(iH4iTe;|NiSTyfTP%M41{zKYIpDb(I3Lzof812#?uqud7Rp(aT55Bw0Yy^ zU{(x**vw)}t5m6`-Xo-Duw#8ZJ@D`Yp>^=VpLsuLp>GRm#L15z5AV3O4K)xFG#jK> zX`7I*tbxqHW?Z|kMi>z%A3mO*-THL8{)X4Fk(H+*Z0$7@P@28BXEy{)N!Z*=kjwaJ zX~n@FgZB8--$|M@h~&6=oyE@e$)}!3H{MjRHJh9nkGdM0>nRtTZD7up8Zg#*S2gVz zMcZOGaG5|uK@E>h*KAC~=ZDk&-k#7dc0~ylV5t&|DZ9JrA;u{F6C6#r(9cz7t1NTSp6Nt_)Alwe>apZsi>N6CjP}(yBFG zn2z8;529)g7?;x586As3xB>2)gRfeQaO!YlqyfAFVcK2E~`kmbhbL7D>b(bcsq zb$2hPzjtHW(UcxXdNg_g?T5n$(jinw*R5H@H&Tf@>OSBwnO0KI4CWHE47}Pnr4Viv zsPUKZea`U?^eXz`_)5fwpwiCS2dm|upR0X-t%UD(weS=KFmTFD4Zs0$%H`Mt*BMNB z28PeU&}&W&wX8D`o`K*)XgWEZOD;ab-%voxD24U26327n>3rIAY+E{5+JhH)v}>># zujAWZxo8b17C`V0dm2eT8HLNQaB&j{jETk}HTT93&+Ct!??Gk0Mo1oH)g z0)jur#_x*oYRv15m|MSXF&LK#6W0W7X(fhqh$fe@yG$knhI1|9EZ1iVNnxi1)^;i- zT?O;gwyKhEzTA&IW~P@ovma`|*$01{&XWXW1}MqZA)1;2s@vx>EZ65ej>15K*pSQj z*);iXo=X{W-MP-<_8ON7*jKj8-??Aru|HnMd-QPW{Gb1GII&afPUekp&n6sI)ZN|va{J8ZH>GBUWh+6~F8+fb{9rH=EKB0r zaaIGO>*82D&x}{?UA2Ch1-UGl1-T8jBZu5?f9JkBKh#LjKY;M?ySD#c2Is2n7M{NM zGUR*wnEx{mfq4jAG6)pD%u7}s6$PcvhaWb7s(i9(ijA|lh=B4UkWH2{onQOUu|veK^%GPmiDwgNJu4Cmapi-oAKh{GP_CE;_S?G;aA}W-gC7(bRY(Gs2wgk zn9<{K8f1GQpurqjh=`{tB@j{urIubHw4{wQ5P}kQcxX$5!-J?`uTMu0_Yy}ei<-{5 zRBij=AO6vh{OUPg;>1PIbFD=>>uPY4*4_a@H^L&^kLp@isC0kwlm9(zvgM{v)0UO1 z*Q6hK*L%oQKp=)76tzcxllJ6|O>vZ%uv8*$dN&)76kD=H75MSAW7m$@oa!4I*=&a5 zT_;lL27Xt9$Sy&Bzon%O$#`q1@_W3TWhkASKms~JyQkO~T=LamC}R=V@!Ion^7Znr zM9Fu9=Z1n1Z-()(sB>`;zLsNu!(@VV0|Q9^pMN3L$y<>^yyrbXgp|7;)xhhJIE)5z z^miZscx+tS(7U1(vdgS3pK#qokxL18nLc#NZPn-ubHLEWrmM}|qQy(n z1NYxgJ3tiJn9Jz58>C~ZgT6(J7GuM9L%Vt|pd zdhN<^@>fZEkpulHs1~RsM`ns+xMs~d5Q_qL-+8JHyq?ULWAk2tld=Q*57B=dMZxIl z>DbSAq+`e0bo|J%^qEh6hBJ^ih7-QNzT@e+GXrVG$Y`p7$q{&llgo91&r^qX%qZ?Q zldp{rQkZz2H(zbUyM`#e<>zZA2q&ew0WTrqa||ayAX0DzLCzdgC0ncX^OF}+Eo*26 zcJF1Stg(X3dBTI{3zBJ?h!|uA2x0vza6CX7LdxB9l;Z#)VoS#>(($u>sS+FTW+d08 z5VX^*n`+tUc(8xy1ll6|QhjxE>g-s=JbQa!#hz z95Z+Mf=%So2M3Px+L|eMlw^rGe37Fy>z3G>huAs(W4PKZ_)fUZ{%iv32?Z z3D^QZ7POfAg*DLu0-Wq?)tDw!vLB4I|L73U$s4eD4pWSXbx7a+4jhtKVQy#S+%?%X z&o+6vr%8~gd8J41jO3f9m|)83X?@Hw%Zs^2c}grLT1{`h9CDrc_rLdUc>zlYgy3@y zu4meq=f35(`P)AG+e;!St3BIyCHJ@AetQtqYK$2&QDl1ad;iR5J`?+hM6>&WK3FVA z`(%k>2{a|(+Q7RnNi<~%d@jebt>1l2hKU4R)*L97Dk~LMa%#x^@i~uyS^!FnRiDp9 zSiwo^%21tGLag1hb>+TiIAoahvPXELi=lX&ZL3!?oFmaC_)}bGZl~4y>?KYnqeW&- ze($_<&T4{SyA8#2+~20n{ZggeG19(VnEcp}{a6SDG>bHyrxK{epbEV~)q3Hq*M8@h z@06M=L{Jk#69wmlCJVODdYo4V=ZD7&>d;RA1e!FcJ}<%V{7^z~ooan}cf7<^l-lbY zPjB_cX}7Ph3N=48(QsZ_PoAgdHRQP}lS=h_=ZWwU*U=nN9LV;{91usz-@17%&vLxa zhj|FhL*UXv;L;KBeBTAhHVcTDILI8Ie*B9&?{!)iw1h|yQZ}XD;w`whM)JNt9Hwo$ zYICT`FNIK*Xn**jhp=(N*$~niorU%F9gQ=nYaluf9q3J`;f^;#@Ge-ei25LMAzrn& zRy7>jg7QHsU4&GRkIHOkfhZ9nRuZH(K*4@kB7(NFz+QJFi}HfDbh!5*Iz~8}!+F{8 z>@YQyBB33}kskJ@100hCf!l$kUcyFi=ocXLJbFxT?^CE}N%$Q&05aT>($aRNxDtd)fowM&L2?Aa#`{5Rxp(3aZO@*4(MK2Tz59B|QycwO zk}4sl2Yj8kS+-^X=Rpiqk(O}O8?}<_%P(IKC-&`lMBg39rs-ka#p-!vRlsR~H)$D0X#8IDFGN+mlZ| z#kighPx`9G+b{cc7H+>t;!{s~RNyge^p~X}U~2k(#Cr_gIB=EWphQk}Y?%exnY-z% zUcD;LWY=M!<_7P1_YcMguXt!s%>$qkBxa!&8`Q=;`@m{rZHAk{_(!Q}E^cmbh(v~b)#+V-q7%8D2 zhe4osd7T-`WHRmo&pPCj`64!7$^1Hd=4{%$X>(e@=>cbv#J9G#hY5l6R>yZV=;G1c zB2&y=iFs{q(Etfg{*)7QoAeU)K)5!|PN~A+XAdcs9JpfUH!w}z`+AzG4_VEK1l(f-r(+J)eSNLJX zYa--6mq2h!dJAuP7($AXF2La8np#@QDGD%bEtmG~9?YdG%$2UV9P^y!!`xYW$b2M6JFCNqIkIK$j1n8BV7YW=Q;Fg-z#ha5u!a zxuAM!2)9Kx{iY|-rkR1+P|inC>O7KZfoX;sTSxj1hHr-nG@DjKsFe;*vW9I(^9yF@ zVveo@ID2|uz%1!xy6)N=sN-}R7{cLXFhXQD6{L4+1+lPTHUK=mT-)Otu|5Zi@0#_T zkDhgtw6?=hV;n+yPm|2(KX)phFJ;IGen!yqU4&m%TP1!TEhZu2yI7wgG%`|eoM{ab z4PJ(f>?>t7m@eN1WoucX7F6Xn{m)GQruyNe8) zZ~M*XmFv!T-xWW9uiwVKGUPno4aH^qJHOBGyc=>l-+Q@NN%%THGvhXnp?-O{_3v=fi0|snMAY95g8`Vl{}AR*5u&$>%>s43K$g1dAm7`Ud|8gccI7yII^1x> z4bdOpt6}2)u5X|0Gr+QaXFl&aZxnX%PmcGe&j!=wkl*LK@%g#%v^|692CuIn+f50lJm%Qgx0lec{<*A z3?aufwwMh;yjDPPm9U_^^ujhIA^j{^mqFxoAQ{DWyss~vJiax&hr0+)4B-gw1YWj5 z5|=LR7H10Ltpvge{ZCOZ2nf|IUF<+OK(YeaLe)}r%W}>SPL=g6qufsfMXCt0-M1ZL5ITR1h-(v0BY>TO!LHy!SW5X!#Dula(;eo<%Q%H-2j>NNW#6!m=gsDJ7Xgk;*5LiZ=?@OhR(sfICcC)s=DUd zG{E~#IOBKRdRscdxA5Y&7cs@S1!h%s8av#V8qab3m5eWOWYmsjewCL3mnx11WG+`I zZI{S*f??J%%O#sCJAoVQAApcPp1RkqNlR9)2(|gsd?&kL;B4Er6U1ONy&Z>pSAvkJ zDyT$v4ymik?Ndk)r{IQF@OuuG_r)+RF2~EZ4(KEfWp3!tpbCEoXECiEj4`l%1V z5Nb*%jvir7tVmbgd3zfFZhL3?;k@voQ#A<483^c7;9Sl(uK9&h?WGG-4O$SP_;*}EMT{Ozfw z%C(Jy=Qz853`TAxjDvUF^7hnN)25;cQuvlMA3_6Oz;6@P3aZ ze{5ogavNbJv5vyHn488C*$i3)sR@ZYYdX^KGVHZRr-ss@z5`(*)4hImI&hHnn`7x# zt=fd=$p+G*Ra7~ZcK5x6DGkSHE?B`)qHEIj<9vIv3#LbbACi87$J`g1%vQz(e=mNQ z!qhRl2wNStI>$@pBDfK;3Bq<`piGQLjpOPk9qY!$OuV^N!9B#w;N3OXyK9@0z2E)a z-+j3$Itu&hSHBvbvRxmQCQ8^#IC#%QMSRPY;cumT5&{wju`W_tF{1x+;s45q;x^~3 z->Y2PC~<7N-+}p8mM-S}<|!s{e6~MI&a>*Y?apn_b$QSAxu@o!Q!?|*0G9~+#y7qZ z$AI}>qS*Fig4w!!R^48yy(fK0xJytObO5VFK1ZiY>MOabH3;D=kN0nn1{gkhQK8y;FSt0D^f})GA@x9 z=mEbA7>@7!*bCBmiJZ_2rtM1HTUikELS2ru*o{VH!bMWM7QfWk$Fo_gkK?BfsPi0sYjdWa*X9dmP>?~Al>Rtbs3JV6ysTc|3gZMK=S z5S@x`s<=-|R3n+SjeBtTv6n@@rL`@H!&dILOM-F%i=t<0yFrNP=#0&FcJtm1^U$GQ zHs|H3tGf&Pva{j*O+xsXOpBW8I6BP5Txs!PHfa}GkqA}g0T#CPBcXD>3}oRN`XlGo z#ny#YHTVfsM60W70%;h&fQN7hd!?r%sIRYFwHoAoHa(?XA7$0U*>y9Kb1eEPa_?dv zrUaC?Xvt#KSgUX%cq)iY-|J*fE^%Fb!N%LV9bfIx)fR9=YDP`g!Hvy~F_3sK1#Wc^ z&yL%I&V`{tphx=(HYyquX;odn^R7EVKJE_ZcpjrBq9u3vrR^^icOrGi z>ogmsb$Mi;j(Yqpk!#;{Vs{cLzgiGFrx6xzFG_mV91y0e)Cb2Ln4Bklpww)h&P&zh z^+zDwUqtdRLZH|CTTqF=?)vM}ec!wtVQ)%6? zlc*o7T1s81^InYurgM}n40?Leq`*PsS{&xpqawVO`o8v+ zFQpgIW{~jvnV8fk44vhxK+2a9E zVa8H{bHF+5|7#l?sOx+>3gha`&|q4&sw>qq{$rF`E~7!B9YmuHqEaTBek$ZWxJJa1 z;QC<$XqRn|=jcrS;mg-Ra8l-e0|`xl=3w4P38HFCy!$$6YR)oXTyWD!;TD%HVpHrRk~k-jrW zU^Wdi7w6Iy>#jyp-a=lGYt{mrT0(gfsHrzL)v!)qi%Aih9L&}Iz5AH|O7ocojPp46 zM!d@3eAO-3m^b24elYDhygeP-gLV;Rm6gjZ#8#fnrPS^5h_=45u|6$C+e+K{AfM^R z9P@KYEB+{I?By`(@uy=SseA@NY`(?k@Mr*ak>a0PCJyM$9}0)Hty;lVOeeZi;NNPX&(T@f} zVVve-{x-e8m3F!(Nc6Y|dSs`U&#vDRiyq-7A*u~|arpNl@WpK|E;m10zS2wEVA|jM zt=|d{;Hpz+A|?03z8H*GP1(D|uXf<>E$-=-=d=5Vd%ia1xeccGool=*$bbIlf1W<_ zk&lF$vjny3&Z=0uKNvFcnd{XdnU}#b4H8zL_{1l|bU~t8cv`P@*cLC-=Jei$dnWLd z{#%bhCV*bbdUD8;NRvds(M*z_c<5#3NLH--N#*32%>NbHA4fp!D5&;&FoJb?&K_FFvbApL5MI z&d2|WuUMCNO(?RRyY0_ol<(q-3W=;sJV{1_c!llL4Ab#_=%I&#IbhqId#1A;mSNx3 zE>Qj7?^88@Rr;M18Q!^G%QRmm;*B>hx5ek2Howcib6)Q`Pw_o6&i|Q*z&r&0SqNM@ z0{$WrG7VCLYyspPPM}1wNIC!X1}|AKi%KVdeL%tj(uZVa4m-h3SK+~$Meaq^z^0MN zvumZDFK$ccAq+O$^Jb3yfpZLDdiIIfo;JE=Lsdx!TI%v>i{YDnEqb!17 z{lfp?7~!dO!_`+)AL^Zf08>9iT5OdxLt)As(i|m=+JerMqNc2UrU(}s1CeAMPn|8x z)5(VZhAdZ_IpE`TS?pMA!wf4wKMHUqOIzZ zn`oKk(xyESr=P_R(}mFm^#lmf1YG*B{?iwcXyEt=4z7!_TzRFd+B5InxdRFN>DV~T zqvXTQ#Es~{-aSaJpH5fN_p3K!%SlEOOSX&4w;Z(CDi+D*O2uUN7ODHljG8`1=X z?kF~(#~?739(eSP_qV<2jp=eYyw5TwUxi6>aNpkGa4TsqK_WZGCSF@KTxqObk-q+=e_~E?L>pr(Y?rpTq-(BNn~rYZmO#sxr(*m{LXdV&f;jRmc;@yL zaG%3bSqZQw0n%}aHlE7VUYSm3dUoNxdn(;@`IYI^!K3M+Pks)mO>6p<5BxNmEzhQ1 zNZjgZvmE(62HN$@)X)T=i81RyYSRcD4ny=m4l`u}SgLKI6yY?m-psscg6P}6YfpLz z=8>ix70kmC%mw<=grElA6O*GbSn7ZuYMA;-2vED&6%f%v zDK2lwkoi_-Er*rcDl4nY(ik@6!>GZ}FvsQ?^XkePB+?ye&+~h6IyseYTyrburgw!V z((ud$Y`r-)iFrs-lvje5Nn2Xl27|K{HBkm}tnorRQ-U^48OPO?pl%#(t;g#->iQ)d z%~rc0jkFJ^o~i9=6en|2%yXTCsvX3vr~Znx5GmuTm21*vOE;yegl%i=D5Ys|5>uwZ zzI5pLvmn3&Fu(S3ngtH$ny?c+)5|wef*+7YlrooEn>)hnW_)UtZy8AyjDlI_>^SSn zz*v8JZpSn9VJ_Xg>E_hgunemew6-SQ2V_Y5O@Z`7$ZL8PNG+3cMw@s?3a|GDrR=3> zDGg7b566xz%=aqR7tIyI#|nR)%zmFfMrP*tr4AVh&-aX^OHfLjOT^}P#wpzt0XIk( zx<9@D{qGNHwa=MIwH(u_4lV&TUM?q>@7=vY!pzGcbM(i5{Kw;1 zHHj|Qa)~;LV;K{9FSTv%4PIFiYI&Ap8t+Oyjmu@Y_j<_`_efFqIMviuMVCnPXgO_+ zCGK^UX4&S?!F|p?7-yS=qsPBV>`7?42Woe%6Ez*B<-M!8-{K;s6TeXED`6%vZ<$J0 z|L_n0Fzy*1mal|a0^a&hTYk>(@;LiGhx}|B z+hTjoXD}|mFTUsa9GBDPe7SBl41}*57sBY*e(l$Sv7X1tBiv-L7sKB&g}G(vSWZ&| z30s9OzxkWL8APpVY(s8`X=Thym|M2b3PU8&J#|3BUQGSann{*ae@3OAyslI(N_;4sFF_=3*00N z(RE9fq|4cajzj1)Ky037BP)SJJqf}kv2hA}+^G}CQwtK(SVSQ5HsXA4DaWXNl*2^XrkX5Df{J{vD`wN<+ZlSox;t{WkI?nG+KYM$!o-%|3A zvf!@=A(h+h!dAkD>s@Dg0&s?MUt%%tAg+P3+PSabz7zyR>8=ZW<%c=@O}a1v{Tm{X_{d+yoF8pCg8aZCPyDk zn0DeNsOxFtkMVA)QYpsr86;H`%!BK?yHhQF5>8XhpPg{Oh2tB6w<_a*4qR5Z@Ql$ig}4&=s^v&)01KFq-t008&NW+PF*H*Kb9_ z{>T3|0D_Vc(fH89GNc525T^lB^}JiEWUfEal8=W8wm5a>04@t-nuiCLe* zKZXEdt~nRg{Cx&psIgl21aGVju>ny~l0QLJ4l7*GnRS%L9Vsr%ahdJ_V zqBA^wE|u0yr_+-s)43`9KJfjNRFD=s^-|WyiOG?)KxSt5T9{sZXX9tm_I)pu`V=Oe35jPP_h= zBhiMbI*ZAbCn3zDB40U++V&hO{ixc{u~v^yjbVmzEbZ9+6sL6HybJ&MWiT$fG4VhL zC+*n34Kt{6oJzhC6Pfn3@v`eU;h{AhJiP~4fV{)OMgJg<-+Of1w^CV6WxC<2ThsE+ zwK%jBTuRdmem}}l&j)1{Y5_~S6iy?{7#|rRYH`UB(Gx%=@E#aE8U8z3ah6wGTR2*Z z>}0y=2oA6OY8yBX!Hn<&$a9`#-|ygjaL*ADca3vhbzk|=hd%VrR_%N9sJffgyNeTN zq~7~4{K7B9E1wOqKgS%5pa1SZmY3^`HTq&5I*|M5M?V_v%zbpdmuOMSDC5@jGAdQE zmJzOmQi8|3c!h-CKNqZ1SQ)Z3*1W3SOE4?VG)OT1!5{oVNJ`b#lCZlPVS@RsKeySm zJ}Y@wrCu-L+D;4W?(XjJfUiW=a`SkZC$~e5y{r`=A*=LRPw18@<3gfVqSQ9qch&VJ zI5TXN`U)RmW*W=&%J%ZP&f@kK){;WIbAL>i}#IW60|v(*7#hH@s=g5ibKwy)0xKkqhA8A9DMIsIR;)iyQXHjlsU;QyYr&TeoSvG=C_zwKrdeuk+8V*r$W&d@e4-xcM*-fq4jgZwP=PU7{e84FaQ_LREU521!JO znmQkLNZgUc6zni1lCd);UHQSiY3}o%O;ZpHe%R$W+FA(_SqXu*00Oo~_2@5rG1aj7 zZbY?M}xU3-5PLuHifize0T_T&XUwhzUzoTv#%$OK=9OaMtfQB zq0|7OkRJM0npL{MnZ{yF;gx=LI5i;YtwwS+$NNb()9Lf0squyFAyuA2;#dkY8xnci zIjt0X|AEwSraz6N3cv2i(Ny}#BWa>%|I0X-w!SrJ0$fX98u0!(O@csGPEaih!3PEp@>QX&A6-h8c0e_J8`*sUG6+2HLP3iDolIu%-fK^lvHodV!Nt z(8Vwi>XD>QKJjGqYwgj#GzoD(N>d0B;u_tM_OX_9sdXVs|JK?IMn*_^~?{VebdwRqZAN4?{yo6W(v5EYM255!yB zeI3Eo9XyoQqL!z6_`>pvKu8uM-Jb3{7EBzq16EVsYM`cyyq@-5Z4jfD!)NuuK zriOkYS@p+5wnqM_&y=QN?djt`f>@ z0Pf>xCOr4Zmej($YnISpOk1eS&DybPftu+DN!9EAI`WmmoY=RQdKoL3Tcdz+ocYjw z`)w&9$%VVXJH{EwD#IOfLGo1clHB~}X5gpGhp|>mg4awCF0Q3vl0>g%dgku4Y6VP; z5G=y01Ol_YX%WW-p1>Eusnp)FBnV9N$v3?SMap!I(Rv$6GLGE_&YcaPBW;}Qapc4S zd})lNQ)4GNoBe#+eA(3y^d)KUf!*maS{4mxOKJKr3ei7PGoA)!PNf6KUrg&8ufX31 z1U}kIOd^;_j5prl>zGKm(&XGF)`Lo8eUepLxM@2n=ijMt-$U*RNR66WGU-DrYUM@ z#aZvPBX+qM3!Y()$bbm56XM+S{BkDeF5oW!RsQj57_G3RVNN)Ibp*+uK)6fQLgQay zUh~p{yoAC1HY3#DGZ7#`m!EBp@7$LpG&1rn5oE}B-b4Z_bnxjhoz zUfD}}epg(taT15N$9r+T+FO6|i(ibo^SIdlO!%o~CShnECAlB_*vDcY_P0!hf3A8T1bZ&qbh&)v^0@nK`3CDSjaRPUbk-*m$oSlc zoG-(|-^Fdr>14K;&#^S*GV1EZ^tc4%7H-d%P?^2Y>s{IPc~& zScY-t&H3{CoZhsi^D@ppde8NHpAYj8n1{gs8UmM?fQQ%%BB1c$hZku-cx)(x{|c7r z5}^w1^enc}5L(lZekUE^8iO$53wO0j^<3j1n00*kdiveL!mVm{EBT{L$^b`1WgCK( zv=VqD*c|QU_r(fA5~itE^){gKJZ0CXB z|Fbj!GF%Qa)0T2@xbwIfH~drB;ZO^DJs3v_~n7J(aj~v1$M@ z#LZkfPWz10`Bxdwhp9`#FfV}o%peF{u9Cb}ly~^EpN$2xnnm?Aai>WqGO2`$?xjZJ znkYvCcMokS2bR;c)rEF>5NJq+ke=_8Sf!m8sK0`Yn;EM><{|jCXKy91lD!eyzQ=d` z3;Se|X<$%CTsQTd<#?fUF6a{S+z-W=7d8eF(!AK)36|}28RJ;6$!5@KXP@=(&a{p< z&5t}1kfZ!Az|U8X5kxET4s1vrV*>GqOvA!6@T1vNPOx}JxV4?Ubt0BiFVTE-J; zvd%RT_e8?7h!EVm@bn ztA-~Z+$f*1{1>E4?EWY`(kUM*j@!tWb1wSCE52t~K07-Q0%ccBrVaHELttyMcq)TZ zN)c!`(d*a$)t?bZxhk2I-B=eRdEqKtIV-;@Bdgw7c|LK&Y1x6ZIhV}cm~EVo%OohWqoWHe1}?g1;{p%k5dncKLg6 z9o~P#d$OzP6CsqF>F>UAxPLh-{p+*dy`0M>*X2^jdv6;4>SKQzexgVx{PXvGYS{JQ zU3EDfg?;~C$FNd+QYp7)3;%MySa9Q=pBRoh<)|G0*_QL`yXr#9#iJI6)6Y92Z8x85 zN=6s6Gho+U_YFI5*cltx{^9KNE=YTc0==Ab=~1?qV>laf>E2@6)%xrh$bPEf*rU!I zcI3wUr8CYP9*7a*bGu_4v~ytn-WW1IS6?1+Y$#@@YP$>oHF{(hmv*af(Wdn+Iq#Gm z1Xbek@?#b>YjL0Jd8

6u`TW)9(^taL={o+=%2D&&_~GSmMS;KHh2gV#rFd|Z5XutQ z{85_3H+)5|`qO!Y-^#lm=UxC?rCX5~2LEl@)n!Zm($dn3JmxrB)@YM`^MnVx#3=sr z%g4~|{Ci4|=gu=ll3$)|t)Ckgz_vWV@HalV8n3i=u{j1{Hx>L%OBxQ0uzoiEj+cgv zZShx+96u1oHB8fM9>k$brtlulIRoB12*h_j$glD8H*Qa|nmDG@ z2)ofWGU?hpYmcKIdllMY$H6LB~WW6P$Ea!9l@@OUH1)#3;&vu=)mX zASlli3hAr|P>y{&`arflLdS5Bz&cAgWR(RU%Q<_wCA@7maSA?L=Yu`4`J3&+`!ieI zmJ5=O&tz}^{#;;_)gioC^>s;9@iujIc&k;*Oo;1OvZz;GfbM2Lok^Tq7-;EO`@%c1|XrMdN$@D6RHUg zN4T>Zge|M=;H}od@8OyzrHWKQ#R0 zQG6-V;dKl*pimm64gUo{)`>|J$>PMP$k41u{z&fyUPg?PC!T~(GOIcRXW|1`$`Hws zO_eXcB6vofKw-A>l$TQWYamNnioXdG`ACm4H}VjC_^Qw`wv?`fS#gvbaU*}^6YBUy zJ9sN)e#0~EmebNjO@5#Fr;3WOI;7~c=Idqjr`(C-m3zpEtd0MFnRM-X$oJS1wVz0OFoJo zz)r^xmA0f}$Dp8{jBS-X)Q99b=tL_A_h;bEUkK%DLR=w#8~=0;Dr;UQ*CN#J=T14w zzkVx!B5I{eksl>eu)>^kXUxj7_X)?IF`WIFrQznAK055Y<+|*yv8_Gl#S>S>nsyvy zQ83d#MA7`rXYZ&>D$h9kjNz1{9y6SJ-eZOf&$=jgDr60MAQsSsERv~`n)H~^QW_`WY=Bk+hSzcm#>jLnD4>w-@7sWQFh;0olkDpr>-mq z_PA}Q=KT8U*)@_K0=Zvd+vaTF&&~l`)AvLm3`CCKtV<@d$RAv}**=Q+iN~EeoVVkN z!0m-jvK;wRP4t^GMRb#soG{PicV9d_rlp>D6g7AJ zn;aQXhQ=}df9+B$%T?NpvL7pZ73-1uGxk>_HT{rxPvcB0lw$RHb7g@-CcY=_RvbHC zUkOkDq=(NKCa%*6|4Lo+**wELr^_#nLznCLddVN*6zd&OSJ(M?pFne) z{k#mvxyV>wn!a>x0J1BPd>tM5&ENdZ`cC>E|M4H!r`qf)kOuGVy3Uak9Axc$H#znS zx(f!~3-q#=y=-O0yk*dNXnc*kpW<6qEr$-1rsc!m^;LcwMm)c?p6wc^r*Q3p(?;g7 z4c9oqH176$?{>uBGM2Vs@X<81OZd86T80IjKjhZ*;On&b;=DHv@pJkGF#YK`>A>T$ zpFsFK&U^biFX*hfH3_Uq;LDT1kyGGJio)Bdz-EGCvXlwUcq6^Iv2zoj_4HxOH#}#! z=-J=~I-7JZhq}C**qZgDY>);*v9OKNM5&dP>Z>wiD=lK|xC(Y<>_Deq zAPG!vD9)bB_!Cz&;w>H$MuFk#J#a;9;+4{a@2P`aL0hx#q>~g0ZbCD@%>J&1ZMY8a zwD5Eszn|=-Gc6wRg-79B!RAl%U4c_%!ODZlPQpq_>oj?al3v=?aS1-e9YQZL_->gs zAeh28J%!K1yswTI#(`@-Dq#9U?k)e7i9sWk@5BqQv@M&&cbI4U=Xk;Ub^Pi$Wo>{W z!~8FYEGG|K%RsoWeu|sBN|!&yM^AHoSK406nIS4feZo=D0y;p2r!7R! zNYNz?V~z0QM{7*$i~@&_%e*s3H#mPh1nFLvh!fn;VNHc;cr5^L8lv)o?{<2+rQ&y8N-f`}*fA{UfO&|a0 zaQgO>hV4ghP8y{jm{?HR$JS-ym&#PToGv)~oMGwg9mD1rQ(Zo~esezmmWvu)=63Aj zmfxO5Y_w~b>S@HkyP5D&Z-lK=7J@#qC*~c&C+woC`qBx(v z>Ga{a^S>cG0Cq(2eoW}?8*aYg!^5pN=Z=KsoHbtFGMu#O)LeS_%;E7DTrzCkc67cX zvTL~Wv!BUl2XD{ybX#-(NEAYb(M*EvKsj;CDZ{fb{>I^gGtS8!4B2p>V?!rocfgh$ zN4YOYS6oZ#Ld7B9e%FI-*^)~kw;vb!ClANxJN0g@UyM;;IiG?v0v(-QN~dl+K06lj zMF^8vqSS3>nAj3UdwX^i?Aev={`tQBd8eE+TzuZ+hqI19u`b_ScrdtD<8<2d{YoyoJJvZ!!>29VZn%ZTQ=qOjNC=iXMau9rSGRST;p#=qyoRfKaC5W z=4tL1@4X$EPSfz-KlZVY4R3wxTT9XEG}2LcIA@l94vzBfT)m6oY?+rgFw$6c_pSNM zF1xI@t6Mon!32ThcafSnpCVLG`jR&nue~F8!8lIPJkR;*{K>yd6m9)Sm(c@$@#>`W{mnl* z!aKh6G{?U>tm{VOzyrVVIlg%~8eFI4Z@eAe?_}sM1$Ac5$LciTn_lDa^z|D%HlF+3 z=T_M_?S{bvg9@0x^LPGE;ZPnNdApav?eglM@7m)54o~sYNl&gWrWDrolEUvI-_DD4 zj44Y?>EB~mYB_;dXBelP$+sf{Y|BTyGSNPy(MO11T~5XH+MhKEtV!Uo5;$@S{6xMc z%cVq{wr6mm2iP8%U#9$-@MO^SFOAyG;S_-yR*XSBE6;cWQ@?a{=}|`iL}vvUjD(c8 zPFwH^HY4L`Hl@9QNmwbX3D+mrycQkA$M^aqlOXH`zB<|9Tto{PwB?`DSk6hOT46fU z;uVa{H;lBa{0UltsWdZ~mCOVrV3o3IR-Oft@5tW)vvL{AWY-0J=_@PUVkYG7CKy?d z%#&szc{-5os4Hh{O+`yS;&N^a>SSYF!;i^B zRNG$xV;C8VtLV9W6097APp;&YbMNZb;du+VnRDWu8|S2{tT*4}6XB85Ax^w9=J?AM zQ;|n_%uhY>nYBvUFz_^PS!w@-VdcHx13M<3M2%h&!JB{KtadmYoba1)K!k?Bc~<`N z%xbqCC=_2<3d|E|!2(UpsA0#CLf)q~V<092Vg45WA~wmFA|6DPNfIOi$*r7gZqP=G z35<(hol}SKfl}R#kxHj)0HuzKLxR6{E`)cuIAP_`8Ig?dQ*e`_*j9a?62dxSmaKs% ze-RFviN+ym6ISIZkJ2^GgD6J&U*g}ENukM~D(<2&p-xz_oG@7hH|Aps$EJwpC+&hL z^r{Q#`y98ax}D=2XKc;q3{TJ320rCd#V82-qO3zmdDNbw%x=`+Q$Nn#e)6z%!S=c= zG23k%T+b{p6Z+JR^=Y$@J9$UC)>E_NB&)622CmI*+I-w_{L+($$DeRsw#4WA@7r>J zNw%aj2y9*0I9$FXH;?CR{pJ&V|2toZ$QMM;Jo}ho-|>5*;O1h)e7F4@vNPboVlJTE znw9ZfXt{sW@^Ie9vxYsJzmPA9oDxGqXtB9!r(tX3p2gv;ZKn@sIZqxz+4)oTm%&aw zwxcA@<&yGfM^y>gMS1$J+(V&lP~_FZGq;~IoOJ$^hxJiZ!s>XTX$fh=aKWid!;XCY z;XsT5+Wh)#-(Sp;s$pMNPw}Mil2X4~^=xwT?s2?D+dfVS`M&S_zDB!36Hdwx1*Yj!awxxU zL3b0qubH6X(zE%BY%4$vAZ|aWXbY46g)e+ztvaL6c<{7**#v%ka_Cn7Jjqv_FwSl3 zKCgP^l~>m4IVBBVFzp(4b(qy|#)dvmPZ504i(XV|U92bmlb`(Lu#`GMj$GsV?ce_G zQrO*KZ`GZW&3N&1KlgL>?mOz_=q7yz39=@;PA@;r55>?|4_wsN3Ssk3VQhKKWdKjh zVRag5#jOq()@eMs#xoC}hY6SW4wI(K(pMYYAph)VKf4SKfAmLxRBcB5oL6b)^!lBF zLmMM=M<#p*j}b?H;n1eQy!N%Ptvceyd~(tj-J1aC&-~2Klx*S9E*TU4*+2Vd6(>E# z-OdW-pe(=Vd%mX(Gd?xQ2~+=Egh!dD?E5_A&;R_-S3U3c1DD+=(*OH^|L?23n@2G6 ziyyQZ30!DNW^=g}!L>hY5?GVK!%E@nVguP)I`|iDsVMP z)yOmJ2fs3FH4YVk&J^Gj07oWFURN%53fu@YrU}Ws2Mz)_iroesDrF<}G*$WGW1B<@YS`F~0DS38i3?OTo@yMlbo!a0Ksod<5Fy z@|)5Z{;%Lqt*FDB@+h1uyr!J8%C20Lf7JqTCRAa2bmHj~c_y8^0}k>#fnmSoloatR zb{;L#a-gyw>k29(OvOh&3_I}gQI^mtL!3PGRvQoYq8mPNt~+hHp}U(|!f#Bag2e|(A^B|7GD z;;10o-zi4ONTFmWb}V3J&VgIVE{aVt#_hZ9mSO+@d)2Ua`=-I&oCkK_Gi=N1)qQ{E zGm{%5eR#`{z*F5epZL8Sa*KR+j5rqKcKLX6{yjL-!7@B*XV$H`+980SoKN2qSnn=~3%1Z7 zx03n<>AKvTfL7K2@FlM5Vub})L^Fn||Dlm;=bP-~#1lSwNne@YzR>aw`KbJv^pZnh zGcnZ#EN1Kca%97Z5~|@hbh3Lv8IWJo-5(wt-I0w0;g@05Wqil%%8{+j+lO6S-#cu{ zO6G=7UOy~nN7w%Kp&u-c3E(y4MyD~1*_{H8?1M~N5&4y0`IS1iYz34uW%bOB)o%Ev zl=;>+MUS#T*|j?FGhCE-tF#>X^s~#S-z(x#{?p2_a#n^-tLkfB@KEKhaHn_5xgTfM znBvV*F1>T`QeuR4K3W-Dtq}Isap`vK*ioOa^O-Ie&~aqh4lX~k^WAvPlVatjdc0bd z#|PyZ4-{z5E`a6%4*9iO4qluxaO*tsimL9ST0>=6mSU+l4^BzAta(oUy_?rSi%vugngeb0uA&-AW(6 zzZ+@1H;79f{p@u3u^;=fN{b&m9{%Y+{ikI-QRaA7f9Btj$1~pE zoXde7@96xuOe#b9xZqxZ|g%U_5jhxC+jn37KSEcUYdV7wqJ3a7o%PP2m!Di0i=yjxk~)MIs@j(>q8H zM58Ehe<~n@cufHFk_jbRnSbUXLz(14YMH54!Q;nkCXgoJW{tI46@T$CMkiTdDifJx zR-qVZOg;g`TMXnmc~=FkfCz8b>~_-5YsY)8#)E5}rt?o@9Om8WC}Yo)Zvo512T1zu%Lp;GwyuUV-t z`%~s_`d3HBykIo{6HXEI>;zWbOPNoI&u)=21^+?YKxv{YM8=qk{=gou4su zj3*m($3J-~e}~P($B6C&DnG!2*J?h6t+p#Cto@~UHHz><1lP)}E8fKne7zcJj6YfU5 z)m-A2KR<4sb`GztSYI#MC*lj_8YAlFl!(EBQNj z?kxP2Wc;)O*m-0q5bkqmR{U*=x68n;0{QQJ7qj^zFJ#cqH{`NhWvTpaqqZ8$nBxq( z^XwEl3OwcAR(b{xIQ{S{4~`1haey{i${Pa!qXZ+6)!p9Gj}K|(W6npP->2-$J0pTR zICs+F+q27}We3X*|&fDw-3MdTjK@2R`@yPz|aAP45TG5$~)QP;p_5Q z;otkc-zx>4a;}b8)o+=5W974i&j&83m1^?|3; z9L&F>l{4GBmviQQF^Y;dP=$<#cKoW^G*PS-bi72N zasGQTE8NYq)p19Vsxkyu$snCg$<_pJ!cqA8{DevsUfK*KO(zPPO5B6KWgApn{N8iU`#(IN=Xvh?x~}i_dO>UoDSuQ=IybOC)hMj# zgEn}#0DMbZ#dAkH3hq&b^b;6~)8MgB-CZ!O%v6Et4Z9a~AkR+qXR7Is_ z4&J+ZNDhhTV18sB2(nu%pBLiPQBQsf11{uaFg@qfk*0tybb6}DjN0vwi{`f!KH*L9? z?UnT|Fg^OL6e?*S7Fv$3`zw_ZfN$>9ZwMOGX@jm!;iQst!g^>mUqA}t@(u-+dI}GS z+rKEG1&RC?>itb$!ea`*9iL`W~a?(<%C zSwebW_PG-}M>(hF1dxBeSTrP+1S{4XD^}cxaGDgO>BmJTWmHx0K`7#5`HaZ?7G?TkG zDxRJK1NYipUoRz6EW5!?k)9XQW$Rm(9Rxm=Iz}dX`@!7OD~Gw^$k#(3Uh>e)qgEt zt!pXj_s=#o7^W4P+ zpvqXiTzb&$p?pcX_7s$?^+l2(2Fg*9#^9*+a4qa7;RfLh5rC77;Pckk#LUoEP6zx` zZNBknU8h9<$2PA$)1q)l$x||`iJ92c!#-WUh~<173YaF}nD!0*`WaFt_Jl1O-~Ex< z%sw>6dgz@QeDfiXokh8<$z}EHZEvq%lwJq}bJH|is;mDp3S97KFSGUSF7qCEUjG#a zXo#X56oyrq&f1^0buQ1Sb>s{EM=!)CshdHQQj z#t~9IU5>STyd}aM^D9God8KBy_--od_5mwmGaIE0KBP8Sh8??=?3SJNP0K1#C zCL38|e&7FTN)h+s%#W|9C4SrFvL+1@T>AzSu35a36ra1N48ABmY%rL-;5ffW!@~?h zA8!KpYiFh-1Q!j>A+{Vr!^D^TMnHLz?$vB=Hd~4=@H^Y z4e>Gbm7>(XS|ehU$F(@``7S$+Ct99&ZRPf?o;qhc%R_UD<)rJ{4O8{MqXu(XyPaT8 zzZ%EmQ?bNnL{_y6!mBUr#=$}X9yoR3>=}A^@XD85uM*i5G(7kSp=C13prYU+@OJiQv+J?b?>D|N=*_wHYho#t1^=6x$Gh9 zxqJqs@B|%mS*hQks;{2>kHhy`&3G_{9gos9&8RQpDS~QpO&BOU{PE>_4qAu)rM~?x z55G2h-jPHumU@&$t@{Aqlh}Wcvkl?r=drvlG)ne$XuO@fwtI(S@7U{ zZZ>)>c{G^;C()>9O6dqAL6(uNl=JLg3)g!TGayg>%Iua?3)N~c{jPbJgt4%N@(^M; z;`PeVqTBwbi%6xn+R^i*x=++hto*eCM7GOH00-d3^?v>uIMWZD#I22 z6l9m34S`rXa`bQbXi3mj%n7NrWx<>C?X6)+WW{oVpY9f{UtpiX-)qj0kmeJSz@~(k zy*z>jvP$6BVc@Np9^I%1WCo-ad!UN>A_Xp3gb%HyN)B`F^brH!XGxdPC8X}esK$j5 z>CMoVT*uQk8!FR0k`KB=8}UqD4VaAcWOvU70KIWfdGNMBx7{L#CN>&q`-}3aa22Vrwcebn z^HIf{@w~cB-l`s)*e#?|F3sfCab$r%`*UicnYVMMCyORpb|^fahL1R$tFq0GkRzDb zqH@a6>sUG3#s?#+jZiN0@^{Zi^2v9s6gANM}w>H;Uu&JeRV$dr+KKy50*JvcAwHO-()q{V_f!H zseJ7)mr|7%3IJ%nE3_%93sz3gD0%p0Xz(rkh=;FJ!hPD@NnktwP?&T=oR+086-UuH zvc5^<4AaLU=NwPJZ)HLAYoPo<;F(U<-5;8^RN7LViDqCS7?% zCY#s_w|Q<(QEKW=`9X!iPSTfRqFwidgAy_v49c=m)nh2`*YCtNu2JMX$`pQXMgJ{( ztq4bW{=MYM1LX&NZ^Do1j?J>DD+6fU`s^ZJ0h3N5JnG$*H*#stK?it{G{ zVpGG1`6=%ch&wDlCEjmAqNe=%%HKxz>pG306|N5354r@Yc_*8Dc&C@*Wu5XJLDIol zVTLok`WFvocj6_P$zqzA1D<_bQB9C;#ASAIqOkVCFR-FH=5opZq0yj`oiwH4&SA@& z^2;_g9Spez&r5@ z&Y<#)RKta$P3H|$CSCj#>8akEMihh1enWtXbPM)U-|X?|{WVgOiY{U5C|a}yz>_#O z1s@JQ-O(-VrgZIGuNhvGdPKJI+_UPt3@=xvm&3<~k>~^9$D4>XBf!YlQ0%h<%>+Cm z7TCCD9f{<|^Sdu&Br@pBex&Lr%UWG?5z+{!AE{()YY)}lQ+4EM4TntpR^O-T!*fx< z{X+8Ib}Y>z(f}K|S9r_&vaZ}Pn>^)($wo7YGGrhOTZxSZ`5*`TG#;+@zE0`quvOHw zmDc#kF^cy+M!|(J@-XhAI5i7ce2l|m{N^$Da%EEyp&w8ka!cGsFAJ&AoAMBBbe@;GEbFNIu=9kfUO`V2X)D z%>=`gb&_`9(7OXjHGC3UV+qxv!#)@tJ!E;DbB!W}fHj}Yq5Jz+fozr#*(65w@Qscx?J(gzmpAV9p zZE+ywPY02h^#kKMgHelB!FpM8Ug!0Uh#ei+YW*>pgwGNy`@D^23V4ehxf@^i#`&(x z3%Y&5zP20P)CJ7dXiTdhl_L@619uP`jP#gz)%#RHwO5m=pfncjE4*2g_|88J3I22n z!T8sID}7JR!w3{+!K2^ocm>8ix6A$GEL$LC503*?`A`waUP`^m%1sQHDX_N$jIWXA zq+^>lDwnRZM9NPnTB-WmY10!rBqQW4wJca0EJY9RtI)uM?UuUPe<>4A|D1HCYb(yF z37UM5)K1{l9sizYVCfjc1TJp>=uIKVDU8P9d-F^yE9#ObMEuoy#E$q;TtyNWt{OB+ z19xn#heiNX8HJ;_h`$h)2&y;K6IQb%^5alOb>w%g_CK!TRg8_kgxEFw7Q&S!xsGWH z=W;1a>00Vxz^S1S5*WtZ%i&CtwjP~Pql;$(y5bu{H?~qf8Ikqr9D^dOoZ#@Fz)gI3#*q| zw&RTdJ2#UK3&_c6yxVPTC@u#kP#a7qu;KcHtY?R?1gs+UPrO~>UMP{*5LZMXm`99F zffZa`R!`p6KMpZ}RsKsj<0))8j^_%Z{{7v0th(Cr?%87idqP2pgnV<{C^9*o8$HPD zHH4QNn$sG^!;x2Jner!uQ1M%3?OU^8#kv;1;cVH?U~@!Q?MfnMt3|MT2x86Uc%`5z z=^v!F?38#Db9fP>I}q%#dck2&59>Ykjn1RGPQLpwtDVv)i(G(wVceR{4BG`D6YY*s zzT0)wqxD{(`OuvrbWgV{-h7>v39=k2^re9?>!I`1Vv3a%B^1L3t6JN}tlEix&(bMl z?>Fe}&w2L&Qul06TGB{*DCe)<8g}a-+SSjx+|)#&9S5%|8G2;hG@CBnNNtAixHi2>4-a?~fS6&`Zj#Jk&sRPqvIxj+~_mjN@HZvEvc zyRM!S~P86UNR{*ycQa3|kxfHLpc$nA6UFKY9#(L24t7w(UW|kx!B(m|t4QJ73P@ zEnd8J{J)>9SndG(t*gGbv8qlzE~Q3=!bi4&2{8jhY(xWBM57!EnUWb`L z&oz+0iFdvU1qh(#Qo{xCrn{;i=JXP>QbV8dV4eK?49x*SC0 zR27P1WsSwvfgJHbWqsc4kLB&QuT8jwJJjMk^)wzm6!xB$9L^_ZAfl5M@U&PfxF8#s zeEy_CH4+5uP*ACzm*j-S_fEP^Z>Nvb#&E?3)F;G`kTdcZl!aoNR_6|vg5@Aa-x9P- znDUa~X`dVZKT7**xCM_$jotmch4zDlYWG4-3s+W|pHKa}0ZFN99A zadqmaa`OHnY=&h>GkkMb{fub`zbueG9OUF;M8|O8vsYzQeSBtYLGv_PZiloA_(r3E z*c?CbR0mq#GVcj)zh`JCTYuS5IMTP@qOjh} z{kC|Td1pWCyRTHjIGD;^a*omM`Azey#GF^@Gw*MbqCu1nwD$NtrOeOu5{;N(-7_6e zTmBdwwQTnF(C|D#Wr-BOj$l!Qq)qQTT1Sk{H{ITWs0aEOlPi-bDZ$pbCVktqpXQB9 zYON9cfkO6EL1S;euBkLzs}tT{ZGrx-aeeEwriZ>(6a1-VpPT4Dn^U*wpWLR5(8WGN zNY==?pGJF~2LB<*nJ@L*Y1x-nu~xqEx0v-kfFO%kuFgYIlM{ONVue|@Y@Riz?IqRo zOSegxw-!NuhCSg#srNz*#GTtnKeAtmBmdVc9~#4b(<@G;hBXbAw~6r<>e49Q4=m{q z@P3U)+i$>vv)7JJ`707465m+38}&2c-=c!p9^rl0y+1f>`dB4;1p>RU@l5p3N}-qI zNRv}N;0(+*@hT4O->*EiId-1{!#`~5L-Z5`cW@5Jdrv_V$P?X8m-Jd|51rAy;y=R4)FIx#;cD6W|t1&L=KAGLcQDebXb^E zh_$(7qBVo52IhDY2Pc7xj8bzO8--$CilMH1QHUHn%IngREK^-?&9?tg-tZ$crvd&c z$}}bs@e@x(XEDuHR!Kzdc`o{qHw2L6{r5Eqpm8aYn?5 zRwPvfwH=--_JXjp;9WUw?FTHx%A7{7pui@d{zGQP%;asPRg{<<=Ya9jz zKW)4so-s=A30?prlcoun*jemwqQZyj%HIz)sl4xqNFWB;)L*RL`c@EHe;)9 z&5}>WbO()65j3rWs<-fKij34%Zn&T^SAh^#KhUW(rpHL?i6}wT54)pVQ$Y&j)HS*g zcgu+s!MFXHJ~ftRBww1DBa@I@!*i{<++7Ny0(c*S)ETN|t^@q+F36XK7cZ^lgy?GdV)kz6smuQB0Q;*9iA#)!V^In|!CU^%7qhp)#C9?rELsZH zV7<&YN<#F(Dchl|kL+?1P79Y(Wi5^TMyf+Y^hV3D++`~XYnrXYMH@Xre{m87!Ov6l zdiSgbf-c+TUsd48SS_9?vqTxLgj!EZ#P7$ts%}>V#aqA3g9T&iCx&i1CH;KvtE6B8 z)WQSKL+EeYW8=40kGsV78v!(8+le`9rkv`3qG9=BJ!PvU1CLxDQIoBI(f(7YltN8g zfk7|^l;c2#v}t|vcN^Y~aSJzAqN=ZYCX-*RCjh*%+*i59SiTA>zIwW~SUx2*LOQ|Q zQ&rO9u|1;u+%#(|S1`hmOO)3wZ#H9N)a-Qh_-o~uYe-^(V@N#4-Ydb%(BJk-==hs= zx%f$S59WjSy(K0Io)X|Ur>Vu^2sJT}HvBYV>?{|-tB|_mITiuN8!Vz)i=oQo;Zhw=%dEu+@2_jG-9yFBpR;SLl^BkGoU$6Sf zf3EBOdZQ%QGNrf_uXsZ__PPb$(vUxr@~<(m?zoe0B}qF1PIb&x(U2QOO)1`BrmO@v zxM+mX{uEjRoK>YJ53x6sDApYh%1O-EIVa~xAF;_anUQ%cGdjbzClVcLeGEa1XieDz z9^k7V`fiuMh2ELBUynZs$#hDpmKNhZj1r5o7|5=Ep=Eh6<$?dI`H88MQu;Ri9FR_0 z*2%U=9dU0mtZC6SQgK<+1J{CH&MoIFGbsWRcwZUMP=}Gu@f`!i~eGWXs2*#Fpjkn5`Zoh;i*i zB&GR6qF4K}nMI+;A021q?G3Y{j|)F2+91a%mc0^Ep%j9Rb5HOH5R!%1@bM%<4@xe( z&*hX*QHFeCIZer{i>q~NHwh2*9zt5Dr*_^eDAzY{mtqG)j^E3EahNz zz+r-)kF6<6#a!_1zvwmaxXR@lWs8E=%XO(R$K~T?)H1$z zK-@CqF|H_jx+ksQC4N*cyq4HDlC24~)g9RW)>>zms!PX`80gTwNMxrG|0cGoPONJ7 z`fVMl>s$taQU@cf$BQwRkEu%Rj0zl}34XK8y22@+C* zw9zT8dZOt^h+H|iK46HEMRl$9r<~r*CFlN|qHXwx->zOIVrKCeQPr;s_**(kzQIPC zoLKRT&Ar;g+M0xQ&qF!@IQA|xw=GtH8KY5H!uzxL!yENRzE3JE{)fNBxZd~r?S`Vd zXpH+}pMhR3ge2E2G59{Hycnw=a4KXEP0ZA-9F>y(e$k}giW?oR`a*D zj2w-b?CP!~4L3=mypQUjpo9Oi?%wC zE<*)~)fY4`ye!MtTk*2FZLirue=?#R+BNMpkX$`{^(f~_HC|3`_t=BNkv zYo=)BQ>EWFi{R5zfLTNh+q{`~6rY-!nyp29b(ObEwl1gEmQ5vO*irR)Yczv7qJqf= zp9wc;>dOip?DjYZAQu7O$B2DCQ233f=TVXWN(=l?61e!i{@a46R^b8JOD3Wsp@q)= z?(T5sn!kd+HM=P-W!@TjIi>6U`$e#;qA=KL<*oky2W>{))9UMY=G|O$0~LY=Mq<2| z+hXS)!2zhQ#iRcm=-Dc4)<*-%nKn@cNnOG3{j1_y7(DFr$ngNi zLJxk|;!QMZ%cAi#(Ec{(H8FK=A#E zH2Ke{75nKLz;jo7E<%W{WDgjkDtx-b)wfjHdd^m&my#5y%>bn=BdAtwXz{%_jZU(W zu6XVchmu}bzs?9hZBrkkeqKddUzkp7Ven;|@+a%|NICD_S!QUg-yxOAAGrfIsNco# z-E}Q8r)?WCUFXTrp_hZ1oFDL5F3=jl_>|q!mW{tJsApn3ADfn#%(7iNE;b1jYrEZb zlDNjA$GIx$HTyLhEGa)|d{<9%3{9Hax*m@=P3#Yg8HTKB&>DHZ6pa?kgkJ66gMy1OkC)e(WMC4 zmh}t}ek;$EZM*u?gDl*_4ffi#F~VX&GsSub&t< zzA)=0{H|InUfh0zspk2C94dEJIVeZVqIg5bSL*W+VgQEh z9k%V?Tpa{pWI^u#3FW7^|yYgNryqo0ZUb}g_|BkR?vdF+D@?(-Pb#nin z)rNS*qF`9`NrB;TB=D~e=8OOyXymT`k%J`OxRNrjR72vdeYVck!6XLEz0uNYJxEY> zD#KPDrXlbzE3L_sK3mRy+E(Ef-nE3_rCz6>rQ8CM_u_wkFB|W5ZmmhHd7TWPuQN^I ziMxKisGKVqh#O_2Cou@#Y)d2i5loRWl+f(1Db*ylk0DK0?n)4CdA)s_TcGtT66tS` zyxSy)!o;Npt|y%9qyA`Rv!}MeWSuu!8znB!q+FQly3ht*{PDFcOF~ugcTHh0G4Fiz zt{!<|7`gDD{;j@W;)gO&0|foJDXdio*LfQ(z@J@=dt#Tk^nolFmKVu6m-l#5FJz=u z%WPXs&?e6jM>Y1}{A~7A-W_IZMWf2C(?Rf4>D~_UqzZP4A*h?8D&lmbY;C`d*^Xdh z#i{Rut3<@uX{BHHughHGP$Ag*Oc<_RHl4M;w@v;kb-%Ecx%v{yj}7W3S@NN47bHS7 zT0?Nt`Exc1ZW`#7s{e*+BV_N}(LNAX3Vm*b^yw-0VZcR1A%?Z8$4Q>!uI)wtz53Jyf|}R63POO{}C|SZi|f~jT9(xHW7zjgpK;m z{jxp!nNQyRvcph6u5;2|Sv%`Ce_jDz{!O1LPfJb82_dV_Fg0@&d$Z>W2)|;u?JDn4 zP+2W|=^kCVW3Xz7wi_uO+#aj#j1(Jb1~hM#u3U$cSFB$XBCt&jkq@_y9V-1cxzu)C zB$W5;x+kAo=OpB97|~z+m;T96Ga_VB8W8PGvs75Dv>ofgArevQ#}JBPTGk@C3~ZdK zCeF8(w6%2HKX&+iXt<1Uy$2LBQC7bI1-?&XV$2daF9&nYx`28!rPp!%sk?uSK3T02 zmU`0E!r^i8TL>xYjXC21dHt}(q262>5Xy@n{v!!nW%sdg8m?^Im^>7CG8^y~h1c6~ zbRV%Ui+MULd$5Op(M>K(6G8K=@B1Yes{CqVlcV7VZaTP2r z`CGoS!8VI!R$)-KfQFtwRUgR=T4~d}>(>qM`oiRcp0>v_6M)Bb@CT+Lo)z}!^{{_` z9KfR$e8a@_t2B5GJ*aSe>G7Y2@Z}@Xu*3?>?&JFRcK^E>bu&2cj#SJHg~YyR0deV^1YKlkks)L-=oc(VNdtx>fa zgmlDNqVnwDA+#TTv`G+34*QEl!duTtL0iu%mWP)>d6uX;lQ0kS+XTy%#@NBL>oRlQX`#6?lcQ44O>u?zoT{^rb+lBWxba9hiN*O! zHp9by>#4B5kazQF5#=}GQ#J!rcGW)B$D!GCkT^A%pi$y^3W-H#V*Q>K&qyD?^sCax z^}V~->2xkMBcmxT!)!Ui*kM4|UkZG9oZu4EY`55(K=I=frY zRC`{hMSkde2q3kSI}1c*W$pN)+no4fbAQ$yG_DIFef7dLB~EKlE$Wm9k%6{x)pT8R zrwX{XyK%c}bNUFmoc-t-o6XZKj}Znqc+M7i(|@?KvE+}t{n`EZlaMFUSL=;eeVjzc z?|>`l0D9)|(`(vMnEbBNMhfP}VqDNbh9!~Bt7X>*+#u(*@xGX%$d+G5$mFHaLIe(v z?X?&a-7RZG2?LwSxItY3G#hdYLGBb&`wBk2Hrj3P*O8psk;+5!+OqYP*F$|~sV+@l zINrHq>ey`GKE*oiUhfwhs!;=kounK&RQ&`SBzgsO4~QjT{wFf$q~~|HCSg)?p8LRq z`nyA99h)q);k;**WCn2Fk2)G{@)Vb>0Rc|0P!$B;q-=^EOJzer_4C)SH_a9_WaxZD zrKhqgWa2+>d_Wng!`jn+$6@A^-4Q(C#pvGv291Vh@@dy4;YAAC#WbPo!XDp;N)S=| z-$={#LZ>CQYona~uS#}OMJk~UaWpZiz6H{VV`tY={nPD2^X#-K4k@#~#fWP+oR4B4 zCXau=oE6@Mo9C5 zpqUF?pAYBXYLLIoHl71kplRoP9INWs605ufSStpJ7D?^N5!ucIskWG_jUrk9*=(o{ zz^4A!6TdBwAL~L{#UG2MqNMV2m1H-{+jxqGd8cE-Y(mp+bc$FH|L!1|hm2m_#A23^lhJXFT{g->bzwF#8OV*G*d;wv&68wRNBrYPFj;3_bQgxeBpVrG##5PJIHkX zkd0p)4WRyP(lQ0`z;lZZLrm!K*8(j6>ioP#!Y;_YO8t*HvT`~X zb|f`df>Ta5wij#m&+4*?@8J*gx|#w#rTSodc61a?lCcMyJ$CDIUF^9YeR+kbOiTL| z(Oonx^G0&uFiPo@v^Ltz;e17qpo4hxi9f;{Ti3Fn@YZ{LhbaVUEyBdK+#I9KrFCHP zBvcG*dM}Pedv9_u+?II?CAD*Cth>HNElOj7x5y9~-KKYv*UbJ%-`q%8^Wz3yDd`AD z+vY)~D~Y@4SgbgZC-Hu-mTjLFdi-d8dl4($V*VMHWQ!CXy`ijt3z4}kZ({=~dc5Ym z8MlCIQY|;|`@*S*j?XT}S%4dq7d1O=k6onC#k}Wtnob^yJRQH#fMIKo>Ll5Gi6<;GPFh>4+O>UwIl}7S4QxMER zL42hk@KAf+S;;Cu%mTId7FsvC6xRVXWZe|&k!(AfcN}zZK&xoU($fu=^e%km^^sqZH;x5pE&Uko#`|Q&h`y=7|ZwWdv%uO#NTXnujXu z!v(%J8*$*D`+adtCv-t#o2-asMa=a22WnYek`abl4?Tv%d1koBb{QFUrte#Iv>F-_fkyHsNZX{KBo&j%-7Rogwrax z`Wnb>yn3jX@;p>Xw2BnZCKQ1!MIl-*&qLSSj+;Zvi)>8(0$Lm!4)d5|ocyRo z6~oIWC)7$}SoU@;RE6|yb^RS)^G`qa`sISrx-SiDnRz35Tb@oY#ajiK@AK0dKyEsD zhb`t@6_)?yQq>`nwxjN{S5rgwPuRYdF+LK((Oke&l=64#0U{O zV$sPD^sXzS4_H(xmXsk1=KzgV0{jl1`}&E>L=8;C5&-(cAepN;J@wctEQ#ZKVi-pDCYJ;ATCG*Whw?uO+ zAc&NhPr270j6TZrgW0>pG(VMnH(#hHOviX*oXyk8yd0mW(i89eJGt|FRCCwVg9uz`(EQ$WNGF z+JnVDhGO5KLCTayRx%nSenn6LInIyME^O4aGZD@E|15yP6*sirvdJH3A4+jK`z^(o zLN5OamlinX>(a5Twq7Y{_hqe>!Gp^nIj;P+*5wMwp677lMd6Cu&A*xv7qKk1t1rO6 zgQdxbjeFpR)p}C+I(3gowt=Kn<=Vx4cNMzcsb$oS_)r{}go>e-1$Azt*Ch9)Tac1% zo7Ix^GA<(kJax;4qOJNRuXCl;aEd{vkT_)YRjDBJb3x|51x3w4x{ED3bXFjc6PyQ){AUtEHrHJLLgm+GI-=W&0J5n@7^ zI^}Afv&r~n7{1y%uFhhNiruIVjU4s|IVpmoV2-E`oajw7VrG1r%bu@PT5gjwIDoy* z%Ywa(5LUQbX3t;oyxjD%A4$ypAR`jt6=u>6gVg!$G_1t$Tf0J!GabERZLw$UOH$Q7 zN^|v}4yEJd5AJy3SZTYyU{oI_~hnY$?B4Usq+X& z_w@4&e_c$qjAW@2xon!yov-_`7bQZSSuhU_yy)C^XLd=V?1@*+k$WCLt~b-n@Qj~H z{PXoM-tE4A6E>G;Kh(3B*uuPYV$3uR@MDvXmRE0`lJaqN%*nZVqJv=Q`_88QQ{z`F z89cdz9EWs?x9jO2r9}msUfPSAV=qu6dvX#jn{o(SqdUMYf6kpbW7|$*3p^ zN@n6OpY(6KPG`tr&^;dHcy$|8oKAcYBks?C=kVZM|XH(mV=nN<|DekSJC=yp?WyKDI{(b!hYfO~Qfyxd?K+$VFqW zpslB`gQh-f|In`Y+pmk_%us@udC5ge>-lJbc5J=YisT}ACL1aC`TFdLT$-jpOnAna zMYBFJ!s0t)>HN?9NuI56Z4-9Eu!i=GnuORZtK^Q6Fur`}DgP(MCX~Ql^Htl)QfsoK zJ>q-{*JrthUvU|lDWvW_b9u+=oUxz&|9wM&GyHF zW|33OX!Q$MDrE+I52X#t2kBY!?j<)(U1(-w%ZWwE()*wY~I zt71Br7j;F>*&eqLiQJR+UtZUBHMMoNn>Qs^t4GnU$27_^}!&GwFw+l*UgjfWTso%xlTIji`d>ZiEbbSNMzb&bh>EGIJ zIWCkVZ{21A|8m$LuQN|}&RR7w&~Vf=`9$U~9kh8) zDaJ=<$xFBJ+qxGh-}BY`i-gC%X)WM$xYzhkv zdNpH4Le|aWQ#PnZvb+c&#UGt_PipHW%tVTro$7#7)sSFOCJ*}PQiwxFr_`thz-Z<= z#uaOk&m!c$6)X}HN-=Uc<3(&5CSrO#D@Y|v9u!t8AXJrsj25tN{wqzKdEF{j9ut(u zFnj5X^vu|@yEP>hDw?^4ie}etXFQsIgGT>HPx1pRQwwRBjziMYE(}XsASwhO5oIrv z#j-;VJ_S|m=j~uqQc_gYsXkMwZI5MV(P?tDE#EZdP08<$`v-1f*c*~e7;_!4a z{&uKYiV=zxpM_JJjFpWqJloQvu_*UmC>gmL*>!ebm8!Jxasa0NJx{-%Is2Q0)VA^1 zm>)vRFed4sODeWjwGUaw$dx*F4UN2dx=vSFf54A<2klD<@!lpUy&+ zm)~0d?jC$`7P@%E_CdaZf1!KDgt{z%TpJ^&2~JXP?3${C^Mx1X+j(%yT%X`f2C7*5wG`=M9C{S-a8Dvo$ndBf449t0LONGgI z3b2d&Sq^s4xTqe^!gLyYG0E|y%5$PP(vC=c!Bq;aARG3<-VdTSu8tSwIc?5h>pB?& z<9uFmDUfUD{+9+RjGRbMf)w)tU+~C%EeKmt)f8xdZwBV%+@jw5$4mUNDcMCDHpT$`eA4Tlx z904#jPR(RYBWwPzAeH(zAryP=wLI|?A&oZ53{$M4`D7{M^m(|KFjl+0FZAb1sQQRD z==(290xNzCcA<$@-;IXIqRrxm%LPOi86{jIe{{t>0Fiz)`&qUXdxz2Z&AqOzpHN(< z@A)AYUjqm!VVn1-4Sd#nkxOc9`_QB(tv&AjpweaO%D7KLY7vuly5vtDd$B80q86c0 zgGLFcGhBd-6x^@S>Q)?A$EFE}F)BCfiFWG&bEhBykvTsGCZu{FckrM0!Z1Y~gSe;V zHbjks2=wirSaUJ@OhK9bAtBWmj1Gl7HoukMTa(gvwFuLrkf*9a?h)?XNTf9GiU zuz`qch5bW?>;qf|GQ`RzHFRxoetKHNeWCnGE;+9e zJ%0nX=*Xy#BTl|E(DpAB^WVIGIL|dL9YyPrkxkDC$gKqrTlS>!-MJnUrq&hacpEH< zo*rUH4$IDpv#%b}!W*{`#lx45%aRp2+1_LeZtyi<*)>HV(LpKTX7^!0qQDBC%SfeI zbPr))8cJG-4eoSG=zV&c7?lm6X00?dbyFx04oX&JvR1f~yRU2!$F7p!uKubKe$gSd z=)56IKE05e8QUm51Uj+5(yNJD*dVCP{Of!BXzRUz9|+z|-?S3cd}LTy=odgSQpuO# zaWUI|PPLthEsRWYGX|%Id1~PDx_R76!j^c4MW*OZj@VnpHJcG z8n${Y$?pAk^INnE2&*b90CnN!@b}F+*a_cVp(|$-SX3mCNej(s=83jE?{tpejA4-C zRBuCn13`O8(Kam3$6@$c3$KZ(XFM;ByIZ6N_#mc<$+oD`euzyeuTnvjdNBKE5++tT zw0PiZU=AoBJ4sc4(`;Oek0J>k2y*vx0NzK)Fd=<#K|e!$%ZBoM#Rg~jD35+gJBl%H zfJJ~;r-}ASyAewYpY39cUWMX)h~}NV#3QBOK?FR_>P}(#HVGkw->%xzjZj*x%q9?_ zZ-ZP-2EkgYj5LM$%`zxf+mYiOh0n#K+g*1dleOfV%DofTW#SSP4?sLXgCBoRAsK8k zJK-Jj@*2c3&zO?I;$n$0CN2$b4g0PYbiC@>vd557ChtYiA=<*FsGf_t`m%&;Ai>Hw zx!8eDCF-<%_pw#!V%q1ASyLQ9%xE!N(&NPE*!bd>pg(Oj6qe)tV&F|~b6P-Vi;q~i zfy*xZq%Jang=NJ?-xnuO142#EV>8{Tb=uG7J;?^VDy}#mFuk_Onrw03vI(M?qVPEycN)M-$LUi^Oa{7Vg!#}TG z1dHf{^o#a+CqNFF^CWo5@y0E6Vy?(zZU)`3?WcfHrUM7+9cFZS?525Q=D5H2U{Ny~ z3L&YCx*bU#O#Iz45eOI_+y(K6c|;=<6JwZ|=Aj7U2_^yj5hPk&bCm-*GPlPSoavaR zWYh>UUZ@so+gU#mYpsg>oEr3hX!`1?rvCqb5e1P_;f*vZN=Sp`1`|<`22nz~L4?sG z#y}~N?rvc!jdY9{jFKGEF&JGNqc-x#=X=iY|9kGa_nz~-&&TWed;}b(-F8*XuH@l= zA>dBqtc3)k*i~}JF6;+rgqMWVByxh#;DjaHR8xIik}fLaQlSwp7bFaHsNFfePOuNC z!XvvOX+UonW(7R$@13&{&z*#_-M1+p`W{XhgQ8S{<3t_jT!(KUzeqF5!KfyhTM!b> zvwvv^?++S8PxjMA$=S6u3Y*i4!GqC_fve#$VjZ?WS5#4B4T?E`yPZ_7&U3F02$6{* zM;!*YuW`!VT-isQgR;?@C_ZX!;x^DbM<2Ah?P}TC7{j*6d3yO)^q|K4FDMrL(P{Yq z*qiweWIFGjcLkApzi0BuZ05~uW{vri%(JapdEeRFT8KWLU~!Xs!;wA|mkD_%rxc9%k%hacguZiI{_qgTl0^C{o_ zhE*{SAEes$Bs?yYDe2PR3h+kdUB_mzyzOiMRH_=^(Hqhye1qX8p>y$>cFPYQK7E~S z8YqH67={jm3JXFfUW>Us1K5xFZ#k^O*}si~ror^y%eu?i^C{i|2%*3kM>yRThO32d z^$!AZ@SXC!Zd+XNjieg^r$v4@*4V?iDgi9;ACIsPjYYD$fB=TZ##OIBfaf+nPl5xV zeK1`6-(QF{pI-2j;BZsgepb38RhD;Yeayml|Mc-GMV{R)O$&tZ2r}{k*oMB3!2%hT zVTaI8O) z)U>BBQf>s-Ke~5Inyo}-jM&Ge6yyGg%ULx;i&EsH>5{)c1Sd?RWh9)Xm;0lO_5m ziib%ZsdD9IJO0_ot0-j-OJaDIwWKC<043w>cP*HkaYj#44*EJl&7Xs5*Qa6DjJ~deg@~pzz>-JP*k}lu007W z=l1NLZDY*-Yn4T0MGN1y36f9G-C@<-yi0P}bPb_9#J|nvp%Jw-bMxlu8ms? z(kG)b`N{v;o3*t*AaWJ9bLpG0Y>eeMnSSi~i1g3Nq8kqy=cqo>_wjxA zU$<|Rmi{&RfEN4sOgbK?_>Ol2`1?QCM5oP^{yNB9Rn%7{yxP8& zL+fr3FZ6({DjDc2zR^doa6vTYe@V%O?~nBf4sy*F?G7nQDfm$q(jsRKn5AA#Usd@AL>hlIdN;zPD@dkyO)js>*zGs0@PCJaAe`?ik9l){hU zZHcfAxVq2FZV;y-S5?oi=55<8zK1U@G|Gk09l!R^0PeT_W%s>$A-rt$NtPUUN> z7=wt~?}$>x#otlD&Wj&&W)*@X$!4wZn8yB_PfAtoTL%RiXmVa11YTa?t-d-uL=o_e zVYCA1K5Q+?4rgv7dAU$3*n-C)9xaxEWKZUFha{@h6-vyWir`};ZDsZdp@ZGRF&GJ;+4{uxJdBt^7&IwfEau}*`F6Q04bhaA87D)_ku3n*n#13j)o!Vnp zw?tTn8gTkImqSoT;pwlzPUHxxA%sZpWRC;-9O5 zA@L2=Tn0sl*-<}#A;(AJI0T~(15|h@ur303)R%s_se+}4Z8vjec1_JAU23s+Ij-IYr=~Dq zpBDa6pbCs}F!fzc7U*wo3~`HC`d|(QZr5ODSq2UhPXny)=S0Piy?b$_d&)bzbELc6 z2>Y&A2RbbTeZ&q8U(5~Dg7D-Z9c32JD0&|-i`sT;;6fV{9SrE_?$IXdg|WZ39&w^8 zI+yL?GrQO_nA|-l?gI5~E?*3lGi(97XVc1ujHjhk^4PDo11~C^qAbThaVN`06;cVQ zI6^(LEvLRxQzB?ZnQWOAd&imAdmeSZwWhNia@2s42F%TN%kF6eMoADuhYepEsSKO+ zNY4ahx1TdcwRq>O$xNL8-?Vp8f$CiQM?1Vw+Tt)TUm~UrVBNvflvTOs*^ISKmSQ#% zlhBn?lzO=}LgR|zBglD>7jw0#HV#ePGN*L3uwDA$nO?&-?wPkNGB`-+EW%KtRy9b!_D3})QlC|9n zUbI{cFDhgO4*6aq{m(8q#AnBWlg7z1wtA+I-2z4lUM2(Xer1(Pm!+RK88coiN!ukr zQBLpwPJq8zU1BaIiM`tNj1+Y4_#_c6Gyhjl=mcf)nRl3jdVgCkB{F3-=&um_Isq(k zRB}A>TVJUX+^v5+9#E*5ww>}xqJnd#|J?be`?^(h>N&kQ{E@^h)d8QIT-Vuj;bk5$ zc33xd(k8{dl#^ejKL>nAU?4?ShM1a?@_Rvb*hs!Jmg=VuDuQ>N0YZ2tl%9VTW)ibz z8W3iX9efh*7IoF*d;5$G*ZSzKt8~wL++l1?k_2FcT%OIa-^P_ zOqZk{9OAF>|6lsWEruDq=#QV&QB;A~O3QbfWnEqhO9@csDTUivdrPc8GL=4fgByF-jnDob+L;_tTmOlm^JeOz+)aBK6BIG?w2k zBbnbWRk^Fzc~?aghRn{y)Nzqm!F=hbO4cbtE7we`SzQW{Nk1KDZl=V<3z2AQ)7j&` zF`2Kt7p%dw*r+P9n4E*Rv6u0#LJ~E^3%n-Gr?W&XdMW=*4NGQS_l7ILEnHo?XObkX z+>|wJaN}@0tA!QZ(RNe@E^`~Flk)m*UHZwMF0UoJ9`jGJdaZ@c>Ef>u^XFQjqyMga zuu<|hGuFu@{>%2xDsB&^o~P}Q*#tB8N#9J6fYt8s|DC?;-`%`o;Ky(J9B8j62$zNQ zRY+97`wXa}(}4f-*wUhoQtW-{0H`f1&vJE@Lo1}d7Ng{KhPYaIHOajvPaqo#vU@2` z1%I@CzOTqX?(2?6?%KPTCw6hE|DsE?f*-7Ov9!#-yiw5+{ATV)F~G=`KnXeE1COx; z8CSs_+R5};$t8gLSD#nC==y^?He8o(#~K?sLbL!s4Tx2&xB|iTQjgoPzWZ%h7F$HH zi(tIlONBVXw;Q`i0kiCm?t{zHO4d32YqL(GEGZ67#~oNnuyTJHb_Mc3;oRHQ{TFdL z?+<}A0Z!uLZrwUw)4I31M)tbOvD+;sRYirFZW$2TOIDu}F(7=8Q?H-TiAM>}q;Fv06y9y4LdPzE zR#+azjPCJhop;$QH_g9~d_+_$=KH}oDHW9+^+=t`srMFZtW9{P)wpxG-C;p;mLa>v zkNo(Xg1J6N`$4stk@^I<0;8rHJd!L~akHRQ)-uRjh7V#9fL6)B7fTTaxb(x=$8~m8 zt|u*dTZyYH>Vj>JO4})I$9d`V7oT~~e2ZH2Oq?ejysN{Ro~$HB?Wn=8N}py?RN&Tz z0l2xjI*{;Q^ByYmz{6hY*N(Tb=YE;D;8y~CHf!#42M=QVshKHX`4$-}Ch<1w-Gq65 zD9RdscSY~vMYPq7&kB&!TLf{p)ew`KuBv)V z;3cUlY8S-t&twa&0vOj#OTfQEQ@6 zi1iKV-zTc~yR_R>&nDljk=X5`N*yzp_f@Ce0PMsX*_Ug5rEc9~Rskx8i(*WyNR~aD zMVSsAF%=f2=w=!&3ab+lS9UJW{m$%5M}`I=auXEQ5YTCE=Z!43q!7*IG1|N7@4Xz& zJ!h{z+`=i(!yFzxIjG`6WyWH>R_;4?E~6Zj2U(;kYQ1T&=zRw9FOlBA(Xcfy*S_Mx{hlI7;BOH(x3Ic}11; zUb|m|Ed81&#JhoX3)iv}!<#u{B)^{{vFJ9_?npzJgF3OFqb&0~U+qHzPau;+4f_iw zm(h#F=-b$poVp*7QL@i|VczKOl|>(-n=MjkIAG7Ce(Q1BdZktSP%a1Ejw>cth*BY(hKR4E zfCUFq44q4kFdO#F+VQXPC@Lq{z-WAUo-^ptBM2KC?1en z9n_WWTQ?xZF7Ag765KBTz0-PY|o=jxuslB=U>7}8DSmtUYKix!e~3=%%y6PkP{!#21Xm^_%1!#yHmAU!yZg&F#&rr&UaU=!Z};92{tn}&e(4GUss zd)ZzhWu*H5XtdN}9p9znLJjM9=7GSu?it(nrV7*WDHIhZXk|rR*&SWMf;&1@`wz? zO9Blbu~H+b`MrZmPc8Xgx^5cq5ijqZte5+ZUl4i2M&tQ-o$}rw*sY4XFlraA^ufU0 z$E7r)4%?7Q!Z%9Z=;db|i>+9B-Y7cfLZL&ilSdmR-m1*|L^au9r8DNh-n|H{EUoKd z@n(io#jjjSlR={U+Cso>dep_uo&$-XfNj{fnF3JPW}I*5HFrQF(6%$Y4c=rk+HhbW zPM-UXd?ll0n`>UA0|MGX?09Sq|Whv8Iv6LFi`^z8P~im8(}eFHi0OAlr0_1cd6YTAqP-%Hn9SV6UViI zO;M@d*9C*}r;r1hnj?A&qQx6?`?WL2YXAPnWLJlLo{Bv|g&`6`Fs1D_v*&RytQ|b zPM)G-0%5ESE92oV4Rwqxt236}v5!PdW**sOEy#vtGTMsM zb+(MJPe5}4E~ALkjFL#i!e-GO*W0;2kLr)h5c-oL-;Liy!L{NHEEv$ z#!#93>2CUo*-Kq;$@n$(-KT770mM)>@MjJ?D$Nsn>{Df8#Urj~vF0*wOWYu*h&g8qE2%d?JkBey0y;$!Oqx*c@ zmFYI0J>yNa(CWSyvX4a^Fp+2op4z;RrLptj?lTSFTEmxiwWUmfFvH?(EazQ^OZX`)0P&Fux_SB11Mu zE}wnM7#DzZ(BjM+R!()jx|8Bq`nu>_s~#&M@xnP{Elk+3sM6wjq3g4Ds7UGUdIdzu za7iSC*y)BOSEKjoNVrE=UD8TL#?TDJ?kM)pkZdzk{?HTzWfkxAXJ))S;HP$Mr< z7q;63uUHE-TYh*#IXCewbCRPT`Nf(2(Y8$vT1Cc9{@RVwB*Rw0PG>_sJG^31%rEK} zg27IQ*~x!FlINqLb^EaC$sgZ2I713o>ly<^bJaBg-ZMe{c%;u~>&>#Pi=zoTuY6ao zd=b}caN6};~ z_XyC|#N*>HX-eiCCOzgAc~pOFY`-Y#BTW(7@P^y3Y~OC4YiZQ!cv+o+St@{DT3$1^ z1~4EwB+Hc{(jT|iO5$+=L|Xt+-j!KRkyy0I26X28-voQq`8mMb*(Sem-Q6$DlLE-T zCXm`+TfQH8Z5Hm8&{==9=I#-ta9bV{^YR30ndFHWlW%Wg;N@XJ3+JDFm!eflk5Ocs=6mF+|&F()rY7H)-W)rd9ltq06y zSZU|Gv6t|^^IbV%?)vx8l#>A-k&u5oSBAlF5`MthyVat7OOQs#kXbm8Q|TbV-wbH# zSK)T>S=3JdV}Jh@;5#ZAnrPCzMvdYRY|vAKef%+F*%hwroK)6Q6b)Vf&#XWRaqXNC zfNt|2t$4V*cnK7`Oj*Tp5D{6*~ ze=u|2`dMq8sDGeIT+ug*8Ug=}xCb!SKf={FeWWOuH}zahY0}kS;$ENZCc-w=%@WS& zC*YCd`FcDfSBnL}X331N79Bl9ac@dmfAMx>w*=qC>$Tb9CU2Iv?VXww99MplfXez3 zUc)l>z)!#rwarPZ+Buv@ap77xIxSuazDH;JDNga$=6fcFW__=;T=G>wtbLj{GaS@; zvJ$HJM&YdO1q>p+-!C^ixS;UY`AWu+)3PNlgs%Ip+~&!K#{;sqo%clL_vdOGNIhaN z<3b`CFqrEKXwmL3Q@LCt&AQ5vQm?&XDCnwo(^Ob}%Ce>y;Y|$t zRf@JxN#IlK)M*(7Q*+phj7*k+UBP?eU4oa55ewxqr-yphrP-R1c_!$}R$&i0Hk`Nl z^e$#!bWbpbHBxY6IzZY*#>&~`0XQc2fS%KLa2>^B3n7_OoVJUW4~BMT(+fgNm>L0Zd&>em(RdbU#p1B;2w=!AC!PTp*F#89b0Gsah!69P*V|hOGYoMr=+uw@cCTs|;Q*MZ5d(-x~vJTle#Fw|5extf+j4y!^SQkU_1Q zd2QvEj#>VKc3 zI`UeXN|Y?)5$zn0tw2#piFJ7LC`H?sG)23ynopm2|3p(R7iuU=`x)Qgk~375Ov~(* zePLuM>R4}?&(2UIV=MctU8dnhGcL)Sm<;)M7OPPaNk&>K0hs{5fQMb~B05aeT_eB9 z1H8Se9+`cB*1ivAMbW`Dvc=hxIZzLAqh<`ZK(d%_oK!~bIzvGXhPJS3MtJonzyOrb zbQOg^SmP7nk)q~=eWK>1_@#0IR-Z-4p|}w`qMXdO8m5bBdh|1I5!^=aN!z9G+jyF{ zQ;T+m2g>8w5R-`~t+M57Wd0w{A-1VYKEg#LaC~j-56$!P3+pj61>FWITi`S0BV!52 z%jO*gBcN-G8>D}h;p0F0-I?%wm&ZNAaf@H!rDEd?47bOgj4Uyig8TWuTnY6DVKZUc zIb?fNXSu7!0RUs|z5*I+t+NhNOwBL3Ic_-PP|TcAc;H5hf;fUT{ZDYTy;r^Bm=qc` zM-ynoC`7P)-1np}0{HNCxu65^k)wH5=&gN~SKB=WU1hhAEyV=?QOR#Rst^M*FZN>t zKg&UhZCZgR^?{&ki0SHA32yXgvPg8xymYfB5+7C&PtfF6pJDTD=f54n!nOeH#N{9% z-?jLa<9vSHyW*^rM}JOJ;ihbVS0YL=!J)USoymG*I#P+`co7% z_D;)hY~qn+8W+l3OcSx{Lr=I|gSm(C`IDVAA6o!!*y}ujI~7s4`wQEbgwEwB@bWfc zZWV$6>;8!=^}fHnBDgCIWpTZYqOGmLjA$4nymlqB+`rw;6FaYlBhpN^I!R${$nM6ov-SBYyz3XKoyUUomK zL-w$Mg>ED`QG^Z;Glwo8@uMOm5m5)HQ3@7j*u9@wYUj5CGjfJv>wFDam{`mbZfn%L zW~Q=KG7U#3qD&6Ade-zW>fCxua$;m8Oms5usq}3K?rtth60V35FpykVCn-`fmVcWRBDoeBz1{@}smDMlwW3F8`aC z9%qu76!#X_NgjV+TjmcI(L)AARY}di=5Jdx#8NBAnn}n zj-0(#x4HPXY~I=Zzi!@XS8bin@Y+qsk83zMH5l#>K={tDli02}iiR!Mmt>*gq}hS& zb<*plp@H>wcf1>XU{>_D>%()|BL2nOz1rd8ND6uJFw4t{M-M_DDTY1bEo0PQiV9}q zoq!w1&Syj{r-eo)dO(ZJV*=sAKtRZfrS{=uKCXgKXJ z?sJ-xL`EVqi$=8>TZM2ATEioCyIf!3b2IzmU+sOXQ&mqFe*FgkRis#{rNQKKDUoTW zcDYcyWq;GJLIhvj}q?Yl9;;!z#$dP^ToVy1Cgut9HlU*)&9-^450!_)!oyC5pAblvB zBCKS}Jk%Z~GKYe`XV%?_lk#{fU1m$&N^nM1PW@e5Y3)o6JlnC?^gqcp>VYYWt=$pb z`G@H52k;KMgukf#=c00zJOlaNb_y}#T(&%Ts z<>$y)&1<)8J%x}|PI{9G3Cm@SSslkM$jV(EO*g`>uJ_5ULU@(0R~Gtzhhqx}Uuss3 zAJ`NAv9!rFkNNaZMTbe6uFux)FkOHA!#<<8zJ`n)Dz^96l69@F`0Cq?O{x;h>5?P~ z%62aOE6vi*XNMJ6r<=Oz=cBK9hBap;;ublkq*1+r9~fsLKVo9^%;RbTd#$=cueDmW z)Gl8SXvL)zeDqhyl|R+ z@L5>zLSXMa{nb9`vd!pxD$DF-(ORSJC{QCddM?L*HMz0Z<-}7zXLc;`(ut{LNDB}! zZ2N`uOkPZx zAnS9F^-BHp*vaf*5q_P~$L-OKOGMpN_7NF2T3SuD&0pRU{McCkb@?Evrd3Mnc*Ec{ zQ=Ctc(=%T8;;cn5$t2T#k+HG*8=*t+mK^D&?3t_9Z6oFzSBE<$t@8a3ri%-k2i>?9J<=5Qi`!XiYH8gayj%1&6TE~B6(NP!m=t4YvQY~0hhD0 z30%T(T*tiTF!&1PC%#Di$aU)8S0!03ahW1VU3GtV8w7eY1#dXz{yfoRjP_~-elf2? ze$`_7*Fef1db*w{7|Ay?RXCV+yko9Y`BT$iENpk=vso3(i1@tYM$SPCw*D;l?%!h| z+#h%Bc!ll;gfDXL5m+H@!%K28pzuuOUnDIkwz*K$(9r~&(*{8_E>?0Fq(2N?lTk48 z$-$M=6k2O-1Lsy@ziYe~jsbyf^^5zv5a`)5j;}@D`4Xn$t6&731jm$M*L;g0EqK$_ zJv(v*hMBdr^Yg>^GP!DWlH%xP(XB#_yDA*nDSystoD2}!po3CJZSVWE1>QHzA6jq2 zrl;jZ!uHZx7|VbXk2Ec=f#Flud&9jy24!HbJUn;n=G7SJl@G36Z7{M7jB^#=-Cj~b z*k^>-g1#yYHinlAQRlidNc!0~34 zR`-%6KIV7FoO<>%xu?_r0>BjKsrGTwsu@rB znw#WywT)sUs*WDA{4h`Efc0cAHOj(oah?!+xDP zb@Rcz%QBa*qWAmuP?7Z8D#iU-26rAC(YQMXg|HCdF~<6STaCQ^y;bKgII;Qxo+0Gv zT{)c?cSe71U%j>i7Pa&|PA1!xCEZ8fMP=o&pU+d7-xtMU?0Gh*t=PLiWeN{2_hXR* zB_3{z|710*GWxtHpQUPPM=e{1LqqpdfL@GZ`1=i;uV?l|3W>X##xO^o;Yf`kBh|L2 z&b~&BsRnNvjZX)zUYIhoGyaCO?m#-XXN!AE%eClZI{k3r3ZLb+5hwfko-y%(Bf62| z_e8X0AF9~p-n(*M`Ug_(17vi^g~Pg2wXak*fC65!0zf~Hq%w%DZLXjK|NcqD*QyNc zmiiLqDQAj1XCl;~^+*Wq|L2~Yvx7Wmkrjjpbv#8Dsm88hQnLAPN}DEQ=eLdS`Fv#J z=X}upSb(-85j!I|jVD$2?nf_OA-S#ns~^z~(t~y8^9h^w;k<>?ohM!0c#tuGqVG|JLlX z*mpH(2N>vk+p_l-eT#3tFkJq1H~ zismwv-r75jH34LETq>L|rE11T(kuWX`2x=-!%ME$Oo)dp-Uv4GwswQO{#UJfVzj{<`R;$p3OBwh|qDE&y^Ct+?~%o`x~@^TRF*^A6sS|8JSh6Mwmu2*1bh6bUpJ#Ty50@-H%RJxjLFC- zq|a()ws;`bVQw4$fln5(vmX0v?$i~+H_s-(7ZV>%HpBs3!99bxHD3>e&+0OHo8ty_ zS30VC9&TlyymTkGTPc#%sRbInzaivZBg8Z%dt{WTXJE?7MW?_$-6`%TxMjSflACRs zd2=w>MZgh(^uF6yupBRVOJZvi5Yr7vwzW@p>m#kEcsqm)-wYWplZnhcWbj=>l^)kQ z&{oLh|3hmrn>YA=JcwJg+%%01!yT>#JpPEeDFEARYKiHY<+@zr$}u}%emE)fss8+0 zFE=IrsgH-H&RA1wJe#w7eeMt^A$a~rXGpZTEuP-i=#i`6QaEfQy!e0q=`+Z%C{w@d zDA0hRd?Cy;O7DRHEwbD<_g`SH)IC_0n(F@W-`2XAe{3lhcAiFkK6H-GIj%`CwUt?} z$ThOy7CBA3eS`EPQN?9woz9?hhu+6=j=dObmzV2a=|*UjUC_SW#}4yvIFR0hQP!K< z{g4#uoOR2lQ|XZ`g}6@!{Mg4g11ops=16C)n-1p(5K-F2RWHAF@Hr%W(e|LRc-PZ* z7`?VMH0ic`eG70PU@vBUm;_aMAvwqU9HKDs;xep_yXD|;w`SNe3|HaHlCz(b9&Ew|yJS>3ba9L!}~XU8xs!W{J>q|1}%q zy(T(Zb4eNaq7^%R-C3bCdT{^CHTB|>%l$I+2QHt*8j)t*etelgaDcP3^UTAd)XrVL zn%`4oe`&;7rGqVQ{u@o9LB+r=H(K_UB8l?p?J<ErF!U2*yf!7d@~}oE-}3L!L`^dt?#I*6raQPQRI77W4gOk;*|qo z(IH$|dBoj8o|}Qt$nRm!=>7dd*;RCbS(rY`jZmf0g6qdc0^KYA(Dnhs&qWIVSb}!h0TcjU6JcNPC-G^Z^!fRqU77WTM3^VIVFC9n6`KS!p0u z9DC6lt7Xu-(Txr^yQD-T0xxPrd6X~QwQl}!W&sQstn;G8m!KHDxu$)!^8CWTj5S^MSqwJ}wfqfafNjSg+vZ_=o@QF)4JTZ}=qA-;hbV$|dhc-LyHz_p zy>0wz6tmAma(jvDoCI=~af?3<1U8TK zH$s@mwYvCdM!hng{2RT4_Jh^!7_J=s#ryO7Xel=$#1`9f|Fd=v%!$VK6i3%+AD8Gs zy?+ygpfZ4L_9>k42Y^0qd7g>LEYlnN1^+1VCrYcll~Wb$2* zbe^X`{p8x2^~y|*g*A*OhmBQ4gVa+^UL$abTabo*dHgjgj2h@m72{x=tO787xH@EA z<-T}Ukr5Mkb)s>`XL!eJgbL za}(pZ79_f(&%WiTFS2n$x+}UQ`Ik0Ntf}y)`tT(T#^SxW0?SV(Cg!#z7hmRg-tney zQGB)Pd$O*Wmn^>>LI;Eq)?-YQ-L=7On>pxNOWQM>nD}nIK4;+&+%sk$%M$)D#z5jh z^ddr0g?z5Rz8SVLk}odWYK#wx6cZZEW)ptx(KYi*5q+zosUTf!Qp-r|$)O9v)MR&L z(I!(mmyiS>->U+8d$H6ogUnh`N$QaLdE?S)D~I5M@dgIjAM z#;K{>i&NBN68KP>J{XJ`s2Iu?rWNTe1iZr!4K>Uk3(tmD*~~c79<9seikd`Sa*JVB zAy2*n4J#cK_zFdOk|ztOd|#;M0RNYCg+v_x| zcu1smdv0@gc$>O>Rmo>>4d2Om?G&4FQtYI~&Fm~bOkKYJ`6ScZcg?la1K2rJ@3>jL z)C@39z0Q<|WOwD4%(erh;clFJ=N2Js!yFw!SXQl^H6(D3)GfI%gg%r6LOXZ0QXx4! zrWb2IY>>%j$4_l;QaOOxwlf+ZREPU5$xq7T7*B;;|KAIsPkhE&_UX8q4Kru3n=GJ_ z_iE)obTi#W=H_w*X=}5^{8F+^pF+C45IR^uA6p zlXbQWuZ|+G;YXgVCy|(Ws!El!wYpp_vhtPE9^Y50+zL_l9gU&O3gIdxXgxK{$J-Uy z#R>NLzspIASMM&abRKt9WD9nbe~4G$A+$RA*<$agZ>P^O zH}eFdYJB#js2P@wT9L7VS#n_yryR)a=^O7{Vx!Pq&LIZ<)o&}~>q@<;FFz>($EOpO zrUS;!DPOO>V|reHP(v#j!e_%F2>4Jq~)AKPbe*_eYLYPz}W_&X)%hzbiR z(o|(CnEQdQ3%7fv0Gt6+?epcBowj4#QI`6KK!>jtgy&b*_g{lp<`6vY?p$O1nL0uK znAEW}Nf$$5{WIg37dLviZINz5?=`S6XNkv9YVi*LoxexQCmg+)IUU>IB=+(7H+#%H zp;ji^DC$5aM6vRo$`qzuYj+yEg$RuT0mF9H*`FYfKfk{G_s8amuXKsXr}@XwAMa-S zha2iJwd~}S99eBM>i&t8)z??^a|N%6Ifh6pdI1BjpV_`cm+fUmYhSFXJK&6H?))EX zO>(Zs>&f!o-Y_>F7k=06cr-&kpiHlAp3X@7&UU=O?z0$;c4@8eGLrY$JDL+<0T)hJ zmU5i7_zn@+XiZjVGgfsr)3*5KIylCJBKYyDjTR`1N!!SmOAwXJanjiTMQ==7l%E1rxdRb~c}9MUICKNXS*#Dz?$ z)n@fhZ5RH+Xb;jZU7;f9q3BnZ@u>HxBye;_sP_`aLW~2 zyjWJ2eq1=&W(#`|a?G|jbX-U;+;G8Sap?)cSnL1L{h3Ienw?+7 zx6j!3B9L)mt|lX}=L)Y~To0RVE5m(>H9IDuN85!Y-jaV%bHxmNdvYF8W?en%pseW$ z3nq!WsB=?tIpw9By?R*WhrM-MCNa-+D};Y5irH7x%=&ZJ+e(2_JqhM0XBw*NH|rwY zqPYHIBAE70N35_)*W^L=@5lvD_wSQx{a=jbo=1LrH1(|-F+lg?SuWW<=H}WBVI_8m zRZvBbPS5}ZL-R$4LC!;h-&)yB21D1XK0tBDPWcYqXr}I^RDyn(HpNR92w^80Q*M7k zOo?5o+h06wgL@z@1MTB2OkBl_zb;J;qEW^RGMZc@hlM}Q{w-ahIt3`?e0C4xuMC2dQ- zMmim04yiX?z95%hMy)?$vwiPQoKlcOm)ClvG<5!Y`JHm1)BLJWW0`4J2hjT9!MbON zoQmQ16w3`BT9F?D1B)N;eeb&)xFr#VSwTxR_mcP41b64%ZcFuGyhOHLRBwh!w;*DE zDka*c9fk`&-3bHT7kf9UcZu?gS~_CBRE79i2go|7>>ef?qIf-?|L`u+Lw*WgUgBfG z9WhrA9;rS&vYOgRJ)Mm>v<*NSJ}%$N62!X^QkgxCf0)_2VwKc%hLj2Kh+0g0@dn1~ zB@C?lEC*w?%E{!uMfBb5LT{Xs)#>_NW?rm{9tKExSdFHte;GL*ODqm!ifMQ*;Wk5V za^oumQ`sB$?3d$YfB~HHBKK-C>EIGgXl!H@*;kk3ahMd_>rI_8FfMHDj2yb&xt}!l zk(CvDz3rZNY>$O0_=vAPO1jtfI1uWNy)UJb0;NC!`4-M5veI0UnZc_|?JwvQCSk2v zYufAcIpcSWJOggIc#6fe0tO`^9^8Mht4DcXmIPuU4aSXNzh(qs0@|9_wi&lT`a#WR zAXk2{pG+1QE>KAa}BGT(2X4* z1VpV38m(=_Vct$HvrntevyOU|8kr)y*k0qr`3rtdxKpT^<1$S88vQ>arKC$klNpqb zCdZwrWITJXL;IQyJW0GI9KlupCw=Bm695G>48E$*Ka$Q zg}Cprekm_0KG*1T#b1Y?sGs6Z757b6V=0pD_y3d@rmpm3QJjxClJ|HOu*ZIXF>!uN z9tYj_{9>I)Rz^|Q@tph%^bZPD1f#QzHDo-faeS%Qa0REZ)b%F$^>_(Bp{b5g+`XZk zU#HW4Pv`huOk`@l+9=&S`l*D>>%7(1PqVoc@9Q^8aq{h72i_R#hVSUVtNf>8B6NqZ z_}klwTXmgjjB-!R6glxN65cb9WZr0xC92L$eb7WCHO4#Zg%JtL1RItj{ExZ$Y0X?M zI~93AJpDxuE@vp<-1=Qqgfv4ya`2?@&=g1rwC47qDKyoB6~(EMA7JFq#Em?AC#!43 zygZC$N={69WCq@+%2l#9b^iwGC>bJqt`O$?UuykIypfquriDCrxwn9k;{%MM?tU7S z#!#jt`&?1l4J``9Lk{e>_mGTvo2cM2H2hbK&zgIVVlBvkwKIcKZls{JsdHuwVH#A`Z3gvX*@? zIq7i#kouy^Vci%*D4Bou-m=gyl-@Z)_;i)!C?P<%{ig)E&wT@G_77*TqQsK{PD5ihr0{6hdN}wCGyBtW8cEW zW1t^~_*s7old%b(kI{vC;|phmJED^y%cbmzh@JcBwemE&En>RevHoKpxfH&1T$lv!g-Cdb%1x?SVR%|cg9WX?Wb&hLR zYGq5z*Jk{L^lra1acFxU+qy)e>DIS1oukOremX;R1PW1l_$6^y06PP72aZf!H#VBw z>zaklTYx6m6M>gnLYTmVS8_m3;w%+7_JHaufXswI0f!Gbe3V;guG=2InGuG05q(n?4omq(*B zb4|Yptr-xI9n2Mj9(9u=YCkLYy`dja%hq)G1|h?1Z*nhM`XWO0pn~)W`?9O9W1)S)a(@Rzf|@sm`8V4l@1_+- zZ%lxm+l0lPZVS2u6sEh)DrztO+Y3BrfQO%tRcQIU^D{krk=6an)sa~}R3e&1OK2G# zWYKU((QH|S!eu|_`3txIhNw-7fa(MOOI+6xdoA{q&EiZ$DB1u*4S>VNG2~MYeHMIx z|J*^xo3lA*OJaCZ6fgFPZ+>i`{XWZNO}k!A7udkDPtVaO^@UeVRZc3fBN@!ga&Kd1 zD%tcX+%B(wzj0=h7J9KVE>6ym@Az{cDgWh`7p80NCV(Ocvd`@t_pZVb{iI~(>E>hj z@&H%j`&EO<2G8Km)s>((Vf`i(rVlO?xpM?JOas~~IX_Dq8KsJL zt!5lNPcp{!4_pCjn_0PXeY^_mJ+L&>1)A~k8zW+_A12#KDm=!;n0A zPoC6P0JDH53cs|qyub!dzaCJ_aT|G0KJjE}G&h{!q{UN48g#k)v=W-w!n*TkhXbcL zF#6u;cdev|^R%)Bn&Q&ROsDH};@WRq@N|FdJmTQvbDdrhk&EmCZP2JU;*V z&#yXMe);8vziE`OX%y#u{z#j*85oNJzMc1}fOPO(H{o{D)CE0mLwEBzgB`5P)EGN% z_owWFYs0GPZ#v+!Xu)8|1Nq&W?)TK)69AqQ-?VraMuYUO0~p_ZYrCKNsh=vk`iA$0 zM~i&zp=5>}qD8y9FTvdezw#@;QYSxpH(kD_Ll|A;&gFF9{_Wph zpJ+%&gG>5+^WH|NIQZvsrEV4rUir#b7Mw*8d_ou8=ysXkZ~o?QZY^+$hwGEMhU3p& z=M~>=s0=i?T(B2K{1Sto(o;7EeB*0e@Q70f{hQJ46B6}lUq1uqUI+IFxVgXa@Hy%7 zlRLjKq0RJN7ZqBF>AMYl^5W-eeTE}lo1nkzfLFitOTSbX7y6YdFzVty2z^R>h(qt` zT;u6J(X^3|Lx&DkA8VSWk)M8VzwtJ2_;;mKZkN&Ycb}a1w}wGW=V_XoR%zrg&bQ^Sk0LL{gonKtT$m^M>d6&0o?l8Y;1ao(|(@WJ|Q8ML` z5#Wo=D2&w8R*;KoA`~$2_j->Nqf`gB9QIlchJ@cE8IOzr8$Zp6(jLF+t0T^N3>|L`?G@V=DtWeZDU2 zlgJQ=Q4#ehkHIsOnJh^gK45?Y7h8i3Qi&saVa!MJX*jT*dB1;+M)|cm8V>ggU(o(qw3J(Vd96ssFQNy zwv4@MBRKL+bi!UOGB5}kybu&f1*AE4m-z5Oe--VUZwnjcMpT`QKZ)Kf=%UUczOCDvCx4;dlOqs#&NIN$cFaolW$BN9K8ff86 zzR`|aD)D(K?o^${44C!cgG(Ld#iy|tfv%8SgFE(PI;6{DqQ)lJbC|5*SRWSH%#3X-JZ+>FN860JVw!m-ZvjfHZbV%N17fU9f z1m|QBkiSKn^FAflG79HkEkfjN$L(-nI|r&CM(+3=Ii<{a7%;w{_T9Db$GOp$25g7l z``-7~&Kd=`@qn%VL2%I9>9EUgiDn z@BVHX^me)Iv{C5m7f2T6GfM5qQRcxjntF$hf~Oqc%c~cDs4qD2oG^tJeRdfs@?ct# zr0lJ&t(DRzk9XE z6*tLSlws7#>y(DO6I?E*{?B{f^S0=z3g(ZzT`zQjBNO5nd<;Qt>*x5oE?qVp!X58j z+4A`bQ@7v4!;w)2r}8*?I&Dsax-p>1l*N=6zVL<9zsk?-x-6JM-?C6h7JuZI?-RLB zZ+{Nk<%^SUmmlBNgO8{Bq4@d97_eP7-t{{k_Ag&Bz%9VRbMWB7f&q8```>>nZ{uj1 zEV$^u_yZOl;>fd0H}TFQpEi+K8_eqbO+8d0Z`w_BJ{-onXm*BTn76fN<)F8q!kyP_j+r_0#sP*!;17t#(d z64Ai~U?D_?!|rfDMuAJy%BTqX;*0O%q^!JFuSs72x-3C&1uz1O zJQbO=fv14L=85P=9$8r=h+T*vJ_nqkrLMrOn$Uy>qQ67y(-<*aHC z0j+YRluJMx!c(7BgosK@M16814N>Y=1Zsms7Tn->^~FRL45Sd`eTA$poMf*3f~`Um zxd78I7KLvCo`Ns*Mduh(ysQ7BtdEE*!S-EiZgg9@A77b=P&@<5XYFW zK;Vje1cZO%QnS32zz@9R+y5lzwG91$axN|`uws?6n+%~Hx5I&d%7LDL_#QiTb}bo^ z6y0C{^%SSPHYrf;|cFZ{nnlkv5xmM`pr`Yo4 z{&kA)8$I8cTf*@Bz#kB{H;J>OI1pc9Yr+9im}gUjx)IL|kK^EVg&Ekto`fRpp> zuJenB2YyB`9`phV9-s~V46(U9Y{z#;@AAXX-|jkI*?k&@>}gLltDD6grzjXpPC0a* z#wD*fkN(tck7k!J>Q`;xbsk1N*KOFe;UU>muC|Ahp~v~DK6FXLr>29?bzAbC=+Pg^ zl0MBR7f#!7^S0dHHt=~YLKy>|^{i*rFFv5Fc`3he)7^d{pZ(cR<1Fd34$jLICQs_> zqENqpVe#SjfB*OEw z-NJlhEQSNG{Xz)YcR8qqD2r--*+jdeQC`1}VZqRe87Ez?NIz|UX+!gwan*e0G?hio z{s~B*_>f1xM)Kx2zj=DQ zf}Q6XxEdOcQ{fq$dbE-r04Zf$#t-R5cR?q-)sQ-C%>&6h{s&fOxGJiI%6npJC#`l! z(Ga-7IvG<&!4G=moYy%?Osm2rJd6eyqeztDHOdM=*-yU1Eh8aT0Zir4Al?frzQV(B zu*X}>&@^Xb>lszK+^?sT-hD(*0zbXi7RJy`dE2QKB*~S|JRBK>F zx4eyi43Gt1xFL`>V3b$*;HX?l1CpnThDSpFXkR=*+Spw`Rmu>w;E)e=GQ;Tah{4N2 zg&1y>QI^zrmr(5-KEumr_$w1&MKz{k3z9Ub6^T@{2C4eSMnZExXPH1 zFv0=_Styw?-Uf-0RDLHD`f|#mVPG9)?fl*0z%~w$Z3+>^lA+GoiQxSF8RPuV|NPHu zCzg^{a+f>|M8`?L=!?Fn;=qqFCUTkdhNaALW4y26C;c<}+rZa(8@G4LoA1*ZuM{kb zHYJ%s3U)!GUj+V2&w zctz2|II-Jk7o8Expiw`@1X|h%ZCngv<*%-;PKUAsPVx4QukYs>K9pVyCTQq9!c7wc zmB9~&l1>?B=rC&Vu3@`f`(53|dGH&3>Opx&FXM}0&lqNm9?7Bz2*8N5$_`qQ^gqL3eDd(=by zoK_)^776^soVN2h1fzxV;B<(exx;6;fA9BxuTGEP6?`0nhfGRG52p^=i=l#Eh6Mg7 z>%f5n)7siv!KnvYIDC}fNeX%F#;XgNv`~Y0XjU%R&%||E-FE$sCr-vF%Yul{0DMNF zPGtJ$e(vYWC}fa7=}Ax8qCx(y1KET}|7~8&Pln00H1xNR{%%WoEg&gdTRQ4)5ywde z2DIbsc5ylRz1tBd>&k-HLW8kHTRPFBEq~@`ex{5}ZL2MvZqb(HQd|1g{>Ogo$BOTG z>XAk+oD%ZO4cbcoMvq6GyWVJN9yTA)D9m+Qz1)R=x*T=$$&r&dcD{WMVj;_CNe3c# z_^ggiYx5sz>Y}Zk0y2N#t;flr@BQBIEdw2&@!qE#_@|#)bS3BdpM_3xVbT(q-AVH(8eN3CdMFzV;H8R9x7FaS>RXXq4cLL#{0>93+=uFFr#ek z6C?}b(9Pj(yQ(uHABMGx01qR5^y$1IB(UUcfyqlA z9^~Y1@vb02KE#}`NUyiUQ3;7l!Xh|;ye#r=`2it+NgDDu=o^r5gU?&x7Zi?Pe?ZOM z0(X@=Fl^-q*7?d$o%_9Tf}h1DO*<&tv3h@t&dL;yCXcqOyCp+EIm1f}Ul!qf8ZlT0 z$Bx_K!0kCuvV&*JkWGCQA{Q-epn#DU4hzn$j2uzN57xq|TI1aE#vG zd1iD8Q}QW{c4`=U=wVDb7EBRkR8nZ|BsuEMQGh9~()xGCeP2$ARDRb{KIOEbfp!Wk zg;kxr&-vTD;4=u+iLt^lwkf0x7j0yLh2qSJLyH}(K4LDvyc~s?VhfHkjTiW+{guIx z6mGit-JZ=;yI+24jzaCT3x-ZFel*SUwG*dq&2!%Z^!y!_=aFW&+TLlK;lA?gkn zBj0W!1EkxpdB7LfrwPco(-7)L4(v9fzuSzj{C+P&?%LW}BIR++qB_mD~FzV0%=GCu$bs3!u zc?(Dux$GhzJa};W<3Il6GV<)gGx#i;Fi`vC1svMSA{sgLSS;Zi2mkO7|8P<#ZK+)H zrmuEeHeb{QEf%u0r!hgFuoK-!`J0c*Y$wip<7vOs?+Rae+78Y7P@hiX8z04!BV&O6 zXng6ukDjKH4_2B*L*oWmILVm)Xh+{1<2282|MqX!VwdrTv$*B~ukYx?+J)0c@r}%A zL%5t+GPY}9bc+_FM`J4BOn!^dh33QRK-ujQpHWX*PUz9j(pzytp&=Epld0Zh}@M3{1MJ+g(_~L!h zzsNP%kwVdw9F;e(1ydM`zQ%RCvKGms%)DSryQYi;y3lGei@Ie4<`*k^!y2^3E@}2#mo-hS6RlZGk(`TksO9KsZJ$_UKp2 za(Nut?L~sEe2YMzged%rKfU->G;{`jEeJrGr^*c0lA%PT{YD+rX9BBF8GM+X{ZG8i z)zu*>d|iOFxb&Z{&qxm(5KpDW*X~VAB@{tP7)nqADTZvv<-)&_IbMNvd7XzJr{Aj6 zV!@!er+tf=3mn4I2cr1m8&85li{85|Z@4jw#MM}`?0j>U8G zYHxf|em|6SwBU(2Mw5K%4mZB^;>4Vf!sxWy?7;(a!H8wRDvRO^C#N3rprh*~jS+;8 zj9dI*wAy_}NAIL}dv*DRFn{F7H_mZ;4_;WrV904(i%>_hgRdTBS9y5LxVI?aa|DL2 zhvDpU!ms>h%lPFE#zzZ=k%Q} z+;IHuuFFRoW6K40b~737j9tc@F@sTs9}FANH#1E;ZNwN<`G{sV?J{Wv#)VbB@m#v))@k#mk0+nOV0;rFu4RVJ1X2684xDY@8{qZ~HBbbRT;VLJ> zTgJ}G1%9Au*e(2NcsKOb&yK}ls^8#7+ll=C_paU1AaWGL%1z@5Um~HyK*)elg@mMW z1HCfxz{w>z_>us6f_Ho)oN_kCWjkPf|Be--UU+0Mfq;WEiG?eMWAWwqfL+RWd~T~p z-*RX{8!M}BvyWfAf&z{_=qlR4G|m*HFzFoMd&i-p(!j{GNH71CvR6C`&x%i-xASfB zBYCxLy~jrb*YI0m@e4R*3g`b8KZWIO`Dl8*<3+(P=+xGgKatuX=}Y30$9Ko0?0Cw7 z2W{x~L@ug6;HvO|oX9|sNo+w(JZW*^z3jjWZ?%as5|MAvt8D?mRlFOp#g9dNwe3m{ ztfMh(+n$I&nF1Q%9Q8Zhj>|IZG?~1~Yu$BrE5im&*rpbT#>V z@`HBA?Qj4G$V4kf{8kk0jCdG;ls7lMGY$_NI8ZPYSPBv)h~i9vrjU33R(cpu6duZS zmnW?ahl>0x{-ED39D3|rGW_g*qowQBa?e+8zf0#R?smy3Yz#dHx*ZsX8AXo*3YHN^ znQf;YoceQ=Ji9`SX**W(PwGZ0*hx1f6A>Lsy5!`ZMr+G zKJYLg(5-Cc*p+mQ-(rM1P?)u08^QDTf{TIVwt75RU0tmmDZ9OJQgodTurtiSRHphi z{qlF4Y72%F<69gV@a<|VbfB~j{@+b>GJklAA zb~@$rXj}CKYe$%jfYYwR+PL$oiyd4~8=m^WGoSg)YQyI~_qoNBg9i^*9)>-7wbz^m z_3;^ka+=rr3K?^Op51-dU`DjBzUUVoQAMEnVW7n4fug%D~w$Pr+Whjg1lqtWq zQO2P|hiWm4AH6nfe9_}qT5kyi#F2q zTgD`Lus}m5m1RN0DFE?~Xv^>6y6*T+&h$xikwIiTpm%K_hu+oM`O6 zuU$BcNE{p%n6#n0Fyz5k^g5BDd<#M3Rvpp6S61_(5H0?6oA5bs9k&4ath~F=fH$A* z%HUB4XLBqnJM0nR+GVdU;dpX(=1)fPTw2O)t?S38>t69k)3wig!Q?>9MvmhKdQth( zMMpTwE~YRB29FFd76%g5f6Mp@{=``{;A9yv0*lxJNG#=?ftvCPD(S`ec%5dm3=F-3{q$g{Fg;H$j67w#zA{8H*q z5x$^FL1@l@Fmdu07=z1y^u>sB^LHJYr|si+GSx2v#CV8&20f@edGVX>yVe=-cpv!C z0?$T1b#UB%DQCUc%Ye^BxtvKbW#yE983&{M(Jnf02up@!TF{2h@m5htU%133&A;T{ z@~bZLBp|P6tFtWP3ck`9E~9Kn#rF;3gQsXo0$P;=)@$K!xxtHYqU30l2P&Yl0ban% zS+Aj|rEMS|16Oz~PvDD^S-5HFbab=>?U-{d2rcp!tuife6m2EfBNwo7BtCgX6^-$O zcVKS*4fy(rIC89AtG!3xl6$NC%9wgF1`A7YrEid&y0Kj!8OW>4*!>OX5@i7>_>ylk z{WijpXeVlNF-zzfa0ck?9ES$C*w>MH#V9|t5313uO&0I+Mpi3MQ8TzyBCq;OPmBqK z9&u=dPrXKa4?Ie9`hWul4uY-nyjHYZ-9vA}`s%n;u-i6ep2D8&Xa*^7{-LMd2iA(H zau)IGRB($rDg_NPCJnA3KZAC0l^*;RWY}9EaeswN@6sooT&giN{M|_XYH1+tv3q$> zg>MP$#Rr}=UHbeNOq=IlFc2Yl$L(<7G#qG|Hs+E?hKKRZQB}K;6i+{U)aiD(?T{Uc zfxuDZJUwRDoRE0OWGP#eXJw2rbI5!5p+fK({(+CuY)6q|NO5aLQF#>2^AgWXI;ffdi%3`({`k{7?tRgfbZk>I#P)0((%&H8$+gX@WD`;?N};XnG9Ivk~tTc;Sb(%^SUtFz>5Rp1b{^g z->wUjlkHBK>W^+lfqYJND2KA|`&>q*omYmarIQs3U_^A8TU-9qw|l8;LLI@a?soc19DKu!zEVcf231omctlO zm8%FXKc`}WKVwb<3vJVo(30s zIAwPmRK%V9r}4KBJwD*SI1h(zYeNN_UCa0@LB#Dt^Zjf`INHj-%+SXH&0`` z%qm{l$s;mqZ1m4GZl?O_=wJTl>CG>A{`8=mj!wHX@!q;?G{X31KG_$7Ay34i@>VEJ z1KjRCdsCOxJ1>?rxUwYzr>MS1}RTX9!X zvef_^9LZeqaOKPOx+y&BMHymvwCP*+fgt&GHpY8`8(G21Zrw)Sr-%Gxkh`{LswKM%gq_6g)o`zp0iB!=%3fx09QNFvH; zWIU#fS{Df&TXL6ybt5~f%2rQ{G%Uj9MLkbuu-N64MdE5P1z?`KX`W1mpp(J9JGhlK zF6UEl;`5Yzrab%{v<$f|{-kWt++w|^%BV{q$xQgi;A9|MTvG31*@Azy@POxeiYE{y zT)a)*^)i^%6q)KAdQ(R>IRhOoD>tzZ0W20B!u17B!+_6AcG(&A!_b!3m36~_hqDa$ zMI$Tc6y1@>pjHgJy3RFlrf}_H5p1`9hHhZR!^qBppX$x2A6K%mlwFCuk`Hy)F7-~{ z7Y+{st=P!+Vu30#yArQVSWB++K5z~`$=kHdpqk%zsv9-r2aymvbH{+Zx% zk_F#;oSBiZ6Wrmz76)qn(Fqo=jd6yX-vDQHFxDtKoTH=+WrhStQKf+T=8>^Qq1BIl z2hB*S{TcynPvB(-{7exy*CK>;fcyQtv z5pFZLYdLg-=m1fsg`0i~=@l{L)YontW5v;DJKq#vyScqP#IUrWp^PzyoWjH4r?^r& z<+Jl{XO{Bnn{dZ?m94Hd9)-R+Pvzsp3FC)4+1d2XHXMu|IHbeT@WK{p7@ibi#vNtX z@osI$pk!b%PAK1Yv?$#c8(I;^Gj(>M;p*yY)zNqMaN>d8EPS9?&mDR_%@1_rB_oGo z%@}1o`_`MW<#H-=rwzIe@U;w3%-i+u?bm+o*OuHeSh;RLWpSNXo8pgpGqxE0oI0wz zU2#Y9@rO(??#Nfm0$*LUuXbYykPn6eqgxu|(QZ5g&h8(6i0`r)yhpNt#AtMvfOb(| zZK>~ROUKO__D)u)L-V2Ozyn4pd1iE?f#J@W!awPK4?tBgf0_pG!W_N`ciQRv0-XH; zgB}Y!WY#5O7IBmfpEw4*#U<@yY+)?*DV8n+N`_Xumf2q1QSa`PV7gr4=7TUe^6C;Z zw2(|8Vl5u0G{;r?kwJ}|vdhv^2T=?`$pQ&^?%5X}e z%jfGy7K5~(cEfk~R*2)w0~W*V>^re!%;ofF3rE_;+~t&wvhkl&rl)x|uWte5PscS( z$A6~&-EP3UuFCvSKQ%=ajgmo&8 z1x}3-MfzkK{D!QQ-Q%7)=5f}U!4-;wH(K#@QwD2_^qCjuHydNH)y}3e3MPh0@_sY} z(nT2@PNtkvy3^p4?j`gx;F1qr1fhOPFP$KwFs)=VsIsb#L8%hTWz10&b|+uLWguj7 zIpr9Ksr&92*b#ch#d3u3me7g``!fM&Hadkzg9Pu%@M1|Fvc-NPG%#YjYF#1CZ_)MU;9m^#~XP-4KrK4HgsNMVE+pPMeYJ1cz3E)FBBWsrqk%8*g4AN($ z6D^%%bu*;Z0!wgc2kZ^)E5RFUJ&}t}l6H6O`?l+@FPvvYkqVNLemuvV8Ea8A+Bm9? zqU_`0Lm0H8-uM}Zhb245ZkcZS==IaS(6J{2DdUMu;+uA0%0jTGKS%Nuau^_#>OM;WP%=G0*k5dc8k;Q1-P zFrLRNSx|Nc*!8scuCvn@!vB-uGyYXyNu8%#k7d(2OMV$h*Ka#M?K&fA@yYkHF+zJR z`eW58ysH9`)b&KKKB!=Myz86tk~?{1OJA-}74}<6ACu^E%9|ov1xJ3BtzW_?Z^Gml zpNls!=8Zo`GpTGuUeCQC{YrZ&g9{DoS#`fT2G4np--h4%up{sr;lmjC16yquTG1O? z){oy>3u-G_RI74t$t}hC{Al+Dxn+CrzC;-hmZxK{dF}M!AN}F%%#S)LRSPUiN5PKU z;XrYKGD0zH1*OKFMI0l=jx8m(cdQu26iMI0Q;d$p*kJTg>WnuZj?6PS7&+c4Oa#T8f7jtx33DlnAna{X?OMly`lRa%XYDY_L=unb0N z9K~II!HH{nmCY%W!bt&SeA_W%_#HZQsFYMY@)S@D8jJ;o0$Q7gjSoG-%3(klRHyzbp@XptWt^>Iv@u>zI>O+jY3cn8~cP!D++RE!$Osny}&!Gl$< z`gth0cE2gtjIp_cOFHAsGj|ksyU^r=Trk9xCl4Pj{CQg_$D#oPM;^Ox79had5mRUR z`)Pb#ujV7=+yX=!Z4J-ox=rD0I>cKraM}V7wHbH|7EYn)6N~}7s%`Mi6@2*_6!^&D zo%U!4my6W&89UUyi>MA914Ey|Cq|>w9NJG=9u95rlNI>8-qM;EcDp&>{`v-=F~VrF zn8Bd*JNK7getG5ZvRm%u6UV5vaG;##UBiOm#CQ3^c<-G&^=SwTJscid=;NGJ!AEVq z{S$&N1HN|J2z_&T@ANr*)56!!EXF)9r%CiDi;)%$#4+CRp3#WkcD(UkJ`Qe=acpgE zt>RivI^DZ(r_p60lkvCR>9c(*rqdYw#!oVUxA1tn9%vBmcXTL&FRuN@cW3$Va(wjg z^>_WK#};w=hq|`W3l`1YK24)IX%++L_XYSFHfhEYzWy`MqYQE6g|j$l4)U~flEOP! z{o8K2g(`~y;>ekD^*sw&eDWZT!*^v`Oc6)c+fNzhUPv_{v}o?4G1$$)yy2CD32_V|O+$7#(^T znM;{)&{n&GQU2eO3FD1dy>B}3fCops<;8`g_#P7;sCWTVt0&9>KZ!`WvR#{cVIeeEFhGZu=Z@ z4W3BD@S9)w7vmsV3w9%Qz9q)C-NxOFisEICilsaT&#@S(f11_*{rmP#U;d~^Py4NK z8BkLdEs|A?!3%VUj@=Mv0(ehWdEaU!Dyy~U8-x_7dUYr%0#g*M$bJizNAh7kb;{sh`&DZ_sqcfknE1^Vq~PftIbm1t)0Qp z!@#}fgCCeKO8#>)XdJuo6Te9%5dph#2 zcTexR>d5r4M?Px0S5^!e&2M|dKcut!O;JWx+9^ftO?{3uMfSQ3ZYF;CcCCcQ)OkJc1~p}`<5^(!xmzOlCb>(}Cfz5T zI9Ui~^{@Qd<_IR23bsqTS39LXCAjLCkOiLC|LxyR7hZJX^x()JnyZg4`s#b%@{iN& zqewkIN8#?1^p)fb`3_I|{YM zreLkbws)p1ZMwR)I-Pru3rlvci&65iYp)4w(tom;aXjs7Eq2)VT)u$lL343-Fa0SDu_YT_R1rLhHCVaxpGNmeudp zwD(6o{GsVS4}C}$iPF}AT~E3H_=eX`?|I*m>8l_8*lAz-N03aL+Va{Prdw7b&pFYQ zfhh5VH5J(Tv%`UH9H_Y|{oS0~3JGP$H-i*^M@BiaOZl{e(z{TNit%b!rZ3%MfKY7O zDT6EdUxYjDGx6c!7=~_GXY4xu=(|R@fHSa^?@=e;x7snIq}TY6x}uSzDB9Ijr#4c> zGqx$I6v$TK#48)GILaa8T{?W?yY9kvQSHt#B*o){_@=-40+;cZ;p2iRrwAyM#%T)# zj+fd+wezHHz|Qju_imYQ=AA%bAfVkYp~VPoWHFSE!;Z(cJ-py7LTeT1QB zF@&MY$=^?xX~D$8p0?DE-In0V1V`53k*Dh-tgmSwaq?Ld(hn>oGK8I4!H<@Sd3~A> z@CeWSD)cV+qYMuJgzZ%8$LilS>dOZX9N4NSzH(@98of6zcXLQHkHG5)yd8EYV${pY zBnx&;h`6@4R$*hjg)|F+%7TwGUV*j9<#*$a`HXqa$rX!z@M{6 zXMqY1a;{&ve3L^jnbmi>=7+HU(fz#JTE7-nUdMsGGu+VN?hH(y3`e!SKWT(igrXdA zu1bYVd6kwpmP;zUcq^rP=|p}SB#rjEH00mC`tOV3d-rCSH45>qw`J!kISsU58pGvX zX$Y6Xm>iVl*!;d2X;vz~B;N&H_py&pN8Wp6I(l=yD+@$7hQ?z^n&=oQMcsk!ZGO6B}!TbwTr*l#*jdWv#%FZ%n`pR_h*Jma1VWEHj zMOpQU63s9q7`vj#A5SMvrfS%9i|Orw{j&8BzaBfJp86NPmg+Zej7Ebz-7RNj>;Tb z&>G~mb8>wQC&x>~U6s!HpYna)QYNJ@j4@>OYfn1L8`Dw$G=t4oWHom!b=w^yNe5DI zh7sfL%>6m75aa9*a=eTX>r@8IGa~pmq+WlOj;B-IHxtO&*+qAP!ckv&Y9S&9@$qz& z|Bt;p5BjS(??ivJ?*b$tBsRS-TG+(CiCyd%@Aga_FG*}CPBJ%>+{*oLQZ+TMn%vx~ zshWK%i<3AcnIul)cmabAHXtLjuVR$|34tU)fCLD%Z}C?;8Pe0xLY~APX)OBA59R~1>^wY*SHg(^9?D3+5GqVtA|Hdq)_e5)LpF(XVJurl}N3y_e3aqC_nKF5D+#z>u?Zu}5eQ{<<5T7)zL9Zr^UdGxjyn3Nq64%H&JCITwxz#J(p5K89J>x}yd)gDs)4AE>dQ=!R<85!O z=8uK8jP=-($uK62Xj+V)MM(T8JAc(hyep7(aM(vSLO^!ChanM?PK&RE+OScba5PZ2cCcHw|=Xb9aeS%vU&g7Yp*TKku=7btDkk4;E5r^7-4$E3#_PI zjk(IclR^35w6ELP^?hahfdF=}u(WwsYiZ^J45K-rKPU%-jfuWA0*1K+L>8Y=jUBx@>-lLK>?m91O^8Ot4#F}*sQDG z5j^lOLW9B89PYcvm|HHUgm19>2D5w02?80R#k?n|Q(o{$>xa>W0~SKAq=L4C!PWrz zwMS@ea1V#dg9CxZlh*-jv-J{_&GN<_R=ET@b<3lEWwMSETES0%7SI*t1=oG<$e4fq z)E|`7`nbUc7raIqO|VhG)MC!DLZ^`kP- zt-d0}P;4~|w{fYT^btC8?gP3&A9zR>|0Ym_6MWjF55c64{e$}a+B^7FhduA`Xe?3M zP<$8{JYn!t0%e&vL4J8#IsIj}I;4}vv(VZtk2voHFnb0+-0-Ory;@Zri=0tp!A6g{L z%gZ}L8{|{I@Pn@P^2hiG9O!Lv1a)JcH<2$Z7=uFFUZOvLF+8vH7|^A*xAr&K(XcVY z>j9q3187$|0S&{yd0}8+pvJs4gLi{8>g3sjrYKA(UV_@_jbPr2y8&pYh}8ydzB!;`VmA6mQm<9?L;cTa%t zgR(5!h_EL!)^%@L=aVP`47YODSZ?(OOR$=_G2IKVZtT`)B0oJAli~qz(6k6&gr~qpz~35Xczgsw z`^2|w&nGS3+*||KiHR0#$^!!Bs~cbMZolKM?x|I)YXZZJpL_0k>EziZ80?AwVqf^S z>`#3-g6Y}_T2l@_r2E!)dIvHz)EUqVBkV3*ctQqH7R9u8)Ryc;uVN_X1Xi@LSJ)ArOeA@IKV%7$*++I2NqE7N2{h=Gsof#K`lxN)C$ z7;$ciMen9tmvoOlxuPZw0x98*yY5TD=b!z>UlkD>a_3~iKP}3VsZ%qNg@AVi5AXZ% zN3!^Sx%-1JUR#sVdFP$mP0ag|$-jepJt9xqEH&x#2x;zvU)JBZGH@Px?1^r4`tqg^?_+~U^+Z~K9x|JdJm5x;AcPibEUi??9Vw^b-4n)P zTjEUKwiuX5CdNH`#$mJTiu^{8pV)1V3-ULE|NHK{w-)9j2Qne-+1(8;IIjEXzy6t; zWWIL&4c*5-@$v4Le)(5xPY#@57AYmRbLS6jz47{M(OCaothtAD${0H_uJ`%(?DK2l zw)J%PX!>YE`e=O^v{$}&XE6%$Z%scg3oVZgEE_ky)jja&W5IElsZ2^13TZ5cYf@)v z472c#3_YY%x_cgcxZCi?n7`HWVpKqCv(md@Qb(M;>`p=yYrHjjH`?wgl{rP;IPGzKn|SOKwlod%vLz z+W3KCXtL&2QwKTbTnH2AgK6{3*++CIo)U%2!SN_aJ9yS?$=50Fy6=JRxpgmgmtT2x z_e>a;?*?~^7hlqinGj(-i_3(Adfz;rnCsLT`Ht*}Q5hEm_uk=K6gexS7@`2Y=)#N2 zqod(99cGWDz(#F1l?y z!OO3_T(r0&>7##*P#L9n!6N;ic+dN=ALUdff}%OBtV-`WK>D zGGFOu3%ws}S5Nc1yBjxYa_D@ZJ95r3VdDO_TlwtT?xIUC&U|%n3G#c*qk+4&#iUKS z2_&PsF}u=F6sAL+qN|3(Fa~}Q2FwF~=1N!0EhgtL;&v|1xJ08Y@`7=Mc_DNXF3eAu z8}}@Q-pNNy8xSO|x@2cZXl;OvU$>KZ^ zeB(bTBb*p+&$MTO3?GEe!SECWZg30U=^ymX8YrD|wcooIJj0p!n?S;l!OE&H8hwJpxeE5yS|bS2 z$^gGBJj$~qh7+*Jr|s&r9ia&>tp8|EI`l7q$&c~`zTsJU`VyY?ji4^H^4oDOrzjw( zFhVpKl>sLd4FnZ+w|=ey4)6!;(lopfx}4U}{(JDTmb>PMk?$474^=wo>P672Pnus<#;^2hwA z!LDxb6MWmJ{>%l&wJ{={@qk|St@Pp=%=$w9Pe+k?Z4?(gK#W1&AM&@pS{(YN#6aJy z=9DJtV6le>$^i-v^DDYB55RRRUwwpk2ZQpYGEOO-D5a#=mlQYXokG)A6n$?l^v<|N z59mW3@>9(496_V%F~{&=GPcmOcjiWOYa6@$ZGR`b=$}P^=O!%#x9QZOYdC(5tVl20 zJz@=#Mn#w#KW=Py%-}#K@~bk@W^qZf*Rr>F?V9J3p4Fc9a$9%Oi6_L(?3cP3)2GGS zwXys1-+ejAj$3$y-5oo&W`F6M(VCqU!R(r<^Y7vk^g=r2xz(#8z;4choc+}ayaDz` z*n8%g73q+dyGI^yXfMJN;o{{oU@8ZO(cl)g7eQUiy(&VzWeVhx8Toy_R|s0ca#7$ zCTR$Q2>*l=kI(x<3J!boCrlXI4Gs)+pZxg8x~0+le&^daMftI#JM)Y)BhwSQB6JULqfW=uOIgY`Y#Uw!GXGGX7| z9X9KunFtOotNT6o+?_$cAq&AZ-SOOAwPY8XjTDh_;!@r+>(G*7d*5opO!TfIV;)}a!QBvs_w7MlUJ|Q%|Ygb^+ zVTR&Hr?0jK2OBaDjMFJm1Vy`*ciTh9v6v^06@71n#IPJ`XP9*3JpGziySgCrpUKECegx^UwDVDcZYtSNC!(?aw^DynA8o^Q9EgX1HJf(u+AV zV`9w>8Rk(WK3#5cn8QhvCUhG&yxLv&^{;kshOuPTqWoF0{K+cc`2OaNH)NdhY#E*Y ze7zeO9E_XmzsekNWLf%I(-+L2+Z}oMtZr$TwfpXWAj++s-Pz|Y3f)Z2wjwURTQZLY z7u6T(qr$Vp>qPWAr2guJp|JmA+v10>Kb;t8^njT$_A!$`D0ts~)-! zFmdh$@#^?dLqELMLgfnL%`t*;tzL00NC%#l-+RotJbvQACmjKqGJ=3_z98fXt-O|A z{g_OaJabzsTOO7>a|?#lNzC50{Oa%{7!wS*x3{wcq-n5X9@WJ{MF_Yy%rHS$olPm= zM0QAsD^s8IE0B(XC%OA_9cZ6+um90Il-f^dO-{`i{YfIPSl?z{f?cR7`sU*b9 zH!v_zzm`s4>PO0p!OZpj-YUur#4XnX%l!Uz6l{L=LA9mCZUGFOmJmk zZc2>?Gd!Rb@q&1;Qh>DpC*Xt&0t{izXWv?T8!lV=c9o~mfi#{Sdf9?<1^6Ij{qisW za(h+R)=#Y**H)Knd+#29s_pI@Tnh0lpS0R29ejy15AaB6${BI2t%7@A7L*=b`MtLiDH3Lt!G&1(T}w7VNTK>d4zr(h~u^5hn~zMg7!5W81u%y zANq&KmPT3TALEuhLwVBbYWPuyc*41{;a&iHqY*NWIT*gBF~_wu>d?n%(>vvvYubBP z{bx-2^@sj`lFv_h?__w_1$f<9hh^m&{yLo{BKNsCMZ0d2sJACRgU%ul?w63aYv;BS zAfA3|MIp^#eCw^v-KJPM_vVl$%=PG`C9F@4fHpOjRl-~eis}k;i?LVa%o)?WIY;|0 zW0ww_)Q#IPx_jm27fWa}xO5U^>r{lZIl}MVciz#h3KP!F%)o#3m6xh~#ISM0E5Phd zKIz16egtWOF!0!8k9J>;%hrb?Bpj1Tm(XsqL?mOz^jwO#YrpZvYjJ`9ZUlfG-A6z2 zp)8;a)8Y1R^@#0`JHFT5^2V+Cbo11pD})eXBhyq})iovxfU#pH6aj;WvSLz%eFE_- z5%AWmSsi!Y(@Tp*C>R%|z$1@5T8ru_r<~jk3>+N+Xj}x2356Ge8i9>a=Lgqtup`!2 zxPEg}??4|o-L|E-@9vD#Pwi$Oc4!H7%}Q?o4h#&Guzlqfmvz&p9b9eSvxoJA_C16h z!4I)33(mQq`;49TS3PONBg-C)FuzVyYXYYIeRSF0?x_eo2CX0Eh`x7Kj=C*s?~Qx$ z5l0*z#mJ2A>Z`6O7npC~{H+MB2c<8Mi;^bZ4DcD+;2lA5zdqX2S!v7VmtE3LJGgha z(4O?&E1O;{Tu>yb)91y&IT-w1bM;l_8uryFjAqT69WC#(HR#_Ph0|FPEGJGJm-gm6 zx5=|{!^?%M3uFDYD3o#}j1eor^UtmB9u1>1H+5hb(2EJmM8gu^^YGXboF1Nu?SrKW zZxbLz1?#`buuW#SM96<_9RQ zLVFKBa9@q1Gec7kKm0&xu}$=mySp2%|9W@Skw4 z?geRotmmOy^TyPSZ(~AzBS*#xou9KH(3{_s$rEZkgk%aH^F?h-NZU6@dGXML_t(Tf zI(XWhF}`B?<6*2<7b7|l&z%jgz7hd@V{p7d0W~*amd1}86J?fzPtZ5I-jOXFua(e! z`Q=vxm*a~;r@7q~1=2H5uZTC$%2JqN!1Nzjw`2}uIok9_6pKT6Hs{f9qa6$7g^Mrj z4vQfF+G}rg6QXEx)`K$=C}PZcyEESEFwcA&e)rg5Wn}PCV@yYVpUDD$TWH!<+;I5m z#Q-`G8aP&w)ZW4E6ckdB`CL*+2CyDS;xfL``TZ> z_pN@{b}!yIY~{2o91tFz_RWfFJ@2nq{en1_RmzH1rt;jw3t^iwfIy~f@d8{D_~mU@ z^7g)!qipxBEbip}p}{InUCP6^d^&;!{zehYtXRJQwupH_zQ#beM}%o{AD4GL0IM{dNe?I9wf2kCR#yUyK2=X^oA}liS9t|A#G8X) zDvk8sH5e;V{Wz16?^_yIeN2&tPTQDh`IP~d zM&A?x%4_+(e>a2n2<_V7(3jvM81E0CXZVv=KEIYvS?*gNve{d2!N7RK~VtiTQ*%coUl9^M^y>!vjT>H%(&4b~gyT*K z0cFsnT>F;`_AuzR_czblP5_=bE(h`?&4zdYJU8L_;B8GT_a{fwd_nCiXI)&oW?d8= z*@JfB#hKIwLWprSk30UJxY+t_Nt?&U8oDuF47M!5nKr=1md#EF?=b+}x$OCo5U*PR^=|BPr8FIjwP%Guk!7J+bg`ew?csrg)1gzoZUK={4I zdd#RSM6s40edL_(=Rfre5mH}{5Yn3vxZ#Zs92ZCUg>&_RrI@qi85;oxVJXuhV=KkT z)WI$P*a++wU2t(0`Q@>M_ZUmGW6J>=5FT09v)q5^gCEWw?}cgan_1i@m%wygEE%&> z<|T_4*B<8aW3%r$3*@#~To0Q$t2<)$5#3#}a+sWH2f1aPc>Ia+uozcX*>S-;9KzGI z;N!$7YGz~t-xPd2zxw&^txa!r4?XZ;_hJ^__g(Y;?zFg%xAr-R@%3!Sc;fLV%W{vV z=gb+5rT69T-n;Lug~uXo9}!$R;K!K|k1TtvEcx$$-v`R0fc3&Y9-a$V#Rc8MO)d=f z<4rK5@N?KGFITp7KYa{77xjm2=mdw*$Q&T>1TEarLT>VX<xN23#JZ07BZte4H<5qiX!Q>o@fq{YUP&V(c0J2c-MdLz0k^S&lo<|%{G2onuZ_gFn`TL zFI|7R-f_(p+zZ}IM;K$VZe_PR!JzzBR!fiZY;7(6V+ao|A11q<`Yo?A)akuv>nA~~ zg;suRvn%&{0nS=p`CA>WZLaN}#o14gr}cG3Q_$7BaOV~ zXr2WvG<*zXeiRPW*XkE9;9~^O@~T7Gt^9W1a3ZZVtaL(uA9|KvXmEJnAE)m2&egMi z)YkT{#W(9?e;JFzhY0<6g$L~*?6)9JIezMI>D_zR`rW-azy5xb&$FwwOi%_GrTsyn z|DAjJho^>5^e@=H)`GO&gAW`H z7T5jT-`@4tD-D_y`rA%mZDX;~a;wu-Swf@l)-U3e-`e2$-3Sej?W#`q;5<;f+xvFy z&nHe0=cg@x`msMOk# zT~Kbdld^Bup-ykaTJ8Xstr6BLeJpq*!l>82&tx9KEKVp)k>01&s>!nhrwCeGVpS&a z9319*;YkZ40KC<6UrI_s&YQ9FKb%9$PL9i)y%X&qudQ3Q#$9?=w>9~vMmzMz>u+>7 z+<0Rw^RJfMyM4^|3%?#g=qq3STC8z7xjIDJv!;$ImkX9!d!fJajT^c{vpAl8_BnN8 zJ{Np@aZNC5r=NbNTOF6( zw_{hlm%0!9@O1(>#Y%{o{dG}V>Q7p55CsLt?!vwq#bg0!U-pq>(lC3W~6;G`*sEf z2D>BDmVv>6Dpy~a9?+q-O-P?O8$!F`_B<~hOP{Zg$HNh^UKHaSn0-~?{wNyY&zTTtpagg8PT+4rzx2kO7*D;R z?e6P3bh9mrE{97lkJ91wSc2})9=xwbVKObSpLFt^?i)AW5M|cJQgXfY@+(nttgrq= z>n7lVV~(kL;Jcx>F_|kq{E-ibrgD&0+R8Iw7yPA-e&!or2C%;!KAoz+ix*GY@B9s8 zJOo!`aazXh@*F1UfJih5Uq{FCen%8ZE1y|e3;uI)sb9G8q$q6O+uaiH4Q`$@^V!LV z<1z6>=;LSOmP#Q=afXJ}=bQ!OOh1_ujyYy-a6GvimoX2Y<|GI4+1BB}%<)k~8PnQy zWX^avIWD3OW%iC>q%qgTwCa8Y8oS~ zy#6%Ow))z&<^N%?t(;bmXTkn&L%4L6PU+B<3GX@a+VaI|u?Sz7HA`svj(xV&$_ z_Uv72i+BC-D?|CMUg?^ZPCmR=!=b$3aTOYT+9Tf8J7u;!(zR#rl<(T!yH^L8l;^pX z<6dy>$AdED7bhqmE?XO0d+OzWf0X6DI)sLc7B9~G{%ilc{`*Qa^hbQdP0Qb(_CWV7 z&b8Io;A(9X-_lj0p+7CIi+6t_S8@`6izd#4QfTYRHs@%x7c zhpW))?k{WqJU@3iG@?)~$mh zv?%|Z-@3W>h&kZmh-g)J#`V;JX&C5K5n-h#_>Yfk>ZmZ`4piItdJgG{>*|i|1>P0r zdS--j?HD(HYd1MU*1$3IYOvZrzdcO!gb1Ak*6pzZZpz|%{{s)z$@RbVvmft{8n7_Z z!e&uTo1IjC-~BmkD``)Oh0SNJSoj>yMvxG=jW1u3LtUagcs=g^z6HK53oRx^aJv3c za|QzE8&L+lSOPe_y`F>4W<wRK`*P{pW9nuI4hfJT*z4!ee?B>lsw)@siH+5gT?)o~2XW+_%6fmxcW&ukiNXNPgmEr67B2#?Lq@cN;Pgra#5beBnM^T|dX>*=&YFHv zPM!SNCq5Cuc4jed`kerEZ}!|#{t&9T=}~qNW-q>EbTL=Y#+Ck|hnIEB9(^qPv9In< zKjYB)B%TB6cBS20V>JZ}VN$^nkhglsf`KCTZPVRSaX6}SE12a~C9zw|eM8wSO;jGjB%?Ms(tkLZH*SH>pmcHC>i zj?|cLbFoRy*#gSXZP8P8SpL*l_mCTkJ)eP`5}ICg-UZ!Z@nqN?FPldmeLTYHd*iNl zY|-o4i_YyHe=Mh!-f>5HR$x3*bi5mK;(t72&O7h?;5QcWY(_mwPCq{DtTP$Oqd3@_e9Fx}#dz>+kD_CGlr@)MaaH>E z`0l#vukWt=#`RI$OzTcP`Lrtg&CE4$x-G8xQ!;j{P01ewbmNS%^mT}?7AO7C7B1Z} z9ELFf1C1f+XN=K_XJZJx+uuAeFi?u-qOs(|h!HG2_cJfb>=$tMr@4QK5t9F(64Vb) z>!3M|r5w{unC;C=BkCYdd#|}1_cPo5^@!I_?%DQA+n269We{9hd_R$Op|xM$hP!re z-#M3CX$VjaFFg2~Yq|B-JjDVC#|@r_b9;3i;PU%nQUV-0g|fqm_~ zn)CrLHt8JFC7-&TOwMado+g}lr!LR#t()!iZEY494(t_XRTTR3yO+;TP}bXp)~^0^ z4F>tZ-2c3PS>Wu?>pd9c^Nve79CM{_!oGJcO{>2j-c}}Bav+y2l`QU*70MDXJ-m8n z%h}-IV7*s|cYghKfD6w14Gro>8}is6&1-?%uzW)6gSH3VL0;BreXe}@!O{Xnlm2S> zP_FXPKaV>3@lE34poNycJ-fCxc;{Yd=~~_UU!`er``>$Rp+C+3WlGcDyZY@PC(nW4 z>Q7ghhW_-I*Xrwk-}1S(a`#WyU&evbH8@*YExl*K^FM_1Udq1@Lq9zIb+oiUu4}8S zUHjo^b$Yiyp8DUp-~WBf)2=POYl~~wf9PFH*RK6#^yhuM`Q2_y-aBQ{ywQxY}!YkIRoXY?QqYJG#}Y zSLRb!H|Gx?CMSRA;4&ga$$w>HQiTbp_p3rAv1el9Y(b^2SRZ(x1aRI^&3lQcrIyI$C~W$ zykn0)uB@^qMWAzcwMUxJW5K^ZOg4A%pZVFJ0eT6VCeQQFKd(FKl!ZO(e&*3V@n<%l znrt6<@PY2$`|gPlF&L}&{0N^tVHOeW&K`0~j!|*TedX2lIjAg(i0m<+GpDyW!NXy( z>Rc&^%Mm@J%x&DPHKXT|?gz4$or^|9rad6^ECuH%NQ_TOpci&T= z$Xa~y;$l)Bd1P6gZaP2izn5HkN%kGT(*5<{{B<`tFqls&TvQX%^l399%w{34{)2Z1 zrOk`G_`zZLHpZoWR$e(MWK#rWR*YVM!IKG%(6J+D9k4n}SNpT0ETOF7&G1s--Z8Xa z_^r)Z0J8;PSFHBIW-V||757Ou2gA*o^MA*hoINeU+0NZLa4!c325TkIz5MbU-92$T zw@99_@PzL0d=Y@P{aZJEGY6k#zkK$;$2q7hq_4fcF~U|3FbjQ9np~Xy#usJZwZ(fx zv{4QZJoL~RrO41{4w_+=U%Ys6cjj4V|^5tT@e4~DO_SDatKflhO*b!XnpPO#}R*lQS zv~^q#f}}8HNz=a*CS>~#MNaB+7Qm-I`SG~aKOY*LnS<*vs;PO;j=*|QkAVx;DfFhq zfoIUYY;%ShHE&s#thK^e>=e7l>=HK>W`1(_cfyQw4(*z;m#whuC-YqzT(g|NdXok&fHZZ7fP`qsBfsFQ}E)$%r>i-1MoCoKJ9PVXj!`MjNd%+mUt z7MwV6)=9?pm#d?dC%piFghnTGw?LS5DzcO3rB_!Ap5YSiwavkFJ`ZNEJy>|j+4syH zTA4fvd@{|NB{ZQ`J6hkj{nX(2Z~yJTm4FJD);ovB@lsH>GSn~VfBm4R-Z=7H=-6#3)651a1AP?;D&gZG*MNw|bS&1Hv3kaKGi2TS_70#Ctear~Z59 znP-Zpa0)z+LpW_X?61Rn=bAVH8_lUl8NNMl+)(216rpgTG*X6O>zjc0&>nPbTR{`z z(Ha3Cy`xiy6SjA7;1EMN&>pnM&EB~Nt$gkF?gxd2kNw}b`2DZawYdH7`^)H0)8hN% z`tSFDf1r0Qjq8Elx43rgPxlYSwX**)=?;|U?ee#G2fDspSqDo0zt|K}Fp zt_OPG;@Y*Pb!~C&`VYNp>DslwjQ+fDci-~1>;7f*$M?V6Kfb??{&)TN{b_!f`*&G@ z&!Q4$(tcF@eP++%@pDOhFW~)g`A$hTnfT|w1I8RUwJC?EJ@@R&((n`LSY;i2(k4w5mi_VGG{i-Z_*|Q$O|M@j*vKMwocUBhhrQcoB z-Fe5-Zf=C;xyKxn`jbE9j?EwCY>AL~V}$Y5nJj7Mxw$(mYEs;;UtG7Q4h?COx~qkn zwc`2J&z9n0Sx(m;lQ^H~V4*+ysKX<4%t>2VFYRIPF%bl=TfcL2loXq?kA7SC#%mi= z&+JUzaf8nyM35`DP}7u?{*^Zc~K6m)5O~ zlH>92)f|vF7{O{wV00#cgS?Ij-fTnAWFg*U~vU-NQox%Ht2$~P)kT8O` zzJxEr)#SL0Q(7Dr4*_wzV|@n4^3-|!g85a}z)?rm0_ST1&Jo}V;IvsM?oQ9i@RQQs zJrUlW690iHF)U!*wN9frSp|E$5 z2(olA8d^#(McCV(HcjXbnmnm{X2tRdxet^w!B&r_o_?w{@ee(4Z}y-suRZcK;h2V_ zjyybjlVb%A%x}f|yYlH3nWREjsb^z^KFpE6cJlhwS6<$&O+VfEjq6IdJ33Z_-RYBE z5j3|&U>}%sWa#0ts_XjezE%tI?89fL9k-Rj2E#UGQug%iIVehkDcOsiZ^5VEUdid` zA(sf>(@T(3=8Ng)qoTw(bo%8*&y9hBvo+5>8<ECL9`e93$8ngiyZLW|O!)gnJ1MrR+9H{cmAp%8^PvC6~o$pBhvVy$-z3-_u zqYZ+s@hlxr7wt4}Or6TBBKzqxPR2#>6&xtJHv+Y`PYEs9B4hkc&u82=?u{o$4y-dT zP>hJ{S%0==E6Qs%*Qmpm598as<&eACIeXyJd=&t5^|c83zwqf#r~VwK_hzhysdGeN z@RbXUViPtn?vz@X%NK$lLp)&IR`!cttvUs)_@RTn4 za9rq5Xw0Uu3a9VnVpA0i|M?e#0sW5-8ZDp=YuU{=-&_K`)4~a|#vAu(!r+2zkwP=h z*>L_x6Lh&`vvdpnbmhK3$lL$E|J^_KzU6OM-T>BG0+R7g=xqm35u~}Vix;#{J6oF@ z{TpMHsQm)8^vX70G`L%PJU5}psqF-P&#PCjF0U=td`b|9*qQTvLdjZ5Ae2ry;9a?L zWo;89)Jn*WYI`skVm3G{?MuJK&@9bU$mAPtMNZzNNwD3_p3p<+!E z2z3rj1s|S9TUnH~qu~GyH{Eno!AsGwbm`LaOk>5jP7vlT3)g$$wG$>`Q_ zWy|Y?erbN|w|=YeZp(vjV52R44qo)g+e5wW;KWuw1q;QR&vN+!0-QKx%_--+IvU-- zQ~fer&M*dsG4SKXz`H8IW7F#!@VSnR5bqxgZ04|@u`Z7+u$hO#+$T*f9$_}~-hphR zN9Qwg19P*`e6&t0wV-g{a%kD%haZti&dIHWT4lt_W+AM5+SwFRyn^_>S)3;3;EtJ< z=AaxlHE#VYVTdDy#7gB*s&9u$d3M#a*|&UTmE{}lt$a+kbhBnTm}O*OIXIfo_XoaF z-S7S0@5d_0Qcv^So0zx6y%&rYM*F*0M59}gpOd`;ejihx^8d7uw7z9pZ= zx-kptn(ovbWTu@jky=5JVhy zW{>VuPdy!r#6uAPRtEmrVQl8Lwr@ak%e* zZ_lS>9w>of-rV_hnAaV5++FQ<*qg)6R;^l9ix>t1;^7Pq94sgJ^w}G4ycJ>Nr8?8(Q~h{ZK6Yel0p<*>_INw|%xB0h zIRCuCd}p1t{C)3xfAE{L2tsRnbISPUxH?Pca5IPeIe8r2q6PhB4>a7MGv6{l z`Q%f}WzhjLm`V&CcTauD+$;SBTT z^l=^*#~piIaJoJW+ng|O6T+PA4#RR#S>pBWjW_lzMstoHh?P5AJ%XS0IorTKMt#H! z!+8Oiw=rWz7Zd0l1q}JEx84>;VMgHuQ-A@|UiS;4RH5xhNAQH{F^OXH=K11 zBZAS@-}ZseIXZj%1B;=;|FE;cZdcnNuQ~f?>^tf0?&Wok(J(btC zj<4msf;y!>;}`x;%~qM!sR!fF%Y|i~k_U_Fp8L{qJtfv`<5v(1J8ygGt2;mSVsHcv@so+EG(7_D;z#wAOZlywyxthIzZ zZMDsdOaEs-``PL<^_zd1WuBmKo$+mH{DiW+ha-KaJ(LmVLG|jxHYd1x#_-?m2 z&*0PFZC^e7`w9KmhNF7%4*hBPZe^>l#kD>lyi*2KTnN?(0=G{;!B2y+fz%R4E+nn;Pe}s3q^a(roCS8!&th;>ct8_BEmqp%(4{i4l`|k@!;TK zO;RgYt}NGHZb0_Pnv^ijPM;T@P3pAs z(mVW28Sc665*Dw?epSpfw<_9uZdEj@T%N#1C?kZLw3Tgd)VII=otk_vzx=Wiu8z*0 zX@Zh+Et)1^^~-bHZMT-2*8AW8zLa@I9aclgvM^XYq!o7V?6sNIniU!|q6`Z#MS}g@ zZ~@j6PB^gyU#?!-eMJsy11Gm-y#Q~EquIY8mQ{zJsY70$B_pIL53FVJOI@zMjlLy^ zfGNL+$I-9MfAmLx6e07-d;_xg869=$6Kw~-w3tFdFTu{j z1FtMR3l`88?=81KOyg%h^Xa6YST1QS1hmWg5Fx=Um<6uU>Bj1h?XhwzqwPWCv49bA zP#jpmAq{#0kGP&iVr0SM`>U5;dTAKL1!a+FeTd!&x)>Ua8Cvbt-4l+{pn3>~`Un$@ zDPrB%-q-RuGJS*I(2WJzUPEwJU!;G*W)TOIbm$24MC1OaVXiTHo>^O@$zUo57CnFU zt6zy5<-B5x+hX4U06+jqL_t(moo#?|&@RFuW)sfPGI-$pp@$x>I@F0#IQisLs(cC_ z-=yy`AjT6n?+FDPT)HG6y3IKWo>nDTP#T zU+CUaBzSjmtkmU&lJ?u80zP{C)-q=*uVTa8s z+E*`JPnj~g(!!Ve(A@jp_ug`|Z5A^))j#^%9DrteY0Y!71g2et_mO)>c6Z-*Pq#YW zC1;*>cD6)Z5^s@RQ7~-o2Gh?w?z*>IcK>~KGJmul1&?hw@CP=1(SL=L;qcRmfi{lO zgV3%77lI<1kw!3XjaT%8PR$R5M8b@9!rEv|DMOx?w~hTOB!Aus+UqZaV9s*N!tJaR z0d#pZUyZ>hL&YR2pTpy5-eQ?&Zck z!E1Gd^d>;U5do4LG=UmUS-q_djW0hgL5dGoM=%;GVKXoX`|Ha0vHpy#-?{&wcw13=DJxXlp*+M4;5> zrY=2UoF%@|IQ$TbDLL9a4TrWW2$VUL0)lv3EYaqF`7i&a;t1~65I?YK2l$OCZBVCj zy@PL|#VZfot*xG=$0uK(^HR{1^3V#Uck_}_hIH}{hhYp1W8fzr1Mi*ypE;J`J~A$* zrU#!ficzu*$Rjgp)V!J(Nm5~N_PmF!>_)^|6o1p91I?UJJ~9iAJ-DMX@yv`xaczXb zKg>S1-;A(yO!Dq6Mtkkr=W9V(vEs=HBCBe#?v)&-BNLSUue9mXzaDqmopC`WZ1`uP zy7=OYY9cd1n$Oh7J=UZs9YNk?mzE@MSLIi}y|ORIy1YK_<|mzWVlnds7vBW8SYR0J zd2f@XMbK6NlkB9pJ6j0sjq+`1ZvMV~jln@&;l`_KOD+OiTHdE`+A*KWAk%Z0Cp z-*MSHF3y6rbm{jBMvKlt*$cjK;R&%o%!$(BZ@Y7|7@Ts-Nd?D_57^Iq9dL9O)VV1aIl^gAiNT_-zxC5?x7`vv?+!k$4oo{DG#?Qq%GG7H{>#7oi!fw! zV?|z4mSFJ&HH=Ba3)<6n%G(kbZ7y!=IriB3g(L8dj+L_2uMNH5-YAKlDu%~mt=(t` zv&G8#_~VZj4ubvQeODg+&tqX|UQfH!xuxEr8_dm=D5Aiq@8gVJ3%`D| zDEDCLDK60ZnP;9}^np3rmTd>xgzltsb_3d-K7CpQ`6EL+TdRHA*kitW_{4C|n>V*x zvgFnQS_@_aOR-I<;$N8J+BWea4@12D3l!1pjmTBNTJ?~Q?9n_hh4h}H>`$mwKEEu zDPg!S&hwbE_BF=dUU*{>-F`o4*QgQ{e1dSrQ%~nygShIyx*>;jZtdm_48|iNTLGd- zc=Ne+UDTC-vaxHmfp&UhyT4Gav_Yhx2`%wh5g+GoC7x^!vX|L*VpZo$Fr8hot% ztl{QC)_j7!JpIBL{3wrrWxY|pV2vf1gPBEtaB#5V;haDQHu?N04k%mf^Z$cC_=Aq( zna2QQ0Kwk9dMGCG8m)c>iU%v4$ftbaBOm!lr#%!P<}rD}#3NwMnl&ZNfA+JV-A6CV z@N4B&A@ATHWjDMlwmrkAc=$EX!lO8WGQ+!O;Rc(~V6BItXX$?PH-EES+PU0Qa_Dck zf(vJHAjoQoJ>QuhUBW;hDlm zaIbuHO_6V}y)qhoxc38>pq}=gq6Li@2Wa0H2jrIqZd#toIQ(ZA1H%~jiN?UYC%|Ve z*&8?1-6LW#stK25=y)^mNyt9WEG2o3D7X%U(^BgOe>)N$1)TC@b5TWnQ zH@9R#TM}(@PIFEHJLBs5;DgI*LNuvPn|5e~#A9j_^Umk0?usSK$?f)CuUfULCiihU z;kmc>zQ_1u!m|_?924V`%guF1tXUX+f-YC`9Xq(KXa9YE1lh4EW8uP6x-WnE%Q@8K zn{{x_U>GHYX7U`CFNt8QGKpMQQ;X>19XXPUa%nyw7)>a^}_*S;9RVp>ki z-V#^(hoeCrpG6=CmZc7D>j_1>JFfe$=3CP0;1)+9YeKPo_fGU~LYIDc?6D_f`932` ziy4&`t_USM)xlk?su%{$ghPeSI%`pII3bL|0|keJT38l+6MaG!M()NetMcjFb?eq= zZ~x^bsC&nCecrrdgQwT(Giujge`9I9FSy{Mz&kSwTn;RYz=9t3#$Q;!s}D|Yy6HO+ zww^BB9Dewb)o&w45c2GI*Ec;4w!YUl(%yXYt=-_@yx{JT(A9=w942dN2 znJ{;=0{^RZx;uAxv8 z&(95cynxgGbzfC@@x|wImc&E#X}j@Jvi#i7exh5o`q}OazyG^AATu5*XP(iW5{pnB zkeT^nq_#zI!8$l47A5rzhhYr#W1!K5YrFTpw^sC&Zr0cT`d|NR?aQT@Ywx*@bFC-f z5bS>CSAL}wT7-OpKS75uyE=+ydvW{A|51eqWhtYTiN*=t|MP$T&pIcBMV=DOoOkWD z*OqcYT0d|#1w)H7&Ise$NeC7w*sZ6^Ca8VtQ=h8!N8ScMWxRL_d3aE#`M_L3ng6}- z^$sf|u>O}{#s91qIm$Bk10X4hxJ(-;hA77 zFFZ6{wC4iq9sZ+iL0w>N_pMG!B#M%Lg6UwYPf{R)=G52!5EI3Mn4YE{nZ(p%w7Awlvt4EnaA8C^INzcw(XreF;W+{f5IZ28J>4F9QQTuJzr3 zHS?6ug6+u!5&e5aluVfU+3OxzrGC*9_U>K6$nK30pCd@}5~CWI<_I_|B6NTG%U{X; z_M9Akc=w5qf2w=*u}AB0k7u4)m5Hd!0yZUw&&|&vU9)P^Ix6nm$1XUwCQ;v#SDp#+ zmK9_ZRY3Aq78?4VZw%wVzBI6h&N#GAY}XgtBA7are)g;*Vy!qMhvUVnKC}n~ znqFU}y%?R4#A|Uq`BnxTq5**o&yXN^dQI;(4o_IWNd(kv6T6A8l_3z96 z?Md}%E^gYl+;Uq4&sv75eia}GA# zo740!3T^KS1Glc@B|E?uLAx z@ThJ<>KzDUIeT`toP@p!;&9@hab(}WvG78K;Cb`sWqeMpLj#Q&r?%((T_e8)ac2WO z@x+tGFuob#ozU&u@LV-n&cM26%?q(?tg5~3d7Thi3{1~Izcx&64r)t3QB0UK97=~K zdwfan-skwxCt-hF+T@G`wCWUlX~92k9HvM5E{9dFj>6*EV&a^aaQ4}YGPmTgr;N8p zmOUB<_VJ9>X<>TL&X*u40}so#l5IImaA_&j<{mS*K5=JUp{HfZWA-!c*?zJ*N*;I_ z8wEjcKJZlxb5xka^f6(dl5+fb`~EX`P;buMtHA@Ki(h|3+NUTXrAif>ibt%8V*057(fsG zGyw~qjcJ03@O!`ad)?y2i_0y&2?*SN2{Ho%1C{pDOE0Z?$#lI{P+VQqEs9GBPOzXM zxVu9F!8L*4?(Pna6O!QW5IjKRZjC#^-K~*sw2{WSeE&UFr%s)FpLXq+{V>;_y5<O_X z=n6%~9WyN`*DAEFr;K70DTD`Y<9Rpe@l`x`gLvP{^**VwMY21NCwYEl?&UeB#Tncr zB37|jZxTCe9mvkta&MZ1+l62q>U}cmb~=uvPs}8W0cxT@)PD*tVRGpI`d8?E@aND1 z*{5WR(-Ca_}kur2j0EtMtW~(-ei{i{1(gp4tV**IM;kLigoiN z?YY8V%b$wxFzy=?2h)PV>pBtDkC(URCZx!cwWL1UsJCwTCp&F+M)XA%T_w^dy&S~I zlNi*x>Bouj1BDD*$|e5C*CV#G`U2jo=KLZ|9AI~~lM_^L#k*~M3gYoB{VH=cIdzYn z`->s=zs~NfBoY!%HL7Hrgr!P!(&SY^D3N#XTFLAF0dX+`ZTHUI zr-l?1M5oD+789M?02$0Y`&|8Z@U}uo)=6Q~;71|Lnf?GjNOtz{vmgAhE|MTkW2}%e zh~G20!eFI?u4RfWxxlCCH?|2*GbRIn;k$Nrf=~_Ti@#oL7)AAsV5uEf zwZLFHTIh8;)yy4Yx7|`s%(4~EA>gX?=PIbr=vt;iq-80!FH)x9iNKW{D`w>XXA!seOez5 z>D8~AHD@4bEY8|NUON-gR;I}1Ctn~H#0z%ua$V8&&3~Z9 zZNqahXPxj!R2i@5XuQRoIsx_i=s?S3^EJ#4bd2W$eBjUa8-x^;hP`&J3Z>Q4Ax#zT zW~w#bq#H`E5ysE`yTTMsf!;bqNX_DI`r)01!s@3}bKIaT_hi7YWM%Qisp;CsYTxJO z0OsxGse$9urCqmS<8alQdtDvdCuwF+h>+f@_(-6X1+}Hx$FGbz&T(5HSVk#i>N6Gx zLw87!nx)e4D+v&_foS9N>o#2TKw^EvA*7J{S)JQQwdSQ&4Nylqz_`2PyqT3WA(;~9 zKM~u0h>R;nYJaQUCV96*LU()05;5Bh^3(t!c9jqrj`oC`&&>Xt4*HUj0P=Qw{ttev zw7UXWtHo-guZ7f%1C?Kl-9~n@O@ibxLstgJew1wbEWO8#Zp_!%of3NG!t2dp}s?Pr(_I z_l3hqg?(oP^D6(=c9wTo2;F`RRenFbFYwB zC~#g!@SjP!v;|G&$gg^(hDFD0msMKgC#bexkx%3=xtKBw;*lPDm*bWw#8N-Gb$4e_ zZgC=H#~?QFmxrL2vpOyf$URY-#-*-u4~{HXL&MhfTBr|toU0sTjh;S*mh6AK-j*$k zs-xVe)8SUW>hULPcr>9XH@GBd%V*r6ALL5SAenryM zq}^j_(0ys~pFapwUW%wSf16)c;_AJ3jP623?jKaLy$uewKdr6?p6P|nf_`w`kvp=; z;T@o(-yb#yJv2v72xNW@ZTEVqZPpk=x>wd zN7JesyLfP4$OgM#8H&uf&rdPWQIf|QubG><@_`i$zm<8dHde6mS_`Xw^@}dH*G&0# z32qAJEf~7ar>vtchxyI)Ce;b`&kNmcL|^+U-gxH)$`a@36c2tu;B`D%N}1IjvTU{v z*8>ym0WJYr5-HaqxPdgAcd?CJlZ1?F#~iK4iJ2bkRaqZwKyBRqi*<6t%_-if6AG?? zX884aVeGMNOiYyX4N0}mod?P$#&4t!`;LAvOtKNoI7Y&LaU zFtQlsOt6>kn%r@6e$m`A(FzhbjPd;H;zVD_=vR9GUWnmG8Qjn%$&oxuLC8O9wrwB; zK6T9fvM=b&hKiA{78i94VbDp6;t2)hnI6VQtB^IXKCv=k|j+XSevIBB0xh+rrIxT1kb-*C3?GcPQ zbL)V~^?^TP*^~c-Z=t^{st)&M@P4%{0+HkZW^C-Zk{!VIr`Y24y{R8+AYpdmFtfAmoffZ&9uqXQ(S&JJfu^DIKo1Fc z7vTg|TRufH{9r6L@uLzahkL(o zH%ga!pGMn5mFCv;X?B}(uH^dPxt>1yu1C}kkH29*#b96apX_Y>3-$I->UmNoKD!p? z45m4_^p2X4tZq`fRbDB#*7lsN^sN$Q2fXBC{7nCOvRY5gdo8tkor<9R<5x5}}#y(b5;7vNiCV>F@rKe@2*4t$T(YX{?u!3_@ z{_*Bk^DnUc0TLb#AK8H0Lh4ghq38blwKaG9MGKI;ICIcey72ns_`Oc^hiK7Ew4tS~ z^QGOmioiD5C~Mt-nOU<0c+K~~aNZh{8DIV8Pujb$8y)yRk_Z$;DOS7{_hYBOhKh9s zIKGokd%gmu}O)qa80IW&YH69T=5f6zS!uQ*u zI^Li-)Fm6Np0b(z9w3SRtTDB@Nt*(y295bbatwvU44jH^vE z4P!CFvbKelO)WkMqMJe%ybBr=3#Jfdp;X$@p-}JhADJ_3LBHbSjNmj>A2JG`*PrSp4eh1F< z)`bN<9|VE!(-_}8Cu#R5Y;WsrzG5a4{!pQl;)HAI>@})ov;T70*d_FL`KkSbFOZ1E zCT`~UJf%cKL;=-$OPZC?{}jD1Ze0I`;0Qt_e}-Rmzu(2>>7;T7wLV(RjP%bwNO+L` zXo=d_0oNhKPJZ!IL}7dY!>y#u!1VG{u$6LEQmUMegIuTTgNyYmi~_a*W+C3pGm1C` z?5`;O?AO2|=K0SvgjS3{6mkjjqqcZCPT`ENvxO`I?Z4Qrn1sq+a@I2q%^up}ZDG4e zk06`u$&o;YRM?Sjx-O%)Wp9xf*JnZkoLHKh+7{(b#!P?0B2;%R;v_waL>DO(7`!BV z?1QH2WPt<+*!f?-(}x@))@KfQt&}WzSrTyQi$aZH)pPrYun$EMn+=_+LZo9q$C3QML(V#hY9poq%TZ(0cm< z^_CBzRRdD*{m-sY^Kp!HwPY8M7NI+BV*n@F^W^ytjKtB0922=Ugl3+#O#jG8qiN>c zlbVLR-yx=`kFNWwxzu|v{`C1a4%whSd2ZE>p6ZEiVV#U_uM-CW>$TZIe3lbus$&mf zIBqa!+|72n;FxGL%l@j)b?y*v8vkaJh_BmKllQ7y4<-%sM5vehoPU!puOkD=33rw$ z#b}bHOaC1{eZd1{Cd*5ryV;YE;ljM_;A7!VOT zJNeZoV>by?@X#ILqj-6E1wb;0Z=(^fK)e@((xRdt=1wuNqm?^J1{Arj%PZPjYXja3 z?lhO;?o;zNKLiEtEICeZ{Rdi`zQ8S#55-wPNT-b!*@Q~Qsbcz;QL=buz^o+xHAE}iUO zyCx%);_l!g@vTS0%vIj=;gPJ3FsrdK-&?^G?wkYI2cQ z$nUY&1=o5Z_3Za08x(^|pGlMMMp6^;Z6`O1vLuD3o>mSdv=zfbdIA!V!~5Q2UnCsH0_P{-SWoNU~#; zHsC8mdV6cO;B9NYai(wf_iS~wPl=!iFI?4g=Dt*fUL5-K*YftI6U9YJd?0u#yj07X zRXPW_i^A7K<@t!h>R*rMuT?dBSR9%4+=M4^(#6Q9XAR~(s6Y+~7rPXkx5q+F{zKt9 z_+cR0t-p2!D(L~%jo-Z86aGBC)7j07KpBjh9oo=m`u}d|41KZyN8eNPJYICZoPi>u zqC7FJ@io1|eb?(PExaFr8tqD|?d9+5{mq2>bQ)!?;Qp9r88q@I+#?ma{69TGpSY(7 zc-rnJU+UVy+CiQnOv(Vp>_AB2Hfk+biA6}*L2E? zfebt~)BE7RDL0;`*x?#L8EDa-U+HXRv41wOGDrDhQmeCk=NuifY!uS#` z4>y4vzSTxGm{ky>J?*$WKK2dKBl5Rf@XNKl(hWw5abHx&cY<>pfO8pBJoiiZrh=Fz z!*=W|CgE92ZATHGN7G92>EYU6)u=c3W_}O%nKmG;ROTFU(FDS5oj6pFFma`;K#qS~ zegYvbV#b`hRQE5hMATQVkkh-Be>sk^Bxk=FRi<)bii|H_V^o38S)P}? zxN@e|TIOB!9P@#eJffhQh2(9o`oqn2ln}VwnB3)|ch6m2mYZoD=O~uzN*N%#y+Y6h6%Zv za1S44Ny0k}{5uY~9pR;|O;0bXcI1U&Rjw7Jzvn%KXS!cW=YF=raX8c4oLgdeph^a7?oBMG5=oN zMJFxWpZh~pF?iNus{Kpwa+agja_-IfF5D}~d)C;yopFDRC{p!=L3si(C4*4z2Ngq1 z`oa^`J*YN|i$}39I^tfrqGvw;pO%tSq||$3eiHiFh=dwd9U25YiT-@TP3@PNv{xtm z+}rLig&4J$b74jIM?@w|Jwz=&4}m_9C!FDMt`GO3v}bjc_6w$pjYb^uQbWjf@`s(0 zEGL#l&(s~_Wa+xOs_#mR+$CKauL{xu_R)XO>bv-EYTbEh$RF*1EPNQ%xe4%7hg$VHTqg|;sk zpJ~3lP2-IYF@5{!!*yPTb&gYNZaWlW;mca`(ZJy}(%|4jP0TQ3eADw?T3dV2(_&l1 zvYH6*!nt8>`E@!mlB87t2CWlsNb`s&>VdEPt6ry$d`gDDuU*|FJFQxq*%~(#GllaA z;|OKui~LdrQz!~U^KY`>)qYWkNYNtak0aeyj+$$^=BiFnva03if6)%^QS-!H(ckLtBq^YF~A*0 z!*{FdApe$F1A^`L$a)>l4-_Mg&h>6vnz@Gfk3?gJAiFY_s{!@RQWf!Z=}6ml*xqGD zv^3wx+)sn#A`HrhP8%4QE5>JRw-AH_yxb1!oaVy<_SX@sawa4TLCc4tTpC#~5bQpy zO^h%d-T>?mkpN%WwB&*-KqzkfTn(i$oz}ONod?YJ9z9e&l_sRU?y&QpOlPTcR_z$L zDfp0&7$p>r>J9f?4INs3Es6#k-|su5OCt!cay&pZUmf3ce7D|6Yxg%{Ucsb5HJ-uZ zUvOhb8_!DC-4IqNebU3lsp&~`$4s>OTWN!2uxw6UOzeFJIj}f1l|dEH?oN_8{D{Bz==+nRCl`aK2ni{{2xlLDZz8s) zF_h<`6U+JM26kLh#U9?ZB1(zAsO!#qW4vKeZr}%=@Shazc zA%G#~VKV6X((|0s0PjoM7cyG$&j~}>;?p;}&1#kWw5iu!lx@~|9iV3KT&Vah#`#QW z+5T0&YD!g)1krVsAvvHt?*LKIttMZN3boR4f@qqU*oO)mcHR6rkl4>Q6JcF7+4+QS zO7vLWxDXl1yATmObwX`ZRP@t2ihb1`L=#;G*D|CnhJ=c0hB;C&B48A6jt+YgbCjZ| zMH5Z$Q(?03>y^#5YQ`YA{CmadnAFEi$K7vFf&Z(jNDB#hrRATrAoOZ``{jDMMOn&J zl-D$Usn?}$@Zjoif@=z8qq!1%p)qJ${HmgB;U6|{8{LD3p!vjmRrvZxv!CrFb4ja@ ztReK6KV}+6=KJRuBnFO^@*Y$8f>@=((>+2C&9D)_k6%CV+M;`qI>U z&$lTWzJ%*zPylX~9a>G~jIVR=lSDSlaVNTqB=EHJN;|%E28CoJ;}A=*wfer|@7jTJ zN|Hzf06yyMbKLp$0(1p|WxsvaURtc`s7MB!9Ac()K8Gv<7KZm6PEOv-DL=mIc|KCA8CCLe z^g#MS5F0uA`f1I4<+J|l@b>)sZ9I$-I{8J|JbyQTz=;xXxVF$bx<99TwaT0E7qLC^ zY}{*eu=b{U3Cqh_r-nT4j|GXVMM$+5LwgGg@AYDP{((`WxL>*3w=|Jw-0Y&ji|6kd zkU3&nny~r}#u)z>y?Z}9j|?_;$42($6y1T3)QB0~XO!tFhSl@jnk8PEWC|6rKPqw& zB(Iz>aD4TtD+*8HS#+!N!LrFPp9* z6B(pW`SaI7bE|nax6g(H2yI86qM2VR&SDWZZ4h!AYhxwIV<<2%*&XXO;ia~{i9(i( zE#sYHQbDax@M{?LMJct>NXldzpbuLx*}pk#6{EOP;^^Nt+x6NJ=Il*BE)Gs=jhu;F zcRJrw4eKf|RwWH*{!g00zF-3B+yx2SIp)}b@(a7zt#al7)Eg8Iy=Xz%XW^m&HFVI>t9yWrOAj<_ZZa%H6-kMnhSd8 zczBq6)_tP?pk<$20_(W*F#K*7>8fHT9Ufv=Z&i#&~`&c;UJ=m{4nB;s@znoTao`s zrkCbh>x5f$KhL7E#AiR36u7OtCzB0-N2{ctK2B38l%iZRE#lnisQ{lNc>!jTF$glS zP}G0#g6&UAQX~rS8gUxFJUt7m1pKlm1TLbt2?{rPpS+T0j8qLYx4hy|51#8F8++Nk zFGgZQKX&w5U+E{i(!3;vI_!Pdnq>+ljmV^;pk2ICnu_L$`oE)`Z8$qP0;{xB>TTwRGN(K#}v5MVdyn(#R=ef&6*n%^v-+4AA96Qm%3 z>fF6+>g3n;kHs%MhksbQs7rp6K3`78hR7D$lwHHyO+%a;KH+_Kj=3Q>6zFd_VAzsh z+&4YbqhWjViX2%q_A2yrm2^;ddc`rXkJ`C3THC%icygWj1qY>|ie=+daz%Wx^k-YsVOZQ zJNq+sHOw^FvtH&stZdQ#707N7;9DXG>2(d$H3+mv;!a}2cTgs0Sdk?R#G{;VrJ_5Q;v zYeg|ob1CYi>*e#2-{tkxYCig%{$mK_O0@$9mAzRz8(U1%ea}Q^_Nx+}Vs!|R%>Mm4 z@66@{q%^N0&odj(Cy1Tu>wz(zWUe>i8=$An)Q!fK*E{MJzB#JamzNvRLu=Kp;$=tp z+kFJ9;IHFFUw-}8`s1LR=s1#keBmR;vFPL*l=(#1)Z`VkQC_)HuEJZTd$z)xTF4g1 zu3zw1{%eRXkvjwFCjw;}9;2l*QNX11F6LVTaW1C3k_{+my;KeU#Bt>m1W@&^j}AFm z5wFS9(#CQ=e<#VRggcFD+0n!UX?m_P+^3JKgp~tzg)r4uopIISSm=Qq^rY9@EJA<&>HNRaYp;PJk%G%*f{D zESaKafl6%EztUJN2GrxY>y?|=qxLV)KJ+jgeQT9mU;yi;Ek3q4KG!_|LxJL4zh_8Y z5TNPSxn_jR2tQNmY&K{l=f@UJ(~88C7-w+|x^6Yz(2i&tDm;J#Dw6i}pWJ*C^V`^B zmON_dG<)o0%%9{5ol-+O>}w8svEqH$Ey!S=lW+PzK9NtM<80ktY+>|cEYV0#&~bBp z>+T{;e1rDzQ0umzK%@i0M`^e61rE)OzckQRy)TXN`I-l=2bB0a9}`M0SSS5@aIBl_ zX=5{|f~t2#C<1|$QI)xd`r=U;lX!621v2>b-i}y>wdXMv&~Q*|(k#hxJZ_|hQ){r{ z=%=NbF0_4MWh(D(?7YT$AU!0V`+Q||$G+WoqXKoGY{4rIICh{WT+z4W!u#ZEXlAuo zvI-R0aW56NOlT6=ur>TrLHQ#C0{+fxfdD0#?Hkgjf51&*RDQ=Tq z54XitHQ_yb&phwaPkBfytH_a<)yw(A=prq8>KeZI;~#Y%vS3+Bm&J(h;NCGs^mdUt z$`aXPgIjWtM=3M@poq)_Qn%Tx|@(?@nr<%`=3#J(eH1NvV%kgu+UHF3U8Oq>rp8(d znR4mi&3IL}v^l8*96EqPij2N1f=au+{U@#1R&QsMwW!89&GVS1?GH=tZv}h|acX0k z{@rglL8;K8Uw;FIvwR=_7~wAvsU{|-+iwb~qfGzt*PxAeUzbCe8F;G-?mok@ z`vWDtN@3(1{Vje$68lMP3pYsZwjD8q%dOYD9v_1akxv zCS<_(N7(lJF?HNa1z4r(8e>w-C7UBGdiO=pY@Att**QzSCh%ebYs)7E*sGFZ!Lm#ZfSoQrIcdul5yQ)i?GpItit0B8X}CP=Zi&B{%}Y6 z(pn)&X0XV0vg9#gwW0Cb855E%%o5-X()pHD%4Vx2Y#EKrndI>J;v#|D{K^Wr(WbH+ zDpG|@-uYWpXlaou*H?(_N>$pS4%PSdN8hL~+WyF8DeFd_eYg+;SUuL-8=>NDt{Vi96^Q4?o5 z4G`X+WY(5QH@ao|<_Yuz8XhVf@&70xYNR^HH49PWCLhdF+5VB4XcdM9X<=5nBLTAgS~ie?a8zaX;*By}9H1UA zP1gv#Y5Mw`T`ax+MzYjMbc$QP54tX5PE}vhCb&BK(ChOJSK%tA-Cf?y^YOs>h`xiy+@IrlGwBfVFtPi;HQbAz$5yZ9vGkznuqBgj@#te0k?B za&Vs4OoF}-g`s;T!Gob@h=jcNAd?_pN#F=3*?bkDPykF!FkZL;Y37qo&%v%$Rn9)P z{?FO*-A2#!qwP^<>kvRm0GoD3lYLaB6NNsRxl(=hfjwCl-i`=^d2LFC3C!{} zKAc^M5BV|>LQQjz{*E6sM(7N}NcBMjuDQjLtmZ~*liLMzkiD@{_E>Pb z^~s>8^5Cd)6^}qGbbx!G!P?K)k&s?MxWMsK_ewd?{4ToEVTly!ax1KU5#HmIILY zIipeBz{X9JYw;>0Af9~gopBc1C6hDlg0>(*nB#BiM@Ou;UoW3-nn`euUYgso)-OQ@CsQp` zz{&LiP-%n6qfwELl4Fr{sZ)^z3n5^)zoH)|i%ztb{hT5v=sqJu^-jCG=0vA`>wERn07cMY$iHxc{>e#A+ zDjTk6N6C1Xp0o$q+KoiLCTnpY$cuHPTc*@3>#y}$=ooan{ex1>9=be|zhS}_x zy^{8zme#TWnC;cTyy>wnDF)I$@__@M23EGSlj$LMsS6f~340f5v>0EchOr23fmB47 zFY*tL(x|wxpU4oOpLvrvv2S93!c>G(O<&z!GvHqXs(s%mdlPJuAPXmo)wBQ3b!88z z))70#PMM}p85NmS)?f0idcIRj!jnf`ZLO*CyY3{c(y(GIopzzeKB+6C;X0x&rDvsL z&X`$nW-;aI*V*FeG3eN@MPl%JhtHC=n)R}(ShC9cXjEdUF-1f0@_5B;pZ7eIwu;19 zAN1z?@b}b==%N2gp?kdlN}*bWUzxcT(bUv!6G=-6e(qv_@$MVG7*zG`bf=h!+Bgdl5DbW@@>GMs2IuSH6q(~HlUOt z9uZqStiq{RgWFJ_7e8U=YGyivkDDQ1GkWry-^dtS`fgb`staG3zyG*AzQ|+6mGA|! zj5Cv?5DS{#DdPO4Lxx=W1rddxl%WNdsrCs9`%IIMVsIJ8W1mNemf?{CQm*-@bV$db zr=t=RmyHly11Vtn=mXHmH(*Y%5+8f78j`|o#dYVxf3-3SK$$0e_Dn{KpV}UOaZehciW*OT7$`*UvrNtj-%$IJo{}^c{LZXS_L<&MuJjX z>Kvi<*C+Ld9ba?o8#CtWH+vA?@>Xhu{Z?2wS&U%DlCa_ZC>D#)Wo8oohbQ(mOKm2M z^dH%$4Dh5{1ys;3SU&yo)bq9MG9yz8B436cMO|x-4p_R1oFdPrzzN2TIK>SNXaC*$ zc~+_V&Fe1^(ZE+*8o3b-dmL5svL=%x3vh|c72b8sMgX~1CM{Xlh_G_#|lO7aINi+wd z>wvt$bmcx>hq$F?y|BeNGYc(+r9>*V}B;3=X8%)F@=l0O?=|IxG;g(h|9f0}< z49y))L(7U=X~zTnpI1kz*n>SS0}Uh$?)`jSm;YV;TLCREUFkbqAFu3;2DHbTCsjr> zyLXDsy3&!c#$CS_<&RdLnQPWDl`2uY&jDIFg5}nZx(3txCO0N_=ZO8IyD*{6+1PG% zl-pCY8XudZbM0D(?5a6)OJeO*-0G)&ca`da6#m^uA;Z^#wna=8mr zWb`!JR8>mH5#^~T!tv_*^X-&o?bK1r2SSc;E`!{Z?}L3K8_FC1hHENyI8==*s8e`S z7HcQAN0ra6N0kT7<+|}nDKVlcLWZ6atspMzK9hNHpf`GuIr|{*oW|)CnSrIuzJzQk`%hWG)Jo5!`>q7MB!bSu7Pg`NH z+Vl(Kx!?>j+3f8^)NL?*Kszsi(Li;jf1D)KdDJyttT66m5%28$#vdp~%147fQX(Vvnk4rg{OGj}=}2O!kwZ8~ z=TeDtg8xKhbDZ6sItd5ugkRlUjRH|G=_A}fUr+5SzNOXmjv z3Vx2QnDIO+nB(VDe41l!0VpHHixo;9#OB49-}`0o*{ALivWjXV?RG%W?9+0i()J)J ztUR{+Z`U?;2EquDb+4d`_N-#`zh@BEOfAxW$-`e}B^8Y2;)<|r!i08u+;mZpb3S;S zA+2d6CULB-sXD^Dm9SqXw%#$mxS_ljG2O56>wiB?g#PQclE``^jM$HrLqQ2FrT>tk z8WJ65L|h~jH}&HG`2oZ7TK751p5tDA1*of@J<5Yi*bUjfY117@-hRS)ys^}U?P>6w zY)8uY`R(nkI*;Z9{4IN);A7G6Sih8)C!d##`UFYN$OyMtMm3zSv+CBFpvAlDwPMj! zDz1Fq;-zV8P=>a-#xLAW3D&mCpd=yL>B&akyxhh zHY=`j2GP>b>EE9P;(7d$gn%Ym+Vt9RDUwgBK_9MZc2{uDGTJ6{Q&hTwbUBdQQ(l*U zE&k*&yo{|jkHwN0#eauyuwsE=DO2bK{%sHDZc=Bp&1!yL$MG@FUF?LXx~#lsh82z% z!t&a29nXD1@vffNbyr8FGOuV7gASU5+BMp^Unsw)M5^CEZj)6+Jo|3A;;!x)&gn@wAA*p%Bz8iI3G281 zWC1nJIYq`i4Mz2QZ}B3Mm0I2V`*rYyLx@MyQv-Z4J9A2*j0}v9c-P)up#iajTHGfy z*G#2ZATtm?GY-QO2fT-+TZSmu7CQlenYA^xe^|uwhK7{GZjHywPqjd2QT8}a{SPJ= zJv+FGdA&0shSsVhP)BPEVMaOz)p#WFH&Y}#{ejkK-)4lHzT(U+3@bTz(X*~hj-Iqi`_2)7$oo3tppl_cFJ^SzU$uWZ28y^yG*H2=vJ@fw=?f&P@;60+b-eT%4VcJJA zBg5%gnsFI=kC1)lTJ)o0EK%gjrjO?a_Blwx5*}^eS04QLFypsb@J2$Ojf62PoGF2G zyVe2`)vS?->1YhjRkY&XcvyOwJBSj#W|H7rV5D8<^W`-jHHI+GEeyA{FQ zq>>T_M`wio^n?CHlYP^tYP1l``@NAQx5sg^qrUJS1R%td1}+nDbG*tqq?((Gna<^7 zzuV4LZe8@$i<%+gSuXZ)T<^AjZt812Cg6KGJ!Apf8=2Xdr$3m?OFLQh9)1O5aMtg0 z#wV4kj^XIE3U^)wH!n)6tYcT>1# zdD1~zRYox*Ap<;Ck0`#c+!Mv*Rj>#6S=zq&Q1MAGeQW4QB#W|9bcUErlbLjPCbzjI zJXgF9To?y_<^4|PV8izz0Z>ONge}(}9Ex{!dA39T_B_qy^wbh!XOes zH*3Np3kynu0>l2-*NY*pdB9$jfnz7UpsSpU<0Gv}TXJz%1Yt3O_&}0kA_gVW-DP{K zpPhP#Ne5N9eO>>TH~#08KWNUaY0nKX)dq+c3EyUvJhs?c0H|k+2~*HPbMj)agJ=$MHXXmToZCB^xXJ}W7?`RIBeD$+SQRg#wXbzE-|Iak`-<#9V z?w^D{Fn%X1If0QN8LH5U%btV*Twm((liPxMN|eO3TW#{g*_e~Tzo@>PYb~OmXdY75 z_GfgLTg@5S23(NQeU-y%Zu&BfHmCl4ykao`4Vfdiia4ALpe@|98T8mEfaY9f{PLTt zga55;8L1(ul6cRkqU|4;nu6Z82DX%IZ(|5KNi5E8GU{)A3!<{PaRxmY>VhoFMoG42 zjIfZ}-$T#hOn6Kg777ImaH*Y^+3afr18`w#-RqCl&-bftLy7b*#b+rTEhU28Pfulx zd5OhJX%LkD=|VY6WZ+8aWNt`SV5CQH`O~<&aT;pPQqoUtQ@{hWLoR%j+BgBxhoR=t zyk%?ATwG-RSfN)fM_5G%i~)o71$;A$b%3u}S>Jd^9*cF?; zT{zgKWgA5K1b~t@%omR#`?x!Ji!n&HaetO-E#oawl1xQ%Iq>UEnIN&m5yMwCE9^q@ zDo``6mvGV>Qb3l_7XJ`Ox#KQFWN?&#W|dCxRTy>p|Hpr1O!hE32;9G!>zMRx9ZDGP zi1^fr5qRj?9BHYvsfNa-w@>dDxw=T;Ju)YOGY-0F;RcAp@8FE}w4%!^6#I@hVuAjqdN^rYR+KIKG%sOdCs3f-)Gy`kXfXxj6tXHxNkL|=E z5>aK*M9!ye7JlWyT6+?5ye%CG?m?#tUzGq}PBoKd9T>I-$i&jTpsdX+lxtTRl%=}2 z%~W?DPyum`i#L!YAGdMAF^ik=WHg=jwPb7G@SY_SH!TPXaf-ZW`W1LOZ8HhXs<;nC zU|1(4d$;rEER#*I6SyRD!YzTk5S$y^&0K)n))u1hvfsDUAcQQqN)|^Fqe^1ataXv^ z1jXHgU{~=XP)+dVRlx}I6tD~3oB|^q2jQo?rM-JT8@KfM8T1uMkg*8mYt63%D) z@-OX5kM9rZJSR&*c5{@GzY>n%>yavm8tFPc-_Vo^rp$vM-fSuC`nuNruvMKo*S#c5 zy1QJ4&Pw52iv544s<)Bd!}va6`y!iLIcmE^2fS83;7Q0rlBo1g3sv^>;fS}G0mcbK zneU2it)il{(6IdR53&mvhNw@1SK&UojczH*8A38OX`&bb?}nYxP&(z-w-i1ptjyBP ze;ogKDb^89yzLrezU8F0qxX$K(H=IDBU+4=dSIE3_qVzS%^jmLohY5xJ=G~Qjm1P- zTxa`W!Zv|d=LJOA-kMaDD;i|P5Td?lA}tbVrJ6?@qvIcFau%q}WMP5i6%_P1?dc+J z9Cf`TZnvyz8k*0bA5nPryRF9v5js7qGo zV;lUV4xN9VXg}3*(;wi!q`7Tq3&VxB-81I->FMoHd?!${zawz)5yXP_SA6>B{(Zj2 zO_J#Whaz|$(5U>w^2NLBA;+Mf!9(mN=Y2CJlIunjpwwZ#?fa|9Dl_{(c9(7E?#%1J zvPygP9i>j>8lSYSgsB*nEfJIDiS3^vqgP>n1O;MKh8Dy*oOel^gL=NY;EG@Uc{TJm z=uJU&nv22eqe2pWlz*mJu>$B?doz`H$-x;3!$(f8)M2^FkRi;4Q@6=Lz=(&l`tdCNt(L94^TqRQ8*~5m<6F;t)dq>rhQ&F3azc~)he+N3@1#@} z^Pfvyg;2zN%(74srZf}B&Gx;OQ|d@%%96(UNr@>Yn3m+%5*K#7UtVWtD%ld0XVB(> zzi=0Lytcs-rMC~UvO9Xa&~spFNG&OQW7d4Fu`~}5i2bS$G9w%27bsJTHGXBTN8R(w zq7Z8^PUY19VZI2h^<78sGMzM)ZWFPkm}H9d0H)OK@%44%%-_0Gid zUl20Jr0wr7FMWKqos-~Ice$|!{lV(w5rez;CLpb<%eX60T%bDZmwvFQB*QzKlRTU> zKS4R` zFx~X|^Zq~ko_jdM;dtm(7d>@Ajl%xFJlyKgla@vHHhd#{sB8SA#>xSu=x2!J3I}`* z5C@^J*k~siS~hL=y-AoXK-WgJD1eix88 z-aT=J>tU2a?(-pdeOGw*mz!+(#|@;UhN;5nAgud6e*BSi;D0mP|9doH`ClU(mRA-* z+2jTjXzULAJIimhC|#I+2hqYE6RZB_lEPRymdI^BbceK7XJ2j)W@GC-bM`l8P^DtT z(pvj$#2F`kgPOr(iv)?%ON5$Oo+0-Dk+$=AED2T$`9XS^e4a_kpu2r2&EizZ`X&@& zmrUgCZ5%NkYyb-Q3~t@eO0~L4Yj1V0^ka{8haMe;4p6;^_WVEHU4>tiTf3!Ex};-h zL6PpE1f&Ox7!();1SF&zWJo#EDUDK!$k5UZUD7QB3^3%-L+8bFkDhbx_x%O;57_bB zYp=c6exCI{?}BMdhnMRYt7m$84BQy4Bm}m|1^wN515~HNW$8MTY!$YOclk!pw2VjH z)#XtW>;QA(Uomr&isYRKQQE4KDOp>_H{-ixx2G;!=vd>juFhBX;(FP%^Eqw7k zGvx+umvTr6dd>yW(gc&!W=@vpy&i!V7!~|Wxx0Ua$ zVx$M6l%A<1(rN@SHwNefr$hZ8nt0By04mKBkIPtR&`hN-FHJUhni#EMlE`{DnPa+1 zgZ(Btrq$TV)F_)tl_-6*>G=Yk2%G-Sw%_*Idenf+l+6h_w6kJKF|eR_@%mRQ-fIg@ zK1U8-yX|yioPe-{{WVwY;?pmqX^@Fx;~ii%Nxdh^n0B+ZhtyYuVMCkzb&%w&C+^mz zme7Y%vb5zsyw3^(Op*?x8Eb1>3JwUo8bYQu;WvUwfTCyLK+F9ZuyI$TEvx=?0UezY z=!~!&@nuf5yP0#grvFaR_WG_Xsj<7=v_FsI=1 zd~BKZ{n<$vzqa*V^y6pkI zU+y|L(fNq#VbLaYh*(dO@`3*j5*UTt+2Q+s(*arX7DN`y0$X{q^ej!XI*hjuY2 z|4q)Xh|yLzB-i(ZFR(A|M#qe9(r;Ej5GuZ=x`t$C6mx10u zFAQp@IcT`t>)mL51LeJa$Ba%3^+!Tr9A^_1{H^Qa?#03KiOW+szN==`$~y5g=my(~ zi{Ael_QUy!PtSn5u1&0fCU)*U(zt?ROhwy5D#y)d;|}?cUE3c7faUQyF6N``_m?2OJ#B8J2Z+mk-Djqj$OFSfgkcO_*~!+}6|C zCck;W(wl#5=>bZ3b<<Isd?~5HAyn0sr1f!IhJd-5WdBXZ4BBpe*E*= zhm2sC31boaQ!$3H!;XdbQpKWkL{ze@6Xb|DO&}q$?AN3RZaWm7dIARs%Bx*Lf6Cgz z(S~|#+XLHq_t_}(RnWK0r|3hQ{jXTb7e;n*ouub`@8Q|s?h{;eFPc1dbXz$&L@dc^ zNkqcSrv!&iBgIe6=hw5;E@s%?6v=ieoDV8HCePjBHPW>YfbiXj6g7Qy0&#Y+WF-AROx;e|%9*hWR1#}LM$fO(K($ZKGw@xwk-1v_~#a zp(2V$5Za)bsVQRAuC{xe>qP=}t{Vg2vgUAD8PGlH^>mY|NnqNcb`koLpvy}x>IJ&m zR|8a)8T-}oY&OVkv9d(|%~DFi(s28oJ=UT=tI~d-r9W-~@-Y@b^_K+22(HRE=ND{{ zK8F~XGPz{JVljGiQps;==D0)ZtYszqw-@ zQ@5vI8Q4Vp`8dqowdkJNz`3 zQ*HD`lgESu^T7C*x`}V47yV<{bTNmR%}r~jmF`9P+QEML^j-OYoE7!)HI~6pIqd$0 za>jTfYF<#nS2l+vNt0;+aY;mWBzgu)E}6SX6>jRCJ}$5Hj(RRpJd>*D0~+biSakk&DbY``OL72N z!tyjIuD75+O3WO?JT6ldeo=hz^N zSWavk!Xw5Z40DR9R-!csAkk&qZZX2RY_3?IZoKq5t$F?8!Y!=+7;V}WzSyZ`C)nDP zIg*3i@?)6GY$))1=_RCN?ul8!HO^VS#=${Ej8N>hMJBPZ9eim zJgM7;xgvzR%<*?{FA8~afglJh0A~T)j-c9ao3%n1M6@!{UGv2NRnv45bsglv%ou#V zuD9lMV%fEkM7x?QYZaA_HUGxGmEd|KmV@Yln6E2&g&$1375mZiIuC>CTJ$R1N(-J@ zM+;_?)}9m~#|OkuxYJqT+?45`n(>KtC`yY0isXVaHZ@gGsgT_mFh-##cIgX%$%>)6^-woE&I9Mcx<-ZLZhE-FvIh zNw7fa_)DyVk&x*$RKv7nR`HdPu;comSqe#XC`~=_I`Wm^`(sZk6WnO|6H6QTBd5GZ zR=1f>FOOQb=KFW~jzuhz7pv=DdGaF>vXD7}F~GWUMHfa_r)kHNvOpO7u{Jv!d2-qi zW;KCRj+xe)Qi zbq%t(w2oaTZi*R>Qz6!*W1xl4LlD}XXvth=NYd{4M9|G3Dpy^lH;hi?8^j)kD^4zY zuqHma_bLGQ#i1~Qb#RlCj1$|251HbKUK7z8M?FIa)Y>JefefKcK#h;^2&iS8cN)a; zI6n_19VSgaZ)tz$JTO&Wo2+=6V?5l~x^RL5^oA4ijKH0C6UkzaW|QyjXPE5T6h|v~ zJ#}_@IS+>9)QTMn!OOLq8OaY}1DS#Q&2Z%~5Q^HgP$m5aVE(TRBT|$TJ~!e_@BE=A z>pLH@Ps`s55JzFmLdCAOrANhC_2ntHLvu^dtpFtCbLMCfmqmY$}&^L?5#32nXtTPD+N- z2rv2}*`_()e-9GUO0;n4^cc64maH9NK~@gHaV-&^#cWBwhr%Hhv*a4`7V5_}BS40O zyzzKvig=v#_kerpG{{RV{;=`4rgu(*(i~> ztn8V-DF2;|aEQS2S0#KS;su4j)oKv?D*Ev|69r}u}{Wu%OafNpGhAhSz>50wEiS1~uMV8Kz4 zk>j+ka+K#o-h=Xp(WKnu-1jI2^1yeXS3chtNwBv?Rc(DgMV_rRut&e^NqK3ymI}zYz_+TaTwX2s;^srHy~U0OJHz z(ZDTZC$qUnSxUV0lY$Atx@X-wnH}objrxWS4LH3zk6S=MGw#6U%f=37u7FAxmWm!^ zs!AsMgLE|#EAZZImAuiK33ghYfDyp$-LnKwGyt!z3;i(kJ3T5|rHWZfeqPN+lxCQ} z&sN0@t5r;pA_0%H&o=JW%XlHtHcNel1d@xFa^=49pUQ;SN76J-A2iTXEkwrZbF|8k zycIU1I1TTujw-a2)tD93aR-ObwVzPh+?6>w8B}< zsP|R1+M{&JI%4x^u*&g@bZW7#oR=@Yxjk=?Ow{aBfq|Uqj z=noNG1sK;>YK6uKSM>Ju4ioDv`?+yG^P55j4Dm-s&%TP~u)A08zfB3yM{gC|8s+`A zH&kEa%@Pp4QdQ%@*jVPJ`4R-r+yG))W1X2Txq=8{c8jRIWx(b!P?w%RDmZ8$q!UDg z$m)Tcb<}4jFDC$YB`{w=NJFG>VKgX0bIS16(&wG4uG$y!9kPD`IhSZKn3{+XS&3SP59YvtI&u&T|l)e6--ka0-i3G;* zi5k5S7V4~;!0pTf562m4m)J~Q8pTK03|R@(Zriq?c7bD+Ss#Nkh#!_T68;stPz9Xc z8aM3~x$AqxUV`w?tclPZIbV2l96V>FqbM@U_nJ`?pCo})l^?2gC8rNL|NUg6Z}`dI zmEKHj#Pb>^dn{(++tOB<{)(L`pG~y`vg41rb0WlwnsYbI47^{pg&i2CoR;)T3v8~J z_1WrM4lV#h-^ZdvmBaaZbFM9Cw`>^%<77(hYVJ~wZ>4RaOtc4LJgvcwuT|vM&2Qus z#ZA#gN6H9pt#VBm-xJF$E~(ptxm@=my0znBR8eu_lz8uAMNitp$0yWF8uB^lL{bCRUQU)w zrcBe5l#llEPZ26L+ONBcKaB?cB^ue`rgoS2LrwcBFfIQ2d{#~C>C9ukFGZR!RQDy5 zZ)p?9EiuxlKw^KPf4vE+zfx3lW1p`D>O%s}N%Sc0sZRvC0r)H! z2w0&^aU>s!(7~EUBTWxvaXbxA>o-1tzx#Kt4f(UpD*U;d9?)X@x$)=>pMvhxU)sG` zqc!0DtZGu;a+WBlmoIhF*X?-seyd*0g38I@+zT47zoRqIX)5S5j-BXq4m*zSndEi$)A48y8 z^8#8A?)AHib=0qomtE!xE9Xba=P*d;T>h)Blc{{Ju?~Pl|*`ssjn&i1A>3 z*YP39K|M^|mv6(apsXvGIk`PKPN)CIXR-&M-qlsP2)YQ6b7e05PIy2EL~+a*fe5qr zy=2=u`Md68M;uSso9SOa$yn;BqrQJ=l24%XWc(LI*GM78e^N*A86wd-J~ZAl3_F;N z^*BUvuP@uu`v&lyH9wL9PsEY~h8rC-AkrX)ZW!-O{*4$?5DVLfX+eNt7S`?Ywj_mR z_A78HWLw`akH>l6E=Sw*TMGwFt$Fp?fgqN6lj^S!B@z<}&kBW`XDgQ3qpts^M#eho z$J#B{FD>|D#)NStfgE{Toa{lum`mFuo=uHmg4=Jw2@5Y2Wbg`^1@^MG2^Tz8enkOx z#KX(gcKgk7SnaxVzkw1la-U{xnukr`PMLQnJcLH1KoxIwcOZ+8#XU>;a_67LUoQP> zDuwfn8|Rw}QkrIv!JoqYq9DnW96SFiDIQ!WXBsu7_w57vl2ofsAvXcB%? zm}H6}T_A5j=t)`&xhwoZc~Ja&dAb=4Zp;DQB{L{1&@EHk$a8>xakn0Ra6)dF?q znmjY~mz?7Umc<3*%^G%QQ649xJ#=Np&r}60mB5;oe;@SMes8*;n2oWp2H_5)6O6t~ zPh!n46Ue+BnJQUs;5U9K34a<|yi-E|Fw>c0adtm@gE`WgC2~#rt*yFs4Uw~Ub7erp z--07c3-4H-WLvF~^FZ!X{N((t&)bTiPz;NvG$f`!pUV_pCQjj7>@l!HJUlliShF5s z;T%pZH&;q4H55gjJe1snUIecS8U}U!v?2d_hCnJfuGi0m5R3UnOuz_#jA2g=I0K^i zNd2g{eHJsUx6#JvIqZs}BT$?aRv&D}lN|qWkvY~Hpi%=Qq)iPIEJkY)@TG>`{r!A{ zuTWz*UbUpf#xI`wk9qLy?L@J-hLEEgu#S$`Yx&pKHWPYhlDVFx#nwKrv?wcSTr^JC zG#3DxWcp6;u@pk%=j+D}gukACUrKJW3=jUzU5MCEpiKzrd@<%&ABy+rxoO7Qb#uSK zwA|Sy*~7?K5@!3c8CC@}-)sl$A04bpL78Uo>6+VQvT+lH?B)T1XGg0$DxK8F9Pfs4m7V=)xRG|_H(2G1cow?76qS>mc+ZvLWd1PIR|9Iizvdd9VI zyz0Zom8S1bMzmTxF)?mxuy4F_W$nz8@ZYK~=QB8{Nj^bk7t=GzpuTJt_KWOvR zT_$uCLod`F@>qj;5zq^twWibVuS0V)<4>+`HA9q=1cz$n?yXu zbBKjwDs_7mOUNK^19q_p8R=iaLmCr#yEHGEoPSl0sNxv-`>>f3ksn-b=TGV%HGY{`yM!f86<ctl zwnmaUh<86wa2hR`y(oC@rc;S3aWXD0)D&^eGN3yZk_O>qJyrUO%F~oPjUxsB)}udV zY0mX6#JR%^;ld?mp^u3O3U;BE-B1$5ZO85&&&`uC&a*`lo<6~0!X~(tVgaBcV5vab zl9KQcJ)|L!7*&^4suGqm2`7}!VKUmz__YK(UD}d6MHe)+Nn5^{kR~6(sJVsEjP+ti=0mzF(}m&XkP(yr*={Jx-{i z!gJzH{z&UJ7lJDV$2qhCTSE1N3b|laQNig!WJVj(x6OnxhKZcv6oy$)FZ#ydI13W$ z6pFx-H?qIZ>uVcCkf699Az33%t1al=E}8ZoL!vF$EfLRev^!+^F`!K4P%lJyCJgKi z$CvcJ=b&s7L7DJ~?O-Iw-`ec%s?9$prt{~-EURB;Z0&j;eMw<j4DTcl3=k$v>@&Y&yelUR45<9!=%_lZlJ+LbHfV%f7{W=k$`%d}bNbG{EGninSxj0PIbSH5_0d4W?i?wh2)}u5zY|mc?iVrtPYm*UV5a|P10%0+ Zjl&`_ :介绍使用 PaddlePaddle 在Cifar10数据集上完成图像分类。 - `以图搜图 <./image_search.html>`_ : 介绍使用 PaddlePaddle 实现以图搜图。 - `图像分割 <./image_segmentation.html>`_ : 介绍使用 PaddlePaddle 实现U-Net模型完成图像分割。 - - `OCR <./image_ocr/image_ocr.html>`_ : 介绍使用 PaddlePaddle 实现 OCR。 + - `OCR <./image_ocr.html>`_ : 介绍使用 PaddlePaddle 实现 OCR。 - `图像超分 <./super_resolution_sub_pixel.html>`_ : 介绍使用 PaddlePaddle 完成图像超分。 - `人脸关键点检测 <./landmark_detection.html>`_ : 介绍使用 PaddlePaddle 完成人脸关键点检测。 - `点云分类 <./pointnet.html>`_ :介绍使用 PaddlePaddle 完成点云分类。 @@ -23,7 +23,7 @@ convnet_image_classification.ipynb image_search.ipynb image_segmentation.ipynb - image_ocr/image_ocr.ipynb + image_ocr.ipynb super_resolution_sub_pixel.ipynb landmark_detection.ipynb - pointnet.ipynb \ No newline at end of file + pointnet.ipynb diff --git a/docs/practices/cv/image_ocr/sample_img/9450.jpg b/docs/practices/cv/sample_img/9450.jpg similarity index 100% rename from docs/practices/cv/image_ocr/sample_img/9450.jpg rename to docs/practices/cv/sample_img/9450.jpg diff --git a/docs/practices/cv/image_ocr/sample_img/9451.jpg b/docs/practices/cv/sample_img/9451.jpg similarity index 100% rename from docs/practices/cv/image_ocr/sample_img/9451.jpg rename to docs/practices/cv/sample_img/9451.jpg diff --git a/docs/practices/cv/image_ocr/sample_img/9452.jpg b/docs/practices/cv/sample_img/9452.jpg similarity index 100% rename from docs/practices/cv/image_ocr/sample_img/9452.jpg rename to docs/practices/cv/sample_img/9452.jpg diff --git a/docs/practices/index_cn.rst b/docs/practices/index_cn.rst index 08f43970778..fe8a731775c 100644 --- a/docs/practices/index_cn.rst +++ b/docs/practices/index_cn.rst @@ -19,7 +19,7 @@ - `图像分类 <./cv/convnet_image_classification.html>`_ :介绍使用 PaddlePaddle 在Cifar10数据集上完成图像分类。 - `以图搜图 <./cv/image_search.html>`_ : 介绍使用 PaddlePaddle 实现以图搜图。 - `图像分割 <./cv/image_segmentation.html>`_ : 介绍使用 PaddlePaddle 实现U-Net模型完成图像分割。 - - `OCR <./cv/image_ocr/image_ocr.html>`_ : 介绍使用 PaddlePaddle 实现 OCR。 + - `OCR <./cv/image_ocr.html>`_ : 介绍使用 PaddlePaddle 实现 OCR。 - `图像超分 <./cv/super_resolution_sub_pixel.html>`_ : 介绍使用 PaddlePaddle 完成图像超分。 - `人脸关键点检测 <./cv/landmark_detection.html>`_ : 介绍使用 PaddlePaddle 完成人脸关键点检测。 - `点云分类 <./cv/pointnet.html>`_ :介绍使用 PaddlePaddle 完成点云分类。 diff --git a/docs/release_note_cn.md b/docs/release_note_cn.md index fc56944eac8..781b1b76957 100644 --- a/docs/release_note_cn.md +++ b/docs/release_note_cn.md @@ -1,13 +1,13 @@  -# 2.2.0 rc0 Release Note +# Release Note ## 1. 重要更新 -我们很高兴的发布飞桨框架2.2.0-rc0版本,本版本包含如下重要更新。 +我们很高兴的发布飞桨框架2.2.0版本,本版本包含如下重要更新。 ### API -- 新增100+个API,包含24个傅里叶变换API、14个线性代数计算 API 等,更好地支持科学计算类、信号处理类模型。 +- 新增100+个API,包含24个傅里叶变换API、17个线性代数计算 API 等,更好地支持科学计算类、信号处理类模型。 - 新增多种索引类型的支持,新增的索引类型包括:省略号(…)、维度扩增(None)、布尔类型数组(Bool Mask)、整数数组((list),以及张量(Tensor) ),可以更加方便的对张量(Tensor)进行操作。 - 新增 `paddle.einsum` API,可以以更加简洁的方式来表达多维张量(Tensor)的计算。 - 动态图混合精度功能增强,新增整个任务使用半精度(float16)训练的方式,主要任务下的计算效率提升20%左右。 @@ -290,7 +290,9 @@ paddle.int64 - 新增 ``paddle.linalg.multi_dot``,支持多个矩阵连乘的计算。([#35224](https://github.com/PaddlePaddle/Paddle/pull/35224)) - 新增 ``paddle.linalg.solve``,支持计算线性方程组的解。([#35715](https://github.com/PaddlePaddle/Paddle/pull/35715)) - 新增``paddle.linalg.matrix_power``,支持矩阵的幂运算操作。([#34667](https://github.com/PaddlePaddle/Paddle/pull/34667)) - + - 新增`paddle.linalg.eigvalsh`,用于计算厄米特矩阵或者实数对称矩阵的特征值。([#36680](https://github.com/PaddlePaddle/Paddle/pull/36680)) + - 新增`paddle.linalg.eig`,用于计算一般方阵的特征值和特征向量。([#35674](https://github.com/PaddlePaddle/Paddle/pull/35674)) + - 新增`paddle.linalg.qr`,用于计算矩阵的QR分解(暂不支持反向)。([#36627](https://github.com/PaddlePaddle/Paddle/pull/36627)) - 新增傅里叶变换相关API ([#35665](https://github.com/PaddlePaddle/Paddle/pull/35665)) - 新增快速傅立叶变换系列函数 - 可微分的 1d 到 nd 复数到复数快速傅里叶变换。(``paddle.fft.fft``, ``paddle.fft.fft2``, ``paddle.fft.fftn``, ``paddle.fft.ifft``, ``paddle.fft.ifft2``, ``paddle.fft.ifftn``) @@ -303,19 +305,21 @@ paddle.int64 - 短时傅里叶逆变换。(``paddle.signal.istft``) - 新增高层API - - 新增 ``paddle.vision.ops.roi_pool`` 和 ``paddle.vision.ops.RoIPool``,支持检测任务中 RoI 区域池化操作。 ([#36154](https://github.com/PaddlePaddle/Paddle/pull/36154)) - - 新增 ``paddle.vision.ops.roi_align`` 和 ``paddle.vision.ops.RoIAlign``,支持检测任务中 RoI 区域 Align 操作。([#36207](https://github.com/PaddlePaddle/Paddle/pull/36207)) - - 新增 ``paddle.vision.ops.psroi_pool`` 和 ``paddle.vision.ops.PSRoIPool``,支持检测任务中位置敏感的 RoI 区域池化操作。 ([#36111](https://github.com/PaddlePaddle/Paddle/pull/36111)) - - 新增 ``paddle.vision.models.vgg19`` 预训练权重。 ([#35788](https://github.com/PaddlePaddle/Paddle/pull/35788)) - - 新增 ``paddle.vision.datasets.*`` 中数据集 API 下载进度条。([#33302](https://github.com/PaddlePaddle/Paddle/pull/33302)) - - 新增 ``paddle.Model.predict`` 参数 ``verbose``,支持是否显示日志。([#33405](https://github.com/PaddlePaddle/Paddle/pull/33405)) - - 新增 ``paddle.hub`` 下载选项 `wget` 方式。([#33379](https://github.com/PaddlePaddle/Paddle/pull/33379)) - - 新增 ``paddle.Model`` 动态图模式下梯度累加功能。([#32702](https://github.com/PaddlePaddle/Paddle/pull/32702)) - - 新增 ``paddle.Model.fit`` 和 ``paddle.Model.evaluate`` 动态图模式下 ``num_iters`` 参数,控制训练迭代轮数。([#33986](https://github.com/PaddlePaddle/Paddle/pull/33986)) - - 新增 ``paddle.vision.ops.yolo_box`` 参数 ``iou_aware`` 和 ``iou_aware_factor``,支持 YoloBox 使用预测的 IOU 作为置信度的因子。([#33400](https://github.com/PaddlePaddle/Paddle/pull/33400)) - - 新增 ``paddle.summary`` 参数``input``,支持给定输入。([#34165](https://github.com/PaddlePaddle/Paddle/pull/34165)) + - 新增 ``paddle.vision.ops.roi_pool`` 和 ``paddle.vision.ops.RoIPool``,支持检测任务中 RoI 区域池化操作。 ([#36154](https://github.com/PaddlePaddle/Paddle/pull/36154)) + - 新增 ``paddle.vision.ops.roi_align`` 和 ``paddle.vision.ops.RoIAlign``,支持检测任务中 RoI 区域 Align 操作。([#36207](https://github.com/PaddlePaddle/Paddle/pull/36207)) + - 新增 ``paddle.vision.ops.psroi_pool`` 和 ``paddle.vision.ops.PSRoIPool``,支持检测任务中位置敏感的 RoI 区域池化操作。 ([#36111](https://github.com/PaddlePaddle/Paddle/pull/36111)) + - 新增 ``paddle.vision.models.vgg19`` 预训练权重。 ([#35788](https://github.com/PaddlePaddle/Paddle/pull/35788)) + - 新增 ``paddle.vision.datasets.*`` 中数据集 API 下载进度条。([#33302](https://github.com/PaddlePaddle/Paddle/pull/33302)) + - 新增 ``paddle.Model.predict`` 参数 ``verbose``,支持是否显示日志。([#33405](https://github.com/PaddlePaddle/Paddle/pull/33405)) + - 新增 ``paddle.hub`` 下载选项 `wget` 方式。([#33379](https://github.com/PaddlePaddle/Paddle/pull/33379)) + - 新增 ``paddle.Model`` 动态图模式下梯度累加功能。([#32702](https://github.com/PaddlePaddle/Paddle/pull/32702)) + - 新增 ``paddle.Model.fit`` 和 ``paddle.Model.evaluate`` 动态图模式下 ``num_iters`` 参数,控制训练迭代轮数。([#33986](https://github.com/PaddlePaddle/Paddle/pull/33986)) + - 新增 ``paddle.vision.ops.yolo_box`` 参数 ``iou_aware`` 和 ``iou_aware_factor``,支持 YoloBox 使用预测的 IOU 作为置信度的因子。([#33400](https://github.com/PaddlePaddle/Paddle/pull/33400)) + - 新增 ``paddle.summary`` 参数``input``,支持给定输入。([#34165](https://github.com/PaddlePaddle/Paddle/pull/34165)) + - 新增`paddle.text.viterbi_decode`,支持动态图下CPU、GPU的Viterbi解码功能。([#35778](https://github.com/PaddlePaddle/Paddle/pull/35778)) - 新增组网类 API + - 新增`paddle.nn.functional.sparse_attention`,用于计算稀疏的Transformer Attention模块。([#35757](https://github.com/PaddlePaddle/Paddle/pull/35757)) - 新增 ``paddle.nn.MaxUnPool2D`` 和 ``paddle.nn.functional.max_unpool2d``,支持根据输入的input和最大值位置计算出池化的逆结果。([#35056](https://github.com/PaddlePaddle/Paddle/pull/35056)) - 新增 ``paddle.nn.functional.gumbel_softmax``,支持 ``gumbel softmax`` 采样。([#35506](https://github.com/PaddlePaddle/Paddle/pull/35506), [#36065](https://github.com/PaddlePaddle/Paddle/pull/36065), [#36094](https://github.com/PaddlePaddle/Paddle/pull/36094)) - 新增 ``paddle.nn.functional.class_center_sample``,支持 PartialFC 类中心采样功能。([#34106](https://github.com/PaddlePaddle/Paddle/pull/34106)) @@ -332,9 +336,13 @@ paddle.int64 - 新增 ``paddle.device.cuda.empty_cache``,支持清理空闲的显存。([#35427](https://github.com/PaddlePaddle/Paddle/pull/35427)) - 新增 ``paddle.device.cuda.get_device_properties``,支持返回给定的设备属性。([#35875](https://github.com/PaddlePaddle/Paddle/pull/35875)) - 新增 ``paddle.device.cuda.stream_guard``,用于动态图下 CUDA Stream的灵活切换。([#35623](https://github.com/PaddlePaddle/Paddle/pull/35623)) - + - 新增`paddle.device.cuda.get_device_name`,支持返回给定设备的名称。([#36172](https://github.com/PaddlePaddle/Paddle/pull/36172)) + - 新增`paddle.device.cuda.get_device_capability`,支持返回给定设备计算能力的版本号。([#36172](https://github.com/PaddlePaddle/Paddle/pull/36172)) + - 新增`paddle.framework.core.async_read`和`paddle.framework.core.async_write`,可支持非默认 CUDA `Stream`下`CUDAPinnedPlace` 和 `CUDAPlace` 的 `Tensor` 数据异步读写。([#36501](https://github.com/PaddlePaddle/Paddle/pull/36501)) - 新增Tensor操作API + - 新增`paddle.tensordot`,支持对高维张量做缩并(Tensor Contraction)运算。([#36454](https://github.com/PaddlePaddle/Paddle/pull/36454)) + - 新增`paddle.bincount`,支持对一维张量内元素进行计数。([#36709](https://github.com/PaddlePaddle/Paddle/pull/36709)) - 新增 `paddle.broadcast_tensors` ,支持对一组 `Tensor` 进行广播操作。([#33294](https://github.com/PaddlePaddle/Paddle/pull/33294), [#34874](https://github.com/PaddlePaddle/Paddle/pull/34874)) - 新增 `paddle.einsum` 。([#33821](https://github.com/PaddlePaddle/Paddle/pull/34874)) - 增强``paddle.tensor.gradient``接口,支持sigmoid_op的二阶求导算子。([#32971](https://github.com/PaddlePaddle/Paddle/pull/32971)) @@ -373,6 +381,7 @@ paddle.int64 - 新增 ``paddle.static.ExponentialMovingAverage``,支持用指数衰减计算参数的滑动平均值。([#35673](https://github.com/PaddlePaddle/Paddle/pull/35673)) - 新增 `` paddle::Tensor::slice`` C++ API, 支持 slice 操作,允许用户对外部 Tensor 切片操作。([#34227](https://github.com/PaddlePaddle/Paddle/pull/34227)) - 新增``paddle.incubate.segment_*``系列API,包含 ``paddle.incubate.segment_sum, paddle.incubate.segment_mean, paddle.incubate.segment_max, paddle.incubate.segment_min``。支持对`Tensor`按照分段求和、求均值、求最大值、求最小值。 ([#35759](https://github.com/PaddlePaddle/Paddle/pull/35759)) + - 新增`paddle.version.cuda`和`paddle.version.cudnn`,用于获取 paddle 安装包所使用的 `CUDA`和 `cuDNN`的版本号。([#36556](https://github.com/PaddlePaddle/Paddle/pull/36556)) #### IR(Intermediate Representation) - 动态图转静态图 @@ -388,13 +397,15 @@ paddle.int64 - 提供分析 `Program` 中控制流需要的依赖辅助函数。 ([#33439](https://github.com/PaddlePaddle/Paddle/pull/33439)) - `Program` 和 `Graph` 相互转换后保留训练所需要的 `stop_gradient` , `persistable` 属性值。([#33771](https://github.com/PaddlePaddle/Paddle/pull/33771)) - 原 `Pass` 只处理主`Graph`,忽略子图,现`Pass` 支持处理主 `Graph`及其所有子图。 ([#34158](https://github.com/PaddlePaddle/Paddle/pull/34158)) - - 处理了在预测情况下 `Program` 和 `Graph` 互转的一些拓扑排序问题。([#34121](https://github.com/PaddlePaddle/Paddle/pull/34121), [#34521](https://github.com/PaddlePaddle/Paddle/pull/34521)). **《== ** + - 处理了在预测情况下 `Program` 和 `Graph` 互转的一些拓扑排序问题。([#34121](https://github.com/PaddlePaddle/Paddle/pull/34121), [#34521](https://github.com/PaddlePaddle/Paddle/pull/34521)) - Pass开发 - 新增 Python 侧针对 fusion 等子图替换场景下的 Pass 开发方式。([#35708](https://github.com/PaddlePaddle/Paddle/pull/35708), [#35602](https://github.com/PaddlePaddle/Paddle/pull/35602)) - Kernel Primitive API - 对算子 Kernel 实现中的底层代码进行了抽象与功能封装,提供高性能的 Block 级 IO 运算和 Compute 运算。使用 Kernel Primitive API 进行 Kernel 开发可以更加专注计算逻辑的实现,在保证性能的同时大幅减少代码量,同时实现了算子计算与硬件解耦。([#34672](https://github.com/PaddlePaddle/Paddle/pull/34672), [#35075](https://github.com/PaddlePaddle/Paddle/pull/35075), [#34456](https://github.com/PaddlePaddle/Paddle/pull/34456), [#35282](https://github.com/PaddlePaddle/Paddle/pull/35282), [#35743](https://github.com/PaddlePaddle/Paddle/pull/35743), [#34208](https://github.com/PaddlePaddle/Paddle/pull/34208)) + - 在 Kernel Primitive API中添加一元和二元计算Functor共13个。 ([#36418](https://github.com/PaddlePaddle/Paddle/pull/36418)) + - 修改 Kernel Primitive API 中 ReadData 实现方式,修复`NX !=1`访存越界的问题。 ([#36373](https://github.com/PaddlePaddle/Paddle/pull/36373)) #### 混合精度训练 - 动态图混合精度功能增强,新增整个任务使用半精度(float16)训练的方式,主要任务下的计算效率提升20%左右。 ([#35521](https://github.com/PaddlePaddle/Paddle/pull/35521)) @@ -512,7 +523,13 @@ paddle.int64 - 优化``l2_normalize``,``p_norm``,``elementwise_max``,``prelu``,``clip_by_norm``,``lars optimizer``算子支持float16计算。 ([#35576](https://github.com/PaddlePaddle/Paddle/pull/35576), [#35888](https://github.com/PaddlePaddle/Paddle/pull/35888), [#35888](https://github.com/PaddlePaddle/Paddle/pull/35888), [35532](https://github.com/PaddlePaddle/Paddle/pull/35532), [#35446](https://github.com/PaddlePaddle/Paddle/pull/35446), [#33280](https://github.com/PaddlePaddle/Paddle/pull/33280)) - 优化flowers数据集的读取速度,从每批次数分钟优化至1~3秒。([#31408](https://github.com/PaddlePaddle/Paddle/pull/31408)) - 支持`paddle.distributed.fleet.DistributedStrategy` 中 `without_graph_optimize` 开关打开后的fuse allreduce sum功能。FP32下性能提升3%,AMP下性能提升8%。([#34446](https://github.com/PaddlePaddle/Paddle/pull/34446)) - +- `paddle.matmul` 将底层Op算子由matmul op 切换到 matmul_v2 op。 ([#36374](https://github.com/PaddlePaddle/Paddle/pull/36374)) +- `paddle.fft` 模块添加了 mkl_cdft 和 hipfft 两个计算后端。 ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- `paddle.roll` 的参数 `shifts` 支持 `Tensor` 作为输入。 ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- `paddle.shape` 支持复数类型的输入。([#36835](https://github.com/PaddlePaddle/Paddle/pull/36835)) +- matmul_v2 支持量化。([#36469](https://github.com/PaddlePaddle/Paddle/pull/36469)) +- 新增 `clip_op` 对 `float16` 的支持。 ([#36672](https://github.com/PaddlePaddle/Paddle/pull/36672)) +- `paddle.fft` 模块为 cufft 后端添加了缓存 plan 的功能,优化性能。([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) #### IR(Intermediate Representation) - 动态图转静态图 @@ -521,6 +538,9 @@ paddle.int64 - 优化了动转静训练代码逻辑,升级内部 ``Program`` 缓存机制,新增输入 ``Tensor`` 的提前 copy 策略,提升训练性能。 ([#34181](https://github.com/PaddlePaddle/Paddle/pull/34181), [#33796](https://github.com/PaddlePaddle/Paddle/pull/33796)) - 优化动转静内部执行器显存回收策略,减少训练时显存占用量。 ([#34177](https://github.com/PaddlePaddle/Paddle/pull/34177)) - 集成了 ``Gast`` 三方依赖库的源码,解耦了版本依赖。 ([#34556](https://github.com/PaddlePaddle/Paddle/pull/34556)) + - 动转静报错时显示部分框架层报错信息,使得定位问题更加容易。([#36765](https://github.com/PaddlePaddle/Paddle/pull/36765)) + - 移除动转静报错模块中重复的临时文件删除函数`remove_static_file()`。([#36375](https://github.com/PaddlePaddle/Paddle/pull/36375)) + - 优化对RegisterPass中`input_specs`参数处理,支持图优化时作为匹配子图条件。([#36453](https://github.com/PaddlePaddle/Paddle/pull/36453)) #### 分布式训练 @@ -534,7 +554,13 @@ paddle.int64 - `paddle.io.Dataset` 支持动态库解析数据。 ([#33969](https://github.com/PaddlePaddle/Paddle/pull/33969)) - 新增 `paddle.distributed.fleet.dataset.DatasetBase` 中对`use_var_list`和 `pipe_command` 生成数据的一致性检查函数。 ([#34463](https://github.com/PaddlePaddle/Paddle/pull/34463)) - 新增 `paddle.fluid.layers.embedding` 的 `emd` 维度与 `fleet` 中` sparse table` 的 `emb` 维度的一致性检查。 ([#34249](https://github.com/PaddlePaddle/Paddle/pull/34249)) - + - 动态图混合并行支持Pure FP16训练。([#36707](https://github.com/PaddlePaddle/Paddle/pull/36707)) + - 静态图混合并行支持dropout使用固定随机种子生成器,以确保模型并行中全局变量的一致性与局部变量的随机性。([#36682](https://github.com/PaddlePaddle/Paddle/pull/36682)) + ‘ + - 实现了CPU并行,并支持调用 spawn 或 launch 时可以添加自定义的backend参数。可用的backend选择为 "gloo", "nccl", "bkcl", "auto" ,分别表示CPU并行,GPU并行,XPU并行和按照Paddle版本自动选择。([#35745](https://github.com/PaddlePaddle/Paddle/pull/35745)) + - 优化动态图混合并行 HybridParallelClipGrad 策略,支持4D混合并行+Pure FP16训练。([#36707](https://github.com/PaddlePaddle/Paddle/pull/36707)) + - 添加 SlotRecordDataset 类支持GPU参数服务器训练。([#36710](https://github.com/PaddlePaddle/Paddle/pull/36710)) + - GPU参数服务器构建阶段支持使用SlotRecordDataset。([#36723](https://github.com/PaddlePaddle/Paddle/pull/36723)) - 静态图混合并行 - 优化混合并行 loss scale,减少 scale op 插入个数。([#35775](https://github.com/PaddlePaddle/Paddle/pull/35775)) @@ -555,6 +581,14 @@ paddle.int64 - 修正 ``paddle.jit.save`` 接口和模型裁剪的逻辑,不再为输出变量增加一个关联的 ``scale_op``,可以正确导出含有 ``bool``,``float16`` 类型输出的模型。([#35730](https://github.com/PaddlePaddle/Paddle/pull/35730), [#36132](https://github.com/PaddlePaddle/Paddle/pull/36132)) - 自定义OP - 移除 ``paddle::Tensor`` 的 ``copy`` 方法中不必要的 ``cudaStreamSynchronize`` 操作,以提升性能。([#35802](https://github.com/PaddlePaddle/Paddle/pull/35802)) +- 新增C++对GeneratePass开发注册的支持,开发方式与Python侧对齐。([#36302](https://github.com/PaddlePaddle/Paddle/pull/36302)) +- 自动稀疏化训练(Automic SParsity) + - 新增`paddle.static.sparsity`,支持生成`n:m`稀疏模式的稀疏参数,目前只支持静态图ASP训练。A100上FP32、FP16分别设置`1:2`、`2:4`的稀疏模式,训练保存的稀疏模型,可通过调用TensorRT 8利用Ampere架构的稀疏Tensor Core加速推理任务。当前版本共提供了5个API:([#32995](https://github.com/PaddlePaddle/Paddle/pull/32995)、[#33132](https://github.com/PaddlePaddle/Paddle/pull/33132)、[#33558](https://github.com/PaddlePaddle/Paddle/pull/33558)、[#36525](https://github.com/PaddlePaddle/Paddle/pull/36525)) + - `paddle.static.sparsity.calculate_density`,计算输入Tensor的密度。 + - `paddle.static.sparsity.decorate`,将给定的优化器包装为`OptimizerWithSparsityGuarantee`,在调用 `optimizer.minimize()`时自动为ASP工作流插入必要的操作。 + - `paddle.static.sparsity.prune_model`,依据`mask_algo`指定的掩码生成函数裁剪`main_program`中支持的层的参数。 + - `paddle.static.sparsity.set_excluded_layers`,设置不会被裁剪的层的参数名称。 + - `paddle.static.sparsity.reset_excluded_layers`,重置与`main_program`相对应的`excluded_layers`设置。 @@ -594,6 +628,18 @@ paddle.int64 - 优化动态图性能,将只在静态图执行的逻辑从动态图的执行路径中剥离。([#34024](https://github.com/PaddlePaddle/Paddle/pull/34024)) - IR Pass优化能力作为通用能力露出,同时支持单机和分布式优化。在GPT混合并行场景性能提升3%-5%。([#34955](https://github.com/PaddlePaddle/Paddle/pull/34955), [#35704](https://github.com/PaddlePaddle/Paddle/pull/35704), [#34730](https://github.com/PaddlePaddle/Paddle/pull/34730), [#34524](https://github.com/PaddlePaddle/Paddle/pull/34524)) - 优化 ctc loss grad 计算速度,提速~3x,但相应增加了GPU显存占用。([#34729](https://github.com/PaddlePadle/Paddle/pull/34729)) +- transformer encoder 性能优化 + - 优化思路:通过新增 `paddle.incubate.nn.FusedMultiHeadAttention` 和 `paddle.incubate.nn.FusedFeedForward` 的方式,在实现中采用 q, k, v gemm融合及多种kernel融合优化技术,提升transformer encoder的性能。 + - FusedAttention + - 新增 `paddle.incubate.nn.functional.fused_multi_head_attention` ,支持multi-head attention的融合计算。([#35905](https://github.com/PaddlePaddle/Paddle/pull/35905) [35903](https://github.com/PaddlePaddle/Paddle/pull/35903) [#36803](https://github.com/PaddlePaddle/Paddle/pull/36803) [#36793](https://github.com/PaddlePaddle/Paddle/pull/36793) [36185](https://github.com/PaddlePaddle/Paddle/pull/36185)) + - 新增 `paddle.incubate.nn.FusedMultiHeadAttention` ,用于融合multi-head attention的layer层组网。 ([#36498](https://github.com/PaddlePaddle/Paddle/pull/36498) ) + - 该模块使用q, k, v gemm融合和bias add + dropout + residual add + layer_norm kernel融合优化技术,可带来1.08x-1.45x加速。 + + - FusedFeedForward + - 新增 `paddle.incubate.nn.functional.fused_feedforward` ,支持 feedforward的融合计算。([#36729](https://github.com/PaddlePaddle/Paddle/pull/36729) [#36730](https://github.com/PaddlePaddle/Paddle/pull/36730)) + - 新增 `paddle.incubate.nn.FusedFeedForward` ,用于融合feedforward的layer层组网。 ([#36776](https://github.com/PaddlePaddle/Paddle/pull/36776)) + - 性能较优化前有1.04x~1.22x左右的提升。 + - 新增 `paddle.incubate.nn.FusedTransformerEncoderLayer`,支持使用融合multi-head attention和融合feedforward计算的layer层组网。 ([#36776](https://github.com/PaddlePaddle/Paddle/pull/36776)) ### (4)问题修复 @@ -687,12 +733,27 @@ paddle.int64 - 迁移``paddle.nn.functional.dice_loss``API中的`one_hot`算子到`one_hot_v2`算子。([#35734](https://github.com/PaddlePaddle/Paddle/pull/35734)) - 修复 ``paddle.summary`` 静态图模式下使用 bug。([#35303](https://github.com/PaddlePaddle/Paddle/pull/35303)) - 修复 ``paddle.Model.prepare`` 静态图模式下多卡启动的 bug。([#34311](https://github.com/PaddlePaddle/Paddle/pull/34311)) +- 修复`paddle.nn.functional.cross_entropy` 给定`weight`,且指定`axis`为除-1外的其他合法维度时会报错的问题。([#36647](https://github.com/PaddlePaddle/Paddle/pull/36647)) +- 修复`paddle.utils.dlpack.to_dlpack`无法编码多维 `Tensor` 的问题,修复其所生成的 DLPack 对象无法进行跨深度学习框架共享的问题。([#36177](https://github.com/PaddlePaddle/Paddle/pull/36177)) +- 修复使用`paddle.distribution.Categorical`的`sample`方法报错的问题,具体原因是multinomial op的cuda kernel中数组访问越界,该bug会导致访问超出数组下标的值,引起报错。 ([#36511](https://github.com/PaddlePaddle/Paddle/pull/36511)) +- 修复动态图`_BatchNormBase`基类中修改了 default_dtype,导致后续组网参数类型错误的问题,受影响的API有`paddle.nn.BatchNorm1D`,`paddle.nn.BatchNorm2D`,`paddle.nn.BatchNorm3D`,`paddle.nn.SyncBatchNorm`。具体原因是当 `get_default_dtype() == 'float16'` 时,通过 `set_default_dtype('float32')`修改默认参数数据类型,动态图组网的参数类型是通过 default_dtype 来创建的,因此当默认参数类型被修改后导致后续的组网参数类型错误。 ([#36376](https://github.com/PaddlePaddle/Paddle/pull/36376)) +- 修复`paddle.nn.functional.grid_sample`因特殊输入导致的异常问题。([#36625](https://github.com/PaddlePaddle/Paddle/pull/36625)) +- 修复 `paddle.fft.fft`, `paddle.fft.ifft`, `paddle.fft.rfft` , `paddle.fft.irfft`, `paddle.fft.hfft`, `paddle.fft.ihfft` 在输入 `axis=0` 情况下的计算错误问题。([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- 修复 `paddle.fft.fftshift` 和 `paddle.fft.ifftshift` 在静态图下出错的问题。([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- 修复 `paddle.fft.ifftshift` 计算结果不正确的问题。([#36835](https://github.com/PaddlePaddle/Paddle/pull/36835)) +- 修复`paddle.nn.functional.pad`在`replicate`模式下的报错信息提示。([#36531](https://github.com/PaddlePaddle/Paddle/pull/36531)) + #### IR(Intermediate Representation) - 动态图转静态图 - 修复了动转静后,在 ``paddle.no_grad`` 语义下显存异常增长的问题。([#35725](https://github.com/PaddlePaddle/Paddle/pull/35725)) - 修复了对 ``paddle.no_grad`` 接口的错误识别和转换问题。([#34136](https://github.com/PaddlePaddle/Paddle/pull/34136)) + - 修复了部分场景下模型中间设置 stop_gradient=True 时,动转静训练报错的问题。([#36353](https://github.com/PaddlePaddle/Paddle/pull/36353)) + - 修复了在控制流 if 的部分场景转换时,对返回结果检查会报错的问题。([#36830](https://github.com/PaddlePaddle/Paddle/pull/36830)) + - 修复了在 ifelse 分支返回不等长结果时,动转静会额外对齐返回长度导致返回类型意外改变的问题。([#36565](https://github.com/PaddlePaddle/Paddle/pull/36565)) + - 修复使用 jit.save/load 接口加载模型后,在 train 模式和 no_grad 上下文中,显存会一直增长的问题。([#36463](https://github.com/PaddlePaddle/Paddle/pull/36463)) + #### 分布式训练 @@ -727,6 +788,10 @@ paddle.int64 - 修复 GPU 参数服务器使用非0卡训练报错问题。([#33078](https://github.com/PaddlePaddle/Paddle/pull/33078)) - 修复 GPU 参数服务器 delta score,scale show问题。([#33492](https://github.com/PaddlePaddle/Paddle/pull/33078), [#33492](https://github.com/PaddlePaddle/Paddle/pull/33492)) - 修复 GPU 参数服务器训练结束后未 merge dense,g2sum 计算有误,data norm 添加了optimize op 等问题。 ([#35029](https://github.com/PaddlePaddle/Paddle/pull/35029)) + - 修复使用 fuse all reduce ops 开关时,如果梯度出现 empty 时会报错的问题。([#36231](https://github.com/PaddlePaddle/Paddle/pull/36231)) + - 修复 dist_transformer 文件出现未定义的变量问题。([#36211](https://github.com/PaddlePaddle/Paddle/pull/36211)) + + - 动态图混合并行 - 修复流水线并行计算错误的问题。([#35556](https://github.com/PaddlePaddle/Paddle/pull/35556)) @@ -767,6 +832,8 @@ paddle.int64 - 子图通过支持Paddle-Lite NNAdapter接入ascend310硬件预测 [#35226](https://github.com/PaddlePaddle/Paddle/pull/35226), 示例可参考[demo](https://github.com/PaddlePaddle/Paddle-Inference-Demo/tree/master/c%2B%2B/ascend310_lite_subgraph/image_classification_demo)。 - 新增晟腾910 推理支持 [#34101](https://github.com/PaddlePaddle/Paddle/pull/34101) +- 新增pool3d算子支持TensorRT的功能。([#36545](https://github.com/PaddlePaddle/Paddle/pull/36545)) + ### (2)功能优化 #### 框架及API更新 @@ -774,6 +841,7 @@ paddle.int64 - 量化支持 - 动态图量化推理 pass 的重构,支持非模拟量化的 OP和模拟量化的 OP。([#35907](https://github.com/PaddlePaddle/Paddle/pull/35907)) - 增加 int8 的模拟量化OP matmul(权重乘以 tensor的情况)。([#34359](https://github.com/PaddlePaddle/Paddle/pull/34359)) + - 修复MobileNetV3模型在量化训练过程中因量化参数为0导致的Loss出NAN问题。([#36763](https://github.com/PaddlePaddle/Paddle/pull/36763)) - API 增强 @@ -810,16 +878,18 @@ paddle.int64 - 增加TensorRT `qkv_context` plugin 对int8的支持([#34917](https://github.com/PaddlePaddle/Paddle/pull/34917), [#35504](https://github.com/PaddlePaddle/Paddle/pull/35504)) - 增加TensorRT conv3d的支持。([#35507](https://github.com/PaddlePaddle/Paddle/pull/35507)) - 增加对 `multihead_matmul` 融合算子的输入进行广播的支持。([#35780](https://github.com/PaddlePaddle/Paddle/pull/35780)) + - Inference 支持 TensorRT8 稀疏推理,[测试环境](https://github.com/PaddlePaddle/Paddle-Inference-Demo/tree/master/c%2B%2B/sparsity)下,ERNIE 模型变长输入在不同的 batch_size 下性能提升10%-30%,ResNeXt101_32x4d模型在不同的batch_size下性能提升10%。([#36659](https://github.com/PaddlePaddle/Paddle/pull/36659)) - Nvidia Jetson 原生支持能力增强 - 新增 Op 支持,针对Jetson Nano/TX2这两款算力较低的设备,我们做了针对性的优化,目前新增了 `pool2d`, `pool_max`, `conv3d_transpose` 等 17个OP的支持。([#35378](https://github.com/PaddlePaddle/Paddle/pull/35378)) - 针对Jetson Nano,新增模型:DPN68, EfficientNetB0, ttfnet, fcn_hrnetw18, hardnet。([#35378](https://github.com/PaddlePaddle/Paddle/pull/35378)) - 针对Jetson TX2,新增模型:deeplabv3p_resnet50, deeplabv3_resnet50, fcn_hrnetw18, hardnet, pspnet, ttfnet, unet。([#35378](https://github.com/PaddlePaddle/Paddle/pull/35378)) - - 昆仑XPU接口功能扩展 - 新增 `set_xpu_device_id` 接口,支持设置推理时的昆仑芯片的设备号([#35572](https://github.com/PaddlePaddle/Paddle/pull/35572)) +- Inference python `copy_from_cpu`接口加入输入类型检查,错误类型输入下提前报错。([#36552](https://github.com/PaddlePaddle/Paddle/pull/36552)) + ### (3)问题修复 #### 框架及API修复 @@ -842,6 +912,16 @@ paddle.int64 - 修复ernie变长情况下,输入的顺序不一致导致输出不对的问题。([#33575](https://github.com/PaddlePaddle/Paddle/pull/33575)) - 修复多流状态下分配器功能异常的问题。([#32932](https://github.com/PaddlePaddle/Paddle/pull/33575)) +- 修复 ERNIE 模型在 TRT8 下可能出现的崩溃问题。([#36769](https://github.com/PaddlePaddle/Paddle/pull/36769)) +- 修复使用 Pool, Slice 时可能出现的崩溃及精度问题。([#36666](https://github.com/PaddlePaddle/Paddle/pull/36666)) +- 修复 yolo_box op因为计算公式错误导致的精度问题。([#36365](https://github.com/PaddlePaddle/Paddle/pull/36365)) +- 修复量化后的 matmul_v2 在TRT下无法正常推理的问题。([#36821](https://github.com/PaddlePaddle/Paddle/pull/36821)) +- 修复了量化 matmul_v2 时错误地添加量化op的问题。([#36820](https://github.com/PaddlePaddle/Paddle/pull/36820)) +- 修复算子 batch_norm 和 elementwise_add 在3D应用场景下开启 TRT 报错的问题。([#36446](https://github.com/PaddlePaddle/Paddle/pull/36446)) +- 修复高层 linear api保存得到的预测模型无法被 Pass 融合优化的问题。([#36500](https://github.com/PaddlePaddle/Paddle/pull/36500)) +- 修改 MatmulV2ToMul 的 Pass,重新限定 (matmul_v2 to mul) 映射的 Pass,增加 MatmulV2ToMatmul 的 Pass,限定 (matmul_v2 to matmul) 映射的 Pass条件(不支持广播),修改 (matmul, mul) 的 op_teller 映射条件。([#36652](https://github.com/PaddlePaddle/Paddle/pull/36652)) + + #### 后端能力修复 - TensorRT 子图引擎修复 @@ -907,4 +987,5 @@ paddle.int64 This release contains contributions from: -0x45f, 123malin, Adam Osewski, Aganlengzi, Aurelius84, Baibaifan, Bo Liu, CheQiXiao, Chen Long, Chen Weihang, CtfGo, Double\_V, Ethanzjp, Fan Zhang, Feiyu Chan, Feng Xing, From00, GT-Zhang, Guanghua Yu, Guoxia Wang, Haipeng Wang, Hao Lin, Haohongxiang, Hui Zhang, Huihuang Zheng, HydrogenSulfate, IMMORTAL, JYChen, JZ-LIANG, Jacek Czaja, Jack Zhou, Jackwaterveg, Jeng Bai-Cheng, Jiangxinz, Jiaqi Liu, Jiawei Wang, JingZhuangzhuang, June Weng, Kaipeng Deng, Kqnonrime, LJQ❤️, Leo Chen, Li Min, LielinJiang, Lijunhui, Linjie Chen, Liu-xiandong, LiuWei, Ming-Xu Huang, MissPenguin, PaddlePM, Pei Yang, Peihan, Qi Li, QingshuChen, Ren Wei (任卫), Roc, Shang Zhizhou, ShenLiang, Shibo Tao, Siming Dai, Sing\_chan, TCChenLong, TTerror, TeslaZhao, Thomas Young, Thunderbrook, Tongxin Bai, WJJ1995, WangXi, Wangzheee, Wei Shengyu, WeiXin, Weilong Wu, Wenyu, Wilber, XGZhang, XYZ, XYZ916829, XiangGao, Xiaoxu Chen, YUNSHEN XIE, Yanxing Shi, Yiqun Liu, YuanRisheng, Yuang Liu, Yulong Ao, Zeng Jinle, Zhang Ting, Zhang Zheng, Zhanlue Yang, Zhen Wang, Zhong Hui, Zhou Wei, andreazanetti, andyjpaddle, arlesniak, baoachun, cc, ceci3, chajchaj, chenenquan, chenjian, chentianyu03, crystal, cuicheng01, danleifeng, denglin-github, duanboqiang, dyning, feng626, feng_shuai, furnace, gongweibao, heliqi, hlygit66666, hong, hong19860320, houj04, huangjun12, huangxu96, huzhiqiang, iducn, jakpiase, jiangcheng, joanna.wozna.intel, jzhang533, kuizhiqing, levi131, lidanqing, lilong12, limingshu, littletomatodonkey, liu zhengxi, liutiexing, liuyuhui, liym27, lyuwenyu, lzzyzlbb, niuliling123, pangyoki, parap1uie-s, ronnywang, root, seemingwang, shangliang Xu, shiyutang, smallv0221, sunli, sunzhongkai588, taixiurong, tangwei12, tianshuo78520a, veyron95, wangguanqun, wangguanzhong, wanghuancoder, wangna11BD, wangxinxin08, wangzhen38, wangzhuang01, wawltor, wenbin, whs, will-jl944, wuhuachaocoding, wuhuanzhou, xiaoting, xiaoxiaohehe001, xiayanming, xiegegege, xiemoyuan, xiongkun, yaoxuefeng, yeliang2258, yingyibiao, zhangbo9674, zhangchunle, zhangkaihuo, zhaoyingli, zhiboniu, zhoujun, zhouzj, zhulei, zhupengyang, zlsh80826, zmx, zyfncg, 李季, 津, 王明冬, 石晓伟 \ No newline at end of file +0x45f, 123malin, Adam Osewski, Aganlengzi, Aurelius84, Baibaifan, Bo Liu, CheQiXiao, Chen Long, Chen Weihang, CtfGo, Double\_V, Ethanzjp, Fan Zhang, Feiyu Chan, Feng Xing, From00, GT-Zhang, Guanghua Yu, Guoxia Wang, Haipeng Wang, Hao Lin, Haohongxiang, Hui Zhang, Huihuang Zheng, HydrogenSulfate, IMMORTAL, JYChen, JZ-LIANG, Jacek Czaja, Jack Zhou, Jackwaterveg, Jeng Bai-Cheng, Jiangxinz, Jiaqi Liu, Jiawei Wang, JingZhuangzhuang, June Weng, Kaipeng Deng, Kqnonrime, LJQ❤️, Leo Chen, Li Min, LielinJiang, Lijunhui, Linjie Chen, Liu-xiandong, LiuWei, Ming-Xu Huang, MissPenguin, PaddlePM, Pei Yang, Peihan, Qi Li, QingshuChen, Ren Wei (任卫), Roc, Shang Zhizhou, ShenLiang, Shibo Tao, Siming Dai, Sing\_chan, TCChenLong, TTerror, TeslaZhao, Thomas Young, Thunderbrook, Tongxin Bai, WJJ1995, WangXi, Wangzheee, Wei Shengyu, WeiXin, Weilong Wu, Wenyu, Wilber, XGZhang, XYZ, XYZ916829, XiangGao, Xiaoxu Chen, YUNSHEN XIE, Yanxing Shi, Yiqun Liu, YuanRisheng, Yuang Liu, Yulong Ao, Zeng Jinle, Zhang Ting, Zhang Zheng, Zhanlue Yang, Zhen Wang, Zhong Hui, Zhou Wei, andreazanetti, andyjpaddle, arlesniak, baoachun, cc, ceci3, chajchaj, chenenquan, chenjian, chentianyu03, crystal, cuicheng01, danleifeng, denglin-github, duanboqiang, dyning, feng626, feng_shuai, furnace, gongweibao, heliqi, hlygit66666, hong, hong19860320, houj04, huangjun12, huangxu96, huzhiqiang, iducn, jakpiase, jiangcheng, joanna.wozna.intel, jzhang533, kuizhiqing, levi131, lidanqing, lilong12, limingshu, littletomatodonkey, liu zhengxi, liutiexing, liuyuhui, liym27, lyuwenyu, lzzyzlbb, niuliling123, pangyoki, parap1uie-s, ronnywang, root, seemingwang, shangliang Xu, shiyutang, smallv0221, sunli, sunzhongkai588, taixiurong, tangwei12, tianshuo78520a, veyron95, wangguanqun, wangguanzhong, wanghuancoder, wangna11BD, wangxinxin08, wangzhen38, wangzhuang01, wawltor, wenbin, whs, will-jl944, wuhuachaocoding, wuhuanzhou, xiaoting, xiaoxiaohehe001, xiayanming, xiegegege, xiemoyuan, xiongkun, yaoxuefeng, yeliang2258, yingyibiao, zhangbo9674, zhangchunle, zhangkaihuo, zhaoyingli, zhiboniu, zhoujun, zhouzj, zhulei, zhupengyang, zlsh80826, zmx, zyfncg, 李季, 津, 王明冬, 石晓伟 + diff --git a/docs/release_note_en.md b/docs/release_note_en.md index 9848c8de754..349796fdebb 100644 --- a/docs/release_note_en.md +++ b/docs/release_note_en.md @@ -1,13 +1,13 @@  -# 2.2.0 rc0 Release Note +# Release Note ## **1. Highlights** -We are excited to release the PaddlePaddle Framework V2.2.0-rc0. This version contains the following highlights. +We are excited to release the PaddlePaddle Framework V2.2.0. This version contains the following highlights. ### API -- Added 100+ APIs, including 24 Fourier transform APIs, 14 linear algebra APIs, etc., to better facilitate developing of scientific computing and signal processing models. +- Added 100+ APIs, including 24 Fourier transform APIs, 17 linear algebra APIs, etc., to better facilitate developing of scientific computing and signal processing models. - Added the support for multiple indexing syntax, including ellipsis (...), dimension expansion (None), boolean arrays (Bool Mask), and integer arrays (list and tensor), making it easier to operate on tensor. - Added the `paddle.einsum` API, to express multi-dimensional tensor computation in a more concise way. - Enhanced the dynamic graph mixed precision. Added a way to use half-precision (float16) training for the whole task. The computational efficiency under the main tasks increased by 20%. @@ -289,6 +289,9 @@ paddle.int64 - Add the ``paddle.linalg.multi_dot``, to support the computing of concatenated multiplication of multiple matrices. ([#35224](https://github.com/PaddlePaddle/Paddle/pull/35224)) - Add the ``paddle.linalg.solve``, to support the computing of the solutions of linear equations. ([#35715](https://github.com/PaddlePaddle/Paddle/pull/35715)) - Add the ``paddle.linalg.matrix_power``, to support the power operations on matrices. ([#34667](https://github.com/PaddlePaddle/Paddle/pull/34667)) + - Add `paddle.linalg.eigvalsh` for computing eigenvalues of Hermite Matrix or real symmetric matrices. ([#36680](https://github.com/PaddlePaddle/Paddle/pull/36680)) + - Add `paddle.linalg.eig` for computing eigenvalues and eigenvectors of general square matrices. ([#35674](https://github.com/PaddlePaddle/Paddle/pull/35674)) + - Add `paddle.linalg.qr` for computing QR decomposition of matrices (inverse is not supported yet). ([#36627](https://github.com/PaddlePaddle/Paddle/pull/36627)) - Add new Fourier transform related API ([#35665](https://github.com/PaddlePaddle/Paddle/pull/35665)) - Add fast Fourier transform family functions @@ -303,18 +306,20 @@ paddle.int64 - Add new high-level APIs - Add the ``paddle.vision.ops.roi_pool`` and ``paddle.vision.ops.RoIPool``, support RoI region pooling operations in detection tasks. ([#36154](https://github.com/PaddlePaddle/Paddle/pull/36154)) - - Add the ``paddle.vision.ops.roi_align`` and ``paddle.vision.ops.RoIAlign``, to support RoI region Align operations in detection tasks. ([#36207](https://github.com/PaddlePaddle/Paddle/pull/36207)) - - Add the ``paddle.vision.ops.psroi_pool`` and ``paddle.vision.ops.PSRoIPool``, to support location-sensitive RoI region pooling operations in detection tasks. ([#36111](https://github.com/PaddlePaddle/Paddle/pull/36111)) - - Add the ``paddle.vision.models.vgg19`` pre-training weights. ([#35788](https://github.com/PaddlePaddle/Paddle/pull/35788)) - - Add thedatasets API download progress bar in ``paddle.vision.datasets.*``. ([#33302](https://github.com/PaddlePaddle/Paddle/pull/33302)) - - Add the ``paddle.Model.predict`` parameter ``verbose``, to support whether to show logs or not. ([#33405](https://github.com/PaddlePaddle/Paddle/pull/33405)) - - Add the ``paddle.hub`` download option ``wget`` method. ([#33379](https://github.com/PaddlePaddle/Paddle/pull/33379)) - - Add the ``paddle.Model`` gradient accumulation in dynamic graph mode. ([#32702](https://github.com/PaddlePaddle/Paddle/pull/32702)) - - Add the ``paddle.Model.fit`` and ``paddle.Model.evaluate`` ``num_iters`` parameters in dynamic graph mode to control the number of training iterations. ([#33986](https://github.com/PaddlePaddle/Paddle/pull/33986)) - - Add the ``paddle.vision.ops.yolo_box`` parameters ``iou_aware`` and ``iou_aware_factor``, to support YoloBox using predicted IOUs as confidence factors. ([#33400](https://github.com/PaddlePaddle/Paddle/pull/33400)) - - Add the ``paddle.summary`` parameter input to support the given ``input``. ([#34165](https://github.com/PaddlePaddle/Paddle/pull/34165)) + - Add the ``paddle.vision.ops.roi_align`` and ``paddle.vision.ops.RoIAlign``, to support RoI region Align operations in detection tasks. ([#36207](https://github.com/PaddlePaddle/Paddle/pull/36207)) + - Add the ``paddle.vision.ops.psroi_pool`` and ``paddle.vision.ops.PSRoIPool``, to support location-sensitive RoI region pooling operations in detection tasks. ([#36111](https://github.com/PaddlePaddle/Paddle/pull/36111)) + - Add the ``paddle.vision.models.vgg19`` pre-training weights. ([#35788](https://github.com/PaddlePaddle/Paddle/pull/35788)) + - Add the datasets API download progress bar in ``paddle.vision.datasets.*``. ([#33302](https://github.com/PaddlePaddle/Paddle/pull/33302)) + - Add the ``paddle.Model.predict`` parameter ``verbose``, to support whether to show logs or not. ([#33405](https://github.com/PaddlePaddle/Paddle/pull/33405)) + - Add the ``paddle.hub`` download option ``wget`` method. ([#33379](https://github.com/PaddlePaddle/Paddle/pull/33379)) + - Add the ``paddle.Model`` gradient accumulation in dynamic graph mode. ([#32702](https://github.com/PaddlePaddle/Paddle/pull/32702)) + - Add the ``paddle.Model.fit`` and ``paddle.Model.evaluate`` ``num_iters`` parameters in dynamic graph mode to control the number of training iterations. ([#33986](https://github.com/PaddlePaddle/Paddle/pull/33986)) + - Add the ``paddle.vision.ops.yolo_box`` parameters ``iou_aware`` and ``iou_aware_factor``, to support YoloBox using predicted IOUs as confidence factors. ([#33400](https://github.com/PaddlePaddle/Paddle/pull/33400)) + - Add the ``paddle.summary`` parameter input to support the given ``input``. ([#34165](https://github.com/PaddlePaddle/Paddle/pull/34165)) + - Add `paddle.text.viterbi_decode`, to support Viterbi decoding for CPU and GPU under dynamic graphs. ([#35778](https://github.com/PaddlePaddle/Paddle/pull/35778)) - Add networking class APIs + - Add `paddle.nn.functional.sparse_attention` for computing sparse Transformer Attention modules. ([#35757](https://github.com/PaddlePaddle/Paddle/pull/35757)) - Add the ``paddle.nn.MaxUnPool2D`` and ``paddle.nn.functional.max_unpool2d``, to support the computing of the inverse of the pooling result based on the input and maximum position. ([#35056](https://github.com/PaddlePaddle/Paddle/pull/35056)) - Add the ``paddle.nn.functional.gumbel_softmax``, to support ``gumbel softmax`` sampling. ([#35506](https://github.com/PaddlePaddle/Paddle/pull/35506), [#36065](https://github.com/PaddlePaddle/Paddle/pull/36065), [#36094](https://github.com/PaddlePaddle/Paddle/pull/36094)) - Add the ``paddle.nn.functional.class_center_sample``, to support PartialFC class center sampling. ([#34106](https://github.com/PaddlePaddle/Paddle/pull/34106)) @@ -331,9 +336,14 @@ paddle.int64 - Add the ``paddle.device.cuda.empty_cache``, to support for clearing free GPU memory. ([#35427](https://github.com/PaddlePaddle/Paddle/pull/35427)) - Add the ``paddle.device.cuda.get_device_properties``, to support for returning the given device properties. ([#35875](https://github.com/PaddlePaddle/Paddle/pull/35875)) - Add the ``paddle.device.cuda.stream_guard`` for flexible switching of CUDA Streams under dynamic graphs. ([#35623](https://github.com/PaddlePaddle/Paddle/pull/35623)) + - Add `paddle.device.cuda.get_device_name`, to support returning the name of a given device. ([#36172](https://github.com/PaddlePaddle/Paddle/pull/36172)) + - Add `paddle.device.cuda.get_device_capability`, to support returning version number of the computational capability of a given device. ([#36172](https://github.com/PaddlePaddle/Paddle/pull/36172)) + - Add `paddle.framework.core.async_read` and `paddle.framework.core.async_write`, to support `Tensor` data asynchronous read and write of `CUDAPinnedPlace` and ` CUDAPlace` under non-default CUDA `Stream`. ([#36501](https://github.com/PaddlePaddle/Paddle/pull/36501)) - Add Tensor operation APIs + - Add `paddle.tensordot`, to support Tensor Contraction for high dimension. ([#36454](https://github.com/PaddlePaddle/Paddle/pull/36454)) + - Add `paddle.bincount`, to support counting elements in a one-dimensional tensor. ([#36709](https://github.com/PaddlePaddle/Paddle/pull/36709)) - Add the `paddle.broadcast_tensors`, to support broadcast operations on a set of `Tensors`. ([#33294](https://github.com/PaddlePaddle/Paddle/pull/33294), [#34874](https://github.com/PaddlePaddle/Paddle/pull/34874)) - Add the `paddle.einsum`. ([#33821](https://github.com/PaddlePaddle/Paddle/pull/34874)) - Enhance the ``paddle.tensor.gradient`` interface to support second-order derivative operators for sigmoid_op. ([#32971](https://github.com/PaddlePaddle/Paddle/pull/32971)) @@ -372,6 +382,8 @@ paddle.int64 - Add the ``paddle.static.ExponentialMovingAverage``, to support the computing of the sliding average of parameters with exponential decay. ([#35673](https://github.com/PaddlePaddle/Paddle/pull/35673)) - Add the ``paddle::Tensor::slice`` C++ API, to support the slice operation, and allow users to perform slice operations for the external Tensor. ([#34227](https://github.com/PaddlePaddle/Paddle/pull/34227)) - Add the ``paddle.incubate.segment_*`` series APIs, including ``paddle.incubate.segment_sum``, ``paddle.incubate.segment_mean``, ``paddle.incubate.segment_max``, and ``paddle. incubate.segment_min``. Support the summing, averaging, maximizing, and minimizing of ``Tensor`` by segment. ([#35759](https://github.com/PaddlePaddle/Paddle/pull/35759)) + - Add `paddle.version.cuda` and `paddle.version.cudnn` to get version numbers of `CUDA` and `cuDNN` used by paddle installer. ([#36556](https://github.com/PaddlePaddle/Paddle/pull/36556)) + #### IR(Intermediate Representation) @@ -388,13 +400,15 @@ paddle.int64 - Provide dependent helper functions needed to analyze the control flow in `Program`. ([#33439](https://github.com/PaddlePaddle/Paddle/pull/33439)) - `Program` and `Graph` retain the values of the `stop_gradient` and `persistable` attributes needed for training after converting each other. ([#33771](https://github.com/PaddlePaddle/Paddle/pull/33771)) - `Pass` now supports processing the main `Graph` and all its sub-graphs, while the original `Pass` only processed the main `Graph` and ignored the sub-graphs. ([#34158](https://github.com/PaddlePaddle/Paddle/pull/34158)) - - Handle some topological ordering problems for `Program` and `Graph` inter-conversion in the prediction cases. ([#34121](https://github.com/PaddlePaddle/Paddle/pull/34121), [#34521](https://github.com/PaddlePaddle/Paddle/pull/34521)). **《== ** + - Handle some topological ordering problems for `Program` and `Graph` inter-conversion in the prediction cases. ([#34121](https://github.com/PaddlePaddle/Paddle/pull/34121), [#34521](https://github.com/PaddlePaddle/Paddle/pull/34521)). - Pass development - Add the Pass development for subgraph replacement scenarios such as fusion on the Python side. ([#35708](https://github.com/PaddlePaddle/Paddle/pull/35708), [#35602](https://github.com/PaddlePaddle/Paddle/pull/35602)) - Kernel Primitive API - Abstract and encapsulate the underlying codes in the operator Kernel implementation, to provide high-performance Block-level IO and Compute operations. The Kernel development using the Kernel Primitive API allows you to focus more on the implementation of the computational logic, significantly reducing the amount of codes while ensuring performance, and decoupling operator computation from hardware. ([#34672](https://github.com/PaddlePaddle/Paddle/pull/34672), [#35075](https://github.com/PaddlePaddle/Paddle/pull/35075), [#34456](https://github.com/PaddlePaddle/Paddle/pull/34456), [#35282](https://github.com/PaddlePaddle/Paddle/pull/35282), [#35743](https://github.com/PaddlePaddle/Paddle/pull/35743), [#34208](https://github.com/PaddlePaddle/Paddle/pull/34208)) + - Add a total of 13 monadic and binary computation Functors to the Kernel Primitive API. ([#36418](https://github.com/PaddlePaddle/Paddle/pull/36418)) + - Modify the ReadData implementation in the Kernel Primitive API to fix the NX ! =1 access memory out-of-bound bug. ([#36373](https://github.com/PaddlePaddle/Paddle/pull/36373)) #### **Mixed Precision Training** @@ -513,8 +527,16 @@ paddle.int64 - `paddle.equal`: Add the support for `int`, `float`, and `bool` types for the second input. ([#35695](https://github.com/PaddlePaddle/Paddle/pull/35695)) - ``paddle.io.DataLoader``: Add the support for persistent_worker mode. ([#34017](https://github.com/PaddlePaddle/Paddle/pull/34017)) - Optimize ``l2_normalize``, ``p_norm``, ``elementwise_max``, ``prelu,clip_by_norm``, ``lars optimizer`` operators support the float16 computation. ([#35576](https://github.com/PaddlePaddle/Paddle/pull/35576), [#35888](https://github.com/PaddlePaddle/Paddle/pull/35888), [#35888](https://github.com/PaddlePaddle/Paddle/pull/35888), [35532](https://github.com/PaddlePaddle/Paddle/pull/35532), [#35446](https://github.com/PaddlePaddle/Paddle/pull/35446), [#33280](https://github.com/PaddlePaddle/Paddle/pull/33280)) -- Optimize the reading speed of flowers dataset from several minutes per batch to 1~3 seconds per batch. ([#31408](https://github.com/PaddlePaddle/Paddle/pull/31408)) -- Support the fuse allreduce sum function in `paddle.distributed.fleet.DistributedStrategy` when the `without_graph_optimize` switch is on.In the FP32, the performance increases by 3%. In the AMP, the performance increases by 8%. ([#34446](https://github.com/PaddlePaddle/Paddle/pull/34446)) +- Optimize the reading speed of flowers dataset from several minutes per batch to 1~3 seconds per batch. ([#31408](https://github.com/PaddlePaddle/Paddle/pull/31408)) +- Support the fuse allreduce sum function in `paddle.distributed.fleet.DistributedStrategy` when the `without_graph_optimize` switch is on.In the FP32, the performance increases by 3%. In the AMP, the performance increases by 8%. ([#34446](https://github.com/PaddlePaddle/Paddle/pull/34446)) +- In `paddle.matmul`, switch underlying Op from matmul op to matmul_v2 op. ([#36374](https://github.com/PaddlePaddle/Paddle/pull/36374)) +- In `paddle.fft` module, add mkl_cdft and hipfft two computational backends. ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- Parameter `shifts` of `paddle.roll` supports `Tensor` as input. ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- `paddle.shape` supports plural type inputs. ([#36835](https://github.com/PaddlePaddle/Paddle/pull/36835)) +- matmul_v2 supports quantization. ([#36469](https://github.com/PaddlePaddle/Paddle/pull/36469)) +- Add `clip_op` support for `float16`. ([#36672](https://github.com/PaddlePaddle/Paddle/pull/36672)) +- In `paddle.fft` module, add cache plan functionality to the cufft backend, optimizing performance. ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) + #### IR(Intermediate Representation) @@ -525,7 +547,9 @@ paddle.int64 - Optimize the logic of dynamic to static training codes, upgrade the internal ``Program`` cache mechanism, and add an advance copy policy for input ``Tensor`` to improve training performance. ([#34181](https://github.com/PaddlePaddle/Paddle/pull/34181), [#33796](https://github.com/PaddlePaddle/Paddle/pull/33796)) - Optimize the internal actuator memory recycling strategy for dynamic to static graphs, reducing the GPU memory usage during training. ([#34177](https://github.com/PaddlePaddle/Paddle/pull/34177)) - Integrate the source codes of ``Gast`` triple dependency library, decoupling version dependencies. ([#34556](https://github.com/PaddlePaddle/Paddle/pull/34556)) - + - Display partial frame level error reporting information in case of dynamic-to-static error reporting. It is easier to locate the problem. ([#36765](https://github.com/PaddlePaddle/Paddle/pull/36765)) + - Remove duplicate temporary file removal function `remove_static_file()` in the dynamic to static error reporting module. ([#36375](https://github.com/PaddlePaddle/Paddle/pull/36375)) + - Optimize processing of `input_specs` parameter in RegisterPass, to support graph optimization as a matching subgraph condition. ([#36453](https://github.com/PaddlePaddle/Paddle/pull/36453)) #### **Distributed training** @@ -539,6 +563,12 @@ paddle.int64 - `paddle.io.Dataset`: Support the dynamic library parsing data. ([#33969](https://github.com/PaddlePaddle/Paddle/pull/33969)) - In the `paddle.distributed.fleet.dataset.DatasetBase`, add the consistency check function for generated data of the `use_var_list` and `pipe_command`. ([#34463](https://github.com/PaddlePaddle/Paddle/pull/34463)) - Add the consistency check between the `emd` dimension of `paddle.fluid.layers.embedding` and `emb` dimension of `sparse table` in `fleet`. ([#34249](https://github.com/PaddlePaddle/Paddle/pull/34249)) + - Dynamic graph hybrid parallel supports for Pure FP16 training. ([#36707](https://github.com/PaddlePaddle/Paddle/pull/36707)) + - Static graph hybrid parallel supports dropout using a fixed random seed generator to ensure consistency of global variables and randomness of local variables in model parallel. ([#36682](https://github.com/PaddlePaddle/Paddle/pull/36682)) + - Implement CPU parallelism and support for adding custom backend parameters when calling spawn or launch. Available backend options are "gloo", "nccl", "bkcl", and "auto", for CPU parallel, GPU parallel, XPU parallel, and automatic selection by Paddle version, respectively. ([#35745](https://github.com/PaddlePaddle/Paddle/pull/35745)) + - Optimize dynamic graph hybrid parallel HybridParallelClipGrad policy, to support 4D hybrid parallel + Pure FP16 training. ([#36707](https://github.com/PaddlePaddle/Paddle/pull/36707)) + - Add SlotRecordDataset class to support GPU parameter server training. ([#36710](https://github.com/PaddlePaddle/Paddle/pull/36710)) + - In the GPU parameter server building phase, support use of SlotRecordDataset. ([#36723](https://github.com/PaddlePaddle/Paddle/pull/36723)) - Static graph hybrid parallel @@ -561,7 +591,15 @@ paddle.int64 - Fix the ``paddle.jit.save`` interface and model pruning logic. It is unnecessary to add an associated ``scale_op`` for output variables, and to properly export models containing outputs of type ``bool`` and ``float16``. ([#35730](https://github.com/PaddlePaddle/Paddle/pull/35730), [#36132](https://github.com/PaddlePaddle/Paddle/pull/36132)) - Custom OP - Remove unnecessary ``cudaStreamSynchronize`` operations from ``paddle::Tensor's`` ``copy`` method, to improve performance. ([#35802](https://github.com/PaddlePaddle/Paddle/pull/35802)) +- Add C++ to support for GeneratePass development registration. The development mode is aligned with Python side. ([#36302](https://github.com/PaddlePaddle/Paddle/pull/36302)) +- Automic SParsity +- Add `paddle.static.sparsity`, to support generating sparse parameters for `n:m` sparse mode. Currently, it only supports static graph ASP training. FP32 and FP16 on A100 are set with `1:2` and `2:4` sparse modes, respectively, to train saved sparse models, which can be used to accelerate inference tasks by calling TensorRT 8 based on the sparse Tensor Core of Ampere architecture. The current version provides a total of 5 APIs: ([#32995](https://github.com/PaddlePaddle/Paddle/pull/32995)、[#33132](https://github.com/PaddlePaddle/Paddle/pull/33132)、[#33558](https://github.com/PaddlePaddle/Paddle/pull/33558)、[#36525](https://github.com/PaddlePaddle/Paddle/pull/36525)) + - `paddle.static.sparsity.calculate_density`: calculates the density of the input Tensor. + - `paddle.static.sparsity.decorate`: wraps the given optimizer as `OptimizerWithSparsityGuarantee`, automatically inserting necessary operations for the ASP workflow when calling `optimizer.minimize()`. + - `paddle.static.sparsity.prune_model`: prunes the parameters of the supported layers in `main_program` based on the mask generator function specified by `mask_algo`. + - `paddle.static.sparsity.set_excluded_layers`: sets the names of the parameters of layers that will not be trimmed. + - `paddle.static.sparsity.reset_excluded_layers`: resets the `excluded_layers` setting corresponding to `main_program`. ### **(3) Performance optimization** @@ -600,6 +638,20 @@ paddle.int64 - Optimize the dynamic graph performance by stripping logic executed only on static graphs from the execution path of dynamic graphs. ([#34024](https://github.com/PaddlePaddle/Paddle/pull/34024)) - For the IR Pass, optimize the capability exposed as a general-purpose capability. Support both single machine and distributed optimization.The performance improves by 3%-5% in GPT mixed parallel scenarios. ([#34955](https://github.com/PaddlePaddle/Paddle/pull/34955), [#35704](https://github.com/PaddlePaddle/Paddle/pull/35704), [#34730](https://github.com/PaddlePaddle/Paddle/pull/34730), [#34524](https://github.com/PaddlePaddle/Paddle/pull/34524)) - Optimize the ctc loss grad computation, increase the speed by ~3x. Correspondingly, the GPU memory usage increases. ([#34729](https://github.com/PaddlePadle/Paddle/pull/34729)) +- transformer encoder Performance Optimization + - Optimization method: add `paddle.incubate.nn.FusedMultiHeadAttention` and `paddle.incubate.nn.FusedFeedForward`. In the implementation, q, k, v gemm fusion and multiple kernel fusion optimization techniques are used to improve performance of the transformer encoder. + - FusedAttention + - Add `paddle.incubate.nn.functional.fused_multi_head_attention`, to support fusion computation of multi-head attention. ([#35905](https://github.com/PaddlePaddle/Paddle/pull/35905) [35903](https://github.com/PaddlePaddle/Paddle/pull/35903) [#36803](https://github.com/PaddlePaddle/Paddle/pull/36803) [#36793](https://github.com/PaddlePaddle/Paddle/pull/36793) [36185](https://github.com/PaddlePaddle/Paddle/pull/36185)) + - Add `paddle.incubate.nn.FusedMultiHeadAttention` for layer networking of the fused multi-head attention. ([#36498](https://github.com/PaddlePaddle/Paddle/pull/36498) ) + - This module uses q, k, v gemm fusion and bias add + dropout + residual add + layer_norm kernel fusion optimization techniques, resulting in 1.08x-1.45x acceleration. + + - FusedFeedForward + - Add `paddle.incubate.nn.functional.fused_feedforward`, to support feedforward fusion computation. ([#36729](https://github.com/PaddlePaddle/Paddle/pull/36729) [#36730](https://github.com/PaddlePaddle/Paddle/pull/36730)) + - Add `paddle.incubate.nn.FusedFeedForward` for layer networking of fused feedforward. ([#36776](https://github.com/PaddlePaddle/Paddle/pull/36776)) + - Performance is improved by about 1.04x~1.22x over pre-optimization. + - Add `paddle.incubate.nn.FusedTransformerEncoderLayer`, to support layer networking by using fused multi-head attention and fused feedforward computation. ([#36776](https://github.com/PaddlePaddle/Paddle/pull/36776)) + + ### **(4) Troubleshooting** @@ -693,12 +745,27 @@ paddle.int64 - Migrate the one_hot operator in ``paddle.nn.functional.dice_loss`` API to the ``one_hot_v2`` operator. ([#35734](https://github.com/PaddlePaddle/Paddle/pull/35734)) - Fix the bug of usage in the static graph mode in ``paddle.summary``. ([#35303](https://github.com/PaddlePaddle/Paddle/pull/35303)) - Fix the multi-card startup bug in ``paddle.Model.prepare`` static graph mode. ([#34311](https://github.com/PaddlePaddle/Paddle/pull/34311)) +- Fix error report of `paddle.nn.functional.cross_entropy` when `weight` is given and `axis` is specified as a legal dimension other than -1. ([#36647](https://github.com/PaddlePaddle/Paddle/pull/36647)) +- Fix a bug with `paddle.utils.dlpack.to_dlpack` that prevents it from encoding multidimensional `Tensor`, and fix a bug with its generated DLPack objects not being shared across deep learning frameworks. ([#36177](https://github.com/PaddlePaddle/Paddle/pull/36177)) +- Fix a bug in the `sample` method using `paddle.distribution.Categorical`, specifically, due to an out-of-bounds array access in the multinomial op's cuda kernel. The bug causes access to values beyond the subscript of the array, causing an error to be reported. ([#36511](https://github.com/PaddlePaddle/Paddle/pull/36511)) +- Fix a bug in the dynamic graph `_BatchNormBase` base class where the default_dtype is modified, resulting in the wrong type of subsequent networking parameters. Affected APIs are `paddle.nn.BatchNorm1D`, `paddle.nn.BatchNorm2D`, ` paddle.nn.BatchNorm3D`, and `paddle.nn.SyncBatchNorm`. The specific reason is that when `get_default_dtype() == 'float16'`, the default parameter data type is modified by `set_default_dtype('float32')`. The parameter type of dynamic graph networking is created by default_dtype. Therefore, when the default parameter type is modified, subsequent networking parameter type is consequently incorrect. ([#36376](https://github.com/PaddlePaddle/Paddle/pull/36376)) +- Fix an exception in `paddle.nn.functional.grid_sample` caused by special input. ([#36625](https://github.com/PaddlePaddle/Paddle/pull/36625)) +- Fix calculation error of `paddle.fft.ffft`, `paddle.fft.ifft`, `paddle.fft.rfft` , `paddle.fft.irfft`, `paddle.fft.hfft`, and `paddle.fft.ihfft` when input ` axis=0`. ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- Fix a bug of errors of `paddle.fft.fftshift` and `paddle.fft.ifftshift` under static graphs. ([#36537](https://github.com/PaddlePaddle/Paddle/pull/36537)) +- Fix a bug where `paddle.fft.ifftshift` is not calculated correctly. ([#36835](https://github.com/PaddlePaddle/Paddle/pull/36835)) +- Fix error message prompt for `paddle.nn.functional.pad` in `replicate` mode. ([#36531](https://github.com/PaddlePaddle/Paddle/pull/36531)) + + #### IR(Intermediate Representation) - Dynamic graph to static graph - Fix an abnormal growth of GPU memory under ``paddle.no_grad`` semantics after dynamic to static. ([#35725](https://github.com/PaddlePaddle/Paddle/pull/35725)) - Fix a misidentification and conversion bug in the ``paddle.no_grad`` interface. ([#34136](https://github.com/PaddlePaddle/Paddle/pull/34136)) + - Fix a bug of reporting an error in dynamic to static training when stop_gradient=True is set in the middle of the model in some scenarios. ([#36353](https://github.com/PaddlePaddle/Paddle/pull/36353)) + - Fix a bug of reporting an error when checking the return result in some scenarios where the control flow “if” is converted. ([#36830](https://github.com/PaddlePaddle/Paddle/pull/36830)) + - Fix a bug that the return type changes unexpectedly due to additional dynamic to static aligning in the return length when “ifelse” branch returns unequal results. ([#36565](https://github.com/PaddlePaddle/Paddle/pull/36565)) + - Fix a bug where video memory will keep growing in train mode and no_grad contexts after loading a model via the jit.save/load interface. ([#36463](https://github.com/PaddlePaddle/Paddle/pull/36463)) #### **Distributed training** @@ -733,6 +800,8 @@ paddle.int64 - Fix the GPU parameter server error reported by using non-0 card training. ([#33078](https://github.com/PaddlePaddle/Paddle/pull/33078)) - Fix the bug of the delta score and scale show in the GPU Parameter Server. ([#33492](https://github.com/PaddlePaddle/Paddle/pull/33078), [#33492](https://github.com/PaddlePaddle/Paddle/pull/33492)) - Fix the bug with GPU Parameter Server not merging dense after training, in incorrect g2sum calculation. For data norm, add the optimize op. ([#35029](https://github.com/PaddlePaddle/Paddle/pull/35029)) + - Fix an error reported if the gradient is empty when using the fuse all reduce ops switch. ([#36231](https://github.com/PaddlePaddle/Paddle/pull/36231)) + - Fix a bug with dist_transformer files showing undefined variables. ([#36211](https://github.com/PaddlePaddle/Paddle/pull/36211)) - Dynamic graph hybrid parallel - Fix the precision error in pipeline parallel due to communication asynchronization. [#35556](https://github.com/PaddlePaddle/Paddle/pull/35556) @@ -774,6 +843,7 @@ paddle.int64 - Add native support for Ascend series hardware - sub-graphs are accessed to ascend310 hardware [#35226](https://github.com/PaddlePaddle/Paddle/pull/35226) by supporting Paddle-Lite NNAdapter. For the example, see the [demo](https://github.com/PaddlePaddle/Paddle-Inference-Demo/tree/master/c%2B%2B/ascend310_lite_subgraph/image_classification_demo). - New Ascend 910 inference support [#34101](https://github.com/PaddlePaddle/Paddle/pull/34101) +- Add pool3d OP to support for TensorRT. ([#36545](https://github.com/PaddlePaddle/Paddle/pull/36545)) ### **(2) Function optimization** @@ -782,7 +852,7 @@ paddle.int64 - Quantification support - Refactor dynamic graph quantization inference pass, to support non-analog quantization OP and analog quantization OP. ([#35907](https://github.com/PaddlePaddle/Paddle/pull/35907)) - Add int8 for analog quantized OP matmul (the case where weights are multiplied by tensor). ([#34359](https://github.com/PaddlePaddle/Paddle/pull/34359)) - + - Fix a bug that MobileNetV3 model "Loss” out of NAN during quantization training due to the quantization parameter being 0. ([#36763](https://github.com/PaddlePaddle/Paddle/pull/36763)) - API enhancements - Refactor GO API based on new version of CAPI, [#33113](https://github.com/PaddlePaddle/Paddle/pull/33113). For the example, see the [demo](https://github.com/PaddlePaddle/Paddle-Inference-Demo/tree/master/go/resnet50). @@ -818,6 +888,7 @@ paddle.int64 - Add support for int8 in TensorRT `qkv_context` plugin ([#34917](https://github.com/PaddlePaddle/Paddle/pull/34917), [#35504](https://github.com/PaddlePaddle/Paddle/pull/35504)) - Add support for TensorRT conv3d. ([#35507](https://github.com/PaddlePaddle/Paddle/pull/35507)) - Add support for broadcasting the input of the `multihead_matmul` fusion operator. ([#35780](https://github.com/PaddlePaddle/Paddle/pull/35780)) + - Inference supports for TensorRT8 sparse inference, with performance improved by 10%-30% for ERNIE model with variable-length input at different batch_sizes, and performance improved by 10% for ResNeXt101_32x4d model at different batch_sizes under test environment. ([#36659](https://github.com/PaddlePaddle/Paddle/pull/36659)) - Nvidia Jetson native support enhancements - Add the Op support, for the Jetson Nano/TX2, two devices with lower arithmetic power. We made targeted optimizations. Now add the support for 17 OPs such as `pool2d`, `pool_max`, `conv3d_transpose`, etc. ([#35378](https://github.com/PaddlePaddle/Paddle/pull/35378)) @@ -827,6 +898,7 @@ paddle.int64 - Kunlun XPU interface feature extensions - Add the `set_xpu_device_id` interface to support setting the device number of the Kunlun chip in the inference ([#35572](https://github.com/PaddlePaddle/Paddle/pull/35572)) +- In Inference python `copy_from_cpu` interface, add input type check. Report errors in advance for wrong type inputs. ([#36552](https://github.com/PaddlePaddle/Paddle/pull/36552)) ### **(3) Troubleshooting** @@ -849,6 +921,14 @@ paddle.int64 - Fix a possible accuracy bug in the running of the ernie model FP16 with precision. ([#34771](https://github.com/PaddlePaddle/Paddle/pull/34711)) - Fix the incorrect output bug due to an inconsistent order of inputs when the ernie becomes longer. ([#33575](https://github.com/PaddlePaddle/Paddle/pull/33575)) - Fix a bug where the allocator function is abnormal in multi-stream state. ([#32932](https://github.com/PaddlePaddle/Paddle/pull/33575)) +- Fix a possible crash bug of ERNIE model under TRT8. ([#36769](https://github.com/PaddlePaddle/Paddle/pull/36769)) +- Fix a bug of crash and accuracy when Pool and Slice are used. ([#36666](https://github.com/PaddlePaddle/Paddle/pull/36666)) +- Fix an accuracy bug of yolo_box op caused by a wrong formula. ([#36365](https://github.com/PaddlePaddle/Paddle/pull/36365)) +- Fix a bug where quantized matmul_v2 does not infer properly under TRT. ([#36821](https://github.com/PaddlePaddle/Paddle/pull/36821)) +- Fix a bug where quantized op is incorrectly added when quantizing matmul_v2. ([#36820](https://github.com/PaddlePaddle/Paddle/pull/36820)) +- Fix a bug with the operators batch_norm and elementwise_add reporting an error when TRT is enabled in 3D application scenarios. ([#36446](https://github.com/PaddlePaddle/Paddle/pull/36446)) +- Fix a bug where the prediction model saved by the high-level linear api cannot not be optimized by Pass fusion. ([#36500](https://github.com/PaddlePaddle/Paddle/pull/36500)) +- Fix the Pass of MatmulV2ToMul, re-qualify (matmul_v2 to mul) mapping pass, add Pass of MatmulV2ToMatmul, qualify (matmul_v2 to matmul) mapping pass condition (not supporting broadcast), and modify (matmul, mul) op_teller mapping condition. ([#36652](https://github.com/PaddlePaddle/Paddle/pull/36652) #### **Back-end capability fixing** From 32363502bd34d018a2129e9f83f404fc3abbbbff Mon Sep 17 00:00:00 2001 From: pangyoki Date: Thu, 11 Nov 2021 14:45:14 +0800 Subject: [PATCH 03/35] update Tables in develop branch (#4071) --- docs/install/Tables.md | 244 +++++++++++++++++++++++++------------- docs/install/Tables_en.md | 244 +++++++++++++++++++++++++------------- 2 files changed, 324 insertions(+), 164 deletions(-) diff --git a/docs/install/Tables.md b/docs/install/Tables.md index 378f9c5eb27..7f3b1a67ff8 100644 --- a/docs/install/Tables.md +++ b/docs/install/Tables.md @@ -228,11 +228,11 @@ PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。 - paddlepaddle==[版本号] 例如 paddlepaddle==2.1.3 + paddlepaddle==[版本号] 例如 paddlepaddle==2.2.0 只支持CPU对应版本的PaddlePaddle,具体版本请参见Pypi - paddlepaddle-gpu==[版本号] 例如 paddlepaddle-gpu==2.1.3 + paddlepaddle-gpu==[版本号] 例如 paddlepaddle-gpu==2.2.0 默认安装支持CUDA 10.2和cuDNN 7的对应[版本号]的PaddlePaddle安装包 @@ -242,7 +242,7 @@ PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。 您可以在 [Release History](https://pypi.org/project/paddlepaddle-gpu/#history) 中找到PaddlePaddle-gpu的各个发行版本。 > 其中`postXX` 对应的是CUDA和cuDNN的版本,`postXX`之前的数字代表Paddle的版本 -需要注意的是,命令中 paddlepaddle-gpu==2.1.3 在windows环境下,会默认安装支持CUDA 10.2和cuDNN 7的对应[版本号]的PaddlePaddle安装包 +需要注意的是,命令中 paddlepaddle-gpu==2.2.0 在windows环境下,会默认安装支持CUDA 10.2和cuDNN 7的对应[版本号]的PaddlePaddle安装包

@@ -263,124 +263,190 @@ PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。 cpu-mkl-avx - paddlepaddle-2.1.3-cp36-cp36m-linux_x86_64.whl - paddlepaddle-2.1.3-cp37-cp37m-linux_x86_64.whl - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl - paddlepaddle-2.1.3-cp39-cp39-linux_x86_64.whl + paddlepaddle-2.2.0-cp36-cp36m-linux_x86_64.whl + paddlepaddle-2.2.0-cp37-cp37m-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp39-cp39-linux_x86_64.whl cpu-openblas-avx - - - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl - cpu-mkl-noavx - - - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl - cpu-openblas-noavx - - - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl - cuda10.1-cudnn7-mkl-gcc5.4-avx - - paddlepaddle_gpu-2.1.3.post101-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp39-cp39-linux_x86_64.whl cuda10.1-cudnn7-mkl-gcc5.4-noavx - - - - paddlepaddle_gpu-2.1.3.post101-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-linux_x86_64.whl - - - cuda10.1-cudnn7-mkl-gcc8.2-avx-trt6.0.1.5 - - paddlepaddle_gpu-2.1.3.post101-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp39-cp39-linux_x86_64.whl - cuda10.2-cudnn7-mkl-gcc8.2-avx - - paddlepaddle_gpu-2.1.3-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp39-cp39-linux_x86_64.whl cuda10.2-cudnn7-mkl-gcc8.2-noavx - - - - paddlepaddle_gpu-2.1.3-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp38-cp38-linux_x86_64.whl - - - cuda10.2-cudnn8.1-mkl-gcc8.2-trt7.1.3.4 - - paddlepaddle_gpu-2.1.3-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp39-cp39-linux_x86_64.whl - cuda11.0-cudnn8-mkl-gcc8.2-avx - - paddlepaddle_gpu-2.1.3.post110-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post110-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post110-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post110-cp39-cp39-linux_x86_64.whl - - - cuda11.1-cudnn8.1-mkl-gcc8.2-trt7.1.3.4 - - paddlepaddle_gpu-2.1.3.post111-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post111-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post111-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post111-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp39-cp39-linux_x86_64.whl + + + cuda11.1-cudnn8.1-mkl-gcc8.2-avx + + paddlepaddle_gpu-2.2.0.post111-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post111-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post111-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post111-cp39-cp39-linux_x86_64.whl cuda11.2-cudnn8-mkl-gcc8.2-avx - - paddlepaddle_gpu-2.1.3.post112-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post112-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post112-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post112-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp39-cp39-linux_x86_64.whl + + + macos-cpu-openblas + + paddlepaddle-2.2.0-cp36-cp36m-macosx_10_6_intel.whl + + paddlepaddle-2.2.0-cp37-cp37m-macosx_10_6_intel.whl + + paddlepaddle-2.2.0-cp38-cp38-macosx_10_14_x86_64.whl + + paddlepaddle-2.2.0-cp39-cp39-macosx_10_14_x86_64.whl + + + win-cpu-mkl-avx + paddlepaddle-2.2.0-cp36-cp36m-win_amd64.whl + paddlepaddle-2.2.0-cp37-cp37m-win_amd64.whl + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + paddlepaddle-2.2.0-cp39-cp39-win_amd64.whl + + + win-cpu-mkl-noavx + - + - + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + - + + + win-cpu-openblas-avx + - + - + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + - + + + win-cpu-openblas-noavx + - + - + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + - + + + win-cuda10.1-cudnn7-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post101-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post101-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post101-cp39-cp39-win_amd64.whl + + + win-cuda10.1-cudnn7-mkl-vs2017-noavx + - + - + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-win_amd64.whl + - + + + win-cuda10.2-cudnn7-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post102-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp39-cp39-win_amd64.whl + + + win-cuda10.2-cudnn7-mkl-vs2017-noavx + - + paddlepaddle_gpu-2.2.0.post102-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp38-cp38-win_amd64.whl + - + + + win-cuda11.0-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post110-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post110-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post110-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post110-cp39-cp39-win_amd64.whl + + + win-cuda11.1-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post111-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post111-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post111-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post111-cp39-cp39-win_amd64.whl + + + win-cuda11.2-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post112-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post112-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post112-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post112-cp39-cp39-win_amd64.whl @@ -469,6 +535,13 @@ platform tag: 类似 'linux_x86_64', 'any' paddlepaddle_gpu-latest-cp38-cp38-linux_x86_64.whl paddlepaddle_gpu-latest-cp39-cp39-linux_x86_64.whl + + cuda11.1-cudnn8.1-mkl + paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl + paddlepaddle_gpu-latest-cp37-cp37m-linux_x86_64.whl + paddlepaddle_gpu-latest-cp38-cp38-linux_x86_64.whl + paddlepaddle_gpu-latest-cp39-cp39-linux_x86_64.whl + cuda11.2-cudnn8-mkl paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl @@ -495,7 +568,7 @@ platform tag: 类似 'linux_x86_64', 'any' - - paddlepaddle-latest-cp38-cp38-win_amd64.whl - paddlepaddle-latest-cp39-cp39-win_amd64.whl + - win-cpu-openblas-avx @@ -540,14 +613,21 @@ platform tag: 类似 'linux_x86_64', 'any' - - win-cuda11.0-cudnn7-mkl-vs2017-avx + win-cuda11.0-cudnn8-mkl-vs2017-avx paddlepaddle_gpu-latest-cp36-cp36m-win_amd64.whl paddlepaddle_gpu-latest-cp37-cp37m-win_amd64.whl paddlepaddle_gpu-latest-cp38-cp38-win_amd64.whl paddlepaddle_gpu-latest-cp39-cp39-win_amd64.whl - win-cuda11.2-cudnn7-mkl-vs2017-avx + win-cuda11.1-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-latest-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-latest-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-latest-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-latest-cp39-cp39-win_amd64.whl + + + win-cuda11.2-cudnn8-mkl-vs2017-avx paddlepaddle_gpu-latest-cp36-cp36m-win_amd64.whl paddlepaddle_gpu-latest-cp37-cp37m-win_amd64.whl paddlepaddle_gpu-latest-cp38-cp38-win_amd64.whl diff --git a/docs/install/Tables_en.md b/docs/install/Tables_en.md index 3649ca05235..61325954bab 100644 --- a/docs/install/Tables_en.md +++ b/docs/install/Tables_en.md @@ -220,11 +220,11 @@ PaddePaddle implements references to various BLAS/CUDA/cuDNN libraries by specif - paddlepaddle==[version code] such as paddlepaddle==2.1.3 + paddlepaddle==[version code] such as paddlepaddle==2.2.0 Only support the corresponding version of the CPU PaddlePaddle, please refer to Pypi for the specific version. - paddlepaddle-gpu==[version code], such as paddlepaddle-gpu==2.1.3 + paddlepaddle-gpu==[version code], such as paddlepaddle-gpu==2.2.0 The default installation supports the PaddlePaddle installation package corresponding to [version number] of CUDA 10.2 and cuDNN 7 @@ -234,7 +234,7 @@ PaddePaddle implements references to various BLAS/CUDA/cuDNN libraries by specif You can find various distributions of PaddlePaddle-gpu in [the Release History](https://pypi.org/project/paddlepaddle-gpu/#history). > 'postxx' corresponds to CUDA and cuDNN versions, and the number before 'postxx' represents the version of Paddle -Please note that: in the commands, paddlepaddle-gpu==2.1.3 will install the installation package of PaddlePaddle that supports CUDA 10.2 and cuDNN 7 by default under Windows environment. +Please note that: in the commands, paddlepaddle-gpu==2.2.0 will install the installation package of PaddlePaddle that supports CUDA 10.2 and cuDNN 7 by default under Windows environment. @@ -257,124 +257,190 @@ Please note that: in the commands, paddlepaddle-gpu==2.1.3 will i cpu-mkl-avx - paddlepaddle-2.1.3-cp36-cp36m-linux_x86_64.whl - paddlepaddle-2.1.3-cp37-cp37m-linux_x86_64.whl - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl - paddlepaddle-2.1.3-cp39-cp39-linux_x86_64.whl + paddlepaddle-2.2.0-cp36-cp36m-linux_x86_64.whl + paddlepaddle-2.2.0-cp37-cp37m-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp39-cp39-linux_x86_64.whl cpu-openblas-avx - - - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl - cpu-mkl-noavx - - - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl - cpu-openblas-noavx - - - paddlepaddle-2.1.3-cp38-cp38-linux_x86_64.whl + paddlepaddle-2.2.0-cp38-cp38-linux_x86_64.whl - cuda10.1-cudnn7-mkl-gcc5.4-avx - - paddlepaddle_gpu-2.1.3.post101-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp39-cp39-linux_x86_64.whl cuda10.1-cudnn7-mkl-gcc5.4-noavx - - - - paddlepaddle_gpu-2.1.3.post101-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-linux_x86_64.whl - - - cuda10.1-cudnn7-mkl-gcc8.2-avx-trt6.0.1.5 - - paddlepaddle_gpu-2.1.3.post101-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post101-cp39-cp39-linux_x86_64.whl - cuda10.2-cudnn7-mkl-gcc8.2-avx - - paddlepaddle_gpu-2.1.3-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp39-cp39-linux_x86_64.whl cuda10.2-cudnn7-mkl-gcc8.2-noavx - - - - paddlepaddle_gpu-2.1.3-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0-cp38-cp38-linux_x86_64.whl - - - cuda10.2-cudnn8.1-mkl-gcc8.2-trt7.1.3.4 - - paddlepaddle_gpu-2.1.3-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3-cp39-cp39-linux_x86_64.whl - cuda11.0-cudnn8-mkl-gcc8.2-avx - - paddlepaddle_gpu-2.1.3.post110-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post110-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post110-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post110-cp39-cp39-linux_x86_64.whl - - - cuda11.1-cudnn8.1-mkl-gcc8.2-trt7.1.3.4 - - paddlepaddle_gpu-2.1.3.post111-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post111-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post111-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post111-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post110-cp39-cp39-linux_x86_64.whl + + + cuda11.1-cudnn8.1-mkl-gcc8.2-avx + + paddlepaddle_gpu-2.2.0.post111-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post111-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post111-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post111-cp39-cp39-linux_x86_64.whl cuda11.2-cudnn8-mkl-gcc8.2-avx - - paddlepaddle_gpu-2.1.3.post112-cp36-cp36m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post112-cp37-cp37m-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post112-cp38-cp38-linux_x86_64.whl - - paddlepaddle_gpu-2.1.3.post112-cp39-cp39-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp36-cp36m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp37-cp37m-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp38-cp38-linux_x86_64.whl + + paddlepaddle_gpu-2.2.0.post112-cp39-cp39-linux_x86_64.whl + + + macos-cpu-openblas + + paddlepaddle-2.2.0-cp36-cp36m-macosx_10_6_intel.whl + + paddlepaddle-2.2.0-cp37-cp37m-macosx_10_6_intel.whl + + paddlepaddle-2.2.0-cp38-cp38-macosx_10_14_x86_64.whl + + paddlepaddle-2.2.0-cp39-cp39-macosx_10_14_x86_64.whl + + + win-cpu-mkl-avx + paddlepaddle-2.2.0-cp36-cp36m-win_amd64.whl + paddlepaddle-2.2.0-cp37-cp37m-win_amd64.whl + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + paddlepaddle-2.2.0-cp39-cp39-win_amd64.whl + + + win-cpu-mkl-noavx + - + - + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + - + + + win-cpu-openblas-avx + - + - + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + - + + + win-cpu-openblas-noavx + - + - + paddlepaddle-2.2.0-cp38-cp38-win_amd64.whl + - + + + win-cuda10.1-cudnn7-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post101-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post101-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post101-cp39-cp39-win_amd64.whl + + + win-cuda10.1-cudnn7-mkl-vs2017-noavx + - + - + paddlepaddle_gpu-2.2.0.post101-cp38-cp38-win_amd64.whl + - + + + win-cuda10.2-cudnn7-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post102-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp39-cp39-win_amd64.whl + + + win-cuda10.2-cudnn7-mkl-vs2017-noavx + - + paddlepaddle_gpu-2.2.0.post102-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post102-cp38-cp38-win_amd64.whl + - + + + win-cuda11.0-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post110-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post110-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post110-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post110-cp39-cp39-win_amd64.whl + + + win-cuda11.1-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post111-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post111-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post111-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post111-cp39-cp39-win_amd64.whl + + + win-cuda11.2-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-2.2.0.post112-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post112-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-2.2.0.post112-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-2.2.0.post112-cp39-cp39-win_amd64.whl @@ -467,6 +533,13 @@ platform tag: similar to 'linux_x86_64', 'any' paddlepaddle_gpu-latest-cp38-cp38-linux_x86_64.whl paddlepaddle_gpu-latest-cp39-cp39-linux_x86_64.whl + + cuda11.1-cudnn8.1-mkl + paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl + paddlepaddle_gpu-latest-cp37-cp37m-linux_x86_64.whl + paddlepaddle_gpu-latest-cp38-cp38-linux_x86_64.whl + paddlepaddle_gpu-latest-cp39-cp39-linux_x86_64.whl + cuda11.2-cudnn8-mkl paddlepaddle_gpu-latest-cp36-cp36m-linux_x86_64.whl @@ -493,7 +566,7 @@ platform tag: similar to 'linux_x86_64', 'any' - - paddlepaddle-latest-cp38-cp38-win_amd64.whl - paddlepaddle-latest-cp39-cp39-win_amd64.whl + - win-cpu-openblas-avx @@ -538,14 +611,21 @@ platform tag: similar to 'linux_x86_64', 'any' - - win-cuda11.0-cudnn7-mkl-vs2017-avx + win-cuda11.0-cudnn8-mkl-vs2017-avx paddlepaddle_gpu-latest-cp36-cp36m-win_amd64.whl paddlepaddle_gpu-latest-cp37-cp37m-win_amd64.whl paddlepaddle_gpu-latest-cp38-cp38-win_amd64.whl paddlepaddle_gpu-latest-cp39-cp39-win_amd64.whl - win-cuda11.2-cudnn7-mkl-vs2017-avx + win-cuda11.1-cudnn8-mkl-vs2017-avx + paddlepaddle_gpu-latest-cp36-cp36m-win_amd64.whl + paddlepaddle_gpu-latest-cp37-cp37m-win_amd64.whl + paddlepaddle_gpu-latest-cp38-cp38-win_amd64.whl + paddlepaddle_gpu-latest-cp39-cp39-win_amd64.whl + + + win-cuda11.2-cudnn8-mkl-vs2017-avx paddlepaddle_gpu-latest-cp36-cp36m-win_amd64.whl paddlepaddle_gpu-latest-cp37-cp37m-win_amd64.whl paddlepaddle_gpu-latest-cp38-cp38-win_amd64.whl From f585f7928bd9d96024223696419ff3c8baf7de22 Mon Sep 17 00:00:00 2001 From: Chen Long <1300851984@qq.com> Date: Thu, 11 Nov 2021 15:42:27 +0800 Subject: [PATCH 04/35] Update 01_quick_start_cn.rst --- docs/guides/02_paddle2.0_develop/01_quick_start_cn.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/guides/02_paddle2.0_develop/01_quick_start_cn.rst b/docs/guides/02_paddle2.0_develop/01_quick_start_cn.rst index acda7be5e86..b354c0c995d 100644 --- a/docs/guides/02_paddle2.0_develop/01_quick_start_cn.rst +++ b/docs/guides/02_paddle2.0_develop/01_quick_start_cn.rst @@ -22,7 +22,7 @@ .. parsed-literal:: - 2.1.1 + 2.2.0 三、实践:手写数字识别任务 From 298ba1eb9c67feec7d76368e1a0c0bb318746f0c Mon Sep 17 00:00:00 2001 From: YuanRisheng Date: Thu, 11 Nov 2021 17:14:50 +0800 Subject: [PATCH 05/35] Add FAQ of load/save API (#4060) * add faq of save/load * fix ci-bugs for save/load faq * perfect save/load faq --- docs/faq/save_cn.md | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/docs/faq/save_cn.md b/docs/faq/save_cn.md index f54c7cb67f8..3c6bd623856 100644 --- a/docs/faq/save_cn.md +++ b/docs/faq/save_cn.md @@ -84,6 +84,46 @@ adam.set_state_dict(opti_state_dict) 2. 如果被保存的对象包含``numpy.ndarray``,尽量在``load``时设置``return_numpy = True``。 3. 对于``Layer``对象,只保存参数的值和名字,如果需要其他信息(例如``stop_gradient``),请将手将这些信息打包成`dict`等,一并保存。 +##### 问题:paddle 2.x 如何保存模型文件?如何保存paddle 1.x 中的 model 文件? ++ 答复: + + 1. 在paddle2.x可使用``paddle.jit.save``接口以及``paddle.static.save_inference_model``,通过指定``path``来保存成为``path.pdmodel``和``path.pdiparams``,可对应paddle1.x中使用``save_inference_model``指定dirname和params_filename生成``dirname/__model__``和``dirname/params文件``。paddle2.x保存模型文件详情可参考: + - [paddle.jit.save/load](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/02_paddle2.0_develop/08_model_save_load_cn.html#dongtaitumoxing-canshubaocunzairu-xunliantuili) + - [paddle.static.save/load_inference_model](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/02_paddle2.0_develop/08_model_save_load_cn.html#jingtaitumoxing-canshubaocunzairu-tuilibushu) + 2. 如果想要在paddle2.x中读取paddle 1.x中的model文件,可参考: + - [兼容载入旧格式模型](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.2rc/guides/01_paddle2.0_introduction/load_old_format_model.html#cn-guides-load-old-format-model) + + +##### 问题:paddle如何单独load存下来所有模型变量中某一个变量,然后修改变量中的值? ++ 答复: + + 1. 如果目的是修改存储变量的值,可以使用``paddle.save``保存下来所有变量,然后再使用``paddle.load``将所有变量载入后,查找目标变量进行修改,示例代码如下: + +```python +import paddle + +layer = paddle.nn.Linear(3, 4) +path = 'example/model.pdparams' +paddle.save(layer.state_dict(), path) +layer_param = paddle.load(path) +# 修改fc_0.b_0的值 +layer_param["fc_0.b_0"] = 10 +``` + + 2. 如果目的是单独访问某个变量,需要单独存储然后再单独读取,示例代码如下: + +```python +import paddle + +layer = paddle.nn.Linear(3, 4) +path_w = 'example/weight.tensor' +path_b = 'example/bias.tensor' +paddle.save(layer.weight, path_w) +paddle.save(layer.bias, path_b) +tensor_bias = paddle.load(path_b) +tensor_bias[0] = 10 +``` + 更多介绍请参考以下API文档: - [paddle.save](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/framework/io/save_cn.html) From e9718b4c5384399d11fb728b9a2d071b5812a3fd Mon Sep 17 00:00:00 2001 From: Chen Long <1300851984@qq.com> Date: Thu, 11 Nov 2021 17:25:03 +0800 Subject: [PATCH 06/35] Update 2.0.md --- docs/faq/2.0.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/faq/2.0.md b/docs/faq/2.0.md index ae327504dc8..34352cd3db4 100644 --- a/docs/faq/2.0.md +++ b/docs/faq/2.0.md @@ -48,7 +48,7 @@ 查看API变动的两种方法: -1. 依据1.8版本API到2.0版本API的对应关系表对API进行升级,请参考文档 [飞桨框架API映射表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/09_others_information/api_mapping_cn.html) +1. 依据1.8版本API到2.0版本API的对应关系表对API进行升级,请参考文档 [飞桨框架API映射表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/08_api_mapping/pytorch_api_mapping_cn.html) 2. 飞桨提供了迁移工具,来方便用户将旧版本的代码迁移为2.0.1版本的代码,详情请见:[版本迁移工具](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/migration_cn.html) From c3ddcf88e74d32d8bba4574ff55605de52274f01 Mon Sep 17 00:00:00 2001 From: Ligoml <39876205+Ligoml@users.noreply.github.com> Date: Thu, 11 Nov 2021 19:09:41 +0800 Subject: [PATCH 07/35] add_faq_einsum (#4076) --- docs/faq/train_cn.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/docs/faq/train_cn.md b/docs/faq/train_cn.md index 2e9d715623f..d1a78640ee0 100644 --- a/docs/faq/train_cn.md +++ b/docs/faq/train_cn.md @@ -222,3 +222,11 @@ out = masked_fill(x, mask, 2) # [2. , 2. , 2. ]]) ``` + +---------- + +##### 问题:paddle是否有爱因斯坦求和(einsum)这个api? + ++ 答复:paddle在2.2rc 版本之后,新增了[paddle.einsum](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api/paddle/einsum_cn.html#einsum),在 develop 和2.2rc 之后的版本中都可以正常使用。 + +---------- From 578d9434743b7857335f522164b4dd036779cec9 Mon Sep 17 00:00:00 2001 From: Chen Long <1300851984@qq.com> Date: Thu, 11 Nov 2021 19:18:00 +0800 Subject: [PATCH 08/35] Update 2.0.md --- docs/faq/2.0.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/faq/2.0.md b/docs/faq/2.0.md index 34352cd3db4..735d9c6f065 100644 --- a/docs/faq/2.0.md +++ b/docs/faq/2.0.md @@ -48,7 +48,7 @@ 查看API变动的两种方法: -1. 依据1.8版本API到2.0版本API的对应关系表对API进行升级,请参考文档 [飞桨框架API映射表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/08_api_mapping/pytorch_api_mapping_cn.html) +1. 依据1.8版本API到2.0版本API的对应关系表对API进行升级,请参考文档 [飞桨框架API映射表](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/08_api_mapping/paddle_api_mapping_cn.html) 2. 飞桨提供了迁移工具,来方便用户将旧版本的代码迁移为2.0.1版本的代码,详情请见:[版本迁移工具](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/migration_cn.html) From 145667711c2547cc1e9897f263d6c0c8c179315d Mon Sep 17 00:00:00 2001 From: Zhou Wei <1183042833@qq.com> Date: Thu, 11 Nov 2021 19:47:06 +0800 Subject: [PATCH 09/35] polish linalg doc and add triangular_solve doc (#4073) --- docs/api/paddle/Overview_cn.rst | 5 -- docs/api/paddle/Tensor_cn.rst | 23 ++++--- docs/api/paddle/linalg/Overview_cn.rst | 15 ++--- docs/api/paddle/{ => linalg}/cholesky_cn.rst | 6 +- docs/api/paddle/linalg/eigvals_cn.rst | 2 +- .../{inverse_cn.rst => linalg/inv_cn.rst} | 8 +-- docs/api/paddle/linalg/matrix_power_cn.rst | 2 +- docs/api/paddle/linalg/multi_dot_cn.rst | 2 +- docs/api/paddle/{ => linalg}/norm_cn.rst | 20 +++--- .../api/paddle/linalg/triangular_solve_cn.rst | 61 +++++++++++++++++++ 10 files changed, 105 insertions(+), 39 deletions(-) rename docs/api/paddle/{ => linalg}/cholesky_cn.rst (90%) rename docs/api/paddle/{inverse_cn.rst => linalg/inv_cn.rst} (87%) rename docs/api/paddle/{ => linalg}/norm_cn.rst (73%) create mode 100644 docs/api/paddle/linalg/triangular_solve_cn.rst diff --git a/docs/api/paddle/Overview_cn.rst b/docs/api/paddle/Overview_cn.rst index 1d94b2583bb..2c2f89d9df1 100755 --- a/docs/api/paddle/Overview_cn.rst +++ b/docs/api/paddle/Overview_cn.rst @@ -61,7 +61,6 @@ tensor数学操作 " :ref:`paddle.greater_equal ` ", "逐元素地返回 x>=y 的逻辑值" " :ref:`paddle.greater_than ` ", "逐元素地返回 x>y 的逻辑值" " :ref:`paddle.increment ` ", "在控制流程中用来让 x 的数值增加 value" - " :ref:`paddle.inverse ` ", "计算方阵的逆" " :ref:`paddle.kron ` ", "计算两个张量的克罗内克积" " :ref:`paddle.less_equal ` ", "逐元素地返回 x<=y 的逻辑值" " :ref:`paddle.less_than ` ", "逐元素地返回 x` ", "统计输入张量中元素的出现次数" " :ref:`paddle.bmm ` ", "对输入x及输入y进行矩阵相乘" - " :ref:`paddle.cholesky ` ", "计算一个对称正定矩阵或一批对称正定矩阵的Cholesky分解" " :ref:`paddle.cross ` ", "计算张量 x 和 y 在 axis 维度上的向量积(叉积)" " :ref:`paddle.dist ` ", "计算 (x-y) 的 p 范数(p-norm)" " :ref:`paddle.dot ` ", "计算向量的内积" " :ref:`paddle.histogram ` ", "计算输入张量的直方图" " :ref:`paddle.matmul ` ", "计算两个Tensor的乘积,遵循完整的广播规则" - " :ref:`paddle.matrix_power ` ", "计算一个(或一批)方阵的 n 次幂" " :ref:`paddle.mv ` ", "计算矩阵 x 和向量 vec 的乘积" - " :ref:`paddle.norm ` ", "计算给定Tensor的矩阵范数(Frobenius 范数)和向量范数(向量1范数、2范数、或者通常的p范数)" " :ref:`paddle.rank ` ", "计算输入Tensor的维度(秩)" " :ref:`paddle.t ` ", "对小于等于2维的Tensor进行数据转置" " :ref:`paddle.tril ` ", "返回输入矩阵 input 的下三角部分,其余部分被设为0" " :ref:`paddle.triu ` ", "返回输入矩阵 input 的上三角部分,其余部分被设为0" - " :ref:`paddle.multi_dot` ", "计算多个矩阵相乘" .. _tensor_manipulation: diff --git a/docs/api/paddle/Tensor_cn.rst b/docs/api/paddle/Tensor_cn.rst index 032a0fade8a..53ae7d96efe 100755 --- a/docs/api/paddle/Tensor_cn.rst +++ b/docs/api/paddle/Tensor_cn.rst @@ -480,7 +480,7 @@ cholesky(upper=False, name=None) 返回类型:Tensor -请参考 :ref:`cn_api_tensor_cholesky` +请参考 :ref:`cn_api_linalg_cholesky` chunk(chunks, axis=0, name=None) ::::::::: @@ -814,7 +814,7 @@ eigvals(y, name=None) 返回类型:Tensor -请参考 :ref:`cn_api_paddle_linalg_eigvals` +请参考 :ref:`cn_api_linalg_eigvals` fill_(x, value, name=None) ::::::::: @@ -1076,14 +1076,14 @@ index_select(index, axis=0, name=None) 请参考 :ref:`cn_api_tensor_search_index_select` -inverse(name=None) +inv(name=None) ::::::::: 返回:计算后的Tensor 返回类型:Tensor -请参考 :ref:`cn_api_tensor_inverse` +请参考 :ref:`cn_api_linalg_inv` is_empty(cond=None) ::::::::: @@ -1263,7 +1263,7 @@ matrix_power(x, n, name=None) 返回类型:Tensor -请参考 :ref:`cn_api_tensor_matrix_power` +请参考 :ref:`cn_api_linalg_matrix_power` max(axis=None, keepdim=False, name=None) ::::::::: @@ -1402,7 +1402,7 @@ norm(p=fro, axis=None, keepdim=False, name=None) 返回类型:Tensor -请参考 :ref:`cn_api_tensor_norm` +请参考 :ref:`cn_api_linalg_norm` not_equal(y, name=None) ::::::::: @@ -1950,6 +1950,15 @@ transpose(perm, name=None) 请参考 :ref:`cn_api_fluid_layers_transpose` +triangular_solve(b, upper=True, transpose=False, unitriangular=False, name=None) +::::::::: + +返回:计算后的Tensor + +返回类型:Tensor + +请参考 :ref:`cn_api_linalg_triangular_solve` + trunc(name=None) ::::::::: @@ -2064,7 +2073,7 @@ multi_dot(x, name=None) 返回类型:Tensor -请参考 :ref:`cn_api_tensor_multi_dot` +请参考 :ref:`cn_api_linalg_multi_dot` solve(x, y name=None) ::::::::: diff --git a/docs/api/paddle/linalg/Overview_cn.rst b/docs/api/paddle/linalg/Overview_cn.rst index 689b32da750..9e66691e3c9 100644 --- a/docs/api/paddle/linalg/Overview_cn.rst +++ b/docs/api/paddle/linalg/Overview_cn.rst @@ -21,9 +21,9 @@ paddle.linalg 目录下包含飞桨框架支持的线性代数相关API。具体 :widths: 10, 30 " :ref:`paddle.linalg.det ` ", "计算方阵的行列式" - " :ref:`paddle.linalg.slogdet ` ", "计算方阵行列式的符号、绝对值的自然对数" + " :ref:`paddle.linalg.slogdet ` ", "计算方阵行列式的符号、绝对值的自然对数" " :ref:`paddle.linalg.cond ` ", "根据矩阵的范数,来计算矩阵的条件数" - " :ref:`paddle.linalg.norm ` ", "计算矩阵范数或向量范数" + " :ref:`paddle.linalg.norm ` ", "计算矩阵范数或向量范数" " :ref:`paddle.linalg.matrix_rank ` ", "计算矩阵的秩" @@ -36,9 +36,9 @@ paddle.linalg 目录下包含飞桨框架支持的线性代数相关API。具体 :header: "API名称", "API功能" :widths: 10, 30 - " :ref:`paddle.linalg.multi_dot ` ", "2个或更多矩阵的乘法,会自动选择计算量最少的乘法顺序" - " :ref:`paddle.linalg.matrix_power ` ", "计算方阵的n次幂" - " :ref:`paddle.linalg.inv ` ", "计算方阵的逆矩阵" + " :ref:`paddle.linalg.multi_dot ` ", "2个或更多矩阵的乘法,会自动选择计算量最少的乘法顺序" + " :ref:`paddle.linalg.matrix_power ` ", "计算方阵的n次幂" + " :ref:`paddle.linalg.inv ` ", "计算方阵的逆矩阵" " :ref:`paddle.linalg.pinv ` ", "计算矩阵的广义逆" @@ -52,10 +52,10 @@ paddle.linalg 目录下包含飞桨框架支持的线性代数相关API。具体 :widths: 10, 30 " :ref:`paddle.linalg.eig ` ", "计算一般方阵的特征值与特征向量" - " :ref:`paddle.linalg.eigvals ` ", "计算一般方阵的特征值" + " :ref:`paddle.linalg.eigvals ` ", "计算一般方阵的特征值" " :ref:`paddle.linalg.eigh ` ", "计算厄米特矩阵或者实数对称矩阵的特征值和特征向量" " :ref:`paddle.linalg.eigvalsh ` ", "计算厄米特矩阵或者实数对称矩阵的特征值" - " :ref:`paddle.linalg.cholesky ` ", "计算一个实数对称正定矩阵的Cholesky分解" + " :ref:`paddle.linalg.cholesky ` ", "计算一个实数对称正定矩阵的Cholesky分解" " :ref:`paddle.linalg.svd ` ", "计算矩阵的奇异值分解" " :ref:`paddle.linalg.qr ` ", "计算矩阵的正交三角分解(也称QR分解)" @@ -70,3 +70,4 @@ paddle.linalg 目录下包含飞桨框架支持的线性代数相关API。具体 :widths: 10, 30 " :ref:`paddle.linalg.solve ` ", "计算具有唯一解的线性方程组" + " :ref:`paddle.linalg.triangular_solve ` ", "计算具有唯一解的线性方程组" diff --git a/docs/api/paddle/cholesky_cn.rst b/docs/api/paddle/linalg/cholesky_cn.rst similarity index 90% rename from docs/api/paddle/cholesky_cn.rst rename to docs/api/paddle/linalg/cholesky_cn.rst index 4393a33d2f5..0aa081fd454 100644 --- a/docs/api/paddle/cholesky_cn.rst +++ b/docs/api/paddle/linalg/cholesky_cn.rst @@ -1,9 +1,9 @@ -.. _cn_api_tensor_cholesky: +.. _cn_api_linalg_cholesky: cholesky ------------------------------- -.. py:function:: paddle.cholesky(x, upper=False, name=None) +.. py:function:: paddle.linalg.cholesky(x, upper=False, name=None) @@ -32,7 +32,7 @@ cholesky a_t = np.transpose(a, [1, 0]) x_data = np.matmul(a, a_t) + 1e-03 x = paddle.to_tensor(x_data) - out = paddle.cholesky(x, upper=False) + out = paddle.linalg.cholesky(x, upper=False) print(out) # [[1.190523 0. 0. ] # [0.9906703 0.27676893 0. ] diff --git a/docs/api/paddle/linalg/eigvals_cn.rst b/docs/api/paddle/linalg/eigvals_cn.rst index 30b239f9d86..2ae5627b49a 100644 --- a/docs/api/paddle/linalg/eigvals_cn.rst +++ b/docs/api/paddle/linalg/eigvals_cn.rst @@ -1,4 +1,4 @@ -.. _cn_api_paddle_linalg_eigvals: +.. _cn_api_linalg_eigvals: eigvals ------------------------------- diff --git a/docs/api/paddle/inverse_cn.rst b/docs/api/paddle/linalg/inv_cn.rst similarity index 87% rename from docs/api/paddle/inverse_cn.rst rename to docs/api/paddle/linalg/inv_cn.rst index 7b75e82e958..4c79875f8df 100644 --- a/docs/api/paddle/inverse_cn.rst +++ b/docs/api/paddle/linalg/inv_cn.rst @@ -1,9 +1,9 @@ -.. _cn_api_tensor_inverse: +.. _cn_api_linalg_inv: -inverse +inv ------------------------------- -.. py:function:: paddle.inverse(x, name=None) +.. py:function:: paddle.linalg.inv(x, name=None) 计算方阵的逆。方阵是行数和列数相等的矩阵。输入可以是一个方阵(2-D张量),或者是批次方阵(维数大于2时)。 @@ -26,5 +26,5 @@ Tensor, 输入方阵的逆。 import paddle mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32') - inv = paddle.inverse(mat) + inv = paddle.linalg.inv(mat) print(inv) # [[0.5, 0], [0, 0.5]] diff --git a/docs/api/paddle/linalg/matrix_power_cn.rst b/docs/api/paddle/linalg/matrix_power_cn.rst index c1f771a92f0..17d306d83c5 100644 --- a/docs/api/paddle/linalg/matrix_power_cn.rst +++ b/docs/api/paddle/linalg/matrix_power_cn.rst @@ -1,4 +1,4 @@ -.. _cn_api_tensor_matrix_power: +.. _cn_api_linalg_matrix_power: matrix_power ------------------------------- diff --git a/docs/api/paddle/linalg/multi_dot_cn.rst b/docs/api/paddle/linalg/multi_dot_cn.rst index e6200eecbdd..294d630c84f 100755 --- a/docs/api/paddle/linalg/multi_dot_cn.rst +++ b/docs/api/paddle/linalg/multi_dot_cn.rst @@ -1,4 +1,4 @@ -.. _cn_api_tensor_multi_dot: +.. _cn_api_linalg_multi_dot: multi_dot ------------------------------- diff --git a/docs/api/paddle/norm_cn.rst b/docs/api/paddle/linalg/norm_cn.rst similarity index 73% rename from docs/api/paddle/norm_cn.rst rename to docs/api/paddle/linalg/norm_cn.rst index f932883654c..941375509f8 100644 --- a/docs/api/paddle/norm_cn.rst +++ b/docs/api/paddle/linalg/norm_cn.rst @@ -1,9 +1,9 @@ -.. _cn_api_tensor_norm: +.. _cn_api_linalg_norm: norm ------------------------------- -.. py:function:: paddle.norm(x, p='fro', axis=None, keepdim=False, name=None): +.. py:function:: paddle.linalg.norm(x, p='fro', axis=None, keepdim=False, name=None): @@ -12,7 +12,7 @@ norm .. note:: - 此API与`numpy.linalg.norm`存在差异。此API支持高阶张量(rank>=3)作为输入,输入`axis`对应的轴就可以计算出norm的值。但是`numpy.linalg.norm`仅支持一维向量和二维矩阵作为输入。特别需要注意的是,此API的P阶矩阵范数,实际上将矩阵摊平成向量计算。实际计算的是向量范数,而不是真正的矩阵范数。 + 此API与 ``numpy.linalg.norm`` 存在差异。此API支持高阶张量(rank>=3)作为输入,输入 ``axis`` 对应的轴就可以计算出norm的值。但是 ``numpy.linalg.norm`` 仅支持一维向量和二维矩阵作为输入。特别需要注意的是,此API的P阶矩阵范数,实际上将矩阵摊平成向量计算。实际计算的是向量范数,而不是真正的矩阵范数。 参数 ::::::::: @@ -43,27 +43,27 @@ norm # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]] # compute frobenius norm along last two dimensions. - out_fro = paddle.norm(x, p='fro', axis=[0,1]) + out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1]) # out_fro.numpy() [17.435596 16.911535 16.7332 16.911535] # compute 2-order vector norm along last dimension. - out_pnorm = paddle.norm(x, p=2, axis=-1) + out_pnorm = paddle.linalg.norm(x, p=2, axis=-1) #out_pnorm.numpy(): [[21.118711 13.190906 5.477226] # [ 3.7416575 11.224972 19.131126]] # compute 2-order norm along [0,1] dimension. - out_pnorm = paddle.norm(x, p=2, axis=[0,1]) + out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1]) #out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535] # compute inf-order norm - out_pnorm = paddle.norm(x, p=np.inf) + out_pnorm = paddle.linalg.norm(x, p=np.inf) #out_pnorm.numpy() = [12.] - out_pnorm = paddle.norm(x, p=np.inf, axis=0) + out_pnorm = paddle.linalg.norm(x, p=np.inf, axis=0) #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]] # compute -inf-order norm - out_pnorm = paddle.norm(x, p=-np.inf) + out_pnorm = paddle.linalg.norm(x, p=-np.inf) #out_pnorm.numpy(): [0.] - out_pnorm = paddle.norm(x, p=-np.inf, axis=0) + out_pnorm = paddle.linalg.norm(x, p=-np.inf, axis=0) #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]] diff --git a/docs/api/paddle/linalg/triangular_solve_cn.rst b/docs/api/paddle/linalg/triangular_solve_cn.rst new file mode 100644 index 00000000000..4330a30eeb3 --- /dev/null +++ b/docs/api/paddle/linalg/triangular_solve_cn.rst @@ -0,0 +1,61 @@ +.. _cn_api_linalg_triangular_solve: + +triangular_solve +------------------------------- + +.. py:function:: paddle.linalg.triangular_solve(x, y, upper=True, transpose=False, unitriangular=False, name=None) + + +计算具有唯一解的线性方程组解,其中系数矩阵 `x` 是上(下)三角系数矩阵, `y` 是方程右边。 + +记 :math:`X` 为一个或一批方阵,:math:`Y` 一个或一批矩阵。 + +则方程组为: + +.. math:: + X * Out = Y + +方程组的解为: + +.. math:: + Out = X ^ {-1} * Y + +特别地, + +- 如果 ``x`` 不可逆 , 则线性方程组不可解。 + +参数 +::::::::: + - **x** (Tensor) : 线性方程组左边的系数方阵,其为一个或一批方阵。``x`` 的形状应为 ``[*, M, M]``,其中 ``*`` 为零或更大的批次维度,数据类型为float32, float64。 + - **y** (Tensor) : 线性方程组右边的矩阵,其为一个或一批矩阵。``y`` 的形状应为 ``[*, M, K]``, 其中 ``*`` 为零或更大的批次维度,数据类型为float32, float64。 + - **upper** (bool, 可选) - 对系数矩阵 ``x`` 取上三角还是下三角。默认为True,表示取上三角。 + - **transpose** (bool, 可选) - 是否对系数矩阵 ``x`` 进行转置。默认为False,不进行转置。 + - **unitriangular** (bool, 可选) - 如果为True,则将系数矩阵 ``x`` 对角线元素假设为1来求解方程。默认为False。 + - **name** (str,可选) - 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。 + +返回: +::::::::: + - Tensor, 线程方程组的解, 数据类型和 ``x`` 一致。 + +代码示例 +:::::::::: + +.. code-block:: python + + # a square system of linear equations: + # x1 + x2 + x3 = 0 + # 2*x2 + x3 = -9 + # -x3 = 5 + + import paddle + import numpy as np + + x = paddle.to_tensor([[1, 1, 1], + [0, 2, 1], + [0, 0,-1]], dtype="float64") + y = paddle.to_tensor([[0], [-9], [5]], dtype="float64") + out = paddle.linalg.triangular_solve(x, y, upper=True) + + print(out) + # [7, -2, -5] + From d2d18e899298d07f737d7bcadb394b9f3e25087c Mon Sep 17 00:00:00 2001 From: pangyoki Date: Thu, 11 Nov 2021 20:57:28 +0800 Subject: [PATCH 10/35] add cuda11.1 in dev doc (#4079) --- docs/install/pip/linux-pip.md | 16 +++++++++++++++- docs/install/pip/linux-pip_en.md | 23 ++++++++++++++++++++--- docs/install/pip/windows-pip.md | 18 +++++++++++++++++- docs/install/pip/windows-pip_en.md | 21 ++++++++++++++++++--- 4 files changed, 70 insertions(+), 8 deletions(-) diff --git a/docs/install/pip/linux-pip.md b/docs/install/pip/linux-pip.md index 50aef641f10..e7a25a32a83 100644 --- a/docs/install/pip/linux-pip.md +++ b/docs/install/pip/linux-pip.md @@ -145,8 +145,22 @@ python -m pip install paddlepaddle-gpu==0.0.0.post102 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html ``` +2.2.3 CUDA11.0的PaddlePaddle -2.2.3 CUDA11.2的PaddlePaddle + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post110 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html + ``` + +2.2.4 CUDA11.1的PaddlePaddle + + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post111 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html + ``` + + +2.2.5 CUDA11.2的PaddlePaddle ``` diff --git a/docs/install/pip/linux-pip_en.md b/docs/install/pip/linux-pip_en.md index e8e529a70af..739a9b771a5 100644 --- a/docs/install/pip/linux-pip_en.md +++ b/docs/install/pip/linux-pip_en.md @@ -137,7 +137,7 @@ You can choose the following version of PaddlePaddle to start installation: -2.2.1 CUDA10.1的PaddlePaddle +2.2.1 If you are using CUDA 10.1 ``` @@ -146,7 +146,7 @@ You can choose the following version of PaddlePaddle to start installation: -2.2.2 CUDA10.2的PaddlePaddle +2.2.2 If you are using CUDA 10.2 ``` @@ -154,7 +154,24 @@ You can choose the following version of PaddlePaddle to start installation: ``` -2.2.3 CUDA11.2的PaddlePaddle +2.2.3 If you are using CUDA 11.0 + + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post110 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html + ``` + + +2.2.4 If you are using CUDA 11.1 + + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post111 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html + ``` + + + +2.2.5 If you are using CUDA 11.2 ``` diff --git a/docs/install/pip/windows-pip.md b/docs/install/pip/windows-pip.md index 5bfa3495b10..cbceead859a 100644 --- a/docs/install/pip/windows-pip.md +++ b/docs/install/pip/windows-pip.md @@ -111,7 +111,23 @@ ``` -2.2.3 CUDA11.2的PaddlePaddle +2.2.3 CUDA11.0的PaddlePaddle + + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post110 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html + ``` + + +2.2.4 CUDA11.1的PaddlePaddle + + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post111 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html + ``` + + +2.2.5 CUDA11.2的PaddlePaddle ``` python -m pip install paddlepaddle-gpu==0.0.0.post112 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html diff --git a/docs/install/pip/windows-pip_en.md b/docs/install/pip/windows-pip_en.md index eefcffc5d13..cc652e95d9b 100644 --- a/docs/install/pip/windows-pip_en.md +++ b/docs/install/pip/windows-pip_en.md @@ -95,7 +95,7 @@ You can choose the following version of PaddlePaddle to start installation: #### 2.2 GPU Version of PaddlePaddle -2.2.1 CUDA10.1的PaddlePaddle +2.2.1 If you are using CUDA 10.1 ``` @@ -103,14 +103,29 @@ You can choose the following version of PaddlePaddle to start installation: ``` -2.2.2 CUDA10.2的PaddlePaddle +2.2.2 If you are using CUDA 10.2 ``` python -m pip install paddlepaddle-gpu==0.0.0.post102 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html ``` +2.2.3 If you are using CUDA 11.0 -2.2.3 CUDA11.2的PaddlePaddle + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post110 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html + ``` + + +2.2.4 If you are using CUDA 11.1 + + + ``` + python -m pip install paddlepaddle-gpu==0.0.0.post111 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html + ``` + + +2.2.5 If you are using CUDA 11.2 ``` python -m pip install paddlepaddle-gpu==0.0.0.post112 -f https://www.paddlepaddle.org.cn/whl/windows/gpu/develop.html From 6b5e24f0fc108cc8dfdf584a99df8c279f02cd10 Mon Sep 17 00:00:00 2001 From: Nyakku Shigure Date: Fri, 12 Nov 2021 09:21:04 +0800 Subject: [PATCH 11/35] [PaddlePaddle Hackathon] add WideResNet zh-cn docs (#4034) * add wide resnet * update ResNet doc * update Overview * trigger CI --- docs/api/paddle/vision/Overview_cn.rst | 2 ++ docs/api/paddle/vision/models/ResNet_cn.rst | 7 ++-- .../vision/models/wide_resnet101_2_cn.rst | 34 +++++++++++++++++++ .../vision/models/wide_resnet50_2_cn.rst | 34 +++++++++++++++++++ 4 files changed, 75 insertions(+), 2 deletions(-) create mode 100644 docs/api/paddle/vision/models/wide_resnet101_2_cn.rst create mode 100644 docs/api/paddle/vision/models/wide_resnet50_2_cn.rst diff --git a/docs/api/paddle/vision/Overview_cn.rst b/docs/api/paddle/vision/Overview_cn.rst index 5ccb752ac70..9c6520610bb 100644 --- a/docs/api/paddle/vision/Overview_cn.rst +++ b/docs/api/paddle/vision/Overview_cn.rst @@ -49,6 +49,8 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下: " :ref:`resnet50 ` ", "50层的ResNet模型" " :ref:`resnet101 ` ", "101层的ResNet模型" " :ref:`resnet152 ` ", "152层的ResNet模型" + " :ref:`wide_resnet50_2 <_cn_api_paddle_vision_models_wide_resnet50_2>` ", "50层的WideResNet模型" + " :ref:`wide_resnet101_2 <_cn_api_paddle_vision_models_wide_resnet101_2>` ", "101层的WideResNet模型" " :ref:`ResNeXt ` ", "ResNeXt模型" " :ref:`resnext50_32x4d ` ", "ResNeXt-50 32x4d模型" " :ref:`resnext50_64x4d ` ", "ResNeXt-50 64x4d模型" diff --git a/docs/api/paddle/vision/models/ResNet_cn.rst b/docs/api/paddle/vision/models/ResNet_cn.rst index 2370f6cb6a1..f3d4e9ca2e9 100644 --- a/docs/api/paddle/vision/models/ResNet_cn.rst +++ b/docs/api/paddle/vision/models/ResNet_cn.rst @@ -3,14 +3,15 @@ ResNet ------------------------------- -.. py:class:: paddle.vision.models.ResNet(Block, depth=50, num_classes=1000, with_pool=True) +.. py:class:: paddle.vision.models.ResNet(Block, depth=50, width=64, num_classes=1000, with_pool=True) ResNet模型,来自论文 `"Deep Residual Learning for Image Recognition" `_ 。 参数 ::::::::: - **Block** (BasicBlock|BottleneckBlock) - 模型的残差模块。 - - **depth** (int,可选) - resnet模型的深度。默认值:50 + - **depth** (int,可选) - resnet模型的深度。默认值:50。 + - **width** (int,可选) - resnet模型的基础宽度。默认值:64。 - **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。 - **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。 @@ -28,6 +29,8 @@ ResNet模型,Layer的实例。 resnet50 = ResNet(BottleneckBlock, 50) + wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2) + resnet18 = ResNet(BasicBlock, 18) x = paddle.rand([1, 3, 224, 224]) diff --git a/docs/api/paddle/vision/models/wide_resnet101_2_cn.rst b/docs/api/paddle/vision/models/wide_resnet101_2_cn.rst new file mode 100644 index 00000000000..113db2965b4 --- /dev/null +++ b/docs/api/paddle/vision/models/wide_resnet101_2_cn.rst @@ -0,0 +1,34 @@ +.. _cn_api_paddle_vision_models_wide_resnet101_2: + +wide_resnet101_2 +------------------------------- + +.. py:function:: paddle.vision.models.wide_resnet101_2(pretrained=False, **kwargs) + + 101层的wide_resnet模型,来自论文 `"Wide Residual Networks" `_ 。 + +参数 +::::::::: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回 +::::::::: +wide_resnet101_2模型,Layer的实例。 + +代码示例 +::::::::: +.. code-block:: python + + import paddle + from paddle.vision.models import wide_resnet101_2 + + # build model + model = wide_resnet101_2() + + # build model and load imagenet pretrained weight + # model = wide_resnet101_2(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) diff --git a/docs/api/paddle/vision/models/wide_resnet50_2_cn.rst b/docs/api/paddle/vision/models/wide_resnet50_2_cn.rst new file mode 100644 index 00000000000..a775521412f --- /dev/null +++ b/docs/api/paddle/vision/models/wide_resnet50_2_cn.rst @@ -0,0 +1,34 @@ +.. _cn_api_paddle_vision_models_wide_resnet50_2: + +wide_resnet50_2 +------------------------------- + +.. py:function:: paddle.vision.models.wide_resnet50_2(pretrained=False, **kwargs) + + 50层的wide_resnet模型,来自论文 `"Wide Residual Networks" `_ 。 + +参数 +::::::::: + - **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。 + +返回 +::::::::: +wide_resnet50_2模型,Layer的实例。 + +代码示例 +::::::::: +.. code-block:: python + + import paddle + from paddle.vision.models import wide_resnet50_2 + + # build model + model = wide_resnet50_2() + + # build model and load imagenet pretrained weight + # model = wide_resnet50_2(pretrained=True) + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) From 667aa663091f3df8ff6cbbc87258c71cc4763fa6 Mon Sep 17 00:00:00 2001 From: Zeng Jinle <32832641+sneaxiy@users.noreply.github.com> Date: Fri, 12 Nov 2021 12:51:48 +0800 Subject: [PATCH 12/35] Add gather cn faq (#4082) * add gather cn faq * follow comments * fix format again * fix again --- docs/faq/train_cn.md | 41 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 41 insertions(+) diff --git a/docs/faq/train_cn.md b/docs/faq/train_cn.md index d1a78640ee0..827b83480d7 100644 --- a/docs/faq/train_cn.md +++ b/docs/faq/train_cn.md @@ -12,6 +12,47 @@ ---------- +##### 问题:请问`paddle.gather`和`torch.gather`有什么区别? + ++ 答复:[`paddle.gather`](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/gather_cn.html#gather)和`torch.gather`的函数签名分别为: + +```python +paddle.gather(x, index, axis=None, name=None) +torch.gather(input, dim, index, *, sparse_grad=False, out=None) +``` + +其中,`paddle.gather`的参数`x`,`index`,`axis`分别与`torch.gather`的参数`input`,`index`,`dim`意义相同。 + +两者在输入形状、输出形状、计算公式等方面都有区别,具体如下: + +- `paddle.gather` + + - 输入形状:`x`可以是任意的`N`维Tensor。但`index`必须是形状为`[M]`的一维Tensor,或形状为`[M, 1]`的二维Tensor。 + + - 输出形状:输出Tensor `out`的形状`shape_out`和`x`的形状`shape_x`的关系为:`shape_out[i] = shape_x[i] if i != axis else M`。 + + - 计算公式:`out[i_1][i_2]...[i_axis]...[i_N] = x[i_1][i_2]...[index[i_axis]]...[i_N]` 。 + + - 举例说明:假设`x`的形状为`[N1, N2, N3]`,`index`的形状为`[M]`,`axis`的值为1,那么输出`out`的形状为`[N1, M, N3]`,且`out[i_1][i_2][i_3] = x[i_1][index[i_2]][i_3]`。 + +- `torch.gather` + + - 输入形状:`input`可以是任意的`N`维Tensor,且`index.rank`必须等于`input.rank`。 + + - 输出形状:输出Tensor `out`的形状与`index`相同。 + + - 计算公式:`out[i_1][i_2]...[i_dim]...[i_N] = input[i_1][i_2]...[index[i_1][i_2]...[i_N]]...[i_N]`。 + + - 举例说明:假设`x`的形状为`[N1, N2, N3]`,`index`的形状为`[M1, M2, M3]`,`dim`的值为1,那么输出`out`的形状为`[M1, M2, M3]`,且`out[i_1][i_2][i_3] = input[i_1][index[i_1][i_2][i_3]][i_3]`。 + +- 异同比较 + + - 只有当`x.rank == 1`且`index.rank == 1`时,`paddle.gather`和`torch.gather`功能相同。其余情况两者无法直接互换使用。 + + - `paddle.gather`不支持`torch.gather`的`sparse_grad`参数。 + +---------- + ##### 问题:在模型组网时,inplace参数的设置会影响梯度回传吗?经过不带参数的op之后,梯度是否会保留下来? + 答复:inplace 参数不会影响梯度回传。只要用户没有手动设置`stop_gradient=True`,梯度都会保留下来。 From 30bbba00b31a7b9129dd8176b480eae21f64c32a Mon Sep 17 00:00:00 2001 From: Liu-xiandong <85323580+Liu-xiandong@users.noreply.github.com> Date: Fri, 12 Nov 2021 15:18:14 +0800 Subject: [PATCH 13/35] Add sparse_attention warning (#4083) * Add sparse_attention warnning * add warning --- docs/api/paddle/nn/functional/sparse_attention_cn.rst | 3 +++ 1 file changed, 3 insertions(+) diff --git a/docs/api/paddle/nn/functional/sparse_attention_cn.rst b/docs/api/paddle/nn/functional/sparse_attention_cn.rst index ac95e6e6a3d..06e73583f75 100755 --- a/docs/api/paddle/nn/functional/sparse_attention_cn.rst +++ b/docs/api/paddle/nn/functional/sparse_attention_cn.rst @@ -14,6 +14,9 @@ sparse_attention 其中,``Q``,``K``,``V`` 表示注意力模块的三个输入参数。这三个参数的维度是一样的。 ``d`` 代表这三个参数的最后一个维度的大小。 +.. warning:: + 目前该API只在CUDA11.3及以上版本中使用。 + 参数: ::::::::: - query (Tensor) - 输入的Tensor,代表注意力模块中的 ``query`` ,这是一个4维Tensor,形状为 :[batch_size, num_heads, seq_len, head_dim],数据类型为float32或float64。 From 792bcea8ae5eaab350b53cffb4708e8b2f372ac6 Mon Sep 17 00:00:00 2001 From: ceci3 Date: Fri, 12 Nov 2021 16:31:02 +0800 Subject: [PATCH 14/35] update bn faq (#4080) --- docs/faq/train_cn.md | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) diff --git a/docs/faq/train_cn.md b/docs/faq/train_cn.md index 827b83480d7..264109f80bd 100644 --- a/docs/faq/train_cn.md +++ b/docs/faq/train_cn.md @@ -271,3 +271,20 @@ out = masked_fill(x, mask, 2) + 答复:paddle在2.2rc 版本之后,新增了[paddle.einsum](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api/paddle/einsum_cn.html#einsum),在 develop 和2.2rc 之后的版本中都可以正常使用。 ---------- + + +---------- + +##### 问题:[BatchNorm](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/BatchNorm_cn.html#batchnorm)在训练时加载预测时保存的模型参数时报错 AssertionError: Optimizer set error, batch_norm_1.w_0_moment_0 should in state dict. + ++ 答复:BatchNorm在train模式和eval模式下需要的变量有差别,在train模式下要求传入优化器相关的变量,在eval模式下不管是保存参数还是加载参数都是不需要优化器相关变量的,因此如果在train模式下加载eval模式下保存的checkpoint,没有优化器相关的变量则会报错。如果想在train模式下加载eval模式下保存的checkpoint的话,用 ```paddle.load``` 加载进来参数之后,通过 ```set_state_dict``` 接口把参数赋值给模型,参考以下示例: + +```python +import paddle + +bn = paddle.nn.BatchNorm(3) +bn_param = paddle.load('./bn.pdparams') +bn.set_state_dict() +``` + +---------- From fc1652e605fce098fec763b34e641a50af758d92 Mon Sep 17 00:00:00 2001 From: yingyibiao Date: Fri, 12 Nov 2021 17:37:24 +0800 Subject: [PATCH 15/35] Add faq about pack_padded_sequence & pad_packed_sequence API (#4066) * add faq about pack_padded_sequence & pad_packed_sequence API * add faq about pack_padded_sequence & pad_packed_sequence API --- docs/faq/train_cn.md | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/docs/faq/train_cn.md b/docs/faq/train_cn.md index 264109f80bd..b7a7deef3ed 100644 --- a/docs/faq/train_cn.md +++ b/docs/faq/train_cn.md @@ -261,11 +261,18 @@ out = masked_fill(x, mask, 2) # [[2. , 2. , 0.96637046], # [2. , 2. , 2. ], # [2. , 2. , 2. ]]) - ``` ---------- +##### 问题:在paddle中如何实现`torch.nn.utils.rnn.pack_padded_sequence`和`torch.nn.utils.rnn.pad_packed_sequence`这两个API? + ++ 答复:目前paddle中没有和上述两个API完全对应的实现。关于torch中这两个API的详细介绍可以参考知乎上的文章 [pack_padded_sequence 和 pad_packed_sequence](https://zhuanlan.zhihu.com/p/342685890) : +`pack_padded_sequence`的功能是将mini-batch数据进行压缩,压缩掉无效的填充值,然后输入RNN网络中;`pad_packed_sequence`则是把RNN网络输出的压紧的序列再填充回来,便于进行后续的处理。 +在paddle中,大家可以在GRU、LSTM等RNN网络中输入含有填充值的mini-batch数据的同时传入对应的`sequence_length`参数实现上述等价功能,具体用法可以参考 [RNN](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/RNN_cn.html#rnn) 。 + +---------- + ##### 问题:paddle是否有爱因斯坦求和(einsum)这个api? + 答复:paddle在2.2rc 版本之后,新增了[paddle.einsum](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api/paddle/einsum_cn.html#einsum),在 develop 和2.2rc 之后的版本中都可以正常使用。 From a72b88df40bb4d1f0ed54238cacce4206fb22b6f Mon Sep 17 00:00:00 2001 From: Roc <30228238+sljlp@users.noreply.github.com> Date: Fri, 12 Nov 2021 18:33:22 +0800 Subject: [PATCH 16/35] add fqa for optimizer (#4081) --- docs/faq/params_cn.md | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/docs/faq/params_cn.md b/docs/faq/params_cn.md index ba23ffd3283..4124db0fce8 100644 --- a/docs/faq/params_cn.md +++ b/docs/faq/params_cn.md @@ -80,3 +80,22 @@ sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), gr sdg.step() # 更新参数前,会先对参数的梯度进行裁剪 ``` [了解更多梯度裁剪知识](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/01_paddle2.0_introduction/basic_concept/gradient_clip_cn.html) + + +---------- + +##### 问题:如何在同一个优化器中定义不同参数的优化策略,比如bias的参数weight_decay的值为0.0,非bias的参数weight_decay的值为0.01? + ++ 答复: + 1. [AdamW](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/optimizer/AdamW_cn.html#adamw)的参数`apply_decay_param_fun`可以用来选择哪些参数使用decay_weight策略。 + 2. 在创建`Param`的时候,可以通过设置[ParamAttr](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/ParamAttr_cn.html#paramattr)的属性来控制参数的属性。 + +---------- + +##### 问题:paddle fluid如何自定义优化器,自定义更新模型参数的规则? + + 答复: + 1. 要定义全新优化器,自定义优化器中参数的更新规则,可以通过继承fluid.Optimizer,重写_append_optimize_op方法实现。不同优化器实现原理各不相同,一般流程是先获取learning_rate,gradients参数,可训练参数,以及该优化器自身特别需要的参数,然后实现更新参数的代码,最后返回更新后的参数。 + 在实现更新参数代码时,可以选择直接调用[paddle的API](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/index_cn.html)或者使用[自定义原生算子](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/07_new_op/index_cn.html)。在使用自定义原生算子时,要注意动态图与静态图调用方式有所区别: + 需要首先使用`framework.in_dygraph_mode()`判断是否为动态图模式,如果是动态图模式,则需要调用`paddle._C_ops`中相应的优化器算子;如果不是动态图模式,则需要调用`block.append_op` 来添加优化器算子。 + 代码样例可参考[paddle源码](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/optimizer.py)中AdamOptimizer等优化器的实现。 + 2. 使用现有的常用优化器,可以在创建`Param`的时候,可以通过设置[ParamAttr](https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/ParamAttr_cn.html#paramattr)的属性来控制参数的属性,可以通过设置`regularizer`,`learning_rate`等参数简单设置参数的更新规则。 From d3ce8ea8860f5b67fefd5c4735f9b5c0f99eb556 Mon Sep 17 00:00:00 2001 From: smallv0221 <33639025+smallv0221@users.noreply.github.com> Date: Mon, 15 Nov 2021 19:13:32 +0800 Subject: [PATCH 17/35] fix bincount arg description (#4086) * add bincount api cn doc * fix cn doc * add name * fix arg description --- docs/api/paddle/bincount_cn.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/api/paddle/bincount_cn.rst b/docs/api/paddle/bincount_cn.rst index 7f121d086db..427d0912421 100644 --- a/docs/api/paddle/bincount_cn.rst +++ b/docs/api/paddle/bincount_cn.rst @@ -12,7 +12,7 @@ bincount - **x** (Tensor) - 输入Tensor。必须是一维Tensor,其中元素必须大于等于0,数据类型为int32, int64。 - **weights** (Tensor, 可选) - weights Tensor,代表输入Tensor中每个元素的权重。长度必须与输入Tensor相同。数据类型为int32, int64, float32或float64。默认为None - - **minlength** (int, 可选) - 输出Tensor的最小长度,如果大于输入Tensor的长度,则多出的位置补0。该值必须大于等于0。默认为0。 + - **minlength** (int, 可选) - 输出Tensor的最小长度,如果大于输入Tensor中的最大值,则多出的位置补0。该值必须大于等于0。默认为0。 - **name** (str,可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。 返回: From 3418e03554da70aa6642ffa14f6ada27fbeb1856 Mon Sep 17 00:00:00 2001 From: zhangkaihuo Date: Tue, 16 Nov 2021 09:45:03 +0800 Subject: [PATCH 18/35] add some args (#4096) --- .../nn/FusedMultiHeadAttention_cn.rst | 3 ++- .../nn/functional/fused_feedforward_cn.rst | 15 ++++++++++++++- .../fused_multi_head_attention_cn.rst | 19 +++++++++++++++++-- 3 files changed, 33 insertions(+), 4 deletions(-) diff --git a/docs/api/paddle/incubate/nn/FusedMultiHeadAttention_cn.rst b/docs/api/paddle/incubate/nn/FusedMultiHeadAttention_cn.rst index 3b7f8d56769..f4b82e95403 100644 --- a/docs/api/paddle/incubate/nn/FusedMultiHeadAttention_cn.rst +++ b/docs/api/paddle/incubate/nn/FusedMultiHeadAttention_cn.rst @@ -3,7 +3,7 @@ FusedMultiHeadAttention ------------------------------- -.. py:class:: paddle.incubate.nn.FusedMultiHeadAttention(embed_dim, num_heads, dropout_rate=0.5, attn_dropout_rate=0.5, kdim=None, vdim=None, normalize_before=False, need_weights=False, weight_attr=None, bias_attr=None, name=None) +.. py:class:: paddle.incubate.nn.FusedMultiHeadAttention(embed_dim, num_heads, dropout_rate=0.5, attn_dropout_rate=0.5, kdim=None, vdim=None, normalize_before=False, need_weights=False, weight_attr=None, bias_attr=None, epsilon=1e-5, name=None) @@ -31,6 +31,7 @@ FusedMultiHeadAttention - **need_weights** (bool, 可选) - 表明是否返回注意力权重。默认值: ``False`` 。 - **weight_attr** (ParamAttr,可选) - 指定权重参数属性的对象。默认值: ``None`` ,表示使用默认的权重参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。 - **bias_attr** (ParamAttr,可选)- 指定偏置参数属性的对象。默认值: ``None`` ,表示使用默认的偏置参数属性。具体用法请参见 :ref:`cn_api_fluid_ParamAttr` 。 + - **epsilon** (float, 可选) - 为了数值稳定加在分母上的值。默认值:1e-05。 - **name** (str,可选) - 操作的名称。默认值为: ``None`` 。更多信息请参见 :ref:`api_guide_Name`。 形状 diff --git a/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst b/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst index 49fb0c34d58..8321b3363ed 100644 --- a/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst +++ b/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst @@ -3,7 +3,7 @@ fused_feedforward ------------------------------- -.. py:function:: paddle.incubate.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight, linear1_bias=None, linear2_bias=None, ln1_scale=None, ln1_bias=None, ln2_scale=None, ln2_bias=None, dropout1_rate=0.5, dropout2_rate=0.5,activation="relu", ln1_epsilon=1e-5, ln2_epsilon=1e-5, pre_layer_norm=False, name=None): +.. py:function:: paddle.incubate.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight, linear1_bias=None, linear2_bias=None, ln1_scale=None, ln1_bias=None, ln2_scale=None, ln2_bias=None, dropout1_rate=0.5, dropout2_rate=0.5,activation="relu", ln1_epsilon=1e-5, ln2_epsilon=1e-5, pre_layer_norm=False, training=True, mode='upscale_in_train', name=None): 这是一个融合算子,该算子是对transformer模型中feed forward层的多个算子进行融合,该算子只支持在GPU下运行,该算子与如下伪代码表达一样的功能: @@ -33,6 +33,19 @@ fused_feedforward - **ln1_epsilon** (float, 可选) - 一个很小的浮点数,被第一个layer_norm算子加到分母,避免出现除零的情况。默认值是1e-5。 - **ln2_epsilon** (float, 可选) - 一个很小的浮点数,被第二个layer_norm算子加到分母,避免出现除零的情况。默认值是1e-5。 - **pre_layer_norm** (bool, 可选) - 在预处理阶段加上layer_norm,或者在后处理阶段加上layer_norm。默认值是False。 + - **training** (bool): 标记是否为训练阶段。 默认: True。 + - **mode** (str): 丢弃单元的方式,有两种'upscale_in_train'和'downscale_in_infer',默认: 'upscale_in_train'。计算方法如下: + + 1. upscale_in_train, 在训练时增大输出结果。 + + - train: out = input * mask / ( 1.0 - p ) + - inference: out = input + + 2. downscale_in_infer, 在预测时减小输出结果 + + - train: out = input * mask + - inference: out = input * (1.0 - p) + - **name** (string, 可选) – fused_feedforward的名称, 默认值为None。更多信息请参见 :ref:`api_guide_Name` 。 返回 diff --git a/docs/api/paddle/incubate/nn/functional/fused_multi_head_attention_cn.rst b/docs/api/paddle/incubate/nn/functional/fused_multi_head_attention_cn.rst index bcc34ccf4ec..c6a2f941e7c 100644 --- a/docs/api/paddle/incubate/nn/functional/fused_multi_head_attention_cn.rst +++ b/docs/api/paddle/incubate/nn/functional/fused_multi_head_attention_cn.rst @@ -3,7 +3,7 @@ fused_multi_head_attention ------------------------------- -.. py:function:: paddle.incubate.nn.functional.fused_multi_head_attention(x, qkv_weight, linear_weight, pre_layer_norm=False, pre_ln_scale=None, pre_ln_bias=None, ln_scale=None, ln_bias=None, pre_ln_epsilon=1e-05, qkv_bias=None, linear_bias=None, attn_mask=None, dropout_rate=0.5, attn_dropout_rate=0.5, ln_epsilon=1e-05, name=None) +.. py:function:: paddle.incubate.nn.functional.fused_multi_head_attention(x, qkv_weight, linear_weight, pre_layer_norm=False, pre_ln_scale=None, pre_ln_bias=None, ln_scale=None, ln_bias=None, pre_ln_epsilon=1e-05, qkv_bias=None, linear_bias=None, attn_mask=None, dropout_rate=0.5, attn_dropout_rate=0.5, ln_epsilon=1e-05, traing=True, mode='upscale_in_train', name=None) **多头注意力机制** @@ -33,7 +33,10 @@ fused_multi_head_attention 算子目前只支持在GPU下运行,其包含的 out = out * v out = transpose(out, perm=[0, 2, 1, 3]) out = out_linear(out) - out = layer_norm(x + dropout(linear_bias + out)) + if pre_layer_norm: + out = x + dropout(linear_bias + out) + else: + out = layer_norm(x + dropout(linear_bias + out)) 值得注意的是,该API中,q, k, v 的 weight 被统一存储在一个权重张量中,形状为 `[3, num_heads, head_dim, embed_dim]` , @@ -57,6 +60,18 @@ fused_multi_head_attention 算子目前只支持在GPU下运行,其包含的 - **dropout_rate** (float, 可选) - 代表 multi-head attention 之后的 dropout 算子的 dropout 比例,默认为0.5。 - **attn_dropout_rate** (float, 可选) - 代表 multi-head attention 中的 dropout 算子的 dropout 比例,默认为0.5。 - **ln_epsilon** (float, 可选) - 代表 normalize_before 为True 时,multi-head attention 中第二个 (False时的第一个) ``layer_norm`` 为了数值稳定加在分母上的值。默认值为 1e-05 。 + - **training** (bool): 标记是否为训练阶段。 默认: True。 + - **mode** (str): 丢弃单元的方式,有两种'upscale_in_train'和'downscale_in_infer',默认: 'upscale_in_train'。计算方法如下: + + 1. upscale_in_train, 在训练时增大输出结果。 + + - train: out = input * mask / ( 1.0 - p ) + - inference: out = input + + 2. downscale_in_infer, 在预测时减小输出结果 + + - train: out = input * mask + - inference: out = input * (1.0 - p) - **name** (str, 可选) - 操作的名称(可选,默认值为 ``None`` )。更多信息请参见 :ref:`api_guide_Name`。 返回 From 640c28edab7b6d199a4ac34a41df4c09ea773bee Mon Sep 17 00:00:00 2001 From: jzhang533 Date: Tue, 16 Nov 2021 10:42:41 +0800 Subject: [PATCH 19/35] add LODTensor deprecation explanation (#4098) add LODTensor deprecation explanation --- docs/faq/2.0.md | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/docs/faq/2.0.md b/docs/faq/2.0.md index 735d9c6f065..8fcb03da613 100644 --- a/docs/faq/2.0.md +++ b/docs/faq/2.0.md @@ -68,6 +68,18 @@ ---------- +##### 问题:为什么 paddle2.0 以后的版本要废弃 LoDTensor ? + +- 答复:在 2.0 之前的版本的 paddle 中,向用户暴露了以下的数据表示的概念: + - [Tensor](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.8/beginners_guide/basic_concept/tensor.html): 类似于 numpy ndarray 的多维数组。 + - [Variable](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.8/beginners_guide/basic_concept/variable.html):可以简单理解为,在构建静态的计算图时的数据节点。 + - [LodTensor](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.8/beginners_guide/basic_concept/lod_tensor.html):用来表示嵌套的、每条数据长度不一的一组数据。(例:一个batch中包含了长度为3,10,7,50的四个句子) + +这三类不同类型的概念的同时存在,让使用 paddle 的开发者容易感到混淆,需要构建 LoDTensor 类型的数据的情况在具体的实践中,通常也可以使用 padding/bucketing 的最佳实践来达到同样的目的,因此 paddle 2.0 版本起,我们把这些概念统一为 [Tensor](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/tensor_introduction_cn.html) 的概念。在 paddle 2.0 版本起,对于每条数据长度不一的一组数据的处理,您可以参看这篇 Tutorial: [使用注意力机制的LSTM的机器翻译](https://www.paddlepaddle.org.cn/documentation/docs/zh/practices/nlp/seq2seq_with_attention.html)。 + +---------- + + ##### 问题:1.8开发的静态图代码能在2.0版本中运行吗 ? + 答复: From 7a7c0fbb27ada3709bed36a4cc30d497035dd13e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ren=20Wei=20=28=E4=BB=BB=E5=8D=AB=29?= Date: Wed, 17 Nov 2021 17:38:26 +0800 Subject: [PATCH 20/35] all subdir in docs will have ipynb files, not only 'pratices'. (#4106) as the script will remove the ipynb files after converting, so the `Edit On Github` function will be misled. --- ci_scripts/hooks/pre-doc-compile.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ci_scripts/hooks/pre-doc-compile.sh b/ci_scripts/hooks/pre-doc-compile.sh index de1855f00c3..1d2b0b047bb 100755 --- a/ci_scripts/hooks/pre-doc-compile.sh +++ b/ci_scripts/hooks/pre-doc-compile.sh @@ -29,7 +29,7 @@ done ## 2 convert all ipynb files to markdown, and delete the ipynb files. # ../practices/**/*.ipynb -for i in ${SCRIPT_DIR}/../../docs/practices/**/*.ipynb ; do +for i in $(find ${SCRIPT_DIR}/../../docs/ -name '*.ipynb' -type f ) ; do echo "convert $i to markdown and delete ipynb" jupyter nbconvert --to markdown "$i" rm "$i" From c06723e2575718a7a5793102a1dbddf58dc2fc73 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ren=20Wei=20=28=E4=BB=BB=E5=8D=AB=29?= Date: Thu, 18 Nov 2021 17:15:49 +0800 Subject: [PATCH 21/35] =?UTF-8?q?=E5=8A=A0=E4=B8=AA=E8=BD=AC=E6=8D=A2paddl?= =?UTF-8?q?e.device.cuda.Event=3Dpaddle.fluid.core=5Favx.CUDAEvent?= =?UTF-8?q?=E7=9A=84=E9=85=8D=E7=BD=AE=EF=BC=8C=E4=B8=8Esphinx=20conf.py?= =?UTF-8?q?=E6=96=87=E4=BB=B6=E9=85=8D=E5=90=88=E5=AE=8C=E6=88=90alias?= =?UTF-8?q?=E7=9A=84=E9=97=AE=E9=A2=98=20(#4108)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- docs/api/api_aliases.ini | 6 ++++++ 1 file changed, 6 insertions(+) create mode 100644 docs/api/api_aliases.ini diff --git a/docs/api/api_aliases.ini b/docs/api/api_aliases.ini new file mode 100644 index 00000000000..2da6ad6e5e4 --- /dev/null +++ b/docs/api/api_aliases.ini @@ -0,0 +1,6 @@ +[help] +help_zh=左侧是target name,右侧是origin name, 如paddle.device.cuda.Event=paddle.fluid.core_avx.CUDAEvent + +[en] +paddle.device.cuda.Event=paddle.fluid.core_avx.CUDAEvent +paddle.device.cuda.Stream=paddle.fluid.core_avx.CUDAStream From 1cd543cff59bce691cb177038b626154da30589c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=9D=8E=E5=AD=A3?= <2042519524@qq.com> Date: Fri, 19 Nov 2021 09:16:23 +0800 Subject: [PATCH 22/35] Add img to collective docs (#4038) * add img to collective docs * add reduce img to docs * modified img * modified some bugs and add docs to recompute * complement global_gather and global_scatter docs * modified the scatter op img * fix small error * complement the docs by review * complement the annotations to the communication operators according to the figures * add annotation to the rank * modified the split figures * modified the annotation of paddle.distributed.split --- docs/api/paddle/distributed/all_gather_cn.rst | 7 +++ docs/api/paddle/distributed/all_reduce_cn.rst | 7 +++ docs/api/paddle/distributed/alltoall_cn.rst | 11 +++- docs/api/paddle/distributed/broadcast_cn.rst | 8 ++- .../distributed/fleet/utils/recompute_cn.rst | 24 ++++++++ docs/api/paddle/distributed/img/allgather.png | Bin 0 -> 52413 bytes docs/api/paddle/distributed/img/allreduce.png | Bin 0 -> 36785 bytes docs/api/paddle/distributed/img/alltoall.png | Bin 0 -> 31098 bytes docs/api/paddle/distributed/img/broadcast.png | Bin 0 -> 45936 bytes .../distributed/img/global_scatter_gather.png | Bin 0 -> 77352 bytes docs/api/paddle/distributed/img/reduce.png | Bin 0 -> 48940 bytes docs/api/paddle/distributed/img/scatter.png | Bin 0 -> 59850 bytes docs/api/paddle/distributed/img/split_col.png | Bin 0 -> 75141 bytes .../paddle/distributed/img/split_col_row.png | Bin 0 -> 115553 bytes .../img/split_embedding_single.png | Bin 0 -> 14333 bytes .../distributed/img/split_embedding_split.png | Bin 0 -> 30850 bytes docs/api/paddle/distributed/img/split_row.png | Bin 0 -> 90423 bytes .../paddle/distributed/img/split_single.png | Bin 0 -> 33247 bytes docs/api/paddle/distributed/reduce_cn.rst | 7 +++ docs/api/paddle/distributed/scatter_cn.rst | 7 +++ docs/api/paddle/distributed/split_cn.rst | 54 +++++++++++++++++- .../distributed/utils/global_gather_cn.rst | 25 +++++++- .../distributed/utils/global_scatter_cn.rst | 30 +++++++++- 23 files changed, 172 insertions(+), 8 deletions(-) create mode 100644 docs/api/paddle/distributed/fleet/utils/recompute_cn.rst create mode 100644 docs/api/paddle/distributed/img/allgather.png create mode 100644 docs/api/paddle/distributed/img/allreduce.png create mode 100644 docs/api/paddle/distributed/img/alltoall.png create mode 100644 docs/api/paddle/distributed/img/broadcast.png create mode 100644 docs/api/paddle/distributed/img/global_scatter_gather.png create mode 100644 docs/api/paddle/distributed/img/reduce.png create mode 100644 docs/api/paddle/distributed/img/scatter.png create mode 100644 docs/api/paddle/distributed/img/split_col.png create mode 100644 docs/api/paddle/distributed/img/split_col_row.png create mode 100644 docs/api/paddle/distributed/img/split_embedding_single.png create mode 100644 docs/api/paddle/distributed/img/split_embedding_split.png create mode 100644 docs/api/paddle/distributed/img/split_row.png create mode 100644 docs/api/paddle/distributed/img/split_single.png diff --git a/docs/api/paddle/distributed/all_gather_cn.rst b/docs/api/paddle/distributed/all_gather_cn.rst index 72652d926b6..6bb37eecc02 100644 --- a/docs/api/paddle/distributed/all_gather_cn.rst +++ b/docs/api/paddle/distributed/all_gather_cn.rst @@ -7,6 +7,13 @@ all_gather .. py:function:: paddle.distributed.all_gather(tensor_list, tensor, group=0) 进程组内所有进程的指定tensor进行聚合操作,并返回给所有进程聚合的结果。 +如下图所示,4个GPU分别开启4个进程,每张卡上的数据用卡号代表, +经过all_gather算子后,每张卡都会拥有所有卡的数据。 + +.. image:: ./img/allgather.png + :width: 800 + :alt: all_gather + :align: center 参数 ::::::::: diff --git a/docs/api/paddle/distributed/all_reduce_cn.rst b/docs/api/paddle/distributed/all_reduce_cn.rst index 41970e8a727..c0d99a6f303 100644 --- a/docs/api/paddle/distributed/all_reduce_cn.rst +++ b/docs/api/paddle/distributed/all_reduce_cn.rst @@ -7,6 +7,13 @@ all_reduce .. py:function:: paddle.distributed.all_reduce(tensor, op=ReduceOp.SUM, group=0) 进程组内所有进程的指定tensor进行归约操作,并返回给所有进程归约的结果。 +如下图所示,4个GPU分别开启4个进程,每张卡上的数据用卡号代表,规约操作为求和, +经过all_reduce算子后,每张卡都会拥有所有卡数据的总和。 + +.. image:: ./img/allreduce.png + :width: 800 + :alt: all_reduce + :align: center 参数 ::::::::: diff --git a/docs/api/paddle/distributed/alltoall_cn.rst b/docs/api/paddle/distributed/alltoall_cn.rst index a2f61aad465..abb0d90e089 100644 --- a/docs/api/paddle/distributed/alltoall_cn.rst +++ b/docs/api/paddle/distributed/alltoall_cn.rst @@ -6,8 +6,15 @@ alltoall .. py:function:: paddle.distributed.alltoall(in_tensor_list, out_tensor_list, group=None, use_calc_stream=True) -将in_tensor_list里面的tensors分发到所有参与的卡并将结果tensors汇总到out_tensor_list。 - +将in_tensor_list里面的tensors按照卡数均分并按照卡的顺序分发到所有参与的卡并将结果tensors汇总到out_tensor_list。 +如下图所示,GPU0卡的in_tensor_list会按照两张卡拆分成0_0和0_1, GPU1卡的in_tensor_list同样拆分成1_0和1_1,经过alltoall算子后, +GPU0卡的0_0会发送给GPU0,GPU0卡的0_1会发送给GPU1,GPU1卡的1_0会发送给GPU0,GPU1卡的1_1会发送给GPU1,所以GPU0卡的out_tensor_list包含0_0和1_0, +GPU1卡的out_tensor_list包含0_1和1_1。 + +.. image:: ./img/alltoall.png + :width: 800 + :alt: alltoall + :align: center 参数 ::::::::: diff --git a/docs/api/paddle/distributed/broadcast_cn.rst b/docs/api/paddle/distributed/broadcast_cn.rst index 2a2133ab58d..e771ad1c0f5 100644 --- a/docs/api/paddle/distributed/broadcast_cn.rst +++ b/docs/api/paddle/distributed/broadcast_cn.rst @@ -6,7 +6,13 @@ broadcast .. py:function:: paddle.distributed.broadcast(tensor, src, group=0) -广播一个Tensor给其他所有进程 +广播一个Tensor给其他所有进程。 +如下图所示,4个GPU分别开启4个进程,GPU0卡拥有数据,经过broadcast算子后,会将这个数据传播到所有卡上。 + +.. image:: ./img/broadcast.png + :width: 800 + :alt: broadcast + :align: center 参数 ::::::::: diff --git a/docs/api/paddle/distributed/fleet/utils/recompute_cn.rst b/docs/api/paddle/distributed/fleet/utils/recompute_cn.rst new file mode 100644 index 00000000000..6269e5810f0 --- /dev/null +++ b/docs/api/paddle/distributed/fleet/utils/recompute_cn.rst @@ -0,0 +1,24 @@ +.. _cn_api_distributed_fleet_utils_recompute: + +recompute +------------------------------- + + +.. py:function:: paddle.distributed.fleet.utils.recompute(function, *args, **kwargs) + +重新计算中间激活函数值来节省显存。 + +参数 +::::::::: + - function (paddle.nn.Sequential) - 模型前向传播的部分连续的层函数组成的序列, + 它们的中间激活函数值将在前向传播过程中被释放掉来节省显存,并且在反向梯度计算的时候会重新被计算。 + - args (Tensor) - function的输入。 + - kwargs (Dict) - kwargs只应该包含preserve_rng_state的键值对,用来表示是否保存前向的rng,如果为True,那么在反向传播的重计算前向时会还原上次前向的rng值。默认preserve_rng_state为True。 + +返回 +::::::::: +function作用在输入的输出 + +代码示例 +::::::::: +COPY-FROM: paddle.distributed.fleet.utils.recompute \ No newline at end of file diff --git a/docs/api/paddle/distributed/img/allgather.png b/docs/api/paddle/distributed/img/allgather.png new file mode 100644 index 0000000000000000000000000000000000000000..18f48762633f2aeff07f67c398ba16f8f86c1c7f GIT binary patch literal 52413 zcmeFa2{@GP-!P0QQXxg9m^PA_cG;D7Ns@gTEvPJGAN!>Z()G;F?*eM^R%O!VbA)%wU z;}aL1iECSag~rX)v=tIoeS&%_Yj}L{iSZ&ciDO3(NbFeu{8q~QmG))_4;tE-nH_xH zvNE;^Cbw+`g%>aFgM}K&M6ZHtx4?$*f+zSo(ntcPou1ab#Q*L`WYXxx^2CWT*l2K^)IjNBB54KJlp?jSAD{?a>Mq>KKTvgoLxm{41*Dqn%~7#|7zzTy$lGdJ?}3Ni!iGJG#!m&A4Du)hCf1 z3me)47YjW)5U};Ti${Oo(KU;N1_SF8?)YYUTx^qHC>^okl-NT<`BfsjobFy2Skf7x zdGFHpTS7ZvGTRoqS1qzJT#^tG`f}NdtLI*>91)6tyl`YeWR;oM+QKW%-MS@9@~$a* zEz%WT;Iyh-=zOdU|AC{6`-~JG zpL@RI#r3HJ^pB<=RR?wbRu12w8eRLiWpW{NNxIX{oW+zXz>764u3MMd@g=w`PQYI59c0U`J~RQ z==tF@3NK{+CHGtjzRkQ|{a4n-HSKFgqn911`KxX4*G^UH$fcJ-H~0nuq5cUhe;T&|N!VbHJ_u z&0>j;=+XDf&enMEd!*dBd>|sK>XnyP$$?IdPMJ=vPLs~<)QzdvTiaNNyToAssST@SJH=&0mz@=Ra{Xo6$HOK2S1F&6j=!C8Q0m;09VsQz*8ANz zIc}JeCEq)`X~8|UOTxztZH-^R)@^iHzx1B|pBA-p7Z5%>ZH{*x&_C*_LRP^)JGDi5 z1@idv&5@WJr%g)@gHFsmH?(+Z=Csvo1#!z6)!k~HX9AxcJ+<5N!WIq7dh=~ox=#X) z#-1(T|KZ>VtJ}{CZL^LK-9Mf7xn!qB+exhhTE;;I<7fM_>o#uPw^DW`dS&$Sh&ugv z$*o3bR(mZ{~#Rr9p+YhxTRThWGR-QrU zhhsU{BeM4AybivmeC^21gGOa%AD(@1Hu782pQ&a^W|d~wJ}o$Zbq6U4S>9aIJbmqU z*0J&rhvVepWXzYEXIx6XbnOy;_4|5)dzMXZn}=_X7D@MQC^jfY%>CPi*VyNnlCu(a z+IEY#q3ot?&*s?YUbif=3?p7}yXl|je~te5ZkfsRhTvqmWUGlk`ZqUp?9KP>(zH|Q zIMKl_mKr@Xa&?s0QPfuP3j5Nv!>WxO@OYo-z8vq1{(++xhid&hdjgwo53lGi{FL=} zD7zr4;A`oppfB%hH@|<@{wyZ%c+68|2EzM&39}^6TW^&4p`lH^X0)V3iAtodrbd#E z^d~nCG?ER_wQsAg^}T96UlrH?;QLJaz?H;Gc|takavS?Zvj*45TK)FXpN;$81ooY$ zY@E^>nt0vXfQm=rl5*W>=Yucyk*lxyHiT$ zksn-$yK1gFT(uHIELk6UF!IbzU5O&`m663aUY~t^w&N}H?cKLGzNyQ=uC9Ki_ucI2 zrQXlA2stPDgBs6mf9$T)*lO@%*TXdxo0wjctW{}A_mU!CxxD)PHG1Fsl3uVksj={} zXJZQ_CYD=nwm1E9e8r|>2pxq zX6bG_wha!WRUMx^K2;YT%AWO~xt6^udn)gyWo91L`g}=-Q^Sw;s-j4uOsjJa%fDij z`I%1J`wn?g?W3x--S$a`Zq(8ni*I~?Q+b!F;8uAA4WF(IiF=#jkX*Ua`%d1<4!J~m zbX$E_=;$Jx($?^#&U?kraPLYlG+B;Vek0;K%8S=+wa{o#Ti32wTv7UmrRA9^&zgJd ztO)A}ZUM_t$5G49T(>Nw?rbmeZ%sTN-j}j9?M24r(P5Jor2yXma%WFP=BvY*872J_ zF;|snqf0wG?A=b=RZ8LDC~`B~o24W5QR++UrIwYgVR~D1_jzp@{`fvPk;#199%;O$ zd*P+GgMapJ)H}kCF5YXaN%c65+^WAY`dEw}SG6w_S7Q{7dh|H$;%wXWz;N7`xI+!6 zChqjVk_#sox}9^QWp$gc^PqaDpkK}ObzfpPTeyB{y#Hu(s`@^iAPrh)AnrN4FQ{wg zN%ZD*Qt(aoC1KvL-&2j(C+68ND+zrP_bG^arzXDHijXXPvP z>L&%36e~3&CXWu8&72>tDZ)SC5_fm&dbxZ=zN8$RjEgiHc_NQD4(IN)|8al3aP~o0 z0aJ$cXLGu6x?YpKzEb%5;2mR_A4+xH=i$y%!vhB8+`%=*s}#c3!}VrdChQupi^y7) zlvOcn(X;v#_PfZxVje0RlQ+D$ zesR;dPPIbSvSmK(#G{|rj%1$y(>C_g(@>vr^_@E3>xHM=HMO)p?bMnnT6SzoSZI`% z=^FfC6>K8fH{uUwP<1zLryh-)RgKR#Oo-Sx&0?Ci49W?)7^#c`JNJ&W^)VL{6QQl( zv$&9`@ERd8@JSf_=nE_S{Crq=i_n6(>mouzk(Y!-`OlmLzoCDz;0GGR`@P`aO`%2L z+j8&|_*g{nv}o_+1%l5D9)o*A`^}Ax9Rt73&-*w#d-`5P`dRc(Xo3q8UPoVSfGcyr>}OP z-iEm+w83ZSGJFGU?h!vXy$#kTr(i}%A7|JejoljCH|Q^h!C<;R7hJSYA3V$-4!-Ga zxajBSr45IpP$&)5E)ArQD}0BRmKJ>bPWaB9>fi}=-yl!Fvw`ZKz8iUy28JlU*7<{fz4_09b8FiC zy{6XAeZMaG%N_nmT{yJ$Ur@or^W0T{X#K^y@SlgKzxY5H=OH-9wU-W>o&moBl|lc6 zKZ5_Z@P0#|os++FoehPA426yz+-OlDNmMi#;iIUr*?pZS{zCDSUGM*7ajcs$CY|RUHd9ULiYt-fFD8KeV5D zqSdykxuDVCo}%AKu_ZHN{PkPI$Tj{ctqg10SSh=o>PX3%C2?_gxks)D35$q|OT!HR z{!n#7lqgf%@UHF9zh0kva)ofjBZTNbhk#qVR!G-2NOwH@H)F(mXP5oU3cNLwo?J2X zy!ln*(BDf7fH8y(pnku4rD}KQk#!3yo3O}@4^>(mVCSEbEMVY*TjZ99m6fj zq2yv6ZP;LkRcFNN@mT@HFd6G`k^Z)EN~w;rp_8{rf8Y1cGezrRv2N*7*GAtMuKDBh zZE@*U53bB;Vs5r+2#dI_*xp1u+9LtbJtj6xr-XR#VdBfuj*9U*HG&a5@U>)J z@M|&o`mkeKT|omWgy1(4D);Gms0ue5^b7%!;LoPF!YL2K-HY2?`m(6nBxZ9Or%<;m zg*K7K4b=*-Kd)HOZeBspMXJZ(CsJtJD4O`0hAxUm`Hwd~q0FJoM0&LXavNn=>ewF` zYDrJDGyNJslzB4R;YfbPRQq_7-qhFh9M`n40GrmmnS`iWn4!~saNpH6#ouzsNE07E zkxahddMBd6%vb* z<8(#~&9$b^KLlw1li|O0L6+M!!@Rhc%V96~Mr1YMso`QiDc9qx#$}S)b!BVS)5s2} z<4#0qMv+n*Zhv8rUW9#em<=T_oJ~O_w(3qkky57^DUQct6n*P=I9ISpG)E#;_997z zpg8$>QG8944y_!+`7V#&LRm-kitOr%37e)3zT>8eG?cabMj8TaY3Y10R7aHbo`GmR+6@P>dIQDu$oML|=4 z#)LlgbH|Mqt5L#PqgKR7gV}G+dcCnmb!C)1Tmt>p#^^2CN`UgMldHb;_j%W>v+|tz z@m2~>5niY}{4#ZN140nfZ{+KGXu++xy7sU{J4T8kNu^hx)z*|Sph*s$zyuhCgTqfi zclBwYR4Hah)>#k%N#y2yGOZmg9Z2odRkO_5Lb`2OhFPkH@9mZ&B$@XoDAbI3z%Dlh#ry7fgRWA2UiX(t*w% zp@{E)=oZ|h1F_;mQLr1-*Rzp6*>;|#&Neu%1DV8)11pR-8E_{I;1mV&bTw6#a$Qu^ zXQM~|mxcELrtr6lOv$TB>pJ?uap>tJ<{BBNwH zl#zBi#kWzbFOXKj(4ag^bhIUgboMAZ-wi+D8KqvlWnhT&qT4ZK)FK+ERHK9rof&u% zsc37-m2Wv&ecWkA0vut(Xm=}~LmxlISofsT$TKhYyht+yE2T>*fcw6>g6f~|SP(!C zWB7EkGhJO%gIs7qiy-QW1JvWpK)lGsQOo)g@a$1!BK@ARhAIV6XE`Q-%L>iTE#6ua ze!>_?&d=c|Jzx^OhnZ0qJ4BZQlydu*FYfKXvrl=u12~~w5uJW$E7Ix+cksnH!hQ;Q zMxj-{w&+vju)|1U^T}r!EWBX=d1-6PbK@@q`dxbHvG?+c=m0eR1?##!W46=3=dPxP zls{MX&HhE}&H$`=9yD0r%C`851%UOH14i{lO8VkAm9Tbws*u+LqQnNG-v*C|hMsx1 zz?N4gF?DeqCdGK73||~P{y`m?wwD~DQMhUgA9DDP{-_pqe~g(3q(W{V&(vDl=yitjRpDP^z3JsOoQso zAr9>v%1m>NR{C*e(Ftr8^$($l%`!>D<&UE1=}PS9x`iE{xOjR-vgcMxranEZ6z;Dp z3{>6GE9AG{Z>^{C?Yc03P~HlF-gBYN5ut`y#Vh$R;K3bWLI=aZ;j`>Yt3Poar?093FeC zIQ0^6gjolhK}Hwl)9!JoIz!R=%)#+8s;qxZXzxbC7@18X(}!`UM2GO1zP>R?$o>aA zZzwngfW22hY5?ZLA< z@amL!E628wuGhOEi7?vp4~c-(c=D6xAVp-tK((aE)XF8bm#?UG<{mEc4vVl?2z%ZI z4r(mw^n?m}T*W!;-9|+-Vo!`gWsZVJp_$E`>QM|HeBxX&f+5stPpb4fGCwCKOr(ZT zOP%$&vp{^Ou{twzl-Pqu2+YY$g9-qD%P3F*eUPYAr(`48!x+clp=Zt&!!NSy+Sx5F zRQ;)TxBT%Epd7XtKytHm-HO_VmEI?u${;xzLaRVsB4R7)xtL0z`0YI=%1rD0X|h(V z4N}WthTU@Dp+vB}YblOuV5ZlfbiQsZn38Knq@q=jrF{u~)AW3F*ng-?8aDsBm`Ldm zC$DUmNEO1Fj4_ zmu-BcjJx5y$>>m5nj@M`cMHBiXMC_IaV z=>lqJOE!1scOuIm-WBNhq24nKPq!|Muva;|+0e-Yn#2uOQt!km z>h6_f0cwb@$_NQN-?(v^{06VKBWd{9#Gs|ZB1_dBH`r5&bqQ{cG z#bKO;D4mF{BBGx~8x8vY^6`kUx0SSqxWy3GdTg8L%3AeClaK<2;F5br$~{zBpc z@G{RaMM{&>E{i+>Tz(>~RoU>d3M`i5eMU*V_r-@5(iaaK!sOj<7;5xqJ~Yg@VyKY; zkByqiQjS%H#S*@tJVZo;!9c|$^a#VehbM$1T%hSK=ck`X&OGJJv(>y%n3tII>SSKm z{`a#K9J8wq$)jJD_g5(G!{=yr1)AHSx~RvT!`k=SCA7p`5(g$s*oxZsv$naMv6wtH zyAW#BGF1wT%<9Kc2Ar>cAEy@X+Qqeb~eqSITj>*B#j3Vop z^_jZQayr~!9kM}kS$Kq{LA5$8Hi~Wvlb>*V7Ti}C@2o}(BI5|m2TkE+IVfDmVQ12~ zL^cOS+iT}x7tKz(38I>7!XAw{i1#XYw6}C68G06NlMFuv!#ce%t2hPId=a1?Tp&_< zs5$;XgnfN}(d7txw{hu?jv?R4f;eS{{re6v${aTOH^TTJdG4YHv>~P$A z8YfaJvBxxYIE@g@wvbQszotWal@or#2s}?o=RH3opZ^eP8q!7}Bsh+Zkm{HNQh|mx zQXw^C&Lq03T_T;%8ZrM@d@xDe={!t4R*}JQ4*NFYXivm-(es@3eiX6d>3^6vZKa%7 zDhje;ufhVPbh492sA4{G9;3McDOAfKBJ-)CXYRrDzz9Rn6&`Cs<3vhVWzE4-WSAF! zvOYiwpac7l3vI!;b`i0uc4UhR*)qr4Z0pIuX19>|MQbaExjsLNkdBs$_#gEaT>0j% zsI`9pLt5VL0dId&=pX5r_(Xhg3+lZCBaT9NWm;SG`N^}kNN|5EFp-N+S8$Wbr;B}h z8nP>QO?xa__obs@jROBBey_oyiad zH2#AE&UO9c0*@pDXPZ;497}6UI7Wiov7F zN{r{&SC#uMG2W8mz11ZA2dX1XvyIp_d{?5^Gu}1Vba5~7`0hG+kVR@M9yXB#UQ4hT z@JMPdN{RZUdpKO|5h;}>dx-k%z+1i$^U3u)SIh!=MPf&b+!ilJq^E^rP^V1(R!TFL zOK|Kv0=K7Il@y0H66$)?@;S#rD7gouA>T8Vp(C|bk98~B^_FT3_?IUeDmeoNa66rD z_3TPJ>K9)F>u9(>{XRy&|E!doKV`}Sq{6bRY#WTle6sgHs4{}1>6LvN`d(cxxI0Id zaoHcfNtH7?$EVXsvqV@0PJT%wxjhgS<7qR>xuzX5nte^a=BaV+NUu8ao=qyd zVn`*1=_YT2#Ts8Vt;_+ZF7$8rWDE9G6uoUU9PAnaJwXS%rmVX&3Xzq0#X%9f(eb~0 z`j6;OHq|k2wgToUq52$I=j$^w&_}Mo0$ox*48)|bc>@o+x()k*W((7tk;|W22oBoW=EpUWQZe(p z!#6}q&5GPUB?H&{Vcv?x5TefjL=U}lXRMEn3X=TS3(2|IZ1q#!CFV_A@^uHFW8>*| zX)}g4`DM(982vEX0z&Xt4t(1jhw_A=2GQW(qVhOBiZg{ISaN!BTx^a?In_U#)P84W zw!SKMsDf6}KA^V`1S;%vAbJ7{Vo|v#7ZXq6uylGHxevMK(N;Mi&C6&*x1je=l^j8u zMN0(^z2NHEFPmMJ3q)^WZt_&Mm`^j6_K=-@hQg_FIH#QUdkIr#fij=U(OHGy}q_@E&yfv7l}WP$cz-lU<6*OI-j=@gbZ zvuv*e0A(&>x5(6zM9#nChIU71bD|;%cm~&#uCce|EwgWiqER_*i5U3cJ*VRV#RHHy z)z1)cyEgU>kRLF}XL%#tOi4hr*H=)hjOuzADN;E>hWqs2Q%Vb&B~4q zO;2;2p`+0O!}&p(q)Nc@zXo4Gsb;f@X1uyXP|FL`#mL!33W+^BUEbG-#g`2hfITfV z^t=xB>fssEsLP$<(Un<`>AqPW>vf#-t=lPiX%AimV|Twl7@B2E?d@efF_F9vjJx+em} zgX~WrApSLhnH$0qvuN#5-e1&5FM4=Eg#8{6b83L5&jr)YPd|^GdCHk*t9hX?FEQuU z$-J)p|ISiy!bI3Bzi^XUpB(Co!Lb z$~+24^F6APZ3^aksn{KM9Tq8d_9J-4SM`cIPWO{sf=%ZNU+wOwIeLG-miWD}@ffeD zH0rG!FX5H|?42meO+!y_&llo_zz?#s*92F5%?~}^9PvTaNBs$u0{mxIIl@vjVMNv^ zxASq>zbSNuvWcyyHAimnlhc1!cRGy&8}$SB>rzng@Q)lew6$Md}1xq!FJsuf~H8`l&cyU29` zUt!qR6ju;Py!NQ+*iX#eTq#|@CuEdd;=^6F9Js#;(ydtnx{;JwrERFd43#Wh zl>d`rtV;l)e6w^s#@~|_ zH~~qXI09%V#j#A5x4P3)-XqATImIUYsV{<%WvjcJ`yV_+T5IqhDV=;BCSVAc&48NX z3n>EPB*M1)T>*P1zVwjdV+52Jod)Upqx+l%;5`w&x$NUjeex;BkS_n4ut+wb*l<|^ zzCQ5Qfyy-Y&-7DUcL+Gb@C1lW0ym3~2XVmDx+tNgK4TlnWAbAFna zfJl=nc)%oA+)@(&lL4aB$pL86I^LM=BD{mr6gglgAnreogF|=`(6){L$RYkChkO|a z`HMqdqVq6rFMr`~6b~_`aRN+<{zjj?Nvy(*7XN(4)4~vj%GOO4EWC{muU)XPm4G6) z!2x584`XqgdAnM(f=7N!@3k%GukQ2(NC-1*Q$O!aB2>kBm{DDYTg0d0e+ZE(41X2^ zM%7cmkuR@%kl0t$TySbR^%8U;SxBt-EZvC|0i zN)r&R4d7sx&7<0a?|b-r-{ao#_9qcXfzwi7esZ+{ye<3#{Su}v#lLo?3J9P_WI>OH zA%?e>aldzv03E%672<$$;ddWYEAvRSy8jYhusRV)om^BchquXy4}22+pjq`(SGfQo zki4UWAZV@VU(7qKQkMS-K5+r1%?lRrY2Xc?>q4)c+0BCJKWui2r&~!D#Ox@{O zDhiLwnQMvwb?Z`z{;W|foB~zx^2*v$>SExaYQE2s3M$Cs=^O?gO(T}ENTAS=&{MMx zWzVZl2H;l(f|YxQ;#2tKBD<1Dy#?pwYbAPJ=(v8~$-(SE=!7KPs=_1k1Oek(TwAuU z`-)Fi^GTgtP?z7U5BdS(dw@=Ol9PxC53-^8rm^n(Z#5`0edqD&ySZ4}GS~fr_C4#Z+MQ*Q2J| zToc3m07&}6#WVfMi8W-%pijo0NX@SbNPCKdnoAVP?gb5XWsI(nL^`O+ z_qPEhx>kurtWE8S_}M<6*)B#U7R)=K2A#{hwocehdG@zd`C zF1HYvpsN2v!CWtcK^kW=lTg+bOo^xWCnGf|Hx)dsi5+Cll=CRqJE$qHSPRU)Z_Z%^ zyROqj17^Abpvv=j_LLe|mpPbD&}JBzRdU(#Q%BZ$mXB4RM$hymCej12I0srN3RE%^ z#sDXGf@M#PRL148@~}#vgt%{p-ipBIkYcPV$K(6bkipH#pa6bnUI&sPQ5p$kLElVX z3?5{i$tiCHSULo-BnLAU=#T_ko_fk1<%j|1qMOAwexf<4pyP+S#D~yV$||{mQ;+sB?(%8EkkT zMbUmxrB`txspkH@W>bR-wb5Lukgsn6lUD9(+?T!)(WZx0Ar%=wR*Tcs2J~i zj%%XomzmD`r^Qk#?ebWraY*mQT>fDbHvmSHjLj5SX~ydOeFbxQRAMEd5)?!w+@)Sz zo;olr<11N(Q}XZp(d!CXl&lUUK1?;N)=2R*=)5|cAJpJh=RKv;TShxYsnp41QL$89 zSAQ3Z5y<#ZNR{;=snpH2X5E9@wAd(g!z6;!hp3yNg)?x3_8`C3A^lIq@8#_7M?%7y znuQ4<`(x=uyTqQJXq`MpC~7+cOoH$p<-~mk92wsCjD(0A9VQl5_JTy6DG6#rasvcV zihl2JLRaLgjDBEp^d|@M%?a3cbDmbi?p+em`GWh-9EL3>uK+dCa|$K}I66>M8c*BY zMZpZk+@iDBnP-YRjtkRbOriX?b5 zNFHQX7o*M_z(kGnB_T}NKqDej@dJ9aHXTz&tE;J2-~I7G6q|a;m@ZKYNnZQESl1mG zt>?Kt2Ap)99}-lx8`wqbL|&89FIkIvoo!l6FIhWhy+<5^N^IX}@a=2JQJ*ug?K)Bd zgdZ7F2M>T!+z#X)1N@@~MvTCu5g0Lc3Qh0j5%!MbP>)2;5yhYjHh|X#0LfAd<;%Op z`ldn0fjR{=B3cngi#zgi7AXcgfv&dC{%MA+kCFOk6v<~J*VP5ju`CekrZ(vYbBzw> z07>No!=>&f$(!<7Wu&z zL9>;N3M7E6-T_7O@B6CKyZ9RDlK^;v0l!~zOjVh8pyKbuc&E5r8XD6WU3}|2ZWy3FgX0IvDJ_a(sqzr$cJxnB* zrBOi5Pk@@@H1cWsJ1m!p7(i{Lr^Du2d)~>Kj-+@LH0)KYK~G1bt%*?gj&sHLJ8E_9 zqXn$Sax`ZEtr3GVnCm0k31%y$%KDK|rT+RP#GVw^v2tphkDW)6g_b{q3AKJgY7Vp) ziGEw{`p7IAN4o;lSZmmTgH>xT3DxJHmV;wd&>T{kA56nf6PIdszRYn*E2~7&EqR8k z(PZ6hq>Jy%`{+NYCFwvxD-Vq zD|G$1d75d;oiqg)7@O4se$^4 zl@q}NH=>GfRd#nQO*;vbR|c&oJQB76CUB=vB43{I{g^D&Am|-ETl${M#&c0NINF)y z5He_jO7W>v?aKmE6G=5*D^PZFP~=TIPF~&azMlX4sAG@$_rp-~Db%1a`D_{$uSSE_tKuuMJE6KBPP`tdOy z2eoc$U+#GvhP_^Ll21GT((^75MgLph`Rg2VK2YU=7bsV z5tC1ydV=%$nP29e!gLCc@R~RAX+vtg*9XV#f?G5v1c z8n*Y~lgPuSX2Vhjvp@DXPV^{oOCAmM#+hnR9=N93Kzha#6aq;Igi-S_|&yEqombucLZSrFYUdD$+Ld-omh8xq7&*G z#Iyo&QJw>ACpQ}eXFM^cU(x+O-^%-l0a~Ds`jwAXel^lp!Ak=8rDt`Ac}R#LiaL(p zOT4en1|59rln|ioiNz()*}9-bTEibzN^q!SPGRw3W&>t|@DS`}Ffglz9d!9tskC)A z5K6fR9e>i;%QfJE%cpb&Bc98Ag}i5i5~HLh-v2p1!L}fBy<-Syd5&)mW z+uvPEf%^F84#O!LOu6iq5ua8JLD@>4Wj#f3a0K8{W6N1IDt{BgqT$nTl@bd4(D9Q{ z3!qk)2bQ#OAM114_sM2cxV#qBoDLcgA>Z-B5S+SLKuL`)wD3SxYygzVwI zK+qfgT+(nZiC-#%i636j<@T8`S(aihdvW_XWo2P1SZiqzJ@h!VQ2qo5D5|{?Y{?Jk)Ty zqewu~J%Io3=DP;);{bmg?C!oMrJ=*dqFGo>_@I%}<#Pjo!yMXbpmtY`qW3!)lM#Zl zU^oGCLF~0h_4$~80Az*BN$OPrLd}4>Is8dEnQy9BZ~FmUi~@Hq=-76(i2=Q`_d9~# zt2vtGh0t5966t^JYCPH&86`kd0uBIQ%3WB3=99q(AR>%Uj_}DqD8dZbi-%h@lKJt% z>McKj1OLJu$I8xt`a-q3!21wfd~|9QL)=Rnp;rPBjWtT2=0G~w#V1VuXGnVxfX!3{ zjgUMJyav85RPjH+U#IFH0rvCDfiqiaR@@PGnmSU@q)}rEf&huVd-XwOapHu2&+4Wv zynui{P??VRC|ZJ8;gza4Ko?2+j)ShQxwQIy=(S2(l+stE-bPG{Iiw0m>uLLt3vag(J0!}7OpseU^l0T1b-|#`T?)g7w0xhg&d5t68!6o% zRr?z$e^34v9O+GOKRLk`K+Fm16ccdja=7&~Dskcifbkm>o!6~#}X{Bg9~JdJs#4N??#L~0yT3O)UnFa|{e zFrJk&{k;Ba<~tRAP?jy2QM?f74L6)Y0ADX}gWgKB)4j}&?-(S+L!4jK(ZJ`X^UL>* zy^|#bkb%V-ProXuv4sLGDhJ}6lQQ?37U;zve8IO5;HhUY&VfIc0A5CeU6M>q;Ip|i zC@Qm)^9YFJKb|D!I8$epFq#(59C9WBVOz%p9O7M%b*Ax&GQt^Bw#B)q9{vz(u)_JF z`#;k-a?0R-Qk<1Q=Y1A~s6IhYci1fEI5}$R&uwo5pPF8AzHbH+ zO?`E)tUv+^C)t2r zpE;txM@P&6dYVyI{3*}=hU4W0aBFkA|G9s&=LtaV6DGR9=Z_7YK7i9PK1_M{3)BLT z{trRFC+?^Kd`^)`oF+oRrkbv ztR78vZ|*1rl3=?+gb9OL?XI!=Rdy0u*6n$RO@c^2`Fp!3XRe7lL9`zK-v8|^zt6iq z7`$l6cDS-a`r-*E;)1MK9f-+*^7VGRQx1Rv*Cce5+l?9QK1~Zz+vVH2pe1|)$*Tp~ zPMN{>Ms#MF>g8@mfD#KQVG*m)3ykp>Hd0T;+&xynhq_`PpwllVnk*lbNJ2wZvlIEe zF6(-{wOT!%S0ii#y~L-@zg79;b3>xx<@@Quc3rXjV%!VUHjqOJFA$?h@%o`Q61AmOeeK^#a?s)P`3Sn1p_1nZ(}!*n1^^ zUoba-{hc^!yXcygwQG*v^*MtiC}1uF2lAoJcJ8@c@H1EP42FjB_hm?&m92FSAQegM z-Wt0nc1_>&t^~~sEubHM_eLkqd)u@84S=Cc{=On|W>jJcBV}%~7tg@lV0-G!D%6p+ zycT(Y*`hc64S?a34f6*BReaAM%sj`;bIiObo7XY(I%Zz^|L3i;jb&3%Z~Dm8f7F`} z45Lefr2f5Ku_n*rvZ-%plPwKe12p@|?bkioK@&7$SoKuSjAn84`zbe$82ejXfXlis7c{jm*hFy>_Jgrr~J-X&{o?{a$WkgJ*=1+%)M6F(zwkN0nFXbYFlT{ zdu>->4cTVz<=RqeKT~Ufo%0Y4b%-|L=NiX8Kt|rPQOaNwr!U{Zmiq0_4t-n>JgjRM zf%)}_?$aE&?qDsZk~R32P}XB^6?QIf?eq>?V0G@ceW|6uxaq#E_NY_?{?EM{B_0#- zg%_d4vcO_cmn5*m%7HNjniTsHYAH#h`jFk~SsbQFYFYC1Q;~b@QULY-z2vH6>b*_V4J89mqW3odj4LoPoayrp!m862{iH9PcUsFy=VK~Fmp zdQWGF!8eoqQPNxCNN$)Gr(F}SM!DgtNS^DI#Vq{1uc)8au7H_QJ|FsSR^fc>_mI8Z zb2tBGR`8_*;HT)c2WPIuaU*1!x^xVDa%eDI<3L#0=0!AIb75lXqjw6Jg%7t^$<^b9 zrH=#xbDOvun5M1Ai)LDntGM8#z!#5S5%DKv78i_84CYNuXX@pT1jV>gPZ9OF!8Kia zkA9>U5XROcLC<)J8)x)Q*Tk}FRUmPyv-Y4{yJ8zOSNCk}C$GZEkqc(zckTX9qGjRd zLEF8xHwzYih9x7rH+9AC`FLHp*om|B%Dy+|z!J}R0Eoa65W(Er1%Pdh{B;8{khPrb zk#+=CgfsBV#tigC2U^&qRk9IN)NkqXj`q=5sK>f&d^mp+YA%P!;biU%ZtA9c<%d;D zJGj+fi>6b-(LVu3zT30*S+{4h1*Ayu1>pSeW1S=7wy7XLt6i~&TQU3hKH3wzuq||f z%Gk}E2<0U&#U_wK?_^SeZN8`B*K>J08x;gxp}*mWoSRN}mTpMi0u|65Ov-(Iqen)_MrRxOT<^MSO zLT%BQfq!X>J{+yx4_^LCz=t^7m})U!f_J~(0{++MTOWe$7&mijcC;^;Ko;godUVc8 zj*+VWlZaV;G~KNYrqH2lmAM|RkjBUuE1vu*Cw9N;pX9hN{M>72@44L#W^$-i0h8s2K`Zqm$md@i z0U>|_NEWsL2|M?00w50N&L|hia_H3pb&#Go%NleSRbCI^P>x{Wl7HNE-o* zrF(=E8OJs}Z#XDktePu&-SAo*lVgIuHWBfW4!Q6tQ4waMx(#=yL9^&X@NtNO=y!c+X#ThbZ|c3i z)gI?6`*p=du}kJXvu7M@8yikYTg!aJyUQ{YXC5ejT=5Zq0>K}f%PEa@^CT5W{IR(3 z>h3!4&~5MwH5V3&*NYD#iWjp9vnOOPE*?Z=gu;kj;?!i*qL=TJE?qAcl zPd`B(bAIOnQ5VrkxZMqob9jctZm~&tb1S~SX?H}1VK!Q$_n{rbT_jy37k1ZYtr9`9 zZN~%fM`8ffxd;Bu1`OnV8gfJSMwmrd#vay+j_JEGl2i}=u!=C7VEKdx1o${fhfnM> zd934v>8CDp{~ z%;S|$&7ynG2d&pp-eu@?*pQ2{802Bmkh?RCzw<)oz=6C{|0d<_TR$%TyrpLBRe9{X zxYe-j8y}1bSYP*A5WW=Le__T&ZoJ_28s)_Lr81rG=I+w@of@=WJ>W9biVJd zLr%xKi2zmD!Z6qM+m*d2u)ASwE2SFAw(OxL%OPa70^)ESaJf@;?+T~FQ-R6Q)-)GQ z5cMSCu>tF`*N3E*Xc>Kt8E^kZr{Okm%GtdLF@TsTn&k zby@owB%x^jKqR!5KG^Vb(_?gg$4yQ}W5bGw%@KACS}vkCj2c;a_Cu?UxOCux2>iGa z_fsE|qyy$5|&DEe~A(7!BVSjsArHP44}V%RXnx^JHP z=c)gHuH`pR{qxlSU!;EavNSf9OFW{H$*Id{nIt2$y1q42?a<4_6Zx%Y{RZTPU2|Du}oLkAMm@H`}PtqJU6I1NC2k^kc zO_ZAMlnOJN+Mkgv!nEqk*DG%U?r%{%x#pVKkp7h4sCn^KzfsyJrY=|Na{}m!&PKP= z%M(qT@$TjjtS2bsI%Ut0Wo$w@@Q3Xl5b^OQol|QepB@J~P^p)=1KcsJhAXF^#EBPb-`RiQF#2^q`!0yaN zt0k9=YC#q*szZ-VY8D-$S_Z@~z+Ux>e=8MwOCA%k+5Ve26D9UeXI7j|NXP)kQ3sC0 z{d@5M@Wbu6JMr1sv_{W+t}m0VUO#yVLZS6SRV24SBelNbc_a z!P6@dl}>6$WB#Jt7%|&BGafQXHjX*MHsN9#hQWTcbJ5w!rPNa3!T(A|MZn#smW6~) zo60_oM2z)G7GIs*Qs!8z=o|;fM}iX!{6e0DcjU|i@jnq0EMtRl14LyHocRV3HZz0f zA`SdzW?nZ_|gZZ;eK4I=rW5Z!bT__E^%;^t#u^C8IpOGA+JhUmN@`d>6e z=kp))`43+HY(D)opZ)tK`^O-{dmlbe1%E9;`9~>&Norf9J2YA2SerUYVYQ1Y9x&uO zVh{iCO++}X^piI>lLCO<+?hs_HyePo6w`;E~kX|KQ;vZXG$;poCxiQk>w@?Bk?8y|6A?IaR zA-Y^Dpi3+j%F?prE9o5xp(!_nA~dC^e;~OYiFkhstm5@2>i7K6ksBwt)N>BYj&PM8I6!5Cbe-TS zCGKmb@<&sqvuy^bnHh65EmOmQ+XA1tM`(hxKSpX8ps7uqHjq2=CWG7&3EPg#WE_~v zd%tm3g&lHTy>bTi5wD32&c|n=Y0rG{+>=}?3YD)_%BeU!N?OehY5gw4iR0+Kkt5IQ zK*fsG2Gryiw0Uf*8ylpe?qK9GN7{OIKsZ{_EiG-NW00&O%Y28k`Z zAP`<|2Dvm3TP|_$ctBG#l%B!jT5;S-1NJv5MCIH3Sw`j9_(Ur^84*4+(-hh@;1JGP zgdboyhI8By;{=cnn`jLq^<|vq<;mX|v#$(-XV}x1*-=>9j_Q5ks<~J)=g6#exP%R@4wNkdQYvFT4A@ zXSsTlvDjm7PN&z|{J$@G=K0O+?&tY@e=qW&>T|y|_X$mMIhSjVz;{(VYP1xaWONI1 ztJ$N*THM-*k9xduOatM+mQ-TX;07B_FgMeo-UF07DTis3I5S{?HT-QTkRhKP-treY zGe0C#WgATg@!GwB7@h$}c6fVV{ZjP2G~&`Lc}7;CwQJ?OW?3xfnhUSKUEN$5D2;J1 zN&M=QXMVL9HE-Qg9={hicL5svH&MI`1!ONNueq2#MpERKh2y)!=7+CY1d+6 zax@NI)1oTo)LxUuIsPk05Ok50M~h}@z;@@V;o{SMe!Vv#(~U| z;5NRUo5$PP=-P{8$s+%J)|mKZ1oiDA&u2uymTta}9ZvUq;t>)NoX4hBm@nh3&7Oz% zB%$m={Hg}E8eQmXj48Vl-U2f0q%V?&UVB0~F+`vJB*jfQsD!aLjkueX_q|h`14ZR4 zw7Z8qTG?*#j<3BDr~kc_HPxbZpGtkpvlf5caLUplfq~?x)R!0RGLif6HD}2hSO0!B#bQ%V?4^e^wu3n3i<*+wsa8qFc84 z+zD+a99{!c=&_jkEW|C|VGpc9hm#}0EnKGuu9FMAJaJRs=JDHYmFu;Q)4D88!*inw z9vYfk9v_Is);^GW?BwG<*CT(D1s;bX^Rx(X3-i~Sh~8@8@s-BnwIq+^;|{5=E{GvN zxhWV7>tSO{Z&FEbqs~k14A+^sVVc>DJo*Q-79Yp<)8eMM!?dQYQTz=l@9pt-9>8n& zN1XSb_N?Vn3d&>;7;DijVa? z2=T)oA*`XY)lYOEnHGEIL8X~Si^hJI{xW+g?r;Jd(kGUd$MW9U>l1rtP} zpQ@SOb>%Yd-_%~M+toRXHxuQSxj<1vizbib5 zd{0jSL*Y5l(e7`L)%VlW49sQX8fqD!AE&5l|>>>xu6 za?a$W;P7@^4lpQtnSXFTxZi6YrkSxwo zxN0f}Eb$?O8w<(qv|2VDZeb>w_Fh<^`D}oF06#ftpuU_ zh3*%Id?qvGLvtm-=@`TTUAl}j@i|K61(J2GRw@Vcl!G?ArX;K;8K!~qvNeRnXJWnIXOhV% zfz{eablh-={#Z-Y^5)cSpa9V+O%a@o@1p(>=n@%-RN8FwThsd=>3VCrcyxBonV9Ip#zh;12|7@bzJexr#D zQ0zYd;&81JfWhT@hYIR{vqCxaBO<57SS9J6Igc7hXTA^v?HwYx4w(|^#o%S8E1h-DU5^jCjWYI+IC5ZOF>F5#p!5)hI`PfU^|M623SQ%@8`t<;EO=GAH6j~zOVauZ zEVdr-KNU;OK>%bt1XlnApTBdDnnzn^YkhH6wMg#g(c^(}^eD%{9+lRt3~IpadIM;X zAIvW5wc?cTa3Ik``X9@+=kqZ`t(tOz`xKofi-J{D$U%;HywRK)D{=23T`IQ2=pw^3 z*K9PQK@-woTt7xX4VYB1LBV{Xt5&q1P3C5@T0@g955V1P_X#|KGfFW}QAG>AD>;NN z9HW>f(&h;_vIhwO<{weMqX5%yM5loFb^$pxtH0L_Gy~00uc1Rn9F${3xsI>VZSV80 z`0#%~%;3hw%p7#ec3$FsiJww{mgvJ^bRl4KG1Bu2gNFIsNFoC|BpJPCVhag=+M=U$NTGljgMHF{g=5Gs<*ophX6Nul?ub#IwkQ*#aGcj* z(K6bfkaNbFFCm6ocn~denEY5DZxQAL;&0udk&9Sk34hP`21REQuU?%8SzpIf57G-- zfZHx|s~_&)4nAQ8@OD1qOHd01wNOwCAy!X#be_zkvykm4L@V;4l0vkikZk#54i=3} zw!B#NV+m;%37mcP2JdC9xm{t1?p BUg7`% literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/allreduce.png b/docs/api/paddle/distributed/img/allreduce.png new file mode 100644 index 0000000000000000000000000000000000000000..8ce5af2761159357f72a8fc5e74694b598a06f6b GIT binary patch literal 36785 zcmeGEc|6qLA3qFRLyNUYvXpEImCC-9kiAl5ol;B^Bl|jo7DZ8H%Q7lUg=F7n2&ssW zeHlx#490Gl?K&f-zTeOHcin&7*LC0je0n@4^PYL1*Ll63=lNRBd7m?n&Kv9Q+P-f) z9Ua{+y>n+T($O&y>FDU^Shs;sjyK#nOh>o9!%<7?yq=bp$ay!IgX3*`I=XX@V&YgX zMfY$A;V793mUQ$|FTK-vH1#K58n9eo(>r&D?bv}g50mTnSYJ4MR@36bg|jssd!81F z@E$o5vTH}VNO;J)^^xxLzK9_%uhrz$LEmWkGRQBainl{Eq9uV≶kY*@O?=bQT}? z-?@~^A#>o^qXz=p4ry-lxysUHar@CjE`I*)oCy|`!#Etnx#Ge6*!uO=amwXOiq>ob zbdvnTmm=;Z-*;7c)zWkD4m;f&(T4-B77^z@sj+5-J!9e`+kC2YBukF|kkX0H46u6@ zz?DHCBvEk1PKfS?be(ad{o+%_8y35Y&qQcGbXEVDa$7z8?wsSjoc#QJd)1H+{3CJ< zK_MP2-%TmIqgUhbZx`@KcuktyJ&o7~O+>it^Ua9JoHa~Tj8w8xEz^bLko~*Guu^Sk zfBv2WZoC-}belc|$q#t*FQ%W)lW&T}i+?*BI>vVplgKZmT z$e(wK`>E5o`b$J^e0uPlFGssY%`^F(A)1F$=@C~W18$0NDl$B+wMh|`u2ZloJac4d z-u>pzpT&0^4G;8v3Uh!t!B~Q(XN}S9Fr3kV-Z?=HCxZf(>Q;th+rIVsY^O^)<8^q% z!THzNxqU2j6FyC`VeXmEH+%TDaRwhe&-_A@Z!d%V)h9Q`clHM>L^&RPNOw$x>&Uj- z)hrg8J7a?bKCtf&vHP%Rnl2`F+caZn^##}cg+c8@s--*M-xYFYQDtJhy0?<<`jA?D zkO(Ww1(CyPY?G%yJr%pb(R#q-v+(x&uTsxSGLM`-b8h>XmO!fAo89m3t(;l@Zt`7f zLe*o>)csklyWb_3wyp1cef4$UvYdTo4^pGWkToQN~#gyPe09OCzqFzJ18{;0g~W>f9m5C}~G}Jxxo4 zcOrtKHV1Y^sXx2?nfC_7?YM>h;2HIEE)p0CbozNo@!c?eZn4n(`xi~hG<^-%-e_L_ zaN+7<*WI0xm!wWe_h0f!KX?9w*$qiqvnJCc=Bh7!wC2;fPk%Z4#r#ovq2*is$>$f5 zZKcOA_ZTakQ8Mr?ShzNp^;Pt+;vSwoh&>Vd!C%#5b{y8aw7cW!l!3je!ueHGxeK9} z^WJ5=Gwkr_u)Lh zSf~oLJ?WE@!g#><_^jcanhwdfn{B19=PjZ$CUX;BmKhajFFxb7Y&_!>+<81l%`&dg zw)t{0Ry|IwQ`99yF1&<%FZk{0>>9tj;&*i)oYgA7 z_TpN?wb0@CXDJurFQ6{mZDqV3a%>5olLPJF}fxkBCS+n9tpRwy$(G{i1#hR{f-Z8KW;jePvb3fpc_0_J|KB>JwEW;%d!k?!$av{y}XWM58?^V9DvTrQsPJER;tnp6% z#lEUT>#j?Ly~y~e_|QCuyteKL#ro2pz&4I~_t3g>yn`)bWyN-`gTrbVI`faYax+t`htIIx{;8``Z-nNW8RR_B%{axyc)zKxJA@5!Hx8EQ6 zhV6RYdRoP=Rvr8*34N-#Tje?C%UfkaL-t3p|nHA0+?=AA|iqnUW zB_Bq<%eXZ&Wz-?;qwjd8yj*Y zwO@w*Xnvj~mLj95;wy{m_o;Y88uJ}odl?}n$RT&gx-{@kP5rFFfw=e9?4q{=^6t_(ILG(Py5)I`V?{;3}CQ(7$C4p}-kd13APOhXYmfzo+mNY&Nh zJM05iZz(!dYx*T0+5k>DZaw#Wp^%s`Sg_7Tc-H=!{x*MchwW>#56^ zE0x;=`GzhI+_BcFk#JH;%I=Yc>1(>}7Zhc71u3vR>rv#QJA6EjhtIgB)0Dx8A{>8k z4(a1ZPT_{qP4&`0)H?cAAV`fh@!-3AHxDhSd=jW;XLlpToom}aoq7G4<Of^!Q!{C8gHmN^3>zdMosFGq_BsU&3CI#R&J{$LqeIhH%H#aFn;7(7Bqi!J>G= zx=F_bFP(#y#0;o&!|bowLaHpf=6{EiB^)4O)x6^kyUb^CO#mG?kI?P%2+6|bUy{wP3 zD^(7is*f^w>um3FO~l9fwu`&6kJ`bFJCwnD>c?^iMK*5na8f&X#pt|<7R=3FvIqT>QFav$4A3LsaN_C^bKfe0YYK~D1PI-@hJdWeY>h0 zZP3)WM`^ZFz&P%AJZo|Z`~@uA_=gAoOM(~mFL<4jdGT1EosRD0n%>#dmwf1_2mGJf zUk;qObM@#W5y=qI{)g%Jx3{M9h6JTvK6otX4KwR2rk}?`c89UPKK%^J^gNtz2NS>M zgU~lY2VHaD)IZbdX%R2llh>Phk=U&(MMZM179Q_>pmSHWn*laRhH&h-HoOeLkL7Gaq{B-Fp?EM$VgM> z&zpS!lzqL1acBN1PIGQi=)d5lw)_4xXsGMEL;3Fi0e=W`^`98h1wUY7LO(dwp8h|K z1Vh5|KeYXScu3F|3qn4``G)owb^Op>$H01N+h?5}<`A_U6woR4GCdNJGn$}~7z|t;XfMB76H@rTpjp{5 zaN&zYd-MC7HHX^L`Snp0VK%W7 z7KpWSv}qmpQ2xxv!1U>2YEer;qa0dwMr(C#dAgt_qfZ!L&C*uhZmg2Nyw-w%TLuE6 zR(mj8u2ov+-_R@nnHw-B?MNc8qLH0t?&BFngrt7YE}M2|2#c=e7%88*8kWqy9elEeSeJ^KSSoz+fg8FbYt60iX!kaS%a%*#blLhl zTUOxG;KMs0iiA^rdw6bIQ$fVRS1TMFyas*83x(kLVaI{n1>f5InvON3dA6vn8e$(w zq{MFw$%li%o$7Ke%Ghj=FAc(o0L$?fB(ih4(@HLffI}lJb1P=c3sIyQm`Ro#QwH$L zjEnrE1WQ6S5AhTJ+r$sHokzf^B8L>_1U@%%y*al5XznY8IMV~)<29X-aR5lz_m6R+ z_&tL`C$J(ySUoOYZRSZ86 zXdCUjU0`HcA%~`raP7j7rB{6E%Ri${jIp-#(WkGns^phDkXgbgo zIxv1^RX)B&b+PGL;EW5>^&{IPnMF9j_2(T0z}*i=s6b&BQ&!Uq2EdTC^^&Sk6=ZMJ zV)A4pEMQci-S4YZrU!=wo2stnoIm>)A53d6OUjVKAWj!*a`hZ&O<_VGz^K`VYubQ; zOksn2R-u!21;;X35&-Qi{k&t*yfwK*p(Vd0e!8D_mJq@MS@)H9|5f z%8{*8P`nYZTcV~4Ras98h|qyq86yT?B6iR$b&kO^YN01fO{ z4b#-y31fxE%a=-c#LkQ;5;p+hqCt;ru%w9Bq zvT|@Rvn7F;*dzgZypyO|@f)5Ql(`Lma2vR=-40L3TyU;J4Rv+G-{)iBS7b;}k$2o$ zEm$jWoF<1?|0Gm2)DD=?^N7fD28JTmLb9(EzGJ~ypk)RPBfKwAjFDV;E4M_vGo!5@E8O!HFehn&vt%Aq%Q#{)ACcRdzyed3jKRKnp+Je;3$N?mu z``kYk2T5^3kQb3ASgPcOQUQ=`gs8L?$0ZFZSkyT)%xo`Q_gz^;QdFIL*;S^WcFscA zY}~$xO|FP1-fo-CC_m1?WEQ5Gg^Y{NgD)mx(kfPfe;3NyRx0LzxE3icJasBq15_M{ zS2ssFasr3g;LeqDHq5~XfDaH8Z;R8$9}e7O1_cGvZfm@r?Hg7h^oW&P_O zO-kcQ(akHVciHuwR{Q)aaCM0RQUhob0&9hNA!G?K@oaD|_;xB9X;)T)nR}p+)=&Y{ zRv&pNnxTp!$n6P#u@?dt*w;6B zYNP~YRu6(Zl3;BK9B1%Z!+^+#!l0p&LLEkg%M7E*oYRoeBsc5ML)4yboT`E4KkQ@b z-E(th(QwXbwQA}s>vLXkadA$X6mbi?%#1ExagUKm@i}PIDh*ltT8Nr7g6U&>pvdIk zaoZdc2ozIW=`I|E6J{J|2r5MNmAuIGacU@O_xpCTD{c95uHR)#^lB9@-LquC3;1UN z!)m{KiwB`ezQqumsX>}79Q5jQcC5mo2q4mR4$dn7`j!|syLul$BC!F9;Kq<_xQTiT zyXstZp#_?}oZIdTeEcmR|=@%ox`iTd`BaZXfZ1V$BJn@Sx00KzjOdW{MF<)91CP4nM5 zW?=Q5wCH(DaA8oByQK0ir;Cr++uNdHW3<|Ls{)za6$rKVuC{c_i6Q&^xS$Ihb4Goj z=^K>ks>+-~Mjv;`QsG7-Y-`(~n>8Sm_Kc7u@evv>{{;0~zZX>O{oK;zS zUq1EjSwjV(0=ILT+&K67vQ-BLM%c}t6P1JulGcfJr zx;eIZd-REdu?jV0*gKo7QcQ$FII$NTfrBE|Q0n{F@v#>8N`Xh9%53R%OJTo>m(Q>> zWU~L%+sq6?+;YLX?t}jLB2YZPw!(Y`xuk1C;Do2zErtn6BK1kyb_E}I)+&qIU|#QCL* z12CQ`xK1OI)Ppp_?w&xJsTbW6f7S~MWne*+`yTS%i zVgR)_YN6-x(i;=#ZK=?G^={#MoM0mc5gDQ<^iP!&60lYdlk`x=)VcHELe!CJU<} z8kjZn_?s~>ZR1g#_))dZKSv#MZVqeO?#>l221<;kQ6G-)<`~p%cmy4xWz=8dCT+FoCLtz4o?I{l*r`C2~Hz+6FVAk{mXqP#`!Nf^jNV z^KdY^8b%jv$54WC_49KEf~>wXqf6kw-Xy36OEEBou~{S99!(Z8qZ6D@^AWvz5f!vA z+{vEQFC1NhhZKw?L%H6Z*PIJ?4jbZIls8IE3mW2U=Ofy|GuWO3n%b?0K$==k1V;gf z&p-{uvHfyo*aMW$`v$)IANLqS=EBz!#Lr*UoNN5SM?7A$-#GOkeT`f({~tMj-4i~! z1Aa`Sok<@!W&-F+JieCg5`d%rlon0S-}f8~tdaW#eW3~5PR%-s&G zG&z6YlOcz%CmQldN{Qg@r*^;-uChy zyKE?wHh%a_m{Z&OQae~sAvEL8Vg0@PWphx42SBN^asiYo9m*sm+E+2TH&ort&=O55 zGHqYyYoUZ&n)LX7(*!dC`reD8A()GMcM<2Ux@;5QkA!J!7-9?1h*LQ@%(c+M+0vO} z$3QZY;%gbm52IF02v9NQ#!iYE#HN{+O(gPVEF)d;4TbM3X8jxoW}SHuxPd!_sdrj^sG7Zj_j@oGNOfkG-EM zi0rf(JUK6jn0z32T^iV5Y`h_cgfSs|E62bfYV*l5d~gyat*?tbLCILoBfK}kS~{Uc z{sXV$f!~&SkT4txe{J%)`n5E2KmT$>t33~;-utJB!Y5;D zEtf#W-F{tzOj4M<#7w1kq$m4-e(I(c+%h~H+T#$PQInSj^T+DEXTSB0*NSEq zcZF&^bwPVYccm}C5!Io57a5fdisrx{Kyp;}s8BihdmPCf zXrh5~Oi@=7obB(x$?3_DA`4$3O`v0AKd}j>)Zcio;v>^h;NMiEL>piR@VDi z<4Fi*X10*LG_GNUCB9aF)|rc3{Z{BwvE0`-)#$SWOd|kSs4OlWGN1gE{j;5$Xje@& zvJ)8DnLN2#3DnE{FC%}+Y;*!#qvz4J7OlC)C0;OfIjlxZ&&8-G_gF}f11-J%S24iq zRbC?^Z%OjXnol|63!{d>f9jbGL<}UrTL9F)+o@1z3KMcE`kALF;XE3Bu;Cc<^u8`R zRgE00s^MKlDdme_slNLmL-EpFB13v`1)$5z$;0nU{YD_gIcp8L0Mv++c?N+pbu!m^ z=&()5P~4gjXaH2Rp3CyMZnoga20wO{%33U7Ew*{d-xk+t)9y~QP+lWkd1W78mNb*cA z+9=a!0%H;&L|uFxKuw1{!V$Ab#AM6@m~V{{RL3vW;FJzs_YECVi0$K5cdU`q*=YOU zsP+N^_j=tJONj(Z?V;Lc0&K&bpC*E7+os!>U`9nJn@%A}ko4t6Bv34HU@|3O-Mn2G zS4tQxOhNSC8PMuHMhz~B8>Ia2PAoHE6;2~1OD+|-&^9T-lQ3ILjy``}VY7wvNQrr; z8>;!WFbLDXHZ)9t<5(of_xqsi8i$kHViRE}-EKiDrbj#oj|WQ3RoBG#misTmfJ}^zfQ#bT=(mz4s#Ri z0bN7lj?$9bWzOYll==7tX@R7L#_9Kwn{dZc>GOLF> zE#03i;cL4f=>AbvMIkD5NGfzPAfl}_dK~r_E;P495atjONxco`^AGe6>?zdEQepWN&Y zIj%4Oui4T0Zst<52?sDs{1wO!r^EpfujgN=X$LVP=)WZVUdP!e8PR|FT->Deze^pU zTKH=%>aR7Vf7h8d77PEKbAamQ-$lNSmD<0&bHa{7f#(0Q_qO`Tp1njBqQl#Q zM)Ci8*bJUWAAJbwUDg7=|FNI;=wtBJ;{x;l_0_+v{(5r%|4$5m?f?fj=GU~^;}uuB zuV>zQuC=wvfaw$1WgyU%>^}H=1A^uvDC`%lrWv+29Y||~4X0AsDbF{zE^zW)0oyFv zqxXCF-D}fVjT2u_?%tj7dJ0*@j-V~!#ll4aoczRrB7a_5!BiOX$ok~^5Ztgfu zodoKP2RvQgY^25ZyQ`P`E7@sXrGT!+$8K)+Tz!=xkfj`jgdJs-JG<5YQ?Px`{*F@o zmQ_ic>KK2N=Gxlk@e{bSl4XS0mO7G~>ZHwGq^ZLX)Y%rRMN?<{Z*>mHRPt`AQ@sRM zMJBD3qPF^av)R|~+HhK5hG3~P@l*`smY~{ALDx=J?xP9vpbFAgir5nLVN+0iZQ~z7 zV3j9P{CVxxSZM9o1W2t?h$d(WJZhg*QraTM(b7#p`|EaaZ&`0>00i+y-`x^ayD4Z` zyYe7SkOx(eq|$>;jm~SP;xxNf7x#$FN6{c^2L#Fp{>iyT1h!xlqYb9T{9~OHt+VVa zfZln}M7KKAW?E(0AcT+W#3ZpIoE{B_hnLm{iVvoG=->}2==h~ zCT%HnZc`z<`Fxr}(m)|Ix}Vp!6q4Fh=xaTerqB@xPzV*NyEPv5n+hGb&v1n zJ+`0uX-;nlJkcn9M1AWX=HK3$%WyFBPprBRvKw<)#g_3WHv`PR$4QJd!`y*)jK3%i z-7@U{Z&GJ5IP#{{nVP7@y!TtCE^{R*xxcvN^D6<`<~abi^E(dsj6O-MZ2rPW-MyYx zVY?6&m*)B8WM_N;*eXfw@#=k$%C|q-zom|(=Xe zB{t)^rDwu#TjUnq90Kr}>dS9W_z&L)4}fY|gblHxk*ZOhd}w^VXe6$nMSapM3sN4a zip?%)6B7!Ut1+^j3Sr*S=4nISxL!5?N#M7R6E8zEDq@dVM0LtHD_&nX;Ic6w!FxdH zls@FPX}f0XV@*DJF6xHT*ZQbC=&HV7?yg`K`qbhYA~)blG?h6v|qc9?c=lR=_N+NNrVemb>88 zeTlv0yA=A5<_vh_XUehfb6mh#=Qhs{WIQFcoLyMC#7`T{%` zJXCcyc`GUT{k~w0$(+@?b9a>-Sj)TIyH+sN)ofeN4KSt79`vXD!KTLzRIA;X%0GzW z+296fqw-bltQuT6glJdZZ)&V0ma~dMAS^2|`jv&+jRF7Xf-=5c=KACs+$Xd5g$Jy%=#K$@zl{E~9Z;IGHKG}Mu z=Flr0?I&W~b#A)_cn{tB(fuSZsI?pZ(6>YK=21!BYTFN$-ks`={?K^$*#x)dLH}RF zkrvRF6t%G)r$A_n9VWpAQbe)3hu{pNV-lgGXVs)*Xy%&e%t=f#wXH3xTp$3cntqqyx7NT<)+NZ%PpLn(Z&MqaO0e z;{iWEpmMwWXr2WhpRLc!=@GCob$12W%>PJj^s#&$b#uDiY7bO6&qRY%*d1-GtT%l< zQcc{8wA{s))hFoHeeGf=`RN(LNV50fGo+|)#BRdSU5+pt|CyqCc42kvX|O?9!mI`N zREz!DLh9+ebuM7jv|Xg~lw@A(eU}n&>_#spCDO$k>|*`ef+5X%+hrOhiksy^`gE1# zu6)oe7La#%-2Ek5BD@1W)t(voJf_7DnQUr%tQ`x7&=IetiB>zp%8axbUjeiw7TF8w#Y|;_ zgDB`9u>3FLb{hC0#yoK5C8ryllCqg@)fJZUdYc~0?ceK|`H0koCX1Q*T6?r=U$lj< zjnz+`A(4U@*`HpXTFuJN4|55*|9gyn9Qyv`9>nO>B`{c<oP7jbm=1}pkUkc^m_*&twCdqjnRsP;mu(GjOJB8kxqIqEN z{fBN~kx_Q@rFN_a*o19Q8b=~zi@kA!b`)^rDXfFvLs`oZ8lq=UI0G%6+=;$yZgcsa zheJ{)cIB35#Y?TwuZOGDlch4{@!QzZLt9<^AG9?eGCqU{3J=%@zJXM@C2})oG zaJntDe{!uUNy)Sm`}kaPs{(9L)dKx-yY#~jeiy%#{QSU|@*D`TbN}m z9TiGDPw|017+S`DhDB{~xeFqP_56g~-ODG3Cgu}=@IRy;8%S5ZT1}VN3;*<(|Kgxs zxJ=z)mSo3w%NKi4-{EciZ~X*y_usj9+pUI~Zz99a(_zvZO|X%IfCE!@p*#7xdm|Wr z`;SNj9UEHlaQ0oAKe2O)4C{WBbJgO8iywP?;O(R1+;DxS9UH#Jc_kj)em~*Ewylw5 zRXhzw2YunS4x34!ZUTy6d;krOGcA~6j56e#;mcW&FMi36newP58;5ll#pGk@@>u}P zS&f{I(W$kGrXsL|Te`4Om^7h#F-6()UAMxZkJfaXft+CPEI1kvy#O}a%b2xL!0Dyv z{N|?>U{8H|HqIsb4B^$qx1U?MM0Eg`?#k|l(Ao6l;Y|51zom%-gf4!EaGB!x=gWeD z>$Bw`PG9cCsxU7P1h2EBM}FznZrxOuttTHiX!nk24Ndl}n=+J3UW@U1fJ9kcfUam` zj=gEfwQqPLAaPka+8BD6didnA^Q%XVAnsXAE!zYsi<)2p-#|KSoQpcn5L&$@rgqlY z$6Dx2c{+@O;Z;NPUZ3bA>^$ z&wVU&Js4hOiS4+Bp4zD&82764`lk7J0CM#gt_f~s0#4T;z|Pm{eCP1|&_lye#iw)f z!X|e#Unw$g#1dCPUX4(dP}424r}i_2Ma{J*7_K)L4tVt$DVw3&vT*m>6YjkKHW%J} z zg-I3ej;Wp6B*{*Z*B6Uap+ zyrn0iJo%Hhxjb4f8WP&h-g`x@R}B;gX@?AOz@Lk23=M#wXzjU+=FnG)wei)c<)PPMgwSb zhaX>J^SO3!{;8eH$p^eXvPpcFU3MyJ&267DEI<-}O5`UOxAVLC2^BenO!@|nt6-k3 zC>P+e3!0Nz%_jnVR%rcWN1N-cqSb zF_5debV_X^^=_RG^wZ?Lr})d_c5KHek%U9UA=jH##tMONHLjoRvNp{Y%FW3!N(3Or zmfMzb>^-VE6;t5WM#35|=;O7aPg8tcMs%Lo8ipXhk_mDd5yc;pF4R~wZgMH4l=9)WL@hNlu z6w>Pbi=c7=_T(W@W-!V7*u|8 z^Zs_fOrdU`hD5xmN4eQEL{dNLz1jCzi#{;;l8q1^f^ zPEKQ48l}AG3^LyHWol_~B~bTO^X`67huD+y8)c=<&>`8ROo+`O3{6V2C3SV~M910s z={0MS#v)W^pXQ?&O}8J}1nVS7^;z@}IyS2UR?X^D^xW`6LC}bZo4gZcnLM9C=or;meT|E4=l7tV3ijZU!dCneH+pf%J}@rHC0qW>(tt;~ z?F^We903OBtk0_1P{1iF1Cp`I%%M|Xed``_<=aB>lZMBV+3;XCpkIa3GJ$^m@^z&i z6#UW})I-;K%C9eAg%QL%Ac-h>Zp-Y%n!9`IB%?%4uxR3f0r(X6fJ0bz?AY~B6XJFq z!i7i($S>!sc$buAQFuEWu@!KfnVZm#B%de*R+&A^Z;t=LpRvB@Y9Pzd0|6Jwz8R2a z>^jh%P!0{^2jUNJ!6_AH&j&AE6mERxTwAN-F?sleEQN=V7x*l4*_tg19P})phWf$G zzXN9KHURd?>JR&9xx8Ck^CK+ZBUs$$)guLN_^;~%hluC!J)MUmI5zUnEH!@EB3*T8 z1E$HkTWmOUU~RrZxUmHkQnu4N0?voLzKF&BFsefV;@EXvxxOpU;7H!RZXLe$JVw&t z+plLlR7m(wASJ!e;_d+%*Q&TH0VW;;crq&?ZX33_QQ<;<07&z$ zTw(j2u0ioS%_C{~G57LWmYsV=LfiP=^dhrx-`jJ$#GPAKdRUu~8W68k+*bh&c;)le z?(31aRaVlLAM?xqH1uDd5;KDybpgjrQ>^JTe@m1F!Djr7oGUwR07M>ul($!MSN6f- zF1kaZ3I{;#)^ct2=MSp(K3YNdkP0^SkIrm*%=uHmny;Os)-Wi;deN`e*Sd{UlkJ(| z9i{);6fsWSBv9Y05tHJ`Q{wc`;kQkeEdcS*%T`jCXlT#c05h=qzJ=DZfA#ZIQ66{s0 zLT+S|z{En2k)&J%KdIbf+x?r5UyXsY_oxM7LpM9FwqWp;m{=G@77QuoodHZNx$<&7 zI($Q~;7$Nc*S_Zc%v-&&9uj}*9U_Y(iJ?UH(J~r6YvDbBSM1eaB7YE63a;ew@Wsik z?P+D8HP=ktLp40)c*CEWrqredQnHW4Y0c>vWJEMS<}yE3VxrX{=d?s{Og4iA19zjs zKe%z;R0o)RgEnz(hCj|A&BMQKg1ifV#YJl#q}k5)bk0fHj(w}lqho60`mAy~Zk60- zvnPkvoQ~;*5kRSctpKq#SrT~~r8&q}Ubz~#kbiRgODJ+|*;Fa!N|-5WEaTXB z;@osFi;$#OdW_lEu@}b5lWEo~?%?M)#`BTXFtp+h4%k0RKH(VEO(qe>^ATPQe*k>? z1Xz2UcyqH72dvWI63E<3p8g0HzWveTwWHnfngH5-jr|tz9?s+X-wtdSiks%d8C)BFQ z`0wBh3Kw@Kb`7GdQs&y?czD&X7fwkk4JRZ{cubskEbez}d_)=*ro=la{0AkE0~to! znr63V6q3SJzs0)0-%A_6(zC$14XSF&w%q8vBm+1gpJm-r+~*>FDmQngcwgH@>+7+n zVCm~kcLfer(UDm_{})TSsWlQEZz7F6!H0k~VlV59w~zv&eF1uLe0nR4G|Ue&4f>4k zvUm+CQX6}2nx=Z=^V834@qxG%zYM({A>)W9#J#sS7&hMyvKX+o|-CnER}Db zoPaMulZ?KCNqHbo#3$J;v_K~dfPr$bSJNCcyv_mwhSR-drP(3!{Swvr!s3!?EDdI7 zpcY}f!R%esYwE{aJM$~onDdJH+{c?^Ouy%Dr~VwqMWIu-<7Z4q@qdBD24ox1g&WZn z(BuW8^S{6T+qlp^bp1F_W?C{MnxNLdW(x>Opg*8KpiKYBi@aF;G#`4Hlkc z`q&-+P+R2ceZW8IZY9Yr%PF}^v8r>AQ5&2eA-V>v%HRbud2_7Y{>N|C+kwc zZ&Kv-o%A2OperaA8n5PG+%4cz`m!hV2IVh%j1B>@k6e3BZuP_YhFavQDgXFW*v^+T}tl*M#+Xu{s!;_EOhjpjNTE5E@ z{6LEqz(t|~HcCA*NxQc?w5LYzomEXI|B$njYM9@z{aiG|?y(vo)os2ix5E~Gez`aZ zW`1Y-#x9qRr}*D62a9`g-EU1Z!v=0d8!ad^5&nw!A3(f9YUB6+DY2M9|HCYQA>a$b zZJdPB3Nwu^$2m*aekG; z3j+(8r(f&>Q>W>?2BF0N3>dCSfEW!b58G*T=l~!zCby-`j^=?+B|r@EZMy-XnJJ>n zz#{1JblSNlgxOBQF#hQ+Tx}>voYzKO7%qoW?10~7q5&W>!~z7smw2FCb(AI>NQlzc zGTp!Y5y=9G?-uk~_7BVD*_LMd%)QWy%_`x7CvRQS3RNL3wcA&K$)U+KgtFfCpf~TY zEE|LYny(EYlGL_f6r*y1DY;4P4;S`>jvKkeD?(_veiJ$B)On-_toFG`uOzuQbE(|? zp4we&^x}kGr?7j|F}qB|go9q-XCEF9q{PtFrDLe4hM_B@FCAOsab6Qxu)X`OHTPEk zoHq|r!|}bw_p}kxOkoo88KUp8LBmOPQ%zMe#ocGVZY3IA{aDq5V@35Yb1LZf>rv{K+nxwlz?zj%+POL7LKkYB#FL8^9aocBu7kjmUp~ zt66;v4A6cor!fmH=KN&7zQ*tfgn^ zNCsU36A)#W!jK>XrhpC&CpI*!ut<+0V>weVmlc~&PtQ?Hk8o`iR)2r#=e>YEs#@)X z7g+)(kdurfeXg1~(j3c@T%y-2M4i7TU6nk1sE@=!k|)J_JtFhF)uEB|xJ28rKoklq z%!YpFCaTGLUQ+}XEZIvA;H$hnYNr;Mr&EO68!K?5y6O3 zE@9!zvayQx50F>SReq-zUWXF-19dTXMHaL%t?0TazFR@$W2jyGL*}cHs~SskhoFyk zObD-slGm~*R5dlYBiz~-#)7k~iqLzH_VOQHm-Tt1ds9i_YIQ?UB)u>rD#^Y+ao{Cl zqmi%Z6(yu3Xbr9*&G~I}vq!{<>=9~Tw6o+1sBCesR{|Gc+-h^j6xfNPhN(UC^B2Yr zDv8JwKlTgAc<#i1M=LsfTY;>!kVNMy3Rg{*|h0HMcFM4dMa-3s6r zsa`xzxh9A|-Lo{{O)7|=Q#mphw}KFN4e3&Rfq1@)#b=0vp1x#c`0iK5NnQs$KhCgx z+Gj|cvQwpm*jMB;8qmMMu_X6)z7>g)9YX56f&g$~56N6O^?H@n%n#^S0Ks_y z&YMS0N5Jnb*Ln+~u*jl&nB&f9&H?a+QkqR zp@K=Z{Q?XrTyr*aw?`eSp%pBO>P&6aU{kQe@)e>7-@1?C6k95yXX5qN1z=<+H(aeR zA_^|u_x$|(5^Ds*g+eks*Da+^MxNL<;N?*rN}iYC3TD}3Bpe1;0|95C-E2a56j{xO zkJi+{AtsQAEtJElG)1DW_2tj74eDECfll^ z)f`KCg`DGHO+2XJTfUr)tm8BahM(U!Nq;+m0Pk;soJ| z+;#KqXfPiM+w>TJ@`Q)TK!VYnfV#`vY09gVgzU%U`o)8&frqfA5)|SUVm@G>O*pwe z`V3_!-%^7!Wdp*?q#ZSbn>0WFw4z4^nC@PdWyg|&w?!V z@fafm^OucBvEMaDRGO`6{o+LX zN1WuvlFY$U4b`12#G3aSl~zhN#zFk>4B;qQ6%f23)e%0YgzljP*xwTv*P-iDGu$N6 zK}Lp&!?qLOndvwf9U&XKL<#u`3WId=j zSsT=nstel{nl|6C;zeR1HHs%sAZ;kx8biXI=lm(!l*g1bn^%Yj)|M14^bjBChcS)c zq0P-1&DGK&RjF(*-y8EopzDE2<&RO}oMiy6shCT`u*6<&IjS=!_=v-;1knAETCMst zawu6Ww(>mVCc5(U_T%J7z~CixrC>@PE03(K(y%Z%f4kw}xHMReIqS=5n^` zz^i<=4bqm8kD=Yd_5&!dp`8kUPe?@AjPSwf>8(~xsJ?}Kgv^a&4Lf~JI&}zl3V~t9VKqyZ z?$RUs07t)T&<9(B%Ap0X+Y9pY=Z*!rB^GshdUFyZNuHdrQTe=IS6DZoFfrX)%fzii zWrj-v`X+*$RIc1Lqol-zf)x}nI*JG=)k=$?h}57UD8+!3fRs=KA_0;}LPE;k_uC0Nb7rk` zf7~B;ogc?v31%fb@BY5`ecIm1sVNA)kJHr;p#4(M(Vlx9wF4Y^7mq;ikDd5~MU0v* zD$R&wg=dnNS?cK%GDyp}+c{gpQH3kH*DOi~F+Tx|H}4vGM$szEoN;xqV!5-8hG)$c z*6L$(ZsKmnQ>baA4rNVg9UXn05Ijq>Ba>?iAWOk#MxzO@VHIgYwoDJ?uJa7gGICd{ zRu;V@7+q2i17}2X(sgjE$^B# z*G_S+1!)9(NzeEV(zOcZ6%>InmvB)r15 z!K(GC2sj$11!FR6WHs#RGcYm2FMX4)U{h3Ja`3MjI+5)eQFM%7Wk8YrPmP!qSB&jJx0hKKR>UEIt zqyF_PD^#N@G>eOuPpuE`>%+0^<_aa{eL)M+EvOO_n3##zp@pUvjZ`-Q2Au1e%E7K* zFKpyo&i_^hj%;IJkVh{@0^}gGUpNN_gSR_*2p_Xv-BfYqVf1%8?yOh}*p41pb$VFG z-4&~mC*ePz$hPl(c3-;&Cnkb@$y3in$)eM|g1h`y@(fXYvP+|uw62=mrt!jdhP2KK z{o~2>0((B@`>pWm(<_PNo3%X#p2QqRYebN_N)iK+!ODhMa-m^Ot-^f}12J$Ji2yw3 zYZRlcnzDVdfGmUVau7O~{0g#`yu&Q}y^hp~9UytdGgFp(){&YVgeuCPMJY&?2x&n= zO^xGvxIY7GS_}t2J@;x!6zGF6=z|F4Lq_1@#XD||*RK}NLz@Ue52V>2 zvx56CXfph&Ohir$Fa?7xVsrPx{kCbOYigo_*CZLi$b_!;F59M{pj^0ELoH zEQDlmKeSS#u)-?Mv+uEu)Hgj|Vfx_SEwu|_E7G@=ZHgmc0WNunj6rU83$+m~e<6TI z0GUqgl4f4a)z{1P#T+C=RTzxuK8Yc{s>b$YE?K4Gb`4*O4lH;rpWJ)FVKYNLDNNxQ zf)Vt?{~SVzP!0{q$1wkIAEQM)%0Bl#O{4V9S%W^-4H6)4+@99r0)RS>m-I837^$|k zB{Hisrcs9oB~k)!m@8Bfq3EV^)KT>Fh0StGf`7BlX5Qx7>h9hX+j`agrYbw*Rt#PN z3qiE%TRw8cGe@Hc13Q^zeZ9rlRML|a1hDm+FN^5W#h!Ixrw@aP`8Os@9@*JZE8Ef2 zlsMH_@g6TE{NE_C&0>--fetnu!ihWhc%BjjFq{An=8l7G?mXsWd1}ba0(}5FZYRv? z+Iq}PkmXH3pLN@Nt&dc40X-+BZhi65QS8$21EbgUa*QTXHFI@J-t9AgKlGlRV>0{^ zny(x9q&;gjS*HY~cdy4@bNmcV0fWgMOEL?}Z?}dfW7-Saj_)6J6;CcKX_!p9akS7T zG#pdTA#~7$6Y$E()&xp)cN%TTP0&89;zrM1ie>Q^mPwuBR$M_DOO$u_U!5;(#2N== zJw}6$i&DlJ!HsaD*LibM{BPfP&1*as8`nKx4-DelUaE&~WEs#(BPE zTr30wIYZTYR@hwOCB5A_DvC~*m?gb4?ax3mD!{=a|KmGyE9Ybe($!HKmawnat%dIMmI*nJ4YLWQjA`+*E1GoMO%^Kj!QE?pL)1ZC93;5TgOdh z-c(xqM|wAA@?jzH)+W-_sAveNCX0Zk_QDo$S=`6>@c?QNbsOfGIQ z&PP-vC;Q8MyXGEkD6OjrcFYafyUFtGa8{aIcB zNbkBc1B2OH@-)ku?iQH&SCg*Tv0cSC9zwPA+~|&>=kwU5Cp{j8hpsaAAIptwuunTv z$gm%Y8_ve{-1;t5t1tQfX&b#XbU!POJ=#I|7?^Q$u|Z%@sh}#bo>Q{Bwr+jrZr@jB z_t0;K(T8C+iKc0qeMZneR`^9Y<2d#l?`$5nqlEmMc}iNS)T-7zBy9Jn(9r7I2tPPJ zrp&gD@SVZB-t8CJ<5mDA7`Wd0et={$!i8T`r+ChzOj#i^v#O)hnaT%j&i zv$aZ_gRHV`n`u<;0Eu25+BCrpmsr1}?0B5pHsfDk`Wn_7BgO5~aOT!Lql(uDD>x;= z2y<1FAo`I-(vDNCcJLOFP?2eQ^i4s!do`)!t~NM%$RL{jXk7 zT#2MmoU&l9c;1p#fs>&_4?_-F`0%>+j?l_`ZSr#ae;R&P?@)SXi$p2;DHMpxk;uGv~F#X^w7arof~ z{aXAtFOT`e$%G5Tu58!Kk09I%0m`($(L7VEDz52OsQD=BRvBLz$m9@P$1>Ib#D}j1 z5Ol+sg_w6_EoPNkdcg2CfTkz?xA5RIg&2vjKxM zF3^$kdd}MBHzyqo_)yLVxhxkEktAwsl`fIiJxP^S7l7Vhs~Bz5k6$mS2f|_N)`@~P z=3Q=nJSCZf;$HQyab7X`9F@CJPpVDRFEl&YrY`LuzlS6*%-^r0dM0l+9-ABudX=5B zv8FWR04qb>{GI2Czc*IcQD5rA21T_i$_fH0K%q-W+*ET{?oGjWJIY7MdX#jd9p_Q6 zBmN2}vU2$c%HAs7j2{cQ#(*m4MLO0bP4evWrISu`L8LbY?e`{jJ3BsqAA|eU%zKQI z&G%oYqH5qFe6F(UB|-}7D=>@k$eP=8H%oK_TGd>_Y-6U_2GG9~WV3BKUkcw!N){$(4&s`}S;))d-N-?tc`LhE-VSA^pl? z$E%t4ry5t4L&xu8>UIbRg=zvUU_OdVao$62?-QsyR`78R<2(OA=|f@ z`=qSuKxzN{JQa29(NT-tq?MDSYQ$B6MS~6WbLb>d_FaMgX%C)lS~#~YY2vFV*}eV( zxU;_9zA0+R{qHX^Nfd3?WG#Dw)=(lHFFKj|>pUoBpsI)8d)2M5^N)#}tJCm8&xn%; z+^-xwaSi`r`{MNhh(Nnxv$m}GlWImqX;fy)q%}~gzNNg{I|Wn~&1%5+D<>y3MX1=$ zQ|>%UImsA0DM6tR#lZbVE1m4#v3*?qwk^06*&9CgXByg1XrNSn@af9+8)W@=9^9un zPv3->lcnO#!+aqCf(lM^@Lce2dOXa&M^Wxb%aJUWMq8PPP^&)2rExjquE7*8!p7DWH+qjL)g*4R(NE^pch7JJ1V)r)-z?a$GZj}t)=RF zdE~kTH76Wyd*Mis7Cb5)`jT~{HK^8}G>Jca^ApD@@VN27c-;t{fG&lvH$r|zT*_hM z)Z^oBWZkLegHplkFTd5^A#9) z`i!gO3Vfh9AO5>A-vG;GbUF33kvHZ3nm$gR*TUw(_DHu1tJ;xE0SRRAVwy^2(A!V*5G^GJt1AFOv8 z6MtVF4AP5G!EZ0lSu7FZ7%5HE4QTL6B_N^L0R0Jf%5>t=Yu6XO{zds)a1xRmd7C#j zk80*Y%6l4HzGswAzaP|FwpqM>Z4kTs*>5gp(ywqW&0LfaBx!iyPd?UKKroHgZ&~c+fj)?) z*+dmd8nKm;Tzoh-?oFRwm5otV3s)TbZjv}MQRmrMBS*x!3@7dqi5)??3~ zU3e*py~r?&ryr=#HrwQ6apYm2$qR;Net+C{538iK4zBn2HH_gWNxDR*Gdq6!QU;A* zb_<={Y%K9Epz9KwlP~OiP5nB@7+h2V59zT#h|c2}M}2Y8=94|gw-#mYFvf(0U!JvO z6<=vmc(Gj?nV?H-nlP25GHj(+>DWD~>c$pIs8VSi$x% zq7dF6##gF7*w$puow| zkgf$2oDpu0j?@_Zz;3I+nMVVn?1^b2EE);$} z{XEJkJ9PG;<5O#{d1|SbX^OCYZ`J#KpEGuq#Xi<6j8JhA~RDKf;QZDG@AT*G;^uc z_)#O4zsOWa8a?c4Nc^`Ci<1dkt1~G##)7RAi~XL3XpY2YjVz#Vc-Z?etVPAXx4BE0 z;Ia`PJETu+n(dq2g{X%+w0Bb**%fGKIspvEmep`9v_$}ohDgp5i2|%B-g#n2A+T~L zNxZBssa)60+^GIQCK;#FQ2~sZl!@NDY6938aw*uk_#6q4?vSV4^N1@nY?NDNB1jPd zk@Woq0+5lZB51GVt-<<4=OV0J=cZ3f#>^xCCK36~Sj9UhEV6?0yT_5^^V2F1)Tz9qj^2gj|@bqBIBx zq1z2GPz|(*tlc-Qt~+#ZUyJ7{vtz; zO#Ie`+`=vL$0_9#C1hi2Rmix+wf zfF-u~402k0WjapORwtVE4;$86@+Ag8j_#1qkQIzN{)Xn>U4}A0jC2 z+>6jcnaTxB*q@RPqH_7Jde9W_#)@W1K|2MEJ^ba^>O%(>-aKu6WWLH)nG@?%hlY-H z?C!rOpMU6Jpd)l#4IYAgpsHtw%=f}tcCOD9et5A8EpjjRN9A7Hal3rWfV(cU6K@9z z7dGrHTI#pqLeKAixru+1FlA<90d&Kn!jvYS2dXys&4H;c`g#XDB~vs_aBf zqo*pvto}r2>m>s{_-xoc@et4m<$Ed;a=!yy z&Mxj{qNp1Nh{$ucFyX~clB5mYiEKEebXjAxbiEJPZaciY)oEi{!4D43`Hua32=ELj zG2l5OR4*Scruq|~q`blE&i`SoX*z&xK^4dr2v9s4&q=1EXu`y5Dj_6JFa@Nwm6FWb z*cr<$6)u*}Og}B2aN%V3`890lHD)$BRi>Q=?ip(*oNsFYYBf{2ku;!E{tb8lA|qhd z05y<=9blN0)r!O9Xu0#3MBTAO8~(26i$*Gydp(1hIV!N7E z_>Tq_O>#BY`W>6aT+uuC#?Y*}m%f_d5y#@J%&}lVWMUj5)%w1>4#k-g8y%=(G@=fx zawNWQg!&AozZ3!n07wS3`HG{fR8j`F?&`=9SX3$Y2_eVf(wE29p7CsAJ-7K53xQexWyN$1-=n zWjUo6f#NwGsjx16y~(u*`;|oiTX*Lk_&eXaUoSbQGzHOt45jnJcQc&7n}E=V+dK9r z-&$Lr*_Nq;${t4p@0{FJiP0DR{}6?<#{3XbcrDpNeu&GV7b521`nofUBCurKiYpkRsDTiWV(PNSIY@D+cR!z zA+jo3XO8fSs>}{O9*3^Ic)t%dNwu;=j2pbCM-?S4P3hYw-%AY6AD02r<<|qof=Nbk z$E?CKs4@$4xEUA^nB)Z_&o`-9KXD`iqbVc!+4C=HYgnGmQqbJE7!6?b*L+9UQxzz( zvuwaEQNT%*q|vNt-Pf5*;Kf7NSEM2Xu1PKs?~|%YFFGJEtdvQrCD;~9cjj}QaD(H| z^2;pCZtoJFW=5JT!>40OrHNx+zqAZEF9OTmcj6A3_)ww6?1u*>R?7h7+I!RodV9?c*}3|urmJ5xEYd>K%M z|1jx1mV2@S$B?Pn?=uV$MvxnXXlt5`KYIH2h55tJ5j*99U~4(T4)9gzu>SOqapKFe zq6=`}aCbZ$h5CC(CR_9bk&%57*miy-$+(ghU|H*qD0gZaTD0ohjX{-f&yy@+d+cLi zx&DYr75D5#AoAaWQs~yp`EjzoeRR+&LL)W8vP1b_-}vBAThA7HEaK?$m^pp7Hbd<_ zh(pxzNL%`nMP;f;loY+#01k0eWZtkHi^N1p6ct}fYUCihWNatb`Qf{)BU>|EY|H*Q zBdoGBhngJW;DY=+RYvTe#-qI%xbtf)ew=cx5TYMA46MEBNz(vF;e`ni`Tp=8c-Ogm zZz6y-w-wCspM~{*zp};VneOsWt7q>;{rZ=47KND=rl4S|o_(CJ3+PkSv<~wRO$O}i zw057isw9XO8n9xdQhgssRl5S4$U;+&1up2V=ctKYG9KRq78j}}MtH_g^3FsL$a3IFMeYL#wFe3Z(e@XI&F;(FnHb%4gbtZ{Y*u;-?0bri0N?+q_<_i z8}`MNFL1&;v!`=r4_~iMf3R*z)6FMK=KBU$WK6`i-NTk1?l|yYGN6xS)p~h^?7=_T z-!c1QdDoJqoDB*mO3HjBD&|5;%~F;;YR90Ja~?JpwS zxNs*{I!*$u-dI^;-=2ykvdCl8!=$`>@;-Cck&xK4#ouqv7hQ&CE55vk{gmx%^tXsq zif(YK33I>3o&sL=7T9un$yt|*7qD}`k;f)>POmsbFvJd&J?oM6%izeAu2*3fdT-2H zHrUo<32c+;oRm)vHC>(a$v;9KlOhM#8!v4Vw28FAwAQ3TtFs&Hd_%qg{9rGXu1J6I zWW}X}H(=|sK1H--#Z60}{*xZ=hTFFpOZr8rtn;#-dHLj6#a$c_ ze>6$lLPH&ZI}cVeeYFHals6LpLX$f2l9 z3NjjUk+o<*ManBd!eUy)(n^PMo0Us!EtPLJw$A$)^j1xs>WFu%7#7Trj4ekwPZddhXys+SniqBBjK2CN^u^~kBdCxXpzJkMAruKojs6TtfhYf# zn9?F{EsH$4yTVwpTrK%b7w~ZeGio9&Lll|#kieaGKW*KAc)TD3O2Ks+e1y+|^OI~j!HZ;8)fMYGc65gwy>|4(W8jhyHE=cq%0PtpKg5T%i0dzC4l9B?t_ar!zvgb54$gHT z!MR20KjO(qa(ULzQLZX&#+WVgu z68&}E2MEP4KrXXO=dYpvbs5;-6Zr?dK~8>Ox769}=QR_5y)_74|L?>9SN4Bgf$_fu f_y4@rV3k8+lReMtALh&e|7`aj*ps{K_e=i=YS+!* literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/alltoall.png b/docs/api/paddle/distributed/img/alltoall.png new file mode 100644 index 0000000000000000000000000000000000000000..74db36cd812889b2629fac45bee6020f1d53baac GIT binary patch literal 31098 zcmeFZ2{@E{|3A(|Xpsr%wnd?s|DA_2V`x!&9eF=7xr+-t}yY zEk%gP%3j~N{w*TvI^9b4>$xEGh>-tM>e6sf+~G>wiFDO~EA8lx$6P3ZOLtE_e!Ydu z{Jpr>g{OjYyA*ez`^UPawc@fv zE@gxWz2FX)dSiA;lIya}2mKZYO6;-A<{QgS#GvkYYP?T#)rh+B!}(@@adEMO+V$5v zMipS;*M0du8*#SAEhR1Ike6je4BET=^aO?t5JC>cCd~AF8vbE|bgFVakKrL(@vVDj zq`zQ;cl7V_7I|@7yY+SW;h}&Xl&s@Lhg%bu_q832B#7?DC-0C{sdv84^+HX5)8Q+( zE4OgI?+|g+{?wr(%s6!A(cUz5(X>qg%@nmrVfI5aaRQy!IN zNM=^PN2T}stQjwLJj1?F7%q)ZuEz*G>}!A0mM(L-wITkOCZ91+7Sl2G5`mo|4yT!C zw4Sa+Djh!Oo;0r2vNVBEn4BFx9VFOg{_ery4cAe>Jmp5)VM3e`n~%X_>#fuF$b3+; zEIA=NGVkNGVZ6-C`RuNNhI>~$Ts-)~XXo^>n>n*Z08I#Cty3ZchE8Yd1&iKF9k6CAuAU*e?3=#c}I_*IK7T=Qtauams@jhQco;? zHux<4UCnpf^sTv*H$LxQSWDlKX?N(=x|zCtKhz#=Iy|!Z*jgJN%1D-{q!pJ(gv^M= zGXLO)^vJ^cfD!IxUbPt5{w+EZS(sw2PQ%)l{1>(y*tl0KUu)a5X2a5#S{KA}h5gna z3BPuiezPGX$7v^SCoyKziN=in?^)k_zPEkXS=i-!n7*4Xa&5EvZT9VFb|s35+m$v5 z$Ay2pn0RrWBH@ur>zUTQtrD#VC)7ovj2oX^vVML1>nT?i|GoZ){guiD24aXGH(hM> zI+n7peamD-R9%s$a>a>3`9YyU2JTPt&xoqow$XsXmgvM!iDZCUm>)if*TRn8P?2RnGb>5&7 z6?B&N5@r0_(C&ce*53UWq<@teybzdm`rNN3m-ow?v>M5psyz!lIiI!V_@`5!Oz&ou zSmfwT#h*|AQgO(*UtjrzvTo2D@k^PU68wh3=TZ;R21Xx2zrf8gYWtv#{Rx(-H4 z=a!5V3?q$;a$n@0?eXoo)RUPzlxu(Wz}1+mURPUsa=Y7KZhV>9t=Ii{`tkJM>Bb&X zE;=pqaHL|Ss$*A5gR;_O$md6S-}2w}?Em8Qr6P0QJnqF*;p1nOdT%r-4@4|lPPjz$ z9?Dm@NGh>uH%^_=NK!9%nwzf_EV<~mp17ZwfMb+Yl{EVK`oa88sZ{yOf3NN~?py5D z>yztJ&r{9S?xA!Ge@~c7?F!a6%2afET(SU;EZ4~fSW+!6zOu@{ zX;Nwu+I!jMwqJqYjm4+YZ}ncbT}u{8Hl^I3*xNR6w9sc*$x>?I>;S7wka%JCI%Wl29`0nCBJ-t4<{?<1+A;k3^Me3u5&z;A=G}(&SiJp>wY4PLN zX88li+`~_H*8D>ETwrWZfAsKCWYLwPFJEJheXJMTW9Mp zW&6H89DO+butAirFj(YytY5nFAZ>1Umu8Eowe_pgV?Ohb_ukVr)75`&cYf4pQ+CKj z&DU4W$8uV`r@Ix)6oRD~yp7354LbCy_6tR_|)){0_NIOj)XUT&?{ z7t|>{!-*Ao;C0ac&|!@?((BU`9{TCL+}*m_rnR@tCT&Qjc9liImTN@Fo!66Rc%qO#Z87E|WN5EZ-(0fs-t&sl0Dua)IjJ_)x;MMWV&Ue@lQ)z@`f~O-kkt z;Y$7bl61ldsRz-E6>ef;r*V>Q`DTG=luCMcNea1wFj;DD9OdCOYCDun=i z7t4#GD)?EjyU)32TVJU9ezjws`=>vDyp}|#*W)5}caE%euK)gEe2=;|E2iwIh0>hc zd5;4cYh%t})H%|G?5f6-F##!0)18?8%ahY_-Eo?2=P36kibTR%P%f8TNI4@$5^i&D zQs^QYVZ@o$W$f799-p!|P41X#kUVKHu<9j?5Hw7C7PD7EP~jJ=icqh2ALn#;B^6k0 zst9=&*BLZ-uQ8#^bf_ThtroV|dx&<;C&{SqlWl64dOvY+D5RdC<$`fBup}{u-ze3% zr(p>JGi0|3;!MDM(!y|bO>m(?rN@Zmy6Var0-(|VDQk0?uDx@&Hf$+gb#nB2y2CB6s!$Aq{J97+-v)$iyv zg6VPKk9Pk^54^@s+v3PIjpM#^@?f)AxH^CG?%bPBzmQcM#OgL}@@6HS{vtk`ZU4X` zw)1(2H(BnG>S!zXGEPZZx$}@Rt#s2FDmNFAlNyRuAG!20-Sr#!R*WxJw2`i;4?oL5BE+kUhs(<{Ah5C{r*{tdq3Bj zmFqAru1IGto}b^*2fv{|05`8Zv-*3@!`obZ;K~;86ZjPN+qZdRpRW1sGq*dq$93H3 zQ^Kpc_(RsP^^jdchFLe2Z~6_xX+w0=Gg{-wU#$=BCYML{7TAV5Cgu)K%2qk^Kc zva-U#Lkfou$$@Xk`2@N9UJR6T_t~?$$ZzYMa`3VDcJ}mj_Hai)>t4L%;peNqdpGo= z-~X)c(;?9LA8&H^`FSjGKn3WIf};FEh2Pf(kE%geRn9pFI=Gsha&`kW1MkpK{PobU zYAX-?%dLOBa`jPT9|!M~9&X@CUyXlI{pZ7fy!p=$uDsLyAMZST^ynX7`G-3{pHx$T zj{XNytkQYqDj>ARIyHsgnWnMsiB4M_;G?+nDT52(H;}TGKjq->{on`s4SrOQgurOm zz;Es|r;c9;6@ibYJEq{4CoU8xHzr1Yqo9etgP3q>ae);R$+{G^cyvLs}xVDZz zHn`aA%wOMzUGDqqBk(V5-HceeT=ej-Z}T)2{Fx%ZALqL?0yX#P(%!$m%^z#M<}WFV z_-upf%R;2+p6%7B~O+dxD{;4g0j z2JZa*NPqh9Kc0b+<2%h>+Z_*iNTW<@S54>UX;pQf*VUZ41tg{ZfE`n;_wbC55Jcf* zUMAa(((mQU!@poux7=r7&2Y~H+{$;na=p=kD;e>qOJD#str>0Jt95X&*tcq9G0 z)XI)f_mcIZ^7s9xvXWx_4Hd-PN(`%w>C(hPG;7ApmKs1T?Q0;vNOs5hn5HwwrR-Ub zNJhUCdbu7RgPSXEk&hz0>CjNcX-fwEf+Lm<$m8TfM9Jen=ef13?|hmg{3I_ zTq&7M4X`PR63e#V1KkBO*a54jGWwXA9isP#gtzaGxG2VH&Qav---4S5n{UkQe(!eM zjmu|E-}|W6T|!Pdb+4n*xB53)J@^dS0hAc;ZQ@cPO}?Jd%9i5BU!`)oex_Wbxc~W6F&ENUB}P zI`-HxE$B)~lFc>e5`yhDwMpfU$6-*y#t0whEPP`P8H6^Y_12icAiUAwPgoG0j#8M^ncJUH2d zu4Cym?c~BTDmL=?_OPlCSOlpLq)xxaYD+w9u?B%h{p`gjs%r=dPYQ|huV_2e< z_a`R<^~G+dmX>Fck~@)M90ndkCATOjcsL7eesl$5&rs;nkk?v4jpY$1c;HBclX`?& zo4hML3COUV==L%^b^dmhtKf@(kNzAsP*JTTPj z>*crmZN_p~B>PG=Wwq%xDbX}~cXmVWt@WZ>mT4$?gKD?3{wqbb%&yy%4kR*h3FlJi zN0FlR$A=xYssNczS=#7p(8ia&dS97$wx=Vp)meK{c2A%K z^o7#htLGccjBCe+0}ui0%~v?Q^QY7|7(X|F-H-+xvRyJi$oVc(q?QQeRyI|nR>^hE zBe4n*o6DQ-qI99d&Rp?d(H&0$Jq2EM$En9VhKTDoE#RwxGq|aFi9YN zS0gv=0R-8R6bcKvwaw%XE0o@q9^(%gin8j~WF>{L!K-=s8KI+hrJ5}*U_37#L&`Xm z4MeZ}jsxU;%Gq zWJBUkmsdh9krMu9C5+iO1|4g6RB-)9rTFp^9{#h3Aq(}^AYH7&U8n^z zVV~DVTx76Z*qyiYniV&1->`DOrws{?gxQNgN$O_bBCTj^!7b6pCwG57zw(90Lv?;p zW-GFA^ryBTwK9&0sIvqATJFntXLrh73XH?ru&4u>at7-H z;N%`tTZufI#avU(s+Ur+E&j zdlG-Q$}<`_{#!!$f2f?xH9-G%#T0}rc?Nlxi<94^vu2m)fwzgF-jgY~LtO)3MwP6n zsIEedZ%G_$)A*sMbFb?+6{QDJCNu|F-s2Cn8*;}m$gplpj0W9FHc2X4q58*rLsHTr z;S*tRl9hKiLxg|xqcB+gA+}$7C7e0JS9F!N*oUFM&P39QFkDyK(Snl|GX+(bs>sjh0YQ!xsE7&u^qe2Hp=hNliHJZ04A>|Y`Nh;Pusq{_ule~G4Jfqlzf-U?YU$Uy(;J9dE}0;vyn z4?XlxH&(y;99V2=jgNnR=I1KgZGZ{*k!G2G|6f*xz99{e_&o!~e}3W0!?#UQ;cC^B zy;6JrVoTwuzmE#B>fdtJNexv?C|Nwu_xur81RdrwJAZ@Drx>p7NioGA3D+jZ3T$3B ziYOfpp{L8!A9F=;Z$8M`9v(NoSwL2+j%lxmiV7T9F6ZB#C$J&5?&*CrY@GY;OYs8{ zIa{{JbGzoMH4I?5f~wD#?fDEi?H$|^y=Tws{oLHm8JAy49Xtk`fXAttHef$h=Is8w zFXH$P4qXIMSVS;)Q-R0a;)?L%A3Wrd^!4hwwXeNGo=Xos=V@|r^Qw!d<{gIdkYP%; ztemfRxs*Me1$karJmuLx0XLE>M8bl&DVUUtJ2;6$%jrI<=k>zt;@2}LRQa^hZ#=~E z$7VCPbnc3vuB(V>NfqPvZZ|j*@dVg`Cv^J0SmFKL_qdcNUp_%?gciBBgTvFLtlh(N z6`*zP+BE=~N4FTH^LWGDN4&#e<0!ryiG?6R71BoovPbt6=N8lLNU^N`T~SXFKTNA z#(8wYcca>sbN8J)S;yRyZPS1RD;pk(*a?GO=Jt-B(NE{uDdf2($$l$hl6gV+C5XTa zatb|Q$`M*C+$=5LGox6}CB_5a6^>VJsSs6x(Al(6QT zXKI;?GMOxT0v-haeO5<6HaX;EiGsC#f)itr9HlxJW1X%?=Q@3Zd8SVKT zdEBI$W4}{P_cj3KD53z$(TziC+xk8hC@`D1b%sr6YE$#_3>h^n(bRcTlxWO-v=aN5 zVZ3ii4ubrz4SXuT2}J?<5us zxE(RJo^ce1uqyeOd>q?jbZr5rq5kU)v5GkF)f^%HSN4E>j@IAMKMFI^Qg#IndpLW|>aj&FEp%<%(K(v7!5Mb7RZN zdNz_X3XJl&jL_+>G?Dxy6$tpx0SIi{)nlMW4V)$Wc?_xI(ue3#PNe0|y?OyhuA(`9 z_@?Eh;&x6wCvx7S=YiL9S^F_&ZrjoOZ(9_^cW~0&nPR-kAJ@airPsoz=GY7pCOvJb zdQwvrN~nXM9mI=~5+X!%$JA|ZK`>fc@Z4QOg30tCHYI4{aZz=PeATIe#3W4#&ZtI! zWeoaUOeO@&bsSrnnOm5izAo$ss+iU2L&}o%0qlhuAR%5=K@CRU@lSXVLZGUmceHd^ zOg!$ip?&Piunx-FmO<=m30>l-_}9#vq%tzfYvzv>sWBd%Wb|aQ^g-ED7M1qFq08>B zSjAe!YJesLV#`dzKztgGMDO?ao9?&0SEe>q-ELbT)WY$9*Ow96SWAkceh|be;X(rj z6fG3|pa^CVL@-#_#p`(A+Thun25CZ7baG$8Jt`9YnKrkWV7qYLY;H-oDH#3()7g>Z z=-YsWhg4A%)O)QR+sx4IL8_%u^BTRt8MAZ;G!^Tx6KPUP*`5 zTgs4{dQ?LZc^;1xv6Q1djLsNxZ1C?4o7j^o6I1l$LU0o#lGSnQOM{1TdoZ(V{kH7Wcu+KxoWU{) z?V+9TZ>_fvdee3^ih5I6|BnBSjYsd4RYSFc`LRYMd)^64?`aS1G6*BbnGJ_f+R=?@ z&Jr5l5=cF?Yp9i4(sXCv6ak0P>7A5hXcE_1Ov*f|>pVV-ka@5G2qzYTpqVurAd*2{~sV~3G)N<<0 zs66ETiM_J?vAj*j3R+5@#x%ZKA0^L9qy4CMn!~ESvsOU0r=qz5nF4qTxw|+qB^WYncZk&HF|VMr;Sh8q^)a>?_$!zU~Nu9o(DDYYtO*&@)M^} zK5wJqwpndpG2JJ0o{ZZJ*6D50H;0I9%@6q_Y%XsT>!CyeYhA2VfCewH6`!n?+e{L; zG{Xm9%>*u8VJq554=ip0Wwn(ZyfdP|upXO=T1_x5~Y=ZYE;AdIByn`bb}=IQS0r zBZ;;(L6fS-s{+dKO#$4YSLQ0`d+o8`Lz2F6EUtc<(~~oZ2p6jm2XZ>uS2&%sE>;0M z`gWP$Bhb>3Sv5M^zP$7VJEiuZpGBjpj#rp1KJEh2z`%;NG+^Cxa?C{#2JN&4F^~K2 z?J??5CFEV+tK#OD5|Z9cy8!=}q2k@8ATNVa`DuaS;JHev>6MCRhZ?2TDF74&oI2FY zDfpgEs$$NGoB_M(Ikn2x-h{8r?XhbhAhMNU&H2Qs)m zF~a#_PTxow&zUWte|P9eqToQ45By6FcD+1p$*igjL!C zR-680^$5i3&8-vayn}U%mv=1baFZ)?UihBmCdYdVx;g?rr>X$O5ArtEe`5^oLTTo0 zMa^ThtbP+?ObDcFF<&yurN`2_f;zQWf!g7Nf<05^2H=UxW@FCC4eZ^pBnH0lF7^8w ze+>1c_ME8OQVWfuf@b+7s|#Yv!@LPe8P+as##KtGpUI~3HHXUZ-hDSRY8EKzcc~i- zhf5~IHidAIAL+`r75gpl5rc8g%_eUnS`1fpKP{IlXt+;h3~!<;z8y}O5d|(58#-jW z#B}153_I~E-G|z=JgFKRtfJSW!|kmP>^a+S_Nf|efR*|lG!RU^+(c*bkUO>E5-f=T ztI0DQP&J_dxMbL9D01|x-Hl~08X*a@T3MQJgk#D=%I8b_Y{Xj1hp)Mm;OV{P88wu4 z)l4~jQ3xm)HWW+6-grh*fGD+;dhG(=1U&PY?Ah}moBhypkHb&cWWgHo2ou|@5ZW`4 zsqTac&|=iG@I5}JwzaPg8+>Jb7HnYP-`eSyxD-%F(*~4EzX&(!ouN7+AqR{uc=d6% zXXD_d@M?8=knbJ4WHGJ<8`u1DA@pRpRRY>h1z>pn1dwS>sk-jn18rndT*|_Yt!St? zu=Gy~dKXgA{kTXdFFT37{(!W_YE&~7d$e}U62HCCtNjyvDo8Cmt%oLGSA%DK3&iG- zB-wLl=0R$CXJRUetxVgKO4>9S+~BW{8IvGs9O_kACZe@fNwyr14&tknolrvB5u}X^ zZF`KiA#Bn0f}?v}nYah@9{!U8O*H|wAC{FUHASrJynDv*qR1fy7(*fw6!FDRs~@eL zdXapI_;#j1jMyww2x0v%v^@OGt2g?x=%uPu(sG(=fV=DxLtq?o&~)Xg=Kx4AbZTc> zU(LzNAcmO-6HD!lmDw!{B&KeDsy|M;H{GXQxwDqm<`LsR7OfQHU$fX7wNljV6>fTW zkg&ow1H~Fz@i8m_U87n z^2+BzmgZBJ2E`iZyYl4kP||5E)WRw{Ouxs5VYOD>ESU-HmSdmc>172abJ z*)ips!8oZa(KrrCJB`O8Y^bk+zGk>5=)I#MzF#f(>j^xBYMmfd8)j@^9L|iKCuv%K z(C!aSdN5D=V6PQgf=7M{+Tu+!wiTWc3|s=}A3c2ds_J?p83ZaVWocKW_?BC596MsD z1yytRsKAYVdnqwj8$8J#U+6NxEIN$(aac=@-Zb}7Wgiv1z%fudH^aUpZLXb6YiG6S z$mDMwNCja?=UlPwq%Bv-sBkLQ-KI8bc>vG$uf~4bmkioPngjMAIkXOpF@uCfm+(mj z+5t_eyi&pk5AiH^3ERp|?tYsz+={$+)Bg}u7&2to z>p_tv`q#(J>BD6M$2*6Hme{5xeKx*YB|`=xB>x|ZMeG7vDzcWb*pa%ug%vi>nwBB40=W-Y#}sSmCYSU42(1K+KflMJIrmJ0*p! z4?t!!!@JE@0p;G{^>$7Z3RtcY(cj*;2TaXYbQpSx^UVzh6%&W5T*X@O6%%x)B~|)O zCl2jKs?-C)?X5HyHv_yVsuSKU#;I~_y zlAd+knJN`a!|m933-9qN&OSO1`G%mzc7`R?{v?MF3R&n(B}t-ZiyAMnbZy8Fo$w1U zlr$NSJ3{v1vek*sona$u;CHC^54Yc;LN3`q!Pw+3RC$l~A8=D$GF)k;qd`pxWoo+s zcJKQ@Hq`c;!$Q3YhAob%Jv34Xn@KAQ^D?k$)Us)i1LZT|+CJ?Z`pnEUYcfO?vz~TS_@vREt+g zL(P?Yy01h-bL(_Wsv>k@`V?=V-|ImEoHAnyVpiMY`chj!qxNjBN(%bJdH|YOzZx5Z zEqEJc2oGRrjUTFA)h&QmC}}*E1mzaeURoUDVJv30y7a@Aq2%X@aQ0BWA$G_{`&96}gX!WRez3ps1AT{TZRsS#L_Z(k zpp^2TIA~KW+~(LJcH1#EjV~XQ79=_C$8sn)M+;QNICQ@`sba9xQzh&Qx1bCv(E}a) zN)~^_s?5wW)o-+sZ2f^y726`*?7$!-*=m#}1Cv{F_)6;?>YY6*OF|BzQwqZ&WCy58 z298{+?9jBVRjmw3B3B1dF0u4giCc+KcM&m6c{0W4QcsNP+_C9=VT0Ka?TbOh6;)xq zuiEi}`_X5AK;1%gO8X3R{Y}ujAfH%;;Y9FB-dT*I4`yz9|Nas$RExBcHMUg(2vdgi zd2SE{9amT5;468^Yu=L{iXfiQAE?0&`F|fIp~pj0v8At1)zfqX&<_2=O_~|0`M}E! z-jnItXeFaxUng-Big7^=738~qPXwt|Qp{o2++;oO{Xlj7;`0wc1zVZNc}konnqJ>k zATy6wW#&=72*Qy!+pz{(G*^ZL?EX3N4n3s+c2kRrOTJ`Fi<-++XCrNStcdwz4<^P2 z`7SFPSwl&^ZZJhhcTaR+6{x;_>Zv5PLA%uUfIafG?yP-ZZ?rL_N7l+`%K%4VoF_kq zum3bp+7Y##GdFb~9l$Q83}vHBhjH_U(deG`z>XMR(3`!lnhZKh&AZjcc68kFCnT6k zmSV_5AF+%f(k0e9nO6s=S)b(NNn67v4yW&^+V9qn2SMprBb>9`2!N-JO)#+?jWIye zyINkT56scYm;C~UKqrvMBCy@-0j?<>^vO0kx)0JHZ~Nyt5|7c(mtR;Hf%r3iHU4zX zrI&MtD)AMx-hoR=F8Q@rOFArG_@K9}H>g!(FAL9)?ZIfAH_^)tr8nVyALU9tk@AbZ zCj!dFA_xWY=*#)rVih~5ZwzDuhEzff$u(Xdo7Y*MW6$k<*zsg|h$U)WY;t8eR^chvxV8E8t&Q%z!2Odg(m?Fu5w1C3DV4N;h!Q@y9MG=`vN5H`+DI?+8K0?uOQ2|fH>m#!DtV<2 z?%ri?&MbO_mK}CdalHsqU@fayF8eJ#ccxadxgM>GWgR142)Yubqe3*Hd%Yr{U+xT0sZ=2HULY+^bhQrm9BO7XoB zMHY!jT=xh)u7CEAO$Pr%GU9)?H2lBcwK11e_fgbVylNP<#nO8;WvCEH^On(%yn#5l z3jibmFIIm8q+^^N(c5?|6d-F+&fe`8&LgsSWUag5p)pGZlw^8bK7WZJ7~yDmGy13) zXu+$e*I+z!IXm_PVG&?TR@+iQvc8(Vpoaht%70t}ulYj>$=$*Z@?O?yXf~}=GGNfF zQ_}bIalL?^d#nVmkHSs)$0Rmgue%9)ZuWgxbQDXP?*Ir(%bqu)cRiFd%g3IUKtyN? zR76LuI%ZzKB7OVc&G3mJ8Y_)L6=ll230#8g@t;EiUDl>*0qX+$Z=@8#?} z2WD~r5)NWbC8KmeXVN`Da%GJko?Jl8Jn~HS#fUksAkZzIdF|N5Bl}CVS8v)uw*GGQ zM-j{WIQMfRtJ_hwkBO^;gD{Hir1&_!d3jP`{L}ZGUFSe&A6Pt?cRCey0xS+AeL8RO zyQF{yCejPga-|oA14CFW5H2@;TKCsH1Dsgib$Gk*I>*p7lkO1 zowHL#S`It5%O-C)1tc3V?8B6IERUAJBlP{zM?X$L6jHmW!poDpB1Sz5C-_iy#Sk!; z>B|A)@Fxic@?G+hC4~5_02CwT6>uThPf&U*?qy;z+XHkmDtSt4fK&WwLk(hxB=^Fq zxwp$jfH+{Zq=6g>FnjTtyn!uGK^mwh`_nt2@6vYc&NzobnHGpZUUB`gC>PLD2^;UV zy1(gW-6@b3(!1cgKutqQ5-;AZLkNJOm?>A~-jCpesML5UXs6!|lucFmKa{0MPT^K> zv7iTetPyImu4+Bha!NH|ZqO-x{=Va>fimFY!PeXy8|F8gRfp3WN242X8TZlP^}3&e zd2lPBp`6m}dx5867cc|jr|n&V?ET3JD(wQ{$;}Gav*9RBKrivy|Bzn$#1H}S2GHRv zo>x#!Zgy&kYnsU~w^@2&oTLj0cy9LbNuGUs?bwRaWyq}wD~13uza}C=2-0T0iA#P@ zdENqg`9+;|1&9+wdPgFT0x}Kw9u?O$0kOfh3kKnJ7k~teKmSMP8_?H6WT^0IU_o@} zgJ8;yfVIXzPmRM;m1I9(2)Eia19f7tHH03`-me?snGIJh1-kb;aFor|i4=^C^eS zXHrrQGg2m()H;|~uy9UbZQat#)v}jKjgI%Fd&0RX8KwrIBh=MBVCK zT_MElO%V##?7=UsCv802RGuVTi}lr#zIq$*N%()6oom}D^r)(?G(FI$^5cz|3Irh^ zn%z=ebeZYRS7ptK!glbKxeb`S^_r`kO!Q_@iCJpQAN8g-nt-$kbufwA@Msq1oWFK7})1>3lk|A_s z#RZ-dkDSLN)Ir{M(>arV)*5TtYPns=R(#5<-C&D zvXg^Wo1il(8-L#h2rDO2j|#|Y*1_Z(_M>8GIeIJeuGzI^lfd7l%{0ALfVBv}=G-w~ z_xsyw)lqZG{J4E6#J+>ga4*adf$Y-96+|=j*M#x(?j1p9l*>C4UH3(RQNN3x(F$Vc&muFDoDVL5p6yWK z?F8;JkAPD88{VcorCwNsG0+H8xmkKLK!Mdew1?D%zbbJvFrk!OM-WBcd{|cj%T(he zN+K|-m#^vnoD67^_M}f`le&xYEz9Q?s%-f$Z#C;nf87*FqM!Qtl}B+P4XvL!WwSbs z5Md6$hokbVH&|(I@@(YSjXx);lTU%yo>_}?`}yxN@U=#Xs1Ctqk^_>@%oc>B3Fkzb7mG=QKvdM?y}vafWx2i~R`nvzYOJNM@IsgxN2_zR6JEq}kjVQ!VcFo`?6`J-TQ0+%|(@*|`Du~xk;h>1Elw?xw+JC;e3eTF$dWEJ0g4Dd= zf{yWTgEkR{fUlV`DPg~Dl7I8pXs}JC{TjP}+ohSA-4r)DseMVQQ$%v(Hi2J+0-M$s zocR)0^wx{Wh>^&vzor{rhZj2b{my!JyQ2o;;FG%AwN0khe#Vs_>1|_Bu9vU`s&b1b z2j4D{HrGFo<9Pxb#_FZ1OD-@6_C&AYxh=GvK$AjAUeTG_AF&AG&NpS@zgY+KI)_7D zNg+VOL+mrO!Tc_7HF`iJSmi3GNNPvA@OEvx_(^;-Y&=-vTJN#UtZW|stq~p}6XWOC z#fm0x_Tw(+tVu8W%Grp5P3lPboIw#@HU%C&0KO z?%WO}9u=dUtM@c=bvGFE3_aKx=w8IX?B?8>QCt@=hrMW72X%QMQy+m$`EK5fX#7n4 zk9XD`UO`;|vxI)MMtXS+mReevfS*yqkb?1yUZY6al?_IUYord31BQL&dHLVj;Quzc zy18gzg7H8qYt|8I*{rQWevlPHNyeve_EDcjF0y9Cni$~|7hq=~E=By`*^)S@Q)b0M z1MJe}0Dv@$VwXSCRI#X47K+vx-9kA+yyu#xbSTBz#{hr6YgI1n6P@Bv=b?Lc{~{Os zu@uY$$t{T2U?eD}jfa7Gln!9Uy8C4u@PBHg$l>kcH<&fPJt75`NkoECtH}p8Lf>}-;uKl_)$3v7u6r_(JW%}KrImkpnqm+> zc;5RyNa+g-t zLi{uZ?Lp5?dENq-Wj`z8xeDyIyK(n*=?w4`3v@3Paw!iqeHV-XIT~__;mmzHNPU&Z zi|>hDrJeGm+7}ssjd+?A{r^mJH&{Q)FizkHz_`nQ`;is!Pd4{ z@mj3{M=i^`#gZ>aBV1vNERc9PdWe3~&H^}gw{De84Nw}D+uO)LzID4BXBX&v#Vp)I zi2|{^KLnFs#krYsBiAgPlTk+_=N3k8OT?gd=I6Qha)eyq8i4X00yjO*9GDZ8E z=F=!(<{I3&MJYzfD1(Sj5l{8}5_D%GC_U1>xa~X)0wgVmH{+sP9D)Tqn z|JL?DS?j;G{cj`x2mkoDk^g_hw{M;6u^lG2c}L4=&~wg*%^H~|k)H`(LrJGI<1liB zlbh6@#?R2b*dEpvPjDVsmQE#MO1mJ>nK*k3fE|U{o!Mq}M?6&|=^wId&slIt@Zmto zGcY($5!6H|i;I@ZM7=F(K~Km}~FHbb=zu;}pq$YV%56L5`2xbiwi0`nHwtLB&KsgiN#sgao9i9fk;rxm~sAwZ{q!8&)be zPL)I1B+RN6%AjJRUH*#&TXf~|%a*oMwPewj)KouuM-sW;pdVc63k@2>S0krCSvF4^ zTw`9$3K@8uo#1VbWPgw9OVTA)jFZpT&fJT}hMHjShAbFi_NOz}dS5(EISClI4nRxW z5~^HzNS@W`;Cgv!0w1z?zFd^^9XHcLTB_ypE4CcY-G({Xteq&0^=F^B3B5U06YEe4M9+2@^?pd$PH_TvTlE`Q)A2(^i z3J&tX%98KnY%Fogr1uV($Q~BtS&0%Hk9zPn9Txk11RuktycPnSQN3m1QS032=m4`GU2>`n zhN-TH5OgQU1BtdPLcdv>_0fUphmH0)hTkfc~*g z#6tGRHo_LE+RI}!lftFQJ{wc^yv64Xe%UHx0SnnrHhIx$9CdHam zi=NXQN_eey9+TJ=i&|0p(6wV7SaRu?A6@0uuGyQqJrH;>lpvd4I4#yx&Td<3StKo- z#K;n&VuG(pD4zMcUgkGPLjNg1m# z!+V;ATEU<}S12aoYHzr$DMS#wjI3b;-Rnk=H7r$vBN!d{`&4fIbM1_wK=?hP#G1%g+pC zB7xdBCVl}I;x43jXoE<{@XG-Z2d+dqM>II!Dxx`#dNDeM4xiXb(Bo_=Y zvP33zAS@@oqnd?Pex29+%|N9#WPyff*k&;sqSFT#w_*!Hs#(0g0E$vtz4}Xu$V54n zj+tmE%zj^r=fNIRA!05G$4E;zT_29;WvBfnBue;)gchS&jB4DrRx8afhgO z$~6!WSM-8lRT;WQg|~>LPA;yB@*zRa^Z*(p7wfd$n8`~?sTEmFHbo(1&Ykqb+BD>O zNZ9)p8`I{cTB4~AO(AUbTb5OiARaOw-UYyXC|mp+qa6%r8Cg)B>&ueD&>x?-3F-&g z(LsB`exe*}R<|sn1MkgN)uFMHmDmHkXi|Fsj!4t6$_J6$#A@MUtQb;0OW(9UF(^<> z`=quN(Qz4}ioXp+oePo`;~tQ$OPH-LPzAzbL!Y~iI=dpekiP*9V9=w$S^TDZ|Kx+> zf|ir;%U3Gn;6bfMIi#ZfflOHb_`gx6iFuPb| zVdJ>NnSu!wV2|@aufI{V~5Z`GRbZNYj4X}%( zknA2dQ2~g$-!I-QdEhf5|K01sq0v-IUwi@l+HwP$K^Q!2YaE9D=4F5<%Bj!Lu;(b5P|zNI}<2K#&n+!ErR3i4~%5J5-9tKSApXGgd;HVmd3y& z8GmY@c?)d(L>9@N|HDdF1XweFq91P)zM7T%0nK4YCRiSutJF>)Gv62tOeL}>s_-&c z&gTe>4B-rtGJC#u4#{dfPwxcNqvAe=f61HwpH=**ph74ofe>S}yuMI@Fy9e$Rk~bl ztm%B%=waLagckHXIP=@2RI_H`7@U;fYE(n>4D7+?8%gJoAVlP zN2neMR3v&ci({8#ABqj20hD^Z6yu;A9QoqnsvgKHjXE} zmM3O_H)j32H}**&(31mr>GB^7lc^TXEd|TV|7*Z(e5lw@e}2AYRkHn-+mmZ{n1M#I zcHwC80+;>1+_CQ0Heho&5!e>GzbY&Gz*?`exa+dHjOO~a<<1JAaY|s&1A~Tp!gNr% z4{Yx}j=~yT&u#wP-u>&@_IiS@;O={+`-852&JR4e z?<;8h?&>A0#u#X=rZ;)-∾sP65~B?>!kDt$wHUfA8PpvSmN(L+ZYs&)2&8?~8W4 z?o(yHe;0%9W$w4$uJ`=LEZ|tD;Ri@_{W_?*e)o~(ZE#5r9P*oXO`Gx4B@OeVt-yjR z5!i(K`E?a=#M0X?d^a$Y6}^1P+qe&G_d9F8-*ipvC7aPNq<`=-sv z#LOvEa)g!nYgjn&4By6v@9Qfa5^5OV-#>cn!smQL^Q{~yLf}+#HD z;sOf#dCS$XN~VEUA$FSr*o-dlIezyNZ$g>t|yjgfIk-!x;>9%|F`mjb%H&9l5d+=nelAD2xJkD2D+?7Fz6_|%dBNiGg lqY(>B5*!3_?1TS|2C|Vl`}`g~1m57q;OXk;vd$@?2>@L!pPc{z literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/broadcast.png b/docs/api/paddle/distributed/img/broadcast.png new file mode 100644 index 0000000000000000000000000000000000000000..b92a9e776f517efacba8037579447e7b4d97e3bf GIT binary patch literal 45936 zcmeFZ2RN4P|2QmEln`YmQladXd7}~yBT)!h*(-amRFYLGdqqZBDI&Xs%61#sO7==d zw)b=0*M0YWp6B;{-{U=w|GSRkeL4=gFZXqx=jZ(Fb)G?&RTTH_VcJ7PM6~b1dHE|u zL_3*?h={+E?SjA1rl`Qfo(_w%XD?qkdzS68gPo~`wFwc?`Jks!yEP)ZY5eB4GsLbF z?Kttw^*OEF#qnpCcB_$JIDdv*@JQzUgqnl8YVz`O+G=X@?>i1YEM%kO;kmtUZwXuQ z?KNGVub16@hxWVtPWV0G9wGcre>6$T)wIdCIfh7%+$cys<`oT*_J>3E8p%|=M+AfJ zG4DDix6937cZ0Td(Ea_4jC-hKw6{;r%@Ln}JMcQPX6^Ub_EimWU2)Z+K$UI3$?IzyNja;7kDs1MkfGu>HUik_4yD~1Moz53-h+N@l6bKxlXCI7XJSB^xiv~?QuprGsVx% z7irgpOrwt{Vl-p-a~CbVQ*z&s_EFlP7~AvxgPGRj{VYOL!`wx|X==YV-hGfu>UJdg zQD}ByOC!(k#9&-?IQiqQrr5?L?wbv@PmX`>Lg`3v?E_OgE4$r()3Yj-ly-B<{TI%&$XZ=`v%9L5Sa4TkkJ}!i_%kjiznj{O zj+|%OO*HP-5c$9{!^XUueiyYr`{kXna`X(u!Umx?$0+*z#U5J-+$R!b+t0Jhx@xz! z97UwR*DJ~cw~byMoF;mjyla{yuuARLp#nebkaRIcZouJNyQN7<3>eCYjE6AMer#mB z)!0rxC!aW7`|$Wps@5Z_pIGacQT6 zlXqv&2DET3?pmWrH4w_)GgZa$Q#zVbc!*kj*A3Ezp|o3vb&2f!xreT=ko8d{1?E+| z4((XkDIG@4MRSoQE&R1Yt6D`SnFh_tea97Y6b?T7qE?uxpuzl-)_Jd}pGVNzo!XQa z=1e_IGhvix>QcJL)5bf-8^Cf@0)?j0uidBN?752oUfFM}_gFYPvk?CHzw477b@`$;Jc zcRsuGDyc=G_%s8D67|!dba^Tx3c-ZpFs;+p$8NAM(+)m9e~jcYx5bVNa@Q}tWMet1 zcVypVnMYSY(cRQ{5YoOla7O05E$1L-W!hyfjstcVX^scJzI#RWot(SUYNp)PS84_) zZyo65(l{Z)-KXJ}cK))+wVPag*BaD$G^L-pot;mkIsIAwvu03Q!SxpxC!SnMYAY7H z+N~mSM&gqDn_q?_SznHx6hBCN(Dz{2MgK1{PxqcYt8t*?;p8O~b+OC8)%n!|ujao@ zf2q{r)M3<-`m+C}vE@n2FiU&O`i__FO_}>LQ`?o>VoyuLjSWK4GOT~_b zcG~f$6A4&P74=j>^O%A?J?DC&E8hA%tkCey^C{Z8qzht56GQB{9A&*dJ|IhAqaf1O&afQ1)3Nf-Yje`abn^i$se6i%Q0thI;E4 z+Bw}ej@c6Z($!u??%_MFzukOal=-^YkX%PnXAh67&hmA`Y~7qY*9xzBciyzR=bY;t zu#_BHqMX_25l0uNxezjXys`IGp5uU+4ri}Y@8(;o8I9@NGo8JK-R1d3ugrQiy9Zs8 z#Yx4p?aiItX3Qr(Irj~_H3v-|7%gahQ9Y6MCiui9=Z;vd{bjHiw+OH3@h?`m{?YFEnog}){5Q(murjcjLS z+qS*mX(ImQBL+MzCvKS-cv5q49W&Rt%&H#v*|bx*?zY}-&7JxbM*`&oHSS517m^(e ze0%r3;d{g0>b2_7>bu`~_p{w*%*T9Jdv5Wg?UO#80lhq5=JlT!D``LuZw@&%e}$8}ZPFCIAdmgC#w?~f-R*V3=? z_vPOb?>_NPV0D%qd#;{dPcOSr+;KkU_=8JYmsFk`T=}j}nc-!4?v)R=EUBlr;nX4X0kU>-)QJ;yphD96ln$}yM#w!r_qg-W)tl!h zAIDy(jG!F#7`-;)qf1vb{n24$+?MPY;#o?7cVY<3G>?Aa9$0_V#r#~ zy>~4mcUH@|INhM}XHQjOVCViWlk9cp@|m@^rMXid?aaAbPH5=}Eb0xp?z_9^?)MKB zp|i|Z6^g$6D;1s*)#-Y16$kAfI*@Ca5t9*^zEIo(cmcI+Rc1>g1w(c>DW<5*2l?#pQMOR9VJJ$+kg?b8|yP_`o zj3k^)dYNuHGpXFc>f-1!*f(6Bk*|=EUOc)Gew%e}W?x^guGJNt3aV0m*Fo&2{kjxY z3srlUMaRJ|Zw!~T_${ulQO%) zE`(#YPmE-g)}0M=jZaQ8-{@W$n~Z3WIM;Z2;lXG=olm`-m66rliy?Iun^_x9-~82) zA&X7yRkQY{C-KJlg&k+1;y}~(PX7YidX`*RaZ6e>F%`d2+1qtv@T>nHeNx@Y?Oy{bnPtir8Sb>=n(-iVdkCRUEP zPW`eOotbj|Ft<1mTJD+0|ITjc@Yuko&4%?n)*mv_ZpCj|vHFYWC)8GrXX*+oW41d* zhNN$qw%EOzy091#cy{_3edQ&eZ6V#CPkt3_#0T|?HaQ^jA z)-T(cJ|@ePW3px2<4l(rn0%(edsjPUV?-rR7zJsorxNW^6X)IMC${@hxA=adlR{Cn^eWAr z>cq<1tkLX0liWPE5^2ncCVO_=KP&Ks*$+b&$Nut;`LSP8waitNln$Fw=i3fVXBa=a z{;>7Am%}e!A*t^TJ63wcBqUmeBvuP4FD&mMnwiTm^N3+!TL^RX4_R}s9hwuu%x%A@ zt;~~)^gp_?zNXqSPDf;VmU9OD+y^FF7fh9viB7_2G9uC)Ohh~3(+>EN*}?qhv%(H8 zA`;x+iHV2;Er>|*@2J3U?h3MWuc+vq@}DRX>4c1 zXL!@j$b`?$<`yy!k+hp6e6%rfGGueJv9@)Tbi=UY-jIaP$e;Py*>JBoSz*|9NeJ`En>ZRfSln{5u(M@D<~203b9Tb8vm*=r`G>-3 z;%4!mm24gH+ky@9Bj4}~@(J+&nHz>mBY%~=Y~f~NttD?^12}^F zy?gRNW9N=bEKKi-Q+Owz?Z2HY&PJ`8?N@MMKj{Tx|4+vQD_j!a|9+6IGlFfFUHg3K{`IngpU-|hZx7z)em5BTkcanx;XeIx=_}34&6)OK50Hhvt z)FR7D<3#@e8#k1UX>-@#cZ1G2t}WN{Rrndn-!_V03^v64?}q-R5U|7lD$Cs^&%R!G z(sYq^d!AK|)&0k#%sk)Csnm*<8vd}!06f3R`N_!w+i$iz@!&;IZWrk*UwN@nbjX! zqGnC;-}DQ06D6H3v$q?}WN4l9%9oj5_vhCgX0A6&@^)z#sn~bwtHCFiYWgsV(P*uw zwd*Ux;dQ^(rt)NOVs-4wMI*=@$HQT<6TKBA30NO-;G470i29WY5d+6 z?Q_1{>uQx-OL>aQt_KEu)@SlJ%zT&4)Ub6II1>)|Cc5-ksHsZNf6N@N3lERo3R>=W z9b~DWQ2F50cP^N&W^LweFW=-(DcUGr9l9w_rD*EH{<@!=ZS&ZKhq5d0sf@ZNuo+Ym zH$3P@&Qf6xOqn%A?_XNPs)qlE7|E4@`z;SiCcLgO7y>RhJzVAMq;ej=WpmJZ*8WBZ z@oywk5>ME)<$2Fo85igIEM=wgX}w~btYxK^L2_P)VMYzXxO%La~U?@?6dr4 zMHo{(|LJIW$jDy)G6Bm{DRJ!9NrFO@a|Nhp`=-y~LCn;ZYvD4_-cU3rs6~HzGBPH8 zzi+Ap9!nq{ZH%L@#(cX&n{vao-&t*NA@O&%3)4jRg9(+|j3gh)x0T~5!S|-SCRjo% zH)rgOx0S{EMJCl0Sq?6hEi?u9%t|nAJo*{U%x(6q~E?cAFRK@z7;QI zay?<*B0$_P1 zlP|?*ckDhyy|lGH7rypIvqH#nP3xV5$%ce&UvVbuT1#L`dXZhmj0VBp`45nihL*2( z$Nld!GB3QrdpVmOZ`0aO8`QD5h8W6htqiM0@o2X>d=)lrxW81?@1j#bhyCJY_T%}5 z2&1bd!t(`KmEe&@o{vkNI{cAIp0n>VUHj}6+ehl76#Gr%Y*NzAxWW!&BqP_o6^9wk z;`i4n+ZFjtzQ{0gpZ=P!7U*kT*l{i2GMM-6{j~tr4TBYq$Ug}600b`knQ0OT`xIeV z;9j2RlO(G^C#mSn}XIp(yGdDPMgUxi?ZJLjhC@%FSB3SPD~6DRB)6Qeu;_v*uolt%}B_p{IJxl>=>8y(Lv8?L16>ByF!I z74^yF^f@+ThMTSO%1=$cyqcAg=-jET7A`egoEc2V`=F%XrS}}m)}z^Y>D3<*!&$@O zvOfQd$d@ar=I@_(ozAbT{nRYI(9qE|^t*D~+p7|kmxA~Bv%r+FMV3%aeQ)P@Gtk!$ zVrS1Q*`0%!%&DvTLp3M()6F!5$N7Q3{wLKa!O6a6}yD z$J$@0r}}KK4~CZjWiyoj!{#!e2-f|^sR`nB5}5jS?MWZkrV9iG#|a9K(-=dLM-F1( z2G@|qFWh+{9$yUu&-L3?Zl>6lOr)zJ3LtaBrg6fiBmdWG_@jzc`&XfA6q)6(#%g)R-ydYs za;k*Du6#r$?R*yEGAFddCf2nk{@BWYdX<^i*ml|>{9afoZ^ntrWh^j`^%{TG2FfJ< zJ$rfdE2KvSJeQ|47e*U(X5taEv9bl~DRgbEt5RkXvC5fob`|dJi!P%Qj-wwPJl-1T zxf084{H(Sw^Iq=eoV>krZwlphw1DB6?2E3_huwz!tHpvwoH$1pC$Pq=iJr5Julwuu zw|;4DMft8qWlBxIs(v`fOW`gKr!V?SCiku{fS>x&c!4(QOuVaApLD@`I8ZIvshv-teng z*J{!$H%9nVWq$WLs$qKzyYyW93o%b-2$q+$1XP8KzbQRoi6)$?XsT2-#(Vx>4pNIm z_UZ`#mq0*3Usblq9Jx?0883d;uRuz!|Ea$%*+dGcrW`CEFXctH|RS`7diG>w@BVS1v02 zUuGns1^pP(6Z8j9|M~EQo6Vf3sK`{|f6i!N0K4{AliE)(!v6u%-vJ!Dk>$>Y|4j6U z6DXAATEqn`ISEGO&ll8emvh1J^$o-_{+Aj3$;p^@E6m9M7Zm?rK{Pf`|I*4by=7w& zIbzal{I5Emx#s$i4B~Zj=zeOEQ|TQX7janl1?U>>qCLvq@&e#h7wn})@cj2Z%PkY1 zFz>SruYb*&wS$IDKx1guit7Hs+qKX5B5_EOivScU&sMxc2S0$PgJM+^ck{^kiUj&I$f6T^7;W#2w3s$oy ziBE)({C4f(pVKHk_JGjR^=M&Hj&cSW?|gQt_Iz?7P^U1s5S{-sjNot`>_gYCfu{$| zLyM$;a~>{d!ibjISUPmI0C=L*6H*|~0pjH7Wuur>2KY|BTOU=yA^#*iUF##t;A}zO z-Ys2+xO=Lz03|gG2($C}V?i2oULe(s5if3j^VcxqbHA7?O5A*S`o2pX<9`_5 z#td~o#UbFpNszyS{B+c@odo8{J{uMCNX`m~V?}R;?&e=s0&@P#O8>Ibzgp@4MXl5+ zU2B%)!*Qy_=e=smjn(pPTIcWgnC1J26YPT5-dd=qu5q0O{jI>-cpInM7S%zwt18#w z9RW!i@XbCxovFQDYpo-kLP9GN#+4UBdIp+`tU4ns>VnEI7BthCuioOp13pPNOOnQTc_oN$=71J-~uZ^;dfOY$gf%=eYRjw+C!{z>uyDz2#btUsjC|u~x=!jq`OnEn+Uu`=zSXL%mkCtZ40L~! za(L}qxsI)!2?h+;(s+a#Y64Hg26w-h(Zzw_S49oDrw;4k1wwYcuAtOv`Kqb18+EhK z0X>7wQ!n5=L4OYzH`QGvGMO;A{%FOqyfrm-;MRy{o95X`yTe{wkz#RciJ3|3i*+f9 zZi`3$FW>CU&!);S@(||I8|_J6zkfy2dW=6)G}?T=y_B1&FSGC?Gtg^%leeho^aqd91hl*Gq29H@eelD{6ldswiLA8sck`G}b7usgz85=S>0CkUG1N7{z__Jp z9i}BuDrw2BvTvhF=k%8ASu^tPwd?b|nA*73a51B7}C` zHcj$YQyO|A%pc-0_aQ6QHh+~nP-*&haOM7bR@sRKHP-DUDb}t*gN=tXJnff2nDTrW zQSXJ}4s4P7OA|g1T5tfowwo^+FP=8Gxh~31a!@3UEGq!z1jJjl>X!*Xy}=~}j#A&> zTWedo2m}F#X-tcnKV8stmKmk`c1K|VB z%P@Sbp8XWS$ccX4f4(K!#%h<4!0BPR=!82c`(6Zqvs@T?aD2~&fUh81xn0d{%s$t> zoe89!igUTYG*~{pkx6^1FL}h}TIc_XJ@&&MXRdcf?byq-{$ZRAbuYO<;M8VB7*Ssi z6~DstR+;rh;r!1j+v{1GaTQ(>vYi+Bb+EY=dC!1|_mqWi;$9c{0Ialsmx~+9Jjvzo zWw|m-<$jUQe5?L&?Ut|Q2^buk$-RI#uSi+lKo>>Q=GMnN7wFvrA(WPIIv{Lo=zDU&4s?rdWD(HGg>8r7R>*Yy)g=V~~w%?0tyO zT)di&TBnzY&)mObjI#yVsi%}D$|hGp6w+Ke%TU4C2jfM}A0MGHhqRbAiLoede)Cr_ z;(eo-Gm2-#!=I!Sm-U~8vHiW>5jX@qL44-IH>0S}Y>D{Hrz0pH$uR?sm>IIr-2}jh zeYO=ZPzC=Ip02u9t&%(OL-;k&l!zig14g_^5amZ#BY~%Vu{ZCN_JG3btCvaS*X_{}iFyWP)aHmSdXXSzhYn0etYx~(Kp9Ts!+@ipst*|& z1mg4LWH%u<+mLlX=D0F;HsC4?t1;QUF-&>=0jEp+- z9V|GyPsED=X)b)PD`kv#dWrlWfng2{$@){{VFL4Fy`f5kvs2V;Es#?-u4b|=!R;Gz zh^LV(=kXb7!m~6W$bIoW7h%ga@O`k=3vxp4_Zp;Ub$P@22|FY$0lV(PZ6-?q2=y=H z)NqCYQ1%*Zx9K1|32K%|$riz${KpfAWzWM7jy=PX2VRdwO1%n6jgRpF3*17I;GYv7 z;-4=g8PF>}oCJ*iGhJ+c9LA>^vEYn1WJ%?kVfsXJ7Cge)E^`9{a(YZ&5jMOArf~|( zeH8Us0X_&Bzfzs6`;*CDp#=z%9%>Ql?_7v~(0U1iq1BgdBS2pEMu}quf656-2FLj}TD$w-h2M z7XM|~#cw-%Wn!tmTM+E?0hUspzB$g#A-<7lV@532|IXYP#8wAxYhwF&l|;NFe8>k#!C>?58?y4(!a+PCq7#tQ9NRax(So@;-;Plh^Gt)y%7 zR{|3=!d``~9~>b-wF`XQLqxCD3AL2iV-L5;m+mp!GGK4KwbpJ23X252*Ch-Og#yN@ z+z}2!L7YJwWa`tJBpNZW$+2kyk#Z9R@zLzi_Ff+C*T=RhHh$Ho-hi^V8a@AwL!$kH z^m}EK@1RC*jEjyD59#VfF3HGyT8}tYM;x!cC1Sw!cF%ln`#Vxo;Hx* zd45g&RHFH+9mGqZhC7Q~6;MO*0Ps!Mb%plj-@?9! zL4L`C5ef{uPziq3B#BK|-g^(T{PpN$w)UG>P!G$mikEOSBJH~2Y14jpFa0%X_6$6G zJHP^?J&eO>{I(CG?^CZP(&HhZ5?rTaWW!DQ38IT=Wo`;I8Wz!HD_=B$;r0-jc*MoBLI{ImBKxTM;!(DTl`!-6Va6l4ng1?JB3cHY zA0HQ7PjKluG3ougpT46vjd>$gV99!C+a;q@gI)^^!@Na(G|s<%eC`hGu0qAc|2;7A z?x`7TJjM5dQ1Dm%c;aY2DOD}SX`iJC#Hq%cpiCN)$?xHO zWYXA^Y?Q zAEee0DO?!UyX`ksbcZjN1jkC_d0=iU6T|QYW+yhb%yFXnbW$POTbrhx)Ya&|{)s)Z zld(PS3w)=mmUPb0H~Qn?UW9V`SAA7QeC=M6np(rj&qSR#hP>EE*y{c_6!ZV2HR(a+ znKJh%wxKoNXThWBp4Y&un$F8e#j95qGP0ABRj*I@H<0R9#)y8r_1`)3_5;M%yhMF# zGqUBJBkHhh0uL;AVO#MmPf1F8kj0?;iJU2rrGd#v97h&5B(bndSpe;PXn~}|Idv(! zf#YPwK9|N*Bv81wfMeIECd^UhklRgs`vK)E>x*o{Ko-+|f`@Qqc?c904B%iO#-SE* zhf}~Eo}&S{k2|#>x7MlS4`ckM#NOOvphR^CD97m2v=k_6 zMXmyU+neHC|7EBDKeLnEi_1chbFHSrCrGzELnQ* zhI>g)1x$8)i6IZFw+xBXb{#~z3Y{E~hC`2f-XeK#Y}`QmE6Soo+sXC8?ajfuU5bb7 z<)`*pyOnbP8Xtq&KkkgxMa80# z^y0pgq@h{cN75_yGHK2|Suc7Ke!I3$%ESu?guyKU>AkiTElxhz1eB87lfRqEu4^|e zhT3@7|a5KDwO!tAwN)p}E-`X=s zJ!rW^GeN;`xjtIsGuJIwpB+q>*~8>G_hcTmQSXt+&}>Etk5U2uD*<~>55H2N(oyoJ z7oiMz(QP!Dnw)PMDy)kWY=PSV?*5O?=BSt(EFma_Xm+YJ*?vjoov+U1Qe0^%e)4!w z2@8s9k81;+KTpH6LMI_g8w+*%{Q4-G{EExlnU|q1g8`+v&F+HVGtKst`*PMG7mQ+t-`3= zHZk*g&TCA{copgHT`TD-=d)aM`|(KedvlDinL;_(-4xr3)loGnnUx`Yu(8k_?$Phubxsd)ff3(Sxml&prl{XY z!n+R|`sT-?Di+f+Ee?gtZn^PPuJ_M{d5p%GDQs4=Zc#hWmH!Tt>|1|TO&Pp|82#%# ziZ8nCEWCwSQS_ci3NM8TXdafDf&H@Oa*TE7#91s*S?O$Si;?FQa$Oxh?Ame33mQ%uWj%WtaPg#L8BVD9bK8>GHd4T zPIcoD$kNt-w(2Rc$loZ;^X9cIA^C+(+H&IY{c)5vD0Xx^%(d)j~6I0KJ3OeIp_1cG}9t}g7V9vbR5 zu_!PmL8@?Oml-9 zje{T87J0rbD%EMNZYY)<73$v+Gt1`PXmx`&?zt2zHsL%nfLA&6mOK6{6d-alSHdQHtxGmN=ve2UgN9OIKiGK)^xh-K zGJ2eIp!Isbba2zwI%za2F+Y0tyl#b;yVrI^(#Ek#6{(p6qUBemY>FCB^?qE#1xz6F zhea{<_RuY!KOI(k_1h33iT9V|OeevG-g7qPN$`_!=W1M367(dOT+ z#SGcd*u?kIv*yx^EoY54H7kBS&4jLVD z)+pNb@%OB`lcMnkwHH2LFa^g`$nZuHNh|q2rw4)KE+z96w+E$1bqwD`7z)Y5Q(K%w zXke(p2|7=3BdpeGY+%3QAwg0p4EHVQfe%@luxUU-ah^QD(O9A<-`h*BXVQy!GRzK8 zN^~#monQ=`=nkC7!A|hD!^x2emCry&>rY48dgCkCI`V4QoC1f&WVctf5|Lzxi|Z|% zQJLGG%-cF?=^z2AA7hDfJ;`$AHP6BI8`-L?6HPUXN}pZJhFRvXdenX&@SJ0**Sz5l z>Mv2tZR==1V{9UM42XiOR(g?9hMBxdtjGx$@fWzePleLbpt+C&X2e4^Z0 zQk;MmLR5{WNgN=q+nP^1hBRCAb=~9~2IV#LvFa_}AVa6-@MWq?_$MNqI1RQ&5A5-- zIjDJOcIw9Ol1#vbZ9Biud@!s;jjcEA1S(7~Zq&6ZvaLjZBHa^otT7{>eQ`` zG1>6g*_BJKGCsr1gZGz`*89d%nqoz{Ej>z|Jf<8x7O=^jYR1WT#>~r{Dh+ohktp)(Sh<2_Z6KCY;AocZ?Nq4 zvfcJ6&=q{%NtPbV-@4%Flvd$qjyQScI^|}OvenTzET0+{UKc)$eZz!h3BMG{6ExG7 z5I!M(mh#ue2Sw1YT2GsNYZ=WxI$YmI8p|C#OowH+hGlCV*1kH_^A0yV)fq6UuE}6L z1u?;bIjXKtZrpmmGyi1&3HR;I-*vyxHvO1~6HSea6pc>t8vGS2-&YpE6S2R<|(#?w-qGZ$DV%sn*||)NGvtXG?Mt4jz54Se7jpmBcX5gWa_` zB#Q~SrObJ0m|4tL*Lv-xX1V1jzDrSjp(7cI9w#k5?iu!Q^~bnDpM1^BuCh^4HL-pt zY{BR29g3{pB5yB=VtO5vrI1`}{%4#$L{6@(rO=miS$cRnd(;{+>91knq+LXQKhD`} zh!#}C+QTuER4v=zk80!AVl7K&rb=Yo(~2CroDbKc1#_}RRS48&FDVilzYdsRzkI~} zfQXA*(9LppZ0=xooZ&4Tir668Z_E)YK!NkQTI3;Ar7g8>N<$*!iRbS4$QV51b+d`{ zsOTXjng>XUhV3Xs#tMxB2XJHmo@_Hufyg*WPi*W8M8;`OZPKXYyA8T;^NrIn)MZXS z3(Ex>oZ@`=2qNQDQ-(cgWGoMn@r9!lsC^MpgUI+}Zk*!@i0H3KS{z16>kGzpOIwl# zjTKrT@0W5`AddFac}TRV2~*rf6D{nJXnDT>9-5(!<$^?uQCH);0|57l1Q9eL-y#bb z*ydru8>sQiu-uX8M)I4-AkmV^cn?hi34v}hZ6m8jlMc!UAkmUPHLCjn5-m?uV$nS4 zKk6FbFl3G+4ucR4BwE@j&Z3Ey7$i+)amNrvEyo^6w0w1T$ z_=f;laCJdsDme~7rV^7O1B%)ppf86@fBdEWkZ5VUuz*jrfFfCLZhM5cVwA8P%kA!X zIRzj~NUR~(zwCsH(Es<@DT1*P?uytshuj4q37q`@C~NV%f4*eY^Sj?wzdeYS^VFmF z@#O6nhY(M89v6Z}@#$U9nrB8k%Gd-PfHNPxaYoy?kTMR`8HiS6j~J6}&)#)cTV98z1zFEh-AFbb#e=@!4bHY}!vY9WIkAV){draqzS zt%?aAt%!b!`cpv6&UmWkAu3=0lo4E-e4UUc=Mah(_P^94R*jHBO%3O-HFzB=cq0{q_O?sM6-_3IGBpu z`U4?oM;0}MA-G3mBvR6Ng@|+_4b+N}I)K=YcJ3cWmCq`Gu`m_1AI*5wk|QOc5Q#jk zeD=w6^m^^$B(xk4ORJD-(Ah(>K3+H<=Jye1R&-JU=${()d!K->1h1&WV^XZvSvE0H zp|&i7hfzZSvv0eL(sc7eikK{kt1>i(B!xwP2nVr9V zxciQxQ5>&V8W5%SCj(44cQFPHXAOnIwP?fHpW{KeWOC?1q>yAZ3upaQ+h>XfWhRm1 ztdBOEl5#?Kjl>rDL3)|7KXFlH_7hcqJn*Ew zDH4aa$%>_-b#4iunB(|uL7eK{LClL3Uic6{M5a8%2&tTnu(*6Z@=}UL=hxK=hmkK& z1@Gk>*IkpLBUw@RKfr~YG@l<4?b4+cEnnIMS1ZiKE^13%$_l^jPT*(4;hr7DXfpl` z)mh}+t(c$Q&QKCLmp!O{`CCInau_k(=MeYcuQ#rB6JWksk7_ zC07?zQ}_|kLpV-(`8gow)7#hsC?m-kBseF!eGf7)cdh%5oI)MUkU9v-qw1(SP&;=P zko?mKqp+#`=6Cu^h9xAGR+1imiSOO9Qxf0rA5CdOP7@=cit|cc%DG@T){PbHaN7L? zs?{umRF%Vm7%7Lz_7~Mu7BOfv%_e6+iYPC?$%lB5{SU#juh)gpWWhlFR06juQ?K|E z5fN=~_asuR5w3xm>31(SIp;2J>8}v8pLs`28cTA_ffhOLzTJn|ckNS%puT<9CzdPu z+lBkLlNsa=h(wFCediBi3aB1lGGc$g@gOLN&5?m=XPci~mPi1_KCa}xAJszf32!{b zuV!4!DZjBL-eEPPht=`)&fY3%>dC_V(%;53`ToIeIc@Rp0Z-$Gz4Uw`zj_C^mY)nG z_YQ>phBgN-_-4)`yi3=yQCxPm?zKt%_cXEc31u~0&Nl+FA}qsWm^pVfneEl)B!~E> zyo$9+`vHPD5c$WDXLGcQ3yT*LSU_*@c@dcsVwzArUz#OCAC#MhTuLh^8ifHDW>z8j zxTDNP#`E8U`NO(23ykfX;w6M*zr7nvWL|0ut0tioXA4usEVVNh7NuNNJnVk6Yy@Jw zFrgXiKFF(TYB;~k8}yjUnO`er36Iiq(Jqs*%`onnFWy?4;xA(5C$tOQ<6~SRW6oS)6H!()V#Mt4Lu9ezR%wsc6v0Gvw$Dn-Y0TL4^H4nR`O^`|mZu z86j3k7GzksN&M&+=cK%&*I=krRS?@FNkM&j?XjEMQ{OzdKIEz1Bffo<|77waDCA*U*)FwAr4Ig2U9%J&xUx)<#2Yry$7W{25MOV4KIafCYC`?Z< z%OT-|W|w=>i8ax+aV|p01uYXAd0%vF-yMhNQ|a$B%*4{|{8h$u__1DXly$8v;Yfdm z(vg{4hct5wJFn-ccC6s-CON`jEqC$fcjXLf06pPbUkc=hAINfx4jgIKI;)LW=T+7q zD^2OSZ}C2u%1-3&lX2fZ;Jb!0fDs#(ufqAL)m`7W#w}g_u=n!Ko^HgoXe#)eKAC1F z9yaTA2vW&1MZ*Zwof72_K%FX54n+_*ht4)7JW%^V2z-1jzI+nOU3?}#?E1k{_qJd{ zl)3Ii_!BWa_OiIxT8keT4B#6b3y$7`#8Qnx?Tl6#h{N|KfQOz(tEK7Yp0FR$#$iF7 zO>mI|7q+Ql^Y>t-0sqV?=O&4+4jOuR^5Hq60k>^q3$@CI<8=S*Q2PiS_IX~fx{ z_eD@uswKjz)P{-;6zA;FWKv%1SpDGup1-Pn3={#<9u;&n?xfeHCb<}dka%K27|h*_ zTOW8zy|E8l@fNrdKs)v3z%IP}h5!x29w_+&c;&(J!;5@0q1aM!G`U6g0|a-J*%Ggo zqn}kFITO)3Kqw8&y;6N6L;dX*PW>#q-8CFI($MrE)x;b@q^N{NR)giUhiEe53MZ$je{}eu31^ zhBxdsYV8g%eZDE`2$j0pJ54g{(_BciAJ^|*yUNe8<2;R{h(i%cg;{Ljq7onS<3j9< z_N4vmSY@eD#iW^N7r6n*uL*vGN{IaklU25$wty+V6IWU#r8N-EGE+y30>5@Ydura` z2tNxE@S~1iQKR%4_H`^T_Z=E9Xw$9Chx;DFg!JaSEi{VNO<80Zoy3OKi~%;^NPqZj z?gJjS;G+T(J1Ap>4KIeghs$W}ggCCd(;>OU!&tZt5U%t%kqeh|cPD;%_y3qc{N%D~ghp#F>&?mbKzNVvPy^BELNV)dqP?f4Tt8D;H@Pgsdh?5KetztRnbA-(>B(P-ACoq_hsjzV zBu)bCld#X+#9h6za{p-9{kHJe#H<@byHnr8ElQGK3XB(#G+%evu7Mt;@roFyBZtT5 zk^61tE=e6ybd^JFAW4*nH%>ZQ62ZE8S{b3&C?qoiYHg#=q~zyT${VxT1=UJ6d7z}% z1IBiFmaB@6x-ZxBNZhv0Xsu(sKwa>uMcwzqp3|+LlsK#y0$F|Bl*}PYQcF*8-b=?5 zogH*aG7c#nD?}#tN6XA*B)D8pJ(`$pi23#DsNk~#tl-mBsl!RXo@9Jnubpv&irc`= z_tE=sKI*tXfJa3KCz=rXsN>$>!#yY7k&2nC+jPZ?ZI=L-$-PjU`o4nPdF6l@ySDHW zVqnqBPSJ^v+#yr{(Z0v9q}R5zgXQ5sI@xo(yu;1eUvV^B+s z)Y{rv!0Unj!tgFo1O-Q}Y8TI)Oti0MY*p#`9PRR@d_L5Ur>#Qa%O0(~*NJcXdytq^ zFQj+gZ7jjHcFH1f*!&$>pT=eCLe%-=PyuECJ+l1{ZjJL`Z#Hk(1ZDZ;BrQ#Ld0Y@# zwki+7xjGzY;YFd&RvafAoY{%oW)s~FYSKcn3I0cJ+~U+oPs0AnD&EvBYE=tgzxuo2 zs3?Z{Rzc$MThg}F<88t$>M<^IHyj&91&6>Srw%%lcV4$D6ctQGd58tHq09X|E8Om1 zu>-FiBww0x2J4g4Ror?}BrIa0%N==&YDLVBoGf5-Jzqru*DOqX@+Z{c1xzEsC_4aq z*>3?)KL8J}#tbv1O?y&U8!I_iwqSH-qBj^DmWfr7vU$xR+0uQ;XXTsVLIEw`jP+tj zrH?P0&l)zVmQ=x2GJRMh-C3n;X`J#C7|3Pj59278odj0TC5|k@nLhtEKv~+kUTf8q z{6^;!q9=oDuROLXJlguT(}MxWq|lL`lFvGI^9e%67Il9J(F7F|T~4M8fhLCv4^ERK z)$qiozE|5iL&$Yia>yl3ARxARp8ZqbzlMLNSpmJuNPBUR-3JQRALo(!nKrFx9JSle z_q$V-q?oZ`olfyz+!sb`5FzOU-#Z9}FK9ow6wzrS`w^^~s{t%ES6_&61l4+U@-7~0 z{rcf#J9B`%F~$mmXhk_+1gCGVDd05JzCC?Vpc8zFmtiDsK`c3Pv)wK;lk>s{&rc<| z6r|~gs!B1!^;~r^r*dwDlOjE?sme(KNN5~}9Wy9j>YQq|rV!N}`mmQjgaZN3AYkA3 zrB*Yk^kF2;;7T@$b5{K=0hb+_&bShF1b7tUL0OUu5*I|8`fMLtUKCMjvm9+cmm)ZL zc`pu^tiT~#*-szgm|-_@m%gv}Vk{o9Pz)Nz!3tg}r9w`95Ah(x^C|TO0W*Fil=p|> zrnSQ5%ZpvfRgV-8Gp0&Hx&=Wa*z>_%idN?fcjm%{XyZZ{tbM^oce4*2ShBDeO3hw< zpf;_jw9&ZFAR7#d785_txck>(zzSs;m;eSf6)cM99+@AS?a6Cs0L!WH*%OhkWPaG7 zxAuu)#IpKp@7ID0#R}q3h?S%+fYt1S?3k&EF4Ih46K8r z<0{{+G2hyCtV)eWI!iFL))cH#+E@wTQ~PMP^2bs0s+u_oTOaD{tEUcpsp(dIq#(JmlxNb=x@Dsb}~ z1bA$bKGoSq9t3uSw}4f%OV>(qguerdk+xnyFaXEe(@yL(p$WfKb;oEzX^Wn70Q>mg z0NuLmv5KBc&n;i>kvlJSK+%;4xu6OON`s}QUy;ZYa~}{Ni+B8vvEUqjznk??-9&c? zw{;aW8IK|xCTm_eX;rCg3a9#^a;LAt%fDYs!XJ7Q_y?k0z<+jA8bd_EO&G0P`9WLGPiB@HINZNGJLuwr2t%;tH-Lq*ZMW^D%=)BN~RPB zeDotbEe6>s`_5eGO^@yZAdxl^92Z06xE|yr_(GBxN&PuF^;l$_i%G0md7xRA(nPc< z#O42{Ns@asF0tQjI#PKAwwAKABy9S#gHD`PUSpA87Ko_ zg$L0*XEZxNe7E|v3CPr!A(A{B5xeoYk@QV?rlc(UnhTA*NZ$PL1Xho!0A{7YZJ^JW1Py6<&DT=TPr-@q$4oDPnESr7*N2 z&QDz0ZS!mBCZ0T&6ZJ=$BGxWS9a4{>d195FuTYlgBApJgr8tJU3+ZQy~uSq2m|p)w@AU^w0upR7eFzYL7hs{@xUfj=Nm?uA_FwhA6zF*GOP zA~u;}#^z`)st619p-cK}S15SEU4pyEzJGl)-=mxNEcE2&o^7Pc8|{IHOO&A>yqM|E z>o=VOf1YI!i2&CMs_mWXhHrSzbo`vAz{RrHu7PzlNh=FSGFhg_08>X#Jv|9bcx_i# z|4DF5a%rN(T;cCu_m|lML$^c&_{Mv24ZY)WRUMl8EN2fF;nFNP_Ehy*q)8BSpH zhcgSOOc%npSHi&{7{RS@+oX+c8XV__kP8D}JWnVJJmhfxP?A&Ig$SW@3(*Gti{=js zss%B$y*6}|YE-kd{=Lo;A#Fs^$T0mxAum40s6%ScF z^xm~vdbkYN-&lSvF0<6GZuU$}nZ{flXK4M?%p}3bxPwF>!%KLMKpOgNR2ni7YSIE_ z6M3E(g84K^2Yd=YRkx!7xH%0EHX51$Cum;#vd*CmjQv=%s}F=e0Fcdk4X)gxW_xwW zpF6jh{RT^a{t6VOq?$5(-?4&c`U38VYmwTy3z zC?O^A5df+_&him_Byg%dY@(L_)Bo1qcSkjuZv85Pf})5hBGMeCNUwrYM=8=p6p*fn zGy$VXiL{KPNOzPfB?90f)|5Ks^hP+|n689E^(cR#^7=gd8`?z(H8Z+-V$ z>+;uRd_&&nect`-`rE(#{RwCYi?dz&rtp<(m6vWBLnaQM;}GBxRZkt65x8BKqcQh5$rJqN+Moppns{#i@_0v*J;M>JzFq67K5;Q{ z!oxu|h{c7C-Rct%)kgK?z}}|CJYEfQV?nX13Yi~WRWwqWy-oz;~_Z)zP*&&gLInnI- z>;`P$mh0|b8Sr0GY=CjW9r%v0Yd?J3239;EordEQdb^vUwr@g8FnZD|6*^x)YbT7? zEDV^(be4Uccdl*FcRa)*T{GL^su7eji4b^=U}S+x{cuXZM@pSGD?+Zx#g-J4pX3%q z5N9XGt01+h-O_o0)o0%&V5QY58%>TOHqFutA>N0CifKTTc_mM+1_of`R%oOv3Q~4aMBAufu5|Zy;bUDs3H3g!$x<6C5v5 z&863Jt#IJVdfjtHzMkFAY|X7gj8Zt~56eXQA2irAYk{gFPFFjj304g-5$7I(HrNY1 ztX*MVfy`J5Sx9MP=ZV=VUc6WKmJ!Krrq`^!hrK?5Jud}&e!j43-mW36OCb0Q*$51+48eBmm`cNvwGV0|!Pfr^Jao-7FJJjN9G={-~%|tBCe}58N!h%BOz{YDXeVHh)ZJ`0Mu;Hd2zhj8sbYn4heph(V~90_@ux$s0I$zfZI%k%`() zxf17Xe|X>SCiz<)(g*bwOKVR;^%dU#zPx9LcO)6Xr`NWY#Xo5|?qWuDL;rR})EbBga*hKnzMqr)PjFx>)EEI4XL%ZhEJCd&*Hnder;g z0WHVV%n-Fz`d_Qm(DPFp0O2KLDRkG~(WEApE!LLeXQFXK{$O|aU4M-$J)pH2Ifm4JNdY~X7Xxrd)gtk?N%%})8Og54-!_j+{mmDaLu2P+odz-Faw4vKaO z*3!H{7RPaeblO<4I0?x@m=Br1)*Y^(YKutkYd;f8Mg7JHq(f!{{={f-5u%_}>BP7EbEuXoliQ|Ku)T1w z8a|nzTw6C#l>2VzRt_dA4+V|(#6YeE3^$Q9Pt;*zz9|X| zsa8^UV&X!dFoy0&H-JLptNSTs=oNT1CLizIdm9SxU{m#Cwh3fZz)9a@HNy4QKfcVnPwReq9by{R zb3s70KVvfNbud><#Xo&Vc=swI#0oQrHJKQM!kle?_~11puD=6QY7D-@p$f^3=vBjF z1am*PF;ieSKTORjV3}eey&jl%QC&j>vLE9dS1pLuv&{^CY-}B)FV4vq*i`e6}gkjMJZ!7o7p2y9!X=-L`f)%R{nE6vE zhD1^>%AeP`BKp=42Qsj~AA~y=D~Ph-g+4<@l!n$Z|K*=>oF|6bLa#cLP6V3G!h(+A1y1v;-wX9$v(K&aD;~icMq;9J)hHoJW;FaR5c?{)aKuy082dvuJaJU zvcIs!%Skc4lpMbKEMVjNmWXMIS2V5mro4cFupl06Mu z{v-@qqG?c%A%{p(L84AWOm3?rGbQr&&+v!&2=`*EUoF>up2Xuww2*6);r-jV|N5(@ z_c!2#4HL8r!vwIdaSWnkBS3#cJhn|Y%a92SUO7VE_=8pZmRl&$h&prP5Wc?orSc&r zX5O6$QR{Td%}HClbI`kk3>XL=hSTe-g;eI&*4Epsz{!_Ugdc70g&+|KWL zaN(e!Q%6WjhvCG6U`yoj3d_2Jl>971c&#iBn?3S74>#@(6RMSeZ4ln!2k|V!=@nHU z)fW!S1o~R60KzG6_qNiq2Ok{siwF^@ULB!t?ny39S8?}7cjc=-%_gq92_ zh-(!WHyYp9hqZ|$*579}dI(2STRK-?=^v|%=VY`Nc}f@@n0(eOO|Au>K^YLM@uRJf z(@7G-L6!HQ1{A+Fn$sAAA_^gN!$T!p3p;A)Q27yS56Pao2X}%)$!et17D=U?M6N%CFQ&Ok6T*^EGM&vp80sohB-)0*iei zRl#O@M~fnu4h4<;Cl%Wtfiq#%ct!@aiWSIBz3#xzq5lx@FkyHJd2@&Q(%Bw*WB82^ zWQV+f=AXGdm--f6z<%=^Ag8$Pf>$|cvjnXO3DmaX^IQ6j`Q*013kHcOvBsCfueB_;S39)2AQnEB*UIbk02YCp}1tZ{V^aQ|Dy zyXR5|0OY*e%ta9cCK(d-C_idtq#A7zuudHCR4O>&l3$S<22j6r6Tja_xhBLQ(9{+} zn=#Ag*8yC!51$}P#!>*-gR^GJNxf{~b9MT)s2(UK8jy_#^C2y1CJlDK2^FfF%4+BG z|NJ)ik+B)MkS-{xhA%X%{77EYD6}S108mDSap^&ER{6@7%P-n%raz|-w)E9!(pV=vS#jO$3sJpQ1 zfBA8c)@)rnS+jZQwT?gJuvx zHSno@#4k-&4C~U}a^?_0y9y1!Py!_I?e{uUw#Lp%eDEl!xRAPl>gaY`P(D=d*OE@M z>flmq9MOk%xGlgW)f6Na;O@zT`% zkwAwquiKtv1)sw0thx5flHvKd2(LtrI}X7q6%7tI{w@dq6#L?P<7c*ySG(=xMiB<3 zX^V8ZP!l8(l$vH+o~a~#)uTi%k8G=NC!!*r*)`DMvsvt&KA%y19>H3@P%{d73kFK%b*=}{7yY>lMxk1QaCN!dy}>B7t_hVGqV6or0`jFuM#4E&hoz$|I4dm* z(hVLZ`1IHQXc_{BV$oId(ghVef@l2^YHtQoGsuA^SE46*Bz4=DauN7k+UFp3pUr=i zlJK(RE*U1)#4eyhQR@5(LOJNxLxQG*ZtAV%&LgOAL$G zvZ25`av$N_>B0zk^-Re(`&YJ{z?SM@=i6Yuz>pL|U|=8f3&RSnIsF%^2KkR2hU85K zUs)#jaK7T5+on*vg_(>xSAKlJ9ssuAmAM^!{R@kX|IbE;)XnE1>l;Np6=U#_KU$Cf z>Z$5kXf$-1m5PBVQ}#C|G*hC*10^I(7H}v49STCQ6#4qjoi3f;<$<8!!Gj(QBi3;+ zNq}E$yZ&~fD6AdxtgG`P02WalJtDdqBG5zdZu@L^Xa1yh-wuS_xBJ5J{dZmYI@~$@ z3lMy&g?3Dkaw2Z@Y*pp~H&N5xcK;<(Vxx^(pUbHxVC;b?ETjnKOPn6%=9gN>jXLB( z5^Z-Q_*PfqM$Z&OTxHIe(@`Ao%S*t19oe}EV40mYIcdtHoGQckkl<9pbdyA;EtDHT zlBKuN#u`yDv*-kYRVx||BCCiKq!dQ~Zn z6Sto}Nm04dTF;?f@ikS?Z(a>*yqG|GTaJa*mDbEg!t=(=!IO)Yg@az-_VOtS%T8^z zR8mT>W!I&SH5-tkXB?zg+!VjhN(n@}nD+bRS8sgpWuQfsDCQeFyQk5@y5e&ezWzjk z&GbmnV5DE)qxc7V8YMU13R8Hwi+5Ar7>qm$9^< zB|m(beKq~pW2K{G??ka5^XoOkAyFS*`>Es00p7c>&L`xvbk&Mg6^)~Hm}khf70&ez zIVA7e!O^Tz+7Y4cBq3qu$2au3rMjMwTru}NLEFi}(rbz6B}LO$q=~nyOqFTWP~&I5 zX|vg0ox3WBpOFcgP1YE+@_&)pm}tvM$}bz-L;6O*X7?B_T(jp3Ay1h^cf=lI<_>|F z@OBrI$KE3n0y>pNJLwh|N&L*#T-)hQ1-JYePK`S}V*o5C-NC_Ka8WOW``8MFpia5i z2Z?3%m~Q(qHZu+HSi8)?c6#w}9MNU!*)hK5_H3_ zYH=^vSJ_Llm`zFRzQTHPp=8a!-^EaI-Z{&{Gc~_~u}`O$4{&_x2bE{pGCM~1wU1kt z_BV-3@tpsHW1V%nm%p(qctm{?<0ZNL>|}%fr;shTLg;-5hNJwGGIOMHUM#O(s)dkc z+6rZ!?{)|=XP+DQ4i;@nB>3aS@Re^8f|7s1nCyS+PQB|I=bHMJ_$^M`NmFA3<5!_X z?VJ{Mx6X%YXwXMoL33E9SE0=Ou2whG(Aj~_w?YDfgC0w@e@KkCevT>Sr61sha@@q- z@qT9B9j;1G4{4Wtd{ACwD;>L=O;JjS7H=m&ewvrl1u^}0j+v5rf|}-YHlKq(ZaqF- z`BoVxiL=N}CQS%2vP8K5d!iA+B>Rl0CX5Z51Q znHP+ooO4!A*j02@=l;{sMN95eYLa7*m6(*!#(BcVnR+tWZ7x}TysB#HSz{r?`|s=S zDLsye@3%t9bKLJtLk?$7tUcV?n_CmhwKKP-P}a2Nnw?uS;{VS)l!&>N$S{GJ(%Pc$ zzlgO_dI>s9ueNqYPM6s~^^3bU_1q>d*yyHKF7CNZCBtci5eJK9fq4C((^QG7XG3St zv=vx$aa7%zDs>>swmE?3-i*^aA??W=BQ z-ZkNtlirPZtZoT4ksz+zv#5`u)&Vk%RMR{eJMBSV{45r7g)po$sz+b}PcO*qs#6bm zoivqt0%_UkTkeoUPdxJWeBa;m{}3Nowh|E*KtnFO#PfQBg+<1sigk1d!mM8{{PoN? zW5+b%4-F}v;G(w9kA1EvqAKYW(uHVq*rf|<{$%e4pH7RN968RT{rcpmeuft3>xRw> zWG*HScN=(;3*+M-sm53k@!FZ%PW=)OE_rtk`d=wg@qXd0x1>j)Pm9rM8>S+rhc!cF zoBHji!^{S#nRxAh?)P*7(zh#J02>Yl{b;qEG1~A*dr@F{zmI0Kx)=TSdy;GLSc<0hmJrO)pmsoW z{jhdL{nr!|wfv9TyHxU3n{m9CU}B{ZN_ben*ghI*>8hO#bqvc=IYD^8DB3R8{$V2ix1OrHdu$(O zzJb`(KCMJCpRuM1*&CbqAaxf+T_q3?75jP&o%JM_Qn)x~x{iVTja7pD&29GS3;7{` zeG>bN7c@1de|7!*aYj1gGI_}%y|n(uumkV#LI7!R29+=sq8I1A_;N5A5;60~z+vy@ zsA*Jh{ZIC4OI~uQdf|Y(DhjJn$D05#|m6m zvfk>i2x^1^kH`?aLanluvLEq7jlBFdhwsn2b+>r5CUcPp_&LAM(nTU(GI}OuYW|Lx z>5*^W#bOT+&2`oez7A$Zg7Uyc&&i?7?IQ>ZM*gLW3Cey?R+aw;hykWq}m!Y7JBW{NSqc9iMOd zW8BX14fA-w96H-p|H;{2-l{yXL+WDLCz9D@m18XQnM}52*kYH{%xIG-F%i=&ZP&cw zT!Mx+m{Hoj8LH&ee{#G38dZ{cV#+~tp{l*Za9cogiIfKYa8<)nVKC*TSpne%wzIbF zbub%4V~-$>{hSJ#ws|4>oh9003E1NCC!qEumb{jCam-L5twFGGj||Dr)9%Oo$Qq2< zvlYKfsXJo$G+MdO-O)33qWk3)rzMXFd-~7RvAO9t{@;fNqeipy#RN>6JF4yuot;X^ z`y;gerJ61>0P$b|7#Xl12B6aNcgcl$Wa0%1s4qfvD|$q(2udjjO-nB1ElHzPh@Dl- zLsR7h1v8Jbn8ohN-j;?xUJ;%>VVHI>3sv^GN^lVZ29R0s0JG3#ao)GF^G6P--!z!i z#nRREiQlgqbX}5jR+XPqMaQWc|IEeiNN4dw$H|2}&WZ=nlUKr%kL`NYNAOP?mI8(U z+`@+H;i+@MPwmHAdse=90G?|xpFsA=xneD^vzD}4%gFuDPdDz0 zUw?hwI>Bf}1GAP_T}v9TWyIIg{cDAqwJOyAp~TkUAk14uy)=@t4yT3-@GciG#NoP3 zloK|j)w*#du|nmuMLr@7p$6|8t|wo*Kp7fr`S|Xqw|BHWR_mr&V}N>Wfx+Q*M>6$& zPP~qG-ZWBq;Di-aq&J8QBw*fc#z{kkE_pOEMB$2gq?RF5em&uZD6b9W63-UEETEpi zA6@I{1FjZ;KJ!;eQLF9hf4Qi24B#(YrGAj*{q=80asf2zVA)y@mHdDGJ@hR_gx7p~ z?gtm)UoNlRZk2g(Z8KM8a7|R!&fULgq&2Ow%HR6mr8A8>P9S#Vq*i0){+%R%qH>b9 zsg7?a^?DTY1BMQ;#)|97-W?Y20^#H1P=6Kk!*kF(Ru#I~y|7D>#s{!6KJ}}On_2Um z+^PZU`76LuxN7UN^+M|mw%iJnFeXJqXHrt=qVm}-?niRLE|eSC4pjeylL`F1g`9w> zkj;RmtfteV2Q^|+9q4loddV?*gH*tmE11;4yaRzCw_YN!hfB2*#_XVe06mFIaSQyg zYDWKtP?KUUqDX04*5#m4+vsX0S!8LOQpp(L3+_MYT{DsqIkX6z!{_3FWy3EHF&xGb z7OoL?BQ_UK^o&L^b#IA-BL=mAPK+`~jjd1%s#zGZ;o}mLeZX`qHf&VmJEDo%1pxGv zOd~?i6-K`^+*JJmeqHBJvbMMf4FmwZi*c_^(P>keR0dtz$BHYNA46c!SRic%FGxBv zmdBMPc=sTnFq6l6d-87bT5*+YJKZ_4gD0J_fCxjNEFXN`8-#k704|Pkk58;-oPT1`4Jj%GO3hqf&eMmC4G-` zuNec)M+Pdt9nKUCf^G^9&ZIAB2eimFYA4fJ4tVN205&hxRN41&KLUiePL*_;n8i#Q zF$f~4l(9m_^g9R=bTpK+ThoG7>2&Wu31&v9Wvw$|FZDCiZ zMHe{szL@!CceRi`1qkE$oqKy!D8Y?CHu)^&O`^|W(xeP(M6mjT*s7X*XwU}`gGO&% zzO2D~;i%(%*zu5%S-p^*67<)m!SYSUhk6b)p>YRIvkSw+YQu*yfxxezgE}9@R(>?q zw6$JPn5`3U|Injn+Q@ulHxHJ&*KS>SgBfQd^UeLTv;Jc3DyeOi$vb#=F(AOR%i6*Y%kR0O&TYKYhKkL^?*Fa$47o0%cVrJQbh|ZiU zr~Z+oWs2Mx@bm6IPk-;i*hH(9{W-^&-mt>Y=qnzY zF;m>mlm;(Xz(CQL#;LfDDGl8~U(t8I-J{YeydgU=XXQl=kdwv!Tsz_E9XXA9#HWRU zrS|eBe0qKoG*g5%2E%6HPkNvBQ-t2-e6tWl4lpg{9bgzINO>EUAz71&0pg=}FG|-q zVs*g;0*{_faxkNnUK5&iHJeZeMiWBJ*XZcOh)(940`!v^a_YwxavfIO^Bl1o+jd#n zayCM7W&FBlIr9Y}cYu94+k!A?qhb6tY>sWn6R zv?n_AWDFZa)qO_Y6Oqa3uNOh!XqW9(Qn>;!1`lXC87)aTGgnMAZ5etOiAo*f5DF$y6ao^xun7L*kjXF9GZ^nmb04VO4l-r#6kJHw_)RAzYeE z$i0Tp&tq@W5zRM=d+l8j?f)Az@UnEwslFp{#8wF+IzFeGlhuZi!&RH_ygHu< zC#R;iSflE}CX4WfGxS@dp<2c0F^OK1E8l#I1BmK-Zu0OO?1%? zKpoCYjKN6R^Bsiq(erz~DTRV9M_Fb#dq^pI#* zsla0t_RE@p0Rfu4kD^W=hJ|^_be7+C+!*b9M65?AMZOrkoW`En6MeH6Uwa3Q*VJExX5SE#oHOuQ=pRLTufiP}V!J;Q891#rmDRyv?@MUvCNV8BO0 zrc?|~A$@HZ2G$94_w$-l)b=!&4n)ryF0>DROe{A@&V^hPgKHPH zF~!KMH_O!sh^{c$kPZs4OVOfjB*Pmp@~vD+f#5p6^bREMEh?A6wnt_lT9^!@g%qNN zM!z88`wbbs1@2+C?IYpf2M)SsD3R88c(WrDTJ#HQp2#!`!PC&Vr^Z6;`&{g^-)~m@ z$w}bE0v@I?Z)5O*YAr`ureo0|L~ihSQln;=MI0O-kxyh`rZxL69Cy?~*LFlpP|mZ@ z0Ph(bE%KQh7r9hmVQ!y?u|71?Joy^9%w!6=QBZI-K7bZg9umyM;c}+C4AWZ(Jwqq(*QwGaf1KQ1>-d#KY{PdIIH_WUhqOzbXEY3L-KOt-IXc}>9pFVAJ9~wxQrQLU%^I{$2 zUB`#ab4-~$k(U!)@XIO#-b+p%cQxA{f@5s(jsv`UI(%Fsg|P7s)ucd8))mlXU`W~C+s zxO*L%1I4OO+1VBdWS^*00ov&PEfMGd{tQLz-?Mpt;lB8{%m3u6{p(Nu0qwXgBJcj@ zM(e@Z)Y$O9-yZ$-d1ybsz~%lg*~x$YX1Ff?pa1hOi+=_iftp7C=8r0Y;E#<`DZV$X3_P@LTzfhC>+vT;_v-WyGp8vl&J)h{C%xWL0P%hf00bBn% NeH|0+f}@VV{4dfcI#>Vz literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/global_scatter_gather.png b/docs/api/paddle/distributed/img/global_scatter_gather.png new file mode 100644 index 0000000000000000000000000000000000000000..14e0edf7965aadece02dc9732d4537d4dc9227b2 GIT binary patch literal 77352 zcmeFYhgTEZ_dcwM8mjc(nQIna!J&m*C63Y#5@G}Lx#bT?p}B#0(_vn=VMVA z;h)!wWD@mX1ES}{!2q)uBC%X;(CDMxy$IktRc(+c!T;bi_zY%)4?g&ZfJY$E5!l(_ z5Umc@TUiN1talPWU$gqj6(&6%9%_Cl@%Q&z#4QaCSNS# zOHD>JxH2ZniohvN8kB@US9!^?ba1Dak!=WO$@yV%0Z1=2o2*kQwH$a5F-Xde13%L# z7OXdPS%4^*q>MCRF@a1JCkSQ5GX!eys7P8IS!dx%ECLRaiHaqHO9?b3&WhK7dvxBh zQ78&JS}ze&z*nL{3O%2mu~e^6TTRM1rdn^71mTD}BTfSpitH5z-64=g zfn$rew}cDL1qDulF~|n2cc3>mR1B>t6k&>tB`~F4ffz#wDUe|%qj3RzZ%U9U#1O1h zk+6nPHIa&-ilrp)pupHzF9IpX5C{ee22b}EM@soRm4Xex>M_(v z@RcG_m?Su6XiT6uFifHj0k=i-0%NW6;1In`iHTBbMMeroppOoY@%FZwgJ`izS(Hp4 zCh$UwWpbkz(->-^MjLpnD6oy(SdJD9Ad$pj%`8TAEY={x;=LFYZ(@+y#FIwGhT+9g zI&**t!HuDZV3|ldA}mUS^hSlqm@*4du4m}@OcK^2Az?y7)v{oq4`NG9Ac|+ekm!6> z90h|hptu$mm^X@z@wNn;qP2X2S}o>z(HS^ZNSqRZl2{_8(V}Q(AR!Qe0b(Oqj3~7P zM-qi#f~AOHK^#0Jj4BS$TSOvAabyT~pb3bb;7t#~NkT;GC~}Y&PK8%VS(0Ei5gi;Q zi`I(;I3ym&Wkb@i;^>;7NV=XVh!GPk!RD|4ugDm@)vTggutEVPCQb&d1?W2&N5luK zV<}j42woNzCIBaqhG_2)Ju?s$V1>(3I3teW#gLIOI^bsrG!2=LhbH8Wq+l6rzBLLJ zV~i8e4&{rGT%trQmw`dTXjoK?8VHIIO~wa=Mlof0N`RS&5#os~0t-&ySOZwP z&?t;jCg54f2Cmv1!;tIatjI_%g$-Gd1{J`F5zrBWP*e;w%g8uFltN2HYSWz5RV<8chLaio} z#YEE-dMcS3?5&JL5zWFdB0dhI3uN-b=wcR~9TgIzp-}bW0Fs!Dha+(^vs^|I;n@N! zc%oDk#t=|ZEv{gNiD$h zB;G`2ERhintWFS1i;2^6%w%2w5h0L?qTo73FdM~U#o_`*M7o~M)^J$zpb&11kfaDu z%FHTKEEy3K9VXy`#|8v?(+DUW!(b+fuwqmI+GG+c4H|3|gUyzyf+SqvND0Icu?%iD zfg_eQ5XX^-%o3&%g(XmfuvRMyh>{!@>m3r(?|9TCg+LMNCBe!NOfN|M7Fj4Civ-sw z3{nNSH98uc3D&& zqd6=oPQy?L;Kt}UGb&C7kKq`}7%COVp^$ii0oq84)@)#t*y0dkU@%8336oRhbP6dt zBs3@tO$~t)_+eC{imi&K2IB={ibxU}6p0q|36zi!23#Gd)$7nWp_!;4MoMJB#S(Gw zK*(fymS9PkE;NKd=i;Ksa2C-ZCkCmB$XGHm5;7*K2^WP1Vjz%JeFP!?obD4End-P;BKJ6jKCrh!6KPdCqnAj zWUok7Ff=ImAwbMj@bMOvAy8&DqA3y{ixZ@?fFDBO>Zm|E78Mw+z<_Cc5j7eziesTb zMv4<5w0fWgaB%<#JzhdRk%UsxV+2$w8ljiTq*ziQD=G{Z9HcOMg;*@!C>kAW(V(py zxxfn>7)oJj86q}Hgr~=8xF8adc{-KITS*NvSW#?Y3{yr5#F!OCybhyL;^9geAu=EY z9}?*m8|E$0$_*hBql(9pnE5eOD$htIMxlG@9n=2CEK3(Fh@U8fG#1)z07ab9Kx z_y+zMm>3?M!oagZ>?6~e2)qhTpa+W>^pNNniXh5>CUdX>EFqp}Ldyfa0^&G&l~^M| zhZ>`K(F!&}%_d=jP(fyufDjOhXEOw5v>s~~o27UH$_r>5Q6-KSigDC&A`avg_^hyKy+x0+im3(@#}F3^ z&5;_%L58udG8La>MFRao%Q2AwC~r%wx7;YgMF&wJN6e1Xd1`J4mG0STDC;5 zB!`goN*zB4;B7$KI$P+3VVTnt@rX6rcy zDS;!xA?226lN#hwWJDBQ93zVsl7hhQ7-W2lR~!~eC*jEgoJ?Z|j!6~9vr_Ri0U3{i zQ(3@tC^0k=1@1)=N`rVJY$#dSj~5tfHIidAMhDTDA#6(km5)Zt`FxZa+G{q2AVU#R zJW(hSfl;W1u`+6K09mCsNN85EUQ7ru8)fLoU=EdU3ZyAChTt%9talL53PL2BZ-AS{ zQnoQPP%Gj}qgYy%#3YkMo8)X+Y={?^ZDxSWkUAMH6h|^(BqR|U33*8(oel^8K_G}L zK#9#J5{agY7P7@4`XhpM!8)$WK-Pt#nQSy$XVwc8IBh7|qyuQ*$bbx%sATH`;*4Ag zU#_I^b$XVHi3n92Vgz~wml$WpSdmI{m@-mB3PkdmQf4GwObg)2(X=>*3>~C3(qi!( zs#dL}TbVjM4ohR8$VxI%MI@uyjF8YsZj2O{wbHIo1L|ktv!6@CsRCm5>oy z3km!b&54fX8JQ{#7CUA9J4k5@I5KIpuc!#KB z2?QKoNQe}8hgt)1=m2BP-#!k9x2j~!AdY|=9i@Vd4vZpT8PNy|Lynh*fVm5)d||X) zB4pDI5*3#esV6f{W;Bz^W#EJ4N~S3W$CdMNc(oTs<%QxYWOO5NMWX&=IT1Pr=aDFd z9D1Ud##2#{D2_sfQ)|`G8Mrn?8btv~Cyl6<11}jFjpYhMi2+!&RUQ*553tG+W*N8+ zBgSYLNR257^3gzrfP)r9n@n1`mzinM{yA?9j)mc{lngyxB4K)YDfwVSDWTCK9XF2e z70IS3lnOlx$&1u-q*@&{6tYhqTyNsCg2ZuJDjVe`6cPABT?n5Z3h-V4ip_*0Xha2t zffQ1L(VFNeFAWBzlW4iI{3s&``6Pvs&ka=y@Wxmf61W?Zjw_CX6U1mWfI}Lq0w2T_ zO4J&SHq=Z|5p+ZfO(6wBgtj0*_h zfZ#J?$pIieB~$1eL@Znwz_beBIusQi2QqV9fY_TJN;e>Y#(4?Fd~J+3L1i(ru`GOO z7+Qqz7OFTBBwvch2Qb+H3zCDS90iRjV?-%f78=c)fmZOv2&yW`+ky&aShSpE z4%VRY7%En!4h@n+{)iyNsK{80)C_SG&>x^$$ba)1{UitY{uguPMH>5|zH-0-=K<6J ze3)fvd!}6-huv^hGszyAc1adADage=tN^(YJ29eU>kzifuF%=yGwx4r*duQ)^mvey z;zo2_O>hZC22h*7MC|QNconzs%O26*>e#s8WHbUKtYz-3Riwsr2`bNl-d&M6ZI z{eArRBeu@5fjtXb?Id&g?~+_@P59sP{=6+Y%)uXabWS5~*ngJ~6J7c5)L@4;3?Se* z&#nmmyLNw=*O342pfd+-)A8T1w+a7U4`Ct^T)R{6DS!k5l+R9mtK*eBk+(_jFWn3zqtN-c9KJQd{16#VKAijO>;U zEd6BBWv^c?J&gJ^|Ma_J>K`-eH)EghUzF7^zI!xyT6no~*Ajg-+T-kx)>OapaP`T{ z(%XCFs>h{8UUwEg$mSKOXYNfXHn!K@8|nRgtMXLqB-nGvqm9R?SN`H-{1a^#{rsU{ z(9>R`dc@(CWoRnv-_{nqpY*+Dqi1_=$?alv4gcbrQPb3Ixh2fRDbKaFD+do#eyYY+ zq%Qh?4O1WW$K-d5I}eXvYT4i0d3Bnp$yl5BVfvTT7e_AOw_e$tM^B%RiN5RHpugj* zy0+D&>&?-Zq6PEgLv!NS%B7V#oC)Y?I-Sv)wHlyRNyWo)9!PnVXwVnL6GEw2M=HrGCAi{}_F| z;B41!wB|{p_3JxTd`DUO*)KKW7|VxcipQnLGaluISL7ehOPd!iJYt{tv-fM}-HzIV zy&b3DS4tLbp6dH}{;Ai~dp_RuY*GX->`a+reZ9Zyrsp|+p0F%;$!U}67UF8%@uOLj z?1uVKr-3N+J#x#{Uo^mdMxpi@p~2LkQaw2n$4sFOn40vXlc}ui``)HruN^}ou)Qug zX79e7$2zzs?`+p&)04PYCk1UyriSXr2$5W2QGcygLyX>c; zW48BHY`9b)&E^RtW8;5xUd`l3oUs&bp62(Yett$-!nc#JvPxW27v3K?Pxw6LL#g~h zdo{MX^xzhs8*4^R`HnR+anEckJ};9ec*`9Z&%UicBI92}we0?%6^@#tz z2|xud@1te>vVZp1R;~zmoz(Yfn)yYc=wfdC*LQ-(u}|C`Pu%hQc_zGk@+}zsQq24O z4P9_WIp3=`TvfIM?2$}D=&lo|8tad6P#e!)of^Lr8A69eEdTQ8-ItM5d`?L2jNO

)L6Fbu)sq+LzW0FX^HWt@;i`W{yvt$=ov`tEAL6dAJQsv}Vw+ z;-dLKeZ-3}_GrpbLi#3-w0if8VjP8o8l7t^*cG2L$R#(0KTlX%=&gTQH^fQ#bPIMH z?op!Du6c*uGiOCQ+AYJa@Uo- zY29ywdk<{_-bga=>XQFiX7c^fTR-d=@Z)VxfwH}>2qUVpP1nY}Kl|16liPB9){XPY zgBS-sCl8%EE5l)A*KEbE5^3z-#P4$14ewWb#9yDp7nEt5pR9ihCgb<>$Ae7Q$&>H6 z;phHD-sJF>NPP7C!=j68)LecfpX7D-26J8~BiSDTFxy7_4$QB>s?gEqv1?Ar${pKj z*N+3!H8;e)%3QMT_^hwL-O2K8kSJ>Euk8MkmmB@9#8HrU^5t%@ujfu?FFzyNJ}v3T zy~>_<3o2|E%u2STIgh%{A9>L8@e2PL15@Cw1AhfV4vv;@FVdTC6{H1te0#XYN&VV7 zDs6gO+;;jQV^#suukGI2*cUr^r=|^=bKALRnG?osE!Z*dqD!Oyw_^ig&x4-UMkE<; z?oGwDtlRT`-jxwP#c#F}N6xM|dSXKFUFj)1=adIilFqFC#VLcstv&!yK3qL{?XT+w z0Pau*ct%s_)%ahZ0Z{01R{-UfT+>bXbp-(O{=eb>|GPP~pr^T?deZ7vMxSoZ<2c2) zec>JKC`~#0Ok?+qa@Y8{#p4jMpkw^N`WADt{rp8@>;DoB4>xC*gqLyYhu7TAC^#20 zPgr)LImOYr(r!e1gu2PHBq>E(Ox$Gt$KN_n0_qlxOV1vkB07GJ@<8*rWuyHT>Ee6C z{_#G63qklOCho!PPdRse>K)j#sH@}O|C4|CM*$c9`~LY<3hd&xWvRIjN-vLhnOuMO zfa^bsx>X6D5p@--BG@JU;hW`9b$yHH6a3$KO7b;e=&r;i+qT%RalbHCa8$n0lYlGU zPon&9lJ(#j*SBaMr#SY_h+pWM^2d~jGpqiwo8LiJMOkyoZHmiq`byto=7Vt&DcUIF z#x4JwWHB(dKc+O7+PVK=bXmx-nF}f{L;r#G(}4|b8E&Nd5GJJA#z$oynO6yWc5ThL zDgT>f)M$U`Ci!SucSd{XCVQqSp>yOvCKo^+;4*pQ+iivv_*}cLYd(zd1c$2MN6hp2 zAL6<`1K6o4;lYgUAF%bU6J7SScehOWXOGuGJ{S4W{S8dScWnRNxVyZ2dWx%)&|v$| zB)2gDh->dY!kG0;Q+(BnfUEDkyx^Zbwx0-u6m^V#-=V6|tSBPDVyZRdZCT49K)~<1dPU1VXwNl77fFMMN#6)X4i4K^c9|!PeQ{z8j!7Wk*@< z5Lo||-Jt1;2If6w{#zs~c(!SC1(83yulnVJ5Oq7Bw>0kXp5^Hgi6_5wG}L-zAcol3 zufrxoLEv-6%wqr}8t-^b^H@}Sj`Op-b=23L-xgXJsrV63YR{$53+HxOU!Gf4`(>wK zl_E-Z`RmGBArWXY0#@Sv;=0@{9GQ_(=DoRLxk$=1J&Ag*CT(p=F*Wcj;Mcz43zHcL=9e(sx=| z7PF%-ykO}2!FPC{PrS{}Ii=vNdSx9R^T7({^@+n39Bx1LG!7cG>-|%sZ?^5vky)}u z`O%l)u8a5F+2)xyefaYA0lM};NOdkxq?G_f-gnm2vGB_b&Lvve9iu*K~(30l=r}&$+6~9&z>WIbFwU zkvX=i5AXdyyluA5Po}Nk0)*&ObNKaa$S~=M8wc7(yG)**tlErh$6J8QL5^MXdta~$S?i&AgSR)AJUEQsz z4FFL(E@(hZun{?K-MZw2cKKIrGu#?Fc*15-Ypy(0ju0+(;IHz2kL5sIvalRR5XsfB-jgm+DT0gHC zY3oRQ3ZPiww@ZhplR>x;Jl8Mc9^Zr~7joPsuo&fPno{lTZ$ zSFInBryni~O!y-J804YomSMIF-S3vG!kuv1eH}$tr)CM)3GCqj?7m-|iPbDUNjclq z`?dLW?dJ($^9DZAUL4UB`|~O54hNuvULeC!*_Y-HwxL4qA=Uu-Mm5O5?3v%!UGali z{Fk-mRg~L}p0RcI<5m1a)wc6y);#&Fsr+_i@uN!P*&`IY2;Z35x~5acn=zR_#zws_ zH`lT9#$!6rl^c-DiVuLh2K{TQ`vmZLqaNLx3U&(bAFq0KYZsgQ>UL&ZRvU}c!b|l@ zH@0rZnm82G;8bhnJ+jlu+Rw*mrf2Z!L?`)7Fv%{MKWucf8}PX^XYcN|892)B^{lbg zrPLE4&RgdVtiGGrd3k)-i}Z*z-?!g*5zAjJeb9O&LmiW$ET+~U%&IMjXa>{fZ1(*P z_?0QZX&G|q_eK*=jCpvl&8y#OVas3J*&KJ<=PGm~8>F)b+YB7oQPK-?9aT-P;Kkea z`Vt05c3xfi?PYnrG~;A;YsE^6Z#wJM)I|;(mVG<>Fc`2C ziVP9AVv8n-b`HzyUXlU%nO{Zwv3t zk>I`RX&}cD0ENh=Gar@8*}M#tJd}&R38@9}=8#^@J@oHDV!;n^X(vsXgO0qhefE*> zKzq|TnY*BDe*2@2ismQPA3~vU8V0C@#bftd&ZWXPnSW##FM>qILr=F%v$3DGa{%GQ zvXuR(eZ8mun87HnXijW+bp4N+rvo?(-k&MSsoss&?{Kf)|MZ9h?9etS7>R=a9gIG# z1ZTg)=L(81&0y|{)|}~FlLIOHqhqX#!qR9_bq3ZmCrY+u5#}>2*$vWf?^9A3u_eO| z1TQzz=m_Vhvw=!=4l1#9MuNn@cJUOy#50VY@C()N%3~hgcm&9T%o6j)X+x|l{NF;D zz!xBkOIRxSq;8l|>3^OL25PY-M}7qwZ2Gc;x3tK&tL~z(LcN3wl=(}GAt(oeC0u_f z81GNEpHWGLxYSTo=U|&GM}OGb(K}D-Up*e?dFJWcx*~DYaLs8`$Ks~=_h*|%(r^uLnJM6!%=~Q8yYWJ+Ci*o<eY)XsfFZ|_^ebv~wVA2WFJIRh0H`6^mW2d1; zfqVi8XwT5nbLxBdNWp%+rM{nTd3D`h@V;)~(8!rabi;m{NG>-t5M52sq74xYgZgL#TW8dYO~0BLV1v(YdVs+l8Ui3||00QVKH3 zlc#Ez#&ec?@xVImKcoyG)cxT<=KAmy(eLN2_mvQ$=!$wO8e+RGXn@O^me-5EJ^uq^ z{TvOk3mp+Zzo$>p-$InXuk2Zanf$J@N4=o0yS3v<{ClG+{Xq9JVqM}-5DGD}+mj!3 zvH^vVSXcdEs%<14`1^*t5{U)EB2x6+$an_=u6+MRE$kA=%T6TZj+@J02IcNKz?Wua z8tzj~E$e5FbFbeK&}BDs&(lj?x~o%o+wiTcMu-;lfh@cJ=Z`x-PfYWC2N;gRjMQA; z!!_L?k<0@T|MxE^i?;wKN6}zu-F&uiu+-}`x2Pi)x@Q4Vc5VtU=N^Sj zy4=+@tJWo@bs{!*jejoe&=Ocu-?vu~`{m>vdngl7C8ipI>}36=Sv1LXLubon)8(6G&fbS|)mDgXf`;_GyF9ga37APo=>uj-{t^iBJZdyH zCw$rrjB0ro@Xrm~XR{l#q?~yd^8v$l`iQ;Dp3NibyAK|IwLAIT>jN8eB{$O~i{`l0 z15H);e*aPeAfk7~&rf@Q;uhVg>Af^McxOOCV&Pph@O;JTORd+3jGX*>>I?D4aq}8e zoqTT3VUj#XW1186J+BX@5^nk@K3hHhG1wqc?Gkg-Z>(d@Q%rRiCSld>iNhzMqPKPc z@nNE_*+XuAio!P^z!P27`n)74a>dVb9==|)4Iq*~#xN3+R~)syKPLt3lWgYB{L1e! zZB3^umS`^wR?jwUKYRez3nr{g_3hG95NP@ROXUsf1@VBs&8$;2l;=TIWH|tQyDuHK zZ3TAt-Zm@XgQDQ<%b@hYGvK$(r@y~m4nisfpUb;C8cx@f%G~#VdJ_NBTrRC7;GCR_ zzq|q@gO(6cf8yu2J4tD){ry7rn4iQkuPHQLAD&&zyqkU=Ac-vT;TNZNSJx`6Ki((( zRHQGCT`!(>?nO=-g&ub0c%$I~WB!xWg&)^tTy9$awJGzxW6}5Ir$_fD#!lzxG*8Z) zbh^0VYq;j@i^Mv4KMgu|eA(g7ZL?F*CO5;EL4=o;=FLNUo%c`Ug?$!Z+`o2e%()*Q zH$KYd+|1mVH!YOu`{g0-*(Gj@cFvW4*Uf~0D#!;x9_0x;#DXchSS81YPD?0^pZjRn zxv`{UY3F0e!k%rCg8}cixzig%!`9=gx5UK7I8SyDaocXll%_gil&>!}SFIkVYCNHP z7kHG-^uAnuAO<67u|RQerLL>J9*XfV=B1Pr;ce!QPbwZ;^^sL_(Xr|yH8ExgpO6GZ zZ;bSN7oXyeLeF;(dm#q8vsn4%;tKBkb|9yBR~_Cle_a8Ll(Pn^z0Kd1LL124{cQL&Cgi0{M6`j{5|FVcT+IRoq)o-HX~@~Q>opm z`jF}t+QQT+3u>AQUKD)04U>t9Z8do%A7|E16s@o5>+MPZmM1y=YLA{NxL@Q36WJ}X z6ZFnlz#mgBPm_<_DM(B6=sD4{An}J~W(r!I`{JfBvOssR)7d5W#5v%W zOb=O<`n&syKQTXcoKa;OYi2h7`YiWAHxjt*f!rhL3AUbwmo;!Y{ z!^r|OB~F&ka%7ud)hs(fY~19Yw0?s!___YfrM7;^H^`1thsOWtl9J@^HL zv`1j-&d*Eld%9{A*Rq7Pce{>%Q|umzI(YO&A%1oMtj%&@Z2hFtbHxf|@3#*ZN8Oa3 zD9Lo-&IPtthm3Iht!y!mezdF+Ye(Sky}68PaZXva^SZ7hzD8M;woU``9CezXeO2Va zx}0eFS?TQ^$wC4@d|;T5;q}urU*23{qHj`Pf>~O=;r88{f04ic;Jp7+wj&7qs;|%1 zPAdoI^Qe03_fX{OLeLUco8OU!^-yS}c3bY=OXPLfJ=&DnHDqWH&f^n>n&!5LQyLr= z8AxA@79W#bS`8De-!%|(km zgo1qsI`1E6A4Q7tUVQtmleAn~UzxC}&~+#f+vH`JKZK@;hObInb-iC~YcE_l40yss z+imkx%C?8m_X9fjPLq`KcQ3%wnNJetj7@i^{|NMlswCX9+wn4x{0rB(%GV_AC~O0 zA6ZQH@ZM!U32rjxL-w*lg?VIL0CAnQgmCU~Pq(T$% z>Q1hpq%rrfvYH1Q8lSy($3S@1m$np8hWoUy7$EXTTdM? zc#N(R7U%0zR<-VOTX)&FB>Lx>+mpHXej8l<8+~}ry5n3oUf~m0Wr@Ns;^P zw(ZDm^4YrIi)|Elj-?bx?a_mBcWLKk`aWGTsF8&gGCdG^y(M!Ti9&Mjiz3=qw{T$a zCvp)IF|oYw)*kN%nd!OH2OdKlm$X0rn!PQ@zUJE%MgGYnH;Z!*2_yIS=IQ3#c$;^) z-RG5$-spd1l&~*1fcud{;T&J{;#I0&-)nAYw4Eu$rgJWS>AA#S5I}0qK|$Ad%>928 zVP~AT2Ds$zVoT~crp9H|!tsS36ZRhpemp3Fq}LVp{y`1!iFOjk_+t*#e>W%@1DRY68*w-K`UY zZ0xW7?ted}Fl}JliShFsjyxy(#}mr}PGuiBm^Ht$yCr*m>vEX?c`uNd-m!5k_J&>D znry9E+>hUt10qM-ZVPm#68Q1a6#xmP<7hoIW}kGptF&tS+HbrII}%g<803n{767!a zdMrID%z&8VlUuf0mZU=YY2i4K#BOzS$?Yw2yhxi&O7^dWSi{h?1X_G#SyXuHE>7+1 zX6r2oDjR>+h$Wnf`#4{gepqOEh}8SuNqG2a183LXFG4^w%`1tKTRyz+=hcRCYTuls zy=>c6F!;S>5jP?0`jVuGmDz{X0K$0WfC`^PR9IU(XG+_FgOblLnqCD6 zvPQ1GwDWN8)f=(7r$FhK_ht86K#?uxR2A-vX)eva-BO+Fc)>9;dDer2G0ru}Y3?mZ z#gX$j6Xp*D{MnhoRUvmgYW)4*ehESxf0cax7PP>!?R$qVpXzlv{^cl}U4Cx1ehZ@` z;zCwgY!RWi#+-A`+Mu#;1FY2o{25T0JmtD~yJ`t1XF@4&F=t{y+4AX|cNI8Pt^YQf zcia^w`d4O{EmpZs-g`rDk;c4qV z2dhf=j%3kJ@n|ovTn|pKjq%nt-Fn4pdMSMSy^L5ts>H8-7uO9@rrQ9Zdqv(-E(XvcrV<=Q~78UI}wz7NV7PcY6yDw0HQdq4PH-{VNt!yYFay0y4{{-=ln5 z(jNcD)rFP0F>i9ZrVSyjH=x3E zm+#sh<#<}lDN#yzPJ(X)Cf9GPJ`5Kg>CXRyIZ@wu0FA}j(~C>RaJ@|)2%}O z;0n~U0O*a1(bpD@Nhut~nw2#Is*;4CDSA%42@_2_uwsOLATAjI)M}eKgL0*-A>1Tg zMYU}IkgRywl55M~a5|;1uR80)^Q*oir_P}^codw8^gR1{+h!;1ZTEMNHRpQUR}30i zxN4-&wavAmV^XxUk5Ou8R>A+|u0c>tkKBH5rfn$M*^YqQIkxXkQlGfD=c~CVVD=m5 zeUAog=mBKT?W_-ml!a+a=S)m5uJ_3K2AXBWYo}U|^@8*hqAo~tHaJujOgFo7ffl5cUdy9C(>3{c3_+|3BwMKeb)praG;{mq(1wFyP)&Z=sd9R@1l>uhY@f= zyZg#k!#{h@5DB+Ke8t7dzNLV#2%|Z-dsd1nUd7jasQn5XE1lLkZ__mME9SCiRjbv_ zr;!KV1A2SDM;}NGvf_z58k6lu4nA118DbI(Du{?N7wxO|FFWJ_^Is;ht?D~4%@kir z8I`m=HAK|q&|KB6GmC8344)VYa<m-Tp+VQuz99}(gP(oslcwzd>N4lrc}Pna z-_<^of~|3~5hdLlb^5F_Vb%+DcR20)<@Xug?>)DuC*YTo-K0E(%b7)9vesGHusCEdw zlL5teW&YXEp=L}cpnp^#QL)^Dd=}8o$70?>+Wn-J-_yQ z4Pb?Gx4NX1RE=raXuqat#1ihBe#nu#X7G5h!qtDRaBNHXn6E9GG27|2Lp$e9iMQtO zK7WjLu<_(Yz$qNf)K=MXo~*FXcVy*y20~DoKdN@lW(thAe%&yzIKp3x`|V3X-Pcx4 zkzIQE@|JL6-{+<1Q)W8bQgv7GwD9v;2(-$pL)*)uhh<^Jx?j@lXF4QEZW zi^kqFrk=Z3G@leK->5m~K@m3NU1`ZapBFh)?RPzlhoumKDSQ`IjNg)eSur?i6H1fg+m7*y{ zV}N&k)8at71G_kDR(gJFzeG)YH--OtvBU)?f=_{lwE&4I4;?imXz>o2o+{6c_nVp;=Y_6hwq1PbD3R;?IsTQv?Ns;EE)f+gf< zOg#JMNJgW?`f%dz=ENRVl=9%`3jM3wAjF~}F7;CZuV85x#FA|EtlSxxv|dx(>Qujv z5l880sHlL_kS%_F7HP`pMdSX=b_PxQyBrPN|JGrr&+fqQ2K>;Y{3Q*TCh(5xuFBWF zeLe5H06jv!f}thtu);u`iMiMjpI(fxCgP|P&EXqR#&U`FCKmPoRg~b_YqE*TU&4~ zFj;(|!2;}SfA=y(vl=Y`&Z|5V)pyMxY4DOs8wZ&6xdA5pXI8RLrb>x zEb+eoedMIyVKaGxsV}yZrf+>_YkR=OzP!*5Y$&T6&_=4SO=hSu@?kYh@l*NGotD&4 zrjVU}cPfXTcn}GiQZo=@^2t`#hK{7|eU6|_prTH^qwDA16^rP!xt9Bgp6My07sBn= z*p1BJbr?$O{;M588&5IzE^1Pre34ds(`}6tD%yTx!>nEovJlYsJG*WtetE=GuP^Na zgut4ES|8eBXiIU=ppZYbzUx%)3VHD#W%O0AJ>EpIY~ z_dNe2_{NgruE&auuI*&bfzReQ_YX6FECRKW+rGZ%K(%Cgrd{g&h?b1@Zt|Cjhxh(; z-4_t=cdMr{%kuR5LuYD+_Iz{Hs1C@K_kh+Fv;Bva{&iI|+PluID0OtDJ$t{$Tfe6} z59so93+-|H1UM}TTA;|oJ{dc{Ryyi2j|Ml z)N6mkn1a)Oecj@QgPdVKi8UKLk!J=d9?Y2hp<=}a$5r9|F?sk9_ZbA|cOZ;HLsWjc z9MS9=wsZNV3V32;$Ef7N!^ZJ@zdJRw#Et%e$i9|#h=F^m`F&{E`ix+RzjmLhHH=C| z{S`UCO&#>(i!WhyJtbjS>(!<{d(e>Jrv$WOiDX#w$E(Mthi`*ao-{SYUEN>!Ot+lB z=WBc4|Ic9YDt`E{xT%M9e)B7mrbiOykk>DS=_6;1+TAbbsl$DOR`}olE7T^uO8vzh zH+b6o6|>%@vq+^gR8<3$HsW?JjP`-hV?6vde4q_=rhV7=-ol1YnSOtQKG(|Covmt! zTIt>x^&;|RLO1Dw-EHwHzm=qRkGqn3x))SnyF8|f!dJnEXB>;@fJ|0&?#i?pf9K!-#-YTk zzv{(!P}hv;gf;Ajn2{0jw%;C2h4x|D2wO+$U$R_a_*E4Wp~ix-sfBs?32PV+3%a1R zu`r@_)ZaVH`wPmac}7f)Xe~-O47Ta|ROkP+i!HT>g~KQv4?(&l15NbD&VHyG*7d!u zfYRjKOA6@6d!CiuRgVNE(t6P5(DCVxpZSg-C?EDfjkh^@<;8gwPacEXRtUGEUh1T% zD-;EA?~kzk0h&j;7A#sVTnnGOeP8oe$hJi1uDaIXogHjj=JZpqPz5q`f)6M`_9s&q z)nh&=;5j;s-*avA`TK|Ina+KnPNsT!Yghj5orsH^^^*0^R25A%lh83?Tqmqr2^yYn z=eg#u@!tgM=Hkg`<_7f_@8=F7ZSus!uHq~^M<$=JUzcH@1sAPc5_{dfJnFh5^m;)D z=+oacET(;~!@$iuf){RKFFJwG=cD~1f53}yU~iY zYr<2j{X2n5_oFX|HH!lFTQG+pcighsUASg|ZQpeJnJ$gzl9HT|QR|?0B5F?RWs$Jt zm3GlXz5!e`H-~+cSvG1>_jy$K8PLd32e?f>7YkC@l|2Us!nT7JgcI98Z)`S0+4#7m zpdH0SL2mix0oFE@;5?tuy;HoU2*l0$bq=mdzz8s?25re0+tO*@Ks%3T&f~RE9`qPU zMh!}(C7|>BWG-?X-NEJiE$DTQh}g~(qeK%@aW51Sh&a1#KBS!nAPst8^Xfum9aNhs z2O?^)QSan3F`(r2|83xw-?`R{P+M}yZFH{?u3EK2{4Fa$kgR!=e~NJG#8Qk z_>@t>gF5wsA2be1-UD<&Up4kLs6G`96EKJLhmbvMhK?r=u=!^Hfd%^sUfP(icn^#u z2GAp#MQYtB+cWO_4ryAirdEK?glbOpWcu*7$?fH;hEuP`z{adP?{R0-Tyn{i@{epFQSvcZibK&~$kCuWy+wZDT3!4g@pUbP~+}zQ*2EZE&!swu9~g_Z4w^tPl3sJ>yH2-o75UDs73w7lA%)m_^3HBH_dAVw^=(QrMs>lP15o^8F(SvR5`E~=FQ$FmH zWxd(5_hickk9AJA&da1wL&0WHRJ^j;N#=Rx!^#EO)bJsoyTQ-Ac=TY9X@FFfJ}0Xd z${sWeugc50AXRn0Yy_$56WavGs!y-(RBXmPzP5dFAn3L8e+sJINquoM*X@me=iT3^ z2r5NpnJTB|7;8|JJ>LaPuXyOts;%8K)&rxU-n%p&W}%&*=>om})Bxo`2g#d1ZXYMb zpZBzRa5T6A>NCiSdpWTOl(^e2eE`iR?Q{HQd>iXAEf){#v0vR%zrue0)bMG-{y4g5 zlaF$Rf0bRgTT0ojPbXTpl<04JAD#S#fo*ySihj$0%<~q|l7x+KD3!VguUbG2&-4Yn8x(u<$SCjU_PmP6 zF*&&tVp;!p`!TSC=_$tYw@|J9ASKmQrG@I<-{0nBINnyI@u@38|3mch@1KhRJyj3I z3}Dgv5)tIoKqh}Ro0C&cI0Df;(5pk%&#(LWKhT+RYL~2xbHfpqUD(U1>7Y!Fy9DyW z`4#635RLQRc%07ZTWYvRnx7`@%XxJ+{%bkF;Mug2gIhF3KVV*J;Gz%t0>UUCFh@1- zK79dn+5-SY8|K8t;*n6#)Wq8J9w{!J3`Zc`Z3otS+JD%-!jsSqF)|R70%a02Q`})S zeDP*vj8AwOs7IRs3OwZrb$k?qmxLNi3-~1$d{T|zg{8$VlIl6MS*er1CB2I7di&_+ zljUERr0=NM?rt9@>RDiZw-~DNG_{{hC0Iy(a~54(GeY0_kVOEso>(pc_qLlmwj!Z- z7Pk>K1nOdn|9p?q^opG0GIBvX9J~XCpS{*^IR&&EO-6iJcbW*J3}4vtuAlV1G-%U1 z=dENL5KoeRv`#Z!7(Bl2v7(?OrEp8|Hv6Tg49Cv`|NL%a5AgQy0}8S{g{8;lE(TGs zd_QsRDfjapa~!W*e*((Sm>w-RHdik10BqYldEFrV*z$A9?A?r7@6yU@Si!Ys@Jdwn z+^Ikghr;h?RBzHg?97{^{`TF0)abUMOz6)kx%ha-J|QTNZA%>Y`b;-~4wq$%Z%l;{ zR>k&%dELuhQ#Rh&In{Zq)n*awSw!Nu%XZ5$)92g^*WJlodFbqUArdIZS0B+KSIJ7y zt8=;z5QmXXr_B+fg*$M8UYmF8xc3&(+{fI%-xiv7qigq?XPPl9=S)*`zMTg8`NBP= zU-IjG)ZZsZ|Llfd6au^)qPN@Gp+IG~{W;Vx<9TG)RG0sB%p}-X(PAHh@SFYxqkn%` zngVrj$GIu0wnh&Nf^6_+;Y)shrf^xj&$emq_MuXtJufgnz$mLJgo*!7hCaok=T&GWC2$E z1K@!=Yg^u{E=P|)K7%mR^yJytu}u|i`KKQP&aY!WYcFVjn)QvvxcspqY-M)#9U`YM z=A<e(L+_iq0RV zl)_g7s}{oCl2?o(@Ne$eaaQ0J;^8>qhRI`pj-U~0gm7PZfB1VqO{+owRK@J;cW)Gv zo1reA*3Zz(bU6i;vGhakr&ju2JiI|t^y3RYgma~IPSVg(Q}?9XZ}F+T{PAMNiP`)2 zl)D~NmsDfak~J|e9lJu8n_gr8uKbNm5$!p!<8)qs!T&3wY6@`UTWo>gZVbs&mIHo$ z{^%;u`#!%Sn6;9#E9GeL-gm`zK$o7}W_N6xKhE-ZFTlLSm%C)#-3Vdr>^Etb{y+BK zJ09!*Zy)CDtWKqz$S5Nt*)k%OnUy`VR}?ZblM*5#I~B6B$(B7bA}S-1k&#gu5gJxT ze$Usb&-M6T-|PBZzu*14|GV$cf1Ky}Ua$Fl9?#=A-iweGEiAlq<1IIfyZ(mU$}D#8 zZ7zpfyDnZW>xG@f2~xIn&K!dr6_MX|s=1eM6yCSuOuw$nHoHdMPG)Fj>f$4eUj_w7IbQE}J|GuR zHf?v6eFo7b1eaYS-%s@A>3ghl$LU$gWB5f+y90wjeX}2k^Vz?Zy9L_rUYaC7_1B80WGj1U=G10zo3+51H68U(<`u*?+z z)a2MD)p7#H79k(PHU9}qfJSM*X@QcJlwR5EYu_eB0BNBUu#{u@_3;q4M?rcp%c*u= zB=+?daP{2EVf(Oc9?xt5nsGBlycQv?8hZP^ggKx%*5Ww_?pUaF&Yf>ov8GciYqL>^ zsvOjqaqhuaU_-m;+S~%X;f~ciwu2{Rt6mUuxUS-wS$6Tc{6u4_>cy^z1?GEuFqza% zHi<5Q!uI_g-scb#`!(w~paoV_9nC#GU-saO(5<&Jd)d0WX|D(1BV_LF;}<|2s{OP) z0##IKI$NOG3lC%PlGgS_Dup#TMEG5ze9LHgB}nrNNMGAU)c!-RKw@FAZ?=1xz_d)K zGhV{_^`gPyI96Y`{N>%tp>q4!A=+_KXoqpwic65N8D$)Eqjj~*Gu_R0{rPbsq){6n zbE3bI!9c*|Gn%=7ya5>#YxY@OMkKU`GjI+~`e&v(6SB!98P76JVu6o5Be@M5RwANc zA`0aoECk7}TrF-#nN7}ANS1~1FEQ_HDP<-Ud7OB<1+h%uX#BMIPs~>gzd@o?`<@IE z0SM8xm8GYH$ACb3?InYUsDRfSv1!04mUWcVuRFq0kFaJ!ttUuJ{|p^$1{YP@@xH$7 zvQ<#H6}k4+U>I1K!6cANxMI+T%6vAkic7`|ig`m*2~Lk)xhAS3@dqO_BYBxgy~C8R zix42JZ>K{X=`k7hwK4*YIoD0$?H#Bf8OohN?;F_S5% zQV`)Z_WT?`wWSb^ozx|5x(aN$<7(SOvb5_2iawfT77>g?ppoKYgGrX}?W>ce`V^we zyEwR0{F8@`kh9pMYEd3Sxbr|1?xz<4+oKpJba0X|j7y2*)2o5pq#nHL~0B>zuqDseb6NynRvwH$8@|&VdpAr_xY38N_ zus{}Km3afAaW+ul@qyFvOxG(Q$?Ij7gvNn zVHnXX+OCK|ylm4F4d;1GIFIl;{JOZHVu(wFtm*&;uf*+#g15q&S+2^uG>v4*Yi*p_ z8C3FmK5*dQR(4=~_lq@=Ni5wHb{wg~pQ@sPGYR++NU{fxTmn5+sj1iZmVO9L4!tvY zI)@gV(Eo11IR&bCB1zQ1uX!n#*$@6~Hu=JSL-N0ECHIdf{;F{k?dG=i(&}r<}EJ(5U3G4VD zlY}AQVm=_DEdsU0BCZ2e&A}4@n73QSE%fF*@DQPHW@}N_g@!U39%rNt)e|| zO9_mBMQG49$UDm+I_?2FkP zV;^OuZw9)L^nggh7G^_8=-_)2f?83433Mnj_xJ^p&{)Yb)9h= zoko=1qon1X`sq%XMY&av!jn*U5u_i**?!M?P-k#s>q?#Iuo50rfRA(D;LntV%OsP>ih*eq<1W9LHhD+ACPbce_!Ce#M1B zsSZ`j=H90IA7DK59_=I_!cCxZj?S_MSn8uxB4Q1aHKu^oL7StMhn{+GtUT6k;(;zG z!1{nvFIHM5c&iY|wCo|AgnK6PbAXJBkYL|^1c71|?D>2G;f#cDy^f{ma-+3)7ulJ& zXmQRntE-8$wxlF9)pgLEel?Wl-wXPvqmZ=l8A8f(fR^945#7zVn8uGSq4OhdUFD!# z>HEF4cx%{aV}81zfEJn&e&GWupbhf9`A8H8Hw;|DE685~QOD(wX4H2T%ZM18z%Tv^ zaTc~rd?cy=QUCSZ02CtK+zjQx}L*a4DldcWDW=NGINR!wxl_Rd9KteV|s)VWxBZ6cG z&iY5C|Cr*N3~qlXNb~GVZMrJpcQ19cAE6#dam65L1MToh!IBQ|`G+q(P?P@CH-9{& z0C}Kc9(i`d4S}I*2)`i0xEy<1WG+>U3VmZGkR+Um;JYA1xYYoZH419R`%4>OVX@d= zA7~hPdJMK~6NAF;gJ?*+B6$V~E-ZqlHm0SvZDFS}{k-*#nQ-*l4(?sN2V;dj>EB)H zGcf4RLravQkk>VX@XjWU0THy5J%#7QHZ;XN;!_nCB zm3{_D+jhtR@KNkRW8%JT_r5rl^SMImq}2AWNaH}Nhlho%4gB{U*mvdHomCAeD6YUj zD_LbT0Z#7uvfo~pkzS^9v0-~Ot^{HY11JKw$LaQMNUmwd9RQg{_D1(-kaO}>2Sc*) z*!IQ}P%aEyjrj=|H^464ngS%n5yJb(t&OqmgL#HSXmk+yJ%T~Y8gNnYJohO#PzaPG zG`a2ul%t0r8Pi*6${k(p`-LzFv`v@j?#nE5gF18tWVvxKs#kb*&@yoB4w@NBwEfz) z1y6d&a(70U(q6EEkQMD`t>a2H?%SvrFNzC+s_uKU85BM zI!WKaVm8}fU=IOp^_6GeTW{57KT=5-J`0u~stJIXBQF`f1|M(s5QMx$5Als!3WHY4 zrqm&pjGKFKJx?T;qDHsw==;>VDodWD0M}YUZ2oTFsvE*ht)>9IoJFPWQ^xDC%02qc z5NObQBNoxw6us9pBgAJpVr`cp@%{ds-T|$*cyZz@k+UP!rFoLaxJW<990?%wkt>#h zGe9wd-WFIQoYOOaVp}0_t6j}M?GvTv@@#Z8zF)EzNj)BW{dlb$bWd*auuY=YLS2Zg zLFrA1Xma2=>?aFr5%msk%;Pp!=_bS$zRmGi@?#@8tTF>HVxt?%CGL@btVB_=9{nu?qG;I@KbVbU;Y)L2@y=4&gV| z8%ybTDKa@Ls6vNO_EvyoN>1JYP%bF?rknv{mk5k%56MiQC!*V%Kj%T1#ktniVG+bI z72}zF{bTU%N-Bk2yY`Us^D@&zZHBh9dk8!N zz+}onw#ve(BWemNMS=m4ioOVI{$Vu|4U(j2Dz-y4fS|OmXz3kl;;z;I_$^A2k+W8= ztMuH}Wr*>IU?fg0>^H`Nuw}6VK+Zu}H}qyJODxEMocJ{!l{~h_HMKIVMbZqO!H+6h zsEw;)-IiD3am!&-E6}d(t<)pR|GM@4)63eM(Y)uS?&as70niU3$h{t~kvYyj|CFx~ zy*nNk<*>j_0NJ#5&~4sOXOG*_HUMg7>kk#q1Th_Tc(Dg9Ru<%MJ^Ud^ABCOM3JUG^ z2Aw@RTm3&5yprAOsN^iA{jRPNvR?!}F8>E9CGm1pGutn}-KQX%aSCe6nr zgbuWgHUMOwL{YpLaz%QrmHL2(E642@U94mcKITEhkmX$r;N7Xtvfc7Raq&41FLWf5 zJbd3LxB$YUK59M_1II->XAOaXZ{WJMXkF#cLQeZttsYveeV)b}5Oang8gsAiUo?ll zKN59G8>Y!;o7l^6RkNCwgZ1f(>GY?f^(S^@-`Yk8eml-LA83O>`K$GB5b4-aw8hqjJqEpUbBS2{5-4;bTaD)xTES_YjDQ9K++)k4yq6nd|h87V~j^MIYl2I6)LPEOg{h(v7?qhHW*R0yKwsGbPr>{o8*R7^+(xJs9%1 z2)qJr{K^ygLDdw$+(+uFxx^YABfVE%KvS?ZNjlG2T}aCzZ?!wno;bK_Oc&zzj* znpOEEW95H9#95`YymvG^&1DSmF;^+lUzd(nply<4j~`G|`-3gEa8C+O(zEK5ww0j( zn8_0pOx{FsFK#flJZueiXD-F_rMKcr-3LJeRE4M``3#-Zd*ZVEX}I@|UeK^@8DKjv z^uYMb?~wMp%qXcFlgIMa)*^K_S-cv<(i z!ALc$AgjuqNXl!lJ7Ert`q!Y|xG45O@XpiGCsi*EgUh-0Sp+wC9OcdZ;bOIzCpDNd zIPUnNrdpRY+G_8Kj7Zr9-P?k^w;IN8@84$|coTUJy}0lDn{O^iqu^oN^vf;-@$hc6 zu~Dcp3CLD`bo~ha3?(BS>6TA2v*Vgr=$I3$z4TbDAdb03caSPp(O#_LzL@TzCZLTA zHO6IH_OO$jw9@JS4i@;jx|~_~{>c49MY(lN+}so|;(zsNn{}GmSho~@4f1arYI`{* z8{llU;h$&8%NT$7m1<0MwPJ1VhT9GEb8TfKMpA-n+9xT~t`GygCmG1Adr?TBL~=PH z?1!roslEvVbq@2@o#=KqrBWEaP?R;16TeHD%7(ZUpaxLT9dF*}Fa$tXn-xR9t7E5$ z{V%ZN`fW_|1~Sg7LD^2eyhA#;y;~Y_f-R_I@?gB^D+jx&2l(T~#YE|w9Df`qXD^># z{_(z}X>54I9oz(Ppj6o zuc|&2jI$>@1C=>nX(N)$p*=tjw*k+s;s@&DoCUPs=+GBmNscMt^bg6eSC%L_LH)%_ zre{=l-r|6=h^%ObM3cCie#7y-@@e`TGX4}DqI3Cr!G$SG0d@_Jnq}squNqBwnDdWP z3$98y0W&E}4vbh=;=XuY?4+=Hv#G3957Fv^Xl{qY%No7X1exv~5iGYP(*L`9(bYeYQ5lEwN(a zZrf!VD;CHu$d3a;f7!{7dw4{fPn)?fi8cUfrc0P$IIPJFyaQvI?<<|}VGg#KAMV?T zW20l`oCJ87KHipKypFY`Yql#7Ft}TwB+PA`~;$`(_&9*|Vw2bSV)ZjOip3>&$x?{6v5sYe$_w&~Wl9|LL%YXT6( zIhfDbyh$vP(-{n4ren^(#&x{xzVAChqs|$S&SQ=q8Z;O>GEpfb# zjkr7mwituP;;u@D;cRK{s#?}0C5PwAi%S*sM;5t z@TF20LFSY*LRzx0-&*JAvi=p0iRhSTd*yF7myeuLnkj>Lyk5v=s4vjEV)E>iL#5dO zX%&T^JX?S;9dCrP$dpdE*z0v-IjN7Dgl=j~r0wV2x4vzjO}z5~6C+y0?>ze$cFCId zq;Uf0TTtJ|bDq}@yCC)>M3$R8OHTHA{+AG#va881t%t1|IP5hFU$|DtD}KAYBI3Yo zVrV_t=Fp>BX`LCZWgx$i{ld~pzH}&F%^ZL8X2lp`eXVo~QY>w$W&+ zU@P9~{;0!RBo>3L&vT9%dvS>`C@(_<^!=|5M;p_YTSUotED*}?KkpC8P7`wJdklUr zNGz&(ErdZB$xg~;o#P1lXP zLXoL$FU{Sb9M);kG|ck{^>v=-El3v@s@Sb=6<#;FKST$7o9as(R6>#VT{otFPu;$t zUu7t?KR#(C$7}sdc0Yu^r}pfC2j8}_OX*)8_vM{_bi)K6YKrTK1xZ!K zfbMji^}>~hYvN!k;m~Y;^{Y?T`gsS@tAD z4uL`7(>DZnCX$}`_7T`f)rMmb02+e><_N`Awzq9(l%H7A7>(v_yik@p_G$nD+#k#h zIbWC$W=fu*1r z8`4;8nXBsSgXNhD8$mlQInM4UM`FS2-cK>m!ID}FRxs6J4RIU(%kkDk{#(y{0<)d- z%FH>Fx9^sFC1jf3`FSE^xA~pon2+|+w`0B#(n>^yc<8LfuFP>bqk?893~H1@E1!{3 zUR^zesIAK9>(1{aIATq#GWX&D}VJWbs>cfr|}Z1XzCvWkbw$uYRWsM2kXnXC1dNp zW04=A^big}VH$N(`-B(@6@q_@bmLJ>FlAHRWg0NWX#0^j*`@q7gEf!?e|JAIJki=b zH1V}g;eo27F&u`S5)n28pe~b>WhY7fns9480bp75DdyJ~FYBGC`;x{u z092=vOt%5}wZ28EkIYYerDvc}@Q2F}H^@T<7C4qDaF_?0$b_gWH#)JlYziPyE2uUM zIZZr8qzj;^zP`8M(BCcCP^NL*8ef3M>G_kxw%JL@iByi1a6_)g-e#)MBmn~c zMqf`7+6s@1R%s8}?!w43jo0GqA(E>i188!Amcg&RiKfp}K>7Y~n8KcEY5@H~*UW#D`|b4Y0qN4v(N? z)--`5EN+Z}Q$b~Z5ugSwcVy*{Ylq#wlk@P@9V*U!*@quRKj2{T1J+*$!c3Zj$WBBN9snJ zU_KZa_6)sgq>@W_TZF6Idfe({K`R31jmr)ZeqYN3YYdqHCg}5|SpAB^O*I ztz!9$3jn4q0%>76=oUVn9S8bC1*l=rnE3E##rgrV**D1y9=Pa)kBuULR$LJ5P%h(IUDHwN_3GSJMsCq7x@4n<0j1bhQqS<|V@ z5x+P_AEj8K<5>7DU*Kv1YE~0^0gb$OX93u8Mmp)}Cw&O}@pu4KRu9beWQGEb;ilGj zDj7O3=eRR+xdB4$;tOY}(&%(zrqP1*`7D?!kqIyO!KMI*-no<>E<&)}wobT0P0U;a z56N`T5rbe>1PB2U?9o;KMuG?H4Ky)`!;P8nyZuD>StPmT)HMMkECNIB4Hv{KNf2Az zD+Da!0~C65Y>0`_ZB(OUWJB$l@yu`x!KfqC6L@{M0y1U@;JGIWk8wrEP?_yTf+cK$WGSEEE}EB zCB@*->3~ph=wLv%*=-9>Fdx8#4zV;9_J%%2%Xvm(BiJc9f}E)WK?lK>JMEgE2o()- z3{*5;=;F+QF^14VI{pj3*_U?ar639P=`KXIKweu8?Yxz$Sr4uw%$*4ta@~{eA;mTw z$Lllar=Ka)mf3Oz89l4gUBx$+DGUNRC4^P_E}7r z0N8V7wl@cXni^j$sR_#`1zJ9VSfl~QQ8S;#gKf}2+y|y;e0ZkHvnd8h#2YC#MN62B zAf4c&W*j2C_5n`*9%8=&VD$C_;xD>$8*DJ*NcRILk?9SP4>%-%YnHWTw}T1aecbr$ z#?O2p{`G^+gWx&E$Ye%v&Z32ze95Hr=#e_cg_=;o050V)z)Fwaj86!o8AyiXcu*#| zHun_56Gnpo5_F53P+?kOr#8U&xuRQ~ylc(!P^<=ED!HAPFeuB713kHzAcq0#GtmB< z1?Q(2qb}TWwWH*@?aPYyAP}C7%PvQO=aIYIA!te>tg=!Hgmnl^9z-~}EceV2_}q7g zs}JmdO$DX}S%gHmzAlm6{B|}Cyd~khY{%a|y{Ks4`y|Tr#$+^GMZf}Kk48ptiuA=8 z%q?^|o}dcw!;3wsVqU+qWNC_H_EYmXZv=ouR~z7lPs%np31Hy<<@a@A50;BU={9}= zc9JW=OX>&zYz*n23-W^t%`mXl)VQy~0M4c`KD$bI0H_L?fX48k9~C;(2aSrEx2Ymf za%4ekHW7vqPb=wFg`BX|N%iyeI(LPF3<8FcEmSIyT#{Ln4J5`BY$`DZ^F!tHfRR51 z>U5=Yay1%l5JG6A!1lcY!#w_tS2mmw3h}Ug7_ml+vK36J zq#XL*=c0_{MhKMbuW_IAQk#~h0Gle1$7XeW=Q8weT=eYE{hLj&P3*T( z+K=bh=U2R49QeVEPu;#^A}y4!1bB;5vBRKEhti}pr&I$rbq%Y0cns9t)n^V;w7?i= z^1x(nZcaJ!dR&5CN{A6nygw&-k8H3AWhtPLSC6!oLnF$HQe8}Wcq@5#71VP3Vd$XZ zp!Rb*c4qu>KkZvS%}Z=oz;E##waaEWs0DZKh6&Yw(P9Q9dG4LtflbDe^x==iQX>0? zZ+x|1KStC*F+!K?(WhhBCKk=vE++$@jHe6%&PUQCx}GxOSB~}<54Tf&1WM=ln?eV` znhGmjC9v8WDZR;Ky?aw$5qaHR1pd7(IBM1*`h4OElh4=Rd6nSSzWq|8?w)xjgHwDN z|Cs3><)6D!fAgqXq6yJnOhdYG5x$fQ;wj8^MXq%9-n zHS>7;^eHj9^q<&29;xaeEonY-?WUO6MQh6As>J}SA(C$FTmcY9dMP=Ur%x>ta|jZd zf6QZrw-MM+t?Ww%F0uSd{1o#&QcS&<&jT4DqZ9b1?jKpFaF^7WzDnhTRIi-%Fby&| zS?FkkWo6p!G}NTav0iJNS=2t*h>b($TbHXrj5r8hYYqUG1~=ZUfdGkQZRuC|sn;_F zia5otL`LR&RDYgSPyKw=Oovcc8KOkP>kyK<=7CAyOYv>uXM)ihx#)tiR}or=5y2d? z;>f>Fw*sf@yo^rQo-hikg+Hh3kGN#=SAR;m@#Pw$>nmn( z-KrggH#OYPI}HtSp8VVQp9#4{hsJpjUvp%ipCt&3(4e23y9oxB4nID>CRlt8V^?LE z+_7H2HnR?T$sOFF9UCmQ8HOeCGI|L^x#I_M7K*F8{MOL<=%hk2pVBg$99dY}=f?#q zq9Ea~E4f!M?50Tsdw#ydp)uzmCxeRp+K*qIZ;T4tqJ4|LGe~%roz_0LaR=S@B-U$d zlcFdWW>22=3o1MZ$)5+T*F-F0FeZD1*pXw$tH{7%9d*6?IIHXX>9uPMBZGDWg;!3E zIG>d}IkN{KpYfm5r_7F}R|36B!p$>4TJO)mFci~zE#Dr)TZ*!6WCEB6a^d<;P=RR6 zH^z23<)$dkS_eMlL2aGMXuMl>?`V3&0sgKn2NWbnmh~fqN)@JN2z^F zTHFd+NRT}<6kDs{{U8EGl2xxyU?jbLwpbpJ+IvM7t&jkXzj_6VO4C~&?UhQ=9~Vn$ zJD}{C)O}`$0w3dKP|Qw-slVm()0tDa5<*l;JNj_CKaIzH<|q`IYk^by73#Nq8HX1a z57b}g{L+C$GO)5%qQVr4b&*xBDFhTZemVb(ho5Qn20I8;N}jDi5#Ol7!4}OzAdefu z67pjjL-1GROs^u4j1-o$TDe1aQxWLCT3?etAv#oU*` zTQ`pOLziCIKMB^Q7opT$g7hQtr<@kv81(b}KpGnVy<`kvjlSrM48xEve*sg)j+5_He?U|wa@aybvGXTXuufzrx`sFuKi^~B{sB(y@Cdvc zm7q+_2GXLX81mpj@^ACY_OZh04kQ6-i@@x<>}cC9rhGJo>W9|Srin#n?d_$<_Id$l z7amVl2mM$N52~tF=5Jaspdi7hlTlt20skdn$aa5X6j{IRlm_=A7e>%y`g zWox$UFdk1$dB9Ri-lu5z6gfG?Xp{W7*sIyfuN1p~3Mq(w zcCNaEm3`dP(w*T1H<33*j$>rMMhhsF*%6i2P`Ga%+Olso z#rBG)Iig(iAwC2tgZOzMTWC}-^{8~}o&9jU9{xzkw$%?SmOP(d5)Z%WYFnQxa#Afg zG65cebgJv)yx#Z18QXbE!{~u6H#K@e0?NlCU*MHDVf12x)ETe)C*Ygan)qTOPgWj*NRe4ke~J3T5sxzJ;UEr&mqHzzbwB zyS#$_O9Ae~Yp^6;b}l>F1aOdmlbm~K(h&>c7l3!= z3u!RFo_)6pD^)BAUgDED<2PjY^Bxl~Lc$dvzbmW>Y11}g∈h9%-p{K68BhA1V2p z$U{|ZEhwEOp4LPRaF~9m$;(T$TkGvWoF_rMUXD_u+|}o^5(Q7`3+lQdI!)@BEpW6) ztLY>(e++1^+M!@;Q9-8;^^iZJKNobDPmEqx#0x7d>w`IO(U7uy1F(hh3dNyBOz zQR+g@{)zUvQ}QeFz4U4I>sLJ`mWaJ;O68>+nguuGmwW}H5AV;K>#jvyo#4KU&Fa?k-VS%9$$H{c3NN+xE!@^ z>MhjvZx8UkUss4`b->g=^J&hSaau|Jl2_>(23yJ*f9Yi7l%pNIUI-^l3q%LB=mbbdMEROG#n7X!{}hnhTK*%{TLw4RZ3ki^S3=sj_r z@orlG5KKa@J0Ok?6K69;?EB(Q)^Zd?5_;`A2EovH-7SWaqKg;}y$L$@s7)8cze zePja5k`rL^(s$;YQ%}aZz!8Vi&f_3~;*GMDjJ+lyHT{51tNj?hXRcCJUDAw>^=mrU zXDl(f+gNma_Et?qtZqh(wSm5>`{^P_@+n9J;wfQ036*pt3CJiKz3l?Dr$=O8mr{eG z&rUmU;nk&jKlw^4V`V+JvNA%|3TQ3pl*9a_Nw6jw`GudVrM0gFx(k=Bt3`*dy#T5k z8jGz>{Xycg@ARGQwS@A`KV%K3Ex#2rNxqV@y3b9Ti46n8Pp2nKuYh*KC}2$ttGv@T zT~yTGRquAwm@ujERcG9=6NF+WzXY+ldBf$&Kd#IJ*2EL$X=hU`Foo=T1K*GEIqYGd)#vC0OCwh>nyn#K;latBZJZu(I(bip z=h#(mC?x8M&7}BWYV;*`1!-us(tVY)Dc3Qn4L+glQ(aU7O}{V89LHZ)fSGJZr}5I| z66^Sn(FKRNlRhHeZ$)d{;`lZiSC$hb>{%YlH0qg~#SZql{Hp1Atag!n#=o^nH+iyz z%)z{2u=MzCdkn3`fL!oiVnx(u72h3Rig5|m@IU<)ni)}Yq(fM0;CtK0CU+ZEIM1+) z^PAQ|51%C&kvk?o-55?7yC<5G5r;WTl+o_@!=Tms%BR5yZoIr^Y{(sR9`}cRX9|B+ zN9a@26ee`0bnhJ$=b-j^+8d?T+1hojv&;QiEBB`kPm&7(b8M~Gafjpx&(n3yM27Zu ztt!u^Wlnnj9#{0ck}7A@Fy}Z4eES?njCkAZ?tx8{m)xN$Ap?h*Fd(on1M+b-E z@hVD!=ptIO`yZ*)OihcM8Jbk_DO7bZ-ko$mq{3jeeB0iq@KbaPTg#kffX?}(cz-4s z{^j8|r}=Pq*^V9F-(WDyk-D3|$x4Q7t)`;r)UXS2`YYjOgS8fI#X`$U@{yfJx&P5! zpoueAy;BAcOVm(nDFY4m1;za^!h^rX&`y-3?DaAo9!Qw4^40nr?}?s=RsX3#lhwq5 z*&5o3l+P@K4{=q$kj@Zi!|VPvd%gm6MC~s{#5hFg^{btetb*`Hs z_tO%};=X}vCM#hd!|;S&$!kZ$u84<^(~O2SF>SV&9!oqxnRn&Pu#1c|5A$n67m@Hb z!b85@RbMzi*LlsPk;7F@f-vgx-b1V0IrRj(-T!{*B^{RWb($n}ET^rOMggIDJ>;Jzr>jz~=F8Ck#465}w$Lp1jA1;kI`c+sQIf6pHb|B<(K%|`@b_)_bR{->1 zA<6BntvU0_yQ~rS46WlbQ{NXPeU49l_jwi^PwlBo}wxN((aUvxPkC6N+wOxzgCQjLrdZPV2FGyh~8DHRA(y5!^{>mX;&Tv zwxahxxPmgd9jx3Yfe&~esC>G5CNA=XTngO*%UR5;jQj+Qb*V^5(~W673M&8UyF)u?~+_0m~01(lLx(zlc#1T z%@s6nuaP%n#}|;6IKDyd4IMWSE7JjzgsE-!=v64K3UNP!caml%0?WH~!~}>QKj6nl z9;7EC<28l7mNEY#xyz5oI>4mDr0T;Y8Y?eNf+o~a&-qbPKbJ9DGtOBCFTdIgwERfA)t zoYeVWP$igrk{)q?qB)4}(+5y0{{pi|9;lv_EX@z=_nY0kQVsU0mp~eJ^5W9jD6nlj z4~|aMH)eCPI~o{3a7=4K(|IsHuiu*)tMEO z!Ly6U@AE2qDN zTnZ|L7vYz#kchSexrZC+?*+~vxj~p%fAj@m83>mBP@$!DEdm@d9YXs)0rMmlUMbbG zIShL5xqQ0PdKs4(rB-RfxhK!M#evj)3Fu$;Z3>@eD?Wp1Uqx>Ek$y;W^hY6N|I(Ki z`|HA|VD`uO59(5&mi{^M8dCQQdMf~)DE&-6@&N!TbM*4g8(*Kk3`^}ZB|@)L9gHg8 z{LxN#aqHIh>a8rPg=at22LV*D0`N|#ItRH_WC}DL-Uxh0$9e&6R5l5Bj#y0DfOBA2 z`_SHwE?SFQHPs`k{7sWTrf2b&qow=Juk!91hFHOdJE^`~yR`ZRh04j(lh6_mq_)0j zO#QZCNSD%g^8)hSYv`FvqlsT~$HeFIFD^`KmF9BS*F@{;2T84s@9H*j*R2AXf*`z= z(yg!%KfB!pD1&yL@Otw0W_AZ~gw$5q^3L`2$(WitRJ#vUR2&X>>pY>tXZWVmNO3Ye zCSFDON%TcfIE!$vuM^ALi_b0)na-nkHmIIJnjhLRsP&HIuffIqk0&m0(1KMiVyl$2 z9uQL?R7qK%O?kRUP{As(i zneW~^Yy$V&`5#!I!{2BgJL;d}ip+`enB6oUp;$v-p7q?}=R_~pBrVDzf+pp)Q&dv3E zrVB%r))4ep835pw05Lg%>O%;5q1nW{K9di73WhJaZ2uh6Qr4p^Qr z@I3JYxJ;cl(93PAJq#*mYR*7(7H2H+w4`5aF1#OH4SI4TYD~ey^4fjK8%IVcO}^|B zZp!s&p`A;H3i(6yT3H8={*8e0$fdWE26j1_9d?2WRg9B|jrS0vz*%(o$iJ-Uu|I#e z74fmqvH6l`k)hg0e#4AWj1^i7c}2X_GZpmJ9G6qcM0>JVW_N{O4fAQ~2J*clY3>o) z4@W+LUQi6`kewmPqe8iX`r*a#jCD3;mOdw{KU4f%T=&heWAy@E`)g2FUiQh_HuEMc z`Mm+P`jIkE2V;!_m%?9tHD+c~T{}bYyf?q@vepeFHyC|;scV|@j_W0h6y`O0CVK!i zJIt(RT?*dAEb?LCCRooL=3Vx2tur_9pqcUSD>J{kyJ`prwbFr-M$G<4$zSYTCNJ1u zHA|8+q1zdHA_Khw9bFX}n@3{H$sQ#OH2Jt+y)k$pp#5T3H1pfz=()WFn}pUGElk7b z0js&8T~@gEMJKtBXU_Y%C)txxX2#bxCeOckCH*9{b`5??r z?3DF}cY|0PmrBanM~F>bUKT{JMft^**%o6Mo;_XTrG0g|#d~}J_fuhmZLZwGy?1V= z|MHgRCy-hQADN|0$s^n1;@Q%aU)<`~9jiE4cj{UHBcAf=gmH7=hJAHH7k>4zKweX?{bHG{6M zHFoVjadhqpt%ZJG1)pd+bu&see&i>;U*5@dwhq5fe!l6@#Z?p~xg^s*^e8!dlI@g> z+c97AH{^V&%=hm6l`&c66!cfG`yShxO}H2#mi6VPnSIiy_Ac-7>DzZA-2uC)S#N-M zOI2|Q4A7z!Jl6g@wkW~3puXbMta?fW<)h>|-{^OmN7qxVY++8@i&D* zL@;@c!tO}>{go6_-DP>A(n3g{>=<{Fr~Lz+)^BJ09T*Owl2m~ekEko_1-l5>QNR{1gjB>#On3J}4!J?@Z5Yq~}`C}T~w z(@GHv!NxnABTRVY$ZLEr5rpx$-6%LZiO_o`Hiv8icDls$PnY~}uC5o*ew*=|`xSGi zicc7YDEnDLrfbq-Enmg+OvaRkmHwg0u>=a@frc3eKyOseg?ieBql~pTJ*oXE>fGrP zJxeQg)azAW54Rj<-sz6mKi#4I4A2Dmz8o3L{^tzrjHa$@%s> zX##$;myPCi7C=8c^F_NS?XeL7Mp(W)?V69En(F*$gF(WytX1 z-lxa4xb)ad-djBDt=fts9~9gRN#3p&22<0Jv6|4^7h?Tt&~jz^GB1xd z$p2zaGc$!Oo3w9zr158irSQy%s@m{b6UvlDQ%YVwMujTTeiIUmJ2{~oqpvS;aPLd) zptHvUlzoZ3k5;~VIzy+z;Nn5oR}I&!J#J)jCd}C-znTI&y91yX6_T3OX~+KG<_Zfv+-c|wKC%(O+6o?eCFU=*H<7_;O( z!tyfBiO2oLhb!l&=Wl9xI;D(%61r1;sR?lr6^#+6XJI~%!Om<{$w$bK z8O+|T9e(mgn0S3uxclQri-6FJozYC1GzbQmyY5c)$=R95T~to?2^RNu)g_cZwEk%? zxksf|l09ar&OWWBr5Q)_GM-x|g>MJGpXF+u7&n-8z8j!Pf=^leL@h?`eKCi1!7*KY z06TMYKrS>ih@3A%SpT-P=}sAnt+B@@5 zy2HIu#z>z-SBm-DEBOlhA?O6Gbl6d}vn*D=r&UnvrM4n(9h5L~q1Rnj&;Ab=MM>8W zu+@64D%5#?;6}lL2&**cEA}*sV~0`8YyS@|-zeD5!wQAhu&clTEBwjdr0z_P#h8(g zhsWrxeJ(|!uL6lk~_es%M%=sV2;stmsR|)8&+5$)@GeGX?o^(3> z`BT+iC}S9EVvfn9`Lgi$^M!H-e2lz+$S!#O+jvdal^e2zPQ66^kmwva>eSPJJA6JM zc>x!C3kwKVw4liQ;0s9);mTSbLe8>1sHG+&|89i8#rq}ute+DZyhIrXj23zJVSrUm zg}$rxZ~{m{zw`ahnRNK~NT-BA*La+M@psefmD~lWuJ=IYHt^yL!nkUdb+x>Yu5b0X z*Vp9oGdMmArIhl+Ro9*2x8uk1xF-k=RrBJa^AGsM*_eoxzVON_w$Axx-VHb(yk?9yXF!%!`PY2gM-A5%=QI4s_O zuK3B(?{9}zCdJ#}cz8DyF18WOBbwA6cMKnE+*I|KW^%xEbXm*>kss7KRT3y&f?fM8 zZ1{zf9w?uQL_bTXF;PIAe;Y=m@F)-pthZt26hJM?5cq}6a3D#rS`PlMFSHC6FN?t|(Rd`SUcCf~68rlh*Tm}}GA?JI_ zh%-m60G>_>`zRTe<$>KB#xDVUZ>&6giQ-iFQWn0Xq)5h@`XVERCvVrPxt=Qz5mSK|DVoYGfGiVM@*vkbT7>fXdpwFoM+uNP}P}) zx0Ku$dLw$a#$$28{lGCKCSy{7l|vv`Sq-lQFpelgLCztJ48EBbIP~6L7+A^fCy;ld^?cj z_<%?ymiPR5o(eIng0IjLsTVoId`|>c!J%~>3G8iV&AQn}J7@lqC=S?;h+sRy%4Nyn zqkp+zDT_I2z`1}FBWcA8E*Fc|A_J0{+-7)(qzL!|Gc?dZ|?VOizGA0SwN|sJ$TmGj{i7@Bj;n;blT9D%7Uv5V!5}I0~GY82| z|K)c6FK^vT8C%0RCYy`oD zvy!eL=g5b4FW}#O8h4R4|EgYacGd}n_qn{c86L*Fq>NrL?&JF2yVQa+F5m4B4WA4@ z_SSCp=F2(EHtRliR#N^2ZX+Xb!$e!?VDDUgkXOi~_r;6 z;ZD;1nDZr+yuvQ@!rn}4`X{H}>y;~?5%v~n(!27U3FM#b@Z;oO=VTQ-g<#JQtM@d> z1)3ytCM08f!*(s#EHWpvWT9KjUSOqxUxyGWyx*r&?9U(gT-hf2I(nXhA(rlSXl%D#(k zZ6#;p6{uZ{q4g@74t-?`vncK{WP6OBC$9o`P1CN`&(r^kZr%%>cQmXHebl5N3j3$2 z|7q%fM)f}n$Uh6n->%iiWd8$A$!o!#3gf#=DG(_0s@M5GT67(&bZ?6apmkWL%&Peu zTH>oF^d{s$wQhz1JG=)DC9jVQ4m*^_=>(A-9p#Y&ljKZz-HULu+0B7+;g>H?rhG~k zZ+mpA^~HJZgmO)%5$)`(qTK53HybZ`?R4EEOPku26 zDKO720&Pl!H$<5OgCVDQ1l%hJpp5i@dJsItA`!+n!DUG9NNb8`&#JIg+PTXTmJ$9M zCUw;-yTd*GFSiFiP*pS63!rnPQU{O0S?0HOH$8p_YXFfJ#GG(V-C=)lz-^c7e# zdff3k6CP32t^GO!6MAa1%8OHq_P7tfKpW8u72r}*E6zZL$>CWnzR<| zv~>pv`=*m|_c_bI{&z_+Bm9rL@LG=u7UGB@mSTAAhzh)E!U}5r9+-Xqk1oqo+9CJ@ zgn*YkwXeE+g*lIG#lU7gTD5VQmAp9CmH#NE^U7CvPFD}4yT2Joq2QS_Z5Pld?7ajP53BUJ0;mD=8 z`J3KodLHHwPM51Qt4J-)*!drq{yCH9&3##O8;&~C0P+=W>if5)&tR8o{rhkl@G2cc zEm{l0R{~4g)Hdf(2fsI*yMFk;JxPKw4Hbi)TzIE6CqYPAua z@YU%)MHD5NahLoJQKSxp!>1uKI;~z1t_t*@vPH%6lde>8JgeVX1FoSCbY zg@151pI#1v_I5XMSn=)*kwDbNr;Hoce6A7Vy~S4!zbqb>eE+%Su(WKN3jYL@e*feE z(bR1SkT4VqRl(9I_$sZF^pXOp0^yv0e}Q9R{0gGR30SvlcCANQ=~eAT9&#w;FgrX? z45)vu)Tfz7I}upyLV;z{+~Le;9Zf(_?6CE5V-P*@N*!zIWRO-{Yu9RN_khQplF1@^Loy4=%iE#qDL)JsS+O8((oj z9fDT$A7MpG6`42&D-t8*9G;ieq(son9b9i&E!BA!OJy;3TF}@B4bjg26ZOeSC}12r zeSedQ09lEU>p*CnP+;yQbsEjmdXGyLnayMt~J z`$q}*<(uP{C^9Zx4qdb%BoC_*9Wmzr{?RchoE!k9iE1zYwRggb7a8Js8~**Hb3QwW zY{K1tZ`FSq`k#g-jOfo$*lZG+g6!WR*$QvxITLpm|jX(Px|~iidCgE^;M{j zQ&d@KgPz?w*My}19vU+7AnxCe;CJ%Q^{$E%U^lG90}7%S#od#BgPX-`AcJy4A=1Kh zT3`oQ_`zDd_A#^_c!E|yvTa{vkwf4I9tVgAlWdf=CstOZ3EnK{=TJ2f_yZ{8+3fUG z1aFFmumI~=D1n_2#~ol59r|i=2vbfH;1Do&b5UXttinIT>q-htIamqcM+zQOL$L|; z>ZdFwxGQ{M!m_3gRqbIM9Wgb)XR zTJ=m1;V=73zfxG6uN;d3^9>`=^9QvO;E{0>V&NvlLx%Y0`GYVesJi${-+-egpH8>o zFF!y>!4dc2NVC=mhS0XZjtVPgm%Rt>!sBQMq7l4@#b&YNOUN08tizC5?+@6uS$GM! z&vjX8{oCf?Uac1((d~Z{LJwEaMYT_M^)bKYLeDVMoo)rZ?FaBa#9em?m{21n>L#HKEKe}+K?WfT?@J(s_SLjF{gHtaIP>v z(FL54D^S&bxA^xp6tDNiH*wz;{H&&&z8QjEsWNcuEPS|ZhbdO$oY*%;$D^zY7`~HG z`+oYL2aYP*J$iIi-a|KZ+xyMy|uLaMkC-lZCV z;7$VNx6-fJ+J9RX`NbA74?sd`0(7m2Ki)20kI;?<0eC*y_B2d*6J-;G0e>$eK4n1{ z0M+a1(B6sKte=YhCJP|EcWBXYuAYQHZ|>yX98_))0^rqDs2qGJha9WJ?;=pSN5*&Q z;@?Y+VaNtl(5nKfzy!2zt5}m`ga38>08>Ej831Utus@H#W+hXwxZ~7+8~?-u71XG> z0BB-q|2%#UASjRqNbX5!96xRH4})PE19WEvpg1`QU`z6Uh_I)|67afwVE%fCoxD{V zuvNl=*xf+}uvOwjfWnIcI<+&1JR$AK@24ta9A_6gm^!UsX$h#{!XSB2~&oT6libzkGAbbvoC(4Sme)PQu8#}C*A-b3BL2(ZWS z|9J)gMew%oqV^Ixwy9`n0tc5xQi}mPaR2t; zvWx+Mhvrf(ymw#p??UmPdf|*Vr!9{kKtA1ejjRDWg$KW2jAXbVGkViWs0X!_hMFEc z0BJh)Pm2#7GhvGe0&e7SJYrQI82#CYh^8{t$`3(S*$y8UR%QX!ZlK=2w{h`InZ^ z#jpVMu8q*o68y)ht(N==a6+-L&+UJEU74l%Tp#H7Y-$jpG3{ z$TVHwyhVoz1ZETE-wUunJrI+Yo{2xEMqHlzm#Y6ydHF0_4^&=Jz(Ju5Y`ubijKwNM zmM$1=xCjLJtM3Q#a?-}q$$^HqYkG7D)h+$;OI-CU;@U01)bn{rhm-*AK}fCq>N0ZK zgIQr8Ly0z2$OFuvC;vf0;9`Y(otXt_if95XgIj;><=+k(7USDMooI602ieWJPf-3ywa$f&F8QKAb{TgN1gH$WgWLN z7%6DUd_Voi^8NinkA=|N!l{Y@90&G44zObgqJuy%1b=%N{UYZ9p_~7%Q0ZgOxe>NM zgqnCi4@Bnte=)0oh)O_1@OcO>h4q(K*$!HT<2bToKK=1$CJ*Q;Ie_GyqzU|a;~#(e zRJ0y-0|`R6-P1si-?dr~CJ@@iMB(aKc|dDSmXZe`C8vLyF;lqEVSJRz0c!{a**fK= z$rf!L4F!xFI&N5bzJ#*cBE#eiD4wECX6zLCbf8OseDv}k|R@8;lts-4Hlpl1=GQCIdke(9wS#Xrt)s`5{0<-8Bw z72SWUO_YBEZu0|RXfoX`_tQ%6SAG+248;R3R6c{lIZ> zKd*M3=D z>>1rUB29sgkiWf&7Q*JidJsUJkdSMZd-eSL#ww_CfP-n_ z25=D51;I_|7Sd3NmWyrx{*w{pv3q#z`Ch4SGMT6axkPyiT=X3tL4 zu84j9h{5gsf!JgH>tLwmUq*~Sc3=pInZ5x7RT;ndk@?*OY41so(T zei!RN^d=M)I35xJ4wBagiHLHL@8a= zTIsKqyoLYFV=Fo5PpYvHdn0rHD3?C4y6K`Yyp53khZD5;PRFSXx4_A%U(ae{$|PbDamZRVaaS+6hr)&yJ{eVDoS;*Q zV$cD$-n+=$cblsqaSi$?Rp8zei7y)wc*ZvaXtPeG z)TX(75gDc<(4lw<_1nfz7M$1=V}50TFD>&WMT~{7gV;KRn~(LIpTBdUMJot^d$o!i zO0JTCmYvQk!pv;e=mXR-!tKDG{xx*d8^@fXdr_0FvU(ophu+ z!}X;s`8a*^$;{`_)yq|N6 zHk}~_Ygq(qsf^ZgxGRl*8Hlx_ADpVmGBjw0TWG)ZT-9Q{@DIRaRtI2bQ}KFW5EfgO z$Ezn`zv*)%I2YY9{@$x^;D0`wc?^Cu;`~5g@tm~hwIvOaYF<=sKY-0SN|=t0wq!Fr z+SjX{_7J8>$-$^L* zh`aTRf*AT7x<}U*Dfocv{sVMx%sG7>slN6?D1qtHga;8}EI9@P-ksy3LfEWg z+4os*wYG~+#mrRsa{yx(3(<+n0iVjxS*E7FocOR5=DL_|dfGZ$a+W#pIdcFH?r?Q^??fbp zdrXf$7dx(PSnrjgWhf*8^nwPpa%vno8O!yvO{v(Q*#o^B{fcFpc-eAjwwJaSuP64X z`#+1tZp%HC(rIlP#azh5G}d(EmB|QC9;@kyMq)5spQIS^Pz`p;AiVG!HSWXnG~)<; zm(ZO|=ZgcOjkm?o#ZJjc{!zBy)s8MqB$JpjbRpQ3jvJ1iu;|pAJ5d9-M9b@urH*~} z{s&Fp8sS6beCNJ{zM5Xth#K^ewO>7=G9*Yjqtg$O7caoo;Wb^z+f z2KyZ~a>vfJW{+IMzAF>rG4pXO#?Iqkx9V-FUas`OVJXCWE1B~-GFjn5E`s2q4N)9jPnR^sOCa*d8) z&X(n<89wq$X_1=E_&G=8HFfg0^c>S6w#a+*Ts1cszZdC42py@R;yxF@G|3sjJ z=;=1gc3x;%pIIhK~+`5$VaHpQT9eKw_rgSb!IQPq=RvatciWWmt` zzQqKBTJ&O12X4##rGWF*(}ufBT<`R5KcHW_!%0xQ!BMW~K92On@!?_Zhkg21;)1?7 z>im11iHL%A(XEm?H0W3cgc(Xm?rLY;uaZMXCB`q|zrdOWGIH@8DV+(9tku#9k6 zjC9Y+e5}XF_t^Q6b|6_;Tp9=axz+Dx$eih{i!Tw(a7k^azU>cZa^}K!53lFZ6m`+i zFDXXN(r7tjJNx#3m93^REweJb7v^K2h}G7ZR*k&QY@L*QnB&$>_3J*XfiFYBn(?|c zu=peVu=U85thsRROObyvY`os8&FSa)ak##wrIz{*kpKxAY*zto&VGa8!})>zSw9R) zkCjzjFiH{3AJignG4zJYJyxHiHy|wqohB9@^xq#7&+dQ9b5dvAaK(|8BsrXuliLwJ zcf?@a570510Ac&Wx3Bp!tl4(#r4*8D-M`lY-1dA~=DMXo=CoS-xyAfj2Cy21*=h|l zO=Tn7v6+@M{vV>SXJ*yY1Fq^+Z0N}klnyZG=k_@E5G;)CGH7V;j&;;@v3JS)OD)}q z&jzr+vfwX@t`j;tgN(wF;9s#Q*gy5Ps*%V9dD1Ll+pU{z(mi+B-42!eqE_ZMnFm4qSYYr~?v}y6^yTuyV%3bj zZ=dw{?(3SpW?}wDNZ=N>YNn|M>$&QVd;I~S!Cd@FtUFfB>WS?RExK97-BQ(Bl{AgN z=W{~4avjiqRPS(+a|Bd%A^R0chKC}4bmQKp&+*>5zt`}_~bo5#cf6TM&ev?>E-8ju;QeScFK8h@`G!htguu0vCp7|n=&}!E>N4>%|$!^2;G7yw{w>((OOg% zrP`k@6U0+z2dH4NALJGqdF-RRFKo%CvFcilbJ^{$W6-F5rzHEqQHa92P#mYh2|s4~ zN}26n%E9xvjMNb%$Vs~eqO3a)pH+N>98Y2$uRrIb^_kTtrZ))|X8siD;ms+|Z9I7wZ6Co}qYE`!h)iA|d;g+fJ z^xp|i-^fdm4*8tfZ93%88t$(Bozv}+^@=0-X{L?6qeg81*R!-BovSrFsV)fK|wNZw(CO@(rId?LjA=6`=f zblrRY6hVaGgsSPE@)@}q&y3av=1rbuMC1HbUA!|`;XCE2WA!i_=#Y#8Bm3hfM29m0 z9`RvzcEew+uY43y{Ms>4VgEtqs4s%l&3%Q~OhV9ff3Gl~6APk^C|u~db`t>1T^8-} zu$r-u9vr^VGJyzcIH@RzOBc=e^<|x2#`lZdi9bZ%3scy^rR|h52WWHX*rDr^HQ?u1 z(bv+!CYQ3|sYB*nh&tjv!)Eh+BS7yk2{72v;1*=)%k-jEdJJ7nM_e`ohef$WJ#*w= z+S?N7tmHDeIB6v|PmLE6a&05&?kTF|+`g~Ct}K;tXHZ;z)HK}J-|!&Rp3Edf#B4zI z1wVl}8f7ecdQ@;ps_YCTTSR9ryI_g|EmDM`|GOV!UXXsR^LwBYc6oXDebVN)Z`fI#w zfs?6K@Ee3}c}4>_s_(o2McfRe4ELq&O*dn!f0!`I2UIZ?K`=-iko!EUEjnMJP#`d5 zX}8$L8l9&a052*`i)$I*3O(KsKCP8{sntop4Cj~+KJpS>zRD>sr31=H=UyQ6Q0sYC zN6HbOU9?;W{Zs@n?M>h~nF%Om$%|B4WWAT94fkca{_fBS?ZL{xxX8H3Md$UWtJ3Wz z&gZiX3U)>5G+2e09?aTy75S&cexN!!B@94zEr{Q`O4Mh;mj1#9X*m|MdVH5#N-3P7 zqy#R<$j4kTw5o8n6B7OSirv_i-7FG$hw?;C0faApy#^w6?{Cxbw2Ts7hk@#B^P{yBiNo<#p9h5F8pjnmXIr5*QG;K{c0-gyjAMFuUg^i>k&+K@wDT=k z_@3N*g|P{#{$g&fHUz5|@4+JNk$zM!n&%478o1a90DQDKXYN!wH~%-dj^E{lTR_1p zpBHHng##gbQF-v~VdVz|cF&HJQ(KB*x^p5I9^sg^i%itPs7JIu9#m)R_1K$4{F`{T9SMD(>4@!jd!kkzuSm`HYdjz&dJ9Q>KbPBoOYND>!z1;U{)Ff%$jwgG zjH2N0kXY`r#VpHZ+2SYD@lL{v8>Oac1dGooFSx|m0uc-WfUeuPa2}r`)_SbllXL{U z2Ig@Tc0@7M<5#|XaK_JtGpk=-g~-|js@g#y2oOf*gfw^JQC6WynKI@6*DsD2_%67; z!QiRWXJr6$Ze^TfN7P>t~gDKj6#Z!ActZ6VMmKCZW; z+Rz6`raX>sHv_^Zz5)op^cW9`@_j>G!p@O3vpKn^TS?^B z@BvMLCF%Iic=T~Q1WWC6?I)jAS(hBGhlogy&uaw3u9=kr`1lQM-nX%|`W!+L?!dP& z0f*ML(#@y=q2vSWPT77%1OJPzzI&myG zAXTR#rLuAa?%+Gj;kzV{g8H&j9#B(1(9Y9#D+`r#)}yZ%)RuP#2p`X_b)(j*n0phIJ;WXkIM{YxI3#5 z$co7?{n(U8jaN)xdY#N2$&ELMh~EUHMVx#iW^XtU33&d>jM`^ujlOqtvh(pe1vH26 zE2dF~eY2dhnHpEV);m@8baj9)OQs>+z%5y@`5s$7T>vna*#e_gOuO7_OW5;#I@gM` z119d~?{g)vy~^bVr-TgKdajzgzuM}OTnhO6&4C-MmW$U9$eOW?Df>7I6DA61Lc4m0 z`gZ$oddxiN$YXZ*!enBTlzCE~v$f0DA&3bo^_bypvs6mx490V}m3x4362+(a5K<&( z5JA(6Yp;5BC*F`y9v;=eHR;M<%?a3)lFZg14|&NGt7u3?!v)53ldYOEt|PJZr!}NH2Z?lJ@)QGfh1N21^A>aEfU? z2N4Bgt49TBXInt#6MaoyguaAYY%!vPv481PGSCxfdGX23mcx0>?MzJ8q$8hD+EZrz z=Xk4UfAnVvKXj}m$c3m6=yOz3=bfN5nax^$VNhCWz%mvia-|x93~L2t|L|jD5RBw*{w!OeYrGS@SSO)18vyBuO)6v>|-Vz<>eu|w$;Lm zuE!V%66*IB{W$+nsEdD9sCT-cU`=09&mR%QzGH>4McQZl07dHd<1!0Rp5^9lVE@is zTpE)iJ~FDd)SEjh3%{9!2%;Nt1u*_T*uFDmw)RiUvusYE(lQhzoG<|7H?6bgc9n2T zv@i@bJsHG$4d$^!r>pymuXV(CrnOs)X=0V7cC;%m7EH5S=NqPc%pGj#b*=`2yP~GU zxyO!n(Dq*ApC{Az+n77{zKDq{RXgYTFwzc=aqS#rpbkt+z*HVZ5jL zN&PL^6)h0A)tZh5_0RM@r|*@6bv~s)(Fg=42Of_$83xR3(6AjZ?uee}#tWUQHR(?s z0c`q;cFM3X60=M2POT-pI@`40VB6P5&y?NQyg<;2cW0DD?&Q z^lA?`ncOiYy{r9*!Pnxe3yBvdJMte9AAM?q$o;0v?N0(yTRR&K(On2%wIy z=(S~@-lTm#kINJt`RxI&sUGcd<4#8mDy-Ysx-aAz%#C!|>z{dKe^J62@@ul1F^ zX|Yl;oSft;nTLQ=#RuvG zGY8)#P5Q1qZ93Jyak;ZUFrvs7dPI$lZo0cV`kr;em=9dNhZ~eS(IyzH@JP9Q@`oWw zJt;=}JPHKZ0ladb@=vH=bo)V2t~ANgu6OZaz4V4|%1Q5VXn^cPIia$T*Jnt_Dx7YmLrhRJiN2utYqKoz8bmrlVOE&Uvehoh!18u-7D4j*GAUKy>(k?slhlLV=Hau&Ou3Sg;haWJqIY2KE=&X3O{(&ei6xyY^LuyE7z5Or^km zn*BsBX%!xH{*lw|f^&Q`gKiy+td_$T0A-ri_4Qq4Q|4f7F2`+Krw~9Iwv~orp7{Dc zU&ke=!R;^3sFOZJ)3q0?e`k3iV@Vswz zL`O{Du8DXt-r_-Z+970Lc0h?H!H}u9-uVUh(8py=LFq@wr^^&&YwRY~b7c$SS_si} zcq;FfdCFBYf4x8#?dGigxj}u8fv2_1$K8PNWO*SO$|>6-$je?ZIN%NEG;?98#!S4b z(gT}WtjjaxvCmv2l|yO`)QB^2Hlaz$Yj6q0J=aZ&>H4B)CSy$7{8EZ?Z&>PKRf$a7 z{YgD<^$oIT@L>rBm(F%a`TBo7E$Q>5faTulL&*xo5SHW4Q_h)ea@+bmzGHTu5nL_P zvr!3zlV?hH`&$`6-EqRL)<#VG!CP|TMwhXEG*~%llQPvoRw&0T!7U%ak9jB=jf*$E z=v*WC_L?>b5b!Z$trCNI);xKaAoJX1|FPwEe!NXJjZw-^^ILR%PO~M^H~#nG>8`_# z)&)@65XQgOl9L-h3MBLIou%21dpqxK4Ta4l8wY$zXA2hNjE1Mqs1OsY&&HsVs|M< z&yje1%d|sk&r-UDHcO|j2@a3pwWj8$Euq6^W}9jf0?bI-k+VWCh32YD^v58k`QWI{ zyT@O1$qX&QFCg+x>%3dMqB6r5irtrkT|xBX&vw#eeMSU3b5 za07`#pWzBr#k7WQhgu3Fu^aI>gBAk8v<%p_syxTF^dg+b$&T|AKx|^3)^9@6OMX zGI|H^5k^dhg=HMNcy$$x{PpCeKUiiLUAO{OU$>F7nb=9#1BY!)D+WXyM{L^;4Nei=)dEWO2*ZiFCmw*PxrhVDl1v$6ntuB4zE zglZ%N_x`12O5#(uAuYH)RIA13+ zb>33|e;8-VuyP)o5MT3FM`-SF_KaHfB*BEvPOWxNNu zoSX}qG7xYSpAzS39vM%ZP6brKv@UyWK-HGojM8%y!*1eBomxhvu;4}OR$lq)SR?Te z1boJ3E3I&Vm(q+D^9mKAx8)tjU4lx|##=0|xTl`y ze^obb4f;ObpaExl0=2+ECcjzh#8=x(42tATfdX`~%xnR|-a2odH59B_ZPS9JgESD) z%4DdTph17;bq6|24b)`;Ak5Lpve(`j^XenM-$p2slu{`Vxuw8BA;)4Z{>pc50Q`Jm z8205DQE5ivFp)12@(^5b8aI);2MdpKJuonM69yEJaS>Yh)e^AQ9gqE(~JG*9t|v#jSyWs*P>KG4etzUg!STKe7sP9;8Ox!@)7G`bdx;-YC{D2Pb+LB z8VccaT1*g-O6WrE5Dl4?D>K2Bn%Aidh4z8dKHPo(@dtLnlzw9M0J~m=!gL;hLVn=c zwgagB=3q?Sn>+MiZC!aF-fz||v-j>V*%{hXhj}@vb_^rM^C^mM9daG%fDcZtEeAJq zGEbR;Ou-Drj1ai@UliO%DuBLoP881H6vPT;(wDERt76JI;bHb;7wH zzus@cH4oOrdmtg;2cE(LM1bM`>)}N7FolK@#`XX_JObI}NsyFBh-uu(IPn+IO+M{U zaPjP5^J4se45%Q!gWo8j?;$a*KX8n)h<5%h2CrBYV;SJ%0~K<%V8A#VbnVd)*q+Qv33v$lN&gBgTKx2c z>?aVfwtS0L5?qy0ASsrvwWKQu4QW9*%ib@+SKuUcs$BGt16C5pcfFgHW)m*3$<5jy z*mNV9a~{G~jSQyF)-}x8(B$JX<=j2p(r~3V&=07gaLs;SM&~*?`IsL%L#OT;MRag$ z_KzV=0^?(shWe%OqdnL9rykqvj)O8u6g(?}YB$tWo}m)SKJ`kNs5b*-@~!))p?u98 zSRD?;!3AZSA@e(=KhzZ$LAhb$SSW`u>Rh>_Kc(x#^SN>a@!0#3dcZc~M=YFvP@g3V z&T6!APQ{gcUu0^gAuo!TxKU|$u2w6zPq(Rtapa@T0;)B%<1G`>*CGjRGF|1(f{!`pj zpk&`+x6@|*tB@CKJleo&W6{P!E+6SNo#Rbu(APN|0KH)x>dFH6{ zPaw8DqWp6@B`^k+ZaUlagD|}>jh>*;4*JOhx+da;>hjqf9}=b!pEA=^(_F%# zY+^5$9ecDSHx{4Ylb$=%)K|7|tZ%k=PBfntBAzb=!6YTcJUU7{}cYYwO<$UgjF3%F{=uZ1A!Bx6nf?kJjmnO*Vh{_tc&2NwXm%!+GDJe`VnTY3pBir1ICpzo-d z1HCJ;=p@@t{j3+HoLd6K+~2&vtE|%}d_`*2DF$;1ZnuUE{@&B4>$dZ(eZDKwWF5+8 zAMQ$!)u`lNgSd7hRQ$UpyFw6GM{ylmgIr3vtLmu*8X*SB59ORLxlOn$j^=co*KQEX zA*UGrgk9RhHrsJZzhKU-YAG4VH1iS+VF}xiyM1Lbt`U78uNgI}-5HgZ_J-MdeeAhh(faeH3#e!4+d1AH?r)cMTA zecz0`w1)|YvWWXMD!qs>(nrwBP&cHJr~MEdv9i|c*ZFL|BO6Y07N4-p-5ZgX=O#L+ zlFlhQ+H#+p3BS6B+2h$U-q3erhoWWlcBkncR*GtT!(b6Y8!s8mg55LrMtB^2N$MX&JduXG{e*bqwd4j z1W6U`o5DDb7LfaZy`BVN*9woxr`u1?u#Et9>D_G({`=pLBs0r8_B_Mg>7J`u#rlD1 z)@hhd;8@5W-8sl?S4!0UxG}HZx(v6A@L5_3+0ptbgC04vq=bBVj-Ckq4j^C0aRo!S zo>13K>cQzX|HKjbKr_;1^ACP^iOc%~IT&XmS@?Yf6=;84EiaC7-pm+W7$8&$H*8mi zMr_haqZ`j_`*10+E9|?we%E75@@Fh;=B9vgOctJ@-%VF8HPHFY^{2*EYAhHn}=pfs+T5UujTpip(}%{c%azO z**>f}%gxcIXn`#A=9@GOC6jjb$VyJ)_}n`JvlW zoAPs2YB1`38=;$Yt%b0XIjC}FZ-t{O1?AZNOwEEjd)&D&c*AAXV+gw`QZ(F`Z)*4E zHr+LuT4*;rk-}g;L2)lhwRVF=_2CrD$062L8~QgMKx5U6W04qdh>S%A-v++BT~fM5 z0y#`qZYX!Y!O(`#iydZQj=#R+t1wo9v{v%R@u2PkP3HU)801BH(=J2a8U$p;3|71TLkIInM_ zh-2WyTrhcr=eo~@wtU^fkV9Fw#&2b(*IPUESRthW){IHEgI``=-dCS>I|V#-orQwZ zT5_uHFzwHqFg7F0&~%!b!=|Nz^ry%}3swN^!l#?^wC_%lhvu$wo%2hZpb-^?JUy%v z2Sme*>|5h;`l_ttF|6{X(!7h8x^#YtD7_mEc5@jerrx#nMlWaKxw@O2ez+&0O)wLx z`Y#&r-&P!3mkxCjQ(wi2U3llaur3!fIZl3$12t_(cgSZO%wq=ljNvn#lLmQ4T+Fwn z(JLvt7|S82^wfJRUH~UW{+A(oPRvV5dV>%J-cP4!A>Z)Y?)}39Pib0zEwQS$)sHU& zT?k_b0!Qga&(F^!y~!d!84h2H@Hn?KXbG)#iDU0WDF4@m@R zeCKzb+aFZDqugDkTEsP7J@5s^HNxAU^I0Gf6%A zaHpc>uN9_dxHwpvkI3lZG;OCRkC_7YmTLbVjh$#~^X6*J%3RszUhTZRqf49ulYZ!k zQ=cG0M1pgC!Xf!p!>_UJfU#*`Ct~(;!cHY0b9mSiC#Hggc`9TRyjAD=bvdI#jaXsS z%n?q0WDmCjtyW{Ik^NN)VM=TN(0OQRVY+Eemaia7>N9boN^mmw$sUT|f>w=F8jkWr zOIY+aKKMcaM6ojvX_Mc|Lfw)BBm6>DJN4v^Z62Uan!&n?8lm!|Ca*RXtTw%k6&+^n zEX=3M`t`PKvx*`=$ft*6&=0I6gQ)2F8X^D4NBqk4>+`m-uTkP61}yi{@u?8d&*24S z8b!VDFlD-SF51{J3P?jHB2&LjYW!aUk+_Ewb3%MK!;QKPN;9f@&G=&vz~t9nlK&;* z>jLv|wZHGlK4%A#dmrr&hF9l0XJXxx=MzWJ6Kp50ga@o%0k<%8vvw@{5;KJtzAqX~ zq=c8R9E`rxAqi4~Io&;Ht%>7_{{rcj@)IVy66-2>UndGUjP;$5iEc9yWPw% z)k5zeNT+Dz8stwvR|>emNOZtpdvcw(<$q3iH*veY4~AkgF2B3r^DuQ7E6Wl;!k z9fM0rBl~QIEwn@=J9aamBU4y+pG(npvME|LVD0K-@|lsLY zT!4~g(i=2M&QFn>PJT!+?z(e<0=sn#;4utQx|a#6H!gG)-ylyaRXc1QRTO~8hESn( zuHyl*RC%4gua?qmNBzpmibuDmk*pa^AI4-2hu!6OE} zkU4KIzcii>KxYA*-ET!GAqdNF{PIfvBSB+P>P@Veki&&8gA#`4PW)8%6vxS4{O+yi$SnOPFm_Uy}oi8jJDGS;$c z0trAd*sidBJHkHFcLdHzUi;yU{M2eC9VW8KIf2OKb$VD+ex@qlA3|V@Cz^sI8X#qH zIq_>AQYy>+pWoh{EC?hyDJMekEC$E+0fG+0cmgU8#Iev2b)@`H5uvqI05qEAQfhjs z%U~14x)UA{+#lFt68#q5BM$8*r0c@BzEFqt-4x^x>SvCgkwdvI@%r79WMr1zY{zeJ z+qT=AQo?OS5RBQdZx;U0(Xx;*y2cmZ4P_6U2h<e=tbo=67wtw2|rBns`4zb zH?}T-Khsob{hGQexsRNHE~_QwBS^VzH0*->NuCeG_a8k4rpqCa{K)kedf8{0jOiIK znSO#PN9_=)IubAa%a%!jJ(8bRH)O}aLPnRERe0#CcBa0uwzLA3Ookl+12{t~>A1(x zrH1#xTX&qE`;rXJ-<>bD@9q=e10-nez2Oj;cR&Cf-ok5OfXAR%9Wv-}SRg+2PjiYE zHa|{%i%7T_RU64F?xBu1LdZwF(Q=9Ug{swAp z-`B|xHjxqEW@p!XoE&hY;*d>l=}gUiWodag>NuZvGAl_VSlp@a^hPh-h-q0{1L5ZK zfDLGd%2bAGxoPMnE0Xs#xbGE2R&-KUpow2t+=U|ul70oQ;wwYhVG2(uu-nEU3S)`| zxQ3LQ*{2f5wiwfQ6wu(KT)+}w9sb_ikxR4ES@7Mly!T}_v3JBXxNw`|pk+i~YPNT< z__JB_Aqe2eQ%^GYi6xjUU{{4XI;r+uZyT$1lJBW+*7C)W>!PdY|TD@DFEP!o3JP@R)TjNk)ki~Zs} z3uxVjd-re5hsrlXBKyH(&b*U`H}bZv>d`_h@YK>qpW^E|h`AgfPAk@a^PkCx4GR$W z8>#ZqrR_WMj!3X0#h3rUUemu($m~$qS@3cM9QfM(>k#bYvulnSUU_Lt$|;r;Uxl93 z+w8Pi-m!oo*=A@*`f2l`Ul_WMkNO}qm%cpX&7K-}VeJ*l;Q+f|(4M}xqntT}u$<;A z>9W4Ia&HH*R>r?q_xtC!Y03mr8__DO=R1I%s94(c7iiRiNpy#*zH*KL?5;^#Tdj9J zCk~p+E=e}~miZqGO>0~)H3v_m85;_V(@rLgRR6Wcgs970T+rOP-ra#$R z9+1mX)!3P&X*w0)!L98jdtIc!9VUjX*kr!T7o4DxP&>&yHGK2+Vg+V8`%81OO8 zAo{nT^v(Fj{5NfizEL*3lgCn9CA)8E1-P*%Zj=PPH4D5}WCaPc zy-`p=Ryt3!NJUmzr{V6Tmz86fdvQJYq*1GB@kK7^3%<+F`NrB%;YQlF&tUy1d0#&l zx_-r=_EetrHz*SO$P@w%XKEFI$9^RMnl-OWbyKf zOHXdii0bQXAP~JVHxld)dVyGXM7)DP1z+2t#zv$S+SNOo>fKpT{+Sx?^!m2Zo%k}& zC1HfO^JRD9tnt2b*wjgsW9v*)xlpp35n1T8e{tq^*AqR>t65s;^}o7V?0U)UOAx3g zHl_DGq4Dk-t)JaUodbTNz3WTDIc;Y)4%}k*UDlYp?|6Si7LyfV>RhSl?;myREXn-x z?7hN~)_j=GlK6${s8s-9Qfh8$Zl)*6UI2UMDQ#65XPzZb|1u`aqCGw6>M|*pOLbH_ zFLcDN|7AV%ErJe>|M8MrZo31wF1Z%2S9AsrH2k{D%iu1bTj??n-f9M8rDgI@ideUJ z{2Hq;E1ZozmBMKbt`M&G6fwcb|K|N$!#8#xS4GYij#Te^@k0+uJYel7PO{WDJ$N2e zzQ_TMnDFEt8R&1tap@CTjL(IRM096~7nqdHUhppW&M&YG?AvZUbDRJqwSl4~?+Ez* zW>6m~IDrq@Jo}Qx?;GZu^zPm2wR4A{N%28q>>=VV%3qe~23U9N?T>fUAO7S4$NDz$ zo~FNMWX;oCud&x_x>UC0wjJ=o(Wet63&4AxXxnfF2fow1r{{@fLf?sc-_V~>hY7{%9ChcI8rBk)T0>{9DwdmSTWDk`;|aw$mHmtP}LAWz!}Ymjf^+3&rqIF~#- zXG3UvzFt$FI*!n_YQoGi)c1`K&zL)qh>KWDf<(=2bLv@vgr(}1m+P4yrhK0zv27-a zrEQ!#NC;W@qBoX9R`pnjCYZ-j;=v!;+<#*pGD^(Vl`5}~piA(+?PgL%sGPJ}AY&VO zM`>?uIw=({-EBv))r_WIq-s8RC*bBREH2VNYko)vhQJ0D?p!?~dyIJhm%|=(1a1=R zmN;ShgP(lifS;Lt9k%41O+3PfR-W??1@ZJH{}1u&#h)PCrhR@#9@&aX#efpzPQ64; z!AA+-adZdsRmEEeQ1EPmLzt14e7AK;c91CN=nrM0=*m)%LTb}qGmDB|^%Q)kXXbU> zEgFvGBjz!8!Dw7FOa=bqhfz^H6%`e~+#gC_1=`&gKNQCc2Jupk-Q2;bjv&n-d2oh7 zI9CbI+UYAbH+;W-EZJHEbgW2aY?cQx322MP%Fx0$45lCy)dVI$T0ep8y{PT!Ftm|{ zlA#5#IE2)i?eod&%LIP#g-s7MIPdQYN~g3YnT!GE(IKegY}>Y_|1^B3h|e8$>@!_R z*Ie6f>T_|bQPrbJ5R&BuD7+OFM@x5hx0&QD3kKswqaSC`8j_^Z37;XX!^1-Do!na{LY&EQAd$LjbJx<)opj6%6 zoczU5_~LGw(2Scx_aAZQoy&nx1PTp-$+hQ42abI+cCMa`zPcn z#zDB`LfbWGHu`Lq7Tf#g=H_>k737a8{42r$4;k_I z)c9X>fG~s^)FDGpdP*ZWmOKbnOAp+^mdz;aASIv!aSI%aAed5~S0V&=l8x+_AZ%ZV z9$u7Tg7=F#Wv+ZNdf(n23s@#fCZ*1Y!1;_7GA-R(5vWDpU#@wm0lXvEZv~h4K)DQg z(-8yHNhz)y=i|nxc)2hlMuiGsVL8qK=)qDQQ}q_Js;ie!X+#Eu7K&`&Kb+sD(g4m; z@%3Au&St2q)dr9fE%@(}UD-w~yy<0)8Cwwd4tN#*niSyvogFB3Nq8h=Dnb3qGLYoe z^J4vnRxLZ(k1XePM|>b~zaq~?Smmpx*Bl7N?G;Cza!gLFE_SUOIp$e50 zYSi@~yP^C1upyK4L0*I&}ec zI=E=M2|mV-F!vEhBWNiK!`Kgo-zLK^(wQ?LPlm5%ZXl6Vo8ZfAH<%Ws>t0 zo*42uUxejk`T4hDMOVL{m;QX4=d;kg7i1Ms1xn}IQRVn~2y?KynAu^3AC;qXzvqJFeGn}d(6ZrZE@d;EQyqE6WKG;yG%pFs82 z)RON;VNKIlP;d7}Tz*|PKuLC;v&BN8P8W^n742U}^qv#dHZ($25nJ`~JLE{+CV2U^ zO`99YFF*ZnFL$4AOUeNE5~bg+-u>)MR(J)JnF!4ab9z7T?!TGDZ^hfsDs zLKeppAdcQV8C;fd7k=kc`^(5OgXh6noq!V(^MFU?ohj`F9(0zj@*9pY5rXbF91sQ_b#k{ZVW`;xkk8uo4*sxzkfWV zf)|{Xam~oTEVIUB^}^wk}oejUp>82L!#<84ug(GipW%MlA>4sipNfo!Aa+;cSd8rsPp zp@lu*e0L^FZ7+Nzf%)G*62T&gI*gmu_>=a!ZT@YUs$rQ{>AJ1XlK1?t%cL7T55c_* zxM|^ipMd!E&^XGFcpicX3u&iM3jtf>VHf>^&P&<86Pr%^Jww?QF3#5Lj0ZJ~oj?T9n zi#v_ZOg7!0RiNP`&cvuFdRbo7-xB`6d~mRza}5;cdxQ;)eEdg;^$%NI`X$epQ*d0~ zJa!PhgXH-f&!6Sl&GN?l+REYq5fN<$5ewFWBfkv}?9AQvJ;&mYp~2nx%iziiz!iR2 zV&BRPkYJ~)>VGXdZ8)sLW8LnHU1UwD{Abx5t=Tq)BIu#J*(RRe6%I3e{M!mb=y|)C zBeP~aTERDeSwWbPS&5^*ak={wRFeOl`Z8HNDI9@0SSf3!sexhIkg)$R^02xm1bQ?5 z9fm7Q@=Qt&Tj>5af4FN{d&(Uo)X@C9x&J!<;CV2YY$0_52KS?@O25g&L72DBc;)~v z)eux9bQM_Eh70+8?xq*JlFw^~du$W=U~*1SyZ)?LkutFrllFp<%BAM`?KYPaS>lnd z!57$Be)F%?SRNS`y&~H$ z@`g>3e0W+U(Mg(XW*dVzRwE?tGC&hx%ia>np?6l44?4CpCb$ku0U{iY!l>Y{#L(>z zc30k?RE>GnG0^&+!7gsLac_}o-` zib%A8VOwJpRXvln=MU~DTMrPut_axMTF-17lfFE4dp(>NGQm7v6&SLC{x5$_iqLaz z^4^JW_aVG?lt+Lcb0MU2;4baXBsNWD28NG*-Mi|cY3^Q)^dj_u9{8K@;88?{NW#u_kEt< z^8KyP?~V6_VzhGw3}aMp{?-*mvE(RcFjV#5`N`vDNzCWv=980Ma6`$WYO>|`*ZJwe zlWj&*Ft`p5L2--`cO%kG##6^pNfl%wH2WXOW3ojSgK2HZ zLLaZywuwlC5O_h%4T#s93|`(7an+{{w+Cp({M<);0cm}|(H|7|&IFr%z^_)r#Ogh$ z*S#}5IVhV#87j-$%fZ>wt^ajnKr~~-+>8X{DF^m}%T*7++emorjk#Q;K|?Berz?dF zF_TzAOV&*5ZIw(1`jPc)A~MY&bTV|y=(Ztt=p)Z5%pIP)%758Ob^!P&H+z2WYauJI zH1B`*(UBh+O1lLz=(-;jBgebb!^q$nss0JI5plg3B8MZbS`;zF?GjLYe$t_;D=?gT#@zA|k)N7pG zUa$ajH4|Vn3F0(IA;bgX0@m2>`H7{G%u+|jNJjuU7?mE+^`a4XJuX)@oU3rqOZ9v8@CtyDMojwDtw8SZI1bPkkXhEYl0I!H5p>sE3nd>vc|u1h~n zC;`_m>%K-5N^QyDy1>8+wq(qZC*t7&T>%_ySH{MqksPz^0yhib06Pf&5)}XI61p3k z!aUi&S)W_1@zV}xCw?T2c4)NsX~}^;uWy0b%VQO>gHD(L)%O=2I4ZP2Cyh)&ayNM= zTS>77#r;s0M1vc8T^a;d>U?Lq7Xe%YG#(7cI?F4_s9 z8d8Y>BsTi#fSC^G2+&8u_ibE<4%?MCBsvlx$>I*5*0sx9e_Xu;pmQ}`t{NZW#%Uoc z$#6PgM@$7G9%O3Dp25{0`M8O`g*E}n`gAlay%Q#TWc%k!rNR}Y!gV;!Sy%>AQFg2C zFfp{Wv!L*(b(g*D3)CI(_lo`D@FnnqPuH-MbmzjlySa_(_*ek=sXG>qN}ERq##x=- z1>Sw5aI1IO60=JGY(pRDIvH(EsujH|omgTIk+SGBa@3&YuM)6(Mvl^z~yL|fa zrm2#YjrH|V=@#((a(O%l-Z!mhRn7Y}`CV}=Ik;k9ei^gP3uYzG&u-6?9{B_;Ju#8C zL6`?e$t(ZlPYfODF*HrG?&?Sw2Cp<6zW%;qe~;VQ!Dj5?!+wBY@1y>v!U=+{u_Vc} ztd5>nGd(q)KJ@(NBO!+{9g#VEWC+hrd3uv@kfRB$oM|iauxuzV?iff$&yRxkqdZ7N zHRd|WS0>~@8USR^1{Owc*tCQ+2(UIduBw1gy=y9FoDx|0y?G3@1?Rz4ZI+FPG#sx5 z_SRlCNtDX$7pAY#!kq!)cORYjk|Nq6z)>&oNYLDxK~+vaCQDx&9O+N+@$cFVj4x;!Wl}!5{z7b8IX!9LFX}05(wPuuFs`Ec zG+-%R;O@X@y%kcxTnM7B{ia|cevD{E8XrpC9f?aaeOpz&-rs6%b(Bx+o8H!}JICt* z7DO3;*d+|3i8!b^5$JE za0BphLxo8a+a9#uK6d^&g(SnYp%&5}!8OWlXw2*N7zRNedf|=bf`wmWKq3n%eXMVy z6#g?6YvA(v^^M_UPLR(15gWL@8%6Cc@(&!jg?{36SST4Dg^VToIBD+-%(wb73tsg@IFHmF<67 zs(>3ofKMxP!znySlSP#u9SY8-Fk2m-w>X`b)IBJ089%+?q3(_co8H&^yhe@rID%Xl zKYaj8OAw90<&Wwu(?M2DQjx5l=H;Ci@?~t~45*>LJKyyNgvrgdr(Rc1ySjj~Ax}Q_ z^XE7eaW-G|yjxX^HH)B+r_#iVcFt;+(41%;8BwyhT7{R+0Zo?t-Q49Z2`_SYVTNgO48}03*P*adM)T|IL7yy4}>FO)a zRVp63hocWYz2po<_a$}{+b~yZcs7Hfh>! z_j`)QS!fM?1PS*+^Q3wVIR0HUxyW*=P4qTx$&YwG<|T-WiGkc@KC`VvP_|(a_Ajac zf4W+7t~3fC3_P>Hy~>&4BT;EH+zzHn7jqnjS5^7(xC?~5=ugA9;l+x?>Hupfv} z)mzM<12p9<-x1zT*zq|cRf?+D!Q1)mgSQTDKP=n-%zCMs@}8^w!f)H-6l!|LG|wTs zw-uyaf$05qDi|1b;F3N@@J>DWUSfZQ!}UkU=}nn(lmpw&se!gRKPbUr->_B3n{`s%+*T#A?xE0jDwd zaXN)b_x8jC!ASrCIumj^)5wKqJy|1F=pRA3NAm5E3d;i9mAvUHq=gWjYg5bpxO9eE z7qw5+<4U$JzGjR{UBqP|>2U-R3j&$YsvlcURDxgfzuO^W4+%CJ=xN`M*7 zvg}x7&H=`V0ZCiDEe%y-@Q|^U7vLBU5KI+!m8wcD%Xv`II1EjqXrQh&-}n*mahsmCavj8|xzG$XRO`Am#{xIh;tD_Iaq|cKo`N)NL>XMuq%|Kqn9=QE4gr zjLpWuR&ik`3`j|u?^V)N_Xyyb{1kN{KD8S}N@yc9lnl@}7W)jL(#Keb`M@X(Os|#! zC4w^WyQxApY*nV@zBlld+aXe9}WDkVshIyf@%9W zrB1SIk$I$`YH>zZU#r9u-gvR6&-d-5{Wk1)deY_<=W5g%3x<~3sVW$af56q)&&SM<;l6q!qZ%`Kjz1|II_ q%*n>Tmy!E2@UzL;V||e$o%;`(w$yq6 literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/reduce.png b/docs/api/paddle/distributed/img/reduce.png new file mode 100644 index 0000000000000000000000000000000000000000..5538fff5559e1f82e85a245c834112318df2edb7 GIT binary patch literal 48940 zcmeFZcT`hr^EM0-6tK_)RHWEIr9?nLsZo(CAflpDq9D?Qp!5zF5D`!jX;K7fDn^th zkbngc0qGz$6zPT;9z26+N`6kafXSBh04T)8fRM%pJauOA7WzSXtg_W;=83|L8krN`_D$)NxbW~CJF!!9*J|$gO3%fmScPHoFyLZ+q zx880aK%)Y0xo&7MW^9dGjG<=FQYHBfzc;(-v-cW`a$CPUzmlA@M0y;3Ao1vD79&~g z&aL|<4m6edZ1320lRqO^tM+Z6T#v{0x%6YXaUv$?W!Y=7`;t^m;<+UX=RTbBT2b*owX$i1W8jm`g~!}NvJ-<6 zg<`h?~xE$$gE6Q~Q_3*QK z(jJK~il%wTCHrPvY&ZQZxM6o{S6AizYd8nohQMEw24!1tQ~EtR+Cu6Mdha)sH=<=iiL-voy~N zzT|b=C?Dt@O1o2;nr*wIa|bzM%kiqzj?whd*3r6AUCJ(3IofU-zc-g^@M`e$%XuasY=c?i@&EFpTp>bWweV@CWyJ7)*R|L6Y z%ay7dN1lm&=NSnKE6;U4T6DZyx|_TEXt#d%p~*c-ciKO94X&Hk@!aLFO57Q+Er36O zm$6Cx*y-Kdc)QuSS+-nZeSYU{a)V~kv29|fxS~TdG&n6c$s`s(y{OxJTus|aoFrbBetN&yR-7)+zL0l! z&lrBdc%53x!kl|+borq3*0%j;4;+^0KI@sTefseEtNW$T*BVQjs66*PF_X@7tXiYm zBs4wmQnv2clQYRpMY88Q42~W@s^|57_R7$!Z+i|N;p62C;ET`=`lc4W@!*NGTU#HF z>scEso?bLY8-<+9eVOs{RI6*NWoz2Yo|jhk2kj&5Z`jwgzHIrPwK*%TMZYC(JZ^m7 zcvb7v%YdXbxe%EUWt-+_l}8mvd>dk4_2+zS-QQ%}RFpPzF)CvWANTx&{`-@2kN7Xu z9Crw6lg&}R6q9H1{aoUNT8wI;?c~e{&b%v*8_E00(VfeAC3#hDu5Ktd4W$xS>Cw`b zbM5nO`t4H9s;`t^YPHU_@Qy~0B{usQ7^lhD#^rHzp6rYz7Wh9To(;hJ7p~q3%0Bk` zqxWsG+giaICyKAcUx~XC(jWUM$tc!{Xmq=Aoz*Rwo>*LIb5S$(c4)RvX|-k)e-yXz zX5$RIB)i*oW!o!iYp!Qs%;|7+d404;<+E?0S0wB8{;MAgv)&b5VK-GW<&g9+UAT1R zwOP)c^ZDof+O9eTyS;I{J)aU@te;iqoxq=9GWTG3UtO01-lbR3RJ`j{7rlU!eD>EZ za$8q^2O+octxcCn2gyC<2+NVzH*DQJ$+lx(-MR-o>qE!44(Byye;#}FKJ5LE4~{EvQV;n0 zx%~D}Zo5@^)NtIuQrbvh3{jxwRog^p;d8~RlJCpgKRvvJP&&!o?+W1r(Wzt7CD zMR)7o0`|j&q&@*^(`OJXv zmQ3F(C*Rs%9L%n58E=s(K>LUjwh|2o zE|?yonD=>XzRPiU;1e-?QqX~@6@aD^eWE^Rm?seVZrp#v*To+r5YSQE>r38HB683_ zw)=5GddZg$SL@IJI^W+`(p6d@bnu*XorF-QZ~@`NgY)OlE;v;^7BZ<3s&R1V@zC|y za`w*oyh+*4e7E)(UH_rPgUK&5?8)Q$ts?F&?xgNPLT0XJW=7HQT;wg0De~s-E;ENS zrbNyXv1ankV&?x5QG2%Sh(#(|;ClByFC9?w#eZC5&|BjZsmQ77w8&)px+<@c|_I9NJN zW%n5iIZir?2jngd_1V#z&)KwmfAVZ!lGG7pFX^dn&ypU!{iB%Pg9iMaDopW{Q=h}JktA>Ub~DJ`KcD`SyUj>jHPIg z87*0ntMbd@7;T69RGhCh;NDK?P@+Ok{CX}>rsvO)HJg4io3|3z`<}+V{HQsNIZd@* zKuyGdm$%H!yJ?Ycj4Xfah4B&fQpV^Gy={X2QvRw-*XB&?3OA6B5+}Ar?hIH_o1lLQ zNsWvb;q*%l7+=}RSnBxl4qb%i!`77*_-$NjQ;(BBdcZRDqH!7%htUzK&4G#=9(5ey zW;!Sv!z*A=-)4-`XNbh^o=*1kUQOb$VH)pbzIWo#H^D$vwuId;@7V60Rjw2)-?HT< zJx04}=dVnwN0%NpzVN*{Dlszpi^6%(MaC@xY&F3hK|ZS*R)N z{yavF!*@)_j8Ew3z^k#1i>7h9aG%(`skKJ3og7hRZ``1c`y%sOZGPQ&%v?ap3s zy`X;#vv*ys&ez{HKj8ent%Kp-l^`kb#--CLZdxAJfuD3 zq;WTG&@xAl9z`FLMa#-c!5LC6UQVu8Jf)mm_WZucpV!f_cCor?=j>{Sa}q_ad&Lsx z=Bm1TH*%xD{{0@OwWr;`?&Re1$78_*qLFXVGSY|8e_b1Xs)Br~blT3-`uYV8J4cWi z+(S)9R#8@E?Fawy)xU1}`={qztZ$ycIl?bp)&3>*KYsl8FaPHc*Y0`oU-wiztnl|+ z{_UGTeyM^+9{q2k_$}wPPeIUX94hF)CQXf_F7EMpn8%%V8ir@#6|@Zb$Lt3G?f?CX z9A8^6vt95x6BC9>N8{L8Pv&1eUft&B{LriG<92-7yDfM>%hiWWnq1L`Z1WEe{OCH3 z&(StIeSr1VxxKRYHgSAAoq=WDxP@bymO#zL9jii zV|cG&QhvQKi9Wb=EzzZ|(}B=lZMX6^$*)q9if1hIGPDAjm{BZjT%wqN9bhC_E7_=* zKH$Xk|MlUYr-`z#`1Z2>k6$2PUXm2;bC?;9Q~HnVF)=eIFaG)azg;niefeU+=dV*LP$(ilE-9P$?*sn*E!VUc=f6G2?~iSB0|W6D2{z;ZWz6s> z>;B8f|2)e7fwO{Plf3X&blh*TM__)YN+hzlg5Okw-mFe<&hiJfNO3@^F^UV)+D-(P z+p_u!N1QiMN3nED_s!wS%C@TvDbc<;H8y4uTSU1j=gLR0SdZRfcCP&#R29klw!ESZ z0?f$)ejQ^@c;oVRGTnT9{QJ?7XP$KyK4d<(@6V2gk>Ar7x~c{l6hp>V`TQ`n8l~aH z;PbQyrI*we%dRe`5=RyPA6G(7`c3(eO1@60(Z>w6mhbQy+>0Mpbm}fTX<>4GWl(+9 zO6AG0vd3h%E&koNgJGqV@mKhWg%2Z1g7ekl$q#6iibR?5WfEgG3++{{mr6Spi1A>d ztuC2#S4Re{49+x6mP`q|jU;+V6EzZ;f+9F5^tnTH<>{ER73*Kq^hJ`0JYB4Y#GsS3 zd~R=67#&qEf5%2KNx>%v)T=Irx zTyHtiC}WNO^RKW%^7JFrzT1P5SXxs|s<3OrF(c!FgY%m(71)mMad2*XeQ}1GXV;u6 z>_=%dqJwtOQGSdSiOI`Kxw9hyt0OZlg=KVd*4SR`%zP&co2ypJRC36eqH0r_U~?JT z1nW2d<7b?lji!Di$$KKF(SNB1+ncBu6wNi7jUlNs)K>aAtG)-!C6FE{`L9s3>Q&}W zwNT2Ev5Up+Czoey(2>O}vo%`tX>s7ru1(f7*t9Nk9%d#rkSwJ!DYUpyp727-}atb5j{mp#H`7>3nkwh>q#ZFL$OD)I5`HcgjnSzEl zf_|YBFRL+D=B(Zm7YS1*^~D#Owqz9W`s!%xYfwd$;Z5o6x7=)r*Kd!vxYjprlrFmb zsLD{CPO;4l5D@n43u;swjep99za*0!Bjv_# zt&^XWx;TD^#W($?Lcm+qg&%vw;tXt6VB#D7tMx3-eEX^8eQWBjfW^HDKd^_0cv?E= zGsKK$JUhgxO##p84Iye<2QzV635Tv6&uflcnj5JSX~sLR)R9*7^O_6UGuyL4JczA< zcqAq-%zU{?V{lG>GjpM&)Qnq6_n8i-SWp`~B0B-e7+#V2~KwZz0_Acz%@2HW<{1lhwD*QzV`>NC{C*@xE7s<|aMztiG)m6$fG&d?7F0gqWcU>ug$tP|}5uUZ`BS6 zSf-VQY@qu%*GLsUpz9`k*v)l^sp;gUaZo#R4b$u1O^Mi|h)un^>vuOOfs|J_(>5ex z8y$O0JMOSw-AD!RV_g=y36qizODI1Bgy1kHSbWHl8O!`)qK+bU)&r?F9gp+$tkg_iZH+W%=I{~Szj@{iZPB~Jve^w)$4a( zCz_^KGZUVxfjP~r*uTmt_&RYv+|X~_c%~s#JZanfSY~nr?JnAPm;DYjJtkqmZSW*x z-fFH+F;d;Bu*cn~=Qg@Ji=`7W?XrOp=gwoy*vF^YDOw<$REBh-s*n41f2Hi3v(@5S z%JkrBMdD1j?bO@PTj*X<7Y@J@NnJ6e%%L6UhGMY70j01KrTN1e9p>F(9dnZ2&l#|7 zo-pNyJF6al03hx#ag*bDKL&<(dNVo4`Z6k90E{m=5I=)6;@x{XF0lUdNydgZf%tcY zNgKJd%*#hesmTF$Cs=%SQhUyow@=bdhdZXq7^{sVEyjl7wCT^BTKbC(rk#Pw%iSXb z`>J-joN7r=?9*dhz628)qd>7tHf+~v*I#7mzLwy~zf7a_m5}I@)WM~ZWD&QIw^)rL z)mN!m$xF31slBev`bNLkL6NZ+ea}OLcNhvemorzyAOMDEZEico#Hs76J)dDb00l{R zcfER3d~kI-X|Ys%T&`Y)SDwD?GDTR7Shz3oW?L&KKqNFG)(L!>nt}{ntm`|>@DF_g zxWB=f%?dw6?Tf{;Nw%hvCRV~*r{%9nyo}Q(sW-6rwwBhL-No>-g3&128nXD_zN%u7 zQi4+B6qw8j#FtFnkl1rb8?kg0@z~S@Cl%?wiAuEyPrfk?Q>FfeF~a~Qny^Rr4ZWR% zpaSqeqc-Zx7uS~fv3&=bQBu4xg`^ZR&-CWU zGe?3Ze`6+}nP|MP_4V0K2fWa{KpFL9i(9*SVMzkcn#EfhkxAKdNm-ajxm{)=KLP-a z!myQ3{dsXY`EB<{68km=S2DoO`iFf>yu2onA!70a%@lpamkQ>Yz+=k_i#M1fUX6oV zyxdzLi_$~JksOG#n|kQ3j_z|opv|7ytcQGI5t`Xb#BV5L~!#F$|3 zJNA_z3|5`78hH7UItP`%zd^J?0?;H#%X?m-@B%7~Z*&5YRxU2&yUPB)iQ4nhUB{cI zIz_yGK5Cr#VHIgUz%&)WSRP#Z%&D$2&To31dp^l$GPJlqSWr`+q~OzHq;*ocrv$zD zvnwr9ZO5Q~qLTdhz8Eu}e5zIJIg{{^CiXH|=F+H-Z8M`n#>&cjK>@-_omQwbjjK!b z0m5#xKdZx3@BqPm5Ir~P{s0dnC9In~L0VlXOd~8$mIz>9>IY(~SZFja&oA6sUkrrZ ze_W}_ODp;HPOo$|Q=L90J3nWMVu=?Ad6wnz?xF8o`DQ}oG2e2eFR6a_kdc@?iA2vnorlN;?n(t&DxH-V?A$#Z|1r;8*enUnAB6B@ug{FG&ggg#f zeAD?>$-!zhuJ{t=$)Y`P^1E-=08CSQiuGT5UVr7H^faZ}u&M?}TpG@rc>Ug>C6rfO zQ)n!bbtC^5J)7EC?)eGbPqKx(y@7@8 z@FgUW7*m{V!sVqidXkCOrBrfpc&|p(GB0zo;xRVLJUqq-8bWgz;`=!WzW)|r{f-ri z=eGz9P@Y`tYBm zLJtquKM%Dwq5sU(|K;iz)W+)Tk(7I`(7oKAjdHp#+K1Hr`P>NFtI|;IvHCr3HmJETU*{pRw%Ji&iB=gJnQPpACX+4)ccBOmJq?AVEP8D{G9i{=bGMp zw>5=@O;QI_Ubr{$V?8@{eV1o2#uSWk=+~1#{7$Vjt}J6rxuTLEGikJ&vb$j~Gc#$* zV^3nA&rk`m=LKCx0L7vy>O8U}a^HlVsu`Fc8}lL%_dZcAH`Yc~BM=kCddJ-hX9~Nzt=@;_~duLmXuMKfcG^0Fmrz6j^jTP`lY;07`pn^NnDB`}pyuR!atmm$4OYO<#o|a1+%4p~E#9zy) zjT^g+XeQ24J_T?RooaL%i9bzA_i2xZo`#KUDX)n`48-xOWbxTi!-}n|1GlHby{i)C zQk_(83}$)sxR|t11_wnt6jwc`GdXoQv!(a}YbpSAX0o$`{n4iInr8)pXwK7sUE5oF zQN)bNQy=Dd0C57b-~N8Qk;V61nBs&tidaeqV7k=WV_I&qxTVDh0PaTw7TaB%d*d@1 zxxMUW$l^)*G{b_5l_vUsy3&}W9?-99Qs7s$A0T-gWsvzyx z7qa-ky9IW2=si;bX;uuYh|q_JuuaX!%~*>}7;YifDI12`7iB+;&)5#f#|UbZ81g33&+sSIo& zNOiq^oGH;)vkuV-`E*c%1Ik8Z6^LfMH&VaNzxF=NjBOpLD^3bTQW@4*oo3_6hv^ue#r<-^;X?(>Cnnn;!^Rj>*Dx z_veR|8l;&+bWlp?S-at43#Y$Q#_ZR$_i4R8jN3*wYHz2zTod~oz8OR-!$^N?E(nR@ z@;y{<(u4Ae*PD|uE6`}+5H8Ojrz^vzGB7338#e9&yMtdR4tMT@@TLn?J_*}HP-mo{ zu;Lh@{|qt0mtE~I9N`~v8!%xU5LW7Mu}bT8t-z(eA$E>e#Ml=?m|^lm64^_z1`4o7 z;q}ik4(cps&5*{xkiHq5T^kN45i)0BNco=c-+-}p!61=)vHH4AVF>LYkrjw_9zK;< zr;Y8gtSl>C8PD>t$em6)SYd5;v%+nrK`?VtXdWA3PR%*y6EKYqL$^9Tf(Q%u9ucoT z*{@PDAi#2oSF3U>h+*7ds7?===3i2M68H07`L*gRR@}jrEKg?nlr9p&%*z!6il*<> zXmMhxQ&r8J=G3W=kt=vc{*QK_w?c@Z{SZO7_AED6@vl~D(%wCvZ@Y-j$h-XUR@P#7 z;k3(*WJ7<+PS^m^Z3$3!=pVUqc*Qmc!oRm}C?ZO`CLTq6>Ug2L8T2CvBmyQ6KBFb^ zfQJPl2_)V-uNohSx1YIYZU~W@2t;aS#XcLUS|n=`NtES=oPf!1a3LPb2V(ks$a|P)sLzs{2SXIZve3iB5|dIJ&qY`?2*y! z#SY526%4l{uW^-pYon#Eh_YpWHKDaKJZynNB9-9gNredtxVi1Xec`Se+_u=)C%Cuy zdzEqDVy7bETJA=wI%%cQ(|5U@{PxF)>JMqeahCmeE64{c$W}IUhG39`5r-lK=HSPPm4G?tk}6lZ{OT>Xsw@cVfR8qDxf9mEFxeEr%#41Xh)u z=`({9NiQd2L_x_~A-c@?$;*8dv~J9Ydqez6z?5%9mT<4Bc$2bsZo5synP zCHMg)R{}^>i@Zf;YK_sz>go&9!NE%DS*37y#4#@*7W-cpoHwvrQuOl) zCz*R5*SqvR3%k7X$%mYiH*o))VfFk$D>&pbdP zMNOR$p-*`BvJ)$0^Cypi4%hr|>hS-TCof%2ijx@(_wdBEC{DdKZy8i)WM{n>P7s>M zFC0BIo;*dRWsw+_pK#~Gf<81DUZ7xn=yLx>?co>NHLG5;c9 zH8ZO$F88e;BM{8&_EYAT)vGPZ=G3SP1G}7 zPwi1YJq2VPD=0nli=jG!BpEYLmK}>8I8jaNH2CkWgjK2Qt-7*_~jCVm9-KZT$xP}0h{yzs$g z3xkwn$VRK;iT}BqD^Gx^bxiq*qB`IuG^_935P9X@&fmN^D|Mxp>z-wGITq`-v^y4$ ze=4pn%Ca)?*Ey@+d0_e*0p~RG#UaU!gKD1?T*Il;*D_@$vIn2r`OU~9pq~Fk@#8BK zTYp?{$G3YeeK%8P^-a9^@a~;*!^scg7<%M5@QbCtkWLw zHSeXBITW#?ByY%w8EfipUo^LMdUJdG=w@zht;gsOKOe_7rqDXui3&+bvc7<6yO~Q} z@awOKA>HPXY!H&7W>G})Up{G$Bh06+rG-^RiijXthitC;ea6YOvyx*-mb&+FoQYL-)nVLT1E!m$5 zZyVX+(XIwT<`??S+ja||lYSjF7X0#lz4Wo<)v<>*mp$RxezLz{^u!sAr^g%oN+%uB z6Q`Wf7oR_W(Yl{7Ja_H6V$ewd<6+*m@@A0JG`(3?6~&^91OS?Lq9~RfkeKA~BRF;o zGpYtku1v4V3LONbe=hJBPwPfA|D~ZDjg*fGs7()4LQ4)3|~mT*8vj|BL{zYBKA=2 zq4C?8mx1`hmg~4dB#?{oFle)3AZ7?o`BrWIkSWNB1FjT@B2ZoxW=r)6?tATY0;Xqk zbbFsZUlDEmm6iPgs-8S+paY)ZuA)AAhomX!*wT_7Cjbh-?MWNUwAu$5qFODkVYetb z#m$+9kyXY%ko^AZ>o=*}OhIqheUUWueL?{%Ge*sXh2FWOMOVjcC;-Cfu^=T0v34B4 z?lboyS+(_?O3w?2;~fgFre}1BgJvYVcU@v6gElaXsOy+fn_*z`u2!eQn1ZZ<>6Vg< z+rq-O=^|vCT)q6ceK+KO-0eA;Anp8lv*MSn&DF%S&Fp2lR#laAw+*Q2jDco~Tf7J} zip*UEiedGRQ+>s`1*$N_?2A2GKW-4&Nw#awI5~eC(xcqiYm?R0r4uLf7t7aiYA7dm z&n0lVksnO(j7DN;9!)8{-jEKy>A?Uy!4*xQkbCLe@0+B7dMSPz)^@rW)YkRPIv&x7 zNUjM>OCl3gKd|^l8PVC zK3IE)>VgVb^Ta~lbm^)(V@^FS13RQTSu~hRK)B1yByancaK+vuFGV2DZCgQke!GQW z%nz8Q)Ql(@;=Ip~*-CM!2|`ka`OQl`ER=E!S7{Sfb7L<16KnO{pnQTX63^#h0m{83 zRZxBfMj!m#{uCtVfFK1!AGd>shQO0-acke(U1FX3QKDuwNy@}GnE%k&D^oD$3p?sjIYuo6P0Ym zE1&L6UcSH%t^_t$*oLfGo}Pp}B*{w_dQeUVf=x4O4q*!V>rv>SB=bIu9Di5P_Qnrm zCq?x{dnDBpNA(sb^~hDiK9ZFpuAipd@IK~k^KN386d%-Bms>Mo=~`VpUzo~xR$8jl z`#J@q=1?NVv9BlU?QRsyOCD;ijT&zZ4JjI#pTIJ_TgZhZ;>!a?;0mPpissu)t%k>v zys|UE9^Vw(BPP?kUhsNDQ*?qtP(LsV!8Q(8QR~3Btg}-&7FfO?j?(Tlhl3?TA*QB& z=ANKlIPhlhGaX_9d*wR4Sx405@^EdOjD}L9iAui*$#1b@ZtM=pK$#2iI_4P#ynX!ygE*DPqMJ{ooC>0F z+A?F~URLgI;6(Idq2nNX%dUs3e!Kf#ogm4x=OIa;Z|JgJPKZV1MxJk!3xe9Fz2{Z- zGnJAHx(1exiLW#bg4&za|CEfuFj$&GNoSkYi#Sy&4dvA75cQq&Vb~Q*hV$!KrXX(i z6-uUhcsm&s+-R}GCOK=&<*LSQPi|&ZB9HdsioW=46JhR*4K4K5qcN3+`ul>>DC5k9qwp}vuFX>}KU>bya&GZ})?myqu zW`Je=#@ZxRJvqxLp2doleG*>5h>KQ%atWDM3g;};(P%Ay z;WdN|-4}a$5^#`}?07NWi%0a(-k`w>Tjn&IB4U3sOy~7E(-Y4m?8-jX4fZp$0`8)q~hU^bcfwz+t$M44U1;Dd0 ztojXEXh@Q5SA;1}06sDQanb>KT9@J4P+`RHRW<7nLEgTmy|SNtjs~q~e-Y(7rp{*O z+IUi?WF4o`1l5M9vxL83iWer)c7*3YuYIY z8F}$><*o(`IPh8gUdz4-a`yfxNC0gvDLk)v*%pN+QY{~tt2CNi&-8KGq|`sMx1pin zYdOo)i+v!kFtxQ6kwW&gN%nKkt5=$M4MmKkmTcoR@&;Id_^1noWkOMg;)@1QZDTtH zg>_`}Cvm)^q2-VyzfHD=<|1di|fv+WXUE7PCTK;PdO87hsvh|s$r95l)P0#~z&6yb#F zksg zo0a-w444WmbH#Mvwotg}TC38NfTrK~FBTwC#+nD0THH}t>4J`(iTv7&1GsF*Wg8z8(8P~X%Br=53Dn8J^?uq zm{+V$Mg76C0W(*z_K|{$(n+wsAcaFguFaEG7-)_cBzP&|h|2Tp? z+&c5@)(T+Nf}k!_R65CEGTj@hlv@=Kn20s-2Ek%~@O-?%&vc)W^aZKHZk{!y^m&Ui zMdO<+R7WF>_|q3RAdUaeiN6Yie8;{SlOhYEwr-Ku=!*pB5TG#tiS)s+hzrWT?PurO zmV}|9lMw++7k1ygF#~==Oh5i`Y4!FvOcm?3`XnKVQ>1qZ{?Us_A;;Ar1a#yn_IeJU z6mA#A0E!lW=6rmUKa^A;ly`!X+xWD!{Z*7IuQnq9z2?>szj^!xm0XZbnES50c&hd$ z+_eDqD1Usa6vu!ip@`2Lcf^*T0aMi5H;V#WW~17tdGrgzt9M?fSZHhcIa^^K^Kwt ztC<8>w%rjx_kKgbPOLH)imNPW%drNNjs+dphRkcVS-f{2!u6J3u!FTvDR&W;btS0e zn_b_dho)=l82*q1$h`xGC_hkgm>KmM0mu+wu^<8Nh#w}!AB0TzxxBsy;sZCFVa`2F zJDhAzx-zi`b2$Y=dl%@MioYNN5O~y7r6Z=Z%dxPhJXiHt3jS|^W2=^s+u0Tvk(j+w zqaxIK6VF^!47$D+pjH0xnIfbSp#(OZ){6I+_qo1~YqYo=+56O!OlpuQh;cuTyUTZe zR4IC%8*0p8JbDV>4ufi7K{bfk+#t=;4Qyv&AN1At&gf!zo#;)v#2rKgJ)x~`dFzj2 zS1s=$rz5Efbbs+H9^m~2ntK-@dzd4Irz)cs-bijhyY_29mPvp+ zy^Cj_LNO5$QWi)JY;^A5XkzsjA^It@%Us{2-2*P#%?6!whbc$}#*HL_147?_$Y`phf%;f)@tK#UQ*8QYlwsu)1UEzc(FxAVvW2owXsp*a zO5D(?i>EFIy#APJ7Q|6ag>D&9K1dO{UArt-PzDDQbjsupRF}G1;vf*bKe8dQ0b;|} z_~OHJyD@>7Y%rrUM>lIiRKb7&(j)JxbN{g(Ux0`OH>PRP=m*1HT>QZSV%7q^iAXbo zIQ4Dq8kkV~BSLwJyjJk~4_1bo4m(U>QVyV?K%e6ax_C4-wliph@HY9xpIx{zIuyXo zi5_wd!mbPm+z4L_Vnfs@&$G04-uTjhCj*q`FPi-(G58o+lfe$x;HJU5^8~9mT7ej2 zFd+S&?J)F|IT-nOTrO(_2CxrmFM2Ey;Dd*0?*!{csyBho58-SmoWdis`6N7?EbDMx zg23l=@DUmCM}SJhiV2_$=CB1d-F#M?_4*pMM8cm#Vg!ISjpbO#Fe>i#o{ zNWIZE7#q&j3Ca>Mmq%ex&v{EQx54vn?%ZUYtq(F4By8j~g6GgMI|1EO`Zy7<9M~TT zKedf2N2&pv^?z#xf~`uO8rapvpLga>^dwIp#vWD*OK&RF2EI3{hySx|65Y|TqBb(;%2GvW2~wkkhe!FJHa6uLF=R zX0oxc*+98sqDiL=h=OvOiRF58{#a!XCrNbTPaj~m(h?^t6#ZzFlbuknXBBhwbxt~p zwA{OBIXw2W7nDed42?X>(j{cc(rn$(fFk#S>uz+9GCJSH+^rSCR|F`{P1(4q4Jy=v z+Q89XD!a>%9RJ}JS^+=2yx|_*4_+mB!hzBVPFiy$1Bextc!XZ+jEDu64X7q(`h0uU z1JGdz)y&p77-+T8`IaxvK!6276c;KH*f<~W@Fvu|;n;?gs?ew-%^*QR3b=vstw(-7 zJTWi}#mXLONjECD8+KXoDpTDonAy z1t`D{s*#OKVOe%RWQe6!RpGJ~=G`l!a)*Ne5 zl^N}6H>Ypky2e##cyeLb`a!E)kgMLUW8#z~zl9Dioj(FrsGOgQi$#hkQ<6c*{*xu= zK*)apHUjZsAilke6kD;8y5l`xV*I^8ym6PE3^L4ka51)d>%|aNdc@WZ<*+mFkcb+8 zd5cm%RN{Aq|CF_8mJ6bgi^ojb5iSGuKcPhu`$eZX6awcqdGrNs&;<0RCr+;KmA`bBkX$A-cl~x+CD;xC5TD!3t0hFwoRGD7K8UHEW8}MAk z0K#5mjdd9|6KJ$OR_S}VwWnezY8{qgQmLj&9~2+UlxFy#B2{L!C0`<*O~iZjxhK){ zI6A*s^;n6x)yXw^LaiBI*RdTIY^I9N7QfQ6jDHqmS_`nD%u6DFP7YafwRqw7sdkAcn zKL1o7(#L3frq5j6Ur1x?PI#-Ir1HU9;&6{FE7DkLn>4Ertk)WO>PyvzPrbHV$)D}Z ztr8B4OXu|(>-Ea^gC+%)bHG{@dsx^n7c2%ly|zQ<+zP}S;g~gqbOI|+g*PWv^Z3Ed zmGb_<*!B28|A94{fQ@T36&^aQ#9kkfz#+?^qb|c=9Kytx&#d+683F#n^&QYU)S?@M zn!ftz>q)@&$DsPL^l=lJYJ{_e6%z{V%ZBxP9|VgzL)=vHgG6g9Oa-!qFrR}H>XhGX zMkwbsRN)qoN~#5-zlmVhTwMxYpP*RUzq!@0lMiMbv;tY;H$XUS7&!WTu=ta1=y|diQk^?qD`XiaR2Th z4i#WCWcq-KQzZGis3aQxOx-=*`` z+ERoT)?A(A`WT&$V2z>$7!n^~J0#3&82O3%%&Q%MZLTKdC2K*K7YO`*HnAl6)5f;F zLX;X$Sm*@x21Rckakk@?1?n5_n1x7qU9sMp4SK*b($i6+Zl=RQ0Th(g)T6$U+DRz< zYrzS`9EB&lxikFuTCMKW{m#$}q+;%Xwl)mWXW&aHI47OQlRYt=yke&=3{aDHz5%*N zg-bv?h*TRVmqtgrm5f6ttM6IjiLPg0!*ADgJ!7R_rqM8f)@;;V_!FA?h+MBidCS%y zZE*g?N9H#w_z=GrGnr^|ea+Ij-vcoYnwkch8d>60hY0WV2Y7RH_6&M|pG5R~ncM7$ zqt<(NFAx{1l7#3GGYY7WInCci@|(GeAcxM9AA;=}p!v11Yg{fc8VZ*WBqn|8{@`Ne z2fi*0P25IyMH9!GGto`GH>!k`$&GClt_HPo6H)gQN;Tx zTAtgPNo>zcAFQ1r36oREveOU@7z`kT%`AXEFB1(bOJ%sA05A^yg<}~B3f2b_z@=a#iClr-U>?Q++?+ywzUy{i^$R6}^?V#O}!MQez@ zZv?sW;6X7|iAblmi6+Dls|nF27G6cX^1u5Q{#&=e1`)6|xy4K6?X`XfzUxAJv+M$? zzE^Est%&mfeeFbAJUBu7gbR(ZzKq?0Z5sb5G5zsa?fjZJ*hVosgz!ZNr$DL#k&)Zw zVB^PxR4IrvBeVE;=Lawr10tg{qkKYk-qeOZNW%+HtZi!ylGTy$q=Z~>gAB1%i-mRc zxnKpwb+A%{jNSmKD<*z!TkGFQKu~E(9g65p-(U`T>Dt$hL~f)8589tyn~Xycl#{fd zl>Y9gkY|SU1c~H(!C%U0; zR)jxE07QC$7)P)$`%&nmbOcR4h$5!5hfjL_uH0VJ;ByE@J?*}E?GYNBgCJ&*xOQap z4wl9T-N#lS?k)+&zfBrT$3btL;RI+6bLwYSTEzWg=&J;HZW!U3FwN?!R{+Coi{Sqwla~xR-V_5Z|%OAzmZok>IQX? zr1OGVx#G_Dfh-g;_3J34Od|U`Yi=SQVd_3f$HImon5k`1Inr)VZYKaa*h4{rOn=y< zwxe={C=+awyu_p*0{Q$Z5jJOMsu1$+U;8C`Tt%=oJJ8{Ja|-D^lvg$zjhB3G5|E6v z$+MbS1D?>uq;d|9#=i7IhngO&iiG%@+%^M)A@6(pROFgv9R|yaDcp$UbsmH5``cIf z8AXA(8EN5tYbTq7=D1xE$O&3Ixkd7!Kc5=}REQ020)(W8C~L-W^jViBgp-keG7i)P zKlucw>S24OM^7hPP3m5ExIflT~?8*o$v4Ms--{=w|lUIRq8qg+6&bA z01~veSa|ffg&dMNfjDBg>%UL)4Uq3UM`w^ob%4NMQWy0X-$HuHry zO${2j85sigodvW;L}$CmGPw{dNk=;Jt>qZ#lQg^CViKH+4?K-E_z7N(KuJf3k2I^U z>4?~=*ao-Vz^owyCqQgB?>-^*Y;9DRF& zfkMVsAdce8d8KMa*w}_HSWSVg5BxdcDSmalw|a;m45Li_1jrnyapEY}3`lpUlmf44 zl{%JmXUx>1S#|OJg)4X6C9mFjUkV$4gVDb=0e}kZ70E&A9g=f4mK5R{=LFlLl5N zO`tS+t|Hr(hz+(~unG^(xjxhEg`kYktyEQz@$Y7S8MqU_X^k>!&?VX^(!(y+OX)+5 z!69MjM$4Ej^QY{=#he!TWe#54LxKJ=>nz6fV$>}iU-)sTAVs{ieNiLVK@Qo zZNY;$m*}a|`kT6#@iYzC>DFQ-Gmj7fNS1&*Y)_w;JV4jIL5uD@+Z;+jn&2ok{np}M z=&E-q*C6Wm8VgN(z}|b4Vv*Pc?!UIvXMFq=qzmDmJ;qA+No;R%UK4j<`8`0?dopH^ zubqfVA*04D{IdBCp&i|`bY8y-961qs;^nY#s!U_d0L~>Gb@_kV`|^0G*Y^KNh3ce4 zN|siIP(qQVQ>Y|VB90}JBAi6BjG<1et&UJ+iDU{1S+c88Df^mblVOOrY#zklAbX>2|@1gSaT`1yoZtF3h4_iaZmVYtFe1VT1m*{vsD01^f*|hHu0%lP$cY4I0eI3v9yuoLe5ArjQ>ic&= zP)QJ7$|?}dNwkQ+*Vk7SE!qviJ*3gSgz}pWBm~BY9Q~97J|i9Pnh?046=Du`Cx+Tz zwbbnY4&ejY7_UAx^6JT@E|=ffSkaK%Tik&Bd(>z;1h6W$O-&lBUuH3;D-t2>$F>H? z4@ylQjRxP8@iBKXoQ{4a>w%B8cOgI#u!+A0+=@)aY|RCxl{8DlFX5Bw-IMIa|3RbU zrD}E2hSEZek*Ds7pf4w2P6q#m>dHjWdeq7Zf1zb;V;&%P=Dp^Zd3y|C1TMGbPukGI zy%f-gf|;1U*MLfcnLoD5%jpFDRWKxJ3c>)d-VI%EJRl{+mWaM{-z&Q7wsswc1=7K@ zKKbIwnP1q;(h3J3Z-9Y4n_CQEk!6(Zf0ElgyvHHkF8R=BclOGw7PtFMd`d4z_6m5V zH_3Y*MD7}^QT28dOzBSY9!T__O!RIG0__9bzcg^G-#A+gn4l0E@vi`xPu3*SuM95Y*)y|!1dw%*a82kZyL1am<*v(;wX zF>|vM-6&?i*&t@m`n!PgDGT*seV1S@XN2tfdQqxD!aWt!LGItTH z)|_s?Xr%J_Yyt_@f^Bfyp+HzX(voi5{oRg%3WI4!fYd<>&1DTdd?-VI+m%s89>OFv zNSik(@~YRAi*wFA|0`PjZ;!r+aNuu&bcz>0Lk1IWtD$p02Z7GMR9r~GrGK-;!lOe- zaqB|j)953wA#@1x-Hdjr!!6zg3VMbNwF8JEAjJo?(OOH}Af@=2%U^F9v8G&Dm+m$v zmUntn0IpQ!Q6%UNhMiFa_^(Lk3XrK-TlDp|O#Dx@yG<})XW(kZct?bmNE%wQhTP4W z=W{T0^YSvAaCLg4!-P}+u*2OjsOi*2YIwLEMuU}c1WNOAvSNepTUd|o8j34VCR@^E5;hT zEhmi^Kw5deIQ|8KdhGT-wHc@0Meb!9GuA2RAYNgV15pm&`l{RaMY6{;g^dO#~FR44D zJyWPaZUSZNW@|JkHAZPrRP~8|tq)t`+d;%~+lKoQm_5kFy#dtz zp!N?ke1EtYwA_J*22(6|S9i`c-Qq9I``9I29BieJO*uo^ z*7b+)VvjBX!(gf3cecz>@B+QOe}uZxFbs$)eXbc-Al|?`my%nAuo-E&;2^FcxXWoI zIHWGe$>D8LIeyo&4@eSb%TYz=OjMRT9vRBp%&t9UTL5_Jb@t}|z`5>2V@J0vz{j?O zWqcr6+{EVQX4O@*Z&{Ewa+42&Pq2-lZNAPweDPY)EYq)mIlp`GuC93NxX=R)j1&3+ z$C*a-b}qxH&IvQ!FR1}-XkUU7zQ!L27EF;CU3~b#j!nXzAGcTRM{wc>_A7n?zD>V^ zTn&XFj?IeJ*W+8xfU`U4Qk{yQ-6ariQ`u=YU+|wD=3LxiaI&NmF0I4Pa}B}2(Zot! zc%bcKesS}O7BT;?5l#rw)p7D+7|u8`2!oYT8-5UD`)9Bt#*c>A@O%Kn1FPJHmh%HB ziJc8GArZwhhf~hO?ILFJ$ZmQ6bHC!^jt+AfWU}~=BA-EV#R*)lNec=H9M>87ndi`| zvFRKPHHsek2VNA0?}u1(9Nqi;wGJV8Cg0o94!yJHAHiB6mKN;I6|^^61Kdnz_z?#! zY<*A(*Dq~{!z$!Y=Hl*HB_QBN3`u>F56@ika7o4dK6xO4hM3~!C{zZj!eK2fLmWd? zLMGQ8T>4|4W5#Hnh!YT?>k0yNT{3}ZMn_Y_klvs*4HB$_Y%7E7nP0Hfu?}gn}*hlzYGv8dl7;q&W(#m)RR(@~E%J-%5|k`(y)8t*;1E{e;*W9WZ~9{LkMz{^ks zJYNQ$@tAJ^yx^dpV{C(<OzChOYTB&#q)NPmEqbR31ds;lG*a|B#7FSj*jS!8E7;4ubG@+g-mBMJcy}z3zWruRNr0`X;`vkWU$1wR>w7xk+FvzLHSjn& z?-{L9g7G-~xz`ZAz+J<~H+FFJ!eXmgm(?t`TFsLusQ^7DcHL$b_H#ekC$Pn|gki3b zTaSJ1FUKDUaY>{4NBG9aF6QN>`EcjX9a@}Al1_-h!^C<0A^VU%=1_j#Cyr0<&)$N9~gmJXn{c&k(WU48`H%_4GQm5nl>m zzpgms{0gY@3tXtKyeg47=U{cG)?;HAbL3`a75>z55Fbag-dN+)%YwtvI0|LIKQqif z*X9!=PSntGF++h{r7+V2zyk23p&FWoxpY_ZC06()>L@u;hzfuwv?Tb(iZUGi0Fw|6 zM?m(Cg!9il>nKhXE2MjzTTqCr$W+kbo7KGSapf!v3GMtuaGXxNoYSQ+EzI^(a55I6 z8>p)D0X~Tl5EPBhPydtYmA07W0W_`U0>CM5(Oy*(T~?OhY|tqYwZmkWfR01m)s6z)lAmW1tY|F`?UW>V{Z6Qq7GPEm{QW z1GR;Kx3Qf?-A-r;5{xZ_sHnD5;oPvjW&jb>?&P5&G6{kyH)+T~Qy+fuCf?F(AkoMK zkVGV?Fk{kib(zMlL2#O{RVqZb?)Pf9XiQ!7MCIi3AW*a)Iyh*GDt)Rj9m_EF|CaUZ zm)B*Zj*BpIYsLKn`{z3O<}AK{iLigRjv_e*mcoB| zrWLaJYSxbFKisvw^D<<->_<_n1ZJ;F@h#PJb&p8{YBNRPHZ61YI%x1AHM2@JeGr8n zA$Zq78aPO7jO1bRx?BJ_ zl+&oLV6B&H)_be~T!3OYRLwTf)hFxEKrEsH7%L4}0-#;XzgJUj*S+@)QffMoPjcdE zFLwI%Jid#YKzM}}?7fb+yLz?}_S8J*=-54tc&NbC&f{YnrRh1+!~CSzbOAp=OyHKe zplIALP6cgMM;SAaT{KchzbbU=#?D7GEa{lw}^w4(hHSrrz)%f#inv{!&N z$VeZ+O4d^y^FPs(C;|nbW7-^p5>m)#`6=H_T)Tv!#(x_(RO68A>-NqM3iyPD;KbVw z{r(>_^x2M81G~+h6d(^jWNRfU)xIo^DVr}J2)X1R$^_3aK8UjI})vcj7g4*GW z;5@d+k_^TO-J;~1(_*N%NxjGXC*PC0HNfwZP5?0I&Ci3I2=>;rBd>D`N1W1!U~P4S z+m;U1hlUK8ToqL|Gu>ap$mhK!gp1Z4u#yiiKWO1AnMFr)=z( zOp6Zv@k`fg|uWVhV-B}ps+{-J@El@w~0@zxQb9X#uH))ct4*) zz*feCECfR_&=_l>Bu|{JG=iK)azS#B5in#zoGE@aN~4^y0|`q)aRqU&mX<=c9N!G$ z#I0qcJ^%6|OxO2IU+9CHgv@_JiP0-oRdf3M(lplBcnXlofjy|c|6nzdIYAm|cB@b8 zL&f-SPr|A51yN-|o9u9Fr@l4!x`KjI>8!W61QVW6O7zG*9smofpi!ee(#JmNd0mkw z^jXp-$p{sE>7c>dCye^EnI~2Z@Hv><9;1bQq4IQrm9=_k8oUxDL^>Eo;4pdb{h0oM zAWLDm%q?W^is7>69LSnPryze^)(nDvUf!hmAIlmHni@QCFpDbYK5*-0Zvx7>NOypI zu0T~lwqCcW6Z9B3nB(v7e|==&U}{BY;xec5uT61}lBYDXF|*cx2N+u)+Qn?~V382q z+kvU4xHY)QEoTm;d%q$EOkToWpf&oS2&gED1z?@#lr$@%)ZnNFZ`0U(vwIJidX#1;lJ$`BA_be++JmsAi zd@}P)8I9WE6Cg@dJwS6V)&vh)x5Ke5^zuVKA+byJ?5}8&iDC z%HR~vDl06oHK`$s`kt!`cjYwS_ zn#$Y786EtUmpt)j4uC>+_j8pt^b#2*k9w)D!Ii(G;ATd{V`fq$D6kHl))6L-T+=S8 zZ9`wN^}*;xX!IW|;6W>ZZXdbC{GkCH&=Lp3TcP1GQwo+KNrELqE3OJD^8E71z_faCur5V92hCeYs;g!ll2#D8$aUI3J`OsEsQ)kdhVUZhoe#kO7cNX*^(%s$iB)RH8=3g;0deX%sH*Jm1FM_ORfWt#SP00> zKL|C1x4m$U;#ut-PgClMRB7)qHjA6BP(q1cxiJ8HNvUhL8^b9e0V6V6+?x+$g3J}- zSv@>MFL+$RiP+;ecn5z-7bK#1soFN|ZKTYSRYhahatjbNWf1Uy7JZfOPCU|Ee?_`$ zE`X$ZNJ+82UYpY1#9@jWE1~vKPD&wDDg5u3`u1G=1Ydm4DjRBaR7tscd3I!zZ#A?yD2W<%6 zwf@Ks@cWY@esMk607{K~aj4o3j1rQDH^G%4a7GIEax)-7aHzT{f6x{Dw;vjpCE)+| z1n=y)p*x1o10>{ee`>cV+0NMM&Mu1@s(d{^& z`6=FujQ|(~@+MmuSl|eTErqad>b4yv{1CE`ZrQmHcRE-A_qg-box&6YxZ2%Ui9j~M zFJE6@TRi0Z^f?YR0$;~gSU}=uyBGLg&GYXBdU@GXK5{-^f+by2&BpFuMCby@-1QE7 z4Z$mPYjbfY!h6D=i7n*Bj<=-2bP5W$W3E{sNipK-4x)(x#?uh;f=H&z$K#jSXbj$! zFrLi4w)dRz8o^O+oa3RxZZF&bDRU+iW}YfKTkuA$W?)T=1UIOufqyoE@hy7X6gZy= z@Og416?2}$e4jzK7`Sl)*%%2)!}~Bj1qUhI!UPv9z#NA-?jjI>Oau^ep;+u@GZiY{ z{EBYt#vw-?FwmiT{`u^!;N1zI*X)vI69cm9fgD-Cr*mFcV-CM}VMIq`dLoc}HGH-+ zvxA-}*lJ>d+O(7}ayZlu&?t|A+?&ECG&svCg3mq#u^+z|h2J}w4g8Fg%Rdr+@6coz z!J+;;NbQV>NaFxkzwlhYHrAN`*E^7A$J1EAuL8K<1Ojtge+r6Yfw$#@m# z^H~&bq}a;f)PT4%w6>}~j_*7V?>*Fcq^d|ni2ZdODx6T4_0|uc9Tx($DnjQN_VeXH zYf-__XwE;bfn4C1@?gVj{Irx{>l%lnjM%}kNihE#iz}YvZf%$7GZlrtSwl!kk_cPVFUnQ$#l+LJAm z*jtaXG-tg}|Hk?LDBAkkg;zPNmj!Fk{I|FK?5&#TUkj|6@YEDnF@cuoU{0$maC7!@ z6MP?bHgqqW_Jl3KdT*ZOpJsnw@;kgBeE%nJ4t-`}0plu{7IJ>S4St_>HX(pL0SEYf z@~LAME7;VRMAa3^0SB%pSiHhBq$0@tiGn{&YLQxre0Yq5B_2Ike{77Y_Jp;^ttu@#%NG zxXcDI2X}B-{L+O`Xa{?vDKJwG#}|VBmjEYG=U6&sMZuso-mn=IZ)+Y7_Z))Fm9E`< zl`Z#ZK>X$#`X28&-){n4XxpvGX%4~0VF5iZ!%H~do5AlLYIRnzC(wX4@6D6EjU4KW z!-V%77sFi>AV{e2IZ?%phx5G^{GJy7Ne;h~1W0kPdsp-oIn1Ypn4{3p;|TltlCN+W z15`4g{s2CM64(HZ`XA&(nYO#>Hpe;BtAphqYF;s)BUgU|IkBH}QUpXoLFgYoe2Mez zN|b*0u$_-X-9|Wi#+fcUY%$e`oqb| z?D3x==J8!-fvau6JOVJ=bsvx5c>!=TO@a8^AEO+!TlVhJ9N?BT$f<)JiiC${guHHkf?^ zc=H2{P--}-yCMW>44eZX0&Cn}RmFKbM=jvcs0872j83L-?ptW>E0ShqED>S~Suqf*eL6 z3|+5cm%<4Y++!5Ek7cBm`rahxeQB@4$_rfiwyQZ8a>b|pY#E0jh6y%T<;kHvAR(YxRR`D*=r?iJ{wv2)cPP~S+8c2r0t(x!WmtQk zDYZX+q+rUbS9kkFcWY_suDgDetjy|SY)iG2&<6I08etpgkEEWCOQ@gp#pTxF-cYq! zhZ2&756usBkal}7g8xjL=V(dJcuA7&+wSm_BJN*ybjud6FL~o5lDGVWm*yVDnUD*y z;NBD|z|O4yArLpxjdE9UBKIJG;*0BN&Yqkv%jHO)g?1IwWRnD(A`n&c8F4$$HceDl zi15w)bbET6+T6F!$~Ok%N)jKZhTrRGoE$styOVz#$oLFplqxY@p{L_#LD0Uj>k>e;CKH75iR_yp}Db(Vh zIUzQ4I8bT9;;m=b(8kV8S=o-+c=wi8%=Py$zBhDve5J;8i82)v@x}3@#Wl$8!xv`< z7XcqBW4CmPm@CPw1o|4#txUV|<)p%fraGNx3mDavXl>43_O@e*DwFYi|sCgG7DD-?>h06c3R-peXS{NkVu@%<}0}sToyz zzP$_nqJ{AL)p^$VT^6?)UgWw!nR_QggjT(VZj?iN@3csFxXj>a{^GwnaO*?Dv3Ecy;OZe_fwC>qLW8T-iZ1%84(C0z%Us5S$ zFZZ*LkNW+j1N0XBrl$)1WHzzpJ6^`gh(Op&gY~fwep>e28@R~#syfdCCA{Pmh-3Fe zu1bNl;b%)5F_1l~n6#b@>3w)B7t`(-naX~bkHuC$YWhcORz>^OmMg)3}Dlcc{zujGs5 zCLhpg=9Z;=!E`2nWgw>VE@id?70nmOpaDze_P=)5He)9go`S zih|OC+Ia?JLCP|zIFqB(9hR@DgX`7OsAI|JO>u+zT4Bz@Oub(DElWB%`omOsqqpochp=_WjoNpfuT*m|J7#Vpg|i%o=^1yRUND=HWX*pM>gtjyQ9G zTg1n1G&min$8Dt1x!nIxWS0(ik?jrL_O(tYtE`VUlwGa3qqV#DO?&Cn+Mf)@>@w^A zYAa$(!&1Lm_@?--y;ranb)06vC|1bQ}aI(0|x^V;B8ULHh3Aa~hE& z4-VXpp4rKNU!trkmKAc42dg#G&JVC9F|FNG-kbhda$f}=M8l$>EnqDoiMO>jh|U8#0|y|U~TJFKjR}^Kl9A*d5hokS+zxKlhCu0PD!rC zsrpBMf*9hmRu9jhf>+yT)|`xG+Ierj8*^Gu?&L$td!dd@Eb)M zcI8>aHd}nhQHZ!lwB(!E*e+k_@3*|_cA`-kXjgWi{2#YQ`&{AQ^ya10DpREwJa{cbNu`atd(}|t6X8q zXQ&nx0^*BBP{KVDH3;c(q=EyC-+% zyD4@Z*TjaXMcQPEkY(aRQb40#N*H!FkAtaYlIXk|=ejKr=#h8418lrSHSWXLqg-Ep zuY#ht?^z{l*qB=omyTC$1#xAs=0VAU5|5+yE-zKMxYbu(_8HULz7UpBAheLZgg=bS{PojqncT!BsE_m}_AA}eI6xcK}r9;>EBX}AnM z1d>SFz0wqC(f4pFPhRD@^x$gAbF+!P|7wrnz(?1$ijF|Ro$3YRq7PTt!m!omr{>|~ z+QM8bPIs~`SdLiL`h&Xfe*#{9Vn-9(2_d!^PDHeS{nx^Q4UwM~IWT#XM}oM0b}XAn zx?uS@v7ooY_UeuDtsrn8dUkl$^#O>di8R+JIfZ_`*+9D{Cm-bHwI_6`AnKmty$LW(zZ(OBX{(BZ}C+EiZ0PY zll|S(A+(9uPJzj)Hp(qpWfXJkU`AyjjbtvH6j3(I7N4J_3XI@d2#jKgRYhGQQIWuK9MwwY;+omI|n+9 z)S@Ni3+||I&HZ9VTty-K-Wa}BSUBCWJzT!1e-&7C=PesznYx!cO)r1ao0zf6+{$cq zY3o}ezP5RUuc-HdHLhF!@tBd2g_&;ri3=mjc$;i<0t?M>9vC-|i!HP^Sev{4G_#c%AsZk7o0q8GAOOjavjKGq;5 z9xLkpCd(s$mN}FmwT?_Lx|RNLZnSv%iz#z-b*o2*zM2w!^yN!+!sCh3MSX95btPyc zBm<4znuAK3tZLG-kBl4=DP!_Yr)Y7goEZ%pzJz-6D(gdsff#&T=bLOmh0<*`;NleM9cvh2gyJv(< zux^mD%-uXV{>Ffx*=v$hF@A&sP$ar|vFzX)$Ka4ipU8^XU~*cUgxH+bmu|kIFX!U_ zO24*~D0LDNKuC^O^@oISdFQzj{L+Srr-Im5F^IgZ>~yxR-EWAl;)*98$_uUZMXgQ_ zhm5d%-KRP{B-$ALl9zvFhP_!C)Lh*8TeJ-$P_anBoy_nM@04GB-TBpa?<-E#%k*ze zW{S@qd^7dsTJyc(87TIx)}$Xfa|^hNDLeREO=1p)e+NNr#3oKT`W*(?vmlr@Fw^}43*wse<`G=mq|RGBVR^a zMk%sr2$2|j^o4Q#YWf$-4xfR<2wTPk)P_|4(Le|-Xl0UI8=Q*@=7zBkPfT) zya>~tc%JAs7ME*jFt$x~ehPjZktq^ZxUZb8i6M8cx}+XgI70o7Ht%7cF43}5vlS`Wi8J`Ts81WFaGN=&syy8M{A&zrB*!Q`!faRpZ z+CJq?R)#!i`B;rz7o&VX_t_fLl*ql)=2ce)bQdmLB4sd^xcV`!e++_J@vL5E1HQ;a zpopD;O%^|>F_8WgmD@OXR>)d7s~AEuM4P4m^L-BNBRWh?C8V>;$i>pnC+^Ho(k7f` zHYQk3tEtcrq{R9zWVwF2-*MSj#r^VQ(T7WaTuFDbwin^DtzM*YF2pVoaPoxh$NS~|i$fUFfTr;uk-9tM)cd_xijIPDGM4^P|84lTd zE}obgDor0(k_R~HQCW*wm*QaB-D0)%gVoO&&JD%wqtyvst1Y_jmio7J@fFn)*i3-x zZil^6E60H&(x^-oSphIaX^bTUBPaeTG$IRjlgl}30Xqd)+7>{AoA(oF4>YwcJi>iyNZj-FlB$$B)*=nl6~4wr~kRDt5|rwz1XSXYN{z1!Jo zcRj6JKY2uePUsGl*Xi(J4d>6*&C;Ein_^Eiv&OnKe+!kGxl+0qQ=mxqK!P6~*#RYh z!H~jSTurejxNiHU)#{c+XghE9v-o9R#PlTyRk4cJfaeDuJB!kslWcK>w`9#-q}4g= zQidX;>pj|2i<_(}Hc7blSH$}=140vg8Oip#4CaDXj~2%F(%7sa=olqDu&BuA!^%nvNt1o-ofEp%)Qo+Ubn&s0^tQ=0HKW zZU-@QGE?fCMh2xSoiNTNA?{vG?eKCjbBQ*}p%j`=8FenBFqvPvclt_ose9NLSLHWu z&aar7AS$R2R!K0ENfDM02{~OQ-@0vPi*~n$UUN(>^pf=k7W-1lumu}hXF5F`({}HH zd(NbHR0Lls3B~saZ+LtjfHB3`GtdZ3mi8?gXDeBV$hZtF6=Q4GBErCAQ46aAlmdJo zE3{qswjqV_%BMq#wR%<2#80tR^R8PR8=LGVswp-d_OhBvPWxn;vqZBrhkoOyTZ~b{ zMsFLZ3!NVAF@!~A?`+zE0?H##)^hjPzZu78d$Dp1SeogKZ1d6EUQ@4H1%1x3bR~Rc zn_T9e6yM6rjZmNZy#3N{%A!_}Maov>&U~>oZ60mi^Npk^vFfD}RS{E~GbMsH^xZ6K zH)+5wA&9(|H8=N#uFYuJOO(i(WrQoHf19nb?(N|#`dIc?=A~6r+{*he`R`z|=|P=? zudFlkTb9MY(V#7AT1Dw@6u=&?dp_6sg>tWLCbczy0H&1`>7OCd{}d5>%!u z_Fbjxi25udJK84@anscS$>mz91l+$J1}3nb(+b1M&2fiR_*k1JR{fI%M;2tW;s*TP zi9+BslXDQU^*XXGKx~b2*_Dw8e6iYn^7U#wK7GiN@^nEmx=Du z(!%(?FPa^ z`&cq@c0*{ky+QW(_g9oBHmDD@i0lzo(qwx78j|axUTQ+q%vy;1B7{+p>t~w0+91DDloH-|Z-wc-)2VB2=MLsIR5;sf3(EbjFr{nwkJ2>((7KUwl zv0QSn;!cTaUxJ@}lsx-UA+TVLhaDgTVkH-cl6(g3dYM!mCsNa zJ!bJ9h1`pQrGh@{F4wqlEjt(%Ef(sDm(`K10hdbip>i+o9;8DS>+0YPVFqW>?7b-) z9O5PmCtp)EcYSAmzsCo=8*68IlY7>2iMQ@iu=4WOY}cGo*$%EjJHi-lEJI2_SMt%E zKzz^dLF1JOr32OxyLpG7DM|c0uWYrNcS0ebK>w=}##M>H?U%2l^`$Dz!v4ocLW-_wx$#U(m3+MxU6yYP=8!}~hHQ!~Ac z>An+U3kjbN4dLhT6;P>XG=%LOLt%}KOME0RLBqtTYpma)?RediqyMv~Zs#JOb8!Q^ zv#8yI=LpZT?N|8J1)fd8f-=lfv9BPr93K+@^0e!?fJgA(2W3E>IR5XBO~TbST{Uod zd^+@(4jbbuN0bQ zJ;+^`w!6c-MkU!N`%l3Y*r{}FZe^~vnn1`YXxim{T_e{#1vJc8^TTn%xg!_nK-gXU zpw=OW&KrNLGSg!(?q0dw8*=z_4B_b{FmdL@fnH!W)+KLwqtca z!ZPMR!ZO~A$fEzPuuM*Ei3^A>^13s-y;sP?vKECr5>1qy_!3jf!h$k?tx?97IGnv6 zzUjq^xJ$|s(5IS7cfdhUanV5H=wLh`=%=NNA{rD`uh?ifJB20cS1G}J;p|KovT-go zs4>&A?R2*PY#Web+qv`Lb^xh1V1AmN{K|2B;`B;_xIo+GuJX%6@e+4G2H*GnP%_mU zVmQ8fg@R^=ry-SbVY(~->sydobANeD+AUpSX!n!$qT?rjk(T_WZdR&GW>&(KjYxC? z7Wk1?#G@(*SHAP$a1f{;aedq#%bW%OJAT4YfAg<}0lueqsC|2<%e!qE-`Kle|Jk}W z`l+U_*oyyJR3^ur6O}o6RnT@xOxKX7%n}@#@kdz84`1e%V%U^9^&L2%;)g88Zx~y+ z^W5ijK-$Ia(Q|}j=ID@IKXU%MPs3Fep;LjF+F$?Ld?#~6h3ySP6^;{WkG zt!uEuLJr}N*mK2J#{T*&*q}-QrntKI&tFIyu7g=zi?qW5$p07(z3=a3ai|Wc$p0^P zOY1$4u-q>q8}d-eVGZU?w-Nb!u*ZJzfrR~l-hy6=P=>^*4pe*@am=6Dwcj6(+M@m= z92A~NK*=)V%$t^x(Ac@t4N#XXkd}>F1vJG%2|=TJ*NG}fT{@ql`sFvlNXUpS07Up( z8fpME=$t>&^n!eE>oJ?zhGPank>xp1heLU|xd1C!`)p??YV#3pa?&pBx&_u#YaCVa z#Yzz6Ky4Qimgm|NZZ7w175kWJ6~o0v%bIu|h3_rG2tmw@cF+MA%YIs0;TR>Jy}Flk zhIM$Vpp2a9OnaZkD);Unm0+(1BVBC^NbOCqg#1w>@HV{$|4AN7IS!XP@=!#n5bNKD zrw2nTo_>-{T7hc=)u;>QHMx4Z%87ZP6gFQ-BMtmKx3Lq7McFc-u5CiL*EwG+RbQ`h z3N)Jv&OzAcr4@Q)rJ4SOka8M^_{vSI*O$I_+sZsKXg!aWs&R7WYaR-q@xDHJ}P za4v?GflovyIkef#uqHxf9{7l9g zHc-e=8W`>A=Ti!}$kNhW3@xiR$gys22);?Hk7e#0Br`|I*>(rX(GfB2-e0b*vSC4I zp!_d{XpPe8cN;?9(y_*h>QK);9;@V@&)^}WdgK-Q#oRu%+N;XOQJphL=!S*`Aw*Q* z#RzI)&tOG%>f|_5J1z})g3#!^ij4_I{ua1gC+2o?f}RCnqKr?Kzr$svOczYt+t?r;vJ-se%YV>9Ok@TWAgE0%p8o$u~K2%CK z8Y-_gpiXZ_^_8fF0m}zENJ>oFO3+OksE)7CY2s=iAS~tKwY~!{huDZV6hnm~gTBAB zbv8*u)Ny@ln~fodfcynR7L?nSzJPd(?}Xh?*s<30+ud{~RF7NZ?rruUhUXVR=Gz*3 zt)QUNeLYkQk2LR&AsfhWunI;+yS1?lLzEp0$+O?KLC$D;`-s#G>dLgsnU>XwQk>IK z{;!UcZ!1(Cv}r{3b0&eGojc2Zz-<2v!-e{oQeDZf_bA~h1zK@Fh@O*gZ*u4hFS~#ix%%PYQ#AvW{~TsPtzZR0<#^J#;pHkQ2B@Eg2xn8g<;ZWMA-cN zawURC7i!>CsW$v#Ujx=?2-1}koC(w5B&v!sS%p}_er3hJAII%o#vLH%DHv7t&x!m({e ziM>WB-RWGPu9gk)bz$WFHGMYhC{FxD|`icm?&PWEMzeb<7@zKx7E zvW_uipTT_3M7^K)^4IVB{rTy-JdXRE*IDlU+~>ZZrv`c&hv`qyLm-gDnpdw}gFvX3 zAP~yavoGzx%xCFmc}@GkU0cT%9gf(P@GNk zeaoVvHJheQV@RiY^)j9KshlTCO{`XiSFWg-8ya5u(9in3jEC*qx%-C?R`Z14Cs>{P zZs3O)KjO2Iv@z-zEm>tdog(k+*n#Mbhp5omJ-rhDju~S9@ua75Dx=6L@u!bD4xCXr z0KY-gW`5`ClOxBE(=)}JlZ5bi=+*Mk_ph4>8#5#mV;L(t4v66KAI6anlOB1_EHpz#~}{Ap#}W?YJPfgg@)G zI;=dGxn+L1{Boqq6Az`2$#;~(A1t{%EPVg|y@SI2cgH8hpdt6~(R3M+jz(|9Zsz{l zJjbTr(d(^CH>%Hb#NoZ^c1q#a*vpu+NwS})3?*z&9_7QH?P&-&K6vUbTh?QZws#?t zBfiI1GA|WNw!PluZ$BS8#eRA$;W(GvCztz>ECoFVNyo=k%%s`lY)%?qJGEGd5{_|v z$%-~(UXva>+fG4tQ@iOWxwp*I+pbnAOG_HK$Np4r-I(SP zn^_pW>c`k?{^5n>q5CRlQYjEOq5_?Hm}H>OKUpX93V)WiEWLbgeA&zS(9d#D7oAf> z&0&r(R~Svm!lGUS0}QV_qIs25*;TuQrm-6;exMx#r-vk7_7R$Jbeo>KdV&Tr3vYWJ z=9TT{Jji~433=Lp`i%JVjk(I9*T}$k3`g(V zy<=T~#H1crpbTv^^f*}>(mSqDd8p_Cmj{gk73Ga%wGjJp#kde2S{g$hp|^B%mztmR z-D2!MrT>MS{!x1B6+!BWOP8vZR}T;l zW!#V`pvN}yFDb+^NRBhf9I&BU8PD|KvVy>n!s8a3w8Mu|LQ$W5$0;_c6(XU6%vzk8 zQSa5e4eN7gjhTfG^QjlAv!;DBEXz?h=E!65J}4F9|CI2sIX&0;1m*-TlHqbo`rvHl zZ2xTgtk&wOdy<6H1U7#r#mBpk({7ZCzdj~?h$TAY$IaI_>BXnwHC#Caz1=Ml0MSqbVHH2CWf0Wo-&F29n3Sx@Wx^f*~-hqqQggqWruZ# z&oA;OKOFcpG)cLn2|pFASbq|648ewAAste_WN`Wz%P{Q`Du$cXX%F9}bg5TfI>xWV z6!SFe3Zva2@ubSg>zD4Fu{piYGWPQ78OoQ!E)<$77TS3{oV?bj4!=}-Ve*CTmhD{$ zbFI|+l#snHN4Fvg*!nBzALf=2SreCGvr?Zu#V)D-LhLFcmw4m|X3&O+3@XV_Q z7ff#nikh|=oikHNgR3rQGGF?7<*V7#%ug>FaQ z_PpKNpV!xsb2ulXPq#0AK7O8WzNH_Zhe*zl3>6QRcj`@SmX)3f?260(QTU->u*bQl zGGp01I%^IUpH`(?qPFsa&7$?PD-tbHsAv&eYSUqogjI@FtZ-gju3{{`>2?q&h>O7x zOKVD7yzhBKy|2jC+!LLx?K2rzL+cKR^eX1d=V|n>^s&sw%q8^(=ow{*JI9yOW7IHl z_2t3O>x~hp;ELUc$lOZ>AN(KiKhSu5MYa0oo15`BLx04*NH&Z!tT%knO=*8$d?XH5 z+gsVY`QT};X6;w?XtwAhMu&~ET#{WLxHKGZYHPidYhF0$=2aj&qVOrO!Y_*Y&W~Fk zDstXe-lVgXv!p-gYq@T5v%sqGp=p_E5c-zuWA7sG2WzPj)w((D{t0XeW-HI8`Pzpr zqP#|>Ed_>jhIYysamEYxapArnT|1K#FtNv52lI->>Hz}<0rNYp}wGoY@3wP4Lu~!kV_D;)KfRkb)EHaxDmj_FL=h; z(tz72^s6IUvgN+@eKTs?L#INogc?6qpev(g4K084;pT^%L!StrB0fF(A##N0{_$eP z3B$K8KYPB|vfW_6BAR2dbm5z*kaC{nn-g_s2p+4%V<~Yj<3fuai+jFD$~0B}1ZQJh z4qnb&rleb8Hs!O@@6$SZrkwxB%ZZosFPqs3V#CEAGJ|KU&TlQA?p14Lx3(@Qlkr-P z=L^%muC4d>#t7`0HEq~}Loc%HYHkW?x;doU&DrMFhj={6>tHgvm9@`&*J zqpV>EURR5Z6yMW1dAcZC<)zw7^huLjSLa{8(QJrjnD(DGoeH*Mt62DacWUb6l(q0V z(>oT+=frsMjasW(>)#>+cecH^9^@a(UoU!Wnq9Pb-M%vGM*9+`u`CpQWWb?-=v{{+ z^sM18eug;mwF9TfeXY69^8*u4o9SBksRFLryobPJ#k0lU3VM4V}j303M zH2dNwucF3IWcfu4=|#6|Fd?M_k(yD8q_b1mH7%-S#n=07|S1HqJFO`emn$h~oaK6bG*? z=kB##y*g*OWshqqYltVIFN`aAICjC_VKrByLsb{j*c-HiNfK5|uYQ$o$B&i}ju2n; zW>91(cCssR2cPm6Uw*&D{f(3p?65vRqg+dxJ)wP!BUmI@am#VVvb}<4Otv0-Eb1g; zTM4`KIW#@$4L4&@I%0nNBx!5#^Lw#MF;?65hVr0;TWIBYDcQ4jPtA=oAoPYZB8Nky zX8Ps<5dv*m2o=Q%2sLO? zfFC6aj=ybn3PA|vZ#WbJ33Y)`?T^s|zsdiegCFuYd%r1PK8DbMznH-fJQez9G}Tfn z<)1d?Y0w9`WTdL834R;d-*s?s_i~2ayZ4aV3;^gnu9|y6AZ&c(9}3NDXMkf)G2mi+ z{oZw59XWfLo9NA3FgpiPxSI!g9*6>54m8~y?%m{pyWMg3l7lOr{yjntw8>zx(>%Y2 z+;deteO=dpM-_J0fk#U8g6R3vO7uKDJPLPjIm%tTqQ3t*_)GD$^Syf>a$;h>zP_Tq zlA^G?PGaJ+va(|5CB!5oM8F6UFF*HtH{l}gUc7sg{F gO~kX7ms@`Fn1pEyf^J& z-uDzwpC&K#_ut+=9pEniTFKpO|5)IFV&on%anbW)f9D3DDv+Ua1}<=iJJ+wcxB;Aj zHI&39E?!Xh{lR~A{cFj+PfffW?yADvz?b)w{)P4ZkN?^EpCA5S)BIm+%AA+@=aT>E z+5b{OjC}Nepkfctzo7upO7se1e~G3<|1SESE1=^^mn-_l;5Xnh@;{0f;6H+Uzsc=8 z968)Eyby>AMDxleV>rdah;OQuLz488n%t?Q<}ZXU9il*Hp6%g%@+4hU?bMT3tY=R@ zVfH`rP*CWAIqRkC9wNt}=>;KITdt^_eLQL>*mL;^?Wv<@{g$Qu;8oEHKS!&)2rbIf zUuC^IjFcMUhd1jOCB1YJD+tmwf{K=jMS$r{VUu|HoOV;5L;11FUt9r%~9`QzzoTcMt;Ubo~!( zkvFFDl$r|8CmNZ1!|DFykT+r%SC0i~qP7Ugtn?|zdEYmX1q8Eb!$*L4o? zOUb-j*&bv37iH;>GL5r7fjRG!t+9csLmpon^4&g4F+EAn`*tag5sPXFP9*GZG;q7g zxi>7%W<*6AWvEBoM&u1ldZWz+I=H>s#JhtDy(x>HBVS(dPHw)9)(gAX4*T(lebLjJ z_yI}7bu7Cl&=&sVkqp-bXM-qhSnYDNj1p;kB_m0~L8~;uz1pQze&L;JsaL0>Zzq$6(rGQYm?PDYIp&=u*5 z6Hj>4t)0^zrR$P%7vE||Psrc`wRc8?i8#;TwSKdx@*shcl}=^u85%~elehvd3|@OD zJ1M}-#?N86x{1wlbyh40Jr=F6bbN*poXA;U=Ep;4#Xkb`hM%X=)uO2|c25)qBSIkh zA!cvbGoJ2`$Rx`|wF1A!-iiARd4g&d!i0;CwOR&mO=WN@2M3no183v|tbGXjZoN() zaTR01p4RlxUR|90QnKH4JpA@@6T5!wsxzu`B1~p?Rzvv&Zn=e<8)vA&$?8Vbt41z1 zCcx^q(#NFG*Lg9k9xLtAE!@3MKXEnqde1Npa03myYxkbM-q&kgv|t~+-|oEFXZ3h0Dmb)OqK>Qm z(LTBxfR5Uhl2F}a_Ebk`&0@7{!7O{jrdlbgZr$QH`8%g*;0n9yH z0(wZKVpyWXH-Ki8n%#HS(7jUT}W`zC71&(*IL!kRn@1yz1CNz##H@W}{gSPib+Ia@F31n!$K z>ZBXtSvBAbfk-k|YsPlmR}<=S>r=6|k&|09Dax4j&=^yTvwDY*OPs+7qiWypFt_Y& z1A?>w=IOSzP58cf`X~)VXeBh_2LfSUcrN3sIkqF70E#TdYO#(udf0c@@|+?=P1SX@6JXD7XdqB zrDt~n7ZoyPf&@1wu#C_t`}kXzFJo?QT2w5W>!0{CgZq1`9IT`=bB z!CU_OV|J+4#}K6JeNn-y8O{Rw$pDFmYGeyHmp(B@Y1i-IU>fq-obXPC6&6X52R$mapj|H5k9RV6*{rbbo**6f(a<<^forleMPPLTT%C7yRG&&_zQ5-H(OrGGkc2q zw$Qr~pP{C2!Nj34^_rRF0Cjo0&rh6VEpF#J<7-zsoO>%OvS6r)XqeJ1z_m^6w$IWo ze!uZxkF|T9HVYee37*?uc%!Z)C`sZw5xZU|QxLmb-C1k(fYCg+fwfY`fO$nR;`Yr~ zYQEcrtJQQW5w8$8C!;hHl!V0;xdr}eFB1H@OMaO}J0H)WE`WE#)5`F#>$7n_KG5yys+P0$ZubBz0swW--&{@;)Db z1!MSxpUmx(sh#y|ij=hH#Ag+Fi~Q&jH;juk;Ne&FPMA^`@f7*RN?wd_197CAfvgMa zm2?2#iq_%liRnR;5z^_pW99M#R$gmm!UKQ&!rNzg8uJ~@MfS0jlm6SDH4PNXvh3|@ z5YYX-^hM~tE%}G1hl~U~&e>bFkMw^!nkwsnyB8uN{yH)LYNXl&L2bF`zRyQ{+_g9P z^STg-Sb#n6A6xs6zFFXz4~Qpm{9)HU?EI$eEis z2vUM}xZFoCZ6*UWL-nW3S`m8bp!~8H_D@FK%g-nPNCb-4WvOmc5Fge2nd_= z51oX@1SnKNj1t<<&NOb)@YuXaB_uYpsGjEBb7*Z$`EFAPv4?^Jx=(rxq3V1psrJaR6mOGZ;YMuS zyCc%{OD7Dc=S8oDn2liKWhuzFSmZqLUh>Q&CHbEN<)V36JJlcTZ@$0a$?=0rVFuEU zDPa3SS$9t%d&thY88gf2^BNQsqbHwQsic;Ip*^pgKhw4us)R^uoMx{D3S>n>uncI| zzA158XbCIRc>C*?XeuqxA?#qT6Q+^^mI<=Edjxq6IG$SOuX}X0Ld>dP#&r#Wg*H?0<_aMKt7z7*hZw;12U#d>aiE0CTjqje1Q<(+_ZF_oHB^3)AMbY!mRop>iIOp({eF*x! zDusG39RE>lBNgqcCD3j#327$sbpmxE^ZXI$4p3cd2?Z~tX_rozug{;e2r)~th(C+; z0sF6cVh^1HoDK}S#Q z7b?28Gdzt6Pe0Q^V~zmyW*PHq-QWj z6%HE9Qs*h5Nq~BCF<#ur39#>`fmC`)FiD!$;p7Ym>O)h->NjvMA=}Fbom0UfkZKh_ zF<`RWMp_45_5k=BU!k=OUBfR^0MV3Pd5_GNgMmZo1l~U~$Mi)D2trIjFx{R~uVmn* zU79y&I)Svb8pVF#GL{hevQY#8X&^kHFlJQPf7!Pw0caTG{BaEzpHRZ%LQVE&1P2%Q_Lpn;^XPT7a#Uw98eY4zV8x1xq0 zK3B~*pbl`GaLwZC18}axLgkrgAcST$FD(rA0PB#~LX8}dWXlr3f)21dR8VuUo%b*M z#gGf&i^0M9coj5QqTtb*K94*=gipEmym^RO_HDF>2(3@5lEml!wMMXcO6fjIWIC8x?JGyD$_)6T12?Rh>I`P?W<9Tj z>>wX-NNP@x!X`S;`a>E0lF;=FM*Qbhf$GRq+1G7t&*;v84_lLJb2VPvYfd=7cqm5Jt01I)PPh+6{DGKyQ(r^e> zHR!^g$c)^F)V`zyXEraN*0Bf~NVKqY*#Qfz<>#{Y+XBLoPFUUy0t>7a7RKxYeC;1W zYuyFsc_qPK9ZTi-pH~4X@v@_2nym&W#=ez1^E?4Sq;FFm*@u)Z7=)O$zDGM5LTd?q zJz8(b1hZ)`tR#R_&JT3azYzuicU)oZ9^iZwEA7%RgNy1dpg(eM_-d*LSnCJhd5V3_ z)^?am3vhw3?pd9ODh*(NJN&Lc4+As#x=t>fZQLZ=)KM$d8lXaSB2Hxs^iQE)9A}P; z0a9!#(ZM3P7YGpgbch=6kaJ(Q?HaH~+9&jx1c48UTIG|t1eF9_>3G`nzKR1tN6gun zr_6ESQX|dsl%)>nCI3sFc?w`}zxqDv(5{++g>1zKSOjeV#sUwwg{WkMKE0`7jeYf( z^YIWB+$87PgBig_SC3_px?iCGTWlBf1h`SV-sl#ox(EQ6S3Q^a0rJ;@R8d~2_z4iz z+KIVJRSlR1Tb{E^``2H64|IS7U%oAL&&4kKL<_BzGcIm+1(vC@^0jFIz!*;Z4pIs* zU;n$D*L}wTz+THOZ69#_oMuQYMV@F4SOS}znN0f=EYWH?45vB(IEAA!jf?guA3(9z zXyrcSCW}9~<)wXNwE-&oW0T}sGf>$lNX!s}OJHj1aK~>{jsQ2cM`?`#Mu5jKCF@0D zlZVV8d&TdQh)M`BN4`$3&Z|aC zfY=JbZKTQ+nU2EobS!Xfm5>d#N6KwLQ%Q52)Mo`MTe$v!qe`j~m@WJ6BCkOr*sn|g zFUzqUuu$s#MS(pCQ7GbEWB#?W6EbELHk9G+U(0|Y?9Y0|*24q7d=TcATSj&iir%vI z?Ew@+GU=BNgv_8901FOsY&bleNl7^oYYiW)bQa^-m~l4q8+-1oT(ZX2&0y{F$hpLS zllUo0ZJ?ok^P4lQ4qNX$VCxj&tXzRJ?G~+`J>BguXbR9(fH<+Ub+&K=j~8{RLx?rZ z6X3UFVnVOf>>$cV8-y9%I9tA+lJn zTiW4cyME1`Bd1jDphH2onu$JF%awg$wUd#@@b~kJ!qy`-qtk;rd$cubdQA&cYB-9@ zOiu>sL~1I1RNXX&WQ^!vpS0@;1X@flG?3wwVc!sN|QqU z;0Tg=Jbdrdk8aWB4!-wq?gtZrZN$=;J`iIam#W+}xn2!HoiqUoFN47(;Sp%Ff@l+H z$CKMJ{|zUPxy>r`dyJU3RR~}z$ZEx5*&u-D6|u$RPNWNIYhJ!h4uBRkTuICI zoPC6L(G+%Wr8c8jy%F^`XzpKHOsp zn3c|Lo6-^g@5FJ#?*2I^5CpQ;Xf{){Vv~V%w3~4HMgBk`F16qnh?SQ&#sx)&m zrm*Q3LciOhUkVecgrKgI@}fimo$dpk-pMCZ=leIhrLZ*=VHQAy1sjFY4f7cXm-1{r z1Wt=Jwzdoka*`eQhu9uBOGGefb}m_yQC)tHa4-P3wPNdzTaqPK#C~28+r?p=*{yQc z66$SW^Pj#-+XN^Uy&)=cKU>$X3FgOeBWlWei|WGFOx<_Xy>R`Hn~V_KZoY_&L8atL zvITR*N3WGw!p1NZ9-W_Q>~l0LtoyLfQ^qpZg5`*{$MIud2b#PogGgB)c0K&C_y>jp zyZUmhxH3dNpN0IA|GT5XWcH&yIS=q!D*Lur^@!)1st z>;Vy(cPTY<$`n?1y}B6W3-RAS}*_-Kxf zo4mi%9$yNGVgc^b|3;KNK$Nh;#Q&tA5}@EbYn#(9kgvpuo;09iR4YYC%D1a6)$~(F z@4`#76FuN4#VEq=anIdZ7X66zWaV-tSNrc>XxO@cT`r>lH-TvH+5db^`8cjBJBbPB zq`XsXgCE_N3~1U)aIX=@%-~&dw6kk=0+M8xT~A?%;5$(C&GQflCP(5oPZp3jxclz%T+!_AK=RIlOD71qp% zZG5j@q|Yj20|(B8eODZ_QRnMinxs?}rv#fwH5$uIO`&MsviPf@Js4n?~+l-jnKMKqi$B7KQ0Tt>;F%8Z;h z)wyTOQpC7N3A!^;2p<~-5@8JXY@KtZZ3Mff=Lp>DRpl~uTil?5+~mK(a#w22c- zM^PHMeq!f{mzZlE%vWjQ$+3wyk|Y641e)u6=ZI|kMy^xxQ|5BBa@%j9W9lWaL zm}3<_QobYiV5bxCc3YWzFIqQj_Jl7l2yw%0OKBE;JxXnNdItRKu)eX|wuxi-R53Lo zHidK%vxeR=Kn*ai{*KOsgC-XkVu=v)|Mt+OZ{rqw7IVUJr>A7t##xO*oq$<`#cnS-iX%U5Y+f#H398yiscEQs4=mO4 zIJ%=kK3H)Ak(caep!Y+MBi@jiQH8Y)XX;C*RgulRzOeLwVAk)pE0pD zkm9oQSP9!1SxSi-xO+4h#6xxHvO3{o9To0aNgHKicU1G0;I*Vt#A32%Fg7SbDSR=L z!!qT#eCP1U)}efM+hEz|G29n4L(QtWukFZ|m*?&~MGN_W*z0$S?HZq9@`2tqd)=m= zwSlM47vr!Gx|^@BL7eQ)UXxoF>)cUGRG#1{V^62cw3U1zHP5`j%9>PJ1!KAY#SvsZwVy(OJHht@4`yG+NI2*u$(`CpSEf~1B4iD zKD_C)4KXu78j&5h9LU-+Q}7pOFWGT3pvY4!0JI`xLdXsk!Wu{jtI^lhUGQttHWrAE zckZonEU*UH{0$0VArH{XG!BKrh6sm=ywR2o@d+}!_h*ZPoI2J6fU|~u(IU{Yg4o&- zqmj9bU1!fK_vtyzRj!%%-TpH|ov19Zw*4$}z$Qqlqrs~T?L-qabx^)(xj?BzEO~V= zxG*uu@NUi&+;}pg6psw(Zo6VF@s9qaMFoju#AY|zTiU8OX#;;pU}HMkXS`iACvFBv zcV)Jr^w4DZa*IYvVlnUZeRPFUIlh3n@CDsDqLFf^4u&GCxoYUoJEh{vZQX(brqw1b zQrf*oIuUHv!5(YYl9Y~AS+jmMzi|wglCEH_Xin?Tgt*}|8bW__02Nrp`e_35Wm6 zMMn-Z2EuW(4(7 z4mDs>d=vNXdFBy5!*tnAMlFe5{@fL|6?k^wg=uh)`scOc$JUp7fPK(Rw<-iT<~5mJ zfx-=}r?PC_03B{;u=Dd4Hy4^vHB<a?h_j;R^&oVoWaMY>`Uj}Dx^kUSFr z#M$5fsQ2m)cgj&!1nCuiP41Dk`U2aG24_D(Os9G$xN7@NYdQ&a^1W?oZ&qCwRzYbc zMgH^FWE8=%^a0z6zQ20)-!x4m^x)Dr!_d6;%OPfwVIW`w+HK^v)?WLcaB{mWj8)PW z*y}}gTn12&Q3kTs7jci!PLsplV>{v#M6+NRSj{G9=FljdH_~>?2|IK%KxuFz17x+J zygi2^Qw5UYavjQYlS7^ZfuwJq3LCX6t94#xjv&6(npkN|`E~=Jw4oD5G_`cdbavX> z4RQ#V9i{-oWN6w-oc zeFF{1B0~(n9BmM5*uHyGd2@p%J!mTiz5J`SULZ0SKEn*Iv!USJC%pxU=cwQgD1%Qk z;J!U@kcaHs-0jaSC;@N%`4V$G!i~aa*5592P}o!nod#{iZ%V)0Xa2Sag^eS($XKQ+ ziF*V>T5RX}l!Mk%+@Bl|ULK#MxzH=z=@R5K@SOEEr-8D&=NAKQB%gn2mH1s%koyDT!=fwe{tt9Lpx&2QT^*D^z*& zHMT}n=Tlk}XV6aa-2OV)l4N<@wwY5hOGUj?6{{TXV-Pi%hW<0Es|&oHu;xECVjVXr znTOWiMi&m1u#J0LUP#%cf^W&hdLN~*F&CC3`q6=FV(%*_;OP~BOVS%}?0Nw;e1xsg z2?4G3N0(j9XWk3PsQ_nz9G{CJKakcxWb3*C01v`pbNhg*bKu5xu;h{)cs}tKno)u_ zfg5NT3VEDq76=)t!LCTafD3%$cl#zk6#+QWSk!e%6#KYT$zqIo+5R)i-w5#>Ab6(O z3p(bwOn}?h7m|4l{K3a_+QwmY^h;WX2crKo@C-80a3HqgbEJhTj~uDgD{OnE0v;n# z)}K9LpkvfHQTRXJ@<7C!9-M~N2Fk+IMb5Rgmy>1|v;yWCPA4P|mgD=@H>^p&^u{tk z7*!AY2~wr^r$G?=jhUBlQ4|0um6g8S1FYzoo@>NjX;-WQ{dY4iG9in=`K$HvRH5;p zAt7)Pg8Yw{OjmI*1Ditu{`9}S1z6tv^I9OK0W8G7o)28ugqg=3((*csz!KH!xxCOS zF!NmjX&xj6XdKYVp@cpHUGy2!=l3DspD=*eI6*IO_Op%o?zlD(gaygTDr+E+(VriG zoaHJ&%$YPk14VGywcDnjpHairayUvl0a(eX>bc4s7?>&ilg6P2@M zvYykPw${{{B~z@zbyE^~8|*vJM685wNsRm=PJx^Uv*cOIOM*!H%86NWrjVFc z(ODg^$gw&k-64>CB7NgBC)3_NzlwtHo-V+Zlosca|8et|Ei3OKfCc8wjD+*Z&lI~- z!bD!C>4SH6d@hYLHmlVC*E9(qeTV-k`i>$UpN2(&jon1iToQ&izEMLf1MWw z&sYVw5(Nx`!Tz>fjUOMUU;1W1?e(9cbL&2pBl(f@$^;ei8@SjD840oQohQfr`I!a$ zK_GJN{)Dj~p!ihoqxgSF?SDU9E`xnfxEee<4rpYMd7#rUWMF*4(tiq^J4P&x`U3eX z-k5HA*9}Zob~f|TKEU_gEeabNXZNoFQL!myFKF+PU)kLZcaD4kuRO7J#Ybpwf#;D{ zEz<_7_rISqtwN80yp0^Yhyftco}MCwW>J&DQ z!ky+Lz{*m)e2~=pU}}1{_E&UmAQR8;EK?3Sd!V|k)oU7Bt56ov4+H3K_&ThTdI1dV zdG+xM?W#Fg)k%n*SuhC#9W(R2>*1NyNKwNkCMEofv`GwYzZ&CsI z3-IALOAbli^WdFwH1VN=e(GK#VwR312-WAFn3mWl5v?(qIpVLy3nD83Vqu1xl*n&j z8X+?Y7XGEzArQO>Jt7Y1IM_v*WTF3lH0U4$aZ&q?NA z=VMiTz!wX5)^vDW!CL5#1cB!O5n}Q~a%-o^pnkM4-o(38WsHb#JvAFm=MV^k5n-Pjr5-p+Nor*obg#aV^9iEJWGEp zW&Z*C&An_0O0&Oc+=BYwlLYp3n`1N8ORyD9XF6lR8fJBGSjFurY>vz~FZ_3kz#q*< z`-=QBgz1Sph9q0(>8n5QO9K|SIq)~5{6;z0*5EJr%YDrju6bk@Pz$B6BYJv2h5K5y zCf)Cp9e-eq@VFDZI;j@mquc$hcj&gkv)PQdN@_I#%%eNn05NM15Xgxi;V)h30ZLfa zVK<^23_6}*EIGaHeV^I;W6hdz4%2MUG)kJOM}6Dg#Ny; zdGHLEkBBIIS5F3@(cks~HN}@HY^0B_y@&@Wk+k4s`2vI^R<@Xe_8$3x*ZUeL^B15` zV>!x@`;Zx*gbksfu+|n>|2W3q2Lw zPmm*HFS#(La(OD&Celyz-8eKR4yCzHmQQ6dGZw)I09}Vn&eK4X!0F|@^1oS&)vaFB z@%})~UhwTzdkHt#dhiXY&1+~ImiF9;hN@Oho-G6K`}ema5_ z0+Zw!7w&eNgbW}`gho!0-xk9X@_)ZQZd~G_h6h#l@v$D={P8HNsX##I4I7R>UxXRg zEQv{L-8^hh-AX{evbFW8tJqy&Tw~en9%QjI6c(*;F12Jtz;@UM8(9_o(XS2^Rqtxo zPruNxf5E6o3M{RuLjXU%8Yx^0dxSetIZqJTDn@|Fp06@I;M`&n4J^W^DKk`^`1Npq zRWOKY31f%>@+1-^;&d0edV$jOx+p+n)qFQ@5SVrmiz48pP337+IProPYG+x(?>D=V zWbigOls>fp${RYWSA9*PwYy>cSbqwey7@s|Kl#HvWnfFrElq@rHJ6b~Gf+4Xzu=y! z7{1%;th`DIHWAu1@S^7aqL z$?Y7&jC93~VXq8Mr9e1pKwdKhEKUpxg7!6brMs$bi0XA=;y0i16i+IFN6pIsV$x{V5iM zQ1!!=4K#19a(rFq^j8fnSK@uE|Df^-1W7@slPDv;s4u^Kap+Eoj1nkvpy@*;&@s(g zjpt-Uh9w|2YR1&$eHOkun_2fejd>T%>p^!|DoMM<$;a!6maIv}pjp-BK*GkI+XLoK zNxO%C-iA{BNql+r*C~=FvnJV$|H*Mc?K5_Y3EU0-HIg6W>F4{dtw6ZQTbH zheV0@z$AJZ>iQVqP&poz8~jL@UW+mQB%g`HTnaKpvc!cFr)o4ElXW$KNILR(Z80uD)8GDb9F~r0-#yg{ zY21HF{8z@^UKQEjJQ1Gfv5gVZqsLUsNc{IcKBV(h+Tky)v%dL=_1BwpPuf148!18S zPo+i!@O9nff)GsRYm2;f*9sM=AKhD6{z-AWD~IBJ>UV#|Hnh3YH=i;HK$b=q?Tp3D z!KY%(7#^%6%-kz~JT9v!R)JFe0@6Q)b-Mtix(kfuRLC7#s26CoQ+(;Ass<5DEHqt| zw(Sxy!8APjEIj|(q(Nz;k-j3U(bWcVH(0EtdlkHXM>>alcPTVHxq6w-*mS&dGBUg> zyYr*`OrqBW956@G!W*4Lm2N1b;;Mnp%@$7IXBTm+vU6{v!;;_p{(^u-MO9Uhh)at# z_{bF;2_#*+RJ2L78vC^K>xKL)+Xp0w0!s*48rDix1>zU#;m-RfTTAUPMCGsBr;@q= z9k2;-(<$DOMzIL!JzJTxyfcKL#7d(aPz75tm&Tt-c06%;c2ZUXvl9F)?gCx@04o*@KP;*H5v7CPBuYf#9#jg{`G*V6q5ZMuU@8V<~ zP}8F&>>$nw)>TP$1tMK!I1j|Mn(S9wm}7-N6{y+6YVmv!8OZmiZdWG1Q-j2n(<(fF zTdA+1Ao*RlAb&@?E=q~uoCqTwhGBAJm0UAl3$m%*V1Uk%Ze%9Ga}}rK?591lv*|8q zjJHX4K5Gibx!Q&UQ7`Te-k#)!G2D+~c4mRkWyVhE5F2WGmO;G(M`tzyQHIDG8TRTN zL1&N)l#D?JnpuQgJRim1LP^s<_ZdEb=$M>iS=avN)6o6|d0wr@hdlu9HOA9Ixx$*V z#%L=lfc*L>qy(!bV#tM6?U&y7G#}JSR**f^!%({#|1vwt$70eAa=~oea*SYlZnvPM zBkUrs))Ex(B!t^dMX-=duI$_A#`I&YeaxdKMasXQj_hqnxmJU@oiEk#?LHlo^J8EX zk9(JEL8<706tRZ5fBEC+bpRQPrF?%%i=1H-^i=0L1epl5lI#PHNRUjgnYttWbxyji zQ*pz}>Sb{B@F+-eNzXkfg2d1*0Gt$OaImI%As~gw?s?$E*01bstd6upCHic+lg7*{U+wiVdM=;^`ujQTcpHi8`7=?kR_BOfHqT?de%P5s8i=cmheh_LkD z)Z(DHB{YcXY6`^`c=7$* z?=oXexY(|A?*}t9lNG-7fyUl_ZcH5KM!3^bS|Ykb z;Cya2L#kN?Gx*?*Ytd7>w}{xc>)jgM5i4_J0=c^Ki?6TSJ+%{Xzei@#D}Y5`T#n}l z8z$Et>w-(PRPp?pZ3+3>>OKK(sk#N#Qb2|Nm30*!RU|076ZY3{Sayf?!fK5Yd}a&F zF}II*Xbn(R^Llj1&Ro%$Q+aug zEo=h9z?sRv{z0dL9Au*jC70FwO_8K!`eHUtE;^#R0ude}|Gxlkk+syZ>l@(9oV>BpN2aYsfJc(m^bnll!vm0u&H?u&Md>f=MXW#LV% z!tX#~*=MRnU@o0|5g#l2u4%K%i)Tn*9w%1|dhh;VL_8tuRKKYhj^g0(HnVYZ?IlHT z=h(W>V%1FK3~2QMWwz2Lsb9}>@%R5d;LugzeeftrgDR@jDzNiubbXsJ`*=*1+*(Qk zS-3=dfp9tGJ+1<^Cp_d-&-G??P@1HYL6sa#n7a-m>V@2^U3lNxyy7CDa+~ZTOMm-n zSHdc@SUG7IvT6IDQ9W|F^{2tu@l)~t@A zjro^j+Q=ndf9~I8nXJ_v$GD;*GS)e%Hb#7H6ZPe3FhdTn&8OY!HhGctbcvqL$31_5 zTE-0Bl&2MIXv>X4O0y%gYU7}O@kt4<`m-lKPx)RyS$9$eYXhOZ3K}6fHwqiIgJ!>64lZfgq=xBa)tFe z-OEaWktJ&h$#~&o%V~0P+6{8dXpjj1UDA9P$j}tkNY_n}NG}o?8!OU?m2m!4%`z@k zF#cK_5I_`YgX%+h@?g(QU(|o=>&PMBb8lfm;0`4+xmD_QstoTxQ1d?ixsCAI^EW>} zjPu1jjm6kU%4WU9iq8d76@fC!V}e1`Bjnoa78=fb21+dFwKA!iBRJSs+(>>g&|0#M zO4KS$F^dr@`3l@89$&z1i$4#LEAWtdK<_8zRArOhJ<*9uF|hl3!7BdW#_IPOs)7H9 z&C03=Y6E8o}z;(5*p52hK$`{`?wkFX2Kn`tIhZiOtepJ>kwX z?QcDh2SqD+rl0$aW{Rl+9c)dXl0bJ0l zB4Z+l90UBtR|)}tTp$PS76`u8;NqEmx4l|FWT3!*!@CS@Q>%*Xgi!r+gCL2Y?B=wc z#XY~;0)+Yw;7s0Yz(4`F$1c+{oX$bu-AaeN#tgak)2A&?yqn>~1;Lt2YgQJ>UVUZ7 zX&>M%tN*^$^^P%SCRIN5HW`1+;r?W|r!%T=6zC{$uNihG>C^xXP@lijb)3wgO#6xa z;I3v_l$~aTh>4UK>;HoAS!|&AR-{B zWN4HmSy4bGZUxC8IY}}hsDMPtC`lwqmW&a}IY$K~=Oi>uzna~+_ucpYeq+4x#y(@5 zbGqB6*IYGgR`}|xTFYymZY9v!T(vYYhi`)}XlADG?`PRz&q>LcV0%Sx+tH%MUx%Fs zV$)qjY!b}Wn9%Uj3RQG4js^CR@Fbz_ei8ic=&;2h!qz+`L@MVj2Yp}q>%$-bXGwQ@ z&7PMpdmhu@ddtdvp}w0c+P+0$0S;3_f(m5M5b1UI|0?pMo`yLG{7b!7B|OMLLGYY8 z?x&2MAxq7im|JKA8n5T`+Lpn=nK&ckv6)^vTm%xQAD~fmx}?LX8C5D3bT#R;{9nN| z09EOKuOutI)Ma<{IuSWS>WT8ICm)JAkYaC8^*MCvX1~pQm{6u7Ceq_X2vSx)n^gKi zgc5yYR8?%|kY$gr5VS4tOfN52x(^+)w{24WTT|2mh9OsGnsb(SXVCu~TDDljo&9dL zBB0ecGMPQ4BCfZ0{Z|y9?i->olTZgw!FdkC5ERts9h!Z*yB?_dF_teSfb!Qix77v0 zjG83$$<_e6$*r$a_Y~dT=~MI2iv2ac*U2k!7!|T()xF#XWa*9-a^&!;`|eIU*78A zOHt(u1P^J}Ze)+LzvSIH=`Ps%dtrF^eh+_8PoA_jBjW_2zYv_$Q1wt?M zAFJepR!X^y;5N1QL3%)YHT~CC5Kv6Gye`tmfN1=1-jd$%AVU8AN&(@VTLAQydi(}7g) z!X$KV8OH#qmj3J}!3PzAqaDo*Kyi$h)MpAS7@l(Ave-3sF|g>uagINem`qt7kFdVrsJiRDT?aJ`$_dgCJpG( z7q9Gx<0CO?LWkZoo%K$M^AOdHcFfBwtmQ4SAOv^r=D z`hGQyc*_MGXR5`lj|9W9pA+o6_n9Ntuwa!l?!Lf=6&}lpOR1f6X>|L!p4ZBokH*E^ zwQJ!=+k4tDbgT`Jc+0s-)7VHAuht(eQ zJ4U9Q$~`B7B@=jN9+?il4tJbw4`DAfih=Nhzk?8dh%FSrj==&Gz4wWX1m2j{(9)%| z>~SdsIN^ftiQN2#3CyUPXI!G7d$MkicX;;~du2k8`w@tP&97whgd!b`gdzoZK?f`b zN8#M{AE*=uPZ6uzmL3H6vHL{g5FJV!vt z&OQW$sNj8Jy1{J3oQ#=h58xihx!oXhdjqng*K__6nJFA)q!J@~K~&X~Ij;~67#M2> z7pp)?ruQCY-h%a6SA8Fmw>r^(SOQ&sG-WmgQBKAP0k+k~ij(@ciD;=|C zO$b-^0~$6tnUZDbByoc+*SK%Au8d#pwGQy^85~4@DcagoKV|r@&re3rT}(hu4HlFO z*04V48!cJ_QS&U!cq^y;(@3lh{GrscUKE9-OL+)l3~u$oF5>rC2{Be(p8J@psGfO7 zKB&wc&itv2LOof{SB>Y!wCrWO zm9gzw`Y-%ju{mY#xRuV~_2n%K@Z4x*N|f&eVP7c^{M|}SSnvu+&>;mn0~?M3c5esX zy1rV2xGFz5H>Wl0qtPMqlBy=>t=L?AbrtI$N3>#07}K%qqIwqDUlj|2?x*BJlu_k1 zp+x@eIU{Y=!<~C;oLJeJX4E`4uGO7^XpJyr$y^_MOTjq0F;6|dd&@(qD#{{9LHT4^ zqk74&Nb_I+h*1}J-^Oa8Pi_`=zsK*lkFdNA-YxO9YIs#cnz3~G%qVAL1LdrEN zXURg)xF&HhCWC0VCr(zHy8t7poc9>fXmY?ZBX!)(ISC@Cpeluv%x~LsH3a<0T&R|w zFKGIkwqzz(2i)@y!K$KM9TKj~<0g1XW$NzUyzChl)Ad`~5_JfC=Af~Zj}!Jm7`Ft5;*Q?KV`NKd<_c19xi_C0>zUY|ZKj1iwtz6th0BIzpKK0-2h;R;%ChKa8~f*0&EcJBoAi&L+zemr(~m z0PRry=DSl{&xx(ZgqwJaNHDW>1(HN9VDSc!on5ncDQ7&I9Rf=UbVg&d zdPz`tTh(;nc-om;k8YofJ@8hLj{>CtuEemG{7;MTE8?QY6DpCCXeGzonwb%(Jww}= z!gMQDW$<8c)n7aBccX~FJ&_O*v>4at?+EtRCIZma#W%DUCX_CS@zN8%53f2`PD|=6!hN>^+dN9L}?Gn z|J3yc_w8**!vG|dq8|v8>Zvgh0637gH<4936-Qk4+l)#$xeVq?VkKa)prF)i(W;sS znW!Lb@VN$Iwhbl`TSJsmb!b~NRqe-Y-pk|8$WupW14@^SRd%jjccUzS20h~~KGg$k zMAjbmup6vUgB--aa2#}BdqJ!UOkRugE9l)H%%S4P8|>y*@^R5z(VfN2+`dNKNg9fS~voH7JRSX!~SUQrRZ=?X2Ou%a1M-k;}g z+y!|bU;=DsX4-mTN>~Z&J*WlBV_>eBbe{f3OE^fj5o~Fe@D>1-j5E27l1FETK0Zva z^mK+iaky=OG7Ej&SUXSK9YxKq?i%rInMebxCg<>4V+bkN+a`l z)9kjAQidSF+E3sW`S#j?K@v-nrJ7}IzU=_~z)#WX?>M)8;*N0KgMmk1{909W@~-i@ z%jsg_g|u}wd-!zt^^LH;<(m!@xoa)LFeB~WvXEKZTa*35Ltc7V3<|?H0nR#V*;9my z$zN@#&$K$H;+=E$??;6jolxHIBrC;-?ax<;Og&=w36Tklx6g5CJ+vD14g)N^=vU;z{T|;i=w8vz>SRQ-*lZ-- zIdroa%3N%}2cB4H18dqe#SV7YJ~~d^#Wt%kC3vFuE~*G8U6X(fC=>K=-DoLpDO^pC zaWK_QRe_F*IvD6eP~7-GL>GdmA@Q~acUa&@mNdi*poVRQRXrhD13c&tOKJN)bZI_p zF4iW*n)#8p3#M(88G$#+8aZj5Docb8} z^sRNh*)4p^FYph-mxq(BKdKC}Mm_k@=4mDb)ouKsFXoSeQvN+7Wc!qffHeQ)G3ZR? zpu~|U-SdwqzmcKhB+WPE=pYrKn}Kr5VapyGhF!TXzehMRjE%@XHhcV}jeEKZ{wAVc z7r$za+8M;-dLUf_yH~>*4Rm>1PJB6^YnfV`|6Wjq?->}CYR60Y`sq2YbY2F9;y4qS1 zAsI*3`d{cBd~gLO=ID(o-u*Mp`J^0@N_@~2dtNHt`B`f=4tw6Jn&p=Rhs7k2so^&49 zhkhu}5C0Cirs~@v?L-dgNzwQ?SjHEt;2`}3+i?|JQx!jdj|8jvcl=rYA4U#w`Dlp7 zZAIWPf0LMlCKCdE0o~^zR6s;6`h>ka%{LF@NxvQ`81%rJbl$l0!UXC8b8@|%OnNri zKK>MFN)_4iKSPxySH13bws4+X4wwP$kc&dl0J z5^eq|bh@YM1c04_wvZI$E8+)KYI!EVNZ_=f*)PaKc@taukD}5N6bbYU9_|%Y&+FK9CmEK-0k12Q{d)^4G+5{n> z3w)#`M5+E^q5ZGlh6SK$E5!9{4gqBFA|LP;*JjD(Ch6vlg6^KMzE7vm1eW*ReoUwN zR0DGIz0FXbPyduA;6M=0zh}$FbHnaso}GLo#S1TVUhTa^*sXv0tSf5X2?3I#^sC@Z zwMY`h#9$|ln9g2#Tk3KROWnkUZ?XLhy$fU7mPaf^wd?%$!{7*3U@N@WPX zyf#E@jBtZ2Xl_GtsVLFYtQ>+lfqQTNHMq4}NFW1AFqmnOo1L7m!ff$t+QFDUSvSb% zI!zqHhzp!VXT`}qgJ?Jn;jGj?(n$HYuMJFvZMmiwLk#F$sn0;AI{WOPq;})REe#2Z zo{GBLkmauEywxBkDMtXzF}rbHiIt$SH^D~d(05?GXW>P$^*ecj^!~jaN2uy9bn0YB zPPC?UnrMVwif1GnsHlINtAVslsth)37U&0jJ;28h>sg+Mf!9^ch$CXc_hIOP34^YE zvk76^aS22*vM{l?T&QRHERdak4|iqXNhq6qm-Yr`KszM#!$jpbggg^fB=dSL3w5E> z`tG#~M1za2`0?cE8$c{QiMd+8Sy~2>2CK5)bn}|32)il@%3v&R%6ba6)xCP=SCqB? zHD(wWpCAE=(i;hwQk%d8^vS&Aclm~JVs6Zh#PCJ{JXp;QIy<5VV`qR{&5|N34GSm9 z^2~}#&s^QAN39QNL$=4Xxe{UId^+^iJQxt~chnz&Y-$oKZ6**@ub4E7PNkc0LaEZS z$7apnsg%th7iahJYIlyR$xd~>YIY6!ix7xdA0>fx$ zg(bIs4<|^B1WFUfwd1PQJPytP=k3T0#H92y2o9eCEaTt|eEI0i>9q8NGiY+O34uS{ zy04hebG_Ck+Of$J%_3US}WZO4lLj;W}8cr(yq{1K%WHXc4qj!##i@`b9ly2nb_=PU5oiiN7I z`=i{=Xd->H9w}uW)+`(rMf%0$M zG)ql-(+^Qx0uH9+AFy-<6hP=_fa$J&81~FiWr{-+xs543ew~X`&^5uH2%N;YZ!CNC zjj9uFQY!v3#91#lz7hACj!Ut#*Mw;U{IxFN#Ag`A1&0undP}O|7u;Z4wYzdUSWl?EO7ERQq9stZ{;d;-B zj`AIIarjMRaSV)|sYyOUe`PppD>zDJ=GKc?CeBOF>qcTdbr=wRe?If{6gozdr>-n|C9-``=gBu^D2Glg`+vADcX&{J23G0FS zx!Ds4YyLuL>^8#f<*`t0mKC!d`EG)EL(th?gr>0|C=rv~*o7Tt#viT%zhMP;WWWjh z+p0O3GW`Y&(U@)zV<+qw0?76(#IBWc_TbhAF+I$iL%U4Jk6UgC_7e*O8Dj1`W0{;K zK8Q-rZ_T`FctI5TS6CHyPoHOW)+eHw8 z3Cw$q_oToh6hTNFOh&T@XqvC!Odz&B%Y&{8#<1%XvNC|{dSJlzQ9wbaTMApgRSPjA z9PIa`o@%%l*TXES*MDlV+b)Z@mz`;lyUn)BQN7t$6qDm28h3$ z`7XV)_A?)`h2}7amXJ35>CPl>D70|Kd*&;XhLL2gB+(-y<5BFMzh+%1yCP2r)rnnb zFi;Z-?Fx*}l)@`+gjZ~`TXn&KfU@e(9ybNC2{e~}*?AJ4De-g|U|-%IVA-xZdw^eg zF-)r}d;;hdJTuO{z$X~qgqvxZayK>B-$*ZCZG5M+mJ;&-MB%o))Ec*Sz6bf2p1gUbf5*=2Y_^Zfis}(yE#LU|hAM6$fLZ$}NT5kIprEtmZmPuJn3T43|@ZCH=cJ zhI#`8G(Hn2#Y@RT^nl|IfyZKWR%j^~Xu09hwhJILf~xcTL+i0I`(0Wrhxfx@bTJH^rl^xbCioz39E13+s0rVR*^v4c`H3_uZjQ#R}mIvJM{ zF4@c5AMIGf1J56@F@pyTD5%L|fvzo6GW1~gs!6MCYqH8SOtK5&Bu}K8v~DoFj=vW6 zfSn=&O}b!p6IKE%3X=6=S`^R=Ui#$ByJc?#f;A-OCeE$XO>J&)3wEvlzNu@ zT~hsr5sU7Hl9I$s{c^2IBK#a%tyME&3vEE{zwS2KARYpExP=t7fSqh&f>`JexrTBC z@$0Yk-XMO518h^|p%#H7T#)pA&(S`QR&pIUq*@DPk&=XE0dJV(3Q*mt?By%5g<}4$ zMD*1K-2GykAU$#E5G%!VJkEPAN9~Lk%$cSq1V40u&%$8XWI_cUQKU%@A&PWA4IEYf z1U=#jgtQa&8xpHLW~`7rDxBa+cnOC0#hDUWls-#+1>B8}FMfiUOS8g$LmO|floR>? z%i@{GcV$03LSk@Wr`MM5od-=M#s<&Le}`1kkWy5>WXV`iuf&xmZp3#D2T|bYMJuG;BomZ6nB$&E5J7r3vLpwG4#}nZ0K@ehcnlZhyFJ! zQ*>l*@WxkaACI3Siu#ck8Ov)c4)5cnYrVtcbc8c?mMgw8s!i}2!O-tBp6M*YHZ@1VMAT=Lgfsa%Xn zMnNZUNuGXuS@Dv-Qo#X_daU!>lwE_nT^zP})~>;!Ar~VVo~u*qqT^JBbLkJa)9TtB z_N*AfkROmDA%*{8c_j6inr_5mK<<&$@OAQotd;l*stC#_-Xvs{EM8KS-q7QBB2SnO zeHZ=!%AsBiWMs3{^Z2Y1yQ=Rr=))Xtz?b@q#%c)f4xG9L=fFhtH0yy9xWR9d6nh9) zBJpk_BX@pX4Z}gvPXo`8q;%(jds<$2&;A%OIe+wNpe`wNmo`Xf5#D)02N0-v>s1=> zE{flHp;aye62f0nKB8x-+^r%t!K?;yT41e?O=X4gPh!Us*JTgPlE2%mS;fpMGdvl}IT>k!X9KyEMh z120C=1)S%hKNrDoj$vA^R(RkNqoJO1o~d;=abGA8?>;cZNZYb~Tivwqa|6+KUuWUt zB8-m?Df*g}BiwC{*qV+A@sDJ8>p)bkzJ{Hv2w#MX;v?(^JH4O4x#qf^UXB4 zpdICqO4ag%?cecf`c?CR)>|FtEQ2Zk1o5EYJu^p3amJ`tH7Vd!p5IwpKC-X;nO z;Vv2Qjly<9Nr!tBc)j&U5(T%n;|oM^3`ZrHi0T)39PVSej$JG0&x>t=k{$=mC7$ZD z^uM7&F6jlYZt>+J$bT=p0Fg%#X_!*=e)0oQ)A6|Z6?i&4G53G}@KJ}>K)ITJr@=D& zm{x)9i-uf>I6txU{PsZxJnhIUnbB6&b|q%AZwwE821p7TXT9Q`;{ zB(D^#7j(xnxe@Q;o(Ak+d&HeSqG(Uv0MUL7zE;_U1{V4)93m?{yfATuunuqNFP*>r zAVr%ffE<>ycE6O1>VW;2rLOww?8O?!b9XPV!!0Th?q4VVZhfTfB4GDCqx@CJ*hT?- z;5Moa<4GFXwSE7IpgepMcGaQV+5;v0(l07hI~1XEp-0W}Qfb?KB*NRvXI15iCXSRm zi1)okw*VtFKhY*ZMj}*e3A6^4g8ic7ELb}vG6FR5ZkTIb@fRpA*(Z0OBqe(P4V8x#{LL}#jCOd_P=2E^VMxllVY(U zJ5ss6<6J*SrBYuAKg*xbD=)+5Jq@V&vlcIRZ;IXYmlKYBU)TEJ4kdKkzKR?btsaNz zF8;CjPFqk^`s8M#firK)dKW%cHp zwFeDvO*PHHHjY|^$Nag7R0mR1!C@V~?Oi;n2dluU?*TzoTxVq2{!|7?_zX1X`~TQ{ zveRd+2gKL!l+!tGq>JeKCUZ~a0pzqJKQ$u^*abnukgr69%=F|3t7{Etq-k2Ftt>I! z-&!9V4U`m{gOng}#yqo#Lq9Yco1zxSi*=BV9ZXP9Qnc-xi|+*-$*IAy+xO4LB|?0_ zXL+t>W&7$*vMThZz0{wbruKCA0 zLk){_RBHjO{)hQ5)nw|H9Lb-`+62yBEw8SxR)vRqH_U(1NLBx; z&)&9L7jbTM^FH@-NBT{+Dx80D2KPQ`hnniYWk?3=IVjAvhid!Mec)@C%KILWG|qJL zCu}Ra_XwCYc4OYdRNFEYW<7i7+aAW$%(qKf2YO3ga$$uAXoVda+S+9;MRsF~Ze?z3 zVL6u`Q>#zr&PEDan&nsAe=$+mhlmp|uN}WXf01hqp5Am{j#geU{-6o%0AxIZ$4$9m4&sJcrShBU=>JojyJnUGfORLLrI32g&QGxm;EWy*Q&s9N5D=A8UfXjehVn z3bPV2Z8=HLhU?JKwOIpHr&bt-A;L2z{fuM9|_?6^=X2z63Z}z5+)v9;MIawFV{>3jhLV zH;Z21nQPX5TBNPa&527Z{l!g<8nKbt4^w>re?(6y+gOmb;VFyYoI;#8mF?IFJ=u|`a=09a~C$&=J>6P4T?)^Y-KEu`&>WsiGWj4RUUSK?3-WiX_n5N?6CdQZX z%$_KY8s`exUfIxFIJpV5Rqu)C;_@3fJAdU~@+x$I!RL#Tz}}JQBKl>PXJCeIMmuCO z67JEPmEyc}ODJY5RO;N_y1+0T_ta)Ds!qIQyI0clivP|Cnf<6P9B4zg`JsYc#ZhPYBzt2?ue>9_zJZ-@T_mCrf6?LxGc|Fs zB54(vEH7t(ftvJ1A|+vceQB)r@i@Nm)+BxmdS^n9b<(+PsaMd6G9A&OATHAi)>R~8 z{d_x?3j#|S`e=oL-1%-M{MQ5hw@r>ZQ#984L#kcL?TZXLofvVQPZ>^u>n3wHz z4qJ}NwjiG@D7%o0#E2@d$D*i^H#o@mA-*;f`0bx$II#53&{8NZdjB;@b&e) zKw*h)p2>-S zl)Rc{uRKRrryB>_y4!90`_S>D7j*YwHc^!gPQ~xf?F>D)6?#5RGb8A@{nzIeebyDY zJ@SDwlhQu>=)6uyKe;S&`wJx(7=%d6R|j=*P|G{TGes@V0}y%F!If9_cf-ULaKZKx=A4uxgDW$fyfpb$Vv6`VB$=(GwqP< z@Sl9r0%8$sbJ1f&AI0()*~XdEy6Zpnsd7zQIT*7uofpD0AZG8PE0Tx?4_-sDJln5b zLrr)3a%y9-c~4$yFT?ov@v7&HY;5hu!>Ia_g9E-u^Goh~Zm-NcGedVbVPA%AVXtFX zXGTjQ<}mBboDn474kF?o!OGabB$*P;rv;>!-SijC14tU{8Z|A+#I=LI=1Y5NMIX&4 z8hc8h*fYpIvm?s)RJPR3n-R-H`bBSg;e>|{Z-qJ(_rH;Sb}%6D7oK|_+&SeVkJ@Q3 z(jA5+`V}7Pi)_ceZ|2@rs46~a4K(o(OL)#_X5e#U`|cSHt({X~=vT^(aBN*Tu!Q-h&&`P~eQbFirD!3T%n1ruFC0d?x{%2d`pb)8^$5DUcW?up8 zp!Zrm+K1pMyeLp#wgUH7C}*)Q*dmck?#WFf2rSP$f57pHI{jv@+`DnV5{P~D3swlO zox1nrm^{lp6n5}I=`J$_%7Q^TkR#A6t1|pWk*plSsPL-9-M7;ThrR(N?IMrKovj*Jk>-kt0x+v6nM>GRzK9{pHt%r9s3*8m0fVx*NhDLo*RG!J>T|gnxAJYL9x(C{k30sv43=@Hrwrj( zS3<1Rc>V0n6{`853(Q~rpTNBSBExnz@c8%79{E3OC6%Yx-2WF0CvPS=dAbcPk8$ci zcrt4JRd0*E+7%kBP}L0D%?!>dM7P+!nqH-YdN`x)zPg5|7y)*<$8 z03;aXpTbO5>fAR$0LfUO6aDW9isc8{R7XZI&7|U9JoUbQtIo`r=oD^2d!v}J4W1mT z3Y{low5PbagC$@NFxaB%0*~5s4{TD_ktl!aGuj2pa+%xcH6-sH*m_Wm~$ z1%e|9+H#Ng)Hg{bjmOXJ>hC}~K$x7&IigqE^n~T&tv|*QPPsaoG5WLm!iV!@;yX$Y zX|Pu+H5(q$p(c$bJ+47G`HH*%%-h};C78FTm!$9t(U~FhS@Ew#9p3Gc)@qqhq=HMB zwZFT%CtULO!5gK{*3MZd^&T0?x9k;6e%Wk!kQ|=+&BzG-a}tTi&YJ{=xMNpU zKFuGNt|QxcE{-4M+gNJ=b{z}bG9LG)_txT?aviP08m!nW0R-x=dh9d7*q(y;SZm;6 zMjw1wq}v74n}!w?y8y}_=&%=lf{ypOV(+}-CWq5^C{r2rn5KHc&7EIh~xsp*7#MN$ELo`VA?C)0w7 z`M~wwc2tq^!&X_Mr~bMUK38*Pj++OnY@9-*hY2Bolme)$VvW);LDU71C0Quk&1Hhw z@C|O+S}O3k1)YK^njs^%ts+-Y@Ax*jjU@VHcY>-vAYcCRqgef-)>#t~$d66sk!&gY zJLvXOIDAuxplLD=e{obuHS=bLQ32%a5&T1!>M2}Tr@3Ch6L58FKzdgcbt8-icJLTp zG{9}F*hXxuMQ*u|@j)2NETV>wT?%)YY^x??=zNLmpYA;)NoUF8S z-H2u^#e8T5|7DyU=#7$5c1RPrskmRD*WI+QB-{#g^6(6MagXo7L9^A-YMbyQ?e7Rx z?+zaJv!vX^BzirPQNZwN2uy4U%mFVd7@4w{yoS)RmD8Ufzn=?n-W93~kA&a3ogjmr zs2m!$GN;Y6GS>@nPPGlrtwUeXdZ1K>E#W3%Bh?|k3RMp;faBx62Q<{kB!|{HmE4&s zI^@uPUlP8r!Bdq}{3|IVMSh}a0d8((U*1PKpPZB)UuuA2+A~oG__>dajgT4KfAxsMk_>S=T z__|mLj-A=)**`?$1MhwA=_sWQ^L9 z$V%G6RotyVB9iG@fvsJg>E&GQIeZv&FYqp`^?W05Cpzqp4nSGL`)g`82>Gj=S``IE zvUFZwxU#_sf8DNwoPsXWtW$!gQ5ZQ(r3~QU&WyPCSd2}lbw+Eb!>viqIq_?CWg=>y zpE|HV&HUg7DD-F!G38hMY-GEai?)f*8Ddw6uw^sfJIxJnm8kP_z93urRUcg2vPN}l z66<4KzAooKh27!l0?x)`Zc?4XPqM?b6P@N50#jM9{+)jh=XK zYf7M1UatVc7Axli_vD6vxEz$dI^HZ@1BHIA8W@b#7-4P@Px+eyS>%#s_a|W+TX!HJ zx78WcAK_l$ z#h<-8kJ9syO9%;QNypP#;T@mR^FW4;*1L!@EA>4Af;8_>pS?FEWvW(DX7}YOO-_H3 z5jcTlN`!^(=zMZx-1aajkSa zqZv<`X4BFvtz^K_2%B1ip#*DpfXPvEtaD8t&RG^jL`FRU&miuG*-Z0&QRn0Ui=YBW zrquQ5Y_tq4jNSIu;p>0U+|N*h5>H8f_L0@givnKmetI72tP}K2Ll-g4E1oUbg(~LV zUie^L+#{`8s1+n1^-Ggx@u>t@z%VPb6hg@;i~TTcvZ{Of5{WmSdU&s6hc-AC<{J0Y0I+%5+h5ePmIWIp|p$Ub}JpIEf+}jS1JFb zA*Bh)MX&JZ>jsCcz-ATkt34O!hObq}GRr{{^8+;FQ`A)eqt!Xy8+;@yV#UdH;1y<| z4}`aBh4v<%GY=F~F@iGup;wUwsW(Q>2Q!G(KdNr{NXv6GPg^}vgc&X6jqXF1vdo!pVx{%Hlr9eP#WyOF6t6c zS#4NTccgVD8ux^PZ1#TmU?NsOlUENuaK=qAk&=G`WBXVrVJ8`-FbBf*8M8g!OyUzY zn2%@1z1_h4HPiI^;T^5Ido)k=41ns=lDc)R+i|9+x*)R@&ik$9hi~M`)mg7-YI113 z;a=D$J}=c>4nqUfZ6E9GB&(+VJ)PTVcx7wt#fFFN`r;^9Eg`eiIZo6?H==up4Ge7x zNGm#4a%TVu*<<7Y-h2_Ed<7mMV*Tn-?+kchsp4}7#(@8AX}`jX>8#~d2zD0XIwv=L z-{ON?LbPV6u*z2-9sLI@UW=;+viUI6YLjtVA?}Z%0Rvxq0?XD6#m1k zGJa6Kw(xH8*=NuBdB}hinxx~0cTXv2j=^}A9|J9Jvy6Qm9i~Or=`95V>71Kyw$g&h zgo;g;%=`1tq=3!hOu=G9O%?`9edc1z9x{6Lf~AEVTpS$8-Cw^#x!`~g3JnsqaWbuV zg)wON8g+&O3h;V;?{qEuN}ZwJ48l}t|0r+21v%5(7DoH1r&oK0lb6aS8TIWJwO$Tqp}!wop#DEu0H z!Ujrl05<%QGC6o2c{oXWJ1I}1ik*nv$IA!iL7wZfT@avOgMYeqagxo;E89ylS{w7S zP3?3(*s*uZKk$##3$+U@OvQIXVb(iiw>T64Y%ihm7;24An(oYs3)zH!`ArT?QT7R) ziX_drmriKPr_d=^Irt0e@xrc2tiGp+%c5aw7WcwpC_+WeFvny_yq96$lZ<(b4w6Sh zG2YH`^04z05TU^NZk>0~hU(m)!ni|j2oSDPO3>+1r_9v>Reajh zZ??L|ormZ;iRMO$W5)UPxj0->d4Sbmd0BJ{ydKRgnY|TB+H#tVQU~y_|)^s^oVXWPEy1!`#Dd4#H%Is=GPh3Gu&bDonCh?9VUuI<5sE+qweQN|@!H5n( z*>QU&9X~(W>uL531NNqr47$+6N&iP=FzdWaZVoi)7Ch`MD@+s-R1@1mozvs@swhy9 zALM+G;HO}CMosvJWU0&2FWXr3dS$9ptuG&y7{7xz2=9Gd20w8LmPAgU!WxKT#z$%g zK1;IzJ6(_RjH+xUw3>=naXkOQYH$&v95PlFmOxE!0C;MXCODlps$;FpyWhy}2AA75 z!Rc0vLW8`6HoBCFat1?{-nKl&myEYVgYY&THiidMniR*~rumEP0XUMZU4#kD4X3F( zUr600M}SP{ySd@~wzUOFXD8K>2qaD^MJkKT=P{b}9Y_yt+O5)<=q(yaNCUt=Dmt>zJ3VIEbg?06dsn4i@Q0 zz$W$i59H)I?8s0t^rfgVb2%iXXVx{VjpQbMYG)0!BE<<#fH$js4BgUK6?JW*X4A$d zLEFMBQC?fJvPQzQvgQRP2jnB>_@K&>rBk1?pOjn?NK#s4*CS;rA=nbvy6b1dY5=r` z#&Rwm)LF0WJ?44g|!f~>Fl<9h9x8zde;!P*;hAJ5EPCAE; z>PV|j&_nMuqo=Vo zJPixHuENRi@SiOBZ|ikZ$pDPE01J*>SqW!o0fl8-9Sl_~AjmUJj$J2iGJJyyQ)Of& zlnj!1bZrXn{kYWK!IA~hLdV9N6XXZ(T^j$?^;xcRMq_w6>&$cRcn z#FO}NIB6wZ*+{Q-Md8tc^5~2STU$Tz?s7Y%aPA!XMS!KTZ{31|c@iqfni+9R#+9ZZNY$U6a5I5J6Ceh0+j=unoDk9M?5j*an5|k0NQR z5dyNS6)+l3eE|9gL>ljKLS*xv#~b;0u62*N795k9W609-+G)>JZr{Ro<|>-YIbg_w zjD502!0U}|9AhjAlS z_`03A-SQaH7L-{kMvUmtut65^fdX6{ALA!rSto8nJY&1h6et8a1PTF!#%Myp*!na| zt(7T`yNuA7UW$7m1PpfD-kvR()Wz*N-I@{*Qp}nKpqVQ*A*Yc=2v3V@`Cyg3C%^2{Cg%^HrP}lQ9x3j~;>OApgI@Je9U}2q;zqtze6j+z2prgt&4h$mVyARGxG+PR zA>i=@b4vgYorKECiJRbF5~IbOGDE;&BEt{(ss(shqbOz+2&Yn@GNCRcd~E*0mk22< z7c|?P;etMPQ!X{Jne$xo0mpgR5e>)tEyZ%g$F0G!<+W0%#z;R&tms@Lt5^k#He3Z^^vTjIPYrl!7 z;7(H^K#QxW94gDzp_|Z<6ubxwxy zN+RwX_FOLblY3BjLryimi*{>p*UFjSyUmaJj8avX4Sf zl~EgSXe;n8!ZX*EXWAjYaWpGBOMajWn7CC+Kzh`Hw8zf!+hO3|jKIrU&d*!hm6F4? zYGmde=`S&HFr-i&TGwtW;tZuRA91OdVlm?{ZeTGI`a?J~Y zN^g1y-RbLrLCoEU;7)#(a&Em_*$Y#jex~>VMaSzkSnv}p?LgIZgx&2*@gfCn@`bHe z+@rii0TDjkmoExesp_Idt`&>IaJHmPaBPV>g;p^kFtsZ`1mu+VmyxN+ z(8R3Idme0g|Ch9>4?#0^$Trf00mR`LJ7Ct4&V`KDl?=~v}CLK{R z?zb$1?#ZOg>m9~9kT4G9=xhCyUCH>+!i6~qNKp8zR09?~UDHu!AQkR{cnew)^)&BB zPRX!HzzLm*P|5@qoTeO~%ibDNEu@;C7B()UBP&g>AUkM_LplG;XxGV9^-P_joWAeN z-CR7k@&a*y5rd)k4Yz)*3+#v5{Lhf0u>>AMKt}bIoqG`oN_Lxi(vY z_uvA*v3Xyk3sNb{5E()(A+vlxA)%Oi|9PMKBqnvmDU(|Pq0T-4+Ex5k`|Bu3=W>!) zrg(=`qyA)}vye%XRHlAKy&Di}axyCRYh~%_7C5lSW)3N_A7OxjC6&7a-?Qz5jTCO1 z0MY)0Eq`_`uAD}y64=g-G6BV~N+Q*u7-!B=nQN{1>;!pc(XS&SSeWz?vIu;~?>9?q zM{9B_01E+f(;SpJW0vkaA^<~yuF2T71BBmqKnN9bAV&zyf#g`dz`Rqn20+xypuS36 z4zjknck2y_c1ee9Hv?}-CR8AGxdz?lB)Fh2;{q3=mL+AL@36kw2G8TJV6Lf#^GixD za58?a87lKN8dH9y_ZtssL;@M7nt3H6u{cg32JKd~mT{&ZNn=Fn?RYpZs5*G?WIZVC zZSrLXH9%37sdii>A*~``mQ?f_>-r)q-uGpvvz?p^_g>c3_>!j-nXcn@6E@Rr7u2ov zQy+wEoC&=!5Z<_T{+*ddDJJ%w)P?oWO}isE?Vn>#s>R<72nZ57wM*{2xsK2-x#|Nd z6nf76Zehm38v})Pf>!T?&);6sgC z%nj!YUkr2=Py5XoeF*>Kd-EOj`wmGZdDzV5^8O-wi6+}1^5Y&0dW;QuH?Jl3eaPOd zP)^Hn*XY*&h;>+Jz*zL1>SbCJ(W%J|D8HiUaZ+jMXK!P+C<~c*TJ(8(O$eycUulog z4$%qe!{gqIiZq{*H0Cqz7Sbaty{EU{zyZc<_?HKnxX@U=eH(lOI1_YZzsz_b8aB3? z8g9^m>9}923VA;@U#C*WJBR5sjyRPWCzWnKS)=+Abqy1UMSHdG3-^U$Yy>BI(S& z5S)*LxN;3{O+u=sOgld;h`IWZ^TKN_BLl#4qM7B42)l1sSC6=8V8jp??ddhph)hY+ zSY5SS(kzM)L!5)+#W{?Y8SPM!z_lOW6ucN3p5{tXZoVX(u~le9zKD~T7#-@su$*UItF+PWt;~a&@wGHfd?6byn|N38RSrjv! z9PQK#vi)f|C)t&*VAn0V&_$bM(UTYvlC-g~IHiZTR$koDFRD4(NfYD2rF(o}fs)I- z^PTRy6HQi>kiZ?d5p9M#0%DEAZn0LLiz39a+WAz7^_0d$CSI}xv1n&*R|f*DYaJyZ zZe8bu*f3WEBFZqsf}RtVwH^1XJo5o6I_xi;?-OFJ?4n@10mJhTd#bmn)CRdnR{?CP4sZt8r>>6* zy0@O2TNmM(JW8GLQNKIfS`1siY0r8t)ePb#BNv@S%H^d?)-ZU7`z3~{LjLY$*dGxo zTZ#qDhix9>uNT~bKsNW88Z7^ug?UtA-~NC}o0r$!m)z%Y29R6f=9eh6XMNhs)*dp8 zFFl7k!Ou^t;d7gXwKXG6e=#_6JJrO#SPh)%*019$#21zLRIgI`Flkz0jy9v%*#*VU z5gi@a!3kZp(BuIZC%+K4^YfZV8u636yEFCN<+(V;r!w|rR=DlxE?60kFpdjL&OA21 ziz~k(Qmi9z=J7N7uqm^ew7D9`vVKKud7e&+1v%U}*~#fssQ?}*xU>!klg4)MK^J1| zgn*o*&UOcc_r`IMd>D6iEHm67D}8Spjn{`XAh#2yoJPc%T9)Byh9VU2=1Rhh+%buQ zG>=7QKE*-fwd1EoKRdZ_i}MOE9qNu7EV_fwrZhyeb#Z*t{M#-C{ zM(lb4OJ!R(y|w&#R`-Io!6Ot1+vVxjT*Bx@-A-?dA6j7eH?q`M@vZIZ`$}uDWo2U&47GxopFmf8Rwa>J22Ub)oXpUHZDV93 zZU+=oKU#D`awmpIypYcYa$XFY&zC%*B(P@pV&0RZa<}!}+?}McD)rO(vZ%QzV8u^O zd`(~i-zu_{7=3PiJ$hJVZEb)$lygf&)jw<9A}B=c`jRBg_nWC+F;N~}r;IiFhNZap zB=G0C<`^e4@|J|I=00AlmM`hx8Ex|1GF=Pa@9Ak_tqa8UDal?@MXy4h*Dc2}+0WJ# zrc!dp6y)uaD*|&r+m*PjC2-2Yd2?S1i~fJwJJYBp&#mtZMNu56dXS;y14kQFc?Svg;%(c*|?o2dKIfy>zzKszh^)tV>51Syw%rr!>X*W+=k2#r_EUi1s zQ|1#McUp_X&zFe8DCu=%pNPZsh`07sb%Pj52|DO{HaVVXZ_Wq`Iu9Gs<~U^HI|dW5 z4V7(wuo$C97e^Kv%C9xG@I^6C3SQNJ$J3rk-dX`cTx6?6TTuy=% z2|Tv_5g4|OdSKj4ioodY{AFqhx@`2%*#_wx*CV71_y(qUy_BI8J=hY`1qP-di&`Pq zVVC+wypW{ak-A7b*Sku21ktD_W1xCls-(OBatV$gtrM9o?iS8lE66*}uUY0rzYsTL z=W1;-%W%bGB1f~!Q}!3-PZCVyui-c?v)1Sq^j-@G7$`yCI6^!i$g6tLmmNRyW|+*9 zO*d0#qh@vs9Xz_%!t^6J@~5#yUZ!7deeOQd&7$7X9Q8g&Zv02z0hm+s?+0Gj!oo1I z(azhw_SRd1NHUPBOc7qeRz>Ay%Lad;IWQmo%oIKQVWQi?0vrF#dsTdRU;LTsA1?7c z>q+m1Q?yKDWRbaxc5Klr9*8jxIT$#19N!TDp+J*Eh(9nXDq`R*M(X|Sjvp$X!)Woz zvBG+P(nRtg*?w_+PL@VOw_8c_uk}Lu+m&qEcY_|T)9(3j$}m~o8SLI9;1K3&B%-Qk zp9G2uk|0ik*9%Jaq{l7HnVyZZ_jS;$}g%bJ=QjXei$cj2u0OqNZtfYN%gXS*?AKeq)TVJ1Qv=P+UH#VUphv@pUucpnJ98seKQ7j6O;Ycr}%3Mp%_oKJS z(VV@afdF=6P^gOs%WBWK9rHwl1xD5V-adOI;%m|~>O!jpQx`6n^4SY_*#7=5*eY;6 zY7R%KT1YslW({H?HuXZkfUJZ36|6Oi#zI7&DX=SU*+;BU@HKQR>(>9!F{MKmV^O12 zj3GC{x}T`YVu(z)Fc+99*yQ-b70%RpQQ+y3Eo?IH$vO5yP|#J`@C_90^K|FQm`WVV z2AzVd(~JnGzgk*1k2jy0F=3N)->so!JEl#+Y|ceOSws;uK*l0%0mT+!{h{I=- zZ!Gpn>MpS*B~56L#@}4>(L!3r?q>Yr8(tl)Ma7bKlvDwcG`cdx`4|Viy#+Z@HidId zx0W9uUsGXAX>pvYyz{tHb8c87e1#cC469 z{Y1G@kdrT2YOWM5a4PH3QNZ_mBC$r#bHVW6>?7D+u;!?^Up5t>6y0aK z^Q8u)vwz#-dk;+Fy}9V(=()3F7<62asCEHlra- zPDwTSbQP4tRFC;NTOG2s@fyg;g}K3(c0X{6KR=W=?3^)+xA5)a#a?Fa*KSFcs(gr^Zl^ zp-<2e?#Kx!%lIm2!>_6OiEGk1r7TdsqiYT~TfNyQf@8bnp za7;vRv~3W5$Ok7Qni&RL^<#;;-SINcT#e7JaGAxZin)}l$fHF0k}t{nx)wYWVF?kP zQl`i#wm~MxF1{8T$#R`lh&79F0D)$NzPqYqSS>U=)i z3^Uhq&|E5RN8P==n@@;s6-h*-M==e8J3^EYC;R%n znU@>TK7pc6yW>Q$WEqe7Z4~EC{A_Q2l5p1s^K*koN-$;)MnY>rl%ZBHNs*T-5Y-E| z3eiTs-&l>sAKddpq3~y(!jzZy+Z_Gt$PUq+{-{m`4iVaWU1a^$vYgJA*ow0p2k4BK z{qQ3=ESgazlBBcCex0u2?i?dAh?jZT#o{Y!(Tjn%OA$|KiA<9HIpG0!WSnXGp@Q?b6j%crtZ2Pzlv(fD^aEf zsWe?Hh!8&Ho*elAk+%R=UhZ=xMgzu{-QH<&(;B1p?O{|CyT*wXs;RTrFlP2li6yV^ z+?f{xbwk_P*GE3VFrB@ahCb7NnCXtyM9Ec9x|6UpIa%74jqSFIvVRdJ;Z2!a?Bf*{ldvqFT#_%74U7f<21j>F*JOueYMKScb9*sYB2}6)U0Ae7|RM3Kv^U> zEK2r=Rr^b<0wKAx7X+>vFqj&CNor0$h)vvH+cfE*-2p@J>X1sdV}iQ&&p#xwWq`@a zSrN1!*~6Vcy4%Sc4(`;N-C<;wExvzAh=o*~tLg*wrBHl-WZXA)Zfj-6HjlM?tL}T? zXYp2@PmjgtUVfkn8ZA5&L;}Zis@yL={`&Xv$F#~soS(3;^w7Vx<&Pf>=Y!>0W0|=- z6@1tIL-{gwDH--tw-21<{J0PEh8kJ!G(LxUop@e#P1-V)?S>1=3cfpv|H!r+3*}`^ zb+ZPnUQl}yB~#Dx^TxNW-K^H9#6OK3&aWpFuSO(`teq`EFuPjh3&T^eiXOV{0&rc} z=3GI73T{Q98rz;TiGhhQk_3(lRosgtU>ZE~Q=|m8DCffQY7yA#(B=6FhyKiXUIoUh z%wiAHGUwMO?m*_y6J!oOxFtW0j2Le>`;Y^zwhxx&w$IloWy6N~&({3-osaGIaqPUe zEFb5>$GPxvE_|E|AARHh59@=hwKGFs=Z7hM`o+d`UBkL%EB1OpKG{uQ>&#oAWA}ng zyq(3m(>Go(Lrq7#wt=KdtQ3b!=2X7>~*Xq>JCt9Uy=y{{LMQ%mpq+Yp4AY=&citw+2LXgkBIeQ18w%=JsTn-uLf z)H^0*>V5y}0|gYab0N3$&mW+W`PnB?U45klNuB)g*MI$%st1?SYgrKh>57oy{FfiK zfHNEY#2-nH{p&~nVzzwt0de~8cU`7v4QEbTEARd7hR8$cLCPG;uI$;#zh4#ZGy}=L zi?%)QF(!X`AZ^LL1pLA7V^cW|L`sfN^x*q>rYMB z|LrxA%-8>l9r{Z%{ySsgFCQhyyY2RuTW)?}zx~%22A(or^(W9M{)fBX2B2bQ9`n0h z|FH!ZU^v8ShkWePk6j9ys*khu<1GD`_5FWpcyFzIMM6Ww{|rL4MXI9^a8TbM69=VR zuOQN11*JCqTFIX*R@+iVmg)^e#klgRajk^G*Ju_jteV+tDq}s~YdUxeV2WbBS_#iU zMGA&fLwx}A%X<;rwdGG`XQF41hmR>m8~*agL1X{1kK%V+2pKyCSWk_Ht% z@;X9g4S+z&ncNKYU)i_xDd31SNw-{ldZ6)+i*+Rn?QtsNY6u5vNVtwKTxLboMUF0- zNf+vD8jZK|Ktd3RFrv85AhmxOl7cXsK__t(4FqQg^ec^^qn@Rw4;wBbK!Nr3OA?07 z9VlN@I=LUpP7^IBAHNXiKZaCkLpAv9TaI!KlrGu(0@2ywmQcqqG7*H7K;4?w=CLgE zD!{!-aHau=n~qBWCD!BS+1<%2^r^1E0pW>)gSxE`aKNs)gQS;(qZ*-{)H>lFc2dPI zA%6pIWuS}p1SGQD+$a}eYg;IK(zM`!ZM2-8t}~!sKP~~no6J5u7UE1(i+v++5fSs~ z{8;;uMv!CKGig|?A)v%P4C_*~P~43!mY)-g6N~_oHB}MXXJ250C`GUc9GEB`qme8Bmw;r$ZoKtG z*t?;ZBpL#TlP)r_kSz}sq8i&S9#*Q+p=N++fiz>Fh%XVe$;Z-PPbt^=!p~Zko zD;7qIY>YRGfbSdHv1w7l{-`DasQ-unMaah?VlW)kP)#ENFA<`ho=CLwu4-^@!_rz1 zaP&I-eC^Y4XJqUtT8{dX)_evOBIvH82_B@(O>1>iqZ11`5dYjD+pzmW0w`BYx6|4} z$^H6QC@>d@nr0WXadlgxSnkRtjNT`h) zq;42mQY(U@n?xVUrhceM7^Rr!@k9+(M4AsK| zEvN(KI-Yy7F{c@UTYR3%7ZI$7rBB+O?=0R0suT_sjwmy12~AoR0)sBiwFbtYD<0U{ z|CbsIfYPWd9cr6w#4}ey0O;G=II!9$ksLAn%@{Ak`(m2w#MoM{2W=^Rl1x=}vGKP8 zDt}(Qx=VN-?lBWy^ zs8Sp9=Rv48Yjmf8L78YH-Uty9mRkXiiOG3*!pIP9vjg;twdavOofpn*cgU!>G!5=@ zl+!6Iqu-r2jb=x}FnZ^wUooOWAI@pdt?EuOEvqbhsIWWOVp|Q)^P%n1p z)Ht~x18gT?Wo31Zx1R=Cs|xPK`tzG zOrE%24NBO0!ISgtd2X~K)8_|ZBIYGXW%oKcNpn=K5Kx9TXR>+U&qi;e*y~m6)j9~o z|FEhmlH>33(_RKb_;uOLhNvFwXOD(Wx_*>l-H=uJGE0cC`@B3d01dZ z(rQ=Du<$fWZg*H(YoHHpd6(Y-n$Kl=wmEm56X-ZApe)@EqP5aVj|X5|#>icuf-X8` zQT6;HLfDk#6EIb{POutLcxhj3e9v28+PsNwx%*X9&L{_}(o40gL4vH$1(Fg`47HK; zh!yz+%7Q5U4o2Jxvbe=z1!Ya`?Tp&v8um)8jfh3WYISMo)gE7EuSC+Vl{^-UfOMVN z_-4ZX4o%EOk&0vo-wY;cWgx8Dv!jQfr|YD;!rO3p*!?YGRDOo|9fBdA1+{2KB*0%> zt-(9G;^Sr;{+m-I+-8?-^)8TG`(F6+rtOf@Q&~EgET#1W1wY+`%#nL@6)ng7E;G+W z(xJ9?o)|Ebc^yGLp^p;foH?*t>5<+>GxKX(q5d|h=>DZ`-IynSptuJac_hBX0x6lW zh*UBpvH+TbLr6I|z&sOih)=I)HIesfW?B!hC6SV4FCPbm2GejsIX`6JmKug(X|=0wiL1IaRZg0#(<1sNk^wk3HlBKDU0NhK z3K05<*8vBgDMeK69YGlg?44wFw)rzdevH{gkUWCVA>*15?PP-i0T(%%6O}Ow#oyB+ z0eB6v)Y=!If6@12D3|fYMETDk}mT zHk>bU$TW6!&fa&-UX}uo@_J*R-=d&SgUBT<)W`e*;a7T&1(}6L5G_-gzA<)Vx!@*hC1Hq0yLHVgrTmNbw+rUvfDEf?`*Fc;-PU+OB7U1_aPgcU$2~O^Y(A zkannZI1ubF-qsy#%*Ly1WiT`D1(BU6JkFnJRD$H{?cuH=>kKE%KqYyvM8Ef7t$a|3 z%MK@us{3zAoP<`zoP3KamU=+S2vQ7yr3Ovn5>)tFq^*FzzWu%ZKB<*s9efe64sC+V zeW3=#;`#@$c;s6UQk$p4k!vQyTI8k^*OiQ0;a0p>xouE+Z# zQvZtI$sQlH@~ZqKV!<;BBn z6P6_wBqW$wb?y4_Z+W#jI9Xqon3RwpTxeDK`v)Jt0a;i`6Mbx}kE7&&&it@V`&?Vf V-Q1}Qc3_#^Vdt-l4}SOK{{e`hmVN*L literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/split_col.png b/docs/api/paddle/distributed/img/split_col.png new file mode 100644 index 0000000000000000000000000000000000000000..cadd52bd531fa08a5b7c0013875a41dcd10b2f78 GIT binary patch literal 75141 zcmeFZc{tQ<`#+8dNl20?%9hGfwva7**^;bDDeGX$zHgO6)-2hJiR@X%nx#b9BL-uc z%5Ds08)nSR?|RqW{oK#}JWrqF`2G96I}S`U@9ny-^L(A>`8r?ML>TI8G4DCNhl+}d zSw~ylh>B`=0u>d_I>T=84$BTAmx^i+%27?tP)ALT&(IBS=jd!pMWr2)ltOR(WORSX z3MF6Gf{I$?xi^AcF3Df$7vQLBaiPXEv?efIBjM| z%e_fweqeCU=1q7faaZiChLzX&-t>$P(pk!QouoV2zn7NkqJ-t?-uqXnKJ2%>loPh& zz!;$;HO|UMeKmw$tR<}{K9Vaw{w7uY!baIDd0)shR?pJ6I5?PWtr6Yz#EmK>flYtr zqMSKH4L>1+Kl%2q5c$ZF=oH(ineltC>S=XYzhGv%v%ki=>1W=S@*NNsij0t8raGV6 zll+aEZ;a2&V&B8qcgMP5uQ=~MIDUVPb#s|;XVDzrTu1#0c;4rIVPlDj( z$jSi$-FB%;LCLw!vo;)F)UhufWuJN!kv+?EbNsbqvYq{8ZG#BWb`8s?#L0UILt)B@E6=fhXSMHS9@p27^-uY$J#%0aa%Kn9K4->*0tTv zJREVCH6-RePpW`@XLxe(O)9n%yF8yUuZNy_MOCfsRocS7bv!jZgn@O}{x`>4sA=Np z1a5GB*o9T0K0#yoW}hMTW*F(S#JS!2AwnN__l92je0ZL^=FP5;Ea5Fo5_=}^-DL>7 z!%CNP0UbwudylzV4C|5AaGGZlC-z*tZ^Wl05O&+}XchIzu#3<3IPe-Xk!X=BbI(p0 zihHme4$*uj`_cXo-IJT1W-K!I=2|?SQa^lq=G%p*EaDH`zXbR&UE62cs`W*4izk4& zi5cH2{`t%Sm3YIn6KaW~kuf$o#|?E}N+r@F4_|$BQtfK);^mT;`h$AL%8P=F?1!WB zavU8jtAynb9f_KKmXc$dE1P@jwd8YaFdFu5O1n%&#{x-8)=Os?-(uBvFhl{i% z-gJ`4m*6~8b4Kkc-t4pqJ1oYtb@wgy@`aJ4k)Dx>k=@P;)tm~CjUH?bS?~77|AW1 zTR7_&vK~>aS$$lxqvJN0FVi+_U1mV+PV$B4PcH|E=p;IK9=s?zbAIN`Oz!@x9r_V3 z-d(lGH7*!@>7llebXIlLIQ98!Z8_6A-EG9G=S<2;S`JB$ygin-$cry7MqSMAe0uWg zkgD_r=}VrKi)=%u3R|7dNlPNBq)RQD&_T#Gr+dZ+hMsmJ++K3Oq<_g-ptfk{>F$~A zSML{3IJ4opahX|~**^MQ^vvO;!}-z#>C0($X{UR1du)2x)4ZjW`v%h6p0=eU9Zg8Z z+?7fWJ*d^8uZ|o}(hd_SLb2YbeII*2PUcM@NZRxzw_ZqE+o$#(&5V*4w=e43%;-tA zI!AoBM67>Rn&g_ed~t$QZ&iQGkKm{3XVYlqH@9(p5w=KN%*UoIX7}@+d3M-`n}PWv zbMN8v`HmkCRq0yD;b>e24TmL04DD+BUX9%u|1f?6<oHG;WdTIx2TYU!K zwFrz0^dWkun?&9ux}KDna6~&2-gJ+jo^;MNe=_>2E?KVY{P64Eo#%9IZ{OP#Xdv4} zFBJ<;oNaZhv5n<$p0N>pRajN;%52$S!BpaHiAUdX9(Pff8IlRCzHJ%q662DI3(3s0 zdOG3PAk<*$t~)ExGb)qs-Ye_RNz^6o+GODwT`b6KyN$EQu}Ek43=qti9gX66?zD z!rdv;Ul!wWci&F27+Ci0?c>jCb?=#5ojv+gVcvGSZ4*5=w4%4B|DD|5fO-G%A?^xp z?cMN53f6Lp`1odrwmpyS>(xs9lda5EV$1rCQk!aG?#{g(CQ`$$K^mJ~Cuxq-AEsN~ zg{9HDcP-3hHI(+%M8IOr5OzNHJ?W-Ri7`i!lIB3j2ktmYTF@v4sIl8|| zap%kVPrf<6dTe}Q9Oa5%FC%=X2R>NO-kQ_uEz6)tbsjq@UMQJ%xbYl8d!2Zw`RUiE z^yLT3D@J0@&D2iUqH9^clfMgoCo#J3HxaycX;9~Ykc{w`gs%xs3GD}IPmh$}I58?% z$G6>kVeLT|=XG;L=SU7lj-;>HGYhl9(_2McqX1Jdo=Dr z-^C6mwt|SW>YT~*;^s{VQ)f{zR=oIzS^cermjcE{{0|UJFM387Kg10RR>lPibAR~W zThP5-d)jrhW2Uf6qpQKhtYoC>tGVlqfTD@$pX3I5jbY-Mpz;vNCIKyF3ZWztbn<2T~6 zo_@NQ3&G@r=xdAH*2X65wvzU1L%cjeCnz^T4{;PbgzKN`x)V4$48Op7mjp_~JVJYs&n0r$dQ+>e~w-YPLh#yvD5?ZjGdHo^$nHPq zYVBrCv09$^;-8AYj_IpYCf~rRb+^9NIvLw}6suH9?pdt~4;m(a+C|=FWssA7{?PQ^ zrY$Q1G3EJAeqz3D-`=dDeG2<(qG@B+&s%>Bn18UIRK`vNx-T3Gjlo*WMK@&vR z$66zbBN)$EzRlvHGko;c(UI!4-2LwM2r9$)x{TTzPSsfl92O}p0-=<5SJv=|S{lPo z`&4+sE;msvsgCem=1}L4$DC=R@^UkpZ&pv6oj%7AHF*EAkS#kqJbskTp0Q=PDI(%~ zUPMHhv~~ra+96n3`cqdML#p?+wVCxe_#U#@l{Ip<(++XZG}pO%&1Do?yQ+gs58t9+ zfkZdb)=bAvPmk&(c+EgXOMRG%4!oiUKT6cxf4 z#epB_oS%PpC4^Jaga7RZKR(ZBejU9#;n}WVuW8o7XH=?J)O2*f-z&G=Y;9fL9pE0L zn|Y?-4aPg#=I&Hf2L+)YY8@kiZ{YgFj>cvlW_r5vx8N>fH*dpjY{h(B?m*X}I`1P7 zUb@(N+~o6dadvf=_fb6l;|O{18hTs&INy&$JYb5)&GZcU)ZlKme9~f4ViL!d_VDrX zop-x!CvT*#`N!$te~QN)JUs5mi;H`Edy9EXioxCN#m~se$%#vx6+e4c6dWPy?(6Dt z(?`_Ro&V=WeqBf1*8P^7;~fu2xGNuY-J3RWPY=c8$Dtej`S0g*+WI*D>rSrje+&x@ zP#pS1{EV1{_@CDXr=Ex2l{a+sv2`|6cXR=B2JWGBM&{hv^FL1bkB|O!%b%xSb+>g> zgS&t;J(T`6>wld5*AM@G;*Wcp|LdNz(lUR&azWNE0ve$vfPzcD$grDTyAVy zp7Zw}B@a;izA4kPs!&n??_Y(qUdOZx_upju%`vPhEwl^?wQRq?(&8Rgfg#(Qf;0?# zAyohKm+F4}|Nam}q-YNd}dHD=YL--2Bm`<_%b}@kQ(Ene?Q*}fD zSJ5Tr>HXpV7+W*VSPdNSA9BQBSiAE<>b>92*C?ZhUR>gEgq>Db*6*Gmbos!Y;4@-n z0h(Fy;Bc?GJ8r1o*@cQ1n7>i;3gO?a!!tv0(1XMJV!MC07$5XQ_(T*gZQlRgQXIGl z=Gm~dqwW6~Evta7eaG)ddV!HufWzrr-J#z-I-dgY!ll!r?Elk|!3TyXz(E(7g*os2 z?$K`xtHdQ{3i@C8orCNV1m61c%e2jJ7ikH=P(|f!gWs;qb8yfe>5OZ8fA{EdnZO;r zl9w2Nw=yRZ!9mZ%pG2wt?$ImQ`LsKG6BLjA&Ql)j=hHqpc*pI`Zy)_1qx#3FetPBq z6GnA=d%gHN7cOD~M17-Bd`6R~qbUJ$BP-E6{cjDtHntzSt)}d4R!Y3`<@^s|@Y+A` z{vjkY*#}+PlE(}i6MeA{IPeFJ8$(a0+~xMst3FF@c_!zc?qX-T3t-c32}e_QffpRP z$~5&Y{GT77rcGct-#C98s~MN59;E~~LAv)8k8ogk;#K6az6~dH22qy1*(~prn z`MM?7^qT9icHH2kA-e!_&g6_XZDJ1;ehg39gm{{KG$fm-l4DPj4EN4^#=Cwp8O`2B6 zu_|p{P}?c2RfzU1IJEOn;>58Km2coCXjV1>#~@>Vu;@)7(UQ6uCeRb>1eVkQ+)Ei2 zV+>_+umn41RinctLV=74X`f#)hCT*|p51Nh4W{HZG$rc)Ovyh}@{g7L<2e6d$v^P= z|0CjvV;61hmohiRF4Z+3lMFWN#EKC#*abKO@3%H7g$cL>fXLKbo5m-S_nDDq5(J;u z?Cw;wtPHv!c5<`+5wcWTYCtR!(gi`$)(RAz(I-G!5%V1PfKQ}~O=Nf*M9e8Y@L}5! zt~Z=oD*a@Z3oV)wlshz@V40pqG>3|8XR|B_>TzPTwDa=^kwkO;_FUf zh>uz?N9MG^WyJrvjMP7K^N-#9zvK*Gby;5B`Ep?l^X*Hk7r zSE_A()d28zOYmoDKusF}<@|3!rfrP^2$psN0t`QCRik-+DnVbg|i! z#rN4Ngs(&4ZXP|z_7f%7GT8)d^%rd)(&`*O^`DhTMJcF1)B!9te*~vr;C*hB%?q;n zCg@(*^x_U&`9@2<0w8iSLQ<|}r2LkPve-*Aq*Ib83(q-;C!|Vty&KEpb=CL!bG0n} z2XutZ{pT{hofPuWQ2-9xFaE$ll~lUj%!hBM1h+EFnvGT3_nme3Y48dYh)xDi-Bq6k ziXdpD7s`aR_XOUL3=9H@ytN-7@?9`Q-8byCufgzrg?p!|XmwI0{Kgnn6J#yK6~Kd= z{j7UVRDyCxDc2wlA;%6*GY63Dm;;Sq9?aJBSi|zZSP(3%A>akWjTG?-3-Jc^+seBE z>T4lY#N~#upx$#+dtv_gWfxJ&Cj!^&d?sJ}R

mI}+9xs&^VNq+YaMx{P^Ox4{=Xgq-{eEw#GzyMo2;x3gren* zCWX_!`F(Z$YhW^y2b1@1uJI{Y$MTe2VC{>+Xh7kaXxj+Bef584N(s~=8`;(`$Dhh{DIJd(aIlO${~*Oqpz;%pCtU-66!5r7*-XweUml5jsygyA!sN zV9F8Dl>c}jhk4b3wLWDyXYKo={tlcL10dWb>HSb^es`}b1|3UYS=?fs+^ zT71!9z=uUCftGaIL-sA*2q(7YuC=+onq9RRbvMbj_E=ubdQ0|px4kp5vQG(yQ^b#d zs#4}AffD}5%>FUkH@qZ0{WlhEd0gx4`?73jJC@L35-vifgmnTGfYdr)N28c-*7;Gf zM6SYx_H;gxOwPti&?y)=KS7~@3Oj~YCx>^20RblPV(v^c2=>9ZW*BI7BCnrAf>E0N zWt5|ITC_Sr%e%qVlYZkG_4qb0)BLIl^ICE=j$rx*9Ja9v_Psn~bxa9IgLm#)P6ks* z>_^gMS|awL71%HJ1b-q7

GgBJyhD=lUZ{m}cd!&$KUkj7vrJNimVoJa zt;1b$$JB~vWY1PL+y@^4`2EXFG{?W&JLCb9&BWfQ$x+CdvZ5!!!?^%39UKW41)P^5 zpjVC=>rXHwxP|Ha9126+H?%@U15AV>+W(8sJ7Me=aw;5#RzRIl$S%VC*TL(jcpc7XHC?5Q_*59K;=lgsSf@ z>rG~3uqgm4?J~})RH665?HHfS58}YGR`JL3$PJ*Gxn<0-LAwfu981hA+w1p2wr?jS z&1qS2JHqo$bA*%&TFO#ip51Y(JsL%cQ`=XboT}ZvJ$@Hek5O3!O}ZROH_7;Y3QH2$mE;NC7wQTkck*q!l1GPtnWxEn7K#dI zMpOln{IHlZYh_q!#O=Lrlz_3Ssr~Z&grFO<|HZ^bfwNG}ZMs|UzPnJ;c){MxHb`f=04vQ>>BO7Q>=22sTItHLME|i_VdS{ zw;}CjIqK{(YA;k`R{oY}To-{YYo1Jg(yQ*b-mg_c38CIqY%7#-hL-XdI@b1}HX$?> z^Wo#)o(G5G>#&lxK7D8ZhGiInAXeO?1yVD2eL|C&Lgy)vUzC}B+e=N01}ovjUaDpb z?Ds9ZfGu`Z)E^*&X5=sM5FoXHs5b!uTN+5P{-`plvyyI`%1U^*_cvafUDtu zJ`IA@vJ}MMN|FgDmOMVoEmY?fh7h#ae3^<_pfbU)LKV86OpG(ORKy-K2wbl z>kh0OCgB!x`gGlf=YrT5(6BP;e1v5DHPX$8N9;Vi)h~La(+x)eDE(nmPPCn;KQ7bT z;g#BY5Lr@=MyXtu*A-NaF6HDMVMs_@ooC!oyo@lvDr=BmxsJr^Yw+hL^x|}F;o|;o`fjWVdC7HBRn>SOvgrrG9#wR2PQwixmOaC zs!h$}6?TPR`(nr-f=Shgoks>R{8vJ~lqJ@Qd9EYti6UV)ZaRVtuGAXbAFMi>83O4e#a-36SVmdIcZu zJLoen53+cd55MA62qAQoq!~_(*1~I~olQr98Ux{XvSXM{K(MAW7X*~NYgK#^;s=c< zS!i{Vj-H+Y4Gx5F(Mr^(qX3#q4v~OKYl6%n98qLi`}q-{$YISeL}^oIW9E5~6J7d+ zjDyg?JC=`zA#UqO`>_c~CoFXPfrSQX(cc!js7YMk-y;lBWwWkD6?zy9{BXjB;ycap z({{(};7j!(1w$HQX0KZ6dHk2kQC?%+2oR=6eH&8MthYN&o#hsE1@LzU{Ve*4TBVfUD}_9xET@{66y)NHv?8du_*D&kv}X#*~nVMBff$< zgQ5~zos#>j6QIoT{m+%I^s~-bKh2PkaIv3-n)WboBx!`myKt?ezVAwJef#_drL^;{ z6}69B=5+st;`&E56#U&IHdMHhq$7#2;g!X&6;tK4I^BT+=3V9U-3A*xcv;I_0X}&i zHnA~A!(#QLe|GGz57r#tzaw@WB%Pm}PN^E5dLB>%o@!EqIU(cXXtNn$`Ic$X`as*` zxMJm{h^1BX65aKL7l>V8$DW3JPW#l!e?cKzwh=7GSOoq{;Q>f#-d zNqhxKhD~E29K)fc=ikUXxXDV?lPu6zG!g;*Qx!F^$l+2C(4X!0AMqNw>1D;lDOR;P zpBt<1k?Cp|LyYFDX%5{*FI0%1fKm^yN4H|++AZ+1m5_y3Im8b!^D2#7$g+2lG!sjv zpG$zu25kr>yig$&TC6P5Fzk;X3tyH!*5$mj3RPX+5HkPFlq}Zy3YM%-0|Oxk8kRsT zWRQ8YxT~iOv}PkQR5YSs)E4_Wa_%t&0c8~nAT$G0a!SFdHK9`cr$Lb**d|Y?#~EV; z7c9aM2&3(F5XmzBGa31>*Dh>b94f;3?FI!uZfAR~#8cAO`FTg{c%8cocD_Hi#FP4J zzMYT@x~ikMl{EV)QRE6_=LkBcgJ!|9Yac`#Qgy21AHIbiUhPl%ARzFD7!iKk7;}YI zXXyAsGGoGk?>4|#1S6-Swwt^y$%YzO_pU#zo9JgfK3@#hx8oHEDEk4v3g(?u*9t>) z-t>6G1~C3oe+oz=*?x9j0dzMhNw5oCoxBR6f+P57AaWZA$b=uo=D$N(AgHT7OlWnY zZ=1zZ(L{jh+<%3ma0-ot;r#X~t{cL5K`jl7RamZ7AC?0^g_ZSMGJ~yUrB?Z_*(oeT zg+n8mfGyFJXYU~G9(csYU))P_Y{-p~?@abRQ4N;z2leu^_#CF6t)OUXZYY9ov}l4W zNDwnqRwe-e-!Tsp$TzMQKgcRj7oU&24^GQl#s=QatpuJR(CSCas(l&=f1VZ^9$`#4 zTJc=~=wDniw``!N9l~k#WBl{-*6d7)n1$JsU$ar|%qz^;nov(v~%Ju_e zLN(WozAQ!Q4=Nywr#bR8A>$xenvYEwPSflofJtHK0)?CfDCDHgk1?Ujtl`5$P#(R~ zObLR;DwDU=hyD8$@n+5J2Iu=NI1M*&W3rb6i}WpPT#;hC==W85p{pDrl#}vazJ^uy zTX%q^h*>$65TgYxKR=iH;q(x?{&4!&N)ipJ?aQ7)0|*<6WA37VBp9K<#937%d2tK~ zyi#8(=yddpPD76G#;-rd2uTwZ%kXW>rx_D6Xhmrls=!nX%2++$!}vp;rOO0B>Y$3K z45($OY$Txo@Bs^9{JL;>eh=^1ozo*9f!?5?Tu-;|J>Y09c3upzj=MlFL$DmT=u%w-C4z>|cY$X^S;mq5( zTd|6EF4;B#di+@&c@Y&J|$aJ6{*`?KdjsR^$jVK1U3I#5NXq5bv<-1PCEDF+6jb zAPW$QHgN$84vQzQ7HV;Wdbw9$y9;V}+UtV(1}W4Z>`x-!g7&V{i`nu3LjQzZ;Gln_ zP8(LK(q&vK)|BR--79XyPx=E?^tZ4Y%=Dggv>NYzE^1jl;l0eApx4pJeh#pdM0{oelqv%|tK@6#+0~!gqk!7OM+XRK$DU;Y>OheL#R2io z+&X{1GONIMZXMhX6UY;^daRjM6YMUrGNyW_!|IDv8m#Wq~+Y_0AiXpjYPRuW_4W@R~Ug4J$Xlzvr#-qLA>h z#HF2gJ?iq`T6Vc?=*dpp#);%-RJhlK_pQ{;9Ub!mmSfT2Hggd+k?rPW_95H|iWjXQ zAZ&Zq%dfDU&TP6K6Wh{7qd|#&ym;A86L6pPGr&z!uDR*RKg;mv-5GaQ`1)CAcqU-l zhNqWKhZ`?1`hlr_>uVJ5bu}Ebys;BWXrl=eD63&sfP}%x|HUZ=zRvG>f z6&Ua#l&0;nYMk+GzxXl~iElwE;=kV?Xq@T)VCYuBr(Em;8W6i3s4h*j0U&F!K)^Z$ zKX*0^F?~zTfR@#P58R0=e29a_Rj8kup63R3r5-B=Q(k}0a&;Y6bq8BggU1Y4K+x>aXduwlD|D<$JuQz&BHSco=UtSG=vm_d2q}ZByvxB zPx|KL=BA$*RD0pjNYv&E24iuQ^(D}j85;<0%Y(T#IkwqN+;!>E?u;v776|##g<4fZ zj}gk`FO=fx_sWD+WJB{tG^%N#Y|^l?$Ve{ZzA)QtRnBs1tI~Q=d>&E#9o;KX5yZTsZ4O47IMmnPQDXl+?R1Boh_n}w)_sR95 zMN+b0IP-jAqG(cNX89kzqGK$EM@~$5jk$Pb=4ZHF%)w?#!;&}B&)v;I%1(GZLFQ)% z`Q;GC;LQ^R0PnqMh)o0}6GnZ*<77>X@)B=gC2~%A$)45pnzshshf0O(@57IHAWA6H zb4s?j)NG~P985cs+r{_m$b6I4_m$X@)iHd4zecm+K|B2ja;DicI7*j4ha|lMi^!r$7FVMJ^jO=lYZjAR&5j>l8qCKfv$=X>8k2OC~JFmRVx$EUtTYiB>OmDWI)Mvl_!~=n1cA zyXm0qPubNo5$}1e%QGJkfO~CNC6x9+YhW}G|J+&#ypt-iyM{ds@i`oEN*@$Xr@|wi zI0NTaj~o1qI?=WWoG_6lDQXESV8ak8aFA!uXS>dqF#*G;w1IjZ4}4<9s0s=C0a}S* zg?oq_z+1S*3&##@eb!R4Pb!j8=T&K1o8MLadaSg;!himIzig%TMxp8G>LM{0uClVa z=rC%s%K8`pyM$VQlCTk2;fg74rTi>EryOjmoO|Ae!qnr=)T7an@Wu_3F{z*(ADFE3 z$PK`v4pTG>T&Af*Plmq9KWYQ379}xP~<;lUZc_0|HjkxRVM+l%4iqi-w>fKUn^?yCul{z~cnb zN*zw!3R`^3V*%m*Oc#I<^;aS)#p+f1$yJv(eCoJ#uJ9hdm9Ecwltdw{1mo!~$!|S{ z&54tNn-!bG;yWm`WtrtooXfCiEZVl;I(fd%TI$KL$?mN?YtsFX5%x_ac7=wnJS|C7 z^9FCfb>~R!YI=3h;tW&q5pNV5DroiXt&)z~W6R65XjT}Jt$Zw;u?Ze>GI zF5vR|rRx=dhI+LsT?|n2C?+Qwh7jXApf z5~N=&GV8;1VFEY`=xe4Cq1tm{6V%&5T5*4~fHv_U$0Uk}!@8{6!=s0LXh*!W@o0j3 z^P#{g9DS^4)l4G>X`il@bDAa8>mGtj(r#n{^taqmN^9McC^5_GZZruGP!T^S2Z)D< zqHBh_p^GXDv+3|^CPiG;r?YjRM=R~ef`oJ**=e8O9Jy6Jo^Oz?yV8Mnge&h ztd0_KZ%u;&laRq{o6Y5$84>-mA17Cb8^%_LU894p*i6;r5?yO#SM0ET=g*|+)C@OF zI(Auat#TH-;BSt;ou??5HMm9MzCN&Sx`B&-&s@2gA)avy2eT$xz)VG>dx_|-vhtbi zopS^suk4`y=BTx@*Da`K+!1(XHCW#UdyLB%g;ZXGa-DoNie}^GaV(MNj~HgUwRaXm ziZ|EJ35Tg1p~eKG9oA;&DF(s@S1}+e*1jk`0QwodA?@5e&viBBn{u*WXQu@v#T`7oDfQo)wKk4JU zzWvR#d8b5_g{wRpX>Y~TIQe=O8GN$~mb~*2c||h#R4l5JE`WlSKo zRc>nbIY!{wkljUZ{*a4PGdoJ3o2zkhuxzn^DuEkbrFUgHMv0f?jI*%xq9~8PEG@G4pX5(@fhz&M6eAeFpAXo-wHktcW3^wvleJmpp^)~;k2jJ(8!;s0P~v9ERiL_I zbR}epodJ`ma3n3Cfffp!astcBw^;==f-Af}h0iPVnVjT+i~Ka!EPlYgXvGbV=UW0N zn2~e?`LFwAS@Vw&F1qKm6&ES_Z9Fgec3YNf-RyBorH%VjCsCEGc`6O60~(wfQvnMv zQqT{q+&TnN%b*pD3fh_CEpur8Mu$r$R7)NW<9xXhpUn$j!LmNIP_ImVcBeW$ZoZ^44(% zwxh`pH)^~v-sB>rbt+rnr+|^WT4*=)!<8UxgUMO9&kV4>hVz8>t;yi#8qwf|uu~<9 zYfG^f4SmhzO5}UyM?qs>rX}^uXKwQ6q+XINjVZ-G;0&_G!h`4c!R+xPZ+I91jxDO51z((D0N2a(TM1MZTM@99ihJa_MBwthH*xlbN> zpELYCO1x{hHIY3I%=dD~nc21cDTd$X_#&Dok z-bvD1D0obhQN3xe-&x4!I-=ehjIA!ga=99Zn&WSCd;4vT-*;%=xxO;liaN_L@|Kb0 z8OrCFpI#fC56I7t0m0=hnHoRr(yby1HwzDFHCaF6U5M;E9W;XWZo;{sWc)_HZIq4W zsTo9(_jkscp01fuoZR1-B~y3`3+Pgp>9rsdND)DOa2X^&w0jX5d?In7Cq96TlH)cX zQxF%e4yKaLOERGl(%e}f%(_6OBa(d7^olV^nmXeJwQV$wW{&ia3WBsLn@=Q_SJmij zzUzWUTwtUoS)mTeB|-~1NCvbTKGR3SNdRee4BRZSzV{MD^XW?&Q8NjD`s)12Vv#e^8_{3NPOLgext=)?e%rUVfREh+@)%!BSk|phP?h> zd31IDNeL^vN26ff&}J>v7@gWbNr^z^XJLLx_Q~Spmp7K zN|7ZBULE8uTHlaEk;M47C&wquO>(=;d<%6bhRIztLAGNBHC#m9=A&Q@^M`Y<;kf{624GEHC|_y5ys4 z&3dpV7lR2npCYk)t$L{!pWOE3nkg*!+eEg70wJ!e*lJ6CJ%#OHPsDYW)Oh1JNj}FQ z@Ibs%Gq2$Xdoz>6PXz{+w;Ykc4%68Q$c=Vxe$nDZa=Z^b={K>x9WyiG6{u$WzVOBS ztj9{co4mnkF5Amt^J||P@aW1y;V5yyJvic3{{=d%0udphiGaU4%Sxxf9EJ#Ec6cKO z>JmxGgz?~~Gg0)JB>E&geRA)0Q7tV#AbBu)!LGVrGU4RPqh2v!J7mz=0G;Lm-v?+Q z=*W&g2KdjlU&(t;i}_se=%xf*M~Z)jxhyzSw7Gds*}{M2u|tE;p-x4nm#PD?LF@bq zt(LBJFTUzF@60&t$hx3!V|jf(heqN~AGq>4LO6$uqtPE<&Ez2&KZwyT1Pmc2h{(Yn zSJbJ|LZ{O_y6UGe*(uonIFni-h=0Knvz1qp9q?%gRcg)_$WQEC6R(;1)E8-onvi#? z78SqN`~mI7+p9Rmb83QA(vO)`qD0O%YkVQBe2I z6>_Lj%er2)eh)yWw_6J2I4~bE))K-YDm2vAlrJ9x*LI*%vT|#|AlTxr47ZH)tC^-i zqD4a>aWfK!6RYLY*%cEV#PqdjPNP|)YL;j^D&{>Q>PLcAQ4C@-?b1Pw<{-5En7+?x z5V=5D(~rF_?2Wl4i^Y$gdM~ip{9b|FNzfyFeHlq^rcCg<)U9ANC6kuT*hpSq!jt;3 zGGIAs_ly6ChKW8WuwDXS^XvGmAfz5yxh2&~y}%w==wwaBnJF@kqLs7 zD|~zi-Nc{MEJ*mcG%qU{qv&S%BX6UY*7jSjn_H5y?@7CQw;qK5&nI@?K2abi-`UVb zeA161Q&i}lDk=~(VH@2DQ23ipNN)f_Om#q+qM_VCV1F3+5gkaj<%PY^IxHHiwBTb& z9%5>)-u#T$z}y(~rpz~Cx5@MAk=f1X33}(SgYB)+PvBLB@SrK>lE!7!yyp2$b zet|swzF&5<8IL=`KtNsTmwi>1=~;qx!g)7sTfwxL58uQ!Q%%x zAjc?AlR{riadtEEeN_LvSd^QZ541>?*Oz6Z(h?Eq=_X$#P;C_XZ;slZS`6&dmR}2V z2;aJ&TUI`G-F-L}waL4`G3aVW_a&ww$si@S$$r$#x{j8Kw_a7iCsR(#W;jL5W5T*o zF|8jPneBI+(9=xW{!T#`<~Nfts31Hy#TJ(Wk5GcwlQG2ESlmL!i8CX=z6*e!{+c5$ zd@cuDe`}Gyx*L=qNu|tCbQ78IF~I{m;-F6T(ska0V%Hq#K6XxNH3I!}jFy{i-x zXqodFoA4zmG-d4i#C4B;jcSPc&69*8;X?OSH)Gla##)M@cH9A9HUW)&yb8%&Ivr%X znNLwbp#b_;7v8VD!9-wK>-42l-i#$p?v!AQv~w4#MvpYr{0+SBe#H zIeTRB$}1A0qw%;kB}?U?=>pWG&#(tf`QzL!)OB~?b!J??clWjWFPjC`LG4J%5?jrL zGl`o}P4MEu?Av<>zmf8z#@p;kJ?=Fa6TrA59M|4k3`e|ImoyFD$;}>J<*3XVP7j`x z^~)rV8d$&DFtt86jMjtYV3N&VZS1!UTC>b)K7W%*d=)Wuda}URx*lO(^mrXYhF6Smdy^3>%-sQH?S27&21Uj&OXm29Ow6iQ7u3BfX z1(w!(Xs*l6S9j%5uFLIw4D~9c;PWY!UhO3J;>J6RQZUoW0~??vL9Xsr3j{e6K}=_O zmQ?qcPh{c4M{#!Wj_#p*Kuv3OM{VG$FrX%`wzhRFgZcm@R;iRTkPCOCuKCvjI)he6 z9Fqz90L}d$tvLbrPZ0+?0idcaP^|e_$dIrT!vL@^{g=7tAJ`hV?U!xMn>Z@Cfx)l_ z@-LOZ1245@1$~dQMz2l=<}??OzFgKCU9A!iY|7zfy2-G$FQM9b)P~a!kiQS_zRA!K zqA@tn*7M=qbex)Vu&dC3NWOZof9;U!INV7u<4{l4oedp(p@|?O&Wk}-vV+v#0$vU; zestD)_K+!|{U~eTr)~E9fN|rd?P$0K@dNuQ?8!RJ*)&4ZJog~1M$w5hX|y44R#V&2 zsZ81KtKN89DPFbt+@H62Uh&Qc70WCr);7&bmz8f~ln7if-XMuIRU|eBb20#jy$-|X zPqGE(E?aLBIW4o~W`tnb+pd7@00fpx9pTHkWN-P^WrMNIK=LSuRRGCR;kx+Ar;Vau zM%%_7yt+k88_FO1IB3oOL)@|I6rCqRjQ+4|hdUo5ILUYog^sSirZKeEK_zoMg0f(p ztL#Xa8D)1SUiWWCx;7(DQFi8VsEw%X`Ytpb-nsC^5eX?mNuKxw&yf{z>oupbpf{;C z<_#W`CNRvm_IXd7XIa#B$~atcW2a@ZI&c#Ss%PGSx%}#Yg(|{|R-Zy(wF_o#qTe%c z6>uMod-oHtG^z;`)h^0_q|IF;Y1}Ke=G=-#%uW&WDN%MjR&`UdjT7C7#X^wIle~Mz znhy1t$$$NPuc+bGHK2_u*mp7Vs&6xSzrc$_JoSsfcq0N*yMwnfgidA;?T$W9C zef?b%^qM3WVicBNk$Ja2Xcb!lr3sR_R`a+g^dW&}NY#jRePLLMl$l>LUn5SIxm@l) zHR6uR;viA*oD^7BSo~4P&*OqOYiw`K<9h8wm%#IMDeY;_kJob_-o@#VZ@E)ttlBBDcQ1DmdbEd}UM?%UM;riPh39k%ldn${_(TK%~*IU^68hCc# ztnb)*jJGD{UC^iH1`}`O%u28VK`#f>wDqultjM&Ul07;{S}7b^@5-jMCtGhUS`|;= zdf+cdt~Y+$F$i)jy1uiqQW7{9ld4`ujxxRK-Q$sp0s8>1Oag*fQyXL_;$`B85eh}^ zjj8d2BYBg_$~)gh901r`=a--`VKqhD1HiD2ceGC>NdZ!P{_>xMl57wvm|j<n{v=rWMQC- zawPmpt355@5Ow|duhcbvNXsQ~&GFqjw4f!XdT+Nm-tkio=DLnN`vS@mj;#MamCNhx zMRb>ZIG)|!~R{i^JoT>;cJ@?t@Nsv%cvZK-W*hUEkS!%%R=@3-s>CBDG*E(4br9 z1KJ|cC+f(UfADAfCJRDWBf^;+8fw}?ur`G%X2q-{P>kih`;HAYd8d^b>L_~5Qp`eT)WuwvLcxY0#VUb3SnfH0V^Wb4_LB3^^S!SmI=SG}WY z3PV)H0aggF4Lw@}@*FXTVK3O)Al63e$N|Jm!-*6VynIDgyfL1S?s~^##H-y9CC&1a zIMvt%5vSJG1W5WG@Mp2~XQx9FScILtGu8x}gX#Y=2NA?SHT!^$y#-wr@Lz!=kt#n= zEvcD-VpqY&(~rA=8G^}1Qk`6w1=})4lNu=BzS`{;1fvJLPb?a-7$+ek>B{s}kB_SK zqj@4%^32jb>;{%bD@!O~ze2H9y+;8ukg#5!{Ll?59j73%$G;kP)~=zhq$?VWFVFDn zu>VWw4so(|sfEk#@R}YoTTP?2@3uwOU^G3lzY_dE8&-p$&03iMwmt_k34Tbz{nx95 znJAxWqDH?4?FN}I=aWFe`3ejb^f`XW;_ZMJ^mtgnyM8njuxFmrgAP83%1+eA6+PUt zu2rX$2=hQlBN;m0onyiS#QQa#atnwj#d-?t1%4ER^WX26EDo1tBZsfKM`9aE zA_Q+%W+T1&b2Lz3yT=>Us-Zr#5YUbeV2mt>r9SB21Wm(CC5{;D3!y-vguYs4f$YQ% zc@wiw8r^*wk6?sUNWXTqY>*;Xp%owEwMNbI14-GBjW>5UK2`dSuHktCwO+>vgD*G$ z;h-ZHR|w@XZL-z>Z6FWJ``|FXr{1oUDUb!#uzmO8zNix(LKaAh~E_ zg0X4;^&CqWLju|+mm#zoH~`w_)U|%X1{RkFu>2fsqB|Q%K|#%Qv`7IoMoX^RA0O5C z@`E~uqIDE1Y2Ve`KY%|k-L--Y%p?oRqPQN11l24Om;uObe{K=I91WDos{|mA#l8i0 z?@H`p+Bgd8e_Cj!{@B2YxY(TY!vtowDiVJvV>5?|Hr~lQjtYO(LcF~2^DBBj{oIZa z)kCWz8Zz=25}$z^=*CI4wBJAn1o0Pq=^42V;D|kApYw6;fsa6w3H7`b%`T{bO(RC@ ze(N9pi_+rJTSzSE`S`GOr-ke%VW6P`DvQ3wAG(_wkV?4#K|x6m;Z2W+JP_Tv3`3H_ zV&MFav)!pEN*I&atIbgQqpwh;-A_cn8Tvrh@Cc0YhvGkEg{50#8@Pbt+s6WWuZmR% z+BmI?-}n|PZPkrd&%Jq4y5@1;W(D=LZ$8h|IG+>cCfA%3*dM~BQ#UTdg9rtj%C4vP zivpX)OO*fvzMcZwh2&ImfrC|mO@L!DT;JymB-}sj0VrguRv<VVIo^s{bl>9X+Zsl8lh-=T|2>pRg^l24kxJrFm`OgERlp|YNT!! z0fb>cde=WBaa(&5A~*9R2mQfz5BAfRaULClDGoQXfHFwx^T&Gvvh1$Vj;;sQFU1x) znV-fF+I${ef*QJ08yiiv{pNrjh~J9^qb~=ew<)~fDWDxmeg}B==dRdyoZ!1co))?S zaoUgXT??iCLyYzn2-5rzR>!q3o|>&u299wl?f@hn#wv2;&LPYI*fiFkAo;n+YjLlv=Qm&Ec~(irHJ@M!#+FED>c<0_)M#HHJ{F>RqMv3 z$Bj5X&>8nfiD@4`yY>)=YjIC18>aI{YfzvF`KJH}Poe}5*@FhQ=-abk2Lm8rF6yC% zfJ!T=Ro2~3N)j~4242hqH5!@$Xexeg0JG+O3Y=mERIz^-s%4#Rx!&k!-rzDO1M}Zp zDtNOS>_0g0K_zh=G|sC+@jq4o(&*k)1Upcmo9PY>9RZ>t+qsn>_6|Lq0oVfqHv5?< zL)&HkXn*oLyX5oAxQ;vI-|0T{-ps#^!_+L@%WhzME*lP#$S1pjxUuW}flFYGxeY)7 z0AK#lc{*+bD9wZHMk{RFq1^85T07Vac;HIa#(lm5Q5m=fkkq=2-b3UB_k+`jcvYkj zfX!`NQd8~FD2QeIZ4>~^LrPp7<45~I1bEorqYDXJjT1o&5Uu@J4Jgn8G^YdgNP~dY zrMN`nli46r0`xR0r>u*pCTyk#*sl_ zuNK%2Rd7u2n9L7M_^R2vbsQuIVAt0lvpNJx6lcAGY|}m4#F8<=f^nt+5`zI=ZZliy zuez)MCh+yx25c9m*ak^;R41L}z(C9UmU2+|EZ9my`zLKO>NBq%Jp{`aO3k4F z6{)c22TLFukX5}7>H5#@cmuAN@Q*>mS;c^P@;ozacfdn7p2J$ZW!vnz0@F%YoC^Jr z08pE~7qrG9y5GRuGRa1 z9|iiCP@tb64n4C2(44x|d(FuojDRP+^Jh3z69kdq1-{ep#NYPUL*aBgT-X5I0uV$v zJ0^I_+EJfI_CK@G3odk&V{}ocE#G56;8`;Sb%_M)_wmKe)Kx_ZYNO#K)#McF6BqAix2-&Kn!Zp-!o$@+Q3;iFSZ$5q ztadVF6|Fq&-~n_{OtWnlNE?`%0G>6w-nz+c@?^0D=%y&><{J1j>#(SjM(Gc`-25A? zLvj=-28|HfN23<#!}I+H`D#o^u6I}?bVFx8xK?3~*;G(bKs51H7W(6v3Z|f|Qd4-=_dM)7YROlTkFP;sA0+OzGdB!cz4EJ8 zzr7Nh`J>&ALztyh2{KQ5)d1+X{v;Yu7r_Hf=-dG0zNeQ9z0+7aNmvjeoWvt&(1lS8 zFvYdisypa;y^m@l+qstWeGj|G0+3aLPEu((0RST*5abpNa;xWEd=T*nw%Oq2AE-^X zd;{~9O=LNIQ1&`vA9CF-$AaQ(gKQ)K`7$C-fckESh~F#br(p-6@8{NC$i< zYm5DFq549sn*cO0d;`1_>iR_9DHYO?1scFoG_dOw)M?J{!{jJ@^devxA*Cf)b?As> zQo00Zm~ZefS~N9uwRjKouZ8BQDU`4a@L~WW&`p?yS|uaen>ASN?jw>PZ*B~pg#i33 z_zQ!!!7=V0ZU3&Vk$~z5gOtqtX%BSobyJ1YmZw{u2Le>QID-EYVx#{SxQ{(Pa}$lr z8$T66N^EQ1CGVQEkgzpac9wZGulk}ac_Bu zTtknYd%jt#_u!gG2CZ6y?ScbY>J{U*-vo#2hxJ-T8F+1{zHk)6xSWl3Jz!^agf8p2 zL3yTmU5=Ap%5ZTGV2T^A9)~7(C9pIM>NRa}o3#N*UmFXRK|k@`U)?^zOEtApgW3Zk z{cmxN=FevSZvI_q~N{-vy%e8`T%bo{?$s zo4r43>Uf^L)7T=vL#AN-<-XL;AZ0nMZk|E%zI1>0rLLTp)iQf|tqh}`_~r?Php+Di zP-0m8&lu|63}~~bN7sJ`<+S)Mn%HUtI0m^K>OY`L%a$CF-!?$aeRc;^2(8;v2#}%4 zZ-x=R`X{vR-yy$y5iC6^()*bH)2pXV9w8WRBZ3c5!JX4Eh#(>%QZASnAwG9Ov}s&* zSHBY4!mW&6ZIp(iEg`(1IQRjy+@PR7Z~t|2zf`)^1ZHr+vUhCW&<@qvFT?| zh0vVme?)V(d~(gmX?zL0?`!_v6FLSEn&o6qoi8m5)2FLm2LY^IZ`1}(pXjU8_eDS% zBWE=*5Ru5v{SEs>?pr|qr~5*Jw72Ea27uszk!83#(P|D2{&rUfLM17gT(w!pEsSwt{XyrMY$_1> z6M=$&5Q@~(+?}u9`ZG&_opZo*s%`iDg&}gJ`COLzJx_pK7*IxfT1*1FqxsVfn$V)V z?T;^8oq!-B-F+625Ne|h{u>IXFI)!@pYD76wLDefIO)w4d0s-G^YZ$X2mqkI<9eTk zy=^XxZ~(5K9(bh)LUUbMLq>+6$NXfUmOfnNf-U1|dk_}b-TaEiy$I{hy;e~BqSwH@ zQ3Sb;!KeDV#T^{)+e!p(=pAUMvg|0)X;FL%IO?kkHV{L+1f%9_ z&X)lIUCM!Sf1qDzW$lJ-ZT|E%7@PI@FHuq$_{W=wb;vjaTjveu=>1TogR)9C#X!{z zrQC@p+n3sBOB$Oi*$Y!Xo<^5Fm75MY+|NcJAUjAtb}g%q(T#OpA#3()v)nHmCDe8Y zyqUr!5uWws*;S{LI{V+ly@WW55(tXkx~ccUDX+a(OlyS}hd3V_x(!2y1?kUc6Vz-j zibt&iR8>^laK3>0-p zD=%vfq?6FBJXHd{{&yFv0li&byyGmRQb||f6mSDz;syvkz)w+g{Sjc9DO`sI50HBE zQ{WozNDN?08zf$#+qi?Da%lTs)A?s@wM(aTd3%3;4mcNP_1CJC@KS)NkZjQ!ya1)9 z>>YxD%)bWKckBJ_mW+}EW9za`2%vw7@IZL5{ww~!6|z~H&7`=cR!C9qA?BdJV`H!# zy$RYWVNCDs7DN}Y2A%0!C=kJ-(@rtl;a-{zs_fDy=R^03*t)MK8^tFpi=&p6ON>e~ zJL@Px+9$q9y9^6jWa zcxi4Z!B4b8xG>(%Hk)XQ#{H1EAbP|llP2)mg2wVhRM*(mCnR*qH84}F=Eg@JU zvZ8-Swt-Ink34iHPV0E+u;7tHM?xZu=*s2{yFNK{fV4hCXTN87{f;XoAI`6H#jT&% zQhp_Y1BxgSg+LaQUVZ}?PNwP1Q-IuFtHuxkRW3lfVo6az_oXEJQ^N2Ywxj((rA>?g zKpWQrm)|@Fq?_L%dG8n&XZM658FK8V%bV=-!6pzG@_yuF>Rkum^}8s0poKL<{QNyF z?!Qj!^e;SSo1moA%6#82@$7p8vf-1`fI?HjdysW!LVv3VtY_&X7`3~eOq(45JUAg& zMFauHQB<7}SyL+@$nStXChW`KX)#n1{_Bs~>l6^HLk%9Zb$tY?mQDStB>$AG@OOMR z|9Q-R5 zxt52HKvSr4O{blBz|Piypns)Q^|R@-Z=@{Hz~Ch=v%l`-p|c7mcx z@4J+z9z&igj+g^}WWxMwlgK&`G({(nbYk4~0nt_z>`&kE&hM(GsTNwi|1;cj!<#VRFLep8xLGm%Ek0ND1bXf$o zJ2t;xOM$;1jj&coL0HTm*_;sQ`@h61J@CdemVqDWt3GkDXG<@S+U9C5zP%Z*wb-xh zpKVtwXqP+VdP?}h@T^+ZBfHV!c4Kp0*a=6BeeVepOvI(Wgl{({|Bis1FN?PS;o_ZU z26pxQ7tQnUI3CT+QI~pm8`DoOmI=2k2rfol7+zM6?vNWObkAx((>n%DAM33)kwJ-E z)Ma}cP}~)gLR|ju(*CJwOSca8ORI{vQ(QZ*Po@+*)>xS``B9%6c3++{X>j|9|CAfJ zV$wC7v()H5&1gF51U$OZ1zfM7UF8)GOYVOdDv}_I zuEu))db-x)QmvcDrS|%*H!T)C zQ=6x!)05k~Z2_ps#=$QEi*JVOt_xv)Cx81aT_`v?y@-x50fy5AMKr2w4rQp8Rll9* zCq+xH8IWb>dTc%ReLq#$ilfP`oS6vARa4V_g5lf?n_H#;wQ^HjrznLs176zyizUExP#LnZ4N`HPI^m=g= zn~z8?_*)7ZtelcBecwEKxcDuA>Rqp7KM*9Rzs7wioD9}M4o|qmw6>hF)uzJL6JZ0- z{kwJpIrg7B{bhmdLORPSg+?o8RBB=3tdDw&g3qnx3nA6H3Dbkgz%2C|FFts%R6|1? z=d0qzac!P+pYJyP<9~9Qag(yR2)5e`7uML0wmSD!@%F7aEL*qFTG#Z2TaQl4__sLl zZ~sw{A{#a<&^MimmCWpW)sAW$%EUV{a^+UqzlZ@G)>VqJ0?CSqnd?P7?pZA#OYA1) zD)Xkv_L+u*j4!u3cj>ZN>t`oyKH-!Igej2Uch9Y)cyKWdqo2%H1oFMmcg@-fgcU0;dE*)wM zJ;b8)S1+3PGXhJ>@2b-Hc_WcpeAK>tsJwl{!+(9f6R(66Y*doB?`K!dDSRBdy0g+@ zCDV4V{b0a@?md{@2R6dOM4oO@pl2A0>$`%!|L2ve#KMvUWk>$?@8q+dF?FnUHjS`a zOmnR$U7EhkS-9xVvP>1f3OtG7q0Khum;dOoAFQ8_8u)bgP`RS+cHlqT9He#mP-3gi z(2ZZ;f%bA)=>}%pin(H>+D=T5q5%zTaG4{K4}G66@A_X}8J0x6*+GYXxvNrH$?f8s z6FqMYn1aM4{ModYJ9o#eMoaZnXxggX)C!K-I5igau>xLVm$4k&vur+nSR`=gUwim} zI<9N~ycoAm3?IxGnDRi<=k(2dq;Srla3dPljK5R36T3m-CgR)1y+@lQ`Dd17!w&RY z`J*kUlqfuI(eTN+Vt}Rm&afOAGjLe-&Y`WCCt=1_^u5&mc^3#TpbkGgynhFL{1BtT zCM1GgAOf|!yrf@55O9LH>y>|_m!MngtmSxLcX!bIhslYFELR}$ssJKdHX5f-2aSx4 zA7%ndPipttw>Yqr&4!08ymcQr&xX78e&(sG)BHkI16%2Q->PNkFcrswZnaK4Mph0%K~Y4l<^wyJO_;F8}^zkG=09H-qktHmsRS@J|Vb{)3 zoS*dKW9?{Dzh5-ymCM@KEtF{EEE?FIbE5AQeDPDt`;uE~y*0i`TYt;gCNuq$e{Dk# zr)7j^-z=}}Z4QGYCm|bXSnFSmEPFg`L^!S|Pm$rM?SM*g)H5$vcgnspkM(;?fkCPQ zx_FrTszPImdheMA9bP-gH;jlTmvc>O54hffO9vKU#Z9iNs8G5mOumoTD)y!EU;3V- z9WP5qOBSn=I3MTbskiJqej#>gX|gsL8t1p=b-;y5+%%9)Dwiw_B;Ro~UK-R})f|+T zk~-Y7hoBwwIqN#Cyj7Wdi0 z4wer0Ro5Qiz6*lJPvz^HRriidD|4H@zkjUj>>_XuNrzo%NJ%_4T3O`|gu~MlKtFtj zT{G*o*`c*rt$8131xotn9^BaI0jFVidMo{%e#es4QY~JCte1kDN@JHWi~PYF5pF3< zPnPAGtGRIZc$Ue0+cd#yGgLc9W6lDfyA%I#ORk#TXuD2Rj09N^hx@#=5f+;`(G#L~ z=H9h@<-~*p$>b&Xbk0dhk|E^6-Wqh=-7&U$<(N!394}TdBP+K&m}o`rp#qERd;wXcbo@0Dd!JQ4>mSBlwBs0;&N}vG2aU<%1YQs z{h*+r*h`PZfc-9ug`Z!mDciL1tn&IaVaJKs26(1AFEqXMJd`ad#k7FDFE3^gh5^(5 zwV`TuH)x_GXreM`qRr4G$Lac%o1=SJT?^ZiGxFbk^8PCw>*B7}!KH3o@}ZFH<4yCe zSta5ZY`;^+IVudW+XuJnUbv8ysaNV&(N<{BRy}G9_waA>q=H#1;GNl8vam6R9wK7k zzf@xxU-@VfO>W&Nrc|eUsQpi55-+bO?p^d3K5M-$

4Tumf15@V=1CJmex^w$@3J zB!ew2J9nWKHsM8e+^s>flYu)MLqf<*NUAvgjB=d`Ju@%-_#oJ%K@du`HZYVo1+R@@ zrZt9jM&) zVn+^h8m!K*ba{Fbrw+W&h`}#~wfAoS0Qc#Oqfh@Nm^2S}K|1eIUbjD^F|^G-^aj>5 zgVs*@*14m4=kk{u_8pImoQ<^V;_i6N=00goxOd-m+9P>d00fwNUrI!)d1`N6kAw#jidxqBR zotO_&e{n>D(f`AI?_5?BWfBca(AZJOAZ z4`>%>N7GrNTqeBnt#7+aqw={Bm(NVcbHZNJdVq(K?z~C!f<{o&C$`ovND5nn&#pMw zq!Vlq-^~(|zA9|==tY#?sxNoFWafAa`4gOQ2<}jMB#rZ{hwH?Y%ye^4 zJ2&pcc-y_8oSMA8u;JNG%>4X3g=Ue%B~PjG41!_&h=J!tvEV>aofN3%lzgs#Uh?2(d<8=TsxzM;^SZk%G>ivTql%vX1pY3tVORD{+E%c#d8r zBh5a=MKk?otZUS+n@KO^H?k$it0<3XP2Zd7t6kQepU$@oYOG6(3(xGN?n$l{N^>bP zk%*hWa%!8lI%xXkDwb%u`_Vr1lS9qUBl%1NLUfkQGjJrI!1x56`J)~AHqllQ<-6oCJe$f5|VhA;d^p)tFCJjd4 z@4PSRQ$2X+{AlyA+x0^%Z{42G6@3dAzWhzZ6UCdpbHmyg%cc*7UC#ZZ66eG1RFg7i z-*{JW9|>bcN42Mlr(Ml2d~TD`_)A`?T&kTIi<{O$AQD;uI6!0Jcdrq=+fRRpgu)3m znz-638MqU7gA~5b&sIG*8mmep-<3Me8NQ@GEVB zHXplLWb+sNB!U*zWL4YW+%IXW|KH4WG;L`PwLO4QCq44~?M82fY!`05#Hc2--cDxF z$cfK&k?gX6C>UQgr*BYc7rzOzwyoAKBubl18rH3&z+p~{sz8;(1(w-kZNTxHWfGAb zh9BM#jrps7;T)hRT7q_bZ`KCpW;+a~06%^?44V(flugEIT6cpc=w9*QnM5BK{z>}}_JwN>Hl9L~gE9#`+3jpj{QY3uP={bu3g3{C%= znYZTj2Z@Q5DN6~ne3R9z;{Wwb-^bR>Csw`Gv&bEiGBp%e7iYS#|3(^wy&1ZsjO?2w z{Je|>JV?ADFREYstmGmmNx`m7AK+7Lp9}$%=gNG;d~@lUX4M=&%KjSA2%o=bK+YE> z;0#ck)SwLd=Vy@jfpW~SABF5scn00?ghSR~C3UCkce+U*1iFcT5c8^g+5dLDc|K46 zywk8={)D|5H4{F91$Stdfev#d>hbT6Hu+{|_+bFU zQ1DKSzVcr?kVI5LBB~a0FcalhiKG+1)ueZw4;~H0xNF|#SP(v}74Kqi;K4bZG*Hp5 z)57wKY&bdPj>`Yy3+Pf|IwFNRnr*d&&(y5;MMzkOq-6&*CTmG|>CSefRyjWO|7-)G z+R(bY&jnT?;s87Of%h*cIesU?&+_-+1hH3ilja8=Vxiwbi9R3?0h54!U+gae04*D5 z?6eIG68yL;u*T8aH?y)>Sm_?WKVJ?uZTyqkZst<0bU!OeJGHn*$WGJK*Y%;&CNbFJ z4R-oKn*Fnm!2@@IffRdg`@+yCmQ7L}rHQAnL2RRs8>fau*3HWS->;AZB4`pa`&win>>H~h{rD-uNhgPMq;x{+NgoI{ z7tMj9?Sv8+E@UD62RjeUlHIR&49`B@$`NGh{#e=nfZ$XnP)i#JGuV%`CSH1MTpfg% zeJ7rg31?MJ(wMd8DJFAraRmd8MP>Ky-3#*Bw}h9clzlDpdv;eYzz8f;msiyG>J46d zZ&CA~0h~Z+bolYg*{VOR_gnWVCv=gtw8vs7%?qH?aYYuP17R{3@mnSO4W~M0H8Qx1 zS7tW$WEIT@dHJvCH1)L8uuv_{V85?s5DL|hq$nBcRw0}7MPEIb(PoYw`sz&YM}v|M zVFB>w zT@}em@pGde|5+JT7fwg;5&1xs95O9r!B7EfsQjO;`s~PDQ>lAtO@_<7RS#QwQM6e{ zN%2H~ylbt)8``pub&1NFEyd3EM!*>#1fwI*7#kU}K(#T5?M#Y--9R12abXH;gu!^@ z-Ss0ARWvn|WT9_f3EGSCoVI`f+uPUM%lZzF4*~*qrG^B>QyQuFMm2VA+k5QI`@<#6 zGg`&_xr}d3KpjZ!Ue{d{zT@W2DuaF1Ve#7eR&kv8YmPL%HK`TBY!XhJ36=9pEaawQ zN?AH2KC$Nu4;2w=#7rWA&*h1KIEvxx#3;m+s+QkOTnFIqK_m${Lw{SBM5^;@Lsi6y zUb!$q=b2C8y-gA@A|s>7D>jzi*R(z&=OG1~mdcKNU(b&Mw zE=Tv?$MaL4-tG+p0P9@mmAzs7aaBuCpPo$B1H9A(Wcq4%?DgFOWn^WKj2?Us<7mil zAgk#d68v2#eRp-W)L}eYIsVc9S^f|?l{BvWW$`1U_s~ke#wn*!N&dVJl}~KK(s;Kl z+&B_LF{r8V6Nqo=J+fjKrOHs|R-VXK{(W37N$Ua7yMcH2_)VpxrH^yl@87e|s$215COrafM#P?M zg&n3%g8zyhuo^S|w%d?L9VW7luYpODsaPobfS-CTJV!3qVDSqt^Yy6X>x8bbX7A6x3s`Wy9Jpx1jU!{2!kWR+-M{-jsZI95>?q zsQC}SiUi{Hmw+yY!}{Qu%iKj@uRr!g?-zC}vU>kWzoNBOJFcnJezbjWe0)5ctf)ba zWrL}~n;^G@XT;i@ipMhRj;o7vfr>P-^tp0U32#av3N=-j#8Hg3eRxbGzYx zI>BAzT0VxO1MxYmA|g4o`>5DXf=@%ExG@Aw=(ach?0N_c!{itr7V-C*o45*&8y% zefP$N3pi#nL^<|`UhdO`l5B(hV1q1n#k&Yj?0M~UT|wk@tSW+7D!?r>1Dq}i?Co9v z7r%tPP`-Cp71lB`VEljd=fTL>tAk+OYY#4KBR*}glqn@`h< z1fCAu`NV&#GV;8&$ltvE$H~_T_KV;-Bhd7Yilrr&I0(iaU;3ZX)x67ZUKPOu>^N^9 zLO99xI5RWI(b2I2VD!xVwga($z2`}=k`;Ia2@-}f!!+yTWGp@dOXZjDqrmcnD zr1nR|l=76S(6w1BD4$hh*ke?fAZ$DQ0o7s!dPREGPJc?Tlkgcr;e_rV-^^c>>6{zy z;sUdtFJuN<*S1@tw8~r zBLf2;nAIl*Tfv-Vqmi|mB+(D|QYhPK-Ep*3O{d7=Z7}7E@Va&DR#&6nn~!{9svK%_ zEZbQhI(jL@`?gs1=~s7el^>_PEpv!oTy%#hiQ;b2plThvw|Q3>#brG`x3X@oh`#UX zBON5mt#MkxPJ#W>#_Eq0jr7KQERS8nc~`uMZ-4hj>&SArvTMOWnDBy)YD9d}f;DT2 z&eDR-Xo30Ss$Jp-cZeX9RqEAspY31~{Vt{@(%Y~y_e!`TF#;e=_%xluGtG}{_@tZB z)v2a6&B3iLG-*W>QjUBu$_NWw@$BZMZp*RDA@1{3*be7WL2QR(UqtkD=A(Dd-pLCe zk%p_Q4(u>{VbOeVSf)!E(WafLJXi+BG99M8_^P%i!g$zjP?F;VVj~R+mTJ zIa0@)fb7U%*aUb>@ae#QgFoOl_W=)ng5`{0#F`#?7@Z;uVtTc$lp42}de0`o0s!V`%GP-6D0}?rT)K%)=0e9x?}QiFJiRGqKCS zmBnD*{|rW9vn8*r%$7=~(^+IO&JLdheU|y8=d7b{3 zKpHG|X1Q~daKKDbavE-CVKALzxPlWM0+AcggSlDmmMjbl5BP)%A$8D)o4Ebce!|_r zm;Jf`tx>FYbU=^+Lsdw~6LJBgV?nYRX9EliaGKKKuiE9Adf(Z9a)qr$V^6nc`h(q7 z(d6oSJ@np1tPQ478rC0h9@6JlHFKW~>v-+-Zlq*!BvSyWQm}AK%!cND#VwEfyB{8o zTA5V9)?~DboXKc^|hpUZ{DM!eK5v*STIJ8!px*O-oL4^sBuMU2bZl5qy|RLhpr$0I+5`$koHVMb+DcY)t{U zw_+C-tZlwu$L1YJpKKIWGJ>HR73?V}B^_V@pww+ZYp=DC=0R(z6+@-l_azpQBS*1# z`X;Y=*;vr*iixYFl(B*U(WIa@fMJAq#Fdnwo(ne)0S0^V!`~hfEoE%Jk z=>vKSaBWh+vlV=J@rM*Vy9}dBK0^WoQ z_8IU}K82j6%UN&=qlY_IW^#?@Z*kQGaQ6?gHt*Srbk%PIXxtTmYXU?bg~+fE-BNd! zzpuz$)+{4|VavfRK<-ocXgAW;5VSDh`}hY7`@G+;gOOV2k^UpK{v67|fDdhc2}9Jld6K@5C%^t8GguJTkCH{u)qFSQ!4{bSn<-T_o;pYC%qDVm z*JslcCpY6R04-E(b87+$Qhs^JeMzv{H|WNRfekG4IxDn~CVZ%9EvEnth3@h-4gD_Y z`5gWn0y9=fj*R%{H*FGv3G8ii@M~*kNA0R^` z2x!f3fz_A4fq%h`oCF}_{5%YE?q1w%ga)qLbU}~%+A02;F?{_t=y1jBY$n0*33nuu z;#_DRm_@;SYYUgJ=kiPN_T@WhX`x-WU@LS`_w_l$eD_hhpkbhR#rpyRwuXQq`BiAB zztsL9vXCz6jFJ~*sPQtk6^4T2~Xk2suOCY)Y&!+sk@g)EDO;Jm5n;+@D)+Zpk z&clXe``*ms5$iAQgadcKhPY7I%|4=*cAr-Vx3MI*?&fsV$@luMNODZG(a^5?z8*8} z+$5n*y$NEVjbi(~0Y*=8`?v~V>Q8M`>y?AKbv&`4Dy1iZvBU$A#j(KF7PR;HrjzSD z__mVMH|<&HNzcF5ZvF_M*oH8qtK2Wf4$$9xqQ6zT(v#Vwxa|YnF^>q$nBtv1VkVV- zq`20(Of|^2<;zGgk84J|I?9ii?U@c0kgmbeCK7GDseF2!hxV4cwAikz~?dDblKy(?fsM5CqjQdNJ0juZ-6q1cw4xC$?Xml=q zJ;B!iSWUb^p8O)Te|Lx9T@RH26LfqLlIn9n1(69Jfav{8W?(`4Pk(1izq3$V;0$iq z5=q;s4Uq~jf>J?}3YKL(ki~tD4?v2s2$4VElm>r#BfIwNVc!K4Cb#Sq5G~6GOJ#j- zJJ`ucj3o+B{C7e8Z$N(O8Q;Q4xX2-K`MRE5i(u?qGtRy z;09VVLS?{JiIW2~S)WPaJ$NGUcKyaKs3ibKUSW)cs1Kx4IVGV#CKy>tbDwBPR}C9Z*}DV!2P!Nw5D2@gQ)KijKD_y#_GwB5sC z%_D$}<~Md-?*S0^hyX+*9JZI231RCyVY~^>0+8@u!haN(Jw=agflc94L{I$1M1Ix# z|0vLZ6zD$+^j)~|f4>E)o2BiC30GH&%9dwZ1D!_DJCE6JBe35afzzt*-)Gel zMn!S+UUeA;uPU}u3%TTtZ0Jh?%14v+BTbcX5Vzf!AMJqRu?@eEM)Bax`g)t#Ecs)- zgDk)x{NFXhmd*3P`eacA5GIddu(jF%TM6JnPV)xxZUkhL_D@dJmx4Z2E#G$VjAJvj z;y(7_hM0(j#7h=gahvC0UBQlW{U32y6NiDaag*abTn7f-kqRwPRrZ!rzEb_!18?(53T5|F9&Fu#aV3yBD3LWxC^bnYl;@Y4X@eHK{*L~nS zpkU&-`{?Wg5{yMU%y*7JS;yab=5$9rZG)oQbDbm@?{a47Z&iYllM;c+dJr_EU zH=|uu1P=DKU6mR=1p&G?5Mc2Ev((=PULE+^7f2CdxHp0P?GQ-%5P|4Dln_$_DH)0> zCk`tNUk{ZJZz*PlodBY>&k@*LaWY(_`-&q`C(ksi-X^Gr>8OYKLC{u{-@JIPO*a`H ztV-yddA<{GmK?r?6H{psgjYx41k1Jijd&xdWJA@I{@cXv>Qh;G(izc~Z+sI)wdr zm=#b)^*GH9u6%@-Ii)b{nqiS%4<|K=!2EX(Wc%W3^giOvhG_g0PY_yl(vH`UMY54L z7piT5x4r#!8-ES5bN^)#B^RV{ek~hZpKE zifN}BoY936hl<71y(Hw4%#hrX-x>i87(*Ix5TLAU8W3#(#N$KSz;3ygY5h&;-I0Lg z8Uh;?9QJ7AXTn307+~~1R)jVRc+^nz4I7omQ|0ne+dh~ajwgG8iru42ZLDp62|1{| zV^F0T@LcV|Zaskezc_F>jt$i!{1!{p?Sl}<6#rod==3`d3#i{Lu?HTVf*$<|bm{A( z;oXxV6N2&JvFo$6A^lnZYxKHr)-_{xh+cawjq@y=rQ>$(&NE23QzhtDE4fBV+EPb_G6}^xVK03 zt`*qyD`{i{3-eN`H+fj`c+GKM&O_*+Cfq`{HPN| zQwJNWLZ@9}1k=oY_P-_Bm8_P2rw5$MLl?&VX}B_IJ}|O{j-ps|Xh_L|n+dbHk(A`e zNS^Dy$}^Uys+Y2__jYgZ?LJ5DTa(SCxR1=Lqwin_8=o9?4!q-=$9w7b1Q)sQVim>Z zQ=A_>2pgs>59Y=`OUDi}xc`1{Q0FAq|dV_cF@lY3dJGrdsdtoFo=dy0n+cR zmk1utLM*i%CUOTo!&}x-X;4e0+T);e$k+aqoB=iMpdV0FPRAS|BFTYxWZrep-F5xe zQH$Z>&^vM}&b%ozE(@-k19AXaho1;YD+Bufp3BCJcxwCBgOxB3tR%}{VB$s=aE^xD z*(8kILKo6Bf|IFpdKNw_AI?;43?plNcFi(@;ZK-_$%YmrnFr{5mXj4=KUP=oYr<6E z*vaH+*Gs7qFbgHsst(#>&}Ed!haMpG7}U#9PP0TP(X;NnM3f0$E}yx$g78OF1) zDmVbue|ho;X8t{%v7ET;nt;ClpIf;D#V*?5NP4c@Qev&_wNb))+t0dDVn06j&eZ0k zOq@D=ecL|9WL>v;BW$&s)M7?B!GVN=WhDeWZ`zOcO;h$^(&5!&&%Ibi?s1?PrfKc- zC?dg#vsmg~lL{~tkIXp$_K(kY7#R8`n1D%M92&iu(RCtS;@}pTQ86KLpp`^~1Rzf+*>C#+@wvsC*#@xo7zf>yFR#15LInmE_1p$frTP!0N!>d z8}uSmz;ewA5dD!egd4C05-PQjv3>Z*tPxKMQ1^AEn+xOH2}2SJgO-Es#McwR)2Q1@PUfK?oDu z#=e@Q9OM$7rUNbi#i)c-5{%->ehau>bfly=-&F=J4gIu&sjym`vsPA`@I@Xu(n8+3jFcF+ii2NF>&%>x5;a0r1J|Fg3)YdhLE{5PAt0VB@F zv9`(KpEp@+^k!G&22mw#mIXMws;~`7$84Lxa8k`AZGv+r_3q6+Q1xfvOuh=1QF2SE z&t}|H*Jv0>AVwO8Mltk(L04H9a#$n!%2XB<&fj^Imt&!DzOlJs@naqgdf2Ik20bXi zNR&iYSsk9L2!1ucj$}0sER5TrO%28Fw6%KZ4t)}FY+SdapZnx;z(xF-yP^8Ml;*H< zb7=G(0D~oo1-LVvIdnk9^*ks+YU=*Qs+7%adpy5bWP{CFeQ>n@IE++LNy!7=-wcW3 z5Lf|SKqGB=f)T-XRY|^UI0fnwZ?WilsSXBjh>>PcLjx3~Hix_i@E){@>_gYCP=KxB zoCijXat-0Ldrnldg8!3qysJbM`STef6&H=`-bk7+xRzjziVN=yHAHIA*no5Vn`0+_; z8Z%zI8JaF|wAA~U-HED~{i39X& zOa5lAtzjBUv&NSj^ylEzePmTb{9r0uCNT03>ZHfOwsn7rRfyD3Q29b_7ZN0%0i9P1 zI86O;wG&BI)>|DWT?m;kHte|R!zJDOrdf0UMv7>DF=(7EtGA!Imevs2-j_&CTQkkWUI0~2$cZ#vu+T+6ghPdxT;ytvS)id^-e=H2F!MtdlL5GooegnFl z8oY6VgcXX@s!HCaH3W&k+4@c*!Bo@$G-mF*1U)8Fg%|2svHs8lq28AZ4Y2*tuEdX> z6yn0pPxO2|Yka89WwJVRzdfT;VxQ-Rt+6H01B{>Oj7JfRHmEou0wikWsnS^XdK%mK zhp3WL#>W*fcU7w#)l~uKd>1&-RaV(7#P0<==)~{F%eADq?qcP_h3m2p3BZ6V7Gmae zaEJyW+vDBlNlzyVeWAx8yr`E^3pojq`Viz7g8PgtVPSz^6C~{p-~->FMg_Nqt48Rg zd@d=+o`YM|b7XhO-+Xxcl(0V0Z`;HRVIBG$stSm4G!3&|6)3tIfGHDJhp{UgN zs|yNf0CiaTW&qrEuf%2v?a)b~F3vLh1(;mKaO6~yp(elZ9ln&@~uQTx*} z{HRcEh*oua1Z|=*AJaAXz!_Nm4-$a+Y42JR7kUcAD)FLi#zR?m;-NARVlTgT!D&&u z$RT6@&{ayg0J|4HyYSHdcd!9-H&o`KdxHsMs&>ATHXMmIhb~{F0k}kAAPtWj8Gl6+ zl4IJKhM#!zCrVl_pDw%rdV?%LV;C;yI?}1^w@NhCZfR?4{=w0_b7)aH7CmRB{f*mNe zsE50e#CE!X(Jn9`Tr0426BM$3PLq_3KnSQ0XRQp8I#EJ`>0vycsxPi2Yqs;C!flYS ztXcc6BN~~fYs#x`X_UC+AGRNQ|5ro)J;LgZ8AIjU!#YkEtSk(^U>K31pHy`KP)B%O z=(<`LTe-uAe2&Nk?n8O6UUBlf68*&4!JfJK-LETzcQR6o{T%Fo{k!>%+!AZ zdb7reYjZg1${!PzH}xaKB{00mX$Y+_i*JEeAkH_C{gizge8_b zsl~fKQyPWojgxR|_1u!aeqwc+n%D)g+Pz2bXRUFCu_8FGcNko z)dOG-!HDf7syiDN0=CWsVsjI0^#p7t&0sKL%VTO~G_x-R7g=yoV(StV(U#*W{kYs6b1-8rY1S27#Y+;*2e5V@002Y_H&!e%Oio(OvtSI~8k{79o_m66z3`?wj_YQXT1V(* zmI0&SjY_`UTv%vFnxI&m>Zc>Lk@@mdmRAXIu8tYPro%~{FepTv%?0D=rm?<|Z+PDw zr&3)%|FT!azAI$cFcN`#eva-)Fyl*mr;#@Av~=n3K?R4tdo!*u`1D&}v8X(oBoZD<0G5cUkVJcDF zDk)PqZ7OLupWP61rGO!dOL)NBe6L_T-fP@fTzzn{uaUfumy3{qo(fQDdw4(#c4q)a zgf3O_DBbON4aIVYOzPOyFqi;dCJe1~EDpoDrNJ||orew%Q_Z$;H2Hlxg5>ADAv-ZEO;l0IC&gTB7kIB7HP)@g$rY{#Qx4=GF{P-K|mm(tcK7GT(@ zTnGtz1TCa*aI_6|eH+4P%SUd29tpfF;Xqv+RP~!_A3;YO3r)xqz|Hhrg9gG3JRr>! znl0K2UJx@!BzA#ehj^!Q@C3|hj4S?deP1l>J{Ft-z7+YjH1&*=&D*K@Br8v$Igd77 zr~s90Z`;gsc-pOaKaGbJvF{AowP4*-@A-`Bul1j{q?7dFmU;{&LAfxpHOF6%IFu``vq$%9NdK`87aEYgRca|-4sB!M_pv7FgZZFV_54e1$8W!oO=tUsh98@p)mZ4lcU3#l0KjMAV}1baApb!^p_~B?-}HD z7)Xro-Vheb4YVpDMqIa3? z^!Ah{WnQ*rhwdH6*AEHN0Sf27GZG4zvT5O+XZVco4I-z6a_=t}?)AO)gQ>Yv59S%k zCVh8h51UH_&u?po$;rBB?sd!vt}aa)&EGRk3$)8^v%75v6g2oV&S%Ayj)$IIJ`T(a zw_9l3)SLInc4*@hZA~?}^=x^Z=dCnGR%2+S`DZ3Nb2He5x@0tZ|B*2BApmz!N7?B_ zCdy8+KOIjMXue8{eTv2z8PYGEhqXcJLM04@X>L&hla=zRcl=J6lblDR%=mim8jy5m zygG1uCib?R&jzKvWwC->4ECq;80 z@b^kjp~BSRQkdBJfCENm20ON6trlGtJ9+%$m*yn!mlSFvgSXym&~<)AJu#HybpSUb zFU$3`YO(Ll$Nd%%kZdc+PpeWpIxw>vnjChTpZ;oTD?UM4)id^%ZgYn2Zc(Mf50fHb zfDQiG^Xplb>U)W=-L6UnRkrXFnz{yTv=gx#`4wzKv z87r_NjBGL3*B@;04N$wC5-h^5F!6q`DKerE$3pL#RBw+d3~#d$zYZQJ{3nm2y^&@s z%osmITU8aV@z}WB3M#B|zD`F=GYr8ygq{L~%nerGY*#=H;M1W|7cY1BsAw~QN+kD9 zA9bEF>&F9J3M+frSg3!OYVC{}YIk{wO6F>#1F)w9%TByP#Ft2VYoj>Ys$}{A&ij&O zGKY){s_`()<7*d;RBzwHl?}$?cwi9gdEO4eWHcqj2|FaJxBBzAPQJ#3XtOTPjXvxt z7MkpT<7(kB!rSCFRo1yrURV2($emKFveIh}J+?68$)fuwQ}12bX#lqeX;%c$yNRRZ z^v8FD>I!pDJOt``22hhm6Qc>!t&3cS;pVyKHT+WeFONKH;(>g`M;P44FdXAA#A*&% zfc?ms>HK+L2Cmx}el9FDTw5LHQoaC9+L^7T?yE_Ck0!4J9a6sU%?#3ap0mlkzqtoP z`sBjU%45AHB~~)wu0OCLtvindUEzeZ^@$JVsLI7`>-C5MSz{Zyvw01_Vj&V zpXj1~(FcC8@53oiCR5N|ggCUC{q$PDifb(Z*&7EO+SdP&S`R08b`SdpOI<>-jIjdb) z$YOQcr$)&ii1D_=<>bDlpA64O&MyvB1GSp^(!=+rx7R~(Qnxs52&ErsLoHf0pFSn0%?wp7orq9W ze)!t^Ryc*rvvSu)-=Ln6S6Lx5&&Y&=>?%?^bA#OlSmutz?Xusn>~Hb*WX_}l@V_Qz zO1EYcR``N?&$m*Z8A@QD8wH4=i@gMNBQ~HDF|$p&SdZhC#C;qXJBD2i=+=+!g9N&s z*@SWuS?ZO^5e1j-V;=~Y0O_xHl|lSp!ay@3fYxC5ljpWt} zO-z+2KDiawrIpJacK#G7$H|N5%%sq9VR?D~4Ul;}1vd`4+1|}}JH2SV*$!<*ucC-< z{C<2Dm^I9r!UaDRf9j9gLAS%jETna;g@)!wL~$*I^!MS9?t>ykl)?iJfwVo>JCm2U z_GG#=Xqdccu3nz);8)}FCex1G`;MeBzu`yveW zcJ4O!Mi~LT$+wJvbb~R6!%5bKaOZ1T@&W=H&0T)Hndjxxix#dQrm?BR;M=(;tgsvh zC`NNteC%F&t~F(b3W#9u+W>^7d~gWHQcp=K-QlY_;W~ZF@NB&$woX%2u8B zc@eTGSGeMA{nvT-_qlP!V|Vy{WZK=98#7%*y`IGi8qC$>X9{TNoQ?Tb`N-7$r=TZ2^-L(%^%?$=Lb$_2lFS)0FU2d$e02Smqoo`Sr!4Yxn>U3VPRzS` zW&7q8x9U9ZIo}%%9m^Ik+)7gS3l1OPjib_aRc&6B@WahS*tZAHEc8EFtcfa~i#|+a z{pkTdvOWK1mLC6@2)6nZ6tPUx@?VlW)aSUd{aM;|y1m1k3jhLbwSRI~JfP#Gd-Bq@!{~Ok%po4Q2vXV~H{gm#`B{?CZnI0Ya2dI-{)!F- zz2ni%+Z?u#VE(`MzC0f4_3i&ugcOy^DTyLW*=oufQo>lXR8+PKO<77(Sw<*Y?7L)% zu|1sh&BD{fXAd|DQTesSy&!}epuNK*snWY-zIQ(=WdMReUQQo zCZG;F+y%II?70h{Vh*|^cI&<<7;+HG#3Umb7B&N#$Mhboei}QJHk-EZggS>uAivt1 zH|yW_51|qFwCTGmw_WS0(VKpI+JmIo>!LZtwZePzW|w%%h;FCFY#P@Fb?0{4bp9rP zWur|?bC)BnS_A8x;e?5!j%T`wQnD>7p+>7*W!Lj1pM=eh@wQ$OvRr-gBZtc|YMhcI z;cn5GRA|KQkhlFpkB;T`Z#=f#+vzGEf926^0Y0{c#!B=n5sDa|XmXth?b^=H&^YRP z!X&h-<_pyblgagGmG#VA_`JUeJNNpzR{Z}|bu89rlvI=KH;kG=nz=_bv`F85Flm-fp+nypy92mXXK6rubgL79bRLWyl=-?uT z$-0bv^3EpE9+(C?zPlBLiyoWULVOh+_=3dxX{38Ag=>SIiL_vlhPxB(`6o~se&PD% zL%UQTG~5=b?9Sh+NSm&y96^fI@*}U!mZysdZK?9X)mp`hIm=AUjV4lGCZH0j{+Za^ zk+vwp@t0L*Gb8h}8l~R0PafOTBF^_H6r6N2X&RFyVeT!tJTqKgIkOAmcZwoq&77+d zz7JzWIMtzyF{QN*;wV>vBdbm5@Frp(S7bVXsXiAErp!97n4lHC)Hrj^?ULe1t!j4h zmD$s{=qc);M$6!fEyQjcm7wCY{ybr;49SqO$An8dIMJd?c*vEaL4{f>rQ8{9Fd@2l``|QsQp|6gH zGBZiJde1O&p5)DJ#w$)&=_s z#|{ShCfWDLK8>3)qT;=-$g8U}`7&FoyAJPUsu;lsmaTk9;4~4dG_}Fr!iPKBirP%N z_n=#noF(+HHoR!h514P>lYpt`^RJvJ2=>%@0sFn|;EdVw;q#@;wkfpEtfR!5eZ}J= znV-qqqdmq?b3O{}syxcj!*xYvt(&+{3Xcs)5`0#Uaq1IR)V`JTI&?pjRJz79P8JZ! z{S#dry_I0@7yaz+U8~Enl6XEgm$dOfcfL}UU1bLJTfTEQGSK18C+|1&0}=8kn!~#p z-5TTBb{CSRytf#xt@_;5yeC-rVTQwOjVadXD7QM+R=$669et})OnzUSB&%(d6t$+X~)8fkO~?g^qn)p4kU)- zY{sJp)y{7*aTz~yZN^ujjP&*qJIx?0YA@At9V*Btga@K8+s#njybSQrKi(d@&&DOG z$<${A5G1Q*K{<60jI4qN>(!ZusUxjrf{bi^8|I!^nJ?2RhTPG}Iq7o>fPuJ27D|V0 z&|t~UBW-ZlVMKv5EH2ukFSFGHXAmKywjTB)51haFDi7Qa8k6~D2%>R!L>@zbjWzr) z35LD5_8)-X+%VhT$^yyXbH@AtQxR(|ES>Lim1*Z>XH_Vpn$(R9=7|K4&koWu$uX-{ z)6o05_#<^f!mu7A2(f$g8YQ>AD1ygDV(NvPmLOX9Io%AU^t{+sSvo40#HHfV`HWw+ z0Q8g9!!OmyA3JWj?a=MV^0%L6!2GqcIZx;c%MC>_X*eq<4-oynaLyehm7KteRSj~F(e7m%(wG}JEIs6J?F-6ljyiCvDmRV6lmiK0I;=3mN! zT}Hl=S+cG2gcJknhHb?9xz@c@4Xd@S1v8~*>K+!931&baaE)@t*e{ZollGPuJ;Dey zG!iaFSQm~A#1U#f8)e^jpxd8>=+f!+YW-eKE+ZdZ)|QyW?iY^^95boYya%jeeKC*i zS}3fx%=U=KqXR{Q#|xyv`<*V`Qk7*q{3R!wAWSs{Ds!>LzgYfHV@)?sA@;KYsa)!u)ZQ$7OGYH;I{b{iX*38-b^LElG0`asdK|= zP(UEvi9vc9IV539#3ijNjA~607eL|)aG0l?j|)LvMv5U@ z7|M_+B|W)<>#)7j+>`?hzSIgqaTuwZu28sO;o%&e3&!VGt91U5-B)g~2V{Rt(&ED8gOn7$q=6B|mulL=XTizYW`7s&<|;e2 zDoMw!8}*=Qz^V3THg%9TTT0A`*u59;mg}2rym8LBiFPSASS+8~e&?LAMG2XfNcAA` zZbr>z$IsKIW=R&;{3TVcAqm&#n33Ynh7H!~Yt4Ds2zaM zQ5orBK%ZcIgd`A$H^q4%+(6;y$wQ>FIz6P#BCI#w(z z6U?4$MopbL5d~Yw(V8g9qj{6P#I2#D9lW_LXFYNGZB80&)|P$|Ic8AqeXTlsvhE5g zDpC!ElY%%+`ZaNSxtO}7iigBVwD)FvHO#TFHMiDDC=q)l%j{I=vKlYyjlQ=m8?T?P zY9EZ47R61HSg|?rq$}(pSd#SE1x)D##mw?!+?v9TPjUnp#xt#{I!%M@N&AEzUAszF z^eio+QHw~gA2yoK72q=ot3Uo}sz6q#+xua@k`u>`Jut*F>FqWzXJqnjkLN?MqABy9 z*Ar6M^px201z zL#nu)&+C$Du3M*^$Gcm~NU4u98A_Kt=?X7n+G5$Zxr%@HA@Sm|pnW!u&8b9emTd`M zN^$kvggyj{Iar5WYtqa}C9!%F_go3J*}aT($;jxF`$qKo!+lSHhTt8W&s#Ak88dyS z&WWlLV_V+=*x{G?@yV{R@kFPlO}>0z4LH+#EBm9tbY!};Tw(rGgRMrcGoT|kH&hXX z7ELFzr2d*Y^Hst2J}=;`Url-I!;kD-9Xk_tA<(Bz=r`!HJy*My1e`&)ashTLB;9Rs zZ18ScG~jynZfuZSGu1+y)0$}c@_|6iQ}`lBRFELg#CJwtYEmk#D-H^kt@V|JrK1X5+agFNct>Vza-puP1cp3fV<*^37E%b9*XGA2L4s5d&U|Gh# zi%~OR?De}~Tt_`^%0;*9#ri0VX;vm|?pdn8HhD*7>4##a=0P2TY4g!&9g)6phfiI! z=55;>?>8N6PD^Gg{dD1}5-Ffdm+FLW$)z2}u+Lczz2D5IJt$UrOpA5KEzM%+#GmYK z_K(uts4v?&+K*|w8iw^~ZsJIH6J`#oE}j$2o-1*LDHwGk%#GWM_oO zBWH4ffai?eR3#z%xxb85lHk1@Wf9)Cr5IL4>!5mRn&9$E%Wh)v3D1p3rL9397fxNUCuvc4c zvPl(_OtCIli&ht-`9`F059k+&_#m zX+0B)kF~j%s{dH%)f*cgSN;+Kn#2^t_?xD(mD}{2<4<#5JBKam<#3+M5%DkGGexUx zzIo})w0>-pezUy7v@j;Kc;|}QASnX|avUvXx+KL0W+_|7#laICFp@Xbq9Z=o)+`uOAcj+gcE7%$?N zD36W%n6_Nl{}TK7m?YJeYtK1ch^A>)Tnb*b$T53g5jp?vJeealpbM43Ho(PWlBXFq zIWv}=NUaxC6sB}`dPE)-y|*{Gt5ypYWO8-@R03INcuQH zX@?jVw!qP<&4@k7g?diEHRUDXa_`t3(wPNYkkxM)yqi$%#Vf3Si*giVpLBbt927k* z^FaFsZ|VcDyTPJxtlOrxqk!KKXz3vg)(HIT$d)HWWD^UGt~!n+ldX_sGAB|^`8%sP zkHo1O4Y==+)h!^2sTbG4D{Nox@EV683A--mo}XbLKeVO3Q)CC}v*Gb!F1QI=}qqt$Xc%>Zvlx5OWkSjP7-hBCcQXjPE4aPhR>P?WNp zGmUCkw8w5U`;6nTX5l2XIMJYj)~Oi9YJ!bsbLUFieDv6CY$-vIGS4($gfAML*C94z zdr>kG=9{jl1W`J36d6{ZJ-K9*R06fjR1@VkMfWW?k8R=)ouI`gmFkNVhP|w3-f)%* zQQEXh*BCU@!a*@AZGI-dUFwoXez@3RGrr@UC%ahlSdStT>Ez>C+oFmY`N`(Av(Dsa zEkM3ZcgiHYlujgyGa5Ux&ntvYby{0pqI`9VfFiL4MxKPL@aM{58;F&3y3|BO@q5ow?M3xx7>uV{vOh<2NwCSLA(6G{a2)!mR| zmRWaUJ^!Qo)PS?|(>i5>DG6uaa+L>H7f3%$I|g=GyopVFxx3d|30iAiwb~n4BMHmp zcc|TYDBg;td9>$WbfZNyKl?a#zws*e(9Z~{ z`@3MwFE8up4mgxM2SEocu>@4y5&^nupg#0k}k)-O`d6sJcb?JW_Rh z)I`!Y-l?z`6)aZRyRC@;G$9P=RUUb)xN{T{>Eg13yMJSeD7eRbc?h`P?jy}n5ZmGw zcDY}?^x$z4XQPt=!0)l zAUIcZ4F{Jv52N>k{Ka`!)06$WEJ5c&6WEq8tboA-0SjwR!%}RCv;$~CHrFPoY9L6i zgY5GBRM^clF~QZ!LGjUB!2GvqfZqt6sFoWHktA2)G{g#&`=DbNzYPL&@7fxROvS}- z!2NS2fOYS!$k>EHsuD{erEsXP2;no-r~@G^>L`H?sXJv!awEavrALEz&&%&n`kr%B z7QAp6y#{DIqVH~)!3DlyKXMe!P6MAFc?<&x1--x-F$BsAZ~TLdP{R!2NkhU~{`Wgn zxtB7pgY58%bp_aLN6PVQRKaM6AUq;p@0J+BgccfRO2B&IK+0EG9oz~;M!fB1dU zr%s&!gqN8QVq9r3l!mMZRB^TC;f>3KY?R zu#~Fu#3y780@C}er#-eCq-rjPUIyV2K6A#U%rDm6a(=D}G)}y_6lAL;b{#|U2@4pg zw?g<2Nz@jE`6>`91~R5Pb3;3%74I-zc;#bexfa+L8Vz(B%QuFTax27LO$D-W0R%4k6(;pl z$o1=s$F&~II4Nvpi>>PgZOQO1*sQui%#limYXPVVXVY4kiyy}#p6>p$+k!DdlqVNE zaayt{%+$~)Ju56K6)JMbTqBhxIyjTgyD}(3yx5NF@jlb@~_LHSZB>?{R?Yrxva{0czC% zg4EMYSx%Wi;JJ~I+yH6)1Q8_2v}@Z(b{nY>)cDFq;d^Aq4uJYl{l2E0WIU|$P`d91 zNz6WoKSAF4&2IK4x`zc6)OU>TxW6&F1=O-jNX3-Qy86aqmx}H|j{-Yz9g+8YKz5;c zpD9WE4sS*Nnu^A0#3{DSP1*q)rI7n&Iz-}hYIh32HVj$?SOMS*;M@z`Em(wqj=br@ z-q?(o{NIV$i|SK$&Rf++Y?MbXE5OJNXG{R?y|E8cjqhzffL7=(u(wkO_8R7QRfbn? zgnVpJupngeL*a>9n$w3-ofwCwR`AMhWC^hjC zb{9tO@idq|A-i?6X%`19l$)GkCy_@>y{@Y!~GQzrL5h& zz}pB-2HZC)Z4sLB;WG$Ap;fKtXTdu}cZ!LVT2D?~IGn%njl3@OYt;qMpnJf#AevWr zYK4La?o~0?I2KV+LUftv#6}PX5Kyzfv=;{RB(m;d{V6}4GnUv3+sZZ*jevDEw@qvj zJIw&K2pC7ednfXAG4mt!srW88)6v@|fU}2wl=j4fUMp{39)a!wL0ISm7(PKxjt$EL zulBglwI2`k9GOJu{-%C@A7H5pd*koo+Nw06!9cK`c<3k^Y6&5Kq#Za$kHkSE%y4P9 zSJT`<^U>}yCg!)hWB2>N{IlscuW*nM9;k&v>|ATIc9_kJMUd1sfy&8ys+Fr11KNnk zywsE~o>%2YTUgubif`7a0XIBExspbJiu-9KpIoK~x5E{!g^w)oel9(?_Tcm2|4T>% zh6c@0MPdYPhI4W=YY|qo(G22cFO8BwH82|Nm*{WL5Cj>4?X@HMgJ7DUKUZnu5Gd;i z2sfXO9z*cyBm|#M0Tg#4fbUB1zVk!%`Z^UF5&*V2M&^%>bSPuwe2uND;vem7_ZAx|lwRrxu76PrA&7bI6T4f$0AzPfgLcnILWFQp zxLzM@A=$2t6P!3uE<&&&Fqw29ekm{wo|Quw^HI?51WYrZHUvj>rvsuG9K4ZX0694V zblcHIcd?*K(FNanqh%Nz180Kj=3mHS&}QyMDg!Z^l1~y7l)2FU)KIVpqEfPzWkWh( z(8J^$dRM0rYGorMkJ1+d59qif{vSE%=vi3`Tn4TES|NK^n3=*)-=aB03nZY5$$Z4R zqazny#bCiMukUw)86X>7!r8-t%|4j_eAVnJWP;Yu5L~VdC8RN3j?y*XnFifm5a71f z+p)<*uuGx7j$#m|O z$MjoVi*1osSa7wbEM#+V)nN4vk4_}ieeOWQNQgYX&cwzV5T9A+1r*q>$mdPxVLTA9 zJ0hIpJ_ak0nA5G+1tZWUfNns{ZUq@ur^j;v1`(*B7%kVrTmkz$3&v@hfb8P1;C*R_y=+@O73%1t!5!3Sk5zys#M_I=RBQ(BSwe7dktj z)7zpltRhVc1sVK%{FR8QUaFQsOm)1smaqKbJi!5?(+}`o$h0hB_)E_SfTTa!Cnx}% zy*ajh!NG^Y_95aa+sqAS^dSjEKMKajZ3e;c*B}HPgiONx1mWY+r2zkjbDmpV1p307 z6Na)JNHdJbeq&>GIvP+lXwfLTI(!NPi*cJM`^%*oVIqO+0U8}jKViIrnL>n>X;78` z8_iDdDPu>1Zs~vjTF2YqwJhGAZlVZJ^XG!EN7TFj^QZCStyp`;w`eOO^P%(xuCxpw#Na-cfGYDh z)kS0m$>4?)t=%{I9<|;*$`$od*#EAt%!IAdm<{(YvsnZ=WCFF z35y(d9bv%{0sSiqTI_cik;5(!c?BXP%`aLBv_k1x&r}wb3i2W^nNA4vl5xg5S4wNNAV)m-;fRxt`DRee?{o6;?z>TfmEVyVylU>88ShUd(V^!E+m_N+;+*azdy_RH(ikQN zg28#}tT(5m4U(7sY(%c&N7V^8X!oAcLV_8Dt@Q5(_jo6GjB__MQUR>Gy*GpnQh}Ze z5>x+XbsZTPfaMe}kB26)%^a#8zjN?TAi7u3nRdyBgVLlR6w2T0v}xr#P6-$=13BL)4r=0YL^T?>0~o9 zfwoTgD&-v=sVz{u_4`X{{6F^YM3^fPCE4axh(ioTm zAG0kqjA9U$4RnJF3G;SftkRSijY2~@4NB=kg4u8k$0Tb-g$>-kh(8S5;o+FqzM#sX z?11R>_U(Z1uyY|E`5!InbJwm2NNlvQ;I-x#H(aX9dUtLRc69Z}%p!{$=;@2!@5&@b-Ut}OdWAOE!y ziT3}i_Z2FF{wRaUHgFIqa{ux*-wc4?bw;+$)eC9xe-jO4%YjU-3HUrI<;Cssk0sw^ zYT>lX8vvoVo>Rl-R5<0Oe&nx!1SkLTtq_(UxbWe|bqlzCW!x9Yt`;NZja6&@wF&$l zlArd--$U|yNdDiE)Nd>KZ6*JoS;=*lAfnth)dO)SoOtnwolM$ zs~G}e^4c~Fa;_@$3etxEe%pDtkdL)yMU*@|Y#7iiS-p3z>%p$aq9y|>jDJaSEOb}; z{(J_TDx{zxd=hRJItsK`LrsSRPwzk`X1$6dq-0ltGyslEWFfT+()!<|;*pFFz2m|y zICR~Syz}0ZS9k+Q^y(}~1)jMX7!8WH%aEel^1BO3k{>e)^e@N5lf?U;8iy;qR2F1N zhh(3T`58eFx!eyqlEN~C*!A1xe4PmH%YM2;l+f$jf7IwBSJAf?LXNP0DOrc*`PB4=b$#}0!IIqjSoa2a5g~92 zR_`F!D4orTTp4K&#tj9d#r`CSBU#Ak7RUBEzdP(4g$Vc!mnsmt&oj5uNH6eg1}a}IND|I?fB@~lTD=-p4hJgvi}CW z0mJI35~$>jocdFm<)0qGy_iMBlyK4n5oZ#&K~x*$p~EuJOP{eOQjvay6lg4&xR>2B ziO6MFyfuw5mM9*ng=aQ|)Nr;+h2Me)|NBcVdUbKwkpL$?4xfA&E3c~3PRqYi&Z}p9 ze)Ch;FJil%t=OQuT0;pP`0T@zn`S$12SuoCD|^O#LTH0+YKk)RlWjXU2zvycH9xJq z?$qgkl=Pdo3~woMDjO(=G2DF_w_G!3khQ1Gdd$Zw8s$7WcW=6Qva0P;%^;U_)f{T$ zQU>PLy!)^JvE=(73`8Vk)MkLEeDHMjeHmRTySB~akcQP&RaH%x2X4Qvvy)T2N%7TP zeNYWbaN?B+UFv~Lt#=Up{vzL9cE}6H~?_>G(OAp~HN8S&-5<41D|DmDa;;)C` zY&JY=MQd758zXvrtXcin_cYtYqIo31p}Q*55OjCal4|=tzR_H>n*VKx_Hm}a&E(g+ zGw)H~A5fp-c*Hr!19$F(-KSqo`@(n>LwquLI^@@H0mgFp5j9;mPRoRMIo*JO;UiM5RK{p~Vre7l1|bsIx(1(PVqGof@w$*^<{lrdQS_e~Z!}dMU$|1Cuvu(>5}{yW zgxzhK!7?A%0y>Vq9-gk;Ftns)rENyy8ZfV?BD427mn^*R;V5|hJilXwZFZ$p$)oci z^O*uS@O1+FOyR*!nb!kU;E?NJ$z;6Kf@NxLP@5%v_+Ti~*=XwKI|C1*YFvtStsis$ zP#rDTDJ}2g{7dPkT=TC;ZgH!_<0TbE806wca>FFgBx8R%Oja~^eBm$#%0O!qNMk^sE3d&g1? z4S4yH7|PlPzQGH!)Cq!?ew*16Try+3C9av0jJ@<3C^N1}VF z0tfGpEezeJ9TL}Q8nfVr@18p3>FKH4QxnTG4r#SZ07di06-ex&!u`M^;7c>toCLr~=9} z;)!*Apdz@2Rt!z2>pRQ+ledP_Kf32A2y?*w{rCF#`Q@csfMnLiVyKvnnWOy0Oy*)2%=##g`9Z#FS{)jmrjeIdK>$+=( z#1k_8B7eA_V+6oP9wFmqvechYp7p<}GyfK`b!j(1)}{dR>LKgvbI8b0bYc~JWt}I!qy+QC?7Ox$d1iJtA<1q- zVrNB7tcweEW?VYgX}m9moF7D#x)CmBEIX~UnFFz6cbXetg+kBE1p{DS-J1?mlS9Z* z&|)AmVLWgc;_7@QWJw-kAkOzJ%iH!*U@P*qXJDDn+LQPezV~oF_`sH#!VNKPX3z{* zV#7Ri4$b{zN=1*=dl|CwBDOB2Oq7oK;_&QAq&-e8cKp#Ymjqt0@hEH_hXvrmR|Y`B zSEEPM4cA6hNMV3rCLo>zA1Ls#;BtbW+e^?EUb`l`#R=iRq2rl@Z1>ZtT+M(7A-8(+8 ztz4~;rF66QXB4)8^Po~4P7rfOvc>ncX zl1BLq&GeO-hU!K(C3o!=aA6Q4t-oS}j6yFSY@qI0hR&jon>qm!4WWl`?k|%1Q&_DK z1Yxft?Z{Vf-sMNW9Vz`!WRjprHXwoUMNpoTaK7foY<1tlg8A%Uy; z#3A?gz zC-Q(l{%PSi^&+sF6wEd(&JVotkDq)E`@(K%uOFW6yQ}R5BRe-h$fYln?|%Q+>--*y zZ=?5nD1Hycw-NaE!*8qjZYX?NgLa?arTn8G`pYxDTjE}7iRL@}#~%#cXk{gX`I)q3 z$EZEqX`}Y>ZhQ6Bi|4PQt-f9G=O1K+hr~Oh^9hM=-25fun)CmBr~Prd;G|V@E8ikp z=C57o8y47OjiTt=@6Y#w-@FroXf&a@%W@&m{*{O9f|FBM`rChg=d&T;>2)dgIe$6T zAMWLD4^L{}VENCke(?ZQVD!^Q^YxLw#?4>1upe##AKSDYxY!0oA4R@?<)<-;yAMx# zKR5E{?|%J_FPsDSJ~Xxs`{}!1NBA%tC=IHcHUIf#RbbFJy%&@EdIx^n zK_$}!B}%?EaV_`SXYaGmS@(XwzGwM7ElqdNp6`6CYE+F;H3?EukR~RiBt)T5#4^{f zs-RGWg(wty5dSc|;xrS`2`^wQB_)+)BqiyT9PP|3Z=0e}*Mp*CkElfs9QR+^f61qV z!eM*nmQE%vi_dXFLhzyN^()6^9}`Gin?Ilb`4K%mdhXF9dcyqtl55w_YiZ$~SwEzG zqG$T%>-(+SxM79WOEnuE35hMcm-dG%xt;dBI`B}k7j(~e+*L=tKW-}b{LYRAL6FSl zVNyCAb^jxr4e{;ak0`>!jZxvVYX!@DB>odvd0mfOKfgW0Yawlsjwt_#V+xb90^0cH z3|ol|F}HC21t0Z?#F_?A4hI%i;mMGG8Jql&@-@s+A?em-k8T#`M?n{eQNnTUG2d|L zhUi>%NFIbWo^7)(BzL$+e|Lp+eG0!{@9q$3Sxc)9{j~924pP61s1xZz{>fV}pYGH* zDylb{7jF_KXIra$+q;s*A6ff#|91O+Ozw?=RSL6*5r-l^vwA3o?~Sx;9nUsWo~wCi zdCKwS7N>c@d4AV;0Tr|E%T5D(&mPsrt-N_5AbY*b2qxu6#odfI z-d!$c;+}53bn~PuPFTjnlyeV*Ql_Ykhifcj%&tD@_;KN+YtVVwa52Rb6MRm#sn6HX z&!)_sEIQ#;eCXoqM}q_0n=4lz$35-FyJoAG?AP#EG53vO;=)UQxkQSrZ_}oS+2*?w zEt*DePfR8boXMIo78GK1jF-6Z5brW6iYojlF&>UNs>q|Qc=Fzb*oT_e?|Mt{h6D`r z(u6R5?H}l(TA-#zJsBIx>ie=V(jr7)`PKZkWhjbY_w2jR6lV+x{7>C_dCB&jnfCp3 z2U7pgW~w+w^Va(@e#WR{thg?z#H#@p3sGg)UGp2re$dC=_s1v2J^q@$0SEo$5Tg;r zdt9tI4l7#sHHi|=`kmd+7x)h=_%nAM?g)_kOgV#7{u;OI==}zw3xuPA4)}NMNe?~0 zGWZ1N7NNFeC@J;weRS#tRzlgkDs-ZZcWx=sl;E)6kxeDEpj9K<#VZw`PCci@<$RRV zUn-Ta%l!1ANMjeRqr8FB4bD$-9=y5u?aI@mT=$&5c)Jtnk!Ze^{v!2*%A2^3c;hYC z=Zh!A!bW$=sVmKM4t zEP|)0gQrqspKGS^rJd_~@G)eDXeMC>XO(s9%>6qbo3u=XFPy)Dz8|K2pRFOv*y_T| z3*;BeFG@b$&^oU{W*zGC_OJ=rtJ(hO{`UTn{=>J0%E*NtQosFTKge&LNY06FerGyP zXkTqF?O^V}XD?Y1=6-w>we;|4Bg>a-Kh}O++BvpEu|vGWy~8hY&q($g-Br?xyC?77 ze1mi4+!sOPhZhvonBvK5A6{&9{wjD=;8n7F_>U()Vy@Ctgb&NC$Xw~xQ4yHspS@)1 zzZ#S)RYuR<(sGN!gJ_eqGRZq^C+5ntr^?=JGEui%Pswsj3Qt~~OgpaLq7anPsIHTy zmerH#EIAu}Nn$`P?pe)s0nN%Ao9W9gldO0oNf}M~l4pxYIo>S(eEW^|o9$%rZkNS6yAzt8HYJo=YV78oDHgS8 z$1L}LwLEFXV=;o+%9Z~_($`eGz~_xh1MlMHS{^SBP0q+mfV^PJB0#P&FS{_V#3 z?W)53Xxpeo*^%8U{VEgBEl&y0o3;9$(`yEE)^po)FR`(6DIaMsrc%0}!6%j_?w}NY zY1wtUJEeKj3B&ki-cX}+0tt+a_lE|+QK z(p$%J)3B4bCvP$pW|vgi66;p$5aqe)ZVVdT9=5s4+so@yc1!oZO{h)Mf`8Hr{ih?I z)y&nJPB*3)+Xr}GI(6`Qk#FDF#$7*3)kAfK3L{h^SmRLQIKi(WIO_PE|BzswgO#i2 z!tI3*PNU=AefQ>$FBW~wcsrSslaSL`I_lEc-pJ9E*P0iWuMn1Q_rlP%xnjGrz`@RG zf8xtr_=3Zm@uP~moxgQ5B)@fPpI)A#c`7txI?=Q~INiG>zoPJc?_>2?bJv3f)rFPD zzW!LO?)dg&8=*t5q#34G!zejU2bs-``Vmv~ae#HWPUv=YouuH9r;2@j8*6 zFT$TZo_ok2qq}qRmB?4+bdQPd_l8p@)6yLUiTjsZ&$4r6bH`KG@^4*V-9BCa^y||j zuTH%x>JR0gteB`6tT_68?>p1?T>_`$8ccd}Ju)Yld0D8!zoe*p4{t{ zZLvC*6?Ew;dCUx#c3ryWZ4OS-4X!n1@YTFtuzK))WPK>7ZxbJ~oKCE$3V?mcVPeFg=)jN0j zz4&LP64plx81mb+Hn5)CYfRWNn}=gv@ddH)zramdTdUdL)DQLs%6FX!nrjbu`T&|)pct4?6#U)>bz>R8aCNm zg$dQ$?`XzE*1Xo%Pc7{3qBgk`&$M9$n z$r^2_p!YLOUfKG?#qh6!6$%=Bj+ZwrIxp^&LrWId@`B&6uI5;<-bKOjplXV*l{a@$T-Aa|51p47$b*r9xPJ!xxOqzeP5B@g~1W`kp)kuFfT>xrQuO-K5yH^>RG>)ZVpVIb@}wjVlA21 zw5_3|;lBRj$QQ4;4TG`HO0hko1<4O@-$=8EwbEck^Y_}9%kTU4?R~=C!_`-Oo+5mD z;cJ9VFEuol|pYTr5Ue=1!&b0Y>TixfnD8JI3 z!7Yx}p|?S~K?E0d-y~BVQhNBt(h^l8aQDNzAe2&gWnzVqRax>0i@E&<#(@1s)s>C( z3bfKE5^<_K%5|uDiGC{OlUEtS$1c{PTpd+r>aWI6P4J%#?z#Jz*_4dTE_~paIYC2T zT~N^X7ePSyu_N5$R9)FivD(=toS@(jtS{KdGb=eo z^x(}Pl)I=$rdl#)^71Hlc#e<4!=XeSf@e7J5XCw3>$wyTD+>4EbuX?)A>rYWbpjXm-`C}DR& zcxq$nY)t2FbKBNQ&|QT7;1h!I9C?|Gp6=iy&ekIITJlPCl6H=!bUd7wIWN$Q64KGp z2|M006I8h>_50!Qn+Uyyv$MS*7nhrx8>bsLr=6oY*F^yV0j>*|xGr7dfKPBZdDuD| zyK~q&G5q|JKfdRxsgsGLrMmy~a1~T%1Md>5&ut`uB64rtX&iIFqf@@0SG^ z$c4Pab&>M|*RSt}Lxqu71(ht_O>b*mwX}gfgL8;p;^XEOJ~-fC-ulNWe;%stWa=ns zX9Gt%i~eKRe?R!oZ~oT<56-Fmk8|>IU-(8Ia^U=z0$Gw_RC~=g`RS7kBocR$C{}W9k z`wl&fG(pVFlp&Puq8GnwJy%x4i*90|YR&S0c$VHV=sSw%yXcc^N_cpc;caJ>PDqec zUL);EJ@)+h_2*(CqCv_*(wBpFBJ7k!Z*W(C5*ZWCt{&TaRXU>DtG|{VJ}|g>yPZUL zZ^e*$PZEWLM=Ji8{-a|KpvEtJ$JlQ37Y~H9T=hqtQ^fnLXG8^P9fC8qwzvQFGvXI6 zQ~kB;LpI}~xzq~teft`Q(puaEhKWy3G7W}tf|F?_&x2PpfZ8T#1fLiJ5 zfBT95?hSh-qqZ0hlJ#r_YILrG0#VYH|L&9j9j2_J% zbnfr- zu&-I9TD6vz>|3**ELhFUuC>9dM%|Lnwg@Yj_t;9p)r(c0n^MAVP&qF1he+QO%mqQ$$E2DG2@H?LT58!wmS#yIx zKmW7*k{=4!0{uC%LQ!amL!!eavhh0=LshBrSz+*f=_;S!4Uo&#`&BI+%bNG=P8$8T zxRgP}SAII&S+hb6iBj=n0b9gpS_V{gXmlo&6{3%8?ff{WV!GBknUTHB|DWRc2_X`) zFN1zwRw}?$c0(E)a#Dag+d%+=9g7fH#8tQ`b(S0c>eJHJ|KXbK6%VfI6%K|r#X+$l zMok(OkcvJt?Ht2A-$1Drx`j{oL<8rH(SrT_Jxl5<&v%p8=PfG5gbJAjiHE7cDw)a+ zhqa{J=afvSX)?7_-Eu6K>4XX~w;LJ$19U#&L@r`F`2X9BINLx;`gjhX6|x2UHw(bD ztP`+13B2fBK`|Y~uat>Mjd}^ljCwaeQvSKJ8z%4n@`zy3ErQ0(z^LuBZ5%BFE|R35 zpU~>w%Vp*2EIsy($$okDflqH*#2GZ67H$VF4#wX|O~es#Djw1#WNXfB3 zzWkvM*hAqdDyJh1^XHxTTnC@qm}WgH!q^c1K-=swJ{>6>ieYuBEHi{%@y!^{l=kQO zEKF)dj4$PacLGj#(*5!^RDc>GtX}>Mjz$t~-Z61hKqi9vcM1M5_^%wdNYszQJ|0~d zUOF%GAyK?qnfulaJS}d%(%|o`mtG(>lJ6@H0N>uE z|G(ctx`w$uD$~jbcv{86)sKmB@V>(CQ@-TgScY}4JxU*c3McUR`viY)(SHiWzrE;x z#Hzoy=9SP5zy5{)e*W?=AWpD*lFwzoFuP!GQjM1{Ghz7V?@*-qc%=6#RIr z>N#oOGeCO@2Q%OKs*QoMVQzW8XP6J2%QJMs=Pt@x`IG`ZX%LXG>spnpXng+jKyD-Fr+4pVUbG^T!i7cq(kjX>9)bX@>659BH|BRJcmw z2YKh~lVdw0>=dSv4t}k#EmruhqH{MBoMNSJ`1fWEd>bQ2=kDdDGylJ`)i#8!P7V|XY9)tL*XNudi)c|DVT%` z&76v0o1F|kU1CS)TE=C)@jY(DvC8Uk)xVVS*hx}+c@Q!zqV#~{s?Z}FtNhnD7U9-x z@JPYt5foO5N)9a2BIe`zi{^7GT@zZWVbCA4tKZdIpx^zISWm|b6#td7QyM+c`ruUi zY$^Dir~8K|hy`3PdNk-8;s>+Zt~L`CzHp)>C_J19PKxt7Gt?h6s~mLL3s7TZ;fN|r zhCjTKv=sD&qzlNZbC6XFa<3Bo(l+P_;KMSRPKxKiQ)QL5KoOgh&YBX$)3PpWdBXry z{X+08HE0>m9n}BxMbdSmQ~dTSfAgD8a_iuhoG@W&$Ywyo!YOZUxY8*@&Ki>&zWnZt zopWCB>a-Y|TF{yF!TQ1wdDQ1$;spLx1`yjQHS^~{c*+rDv7$gO#~l5Cwd=4TJgxCK zAAmP=1mgO1$c$WUq#kWNKv_GGcl;94l?h0VLS$pGKd(PXPyc%{{#)^jqBq39KeN*|Ad_EXvI`R*}A_sQxs z^IFffi3-!U7?mQjoHN|LuS}$8-(w5vIVV>-#keL*EI*}}tgsyMmiX1m`NM@Xe}g?S zO`WVD07Yp6k*g|4<54+S?x=-5SnTx9aU)`WJ6P!*Won#zVE#ii^2fyKqG2;!K1uyl z{FVX3c#;ReLQV%3%HYA#&@_9#?n`QvH}XIl^rHhO3CIMoOp2+^Wfx#+E$u4xfulre zLTGhzaOB|^zA$}JG@yviolVq46uXc=D|T|Jv-1PRlldGvCD%VM4i`l=tj>PQAQUpp zWsf*1is=4Nk55RB`B*@eBA#HT$m9HPjWEFTg8q|W|>!3KlFZOpczTwXk ze-HrYkN_Bl0C>k?FuIFh7&9$(?)MdS5%s&U;$W`Gp>yxiP&EOf@E9zWjDg>$RhoUnQ9gV;^PH=GlR|Dl zzpRGnQq4+w=!i#eey}X>u+Enk3APbS23`w1Y)jQkb$MY*zd&dYZ(gwHuvWrlOM2q% z^#$w_nj-I-KTjH2LWD8kcFR?PZh0_95ctXe&KR)$71*-g6+W_1Av@XkNnHpfmGYxdus?YYN*VfRAQRpgGaGhJj#Bd3Jjv3}r1i z-IpJRU$~VB5hD65^S(Gfd|Xoex9`U@?&OT>z9P%fWE>pVE;ef+9xSzHnbdb1Vajlu zR=4BYTAgKhIo~0`Th&pxN_Rf}YTdwiqrlC6_%v3;WrD>KA=!%AIyqh3pEJ)cSc zC~v;881+3{Cli~)9CfKe;U*pb@{efTCe$6Dq}R;HcMD$f&9x}>$fRtiStQlMfF1E7HX_o zYJ?^g5_silifCP|u*&cLi!rQ>hclHKzRdPyMMgn|(#owl0Ck)WZ_;JtYMe6G;>?rT z^j`_RA~}75PN}ayh=;UKGrHP!fqiT!Ni&vHf2-HTx2|%r3Y$KdU{}XB*^{NZdpV8d z4`QU0=I=%=c}Hu&NZ;UEiclm{4Zcoi)HAO zdiB;XqEz>C5}}tro)%BBgf8A4DBy^vPO96WbCp}}JLw~>+A7DB5KM7MFdYCcYpE?` z17$~XAlNz_v3E3hc4Qm@I=7|5N%MDX%G7SCCShu@%Ed3l>?D2(M>2+#U1Ek1wAR|0 z0n`3V>0jXHGcm||z~xqt1e}IXzk9eau5nasr?96;$R}UBSSoa(BRhlB7~5B1Xqa6@ zX3h3$kT!+eJXEbvD1+n-?~Tyi#hR`8;!fG!@lYX!Rtj#j>y~1JY9v37S3~JWE$|1r zif7$>wOg5yoh|!xURwB|NaFa`5BZJxoQ1f5sXxQo5u3r1@QeLPT1QBzPFviVZ=4Im z-XY?A@(AER!twjpraemAJeP&izE(G29%WIHEQ+IB_=oD?1H>eg zYJ0@PWo@okW&g)`SnP7RG);Js%}^OqWFQt=`xX4nJt!owB%ET1L85yzNFHuwaX6GKbiuRi@B+Z!PNV^ zuSX86Ap38K?7zYsCv5LBfGNRb0)b~cEK zb#W6D7LB*P#pa5e?-pySj9%Xn53S!_u*=vp+~3kcMPqUVbN<6k&t|y1TBq2noseyM^p6$} z_E~O=X8Rbb^Udu*>WxpSbahCFM4K4h?NhYBXgg4p;XH|Fg*b1LF8$|6fCRwK+{K`N zbqkuy-95yFgUP%*Qo#uf5GDbTfd$~5c>1Twj5wACt{|Lb=n;_E_hvE>V;)Qml%Z+s z?08zGcS?>*LTsLXq=$>lFR+#Z+6{8b`sRm-|6~dL+JWFKlt$jkpx=&zt~ z%mhI1Y{JOJOnsphqUzUyN8}D6M)QF@bpwaXJ@k; z>z3OlMV&l((!=b$090d4K~{Nyb{feagx%j!n7`MWSIAwDB;O&qP$2YbFsX2%BgggS zrFz@?&33!=xv{-b%I1toNgd_2@>rek$JZS|IfIz_nFgv@Mj^+DqL(h_210jtckBq&UF?v}Zv zBpP(C-9wq+-QUWP9KfO@RRfj!GJbp~9B z5vy0)+CbT5{prg^JW_j^h9$u$RE}J+lwlDkm;=jAwfF-Pr|`e2q<8bfA}B$}NuQ|X zLX!Y8x)>ctI~xOCRvGeLom`%5o9y2+)ya|*S?f_%Y4T+(Aim#|qgkN#>4s>X{g*2g zu_GR9Wka@+CW!q+X#I8^EXST-3%=oLYO1szVt~$_YzM4f9=5oLLc7dGRbR-@&p#!) z?bP-mj{8gQHSjwQeo-3whB;g|Np%IWU1y4rksz1%PtFEN#l|LSd2K9ma01ndx-`>~ zqp9a`uVkpkqd02(T}WgEmmm&?2Z9=lr$zpAg6TWK5B&%EhV=%5>gBfjYzr*@Y8o2v z`UXxfHIn3Byy=v)0JPCo`c04y{KVWDAAeSYrB{uV|_qD?{fJmG^%30&8jiv{qa3^|2ymu$DD9 z<$^m{%lm(6t=5@0i2_dP(Ic}?v)vhvxA!mQ^)SV9=rXHQ0z=Fg`FNg7=oKf(E$>F^ ze7xA84q(j~OVX_M<<+_^_DGHM9l7}-_cTpDo*Lz>pH)#8=i>#EQ=gZja;8m-)ncRFXOkW z6)T99j1iU;Z~DppS0)(~a{TCA>o*P)?2`nAoaZ}3G+>IUUcAd?rt6txM&$Z*vd79) z)7b3k#rI$7{SbiM&zP2}mglvUG5Dg=36M$T{xtPTxY#57RZ=R(Rd4q|Ve(--i_6Ncn`=$%Z@T zwjW}ne`BXW2zDBPV=y%>ngj|_7mG`+Gp&f=8NEBx))Y+M_PvEAWgctgI<28Ah6Mv@ z7hTmmAV_)TqwI)*Y_?Su1g;H=d~YOE;k6spldVga^oMI$Y5dbQ^zS9!bW1b@JhVTk z{#>d-A{z;1?1BjtoXv2=Y8rT4YfTj@7+iOq?)^UA%)%3;HyrCC&-r3tK%$7#+0|<1 zG#cL>uk|Mk=Bxb!20a&_bV#~_6kKDP(FZF2rO5A(5#A$^hoiCWWhfeyv%U$WuKH-0 z6e7RqjAiBUN3BOBNfeyf+;w${{<&=-P%O*-3PBB2uLuWJ^$f9?ri?oRFKtLx9ip7x3YG{Uo~c zzliRVCJ^1Nlh?Gzz`27tibFd1$A6>Hy>{(hl-r1lW-62yS_@mo4gNR*gU#xjMQxms zy0tsYZ7PEaPd)v1px#1rjjcLIZedv@Y&p|{PDo3r!>)__P7T&&P#PkRvD!AI7 zmj>SX&i}xNd|``q9t;J-6)cv3RFB`i zVo*7TS>8PW@OH^aq9Q~RRpGTt15zB!J&BUcU=&)0(4y}du;WCL#Uyn&uXfUa#k*@j zwq*a6aOFUNi&z2iCUWw@qe2M9w+Ys&sS%mpJ<|%}vY4t8KKz8TBrVNct+SH1`|^{b zcDL3dyO%n0*16^qc&wQhpoDvwd6`}RO3l#++NOKCwN*Hz@A{pSYpg|zJ9ay!GylHG@T)g;Sa z^-#a}sjQ8MiN!cBPqg?ZsBnRJ#&ed=F{lU(6eBM!3AfK_)8#@5FY;{lZIKicnY({nhUl8TJy^`?GQweOAeWs;d3J&HKz3JpMHgii#db@E54i67(wLzvL{mqSkmg*9@7Ao! zAlmdFF8$p5a#Yfbah`KV)eP@2sQZ4 z0q9kv-@BD$myk0nPx=g?gus5_w#Dma zA;mypZoM^?Oj8XQ+dER}@CuRjim&`@2%Q19$^HnG8hViQPtXu>Y){ikt13YHuWV&| znMgkgeY6bW@yFcW`XklcS-Wz4nyxqXORb_Gzx6Gd_Q%1U=!bZMeGlJ)X4?})>rqKY zx-ZL2x(6Yp_{-_8)?Tpf$qfJII@cp}(4CA(fPflA0&2OtNsb4Dn)qby4eNACA+QeI6>twKlp$c^6@jS3gkc0avw+C_Zjf zN{EEj4QQ(Ulc@~AR9s$gZ=1%Q;{jAqe6%;GlNsgt0DfT>BTJ<{0NT@jLHk2buvD*b zHPnK8Tu39lO%5a?VAt;X#rY1#rMr+|KjfoQ#!IuU^UC zZ6v5)@LHc|LxO2z%&&gzMNhDjzl;3c3cady6!uNTRW)eyO5;7(dBAIpxgpgLl^z?? zn0Wti*CmizYga(|93?p8#|pExY}ga-gi=&auMq<-gM@#tCVc4cc|j4M3>i>Ewh0V80D1 z*_Sc#DC<$P;k@rf`3}~i%a}8mdmaf6?}EiW55e-lLQ76}l38G&hG$dYy6RCl#w-{S zasRnJ!I!-6$(x@~zNO`!@GET%4hk=S>z;W`N1 z-lcsSI>lxodT;jbZGV0pI9UOTLmlUCze$*k$o9t+xUVwOWSiWpj`K=J4*EB4k`E+J7heyX5$MZO zY(blfZSu$Waa?5(Y83@%87RE;$YLeW~#|P7b=!K5YpG=n6F0dj*kw8;AR2{%pUq&T*)7&{;~B z%BsZ!uzwMXfV~XN^~A6KHnF{jj8^!8N1Epr;WPa4w*U@2vaWC@J z%~+(4&@2|(6<&VN;5b}nqig8)eessn{#TA{sL$4*A+9!?G7^_*-IrgtW$k8EOuM$( zqpB!V4H@sFrWd>EPiBR%!}@gHCD1dv?=6m0vy7ZvOpy$LmX*4c2viVSQg&_{OHdpR z7eG(()iB>IlKb01h)XgY)pdjRJN|mV$x%?3o{~OnTx|4wL%?#q8s>VqmArHZ_Fnr# zM{o}(&8J4qQf%POVvQh(^D6T0!Z=WM5TrV_!6XT}@3q%_(2cJU@3HF|98>H}5i?|* zYEPK1csNTVRQTd%{G}o2Ovfb+UOx=2^5*znRE~PfHjBeCqtZ^iRz~2;%+K=c&3mv6 zHZWplb;vSI{1K$L7w*efW}qvJ&OIv}qT)sXu_sS~#9o9gi21V=?>BZ4rFS3pz2m?& zq2bE2)amcu+*!qJV7I8j+E7*4703VuhbG+|A5`L1LK~|e^Z^PMJ3@j*08$g6xAI>* z=3|+C(mL?Ej>I6tlbc8qORgcU-dp{o*w#C*kj`!P;mLS$hhSTuK8??+a+Wy|ETN41 zrDRxS-lflOxZ+h5aG@tfaHAgDlw2}fijVp^70dQ*IiXrAFn+qJ!0$-;c&!+mP>t5vFyi8T3C9vzI3!z^LPt> zVZO|}q-shij)loc#pyWE4!bnz(B!<*U1F)qw!Jz#e)*VCp`eIJ+!7TI=7XX`CN8wf z#y@!a_s&hMMONS!4w|D(j{_)1D)o(V=dUSOiZC_kzV`>M^|u>0@gW89>xW< zO!j#fDqe;6bxQ;v=Cwq)W^9U(Q?4lvjUbiK<9~ye$Wma|t1UW>8cl(Kd4SAs4){45 zc@a50xBHb^K~Rtx0M={h<}nd2ou2IT7IRp-6>5S-s#|XNsd=oT^!963I#zm9WlOU~`>r~Y1GW?}N{6`_NbWqx?$S_2OFJIReZlKQ}Zx^8tvzenh%blXpm zsjj;qGx%WJTot~ScbX?#`52UXyeWO4T6B7ZS@+~xe~p+DZ309%rTRrr9?WJP@x_}8 zeg>a|9J=^sz#U@!-FRYjHG)CV?kA*99ftx}P*j3q2^fR3LLqjE3`Sn2R~{KKkV3lv zqjZ|vEgU)?ZBIkR_T1TMJ!j6cEhxOmI4o@P?zgO)5PW`{Q*JC6azk(B!J+N2Gkgl6 zLT-zCbC~6d5rK7RNXCqtCwoZARy!S7v-rT8I{$3VA#?~OPXx{%wWO(I1C-zi06ZYP zk&|2WW=9JbPA7ZG3YfM=eLZQ-Z|!zd1W+^M9Wo+Q^X&~$MhWCQ7e(UOfyI*DTfs*~ ze~8lnC&akA@PEliVJY3FnU9K?=s$g+O=9;rSMqJ~gzO^GZ$P011^o8Bk?!&It(UM5 z0vwgICvY&sH(Xe8nHsW9K7fqDK54^%i_UeOV*6F7GdojG3`gK>(!PHsvs21sk2A{%&B&miV~i|!#qE<-y89}b?n zK;Hmpbmv(}Xe9DdB-L-KEzF=@m zf-_XJX%d4X`=~%+6iWJYTxTdi$mLduy9?XR*t53b?BfGUu|rCX-;pb;)@GmTg7>IQTWBa2j7{PqpU{PuTM_J^H1qq_|{tDT;Vu=Ot13}(oY zXBo}~Z)|mnZs%TpC3GU%s&jnvIDf^c#HG)zfngDj4c~AMq3mpYsI7f#2H3uQ&Ebr0 z_A)~+ZeGMyW^Qp^|<=eyhY7yXdDXWZ9Yl-bnI8iM5x3w#* zt6Ii~v#^jPaOrQ2-`_}|=ga=lv3pcOi#cqm2+Nm# z+sPJ}t=8~>Xop@&1?k^$V9966O9ke2Y6EOd`UKX;F4l+mZOX0eZ)`6mP(PjSNWzx0 ztx=t@=V%yQp(-}m8XcWlW8}i-7A8|>V2q7NSaPxHHv0VT-;5}>4qCI&>(Dya1Ouj% z-;oiD%_YAC>iGqhy+n{L9DV!puv0o*?*d)49xOAyPip}1H|_ri_-Bw&%{R<7UY;l; z!_#sSS~DdEb8Fu=PX_Jnb*t0tY!8 zIJN2sDlN}K!U40KsI9XUq33t z&d%gI7t zGp@r9(gFs8Z|8rMy;YdfQdn+6=BztzTw@nR(yE-;LZ}#wIfhXUC3(vd-<<2oQkjHI zAK87_q*kcFbz!iyCu72)T2&b=MU-#u=DOx`jD1q!a|tK0=?CnonzNJ7OM{7iqp2IK z$sg(8@D%XtaWH#{@iIHP_?XA+{b>*HEs;-;3|@YIPD1sVnpeT|l|vvw;VADMufX10 zIlm{%vrLL|9@GBDDz3Y0hg8;U^9!QZ03K$mD`X={4_$CXgK)3&aS`z>F#+rBp^h($Usf4irmK(Uw3M*dW>J5#uI zUXPQ7ddG1?sTddgLUSy7bdA=;x5ImK!>;9fb`zJJK+%>1TW9qIxr%|e&$(Y7tda_K zk)sDF_Pe)&3YRSRlZrtiOR?LlC)gI%<1)bML+6r7-5~Wp!aT}lYJkz6?C|Vz(W=}C z%GMvm+#{xZn$&lM_)^N%n|>s#TTli`E0kJ%ywY0d)9#5>o-yNRY%3&MApyu*?q854 z`Js}A!gf(wy3-v&gOU=hJeX3Cu!P1;{gHsRVnxwYDfPA6p;2B-eyLGo{iftB!!uX; z!Ta7id}xFFOym!!=P%9z2pbxmK;2~@r-`t21*ReQhnR_QysJ~}jZ zC{rCqF<_dA=g3b-n#!7xk_HBF@u>0I9h9|J#AXEv4#xX~69#5gLF~t*jF*OV0(98; zOkc!%bE@$5p)>RJpm?s;cU}bYwx9BD&58`v(*%;RXi)xjWZy5q?F;XO#E?nD_0bTQ zOwGIF!pHy@?+~XdPOh2)&kk3og?2!r7eLYqDwv#p`j-&Yqbwx^)w}Wbfoxe+a zJkKS6WIU#|wN;j_IgC$e-gkd{EOtDcL0Z;h=XUS6%6N0`M}C$lwE!W}p4mN-p2ojk8s?gt#X?(sJDO#1nawmSnv>9gN- zm!ce3q!Ti3W2!2nV#n+&qkv2nN6Aek_#VyS6%we~4ju5w-wRrs{BCVmtI+D>TNoC_ zv(VtVkD-q6-FQ4;?9nc}vgDHxYLk)VdPKuO?C!@nE(n#xfaeUAq=oerxj>V?n@y&r z&y(a%>-(lZ#y)p-lM%3K;!)Y_JS+C3dmAJS4#(ET{;H+DDVIV|J#xEV@n#}g!*grW znh9%P#>6fO)$v+7MJ3ixFt2#7ge287H@8jg8nlM*wufdd)$ImQ(YkdjX4E(u9bwxT zSQ1jfl;C0|$zoc@xrB?ATc=Za{Tevm^PU zTqv!!u&Qi5Hap36P-YHhb;xA|ZoN@r+YoBl8C@w$_`ss)z5Ja8a@K1QRGP>QuY33o zajK9|`cy}?k;nJ3)nhMMPISdOx*1UmVLmiNqx9Bgzs)wobiJa+TstA>3k55@_MR|2 zcj~bxOe{Eh!}Q6C#Ddw+ow{xqfr%%Q>8%ITCiUw)D^3r}^`XBy5tYQZ?WLgGNwb0N zQ&gzk81-5|+p2@7^#F6{tz_jf3rud@V-N`e8(+fCkUSHX3@2Fm!!#f5yDZDt#lLW(# z3E4GAwDJrz_%0b8(GYsuB)7f2I0O^=gn?x-e)|)j?i{Z6bK+b1VHztluzNl-kUg{U zwJU%{IfG0SL0=zKPpaQ9JHCvB8y(_;FL++@=lQK^M?Vl{y*DK+2Y2&Wp@qvsF4+~r zIAC{i^{SSh;nOG@93E19%h^Zr7g{~9Ubrk;rJERu&x?x_Vnb-re z?TGX?G%?V*63LRel7SY=d^rfy={yge56(eogTRoIn+%Bf$OI@Q%$rqBE9>YEjkzH+ zXD}fyHBPyvu5XwEziv@H`H1Z_+$njSJHW-odHPHGGrm@b*kWDs#OVfkoO;~uuE*1)fn4D1Q8!uwl}E)TCR794RRAnf%MVh zNYgAS7?O-(pH2bkn%DhJM^46sySHwDwRyZ>`QbzX9fhMQ!dF_eKV_%icDKM~V-dZ* zN552F>&MWnIqaSh#ggP05hYDye>bW;j7Lb7&(6kG9<9g<|b?jWqB-`J_ zn(7~LPFGj+w=gmh>q1Rg$?;jozjsl~V>LjUK(8B{JFS_Z_>{k(RGVverdce)*JXA@ zy)`X#w=zniPyHpePj*Q)TzXeNZrHwzkAR(kNP;kT zZ-QJyJAh$6ZC^)>XizYrdQ6GfkH0kS!VUdbB2ir*}4U@RNAA<<`ISy`4G&m?I0t2I9 zo(dF?h?iE3BhEg?$6He2W?Cj>;0Jxoh({tyMF>EJ!+X^J1VYa2saB8y?$S=U(`3-6 zBd?waGRnGa8fNU{4AHp*zR7);;T9sE zmb*^yI)A8xVbj{00L)@qIJ4gEMu=Y~j(7b(bY0khvda5JE5i%Bq zD2;=grCguA?#M9(@ha3O&8?-2{MtCngMGEuPYPo4t&7xEGL_5G>MElj$L0&S3jFru zLWh#9U7rZ8M3p(#{5Z4{J3ltIvF%8;+SWDqtb5{~d3y(rDov7(eUN&ayx87O*+AUq zcKIo;sT3d2ke+J0j@?6Re6@8lp}NWaS6W$83|S|0XT#*;Rw2fG-(O~2Z-TPy=7nMY zKD5cZ$Kl`M{+48)^#L`nerm0wB4*|k%`4|VD2%C|()(hq7x_SpZSBQatzN4D*XY-r zr1I{EduG$IV+FpFG?e=l0~dQSy0!D_o9iRxVo#Ry>+_Gk^g6zgpI z3hSea`=H0$;k@Gc6j?;wK-}{l{C-8=I1#Thy?6OucMOVsw%5BS3g41Mb}u@gUKQ+d z({0GN7Nqierb=B~sLC~~*o{4J=f4)D?v!D8M1zWTvJmHO`fpYFlw#gBCEJ62bWj|N;5QOx4vNQ%lS%-OLVtn z;7gtH+xw+u(-I5~f>GvZ^ghc4=gdu!&pVqdlj%N&lmCakH;;#U|NDm{LW)YI($I2B zDpW#t9YqmRS+bW<*2ox3W63EkmKKtoWXqncgHeehJ2P3vRI&~u#>_B``Mo|m=UnHz zUDxmW-Phy3?(4qqKRV~+U_PJsYkR()ujS2gs-szTs1&Lnn=sir`fZG<>r1>`e1oOv zJ&?Yyc35~IhGrG1WY(Bu5tz(+5MgznAdB|=7`E`@KIto+%^Y|%nCN|^V2ZR5OXkx! z;&3;?<~rw!6o(C)-hIzG(-yuO#E^G1L>g|F8UniJ*T#q#E9s%Wf_U`Q-2?tj9%b=v zPiDUCZk7x`c=P)G?Hqa{N7BBbhN!!Bwux^lmMmu2%lc@Yd~-I{a#s$dM<^AOdM2aK zU9aNWlX>jiE#6`FwS}7YD5-j4z}u5&iB(-?1)WoP_a%)RuKlf6_Ud1QQD#l?Tg7bE z98!Ea*;P3w$m2LN+ig~Hz7;j0y^6t%rP{f07o&=gQ8pE<*>m(;smM6{8# zC*~y|vaB*rR91`>mlh`Z;(f_;OUQi>Kma!3wFYGplc*E-?I(Y z+oA&_7H44qL}Jf))P^55k8A@|-N`%lb=PzaF1M}wtm9hHh5<{O;Q0cpY(;|*>gz#L zYD7?^sp^0oQFQOL({)9jFmNGnVQd(%$ObO}!{pV;I@_b6eP$77q%!PE; z{DxK-t!x`0BJJml1PPOF{`F#yl#Fj3F^Z3;&dwx)kI^A>2=`_Ek=j4ux z$xprxBNZfX`M|C7v_`G(i&}QggQsW1{aK>?+icaCmc_+&K#G`Ne-eGbv~gNMGGRx0 z4(H1zuegvl-m2pSXaj3ft3)4|5?wE{_sl~E35SX4SUQ=&7VK@~tL441)0RBS{@!C{ zU-e)l7NskeXtJlFplbG26edhD@Dko7wI`TLaLyUJS*GWAO362>XR8mR^Tzk`ep%Dm za?3bsMa;Zlr!!yIQVgSXX+YzUO3e~un7p~4CBd1qjEJ0XZ$GF0+O{(4z~+L7N3v07 zzU*~Nb@+1Nx3}LF`mS3`Z8Iv%zZfWEQF^96@YCUj7rk$&wY^!`8BMG_mZ~wQnhBxWq=|9oCqZs2NQb0L;`yCb=~pg`)`tS8Yp zFraCoO<_FZk!Ll{Ki=^E#gb3CW#bctX$cw=j-h%Lp7)djS+T<+N6bs*?2kJx-8efg zEKp53P+eY+YR)o?_$tOp@%aFW!SNVGk<+p zvP{GlRf!UiT$g3X!CvcqoqZJ;FG-VV02HXUl8`V=0lOJrpyqZMA1ZzOI!)F>FFHg> zzM$ADUrwdssnZB{@zJA@p)R)8rz!uyfzb;}Zk@DqQe^g^7%(H(6Qf3~uX&rR{dlOW zBu>c0MP(**pKg@6uxQqJ4I}i}^ZPlP@@0$}>c*tK=Tbkpf1iC{(r`Ivet3jF7~oNv z;NFp)6V)s0Uc=(6I6>}gUO=C>IaGkdP1b}mI#OS|D>g1BJ?~$UW2Mn!7*{?&9G`9z zD&dwSDr)8RXnWtx9kEY~w>#$7Sl7{sW4vlY8_?b`&G6B2Wv+gGY#?7FPM2XW@6>f_ zRd@E2c}x|QWwW>cqEfgyxm4bQ7%7=RJh|T`ZsE5mJ{NXfu8Z?;1!vA0n-;eO zI(~iPS%o>H!b9wmH3iRuMmso7#ZU?sCLk$UoW8miQV{2$(>>RqY#D#30SEPiX@Ted zyTG3I)cRSpJDxy1O^wktjP0H;=c7~@Paw0t%=h(91#o)iH(3IO1|nPVDupvFlSSXU z9$Rk4S~Hlv>7TLg%XbEd6Sx=r1a$+UCx!B>zsLH&pICcyO4c@@oW!Lr_dtO%0zHeABRZU}r;KT;jn!HvJnBSHoGP+3#?# zrklJ8`Wy^=50h_TM-KZ`jJVpTmgw}L`fxExV?SsfNhby0O*GZ}I9)CQZg=XEjf&CB z(^?EO5T<(Q#S&hTUVR!bqhC#m8==}vt1G!?W45b&9uCvXHY412SwA8M? zx$)%mo0I7r$)S|fx81K)FTLuS&bQlL{H~?3tht=Jwc^ycWXZ|{1@3QKV~+6V=kCn_E7;w1v8d*_QkVS=YhP~Dt>`3rKlW@F5lpwNw9Qtsc2FZp+(EJycG+$c#IDefo(km&8>_eH2oH;zDb;f6S zlke3~RI|ajX^EO~L|{ON)H&}7i@AkcCx!K+X~Jt23rtr^1e}ZTPq6jAio(9 z&_3-80S46dpe<4}Shb+h&{eve4e7WqDCFY-Zjb_6ZYAujHMfMFxE?XN3Gl13&xGEr(}(*S8WX?VKcWUd)Hs%rQZ_I4Q!wI(Lq00 z{Eq%?q1ixllg8n|v7WS$F~>}|k;e2uzd6HnRlKXHlnz-@yD^O-AwAUQRJ@y1pQlnX zAdh~LAffVUVqdLL?%PLw2#M*ba(IoZN$_F2PxyGGm#v?OJFkM_>;~N zZ+E3L)R~s}DLp0ITfWsw6Q^j(%q9Q$p~Z(3iKm|QSElJV7w6;C7a5plN!Jg@gJc7J zzUpU_awe}!>8N&DG)kac22yZYY%9;3-pu-QOW&_UMy6&SPb7X7w%#`qXw7Lj7cr`# z*Qj6cEYUo)zwdm+l(;fEA&_n*wGgRfs5=#tBU5f+Fv&@)POq9{nGEdrgpSdDf|6RB z3suxxliic>jBpWr*;w0~MUI+loPgzmt0U%!>O|qY7aw61WPG{gRY=(egeQkJfhiya`7&`>8x?sZn#5dXikhgcPGm6sH#xkb9Au`Tr4MB(xSu_ORCj;8;q#aHR(=-> z47>IvG*)XCI}AUOL8jj}duNW6+ddu$rk5rSGZQ3gIHFr;g0>1ep;-8(`P-^)n1hp_ zncI}yFzwMLr8#5AaVshD1@ZJLd#wi13zIkNgooz7?X*i*r5>eKx*cE#3>}#-wQ(#y zKNl7*@r;#;IxysG8p}N0K=Qf0ojKvCUNl1xANk-xpY=UA;Nf8^)u2{w-B?)j-JXx2 zNIr_kJUe>r99JUgBNqCUJ(nKod|K$@jXpM~TT3TG(6-SxM*8;i67wp1zgtdB*~8Gq zMgNrz;_&0&L}uO|7^bs7!w~4(s`j)OswDyJZ);1FP^$L#Z(`_)!_1!K+yLze{4~9Q z*eg>Ytc|iQN&exi@x~tN*S}WV2G3Wt2Y60J<Z5ldl?3 z4mY`xGGNtS`Tej_>EjLZ4lo&*h%4JP6#E(MglNELvW30Eoc&~GN zrUx#A$BeU3Cs`ZU#9=3HJ<4U`n6axHRkWO-WWpq%M@(VMDl5_6g=%A+g8euPImj09CPSZ;6bYRrAvt)!l{wDsK5%o$qDy|h(v z_`3(QJ{|uCa7iTj))}uaK&3}{d`>il4jrim?~&D$JD|&IU(63sF6bF@lGR_>zS;+p z5_*BmhTAbVeis{0I*W=LZ^brTRnnO8F1G8RK^uOY#;6s9oD?H^&NRv5qjU7U^$OympX0a5&&@l($YY+1e+4yT3y>02+JhoTY zcAMHrEBelSl!RWHn{(AS8X{2XFWK|$rGk|r&J;pk`dDhH`2KWK>Idt{BPi|xNN=hQ z{1WN7ZoJ52!Pdz=L*qo^#&xbem#s5z<>ySC)D}{pcMn<}5@SZ^Dg#|!Gk09`;+u3fb38r9`mx@2kGl2emIfs_ z4?RZ`n_C4KEY1=WKh&qj>_4xIdomudFzJ}nW!}4D66z>Ud1VV!T+<*hX!#}L!rQnO zIJemxAyJs11n4o(P9iBe4X752IQH*7Jypy4aCPuH=ZnRa(I-jdeM3~T)J=SQWz|fT zZ(?=6)(xfZsbHmZ;sKUg7JJTKbmAk3sgy)fc{PDIFA&|z-6JNh%)jTOhfEfL(l$69~uoaG%eW(HSxm*rlc}z+kQ!{xyLa;fUN_Fkv(&PJ91)a4I)`wvADdwlRx@g=;)j?z4N@^)J`% zSZAwtJR@51_0d*phbweME>~jq!ICKG+vTXk1l>~(XPq=1jFo=J@+*g@iW0~1uM3}g zZ0!iYi{Yz@RB#_UZlSd8Fz;%v1WzLO4nZJG%-BNvLN@?7xnCC_jIk)-mq@BWYK#E0 zn|$8f34Yo!18GUy&ako!Bta>b5q1M5=+UY^Xu&7Fk$%dFW9zFI{8t zivEGTTOp^<4yPo=<#Mt8>XYgRNk!HDB7VxL>P6Nz_R2 z^9btrCHXy~r&2ZhN*(x);s#%``KLAtr4wZQF}8G*rCGaTyB>@9rCq}8FDr`QHH-Vl zC013_$v*T}&+%eI{15dDv!9n#Zp^g`AM{yF!((?fs8C;rMBxJc%WgGP^9A}ccPr7y z8j|&VYYBFY&lj(z0JZzno~C&KhJ5<_cOR z?<`|E2C82{jT5Tc;(d4t1vavZuao&-xsjBW@^cR^R@+)u>-zB#A~hB@@AzHXU0lrA zNgw}75qeIso2L}X{Xbr97p7v9qR1MxxpMAR%)?4DOg-RmM$U-ujtLkq8av0>8c-HR z?!#zExl{YK8(I3zt)0>>__Gm28Jm6f^!dqj7oR)xYA48FMTUIpHaY0v?d2pM50b-b zbQ%ZaUOzmND?3rEd}?107>``z-y4s6py7FA<2}NkiDS^F`}TeWs%WM2q=;wJ=c03| zWV7NY<55cvlC7JK!-p2}9J;$yL(8E8CNXmRo`wev@hnN$Xx4C3N@ksD5c=ceJsrVA zO@e_ofz9&75Az!Aj}u;jWbE*hFZY>Gi%kF%Ku+wPv2Xo{R3HMk8~EMTg6@G`dt>hF z?|7-`_s-7_6yL@0w&lPF;K*epZy#@fIp6NHP@QB;=>(N{ONdJ&1x;VK*DtMhyhQ6y zV!}D?g@lXgeg;7$QD?tG3>H*7_R=Z{eRWb@HBK18{B9BEDa>(Bp3_-I?%ir~ zFv&`Tal2M2*AkeDRk4FMAA0!scs?F@!f>bI3K?!Gr2F>PY0tt3(6%0Jz1)3^l%T+H zvJIXcIzEnpjUkP|{^|AP#p5HxVwKS^yUJ9G@+~XQMMNr(?~|IprRj>;(ZZ-!WTPvY zLm@li*rt&^66Upmir24r+&d_< z+imoqa!A~oWXu`Ob$1Wma?yUMzn7n9`>OTp29H!Zc-`EzaU=KLUGcZ>8u0}0IAzAO zLF?g;U2)|>{HtYB?%u!q{2|e|H_fYWtfqT}P@Op*Fh8hn#Ux}ak1X`R$nLi>Ei;6o z-yLeg5%+;Av;GgsU9Nri8*nR~yXgU6ixul0+AK~4N8C|&8(o!?GjZd?0hM0->qOvu zDW{4@Xc3sI-J7pN&abVHKmNSaxH&;d&YS&CVrd=P9%I%F^EL)5Ye~~mU`{Z*G3j-m zK}plJBFbYeJF+sxqbRvXqBcLCSA83dodfikx}eBMHSC2^5?QR*pdhodCyey1DI{VWYx}o*PwJP##jo`@j*l3s z%UHA8C(E?eCdyM)UZ=CCI6Z39Lys0Fx6%2?TPs7{{Mfg}s*cty;vH`)j4K-kYIl*@ zj5k^S9EzV2`3L7tz`Hlz{=!(Q2in|&cq94AP5`gJP#EaM|{Eh!ZpudlGR z;=!a5kKZO+_E+K1C5>Sy5pGv_U>D)hK)X4Z?FNOD0{M{MfKBU_`n|)iWw8{|1Hws3e*D^p`xD>i*ZJBs#HxX@h zo>`S69(Xpt_+{m+e<1NTo2psdGNt_bBKt_6A1r9p!ECbKWQ$@a9%dACXc`<5mBmpV zjr(zK&mL>1YeF)-VJq(G64pEjJ+Tzde7S<+^XoesQCk$XeHK;-_^IrxH7{_t(vf8^ z)U0r}O2k-luU!X;w&s)7ao_Y6NgIn})vus*Ga0cUy!(7%VpGQSm^q? zUArg|ri(dC3k?h(;bc}<=H-|WA?1Bem1(`O*Q!BmoX)j*OO&u5#i#nEv&8iAU^pyPyd{J5j;aJV&4s%SSM=3x9PC*c;yW=c9QC7^P+JpUFa} ziIIExrBQ?WMDeRr)yxPh=xhI)bpW;rei$4YxQ7l!dEeE_P$_~@Ow4yF7tvq7RA!_& ztod@mQdG#cQ|{@6^3j#8ZS{gLILVdY?jN`;Ex7sMzRUXQ{lVy8>SY51+*RpK$!ohE zIqw87F9;a=brf1juxY678vNqZORbS*kEoiggh1BFw0AhM)0bMkz*khw+7=nfnswAr zbYd+?D;yE;@Ex}{tlx-JKFSozwMq;N$$LD|kiJwe!$qi4ggmuwv18;5XK9Kf&UY$V z%W&cQ5+siTW_Gvn>Y%rcwBKiA0A*Rc*0C zJi443+1lRYB9p(SMn6%c%JU>H72^3&G1<9%`={JqpKjbx^Y0g_tVxn_TWD_?6wgpcC#p z%FGqV`z(S=)cfvjub7?cgr2>zahnGI!lmx#ji%hW#;@aw3syK|{9!+iRjV~BZ+2>d zJGa_T@|bWiH)y?}i*E3FU5qZtvq{>{y8(r<>@t|D@*`Yye7{ue(0o5GB8D2}M{8DW zpzWTjt0V_3yr&JSy-+C7$nn=+h?A$r^d*f zF;JbZJ0f}2WaZB5pD%^duO#9oUg;%BvN^S||HIF7ARxI8WkyqmpfRF2nnq?3%2vI3 zyhrc3bs(D_eG01C$)7nG{DKwoOv*FARA4Ua$nG3AGE1aWt_&ZztZ!{zDUh?=DSA&<8tV^soLJLUe1pn zQ+7nXR^{~0oke6h;=)2!{6yi6bPx1Ye&*u677lp5WwrdojJ_x`dLM9s=@twBhv|AT^}VG%4)IwM zthUhS-hLz9#jWZp3^Im{P0QHf0&7uJ=bwdIxNT)^QUWE2qn?<3W~IYE0&;k$C3KHi zP&Lz-HRh8hH1oYyU@k?mU`Rdd6OFuMloe*{T4mVAoM|0LAtOluUWNd?=N7~Rc@@5BdrDGG+wg> zQt%sf{0e7xmMpx^!Jn_hYsObXV_TI`;+9y#tR5>-A(l!?FH4UTl-uhxp`RibywOtM zIH*KU(SPk75Y9#H?;&vEB%*v^**D~z3L%)p_e^!*rvwWXXjpp!Pvx#1wY{6_38?RP z#N6)6rw7_DeBsmB(w8{kOHa7ba*vIy4A4QrV0BTaop?v08N}H^AI9rWg9mXD%s&JP zLJB9!;umMKWc_=Zv`OSAA$yQ_3Rr-5YQ4%Ga_}tk_B0X;s-UOzUgh<#Z?k|@65Hnu zUeg=V+qJ!;?}Rl}pC;sEHp^OD-m?W#zK9bdtiGkh0%MI*y4SB#lp%2ygr+w3;)!82x0=W^6^vT~<^F;EyU6;oq(offz5d{m z`%kerX?S1P_Nu{XBworF;K3Iz#xdfn;eVS4PLiyG0ZWh)^V0SNFP~C|K{n5-vmmY& z@dIxj^O~t>zS6Vfz1bE|R7RZeR(;!tyyG>8Hrt~7V2S21TMAm>X=1P2xpPAZ)2|4W z%8cBAHN7rif94G|f&~+;IWQ5nx6KMBAgO-J<|^Pso5r2T$eEzM1F%!Mdy&U1$G6A7 z5dKGe59gmqYWsHFSJ&re1_4XEYft6LIQ{h`@a2?L#;=MaM$I$*OE zF(~#29rYtK8%zE7L1Yg7Y(Q7!&KKm|sS~l|cc~b9Iz3)Ov{tFNw%&C%vUanD%X+?= z;W+1Ur8miuu)JhuZa-W5A#~rqXMF$o#93|XgfLYoS0q|4Ukn@}>FmV7;qfJAWq&OA zIDyrL-owN$vEAh>ogLXFrfTpV^l}2WYx%$kY@zEnxp@Vl64Nsjv9ngvHkYYgLp=b3l;N?!J0q@fv{vT>##Wz6^b{;m2`zYdrRB?1!gu%iOq|mml!OiPiZT`)ifYeNYI-uUywA#td@7 z0bJeAhGCTgucxzON5DU8Fp46Lx4Dm~auMa>*hU1(Wj@j5;#LF?2zV`kygosfrkJ6X z$NNo2q6f_mdB*H2BL$ayC|&ajRxdU=p-F*;!}%sb@`kV^!3Cc|-tq=z)<7*VrNGhT z5zF$^VwMx1{1z3N;8pzmg$gOBCTM!S_V z)+DIpeD<4O!yxo*fM8(+wIj#Tia4v=>#HpSLW{dU!oO~xQA!^%bvJPzNUTmFcp40@ zL2-OY9L-US#ladZ)#F@*A~t-HF}**y2*O!IhZM79+3KGz3>=o@E&=Nz7+8K6*eq?n zk*163_nq=5i}j7QXb$SLV0uSPVF`(Jli>=zSF2L3e6djT^+Ebz?G8b&g}3F|_}*+P6T&QvOgbmo^l9U#!`;JR zNk1je2tS*jrlR%7E`W4dWAkr;OCy2xOHi^4?D8TRjqOnTtYjs+^i??UZn2fm*W1x8 ztox=_yBLOmP$gCvE8k5#AXuKCea1mk6p)+u`p#7Tby>#9!CZUQ6eAlcn|UU70~%nd zk)&Z#g11y<X0u8;Lqd|!tbLXZllnmALQ)`v|0@eD&Am|Jn!z>(3 z4gh257xlCQ0h0CM_u;%)xhtGA z&xI5vuW)w6ZnmBLl-=iFkv~?NHE6v4x|P|(yeQi+7SM4he`9)H4JI|_%DHfvjV=V!&NL8?9Hbg1JW#My)V4=E68VgE~ z-OatnzNLf+-M5DsJ@NxTpfQcj9nK>W&j{=e5B_>E9hRI%_S=7&1PWW#I`E^O^#<4( zX^6TJC_5}rp8t_1r)*e@zJz=l|ExiZ1?aV770J8r{rNG)-h{*~}c@gFHN6-0> zj8+y_SC<^&b`=>Vphr)MauFWwDi!dO0kl+MEX&BHOnr1~wgR_s4#cK`n6s*03X%kD z%JXDMFMCU+sZDY_+irl8B|Tvd{YJFBp`V~gG8%#U`Ta>GE&O_0w0@}o9B3LW|NCWp zZ@kNf60$JSCJ=k(E6nqve=-o=0Q8chIQ=8)qJw4qo=sWey+5%ef{&N6~p%EL`+oGf{$7`bD(8nFn5u?a+ zCFT77Tp*^e;-&oG!AlR1(%oIg$V^Bsm;=`xxUr%DUi<}}5^G~>X48)auvW~hl$g_W z$rN^IP??9;Ub`4LO{MW~?;il991l~hfz92p0M4UvHb)`?X2(9~`$-ZI#9p7SQiO!N zYU}&7?tKV5VfiO8_LL3lWHMn;karL=_EoVr(w#+Zt)%pIWB~!ybydQh&vz8-;sSnz zNSvsiX*_TsuSgn^+o%@`S@%+}2MvQ`AFS&817HS8d|7TD^;;3SIdSJZzx3_F;Q)@{ zC}UT7_`4(@`lI3;N)a6C30I{U!A8){XxMUgEk@fIW9xbWXRdgWi}1?4a=Kou;WsyM zAg}f^MtW{K5akDROk0+&KcXGLo|CGrB#s20|9$~+EAOii5JXVMmkuBTcEz+* zU~t7ImS}gs@yonG?@0|^B+93IT|PAOwetF*1-EXVxP8d$5Fq*cFXs$$jdfN+uGt)0~^6wjst!zk( zR97xlsiuvK*8I5rIS?-2F~Tnn$?A|?ikqK5U3y5}i0gC1y}zI_n<{)V4ki4rSDykPYi&Ee40iULeAjZ^~ozpS_*3T+ z3|#XgU+~BufXv2g%u`h2CBqGtUq@1Q^Qj7j-Cx25vNb@7NNVO2E0#Fd*RL?+k zLx1x|hi$aY(<(`@TMYmfmQ^P(U&OxFfxs7AJwc!wS>=e@=IIeU1deLL*SPdw9(oTu z;&w3%Bo2wg#7$9Rz@A~B&`L<>z*N0^rN-ah7ECjMfxD{IlQlKKi9CZ5_bG9C-wO~5 zp*X&6urtxD)38^x;_8!arVt4SH-uM&2=8zBKD~>J+m8PNtVE*}cy9~IIv@*)>|rEf zkhh=By;ywt7CmZ&->2$|XjE%Zy%;BpvY+VoDY?e2$hkhs7s??UNXom859yf*$v)s$u?VXjH?vgqp~vtPw7b<%&5&+0c`6&_n2Vp zery}A;g0)uvyg<_z(9;{)w3<+eQCW#u+U(Fy{lIFaM@AVSa|w1ZgnBV`!Qws@XG-t z@#uVK9y6RY#U~Nms`v9Nu(MKkT^6FLE!?@gPr8VF0N2{Axc$X$@VaP=AbQk_1Vwl2 zF0a8f)oxF1!NRAV4~{3m&Gd4(B!BD$CTzx}Z1(;$TU~u#Ph&n&{jBQJ+@PHoEBe_W zY8;kqKCtoz3N&j>=!At!(R&{)v1t|pjcAZ_>vMjX(G7Cl{W{~n9Rp}GW~w94{pJ_W zu7~QQP`nU4oi58`cEF=2c13W*A5!*Pb6VO4BwU0@IU1%ZvCMF(43&Zm^0D@@Dn5Ek z&Tec6dW6j+OUPRJ4n^2w*<(O5SD}q`VNGui_#2cc&@IcT9Q1dy zZQ^Gf!gje`gQbIyuR4M~8rblf;Rc`i!(J5281 zm@FgLJQ5F42Cc7ZK?t#BW=XmFkor)RH|K9s!}N#&$7JkfC$LK6K>Gw}Dj4YTLLoAI zFJ!~&h|wl{>}kyqjsToX>zC&sRE^YE{O0kqmW9%V2&-`UxzA@KLERd6rL#3S5M zKWJqYBh}O!S_hR(OHYhJs|2l_Prg=ppQ1J>^8)RXR}zxz*xU$pfUp)f z)!73ZIk~ubDka;-(4!yZR)Z@o(ogY+a7QZM{@ZTwL+Fb^=+OvdtK-LzgI*wt)bOnj zVeh;`@lOT$J5iv{jCJVAhF5p+-GM#ao-Ua-_ml>9<^#q2c@LXs-q_S?Q=bJieEVow zO#4;JwIME&qVz|`aGVddaS)CT24fpc=3ZmhBN_(z%1;do!(6%vB@Uj}D5=S%zoE%= z#gMV)hNzB2Q{V_Juib|gCR+ zOKIv&p4C9tOJ{A}lmXptT+UHefH014P00kI#z}*1EptR$rrw$bm8eX?8Us}w_=E2N z*Tl$x+pelTyf^=Ru$0PLAIMoEf6v9K2yaDx-K?|GwwVHZiJq(0zSRM`XCURNA(UBT z*XH|SyC}x13mNA9^ZXlsfxPalobt2AJu#LW{L_W`I}IPFFN@>cbs7RICgP}daitAn zblELv9R*KkI1eTm9O@Z~Q zUP4~toOUY|#4{e>n$~-IF#Bl9EQg6C-C=s1WSg-aE6Z824x?F{`(Omx0QdSOWZF5sJ>~Dg z8RXkz6CwK-=cK^O5j^L`)S#fK%$oAqsWra$haxuHN|z~y9FpTAICxidQqltQpl8Bn zrbRDh1w1Zy+}TU3xpOxaDu0GFY~_p1RH$4KFTgu2Q?a!^NH#$7#Xt;ETK3ULfR)rp z1kfIdE8YO649|H$bjy_T(eRD7`WyBKvj7KD6x}+vf|M(zYL%sh3x9y2-B!#R>J)+E zO^6C;2yvXpY+=t-70+rY|4OF_pw4`SwQmt%Ew^Czu(=BciZ{;r6?++Er<}a!*03DI zs0{MetdOPa?>Cw99Iq6i=xDIom$5%*E|PQCV@yaNR@!ax>fJ?zS_KgyXnwvxqfA&Q zY6wWTDQ|{q+8eW07=QJ zYzZJ?1Qv<_RUKFz|DB|rL&==^CLOF|Er9 zbzU#DLYtHndpuZg>uTA=QbzP*>9|0l(D*+@m_%y{x@*9JrCFPnkGSgEzSd_OI(^?n zBsa!BE#l$#+5xeG>l_yj_@qAQR`GTAYFRbug5;-q&{bdsF?WD zu0p7I%=s}%m`FcpnADk^HONg~{4Qz7d4#!4@*PPW^cA*8QbPK1c;@AV`p^sz#ydS4 zqf#Yo&v3|(sa1*}Oq3v3Yi_r&--H-eK==TVFoRuVQ_)cHGl{#eQeg6J+-JlKC&$rRdie zDIh5mJWI_2LZ8rUwOZxTe{gS+7;IO8Z#r#t;a-90+7&?KJ|%epnZ=M~uS|zR8Oa~3 z0FUYMr}}*m9Nc&mH0>|Ku|Xx-bK zQk#{$&_D8=3W)E3TBfKUf`uIa&1d^wN~n>|P?>0k#i|c|D@(oMeRUD>SVyYEDAQn+ z4hnst3oab1=-AlrTe5-p8^(ZGqOtf@cyNo&e52`plrsY2*q!c`r-&D$g)Te(9)Wi7 zf`In^1{cXS#EkLnM^fkC9Uek0=JZ)CeuF}@yOEIycwuK9iI%fi(fuI27rdAB zR)=b8#a6f}1(DHr!LTYJeTX?~yZ5zdz|eN5|F4sY@SCS{`>sPqRVDKi!-9XD6)N$E zLTB^DRAYXm?nTJYq!JGab7R5TO|E2Z$y{6<(U2&}5T1iLO$O#63=tCSIz<;1LH+t< z_4mhm#W3nYCsMG0EM{R2f)%Q+N1ty85aU~y0)5**%fz}PryrE|lLLOUjSUD_GM zh?n1J?CqSL#Ddu&q%J)UcfzcSO{XAMw0jf8E(&p!)}kV7fUR4vb3z|8ce7qD>F{_| zzc2d2)86DW#0t!SuVaEU(9w2Da->uhE5mf<;T^KSJ9{4S-4FA%VD0PlGe^^l_K4G) zTqdnyDRyY}0Anp=P5z-x*1*d4u%%qR5#(|W_I8D@zcU~Te+g6%Yk`9Q@?%6>Nzk3u zceft+$+2@Ga3QA$`sL{`N|YPm<*Wcd0OaxSRTr;I2W!ozaKN>-nj&8Aryo^t2DQ*)t1-K(T*Kwl#soE+ajIysCzQ71hYFkqCyGrnMT@J0+S zY}EM-VarZFzsv+r-HB-Gnxl;mFBw`vFGmr3CI+v%%w1%uz-<$SY?m`F_?%J$X`3Nm|I~Y-fOyzEOX971e7UFKo@quV3o&3avg~ zIyT%3Pj?h~LYA7cm1*^uzWe=bOQ^pY*~~nSIiXK9MF50LCPy}Mt+1NNDPlDly1WMy zkOVk1aUoq6d(B0{tL?Z^C%UUJ(FH--$ayHQJ4FOGT^S(V7Bs}p6IO+`$N6-wks;xj zq+EMq0tLbsZuG!>cr>-E7D4jZ04fyjt07hUn##7_i78W4@S zbJ^6o&m)G!YRIEhe504;x9)=|JTVAQ8YoBq&*OPuVeZxO0pM1vg#L+zeW0Xun7}BO zxz49hO<{!fyi0nM&48f(+4+gS!aYAoSHqRYkx~m0X&K0ZD|923VFSbA249cM+{?W% z+kGVoutGN6w^qd9*iLJkS65D7!1!%@lEV-Mf!sxe@`qVLy=~1Mr5nR*j_9}|7L|rr z)B$_1)vq$h&wfC4T0LVJ_R@G=y(%vCfmJ<)l}$SJ=CNYUba)Z$w6&)ce)vp{P*`!?8C!)1iryRZ_>`09VO zA}?&z5~|dOX4V4{#dPnWFZW774CW?Jc%h=-@S%qv;f02Q7qTY*i5SKZ&^>^G#kEP$ zR+VHU1u;o)tnM=nxTwB{oS#{mW(~CI=m&Riym`8hI~O;!TZKFLKFEF3n^iY4APz+k zO_I$R@}pB{aU+toy`PpcD7(1`LJOFMty&sf^S4kM-Cy}}K++jOgu2(*ts=vFu~Q=} zyh^JlTybEF$mgqR;m@t1@?-=~XT(o(cy#CW_LHI~NwD=kEy=S{%1HRwm!Pb%uZTOl z=?m?}C(t9^zjTuKgOVXlDa$!TIoyJDc^+;kKwY`hO9cJXL3&k8dq+23(eLI&#t>3d z=U?ogI9t==d@jSSruGJ1aGexlA;I+mFNCiySC0Fa5hnE5xb>S?DqX_ZPG)4-86(BU z{R*F?(cedgeRZ2ruoAINBJ)}XJQSg;63#40+pGru^!gfNf3dQ~0l zi}C*FV`_@=bnv|fo4|o3_rLpt+@CE*^3t=2EBsq<&`E!^!a0-;uwz}L8&4&IA9?Gx z2~SrNt7RgVsz%ggoq7#4E_uJ<6|JL^*eb3k!~E zC$QR~XT5i~@xo`z>>&8u-DtMSHgCPsU>kStRv+wk(1OsPS^%zYd^3a%^Rv$Guq+YEFfdt(kH1}2P zc1Z93<0FImDn@I$EXvS^0IJyHsszow){=-P{M#(SG^peB?T6j{nVE%i$5x6fcyVVe;R?Zl*a40CZ(=$j>q+} zOF+S6736CxAG&PeW)G&EMowYUfhn6d?D=%JEZcJNq0 zgkvZtCNxFG_do=@kA>NUe>>zm8+Npv0v)X?g$IU+_pfA*Txtkc^7(fSZ(UtjT7e_k z04_GqVB>Vv@dL3*D=50QCXClBD2-QC4O13C zwj@RL32vT7MC&PV9rS+ra2A*_{s+PdIt1m#V*02o{iGpBJ zB>3!~y&>9=Ri%)*^!m|l|*{F`2Fam^-RcuK3@ z+?EA~=f|qND}GRz48GU{M|a@Kv}*8APN-|Wz`A{iY8AkuIs`Ss^SQyNER!p*XXGIXYt+(Vu zAa3J=9rtl@hXWJb?2O27*#rKaM$cM&L26!7P}fp00%T9j@~2ifcENpczl;MLCx*2C z-i?Dk#*47PE8oWn3YU7a*~^xYA`efMcg=pc=&st{52bY14tSSYeStzMl(LH2yc&%0 z>(h#BknXN41xQyu#UpPa3&Qek-oMykQYsJs(R0XAxc;{vh3%Cf`WrrpFe$jnQ)--x zZ~Hnr4i*=6!D=}jEZhQ;mS5WIWF#tMxdjbZlN+i149yB)$EDfv%@*K#Xnus&tq?TF z6ro}Xt4bPvMa-n^3zrzMkhW`OT`GWLl7I0IxN&d(Xm8kM^d}YNy$Xy3GK*#k-0k@< zWCcEsjJh6xsO8mLpzR`+T?0UOm6nyEb785xq47V)SU772bcgMFMiRIJ-rnKMRwxzj zMjU-F+_wR^_*mWxGkA-oXh{*>smHWm` zEL`O$&|*LJVJ+x`>*(bhM2O@419UsU8ouM{tB^aq)(gffqn)}s4OFDZUtjB-*{o^{ zaEvea>uqW9%!PNnj=>G1La7~YKO121@NVq-7BJ$Ah!L~lRDjBaV2K7wby(mhDgoye z0DooRR<^*<6&JTYGNSQoOs@*ivkXRQL^Sxg?Efm?0f5Gtko&9=vR`=@-7%qD=iDM~ zRSig2E)~EG`yrv_GiW;pR{K<;bY~N|ic@K;V>7^2?ABddIGoow3jA)|FI@ph?xv;2 zNdQAw`~Or!_`gff0JUKF5@2Z-H%}ab{(h4w!9+m9H|dIkD-4>?|ChuxO+0VqCfh`4 z|2$~lBwaSaeEjnh`Mr=nE6NKYv*Yk@?x$9!FgELt5Lr;+`zt&0e->?!tTBj&@Ohdd z;QZp-(itsAK_%7Id3N@o(*U1+1JWab^{&>MOac}{ZUM^kMR4`@rZ*D?JG8(fu53Na z&9hAk)P{(Vb^i{Y{qI5q5DEW2v07bdG6BKnQ;T~AFIjZ{e@qOp zfbNTQa=HBGijPTCcm3!+Iw#pbdTj3c%>~FkAHZ-5(x`r;?M8u&Xv34(US;Q#liiS7 z7ra=wAF40kvj4dTVC!+?nMHx_F??d8W(VhS8oCTE%<~?NzzX`hJ&P46&0FS!Fi9PF;a!Q?dWAd1nc%*U5vP1!V#I z#^(i}uCbWCkxYjbAMJ)y5B%oT<(`W(1DO(~HU$d6j_x5P(*W5wkS>NIXm8#C2-*K^ zGX8%O;nP=8DxYAok9AOa_%CcK$IRb8{GHd`%mi*E2I`>gRPaVycG-wK;ln)BzXMtd zJ{;Qa&e}O~$uzCYV9>0+U)_vII!)nra=FdNf z914H1UJN#WJ?$X&v5G-Y+N@NZ1ia{~b6-9WjtG6P#8r=$Roi=)36H@AYJbQCCT)HN z@OW2Y&BQM}W_+b|5py4)J9F?e;byHBHjAEJ=gA8hS$cR6=dPyB0~_gIVpUFH>pKbe z{x@8GiXgauD@`wc!23wYU7`XIyAAC|@ab)?kWy0b!ua0LzyAqkVK+iaRnnS{FnF5m zzIkWJl>l=>k>~F@KnF&1F2W-HMVfz#_2+-IZG+E%-qA;b&{=S$kEJjMR1TTFM7lKn z7$tnquLCC(=Jx|HOu9yw)L1y_BH{gg%xJ1=VIWH}V5vN-I^bUgZT+z*-#_ZHe>us& zJWEPCy!pRzq??ZD13RhxPjfK21qZ@k26M@Fh{XyuTa7!iI=iz3gL*f)}u#+T4)QnltWE?XPm zA&xlMZ4TLAIOLlw(Uq>~N#f28cZom!M|;Ma&pZ6i77B*->GyrDj-_IUr=qx zVWee+ele&7HdR>so-+KKk^P-mKw`n_0?6Y}q(Aue+p|vDyOlo@m^y%zPQUxDhF&dE z&%oEP3bV-g@vbbGSql5O3i%bYW}q4kUkr5qwZ#8ahPE>x`l_0WmA_L?SK}cf_bEH6 z{re~V^XyCb;o-2O78lQ1IxEd&0ap9d%4 z!Pz`l7F5TS-zCMOPu<>KJj|&)_INltacP0F&U-#@v%mj|L2sp-Z7B%A$_T;^Ba#SY zvu+EAa}eL`SG`>M6VVuydt`(Jz;f{4wg*0&@27*F^Y5e~_mmM@HtVaF2Rs!G~ zQ2EMa>dF4^v&&88bVg~HOiAE<+V-DuE>neM#+a}LNd3Q)32ewFJ^Lp0@wTJwmRn&7 zgM)7ol=38n;EJF)bm5&cu>pFJtuq{#UOam1Q8P5!mh!3Zw5nBO7If#ey*24@KAX>ZXllf(;SE4l49c|PchGsn;ghqa9;E6|3>V# zfSL|_@^@U>fr=t6&;zxcOZ(-OglLYzl{Y=|A}}!-57!O9Gmf5vT82*x+|ja-=znrT zy0LV+jeCef@Cy}AM#))4jgm;s*ceP%9Zt2oaFv^7-3ZsE!-|2PBq*tHmTtqLr4L2( zLn%^1FstBIS_aJ@Rnu@g?KU(&&Ny8J+r*QJgjnpmFPKs`_Sv>d?{!Y}c%!3R-|Yi& zmrBPs7>^pZ!03?us}np(?;tnW_PQ*b|C{c_j$!@~ampNePkMKf%W()U zc9;29Pcx$J?l0N6>MdYb2B5n_e6vBaX!*L-vAM4$v4vL$v-iizDY49xJ1M!>Z_V*j zwTJ!&^+R}6MMOoWXr7Qlt9!vOcDFTeRh8d_3rMrTwtj=lcD%%W` z<_UGD&1xfPx1d7iLBG?KLPzqEge49NTzU{yUtaSjMnojK4R$Xz$U#5r)@=h0p17jO zGA6#Iccmi!^KZv)xUcJ496Px$-!SiexkTs18uIwXi55!9(y!GS;%*Z`(Nwr(r83^3 zp_DYbJWWc7Y67n^BMF6keIA3`;hGS#gw2rh4O!!a%2gyAPKjokv9?(TfD+Pct?lmL zkdLEVO?nR+=@_p~na+Y#dy&j$pytEnim(;%(rS3XGmTR}6T-Z8lqab$&~0woxPCL8 zc&D+yP~0Lka`}M)MO@C6VO{S6v#Gq#v!NIKq@@$;|27uvynk}U18u~Zgy|fg`LEAT zi`+x;2l$(;-I7CyEb*f&*?x8t^# zGghmfH14_IecPeG=~2~ioy#=ejS)Xy-kqW*!Lu}=I3=883In9s_Hi>XO5 zJDmq#|434(=Qdy5rNb3+ieQV|P;%wrC5jKQ zc$GABFjO8HBahvzt&;-m(FlZK={C*^x5Sz1Y(f-UDLt|4f!Iz8D1hQC3WtB!eu>nc zS#BzMqY{KH7Ys_gxeON@ZxL*OrCH}(fT+Gj=bqm>o6)`uaIC1LpG31Pd?3xb2RGJR zv}QLOdJtM+<4k-!YEV{&5m9T&PNQq&ap>wYW$0Jplw_Lw8ri+DCtAlMEidk&VA8{p z0K9)k8I+EDl3;|BX9#Hzt|4a8u5o+mfW-HjbJeC<;TbJ*!(Zc(DP4ps&3N^fTx3`9d{R3ZSIW{G@s?L)) zpk7^hXh)xcD+}4Y#L-MneDvj~8(B>&*SvRoHZLkzNPf7DwWn$1ufgG zikS7TF_RiAQR=d6@0CHcR2nVibu=h>_LgbqBSm*H%W~%w-#Fokm+{JVx|j7E4TZlN zHD(wdvGc0p6#h7#)%gt=E6HH?bwejDrSP$-{>uP`4%M!sIL0~z3)VUleYV4@n1T4y z9_|hONvKh(|B+G*bJIHPQE*rJ_kGrt+?d*4vSxTq`NsWlCpCsdgZj((9-;^z-3%h! zH>$Ja7ZG+sA}mBKP=N^V>xRy>*NfryrSN0i{0Zk;%pkAh+UAJ+ObGCj+@c#$&*UV0 z?ydn1|0>=Ugj)Qy?g4J&}+FJ(U2pzJYI+%4hu zbZayfztG8vm%GP%RiT?MaZoY2&gqS9J&$oSnvgOm$2IF#by%n6HQ#FSAPgJ&7shNy z@@tey;u^Cf)m`_%FYL3!s;o<_2(rfSC%IH>lAn;+=kjLDB4GHU?!L8Ha?;7 ztpPzE`VR`9J%su0XU8ma<-rG;kTd1>-k#aM5Xf=5;6=AxgTgh_=eKCDNuDny@^B3x zr*&`7%dvwoUjvdPP*Gc8_meI36vZM*Qh;(e(HQphMxu5y&74s`00#~`nXWIZ$FB;r z;wQ1a7-;=i!q3{CT3q)iN+fk%Sk!oQYu6(AXJabGNBYe-V&hP>+Xgqo_nX=A0Z@v3FOW0p3lFfq7xj;h_z?q%?J)PA zW~$Efbq?aC^IziQ+-JY=iVL}xGboQ0FSRH;2u%$D=&ODdCu|j!7dJg5=9#Bi|3)=X zv;dQeTC`293QaslWAy@)3W>w$LZ!KIhxbbD_-){aWkg}{Wn!p)=^>mMWw(|$WaZ?n zbWHy$YCNKcY}3Vl1LnAYUWT~X52*=JKA>CVJI)-Cf!~mIwOkJ5z}XDe!C9A^>i+YT z0&R<%P;+5bq`&w4NR2Qf?#@g!9Y28mG#RDaBS{%iOt@)oCEt0;sT$9-`1+l4%t8VuMSI35Icx~I&V(A2YSBthjq=x_e{)2{{a7VL)UW>~yWftj z8OAFL3pCpkYP-GX2Yb30aj?Wwzp>wX?gluT)R@_dvsnZOC4E8ja+YtSb)eST@TDfW zXUl^de{;%BFfUMR0XygZD}|X7tSB1uh@u*v7vWv3O0<4I#{aCj5LdRu)QO0VQ2mu22v)5 zc0RL`T|?1=mcn0f?f`ke^$lXP!5Y>KdAd*Ld&SNsAm=A&`9A5rM`TRAKq%WrX;KcU>BJ^bpKfzl2`!h+3sZ$waZaP*K2 ztSZ=;6NIGr5D1j-#Srg*WZ}T(@GBX9@9@f1025@zl!s#DzauPGhh(0~sB~yv_ndyg z(g#lM;mEvUZsUcX7A>LSW9p=^Ns=~41fe^$iga{Qhv}c#wJ-z@SpVBpc=y_79lEAx z*I+iEsyzvrDKvz>;mE6P|Hw>1e||*Ey8n`2$V^=`)1w+Ln!aIenl`o&oH8f+=XTiE|Sfg!zv`iid+gWLbY$h(tjWfU!jYPHOaF4#2BPj_2I z(l5>OYt)@kY>!{<%y&K<0Cyxj(Oy zkayyr$UhH?O~gAcJ0~GgHu&J z&M^cly=c(tdV1TAm)kuc-~3#4hjocfqh{%ly0X%V!GuJ}4bQ}NL1s=lMffCIAH)Vz zgJ~y@SS-~y^G^`&*J+RN-~AyKSe{M6j7DxBo^-$9D!+{LRjwqr_Zf z&~4VAb`IaV6hVs{w@79FUFK5mH`Yz*=qAwSw`)H=!C zK08Lf)Ry zvIFwLbPmEm$zX6*I#)ej!!>I^(^XUnNG8?K!#{9*-crybztJ9gJ-SZ2tnjjLb&+|r z{wL;9Ui8B|DHdO4P(1ZUsYO?*Ft|;NFTWv5rS9b9>sI$Sw$WSdKR-iRM5R)cN}tcm za62#rlkjvnSaNnNV$>BjAe9}-M-rVl$VQOGLpk-B5G|6=oAdbvr3Z%SVDU5>uM}^b z`Z{d5bfQe&;ZKE0ln7y}8!PB`zu1yU+%=*IHvqOycF(>LIER*8_(zPEph7{_w3P5f zKqAV1#xbMGZ_fElNbWp`+wIye#(51~(Azg$-|vj?co+FZafLTiqXAE7zvSS4tPlTc zbB5mu<6&P&k)~Y|a2q&*7h+kIKe_b9K86mLh9BDrdollNxR2cr`W;Q1cx2~XJBN|0`G)(aiqS%*IvxG4ZmU!YG(Neg`P4Gk;TE0?F%Hn#E zSUQhy2R7rMjhWNS=7*{*)3U449@2It$ERCw z2*vo>4yP5on1qbEMkCyPcDdDkP%$G+?~2UHB`=W$wxI->pty%Nu=4AwWkz9NgmMA8 zY{6^i73oGh()X<|9i@l0+;B}&Le;PqhPjT#_VuA>1|pEkgJQ|})m9&mHphYcUZ0Xw znnUK}>*8me&M#T6$g`jELoQe56PDCthoOO86S=a8dsm2Zxobl~J&!VEwImvQ{8~kZ zx`pgV5(&-_1BI1Lf`Gw21vv!00%8bl=A7AIp^_&e`U zLG^XVRZrL-G*dQHI__F@dLY~^ngJrW9HkZ37q&PoW%e5z2YcmqH$+e8I`Vfi@C%i< zfu-AFUoXS?d>SpfC+_NQgi_SiR(J09yN8S=OYExmJrXa4%^k1@wd}=<7-kAs(=s~& z7a+(fnKXUQgF8)po$uLkw!CqbX=Z`f>f~mf0ZBH7Nya zf3fHAsgwjkU)Y>ry~P(gHw1=YT|%624@2EeVo_Paf!VD}u#38V&@Tm?xbFyB=)2sh zLJ4=wH-gV%U9P1IblRyljx+N-{_sbu39$vFirGaR?76KJQxOofY7!+JoyVWUG$Jm= zP-tk8+hqbxZ-yD*+u(vL2R|WLly(je{UW|-kwzl7%VSVIuhQUA*5WrOhPSu~M_Cha zEiBWnZO5Pj)l=i|`g!+q4-L%5DiqtPH8{y?YewV>b8h^$<${=ES6MGhndxWe0;sJg z>AC=gez%ADB7YVkz+uU(ajCA0sfde4!e%Gs27S6MI+h!jHi*gZp?< zhGyR0-WqDrHCX?xu~=M>>> zx#rt{9A!K=XqYv{Vw=KQiqSL5H@>YHD!4TvyyB03{CNr6*8&e2>pcl?O!?e&57MjM zuIjmEN;7z=K$UqDA-t8wTRb>&V>+H-Fn9TwT58Mituzg}tcJn8Wkta?CPL@-#Q0Si z_dZa0)#hAk5E5y7*Ou8|DorY0d3dhsv#YR0Qs*V^X=kBfYQFnd57KK5X9T(mXGqcc zT>o^XQ0=v8PIGhn$it3%&x+;*U!6a!qm$8cD^Euut9y()LXMT{t(2<3q}!#^u;VQ$ zv-(2|)mZ$>xA>rsRkAR`MX-~n8l;f*ivhtpXyMKEJ=~dor5(^hbNvOQyt&RxQwdm{ z%Mq@25Bu{gpZ8S;sCy!Xjy(0vLaQ%ObXEa~S*{*DgC6}eFGN3(W5svfe^k&u(x7h| zXnr`n(Ty)4@4Y40*wx}&rrC+%M|6_ZaxXES_jw*S@#=isv6wnq+roS2_S31J+(~h3 zX}JEvkttPE8p{(=8fEV-qnXd1h%zrdv-f1_(qqR$z1;JA?nmGsHOR0$`c4@*f0G|(QuU}WD{bqS7LVU01cHX^KF zvu0_@K5gHI?~CWZL^*iUHobp*h|wZ$qr0qpgYTifM^p*>+}QTkuRqI{PED<>xt~mn zYVEqBTlFLf8#T5Knk1uu6m-HHOiI@fz}EDMTKn;Vqp~@rEX)o0aMM z#j^MK%={|hZV(yErsR-HRF$Ry%WLI*wiH_C$giY)eC8#GZh5YR@*7XjHZCr%&yM)% z5x!_8k=emVG1d3cZ9=_`;ICOnz`h^torUGq`$u4B+{2wSZHb2EWm~ihE=5%)wmfhb zk&7-h4P0D(`imqQ22R=XgB|WY@{tj=liEV_&f#V?q+OZk%H(N?ulfgvQBk)O8O9=$ za*d|fidX;fPwAuBv(Ij9^aP-;c`nbqi5)Frp^5QWbn+gO@J=0W$p||QOT2|gI&PAQ$GBaAg*fmqeIS%b+fwTS|3#UH;sW`_|bKV5rU5uN5#IiK%P#)O~H>cHWJRO1cP^zO~Y{#VWvpxPw$D`A-Ols(kH^qvr^S;%cZ`FR70x*Te z=h;f{t$fiAE?;4TPe^*alz%8at|*vQA-dD_j{9m#B#}^Q;SOJ`NUrjKhko-(at)UM z5`&4*sz3Yj&R@aq(PDAKRU8)%ZO1k}TMD*YEh4w~cvd8bF_UNrx!=A4pQ94Mkfqwx z>>bAbc*rVAq9j55<=U=y8C$tk>7??f(avIyXuEnDnkKoZ6ZW5LfN+YRxHC$2jl=at zVU=iE6Aj!cdB6rPzo5w}P27~m8S`b~qNKVu4t5xavZ1S`UfgFAyc*mCn^6K2o8OhW z;bBi2Wx7GB4n-6!#Gz3V9691`zK9m4=C_AY@0OHqfkkWDpDM8HI6}k1%t|U@S9tZwPnALWqX2E+Jrc6b1;{?aY5ctrl((jtMwZ|8B9 zxc0E4R&CNPu%1rN6?)g$^DW=kk8mW!e0t;vm%tkO!A+X)8|>w^w>wP-A3d>}s2iw( zsB#-t5|yO+u}LuQXZ!R`)lSEQ>+uTTICfgPJ*60 z9~U!f>Z!Vbeq*!Svx2eUb~f{>Kl`C0pIKwM9{RC}7&xP-ibiC9V7E7JxFzhEN%c1G zdoMvMk6T&YpfmSk zP%dl|ijjLg9oK9NSW+%*k${)mdHl-xe758MnkgCzZ=j{Gou=EVpUE2q=PHCP?D~>R(*@=BHX+tU;(0t13knpo zn^w8Q%t#P3gGI2UvxgYrH=-Rt;1>ttQ%P6-*$=aK9Dd*DXdFFi_9`5Y$*}p7RVBM!J>W>` z(oO2!pWnjju)X6D!WUG=`<>u=U;$G1K*;#T7H?!etLH3z{g?!+lO%lTWKt6o@3evm zwLE>8*#jCzduO4|c8{`pY-f&{(u>6%0+)h&z{l4*8Zf!Sj?&&5)Q~cCCh<_ReL(-2 zhS#;LqzX%ggilQJKadm8iimY@G#|y$2-()jE?KG#pE7EyW77OVPDHcUyO1TMTxkja zz2Di4@fTTqJZ1ha?s{dA;)z$!6Tj$h*h0_BDY7_g>ib^fHp7Kv!}JvUb~eT3+fZ~kMS43HAb&zF!W zQTIBhUW5@>1Ttg$l6Do@*YY8<_pbfNI={+bd{g1^&vc;IS~q>-<_>^f~KKqVT;{5Ypyki{w*{BY*0MIehUmZZ6T zgCTV!e-@PsS#b9u^*wUyHC(RH^~%GO2X+$~kV~T#xuv9bD(P@JJx!~lW?|~BO{rHo z;EU2-59$81FG3ijI9Ml-l|&<@o_6j$JY5A$R8`&7JF?V=W_!CPPaEa&m7^E%)n1Jy zSCRe)QErm2C24L=sIR^bWC_oIxyKhQ9y3_Hn8A2zErq%>CH-C%=4S5HS|hJ_OT$2v-&?!vCjwr~Mc1VaB6 zVgEWa>rs$o;~-h??SE95o3!nUJOYn%ULk$s(I9)I{05MytTKehBQ0&y=@=Il}>lwA`2O_a^6?CmBI$nNDp|R>E;pkt2AV(-U@DFo285n zkhOb|vSluAm)KtpEHTkZ)82+j;ZKqc-;1%>R)h^r;@;m(dnuS(h%hK_Lev)~fKgqCi} zpIv%spsaKqPgG*j4VeBTmRwTB{Jd{2hn}7zd#zJ!P-N+L^>kVKz10yis}aXqqNGFu zTS2_mn=>jH5ns9{9=okCm)hDtF|l7919$!^7PciWE?0Jzi|fJ#C?1o zUN4{K3}(2aOW#ueRKn!wVVm@hm`$kx53!Nx)nCd2z}Kzn4$GtD%-(vezi7v2c3Q0* zzE4|LDWs7A9J6@R4F82%%c{=k@gx#wuw=hG%#Dg6YWhyLSdbd^b7J7Ll4OR zf_Wqg@GJj=h-SoG#t&oCw^h`LUqs3#nhj%dFK2kE4gBlfW&iqRZ3`F4>I@-7J>@9);WXNb3A6ZQ{VIbS2?Y4e~U70VA z7cXWY8tnUjS62SVp1*93(f`=?sz5zLCzM%xN2yna1XAyLI=m#M& zKi``Y@ZxVMbFO_0Mp)h9yL!S@BQ^f4Fjviwi{S=8O@aLMFR`a_7nPO}CSH)_2t+C7 z6~=o>mVsSqF57oEj*UgIg&JiR&DsWTkngAt7GC&z+B?UzHqa3+<%u}jB>u(>)`Mq{ z^5_>ytI=vfemzQ>dH-MG(F_Ss$=6eZC(Rr8dP_)1jFL9wY{GC;iUq?l;}fjAOCi>{ za^wF3ifWLAxGyxIagH_f;Y95EZxNrT3y^$N+hoYQBEox9)lJ zIS{LcKuq;;fD^OqK{2D+*Ix181G~?hvBF{EMzwWZs+1(n@@mKEmgTsrM;IvPB>rm@ zm*-#KD85ejB*wz%Lg7J@*PNae=I(xX*`Un9i?Dq(qBK1@mVN6iTuiXLMY-GR5+ zzUBd5WJAIQ3qasH`j^|v7AEApp%AGM9+>=9hNF4g{`>rNJbHU)xc2P}NaV_x9%|w? zp|Brr4mld4rJDKnJ8J&01~YW6WsgF{%XjtlD&8h0CZtoJYAiv8gi`^OH zg3`4#zs68a!ke&7CX0y`Lp0kuSwF0UBeSqx*$8Nw3!&*j$c-a3%^nUcIrbjGeuSra zhaexKY{oi6pw_aT{J8%+>K)yfNNGT=)yXHA$%z@p9+^F12~Rn@wEz!EALls)&CTXl z1;Kg#Pyq^uOh8!dz=pLfz@qsz0dgo@CD!J)FRMT6E0Qw8h;_|Gl|Kt_K=rXFC&}S? zdMNal;4eDuMR8>qnhd4SIrlbAIVpSdM@eUn+`6@?PzhA!Bd4$-w zI&+aStxT56GwJmok}esMF2KP7;(v#G11pqu=$a;p#>{JqFWwc-tmI`BPzADRtsE(X z%*%2yXtfp79Ek_n?t@eh$KE2b3Q{1nu;`X?8o1pspg7N>g{QLk3U>hs+^w=(UrtuG zgW|p+2?zr&_FJG5C@*St8>n{SiKxjvqv#DFtLf+^pE9SpFET@IqQe;`ZfR09Ge*t1 z)Xv#oPx_!}z7%2Lln3?0^z=FCNR}I$FR%NY&Cu%W^ss#O z*m^Jm=dWc^eT8;{rX3lHE-932sI}tXi1*=BDBn_R@l77;-3w&e^DQWo*%LeMOP2aX zcs;z4D-x6ILOO&6-wMW~P7X7wcp$Vx$x7Ordn5^Wi5uD1jShptb~(OlHw1bvPTa;f z!6OeNng1#79>ni$(7;xh>qy?EBsqmdWtXL|F27~#8A*@Xk6tveoP%ThHD6uhW3JPL zT?ehZP8J5w8)z3cL}!B{9~}7T3+M}dWE6W?@u1Q=pa`5%$X(f2 z1HYRiJ2|G#qA~HKxok4cF!Ypj5<=)}+-qpduAMlbU!>-j2^82uc;)2eI6^~0l2j|#f!;B%xyE}M ztQX^nD=F4cEeaDRy4vOJ^SAt8ZNC3u6MjgAp8vy1lobPSKrPDqA(Sk2z366}oAaJK zvHao#j0IpcJZGBDpwHjFAsVQWATvlkdMikB-*WB4@5(god#e0hXcl(I zPKS}DUOyyZbl~=m_ywpA4N+Dl=&c9+Yxq_FBCS|Vs?Dji6kd@`dWs_1-t9U1F_fI~ z$epg$J}H^fJZTI2u~Qz}nMT+SRqqtkjF6xFVG3HB<=fQGkqhx3hgXi+s?-%kmg+?P zZY?;FQ><>r@+SB8#~z^sjaiFKKbUH`IacN29Ru$?)7psihY#KTScIH&r!<$&_!2_7 zUDZROLy4(rQCi&q-595*|6#5_Cd@r~V(9C~XAe5FjHNVt21&m8XVELLVT8A-y2)^U zFAq=X>Evt|W#xdOQwz7&V7UEPqXg5U3g?g4w^w7Nd>J_cW-P4dB#m${e7Y70+ZY2Hu!*Lh}2|0&8YORE%ZLX`@=n7o9fWt+;7_ zg_^`J5T`uN41;~PiMj>pxk;4~e{f7dbB4jDzqI;J*`dB`&sP{Lc?MKu4!@OL30@2bmI(Dv- zj968Dx%s;Tqmt&lQ&ui7VrXE%#HO*9t_k0YA>Zw#1n8a_;;qX}e^@p)+FdS^s_R@tiAmwqv%4W$0vZ+(u0*22 zHyLMoy&_qtpEC4)F3jxRPHx) zQ#SFjxJ?DzQ^+WZ5EfV85JzKiBHXBrmX`L)M}%naopj2sgeJJY61EU6+fN$_?7-?P ze<}6(cKXRDapg+u;ivFkfXaQ{p-sm`_VkS{fLF4b)Aie%)SBGUHB2FksC7!3LxZ%t zI)uA-bDl`V!Lxtlc4`=O=2?VIjkV>aRKkWHY0H-MC~2o zm#x(U2buFbu>1iR1x&$_zDRg_%NxY^!7Dm!o=ni5>@!^%rM)}AN$@)3p%tgeF#4>1 z?T9c}>RduMDV9Hq%!-WtCIk}NuONirW*N*8Gg9C@XNFunWct1#wU_yaK)q&?P;JZ` znf_e(swbu-SbnWCJ*Mx*^b1M$2ycTFVuVc_S!#IUpougtI2Ryk(DyJ5LO-BCqkL1HtAzJz$Cps>^3gkE} zsZOU7qUka<@Nr0ow`?|U3VMGcEAOB7lKs+An3FPYHvv`0Z(JZ6+|NYbh$xZ5Po;>w z@zdBf94mJ1{4MkH2a77F%A8UN&B!JVLuVSto;;f2p{5iQg1N^L_XWp`#c3r)w*88O z8C)63ZqPMj)q9NhJ33B3%>O&z20Pa~A(-Kex0yx-ms{R8Pp zfFqg9LBtr;&`{S1j9E0@fcUIO{=Fu(c@hP*XAUVfQ}?pPO$jfwxCFWh^~l{z{>(K zV-gl5xH2f9~+o-M=X1~bZMYvnp2R19D}#fk;;)ykd#t(iN+ zBAr5cfm*A!TIoLM&Vk^2d=y}+pz-U@dCc6=7em*?7uABhRR5?*el-Tw1dMJ>XRHI8 z4N!OW3Gn`e=adEbc&qmOSB`liDtPE*)G7R= z@E15{y`xw$vUu1{4`xJr&s@BS8qcz)c)Ty{&fK%B_5~007PdChA3p@vJhydEW^&Vn zdz$oT5R}5X%SW}q#5|cG9~!zo8vh3HkneZ(_Pf3g3)Sm zqLT^B&vL(`|9iA{C(5%OVX~_?F1=yREV>_DT6Y}u?PKM@7EDUP`CXaLJrdU6Vc8#? zAFg_Y3vd0C-V6Gd=Yzxq<>3rx>+_ckfSt#GjfuNYf%K%&VfpvhcaUN>fWP5CxQ|p` zhTtuy?rjf2#g%-Z2SA2VHERYgUAd2}SI?cKwEHT$!L%JY$f5Irfg59=99R;JPQTRWS05C5{3bkV3ry%i3fh@B+ZF5a`Tx8&!z) zXuZ#ilQefg3rKCPSI&2PEG|_syr@#UjqL>+;D%_jbK5{!<6|$42?4&i;)RUlYFh_~ zc&c*%W1*E$NJ+8<0vB^5mBaFb<5etS@jqO*;OVhzlu6a1un{feo?h;SfXc^e8%{Vr z@A6C4D^%HFH&`$635*YWQQH1oh&91gZ1!c~lWYTM7xdCc8_s~6Ksbg7Zq{b(Fc#L@ z|K%bWjN6fn2>!5hCll0Tgx$`6Os27Tc7t3Wdj_9|cBj^RG$pIkSan)kwPuR-WlT%O zOZo=pw-es=)kZ!jZ(|XHX`Xsv*nq~q!sOX)bnG;I*qu>QqDPVB_GrGwWRUQw4T1~{ z(-AGmAuu@|Hi0O`IXqL{NIgYy9-sH=&H)HMc0U_G2u|mQ*!v}yfzkMd808^w8>&uk z{}7FXpSJ~EB55|7{Ih~_zhOhVAHY89zwCo!Cw&SfP0->arcz<3Y8!Yzn3gh9=nV*_ z!&sO1K4Q9dyxuuJ!0G=<3zoiI*(Ee`jNI4wMfC7bpKZW)VEVNU})LPf} zyvDH^9R%lbEhy-$x$JqSBNy)6Q)kI-25tDppl4o`VL`BCE%btgN$fSvfsvQUlY1ub z|K`c}=PrBl&AvMX6x+Zig}n3$C$a}j^f&BzO5laelF_?izH1djAzJ1hB+Y8fG8VNl zB8H)^Z~>a^Jt3F;$``&nicj62)*a$COV!SieDOZJ8{JKQz6?ME0O^axoh(*uxia9c z-oX&Xo)JiDNq_#H>sw1UD-rvaU^4#`mh(0NEEjq)&lFU)IidQdH=x%CPp)Fs(}a`8 zTFeRWcM-ePDX#&+=z|I6UWWL+OJ;p~)L8z#*?QYCbbz7qSY=4%sj;{<^un&*6+`R9 zH}itzg&p~eRojXXYM5?h1+x~?1z#8?oed6=EcKQ1C+!2vxVpjsbA6PzLGzv(+XgH@ zK_-@I4}j`}7u!8}!3^*G6;x*!;uB*v{3{r@X{T>qyBVZK=T5>F)q97GZ|sCQY+Vkx zR#EEHd$X9R`!i3x)J$TLFINOytrmA61WREMP_R3hMg^jtEjtCTrivGYT+auXL@2f& z-edFh&y6&?1(yy4Y|jB3G1Log_?t~A+R>BXo;iRE7c;`i?#~m!SaA6#9ai&xDJ=LSdFq7RL)co#;D$*1u9oHEMWqb@1G4Gc254YgL#yn7Tco-B2a%tlxmET33C`DmN_2skS! z>Yq7Z$V0N96^xEp;9+@XH&(!BYyEsqLn4j!`Qy!?4p)9;M2Zh-eA234%#Cj`1BAz& z)woEOnshR-?UWJpA$^2oWFDK`c+75$#e(hYO>9P7YdaxO)l|7oPojY%p^ArZVO($T zG6pz2Ob`jfw@$imxeS~I3vJ^NDA}$Wdp0A8QZ+UQ1{>dkCAYyj0^P1T;_BYGd$w<0 z9U6*M1<;4wJSiGLdIzwt`*lfXhFWhtu=C~m(c&>-?@Qd9LAMmstFj@{6!;Pcrh z&XK}XOHY0)DL}%_!T4SyCEaR+F{L3Pah>(?r(4|YuxnU1F8OVUzki!G`Oaf!iqZ|o z)LtI}N98nW8mN8Zmp|G17K~(F=CYCO|6~2;`r^uD$cd%c=@bCXhE?bW{{-rP zt&%WO-xfISp4J@ovyq%F^`CHojuiK;z0OpbD3FqPReew$w-$K2;TQu2Tc)XJU1(HB~7cM>bJ5*98>Wz+$}&^(s}iDOkK_R{MW5%`Uw;Ltb+azIqJ_RSZ9 zCiTTVI}W20TQEiVnyKS^6mCM0=7G831sIZFzHPdDGl-fO^8Kq5vcogN)z+JSI@}?3 z^^GvXy;cDqUBcTU$Wj{aX0eNP4Q|ze9hSXqUY=(^tWoHJpgUj+4Pa?Nn_&{+T}Ppi@ zZ!-@D+tk)5aTt<4LSJmQYSH>8lo+PqOnp#Hb@}8L1mDg~FENXa#4kiZKZ+rHAqB~P z1O?94AC_mp@~;bCN0CGcZJU&yfggB5CIV5j*|IM$KMJsaIN<#|&w20x4FdmJFu#z*l#|=&J`6iJ0+?a%#O=z=X zwM0|pyMy!H$l?Hu6@JSx!8DII+_4()Qf@g2t?g8S_gOB}{i#$j1}5vtGO9fH=;<6x zQ9aOCQ%fkS1X%eiD`~ZYCVpdGiF`b?nvYiyA89GTL4ZUeGsO9=Ss&swckA1bGZ#@n zNsGrqwXBmT0Q%=0yvXw~mFuG(?7*&v3Ay()FyZm# zoLvYP7}Yy$rxTVU_$}CPs5885Vz;$Z3AqhX8JeK829F4nUF_hdnqW3uzU>k>ckf-s zM_a(GC&R|8?{V5}=^@2xQXhjDm|DxIRKXK7VjH!Xy>%95QdjWWiS#<5Xek z+xVEPQ}eF@!f=GPu@Hmh*C4`(jSL@|C5*_!1RUfb{|MO*IObDP(EP>Y*!5%1iC-<3U4U&uYUl5aK)i)58%&d{5p#=<$@TC`j|D%l-PldBzfiXhT-!<&Jb$n?e(DmW;_>Xr^v@w$lNt{?2 zUjV(ldgIXuEuoNzeN_h7Eqk(Vh|LItg|f$>g-;5RR~P@5S2yzfxq?Bl?|-Hz#nPje zXfYc7{rBUZ&TaMA)U&xh1v%S%aU7?^r2Z-O4UESw$J*(ayO)ZWbFJ$w_9&Z-6tE8E zfx2hdG1J%dMBoCE76L8^`s638v6CC17G`zckiTS*%-MKn%TK^XtcGc=dQxseg7}6+ zf;iwEJ$=!Ug8AtYZbE@o`<|?~1jqmvpLd0!Mh;YhMJ|rUwrTMK?C3pQ=1!QWaXJLB zK83+adT2kDR#3!TqkX}}21yFb&LVys$pNxIML)nMjiBPhP19nXS0LSZfX4bPtttmpl#58P=p-MkC!FEuQ6mj7QVX;%bz~hGDqXPvX1*9ooTAyu80qC z3CBxEGA((?4uAUWboT_t;*u81tyGTe2mC4d7yhK0dO?qEazf)zi@d0G9fq=vGPSO` z!w^}9deo2kRYXj2R%nZ0xa)}Jn&nXh<6LI2w?ghRJD@{04193$(i54oFS|4Qc2~}^ zg7M!VBk%07&_=w%{%6_UfvC*dy}D&gjhe!0_{mpf5^3toc^Hb zymiN8<#YE#uzHzd-2 zP(S~pi=Go_*!D<7l`M5I2Op~NeHVauNggpR>%fHty?TjNj5;BshCh&JC^O=ASq?Y~ zE|*iCqZuVYJB~jK09^A@S$&_ne%%PvxpdU=@l7e3H8{vwe%a#CbEXlP5&uRsdkl)` zUlvlDQewtn{f)l;O)~7;jcRE+{J}0T5?$lgSZ4d=kM;LE1QH{GA`+p)MX20&gT`$e z5Kkg56PO69*bb_w`LinCpB{(A<;>D2VTc2pNN?(4pvf5s$ZvbS7NWb59mJ?87v*|U zkMeSTB~}1(la-GNKS9v96U34-uk$dX7XVfv1o0L=9o8YZLU0#$yA7aG^HV6)=+FyD z&VgPuvG~apZURYxAb(_$lyfe7RlC54^t9=52xl0|kERt(oy;4t3)>By4P@J(Atmq3 zm8<@`VA%G5fGOROW43+r-UoDYFXtUpf7Oo=#o{ue;L1vt74MJnDC=RLqzv285L z)hXtSxS=MwG1+!j_}UE|yRoW(%8lyz_P?K^EITY8ewym-p4i1JnqXn|Qc_dp@e#^; zV2C#jb*NI4=@>;FHo4U?1PSiI$JX7#-rSn$!CEj|>oDU}>Y5s7fE`-hKBnWVi z>b3zAxD1}HrF{024@YvfD6AbwPr<`KVD(MVl*jaYGmZ`F-s*&lM(X>f7x80Z_`05UW3L9$`hraTKDeob?)@XyM~f3FOkq38%m5n-vkLD zN)wz7fLHGQD{u3tmThd$6KTsldo5R8BF?qvILiU>a~I|~38P^6JTUigk&92ZYyTliMbbF- z$j8U0cj8;y%(luAOz|FK4^-x6jM(N>*p*iN`dn+~SsE`2Ca&?@d~fa~PHS>eFdP>5 zn>+`(6^+soc6B4)8od24rZKY2U&@G_XGV_!^8yV72uolUsnGI*x1_J%`am(BV*>zB z!$zo%ezP=;ii=>jj}bdt?6}~}YRtI{#A>WkdLML?r3e_aob>kTC+vB#4&416~CLm9FSBI^yHvX-G~6Mgf|#0e^R)T zz5u=k$P*|L3yA=_)aj_rbo(kPuK~{`di2>pA)Phu z1Fr)g!KdeH*=C3f+?0wa+e=72oDvj0&xV;X*zQ5GdkzDMQ& zKlhKsuvm>D2I|;>oAWQcI~A8)*#>nCO#u~rT1tA6>^$1caxTN5RL?g9#^c@1JrcO6 zlVsD=c}{T}1N#_*Ziy>Gi7eov$c1-bcqvak#gfomXv2zAFb|McVslBUV1@7)UV#d~wniqT-VriR*DcKndV8=;P zcc3{gXiv)ocs<0U1zLn_+PCN~vDWs8xLERpP4MvH7A`#Lk+?rtGek`kuKHr5#XGAa>b zvhNgWVlXkrFzfG3_xt_+-0#oz{eG|CAG)qwjG5Q-dCqy9$9bG{=7tWj&9lt?HQ~%G zvMelYTp)h=Xvzy!zmsMfLo|^4TYc%$qjJQQ`jxYIM05aYp6wjBZfu&CNG-TD?S3EppHPoDr-;>*EZFbk(wI@4n z-<6%NX2gpVA*Iy7TVkY@y%OwO$5JE2tQAw}CWo9c!>-WK29r+2ez5MK2%Q3utxF&1 z6yWh=mulYHk1V4=k9xP7)Fyf&9nNe~F6P!Bn+qN}lClr*V9o{}ECLN@wwF=H_xJ26 z=*K!ezD9HR2kz|AH}!v0aFuZUV~;bCqP$r7(rx1O5OO$K`Su)Qy)BPp@*&KdVvNNXDcU^?nX2|;u&(CW}9JBt}p}&Ek!>elwrik&>B$gBsrGZ&w zvpqkxBYu7Px1;hU;!mYyO8O-m@=JvNJcV=X!@U}9t)P>`u7ID~HW~Ie0@*uS-pAy? zV3Ek$=;owtf47)b@X`Uz$hVzH!Iw}v^!Yyfl?RP}b=>{)*tCIGy>QZ&$B-BNlNtDz zKx+X6T5+L&bvS^6bZAY`Jz!4p{lN~@o&An40O7d3H`_U(2AoflEe##t=w|7_O4$m? zS$|}_*vuJoS15w!cx0bo0wA2A0(MHD@4 zU0}gaQ-<`rAAlI6tzw2kg4ZJo!6Y4YMIF*Povos`&6;rit<_h!JzKHW(t)SgDCvm4 zgk!#2H(T@kaCejLDG%CPH$W#&o4{Yfr?v061hxQ`qbzWoJZ&$eo<&8KL5nwLazMed z)>mjd&=;gG0|m=`hw=Zmu~Gmj|J%mq71vwHLABz$&-L;N5UzXsXTo~YONep=^otbY zEu5^ZBwi){E3O>lL4$UDh{F!1A@Sp`hwJ!&dn;|@NjJ<933*(k(K$z4BV)0JyW@fv zm+d8n3F=NbEalzwDEsA2DJ@aRDrnbZqHF$SaBj_F#lW41?&E2JN8a3wO65r^tDsoL z>%4d_uq$LoM4#;qp2mLn&t@c7e(~dbk>sFmLD`^M(fWJv>C#00n4v(~DnQE$8r&P; zG-w-d-cZQkH|6hddVTh(5ad~g&``ny;{U##yxxFY(TyjWu$WMv3n`nyTwi{2 z{^G1e1VBun$Zw_MzRk`a^fNfd!(P2Sc>F)u>(;jW?TYd}WfwR0`yCvIdMHozEX{}O z)&ofU?GF@V`BBhxl9jk$B;76Yv0kTUX<$2wF_+@Rr;uliVZTt5s1~ z8|&9{2415a*hquA>y1~Uom74^nyCzazsD8XU!K%dPOMj0d@ap6oQ0i_qmQ#|kA02s zre6wM`#_TEFPyNxQES{uk2EvZv>(o{2h95Pk<0h@9Hl)AqkVVyV0PPMK^#F8hK*P5 zR=aK{Ujm!suzwQ6BL)n^7C&h24oSlKlOkoIY z26~}Wx-4*W3E`W5c;j2R0wT8`lR<)`pgv9nO3}IbzPyDI1_6Xtr~yye18}#aWd-VJ zZ*Pn8q>AV4$Cl|R{{ELr#Q#({Z~fe%0*I!}Y%&TkC{K`FW|?HoV~_yN*r`A=2w9{3 zSc0+WDzD#a+?O~0;(uaJqP{je!w2dee2!fix|WgPvkW1+K#NxBp`R?O@dsUt;BuJc z=Cd9IP+@^D09E^$f`Sfcsd?b}zwd1e7TWymNQu^o@w~(8Q?FWeyvB-9ayv+!cjZfk zXGttzx1Cj718M%jDO76;)kpb!AQ~Sj=K|Q+p^qd6g*_BEU3zA+ROOuVUUiKE*-#_+3<9rTGAaP=Y4Fq!_}`W-3pkjcyU-C zGgP(cdhV`0w*9cfk}XMbj7>mVCa*N>CPh zM=}p8hz2eHYR*~Mba6CxOF{MapS983v))(9VxOq8i)vwR-Dm9#oVk`4&CM05?o!fZ zsn|NEBlWLmACLMto|{ZhK@heTr2xzlO` z7aYqq2Efyi5{5MR2a!vMwZHtGMBSyrfWf^63rx_2IqMQ51)p&M8HC*JtlM|a(O*vp zK8x%~$bphgFHV9kW^I$df6oLRD(G!z2kwP$gbRB7(&LS0qdXs_R4+!pC*km;eU3!L zDh`+?Sq&5i%HvPD^?pny`#$n{db2!eK|p#3(uc8agJsSM ze&);<9Clh;tmn~Up1Ptr`N@;2npZgfZ232xFH}sL)BO8wikf>`jrg(!3u-GgFt4UF zR*a`p;%X;E@5-{iM2RsSydO1Dq`3$&=d+XMxRI48f+2Ho3dU!GCo^DmnV39UtqnbL zX_>LqEmZ6D@%5WP!vdSy^ro0hzZU)H7> z;Q?V#paKWY-_nR*E@eTI=c?$H#{-Apdqr7+_gknxGg$ZNz7AqsIM`b zxyl}|fxesDMkm^jWfV24yOx@5^ZS}Hr1U;Ux0Aw5P-WeJpp1qIjNgLFkOPlZgC0^j z<7+xOR~?$qsR=9K?k?oZ*EO&!%ocgW+>%TyxBAJyL##fe`hFY@?j(v}Q7g|=y?PjY z(F68mbEP!S>M2*?t8&DO6@29@=SS!`yueoP;mUC(qv5`M4MY?XOR=LDbLkRl=*yJ7 zG9jqlCw+2%TbrX2WrX+L)oYWv-GMeAHj~;VyExOQVb&Qn_L3*z^qnC7GLzA@_COE| zN*^Gxc!f|Qni~CIWzcU6eA{RlfN*|tSAU*Y^S)8`T`cFffEA{uh8lD2Qzp)Qx4P@& z)IGK~rrfcu#vcM{D5a6A*HR*X(~U1tFg*P*4qIylbtN9mycD)QgFb|oy%DNa4ovwWooKppyC;|}p1PuEu`Zg()8gn!!l_BIxpPe_?&bKIjg&#S?PHKW&Vca#) zkHbw>t+5-HMz1zB$%+>y4%V#@508g2??$_!{Y^9+hH-pkAusf?`TE+lEzb4wN85`+ zJM((!v(jiql6#-8{2PO*{A5&d!!cxqr``D*x=vYx$keZR3qmdkhkAFPnBvSSc6{7W zcK@k%PMd)PZt~Z{i1|P5#x-ZRfLk9pe>xu}Sd3XjD%e@*eQdgMJBs`yn zZ8y;xT3d5mx|QR@c>JN0bQt$;wnW1#iGwPV-oIEXWo0;rilb7mP`@9~vhSX*6svEj z<1mgYeS3B@75g4%p&>UdR=IWd=)4Jnnb5S2Ze*k;9T2$%`Yeek#4k|kOH!P$;qMRo z^C~epS!05p^tlFbO|S4@<#6n32Syx%&KaMo!ACWr+LQHJ-sNsE`1WjVXl1JWLU45x zp&$T_@z&|X4gGbP5%iglJYT7SAZ^`y#z<8}Qr&zK*1{ZEOmQ#LkLKw`&nQ+yoB;Tf zqJc@hr(M9~gVgI^DMFir-?z~cn57NfVH%E``N-=}9AkAa$3@?}^t|)~FIpHogqs1= zE2@wTh^OuR7g<0~qo;UKrb{yxiqR*eriPHshY|{Ocv@tO*Vpfh(_$L;1`-amn5@1P0mrH@VQuA!)>l~U z$-o-!Lk;YY9ywE(sOp<%_Qqllvi`M|4l0D??lT+VZTw;Iy)d%^uUI{rw`w~4>N&oz z{o9PtbbBGOC~>u|osb+vT#b^+Cfpe>xhOnlZS%aM*~ULhb8S&~#y$>oM0+0n^-=aM zM`>xtiHOaDMo_?A(BjSW+Mo~ym^Pr6q)#opU~$Z1 z=S45+$vQ>S-ek0cg=5;{w?jT|w6=LM0&GywuUmaAEVlQIi~M5Bcqh{MVY8JYRpP81 z(m2?$ps7X5TYfohqNV|FRXluPv4Oepcy-tv^JEnvoBF%=@<)Ng{TeN6)wjN~a!r+qOX1rTH?J*n1 zRXpx5k4a8a+gT%2d+lx}7{v4W(l)}b&~wh4 zCav%`=mGGj31>@V-oa0ZH(!q9Ng&w_o0oj~48*}<7Y0)eusSsYij)YR0{*!Yu(7E| zplp6WM5+B{owI?>)l&S&cs&!QrN^GlLWp&GiYxs^n$B00USa&II7e*~kvirLWQrK{ zn?4#(I>T=VY=VEB{7pUn{s-0tYA%fCracdhdfkBF{`^ctYbS77Z785P{Y#8G7ORF524LYLprcw^E3Gp ztyA7lKHJo1=-eptwKWWz*_iXV^;w?rhf-R8a_gdo7y0NSj-1xk)N>^M=}OFHMT29@ zx`G8(4s+&LM%HFS<&tLuv&{5KO^K-n@*Dn&H&WwLFkHi7=QN*!rr@KM2CViM#!d;$ zqeoNh$7>1uCh+L;3pDD=?$e!*SCrkY^zQ_I^*S8z!{<$tq88Wg#@c>owzAaoWAo?@ zX$G#zR+b?e%O&r>Rk^WMkQDqur~$;AeQ+V+<0Wv||EMy|;d zCokS8yM5fO(`&3kf7mKX4Pi2e?p#~@@`rK9bkM}!O$K$LRn+R{MqA300PJ1`sQtbg zKiio1jnlhy+{cbSJ)N9}#fBh9>=i8Lo1`z*k&C>=V#9DhaT+E7z{QpW>;9&ipyTxT z1ElV~GOQ%DyxM77gqw2-I|3}YdZv&A_lzlW&l&gT7rd;!(S5y zsPJYQy(6JgokEPljI0SAQxlN=dCQuQjODVNUon5a&%<I{s87AXW9R4ib?@d|<6n{X{R{q?B} z4K}wzIswyac`A$G0TAIhbiTKPRu@lTIQ~XvJj>aA1Cz(Zh)sDw@n+VfU(}i;bO|I_ z(hI9pbMGXbzZ0KpF1ORXf!7-Lc0tkN6J)lcs-T)BpSyHc5_0`N+p9W( zgnzK1`Oh1=`xT^5eK*|lPm8KKR03uC8BnD`Vw#T!31~aQ5JFC@9-gQqLyI30LtWFKRcMN6_xskKDVcPyS1cSYT>6sjFG^cyRhg z&eEWsG^j1JbJVz-Dh^D`waWTnTYapk(>T7w{S7Vh@DEKc4rw*UxAS_hgSd~ z-+(R>85|{%uoh=#T3I(59RKYWA94_RKNREV)>$R;DIc!M%VC>BSkKYdQMRY zR+EhKS{bRpQM&TdXnknZK1x?vS(89c$5ZQ^fCU4$-HI!HZ^L$4huY7CVG+fpkHad9 zlC$mHR#IoW9V!8(X?ef92@~j>0k2`WbSqb{kbtzNI5P5KkY{^{7`Z=BaWQnlw?AJV z-}aWz0amsrDB(gAjKzxQ{L`8Y6{>Y6D;xZCFPJ&xHo6%cNe%v$JmctfJdaI$N)MGU zx!p-YAl5DzhY`HDN2@r@&Jid@toAq0^(^wbYXZI0Xg1SGBO7+(hM^iC)=|Fef(5YB z?di|-GalEr1eOzWV7B7Zx~;!*Zff>JVbS|AVWfZc`ie%^6BoWRpY$v7p(eg5IM`iHU;e!96X5sb~Cn7-9fZ|g^@2t zQILM|$8Qm*H%3vm@>@w&eBmV2@KE>3I%=JX4;>P5=kZKC-8iW`u!q z!B&#m7X{H1ym@(#T;JTj%3F|7jWa;N+Ja>0#MZ%;nm_|Y{%PW~ljj+E1_hwgOcTu6RfQC!RLki@6&MP-#jS!MZyWh<>kpn8T7Vwkv(R#%{IcGXL7=WjgTnWq;_fVj5abWevB; z=Bk+rJLO+W9!C@eyy7E2ku$p$gJETw$t^&PtHtx+t0{_mb*EV$-L$+2$n*AO=tQuH z@@Xb;`trg988gOCBhbcW!jKLayuQ07kMR34$dlXF1h=PdiNKY)i2$${hUqF8vmCMA zL&zga^U?OpFi*m1ewN+?aIYjqx0jDBAYG@(8pivM2fA}`@pv!EFJTzXnb*>W%swmb z{>A1OZHGBOqY#f)8+VX=`CNDWd|b>&-maXAjZHp|{N0M+yvi2KPYZh7l;36`12u4i z$q!k{hUPo1imUtc28Wl<=48<8>8cdj$W8PlwBggvWYv%-)P_~^_fG$Bj_VcQFVtCF zWV>PyeG}e&_Ux2}ux4*w6C)9u`gk$SS^)aw56&-WLCNM&Nlp9B3g}E6`glvrbA+kM z=l=aHE;G=40TFfCTRu-KB!}vIv3Bxy_jD|g@KDuhVPABltkILzW%C?NqIxG$*5_ez zB)}}GKbvAUWD_WdO0F&LI;p>zAGBYmcNOVZ%k#NkRgx_B=P96hZTkPbop93=k&wg? z)p(|r+QF-=0y1LoB&jMUJjuKt@gNAT(d^&e5PI2&=*2VJN-n#!wundg*X?h!$a%Z7Vjs}2?fwxhoBq%nW{v>GkOg%;kLWt>{Sp!9V{q*=x69ox)de)Y zezJgJQng%>J)^A=ivA|K`6;|fsf56y1`*mlONZaD)_RIQC@x;U?H$ofh&PQ2eJzpDUs5_R*&aqA-oq8aH0xB%tQ5Nf4VpgF8bXE#xNbvDwu?sk#m%}+# zW752_D$SMdBy*Rg8iWBhAD4>zK1B-=(fYx{oWAu@v>IRI09}hcUb-4OeA!zHw&+vZ zP~8;dUHQbKk?Faz-r$|G4}2QD5~RP@aqkQ>pQfrelrH7Yl1^(?`X~NYJvq4|7T7Rr zK5jlRM8FWjhPbnau+~G>aPs8DT2T`ObA!omGse^9d&+0^ZRD2b3~73+VZFa3NkVkluDXIfqs$AtYY ziaGIx1xCf+vlvL9Xlfk`lqHYO&ocAXvG`nhKf={DU(4=(Vo0XU-A*;qM}Fv%5&v;v zW!`t3fU^ojW2?~YkZL5*N*n6EK1(EAbF?6b7B11BsEl>n3fFUL%Dl`-7NGad3{$)H zkctlJHPy>E+xWp%WL$BI_bMiBlzoXl(0b)B|0jK6K5T+JbyP7c6+!)!(k+GP560$Q zqXoHQmRegNrwowK7uolPmD*FDPo*}#)9obgCF~6;Tec+xBs5LMGt--NkP1I~?fwEq z6Io5s`_svZN7NT*)Ct^SQVuXKg(tCqtUqmn zNLbZTAJz0ofwJ>yRIi{#e%mWO%H5SU(&@We(w8ZE8cE@Dd}L5&Io)WJ&`*;o^yB;G zK(d`51pF;dw#JC^x&$tkuH)~&RN`xf1xItRgt7d)P4I5u8!UC4x_Oc}_646m8)F*X zSlj|}6ZnnEZ#HNB!F#mwN<6%rkjEnuVMP1_SO38P2xoEUiw$=2!@T%<*-Ku$;oS&= z-U|-%27KcIc*H3fQWc-*0qr)C9kBPOBrLL~<`;rJ=cJWAz`i`R&Sq%XIq(u|>SB&h zV_<^X#o-TWq57=;$_5$lvC%v+5w%`d!~gh=qen_X+4ejKR~JI<=p^j0+^Mv5{01kC z#MC8q8tVd_$@tu+-IHUIY>SJLoJIEc!W@JNb5*P(U(~7jgZagb7&AF?#N|BhWLU=? zQgwq@@8((gv!%AqQ*hJLa>G|xViMh|uUd1LE(c&`27w=yh6 zOK1`aHFvqT5&o%W=d$&S+ovCMaRob8K0X}DvS**lDP2Ku*Gya|X!p(3zAxyd(aX~k z)F@Hq#Jln>KRS=*E(TgzI-(Z+NvPRHjWmNYe@y6`QP|+L^t3I;RRf8(iBCv5d45vB zq&O*8zR)zn;_lDM$Bo&SjqmC4#sG*_f>!8c0R(3s_&={Wt`<2uW}!f!NxWzA$E+!Qf<~rL*Lv(4Zpr;fzdh0@_xW zFM=@h+ZC9LCKE9C!~CZqCAp9dt4G@MK$@>_z7y9+=f1YeMpNqPrLU$``T1n;!gQB* z%|D8E4Z>+wConj^P>S8yP;tW3F{Ux4p+9f}r6&vvP)EctjGlwhIHj6d?sT%TZh5l9 zaK13$cD@<8990T+ZBrhzj@JL8+oGOgp1*S5H6N?7WG_1r?2mmpkmx0KJq?g!EWVbR zOH%zo$yvDVdlxwI$mc<7f50t%T1cUrJNhRh`^Y^+twcp+@Dx!jfgL}k!u}?JxMF`_ zYBT@wl8|Rx>@`JC{1QN%SDLxT)9coy^YQlwO)LNC%N6;pR{+oJHzYC6K_UtAw#n+! z=@dxC?tJ}tb{={@Vj5v?09arPx45G7s-Te@24+gSADK^80X$KchYjQj4Hn5T{fH{E zi^of{8JHMy5XcH=(}p4r@xCJxCiRZ9C*t&-$!bat8qI6lZ|yGwqF?EkHO_-IvOD(k z$4kff|3UGRQ+Yn>p9z1UoTsdGE9V%RcSUk z8AN)%8uy)NuRl;RQ#kdceU@iAFY(f2G+9_{6Pntjq3A1LoxVDSHDI=BTr@nk?9{%b ztF#<#8fd`!cAmtpFtyF;e(xplThdgNwD;>K$^2x)u&|~R(G(61Bh&Bl+5ATFt3!t^ z*%4H®#!>AAqxwRR%sUX!0N68+U&sS4jO=hHx%r(a6_S@~Y3rm(S%8TCc!yRL^( zbG)Scr_^VcmNwgA*tA#2uCYhART`+ReaYKW@LsX{QVpl3^pBzTGSVgHGM0UeDzidK zp2FQAo5&x1*-=Ga_{6rCvM;$^zFb%CgZ-J%7E>$%(T3|q8J{|mH>U(+8 z;A8t?o&DFJ=KgkY^RxBqw_Ui%x8dNI6XB*2joRkBcD{GoctP7-$!FUGJ_l{>bAtO% z9D13d@Z#lPvD%-S;+{3#(cUq(89|*_GpHnH&8k`SS@d~vekk{$jQi9mUc_ayW#`T& zsxxc{?<%6XM-r3Wt%~kXRieLa=;BP#8zkoA^D#vl^ukE&d2B6%bJI_t-}kB1b~d)2 z`h_*YWchouQYTm)E(1ZVMVA3?VzMqXg0LFvA`;do)g?X_(MPhqdwK5s@W~Tn(y%6% zvL!Zyt_S;DgOCfbBKM@{GAGwODizq9LVzg=$W?C&G*=Br-cPYEMwc++AP8-iTKU)(9x-v@2AU(lNDvw^VK z^#c{Q-UZ{~PA6od7(D{?7Vn?0qww!pyfxj#>@@S9#l#xpwRR0kopL(n!%>HA^MCF2 z+%+$gY$rC)+k{*wz{lS#`;b#teDrR4*xHiyXjVRV`mdy;R`FhMPTN%%uJ6wo^u9TAtLkL>-8gIF-un78!1bcoHUNFVylZ|%I@ZG~3DJ=VLU{Mdiod-LWJ;Q+^- zj*>04UaSEll_PuwQ^g++6Jb^H_^eRLmXdy^u=bqkYuF5KUZyG$)w zNAA_K&^!w3xUcnvwgzwhWU-$etk|foa&Eol`u^&AU)*k)#%pmmEu8b1L_pG8O1=wj zDe0V(ZB#EyuoC=qcz>gMqH!qFok?m~=N>wtQJ6k7G3sagiL$d;9=X7x3SJ7t0O|SgIiaqsDrUb=<+PWeo zcl4_=<6ixIDzY`;%FvCso!%^l1jhkSsrjbdm5y4z9!W~jkQFLuxq)DPQla;r`g;$Xz*%{G&zpS4ONvv<7Z#aPy?4!irFLXu^*stm}Qrccv~P zxlAS{A&2AArPY<4X3YH(h?b2{P`&vx*#F&usHVl(Gwk;+Dr3$Rm*j?(@~(wSszMiM zdLv1XiIEOIJgn$&;u)z{k#Tn)h8iJ|QU7Jtsf#mTNsyek%nx*njl?2G=^|WF0xJ?B z8Rm(eDotovybZ_d(Ish(YS=i?r1_dTil@#-%L)g)Qw+iQ!HT-5A%)uC#s|vAq%F3l zE+llb+8q${O(_eNT8q&pO*@b)rElY#Er8C=sD64AY=`t}d?9?3B3i-`xx72_dy3GDd5xaN`jsLrxo3zEham;TB+-frGcO_TjX; zpbeW#DyHZW>)bVFPvn(}I;Qou*{VdWZ0@Cfa7XeTFS9TR_dj!>cmOuPU(4}a^Btg( zT-Tl(Y3hItCub11lo%iHOD2Y{hfVS1q1&)i`-OKAL*9csD&bgIGr8TTK@X!ks5Vor zxM$9q{&9ASGNv|Y`b~|v7AN@V$BGhZk0a_9ty2%=&7SM*Dnp{O@rmuQXLi)%nIM*J z)v%N#dWmLNaYvN@_nNZL&IsnvE&^{Swrzkjb~G(Qi}m%bv7Kz{iNS5^X%rd7;MPB_ z`j@zdU*uYZ1A>CP1~ze*XQ*e`nc=~Uowa(QlMzCh^{bt4+y)z?YYe6Dn;(pNqX8Nz5{`E0_l*19>Ld=QcyMPi&Z@3iSH>DsY9gK(7d>3hIf)gC?x?@$w*>7C5#ff$f&d` zj5*UmUx`(SpISaq<2#G6_w}e-9>DI!y9)Ftq=gymQR>Ym&ofslTd0bh%(o=2GZ8&; zg;2fFI7{`o|0YlXHj)|^$g$gZ$fo&S-6v6xsQLQW-VAQ1h6snNKg7)3W%u zCsJa-4HR>B!o*d!f1{ANxvF7K%4O|;-J8!V>&TB~3~#KB+$p<^p9wmXxJ+V<1x`rX z_aGbhNG1o|7<0*tyNL8L3fDf*=MS?uFu@A*RVf@o(D`<^IVHY=IMdqCJNWnt%w9fN z%&Xy?Ep*f8D+qoJ-(b?FsSe@(vy706-Rsx)-%ibMFc?A5H(KWxt^S#65?(HSPuy`{ zPcq-(-a7ZbjLv~0@KbMv3-}5=Lab7RB3eb^sauEp|I`u#b4h!EFio+~T1PIags+yW zcnDT9lp3zg{>GZyywJr)??0gxQL~`P6mxlA2=A;+Fu2|rUQ*q^9a~$3Fli^=n%xHP zt9A#<66_p{j2u_90cWdJby;lEhGLg;)q1%(37X<9#ba~TUFm4r z7heXZxawrQUZ5j;h{#b+C;Vu7%P3+FexY}`CrGk57}|BcW-@qEOS~@+lIi^n-hZNt z&wpYUeHwH2dxQSfa9X1WQY=TErAdii>DqZT)1EYdK{XrBg*1I#WSF2CJuY61&%w$o z*o65l*n~$UmW93xABbQcq^?8 z#@)Ron$B>3JTcp}eg;q@a`l}A-}h-nOfbHhu4i#Hhnb0QD5V;n>&GkG3`hG%Ne1MG z;5t?Ag|8#;_&wdt=;gvX@=T7%LM(67a!blWjr(0JNOxbfEZ)qggko3lIa>?YobwS} zY&nCJfKQy=wD-=5Uay+S%V&18F!Qj?IcH*$yjzTf$%y zc(;pH(Y{ecU(NlK>2~4%4^|cG|61o>JI-&x4ZcR3<+r9@*k~QaW~}fKmmN~CV+({I zvVC9QFsE9v@tQ@J?A%#^d%st$b4Sct_sR2H=RfvKKO+Qij{=Bo_F!mBQ$%waoKmld zr$cT4;9fi&AVah&G^=D)=X0od)^E3^4gkO--YMQvA}mCk=UI4FLwpLrQIGywTz>hl zz=tz1`55fUUgE|idD2tPXVfp;jFkM*ZyQ*WNHnDHn>!pxi<;P5Oj(TCxcy*Hhtt!o zB?=C8s^T@gj+2ce5&rixeFZAV0&G78gJicWThcIg;n;FDace-ys7K}4jj*A#(Ayi@ z$9DfeFbBUuX56J5 z=PyX6s?49QeM|A$M@-QA^%@4BIeNURl?y7HE=?=GW7YY#DDp^;Hj zsTfNlcyrlZ4(Qo0)PPLVRxRRGtDMv?EArUVBy~0^!1%I8VgqxG5^u2+0t~FQ&)~*u zEbQ{=10&i_8u!ZDPxfw+lrS^Yc$1yxoS$Ay-3l0^etWariGg)wRnpur|K?@GmpEoS z?5RKD2-EN+=3&N3Mj8TxCNy5;T|~ag5>xQe7ptA?2Myr~NQA*?ssAv=H>&SM~56Br{?mv0)#y(8qg>r=FmR|px z#~RgHXi-N^8Et;+s0oSqHo?s$Xr;y#7znI$m#^U7GkMD4#%pSM+n{OzEo3# zaub0*W{DpXj#NBRf$sY5&3Ypu+_2xMU32-__NioS^>rsa9lhAorA2*C&QTZ^hxb&G zyX)q&HfT-XV|7_Wh?gJ7O!4xez%l*B0Xx%-C`g~Kl6Yo+|G@x&3oG8dCUFS<(t_vcHlbf+}y@{Hj)HF=SR z7!M4@x1x!ab*)JA*$%@q{hh;l| zuQ)Ujry|T4dF5%|dy)se7|m71|At=3VD6ANE?H82mCA^qpjF~~j9*h#Bw4{+B6r1W zk%h&otxBBoTy3+O4C-?(j$V0A47-hYl3uW@e?QyKncI4DnL)?wA4agoCgK8GR0wjz zhpf0l>o9eTUwpl4-wVf)xZhLX5|-c4gd9X$+O6Ci7_h(xb)05&q^brSUz);}C^<%}ln2Llojc zwq+#j6u|pWNPp0k56hiJlRdmbZ9mOUNppknKqvU#EAzvFGfp{-pMv`(8CByhw*Tj? z2;73Ago53!oXZ+T3btofllP^E6>4#=g_kE-%y*{nTaQ@eOS8TR%%^<*c&A~d;w|A% zXMz50&;E##YgFgi#ESHvoV%I?qK=YXTRtA|(Ctq)Oa(+z$ z&OMl~z`u264!8u(qd#V+H+jv>y&6X1J;L2(GHpdPXzrU&>K6Q?DUgG1&ZOfhI zlomsjc>=t~_N9(1pAf5t{F3 zVem2my{~3$3hdMd52&F|1_M%S-Vw8KjF*J!aqR|9s$+;aSz_Xtv6}IcAm9eOKiTTJ0R;>%McK(G~(c}^xD^A3)<{;mZ829$t zhw!C!zBUt<|M_iu0z#_36E(8`t}k_Gq@-ET=i>okx~!#VbmWftVZsXDg{b9Lk~!`% z5T+iFT_lq)GTluu7r}54s>F+!I^BIp?*&KaddfKB89g>|Pna=w@q6SXZAeOZt(|@$ zSxAb*%_!eMzH`GtR@>41>Y-O#nmDwl)Xj$2Yb zhJ0`ZD2b(y5Hy_#?@Wp~VH&Hi-x8lopjOJxpQjI^nW_zwy>Ch6Yk*fKlQY>z$vd-e^sA1EfYFlpJhKp)=qAI14xQEWtajvpxYAIu7O_q=ASK7uvD4q#{T# z+fwHXOk0T_hoST_E3XqbX?X7(3#I|@c;B1nIPg>BHn})O%LxwTj3M2f+AtyE{!J0~ zj$K0$qHR5Ybm+Ibe zmvDbPH^B;HJXYyuQMX)6M0w)L#gHBks5X#*EJ7{6X~_;lEw|7Z!`8~nSNAJSy zmk<2i$Th3VRR`M-x?)Z}=;9De72fH{UF?%0u^2fQ!$UCcW7af(PL6+R!8)qFan zh;Dkh!z#R7&UN6xXC1g-;^J9<$&H0kJG}exWuN78QpH+y10C4!BpO87NX}BS-be+& z2F4A4m|ga!0k8a7SYuAKMT#MF#VVZk{iwp$T<&V++j#G?yew%^B^yoxkR7#VM@tDS{P#5LL#L)kQE#CCxRE*-<2PE=;eLje60A<*$Tzg|(W zq@wbSMduu}8ib`Pj7g{YcB*;T1uahMBv%7y$(X1Z@!ab%vXHRlc*cbs+(Ko%+V^Kw zZZ#7j(?^juH^gh=!Ia};R6Vc4BiHvBIH>I?A5lGyRIsZ$VVoRbcbSU_!nrT6sjctV zvZ`deZ+G;-#0{T14+r69Y`=5{1FmUVK9j1AY`N5GBt$fwIJnO@_Cj66{O$Osn zGa{r*I3Bk$S>NyDaG56l>uzKN&z@%R!IyvYDL}}~c6~woCrcslGJn=Nyz%z zJXhyeFjR8PdnH4oc-*h&au=pWGVnpgyoQhk?ZYe&rIRm1x=X!tcIFk8&wrz}hKSkS z^?U^zU-=!<{$j=N#d193Wjmh z;!||vEx{-C1iOZ?;C1#PGhdKbu2uU?--?JU05*od>3Sw0fH@wTO^-gQT6V3i$pP(HJm)zF;!Jh1cjf~bSV~}$T&19zmHWBjn zuSkTaIP?EH9R!?CM}Foy_jF_*JmP$D{{|&^15Ws58SR(C5vBCxL~)nr9gv&<55LOo zJl>dMWd>X>_ufvpLle>$N#Iewuf@6h4Z*>X^pLOaUWvMEo(Z<=CSFQbCTdHlo+sk@09-uX=yH zeJw&B|4}UMBBiq17}pwDVU|Tu4FZ{p?!YOIMR7>qo%8ja!{7{Ludg~y@t%5O?f&(A zhxl|Uiqc^}-|kZL8n1JKK~US~S!Ecs~ zVn9gq@|yp85?##PHyxB{EH~MA5hoGE-59yIl|)(TN_E|B7_Pk@{x07oNr;w=yxeOH zzVbPVPrqzRxM5Am$R@meUH5PHQ2T0J6kE@yyyX+E;pD~+mRW-G5@%9(eLwQbrx^*p z0^b|%?EUNe-3%cYDYWuLUq z#{>5i%6z83V6O%ZwL6Hj+czPE>|eh%&O{bGwKv&P+Aw|GE7~R}Eh1pZDS4CC*Q*x1 z(~O4D@weA+8{fsu@b;vLLj|om%apG`KSO%n8S*;oOEm~}&|*)mhHnu59p9+2P<4pm zQQl|S^|T)QyWb<>z&-U7HFKryH%^0jdA+j8VitnpN{Jymp}8`c`FT|z@>2B~O88U(~Ef5xlA8`)+`B9(SJsc znjfg%!S7JYQwSN5Ie~^lTO4@Vwi{Ae_jvTHlm=0ry+vsl`#x#70^IDT+)NX&)t$!w zzO`3YczMBpf6l^n?)Cor>Lpf&|9qP-!IP&9C6{i()pu1}c#{drm;o+~qot zEXAC1(Z8<(W-BVx2V z9|wr5!*Y^I2>l=Kb)rF|qe}pu@62%N+fE$`SJRv>Ma%XgmHFTNKAmi7!gU)L6o*Y8 zwZ$8lJ^xk8c=a49;g~kmlFz@{Nb$;Y^Pogr&tCCh-SG1J-ODI`>zvA&cSo%pf}M<% z$E35c6S3pcC^i|Hut+5l6DsD|IuZ|NQ>T8g`}GivuBuV81HDEk`7$j8Du?^ni5P~^ z)_cZE=hFDCWpf9Q+d=3TioIdLf5gZUhJEv>t;7GJwk{(kF7N8Ww}VkUZ5GB%-U7G&i$lp{Ve3{g)Qa9&O0F_f`A|$ zIie?2QcSI?#aJhBW8H_j~|%{@fHxFL32eHFCOlF3?KCIGuxveDNxDW zENXo-ZpahN%(|oY0=SVbVYot5dr%*CS~X?$uuU1kyg8%yvTu?4bd2t4fMKD&9g>cI z^DF%MzGl=f#(6#9%%DAr>sRDYp|7e#sYp4!qW|@=A$8lsKc}!P=TEoSx-=?WEVFgO z8xIQ_1!A5Dc$)ASm5Mu$t+y0Il6N90{xp2N{_x=`Gw|6vEC2r=nF<`)|JUBPfW@4? z{nseF)gs3z(efiCp(Q%bqLNgobdqwalp>weY3zojWVMPil~PG3G?SE+pVK;3BTY;y zw6?>TLPs6{pJzs~VL*;O!JQgf!fY3|7i1|rO(%${ zcx?VC$`%qr8s>X*M&_kIqbAZlC#>qb?!uz)xYGSX=~f3~hpO0L_d`-H?yjqoO5HAB z_J>-<>Cz&quI!?YWV_N1v-}3rtP!o969L1`uONH^TQ{o`I_!Lu*M3L}-+(Gj&<%_+ z(u$qxTX!lrX)|GvTjLLwvAAD%R#9tbdBK&ErN$c7ulA{|=+i3*l-2HHAssMZH`Z%) zoF2_1#^sx*GxMzv3DIoCL#k|&`iuhV6C-t!Q7+SaApP${EefI zw@qhXa<(4}<{ZHEV_70IEo`%8w!oICk_BiTCctG7Hl@c$Q*?@`d3470hvhQqVes<} z-AL9jWA{x{l59^*avLqTM#r{=Y@?7WX(wWxJ;<}fJRCK;0v2P6d{>X@&k%B|P58xBOl`(f7W=t?-XJ7 zs-^T0>O~mxd25w~*}mK#I)eeO`BgQVc`)FK*a<|gv~r@vx%FKcl2BLU@RBJ(YjTr z{!spnLsC+?QS@N(1qKzwhzkpFKR3ODDDCaH)ZYf1WU3Urz5m)B6<|FhuFAK!a{nZf zbZ-E_5>#&1yRoWIX0}-qB%X~|c?7Fo)A6Sfix13}-Bl>eO48c-pt!bo+rif+J6Zyq za1-0|v6pb&$@7j*Zst_qDq+FSpvsAz?z&6zD=~0pxB2Q>k@*T8oyUY<$kwU2I~Le~ zjL8*dxAaNOL)tg!m5&z5FUhv;dYA?tWmTD4D^}`?otrRjyshH5i83^Ca8QAo_G}y_ zZBbmrk{5g)%y^|*VhVb#9N6D1f?2**Bk+NMh?8J!MXXw_5r*yD5^T}{ZS*e&*}c@D zLU-(6REVjbIuR={lUjj`Y;MKHEKJYT1n`i_BXNd}rvi#mml54+&<@u`lq)Z=7sf*+ zt`9PQHv55;N4-QjBfJ(RBjVOKic*7*i+f4;Y;K)C_3g?K4P2QnL7!gM6iSkoMrsvi-8Haj|6 zlC>%ii$#eF2wtK}YtiOTu-Y-&O~0>i5sy)wD|XR+86{0o@!rp?^@BW?iCeQ4g41$& zs9ge}ZFzJ*|ou zSE{Dna8_?*1`XeV^W%&RnGI**6TlX~E-qyq^o z{`hjzyhWWitUIG?(7UJZyM%zZN9ksP+t=R8)Zx0Zw54ur+t}AxE|t6CY^_Yyt9^A% zhnkn|V0ysNPk>1xz@O7HHRw7dKe7A%+Yd!ZmL3puvDr~g;j|_%?U2Q2!4B?0YM-~$ zIq%#;Brr`{u z;e*iEx8-9ef7kn`pGMPgSY&2+X(fp9)e&E29SR`+T}}^cCn5WMDYq=s0Aj*$5@wTH zkiG9}K{lNDrlgtBP-)lQNcgsICvL%ASfYjd|UaMV&!qRJU5S2n`lTO;>I7F`_WgD#}0zP z=N(w_OSm^lHK(}mY5m7Oi}XU0Wk*~{qMMGw1$U>!5^K>>;JJ4%$U4=x@~St0tog|R z=+@UpDrP_0d~}kd4RreyC?;Zk3Dh>B6T=45-Lt5n`8#A6H&iy1M^MtD=Xsm9%EtyN zSNS*FZ#kwG+fHAfu~;-^iuY66@#@Py&GFXfH)}KC#O-`>xnd!-RJO_Hg|*)!HjtaF z<%Lin8*nD~n~TUC5*iXZzt5N$_mFqH-RiTClIEY`(uz3pePu%OkHk#WT%Tk^bV z3~c1kn6^mhN-V3_iK9R~#3h~7VV{QPj6aF&GUfV$lQ1AhS@%EsAu?T2@^Cxhf(ihc zujF}Buw(;6JJk_cN1(lvDRyrC7Wk~8TPljC6>_oo@hq z)@tV_h>ZJC=k9nqZuZ0zdyi7mM#M$ttT?NG7Exre%M0AW>g6yWft>(x4>BdO{wehn zf!c+sRoEnG7Ox3n7MC#>Q(lOyJF+T>dD2Rti3RC=-`+)~v3bBEMabrRn#-tbi?3?T zZ?77$u`KbR_!*I4jD0x!ymr;YtWHu2Gq2^(1 z7ZY-dWMqU$DV@3xf;PNr;y&?}aOtnlC`-l_F?j&DXZ;KO+ce*d(QllzBe{?Fxv48| z66Ycquxti6uD)DMvhFmVy74i13F{sfY$bl`^KXLl{{>v7hYHbVg2>SiJ=00W(Ar;J zCS&k4@JMfdrPx;3D0WXLtqP*b6Ct@XvtLGu18{$=K(i1X{LWEm0~@mobo^sZ2|2~4 zIysY+40ieHY^P8F{NaP{HReIgt%&&O@2xkKTaFDltauGYL=|6(GJ|_3!1y&6$wocb zzfmV%EF^xL@shWHgeO#PKBR~W`MnbHl?eJLXyD?5cnzF?OUOsl<#>%ZzfVuF&fa0c zn8KeCbt3VDv#@Rw^-te3*>wg846 zwap#-JMi*;q4IA+G()2AjuD;3$Hb2i;HKiPnoyOS<2=z^%%L6UaUG--EywY2CT|L_ zy`ZlL#SL9A9ZHvTPI%yo)YlJ@uRgx<0pB;ERe@z~Nx#uIz!R6hYxe*;K#)2;5jUH7 z%a15&Gq|YU8nfDqG6_?hP;v&}0=BW36l%SvsiYnmH z&eu^Co&y>)hNYmWFKrx%PNxg^+)wgSPd=&n8T4puZB90Zv>z` z3TyK}v)QX06tCo*SSn26A^YiUrZLlbF_C9fuKpwC8MULhnf7o>nkCcGVHL{p;l!xL z;Pkfg{*4!haV7Wj9q+mnY{{C~ea z5Ut~f_=&|Sip>h2p#VMuT!{1#A(|bi6y55{+=Rbu3d@)bL`y@q;cFngX2O{{g}$w2 zX1CT&m}@@2amFRS_)DJI0Quj&PJZt9aNH>RX4n$<Mnl- z6N#eP&l0B45$e0IKyJbUw;#h&}{?>-dkf|*6aPI??;{`TPKJbjwu^B=CRLU z7oJ(Ea+tUzFeu);B;TRDfqcnl8?i6H%AysCdY7!#fvD?h=eo{?s2dK6`hSPzI3()t ztpATp*dbB>ALk?uiTaSJ4;e5+1`OOphXShjxs0r$(h4mL<(Krruz(ixwEFN^%@i-E zEIHWkKg@844ZjaKr z#@yn%9%;oRByuR;T{|k!ytbYmP5qw6WLsZcqebTsXXV1k|0^rX;NOUu%b&W#UKvCs zAq9^HRWA}Ei(kj9LkjOd9lhU%75MZ17B8>#$8uMSuU4eM6jlKJY36~64?EkRfQTc z))b#Ver2IJYp&%ez6c6Zs5l*Gc|rO=6drd|ga}fPDeoMJ0}IZI#ypfqje=8Fu#qoY zNlfz0@~2(Zmlqm#buYiN_EtST9J@Dt>`GzwPZ#}vNEZr{mdvUDCc#i<4EXsm5tJ;%R5ibTn0GqOn6#?;WU;I7grHUms;A>J>sn|Y}I3+^3{le*3eGqui5L( zAYEDn$8Jb%E_>Mf5dC6=ZzIz73W7r>h~!ub#~Wi%F+iK+9eDep30VXL9Lc|NTt3y+ zeL_E9`SDO~Fk9i+LZkiJ=sPg8{5J8Pbu_Lm7P_^m7vA#Y)Wg7u()r4Rk&-=*?Q zXlRdh3Og&cAxej4)e8!zz=T%{6mkYf9hY`>X0l>@8&V1$)ZRAoYcP&Icm*3&z?aJ`7n}C?q2n`RzPN@ zhm-*Go?xbW2&={0ozEG?%$b<0?kIDho#|=cFx_6_Wi@wqQN4?EjeQuYp+@2Y|qU)!r-EthLRi`_y zx>Nn#)%!|gdw<}xTsou|>_-Jao3gSB3LjCc0n#|723zBk64b`;s zc0K#ILv>4%igs6qSH1!#S+g~Tm9gQ{!gqFQoDoI-&LZ^_^SPN`Bu*c;L>uk%~=Ai+v0yC(GV3?#m49;lA$1?d=IY^+tixJQN1V z^4v$^IJWL(cT{ES<^kgk%RTPYme#&TF?vlasX*scxa28voU-Eob9O)W&bJ#J;J zm1gbCtlsqlW)hzmALzaoGc3G-Nk4E53tw?UkuUFdqp@(&-|zAlzMU+5UhM4;YT-T_ zBninFa$d(;5=MScd$m?l7j9Y@VbFzb8dgJ2yRtOVrIuhi|Cj!fE3d|o9-`+@@_UF{ z^!E@=VUe@PoV>4AN~Gg6e_Jp-79rVJ>l z5u%NT+>e&r&tJa+)}KEo`9?pR2UOa?n*c;1Iwiyl>f+yNk)#5mMYcUcC#GxsTIUuM zInh0&7tl>{rJSdGPaT7TF;e3(yaPyyS@z43eEbYi!x6@W{6C|d;_19+(be5{?vK$l zHNpRuTGeQB>Oi2)TLt7#8uMzY%CUpB1Jn5AO(jty0VCvnQ3*QMI^Yn$tfP#wSEEXt zzcPEQ%s+!EQO;v9-lxjHh=KXe}5Lh$CeEuJ%WgP%Tm{-Da!m(=QT-?Rm~q9Qf( z{CHB~Quq=R&627Ak^H7|Jg`Sl2SH{&$T+s7{oM)o%WPl#pB?$T2;q2~FfIOSOsSEU zhFx=mS%K;Yl7&W#b2-TxyzQ){{Y3S>zH6_+wLn)-6BU#jKHPTGGu&YDFXcF*P&En7 zHL84HcalR1TeOt;liMoRaWXp1*Gh5F^H@Ju)U) zR=ltKEvWdC;jz10KQEfWfMf~d`jwxd+MtA3gDz}N;|~_`$@UpqeKOt}RJf4STYvZa zeEOTh9bA8^Zt_?CXlO}%4Lrmp!M+(1JOP#s?Ii&nhTvfc9zIa-|3BejCTeBPSLpKT zKZt$tiO$4#XgVS>-p_y0$uMr4X7u*$^$T_pV{*4CrD=W6C>U&9YCh$}0v2axq^xba zvz_7U!5;Lv@k;bz>}-rEiyzb!80=}VrFgK`op(Cl3mM!N8+53l2l0tHL^@*Z4GF`L jFbrVJKV29)`h??t3o#p4>aa@)|LJKPuEWGGQHSqafZyj8?^Uo+ zgZ|*#3mc?!zuo6e8fLW(;ke|pxnK!Oa-YDl;GmGG=*Qw1#A4JKdqKbeisZE~Sav^pWrkzJR{=tr^vkJFHI zT@7q6$vBcCtHzWsdq>dDUB41kGoHtA$ubf|zdfehoNfM@?t&XNuq2~a5hph8Ekb0O z6HeIANcWxWVdx7+_He9Ih?E8n zB?+rk5g7xy)Wbp$3_JOml?H1yb@8jf5H+dgoDvOo4~Dg{*Ezy{Hg|$KKZ=%;rnL(` z$NTxR{kOi4#LqD5&!;Z8ny|_dCBKlrZhE)FcZhr_vGDKq%e)~Idl`(w7_aa! zAx0sNN`XKtMu+)OfoLFRN)8qG?mIj2P3iVN0k1p!DjaM#+duPsDQzqLrel8dIgJ3d zK&`;}Kev7g^H7z9)qM6dHyD%QVQ9Q#_=fk}h?%-M|MSL*(6Qqu_tYqCg5AHpnon@K zTW3{wSZ7>^XT)7jA&j8ySlAWyp=}bDAn)y5o{!oU+mYW{-Z4IrLd%0w%oJRha3~T8 zn4aCwNq70jqaSA3=b1ZYe1LhtLccIn`0LcyQF2Y4b|=s*ktWuo%HjG#6mEAsZAMmS*?n5)(lCrCLH^m3|?_@^PC99Px6Qa zP5hAf6HU6%oyQ;UqV5oq)Y4=M2B?i@3$7X*5TayJ;qjT8h4DXak(y!s|5UtkO?S<4 z4c%o1&ZwPb+OkA3tt-4JXZ6J(cu;ikhP8~~>y)+^jRuY5H{6N#arSGLRF|Z0Pu%8- z3WySoGEpwhLoPCP+jooUJ>h<>n?KA~VmR`#rlh8=;Rh<8qOent!4zGVPi#dP5B9;p7##X}<8qeSFicH+e~P(zDDVZ5=A?EgWIkJo&M)$iMhZ z?U??xD05^*rfUcG`tR+EfraXC?CQe3M!gG}K|bTYR(^CxG^thsQNj+FrC81u&YzA= zwj~%E)Qfv#CEzV`EiY#6XW0YU0*zW}T5VLgt?~Bp_mf*gTfbg@xC{gJA{MdAf)&gZ z%oNS!<6s&_8diM^W(#J4F2*|w;SS#`<3==I*!rw2_0hkTh-xpkihfxi#!K3GM~xts z07)D~{+#Z9gl!5*@6EJkE3fT)RU)|}s_~2oRQ0TTnn|)lxrL@n^Gk9)WvOS6CIlK7 z8^mAVu6nTK^7BmpaxA)nbb)8V($#VI$1dk?%`O8unBoUHirj{cPrWJgLmG>Uy;>*x zH}+AM*k44cwT?4pkq%0(Kc-J_@4x%m+5qvE8VM03N~W%)&Q$2gXZt{}cK#*C5?Uoc zsBb4WDE9;_eKVcfNODVW>p^cCwA26XR))!2iLb{?&c8{C0&o{Y-hBZ*&)e~ov+c}$ zLz)twazpT26?r91CBb;nc!7+4u1bH$z0h=4kqmQM*NQsl_~l&3C^?qj2{fE68T^jF zbmhZ7&^}Zi_pZEnn$=X?6dScbou!}KAXELPQ)@kM{jEed=`YET#8q#qO3T^`%{-+p z-In&6xwEP4xF_^dOL<@-bzGLiIl~`@Q%Zt(Jvex{18Uixt18C__7~>{Z$E1(;nw4N zOL<&+2y0yS|9SjnTWmxGIa#q~NKpF+RwQlbyZY`h{ctqU1)Vb=wo9@~EBd&>ajKc1 zR$t^XO>y3^?wZ^>OoU>IK)yAKikxaR{zG15|s$wlV zgj|g!=n@*QwN0bi{dT^s^784x#`WWsZO-ZaQ~BSq$49R>97`V~`DVi=-_>rfUYwk7 z-neta-oe8`$)Sawl5Rtc624+y=I^-qyt$oreNNP1dM7@Kxi$um-m$#4WOg!pT*Hs} zULu|Uh4z}dcWfAgv)Jb+nwM4My<+MEYHuGsi&mzUPsLG%_bB#c6ns&usqv{vM|WJj z3oVFNgJ$$UsoLdPebGO@>wdZ{XV_83-@D&STFv{y-{=1Bmy9TPelH`!R*yxuokgO} zpGWS{CS-ccn(yI|P-jj4y3;7FbKT67(~@;0yV#T{jdR27io&=BZ^I=@Y9_QIti-RPnKf32K3Q_a-{?GT*qH?G z1h+w9pE*B`@ZEDk2=2^#uWp;-MP+Jby_FOU&=dRf$iwf6&&kNXZ|@D$aML%@U-I zPRGaQ`A_(%Ov_q61rS}1h-HdP@L4O5QM?C*aHVJ7Y)cDWd6A9-BFX4h+-I{{CkSS{ zBvm0hQGY5Dq#jNS5-J0IeSc^3Mw?R-uZFIa5aBu9`VBK1n^zagA69>}~^8i|RI7P5{u=v(i_zR#gRY0pIaKSYdV`9N-%k@Sy=dAP{!KYtRkgKRNJ` z$p-&NFBUo*`(NLMF%L>+3;{j$5e2?FT6sKY^l^OQ`*-lacmA&fua-3U&m{!~1pa-=f9v@>@+m)N=l>>& zYcXH_3dmW4@G1Yl&P;;PtVDze1men6l#$Z$!P=ZQaG@NXKHhCT0um|(1jJl^W6YX6 z{IjylM)4EZc^q~Vtz@O&2|Y=j@YK;`40^)PwHxCr)*`qOW0Unz(@G%d>sTI zSU6*IOII22B#J%%Zrntj$Z+n1H1{cpf73`0>P_u0+TAuMv9M+7=U%Hx03bdn2p` zOj-k{`Hbq!=;-M9>eesC#l`htFnd;3)~(QDQU^`Vc>k655_uzufBJc-v|fS0uH+gW zE1l7_<+&ezB+wTdt>(;{otH%gzkZEJjrP2+0fjCHI_&ocBN*bflmm7|#l(1b>wI=| ziS~+{*V_x`%DFX+U1Mm4e-#%Omo_y`8RxL^;ozfgacU$4gTV2(HL^#gTgyhvjoo=a zpvrVRic3n?z1E9DS_5skxwxjBw@!8!jQgN-qs|q9@Aj>j=VDzIIs4YJ^GH)umq_VE zEyG9|ylVW0{}{qxrSg?j1s^V{ToKxgC0GzMF&)mFWY zl7-L9Ze5`0pwy+EhDA)&dC`ch_XB;&IjP%JE5}>Y4)U?|o}rs>`HcM<893w>e>+|o z0GP55vL1SabRro0hEdgJu58qcU+E&{9ePrdT<|j-G>8cPLEF>Ydookpe`B+D*6Vz4 z?bzU>Suhc5?YMu%?|L_A3WYaEQ0-PO51QCKO|-*EscY-LrdL#zqIFDZt~rqvQ;}AuEJ~^|EoF#`*f%_=+F0CqhFDq1FEch+*HvPDTd%c1yn<& zw%~=>cGE(>t8HF>jl*bz)V-lK>1WH;zzITRaE5*&CoUu}c1dghiM2;{zvXq0I)0-| z%s3Zz@Vn2PB=aNG)r+BS=Jx)@ta`rtD&S4F8e};hK9y%PbiY!JTb>!S)juVO+dA5g zrpC=M3FBiaO@9Xr8*hUBh}1$ct}Lzq+%R1Z z^V97feZz|zP*z^-dE#Ev|A8T{`mNzqjl;V}zri2AC3nHF}uoN6LUgu9YAC4G0mFI2cCfQaJ%pIhI0bdGX!~??+@-==v z-J_p8*Y!rTkXF9#6~N1BjDUy_Crb=W*E!TvA4OpKVb!@2Vg@*YX}-S;rzqwLMDKoc zQoS(xlPH1aNfz2HFDvVr=5k&9kzCGbpu?`La}#61<~-T3mZilK5!3FS;viGw&kb~b z|IiAdc|3*YwR%no_fj2@5;T8(yBv9+`3qRE`mt8OR#Wkl*Uh(f1Swm5_w#9!k+ky% z2M2Ym?m`m@X>*qNKb~W(SsuLB3oSDd)*3X{sUdbAgP-D{i6zZaLkemVJiS?l*M`}p zKlYL(wqtCC6!(#;y6Ramk9|X?Q{DRtv*(V$)0Vo8qdm7iInQp%8GWj*uHzQc8|Vfl zN@GT-EEk<8K;1qmY(M+ybSi3CtXM&Ryj@K@4P*9I`LtOau zJ^6jkam-veWZ&ho%gcY^29V&j2Ao!|5B4qvNYg2k1aTza%GCY{eQv9hcU$@UVl=6o z!fpO53;a`o;EGL6Lk0evFOK9Flu*VY+id&G(?D(Vti6nrSD3h~06AejQW22W98 zp^J7Cze&?dNZ^2)frM0>I)%n@J+$f~iBtO@@2q^f#w%qf=GTD1*1#>Wc-?MNKjygt zj^g^`)R=-6|MQa1R6Ny*O!SRc%fI2uM$Ar4ZH)M8@=C6(`r@E9qvmGC@J*Q6Yu=R0 z>5Pnyy303FZjO;)#AW6Y{M8mNv<=|B#xSllDd6BJS!+67<>kX@KNQp_3~gz@v=GL~ zH8=^E((uu=p_FM43J0CE8ZxPQeq_^|DO3jksnaxPBtmiJ2H0`!9UP3?Mwy(YoQ8I^ zhjiMYm(BUVb#-;~d?>HqkTEV3v6Wju6KG?@E`&Z<2^lxUGKCrvo+KwHe@;)Tx<(cc z6d+~a2~Sd^)Dtfl(~ZzY@u#U=IZ{;iBR0|);XxRQv2?j8u#fRip5w>5sYMTr7Alsd zA&V$pTpcg|%lp~5K9oB`+&tf-8(TgU79sf2MmPb{RDEE{7x-_I5&0SRLW+Qad~ZfH z#8B;cmP|1Ug99T|?e$jI*WK6eg~7d>RMQ@h#|9p}r_}Cr!pGs?iFOWX58Mf5zzH({ z6%GQwCoEjoPkZZ1TB(?YkmNdV^(JdT?RpMV9o<9E%$RtW$eho;hP%d_AC31g2WO%G zu$Q0xc+Zoli^Iek7cLMfBISgGe)NdyfNJLu-yefd;JZ<#mQ9eczH~{&x!Trq#{u`J z03N8P&}f6E6I6O3hXhF_qaPB}NJiIML$4Gbr;?m;&Zgtr=j(m{2?JqCO8$t@VZt~` z#<*ml$t`hH?pkP)IQS>0nra`&F(L#7mjX?LUDpTKCUJTn($*X6#st79%veiSpcxq( zdh6N}NU^|yfk_laGS@S415Levdv7p{ARvMGWIOxs(-l~+XEFf5W7YhE+4T$VNh1(h z42v>ce`itxnp6xot`wUQfO$A*GzYsDCL91W=>g5slP7nsUl2{kIJYb>60h{%y;Y6$ z;r@H~QX&5SjgC`w{gIK8&-_W%-n40e&yKfiJ3BjbOy)%ZWw8LZEkm@8KHdN1yKl|S z!4YmtsHkUzJ25dapDMKX3NZ@2fB5ao`HrZ~VW?@%z`#Iwew<~8?%ZlYR*b{QcWST+ z5!nti4E^fWD?I}P#kN@6)2|{19UW+%uk`_4X{})5iT&D*E)k4007r}y5KEX=dUcp5 z+>o~8|KIgrNTY*(Q3zSt;D7AofATx5>|>lmWfNE39TqPDL?12k2Z`W`+$X|kbSVH~ zU8+UnpSR}ccaD@9+Q`bv-cq7c+?AR;SRItGOnk~TmjT#JuI$Xffcfm@#c^46^`l%) z76Vr*4U#OtZO*ep{9VyMlI~qOT*f#SNSiv-Z-Q$L1v=YeO;Zw>ubT;gfhn?JOcy(sk>)sR-y8 z3wh?1T|yWGf!0Yfr^vHw!&C&UOXdp&upY3=S9Jt}q4goF{B@HBu**aRpDTz03O)f^ z3()*O_}8|^0;o1Qf%>)oC6feN|NWcfQ1g4u-f5JbS26TfWwW+~y;eVnK=#oR?z{mQ zM%z%@p=F^NE z?>PgUXOt(BC3vOwTd8ET_m2y<#8K4i6Nm2H9CPga$Ec=-p0wH)?K0DvRI5vG6@in3 zSkB8GXA{x#aT;p)bm>RilMEl+U@{!OjWamD4c(dcTV3@kJa_>iVW)(^hc@oueg8{A z@>AA1`P@4R6q@=*PF4#xhEn%slS+Z&4wPW8&mb}M;Y4z-&!sXk(2Jd;x^6A&0Y(gB=1hPwwxvb+y>ut zFs&Lj@$Wg1J#<{(*r=8~UsdKQ}cdJ4cPSesYGd8y+=p!+UWr%ggy_ z@7&qRc#UR`i-!PcMf?)If3#86+ps;9b&0k)PHXq(VphAk2Vq=bJOBLx27?)qTpYJv zHuD-c3|aT2F4|Xy@)N%nlPK>k>2m%3<<-%Q|MqyAbBi62S$%SxeB5}p)i`Z&v@s6Q z05qc;iTpTVY7OCeOdhyCQq~?=proV(4l-2>hqMsl(C<(U5jvGw*4XsYAIshoc1qU; z^8XTbvsJy>b7(6{SIl+(r303T=UP(p`O)Mjze9VmfRm49M)d>v>RC?O`6?A@my=ZF zV`=V8IOZIEV`H}J;)h8!H8u6SQtaxP)wMHz-6N$2?q^~`juVesv;}zlE0a@gzTx3#tbc3`OR{TJb2@TeN%5p{HtjAwMK4ZsR|lQ+BvOpO$|r zZdvo5g^x!6iA~6bF+A#=TYP7#<_pTPW=IFv93i@5Ux~rZ@A1r8KI(_UYdII+-KC?es0QX}o$4^^4I`SR^tWOg5!I$w@>rK7f+;xvfHGq8gxW;x-erUARMV*W>^ za3{rD@sEh^l_m}i^1G=J4y+*b$?nL+g#Gc1KXMab8&stYD=if*HM<;=lu&k-+ z=_0HJkGYuOBGZ4%b?~MjZ~W}}mbX(gXDom(1(1UHFQs6?5yZ{m&$C&0@-(^ zY`bSEWd<#6OG&e7!@h2wJI;aow4-Z}hrI29v~^2N$a6m4uxs_ZZh{X34ihJtQX6!? zCbe+*>G^)v<&=9C z4b5L-l_M|dH8Ex+JaQN<_w2c-d3TXD&Iu0u5)3_VZYyS$L~+P{1m=<8D;(!E`Yrij3EmqkIdBH@9U;v^vSQlK)}k%swnG?_^llX zV>NU6CXjo&PT(ZjW#H9^;Ag8KuqLIe~tJ>@{__%MceQnJwWjd$F=XP*B4*C9$ zvAfC3_R7c0-%+vHD@t-hcN4N(Pt0wT{eFS6)*!Jb0MD>POC6BDbw{@1@-dhcW zbZW{6qrU-c3479Gr>T>OR*E27As+F7nMdwYHU7Zf@UK!wdiX)VnOdg-*$xEJHA7GN z(BK+BBM`kdSMeIip8-_xf6&3Wpo!{x#lAE14Z6{Kv2$6rHhfuE^A>B=^0%V11kRSVcb1-OHa!i)+(klC0tnV!rcC+Pv6aU@j zUxw@V4n86j9+LLHun|AIL$QKO;1mIZB7Vr^YMLhUFbA;e&6#m zOW~cTQf;wP_Y-h|fX-+f3`8)oKy;nIhlj`5a0#^R!-uax=8U0VAHz`|X-{0ue-r?r zs3wY9b2`8*OniRh`kx<;Zhm=1bQO@> za&ws)FE7qEiA+yI;7fv86_u5hN%rUlTfn?YOKWO|jd@nS1oOfG>}Z>Oqeu$S#b?xG zpB&R1XPU+@fKWM^s4ij0tylU{F_A5W4@UyMBkg~>_->QB_2iW?K$g?{t=xyMGw^E4 z$K0#He^mm%&CxbF$0mV?^V&BG~xWSx=?<|Fp_ z1vvAx8EFg9kW$~!5TyYT1BG1Mam7%VAQ<0=Gux~*@CYDn8>IXIy1K9@O}H1=KRD^_ z+lGrXK*#_>`L+Q7rV`@@k1n+gQ7bX84Hs)b!d_UW)1XWAvZV2BYwEVANi_Bo@2zw( zIqKUl`T-m+U-HzcK#tj3Jxije?cF33njH#8^;<_3AW*Brqve{Xgac8xdEMX#q3&W< zKPU&Kvv5hav>yPBZ4(tG&*_{AGJ}88pVmL1&Y*^n2Yt{_Gc_5PWd2_^}bb z&0>-!nFbkDW8|Q*`yIa_knr~WBhdb%yIV5;sZe(bD@4j@e{Xn5(r2&(VSk2#Qj?^% zBhPD`=PyHJfomC5jB~MNmmjywZ&l5rmxRO6xg`E%{ETD>M7~``hc*POwWVbS_nd-V zZR{IE&<5TJ$<31nGL3h+css*GLv=(rxL%GCLAvX$Zi|G;2~SalAJetysctLE0vcF( zOM}En%1Ctw16leq0Z(<5f13QT#0{w`cnA`H}n?WNd<(_;$<$ z?5oz2^}Z&dH6m$kXqZ@(w}{d?8^sSiH+_E~WUHRW$9B+%8_LHxmdg%F3_SSpk`j~e zVj2Jx3D`$Z?=RG>sn= zJvBPexP~0f&%gXC0n1Q_p9(rflbS`v02!aCm6Q^OiAl%jcrXi~rE+Hzq7BYp})dV4IurNfchd<$l(6aS7e8uUKwmLf3_$M!g~XjtiG(>rmiyEt@zp} zF$oAJoB|aXHjaz|Yj}_9Aj@Z-pq8@S{?I-W*d6Y+OqqDRh3af00F9<)5%xzD>VsPz znPRmCnSMVo7|{FogQ4#iV#kY@_0$0QGL!CoB~Rw;iH49Sya`Uk`gYEzuMRXj1(&2Z zk3{9*Ck;>TY#rwO>UOUO($wW&sot1Ol!-li?rEKzq!CliwhJ{*gazfncrGWTOQy<5 zf$BPq4JIVp!Cw4hd7YceXalF$<91*7x{1RDX(LTaOuSCA$y5P<@~Hcj&fjJsAUX{- zwb$2)^dlfw>gS=x)a8J|kZi!IK}1CEUa!(m30Uy|{Y5!qtSc3C|E4B-IyyLbU=gY( zeg}m>33BN`+*c4l2&TY}TU_O~`$k5rCDFf0%d)c>-!F*Z2dm%$#U=}GX!*|rml$bK za5x|-X4nJ3%Txlc)<98FQAS&#a-M4kNO?Mi9R3htApsHG;=QP>eCS|jSMe{_DI55q z+<@5>--ov?TO1jc_4A5#J7EHtq`VJZ>=+SYD64?~-}PTeLt{f(Zl5>n>}a#fCeyc* zkf@%mySB3X_@D&{uSfO0aK70pDby{9SsVx}h)hA}f`^l{0;mE5RoY0U1cfkmFaT&X z|0KO&ntKN*ZSJDD!wAnAfS&F1^73w}-tUSmX#W~4!o|C@g z`U(6G>@MdhPiXsS&tS-g65CvX{!M#WQE92i=ZlFNhkt*rZ*+9|CI>&i`gWV<5!+lW zILXIAm3yHx8bG0t6KagC7%77R!X4TUWflAm6nJyfgeL%E$&A)3Y9dRAR%DB>t`W%Ro!ZJUTj>Zw{!C#8wLP z|K+Sx+7`Rt0hLVFL_}7~b3J(~YU;_a5fsMmE#)m^*90EE^c+CJIH8VT5>Nm&3Q(+< z8ZH{pi_tJ7O$%!8Z+!`02@ z?PGs)c1pS9iR*Q+qA83}S3Q@SorAoFmK#+7_^UB0sxB>|)s~>JQAtn>*e;_t81~6{ zp&bLM%F4=uk7v2rfwZ$*8)}?NTXcG2^DDigNV@aBn+%o_b)(;y|xU#Kyv(FW97E4f3$!TjR(mnO*JFLN>+i5+>;~xiD zm;sf$jm%`}Z2)H*Dt6cA87Np27r4JM*ZI09Lu{0UjI`m>gaCjlFybyTTR#(J<)~&L z;5~LKV#jsQ2EyS$`iJ58 z9^QHa&^$y(MAUp97GJ*H!7uj!DzBUwhTm2QUyN5;ZOMrOS0#jbUlr;m{8bwT+3eQV zSzQ{Tb!93=+<F8=rU6XGi;A&fO`58s|?cCxRX zkLV10C7{p$Td7T5;lnACP*y4kAYz;l9XZlrD&9{9sA&JHIWvK6b|z}`cyn?&-@6xp ze`WKc0|MhMz*<@^0O{ofGF4ZP-JGb2!U{0(b9(|9{ah$wX$q5q>yis;AnWTz4qgcI z@++H@l=o3KE5G9#f6HrVG#hAVXJ`AKr%Ht{?8;Q$R3KoX$3W41#Lb|}T6IPBG-5-m zU0uO)*V))OBTX2I>kGjAsn82F4@86#*id*8!aTGAF`SMJ^yjUn7Ks`_!50dm zc1`(bw}A@l7(kUR;B5mp6nc6}R2C?&y&RbZ7Vp4OCvao(Ua>XO=hjI2S8_>?Z}T3=)!)6EUo#jrq%(-&N^1PW3R_)+TTy!s>iU!&ssdZqfePyuJZ6ZBlT?^MulxQH4& z<=2bu3;;4eRpssCrPjc6KkxfwOG-)xEGg1gVFOIwx81rlQPLY|X4W>m0WE`3tqs(_ zXU#xJrfR%JvfqaGJtC$;4df|LgNf=>U&mYRiQK#LsH#{()9b>fq-D`rww+M!ZGE6t zd2eO?cEeh0|1+Wq%!MM!R@7n9=5jX3hX~_?Z-DK;jEZj_8X|pUPd~%vz!`m;am+!ftsmmdi{l{B@kcA@ss)}!>fJHJe zvbP2clCAO6-SJ>fZ`^9=R&9>@u`MQqz8}S(&Q3Mwc~}eZ+mp@ywX|&oSobiuL$Fa_ ze4)Rtq8C{{0^pn0r-97TXcTi%49IJJoi_B6V6Frw&jSfxKdDU(7;1grhP3ks^6Y$B zf69Xz{7}?URFs|1-H@093@HDOzvASb8j&~aT9#gLSHA%n8ThT{rypfdH^GU;!7flI zt^zW&hI|IN?GVccZmGlV5~6G%{Q+RVuw2oC9n*9Y|fvN^+X9_1-V2loj4Dl2tg(L?>z#1&gk*`Y@`I^;kJWXD}6o8S>zi|6Gn~5 z6tQsK&*e%&ybjlNN7a!jP@3?vAYDyE;M$S@%CYELSrrZ%Kj7y<&Oq{e37tl-O}Fzi zSc)RH_|Ootq!Vz#4XHs%s8A+|JUM22eK?dGR8xokrPls6Kh|nt>vQaHzvEuf225H%qt1t&kr%`HvxdBx`Lm{ny$)Ww^T)!) zJ;%~^w|2s`BHG;Txdsy6tZ@%WUqbsBIRA+~fZobO`u#aOHf{?y&6ZFGfBKf!6J6(T^h0Fk#Ab<2*_xc6Rfueq_tU$uw`lK8H zBV#w(ORnNR{?}(f1`=h?^0!*}h6mEdFdhcI(p$3dS8bOdi=y0<2O|=nF*lACWz}TL IpP7aH58LOl761SM literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/split_embedding_split.png b/docs/api/paddle/distributed/img/split_embedding_split.png new file mode 100644 index 0000000000000000000000000000000000000000..2d89043fb3121d714f27714780bdc4ff334845ef GIT binary patch literal 30850 zcmeFYbyQqU^Dc@83&A0Q5C#b@2@)Izx8Uv&+})i(umlSh2=1F9$B)H2E+}-tV z-sH>op7XnZ-?h%VhqVSavwL^Z$551vv>!bYgTkI5KEcAlBR%r8$Ooe?C_ z`27Q&vE!qIsN%5k0>h`GI|+0!=qWVRRPYt;U675LLXl^)GD4Acqs4@Lm5nn>J( z=6%+i-4<5f-my5Xr~8@yydC@k2gWps=+vx0hnvpQk#Y_dE_Z|(Fnx8n=pY1~sHM6g&R;!_L1@E`XwH|%2GZ&Jz^e?X~& zuxaDMtEXh{2Pbaqe*BD;O*M?97XzVvN;t>gg*EqowMUK^Sre73jOLwoK~rxk;6i3wl2FVLVPg3sb&`aJnTh3#-n;ziTSN4%SU3%AQJzX!$zom5tBeZxA9T z`x+Hl(f>)HKi*a5d+bF7FteRhSyQzC^FyVuXqKK_w&B^X>}t{HUfR&l?>|$*9X0Y^ z@-#JbI?#~Iw%0JtqrnkbjXmYDS!RH@N1reJm|m+HpKb9RE@St#1oe-U8p9QR4KPA4 zm~;aU(Ex!lfHXOk+Yv}r0cY{Cw<4m>{@*$IR$n0qVT?J1GR?2ra!$m-pcqNk*htA} z0!cKbNEOOcNsN)mIq|FL#2%W*Pei^Cy>@-d@|KqR$@ezK_L6TU-74>%7!toGdR_PW zHVLPnlaZh}1k&dDPIF3>k*x8l_D81f2?P0eEQXDh@2AeWp3C8x1vqsFFU8tFt2e1X zt=Fx8q{C2#$LUYfxqQguPSV6FfIHZ=z7%oDdmwSJexQ3HbR&WA#X!=Y0tqh`jY60_ z^Q(Q5eZr8KyZBSeBJ6?Cv<^v%#QM1UnELc7;U=l)RFN?%QiN1?N{n>xYm!xjifD8x zPGc8he;6B8p?ENBO6rM~fygNJ$kN%2n#`=p5qJ=vC=B=w0ZVm8j`c=-A?kXxAAM8PXM63U8Ex3*MFC zX0)qmW-8@6O6N+LsKn=O6%ZFDmqPVUE4Ea}$vK*m8?>T{)k`I9(r1t%@WjGwnaD$2 zH5@g!H8M3qE?=R+JTm+u%__GAo*`GEACf;rh&OfNexm=xM(mRun%6)r!zSaDz2-2` zn4Atdfh1}1mAYu1YUyf`)tH%ITO0$ukkm9n1hM1&A9dR0)x7=g~+ot9T`jyyKXiS=7K}^4Sxnjt0Qf08iSBFf8_lK0g z8hxjlH!hY+`4L)}xoJI$Fv>HEVk*k^;mbGcM$N`)6eo;hq+`gM?3xJS3?XBLcLYy_ zo=j10`6@-9Wgo8^7sChDym97Y?THFVG2|Px_bLz5dfAk+X4+)bA_8(+K`^a0dp4!G zljQ2*>f(BPmVAbD7JMdqR&JX7^KDv#hv{{{-IKB>noq7tU+@%hf8ZwMspV>MsB&H6 zQstg^$m2obEqAtc_1%59-0n2J>o^#{#xv_uYL&9B&gsS(rrkVS(OBqJbS-!O;sXz5 zcx9SHC*t<6{mPN$nr<3-&Ox2Q@lh+ZPR`(_Fc1Cu!=X(1BWKj8{ z!6*Tr7V#Eqm?ezHm)cjSmAKXHEraQ!W7OmL*7vO)_c`|=aD)D<@TCEg29gF+1`^R) z3OWiVL(2xs2EO*X2a=&yJyp>Y3fAWC8*4)^5(FZ?7nyttY6xM%YJ4h(7KK*+*bmo` zlswG*3+CXHlx7px{pZ!(S=_QQpjd*2mq&_mVq;ka`fE#T;sd40*X%Q|p&%g2%C zYxe!u8uwG5DzTOsmyI244to#j4k3qRxCnT?xL3Gl)XeftX*nrWZ!P7zXu4@8siJ;j zB-hz27=&9%JM_+95*{b^w?e^gLKA^(81Y0^L}`+pdDJ;CvV!y9=uFtHuZF!#Vk+`KF8Bi5IgFDPu? z)wor}RcOA0 zV3<)$E@9N-uBSI1&m7Mg|5EJ7otL{w8xNbW?0B8_){9d8?#;(hh>Ag}z0TmrlBCm9lnWF%Ri0jYu1{B}7A#2xbWrt>cGef}po_0(am z>O;m&>*47`r^|J5?aoq`!Q(-!8YXKmck;vb)CeaQR~__L=T*mpRgB&KGbis(J1ES$W!0fL*GX-Cni*DhT!(0<-|`*m)a)ha zwmx6qcd9~-Tk2yaGy}uG#cwZS(>{;3TGD_t|yx@eF&TY!L9j1@1kJ%OCwH;rW z$C151+rg6C=Dz-;h%}}21VJ`$HQp6=XHPEoi-}{8K@|N^{g2IzcOhGXt}RvGr^jTz zesfQyowLxD9kS&@7q_PG(bzMTq*jp8B0@_FZNdH?m`a(Zfs<${Gk zzqF;+8{>Y0H;rF_*;Hlk9{%hKkZz=CLtiK|`VW##;9aEcaqXkgkW4*<`kmuv} zlMf|<<0yse$bPzu^367mNkLVJ1O1kC8^yrPEci|)XY;4r=gJ=04Ra*{fjh!f(nB>k z@7-r)WLCsv_ge3%ui^YB&Ofs?>wFyc=q{C%YxZV4aQpK0{9a`lrVbkXhJ535OXD~~ zuqtn+WD5XYH4_afQ(0L!df*xr4nD*J4hgt|2R_8W2f)O!AK*}czqr6hGy~y3cM-`m z5dU)x@A=SBNLfTm3izvRtt@{OrwJ>4RkeOp`zieA^Voc$j*k@(Ae&s3A4M6 z{lg=0eC|BJrHzTRA;{gv+SZB3ouA^L7CgZ9!`CbnpnsY;Tk%t9$SQzD>>N!%9L(&@ zuP6l2K_C#Hqp>NElBoEf$ASO&Da@Un?Ri*O+}zxl-PoAz9L-o>b8~aEykccxWn}_d zFgbbHIvct(**a1F?&LrHh?+PVIa=5|TiDrx9{M$WXXoO~PeJi8(BGfm^E7d{`0q%z zPJdntctMtjJ1no6U$Ok{8+erO;aeUB3wIN14N(glKs>-00$i_N^ZnEQf86=+h`*my zbuw`jv9kdlbQbupeE&TB@0IzcaRxs;?Q(8Z{be z#C`em*Uu4%QgXsaY1>Uy>Y$(lTs+64G$i0AQNZikN~XTrA{!~SechQdU8&jYwDt2O zoUP*2TDEFf_oTZT+p%5xecb(R-1W1G^>9UOFdRJ6e|`nfqEU%i@LE6m?^nRp0Rj?v z6V89yJlp~m0bePuni`>k{NWJ(`~qXQd;O~~c%&?PFgC8L?VAsOn*fc0u2BB}))k%N zJTXb*+l>7DZfIkp>^b!G?CeTgUq9VXck!+&_yXlWA_U~aiT(7Ab&{XjIrQbrmzs`_ zRjs)>IZ3wfbsza*J<>Lat}V~VE-U*)i_F%<#N>_Vi8%>}WgOO9gtlIT=S#2DXYUjt*9O); zp*GbJ$T$i~zI^&wn}oW0Vs2iZmX=m>E0$FN+KNHj@@MxUmswsxYZsK|ReM2iIJ_g3f7AgzhVyKpI^CKTts#2#*}GBfJRVI2VRsA|22_CdU%)75vC#j;=H`Bv)x&uKG?%x$M6^Arr91#KcTUPq)LPk*mR>6n`w8-iS&{Q7rb?d_tW9 zYHQyJS}$H4F1HjXKrITpBk2b@D)^Ovsr6U!#8|>lSDQuczt4Y7#uH{a6CUhrZYZFm z7V@8!0b#Er5DSisjTuWsKCkTUm4+#?dYxIr-b+kY#Lyy<8>)=MIj7dUY)@S7s9BCE z!Qqy|3mEd@s|Ek<;Z+9`{>QI;9wP!5i-=^QjG9#)d2*@5F@!j#Z?TqBwmZV`YHeoU zC|iZfC3gj2`v>79sgnO)K+(70<@oN8&x{z&-P(tF}pZHL1C&+eg$YU z(~lBZ^!I4q58sgC|8+s|NK0biFO}>*9ZQ`NK7%iGVJ~=Hcb0A_e(^jBjK+RBZk>D6 zM~s-&)R!ElG@#a7{Z{C&)WDzxB=$&;n~TG|OOdhfX4hxCzG*nJ-cQSfv2nAE4Jd?H zHPu$QtR@&?-kl%U$=j>A{#xF*4738PgeqgYAF)sqi@9oqSo`=m`%?3QGKp$=+o_7S ze3&XmXmUC2zqF{M(Vx}GA{kA0e{Z3A7O=5f#_eBR%)m79wY9ZN0sD+o*F? z)A|?fL=@HV6XAc>@-0j6`9)) zrQc4cUzTXc%sko_Thv1EJLdE=Vrf1Zfut?H{WInsuN@0~gG!56;t5wMp-=$Wo@5)~YFmw| zMvfje$owzuI*{0zf&-(E*9SwIFax7OXo#Z|3~sE*fBghpfGANYvH{OXmJyRA7rHU#z74*J!AZb^Jlb zi>8bLf1Lwh=j5o^K|%iAS^pje7&|aJAf*!N-%kgD033kuB7)+ta{&2&`-Y7A|IH+G zf+`pz#HBLI%LgM#c})T9QJkSj5n7}SNKPiE{SOogsK5Z;CYAk$VP|Wr$}G*JOG#Pz zd#mF_=r>HHnVA`DV0++nN0$HV;C{725-@=DrWfqUBqrZ6Y>pK$pwD{o|36hx1-r_1SF7*G548JUO-cY7765y~Yoo5YMFPIR`}7~%RMe+nVj4*E zIn&gJI$Mm@4Lk~|{WjTp=i+rbt{(CRK_cpp?HU3`kH%|ZtdmrM9iz!@CAP?e zP*_+v>G2^1=TAHk0C3?+FPcbY{%y5j><5j@s6_p@c_Xm^s`-B#J{aWx8RDT6V*E~_ zh@ZqSFnZT2NNj^lbH6}8xGv_Fa16-feDdhrD>#{0T%(s+`R)o*@}7oJqClCwms)lNB@`nV2}0^a==f6g5R z-7(f?`oy}AiLo;7V-`tkk{J$a^|y-{**B&d(!#n7r>;5`KcTw`yjM?TtzJn_oX`+|QV`(Qp)h_kv1-pc3rO1o7%TsnJNUQ<(v%ON%XYvcQ-fCKEB z^k&J+qJO~$7$lB_D*SFmw1VVcyWwL3U^C2g%;T2(z$}S=>MflRBhLi*8A($ zIsiY+ZjBf3CTQDM+W8)*oZVgT&jL_;SN{G)zBD7_8-NK*ii`U!EiHG*?tYP3pKJ`D zT@Ly!u(Go1pbuq!E~)@_x&@zeT?Tsks-q)E8F_g!`hCtwyns;D6Cmy!RB>>qynmaU zn=59_TY?Y3llla(j7-G+lM%bCdWU634vteTmSq6()r*3xg?chYLP~&ub8Rr)4hrJ3 zU-WOjJ)3pCI52G7t)1PO(6)ob#^T=VSXmYC0^su`bKELKOA-61i^OiK!D-!krpDrp z+n!DezgH~*A)%I|dl;dwp{zV=l1``Ud+-JQOCkYaMS=)ddme|K zL`*=SXWE}+=(N^<*t!k4suqOW^iB`r0CGC)T9BwGw7#Wgqr0`VbRf;|&Vzx8>9mwQ zQ9v;6Ud?J~24dy&%5go_Z6=(6!5ToLZ!E`X?Q+$!Gsk$?<6s!iy*7YR3d_pQ2*~VO zF7xIcx=CvtSEb3KKR)M<9aP!qD1nDZvIPyz&)X0X5Y&2|+bTzt_)eaZ<}84&o+u5X z(2Lr_^(c!dfwGK*soy3oS|Q*ES;Jc9nRV)4QN@(=nIjWn30!0_X;gfBh|*b_4gzm~ zk=TymOnjCwBZzo9->0W*cT&ATL)?@ZNLjCKyjL4AsXMFUy{l#9N6Rq8Rb z%xGzP0Z585!&dzq=GR)P-@0(0P*+!Xjm-W=P3T9I-;L2dDa3M|o@98|V>$ki5kW*0 zlqD4U=&QVaDR~j;keEMn{kS@7g0zuQHr6A2Z1ay@0|`vpwHm&@EjF{YyQV}9TQ2DR z>RalGCn@d^BkNo!dGus=y_j+MuJUzLTnb?ha&ARt+q)BukA!3 z^{%e2ddF^Wk2V0T8LEV6f;s*oEI0jtYS*lv((&-aZnM<(lT~Qb0#xC zRj@1O<*C&$QsY;_Wz-XqA zR{P3{1s#7-DBf0QXMdMV7ubCt*4x{gvQX%FN->q?Qb1;rffR@{Zx!8YDNnBp z8$mWgEMI&Puz}8AcRF<#{%BUGq0{sFo#6Xa0p&zjlgHk9Ie8KAK6ynSh^B8GhFy%U zP<7}tddrzoIJHLzghG9l@k7n+o%Hn5$RrAbUZRU4w1vhpZCpxzV&QUL3$)=@FzZB~ zPTX_Uxu2g|u;AaTb3NI3u6OEmQ{Ha|_Najnqh}r^KU3zqh7yv@*?KYlX zPuH@&pDgmLGL))JbyP|(Y`vXrJ>6`LFBE@y@I|Rt&nGX!7{_renmkctyp4P)iu4 zqWI%M2+dv^UYIIYFVA^;0c3zTO5Az&>P~Sx1e(r(jfRgL0WDOOnI9f!Gj?3V+2%h> z4@k6+`W8(9hypiye2#p}w8m`kAE>v|YG71qrDmW{=~K?aa7r@Y=vI!^g>cz%`W=6x zu8dm+Sb4@~lUARxYW5MY&MTZyefZmpZ8nGahQ zhE8F(gsN&h?E2gO)kv<)?ZwYoyVl!xXMKjM`4>;ZzdQ9ahvcN8TO}eedQ#tSelR|3rUc-&uD&h>G%a1#wR}_Q8y|i#jASZuif=!MMx9ZH-5Ut8 znq*cc8e$MsE;^{c_+t6#wvq|W)syS%HY!pV4iZ$&#MD&pRQgu0;H79OrSy4GZxa}t z_4sYI>A+EIsdC=i220Hsp=thF;IVm~b@6yo%Tn~4yy8H`b&2NZ&Of!SE_9<7z8K0> zGGaqOqVp8&SRbG)rP_7Orcfiyi64re8!cPLI?74}l4(RC1_3jl+h$m5Bfxy<8^W^b zbf@Y1HRdsPw?k&q&#q3s%L{?@ke!E%dg%u`N>jQtEO$O@-LaEbbiFKsh??{#y{-v= zJQAiR7Wy+7n#}O(W-MP|wKXK^l}of7YRV^!fQnlllq>!%3}vx5>2JNW|exS8PXru;4t9iCkS$e;zXG6I_yWe@E%8u1veXY(N{q*yT`yVhXb zqrMITzeNjTLcLrTyfaF-RU3#VM!M=`@g2q*QIcKBgyhJmCd%I+7cq+<0klv*%HR36Mkjt)i@&NBO%u%rzDx0XRNuit@`Kas+D zvB&Y+rAmw7{pFy~j3xAu*!chss%TcDYV8NGH~K4Tsuw>~igh=+{Kh;RXO|4^rn`}F zH!KU~GO`<16s|l==Y8@#p<2uy(SkUkO<;8ySy9fcXJZ_Nnbe$P56p3113m394nPJW z#N0{i%ZETXo>%0I?cC}09-{`SW;8apF<<{)xe)p=scx?YZ>Ozn(62y$GB(o-A-5O74HCCYLE5|HrSpW_KQN5c} zFV%pTY!wQ*}?&*0(`f1>#5g@jF!ycU@7k)R>8ZO#@yeC(2 zO3oA=m%O^P*l}4TNh**sI2P?Ifpyn*J!9uaPFxt9m}us-{u8pbWm#NY95H69vCn~I zOO5*DsZU7miafMygf9r}j1)U!lym}R98e7K1~kE4)KQdPxjWouiTKp4v+y4^u1TP59U zB%B2iu|^4a3dGA{hj<-(zp0m3*a2~I_@njFk&#b~+S>zqg3q*&$&o;r&#F#_aDm7` zYdt0VAI?+K9)2J#Eg`{lety1-k9?SWIzTOY!}?PxDEcW7Mu$1P;70!)7&Q4?E)#ga z@^U*_z(&6ryUHoEN1_^bGLt!E0`wEM9@YH&brxCSkwG>#HUg->0xwvTLvKZN7aySK zy0Mg;T;!Ci#%qKyDlm4eq}gYqe^~LSM+oSA&dR%dLXyr4Pb^)Os9BLgmYA6U$i4@r za7%LdX9i2sV509usp=r%uqJ=4^sVh}CJv5qM<*xBR-sydFaqkqZX6s+|5Ku`CVFCI;&c-HW2(3;NLnf(TvZ36A<-E;8Jqpl#I8U$t*#*n(zbN zRc`xw02NX>oGl^YYE(iRfCR*0Qqg!n41d#?_J#hIs~iSeU#e(h@D$Wb0HvD-Q1!;> ziJZM=6~K`G@9U1&)8Bt0Bxz-3HMi@kI$`q9LXFHl+_qXS}rF9Ec1Pp3ZKnzAv zO+FD0{)oB(Rc~|Siq!+CZx5w-7f}vb;*a9L^BtfBq?79$l}dDBVq)TV7L&M^`nA^6 z@46#NtC2AXr~1FJF$oF^W=2N67h05tHwjb*WxY1bBm{_QWWkxD{sAn zw(i1OVJDQ?5vnHY$((j+{6{^MuCq3EmwvGRC&e#KCd+j5_N7eF(YvF@2don(b(le3 z$O*G`c6A(96BkYeJF@8XDAhIWoYRNdAv=)tW&@P7y&BW={n!zlvlBDl$*pZmCOYmP zds;57t1D|ExiAl|CXe)zdGHGGKHzqj|Dt?HDWqS6WEM9bmU^XC1_ zdrPB6_2Z^U8u$6RTAyoGm*d&F7^Q9YqXv(c-=X@c3hDp8yiR$grUr;GqwxjNNNON5HVk%DV*No z{*!f4;CP!ams$md@{r*?$tf0&PBDIXIZz407HclX7?HmBuwSCj%`#b?*M9S4S0w57 z^*R~9=a`=7=F9sVdEX;Evabba>PC-M@bdPBObkZEv}9#JmAk0B#gFF8&q7_cZ;U*f z>225zIA@5O3_HWCj!t<8z*sH3!$7Ll27r4lG7em<^K*|C zZCv7Q{QN#QANI<7%ShPz27Dnw&$=Dx?{zJ;XR39ZbhWaztm*8tJueS)?UT*m%|yV$ z+)@Ym-ds2c!s+^1iJx5WH4dUU1srB_I_)$)3UDVHvim>}8*eY#k5a$@l2d_KhvP)q zz8_V$^LS$SjX#NQ3%$&@&MaP^_ph}ov^3kH%IfYiCJzp`0j6x zT?hHkFB)j@4K}>wbrnqql1;XLLIAQ@U%P}Xe`ZF@uPslFPCHP=@|gX6uJ7c#O3Yrb3A4L`9|`_q88VJg;@gJ)PDO<`@3cTk zyp$F&fND3G&m^^cnswcRXR#ln7RRpo-o3(oot6N#Y_hTC4|E;#;#FxTO>}Cvy}3?b|POK4L8ytJ`YO60p5lv@Tj=tR0?lymF@lx~h zN?8qljXLb58c@~6v>7O^D|50i?xj`w9DQPJE3+(=c)t*|_c{G02dEUd-cgqp{Tv@p zAVo3p3H%m)!%JkdfCH_Fe(C#Rs@%9wbiS5sHxJs?@H~*fk3t3fQpbbNKgEaF4cg2j z!$T&S+|tULae$l@C1?~rb2-e5;F@<`Uf2M^0Y-AoG2+c96(WK%fj*t6P5tH3LgQ7h#yLM`)=_#I< zS}eG&HBG#m%Bc^@4msDBRSm{uVTQa*e9ged##j1e9^FxgA;jg)^?BYxy5+FKPzlV& z#8DYk26G1HGHKQBkV$Z`_9DQYK%ux!3u7={a9>;Q^b%D9NDd1r>g!xpDcQi#CiPVW zYXI(TRfYjcnNSQaU;}Lf;VtL5{U(AcL|a`gr@&PQ@rz4a5ylKdI@V6)_wTy%8upAMX4@y-a7b z(Sq(%RTtM*b46WkFDZB>5Ic9S8K_h{YjwMYogF3LpBx99FGPdCys{`tp=nLQxp6aodA`Yx$LhJ@G{b6VkgpoAwhwn%Iws`d(8+@N6hwGPYTu%hCGCqDU`?@k}^n$yIO&osADQIEFhhlU){wVV}; zF?4bnCgIk>aM}9;F0)GZ*;;PBi|Dj6(^!5NB7QB@^{;t)RcZ~|5K>+neV{{3wtRzV z#6oe~7{7#&p;*Q{A*7VIK)Hx~>tg2aJ*I#Le zhVE)0wO5Zdj|mweibh?Ru)bR_x69r}sEsKD+N(b^2+m%$4@Kd4+Tx1~`(8-+1u;0Jd|gu2&QC!fz(+ zu76)^_yAW>ZsnlOM@_&d!Dp-5Z*iZko&A+hMP%YG1$GpIv`Oi{t*m{~zBeRki&tO{ zsM`3LRkS<$L#x%dc`zwA&vvyh%2ihRDOMOzuLKUnD7gNFfG(@$)=lbmL5S(Xq$*=; z&}B2vpd1~J@OXgasMOA<&rEsbh*&!dV-_sVi0OLYK_g)3w&0QP=Uu_#jdz28=H*Vj ze|WJRb)CUFv|9uVrZ@@Q+CrbbT6jd{Us5SP$@6(dYallE^UXx;XQiFMlxm~pSv#%o z(>%bDvqMZyk6*^VB9zX|8cYb2xC#vQYkku#K8@vHlli?|MG>%VQa~$OW}u$#lkCz7 ztWRjut$wY8Z?YwoK0n`-@Th3LdC$iP)WQTH5urM#D=A?@v}j4QTgp#TT}?_G=vBvP zG$8MYDYHPLOjPQGkVslC#bGD~|HNYN?(x1p8ZDQKTfGJ?hplb2Q3zJ@qik5qI|!4G zV{v@FO4H_E^VzrT)-~#uo!WEGRx6bA{YrXHyU?`0pJB!$iy8`sWY|x=;gQJ(1_pc| zheAiT8ujKmPgAgeI)D;i&vHrf!VL`qZ|!>t#OdA_ zV6w+?RP1mdk9p^6s;gFC06hHVp5{ZXBgaSLxct!151tXIO;NzzuqWb0XTGGI-X1Tb=@d#^`lYJB=>Z&5F+f#nzkmg|Q1=juA7BrFdQFkS z!(~dGJ7{Oux`J=E-C7L2+-&PCs@Lk7eV(-hi&hux&);TlwZsV9Wkcz5D{@zQTl1fiWCD?%zd?pe+Qv{I}H}7>P4pB$JvhoffkPXWO-QgAzg# zPEOh5Dymu^uA6n5PR^o~&KE={zZH-nk%)rikjA#fo9)JCG9Q-_=a=|rx4raNfS!U` zaX#&jCYj2zWLgcIo4CG24LcyA8|v1=3oJAdncXkf{VryIFFRHb*9kfwB*-^?e0zeAaYQ*!*JR2T@^X z4=IGn2|x2^5N&G>H<^ye2m(rM8HA#KHL-fnse-ysfsaj?RIEavI-7axDAkjgLOq~n zBLu|2vA20CSt`gct{f*m{Z>$L4f4XArj_a^9~?|!=eJj>RyG!{h$FK%b{Ti2Uq)Qo za@sbfr%B4PK*q}G2$jqkU=hyKs$p4vTZFo{$KVxlw-O=G z^NkLa1*G>i7}kWpiLpK;$H>}bjyJkz8eI1dYh!4o*L~h$@67?{_l-FHG+8U;b2_TJ9bFvLn|#?&T|9cF zGg9*{)vRL~)O{{G-IGvY)^#C5^zSYi@Q zWlh6J~4ffohH3vw0B@o8`6a{%@o?I{U3ftHQ?Q3d!`4NI#Is0 zJ_22s{Z;eyfPQp*s!_^hIi#p}RN%duoqRcoii}%HgvLz(7y%7Ch-&D^3P5=OL-3dY zL>;t23d}q!oBnzP@?mG8ay$y2+i9ylRd8}~?af97e&Rp~u$o~&U01C8dK{(jZx=v~ zjIUDD*igYUZ)}m6u+XAsW!YpP@nqL&SxoM-5;P$DNdQ%G8x<%Q#FYp5=)<3M5<&ks zEg;g^nY#;UzTA?x`3{{dpK6VQ8mC$noVQ8p`L+-wMpl$CB1AJ}T+kq(Q37MW%8y0- z!z9%rvkMuzs0ODqtY~>9r==M#)5z7Xx|P(7;81RcyD(9`5CI82EYFIl_ApUpV4|-F86YfI0xU@)6a!;RnjLWzlX=n~!f4JDl!koHJ-mQ(}VQ9@%%DVhN>K48adC8{nu0 z*826Wxw#we4rTQFV5t9tczq`a{!;N|XWl~aV$u%F9OmeFTw=Xq-q+t>g%35x?1?0z z#AX4A(nH6*DS5!~fi+rsDC3_UI9Id-cEXnW^;A+)0YtS$c!($MlsUkd0JU8(bXLoL zE-NdWhN4cYipS@`_V&QG{!K~%MIcIGJj{g1rzSE9^S{pJjYNtV7_9fpcJtn9Y(D#< z#@;j~UauCVOcSLka;qsLBU1+iJJ5Aj@AHx*zE`g3@JPah04w<=8mN}|y<iYc%gRf%xazL-@%q%%~35JfpU79y*X#*Hbk=g(a(YaqD-PezvFGTG55EJ}_5- zgQ<}Z$n+gLpulS$s|CLm_^ES1PLA>D$MpcsL9E?bn{^#432Eu@fh7Jx(*bSs&wXYW zer|3q(_@>}Hc?hDEegu3leeTvUR!=#U0cPva;QKAUfLJnJ`Yl=#D5D8yZ!?h*gou5 z60VFt1#a3looCV#>YjTEQ?XUP2NI?`ASk6xeoZH zNT5!2>0+gF`;X#(_SfQi03XC8gVSf{oU;JiR{||+#{#P-mK@^cPmO5r*Lab6j+hM4 zyG&QcE^i)8sRPlyKb%kxT!lN`pV=U>WL$#t0tOV8OQ03V|cI42#kc3?^V(H3mF0BABju&0xp-9+7uTNcs# zcrGY$YW}jjTOgZGBh@Z#Zk`voD;%7uNBevm^dV*jYXUg&@ty&U%_@1<+}vCyZ=IdW z?=|r=m3RHoGKXe_j8p-OelE?}@t-n&pzJE^<=_ZW1yw2`1L(RTTxL_LqI!I11R6k;{0YpphG*PFyv7B zP2_T@v9YlIsHOSW&JL~RiMrmUrE*dQ!xR1(*O}h5_biH`aYpyo!@ADhB}CtyY;P@)9HM z0sM^UVDA1x^m_1rZ#?_m1tYHXIE|oHrWRc%hoAF;UZN^89T-Ikn09(R!{L3S_7Ply zR-mLknT`$~yB43!1W@Wj0hj(W0iYBkh1Dc{v!$kHY-D7_dkD95TOL4-twtx0hQeUA zHYub4+uHh!TJEbkmf%fAlmLN!PCdMPxC((gQec#MGdzX&MF~*<^Dy5C1f~JmJ zGIs%+HESye-I%BsbNlH4ent!-O4O8^mgIF^$$&s=H8|Pw^lO%}kRH)zSjnim7xO02 zLxIC0%U*K@+pT4?s;^t@U;?uct3)hOLMAQa&dyFnD*|%VXB*E*ziksZ07pXl({+$Z z!r5IM$FW!h1!1kP@tyx{zE9B+rW-sG67@G|sOL`hv}A}AR-hp&jSexNY->+kTvvt! z+-CO~R?s6pgya$!)7CqFMAeZ8*{2rzQz?wG7BFi7rDkesYHQk(?BbWFlltdOlmO*( z+U$%_9yP`fKvQENlj#GOWvjjw!D-lzl)~pxWw#eTM6Jp6+q_>hy)xZ#PhmGn#^9Q` z$`IkGDYYGPUk-LU>te7fDLVR?DyVMvIZv*R6=0{n4=@M|!37+k)4m!ulZOwrT^~$8 zpDejP->+Nlj=G+}{iHZy4}UrlrV=)nObO|J-J<8xs>C+AH{ZAm9CK)aECUsS=S-k2 zD~aFxxj_LsEu3b(aYOTIMEa$HNNXZ+0BmA%)@*iRcB9HTcRKFqnQJ-;3vlSdg4v1? zP&NvNj54j`wSnV#NUa^r7C66j^nS{&arcd&Ge{`_RY)>v&`Lz){X=ON*2VBt)I$Nt zTA55rTYHn#pCdx03ov z$7A%RrKBk-BwQizWTEtY@i&oDa$dK+nmU;8YyzX^lGm~5(o;0y_JX1~vxl=;n}hh? z1sDmAtZY4eAA3rG&F>$t{Gp*`!{dP~>-*7H*SJMiF_B;jyQLgGRc0a9Te730D-@{C zsggM&A@0sk(T!q&N2cfQTe|)vh9Z zlxFT}42J9Z7K(0diIU%I_PARvSD*wnBSW8H19;J~7FAW%7O#XCqfHdQcBUV=xi6Ug zh*@9zh=a;}oh*CN*QL-Mh%}%7wk9Dw1)1(&@4a?W?yqcSp(f3#Zu1E;y2J}1Y3?%s zuGyhsn7jC?Rb0liOnqWgbye*$G3VaaYt~;I*iPXqkFwie`74t#BVap%h^6*{A%Dox z7Kh%I_G|sJOr=6aJ0#5`PNPm-zj==(aIpE4kWpi?_0@NmK;b!l!awPA1>{IlZiD+9 z!TSkUpNjxp`{qZUUS8gWCHEH#g0n1ozQg)MV-qTu%$h#U%@fOM>WNIiDV4`%{`6x& zRK2%eKU-n=et(nAa;%_YfD$-_wREWpSLL#;M)s_TB*FA66&xB)eCIzIUtD4EXUvIl zmDw`DCtLHb+f?;=bJ(_1k=YlhuJjk;CG1fv_x1PIqLq26>G=lSH`dp8gv;otm*nUV z*hFK4o+BYRP-iskI{Oqi?8mjMGf|<7wkx6v3oGpG?6Ax3RRNV)4@IbCJ=tIAzH5#V z+3n6i{&N@$IBHqzd1@)>G38IV(g~zsR*+|SXLJr6e*WYbyM{B`EOnbX;#Je~(k{l3 zqu<^5_5SWqdtb-om~i1;@b?JaT)kR5v|-RGl{%gbV9RZIs7R#A$8w|c=6l%4)W7N% zUZSG?YO?J0LPkqoG1-}_#Q73x4{P!Hr*JpjxfzERRaAK~kmUKp(W-~@A$^mBe4N8I zX4BIX7@tXUz}qd9zmFtCjQz0^ z6lOoe{Q(J2A?xKpR#_%W@<*?go|rqrEkoR(AP`V&yDZ-Y6i(dgfXGX>K1Af@<;_$N z3RnSYxu##+?zjQ=7~a>ju(S6g?ag`Glx1Z>4~)pAslwXVo;PysYsx$;C2k!ZB-xLPd*oIrrVo)hZY`D z0DZ``=T=izJG0<%tjhU>>VD}d_HEuz{ignbV8t<`{?Kh=RpeojnTWRTP8QfX~p zSbMs!0I<=~o?CeNv=t>K{j9pme@}6hF=fDHkVyycH(=gcdZ*MwO(0$7HW@3c2>$ES z`@_D8=%{3oqa%#n`^!eZD!NhAdQi}z`J~#aA`(#Kq$cx8R&6m84H`uzD2I*9f7e&1 zqONY1Tu@P8e{n=}LG%Y5>L@QZrQkFV=WeNPI7f4Y3g(L+j?0W8L~Qasn4#|I0YW%EeSOEvneyoZq(^5!Mv7`I30qb-JtgJ;>FvAY zsr>)2v&xDSN@X3CkyVr#4k3k5_A#@=v5!5D5h*hy%BE!Ry-N1pvNzfD*q+a!@AupD zyncT_|Mk*+?sMPo&w9VF_jO%|YUZXI@%esKcdb(s`~8<^#muoMfmk#qpd7d--{{%s zcn@3giUI>uAW_$h?>WH$h#%b`Vej9Q|6iZh?ax@Ij`MPWKK@p_P}Yedp_mhV#nz6% z{q~OZOx-s)Hnv)>e-EV_;(0Eu3t7jO3#2q(ioCq5Gk*F3i^dFzh&`S>-8ZD-)61jF z5sCM8x`&Mqw5A`IluF~9_s-j@&C3a7uYzWvd>t?UWbG9&2Z!Rgt8NXu=t~9Jc!&x^ z8MFMIUAJwx(7(6H3~vrk=|G;V{9uqoa>>Uwduz;IDZbipg`8`TS7t~ z1jMtLX0PC0REAoOrq9S?-dq7s{X7){F=vfuSGAqvD*B!{IpBKYOnS%h#=VyXOBOYT z%{%WLsX;S%qK9V9IOOJ;qB(Sq97|vz9wDP6n)CzX^Sx3RdA*-SzK&Dv}!W}P(32EIMP(FS7 z#DXM0AN>*vt7%mi7nh3#OTw!=38XGGolIw;R|ofQo-ijlzbt_vo>=uQqO|Q~rrN_E z=JzQw5|PyKF5iHU_2zkDC-3kwRyFAC6u*EHqm;HMkBKN{R|Q2n-w0))^LB~TrElqM z%XOiTkehpoF#^UYz?OKQihgbL@D1z;RH=1qrTQJ`Bq5;rlrxW9y!demY1s7;2Y@3$ zBW_%%d{xDIE*T(Itoerw z;6Q9vo6A^_#$4oC$uv@5U0%p3D!OK7iYV$~4jw{P3RyH1p_hM<@(!22c3!g0PiEU& zu*zQ2H)t$;#u`i?f)W1^Sl<-D|8rXog%>aMEh{!&XKI#qO9kGXogXjRWn(-w@iyDx zch$|d@UVPuF}5D5tn$gGR{Fg?5?KQOva`Fb;Vy=fyA!9Uu0CYKL{=ujhVQUhO0O#lpwpR`>NDr!d#P6Qh&68XvYd zE2#CN4$P^}M-`uFL0lWFAyqDB85AtY<-vPGj_dJqF}!U+5dI1n3RK0Y+(IT*R<;Gv zj#+Y@44_vUQEtehta?kSEsyYyDE%KYPczdtyw(CzB149@D2FOZMON!W3?9F9P-6y@ zEd)$9;?Km$KZTDK(O07WFQUh$hyBG>hL3}3cQ7QIL5wU0b%{17MdpJB(6G$T&X&sg zIUs{}`&ERjm;Eb`4?4JLRZNGZV}vb3In>?#Fa%|_C z9=NLNS|1z!79(p~8e-&e!t5-i8WNF}^2ON4i6{dsgeftwCP>=DxMN&_)?@d9vUN`R z@=I)jWxz1HOp>C)je5rF$Bl~zIEfa3uZ280auPiePqS7Izb8|?yNfil=eP!H#Yk?O zgsZ`EG`zP{=01a3Vsxu!8fi8DEImDQ<3Du4&2 z3fOm=7G$=;ET0prSl$K%yhMx-Ce&R66gk;toS6lPv=z$e!$k*7&hmrqr1O=TnbyH@ zdO6(G%6THOqNDJ+Pkyqo!LQ`Bo|Pu~qt`S7CF5Ual%+DFn+b(x@(c>gQHzz8)vw%! z4o;*n8N2l~^RI37Ep{R1h7<}CxAlskdt9O&ukCLi*6tl>^?5qtnGn_(ByDit6nej; zVcaWxRwlN5pCa)W5~l&38=BhJ(;sSsR#U^l%|Wop5Jw`|v@x zVQDvJ$2gQ#_aj}+r-2s_0-gapu;o(<0nxAqJfp9$`Dn_RYtV1aGS9F$JIA?9(4M#GsV!UM)6&6B+sW^EW+o;%fZz1uVlIY}gsIv-nLSWc0CHgjk5TJ7 z&R#<>-5MLt4*!jEaW~bRhuCxgu33L}h9kqEVtDrB~a; zE9irTccbJ7(pMjs)r@Jm)j#p!!Y>V1Mg=p`v$NkR!h8E+h}mNceH6c~Mdz*yFE-CX z^HxsdgynO(t+`N*7s;Qt^YDIi_ym{S<5Z@gNK<|^D%)2M0|dU8b}w4|>zi5bDyBDr zX4bMVrS`g5ix(czQAsqY{516RCR6-=f{hfC4BHbK5?j6S_KzwVwucwKseb+f@Hs^|E36cwHv<(f2D&(Gcc{__6>EO^YFP`Y z8p(E#U;5$`Kfnm?ko5xEn0*rEL)ke<+P7eq;q7(Bu;!)^G6TbH!{7-Z+ui117$}DX zUkvd=jf}W@Q1KuV<%i)bOxzEhj{HH7>leVc2XU`4lXkBSvkM8IzJsc(oC%RQp-{^kNQ43e~a>L-)7>Zs+G-_r$d}QPh#hq-l=cnRzddk%+Cp zVO9HWmcM`_30KSN)g2mrZ~VI43mo*;uA77Q{~UesksHB8&2; z2Brxs<+`Sw2M0S#ZV(&5H6u1RtN@lL?;;^%xaT?5t$5FiN$ImmK+%pBj94dmVjB1W zc3gG1x~2bU%;VHe)Jp4P1EAenZGm%<&+;eRpEH{XtI)^fwVh$*%f#XJIPS~R1N@=ZC0xYb@dBYloxuVcR=FhwAC^(k#^Y!u#vcy`lvL_cWxvOWqd zUF0XJ66A6*nc2hPp>k;^pMis5Rxz>;Rp#EUMe?!b;CZ_i=CcKe=WoH8{k>wf`j=L*9PA{WzTQs>0xOZ+l^W*cr zg=gGoIZ%4ZCw_Ud11QQY?Cb@A$-cC>xB=ugjGzY=?*Z`=qN?oX6zRy#s@kj$$ zk$n4hN07>p4Zp4wlh(z-kaXuKI~!i_18IQpG)8cT?iVxpe&V-Il)ngb$Y{Kt-(Lr) z&rd3Bo3ETLZ(=<#a0{syB+%iFM9Im?g9}|ra?@6Tea!HOBMzcp^JE5c9{my}D8wHe zD&NRTs~_;Vf%BTqFUgu76kH2Bp3r0uM(y*)AZ!HR1X@;hY4LlM*kYG}MP7gF_HXPj z|NBao^-js$i!$jkklUNs+yiyKH{T|4s{gNhe&sy@_B*NjVif)g3|tTsw{CuFJcj>y zB~umfCK_lpHZ=U%=H9Rs^h!GtSQx46>oYc8nA(@fTT{FW6aaVlsLstspn2FUD=Wy~ zy{s4nx}u_@5%I3j1*_2g>&}}jwF-Jji4&IK+p&ti_{!%)awIf@Gco;_ESLw^Lnyvx zWXP6GBi5F4^8;5195ksFj_{MeFu|X=OVuGufP2xY5k_@LNJPX~M599e31->gv}Bq| zfY6H+hZ18yF)fY!Bz%Y1jL_mLE`7qjq~T(F`!kohkH$x^A79Nw0-@_NSbe{N;uM}@|Sm6`sf0};p9MQFoAzSzkh$q(Uo%lcBITcU3jPW z1(4%T3?S=kO$nAbcd7ihk>yW+-ezZ$j^Q_gBW#!dsDv3)J-@yv^Ef$T%CUv zr-S+S?V*+8aYV}pu3%K99_8z>nz2e3a!&lNeHk0&&Lo*li@NoZ1Uo^2{_BvhLIdV~ z_Mt@Lz$$AQQ1YwrBzPQom~J^UyFtkxk;t^?WP}Mse$s|i(iq6#^P~EI(ez(sBqNp$ z4kfQe{OJ}1c$Texqw25qzJ&4FDFC)sWgD-tZ`S3#!doo9ean9*4txrvBZHM^Zn<9CaW*#Mpu{@8DSVK6NW;`VD8B=j$>ci34p0b8zw@w-*#K zz;mWXVRKZnmDSh{Tzc>6c9m&Nw^gKr$|Vrf^eXV=R4OkM%p6KVSeTjRYV+l4NEts7KG2jc=59$oqi<6()bhWXtMKPNniKLT3FL>DnzgT_CZ36T}05LJT&v zI{sj4%#LQIh1E8vsrteY&Rb=1h+NB=tCwPnyEnY5X!OQ)bri=SzG}o-vWIZ zc<@p`4}f>!jxCwI`u!D4S>@Ht6i2;f7S&sG=}41P+9li3*GwNeat>*c`qu(vI393h zRx7U`J;0?HF;%fk>2e363X9*pX}jQ@=mtz+yFk?~g#ysW2FMta43nc@X=iA_jDhB3 zm_9D3msWI6Hr6su%s*fK5dJINl*b$$M4AE07LIED6b>7dl)a&^@M)3<;FppNg5H>g zPq|x(eg0=br(S2#e*G5!U@0irUNWCOAf+2A9@ah_+5*)VXYuIAEalrhBy@vjppl>d zMdVnB*JX@B<55D$%N!NA=2yReBq|pcheT8)1o3xL{*-iV$^ls$X_0vK@Begb3(M z{*YPTEms}3qRi;+Q&Ep_Sw3!CJE$>;7n6pYrGsp}qX;piyY+#+IHhIPZnTEm)vVQ4 z^hgz+<5;SbU1p>RfUj%8D)V1kRgK#}ZA^<`^vY#@h3e|+AJdllfRyxO>+UaCMUQak zt=}`|cmM91!aT6&J3iZHQXP)&y`>ocZQX$rtnNo8(>dB>;etfuGy0*2eYY+b9ecMS zK1qSX4e2*pc_3E(i*P_V-FhW`ck&W^xhweC*(0Xx_kMl7?OAm%>d_wS_?w5<`gv*g z?e-R~g0+(^zLnOr=`8!y{$SG5SCjPXp4h~Oh23&mbG@(n`ub)qX=rFtW9k=r2L=ua z@JZ=Jmc1by4(L&bVPW)$K4`X}GwC0BvT>4xLT_@{iZ+FwF~IU zzr-jMi#kYMFfMR_j?&ftYF;xW^kb-D8Yfjm0B6`H(OW=X9lbw)qZi| z;8k)m^K}H{nA&KSDZxcM6KC(=)lx4B3-joc*FIEyF8Dp{eVAM3DQtjhEqlD$GVb^n z`m~wGBdppa;&C)peB5fgU%jJ&u`ygs43(*t`<>R~$eImgHyB?CHATfxP^e4VF>Ob` zW`b|+t~wf5m7KO&e5O1N>ZLxf#LbGC#C!1Bb9R(SlOvp;lgDjzTvc_;Xy%2htN+(00b+ZfpU7ec}~vZ zbxrKSpvm^=k`0!&Ho3@IVDA@U@HK*fynfi@aGZ9XgFY9z%u|0g8WD~nU{S2WI5cc} zDke$oOJM)-BSnisD8TH6%5( z;$Og(CvoBvKHg|av6=mTf1Ovx-^K7Qyd0Ui0*w4Rh7+3@AJjjNqXVV5CYW_Izc?Ra zz{OiWFh#}OxTqWexyxU3JX)Yn{|4-8EAr}#rQg|PQZI5Ud=&P`?dw(gMZ%}3cRX|x z05>_6)r(r`-}o)andCM`zkrU@0yB57Eg?(vXw9ZK0{eU5TE(KV`T*X*;`;`RB-u#YW0CKSf04JzsWGI1|0(8idRdjEt_W$JnS9OOd0#rSwv#( zB7!sI*adm;hUkIJe$^=5uL|Gd!4Y4X5l0_cc-hf2A@{xbIEnS~sx3J_KFPO4H-io@ z7_55Tc3-YP5f*X{xo6sZpUt*b5;T8{TJSi^MUHAxOVm623}xO!PNrrl-JWWS(xU{T2)U(0mw)l9JM1hLIl$ z>qK@Q$W(_wg?IdklgGHdz;dxl+cVDG4}&n1$scBnW+ohVT-yxK;6Pjnb z>^2*rdgQsojA$zO64^~->0hnI?+W;P--j{Wz3bT6gxqq3}MXu__FRw4#+6I+GQUZ-XOS}N`{%%r2 zLT#}tF7^f}z%dS|N9<^jTJnr;M)Sev6C{)-q9E6!0Q6i_;rQUZCqHU%h{0*kaQc$<*G zzj&?UeUvxz11r0=+*d-%Zb3YOFeSY9UhNzTGDgY1hc~HSKsFbWf`5HgOmdAL3nt^$ z^k}KnYC}%eE%CDZT0b99o%$$^Z+AboAlWM|RBgv|;0c6VH*bL}o(O>Ay!*>HyT%3K z)XmtK|Vg1HnZf- z96jmpcKn^H-SHNJpAOT=N|^~HTDs${bwf-#$3{_;6X>u{Ht0^fNX_3)84Xcj@AhT8 z_mLLK-U`@ADc!vk-1;>6(UjVhEbKBp!j;?5pU~i4)eml|QC^AQ*dIXzsO$UK0KRzR z@aR-1Ayo^H@yr!#k@`y42;x?8%G%frxFBf8Iu8M4Hi}puvVOJo-bfN^K+r>ku|)8? z@{MH93zhSVXaeNVj#TIWK4X)4f=Ggty1A|Xe00xoOHZf|8Z6=eu9HxPn&b57IL%%) zGd0Zx{mMa%@DkI#NO~N6;5yWdu@7F!LlNh%t|H9L%?ng@-1-6n0?hlqDZ6vWeWl&8 z=T%Wu)C0!306AT~gkqkGA6cRnB>m4a7z%lS%E6-tj-_EB+rwBV%SGL-?axrxCzPcK zkpPj`#PKjU)JG+>i(`* z=+{cRA;`ZkQUihbn>er+zM~d#9n^N5#Op~mMs*JiQ10=ht^#qP>DjIZ=4XDk>nvN5 z(-y{+IXKPD!1%A=_&cC-3VraWnkQZYr&<*ajaL9)`_vXIJls){p)RRk*c!vvLF>M! zCn_*pzE))hNH7I-KqgcKgf;L==fc1nJg-XyU+&E0>iidAYeq;vbf!6p7T7v-XqI#W zZk{nlt4+Bf^MSK+)9~KbntHy`5HNQ##@Jo;_4jK49~c^7Su~!W9_bYhthx@Yxl}J| z-m`@)|84Jgj}y`bP0q>b)X6bRU84~~4gyRNQ&#m44^#25gOplDOUnW<$^dX@q@|_h zK3))fvpVs@(`gA_i(dxdRN58`z{W`BqXaG@0WbWYNT3|a{7oPX{(!?bJTHP4IKwe~ zkATrLI1#Mx=_l82gM<1MfoXHO@^Y;Vresndz;9G4?Jf^ZdtWs?ZU#MTt=1#*BhvqF z3XG^Upous=g_NwUtRfJnnb60s(b`(e>Gooo#JLIp?pWrD+kZzY(VwMd)**73Ay1QW ztfJV@d7Rl#9cb2NR=u6V^|8ME50&hEGV4xYUjg(ENmpm*vQhg1tyCv|cOa)bQx`|Q zHSI~g>>B)|!e>_w%NG$55dl;%ya@#rPx&&gk+!)d=0b0hlU=7w%rXS%)AA$X^Td?T;HY} z9e?%{3gCC;F-qZSU}z|5FFN?Q!|0ncFCG6^S_)>3-;~o`>(kV{`{JDf(P~w$rF0Lo zK^o$u{a$TL-{Y^BD7k@IaW@^aZgd;BMonI_G3(y|kW>sn5$WIwpS$+n5|A?uTAuD& z9^PYkI*^V9G(3e*wtRrcT6eF#>|x3o%=ceV@UvlqULk(8&I@_MF56v?xegsB==S&b z-BmVgs`VG$f!AFs)jza`v*%!7hADf@n5*;ryGB7!G#`PK^d`&0b4>ToJ`@Vj%r~Dn z%+9qom>~cy0y6*^YvTC&{q;^Ts13FrRTOQhmO&fY!paJ0meSsZ_6(C#*3~+#{;`YQ+}xbfwH*2>LB{WPP+(d`4N~Lt?GN${oMKk5q;$1_VOvr4-rH*b znrQXg7~i*ozNV%oKJ-hBx7+#EBR=4`m4jZMleu3y9e30eM?A-wWAWF-`F^LSW;@3w zkNdB`K^A}(AX$_?_MA)b=iPEZv)m`*eZ-&U%-J`9S{&GZ5NtgB=ixAWxQ{ZZ8#6v- zoD)6%ET#hxu0?tO`E%6%e29Q7A2^548W{e!?*K?54nWEt;t&7v7d`twJph>!urag! z=g$m+eFDyo1M(@Szn>gG9ei3%K>fzw53~)Es_r;Q$6tH9Crk|-GvAw=n*ScEcu@>u z?&J6m>*DPHzGHrN;Fj_8?#Fh3tSpv=0!A0-Apx)EPlp0-&^;VhG}O(pZ?^;pOAIRC@8utoo%44D}dzB`T|`0yBq7 z#U?WNyk8}TXmSw_tG@E;a#KeKsgvq+aqS-vEz~+N=2!tZHm}W0BmK7;Jw{I$1O7s} zIY0!8^czTooHmoe&WkzfW@lywff={?#?((puagnIO8)%livs4)K#xrvQ{rYH)ZA zM*B_kB5(kMg>EnQ?B)i$wE|kO;|nZF;2sIwx7vXfjV{>lE7A-v>UasC#e6{?7O_Ss z{#_AE9*pR&eJmF%>xR}fV2HSMX~85!5VMy3`LOV4MUN&)S3o*&cseW;*UwaRmn5!S z!A?=^xzZ6%fbx|T$rQ5QRbNicNOw{PcSx}p=-_DvOeJd6$|?U!ydsJ7GU9jQ3iJA| z)1-7pCZAk;UELvdRMC@mS>_HOf&EI4p59(1|H~D$K1P+U``n|Yw#=Zj&qlj-09b1b zv{C3c#Xf|rt+%E4=R+aQ_G@F6O4$SC7h{0Y)YY_PZWD819Rg_>wg(joZ1DJf!hknD zU@3Q{n_iqkH>nGs-m5S~!v30pAMPzEN{k+M{TljS#Wi3VBBPqEEyvETbgKVJz?Mnw z*)yh!+vv4%`RVCtQ;>2j0_sMnkj?()EdIdvtqsuJjC#z{4^U=Dg(~;sXh&J>X^@%s z0N?71c!Be*SeR$vz`e_zYozPiu>R~TqWDMMHVHu004iRePXUwfutt%t1+ztL$TEeXOo#t9I>e_GnMJ z=VBIF2&{uZ!Ry22BtrTW0pj!>3CMMU0UVj@!)q7&@2v(pDy{n)Wc$a4j4N(Ezy#x1 z2I}{cUi|KTU>cd+*mOs{tj6CLa^?Hac-X@e~{)JaL_$dRFjWBexM$)8%CoXrJ=lA@U|dmw(b6`%N$A znUmdi*~NMP$e1j|6ZZ}??D{I;10)SLg0=g-r}E=K#d~r^A3O0(Lpt_1fKwY(cA(^y z5bI8&W%6+@4)d9VAXqyZ__D&HV`APK*w*3Ft2&BEYj|wU$$hW!%EhDi!q-cZWz_q6 zU3>77JYnz+AMITFXM@z3&)&N0h`T4!A_z++MQ?|OhO#s({r=1%UUusZpFu~gaF^nB z!;+Gc>k)aaq>E%3<>2)r$YHXbXz%U{{}4bVk=oa~qYHjm zryD9OdvoNa>BD+uQhV;I`~Zn>GMj1^g{i5|!uG>=n6)KGV6_GmY9xS{VcgLTS}aN1 z{O|9jc8*U2Z_O^p5G(d~97@$?z^%0mB;RFjhsf41^z@Tj#DZDDfq^L?w0?IJB-X&P z>j4?^w7mzIAz(^*kjL-T0eZ%CIY-K`HwUb&Fh}%h2HWSg<3K&D_Mkyiak9DjdGgto z5|dl∨5)$r?{bU|>dhk>cS^pYW+#-CQxd3HQeeGu-7qrd=6?Tm+oXtCpok54H6w zZc{8xs5!nSP*1r;fUbLPU3c8rWg7;fzs?8Im7AcI=bQi|o9IDN&+;89LnoeY9sU`cci#GG#f! zDo!nur}fXK{Uaz=d8Pm zh0Zyf3z#v1VGlEf;Nh2ga%ori+pJvgVrF6ru#+19?L$Ei4_(}Jx>J8YrcHuxM=I&c zB(WVS)2&)eEHFU??*m1-Lt%SY=?jR6h$eTSr``~D=SRw>4^@4X9Crvzq3mx<1b?%W z7r`8H5Sb&2gVz@cxjg+MF`qoY$=;g_3B^iPU@HVZS`sfbHjnW$g^|l@GdrQ=YCGWh zW%(P_rZ3ailaM|^K%_p(C^1Fo`+qcg6t1vKSvz(141XR6#*B-fKjmVwdMu%@VY9Qx zSq8{_RM)T`S}%&`K?^WrzW(o zS!$0{AZZf}j?(|W;<_j_M3|Q1%A^p>lX*wcK?vRU8wO?1qhO89ep`ls5L$-$AD)CM zarl$!uGdWnr6f5-s9mKMzP9EL>5+21JAL{mQebyA#Jy`W-8Wchrs|^+N(PJSTVJ;_ z_tDYYOC_9&lO|R0IZ7ba1V5KLhChX)=yidfDL8O|=C6?=TkyGX<$*tu5571~m)IIp z9eyaEGSlZ`+p2&NB#Xe~f4>PcJS-B#Clad0_ literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/split_row.png b/docs/api/paddle/distributed/img/split_row.png new file mode 100644 index 0000000000000000000000000000000000000000..253d99780c5cdf7cf3ae6158ee4e3c201b56a9f5 GIT binary patch literal 90423 zcmeFZcT`i`7CxF#q#XrCM3E*)Z%UC4u^=5(q(~KM303JmU`M4%laA6vn)FVvfq+2h z9YjiK0U`8|yH@~@d!mjA4AEalahd>|) zH8n0>gFtA}5C}yr?E!FRJwfU;1VTT6xOnl3=EaNLSKQs~5zclHh(=gk0?qZ9;Ugid zq+D532vq2$PZl#wi&pIDd4@*oCuQbDxNn2C1YH-vmXVyFG;?mnC@ zOjCM{i5qGdLL=Uk)DivUM0B(@Bzj@9c%67CWM)a%%&!26BwDG3x5v0cLY^Pio7IxP zL0iSUm%ykSk7L@Jqa8B8Kgv|u+GfgwvA!?Hgggs5nxz<$wwL>2 zAN5h+@S{W7E`8b?r)%Gd7xLs{8orU7J4o>bI>Q?$>>od;e*RU^Pd}PC-eGd&&CRQe z^^Xz9+;jKD9YRIryp!aw+4o3$3=>~IX-LGq&ym+X{`uO+R{KvnQu=I6${o-7u0AR2 zIjz$yUB)McX_LIg;th?=ew;4yI4pgR-FmDZ5pRF#QRmJX7Vj`ot!P#KqcgG|t{Jbk zL>JN*SxS!vlu@63_he*PY8Q9uS>lTxDm7R0G-T5={et&aDcD>&?UWOF-!XOvgqC|! z;GZU(XJ%7|Pv*^AD=40JPdb0*F_knEggu(^AQjXBQtH=UHv8aA!ee8N`+?`rg@=xv z;|%BfHZ+W8$8vB$q9(`l2B)y&t%`JrZw}6g2#B27sphXIPFm509J9@pbZxf3@i6NS zQ%FP$d*W$_wukXZYsg_iO0SHA8=+_4LMk=9i<+2scoH9m&@xdTdB@WPrHGyM(W2Y$Ejniy-XO--NQ6_zJNY@fA;%@7mN}QJf;GD8O#qEe^8&gyu%)Nu<_vb2Z^s| zkHVs_Bne)O6?+nK>lM!x&DYYgR26K7kA*K9W-eYWe681~dtG&rZ;_epY0fJI+^k$c z;W)?Bxr~HY#+kC2BIrlm;qwgh$@9<+!M&3Y?{+>zWrynkZ<;J(zp-1!GLwZ3y-VyeE+a{tzQ z=mn7}1?$IW^se(IF*iIu`_c28!Y%odG~ei*sGayrJSU>ZG;x|2dQ7j$FUT!OB0@I8 z3NBajNVT@wp73MXWvWRHjNFgE@bbmgKq1Xo=eA>7VzWxKXJ<2y7`Ez#Wq&j@&Agu1 z_uBK~LY(CJ;p>Sn>ow$!Yjk$A*1cvEgsE7hSaRsi>?*XfwVrCFx4jTH>_0DaK}OrF zZ1Hfv$eRz2axzjC5Sb#=#*yF(oa4RgNBdv2Wx2mT`I_c6Yu?306E6?1c>h}e=)JR> zuA5g6${chEmkXa|i(|``*^{}NWS=D3q0@1zgE`4ZTD7Yu`O}L}$rT7ALcz&06?n(M zdjB^Bi=zyDd|k?PIqN> z&NK?Wi**$~GmaQR?7jOkCOYAqc_U`{ZB4v$ z&e%g|?sUiSxm=G<*#K6&4xVz0k-d-o0{ehsxkCM&a`zcIBZUd~S8~(}g?Aji{jtv2 zFCG)qfrAegkF1n-XMdQ@&ri<(STW)CvE!rIr^2?v$RfSSEVmph@0MzOP4OK!57Nxk zVl?*7`)Njfv##H|c+)<3bYRx!IA18v+s%C18o~6h>f-d)h~0IQE$ByB11#?2;84Pn z*);x{b*qL0yIuWy*>=oM>N>t@<7UyVN_^)2y?q8k9c3TIElObuP8v4qb;>0Q^?T-b zjSf`M*xbE%uZnuRWW$8rNX$w4qnNGX=Lc8Z;hu1{`Is~LXEaTmZKZVC?b)o|~2UcfzQ zXSKYMRVL`sz3{2+>F`tioSWCa8AN0STC2a!AGXOW=zG(5^-xS%4DRkyyVz{R_j+Hx zdIy9hf)DW_P=e@9eB7jdh2K}mmR{t3aqqp}?HuIi$Die5&qkj}AC7v^rPbidvq_(P5^-<3bh-Q1>Px^FUNXl(RIPfz#au>T@!ozb*;m9`5C6yv#$9mPn;6Y+9C6UrX|5duu@tNNmcP#es2`~3^ zV{`4geoN~=q%lm*%R9s{Sa0VMt9ci zeHuIUmB;T92uQvB{V&a7kSozODb+U}E7Oj`7fDU0LrEVEaNAkc6jyo=!PxI!ZGQd6&j2z3;zWdMk?Un0LiKwaJ@8Kcivln5H9y}epFf1q zfKNxj%Qu7KAFXN88I=DxrlY?DP z%=4p#0yrk0mf+$3(Zth9na4!;3im}fcROwwacS{0JSz0u+}uj;w)P6wE?xfpa_~u+ z2kz;4TR}p?$Hzz9M@rny-9h54yu7@`8A%CANionu%)`&s)7n?e)r0qEC;#Z@lAVW* zJL0w{!p)VN+^_X5H!n|R9v<>Q|NQ$oPdi`4A0xSX{C->D1|`VfNSqZvBk|9^!KF&% zvkF%bzIM(gmk=&MW?&2zNlBS=N<79(L{*-CV$xo+^Jx{r8Li{N=x2 z_+!i)e~fufUhdCB{^^_FuT+vC-};|K@l(z}&H_QJ&?`y&bJ0}jKVEa_0PDz(xTJp_ zyaO#G|3NLlKf#~xCo=hK#@a^4r7G*S53qHQc37p1@aLJfwJ4Gh-UBExv}|O6xkh z?Ym0&A}{5!f=|J1M0N#sf^2L~X@XT^8|OD}-Azr}p5)no1fihi4*7+DFg5C9d@zIV zHjmL?y8uGL0}FX5K=G^nXH(Onuh;I6DgELF5GY$3<*!a9?ie@BU}4<@_p29B!F>z>goT4HV`41p$+rG#Q6L!i%}55C77VK&j}(U?Dl^S(~+A zb>)o|RPaFR6Tj*|ufT!BeIU;D^j9VNorN1VE%Mp-7Z)t_0s~Wqkms(+uSzte7=${j z^Uc4yU`NT}=w*A$w_lZLAXu>-ddXj1unaU1D7}Tsv0s(wR}ol9vvJffFW3Weu%2Hp z`BjNRt-y*2QDdGh$GTIE%g_ck?wwx8=GZ)ClXhakHIjT)ZkTNDo# z%m_vNi*!Qc=|vTMZMBQLJ{{hPY`Xi@9~w#yqF+y)nGJa4|IA*H!kWsPG%jY%e@%q} zniNa@jnxb=Ii3Qr%q*r83FkxjdD%ZO!7^@B>?>#9=F7iv2Aafn=+K}23@j9^BemL1 zx_@AcG$2PM=n2kCV7-`{NqVL8cS-nFl)7$Xt4MdREuAh`DQd{n4YicKHGSTKqAb1s z`myqNdbx|H$MX@wXYip@Ij+mF-o7xJ!>|k`^1v@DQalE`OK($1e=6Y0zx;1x-gyP}&1t2!*(-Zm6^84+r7jDq&)<)#C0Z({e22REb`#3GwEa9uIUr(n#L zIaKiX{*q=|WcmK%W<@EXRPM~&u$YrxXokZXbZxD+f3`%XE8uQmIyqXvO!;L_Pyz{r z)`A;dEWIr$0Q$L;L5Kc$$IeI{97kMft38}?)rcwn9)zMBXyGM+2zPM)s!8I}KYI@{ zVxkNAd^8a>vCXmJ1`BhA7kGh(_wJ>DQy-xMFy@xH8yw(R?t;+L<&eua&YK*fpuNP( z4P#D~Ya{n;ZFlX@21>?B{16@kTcB$(i4mdT7GUAPGlDg92d9{6QXsnQ#`a!Efo;=f z7o3E$*-=}|({eLefZOx@CP?o2L7e8Fl?WgSXcFYHPV^1X#9rY54}f?w;LaW8e*iu(2cr45PSun0AxaID!OmooYs1d)~AFBodI!Fbl;FeUg2Tc+e zjz0!E*$0G?H}#d<0i3$i^tUko7UtiY`L~(>?KA%oYXA0`e+Qud&!c&*)}a)1K%v%z z&wTQV`{q8{Kr)>I1Yr6nSEl%wGQtc3|JT?qEFT5YeNoDsK{x%{)m} z|9j8q18@aKHp^E0cEdv0Mg2G-fcLc)+4Vy%J6OCa6$S$c>xS@0h?FUST<^~PYXjks z@Y1_)*{PTwivyUXa3>a|EMf24vi=3=!2n)?T*~<@3Yth+@X;K}SQAl%vZ<LL7kLH{d4$)AByNC(>qz@{;|LDEn*EQ|2=9sqrL63`^MqA!brAh|fKbwidy zx{dz5I}?n%7QnFik5|bvrx%GKqp*KW8)TRi(om*Eo-)wni)S3WMo4q1T53TFG{3uq$QYv|4mWkUfiS;O_J zBtgQr=;H!{K&O2P|07%l3Vs?kZR`z19Xz7WoY8Ih(!DqmqMNdJBqMCPtsnvn&;Byj zix-wzz%5DxrFunH2|e~%^32~#3jI^YVD3~*ARa@ag(N|fRvqKkP$1zpy^!WEeLNf} zw#fCB&BH*kt^Rk#j)H_+4Fgf{BDi!zE(bhlYfu55E^7a+%zrEM-^%=d;+YK`L&tq4 zEml@b+r?ulZCWC-8?6du)k7{j*(DV}h3I;4asEq!IzY#ifk;(0wzNG=A+5yF1CmqC z%*{{0(KW)aIMUQhzc#^I$=M^7P*_%#17w2~j_ zzg0VFsShv?2Ko;?!ht)Kett($Kcu-M?{x#98Y|pqO=Lm;UZ?-M|6>-OS8Gs37Ij*R z!TUScCW{A>ffK8c>=;xF$*EzC{FeZ+1iCNpOcN=iJlGZL34B|RA721-hUSylr56z0 zn#CLCb$}Piz4cdqT&M!Lb&gp+SZ3xSgfU=*3Xc>1g&&Xr(Z^5IBh{Z``Ty`N4d+HJUtDA=XX76K%eT-LgYHYkH>fGKI*UFS|Q!%}M*ktC`z$aV#?TLud z^h3%?K4?-?hE9SO2=u~5Z9e?4>FuLv&Wx$ev0|{m`}@bS0wDNy6?X%-9&Rg_{uIP7 z^B4E5?n88MU*o@&@e+J~C|#ohBC+wxO;%o5O!#w%?zyUZ^}`vhX7$8PT6CY!lrx#2 zUEiE@q~-pu3JspxQhh2q2^zd=esKkSb3xO{2Hab)7a0Cm5P+80O-ku9`;O=M<-WX_ z@~!G0N{kdEE3r0TPvJd?u7bqLl#+MPCK>|TsmdI>;^R}nIyW!6_@pFCIYgL$n~qeC z_x>Dps;87$S9Es|mlouJ^vn3LXx6{lbc2eAet)4~wQc$07E1b?;R`mvRKZ1WP8J{H zP`Iv8V&G_#?;i;$n%ws_^+20u_$(rp0E3>Nxdk~`j0pzdVj9x|R|UEd92|a`IRkO} z!>&2G;d}Od9xC|V7|Bx<2dS4&9zXfw6s$K&c##rB*!9cFfRIu!rI22zH|ig4;>ydhYM@Fe96AvuYMB0rI-EVF8J8~_aY0>6gM3>=|& z%2sNIW1oXYxODVhoH-xS63Jz?h#z$K08r*S&$t3Dy4sKLo)mIFbGZ9vyI55$-QLCm zub5(YHIQO|raEKd$chpuHtWa}=QAU-#(k&5vnz_3moM?MccX?N9oA;)>;zMDNN84* z8&|^xy%I{@YY%Oxm_BPaHCj~+mT~Rh%)KtsQ_lzM9eboc4M1twl367=&>NNuLfHZm z>eI~Vs^THx$;=JkfX4}&*7}QxpK^_1h)d&02Erwg4qZN=y3|jHu5LY?amT~aOM*hW zun0z2V$R50eLoyX7XS1YL%`pbgan}+1HLoJicAe00Zm^SvxAkoW8SVH0)ST=z_`Bx zyt0qIRgEeKGc6-qYT#&vlQCkqYOYWxB_80k!J#rREAcVQ+x+rLsqp7KyX;(kGturZ zYdkPoiZ;#9YFUZxRzx0*?6{`^LOp_A2#B_Cmfjl}&lxTLHZpZd$#xMy-Pd5Y{%fCD z+v}HOlOljVC`kA}0_6zifwJYY!(h#CU!{<)PjkqZf+jh;KBFhA$}<~xkX~pWj_?2t zV?=!3J_RK1<AX|9|Ko`i?{#X`d4wfd}Rph2g<_um(mTrE=vp1F6bWC+;oErtZAV4&ce08{>=%_6xIe?u$b zm&@EIQx&|P#}}4Ps~iL{e=}T05e!<2xF^+mV=O#Zart|59H3&@iH_L$(OOBL_9p;Ah9`Rm%3f7|J{$P}htQNw+e^^HM#`o~3zfF~C@KY9f8Bxb$c z2yE5u0za(j2KO#yD>;qRjFxL5htB4-H~=NADWp4sOg9CgNk**>b>e?gQQk5@i+hL8 z;0=SP;yZ!b|GQqF`F|s;ljEXhcCyduJklV#$6M+hPQj-6f$#TOs9r8@*HUz!(WnY_ zX#l##V*H`Ag)^W)$=)ZehD5}l+$!9L6RWZZml05_I5E?Z<_WQ4jL|DU?H_2PnQWacf0?ai zAA@fIG3k=w#(iaeV8l|z!@$*QG6O&KWE_Am=P5bh$;s)MD;Q)fW&Qz#VvUNe!D^P( z)phR285Xi>vJaMa0(~wn{k7Bx}J6K^+qw6z1qy#}+B znpQ61zCD#_tJaL+&t|jg?`+{h){oVW``It{<>d)3?;we|bjgTRhihwoWVoRFnTiw4 zRO$P1kkg*08VNwP(I_WLfuOhYA@dHfu#cN!qvQl!*t8E4-r!`}Rd|U2T;xB(S_JT0 z|C!@!iJ>PLPh&fnfoa|W=6A>3rV9jsR8VsBw0!A53i%D1bmi4<=fx0yE4LyeptU&z z_jo~gvC3%p;jH|0fveh{>aHd))n2>{IqPL1$K_uj7=8{OBim&(tQmaYo-}T*Bjye>zmA4Xqj0Le+!R%f;gYo9`poqzS5j*( zqw4;Z<`SHaaO2HXIy6Z5lwOG@pO`7MLROHZzvH=PaT*#&y(yTvmKxSE#3SMyEN}J4JjFK6Q zpVVBQQA3Rxl{9^IBia5o^MSDbV*%I|%Z(0QX_DQT zbfh@;pzK(b<1M^COT+G5vg8UQa_8ckHM@neTz#$@mO9**`*h6L#*+xS6)L+k%qLnp zrSf)O0m#f89v{X5;Ef!2H;C4+=(B>zCg|9Ho@^7DFzI!sfP%Y40}g5J!fEg zKUFH}EsNYr^|bAKBw@*_C*q{6ct5o>6J`}js(V&P*cvqmmvF?y=qYH%y8^eqJrQ6q zt`*6toJDd-58?+-J?q=ki9}G;y(Nw&SK^u3IWIs$&8d38vfksYusa1aSbBH$XO1Gi z*AJ*u!?(_4`*TWX{O?M|jRmp#I28bS!x407TMwsAK?-SWvSgD5$N^971js@K8teZC`N8R&e#r*I5Ty7r)0?9p0`@uDC zJX@P}K@yJ6xNISBMGg)eu@oshAcxfuNV$DiXa5}y*ALv3U5mb|&cR1e-J9n{xYf+Y zU!Q*3Q{y(-SlTD=F{hCXfCF!Y+=XTWev$+dCWrgy$5|<)7qzbCQ6J98yIxasgX%iH z?GNqJk*7ny4m35kze)ucHdy4A1+gfy1jsD^-BL|7H_RseaCsq_BUDcX*7zSq_UvPy z_b6LW13;CfQ41__p}u?rD01!*5a7%KgqLS&V1*{VGJZR>Bmgs5-YfB^YU7RqUI2Al zsvn$rs7n2*fd*`WD6|kU0<@$4FY>TL6|ey=4gRY`!iqxASAerrkPvGC>~-NKG6bMl zMUfiI5k49V6Ag9G@cXzfsqlpJ^r#f~Hlflttd_p#M}W&>_a3sA@rfI#us=idb3?-% zg)T5Z>3377Kmbx}+9o*mtIh**AR$+X6#wTrtH9AdCUOYnQWF1QtB`>aKR=Z-1~flmVhza6*`|?0kGlh z;z!}bf@LAA`2IJf_u&xTM3Uz`3J~UdPFaWt!1msp|21+J_{eSGBiSq4^qy36kYP#B z0O((ZWnsLo%6uLWM{!$o$!>aH)^*cuN3=yxO*e<1OmM7^?kF6ur8CS8`S?PAVotx^fv+lXdp+#E3LnebmK z%sY1b^QlJ~B)bF)qmiXzluG}Ok(Ua#ymzLjOO;d)lr61f+r{UrH73!>P;%6Z>_2R- z9|wzU&7KInc`3tvf0SuIqd&N9;+Rbq3h+*zzG+MYAgK#7Vnoi8 zGr>ca|54-t)4jhJYI`IMqI)fC7szT(#gvN=7UO0|iw6B}pU9ndq=I|)y?m1o7`Xm6 zk4f73!?c^h6>m_t0gr~MG5-_?wD(qj*(3mK%ig3Dn!l<{+Q2@Yhu8J^V(WFxUXo0qF0Ucx6U(yjeUV53HG2Q zqh-)$?s^|6lm{S8jPe|dF;sBpS%ldsGL};K>zK#12V&k+5c6(3k=+nt3Ak<<7LZNM z0WZ^`830Iy--{bUK0!5#R8P2>_JFwuPhAelq3v216?ywxLa z517zm-R)ygs&!^sLU2Ek@Wvol&z+gfppp6C-SO)Y#yqeX-g60icLAR#5q0}j77;`9#pfJh022(8^oXH-ee5wX3xGwrVVQdi7JHu#X9xv_-J1Xv zJJrrN)bIi$L(48Y^w5*u$_r#sd66@hzYx^`5EYy(stN#c9F?EAUkbUbo=uB>p}>^U zy%zXe1E9%YswGO0x2s8;Zm2;*k5iOP6dM5$3YZrqk;Gm@u){3>D1iv*p5|3QScv^y zNCcPa1mm>@fL^s245IDG^*3<*=kX00(94bZm207S2D!rdRPA|pn_TO#{8jRHZLzPb z%z*rQZvo;&Bqvjq%+|lne|tWOjNA3bfpE4?<$4!4Y&{QNDyl0g_rqTDXg=Zad6N^l ze+MC;n{>KxDFL)Ht__|Qv5E%h!F={fH>fV2UA#VEcqBu}$*x9%>IpBC2+W4MjYziB z%AOw(p_hL1n`I2B@?qbwWt2GDkv+eSi0=P$Xrz!ve3P}v~6T}{C z3|KCC^vn!N*vt;EVD4DRO&7F(-^`Zfye1D)5hU zsQ^_JqpK@4q2K5}68$uXeYC)XIQ5voL?fM$9G(7WNZ|1HpXGCA2;rCHL58Ku^=u22 zOQtb{aA|VzN$FAp`X>J6oy3J7*%MF3W$>AB4Y=*qR|HWgTPh0=EVE3!KsXtw)IWK` zpCk+r&@h%L^&Hf)xiSd=%IxeKx&W_*dcvIHX9Q97T0D&{xKWmc9V*G>DtHcDYwXci zui62+%l-aWRg&}EcSFYIUly1-K1YW{!O>cLG>qxuMYhFei7yD@G?&&c5Y(HF?3(6NEv3c z8UfPC=pq0k{u`6p2lfc$i5>oj@PsY{M|U(+ub{LMNbL`*d8GIifz@?{U}AL~REXj` zKqNgUd-(xK_L-Z{_KA*I0mr&y2tq)i)i6Z~aGOi*KT@`DzCZc0f7`wg`k2CQ+*C^J z1T?Aqmcky`?r@c6&=ADarxJ~V7x{IQW)!aP0U)N=w<>?_Q+m(B2pxX)s-EeQHTxZ0||}6U7lk*$G{C#`$7|3kyDj7-`x!5Cm`o9^)X#$JnuY}(#N2Te{H^h$xV9tNYJQ3@6 z>tx0P*l#2`nS*PH!vYNn_gKiDMv(|^2n>o?TdplplU1HyNif$vwDS$@#A!|xHdLpO z&a0khCqD)N?+yg@p_oW12bmNW+6hM?~0gYhQHbq8(yGa_^tMmbJ zT=}IZP#jIn>`3yD;3G*lw*CljYhIEcXjByIp?-b^kkyYVrroH;3=P@7jp7U+W`MMz@S6wY9W0vZd70NEQNLrmszvcX%7G8#k7IGe=l-hnOLk!lN8{ig7XnryoyR|=s8HAzMdqmvpyS(Q}y@W0$-3a_| zXQrJoC$_ty-1L+IlpS3hwO&j7E#5RGIWa=PSAZuu+FMdi z!4L~53IMs>zNCwEJ=8vsB8YvepG-pXr}HE`qn@TH%qGl{@+VEaHf>oWSdZ-B72R69 zXB}Q_bL3j7T#iU^#0NBAurON}gC@nlm92lhMFw*RwJ{rHr1r+n zGlhDJXHH7uI+`mxRheLfunOoteMnzvRY=~_x#Uw;s`sEwk9cjhd^~02Yv4&TbB>Bq zg^p3RRaV%WR$oy>4=q{BY}xN_Wl42(LZnDHRl+Je;_X|Wm5EpDaH2e8hx2A1EL63x zwTUEiP%kTunATD1Zr`hI>(QIP^R`@H1y^4_ovU&h%Q(8S`X#ufZH?L?RoG=-Vj0G4 zDm}UD95uI#>A*RRlq2$vy&d-+)g*PC8`UwbWA11bNEdDK#+<-2+!$>28TT??*ei4k z(jGbKTK&#Tkf0?9)KF@@C;HX?(o(ag;zC%f%wp9usnrjioEyyYsNHkP+5rTPimqvq zN0veuqz}O@Tep)}K>Pcwe%HR{%C~nyjKKPE646^b244={xfiUYv1wuCLX(uf|53>; z!PHSGuRRjEKV7@&N7x*k-FM6{B-^#jHYG@adOG#OZckjM1yoNfB&OMmkSy zTPO|HbE#IeM0ZGBSyKmk;zvO)9k&(G0gOWzb(agMpfB`>3dIQ!xbF{#Huo@RoQ0kO zT+E5{X8ORHDzkJV0ImXr!2;kl`BRPa!PbyGD<~GwnkdIk9;V9~^W=PmdCo7x4%App zg|B|`g8w8d>UjW-Up!9^kx7Gq*z@3;1XI|dAK?1QTT?RBZ%<6xHHUl4knAl6Ep$t7 zR}_;BJFR>RhZF55qhjZ!DBgXbIkf7xqv;+v z`q@e=0Nog%mAu)GQpKA;BrY4>NvNLA$+EC1AT zV@o&hFS|3nT{AncFK(TUO!s?It}W)GLN@`YNorS5)Su8zN2t7n`(!B+zpu9W7Am5T zZhC27(cbuU072XkC^PuDvCwNUK7MZ0nU^3tIksGG?USZiH{H~!xGIV(DC<<{iQrH? z*RL>dt_O92CJAr_UCW46XbQaGv>r3Z+$B<2`aDIIa0y3O#L`$&&rb3$A6{^7PUniB zE)K@#_iQapn2q!gnqM4Ax7;y6^alH_Bw}no8=`8pMs%yrC|(%%E8Df*DvWW9!5OT` zEY;7{Tf6T!JIyh#jjogzvZs5!i_EqNT>F%*Jo_TJ=MV>CuekEzFk*%kvwxuz`MrxV zi^IK}384xIcSNM(jtN4d{(XJpgzB9nc2(kcn;w<*sNt}g4Bjshe9JIi(M~HB;*QNi zUAuUlh7*b8LL$PsNK=eR!N~2!{&v3=lIPg%4+p=hLf!uHTL9T4UD-rTA%W!Y{(RI` zsw@B9J(~859&=yv7S=a<_1jCvUoJmjwTzkub=*-I!V~upqMwJa1_-LW8m6&wRVWZ zbz*nP$-RE(o3=*4w;ERMfTg&L*{Nq-%gfV|dwJ!GTtm7eoVm%U-2JKA_Sv1@%0U9} zffs|x##Z}fDX5KSjXhhAc>Mb+St->=DZVkg@-w5w1T{|8Tj(1-IfV5ItBy&l%cGcNlJH?E_#CjMx6)vHo&4Jkt;+Hp&d}UzRMal%lq}zO(gWz zJ-6wW$n6(}au>-N;ci!1h2XocZ~Lw8W_bi^5V~X~{K-|1oElK|m{Vztbi@m!IKv)7 z!rkn8!>d#^EYZi%da_9qv`5W;nmQ0rVa0ZkWtZ@N7`%Ly)nb-Q_CQUZ7CE6aGH&m z715`Sk-q6%pYyy1%`HrSTDHi7MZC?)tV9{7__3aQj7cct+KEXcGZ#J!(vEr=?&VT7 zhtJs6+9Fh=9}$#aMnD`B<_2-h#>aH{mTuW}&-d;GEf#NVeSW#3b9qDg;JBpL2-gOo zvHV__%Egh??K6sEE|twW?)&ZeUj$Iw^0(dO_3*PLiIJ^QX*8U?*pa0|F>FatWP&%Y z5XFlPt$V@I8nNQChxLdWURZwfaxTUJaQKW1vRm7O+M|9?m9v!_T*keFMho4%3rZBx zN^4JsqcOt*>2XAF2adYw&Rb6<_%T@4x{F*h3{79(yZI)+4NC}q9Lt59Y1BCo9g}Cz^&d|Wy)XG;X-kDEu z=B!io%YUZTWF|rw)Ch1Qi{vz6Z!>5n(P1W(BY;x`TOY6z?;Rdz9ADX;@F-1sb=pUn zNVTv&@)4h9apwUG+rhjIKfq44fx0yytj_^k?uF#s%%wvgEx0Ml8cIt}-ZPG50FG}i z@p?F@HD1r`RIAel`$fBSO*jZBcn{x|53EkXIGQ%+Sgi8yXA6m2I93;D)sDKT%zUx(G+i%a@OW@tl4;QK$$@cn3pKd3Lwj?MIW+0 z9YY_>C`l67meXvsKz%sS<2_MT27vv5_Q<0&S){8tv1ZtMu1sGw1~(odo!+Ek%UC8g zG9%D2IcjWb$LFVnO|T7_TRE})`KVJ-Sx$LE3Nox5WV(;bWhZ3xO!0OTPjNG&l-?s& zBY4haL9EP&;%M(MzWAuE&&(0ATl1?)gNpJyD2W6s)eDV5GcVP%Q*rywh%VFyNi%u> z{UNYz$g`yt(lOH-V|RDlN0u~4P$gP>A2D^6$F<@yX#skilkm*&B+L2d+Fx)pfXavu z-lAF3r4ifsO0J!&8=K#GP);sE4G@*Rn;>PB?=D=V-xOOlW-t^#cJf9BoNEK_6*7mP z9M=^t9qt5)oO+tIw>_d*$Gauot)TRcr}8dES+7aJ^z+D34)_Y2M}?B~`V=PH!V}~X z%D9_lyd6H?=T@Ia9``irI2scyWfXyw8e5jbkzCKJTCFr>4!@jBs@!$0Mvo1Oly&U4 z7neVIrZ`P6MSL9oMPTaDqytfUBcdka!{?( z?XQSA!a$u%iykylr6lMCpms@LC9$V**&Z#kdRwaLIk8b zdJCRZe!pDpiMi*~x?5lcHg~T^3$!1VvXU<5@@{RU!l{8|g? zxp#g=Rn(R&bFct*skojW`}nCu!d7+T+~no-vskFSrET{ou-`W3P>+iArqE4I}og{j9cy1Bm2&8TMWEUfx@A}OI3-4$HK$%9A z1EyNNRC|0H?3d8*yf27x{P;wEolYr;3!D0XRoY~6gR zm#Uzt=oC-aN#?zazYZ2y9fcD7u?u*Ggl$(i?cSs*MDNk*2QP{ zLzApF&MH2#GeZQp5`s`khy~m4V!UZ;2z>< zvZ(~HZ)Y)_oNO+Vlg*$6v;!Ub{xKOGuxN6^8%o1@E?sAGH_CGT^Ug`}xUGi4)#yt6 z2_NkMyc|yRGv&4{X{#t@=BWa75)w|J(qCsDUxsBC^@-AkO3?ns;Yd_Hs14~yva?-S~eZsuZpKm|^P@<00 zStSuUA3Qf1rCO1oNgT~{MFl($teacR*HYYZNYEH9EJRLDf7x>;iL|`nfCM9pcRx-l zPm9MqYOAHx?Y69PPJPoe!rd_)nT&E%*_+QybPZZ6><}=NoecCif!ypjc1U`3zW)fC zEyHgv%pr?ud|Up)$RQWS5_azb`4#V(m+nNaRg%F7R(8l}q@z+=G1PNEVt0lZ*(sGS znm{8Jh>(DJ%$~u8tz*)I^z2c#S$>3)gd{@B@Vl9)@eYA@F61tq-~0zgm00iGaG%)9 zC8$OAc<>-cmPKILr|eYEs^L(F#rt`4J7GdSMPrrI;q0Ot4>;h*-hck?;!ZZZRJZSNR;sVPQzhTkumYoNRtyJYJ zvHHk8gTXwfy$S`G#}dmNfl&Q4n16|FbBG;*+S_Dt96&IpA-@Dt?6*9^^5%9DHZ6L* zhnnk&Bf&*30gC99@ej+~l?0W^IH7Hoy^l$Gs}0@Df?M++17`Lk)yGA#Lkz*9*wNx- zj-|90{^|0hnLtE;1@Djk}mu#R0;5ca#OI{ z?=&N6A6@Te6`Y%z{o!j`i$=gZL~cJ9+S@z5F=)0$ln3_yH7mn~J@=k*AbDD(NM|mOxKxf^8Y#CDui3kN!aZoT zzAC(4BSLitU9aae)R4@M+WCs@nUGn4BHZfxmzlPcMZ{yLWsJ-;N0b>AHAgOPjb9w; z)l<4=>YY(z$iDNuxJgqW5i@NQsm#y1H6ChDe!j!6sD8aI(CvOc%QX<)02J&HsA$9$ zb~u`^rdg}JY?xDU8c0#yt5a`XV~$ihh2{a^5-?n@1MzejhtKzt z9?LtKyB<}aD$PExy~RD$RK#>iXax)pwP#mYMGWC@?|Ki!lw~!zyz%2GQ;c1%x;NbI z(r|DfrUi*4ad^YW<2k@j$;hSu)hKfb6pM>obh z(Jnqu(Gz53@i=X86QaU&drLymo2niyJtDjFiJa zoNNd2dt@|puBdx%mAV({HX*^t?&_Vg+bo>l%J+!f#rySWW&UuUJ!$$2X*<0d`AR8x z;?5kVTXEUvEjuGyaB6wNp>wNTIpbR=<%vX=xlQ|IaeVuo*JQ3(tCS7*JBz3Uw7#QQ z@F$D7?Eqq{Ls!G1KsrOwP2wxZnN{@>xJ%n^H-oFRj zRmliP2r1pyKUkieQlbwNG>LRAYcJ>LjU|wu z4fuC@lrCl01K0ZLu#K+!?Ujq5>@&GPNAFGz;J_0O|F$*L)Gq>5kqTqwyblxg=V?q2 z^->*q%#l%&&W_r($6XdjmrChp5)SIjodmxgBt*3}5#Y8!-WiFYImi}!%X6*n;YjFQ zT39c&&7_T9jQ6@*hrpuuBqG@~i<)7k8aFk^>{(pD^^l!}c(P0S_RY%lRV7kU-3>)3 z+L-sB5$aJPe!=wwZ;H&t3{m=TMooL5CXGixI8q;Js7;>EO%FI9flY8}>^-As~xC`bE%R^udh(-es3ZrYI%U0E4LuG6WE z;K@Y!&4$%P4l3v5_%|3(KzWXRYGgV^24fg30{qzh+BK!qinFdPIc2*>WF+~`Fx`KKiY0e>KZnm-yqw16+8C>NG~4pS z9h%D2m8HR?>@JO|oS_p5oA_o`_*Dy1J9_2Ao6zW$ zwqvRfXZy&Zof#`vJ!GH4T>P-F(C^5aa>K{&PNwqxwftie(&7SY_lhTH`k!u}DIM+L zGm2!;t4vi08GLs{cfll9)~-h4r)D`!(o{J0PcJDKIRR84LPi4E{G7c!ew}aQm~uB2!@3Q zfyv;iE7@)pq@D?*-p$b4H6Dc_Dx^9BAF~y?wqB_d#xtGEKq-aa~PR9*54jjWGr?myCk?sk1^hu#%a|;C}OTM;Vn;VvxRSys=&%Hk%`o2q47?% zR9*OU|2stTLZ!pedbSZEhp&{qA}3yQS;|t#dmnDZlV3etyt{&Zmy1)O*t%QXP?c-wGGJxKP_7B$0VpCD_xCO%)hqqQi##nV~5 zRh7nNCq8C8MvSj*Ftxemx(#+BZgihFoWY=422z;%j9aRB7Fp>=GY}fy8f4mzp4Ci9 z^f%wNGZ+eQ3hc5;vQHj()On5RI`SH0(o#=eetvGYQ4P^PRLPwHO z$+z9IoZ)G4r>DXE_=mW%cexz|Dx~!ttD)^r?~fI%BrBa5;l;Z*<`|~rDy$FDUO-LK z)u`b}7*(T{7Us7W{YRVqZI+zL&m85k8BFU` zaMU3*YNM*0v-}eB!K{DBvezQgcup#s_Ck=9_c(twuu0*8Bz@Fyi6u!Z-h*L~r{~Rw z00#-sFa&PVIG0t7hxE$X8(~EIF^l(czm+K{TE4f|n{h!Zl%Y^-&`MCudLh#~`m9hG zkfI6)y34=JU5Eic%SJ(!E_?Cqm(ij>9kV)^ZrYN3Wa$NZ(|)a|f=VV(Kb1aPeg+v! zyES%j^EO&0rT5{6F$$3pCY5Gctx}5?MGFH*r=mf&gW$^$r|59;VRL z3wyhF;bVGR4wWz%t=-Y|aMU9sq$4d^>~S9=m(0`&+|2hj=mxa6@7Hu4`@mtvNy4PtkmAGr1pJb5%2U=L3;>QLA=3pKYw@}O zA83liA6SJFukS%-3Z*aY*QwT*9V19^^RwWLN7begJE|F~+Q6Po{F>(lpXj7T;O=Y2 z+~Hn$a(u0Sh1>Eza}(N4vfDEC@zh+CJIQL?8pWUn5q(_G4C;B$k>U6|`#--apNT+@* z-vmaRZ>j>>4P8wW$66an{lnri9@|)$q~e)FF%qV2*$F>FDx(@<$&3^x&TTv9zEKa) zL{Mkn+SR{2rz8`63_=xg@Q^i5SwHZikP5|nv+T}~0?*EdP|ny~F$>&n-5?|nH=Oja zTQDF_DEP|bHk0q=QcDNS&B|Ig&=N599c$I2GKRUT3e8U~DUo3qq3ba)_x>c+Rs6X~ zgVv1($qLzPTKEuq?mCdxtI2|j$`KUek%M5|0I(zt_o^>&}(D) zbpTD7S*e@^YmISn77F!4JY?;!?BtK64Ug`vBGbWWl^jr^?*MRbfrMGzoLw~mGt?4T zuJy5GpFvG^H5r(S(*I#9YD_I?ql-|r4l6IQ1n9~Sv=^$Gc)mwmf|L%U3%XD=&I#4; z6}A%ar{3wSMtU8liRxz820Ym#?#rIV@N+ahwP`bE|JvIj5|mzeb!l3y!UE}wreN(da-4S~W}p!s%n|8;<1l8I z4|{~8%pXqkp6*5{2dq2o+3X)6^N#Yz;TAz;7IS^D_K10UjX=OG;8=r#c>7`5N~4P= z#UjY?{=>S(;iWs*YlYY&w_5EY#F2zK&$e3E-W6{G1b;}Q3!WY{>OS!L_xTVSS(OZ& z*M-j16p?>W1PrAVtt7N~D!|yDCQiB0yB)8_r^!#vc`KmrIRRbrZL0P!(D&Ua-V4vM zoki*}=xwP4aIb;rBpQ4=vt4n;K!7o$EvUH-452hu3DLTk#6US)-Psia0KJ+6H2Vc_ zN18n)wql?x_7Kt@6TFL&+;AsnU`S<#QxlmdHFFmFYY1c!nv4O<(XJYj8cB%2_{&3( zLT1ak^frZU?Q4v3j}9?6HRg|Gg-&Jq8>t%wW6pFH*TiUGt+|JYi%IY?J<(@9P!i}1_;gDaW$oO2BfM$!Jkh=65S$NC z!7tV3ZKpkiqMq%z4y}N(!nqiYPkSAQnO9nLU7d|3z__(;uRMDSm|^H{oV77_D1fot zioT5-INI2CFINosu*=O!TnTI_rJyrbj3hhNn3|VVI4|F7MhFv>5Wq(BDi{-|$xm1c z`_9taU8WUJ0Syw-!YXUcus%`h6gXEpl&cG^)A@zNf4?h>i(t1bDNC@1JT9C9CAL9* zAB=4ey^2pm9LhJPJF=C4M2`k=5KYM*0F=Q>G8MqDjK}ClJb)p7Kro4Ny6JB(0UCv+ zsh59Cf^u>Vm6oWfFF?2r8AwFk7gB&Q)^Oa0#}*g&?2MoI+Cm)|wf%-s7tS;X2sGF7 z9a%W3TPxVNO$a0AoR+zF*S!*K^j-wpm!|YGp$p@(%M-p~D11gK&#&{o2h%n0H ztrSRh$}&waHGS+1hD#YD{zSoYdjxr@lt16H50ICyk8#?|rU*6{##jo8onPJ=wDe5AS}s8M-rcfS$S=}6R_veCf`9Q+ ze3q6B#0=`3RnE-k_Mp#=sRh_-1(Lf!zM>lO^Wrb50A>#<^8OZP571~VKpRvd52j;z z`Fx8fp6@+>3hZHPxL^7fXdQMTefcB0bRaq7j8EQp1cwPv7V63+CjtHwMx7Hye?B(} z0)8sOYs>Q!F89v>ubraCBQGwvvBFONYA_sdvyWYv)Mt}Yu85O@kDa4lyxvIq0(^_vg)1#&gRzaa9oP_7x7k~#Tri8kP}HCna4^XOWM=Xw zGAk0lpIF)4^7EZBYjAwwW5Cm@j@;`{5k(VQ8s6X6taV+^ICEHZzqk6QDmVO1A3vp* z?+vg4`k<}H+g7vlNAnVH;OZaW%7B)=mYV_hqO4^i3<<6rkYncL zu47xf0PFXKV6jqLca#jhk7T|`SFY>II;4+nVO!6a%Zg@A1Fi>?({2V>M(iZq4G(Ez zKUN`xk1u{5b0R=vRkNX?_X-3*1bkc z-4BR_fGGAzr}J&b?_#*8jh4Dc3#Mw{R*arfdbni1RvX^{>{dr{i8DOFz?rmd=p34lUPDqBzn;^M{f1KmST^F+WcZFl@=K*zMGPce*$^gxpIY*H zXL%IC@tkW?fwaw}Ki7hAngrnBn1WmJs|ea0< zKMKpL8KLirTbLS@MX>3c$OKVkNm*?sZ>g<`gH~6Tsum;d2X-4jlMg=#;IsA7GX%@g zmXK0}jGk!#ZD`D$c`XNowvH5tpPCRswOOmJr)0x?=>IUr{|a`jx3ccSqC@t=z2KSD ze+xk!!%6=+>KN5LmoTdn4;_l{(C?&kyrV~9M!4zTZ%e9;@iZB|z**5@G71=UC%vOny!9{`}AECd-&J!s;}zJ$ayuM9~fSPocOoC#2Zydo?k zfL%cz2}53!iM;7U1`usNzIhgZpk(^gVJX97MF94kl|aw|#U`N^$g#q#`;#dS_=Bia92Fo(IP(aSsDIAMF|vZPdjI^A z)fx=dq-3b9WcU3TW*kaB?l}9j&y~MSLpZ!roS~}t zRh*UuKZ9F0p6A$L^O135i<|@=gL0v16{r^NfCQ`zfOxdhX6b-TR()WS1e9l)xSGy= zSVe?ssp9C=)@%)MuwTzZckGESpviQJew#^wAA&(m-9b%YXj*V^&!YnNm2*4LH_Ep%%)b|EB7q28OzA%&iy&6i>mmDpvG5=BocXF_qKjr@_(A;P21NH6q++#nnfuPQyG`OAMWEU@gK0(-99f zrOA&Kaps+)r_vjw=qqvnZ^YbWC+xnCvwWcbCD%JZNI}95q-XJk1dPkiDQ7g-ixcZb zHm9&Et6i|wKrRRHUQ+`zfX(?z;rPosFVIgQXN-?=s)9zRK8s) zZM&v`qfxOKvbXL#=?hRRt|-st0y>XAwRKVd7DrCS#&tOg<~SA@@T zwc;mkY+$gS@EVURFxoYJ^l=*B&v70&`~Jwl)UaOYNP(DrKsL(d+_PF15am@0Sm28XTELlJ;YPZesE{Bp?}{z zgfKRaQR_Nc8cX}_?VKf%qeH`hiE3WEFj7sg8JC2@2XI*w`7F((xP}ALGM)52o}4>S zs0iRkQH)c}ze{j^*Z_>HjaR7e?gL8qR-ig<0+Q0kvqumf#0UfdH5{h#da8R90sq?5 zo=|F}--+*l<^?*E6g$c7_2UkssNa;cWyWNDN-$^Bui1! zd8zuJrA{3(-s!`rsxI}wS(+f$<0jc{Ne{Q%avogUAJHvx+^gX}sPb%7Xe<|MR!eox zxUePj!KH`Pk6m(02%tnYl0$t^%+ny;y4lm-FwC+nXMkQ*49z)KaLtLzhwVP<;^LwR z+l3~7LJ|sEP3-)X$qsBTaB^MoFP=Y~)#-W<%436i%5>mV`I8It;^F?Nwb6t++|y?aMc zT6~}DCf{oNM7VJ_o}6Jv!stO1Us_MAVI+fv(@cV{uLF!v`G{WQu$^l&O|cs+rP1|q zXfuAstsmX4LOA>Wir*t0CrV_JNj$mVOW{eYZMX9k9mVoYkCz}ZXe8pH6$!n>Q>gJV z5DpX`&YPb~0Lg9XlC>bM_ZjW$%z(7Q*xAtxUK})G7|DW6VX$u~8?R=*z$aM^gr!q= z`6#^icXGr7;#%qVoE9Ldka_~bGh27AolKjjxeugEpG_DJpp-ZbuXw{}o&{uSnyk4k zk&)Gq$JF`~@CjZM!5X&IZwuzIh5Wj&fj z(?yO`m74>Oj`CpoC3w5)Xo;nRM$hpvdj-*MQuZ(k>nL9V+~>iXnGaA&AF2K{2z)r5 zg8=&T!jD{A9*nAu6c@)m0mu1_~em&XTdS;;87PDJfV19}MdsJA3AD`+{=q(WpAZ=D5~ zmPc}*MN-O=-J0w1^4?Z@<{hOfZdnwr& zhT|J#h>WD>D*8daw1hwG**K~f*FZZy?CZ;?#_o;`ZkX8u&EBEbp#(&up8uXkNw}e` z;6px^$OwR8lxq+glL_{?J-P-RM#)YnxJS8621NQSLd!#XWp%EYu}L zmM#Q}2Tih`07DHytuF_+odjkIE+@2`=W`cLSH#_U^GU_c;0EJZ%r22qe`LOfl`p*`zGMY(WxZ_?Sz$(2DSn@Q8it!AR!404g9Knm>%Gh ztP%jG6ioNwL)e5Y{kOxA03rsYZ2l+*xLHp* zL!&hcD1SfqY1V&YAz)m3Uw*l>H^68!F>#+mxAUA?oQy#BfsLi0dVo&PZ2&Hxd--eQ zvod2P+tY z%Ns+>gRMn3(EP9X*!+KBsWPuj6u%q+yf8y(LIK;yZ=f`TJ0(M|C7252o~iv04xZ&w z=2uOIw*?7~!Z|j&8F^+A!Dvd%P?aZ~T^r9oFe(4%8V`|$ez{@jK%Y%e8K>Go{$}rH z`cHvi&1inlsgqEg=7IAH6Rg+_%&8Z+;jMtLAB@@#pLdi=SM{ zs+_a%;jA;O{*b3Ohpz{bTxnUUV9~^rEK5z3W*$i&5E&**_`JG@DHvgNf;$QXs|B(8gxUI>7 zhsUWQbLxch|4daL4#KPPXT8-BsUOT>@-D5EhG7%}b$9yvc8>U%k{3aYDi91PM`U&H z1jk)lA`G4eckZeSbV3JeMozn-48drGhq^~c3HV1ULx7(4oAWRMBX4}w%qRyRz|SzY z9d4rCJV%O5@i7zj*6nbqm=9gB2nQRN6aU)_^zZy=?q(wwyZ)L6Ki)mgCXKq?g@mzrZJ9N7Poekz2Qjk!E`VLv;gWEoLUMxtOzeIN!~Zv5 z?qxf3KF5S!u7-p@${fZo6$h(BsH}k#ND*GQ=!ta)dZk9FbDRnnx^B?O>oVc3Shx{$ z=|Euqxis0Pj*qndhC+&!ps_hV<~mQ2*ab1$={Uu)f=`-?whPmWirxy?){7%Ydl!8* z$9B)q3^LHnj3~8uwKYN;T3TZcmEV+u*c@01pPrGY*iheT0Rko%Q~ z!Sf4}oxl?Eqzh)D6;q&X9xEHfp>yz5zncCP*Rok6kRqI~OI-$i_FetCco^oV*@Ij8z zI5@o%!(>aV5{EjV zc_J@o3Uy;_0Yp{yococ02Sj?Ui63xYvBh&sA!3VROLr}Z?=OQ^rXawDl9ak7# z=05}p5i{I4r=&>-(Tpx4SQ7y|-ZhQ5LIkCR?~sTa zn*tiT7~k1?JP}XMhPz@Bh_9R4fa~+0`u{6iAjvPBZR0HC(aL$QFF!%bPsJ|pvsAw4 z`q`=_F?7tG*F@|4M(P@V0$H+qVL(ilF0kV8^{w^Gs}1ZY4Sb9DEKZdriu-aJBs{GfQ`I?*BRsrxfsB{l5`;_sWeWVfH2!f zjmvKWhWDmla=?z|VaGy4!nV+=Q+lTXGC05scU)KHX(aFXqze*S9dRa8;6VjQ(Butn z0~t6#G5?>-0KQ*FZzF!V0FMeBJHd|FU0k=b;~+IQ#P+2M+OBOuV&+M1dauKL6(jZ9 zVe`V(@O)|K>9R3N=aG*pcgf`(AkKf7-RHfv{zd_jvomzD`A2>?tE7b^HaNR)(|S?` zwc#=JJ&?(bhs8qzkV`cm`R4&Ytr9jFuV!H|lF?BvQp~yf`1TF&(#h6CWt5k6rO;Xj zAJc_1#67FvMoo?I@!pdbTbrbhS{;vmEyZH@ae}>Xl|H+R4`(JWDu!!swx9CoQ|jD_ zm0=An&qL1Zv91C$)MBRowifdx;JAVu_E%w#lkyi43m=5sMsYQ{9qJnzRWMZYe?J#f z_&J9LRTa(nl=|s)yN&1}9F)9vS}zs9=f_R)7SPTNd%IH3h)1|G<7x)?Fj&8OfohBa zgT?rdRs$k8+%kLUKBzusjPO@=$^Qu{>|wYw8*U>$r$}@%Iz6guxr#_p&2_~@QGBv1 zDQa}m%K5b^d%5*HBtr8(mJc=Q^e!7ysNxyV#129IjYnoEgB8wzTCey-GvfTN~kONgPIe@8cV zHZ#MTp5nrq^IF#no-EKo)F2T+BnB0F2}ej0r##!+LJS}gUcZLdzsjE!9FrdXg-0k- z^ve|2CnX0Y7PXmL@Z_?m;a1TUZt4<(7{oEXX5Tr#7t`srafXkp)zocT_4{t$x^+uN z;UHLJOYaq!#PeZ&IJX3Rggd$b}T#Hzhd?E~rkXk$bkis9rKvZHR++}(O{sqV9 z(JqK>G}eAp$8snQ-~bW{|Er%0vl-tPyHO1J_BZHN>Nj9bQ34Z z_ymQJT)Z1%n1v_p)NpkTloiE*%dj3i?J_vJ=e9Jv_sNt`^`y-NiCBaB&({eQ%=r3eo zN~dH0N>n8LJoh2ba93O5-zJu`HhiAC-7HhaC*P=qM@FQwNJ5$bXs3hk!NoG%@U4WKOG z0J1xz$u|8IHL=!*7*C{YYp}q9ObI38Gm9D2f3+eM_8}YyN6b?)O04=p-(w)aLp7vD97YOUz4H2F zl%mAeUTsyZTb{61T$?E2i(19qboI`A>&1D>3;zK3c&iez#mVZ{Gm$vM-9YUqM;zro!?V=XufMfO}fx%G;xO<(l=Q(eKtZp z^VU^-A1*_#ncmVVJ``l6mm~`^0_QueS$-VeuKiOpLHi)*b`*F3ekmiYA{wSN%Uy`~ zTthWRt_&MSjjl~au8DT74IC@pJ!4zEq}@pFGJXrLx(9xzkXLJ!dH?uboy>?G#)q13 z%_(l1l2znAuKy`OKPx;-QHxjo2&i87TCqgrx%4_3Kfk3p9T%&{>;kwO<>18^epWL^ za1h$yAX-F*VOC@#d%*g7} zEz%!y||1p{YAj3fo_}hB%IT+)qd@INuTJJnj=qJi5BNqx@+R7`Vp!MKEx0FpARe{6!{6B6(2@`9!XHj z9$Xu7TmimzBVdQ!2U>NJ?jmJEkXI1?#nh5Kh)uoEqdjzznSjRJRfe&I+JI~DeGRhFX> zvVhYp=Lq!(jVSRogMLy1;e9qQ59#Vjg^SplH$plufCEN(T5Dt8((d=|K*@Fa&6w-jQf#UCBeKZ3o?GN) zN$}pHC=ST`I*vrYU*n5hINRYmoLc?_M%_|>B~he~f*OAQnoQBQ%YHBx>I9~Zo5&%4 zej@4pWG`?LDtZU^1{hQGXwhcFXnsvEcOV{GfXHfl{qlHaXrE`%HK-)HI?vUwjk<~& zs%kOLrc6DF5FAoc>`wh4tQhJ7DWOJ(ixA1YeS`#!!`QacF%EDj0b(6#yk_T2++)Zd zP8)N>+dfbgZD@alNZ8>Vm?3c}?!i|xTsL)qUd`d5fAqDT(4T!5?p(FfDAx}!6I!jw ze|j(l*kgF$=19aRjA^p5eOhm^iX*gqOIPft?)tyvzV)^1%?yQ->!rKYN><>lQ)%r2 zJIlt30Cwq>8VeUH>s#9eJn}Mvdo4ygUDs9)e|&W1o_bsTj=AaC8*h;b zA3!Py^qKRaZon_`lV*@?qoM@_@3Tl3VJQTpi34B*)yzGSQ4a?wQ%P#4>B%&r(dbw; zU1#gYUUBC=G&+zC%Q8U~>iC@a&brht-7&_Q@sNDU!jE~HPxelH-mS=6G%%<*xMK8a zjhq^)u{k=I77WC9tGltiFPsi>iyU-r9>2R+%`Jx6sGWa5$i*jJ8xbE?931arR9%Gs zk1JeZ1Jzw=wybMM8gNZ{EJ)ZnJi2pysz78ZXekcqJ>Q@5mBj*5*fnYee3WsBYonrc z>5T8OF4`Gl@%a-~OFSFLgI=Sg-HTNRt1ZYK%^O;6!3Gx{Tt!dP6wga`bl-RyyMLKb&w}bEY~(M&Z8Q8MPWY9cW4e?EZARrJ>bW65|R|0$3oxO zXSYNo)5Q2|^5V%6eJ=%JV6#5i!7DbAL96UUIb=T=PLo}^nw#|~g_3F9Wc>)89hH4&8C3 z5l2v8xEDG(;Nxs(x#yISDIw-T`e4)!tUZiZUhWDLx~?&>M2Mj#qgnr)i^}K^_!xNI zlD!O`$Z6xA@^Z!Q8KN?x=GNFb<)!f49)?x=92WY6Ez~XMOX0bpUD;XPE@1Ynfb_7^ zN&!&A>t{I-uKp-I*CM5W)b*`28#86|jicod-QmH{F4n+RMY z=1^38PLP3b3++8Ug0#jh4B6JDPRn!7)@=Z=E#BNbxgY&wOJ~NN-F53ikMWw1z#}D! zDMgF8SQx;k6XQ>A(J+N(MdI^U9%K3NX2$yOZ(Qdq+=$wDx++9ILv}4LHgy$cmO90( zsHSo06V*dTM=MJ$g?78b*z9g=*TyE@W7DJ+Y7vV~IeTd@@O)`~w6n8=d%up88Vduh zv32+?qXT8}39}8^#$GffU%;(k>X#_^1V4?_T4j+`C@0uH-FQ69pj=nA4GqguG@-xFvSLY{Ube_uxo7IIu;uc_3UqaXLQJy{s(Nc`v z`|{OsWheU%TOJSLwPukhGA`IPpKEICW=rSs2ocHfg333MkM>xwL2XaQ!}Rl2xGC$h zj%qu@v`?~m92PSX3*W@ z)H4&I1CrWiO@UDYGr;HnFvA(LS!>w0&e-!oUG6$gA{a_@+-m^7y4LzbDkZkxM0OUcAqWtbJosG|ie~#~kMd6xp|J`#+OO z$P*ipiS|a@4REA{@0sD`btRC)PaR$B;4KopR@Qy$xLsYiS9V$~aE4{PWCkhWgOv6f zJ(1q9)t`j(O>Xr_OSMTDa7F)3nFJ1Tc(vHi)6k`5?GfFKTd=rsjNALqO6h%7yG05` zaLFR8`V*?uDsF7v0)mA21jk{R=-no{X_8+rVq-OV(6^4!0RGJQg%B9@MW2K}-aq%l zP{$wlVFV*?$6JW z{c{_Ea?B>={O==^Jijk=qySOIm@}}Q$jD@K<{o?kXXr`2%TAi>`K$94MtTuR02TUg z3PJUs@oKc^j?>mHzh|UYbC~58(BT~*-^Qh896lirL!T*+fS7=S7FuKmdNj6wtt==+ zSzs>pzfqPO!l?A_OY9|lk(M8<10z;e69&qbD-zDeXVluUZ-w?twH>%fAIM($(!BHk zYWpPo$VA2*e|1Rc^{R&PGTOB3oLh{+xvCvZ_1SP<&g~B50Mh+a=Zu{~4%Gp^ z?k|m+_Sp-6R@uvCR#n``YC~qokW2E)OC)H*Nzt1ro7{ruO<2p4AbwKRox-#{#AIij z$hG4daTYZAqio6*ZAFIKEg|RL&@HAka(5HTDVMwMs>L?jYQSv!>ftCD-Z*u=yxnH zO!ej2-3vM+;zXyPzb!d!S{>ZMFk~@Hj z1u_fUMjKrhn07C1gbc#2ku_*m<_Lo9t9Go??0S1-4c;j67y^1eVO-6z?mgD<%$0`& zFgQqYFZqW`w_d0JR_MAPjFj_6OqPeU9xK?0u1L3(QM$W2WXA@mYCY~`ZN~tdh&mLB zoa_Rj(w}g;4wtBm&ad6 zCFkMd6)kc;+>NC-%TR0tCK+y=B#rh?>jK^?-eRY-AxPfdAEe2Hg}2 zpepmy^rq%spV*b^yzI@baW~?|TNz7dNU|ikBl;lu_Zw1CRcAG^ymz$u!v19MU@cLv zsqb~@LgxF9ZUaTccUOg$eHh7Cu1^(5URQs?J3n$uu|;!8PSMq6G*!`=K<DL#yg8`R!C1I0Yk56)}T#+JvI-buLX*ex|?YIIp3 zL&V0GOWg3V%bY&CD3Kp7i3uqg$6A}r`^`TD&)P0X(@>5cbRZ1Wgq`I&|r08BLzejsm+VH zC&g|t_HE?H2Qp%j8ee0lt%E|Nc2~As<8_`@nZ~u%7!F19)+Gr=krfCqKa;(W#6#=s zIIvn+-P3dNt+dAM)9q(Q>KoDiVo9a{alxRIp<#6hev9q^4rjsR{;lNy#Z=0yCEN_O zv^ImkyckEYUQ`KcBe3{pIA4CqB@J_$tgwuRO&!L;1F+5K>x73AbGqQiC)AO6N>2OE zc3kayI!_paATJw->zqfgA09Q;UD9Z@aO$I1BnQAk&;oDK{AI1;QR@`%JiCeBSYU=T zYJ>+nXB2~H-*WGj6)9f&=3(u(e!15O>%-D{d>6ABF?+33!n6JIY7FS5R>XBhSaGhJ z&YvO^K;f^gD|{VNxIfEzoa861fS4;7m5q3C94^QDn;i%vC=@x!i2pjOxl6h;vN3I} zXsJvDN;?jX@Dv*t4jdP)wKsPbQZRy-B*eNjGK>_f?jLQ@O7CBkU|c+>goYEg(J*qq_h zU%)5d3(@Opg8r+D_E!@Ei%0ykuJiB}3D>A;V9YU2RnNJ0 zNsD}qFeKb}&fIgmR%r2TqQUoE6?x5ii zYcPP^bz+s-eGlc#knY-|N1uClb?23Nd+l#`_KkIiFZ<2`=T}#vIjG|x(Wq3rdr=S5 z8(<>Pel0wwc+lNl?7@H%qpPl#0xhk_m#MW`W)!vs3bPJ{uOoom?We1pHXAjHh8IOG zvl|J&{s*+rdK(AY!CxhS*;2pkiid}{wzi~?FZlJvt>JKcw_T-~If_(rm!HV^9LDis z3@=X-9<5~KImAVV#h%35AL~X!cl47_*@2rkHTka|^m23SIk}T?ry}hsffGcMESLF{ z4@=ctue!{?+A;q*E{%aR$-L(in(qWj8Rw{EjVM^0+b>}5^>Q*wvG zvq7SsukUUTumc}OGi>!v?pVcQfPz?Vk4-nHuH(qj*3x*D1Qyj$_pv@!@$X-NvL@x) zo%U=SR%s=(iNWJTm+t)3(A&u@N7XY0A8fr@#L|tPlrR*h7MA3Q1>K`Rm>(ZLX{D8~ zCyuP`ybKeMu0AIrMma)!&(7~3`eoHjD!_E0EVRSuytT&lL*F*TWJf^4Z^L>Lo7yLB zfov0lN8rnL;`X<_e*c$Kggk}Q=PzLmeT=&ba=B72q@L^*8VuWS38+U(Iq`dW+#8pMYpL)@Nox%;Z8D5Ik!@k+G z@B43jTd@J*$sJM@M%6e;&hO`jz5$FPsR{cDd>O` z-0@diS;>G{tQVf4WjVYi!B}^Kn1Lm9w%gU!6L84Y78=*o=g0%4U!F*({H|0?mW2L1 z^~&^u1ag_2FIJiH&>65`8Cg~#vhSPtriY27w|RV+>MsO8BK&qfcm(*Autm--zp+J% zH~XK%qjzsG5FASMYFZSsTEd%Hm8R-;69{M0cJL(+-lyrydJZ)wadtd@(-z37RvCoB zV8W=82T=9wA(pIDPoY8BGQ`OMrvFV5@?<0r@7%j*SH&k&6+_p(|zE7L0-Ikg`r_aE~YQuH>V&2|(dh#4Cue zDEBUn74uHqrjoxu?=HT4;DS;u?e*Oi(b8}b0JMsFp zi_3TX#8)q$feCg{OP8qkp*%ifU0enKb{6*&a_Y+aa z5W|zhLrVoP{UDHUZW1j;&_oGFC`j~!Fw#yVr-=K_Q$)C^o&lTs8Lj6R(Iumu`Lfk( zpMb|DQ6uZB`YM}x7n~2P`TOT5dV%;=^Lgi|hA90N=uHHtuRzc4e*adU9415ORHDL2 zXda!$3`5aB`=&BU?Ma@Bhr!08ifk4B^V7G^~r@MoiD- z>H~VHv{S050*zGIc6f9ol51|HU9A@a;qdh1t{Y;1-i4zP&#fkZ})~CBf@Wfg6aN-dq4H}?j1ClFrF2h%C#*&9H`y{M8lhQ z{Dy{q*OT>&68)Z(ss25)^zVH0H{;zft;_6gs4MP!&}H`+3la4(f-4F`xZ}IC{BD8Y z6mDb79^tTD1}j235tr$^uplg~!HDwIca!@rneWbJ-A0*gkbCgWzZ?CJWBfs2|DNbC zf{lMw_y3PJdi#>oB@@2aLHt`iU$EzAZ!s41d3usy=|;HDC2|ZBU7lt`8`6Y_RipV# zm|x6zQQ`mOyhwaekrDe((o^Ky1#?G2jMiRbO^vQ4Lt_z^ zd+cb!wz`ne7m8|PdW4uQAJ;XKz62PLn7iOrc-i(|UtuqBA|M>}+q|%nDsK!tU3*aEC-Re^Eo_m;sjKw!1aN z<6B6L(07Ma(!8o>4yw;w&iL{B-%#Rn*J}x0z7|9ldS(0V7yZFq2lk)9l14M3$u~hj zfIuwKfb!V<51C{j+JClGSvc`|teuvr+Kb_@~aF zf?$tow>Fyy1Py@V*hI8e<-X!)`-?G>I&Ce)6|_ARx5Fd$98X+*_xlf-CNUX!MaQl*Yk=5L3_jaCCyX zem;(uz?U&u?zi$c31%I%`J($$yqjWlDvj2xBx=# ziF@y>$Z~Y-U!FPt)0O%HANE8{A+sX{k3dfEM#!)Sh}-60asMmsf3^ExXY#Kz`PX;< zdsTk%g#TWZ|3)VN27>>_-T%hj|E4)VCdt=+l~o?UfgXVV@54Lw0w;f-XS5RlQ@Sy+K1M=NOVaMnh>^-;C1bAY{hTkxX<%bF$K8YX` z;8^kYaqNR^&eMk{fB_P~%6q6Q<-F5fB>a!n4s`ZOU?-Gx3F*YODol_pnnL+v4OAH} zoS-EmWa>fctF|RNHZNu>x2pR8P$-5%EE)9V1l>-1y@5n?UsRQzG*r~n+rE9ia_XhTy>WiEmg^FNGO@7~it97L> zN{L}K%dy`3@6J92Cs@)UU)Ajd`J}X~tUKl6&3I^U+!p z$1wsq>zww{z@b3y6N^Y~?Ry`-2)=86pR5iQY?1AuQPg_1zv1$ELQGBQu_}C<&u=9! zo0%n*EG{k@5l1{gw#RV;>+T8LJM{n9_E1HrTMN43R{QIf-SbCua&=lMqhSW%+`SjC zq;l*a5*Nno*EB%tUE39L6_cLR1s8KZ`4W{3yQL#4>W}u?vT&ve`59!e{!X0LF zl{1w=Oe@guwjz|LUvuL(PVd&~$D}b3)RKxWe~e@qjLy3UFeM6*gc~WobFr{_hoG^J znwsHTUjbjRIKf@+yy;kw2;cX7}(1fa5E5T;*GNe34 z4&9+Y`ZoD^(oeiBJB;Er4G1x~NxwYXWHrT#266(5L#$9`JL6^ZT@F}Ef<+e<@rx4J zxZ64bY$W`F6HhWVK^o@vF~{kls&?l$t7#5+ig>vPJ%7xeMg@7KCMW8XUPH=ra1tlwb(@B%hX4I?oo*H)I$q6?$E` z3B@;3!K;(&MZjL=5!h^Un9MGtX+>Kw1ee65B*X!y9NQtjABZT7&&k1(T|VvqRSERG z9Lkm16M$DoKud#N8w;-&dY!rF0!P3BTBmeAW9kHaIYb%%Hhu2<6`h1W+Z=Y_HL^u5$5@ehu4mJ+U+Bd6AjZI zyE7DM`s5?DpeI2aKT=&1l7}^0zBSNYH;Y9VYouu(5^{d4;=v*^bc`T<);#nM`ywqd zvq;6aCVDHs!tt4hct*{MA*XJ)c1+=;*@B5>C!o|m@ft2sabe@}Azp#e0t&Ld{Uat8S}9r&xWWuSyt3-Unr5Y3Ys9Z}qt?U?7*-wZTBd!HO1AA3tVh$Bn4_lJKi1InkE;f{!5k z6Cd$r?c{kzE;!^J3a7B1?&(8?*9xuV_>aNY^Z3;VQ5f~cksxQ*Dtig!b0_yXH35Z( zA8K{wAc36z@D8JceUhfxV6GjLXB`D#8C&*4t9@%BIQLJx&dkljE!s%)C+D%CdwPIz z7#>sA4-{CV;nfN2zOBEpqr{V2lGR+WbD!TyQ<|Q*vM|}7rlq9RXXvh%f*yjg^y->7qQ-noA(f@#CrQRuQg`+a8hmqC;{;FH3D`lRlE{J=D9t618uytwq3gy>n?yFZW z^KLc=jmzl|nY{`&v`gx@J?tbfpxZouv{w2iN8JzAclSz%dX7#mYjSCb1%SEy?ck|L zO3e%-<_95g8p-_aFyH>vJHj3rtxa2gNz8a!E8iyRl);l7+iJxqjKUtXC=$Yv?!Yz> z5l~z^gMGh(%dza!6Gt5Eo3n9uQuo*I9C+1chur(Gg}5D0fYkKb2!JFeYQ)df%|SC zeVDJ?#OrWlv_swIyqX$~vmwW@Co1686ShzHDU2wU6Y=hPfuFjaLCTNW{3>xD8WmMX za``Bt6OZrxDlnEginh`{jk_fc<4?<{5I5^=*zeGP_Yi?E{k@_zBpfmg0z>klN?L|n z4^d8V+Cpfnxdamar|SFa9}c`$Ek=}oQce>(H2Gf0$jk59VLx(EV20&Y@ptcT_FPU{ za5~u#w8Q9$Wr7WFvYO4V1MIaQ4Gr1gBwd1OxGpe>d}>MvK6RY09(g}ubY87^G4QHu zf1nx*g0Wz2Pfz8?C&avUdXEc+gVin4bH^jBq&i?*TF!@FHAV&7pqz0?Q&W>O z0XH->6La)By6>6xQ0g|&Qrc$7;kW!MAp zKU1A>2OPVUzWhi1f`gO9a@2rF;AhNQgczVN*rF{Beo1BL@3s0MR6a0wM=$kOUEYGO zk8I-%3BO{6N;YFlg3&S%O73UKL`}h%S%nq6%Hc~X2AmXclT{K_DT8@+c~WCyr1mk| z5CRLp0n$msh|k@{#frVlAvX^{t|O{nMPka4VSHJ?q~<3V|zI}s$e)Q$X?gr_<4)+ z4<%&=&o`*c!~ocYjJPsuPUNfSxXK zf6DVUT`*NtcLl$;w4)lJKwYfw7V(vgS@UQXIk@ISt2&J+39}Y{om0`yCeuB+EmTmv2>V(m{^(OTJ)N(32>%P{ zS_s1WRPc3bjMrTd%Pm}C{kLl=klh|Y*28m=5i#xlv zLyeof5sUx3laVZV1$qC+S-^5H=w5;&df!tDfh-xE#eTo5*)Sm&;82%`%YQmM{4<=? z_WQSwp?Fz%JXL13;TbF*V}ffRzjcBjT2U)K?utZnUb>xhzWtmRY#4S!o~RM!ThET# zx8G$k7iRf)eLoywbmG<7Gc_dj_Vro162WWW$SBZ0!2AUpQuPgJC6aeC2Yxy%kKFF zlNgAp@(@$`1a5DICqDA{k}V;bJ!$YdXUt_Z4~-NmVYP`o{0Eyt_%!>c86?_AV@aiaO-7U*-&PJ@ zai_bA9N_h77F>$QE>mX|q=)JF(JDWT#+mG6uDnf_XfEi2^rKbH@t5M1vBGT5NVA~k z+1~`LcaXoGuO_UE!G14xAmbbFQ=2 z#bjSRzp!<}V8skX5w1~K$RgJKU@St?qC;s7Rv=zJB;Lrd&4vehT}?q<58+a5<|n{C zG+^u+$S|Q?WQOWENvOIOOjLNw^ZGN0x4d_~BtX*h(w3SR;Qiu{s-FI=sYUF2MMa0rWYap2C=f@g03dz_@O-o--nJC@CIyJuM7UDYv2j8lUl+jgLNH1+zyBOf5%ftKEjz}xO3@O*bZ zO}Pol1U&EydBSp7<>L}l^?Jp>te6zbP;FCXCkozPk6T%1*kv^T8WV?T$bkp51Ny@V zoq!tzS1(E9LGdC%AC_$Lo45-S-l~RgrSNV9G4XlT0bMIPv8u90+9TJ&QiBky-@Og)B-OvXd3sym-@@V#vCLG3$!-N(0 z;H`H%(oOU_`&VcbsPru%aCm_cs#n1EtMt*pfr`rNdj>jR-7@3~R)+5M6clZlN@9VJ zICuR9{bq&=<&R7FJ)X}valXXL@e40n>GHr)>4}c_krjK6YAIQErbk!U@hlH| z5G9%o6O60`_sO!U&kmG6EeC25A9C>k0GhjQZX$m)0NaKrbL;S~u(AWUfWZeJY^T#INOFzgZ-BLpZ#i<^l==!$uBJfOV|WNb@MLYSzDU+-PY37#5U?dXjk=H1NGxD+}Q=6nL*fCJzfRTQtrGwm7x}1>X<^zdl9cRlMYGLuNfhF zXBIw1zYtrifs*dYm6juLxK6TGN(Rs1(sE*0r6Ag)6s4r#miOKBk!E7%9}#SzW?lYB z;s_!L{Ht++1V_!1JqmHjKKbmoz&nqy-?RYK)sdk0bHFx99pE~KI>!$yFZXx~RvZye z%z@4UV=6Q_Znu|{a4fjpS5f;qP1#p@n-UlST$T-Gz+Ya;bi^(s@#{`HZ%y%EYX%98 zKdwM(mB{t_c>ev;6gB-tA|JANY_o`d(e*o3eg}NFg@_H~niCQeE8lti^wmncaq#?9 ze{uc=%GRLqI&reP98leq$>Iw>x8C*8(_!12vPT->Xz%RbSSL!ES)_qK1kGMfp+MWvt6-!6J7R(6B-Q!)|z%6J<%Po_Vd=iy=Ki9P@J za}192cOK(u)K}4M7{>T>Kh97Ccc|%Av_6snp0oHuN;wM$C|rL4xvdFS7vq#~erb_3 zKoK6a2giG2(2NC0$3%Hp=i{qj704aZYQ{a(S#h6JUZyrfhbIVX>(NhWlqHgsHXR+{ z*y!n0AX&z?uiOrwwkR`SQD*c!gj(F0BL*89wFV22+Dfavy?q>8fqZBF1&MDin*Bw` zAd+s2qvE}4<(V91EuK9m)h>YBv1W$^_fSxg z2wc;w=Xb2WO%7^k(`OoejR{Ht5?A^)lOz7@IP;{EsN@k*hYx0KCJ~;AH{R;-&?Av2 zdKp)FqjE`n6ajb z+83+ICxzM#5A&e`Wk`!DI;#S42Qu!$^^IZywRu0Jyr&jlEJJbA@a)(L2v6Rdv%K_; zrag_ofSfzH$4 z)&@0tKS4FddLd4@PVCrc5%H$o>0%p&#)y~re+DESS6*)nTNmT2%%Pw36=cuMjB>>| zVJ!Ra!!?<9*<*fy1?=~ntdzbF6R0X&w7UQWA6qCF1z?lfC^z|E7vpR-h3An1iv?Hq zHGyE^MsqcHwFEzmV#RG=I1dl;G#C1T;BN$S>UzNt3(bN0& z_o+kYQI-BYVv4DzGEL$ajTjU@orf3kTwo#S~W1e*-YY2G*!78>QUB7tW zP73gH!W>}HR@#MQ?B>l)hn0PNfiTVIItkk_D>Cm^AxWl5^P7t;RH%YNPJ2+@yvZxZ zp8hFtfsp}+w8SC%%2V)p>*?&rhyzcevBgI*7QL^-$|k9q>XUsw;~%4fZEhLO3Gnm7sM(|$I(2!_STx~lAt77K~MLArFC zQ+s))U%>nX65pX>)FwkQgnbj^`~%sJX)N~{W>{=mvRSA0p$KW3CBNqU_DQDv+SYN7 zcN-lNa7rzafHTlCFT_26@Wd9Z9BbGJM0qx$>G`$olr>WnVO~v1$U6n z>XRaNPr%gaI9%R+(`%)JYNQ6b1*I&qXn7+xW*qN>`U~s=)5{)&D z0kulkgwhzZOJb7|I3qruPw;XX)A=LzvCv@?YxEayktiwboG(rpZ9&PP3s#0-%9_yB z%_(mbAH29#~zA;7vd!Eyu2w1bzbR&C(=c0mXwfC(gP{P7yfxGuMaluHf5U+ zOViIdmwquh^Zm_Sl~ef^ood7Sj{O32pdlyRK26K3j}TYH&$K4_R}`4O(aE=tp3){V z%HIBrLTdCe#8WJ7cnXS86vD^V8RN5ryKuWxXgdCUoU-fFdO!a)O>wmx6?)H{(x0p; zn1umXS`gcquM|yt*t&Q|)V6rKEXa?|JDvskxoC#hhK(?AnsGz2B10H0ynXEVy76?? z4vEnA7x%yVsK)#(_$2&; zlsE>7YMIPzxZEb81PKN38_E-fYpVrNQt6d`_lMMeRq}x?sxPA`PRTC;ImD!E3=(tq z(w7XNEYiTW;8e~F>S2JRET zPuovq2n^7Qz0uOS(l_3)*1CRS*(Ptcc!nLJj;m>kT)|NAb;+{4tWRDs+r~$UX}l2*oV4 z#8MB@FAc6ahC2-vKIS)YXpT5Tzdl6IQ#0>rg>CrM@4EuF4NctR$CFbK3W0pN|vm zsc*}nvmk0aP~wbsUHo}F1P3c&%cQ^Vj*0aub6;M*WG0Yl~;{6xE6o#7Y*HBJCJ7(o0o_#nmYWcV0eb z4(@vIMP4?_DD@DjeeG_9jRV;Z#RL>ArF~XGn(Pc0sUGo{7wr{NyFPe+eN=2>`M7Mk z4oqx}Tn{ft3os{ET$<5V-8{2vZqp{rCS>E*$J-j_jQk{|Jm3%E#2Gk`s-MhR@Y)%= z(x$P0!Rtuv`BLDLFN`?$_`#-EQOCNWK?T)uMK-ijy*1YwU$Nq-<%byM!4agRms4SccB&t# zSURAce@q>FK~e&q|x8&_IJ61?l!XqhP!7YL?0B z`3Y>lDbIDA-NdDmle_2*(+4cOTqfVY?XPjQ2`OklWqwBNz)MX*7R|Uq@Vds|VKu9F z#nt$>{TXXB#Tg=#QjGQ`Ki|AeaZ4~?Mk4-ZZ-s=IhpGF+6CT+~Zt<0)R=3WC@TjL2 z>kacUzl+Gfncrs^CdMVHF#M!CU)619u2^7ZzI0Y;2kCqxsDIgBicp}m*Bz{9o;`Y= zx)Q9;ALH1ejOOteHuD}yCt`;O4Yb6cxh?2Qf6ba!Y?}<7#*f=5-l``^27UWb-nN6q zaUhxMu^KTHDU?5$P9>h9I!QhbX1~8n_Il|F3#lSO?4l37q@-k!N~7hivkP^|^e;AM zHSP~70)hEJ5xUom5*mW=K>nzdc>PbNFDo6Cfs$&3BS>*Mv-$_(wT7Wi{5XV z<4S7RHd-6i);l~GAulIjJM>5sOu=DCbJ&EWP*4CUME^tDo0)QXqC|6j&$1{k^O_n%DYy>hn`3J~)#UB~06%Q(x>!uf+yJHo33Qf9fbsy6IQEGX+`(W4oNn>Z+ARfJX z7~xwT=jhEv+I-_S7oY@Y(73bjqB}2VrKri!APU#&#quu3tsY_vmPC+1pKTsvM)EKHD}C*dq4QYll{cza?@1==bQVURWO7_f zbP1kKG4rop3Xi!iIBwuN6BF+FC4ix8yF_icSa`Wku1ab08-J^=54Yz>KrBFHF0Z%E z2j$|Ld*`Rr@%G`*_-y4{>nn41-&`u6e0j-XO7~=v6GyNd5b5)qAgOvc$}9_cYouR& z=ALv{EqK&9-!HIhdle__CUJ%eWJE#hI*87(kD znJTCn%96Rgm?5w<>j=9;{oi#SEgejtjw{Gg6RJQP=*F(0fb(rTII~R~!$zS+z5hTD zj4l)OiTDZZ9!iq@&3tRCHhE(6vz_Lbw#$k)Bq*CdV{VNw9jk-wL!|L|sz)*CDHwA^ zpS7H#HLNM}IAM_^9#D zWhE}hLc-PWq|Ua;8LM3yHWkb?Ujie@aF_8wvEi-#(&BbV$|#O+%!Y_3DqF|{`&G>!*Xa<<;2IGLJBt=o~-)cr@uwRVSj zUe{w5VDQaA$g^r+bp#!>nk*`)Vi3PQVltu#C%uzez&cYwK0YkbB{37!x& zzTYUTJ}J5Joi3sMuQ;N8E-^!{(g^uvFBQQ!u1!nWZrL+7yS!nwxq~z zsoxpg=5yGw|2@9Z;NG%|aH~VFwe|-+kQJBCDocD!UUsawXYWqaX)N2?8?NiTOqXjY zTVB84=H0A!ez(c~ahIVFwft(4>3HVC`{`uLP`tlf5J}NN_R_Fe<8|@EKD){5I@F)> z%mUP53DOu@RZLc_wp{F5Eyp?;tz+FWm4yCLuiFg_6jW8kgLapJfx0Cnts!BiZkg#PFDM9M;J)=;tJL>Ydb!Jg=0$80ZeSfCv&7;jym za7w>*rF5Xzw~>`Z4E{nkwg-q{Y|RE92@IA&!Wn}u+e`8^(j$H-s7w{BBil$8HK@xm z@OwWjvjvnv+CDnpO#nQT@xL|z`QqqSwdx@lX^8UEVa??7bXlRKmy`D@FwCXMdsCH> z36Hic3M#qA#<=bUyNf)<*)ImJGCo1lNbj3E?aYwd%Tr{b@gjk5pLvR5Q{RfrrG8^O zFEU7o=5}{9|EtSaCq^1|C;1LW( zh4aGLI9Aga!sqopyQCXMHp^-{Ko0#>L0?}#Mdx&^XJTN7p`o_T`fTg^4V{G<;y}1l zOJjQ^O&sprjOCD8gq-%ZC~3XY+fHj(?V9;PYWe``^z9EWTQH5N{0D_(#{zuU4Kv5l zudmU|7AXUDGp;qqb-24uYt#vpHwKKZbK?AF-!}OBMz%%vTir~RDt$X=%H!d-B(ORs zbj(F%opRn$sV}2j4s9j>#vo%6pS$8*Eike33z7#sMe+cNGb20f`_39XXueo zit8sZ6cL@-g7eWrE`s59#YG^J_|`i{c&u5GCv+4Pv_mG3^n%XD;j6PAH6g-TX$zsM zZ%iA`%$$}iZ*8e0j`wB86By(5Jo3D-yb_+58gsH}%S6#{>9Mb=l#KBQ2_pIAYDa+q z8SVOq4;sdWs^>Gr%2e+3?$YN!Majre;gZ*>XXqyFmAoI6miFx~rKi26Xz;{@Z+7XD z7OgDS&ZRU>{=?`&w7+>Vv4VQOjWqV|ZaYnktx8{X5)?OxswLAid(gc+i-YLK;v4#n ziz_$RaY8y7rg6^mq02_jt!$G5F)gQI?R`}{>Bp)(RiT5Y>stKhOPaMs`nh*;boFbqse^YxBivOXyHPG>fKBjnfH7ruD96nFSut4lU>5bL z;i`&qh|9CRvRk@9c}v?YW43i(nz%$DD13`{90!VQ) z$~sM4PD6acd+tWbG5m~34}-z}xRt4j@1z`(B}A>(ZvJf1sgD#J$L;$=p(H=AHhomr zV=NTFne6UO_ z%ys#!!kxD~VrB1UT=NGFDBO7`TiJi zqo{psDxxVr!19y_sopytD(aDPbhsCyi zvgx9-ZI=aiGRyF%jt!pD8qVyO{wb)Hsp;$TINde8T%hs!f_i`b7o_8*a zseQkz{@G-ydD0H?qSl;R%CDs^W3yuXQIUOO^P| z+zSwqU#X}?J5mR%AyxRwfeVva&q-LJGPn7djHK@st)1*h3vgO1HLu*Kvogi!A^6I8 z(l7w4k*+B|<~FWsUKzkfpFD{hjJJ58?Hz1gs5;!^rKRLH6CtluV*VM6UXbTDAU#Yw zn{R6pL&2w*q!1oV_OD_e-`E8R8JgoPNS5uf26eB;6-lvLKg!kdZ%ojKw;}sH!?5J~ ztI%D`Tw0x!U;WOeV_&{gN(qWs588ri^g`q-qEJje?f2HmOaQWa<*s`m5L zm6*jq7K0gDW9g+3mQ1$+)^{$438@wCI&wpfUfD<@^(`+P2H^+2!8LBTE2p^bhZPOF zB-yU+@AY_p&#N-mU!no!zVb2Hxc>ffAD?YTf4sZcRXbDRuIB(Rg*GjyBIN#_Dx>qx zPHa)8Y<)6octdXl+K-i_xgcgbL8uKbACAaJnnEY!b+dY*6Iz_hyb9txD%$kWwdd)D zQLqVg-T`d9oz9H+8`(3`CXn0Hd?3_c^ZVIR z`}7O@o&z|fyb}$R0vOYjua{Mn3#d+v9b~pJz6*KnhkpJ1gx%c$vVpq`N%=d z$C;S8vnaj(uh&f%LucDNcSziyy?NyExP40ozXLAGq{wM$Rla(jheyMv$^E@ggqW|Y z+ti2N*ID*t5}&}*gzW|I4lLp4QvSd@YR7uBV*B?T!@N81MI2?w65f%tLWN_F+Ty*7 z({D{qH;Fg7kuzNuTz_V?+f&K=O;y(h_1qFG78>^P+D?jD@in(2Rq_ClU7oamR;oWl z`mVw|@ucy&B*}@0yC9Jz?BxW@Ka{6>^D~+cHoiJ>zGo-b=__v8> zsMPg@uf3AA2$LA^%!s`pdtSTPVYJ~Y9UU@&>ra9cIZXI%( zdWlrIRP%PZdfu3$Ls`cDr!zW9jZ4UOj*!HEiPA(@AAq0OIZtXN1_!6$pOa}z#ls-0C9M{?yIBlVoGMR$klsSu+4<)6B z4~k{#s!QH&Z!T@4#m2g=XQmO|3eHk>#09JED91^OD{+-l{rRgc;YRK_p4Utgjk3#8 zylX?u?U58hYRzKSLJx6}=9_h`O(Qvo0+7z5V>*7X*x10GODT{Hw zM4>()M+hmW=$Ea@dTZ;wHqoPa#&cR*R(WIYsy12CemAg4mjKqBWcu6^cST%Z%%G$z z?QWnJ*;N+68xLhN@WT=EHQYB(;SKXwo_S~WW!jpI-znx1zn^GX^lhJgznjhbA~~D2 zQL+C&AvH=EpsY2qM{`z~HyYW}A187h!B1Nj*YW zFSGd>Cca{*rh)rru^Z>dlcbIctIOoSol2xDBlg%*|1@qlKvkj6uHACy_RJz z4iD?L?~e9xbq^Hbp&ccSjp%1rR?na4Z;PbM`lxsh<;Eo8FPB0cn}e*1vm({PXnN_B)jNjUO(3Mm<;hI!U9>@Yloj6^d+Ir0tJg#G7HRJgv&Z{|g6E>e+?&QVs7V9Qn63vVKK7c^atQwJ|!fORek%YV2TPWtR zEsU|z%<}8M?DV^1ZqdEoE}?FHg{ZzfxHJL zs^=wr#TTY>m;H^;Ec!QXC2$zJU1gzuqnH1xkUX1F10^?X%~Fz=eO#|=lgx?E13}Fw zw^b(E`VV3Lw!BQX1 z`ediyXXOm1_DfFqBo!z-dSaLcl|Av{%%;D!iC?Cgg6HNvlIfq|T?D zxb;lmpfejeZ%7I?iJ7k6ou7d@EZ_P0igxJ2PzAh{Rl#r7wKfDJ;j6pqeu(> zN>dSjVs(8-gzRifi_mu6y9fWU(4@^^)_BCM`R${wd;wOC9k~&g2^ULPjGroHEJ5-gT)%VJ5G@Xf* zo}#x!ep)Vz+J+vH4+=*eLLCRJ?i#I@E>n+Xnpu#>sQ35J1dXnRr3E@o9x#7aAZ?;2 zTGv3{f5`NLwdR@?S>CnQj#?!u?V+nx zSVZkL$hiEaG1sCqWdyb$(E@Jxd1A_x#IxsY1Y#cqxn#fXV@XttK7!rGtYz~IRLFg^ z+-iiAkXjfr=hE>WBGHA<0l*MhRDg|2PN>Hlu`y`It**rTqb##!%fhxeRhO&R&M$lX zDvu($`&$du`e(Q*4L>oP@SW%LyJmCcheZ0V*HM@SFCi(VJT}({Ax+E) zzEO^v`2~;l#}(dEscRP?7mjxfKQ%uR>}yjon0>DFOor*vFtJbh82o8TqnkMayMhcJY1oH=;i+|xZsz8J?)hBl#$L% zlfh`T**1`u_MGXcgq33XR;UvlRQoe&^%UrO(eBkL- zHOZ0H=aWJ;^I7{f*UBSP2i1)Pcnkp&xv-UAO$)ftpOk{`K)ibqsJ!ITOCO{xO@;}7 zP-XC(U@**xtFINf@7h0+@Q^{mmE${1bXb^<{)tvKKmZbzFJWZwKMe-?89|vK=;kb> zqn_5oAi*FJ8!KFgxw}MrIji;BgXRPI`8N2OjWNG^OFp1B-t$8E1f(UB+y;JJ4cF(B z$Cl_sJQkD7!GsYP4v?Nf05tjG-oAgc>nZ7Ld9nARUa(cAO6}U;%1Va-_LUCq-G;iu zAF#NeQ}=qhNnByZkOF7T)zZ-C3m+dTXZ5`noVBU684#J2KGm=|AFfS1QtNR;T6_4E zAvNeitAGB0n%87qw=`rFl80K`rzg2*WZ_P%N z6l)(7YW$b$q37th&(yD3ylHW=U$evGewB^Vdbjrv6_Mo=wrMVRXE`3Pg;<#9^e?#> zpWWg+J*aZ(?B0E$0s&$zeX#wm#q{ID&Bkl^fmUlaejKBO!uUi)IF*f{pg962+*X8uX@1oneuq(SIt z^gdIAYBRl0pGPb@l_oz?id6MzB}LrhyCe5!IR024zMx}2s1I#4>f{7@E;PeUGfb%e z&4A3{?8mU8)QZW7;?ES=%T=;6xuQF>qRyJ%!%ny!sin zuv&M$2XBi8NC)CfB!oNV(x;Ui10K)w6JURqotd{rj%gvX%VC0- zuZRy=XC{C1AFaIlK?8G?w3<%y*p9>P*h-hlc8@fy2*J_a#gF9@Ad(w9COQE&xBwW=2_$626{l=ROiptjKUkYeg5-FX=YXth(Bi#+lmrUa3umxG` zfI0xmV5%t|@Rx3f%$?VrNV9lQG)}t#aEYO3o*5gqNro|E!Y7-3rVl&Bo4+sjtoBY6 z&ef^5yHi=+h++QkzMVuc%N<8qacQhUaR@5z+Jm6t`Xx`J7C#w4BP7fjl~e;>XT)S1 zw1r!K$Rmwo%VVHwyg~W_8_*y?l>6OG-p+d=~l@5LpPV*9kNNlMwb<5)u;{J| zk+7R|zk`Wo9;j+b!JSp7q4Se;~go# zdOgh0ZB-1N-|wL7?K)NV(mcsAF6_}-9RPL;=&qY#Ru9$Zn6(=53&o~gINf_28!M-O z4Y+Gc!+icShccnblb1Xmi=l(!DLtUX@NnaNBI@ za(adAQlBnZc8cX#uHA@g?Gm5`a_(V!Y=6=Q0Ze8Vdbb1`^V47aub9MDXME|kN#*PZ zmehmVX(>SBF&Av=es5BPVa$Y3hS8FGz$oh|9 z=$qaulo`#Nq^!ur*o{25kQV<Qmvd}{ZD?$zeBBR;2*qugtYn+raY#v^X#I-rqu55 z`vgOHQEw^*P`Sr>v|&W57kJr$n?lol$J`f$4R00#uAgt@3(#WR^QiB7wH!d$WY33l zZVV&4Gyzl{zQK!4I|ewE_oo5z9&;9m;erZj+u`n{+{zySJqgKkXbh?@C(*qY|c_YTEbw z`M}U>F6kTT*$*^jGlV%IqVN%cG4CuL24xM9F;LwBAA0BE)NKv`XeHa+S~=HJUVWkF z79)Zyu1vIn%_S3$4p?w)VY(RSJ#wQp#~%<{E!U;PtAfN@E(1)cg_-kY1x`vM@p7O; zQjAN=zZ#^z5M%mLS%;buieFUAo<$M9cQlNCEi|-O4%SoV3s~fk50cx0ZE4`Bj0D0l zVEuB#FZu4%oIV)RCl4o9q2X{BP}%JHZt}Ff^7xVu<~UpcBGi#J71Z>Q6Bl&l?V=wm zu&1p42S}(~7O-OqWpp|dI^xw|e4x|CC#(tpQ-Qalwt#jMv>xv6f%};^aiFL9P}38w zzzH9(wf2d7rWv>4Cm7>*`5cOXQ~8_%r*?yMPZpS!7lB_vinu7pAYlfAEk8tlQ%nC; zJV9RL>ba92*aC)}1OnQUGfK~`iU3f><}-fYblPRq>yBMEqSU@^@XbXgZ@^t^sGSjL zQNTu@)g+HLUbqjGl}j~>Nyv%@WyJ%*F1r~dl;217+TJHlfc9(9MNH$X6vIu*J$1=- znBcU9V^;Bi5750x;cg5%=vuSuY`fv4qoQzq`c^`Zuo%7blQNIk%SFF#rsL{h!obq& zj?n$j|0lg1K?N>Sn2c_X8lUDwxL_+N7$4LLEaq+?as3NG#Fb5I&TJ!D>el>e}0)Az(sK-(a0fi4X2 zvryNb`|JX#TlJy;c~{j-)4i%&0n*QULtw8OI|G8czAb84);BqnNP(!}^qVjx4_L*C zE4yqmV1q=6!f2z+{rPGkY0fFwE-Ii-y(|Hn+#d$7^DDE1e=%x5`o{sqA7I{~B&(eA z%qdv`N>8;MbFiEXijbgvd|(b?z%~?N;-7ZHo`B6dpv^-s@nL{L!gCM*-Esw}G4K5k zh7UTiAJ~o~f6EyE4e)`82#nFRi>7dFPM%_%vW0QEj3|n5d@?BX>cJ+Xw=Hksx*@SN z5fWbP*~yx#Uy!SAFrYk$=wxhV#T7AN0HC_?e1PRJq_&AHd)DkXD4DkqeF-{)J;n2w ztQWt!?Z+4@NKXr>k#l6IH6=gp2odq$!V70T=xWgJrYM~B~>6shGZO*dQgU*x)W%05Ev+QDk2oLO{ zN3SYL!EJibDYXdLQP51D^HCoZ^Wi#kGUh-Q2g7dOdvjknIBrbhHG2%!0iVD8gMqUi z>K1^$8zZVH4yFnnkR&i>jHdYitr`Bi>c$+1_PCx=L+uj>9{+DP$&s8FE1V!Lf~XzC z+xR!Ge@+@14`Lo>p{kuufCO#_xAre&?p-Y)!gp!z^E3(Gv|)r_F(9dgy7|gy2fPFI z*Z*mRe+XwK3&s&y9FH{_O=CCp2BSPH!*1D=fsV6lxnQXXlmNOld-JRW)CdyFfUSzb zNj!l?=BmXCkGCni!M=C?Jo9#y;hj=_yv+{;39uRQVo$6?j~QC~{Y`;PfC0c^B21aE4q%7QAFa2G0{=Ul5WVgWcdz}p z1syhAR3CNYH}}m&`k^PHVqJm}=HUj&1l`|AxPYbkz!dYzRWB9APo$J0$yh8FOD9So^K59xz6KQ*X{t9%T{#1EpHJkFP;r;ElvsYjH`el!1` zYOzXd=9u^BW#t3{o@`UZG6;wE(gOIzr7g}hrBkGQiK`=mv@S8fjnIExkEhTfXEL{cM+Tha7U2ViApBVMb=;T#1!SX?qkapmUy((P~2 z)>W^casc>JubTa@^c_};4BPq60U7i;%RSJ3sg!M%Fa=0TD#Ez?XF^`z$V}B~WsJ96 zgW!nKX=)zn+U-L#78$U4C%6saE>$2RU&vv>s_N{VS(w3II5zw47-# zbr3b*LX)So0@1N}ubUtCRWS=WsA9Y_k1QRw<>=Ryg8^=I=`-33%0{DK05e&gAyaD$ z9@{(EVSf23+^q5(CW)I)@87@QbA`OdENxyr4x)BZH{aSOKukz^@%L0p;BiMI-f=yp zJ#tbr_iJ%KsJZLL7~S7col(!yyaaI&RA^v*Ngo?9N(u5Oks4U!{6|?pF)Uwhje?{v z9U>2+ng35@l~Tp{Ns*gews{p56B&-BQ5X(LRr5c+xikrGJg7dkl|C# zTe(5Rmx{EvwJC8)JEUD`jlfx#%w00`__UQnsRZy;0^BY?U&CSjXPS0~n}Of|;WWjZ z%4#~jaogm#-0(wErl_1?q8K>feTlFOjQ|-fnL%QdA+sN1$v*i9e-p=mx6TjMX)7e0 zJF5z^@0GrYEQq8)B|4-O_FJVVqI5Tsg@7^#FmG2FfG|JizuQwVmZ6sA7fci?d3q&G zkdDTYf9%CrNKDEDsC%wA5yhen9Ua?1hwNB{*#8D$8nlTQgH?*VE?JHvt9F&$7Mm3} zT>6_yX4z~kkX!{wKoJxmG+YojuGwuS@3wN!8&D>}PF=UXl)v+F!rl3Au05y}EchQ! zMXnc?8u9VJVx|?;P6p7<-Fg`e{XpCkh?vSwo7v=$!O7OYQ65AT6F_$;hW$4`-FH$` zFQI>m-gBF0WqrhM8}<#Mm3%!2dWA9|w}u)PVj+a9P&zn0w5LTa3UUS_lO5E9x_H0I)U>2aZ|lXN$rKppN}b?f!?%C5T=9 z#i>m%fp7vfgbm0F&ez{V;@W7$)T2cJyOXTWkoG#6Yobd?Y127MnG zrz&d(r7p^DKtkcqv+lonr;o>FED|`DHR%~8^D5q3BiN^_qokCGW=Kkgr05IKaHQ)$%vuGwt{P7)*jS>mn~=+ z4)pBs!4P3{L1;k%$@NVWZm#7_wM4kt$>aDA!@u1!t|l z=btMNwuZM?Ih8pbYioNLa_s2Lq zZ+^66EyT4wKJnyThSqga^EV2VL+-MV9e-sl6)zjy&5(>Otc;pmHui1Et+b-X97wWg zq{W2DIh)jm9W(1wlqWa0A@gFT>9s)`wM~sY3J_DQ?rE5gUjwXy$C=!h?&$h29EMSq zu=W(2tPgwP%uCw@crhBDz3{|l!dy)YX%lu=3Dn;*3YLKUmkEgRWse)zQIK{xODAz+D_fkm zt)#{4hnuhmuN(LG1*E0%=CxXQwm=2fR6*U#&{RRbR6pagM?iX@gieBKZB(e4p-E)w zdTkP&MDF!FXO|CR#G~yUJ5c86!<4eKu8njO8P6G->ZsNC`V!%{M)vd@sy;L+*|)vP z=ZE$hZZo0hXxl7>v8kd>`=MZEd)iZ2sr>XxsQvx(fJ^97%h;;oaWI00{su}?SnkQr zjM-e(ULjb?o#!MzS!f_R($yw{tot~m)dBGzduz%H|&(L() zVl-OH(*>nM%osbcR_-q{r*ae{{&VP^KCH5KC@n4{Y^rzKGiCnp(zo2S89E7LHJ2~2 zBes#jEuKtMjJ5g0ErhO3YWA_Coz3msuc7eTHnOi=Yv+U#Bn&W`C2h` zz0v~^H}Vnf8m#e?%)ss+Lm95U74thOb|g;v5#M_BN= zvE=Jh>JLqh)aXqsZ*RJ;yKg_=aY?%JvW$jjzr1)JAEJ|Z%i5tfXOFP47MTd8>{Shsu3}-kL%wfj;0qJIuI`BJO*M(Dii>> z2KGctJ0^l2@7v_*o?2MC`6{o(g*4HIpL=Pzanly6)$u2NYt`TAl({*dT{?*@M6WK; zCGFX~d7nHZisACjTV?Rz%cIQlCNE3uL@?s{FCBYX;q0mk#ZnpI?5g4H?7m6T%5KBr z-I2|UZaJH^~T`z+W#AU_3nV=vA|M{13F*Yr} z4eFO+-b}FWs845HRNi=q#;Xra^1dFeqLa8^>;x)IaNncWvR=S_5B;e%eMbck$8W*yJjx z311_w(_dX(mS)j&^Nw?H3g_O{6crxS(NVBW>ZDs`s)LoC z^bO*Jhxf#B-eQzyftKOU=q}Qc5XXV)1+g0_+?XI5KKO0w?DnPyxptJU{7qQ-iJu}2 z4|I@YUX4QGvMT!CZ>sMT9k5aae{tYPSsE-;zbvp7N3cz^Vh87V?XADu+7EsvvSXR7U14kzvLJ`v@Pmh{~n)yMAWp~yW zs|3E%gPz%wG~IcT9qF2bQ4zlsOcbz%y)ck zZDLBimPTyg!PkX3kKTA_V$Cs|#|LY{{jxO~9w_h{HZB;%x=bW5Ho{KQ!^F4x7St8$(d%|IFpw@@& zxE(&Je|>`A#g4DOtOd$PRD%@Hn(9M`8Zr1X_ghm73?z@8U3PQqx7Q}~f~y3yu^Qqk zR|l5M!pUL~Ky#%Xrj(|yDjo>!DI@m5vexn4+8GAXJsIxP7RewqnPXu{_1zZx!-ZGSBq1nTXiXeHL5w&(DZy@w#GJ?x~aZG^?3V!mN;)= z;@^JJGspk?kVW>3!3jwiiftyW8WqizZNf@Tv~}ulZ(7XFYIuopM9nX2LWD9G#E26j zuhxSBNsQpw>D*bqcHW0SPZ9pNKR@jX7qI4?J@;x)2K zqxwKZM1*o=EwSKcv4d5!$wDx$L7ukWCNJ-8^5w;zizD{?u-_VZsOCAImsoLEZhcv! zIzG;hc=7+*yYg@-*T2tDv`I<3LNXD>q3lewiJ@pAM4PoxN!e%4sYHuPB}1q*qEe@t zl*k+^br9jyF(+FKp-J|g_wx*j^V8A$yUz7q?;rJ-o@<`xxxd@zyWRKq!8h99liE6* zMe;ha<<9h%uJRS(7x<{*p_`Q96OF|=GwgOe$)ckt($1vG!l%4 z9t>^wQ%-59hgty>vldVa68D*3MHn(yqeYuQ%cJdyd^uNkhe`nHECa5lNlQ}RlIeVO z!%^>QuaZPD_z1@*4JzK+fS9_@iW!O&mFS}_R>W@( z-mhB*Hbxd65Udb?im^(+g<}YfL&-zk!(x#2?PHNeP4dfIn*VY$6{{rY`Zh$A8WT$D zg@%(^54zw#v06%e+?+9UGm7IBP=w(Y(oan<-tVl>DyU;DatU^<4|T+p$*}fH@{7p* zZ-T%~X$p<^b^Ft!v1ScQ!-esF^Ty?r+IE#^rk^5WzE;)s6q@YIS0CZELg2I;3zMIy zhy$d8zoB`U@nuUHoo74nce@={`Jn$rZr*|*u<&Nmo6_P@Z7|3~=`D{s9XV2Cr;Xc!!fJlQgH99N!8Qv~i9R!6vi~vej zP1S$7BKDJ)A6lbGs(VjwpfQhYDtKDb*M#x$k@JXI08q*lGYGjr201gS6A&Vl6DlG zlKtH@>Y3?c%iH$U7bGJ3t4{K$$}jZC@fa$1SEj@URez4wdva5DcD76~j{eEBW_SFV z8SJ<_^|?l6B+m-p|9)nG;$)Lg2&lF-pjRy4RS;@^`)N9ST)M9AF#tnQ(;_W?QUN@M ziViEW&KPV-kRF09fqZm#Q0V^V#0Uf}o5f)+y9zA@9haX`InL8g(Ze8hnkhVxw%(;o z7{j#OTu1O`8}33dd4PcYS1BgryiQ<3vVvx*Oh<@Pb+iJyM>iym7SeKiAe$qr7G?un;6q%nZ`Us zQk*1;4~`~WipUxV#TYQXjfASoTFwuYe>! zyYbLf12aDlWD0}WIWg1n&w>1{r)8xncE4lk%uXS@^f(}`Ip0uLEhu~dal-+zK!q~z zMbqKr99?%Fn;7F{#L?uz1&yr)ac|Zi6R=>AhorF^VFAXb*Il&D`5EUDh_vkQDcK-P zsI$Nn{X*5>HU~Gj ztihkfD#&^7nxB!Qt#77{AH@?2KS^*4M6ty>XQM1q^@`XjxN>NeaNbz4daqbQF%ySZ z%ym#~OzS17zDTbi_aX8lWGRo@8Gf5V^g%!0Rgk|K{xp;8lE(X_*S7p=Fhm+4!cQs( z^UEJejX_M4;f-Cpu|Xy6FO!&_7|ALiribCdRjsMDes0bL9B|M(b&84pWh$M3%OGAv zbM?kUO;qC&B`lQmcF871X{)f`_UXA~UNR`Ec{kbj7+isiQfDZnzZKj+N_Y71C*HeN z?70S=FDFu=WCsC;idFWnb{X8VG`&4Ra&;PR?OMce2~6CuCtjgj2LWFMOGBT=r0#T? zK z33jiv*&`;YL+#A=%;NR6(oZ&(|z+`4y{C zUbjx7_{6n@nTri*lrdPBqNI>Qxwkm2y;ctJZ5_c_M`OwvHhj_jVTb~+66_U$-g3-@ zgiA9{tvi!pFD&Y~1j;eu9c`}l4bo~`mF@nd983VRZAc7wDIKHBTAQxhi+KE`J%EI4 z?wevy=saiF-O>D{E~rLTz%dtH0~mXCtEu|qf3|kfmmA39dHc^?{5{}`>6z`n%JuqG z8v81!yJ6OvDTqhQ(p(Kmg5F303$ku`R>Z=fSIr$>8dO*%c*$EVMF7tmC&}1CIHi+S zV`V5bHVvZY3;g9Q!6Y`pzMPHo020FMEY;Lx=FdOOMfAS_qA{6yi&nEv_^RO-OaYIO zOfmVFnjckw`~2xV9dDUBz^jbCHyo^t-n@tqbU!D@5%D|?+qbcpCuJQkCK2a-MpOoG3}LBho)w#*!>N zR=I3AE0I6&M=U{;{O8uUA#u9ABHe|+Squ&u#0yw~5}p>$xkTVk9M+Hbs|a^6d*E7} zT)4@%?s0sRK5rfEU}iyPf@dX?>tyr!T5~Beu2@xaO+iaB>LhC|h6BihHyNivkO5e7 zXkt|_am@%m4S2z)VYO8RA6*w%-Wbm))|vu+W8ksFsN4Ebf)!WT$0fAPqPHH`kY%B( zv5G4f7kP?<2^(rGQ042q@WIDhg%x3)+ZdRQdO1l%y^Pj*@+^#gYU|~dF~j_d5Whyn?del5rIux6)V8gfzRj@35elJ_`I~oqeMTP zgjhp@i+(dly+MxgovL(bbhb!dN@Ko}Q#NWh5eTAQF`E$`nQ#$AMRLMy{WVxb#^Sv1 z)9Y{!hBY%^j^VxiLnw{>g^8d3$UZ(w^olvCe4cEal?dCA9~Rd2EeKnqUjQQvf;@V? zMHJ<&gWW}35qqDc&QH>r2w+&FthHYrs<&*Y+V&9Y%wA2O8Kc3yQ(#t#0+p*>Ha<%g zcDx0deBmbVs>=e=wP=b~?Z@_ocpa3Kg>?7zY6(W5j8gTxvSnZH5*qUX>-HX!U^U(! ze|1*D-5F4n;9=u&(LP0i`K*?f;8`h{)H?0l6IFJmc|}2L(EcJ64z&(U@}%-lCEO z69BF850|Ev#Nd5i--%aBYhm^CPKxk=hArmUIo6oCal?3zx&Q6^~6oPud9Vf=*0;TI87B&v(F@3gOef0YMUOcglHoQlQRZ_^Zj zqg5ixG3@e~?Re}|_y0Bf5UBFKm^25AIcn@6378{RJW_q;9r$Z8fnoEoUO?;j&p(2P z|0;O+p?v=*%IAaFaPvdlWcsKN?O|$70= zf3at6iA1slKV$W#(DA%HY;8-W>&lllvmc;{q5)H_P#`OZ*8Cw;c-^qyxDjdV1182) zwO&)iFYd-(ho`qiP}jb($n|^}+Kx@t$i*xtBMtq!wy$^du)7}^(VT-9leOWm5&NDW zfAMwSdfb=iik`az&mKG9&hKkb{v|s9`yccmr2odJOW*Y4VfU!c&w+Zz(!qOiS@L%mu2A~mf`g&-+U3J0Q{mJVTAONuJj)N zH}4iGYaEb)3?!c-1a@j#s9K@!$h)Ud;d6Mduk22@XuoDdZk%3Ml}1uWpkAj`DjH86 zah|9W#-qw&ZtjCoGO^9r*I>*=OC)OJ!oQQ+kAc`Ih<7k1FPhzVrN3yzuKI=~=ptZ} z$4$q(+G%Wj*CJHc7n5qtJ8EouG+BQoxtVf#`2_KqxOkge+YFskd9t88O>C{y>j^i( zcO);z>(pGkZT0|rnhPs(7p8np_wYrk!Mxk}p6eFiQ{8^P)|bqxMR~MxX7cu|vyI&& zrdXfg*ml>433T~4-;Tcg)<8r$b#f~tTvx29DB;g{&U;Ne)dp0NQsr)2-A#UR328pm(xU* zSx)}0Igx?UPmb74Sq?X*Pq?wK3LTR{a=o|r-u}Bh6BFzMvY+qg z`YpKbM|Ag_$Jn;&JD0XS-^Xl@-1B^zqh3c*E^}+IXzUn*-Q6u|aRq*FXOy1fB&Bk9 z#;3jso^R$;Kvlck++K6Tl&jZW7gG4Je4N`#uJ6LOg>@pt7J~O70i9c&8+ytkb%+6i ze%>{?0o{9?$LqG1(HD4ip)VZQ($g5Hci9tX@Me9e{F}unEVskPx%dv{%$cDad^_xN z^J#MvLoP;cM{p{m19Vw9PG{-dVC4T(4t6=^Tj7uhrF*4O?^Eu`lzEp-Y&@+PTI=w! zBvq?1+qR{4MDTh?7lR89F7-i3;*5`$q!Tj9lLAJFh-a-I%)DLvYOkl07fJDy&(Vh6 zl(M%z-s0x<6tu$EcB)gmW%kf2=t8qrMtFVxO-N|*nI0=vT3e1=euo+k$g?YZ<<3?W zMvnA4pr@ViZpQ_7Y`Nr6U>E?_9c5=8o+xoY?FZ=|y#TR1_o^wNhw1&j~K1|*?!ClAgpjY+e2{GZxr&>A=pzCX6 z>#%}g;+KZsKm+~2q|IR(f6X#)@P(eAlGqPm9M=HI8N=(YMJ4BZ?m1P zZCCY%f;ys>%K6Ln!OpThLcB-WO&7Ema*Xn-2>0ONlK^Gxs>+^At)bDKGN}Pir2@zL z>UK!>JT8V!wl%&uxnh>agRIERfVM2#{0?%YyS{USe_~p9yGP2F$H5wzUPQ@pzzUB_ zpK!Z(9)}a0T8ZphiRv$1jcHJ4N^(t?=bWz>!z7$yMu~h^cSNR3ufXYbBdl{X)l@Tj zCOvIg27l9~r?=y?M9-+Wk;>FXs8Z&1F4pbkS8ru~ke=90AMx5f;z@#*1F?z^5wsew zQu&RUZNhnlYlI#+u7tmf@@peC4Z6L`g4wkGVCbmh1EIY_nIfEs2ONg=BdGGs=B};hv&Je16(-qlvRSS-RG~# z59F<&P_fK=(>}lCWbBhlT>t!GCE6w7p^qbab&A5PHSrJ91>x-0JBuUO4WOe=F(rZllnwh$FoBc<9^x%Fl@IZj7r+DQQaFm*eG6 z)K9$wFyBIe8+qQgp@M+t7vdYN>lphgdn#}GW$WdW2k0Q!SC%${kz9`bsdrVYFvg|Z zXLnCuYxUnYxxw!pAglqbI1g4;Z7bSAbccrfJ+HaQl*us|`cZ>!&m(%WCTDY)gG}NZ zH!}J#V$c%?YS)0Z{aA3Hq<(O?KYaS35Xgpz8> tpQC@U_Xm4n3O}@$hX?;Jz=0h=GRY{L)L`g6n-BjCmzgY0)VKTje*ks*)}{ae literal 0 HcmV?d00001 diff --git a/docs/api/paddle/distributed/img/split_single.png b/docs/api/paddle/distributed/img/split_single.png new file mode 100644 index 0000000000000000000000000000000000000000..ad8bef08bb118c7c40cb5cf0f9234859cbb83dbd GIT binary patch literal 33247 zcmeFZc|6o@`#&sEmI?`#wFQ;6?2IKUsn8}nNkX!YW$dAn6qSlBBUFmAuh~^p8e-&11=bz_~-&3!bj9Jdl=Qxk;eY}t3oQSgqx?9^uVlGn#>6LmSH`c;>@3^>79TwjYic zq=^X=KZV(JM;qZv&7E)5jnO$}#PWs4gv773BWpdSa>!NxMka<+vgVSFw~QFRY_~g| z8oJ`Z8lflO!zr@C=;mhW>Uhkfd%GSzvSD~MHlIDay6xuA34L?lcfrA{*2f<-#CR~= ze9UDqd`iWXrFh?R;=X5BH{Mje*ZCmUE^@dhEawB09_K*+@b~1wXb*#=tMa}r;$rtA zWVbRPo@1VoHi&eKc$;ktkN&i$!6}E&{r28lWKPNmOQ*%HZqA~w-^}(BY;H+$1|MeF z@lx$3dO1CArRtNR(I@--B{p=1(|OXW_FLtciovxTn6+o`&UDS~x_0+5^JDx0U&BYM zy%>}28JEwEm)~{d^+;cqwhxh1_KsIMf2~Cx*|nN-ui`nm_O*)s&M)UbeZBVijGWuhimTPy5yF~$L>FmYhgO>Vu22>zHj)h);e)2UHNq4 zuD2wD-KK++Er|}F`)>RkPVC};J8Gk11O*u$_V>Q+7?|q)s>bR#Xn(^oib2_YPaS?2zcuSk z-mB?HTs-j;9EPHk-dWY$i+i8nxyi!0 zaeK|)>J5w!nfG7b^=0FP)`kO&<~7^SZlHwH@UqIA3~q`wZE6fTjo&@Gp}1ya6UUuu zc3HN*Fn5+vH%{hMZQR2RSJ_N;qBsR-?=ZfQJ-~MA)_D<){h?RS3KeWP6ng3fn}hI0 zb{bQm7U6}&Ss71`-8WCXP-?Q@$sA+jWx}BtMyU3T+YnxRn4}%YA#)o!5P)L0*k=4u zci_aLK)}|@tqUJz@P~J3JvtkIKLFeckWo{(@sohZ|9~PYDIi%cLhHV zxZ#wY68WSV>+9@>*xbt8blvUUmE3enqEXxX7>IW{K8X(;Uz}e&vck2pYh~+-+=}wi z+m}y~M2>Nm+~T=)rFMh1#DJ>JU0H*RqVe1ncMpH^98|rcl8Z(?T70&6uRPOEi8~i?Q18i&Z@j0Zh7rSu zhtswjeKm-9^~uOA?c&?EH=a6UPmdh!y7)Y${G^I;>6xXMvtGlohnRTecwV!a+ZCRA zbt>{y^0&A{M(sxxv=vT!<&SfWB{63(S1{c1KJuE_ zmW0o7pA!llFVWud=W94%e$2KHI`UjsaOnN9{7%1hTT^3G-|OC&w3D0P+rE;swtwCz zloY8dW1oqoBx0UhDpNmAQa|KmJ#~39eX5uC!SaKx-?HCPzbh4%euR0eai?+Wc=|-_ zcyhDw;TOA6{485fZEf6*NOx@7S#ZWoWs1?c?QDl^=hJKBm~N z7+7@G{El;!bJEn!q}P^ly?$k4WyZ)eBl|I3is{HkC4WBZ8R|v~hd`Tvw!jay0@ZT& z0*{}{msI;aQk9ui-@9M;_M5sf^&Qza6wq;deEW1>^Q(`;nVAWhp9=fDK4CsdeSZJ# zeRP&V^h?***536c)Y5EsSLE8yf$>LE?zKZ4hUVBU*nQ}aNDN_iL?}*e)b8hJ3XafD z)F&IvtTvbR*EfYvU6>+&>gbG}Fdw4cxA}U~Ucjz=Hh&>zF=>`sJ$E_lN)a_}C2WPA zR<^N?@yf2)(qaaI*3(( zaC|gIHd9v5#7S8|XnUpl$^fF(H`Q04OC*#hSAFo@OW&U@U#v%L3A&BhiEHxT_8gMQ zkc;14p}c%@j=HldZZK|hE^lsLXO!}A$C5~B$mX%n-y*vr4PReAKX@VPWq^%tPG*$K23Zo=zGU^ zVs_J|!95A86drZr$ljOLV6rgbN1Yd)=y$%`-xQx6TcsFGDtkd3 zXM4i7pE;0UU1^#oM5`cCr}YgIyq%XXeUU0RyJ~&$(wv=~J-J<2An3rF&6U%*XVX_Y z2Gz}T&5xTCZ;-pZOO6%pFTU#LzeuS&Z{}z-RwfwfV{s5E-CY(_a-k@{3h}PoH}-4R z`?AW5EQef-myHxJj$LxjSk6f(qt*%atIzw-Q+TInD`}+qGHNJA;ZlN8>{R_Uwrg!p zt0$x}Y%Z)&K~>?nf;C6Pwt3+w)qs>A?~5pRrymWfmKa=8@{nJ0z#d++#mpDYQ+Lbr z--`+x${WH4pIRDgjA-H(6dx0x2v($(j_;ViXtS@aB-On@uc@s+v9qUpdrM36c$eQe zUzzo`!d*p1=pV|K0e4VhYu`V0_2k=54N_tWi-b*Tygmr!WVh8Hx0m=n$lS3i4>(9_ zSu!|5=xVTv?ao43IF_EO!g*rm&1_>&cf7T>3{r2O!u6thr~Hu7{)SG(o<2FH0GGtF zv0!qG)Q|U0#f0AJ3T}Ubi?xUKn&ouwfdBIatA1>$=IZ4so$nuObq_^<6PnP-TE)y3 z-wEniZQZ!K(b6zA8L{){mdZuTWom57O8S#@JM0#8`!=<0#SfUG<`CATfYIBFpBEcK zgWs&CjX(XInY>1#r8&vlc#anSod1-7aV_i@@*}Kd*-Cm$&QRYi3<N>s`rPieY!wicv-@Dwso79Kf*9zt?sCdh?sdD5s|HMGH+pnL$IboYr|)j=ROwX;kk#dY^%~2$g9cM zSEy`1cPWQeWv?+^E8t}huf^p6(7k78qIXSSpWzTZW?^93u$zGy9&LahjSc*NKR&VH z0K>-h=NTCo!W|iy{(6rA{HFhV2tV}C{QAA|@g0WE@Yi-`h(bI$97i>N3>|BrzuAZ-s+^d8qSlv#VA{iKXMd?2q^v>@m!TKGJ7fn1(^v|f; zx;jhSTy?!-CyjD;qp!n&K&iq*XFE?D5tQ={7o;jmeee1^RN*oGX_>tu>u>RNQr~N$ ze^x}t)x%CiL0Vo~cCQATh=>TnO%1eXoP3r<8QCK;M~+CrJEV}lE}k|hDHr6vUyJ-+=a?PR*2B@w)6vyMgubrL6<04$^}T!P z7yA3(uluw^IsWTPF37*c0s&>{ugDyhmX-N?ZTKjH{;cX*N0i+SlVgs~uxD@$jl=SC z%82z3{MSqWy5z5q8X@gGbX=X`lb#y?+V#Ia{O>RR=LgrXY5K2g$}9elOa9v{e|-`m zLl^zuw&K@5uRjYLt-*$n`CDlkY?qY};y{lAj>ily!f&v$^?&2={{i@+|Ars6Z9g;y zp-5B3=^ZK^$x7hg?&9^V4z zu$U`@Ojiy?=v}QA-*NY@mctI;yKIzpsIH;dr$YMe9oT=I#ffR78CkMi`8motYAeG z{L_wGi}D)&gH#M5+ZZw8XTSRhsTHcx-za!JmHi(r>K-pAg3nSTQvBcclw_DzFcZaeMmt#1DV>RB&J5q8P}Mv^ z>kbfNj7>sW3bE(1(QV?usmrt$xqD{WpMM<8acHmba=B4kwjE)(vt(i}l#q3Pnd>CL zHUoP{F-E3Y0F?yG@JV;(db;jX+%a_^E^~lp2r$~v3ZMT@NK`DhjHN?uubO;_9n{{dz ziK3)mo_(eVHQyP4k$iaGX1V~xjn;ZAokVi*u7s(0Ajhj`{l^jAUW>chy>IX_u?krH?-un3&6PI z?U=5kB!oD24!r|mh{Zi;VL>;1*u;eO?Kn+J^a+e_XGQa~P6fcz1f5xuS+Jn+&5f$N)8JMyMN*`eV0v)ELrID-&ph99=!{9o1O0t z#mSm#*6*0tQ-xP)$eX)%E|k#s1b0G$*QCJVTxTyqW1+N3+9c=2U@y+h1&Gt0LoM0! zEa;(eDO42sw4xa)@qWuOCNsdD?~j>!aw6={-7)3cgF-(QYY=C`nm&7_6uBL-@VZUW zEEjHgaF91gp$56(cm^sWlu$Crh8|jZ{D2oBo+i%~atVN`M02^f10x}MF(R2|qJ&h- zuH#?5Ve>8Ti68G%)EDt#IurGt%+pnCt8TR;1_XZB^1}kbME`#FDNCPT9-NeU(XAiR z2*9PjZ7JEAoQQ?OS&C(h7Po+;Y2N-DPE)u-1!t_)5k9z2s~6v5#ZgfbZsg@$B%!e+ zVy`Zd_Ki{OL#TzKYC;U&S8-P~_emK*|E}>KCu)$VFmp&&bZdfv?TH$){F5YGMF9Ob zjtGgLjnX0qnUO3EFxSoA;!9s&e^$%~I>E$uM6=dczK`622o9>cS%78rDY!DGbyF)5 z$lONP^J(^*8kKrITbtgZ{ijRadU}?60-m{%yJ~fk1o!iy@FAOP6HmuVZ=IU&uolLR zM9q!dina1{T=Z&vt)CJ&`&B$4y?}f`1clZONbfsMn%paLwh{!DuOSb9j{Nvqy7cGc zSta|;UF^l(kPm6tNoQQgr6VcxFNcj|27EdT?d|t<2*R3I6EY;O`j`zKq z_iht>;E*nncOPon@~d-+c8HiVK!1}S#-jZw=@%z?WX_QUjC)4rbpY}2REHu%-+_@a z2@D|V?dz6YDK~T}i;o6&$MeaV@%GG*tnpY+mr6{~NK&JmvHQ$tzVL7>zp+%!MaPy(&TK5_q#$_unrsM%p0X( zH=&Bz!l4A^`qAc4f`c|U=cuFzYWj@A)2L9wTiNKq$6~U)h-m$|&ssG|Uc1q$y-e5& zsfq{2`o-ZFvfh+1-#AXP(0X*pDiyDiRf3ra2b~=DgIX!RiHS)S_Dt=9e!)}g&x}n|6jO7m1mw%5};kqi;%7T_Vc+4<%4{F+R zz`5*D$n%;Id}+q)wW?h;NQ!8NUkL2dY-0fJZi4elbEtg{dC@rf5z~nsoQP-^#er#v z0j|nANc$jrn60Df5AepkF|rL+EhW)^5H7b;nF;j+Qp0wtYVz3+7!|i z8pdZGaQFr`cI%I`!vPD>+bLEIGm=S$HHg}wRiok1d?nG z`BsSeYd%CV1J7y!zLdnsTNzM;9AGX8V9fp{pQTVMCnv&Cr%UA;6x>*`)~T5;E6ooN z3?L6kq6~Z#o=0d!LLg;!Kqm*$V+32gnw^qspFmWC+Vk#b#dZzPnuc>eZexG1mQ3Jv zs=QsfbcT?bU8%Zd6r?*t99h#+o^QKA(8#qV-doh4Z~+OT&$ z!H&7XV(&U0GI9L!a z9E3{eK~N|2Q~J4d1-Q(7G&u6#n-@zXngU*vjf^dMqRRTl5UmR}n}xRw8EP#39N<>@ z23JWuzRRzSr3UGG+I5JB)pP5%fUe8Ok7FGqLJ9ZpHGg~sR&%d!etzGy=@k*_BZivEr586gy`oP zU04F9WS+RZ%;ocpLiaHw)hKmy$T6^$V-GLH0}@aeI3u3qdEPp@f1a z_(8w=E{2kRb>1uM0?ESOaw@}`(K2jf4YDdL(sAk%2_fZ3=!yZyF+9{OJh8mo99TEw z$A)Ic4q2+4;M%F9MM7*c+oU5Dv^bD+Z=?~Io*bkqAnet4F6q+3cRB2>AYI`=PY0?u zfgEF~v5QjSIo8q?G=3qO&ACG@$$nX3ExejlJdtx`W}hpB@xJ-DfnK2moWzabK+c^C z$|Sq6z>-6+iy;loy-RZRfoL!-mWDVoK2d)F8Qo$GmM=8y*Bq<$1oq>eYu_ez^w21s zrg{Ye$6D3ob;zKk%YrT$;`^CSY~99$%}RIzT6hvavfBvmJfqWX?VPpd9o=-b?GPne zE%mSMZGveXmkr-m#^A=~-;oxFqB*867^?H&jz{u(nfW5qJzJ|NYRMhh*1{H$!B&5Y zYpyG(=f37hoNaB1u8{Bkf_gz83kTW(*d2=#N!Kl3;Y)vf!x<+t)veoHa@OOoQ${3& zin&}dB$Vz4BjbmsC+aPbQRGCtDGAZ&WxFLL7wpb9*G}#v31N0H9&bWI#G5-;Fk=gi z3f|EG17^gwZ|{t$E`jjwYZx!Yzb;SQ>Osht?(svFL7$Sm7S`kYwDE0SmNO?o+&!HK z4a>ZzaBg)Yjol-s$x-T*P6G+Y=_fAB9o_^a(%y&syis^hLY(XfY6nI1=b#BVE2HAfI-4Vo$^=XNxRnH+|$eLPcJyDQ4 zVlehPc+5w`wKHeWWLatJQkpQ$VLg5iMQaKz%g|F#G>F~gu1rc(hMRR4&AeU{O33); zD5uVIcU?V(GKt5!0eObXV@%*uxt*1o2PpGHRPN)edm%CDT4~?m9+d`M;bNqX6?5Q4 zaAW|_I*^gHx|s^n8=3_8d*TYRAPmNA!}ecQefa$RbWLSCa2hd?_|qXTJo)u@^4 zF~&H1Qx#WS4menCHCdkaT`e{tdeDJ!tjG?tCFgV**%v^aO(Z6k#VTlNcs<=>k}w#1 zWhEaCrR15O5yDbAT+O#5odSh`Q+5t*{-}tNThmHX^GZX;Y3b6J908P_^o?YaN1TE{ z`?=US10sUaWMM3rnt=b-U4}36A#KPRofD+Tyj1DVgEHXuc5dnX5Ggp^l||0J)XKnv zC0|`41Olw`l{uQt2MbCBuP?-cUhvcV9}7JaOb(d+nln9O&`Wm)0b!pW_asVd&%xd~ zEUl4XpB$(-IZ@DRz&=&4LCJ0Mu4r9q))n4Li`HCSY*O5?np-c#A4PjZcOG5A)4jLp z8)&K&V$6J=d2{6rlF@}KFM#Pj#Vv9bbigd%4#o!i8cOJt_<~~G2S%z}eJCdr#IwNL zsm+M8qs0v-nUHimQa!UHM4JiL2_XO!LJG z#1q}L(=9RO+{(pj$;CIiwo}|&^u%vdxRV!;IY8Q3A${ZsUlm8At~ez7jlXS@HY+$# z5Y#3rg38K7znVHhvM~GnF1C7_@h#nTO3HF|uYoXFm!aohAruVVzfcu)zifB%%w(Ek zU4=I|MIM;O)x5o%;qIj&vb!YX&^(BaOU-!{;M+5;E}gz?NMEaljDDi7m;i5v>ckNC zP9QyTdEU0CorNB&t<>tccA7#6IAYqo5goKVma{ry(AS=696mH+Fi?cSY;hn^8wt+c zMYlzjl8**{<}toC#4cU(!dYTqDO||!K!JF2fQLiE&DGJg=xy~uZD3JZ`B|?fPmwH6 zy?Pf@J;@lu2I&+(IfC|uNVJl1yZ<#*NKtahZ4>oxGU?G(x8mBIxNH&J;f)V_H?yI` z8^lmTl+lJq_)?jtjmYFs0%GEd5z`5-xQp~S@QRH#C4riDokDh&0(N4H@uThZGNJ?4 zHy!s^nd$&MMC%*RRd3~2yfsfxI4OaEdbIt&9ZdJcb$qY(#z7S5uT+1BoEiL_QZb&9 zsa?`A@W!Cc9S7-c* zf;(YA>G_k7v0KH4-+3RYK^DG}x?&3$`iTDcyltBiD{OC?mE1D-PIK5^Ma$-m>s};- z|MHm~y>G+TXmBFknO$c@*hBQ_W+(YAfd*AaSL~Z{W~gz$slDxpK4&aS2fTimQNznO zAjNfh8g1z*aJR*?sKeI z=noDa^;sTE5BDCbdyt|&cz2)bgO0b`AjAoJNqX^x63$E5_cB@W#Cf{m8#Y-NQo5%> z;9h;i5p{S^;`~c%%@0`ykWi=n-jC{vz_62mzR4UD9lbR3k>Vox5YepmCfnh?+fT%B z#u0Mr-8Y~*Y3%z@ zdf`K7fu)rq?_I^59Wdzdp`+94S+YddA~hVhAE?7^ziNz*b*B z^1dUw$cTLxA%wkvJ?@GMWF1{r@!3gX9^xw%%u^yf{IOeZ)UR+)c5NYdS@ z;Ad>DsQkfH_yh}@N-s2E`!gRvJe27gjb*}qmDE4>LSKv2Bi5EpV8+rie5`%Iot%cr zoyB++eL*IyqX6az8oUvql-2^Vu~j+V?pL=GbD##f?=bc~-WSb|pQ``^UdZT4QYwS! z(6sPSXB+D;N@b*RpeQ09d)H<9iO_r_!8KrrUx#2_>S3p>vCxC;HV{O+PPYYhl=bmM z6}$BA#)WZcl(eFf#=&trEc<(W#8CzpQY`vPUUfY%W%(`zMoFNIb>{=1H9}<5Kw;yL z8v124u74B+7@OA&vV+IpY){JyB?$49g`4vr7IH>+Ih&FaU+*j}cR!uapU)Xbcfw-B zeh85Z?+1OS=#_J{#cB{2#Gj$8t7)wFVfIyMLuR;Tv1`AOcW=+Zm8aPOq5@UaUgGr2 z!{o-HBDLfMwIq5qE4zkK>KDL~8`ZK~mnxUrv+o2EeX;)9-AtpHfF!Zzw|?LY^P-J@ zVW9;1;jhCF%;S6GZfhxRuvYBEyro#tVQk{UDkS{*ufs$>sQFZ;PbtP%vw%%<<@j|P zk$OI+E?jN^adxN-NwJ|@cZkO-xj1^;@-p@UT-&>+?)?#eDOPD z@m^4O!EbeYg75htGb&>7r4%+og(k3KfgVfL;}CwL${s%ulMMyKWRkR8pofG|ZKU{& zpid816jp_hXrNl$ALKvkv${kGFJdjQ?;9%*Sei8;2acV#W}`Jid`Ve~S9`0bpL&4^ zyI3LNdx@VHk$zBD+O?-;vJQNR8>)&l-}WEoBn$K74Y+8K!Ro(dc$Ni2%UV33tV7>S zCdI&CPQ^Cx7t5C&W)EqGh5z>zxOWEH+E z$j*Z)6_i!dI)-?cCQ3MsFmxBo83qB5%|I+BrI)G@HspraRRn$9ICbu)_O(q-)+>X2A2psyng4LqlrYZP zLX$2h)f&)TE9QSR5d(?-)(#2SyWZ(Yag8Kzn9dECxt&d1^h4njWBT}U_1^E;rxJo! zF)4vdud238>4hhA;zsHzvEH|=t*IY6?s(TftLbMZsyUN(O-E}k97C<>y9Qm5J4U?+ zpc7;F@V70@FahjAx%}@E0{q;97#?HBUf7g9=^0A+#)gZTg4@W|SC>@C={?LYbq_M(KOX_{+f&G5~A6n1JjWjsMs z5GN`w#X4o|S|L#|A?$yopnoOO^$ul0b7^ym`fS`jo$i3E^%-i@+v=T))p^Y{??6`l zC^RHAJX`17GtaLp^6I7x|CzTcs}`+(!TV7{?@z2PXRqzv6hL-eQ!LP=q-pNPDftGg z?*5qtM;O*iuh=SUI=ClVKT(1Dt1-G&jZ!%JMypnbeyv_ROfG;YeWXwj^4K}A8BzbpR`Qh zqCPER2(>NYw2WZe(rkka2Y=aQUV}D}xYRq8)JW;w*EMG!Mc=a39OsSOrPUum#>@2? zzuOr=p}r|wTOnu)-?4D3VNUT%C%*|@ChBRC%Eg~nP?oFxHzgOY3J2RIHx2kmQEVOP&6uYNS7**MU4Lhj`7 zzwiG9By{g^6$sH|ku*KB7<&j4yUi+K=5vhl0~LF&xF6JgJ_zjjo0c3zINQJCJ)A{E zmtHZZM)%YDnyNd9%Tf0vg2+lAhxif?FY@*3BneCc)!g^s>dVc41!1AF+NA78pf(>H z`dif?&9IeNG1N4b=WN|7GuA%~dLUTox57M#bS}*Aytf-Rdw0FNJr^QcBGx+*ukxPo zy^9Gecl?A}ARW>Tp~r6MXgOQ)!468&OFdmFqA;z&M{pH zBg{{9gtt0(=GcrD2(OaDKh7vssVqu1sS(SOqrRKH*uQUikr3>M8n_*%cBtFC%47Ij z)9^;&MJ)%2i((^7=O8@$|M)O`N9Ka>@phX!r>s)3 z0!;r{grV&RQ)oz(x+k~&z1eFE0PU&*DH7JKQ-btzkWW~3(IsOfO=&uCFoLwW6fC>Q zXJ#Bc`q*uyCcmHGOp^lLiN5^P9lFS0xo_GJ)99pGLoS~cSA(Jlrn7>ypqSdYGYDe< zMnrfF#rEXm<#Vvp&A(IWOD;}Cy1Rf6Zw4r?%qGE zst#18T!h(+a^a4rF8!q{LgjhFQkTB@n({mRmsaCj-czwz>{AnKG{}jIZyR)|cq!v> z%1@tdtHSk=4!uEVNTlu+r2X~$qdo|w?KFp~nFp@79w_>#S_jkS2T(o0vS##pG)N7k zJonM48kTZ>-qr5T%!uJHZjh-$OpfF=NV88>Qm6TGk$A%TzNLf^g9v4{Gfr0I_@-6b+7h)X%a<~c6145V zL%tS37pIP_t*siAPTPa&O2)b&Bg9y}Doqc#2zwsQa7`ZJzPQw&O`S~(BfeWKRjPEy zZuD0Fury)KQ6*ToLQA0~hzoH{@dwR{`^-13K!1E`v%-lr^}ljMb9UdsC}@sw`Lm_N zjOK>Y&FN6Iy!djV=L)$FeBt<mZIFITPYxMt<{y`@QLxoAxQCu6xblOktDG7nR0yQEpU2eC@v z-<&)}9nxGCzO$_I1^AalUBOe9$GMe-J)4f&uyIlzRLB3V;Cq#pRcMG`*eUmhN;L-=@eYW^bD^q_vUkg#)SG zVOZ44=P*MSY%+3rCd@r~+0B9W<@Dv28Zy0@xkD@^pvx6q6wWaMUn&HpxD7C(f-6Lw z4q#QWOjY<$_S(e+*GiQFiA!5F)GD3b*Gq|(o~3fAzun5AEm*vDK41ggIrIW0%Hb$k zC5uayBdI@ILZ)J`r$t$yr9<#EUmrr=t$w6tt+I+ZXE!i|?V0UrsvKIh4PRFIuME9| zvGR=U?JFNt;;XE2Kv6E}Y7F^e6{yQ=i}|EaA@<3FxI(3Et9CzfHw%{&Hk1ifj2Cs+ zx>os2;fZlXm+swB!E?GnSO4$#{}&SH$(#IZ|Dj|0|8D<>*Wi@(+FE4o_sG(Hd^h;DG({Qcj)dDGeKQWrlXS%`b`Iz zkB6TxndXqmi7L9<B$VywfTG0G_zy|HIV&^9;0tQ!6MqC*8(k!9?%Yug$}lY(&cYOfpj*dw>l!{Yqo2 zv1MG~^d5baWulx;#_ftms~1a46VJ?DA|m_!Cf?^;-;!w5zf6AQG>F?ANYX)?>qPLa z4g}MTB_}>_7TPgI?WmN(876vsOKnh}{KP%95{*Xf#i?n~#*R}tXg@nNg06821k5Yw zq{lg|y;@nB6`;42Q`I^}7`cJV5!d1;an_J;MrwY1&yKdgJ9S(_|ltuO={a93HUmkUivJB z{kvK9Xc^Qqj_RLtvP}pHQ!}0IiQk_K~1DIS^$oADQ0DJK+7}6M9Da8g# zFK1hpDdNPcUC^FU(4v{exCY5Z@oFrs6ctY`Mitq6_Ks;Lh$kDWj=fY4rcM<{e=lx5 z+9zpnxd-n{rA*~g^b-`laA8E$^ru(IYk;bSn$8EgH_+*=ord^@AmT#m&^;cBRLiO$ z8fxQw26T1GQ7XwOk9uxQ^5WNi7Dse|mGby2O=|wk4<6y(nPYQK+mtWc@YSmUR3tLJ z`e^=_JU%7PUZM{H`Wuil17Yfb!WLT!RLpa)+zbR52qNm$%HT75AcADqdBSv@KP#Fq zI|uIzs26xT`I_@V>&#l~G%#zPu*E*ryU%t2P59Zxnu_Z`Hzz@PG$DHN!6IWP)>#szaWwL$;&#T5>>%uvDx-ijAe>}c|iwBJ_A3*I6#Emr_S zy72HJe8|@)qyVOwtpps@T&FG~``JJ$u290Bi={p4 zz#LxR2Rdv}T!xbyH=c>@Z33OTaPR)%3+Q-Uy{#9TEoMtcC{nP2o57xR^UuH=(BCm{ zeyRD|b2#RKcy2Ctiqv!RdnqtGr3})V2LM~Y_*T(?p-=U=Pj7Wa=@ihL!)byGdW6iZ z4~Le81LvBXUu%pB#2|)-SEKmp~Sqj=DX`cEJF7weQxP;;XLCD+we%U8)si&hVaZ(_Ie zhIkG6@@eZ&br3=9;wXgrl1y%(q3bJ*=k`4WxMmxjk zX0&_Vu63VlH?~$k64YJf>|Wj}l`3RG<&2NaAWB6OI|WDghJb{r4h?6$^dM8l>ut&C;fMF9Xl{Z8-r(6L+4k z6v|OE)7SG$&Fk$sWQYHWU`B3eW{SU_nAfTyKRpLACEIlZe9S9_`F5S}>s@7JDbh?IP{RRBFM{)} z>VYp($i3B3wL0Id82luCA_hCrksUpQ@zD?tAk~oj;wKF0^gHv#3sF)~4kVn?W&F(c zbKAB?pv^lcpyE(%;bp&UgQTAmdm2pQx|ePUj$*~DfumY2^G9waSwq$t6|WJp)DOA zyH028^oW8(zlKP~CfaXi2MkN(_KoNf3UkI&+%Pq)hG2vpZb?u03v0WrLHNq2=q2DB9bcDfXtrF+?RKFzFvr!eB0_TEY1<3)d1-XZYT)(&y6(=m{`Y9o!{NiuTI)2vy(J?}Fq!G-#rV zKyT@Z9;fa*p#wDLnsiS0f0%!;2lTa3FZL}2sq_<0R~Y5Ezwihw+J?$Wm>ThIM;IG5 z_Bo#b=g6~27IuX3Wp?xhqR7x+Nq795F;qa=Ok9YC(bq`>=b5o`pS<7N!&=G52e&d- z(ARi^T5~;FvTG#DPf*y-V#p)C_(GGhQlnN`@NQCb_8v z@68N1Lp<3mX_*hvAU`JlVfAcSmlsd6N%x`mY3M zkf}3H(8aYU3(;ptH3OmQ4mk){Pv3$_8*?okepYgx{E`fHB7c3o0P?$u#Nuphl>p6Z z;X}u9dJ~r3O&4{j_PHdIY!wW^He`Pjbq8YZ9X1UTmRt z4bpTzXE$RE%bDGDb;UUF=R;?@{OqS0NxBu{VuFHRTF!T^kNVj6^YrbJ6@|3=(%``m!b#+SbHGuaxV$0SA{Rr`Owmb^3hr3Z+`%xA%AYz56$6N!@f zALeP+E6+7 zV-jL?78^*0%oAJ9$g-au#FE!^RS1^2LR+5y>U6k<1n}u&rmvnFn2nKb3%Ew6hJOLL z)XHR8ts2wo{h*!gllNcqAbi4j0Xbz97So5{D7MxxE!p<<5UZq^tRu{KSe%#>+zL*SA`^F@!mrmVCS!yJZv6`CeFeJ;TLZVIqOwyt>k0>8zQib>B zw3GIZ2_;-PZEFK_BrrKCA8ekwq=||5o@5_CiQfh8ZGU-@@SU!~pO%`MEm=hq>!Wm8 z#BKI0SAm4L-;~r0tsHp=xN+-#U3N6pswN0pWj(}YQ}vKF@g@bBj4yNbfY5@x9-m1+ zE1TKru$Gl9oR&rwq|b~jO^eBKIRGGsiC^#K*9k87coZOzz=4dYeo9gCgTfXuH+6^( zX~AHGNW_o*JYLt)b1s$SrCN5G`@LR)vr90V80`)=nR)4b#>uyp?;$c~IwpJXM@?TS zeD}1vkr}29R}R-CQGJ!@2x`RMGoIeMa_ylj?XQVYB20u{g$}=cXkxQ`D4`rCLd(&C z&-LjCncGVZYLH1@g_$<2_xZuo!o94&UkC7Js#n(72xg#mVb@xPyQXGcvU?tyKA3aW zC+ZxN7uWwf+Mrf z+dO@Je6qB08S8Hhvn+&JJcfIVI3U!y_}>+fIi%mt>sKs+4Q|2I-;O7 zSg(2%U}Uu2@xyEEJ;1ll5Mi$O2#yYi0b&MJ4&IYUU8@yOj#eJLi|Rj3H?kw+vTcx9 z!p(fCS$Z#|=vde(!`s)N3lVD^v*-Oui1$-PpscR?UlZ}c#iM#6=RlP#%EJSpgo7Jp z;;cyJ3@=-BYLKsPPkk+7!m1y9Vz=Go7%T=A4D`L$0b&yqD_o7KT$sa|x^glh@UOXl zpGY**cChh?n-_Km0pj@l9h60%%NM8`5+v@NxVN6e`t$4>QfV!*l{=;&N+|wVO!2vn z-r`zG_Juj4qerG=u*tMZ`?NLpdO<#CauPPvI9o{7nTyJY;5&DxMp~PM=xpgm9cL_K zqZ{MBdlsZiOju?**!k5U+0SAP z+0p)1)o2-TFfyZ=Mu;%`n5uNRA(El?)~m*4-_@c#OjS4_bGJe^M>lp_5pm$AATgkHA*R-7~q0N2rqmk zR4qnU-JJn)!z%w8X7siI2Ihkh7hL$vfgQ187<{P3!R!r#N5ML_pYQSHWF08c3{V0j{|=rC~;&)C%f=BNEz>P;R+B z54Q}QZ$E5Heu*R})z%9Kub3ErfWkDbpSaRUJmx?2KNmE+ z*A~M7k3>@~-9E+E^=BBguv70v8c4pc^T`KxbUIUlqgf47?2GnmE(G8CyCKp#Bt%nf zx3>`^JAK03Xjm#pE|f5M`rN73-pn&EH^mr zb&QH$D7SBxaOp0RY9zv8ujW3tk6WAR)8~;L_)0a6WH68EE`z^*Age$ew+sBL*HL^uH zL4?U3@wP~&AG|u6k1ws<9b3My2Klx9ZLl+N61$a>;hd6u{mfcy8*_hk ztvj3bMS}HJjky$#2a=b85BgQT`O_-`|4&@H_vetZf*}*xRT^S0m1(6*2GhW7Ui%rE zyxf*Ph$4?*n*CaQZ`r%hi^t|NQZ(G7%SJ{TpF?O^Muxn$;nUsI|+<9VO3h4y2U{c*e0It zOPM?-l>xq!Q!q+!&l~KmeY(Bw8;pMZ9rm5+xS|LK7j8TOHV3jC+-)k{?cF1j9zgq8 zw(RiLhJkF;P5B3aWH{xV#se5vLfVC+2-I}+*WtDIC17AxH((3Ek&nHAsob7Z7cYj> zkNo^V{(Pj%TPPjbwdaKft%REiOM7$SedZ2ChnXpLuhz}#8{q!=?%q$6U|FB(BhzJc z+kD+)2y@|=Te(qpp#QdOr}|?0<^0LLZwf3d<*#Al^yVu^gEG_=1^)(zSrqCJjE{YrTQ80U=k$&a%8#znkk;*=5km+LrXthX$KAl zvp4xLd*gpewm}r0vVo^+*^cB4gM!(l*C{kOw))`jW2>rgn)W%UE-#cq|56k*&vy^H zXmRjVPUw~!Dj*t^CVxcxqqRQ<`N!A(gpofHQsPfu`%ldACuRSijYdYrP>qTy5iFbz zJgCpP90io-5I|%KEbx6MTm5sxSJ@IP$7@%m`@R8m(z@)z2=iFQ%q6l=#M37j1peZS z9_$GvIKGLGsU8GO_Bk+7RO^KhusZ66lVk%XY+x3;5WYeBGW`phm%7SkTj6)Q)QA78 zy(^7sDoetW*2aB9#Eqqg21SvmsDOqBML+?;)1snH3~mjGpn{;t5~2e(i=mNL_C+1F zZ80DqDh5IT1yPnLiagLTpe(X)FAzd9brS+)4s+(mocYJU@W^}jrfyZ;x>a9&Phi63%0I{}L7(GqIkq`~NnF-?e03qvC+7uB736PDK3cO{yv%=E<(03$u9*224o_>= zrnr7p)NjvxcQjwOOkW*)XJcfDQAGWeaQsuJKX2zyM7Zyd^qdik`8u-}QiG44Rxukl zaTw4-i`}MgS&ceKW>az<+^=xMnzWFtG>j* z!I|`WU_#at*rrR|^EbcygSY<Y*hbdV$S`(xY-tar}e@Mgo&~Q6Oa?(1|jT zucU)f-$ufVzkq$?xK%g8PefXuSV3dY*vLvlR2{gm!erjnB^zx>qDq@#TP781)M4?w z!rtjuzLQv#Ll6?|4_TJGQN{;w13$nS|B9`vk4BmY=}^*q<7J)3z7a)1mLsw`8#9`M&dd{AxY$f&H>FwEsYO6^H|%2(k4h z6d`(nZKq*o+-BF`iABv$09njA&aYE42mcZFe z?DTEg8b>v&33I_BB9-TE1`d=Q8^iv}xwpM)9(r#;Zs6NSYsWFiibfs3>HZ18412#| z*WX8+gk%r@6*BUPa_N@H?-&mfL_I{&!q8fm)SSE79|O5_3|n68PqABIavI>DPTZ~_ zy&Xf>qL{}yTD)quu0_>9?ZP3`>NjOCGDq0_-S(=(J(K(Z>WkoT&0iN$jqV0!bV8i7x#f7Kn-i; zLuULNBS@PsR28sQ3kNCuJCsA2Ns%(5G)_k3M4>lw(bYW<1E6AT-(Ko^Z2Xs^FN5XG zZPo$4VmZRs8O(ac)Za|~c+a^BCG|gb(dHF0fw=BNu^?%vwyFLC&}6B1mVc|0HyYSx z|4oDF{VGMLWy|>IsjZs=GMXYG)l;j09?QifabLN1^Ilk$^>0N_8|a}8mc*Qmqozsk8{${7REns) z^HjYaA!BZAr@I@2y8@|V4`aQmhYL>{^+ys6Bt>Z6*A?)i^zc!S5na$6dxVbVNwL0C9h}Mmiw8#S0{nK=Vx)@rr52 zaq);bdD)(=^|zqC$U76fW{4M1DsilbP80;qIU9_q9k8UKXGx(rLZ&?H0~)=h;+FeN zC{EI|2J=)~+GNKEtU>aiVc-3GiLq}LU&i4EMu+ok59}#1D{80+MH8?<+4=noT4k;O z+BAz-$DrWD)%XA}KB9$8wbuXV-#?bVyt>>m`@t}eYs5GYusQ2)-k^z}A*w$3xvha4}$pRjVASdCv$C^&#>pC6ct?NF@liD<~W z{Me<+EGpdhi@Gb>ybRb^8qP8SBN)!)rrh(sG{_PSu^I#|_mWiFQDD-J&}r>pZEPoL zY&Wt%w1W`)INoeqhW_3Y1`8Gav)yzVow5a$Vmy7CC4N6t3jr;h)my0niKM`gDe;=fGmefl_JN(@ zGvRf@)O09sXSm0PO>`I9FgwN`B4gvlQ0OWvao!+vadd7_@0XwWCrtjp$rYSX75^V9 zx(>>V4-)@_F*!sLP$a8UURq!1;m-`X&q&_&(ecsJs!=VL`2c1c=iXLhLF%u2<~a?j zjT2d#@jfs^#7`#U-=yD+W}O`&}eKC@6=!Mo5dmezu!+Ag!r(D^4*%rVFM Date: Fri, 19 Nov 2021 16:33:21 +0800 Subject: [PATCH 23/35] Fix doc for shard_index (#4062) --- docs/api/paddle/shard_index_cn.rst | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) diff --git a/docs/api/paddle/shard_index_cn.rst b/docs/api/paddle/shard_index_cn.rst index bdee00e8b48..292d5a4f940 100644 --- a/docs/api/paddle/shard_index_cn.rst +++ b/docs/api/paddle/shard_index_cn.rst @@ -5,25 +5,26 @@ shard_index .. py:function:: paddle.shard_index(input, index_num, nshards, shard_id, ignore_value=-1) - -该函数根据分片(shard)的偏移量重新计算分片的索引。索引长度被均分为N个分片,如果输入索引所在的分片跟分片ID对应,则该索引以分片的偏移量为界重新计算,否则更新为默认值(ignore_value)。具体计算为: +根据当前shard重新设置输入参数\ `input`\ 的值。输入\ `input`\ 中的值需要为非负整型;参数\ `index_num`\ 为用户设置的大于\ `input`\ 最大值的整型值。因此,\ `input`\ 中的值属于区间[0, index_num),且每个值可以被看作到区间起始的偏移量。区间可以被进一步划分为多个切片。具体地讲,我们首先根据下面的公式计算每个切片的大小:\ `shard_size`\ ,表示每个切片可以表示的整数的数量。因此,对于第\ `i`\ 个切片,其表示的区间为[i*shard_size, (i+1)*shard_size)。 :: shard_size = (index_num + nshards - 1) // nshards - 如果 shard_id == input // shard_size 则 output = input % shard_size - 否则 output = ignore_value -注意:若索引长度不能被分片数整除,则最后一个分片长度不足shard_size。 +对于输入\ `input`\ 中的每个值\ `v`\ ,我们根据下面的公式设置它新的值: + +:: + + v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value 参数: - - input (Tensor)- 输入的索引,最后一维的维度值为1,数据类型为int64。 - - index_num (int) - 定义索引长度的整型值。 + - input (Tensor)- 输入tensor,最后一维的维度值为1,数据类型为int64或int32。 + - index_num (int) - 用户设置的大于\ `input`\ 最大值的整型值。 - nshards (int) - 分片数量。 - shard_id (int) - 当前分片ID。 - - ignore_value (int) - 超出分片索引范围的默认值。 + - ignore_value (int) - 超出分片范围的默认值。 -返回:更新后的索引值Tensor +返回:Tensor **代码示例:** From dbede618b012af5d66daef734e94c96d560bf7a7 Mon Sep 17 00:00:00 2001 From: zhupengyang Date: Mon, 22 Nov 2021 19:10:08 +0800 Subject: [PATCH 24/35] update elu formula (#4114) --- docs/api/paddle/nn/ELU_cn.rst | 8 +++++++- docs/api/paddle/nn/functional/elu_cn.rst | 8 +++++++- 2 files changed, 14 insertions(+), 2 deletions(-) diff --git a/docs/api/paddle/nn/ELU_cn.rst b/docs/api/paddle/nn/ELU_cn.rst index 06875ad3ad2..cf4e5e23422 100644 --- a/docs/api/paddle/nn/ELU_cn.rst +++ b/docs/api/paddle/nn/ELU_cn.rst @@ -10,7 +10,13 @@ ELU激活层(ELU Activation Operator) .. math:: - ELU(x) = max(0, x) + min(0, \alpha * (e^{x} − 1)) + ELU(x)= + \left\{ + \begin{array}{lcl} + x,& &\text{if } \ x > 0 \\ + alpha * (e^{x} - 1),& &\text{if } \ x <= 0 + \end{array} + \right. 其中,:math:`x` 为输入的 Tensor diff --git a/docs/api/paddle/nn/functional/elu_cn.rst b/docs/api/paddle/nn/functional/elu_cn.rst index 6a1bb9fe0d1..4fac0845e59 100644 --- a/docs/api/paddle/nn/functional/elu_cn.rst +++ b/docs/api/paddle/nn/functional/elu_cn.rst @@ -11,7 +11,13 @@ elu激活层(ELU Activation Operator) .. math:: - elu(x) = max(0, x) + min(0, \alpha * (e^{x} − 1)) + elu(x)= + \left\{ + \begin{array}{lcl} + x,& &\text{if } \ x > 0 \\ + alpha * (e^{x} - 1),& &\text{if } \ x <= 0 + \end{array} + \right. 其中,:math:`x` 为输入的 Tensor From 79874e0845b44e88e6927929e1a1b317a97a572c Mon Sep 17 00:00:00 2001 From: Siming Dai <908660116@qq.com> Date: Tue, 23 Nov 2021 11:33:23 +0800 Subject: [PATCH 25/35] Add paddle.incubate.graph_send_recv API docs (#4104) * add paddle.incubate.send_recv API doc * add default value of pool_type * fix default value of pool_type * change import * change intro * fix bug in api * fix display bug * modify wording * mv send_recv to graph_send_recv --- .../paddle/incubate/graph_send_recv_cn.rst | 53 +++++++++++++++++++ 1 file changed, 53 insertions(+) create mode 100644 docs/api/paddle/incubate/graph_send_recv_cn.rst diff --git a/docs/api/paddle/incubate/graph_send_recv_cn.rst b/docs/api/paddle/incubate/graph_send_recv_cn.rst new file mode 100644 index 00000000000..22940d94ddb --- /dev/null +++ b/docs/api/paddle/incubate/graph_send_recv_cn.rst @@ -0,0 +1,53 @@ +.. _cn_api_incubate_graph_send_recv: + +graph_send_recv +------------------------------- + +.. py:function:: paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum", name=None) + +此API主要应用于图学习领域,目的是为了减少在消息传递过程中带来的中间变量显存或内存的损耗。其中, ``x`` 作为输入Tensor,首先利用 ``src_index`` 作为索引来gather出在 ``x`` 中相应位置的数据,随后再将gather出的结果利用 ``dst_index`` 来更新到对应的输出结果中,其中 ``pool_type`` 表示不同的更新方式,包括sum、mean、max、min共计4种处理模式。 + +.. code-block:: text + + X = [[0, 2, 3], + [1, 4, 5], + [2, 6, 7]] + + src_index = [0, 1, 2, 0] + + dst_index = [1, 2, 1, 0] + + pool_type = "sum" + + Then: + + Out = [[0, 2, 3], + [2, 8, 10], + [1, 4, 5]] + +参数 +::::::::: + - x (Tensor) - 输入的 Tensor,数据类型为:float32、float64、int32、int64。 + - src_index (Tensor) - 1-D Tensor,数据类型为:int32、int64。 + - dst_index (Tensor) - 1-D Tensor,数据类型为:int32、int64。注意: ``dst_index`` 的形状应当与 ``src_index`` 一致。 + - pool_type (str) - scatter结果的不同处理方式,包括sum、mean、max、min。 默认值为 sum。 + - name (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。 + +返回 +::::::::: +``Tensor`` ,维度和数据类型都与 ``x`` 相同,存储运算后的结果。 + + +代码示例 +:::::::::: + +.. code-block:: python + + import paddle + + x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32") + indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32") + src_index = indexes[:, 0] + dst_index = indexes[:, 1] + out = paddle.incubate.graph_send_recv(x, src_index, dst_index, pool_type="sum") + # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]] From 3a025b64bad1cae42f53bebcf1b4c1fd8aebf6c7 Mon Sep 17 00:00:00 2001 From: zhangkaihuo Date: Tue, 23 Nov 2021 14:19:02 +0800 Subject: [PATCH 26/35] fix typo (#4105) * fix typo * fix typo * fix ffn doc * fix ffn doc * fix typo --- .../incubate/nn/functional/fused_feedforward_cn.rst | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst b/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst index 8321b3363ed..56fbc9fad76 100644 --- a/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst +++ b/docs/api/paddle/incubate/nn/functional/fused_feedforward_cn.rst @@ -12,9 +12,10 @@ fused_feedforward residual = src; if pre_layer_norm: src = layer_norm(src) - src = linear(dropout(activation(dropout(linear(src))))) + src = linear(dropout(activation(linear(src)))) + src = residual + dropout(src) if not pre_layer_norm: - src = layer_norm(out) + src = layer_norm(src) 参数 ::::::::: @@ -24,12 +25,12 @@ fused_feedforward - **linear1_bias** (Tensor, 可选) - 第一个linear算子的偏置数据,数据类型与 ``x`` 一样,形状是 ``[dim_feedforward]`` 。默认值为None。 - **linear2_bias** (Tensor, 可选) - 第二个linear算子的偏置数据,数据类型与 ``x`` 一样,形状是 ``[d_model]`` 。默认值为None。 - **ln1_scale** (Tensor, 可选) - 第一个layer_norm算子的权重数据,数据类型可以是float32或者float64,形状和 ``x`` 一样。默认值为None。 - - **ln1_bias** (Tensor, 可选) - 第一个layer_norm算子的偏置数据,数据类型和 ``ln1_scale`` 一样, 形状是 ``[d_model]`` 。默认值为None。 + - **ln1_bias** (Tensor, 可选) - 第一个layer_norm算子的偏置数据,数据类型和 ``ln1_scale`` 一样, 形状是 ``x.shape[-1]`` 。默认值为None。 - **ln2_scale** (Tensor, 可选) - 第二个layer_norm算子的权重数据,数据类型可以是float32或者float64,形状和 ``x`` 一样。默认值为None。 - - **ln2_bias** (Tensor, 可选) - 第二个layer_norm算子的偏置数据,数据类型和 ``ln2_scale`` 一样, 形状是 ``[d_model]`` 。默认值为None。 + - **ln2_bias** (Tensor, 可选) - 第二个layer_norm算子的偏置数据,数据类型和 ``ln2_scale`` 一样, 形状是 ``x.shape[-1]`` 。默认值为None。 - **dropout1_rate** (float, 可选) - 第一个dropout算子置零的概率。默认是0.5。 - **dropout2_rate** (float, 可选) - 第二个dropout算子置零的概率。默认是0.5。 - - **activation** (string, 可选) - 激活函数。默认值是relu。 + - **activation** (string, 可选) - 激活函数,当前只支持relu和gelu。默认值是relu。 - **ln1_epsilon** (float, 可选) - 一个很小的浮点数,被第一个layer_norm算子加到分母,避免出现除零的情况。默认值是1e-5。 - **ln2_epsilon** (float, 可选) - 一个很小的浮点数,被第二个layer_norm算子加到分母,避免出现除零的情况。默认值是1e-5。 - **pre_layer_norm** (bool, 可选) - 在预处理阶段加上layer_norm,或者在后处理阶段加上layer_norm。默认值是False。 From 768d50a061deb65bd5a50c03c18e86d0dfd76251 Mon Sep 17 00:00:00 2001 From: andyjpaddle <87074272+andyjpaddle@users.noreply.github.com> Date: Thu, 25 Nov 2021 09:42:48 +0800 Subject: [PATCH 27/35] add isclose chinese doc (#4117) * add isclose chinese doc * update isclose doc * add ref iscolse to overview * Update isclose_cn.rst Co-authored-by: Chen Long <1300851984@qq.com> --- docs/api/paddle/Overview_cn.rst | 1 + docs/api/paddle/isclose_cn.rst | 54 +++++++++++++++++++++++++++++++++ 2 files changed, 55 insertions(+) create mode 100644 docs/api/paddle/isclose_cn.rst diff --git a/docs/api/paddle/Overview_cn.rst b/docs/api/paddle/Overview_cn.rst index 2c2f89d9df1..4a46417a212 100755 --- a/docs/api/paddle/Overview_cn.rst +++ b/docs/api/paddle/Overview_cn.rst @@ -38,6 +38,7 @@ tensor数学操作 " :ref:`paddle.addmm ` ", "计算输入Tensor x和y的乘积,将结果乘以标量alpha,再加上input与beta的乘积,得到输出" " :ref:`paddle.all ` ", "对指定维度上的Tensor元素进行逻辑与运算" " :ref:`paddle.allclose ` ", "逐个检查输入Tensor x和y的所有元素是否均满足 ∣x−y∣≤atol+rtol×∣y∣" + " :ref:`paddle.isclose ` ", "逐个检查输入Tensor x和y的所有元素是否满足 ∣x−y∣≤atol+rtol×∣y∣" " :ref:`paddle.any ` ", "对指定维度上的Tensor元素进行逻辑或运算" " :ref:`paddle.asin ` ", "arcsine函数" " :ref:`paddle.atan ` ", "arctangent函数" diff --git a/docs/api/paddle/isclose_cn.rst b/docs/api/paddle/isclose_cn.rst new file mode 100644 index 00000000000..7dfd07189fd --- /dev/null +++ b/docs/api/paddle/isclose_cn.rst @@ -0,0 +1,54 @@ +.. _cn_api_tensor_isclose: + +isclose +------------------------------- + +.. py:function:: paddle.isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None) + +逐个检查x和y的所有元素是否均满足如下条件: + +.. math:: + \left| x - y \right| \leq atol + rtol \times \left| y \right| + +该API的行为类似于 :math:`numpy.isclose` ,即逐个比较两个Tensor的所有元素是否在一定容忍误差范围内视为相等。 + +参数 +::::::::: + + - **x** (Tensor) - 输入的 `Tensor` ,数据类型为:float32、float64。 + - **y** (Tensor) - 输入的 `Tensor` ,数据类型为:float32、float64。 + - **rtol** (float,可选) - 相对容忍误差,默认值为1e-5。 + - **atol** (float,可选) - 绝对容忍误差,默认值为1e-8。 + - **equal_nan** (bool,可选) - 如果设置为True,则两个NaN数值将被视为相等,默认值为False。 + - **name** (str,可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。 + +返回 +::::::::: +计算得到的布尔类型Tensor。 + +代码示例 +::::::::: + +.. code-block:: python + + import paddle + x = paddle.to_tensor([10000., 1e-07]) + y = paddle.to_tensor([10000.1, 1e-08]) + result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, + equal_nan=False, name="ignore_nan") + np_result1 = result1.numpy() + # [True, False] + result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, + equal_nan=True, name="equal_nan") + np_result2 = result2.numpy() + # [True, False] + x = paddle.to_tensor([1.0, float('nan')]) + y = paddle.to_tensor([1.0, float('nan')]) + result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, + equal_nan=False, name="ignore_nan") + np_result1 = result1.numpy() + # [True, False] + result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08, + equal_nan=True, name="equal_nan") + np_result2 = result2.numpy() + # [True, True] From 5aa707a8894c29d46fd6a71df1e58fb97b3d7947 Mon Sep 17 00:00:00 2001 From: JYChen Date: Mon, 29 Nov 2021 20:27:58 +0800 Subject: [PATCH 28/35] update module list (#4057) --- docs/api/gen_doc.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/docs/api/gen_doc.py b/docs/api/gen_doc.py index 45ca5e0b841..262e398f229 100755 --- a/docs/api/gen_doc.py +++ b/docs/api/gen_doc.py @@ -414,6 +414,7 @@ def set_api_sketch(): paddle.nn.utils, paddle.static, paddle.static.nn, + paddle.signal, paddle.io, paddle.jit, paddle.metric, @@ -427,6 +428,7 @@ def set_api_sketch(): paddle.utils.profiler, paddle.utils.cpp_extension, paddle.utils.unique_name, + paddle.utils.dlpack, paddle.sysconfig, paddle.vision, paddle.vision.datasets, From ab21e768fb7b763daf4f1a726455c1f03d537e5f Mon Sep 17 00:00:00 2001 From: 0x45f <23097963+0x45f@users.noreply.github.com> Date: Wed, 1 Dec 2021 20:47:19 +0800 Subject: [PATCH 29/35] Refine dy2stat docs (#4103) * refine dy2stat docs * fix index_cn.rst * fix code review * modify the explanation for imgs * change title --- .../04_dygraph_to_static/basic_usage_cn.md | 622 +++++++++--------- .../04_dygraph_to_static/case_analysis_cn.md | 65 +- .../04_dygraph_to_static/debugging_cn.md | 2 +- .../04_dygraph_to_static/export_model_cn.md | 472 ------------- .../04_dygraph_to_static/grammar_list_cn.md | 8 +- docs/guides/04_dygraph_to_static/index_cn.rst | 12 +- .../04_dygraph_to_static/principle_cn.md | 439 ++++++++++++ 7 files changed, 827 insertions(+), 793 deletions(-) delete mode 100644 docs/guides/04_dygraph_to_static/export_model_cn.md create mode 100644 docs/guides/04_dygraph_to_static/principle_cn.md diff --git a/docs/guides/04_dygraph_to_static/basic_usage_cn.md b/docs/guides/04_dygraph_to_static/basic_usage_cn.md index b3159c24a2a..07fb0f8b864 100644 --- a/docs/guides/04_dygraph_to_static/basic_usage_cn.md +++ b/docs/guides/04_dygraph_to_static/basic_usage_cn.md @@ -1,475 +1,493 @@ -# 基础接口用法 +# 使用样例 -## 一、 @to_static 概览 +## 一、 使用 @to_static 进行动静转换 动静转换(@to_static)通过解析 Python 代码(抽象语法树,下简称:AST) 实现一行代码即可转为静态图功能,即只需在待转化的函数前添加一个装饰器 ``@paddle.jit.to_static`` 。 -如下是一个使用 @to_static 装饰器的 ``Model`` 示例: +如下是使用 @to_static 进行动静转换的两种方式: -```python -import paddle -from paddle.jit import to_static +- 方式一:使用 @to_static 装饰器装饰 ``Model`` 的 ``forward`` 函数 -class SimpleNet(paddle.nn.Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) + ```python + import paddle + from paddle.jit import to_static + + class SimpleNet(paddle.nn.Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + @to_static # 动静转换 + def forward(self, x, y): + out = self.linear(x) + out = out + y + return out - # 方式一:装饰 forward 函数(支持训练) - @to_static - def forward(self, x, y): - out = self.linear(x) - out = out + y - return out + net = SimpleNet() + net.eval() + x = paddle.rand([2, 10]) + y = paddle.rand([2, 3]) + out = net(x, y) + paddle.jit.save(net, './net') + ``` -net = SimpleNet() -# 方式二:(推荐)仅做预测模型导出时,推荐此种用法 -net = paddle.jit.to_static(net) # 动静转换 -``` +- 方式二:调用 ``paddle.jit.to_static()`` 函数,仅做预测模型导出时推荐此种用法。 -动转静 @to_static 除了支持预测模型导出,还兼容转为静态图子图训练,仅需要在 ``forward`` 函数上添加此装饰器即可,不需要修改任何其他的代码。 + ```python + import paddle + from paddle.jit import to_static + + class SimpleNet(paddle.nn.Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + def forward(self, x, y): + out = self.linear(x) + out = out + y + return out + + net = SimpleNet() + net.eval() + net = paddle.jit.to_static(net) # 动静转换 + x = paddle.rand([2, 10]) + y = paddle.rand([2, 3]) + out = net(x, y) + paddle.jit.save(net, './net') + ``` -基本执行流程如下: +动转静 @to_static 除了支持预测模型导出,还兼容转为静态图子图训练,仅需要在 ``forward`` 函数上添加此装饰器即可,不需要修改任何其他的代码。基本执行流程如下: -## 二、 输入层 InputSpec +## 二、动转静模型导出 +动转静模块**是架在动态图与静态图的一个桥梁**,旨在打破动态图与静态部署的鸿沟,消除部署时对模型代码的依赖,打通与预测端的交互逻辑。下图展示了**动态图模型训练——>动转静模型导出——>静态预测部署**的流程。 -静态图下,模型起始的 Placeholder 信息是通过 ``paddle.static.data`` 来指定的,并以此作为编译期的 ``InferShape`` 推导起点。 + -```python -import paddle -# 开启静态图模式 -paddle.enable_static() -# placeholder 信息 -x = paddle.static.data(shape=[None, 10], dtype='float32', name='x') -y = paddle.static.data(shape=[None, 3], dtype='float32', name='y') -out = paddle.static.nn.fc(x, 3) -out = paddle.add(out, y) -``` +在处理逻辑上,动转静主要包含两个主要模块: + ++ **代码层面**:将所有的 Paddle ``layers`` 接口在静态图模式下执行以转为 ``Op`` ,从而生成完整的静态 ``Program`` ++ **Tensor层面**:将所有的 ``Parameters`` 和 ``Buffers`` 转为**可导出的 ``Variable`` 参数**( ``persistable=True`` ) -动转静代码示例,通过 ``InputSpec`` 设置 ``Placeholder`` 信息: +### 2.1 forward 函数导出 + +如下是一个简单的 ``Model`` 的代码: ```python import paddle from paddle.jit import to_static +from paddle.static import InputSpec class SimpleNet(paddle.nn.Layer): def __init__(self): super(SimpleNet, self).__init__() self.linear = paddle.nn.Linear(10, 3) - # 方式一:在函数定义处装饰 - @to_static def forward(self, x, y): out = self.linear(x) out = out + y return out + def another_func(self, x): + out = self.linear(x) + out = out * 2 + return out + net = SimpleNet() +# train(net) 模型训练 (略) -# 方式二:(推荐)仅做预测模型导出时,推荐此种用法 -x_spec = InputSpec(shape=[None, 10], name='x') -y_spec = InputSpec(shape=[3], name='y') +# step 1: 切换到 eval() 模式 +net.eval() -net = paddle.jit.to_static(net, input_spec=[x_spec, y_spec]) # 动静转换 -``` +# step 2: 定义 InputSpec 信息 +x_spec = InputSpec(shape=[None, 3], dtype='float32', name='x') +y_spec = InputSpec(shape=[3], dtype='float32', name='y') +# step 3: 调用 jit.save 接口 +net = paddle.jit.save(net, path='simple_net', input_spec=[x_spec, y_spec]) # 动静转换 +``` -在导出模型时,需要显式地指定输入 ``Tensor`` 的**签名信息**,优势是: +执行上述代码样例后,在当前目录下会生成三个文件: +``` +simple_net.pdiparams // 存放模型中所有的权重数据 +simple_net.pdimodel // 存放模型的网络结构 +simple_net.pdiparams.info // 存放额外的其他信息 +``` -+ 可以指定某些维度为 ``None`` , 如 ``batch_size`` ,``seq_len`` 维度 -+ 可以指定 Placeholder 的 ``name`` ,方面预测时根据 ``name`` 输入数据 +预测模型导出一般包括三个步骤: -> 注:InputSpec 接口的高阶用法,请参看 [【InputSpec 功能介绍】](./export_model_cn.html#inputspec) ++ **切换 `eval()` 模式**:类似 `Dropout` 、`LayerNorm` 等接口在 `train()` 和 `eval()` 的行为存在较大的差异,在模型导出前,**请务必确认模型已切换到正确的模式,否则导出的模型在预测阶段可能出现输出结果不符合预期的情况。** ++ **构造 `InputSpec` 信息**:InputSpec 用于表示输入的shape、dtype、name信息,且支持用 `None` 表示动态shape(如输入的 batch_size 维度),是辅助动静转换的必要描述信息。 ++ **调用 `save` 接口**:调用 `paddle.jit.save`接口,若传入的参数是类实例,则默认对 `forward` 函数进行 `@to_static` 装饰,并导出其对应的模型文件和参数文件。 -## 三、函数转写 +### 2.2 使用 InputSpec 指定模型输入 Tensor 信息 -在 NLP、CV 领域中,一个模型常包含层层复杂的子函数调用,动转静中是如何实现**只需装饰最外层的 ``forward`` 函数**,就能递归处理所有的函数。 +动静转换在生成静态图 Program 时,依赖输入 Tensor 的 shape、dtype 和 name 信息。因此,Paddle 提供了 InputSpec 接口,用于指定输入 Tensor 的描述信息,并支持动态 shape 特性。 -如下是一个模型样例: -```python -import paddle -from paddle.jit import to_static +#### 2.2.1 InputSpec 构造 -class SimpleNet(paddle.nn.Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - @to_static - def forward(self, x, y): - out = self.my_fc(x) # <---- self.other_func - out = add_two(out, y) # <---- other plain func - return out +**方式一:直接构造** - def my_fc(self, x): - out = self.linear(x) - return out -# 此函数可以在任意文件 -def add_two(x, y): - out = x + y - return out +InputSpec 接口在 ``paddle.static`` 目录下, 只有 ``shape`` 是必须参数, ``dtype`` 和 ``name`` 可以缺省,默认取值分别为 ``float32`` 和 ``None`` 。使用样例如下: -net = SimpleNet() -# 查看转写的代码内容 -paddle.jit.set_code_level(100) +```python +from paddle.static import InputSpec -x = paddle.zeros([2,10], 'float32') -y = paddle.zeros([3], 'float32') +x = InputSpec([None, 784], 'float32', 'x') +label = InputSpec([None, 1], 'int64', 'label') -out = net(x, y) +print(x) # InputSpec(shape=(-1, 784), dtype=VarType.FP32, name=x) +print(label) # InputSpec(shape=(-1, 1), dtype=VarType.INT64, name=label) ``` -可以通过 ``paddle.jit.set_code_level(100)`` 在执行时打印代码转写的结果到终端,转写代码如下: - -```python -def forward(self, x, y): - out = paddle.jit.dy2static.convert_call(self.my_fc)(x) - out = paddle.jit.dy2static.convert_call(add_two)(out, y) - return out - -def my_fc(self, x): - out = paddle.jit.dy2static.convert_call(self.linear)(x) - return out - -def add_two(x, y): - out = x + y - return out -``` +**方式二:由 Tensor 构造** -如上所示,所有的函数调用都会被转写如下形式: +可以借助 ``InputSpec.from_tensor`` 方法,从一个 Tensor 直接创建 InputSpec 对象,其拥有与源 Tensor 相同的 ``shape`` 和 ``dtype`` 。 使用样例如下: ```python - out = paddle.jit.dy2static.convert_call( self.my_fc )( x ) - ^ ^ ^ ^ - | | | | -返回列表 convert_call 原始函数 参数列表 -``` - -即使函数定义分布在不同的文件中, ``convert_call`` 函数也会递归地处理和转写所有嵌套的子函数。 +import numpy as np +import paddle +from paddle.static import InputSpec -## 四、控制流转写 +x = paddle.to_tensor(np.ones([2, 2], np.float32)) +x_spec = InputSpec.from_tensor(x, name='x') +print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x) +``` -控制流 ``if/for/while`` 的转写和处理是动转静中比较重要的模块,也是动态图模型和静态图模型实现上差别最大的一部分。 +> 注:若未在 ``from_tensor`` 中指定新的name,则默认使用与源Tensor相同的name。 -**转写上有两个基本原则:** -+ **并非**所有动态图中的 ``if/for/while`` 都会转写为 ``cond_op/while_op`` -+ **只有**控制流的判断条件 **依赖了``Tensor``**(如 ``shape`` 或 ``value`` ),才会转写为对应 Op +**方式三:由 numpy.ndarray** +也可以借助 ``InputSpec.from_numpy`` 方法,从一个 `Numpy.ndarray` 直接创建 InputSpec 对象,其拥有与源 ndarray 相同的 ``shape`` 和 ``dtype`` 。使用样例如下: - +```python +import numpy as np +from paddle.static import InputSpec +x = np.ones([2, 2], np.float32) +x_spec = InputSpec.from_numpy(x, name='x') +print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x) +``` +> 注:若未在 ``from_numpy`` 中指定新的 name,则默认使用 None 。 -### 4.1 IfElse +#### 2.2.2 基本用法 -无论是否会转写为 ``cond_op`` ,动转静都会首先对代码进行处理,**转写为 ``cond`` 接口可以接受的写法** +**方式一: @to_static 装饰器模式** -**示例一:不依赖 Tensor 的控制流** +如下是一个简单的使用样例: ```python -def not_depend_tensor_if(x, label=None): - out = x + 1 - if label is not None: # <----- python bool 类型 - out = paddle.nn.functional.cross_entropy(out, label) - return out - -print(to_static(not_depend_tensor_ifw).code) -# 转写后的代码: -""" -def not_depend_tensor_if(x, label=None): - out = x + 1 - - def true_fn_1(label, out): # true 分支 - out = paddle.nn.functional.cross_entropy(out, label) - return out +import paddle +from paddle.jit import to_static +from paddle.static import InputSpec +from paddle.fluid.dygraph import Layer + +class SimpleNet(Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) - def false_fn_1(out): # false 分支 + @to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')]) + def forward(self, x, y): + out = self.linear(x) + out = out + y return out - out = paddle.jit.dy2static.convert_ifelse(label is not None, true_fn_1, - false_fn_1, (label, out), (out,), (out,)) +net = SimpleNet() - return out -""" +# save static model for inference directly +paddle.jit.save(net, './simple_net') ``` +在上述的样例中, ``@to_static`` 装饰器中的 ``input_spec`` 为一个 InputSpec 对象组成的列表,用于依次指定参数 x 和 y 对应的 Tensor 签名信息。在实例化 SimpleNet 后,可以直接调用 ``paddle.jit.save`` 保存静态图模型,不需要执行任何其他的代码。 + +> 注: +> 1. input_spec 参数中不仅支持 InputSpec 对象,也支持 int 、 float 等常见 Python 原生类型。 +> 2. 若指定 input_spec 参数,则需为被装饰函数的所有必选参数都添加对应的 InputSpec 对象,如上述样例中,不支持仅指定 x 的签名信息。 +> 3. 若被装饰函数中包括非 Tensor 参数,推荐函数的非 Tensor 参数设置默认值,如 ``forward(self, x, use_bn=False)`` + -**示例二:依赖 Tensor 的控制流** +**方式二:to_static函数调用** + +若期望在动态图下训练模型,在训练完成后保存预测模型,并指定预测时需要的签名信息,则可以选择在保存模型时,直接调用 ``to_static`` 函数。使用样例如下: ```python -def depend_tensor_if(x): - if paddle.mean(x) > 5.: # <---- Bool Tensor 类型 - out = x - 1 - else: - out = x + 1 - return out - -print(to_static(depend_tensor_if).code) -# 转写后的代码: -""" -def depend_tensor_if(x): - out = paddle.jit.dy2static.data_layer_not_check(name='out', shape=[-1], - dtype='float32') - - def true_fn_0(x): # true 分支 - out = x - 1 - return out +class SimpleNet(Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) - def false_fn_0(x): # false 分支 - out = x + 1 + def forward(self, x, y): + out = self.linear(x) + out = out + y return out - out = paddle.jit.dy2static.convert_ifelse(paddle.mean(x) > 5.0, - true_fn_0, false_fn_0, (x,), (x,), (out,)) +net = SimpleNet() + +# train process (Pseudo code) +for epoch_id in range(10): + train_step(net, train_reader) - return out -""" +net = to_static(net, input_spec=[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')]) + +# save static model for inference directly +paddle.jit.save(net, './simple_net') ``` +如上述样例代码中,在完成训练后,可以借助 ``to_static(net, input_spec=...)`` 形式对模型实例进行处理。Paddle 会根据 input_spec 信息对 forward 函数进行递归的动转静,得到完整的静态图,且包括当前训练好的参数数据。 + + +**方式三:支持 list 和 dict 推导** -规范化代码之后,所有的 ``IfElse`` 均转为了如下形式: +上述两个样例中,被装饰的 forward 函数的参数均为 Tensor 。这种情况下,参数个数必须与 InputSpec 个数相同。但当被装饰的函数参数为 list 或 dict 类型时,``input_spec`` 需要与函数参数保持相同的嵌套结构。 + +当函数的参数为 list 类型时,input_spec 列表中对应元素的位置,也必须是包含相同元素的 InputSpec 列表。使用样例如下: ```python - out = convert_ifelse(paddle.mean(x) > 5.0, true_fn_0, false_fn_0, (x,), (x,), (out,)) - ^ ^ ^ ^ ^ ^ ^ ^ - | | | | | | | | - 输出 convert_ifelse 判断条件 true分支 false分支 分支输入 分支输入 输出 +class SimpleNet(Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + @to_static(input_spec=[[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')]]) + def forward(self, inputs): + x, y = inputs[0], inputs[1] + out = self.linear(x) + out = out + y + return out ``` +其中 ``input_spec`` 参数是长度为 1 的 list ,对应 forward 函数的 inputs 参数。 ``input_spec[0]`` 包含了两个 InputSpec 对象,对应于参数 inputs 的两个 Tensor 签名信息。 -``convert_ifelse`` 是框架底层的函数,在逐行执行用户代码生成 ``Program`` 时,执行到此处时,会根据**判断条件**的类型( ``bool`` 还是 ``Bool Tensor`` ),自适应决定是否转为 ``cond_op`` 。 +当函数的参数为dict时, ``input_spec`` 列表中对应元素的位置,也必须是包含相同键(key)的 InputSpec 列表。使用样例如下: ```python -def convert_ifelse(pred, true_fn, false_fn, true_args, false_args, return_vars): +class SimpleNet(Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) - if isinstance(pred, Variable): # 触发 cond_op 的转换 - return _run_paddle_cond(pred, true_fn, false_fn, true_args, false_args, - return_vars) - else: # 正常的 python if - return _run_py_ifelse(pred, true_fn, false_fn, true_args, false_args) + @to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), {'x': InputSpec(shape=[3], name='bias')}]) + def forward(self, x, bias_info): + x_bias = bias_info['x'] + out = self.linear(x) + out = out + x_bias + return out ``` +其中 ``input_spec`` 参数是长度为 2 的 list ,对应 forward 函数的 x 和 bias_info 两个参数。 ``input_spec`` 的最后一个元素是包含键名为 x 的 InputSpec 对象的 dict ,对应参数 bias_info 的 Tensor 签名信息。 -### 4.2 For/While -``For/While`` 也会先进行代码层面的规范化,在逐行执行用户代码时,才会决定是否转为 ``while_op``。 +**方式四:指定非Tensor参数类型** -**示例一:不依赖 Tensor 的控制流** +目前,``to_static`` 装饰器中的 ``input_spec`` 参数仅接收 ``InputSpec`` 类型对象。若被装饰函数的参数列表除了 Tensor 类型,还包含其他如 Int、 String 等非 Tensor 类型时,推荐在函数中使用 kwargs 形式定义非 Tensor 参数,如下述样例中的 use_act 参数。 ```python -def not_depend_tensor_while(x): - a = 1 - - while a < 10: # <---- a is python scalar - x = x + 1 - a += 1 - return x - -print(to_static(not_depend_tensor_while).code) -""" -def not_depend_tensor_while(x): - a = 1 +class SimpleNet(Layer): + def __init__(self, ): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + self.relu = paddle.nn.ReLU() - def while_condition_0(a, x): - return a < 10 + def forward(self, x, use_act=False): + out = self.linear(x) + if use_act: + out = self.relu(out) + return out - def while_body_0(a, x): - x = x + 1 - a += 1 - return a, x +net = SimpleNet() +# 方式一:save inference model with use_act=False +net = to_static(input_spec=[InputSpec(shape=[None, 10], name='x')]) +paddle.jit.save(net, path='./simple_net') - [a, x] = paddle.jit.dy2static.convert_while_loop(while_condition_0, - while_body_0, [a, x]) - return x -""" +# 方式二:save inference model with use_act=True +net = to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), True]) +paddle.jit.save(net, path='./simple_net') ``` -**示例二:依赖 Tensor 的控制流** +在上述样例中,假设 step 为奇数时,use_act 取值为 False ; step 为偶数时, use_act 取值为 True 。动转静支持非 Tensor 参数在训练时取不同的值,且保证了取值不同的训练过程都可以更新模型的网络参数,行为与动态图一致。 -```python -def depend_tensor_while(x): - bs = paddle.shape(x)[0] +在借助 ``paddle.jit.save`` 保存预测模型时,动转静会根据 input_spec 和 kwargs 的默认值保存推理模型和网络参数。**建议将 kwargs 参数默认值设置为预测时的取值。** - for i in range(bs): # <---- bas is a Tensor - x = x + 1 - return x +更多关于动转静 ``to_static`` 搭配 ``paddle.jit.save/load`` 的使用方式,可以参考 [【模型的存储与载入】](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/02_paddle2.0_develop/08_model_save_load_cn.html)。 -print(to_static(depend_tensor_while).code) -""" -def depend_tensor_while(x): - bs = paddle.shape(x)[0] - i = 0 - def for_loop_condition_0(x, i, bs): - return i < bs +## 三、动、静态图部署区别 - def for_loop_body_0(x, i, bs): - x = x + 1 - i += 1 - return x, i, bs +当训练完一个模型后,下一阶段就是保存导出,实现**模型**和**参数**的分发,进行多端部署。如下两小节,将介绍动态图和静态图的概念和差异性,以帮助理解动转静如何起到**桥梁作用**的。 +### 3.1 动态图预测部署 - [x, i, bs] = paddle.jit.dy2static.convert_while_loop(for_loop_condition_0, - for_loop_body_0, [x, i, bs]) - return x -""" -``` +动态图下,**模型**指的是 Python 前端代码;**参数**指的是 ``model.state_dict()`` 中存放的权重数据。 +```python +net = SimpleNet() -``convert_while_loop`` 的底层的逻辑同样会根据 **判断条件是否为``Tensor``** 来决定是否转为 ``while_op`` +# .... 训练过程(略) -## 五、 Parameters 与 Buffers +layer_state_dict = net.state_dict() +paddle.save(layer_state_dict, "net.pdiparams") # 导出模型 +``` -### 5.1 动态图 layer 生成 Program + -文档开始的样例中 ``forward`` 函数包含两行组网代码: ``Linear`` 和 ``add`` 操作。以 ``Linear`` 为例,在 Paddle 的框架底层,每个 Paddle 的组网 API 的实现包括两个分支: +上图展示了动态图下**模型训练——>参数导出——>预测部署**的流程。如图中所示,动态图预测部署时,除了已经序列化的参数文件,还须提供**最初的模型组网代码**。 + +在动态图下,模型代码是 **逐行被解释执行** 的。如: ```python +import paddle -class Linear(...): - def __init__(self, ...): - # ...(略) +zeros = paddle.zeros(shape=[1,2], dtype='float32') +print(zeros) - def forward(self, input): +#Tensor(shape=[1, 2], dtype=float32, place=CPUPlace, stop_gradient=True, +# [[0., 0.]]) +``` - if in_dygraph_mode(): # 动态图分支 - core.ops.matmul(input, self.weight, pre_bias, ...) - return out - else: # 静态图分支 - self._helper.append_op(type="matmul", inputs=inputs, ...) # <----- 生成一个 Op - if self.bias is not None: - self._helper.append_op(type='elementwise_add', ...) # <----- 生成一个 Op - return out -``` +**从框架层面上,上述的调用链是:** -动态图 ``layer`` 生成 ``Program`` ,其实是开启 ``paddle.enable_static()`` 时,在静态图下逐行执行用户定义的组网代码,依次添加(对应 ``append_op`` 接口) 到默认的主 Program(即 ``main_program`` ) 中。 +> 前端 zeros 接口 → core.ops.fill_constant (Pybind11) → 后端 Kernel → 前端 Tensor 输出 -### 5.2 动态图 Tensor 转为静态图 Variable +如下是一个简单的 Model 示例: -上面提到,所有的组网代码都会在静态图模式下执行,以生成完整的 ``Program`` 。**但静态图 ``append_op`` 有一个前置条件必须满足:** +```python -> **前置条件**:append_op() 时,所有的 inputs,outputs 必须都是静态图的 Variable 类型,不能是动态图的 Tensor 类型。 +import paddle +class SimpleNet(paddle.nn.Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) -**原因**:静态图下,操作的都是**描述类单元**:计算相关的 ``OpDesc`` ,数据相关的 ``VarDesc`` 。可以分别简单地理解为 ``Program`` 中的 ``Op`` 和 ``Variable`` 。 + def forward(self, x, y): + out = self.linear(x) + out = out + y + return out -因此,在动转静时,我们在需要在**某个统一的入口处**,将动态图 ``Layers`` 中 ``Tensor`` 类型(包含具体数据)的 ``Weight`` 、``Bias`` 等变量转换为**同名的静态图 ``Variable``**。 +net = SimpleNet() +``` -+ ParamBase → Parameters -+ VarBase → Variable +动态图下,当实例化一个 ``SimpleNet()`` 对象时,隐式地执行了如下几个步骤: -技术实现上,我们选取了框架层面两个地方作为类型**转换的入口**: ++ 创建一个 ``Linear`` 对象,记录到 ``self._sub_layer`` 中(dict 类型) -+ ``Paddle.nn.Layer`` 基类的 ``__call__`` 函数 - ```python - def __call__(self, *inputs, **kwargs): - # param_guard 会对将 Tensor 类型的 Param 和 buffer 转为静态图 Variable - with param_guard(self._parameters), param_guard(self._buffers): - # ... forward_pre_hook 逻辑 + + 创建一个 ``ParamBase`` 类型的 ``weight`` ,记录到 ``self._parameters`` 中(dict类型) + + 创建一个 ``ParamBase`` 类型的 ``bias`` ,记录到 ``self._parameters`` 中 - outputs = self.forward(*inputs, **kwargs) # 此处为forward函数 +一个复杂模型可能包含很多子类,框架层就是通过 ``self._sub_layer`` 和 ``self._parameters`` 两个核心数据结构关联起来的,这也是后续动转静原理上操作的两个核心属性。 - # ... forward_post_hook 逻辑 +```python +sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters()) + ^ + | + 所有待更新参数 +``` - return outputs - ``` +### 3.2 静态图预测部署 -+ ``Block.append_op`` 函数中,生成 ``Op`` 之前 - ```python - def append_op(self, *args, **kwargs): - if in_dygraph_mode(): - # ... (动态图分支) - else: - inputs=kwargs.get("inputs", None) - outputs=kwargs.get("outputs", None) - # param_guard 会确保将 Tensor 类型的 inputs 和 outputs 转为静态图 Variable - with param_guard(inputs), param_guard(outputs): - op = Operator( - block=self, - desc=op_desc, - type=kwargs.get("type", None), - inputs=inputs, - outputs=outputs, - attrs=kwargs.get("attrs", None)) - ``` +静态图部署时,**模型**指的是 ``Program`` ;参数指的是所有的 ``Persistable=True`` 的 ``Variable`` 。二者都可以序列化导出为磁盘文件,**与前端代码完全解耦**。 +```python +main_program = paddle.static.default_main_program() -以上,是动态图转为静态图的两个核心逻辑,总结如下: +# ...... 训练过程(略) -+ 动态图 ``layer`` 调用在动转静时会走底层 ``append_op`` 的分支,以生成 ``Program`` -+ 动态图 ``Tensor`` 转为静态图 ``Variable`` ,并确保编译期的 ``InferShape`` 正确执行 +prog_path='main_program.pdimodel' +paddle.save(main_program, prog_path) # 导出为 .pdimodel +para_path='main_program.pdiparams' +paddle.save(main_program.state_dict(), para_path) # 导出为 .pdiparams +``` -### 5.3 Buffer 变量 + -**什么是 ``Buffers`` 变量?** +上图展示了静态图下**模型训练——>模型导出——>预测部署**的流程。如图所示,静态图模型导出时将``Program``和模型参数都导出为磁盘文件,``Program`` 中包含了模型所有的计算描述( ``OpDesc`` ),不存在计算逻辑有遗漏的地方。 -+ **Parameters**:``persistable`` 为 ``True`` ,且每个 batch 都被 Optimizer 更新的变量 -+ **Buffers**:``persistable`` 为 ``True`` ,``is_trainable = False`` ,不参与更新,但与预测相关;如 ``BatchNorm`` 层中的均值和方差 -在动态图模型代码中,若一个 ``paddle.to_tensor`` 接口生成的 ``Tensor`` 参与了最终预测结果的的计算,则此 ``Tensor`` 需要在转换为静态图预测模型时,也需要作为一个 ``persistable`` 的变量保存到 ``.pdiparam`` 文件中。 +**静态图编程,总体上包含两个部分:** -**举一个例子(错误写法):** ++ **编译期**:组合各个 ``Layer`` 接口,搭建网络结构,执行每个 Op 的 ``InferShape`` 逻辑,最终生成 ``Program`` ++ **执行期**:构建执行器,输入数据,依次执行每个 ``OpKernel`` ,进行训练和评估 + +在静态图编译期,变量 ``Variable`` 只是**一个符号化表示**,并不像动态图 ``Tensor`` 那样持有实际数据。 ```python import paddle -from paddle.jit import to_static +# 开启静态图模式 +paddle.enable_static() -class SimpleNet(paddle.nn.Layer): - def __init__(self, mask): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) +zeros = paddle.zeros(shape=[1,2], dtype='float32') +print(zeros) +# var fill_constant_1.tmp_0 : LOD_TENSOR.shape(1, 2).dtype(float32).stop_gradient(True) +``` - # mask value,此处不会保存到预测模型文件中 - self.mask = mask # 假设为 [0, 1, 1] +**从框架层面上,静态图的调用链:** - def forward(self, x, y): - out = self.linear(x) - out = out + y - mask = paddle.to_tensor(self.mask) # <----- 每次执行都转为一个 Tensor - out = out * mask - return out -``` +> layer 组网(前端) → InferShape 检查(编译期) → Executor(执行期) → 逐个执行 OP -**推荐的写法是:** +如下是 ``SimpleNet`` 的静态图模式下的组网代码: ```python -class SimpleNet(paddle.nn.Layer): - def __init__(self, mask): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) +import paddle +# 开启静态图模式 +paddle.enable_static() - # 此处的 mask 会当做一个 buffer Tensor,保存到 .pdiparam 文件 - self.mask = paddle.to_tensor(mask) # 假设为 [0, 1, 1] +# placeholder 信息 +x = paddle.static.data(shape=[None, 10], dtype='float32', name='x') +y = paddle.static.data(shape=[None, 3], dtype='float32', name='y') - def forward(self, x, y): - out = self.linear(x) - out = out + y - out = out * self.mask # <---- 直接使用 self.mask - return out +out = paddle.static.nn.fc(x, 3) +out = paddle.add(out, y) +# 打印查看 Program 信息 +print(paddle.static.default_main_program()) + +# { // block 0 +# var x : LOD_TENSOR.shape(-1, 10).dtype(float32).stop_gradient(True) +# var y : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(True) +# persist trainable param fc_0.w_0 : LOD_TENSOR.shape(10, 3).dtype(float32).stop_gradient(False) +# var fc_0.tmp_0 : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(False) +# persist trainable param fc_0.b_0 : LOD_TENSOR.shape(3,).dtype(float32).stop_gradient(False) +# var fc_0.tmp_1 : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(False) +# var elementwise_add_0 : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(False) + +# {Out=['fc_0.tmp_0']} = mul(inputs={X=['x'], Y=['fc_0.w_0']}, force_fp32_output = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], scale_out = 1.0, scale_x = 1.0, scale_y = [1.0], use_mkldnn = False, x_num_col_dims = 1, y_num_col_dims = 1) +# {Out=['fc_0.tmp_1']} = elementwise_add(inputs={X=['fc_0.tmp_0'], Y=['fc_0.b_0']}, Scale_out = 1.0, Scale_x = 1.0, Scale_y = 1.0, axis = 1, mkldnn_data_type = float32, op_device = , op_namescope = /, op_role = 0, op_role_var = [], use_mkldnn = False, use_quantizer = False, x_data_format = , y_data_format = ) +# {Out=['elementwise_add_0']} = elementwise_add(inputs={X=['fc_0.tmp_1'], Y=['y']}, Scale_out = 1.0, Scale_x = 1.0, Scale_y = 1.0, axis = -1, mkldnn_data_type = float32, op_device = , op_namescope = /, op_role = 0, op_role_var = [], use_mkldnn = False, use_quantizer = False, x_data_format = , y_data_format = ) +} ``` -总结一下 ``buffers`` 的用法: +静态图中的一些概念: + ++ **Program**:与 ``Model`` 对应,描述网络的整体结构,内含一个或多个 ``Block`` ++ **Block** + + **global_block**:全局 ``Block`` ,包含所有 ``Parameters`` 、全部 ``Ops`` 和 ``Variables`` + + **sub_block**:控制流,包含控制流分支内的所有 ``Ops`` 和必要的 ``Variables`` ++ **OpDesc**:对应每个前端 API 的计算逻辑描述 ++ **Variable**:对应所有的数据变量,如 ``Parameter`` ,临时中间变量等,全局唯一 ``name`` 。 + + -+ 若某个非 ``Tensor`` 数据需要当做 ``Persistable`` 的变量序列化到磁盘,则最好在 ``__init__`` 中调用 ``self.XX= paddle.to_tensor(xx)`` 接口转为 ``buffer`` 变量 +> 注:更多细节,请参考 [【官方文档】模型的存储与载入](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/02_paddle2.0_develop/08_model_save_load_cn.html)。 diff --git a/docs/guides/04_dygraph_to_static/case_analysis_cn.md b/docs/guides/04_dygraph_to_static/case_analysis_cn.md index 4f1d09cf0fc..4afbf9ab093 100644 --- a/docs/guides/04_dygraph_to_static/case_analysis_cn.md +++ b/docs/guides/04_dygraph_to_static/case_analysis_cn.md @@ -1,7 +1,7 @@ -# 常见案例解析 +# 案例解析 -在[【基础接口用法】](./basic_usage_cn.html)章节我们介绍了动转静的用法和机制,下面会结合一些具体的模型代码,解答动转静中比较常见的问题。 +在[【使用样例】](./basic_usage_cn.html)章节我们介绍了动转静的用法和机制,下面会结合一些具体的模型代码,解答动转静中比较常见的问题。 ## 一、 @to_static 放在哪里? @@ -77,7 +77,7 @@ -> 注:InputSpec 接口的高阶用法,请参看 [【InputSpec 功能介绍】](./input_spec_cn.html#inputspec) +> 注:InputSpec 接口的高阶用法,请参看 [【使用InputSpec指定模型输入Tensor信息】](./basic_usage_cn.html#inputspec) ## 三、内嵌 Numpy 操作? @@ -273,7 +273,58 @@ jit.save(mode, model_path) 此 flag 继承自 ``nn.Layer`` ,因此可通过 ``model.train()`` 和 ``model.eval()`` 来全局切换所有 sublayers 的分支状态。 -## 七、再谈控制流 +## 七、非forward函数导出 + +`@to_static` 与 `jit.save` 接口搭配也支持导出非forward 的其他函数,具体使用方式如下: + +```python +class SimpleNet(paddle.nn.Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + def forward(self, x, y): + out = self.linear(x) + out = out + y + return out + + def another_func(self, x): + out = self.linear(x) + out = out * 2 + return out + +net = SimpleNet() +# train(net) # 模型训练 + +# step 1: 切换到 eval() 模式 (同上) +net.eval() + +# step 2: 定义 InputSpec 信息 (同上) +x_spec = InputSpec(shape=[None, 3], dtype='float32', name='x') + +# step 3: @to_static 装饰 +static_func = to_static(net.another_func, input_spec=[x_spec]) + +# step 4: 调用 jit.save 接口 +net = paddle.jit.save(static_func, path='another_func') +``` + +使用上的区别主要在于: + ++ **`@to_static` 装饰**:导出其他函数时需要显式地用 `@to_static` 装饰,以告知动静转换模块将其识别、并转为静态图 Program; ++ **`save`接口参数**:调用`jit.save`接口时,需将上述被`@to_static` 装饰后的函数作为**参数**; + +执行上述代码样例后,在当前目录下会生成三个文件: +``` +another_func.pdiparams // 存放模型中所有的权重数据 +another_func.pdimodel // 存放模型的网络结构 +another_func.pdiparams.info // 存放额外的其他信息 +``` + + +> 关于动转静 @to_static 的用法,以及搭配 `paddle.jit.save` 接口导出预测模型的用法案例,可以参考 [使用样例](./basic_usage_cn.html) 。 + +## 八、再谈控制流 前面[【控制流转写】(./basic_usage_cn.html#sikongzhiliuzhuanxie)]提到,不论控制流 ``if/for/while`` 语句是否需要转为静态图中的 ``cond_op/while_op`` ,都会先进行代码规范化,如 ``IfElse`` 语句会规范为如下范式: @@ -293,7 +344,7 @@ out = convert_ifelse(paddle.mean(x) > 5.0, true_fn_0, false_fn_0, (x,), (x,), (o ``` -### 7.1 list 与 LoDTensorArray +### 8.1 list 与 LoDTensorArray 当控制流中,出现了 ``list.append`` 类似语法时,情况会有一点点特殊。 @@ -359,7 +410,7 @@ def forward(x): > 因为框架底层的 ``LoDTensorArray = std::vector< LoDTensor >`` ,不支持两层以上 ``vector`` 嵌套 -### 7.2 x.shape 与 paddle.shape(x) +### 8.2 x.shape 与 paddle.shape(x) 模型中比较常见的控制流转写大多数与 ``batch_size`` 或者 ``x.shape`` 相关。 @@ -381,7 +432,7 @@ def forward(self, x): > 动态 shape 推荐使用 ``paddle.shape(x)[i]`` ,动转静也对 ``x.shape[i]`` 做了很多兼容处理。前者写法出错率可能更低些。 -## 八、jit.save 与默认参数 +## 九、jit.save 与默认参数 最后一步是预测模型的导出,Paddle 提供了 ``paddle.jit.save`` 接口,搭配 ``@to_static`` 可以导出预测模型。 diff --git a/docs/guides/04_dygraph_to_static/debugging_cn.md b/docs/guides/04_dygraph_to_static/debugging_cn.md index 6b53dd82235..2fc3cf77d86 100644 --- a/docs/guides/04_dygraph_to_static/debugging_cn.md +++ b/docs/guides/04_dygraph_to_static/debugging_cn.md @@ -1,4 +1,4 @@ -# 报错调试经验 +# 报错调试 ## 一、动转静报错日志 ### 1.1 错误日志怎么看 diff --git a/docs/guides/04_dygraph_to_static/export_model_cn.md b/docs/guides/04_dygraph_to_static/export_model_cn.md deleted file mode 100644 index 44e5dea3c73..00000000000 --- a/docs/guides/04_dygraph_to_static/export_model_cn.md +++ /dev/null @@ -1,472 +0,0 @@ -# 预测模型导出 - - -## 一、动转静模型导出 - -动转静模块**是架在动态图与静态图的一个桥梁**,旨在打破动态图与静态部署的鸿沟,消除部署时对模型代码的依赖,打通与预测端的交互逻辑。 - - - - - -在处理逻辑上,动转静主要包含两个主要模块: - -+ **代码层面**:将所有的 Paddle ``layers`` 接口在静态图模式下执行以转为 ``Op`` ,从而生成完整的静态 ``Program`` -+ **Tensor层面**:将所有的 ``Parameters`` 和 ``Buffers`` 转为**可导出的 ``Variable`` 参数**( ``persistable=True`` ) - - -### 1.1 forward 函数导出 - -如下是一个简单的 ``Model`` 的代码: - -```python -import paddle -from paddle.jit import to_static -from paddle.static import InputSpec - -class SimpleNet(paddle.nn.Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - - def forward(self, x, y): - out = self.linear(x) - out = out + y - return out - - def another_func(self, x): - out = self.linear(x) - out = out * 2 - return out - -net = SimpleNet() -# train(net) 模型训练 (略) - -# step 1: 切换到 eval() 模式 -net.eval() - -# step 2: 定义 InputSpec 信息 -x_spec = InputSpec(shape=[None, 3], dtype='float32', name='x') -y_spec = InputSpec(shape=[3], dtype='float32', name='y') - -# step 3: 调用 jit.save 接口 -net = paddle.jit.save(net, path='simple_net', input_spec=[x_spec, y_spec]) # 动静转换 -``` - -执行上述代码样例后,在当前目录下会生成三个文件: -``` -simple_net.pdiparams // 存放模型中所有的权重数据 -simple_net.pdimodel // 存放模型的网络结构 -simple_net.pdiparams.info // 存放额外的其他信息 -``` - - -预测模型导出一般包括三个步骤: - -+ **切换 `eval()` 模式**:类似 `Dropout` 、`LayerNorm` 等接口在 `train()` 和 `eval()` 的行为存在较大的差异,在模型导出前,**请务必确认模型已切换到正确的模式,否则导出的模型在预测阶段可能出现输出结果不符合预期的情况。** -+ **构造 `InputSpec` 信息**:InputSpec 用于表示输入的shape、dtype、name信息,且支持用 `None` 表示动态shape(如输入的 batch_size 维度),是辅助动静转换的必要描述信息。 -+ **调用 `save` 接口**:调用 `paddle.jit.save`接口,若传入的参数是类实例,则默认对 `forward` 函数进行 `@to_static` 装饰,并导出其对应的模型文件和参数文件。 - - -### 1.2 其他函数导出 - -`@to_static` 与 `jit.save` 接口搭配也支持导出非forward 的其他函数,具体使用方式如下: - -```python -# SimpleNet 类的定义见 1.1 - -net = SimpleNet() -# train(net) # 模型训练 - -# step 1: 切换到 eval() 模式 (同上) -net.eval() - -# step 2: 定义 InputSpec 信息 (同上) -x_spec = InputSpec(shape=[None, 3], dtype='float32', name='x') - -# step 3: @to_static 装饰 -static_func = to_static(net.another_func, input_spec=[x_spec]) - -# step 4: 调用 jit.save 接口 -net = paddle.jit.save(static_func, path='another_func') -``` - -使用上的区别主要在于: - -+ **`@to_static` 装饰**:导出其他函数时需要显式地用 `@to_static` 装饰,以告知动静转换模块将其识别、并转为静态图 Program; -+ **`save`接口参数**:调用`jit.save`接口时,需将上述被`@to_static` 装饰后的函数作为**参数**; - -执行上述代码样例后,在当前目录下会生成三个文件: -``` -another_func.pdiparams // 存放模型中所有的权重数据 -another_func.pdimodel // 存放模型的网络结构 -another_func.pdiparams.info // 存放额外的其他信息 -``` - - -> 关于动转静 @to_static 的用法,可以参考 [基本用法](./basic_usage_cn.html);搭配 `paddle.jit.save` 接口导出预测模型的用法案例,可以参考 [案例解析](./case_analysis_cn.html) 。 - - -### 1.3 InputSpec 功能介绍 - -动静转换在生成静态图 Program 时,依赖输入 Tensor 的 shape、dtype 和 name 信息。因此,Paddle 提供了 InputSpec 接口,用于指定输入 Tensor 的描述信息,并支持动态 shape 特性。 - - -#### 1.3.1 InputSpec 构造 - - -**方式一:直接构造** - - -InputSpec 接口在 ``paddle.static`` 目录下, 只有 ``shape`` 是必须参数, ``dtype`` 和 ``name`` 可以缺省,默认取值分别为 ``float32`` 和 ``None`` 。使用样例如下: - -```python -from paddle.static import InputSpec - -x = InputSpec([None, 784], 'float32', 'x') -label = InputSpec([None, 1], 'int64', 'label') - -print(x) # InputSpec(shape=(-1, 784), dtype=VarType.FP32, name=x) -print(label) # InputSpec(shape=(-1, 1), dtype=VarType.INT64, name=label) -``` - - -**方式二:由 Tensor 构造** - -可以借助 ``InputSpec.from_tensor`` 方法,从一个 Tensor 直接创建 InputSpec 对象,其拥有与源 Tensor 相同的 ``shape`` 和 ``dtype`` 。 使用样例如下: - -```python -import numpy as np -import paddle -from paddle.static import InputSpec - -x = paddle.to_tensor(np.ones([2, 2], np.float32)) -x_spec = InputSpec.from_tensor(x, name='x') -print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x) -``` - -> 注:若未在 ``from_tensor`` 中指定新的name,则默认使用与源Tensor相同的name。 - - -**方式三:由 numpy.ndarray** - -也可以借助 ``InputSpec.from_numpy`` 方法,从一个 `Numpy.ndarray` 直接创建 InputSpec 对象,其拥有与源 ndarray 相同的 ``shape`` 和 ``dtype`` 。使用样例如下: - -```python -import numpy as np -from paddle.static import InputSpec - -x = np.ones([2, 2], np.float32) -x_spec = InputSpec.from_numpy(x, name='x') -print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x) -``` - -> 注:若未在 ``from_numpy`` 中指定新的 name,则默认使用 None 。 - - -#### 1.3.2 基本用法 - -**方式一: @to_static 装饰器模式** - -如下是一个简单的使用样例: - -```python -import paddle -from paddle.jit import to_static -from paddle.static import InputSpec -from paddle.fluid.dygraph import Layer - -class SimpleNet(Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - - @to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')]) - def forward(self, x, y): - out = self.linear(x) - out = out + y - return out - -net = SimpleNet() - -# save static model for inference directly -paddle.jit.save(net, './simple_net') -``` - -在上述的样例中, ``@to_static`` 装饰器中的 ``input_spec`` 为一个 InputSpec 对象组成的列表,用于依次指定参数 x 和 y 对应的 Tensor 签名信息。在实例化 SimpleNet 后,可以直接调用 ``paddle.jit.save`` 保存静态图模型,不需要执行任何其他的代码。 - -> 注: -> 1. input_spec 参数中不仅支持 InputSpec 对象,也支持 int 、 float 等常见 Python 原生类型。 -> 2. 若指定 input_spec 参数,则需为被装饰函数的所有必选参数都添加对应的 InputSpec 对象,如上述样例中,不支持仅指定 x 的签名信息。 -> 3. 若被装饰函数中包括非 Tensor 参数,推荐函数的非 Tensor 参数设置默认值,如 ``forward(self, x, use_bn=False)`` - - -**方式二:to_static函数调用** - -若期望在动态图下训练模型,在训练完成后保存预测模型,并指定预测时需要的签名信息,则可以选择在保存模型时,直接调用 ``to_static`` 函数。使用样例如下: - -```python -class SimpleNet(Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - - def forward(self, x, y): - out = self.linear(x) - out = out + y - return out - -net = SimpleNet() - -# train process (Pseudo code) -for epoch_id in range(10): - train_step(net, train_reader) - -net = to_static(net, input_spec=[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')]) - -# save static model for inference directly -paddle.jit.save(net, './simple_net') -``` - -如上述样例代码中,在完成训练后,可以借助 ``to_static(net, input_spec=...)`` 形式对模型实例进行处理。Paddle 会根据 input_spec 信息对 forward 函数进行递归的动转静,得到完整的静态图,且包括当前训练好的参数数据。 - - -**方式三:支持 list 和 dict 推导** - -上述两个样例中,被装饰的 forward 函数的参数均为 Tensor 。这种情况下,参数个数必须与 InputSpec 个数相同。但当被装饰的函数参数为 list 或 dict 类型时,``input_spec`` 需要与函数参数保持相同的嵌套结构。 - -当函数的参数为 list 类型时,input_spec 列表中对应元素的位置,也必须是包含相同元素的 InputSpec 列表。使用样例如下: - -```python -class SimpleNet(Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - - @to_static(input_spec=[[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')]]) - def forward(self, inputs): - x, y = inputs[0], inputs[1] - out = self.linear(x) - out = out + y - return out -``` - -其中 ``input_spec`` 参数是长度为 1 的 list ,对应 forward 函数的 inputs 参数。 ``input_spec[0]`` 包含了两个 InputSpec 对象,对应于参数 inputs 的两个 Tensor 签名信息。 - -当函数的参数为dict时, ``input_spec`` 列表中对应元素的位置,也必须是包含相同键(key)的 InputSpec 列表。使用样例如下: - -```python -class SimpleNet(Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - - @to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), {'x': InputSpec(shape=[3], name='bias')}]) - def forward(self, x, bias_info): - x_bias = bias_info['x'] - out = self.linear(x) - out = out + x_bias - return out -``` - -其中 ``input_spec`` 参数是长度为 2 的 list ,对应 forward 函数的 x 和 bias_info 两个参数。 ``input_spec`` 的最后一个元素是包含键名为 x 的 InputSpec 对象的 dict ,对应参数 bias_info 的 Tensor 签名信息。 - - -**方式四:指定非Tensor参数类型** - -目前,``to_static`` 装饰器中的 ``input_spec`` 参数仅接收 ``InputSpec`` 类型对象。若被装饰函数的参数列表除了 Tensor 类型,还包含其他如 Int、 String 等非 Tensor 类型时,推荐在函数中使用 kwargs 形式定义非 Tensor 参数,如下述样例中的 use_act 参数。 - -```python - -class SimpleNet(Layer): - def __init__(self, ): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - self.relu = paddle.nn.ReLU() - - def forward(self, x, use_act=False): - out = self.linear(x) - if use_act: - out = self.relu(out) - return out - -net = SimpleNet() -# 方式一:save inference model with use_act=False -net = to_static(input_spec=[InputSpec(shape=[None, 10], name='x')]) -paddle.jit.save(net, path='./simple_net') - - -# 方式二:save inference model with use_act=True -net = to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), True]) -paddle.jit.save(net, path='./simple_net') -``` - - -在上述样例中,假设 step 为奇数时,use_act 取值为 False ; step 为偶数时, use_act 取值为 True 。动转静支持非 Tensor 参数在训练时取不同的值,且保证了取值不同的训练过程都可以更新模型的网络参数,行为与动态图一致。 - -在借助 ``paddle.jit.save`` 保存预测模型时,动转静会根据 input_spec 和 kwargs 的默认值保存推理模型和网络参数。**建议将 kwargs 参数默认值设置为预测时的取值。** - - -更多关于动转静 ``to_static`` 搭配 ``paddle.jit.save/load`` 的使用方式,可以参考 [【模型的存储与载入】](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/02_paddle2.0_develop/08_model_save_load_cn.html)。 - - -## 二、动、静态图部署区别 - -当训练完一个模型后,下一阶段就是保存导出,实现**模型**和**参数**的分发,进行多端部署。如下两小节,将介绍动态图和静态图的概念和差异性,以帮助理解动转静如何起到**桥梁作用**的。 -### 2.1 动态图预测部署 - -动态图下,**模型**指的是 Python 前端代码;**参数**指的是 ``model.state_dict()`` 中存放的权重数据。 - -```python -net = SimpleNet() - -# .... 训练过程(略) - -layer_state_dict = net.state_dict() -paddle.save(layer_state_dict, "net.pdiparams") # 导出模型 -``` - - - -即意味着,动态图预测部署时,除了已经序列化的参数文件,还须提供**最初的模型组网代码**。 - -在动态图下,模型代码是 **逐行被解释执行** 的。如: - -```python -import paddle - -zeros = paddle.zeros(shape=[1,2], dtype='float32') -print(zeros) - -#Tensor(shape=[1, 2], dtype=float32, place=CPUPlace, stop_gradient=True, -# [[0., 0.]]) -``` - - -**从框架层面上,上述的调用链是:** - -> 前端 zeros 接口 → core.ops.fill_constant (Pybind11) → 后端 Kernel → 前端 Tensor 输出 - -如下是一个简单的 Model 示例: - -```python - -import paddle - -class SimpleNet(paddle.nn.Layer): - def __init__(self): - super(SimpleNet, self).__init__() - self.linear = paddle.nn.Linear(10, 3) - - def forward(self, x, y): - out = self.linear(x) - out = out + y - return out - -net = SimpleNet() -``` - -动态图下,当实例化一个 ``SimpleNet()`` 对象时,隐式地执行了如下几个步骤: - -+ 创建一个 ``Linear`` 对象,记录到 ``self._sub_layer`` 中(dict 类型) - - + 创建一个 ``ParamBase`` 类型的 ``weight`` ,记录到 ``self._parameters`` 中(dict类型) - + 创建一个 ``ParamBase`` 类型的 ``bias`` ,记录到 ``self._parameters`` 中 - -一个复杂模型可能包含很多子类,框架层就是通过 ``self._sub_layer`` 和 ``self._parameters`` 两个核心数据结构关联起来的,这也是后续动转静原理上操作的两个核心属性。 - -```python -sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=net.parameters()) - ^ - | - 所有待更新参数 -``` - -### 2.2 静态图预测部署 - -静态图部署时,**模型**指的是 ``Program`` ;参数指的是所有的 ``Persistable=True`` 的 ``Variable`` 。二者都可以序列化导出为磁盘文件,**与前端代码完全解耦**。 - -```python -main_program = paddle.static.default_main_program() - -# ...... 训练过程(略) - -prog_path='main_program.pdimodel' -paddle.save(main_program, prog_path) # 导出为 .pdimodel - -para_path='main_program.pdiparams' -paddle.save(main_program.state_dict(), para_path) # 导出为 .pdiparams -``` - - - - -即意味着, ``Program`` 中包含了模型所有的计算描述( ``OpDesc`` ),不存在计算逻辑有遗漏的地方。 - - -**静态图编程,总体上包含两个部分:** - -+ **编译期**:组合各个 ``Layer`` 接口,搭建网络结构,执行每个 Op 的 ``InferShape`` 逻辑,最终生成 ``Program`` -+ **执行期**:构建执行器,输入数据,依次执行每个 ``OpKernel`` ,进行训练和评估 - -在静态图编译期,变量 ``Variable`` 只是**一个符号化表示**,并不像动态图 ``Tensor`` 那样持有实际数据。 - -```python -import paddle -# 开启静态图模式 -paddle.enable_static() - -zeros = paddle.zeros(shape=[1,2], dtype='float32') -print(zeros) -# var fill_constant_1.tmp_0 : LOD_TENSOR.shape(1, 2).dtype(float32).stop_gradient(True) -``` - -**从框架层面上,静态图的调用链:** - -> layer 组网(前端) → InferShape 检查(编译期) → Executor(执行期) → 逐个执行 OP - - -如下是 ``SimpleNet`` 的静态图模式下的组网代码: - -```python -import paddle -# 开启静态图模式 -paddle.enable_static() - -# placeholder 信息 -x = paddle.static.data(shape=[None, 10], dtype='float32', name='x') -y = paddle.static.data(shape=[None, 3], dtype='float32', name='y') - -out = paddle.static.nn.fc(x, 3) -out = paddle.add(out, y) -# 打印查看 Program 信息 -print(paddle.static.default_main_program()) - -# { // block 0 -# var x : LOD_TENSOR.shape(-1, 10).dtype(float32).stop_gradient(True) -# var y : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(True) -# persist trainable param fc_0.w_0 : LOD_TENSOR.shape(10, 3).dtype(float32).stop_gradient(False) -# var fc_0.tmp_0 : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(False) -# persist trainable param fc_0.b_0 : LOD_TENSOR.shape(3,).dtype(float32).stop_gradient(False) -# var fc_0.tmp_1 : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(False) -# var elementwise_add_0 : LOD_TENSOR.shape(-1, 3).dtype(float32).stop_gradient(False) - -# {Out=['fc_0.tmp_0']} = mul(inputs={X=['x'], Y=['fc_0.w_0']}, force_fp32_output = False, op_device = , op_namescope = /, op_role = 0, op_role_var = [], scale_out = 1.0, scale_x = 1.0, scale_y = [1.0], use_mkldnn = False, x_num_col_dims = 1, y_num_col_dims = 1) -# {Out=['fc_0.tmp_1']} = elementwise_add(inputs={X=['fc_0.tmp_0'], Y=['fc_0.b_0']}, Scale_out = 1.0, Scale_x = 1.0, Scale_y = 1.0, axis = 1, mkldnn_data_type = float32, op_device = , op_namescope = /, op_role = 0, op_role_var = [], use_mkldnn = False, use_quantizer = False, x_data_format = , y_data_format = ) -# {Out=['elementwise_add_0']} = elementwise_add(inputs={X=['fc_0.tmp_1'], Y=['y']}, Scale_out = 1.0, Scale_x = 1.0, Scale_y = 1.0, axis = -1, mkldnn_data_type = float32, op_device = , op_namescope = /, op_role = 0, op_role_var = [], use_mkldnn = False, use_quantizer = False, x_data_format = , y_data_format = ) -} -``` - - -静态图中的一些概念: - -+ **Program**:与 ``Model`` 对应,描述网络的整体结构,内含一个或多个 ``Block`` -+ **Block** - + **global_block**:全局 ``Block`` ,包含所有 ``Parameters`` 、全部 ``Ops`` 和 ``Variables`` - + **sub_block**:控制流,包含控制流分支内的所有 ``Ops`` 和必要的 ``Variables`` -+ **OpDesc**:对应每个前端 API 的计算逻辑描述 -+ **Variable**:对应所有的数据变量,如 ``Parameter`` ,临时中间变量等,全局唯一 ``name`` 。 - - - -> 注:更多细节,请参考 [【官方文档】模型的存储与载入](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/02_paddle2.0_develop/08_model_save_load_cn.html)。 diff --git a/docs/guides/04_dygraph_to_static/grammar_list_cn.md b/docs/guides/04_dygraph_to_static/grammar_list_cn.md index a82c4a47163..ced8b5df3a3 100644 --- a/docs/guides/04_dygraph_to_static/grammar_list_cn.md +++ b/docs/guides/04_dygraph_to_static/grammar_list_cn.md @@ -1,4 +1,4 @@ -# 语法支持列表 +# 支持语法 ## 一、主要针对场景 @@ -11,11 +11,9 @@ 3. 当出现不支持的语法时,如何修改源码适配动转静语法 -若您初次接触动转静功能,或对此功能尚不熟悉,推荐您阅读:[基础接口用法](./basic_usage_cn.html); +若您初次接触动转静功能,或对此功能尚不熟悉,推荐您阅读:[使用样例](./basic_usage_cn.html); -若您想进行预测模型导出,或想深入了解此模块,推荐您阅读:[预测模型导出](./export_model_cn.html); - -若您动静转换遇到了问题,或想学习调试的技巧,推荐您阅读:[报错调试经验](./debugging_cn.html)。 +若您动静转换遇到了问题,或想学习调试的技巧,推荐您阅读:[报错调试](./debugging_cn.html)。 ## 二、语法支持速查列表 diff --git a/docs/guides/04_dygraph_to_static/index_cn.rst b/docs/guides/04_dygraph_to_static/index_cn.rst index b54141fa883..e3d976d0c52 100644 --- a/docs/guides/04_dygraph_to_static/index_cn.rst +++ b/docs/guides/04_dygraph_to_static/index_cn.rst @@ -8,15 +8,15 @@ PaddlePaddle 在2.0版本之后,正式支持动态图转静态图(@to_static 如下将详细地介绍动静转换的各个模块内容: -- `基础接口用法 `_ : 介绍了动静转换 @to_static 的基本用法 +- `使用样例 `_ : 介绍了动静转换 @to_static 的基本用法 -- `语法支持列表 `_ :介绍了动静转换功能已支持的语法概况 +- `转换原理 `_ :介绍了动静转换的内部原理 -- `预测模型导出 <./export_model/index_cn.html>`_ :介绍了导出动态图预测模型的详细教程 +- `支持语法 `_ :介绍了动静转换功能已支持的语法概况 -- `常见案例解析 <./case_analysis_cn.html>`_ : 介绍使用 @to_static 时常见的问题和案例解析 +- `案例解析 <./case_analysis_cn.html>`_ : 介绍使用 @to_static 时常见的问题和案例解析 -- `报错调试经验 `_ :介绍了动静转换 @to_static 的调试方法和经验 +- `报错调试 `_ :介绍了动静转换 @to_static 的调试方法和经验 @@ -24,8 +24,8 @@ PaddlePaddle 在2.0版本之后,正式支持动态图转静态图(@to_static :hidden: basic_usage_cn.rst + principle_cn.md grammar_list_cn.md - export_model_cn.md case_analysis_cn.md debugging_cn.md diff --git a/docs/guides/04_dygraph_to_static/principle_cn.md b/docs/guides/04_dygraph_to_static/principle_cn.md new file mode 100644 index 00000000000..3fb9f769ccb --- /dev/null +++ b/docs/guides/04_dygraph_to_static/principle_cn.md @@ -0,0 +1,439 @@ +# 转换原理 + +在框架内部,动转静模块在转换上主要包括对InputSpec的处理,对函数调用的递归转写,对IfElse、For、While控制语句的转写,以及Layer的Parameters和Buffers变量的转换。下面将从这四个方面介绍动转静模块的转换原理。 + +## 一、 设置 Placeholder 信息 + + +静态图下,模型起始的 Placeholder 信息是通过 ``paddle.static.data`` 来指定的,并以此作为编译期的 ``InferShape`` 推导起点。 + +```python +import paddle +# 开启静态图模式 +paddle.enable_static() + +# placeholder 信息 +x = paddle.static.data(shape=[None, 10], dtype='float32', name='x') +y = paddle.static.data(shape=[None, 3], dtype='float32', name='y') + +out = paddle.static.nn.fc(x, 3) +out = paddle.add(out, y) +``` + + +动转静代码示例,通过 ``InputSpec`` 设置 ``Placeholder`` 信息: + +```python +import paddle +from paddle.jit import to_static + +class SimpleNet(paddle.nn.Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + @to_static + def forward(self, x, y): + out = self.linear(x) + out = out + y + return out + +net = SimpleNet() + +x_spec = InputSpec(shape=[None, 10], name='x') +y_spec = InputSpec(shape=[3], name='y') + +net = paddle.jit.to_static(net, input_spec=[x_spec, y_spec]) # 动静转换 +``` + + +在导出模型时,需要显式地指定输入 ``Tensor`` 的**签名信息**,优势是: + + ++ 可以指定某些维度为 ``None`` , 如 ``batch_size`` ,``seq_len`` 维度 ++ 可以指定 Placeholder 的 ``name`` ,方面预测时根据 ``name`` 输入数据 + +> 注:InputSpec 接口的高阶用法,请参看 [【使用InputSpec指定模型输入Tensor信息】](./basic_usage_cn.html#inputspec) + + +## 二、函数转写 + +在 NLP、CV 领域中,一个模型常包含层层复杂的子函数调用,动转静中是如何实现**只需装饰最外层的 ``forward`` 函数**,就能递归处理所有的函数。 + +如下是一个模型样例: + +```python +import paddle +from paddle.jit import to_static + +class SimpleNet(paddle.nn.Layer): + def __init__(self): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + @to_static + def forward(self, x, y): + out = self.my_fc(x) # <---- self.other_func + out = add_two(out, y) # <---- other plain func + return out + + def my_fc(self, x): + out = self.linear(x) + return out + +# 此函数可以在任意文件 +def add_two(x, y): + out = x + y + return out + +net = SimpleNet() +# 查看转写的代码内容 +paddle.jit.set_code_level(100) + +x = paddle.zeros([2,10], 'float32') +y = paddle.zeros([3], 'float32') + +out = net(x, y) +``` + +可以通过 ``paddle.jit.set_code_level(100)`` 在执行时打印代码转写的结果到终端,转写代码如下: + +```python +def forward(self, x, y): + out = paddle.jit.dy2static.convert_call(self.my_fc)(x) + out = paddle.jit.dy2static.convert_call(add_two)(out, y) + return out + +def my_fc(self, x): + out = paddle.jit.dy2static.convert_call(self.linear)(x) + return out + +def add_two(x, y): + out = x + y + return out +``` + + +如上所示,所有的函数调用都会被转写如下形式: + +```python + out = paddle.jit.dy2static.convert_call( self.my_fc )( x ) + ^ ^ ^ ^ + | | | | +返回列表 convert_call 原始函数 参数列表 +``` + +即使函数定义分布在不同的文件中, ``convert_call`` 函数也会递归地处理和转写所有嵌套的子函数。 + +## 三、控制流转写 + +控制流 ``if/for/while`` 的转写和处理是动转静中比较重要的模块,也是动态图模型和静态图模型实现上差别最大的一部分。如下图所示,对于控制流的转写分为两个阶段:转写期和执行期。在转写期,动转静模块将控制流语句转写为统一的形式;在执行期,根据控制流是否依赖 ``Tensor`` 来决定是否将控制流转写为相应的 ``cond_op/while_op`` 。 + + + +**转写上有两个基本原则:** + ++ **并非**所有动态图中的 ``if/for/while`` 都会转写为 ``cond_op/while_op`` ++ **只有**控制流的判断条件 **依赖了``Tensor``**(如 ``shape`` 或 ``value`` ),才会转写为对应 Op + + + + +### 3.1 IfElse + +无论是否会转写为 ``cond_op`` ,动转静都会首先对代码进行处理,**转写为 ``cond`` 接口可以接受的写法** + +**示例一:不依赖 Tensor 的控制流** + +```python +def not_depend_tensor_if(x, label=None): + out = x + 1 + if label is not None: # <----- python bool 类型 + out = paddle.nn.functional.cross_entropy(out, label) + return out + +print(to_static(not_depend_tensor_ifw).code) +# 转写后的代码: +""" +def not_depend_tensor_if(x, label=None): + out = x + 1 + + def true_fn_1(label, out): # true 分支 + out = paddle.nn.functional.cross_entropy(out, label) + return out + + def false_fn_1(out): # false 分支 + return out + + out = paddle.jit.dy2static.convert_ifelse(label is not None, true_fn_1, + false_fn_1, (label, out), (out,), (out,)) + + return out +""" +``` + + +**示例二:依赖 Tensor 的控制流** + +```python +def depend_tensor_if(x): + if paddle.mean(x) > 5.: # <---- Bool Tensor 类型 + out = x - 1 + else: + out = x + 1 + return out + +print(to_static(depend_tensor_if).code) +# 转写后的代码: +""" +def depend_tensor_if(x): + out = paddle.jit.dy2static.data_layer_not_check(name='out', shape=[-1], + dtype='float32') + + def true_fn_0(x): # true 分支 + out = x - 1 + return out + + def false_fn_0(x): # false 分支 + out = x + 1 + return out + + out = paddle.jit.dy2static.convert_ifelse(paddle.mean(x) > 5.0, + true_fn_0, false_fn_0, (x,), (x,), (out,)) + + return out +""" +``` + + +规范化代码之后,所有的 ``IfElse`` 均转为了如下形式: + +```python + out = convert_ifelse(paddle.mean(x) > 5.0, true_fn_0, false_fn_0, (x,), (x,), (out,)) + ^ ^ ^ ^ ^ ^ ^ ^ + | | | | | | | | + 输出 convert_ifelse 判断条件 true分支 false分支 分支输入 分支输入 输出 +``` + + +``convert_ifelse`` 是框架底层的函数,在逐行执行用户代码生成 ``Program`` 时,执行到此处时,会根据**判断条件**的类型( ``bool`` 还是 ``Bool Tensor`` ),自适应决定是否转为 ``cond_op`` 。 + +```python +def convert_ifelse(pred, true_fn, false_fn, true_args, false_args, return_vars): + + if isinstance(pred, Variable): # 触发 cond_op 的转换 + return _run_paddle_cond(pred, true_fn, false_fn, true_args, false_args, + return_vars) + else: # 正常的 python if + return _run_py_ifelse(pred, true_fn, false_fn, true_args, false_args) +``` + + +### 3.2 For/While + +``For/While`` 也会先进行代码层面的规范化,在逐行执行用户代码时,才会决定是否转为 ``while_op``。 + +**示例一:不依赖 Tensor 的控制流** + +```python +def not_depend_tensor_while(x): + a = 1 + + while a < 10: # <---- a is python scalar + x = x + 1 + a += 1 + + return x + +print(to_static(not_depend_tensor_while).code) +""" +def not_depend_tensor_while(x): + a = 1 + + def while_condition_0(a, x): + return a < 10 + + def while_body_0(a, x): + x = x + 1 + a += 1 + return a, x + + [a, x] = paddle.jit.dy2static.convert_while_loop(while_condition_0, + while_body_0, [a, x]) + + return x +""" +``` + + +**示例二:依赖 Tensor 的控制流** + +```python +def depend_tensor_while(x): + bs = paddle.shape(x)[0] + + for i in range(bs): # <---- bas is a Tensor + x = x + 1 + + return x + +print(to_static(depend_tensor_while).code) +""" +def depend_tensor_while(x): + bs = paddle.shape(x)[0] + i = 0 + + def for_loop_condition_0(x, i, bs): + return i < bs + + def for_loop_body_0(x, i, bs): + x = x + 1 + i += 1 + return x, i, bs + + [x, i, bs] = paddle.jit.dy2static.convert_while_loop(for_loop_condition_0, + for_loop_body_0, [x, i, bs]) + return x +""" +``` + + +``convert_while_loop`` 的底层的逻辑同样会根据 **判断条件是否为``Tensor``** 来决定是否转为 ``while_op`` + +## 四、 Parameters 与 Buffers + +### 4.1 动态图 layer 生成 Program + +文档开始的样例中 ``forward`` 函数包含两行组网代码: ``Linear`` 和 ``add`` 操作。以 ``Linear`` 为例,在 Paddle 的框架底层,每个 Paddle 的组网 API 的实现包括两个分支: + +```python + +class Linear(...): + def __init__(self, ...): + # ...(略) + + def forward(self, input): + + if in_dygraph_mode(): # 动态图分支 + core.ops.matmul(input, self.weight, pre_bias, ...) + return out + else: # 静态图分支 + self._helper.append_op(type="matmul", inputs=inputs, ...) # <----- 生成一个 Op + if self.bias is not None: + self._helper.append_op(type='elementwise_add', ...) # <----- 生成一个 Op + + return out +``` + +动态图 ``layer`` 生成 ``Program`` ,其实是开启 ``paddle.enable_static()`` 时,在静态图下逐行执行用户定义的组网代码,依次添加(对应 ``append_op`` 接口) 到默认的主 Program(即 ``main_program`` ) 中。 + +### 4.2 动态图 Tensor 转为静态图 Variable + +上面提到,所有的组网代码都会在静态图模式下执行,以生成完整的 ``Program`` 。**但静态图 ``append_op`` 有一个前置条件必须满足:** + +> **前置条件**:append_op() 时,所有的 inputs,outputs 必须都是静态图的 Variable 类型,不能是动态图的 Tensor 类型。 + + +**原因**:静态图下,操作的都是**描述类单元**:计算相关的 ``OpDesc`` ,数据相关的 ``VarDesc`` 。可以分别简单地理解为 ``Program`` 中的 ``Op`` 和 ``Variable`` 。 + +因此,在动转静时,我们在需要在**某个统一的入口处**,将动态图 ``Layers`` 中 ``Tensor`` 类型(包含具体数据)的 ``Weight`` 、``Bias`` 等变量转换为**同名的静态图 ``Variable``**。 + ++ ParamBase → Parameters ++ VarBase → Variable + +技术实现上,我们选取了框架层面两个地方作为类型**转换的入口**: + ++ ``Paddle.nn.Layer`` 基类的 ``__call__`` 函数 + ```python + def __call__(self, *inputs, **kwargs): + # param_guard 会对将 Tensor 类型的 Param 和 buffer 转为静态图 Variable + with param_guard(self._parameters), param_guard(self._buffers): + # ... forward_pre_hook 逻辑 + + outputs = self.forward(*inputs, **kwargs) # 此处为forward函数 + + # ... forward_post_hook 逻辑 + + return outputs + ``` + ++ ``Block.append_op`` 函数中,生成 ``Op`` 之前 + ```python + def append_op(self, *args, **kwargs): + if in_dygraph_mode(): + # ... (动态图分支) + else: + inputs=kwargs.get("inputs", None) + outputs=kwargs.get("outputs", None) + # param_guard 会确保将 Tensor 类型的 inputs 和 outputs 转为静态图 Variable + with param_guard(inputs), param_guard(outputs): + op = Operator( + block=self, + desc=op_desc, + type=kwargs.get("type", None), + inputs=inputs, + outputs=outputs, + attrs=kwargs.get("attrs", None)) + ``` + + +以上,是动态图转为静态图的两个核心逻辑,总结如下: + ++ 动态图 ``layer`` 调用在动转静时会走底层 ``append_op`` 的分支,以生成 ``Program`` ++ 动态图 ``Tensor`` 转为静态图 ``Variable`` ,并确保编译期的 ``InferShape`` 正确执行 + + +### 4.3 Buffer 变量 + +**什么是 ``Buffers`` 变量?** + ++ **Parameters**:``persistable`` 为 ``True`` ,且每个 batch 都被 Optimizer 更新的变量 ++ **Buffers**:``persistable`` 为 ``True`` ,``is_trainable = False`` ,不参与更新,但与预测相关;如 ``BatchNorm`` 层中的均值和方差 + +在动态图模型代码中,若一个 ``paddle.to_tensor`` 接口生成的 ``Tensor`` 参与了最终预测结果的的计算,则此 ``Tensor`` 需要在转换为静态图预测模型时,也需要作为一个 ``persistable`` 的变量保存到 ``.pdiparam`` 文件中。 + +**举一个例子(错误写法):** + +```python +import paddle +from paddle.jit import to_static + +class SimpleNet(paddle.nn.Layer): + def __init__(self, mask): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + # mask value,此处不会保存到预测模型文件中 + self.mask = mask # 假设为 [0, 1, 1] + + def forward(self, x, y): + out = self.linear(x) + out = out + y + mask = paddle.to_tensor(self.mask) # <----- 每次执行都转为一个 Tensor + out = out * mask + return out +``` + + +**推荐的写法是:** + +```python +class SimpleNet(paddle.nn.Layer): + def __init__(self, mask): + super(SimpleNet, self).__init__() + self.linear = paddle.nn.Linear(10, 3) + + # 此处的 mask 会当做一个 buffer Tensor,保存到 .pdiparam 文件 + self.mask = paddle.to_tensor(mask) # 假设为 [0, 1, 1] + + def forward(self, x, y): + out = self.linear(x) + out = out + y + out = out * self.mask # <---- 直接使用 self.mask + return out +``` + + +总结一下 ``buffers`` 的用法: + ++ 若某个非 ``Tensor`` 数据需要当做 ``Persistable`` 的变量序列化到磁盘,则最好在 ``__init__`` 中调用 ``self.XX= paddle.to_tensor(xx)`` 接口转为 ``buffer`` 变量 From 9592ff7a2fa777df57317c0e3806bd4d311c92ae Mon Sep 17 00:00:00 2001 From: Matsumoto GAO <38883252+gsq7474741@users.noreply.github.com> Date: Thu, 2 Dec 2021 09:19:48 +0800 Subject: [PATCH 30/35] =?UTF-8?q?=E3=80=90PaddlePaddle=20Hackathon?= =?UTF-8?q?=E3=80=916=E3=80=81=E5=9C=A8=20Paddle=20=E4=B8=AD=E6=96=B0?= =?UTF-8?q?=E5=A2=9E=20ZeroPad2d=20(#4111)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * add doc of zeropad2d * add doc of zeropad2d v0.2 * add doc of zeropad2d v0.2 * add doc of zeropad2d v0.3 * Update ZeroPad2D_cn.rst * add doc of zeropad2d v0.4 * Update Overview_cn.rst * Update ZeroPad2D_cn.rst * add doc of zeropad2d v0.5 Co-authored-by: Chen Long <1300851984@qq.com> --- docs/api/paddle/nn/Overview_cn.rst | 2 + docs/api/paddle/nn/ZeroPad2D_cn.rst | 50 +++++++++++++++++++ .../api/paddle/nn/functional/zeropad2d_cn.rst | 37 ++++++++++++++ 3 files changed, 89 insertions(+) create mode 100644 docs/api/paddle/nn/ZeroPad2D_cn.rst create mode 100644 docs/api/paddle/nn/functional/zeropad2d_cn.rst diff --git a/docs/api/paddle/nn/Overview_cn.rst b/docs/api/paddle/nn/Overview_cn.rst index c56093e1579..8f1d385f6be 100644 --- a/docs/api/paddle/nn/Overview_cn.rst +++ b/docs/api/paddle/nn/Overview_cn.rst @@ -102,6 +102,7 @@ Padding层 " :ref:`paddle.nn.Pad1D ` ", "一维填充层" " :ref:`paddle.nn.Pad2D ` ", "二维填充层" " :ref:`paddle.nn.Pad3D ` ", "三维填充层" + " :ref:`paddle.nn.ZeroPad2D ` ", "二维零填充层" .. _activation_layers: @@ -344,6 +345,7 @@ Padding相关函数 " :ref:`paddle.nn.functional.pad ` ", "依照 pad 和 mode 属性对input进行填充" + " :ref:`paddle.nn.functional.zeropad2d ` ", "依照 pad 对x进行零填充" .. _activation_functional: diff --git a/docs/api/paddle/nn/ZeroPad2D_cn.rst b/docs/api/paddle/nn/ZeroPad2D_cn.rst new file mode 100644 index 00000000000..27bc7339472 --- /dev/null +++ b/docs/api/paddle/nn/ZeroPad2D_cn.rst @@ -0,0 +1,50 @@ +.. _cn_api_nn_ZeroPad2D: + +ZeroPad2D +------------------------------- +.. py:class:: paddle.nn.ZeroPad2D(padding, data_format="NCHW", name=None) + +**ZeroPad2D** + +按照 padding 属性对输入进行零填充。 + +参数 +::::::::: + + - **padding** (Tensor | List[int] | int]) - 填充大小。如果是int,则在所有待填充边界使用相同的填充, + 否则填充的格式为[pad_left, pad_right, pad_top, pad_bottom]。 + - **data_format** (str) - 指定输入的format,可为 ``'NCHW'`` 或者 ``'NHWC'``,默认值为 ``'NCHW'``。 + - **name** (str, 可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,缺省值为None。 + +返回:无 + +形状 +::::::::: + + - x(Tensor): ZeroPadD层的输入,要求形状为4-D,dtype为 ``'float32'`` 或 ``'float64'`` + - output(Tensor): 输出,形状为4-D,dtype与 ``'input'`` 相同 + +代码示例 +::::::::: + +.. code-block:: python + + import paddle + import paddle.nn as nn + import numpy as np + + input_shape = (1, 1, 2, 3) + pad = [1, 0, 1, 2] + data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1 + + my_pad = nn.ZeroPad2D(padding=pad) + result = my_pad(data) + + print(result) + # [[[[0. 0. 0. 0.] + # [0. 1. 2. 3.] + # [0. 4. 5. 6.] + # [0. 0. 0. 0.] + # [0. 0. 0. 0.]]]] + + diff --git a/docs/api/paddle/nn/functional/zeropad2d_cn.rst b/docs/api/paddle/nn/functional/zeropad2d_cn.rst new file mode 100644 index 00000000000..81336d91a78 --- /dev/null +++ b/docs/api/paddle/nn/functional/zeropad2d_cn.rst @@ -0,0 +1,37 @@ +.. _cn_api_nn_functional_zeropad2d: + +zeropad2d +------------------------------- +.. py:function:: paddle.nn.functional.zeropad2d(x, padding, data_format="NCHW", name=None) + +该OP返回一个按照 ``padding`` 属性对 ``x`` 进行零填充的Tensor,数据类型与 ``x`` 相同。 + +参数 +:::::::::: + - **x** (Tensor) - Tensor,format可以为 ``'NCHW'``, ``'NHWC'`` ,默认值为 ``'NCHW'``,数据类型支持float16, float32, float64, int32, int64。 + - **padding** (Tensor | List[int] | Tuple[int]) - 填充大小。pad的格式为[pad_left, pad_right, pad_top, pad_bottom]; + - **data_format** (str) - 指定 ``x`` 的format,可为 ``'NCHW'``, ``'NHWC'``, 默认值为 ``'NCHW'``。 + - **name** (str, 可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,缺省值为None。 + +返回 +:::::::::: + Tensor:对 ``x`` 进行 ``'pad'`` 的结果,数据类型和 ``x`` 相同。 + +代码示例 +:::::::::: + +.. code-block:: python + + import paddle + import numpy as np + + x_shape = (1, 1, 2, 3) + x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1 + y = paddle.nn.functional.zeropad2d(x, [1, 2, 1, 1]) + + # [[[[0. 0. 0. 0. 0. 0.] + # [0. 1. 2. 3. 0. 0.] + # [0. 4. 5. 6. 0. 0.] + # [0. 0. 0. 0. 0. 0.]]]] + + From cb49f94a3024b6c0e8fde82706f60821ea6e1f49 Mon Sep 17 00:00:00 2001 From: moguguo Date: Thu, 2 Dec 2021 11:16:53 +0800 Subject: [PATCH 31/35] =?UTF-8?q?=E5=8A=A8=E8=BD=AC=E9=9D=99=E6=A6=82?= =?UTF-8?q?=E8=BF=B0=E6=9B=B4=E6=96=B0=20(#4099)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * 动转静概述更新 更新动转静概述章节,补充两个Block,什么是动态图和静态图,什么场景下需要动态图转成静态图 * 动转静概述更新 增加动转静方案示意图 * update style update style * update style * Update index_cn.rst * 修复格式问题 * update codes Co-authored-by: Chen Long <1300851984@qq.com> --- .../images/dygraph_to_static.png | Bin 0 -> 75142 bytes docs/guides/04_dygraph_to_static/index_cn.rst | 41 ++++++++++++++++-- 2 files changed, 38 insertions(+), 3 deletions(-) create mode 100644 docs/guides/04_dygraph_to_static/images/dygraph_to_static.png diff --git a/docs/guides/04_dygraph_to_static/images/dygraph_to_static.png b/docs/guides/04_dygraph_to_static/images/dygraph_to_static.png new file mode 100644 index 0000000000000000000000000000000000000000..9db5392c5b2823d30e76f28478bd5658c81e35fa GIT binary patch literal 75142 zcmeFZby!s07d9+i3ewWuAP7iz&d`lCN|#7TcSr~W4Ba(!NeW1dq||^C5(-0iH++No zJdgg~@B04x{(HI3%pA@&?6ddUYu)Q!afnb;k$-?mih1wey$3*mjK;lt$XfUAA!4GV z-d!mn+lGH2xM;{r-K!iXUx)wVVet%TsjPgD6@HF>4;g{<9?IQU;4d)*vVYIz5SZ^F z{k)EN?_QYAJ>=itQGtKn{UpI(cYpKi6DbGb_qXBKauEOdHnLU@(m&^jcQd@#-M1_V z|G;7|o|muTP{K!J zLv0AojIJ6%R_Z_|&Fo-teZ_r&pBAnoy`)}3A=A~fhH|tGRRVF!D(f*b4TNu{Y8ILIxd4QNsT~}RhEgXcnwGOx!lL|)D9l0u1u+aDnf?{vaR65 z%pxbIU-~f--2tt;Vu0w8i4P3du>3gJYcYJMz<57K zvj;5fB@JrjEhiDdy zX{mH!k>nE2Q&a!l4u0z#OXMxJ5)uV|^Sd3rmXjDX=5>KQpa_K#kObd^nLE2(iAEe> zaaYp|vlp-cE7yN0)VbNG67i2f8<-}x(lxM#GoVLVp!O6CTgJCTf2^eg*;b(gJ27q1 z)$DFHqnyZ~750yD?Qi^jLd-UT*l%c??pWbv9eJKLTFSK)k!r>Bq|xO=qka z*m*E*Xbfp&nlX|Yu2WtfB(x|OQbxM=H%I2zH$xz3GjvMn>jQoPAi#^cc59-+n>j1t z-oNhud!eS(__6sis`(LP!)pe5h9JTr0d=o>{Y0VkV+~bBC%&};rJELhH9klEEXY++ z>w@sVSKG{#V?yQd zYvYi@0y3!5lxaV(KLG2B4hum1!_KH&Jm+MKVslAocJr;qM&j)0cqwgk2CCw=DtH0L zyWfw~o0fcBk7RzbiMG$hbK^wN1ikEkN%Qx+ z8a|?1@dR={*%SC(1O1q&ts;|duP{;Mdo}bp=NSy?6(=d_gmd`EIIQt`5sjj>ZkL$F z>0mD8oDt@j{%;aa7$DP31r4|uto&FumP+%MtJrlTKr$~_34j2kcv!7QG5$tZb#tD83ValZ>j z5mqPvc4MG~7A;n3FcKuMpeqiN5EZ;#=F*t{!JKlUral9xvsW=NUtfKQ`Yj-QVE!Q< zdD@>qCc%Kr`>OsIw%un(Y|sCo530rV!nF~PXHxf2dS{t`^r>z_ZaA$h_C!nl1Ac4< z+dzEq3qK{5`0LTuwMzg992{#2?(?J_zn}0iZh#}iFG}m?1As@X^ofzQaRHBYsm-8; z@}Gc}gB6(Ncf6@FiuP-h9!P&D@ygR?0|B5cdQ4<9!beGi`yDhX9&QKZK+76@Cj4nu{>bx4bR|qzVboxePDw_n0nE| zJwt9Ytx*z9Bgyju_Bk$p?Mz9Z)RjdDt2M-n`&f9_5Xw&Zw+;Mu^&Jlx)LyPfLt!E* z(LFRAW+hsh%)(FD{P}Zdpi#+C5{gx@j!imik*NMx*@`AFUHk=fUj{|t(03WvZ)ECo zeYId`f;gdW6P$wK<~VeTWR=06Z&ao<#YZquF!=ihy!utKBlG{%(pLOEaP~Y&Q^=j| z@sc74Vg+$X$*3R*GS>-~C-ox7*S^3yGI5nBx@CKAKs1T(6C|1}%ZtRY;Mb??L46?+ zv7?3Bz{5H;9+fB`YngoYz#&pBtgdO>n%?`#123OU$sMt^;5C6dD$Hw!nTl=Y;Z+xC z{q*0E&WNmU3yu6~CJ6XzoQP!3v>e$a5ntt;U%)b#&QpnE;!kmou)P@G`p2nZ6BZ1T z;4Agc+&gKARb%uC=4Ekw9&8{emo;PsTkM4`Mm`RPZN<)|pc1xjkjrapadWsn2s}~4 zV07dA3k8ZX5QMdCgT|uoL@&{fJ1SRUGC0h*+QWN<423=tR4B~D$!VKXz0@cf5Mom| zuGLPGJI(#3&S7ssih-T?kX5-Qs3Jv{h)FAp9a13g_w)}l;|j#Yn99|lVg6}_fv7ZG z@qSy;J97Fe`OAVubg7o+Em5qmi$jVKU%&5`cR=+{05rJ;A1>+~ERV9(bH-CM#q98# zNTyZLTD`Gs=)=%r^Db7B#z_EbLSLpf_q)~n#fpwp;Q0CP9^wVkW(tZ=(hPM>A+^RF zc;~?)WoFP%rrCeUbt#V-66_${4j*`7YFWCeqBQqosV)k}T#43ltK#p3)bT4+Y}u3I z1=~7!vW92>?JxfEPT{yI9mka54=eTIgHCxz&JA=C$@y5L$!bkSs5YvJSE%pFhm+SM z#Pt{RNm$=%k3!7{)=0(16{i*ZCK=!B_ly&hNfro?R$XXJzy3=P{0JmF^we)hQYY9vwPCh7KyQE z9AHl8tf2J2AUq$}+NKV>N&FY4AcaXhvDI%7eR(NIF0U^6_~KDf_!TWs1S|M7g!_t$ zkU%3hM=HXgJ#%UJV%zD6`qP#gLeQUTmg5As8))NhwD&K@u4<~n%VgUdh<9j0qtZeL zG|Y4R> z-(WZS-wA5;JMzr*5&dy7^XCj2CB-;1nPI$T2JB=mZ3YaW`lGL>5ESTzLc?FIUn2N! zIh_mC?!T6kdJkWVyB)BC0?eS-i;)%yQNZ4RXeoQRo;LF0FV`O^$7C9&kl!x7ll>Fp zxe-KI({gEv!x>ZI>wcBwN*+IfJGqtELdW2q!D$v2DKYb>S^m$=JCOC)4KlWK^Ii@l zg3IS=vIL$bg!ezsTV-*7sh{4grZ8CQr>XIk^G_ecI64Iew;qM&h@qR~)AUS>&%+Q?gh%gN6}=$LUC9`TRYdYXn2O2(Ur2DFg$7*O{1Fy%5x|v< zn_%I!N$uT06X6myEDnpxaq{&146@ss`+fZrgk4~fAr)ZOy@|MaJ#jrE$i?5z!`c+i z?RfXnmn!czsY8M~mVF6$Mbkq6JS9$Qw|1H}b21k(#fP1noGpUk*yD%4=*#J!8vU@&M4UcU}27^?Wni?r(rw9-4xHie|iX=D42FraNy!qRZboglNFsPWkB0GTrUeBWC23JdFuw z%8PWd)-ZIme)ELcC;}r8IY)#U14}xAVkWCi;_!v>A)Vo$k_kk;v%=tZ$(^iURv7q> z#UX=zGD4WrBZGp`Xm`qdkh`cs8{5M8ERbRNfE#rp|NEP;jD_uoN4NfY1l5U;2^8 z6>F(uvI1sz)xUNGKZ(AZhn%1LFHu>)LUhs3FOKe|b+;EuKjJrP8?TNEt23X+@B^o$ zveAehe}D`p_*_fnmULFl%>9j(%r(-VZZUt^)ymrd#uWM(8Ah;>9E_KSBh{KVEFx>` zBVGEC4jf9$9eqkH?)1gDhv#|;WYwg~)!@lLRivMWo3 z2}8dwi}t`3Yve%Z|A01v1bj^hdyGwQ?^ZfmjJ)zWHC{loPCQZx8&^=h4p^Z9HVci| zlwlFjIWkEJ!LzKOFBm^iRyICBV*YbBaK8cYXSUx{Y4-jlvunlgJYlmfdQU*7JI*>B zpW9WZFSJ%QbBD(LbydRJayu>ryePuwiFn@ZVgFyA{F~9`^n@!;3_? zE545W#`Mz{1hTI-$Weu;hG&8grn{N;-}sCJJjjupnmsd^41wsg&^tHw8Vt|!N-Y%M7-v0ZtVDTacZ2_=38sN~=pPqQW-zj6f7(dSK1P)I_mQGKA4<#8 z(aG=R>hC`~p${5HW^LhHR=OtOEK9XMd~@W}_c;O4yHH8kL0(w%z>u8(k3i&^DKf9m zKfFjn7P;YUW4TD}m2)q49l7;+3}23N27BwAwvc7jLtxUqW8>@w11$CN5F4whRE@E8 znAD$Ub}g0jKG(6`wTtO4p#euifxF=f*0WgCZ1X+I3GncW6x&2R zfy>4lwcSjfX(M$!ZYQ4;Ldr~j+19Uj(ohMZ9fySZMyg-;K?>^VZFdG998qmcr(Xb} z(YEoato?)#5{g<~02X%AFt3JJu}Md&)HKHX%+?Q?EJ%wcp~8Q-cImh9y_Md)KKXK& zXpk5}w-;MSJkg3^EE0?3`T}w3Qt--iEsR_|CsSFG2Sz58EkG>9lyQd>IHyvkJW0MHZxzwg$xG2ny7 z7@dX}uNmeDHK&`|#K4jlI85;ExwCvNwk?fAQFYVIn8*%eS zVPSyPFMF@CjTb7N8Qgzq@q30Z?q+DnSL(1DH;@`H!=nyny6rQ{v-bJ`BxliUhIW-F z(Nlh^7*c=UwY|D)XEpHf@^oqNzaTp>5RhX*?bbXXHhBKzzEKoRDK0YrX1G3lq-b|w zXII&=8$OtOfIWlU8euFsm~S^mHO5ZgJLp0Gjf|xtBNMRbw#;2q7mR+Z!Fb!oUSW7E zuAG%2>8Y8mI>?j|u`82Cu4;QpWpSVwZ<)Y&HU%gC*7%KwG4X{yM_4{e4f65d@U0?G zlz>Es_vD5XK37AP^}Pw|iPDyp&LcBfq%X6CDv(n&3-oz?|%6OSeVs^T2$dQ>8p za40WjG`Vu)=2g{nDxQQO?;rSJ?SU9PmwR9|kHE1!M#+jp%~8~Z*FP_tD1ajto3P`P zs#wQw1+ZFg>xFHd15!8MTH5p`^|R@=DOEoPeshB8@j2hjjxzNAOsAZgM5l2Y14CdIgs zT&k;}vY$Gm5%34;S86|hev5;CZznFE?C*_t@_}K@`tDB_Mok|RIOK8*rc(7qW@jK3 z)E4vQSd0(|YYN2){7G!MUZLN&42w)UV}J8ficam7L|>EhBaJM}cUpEcY_iyqEfoEM z^yy&K{!NHs%S`cwn{ukc?J$&&CH|BJIv}V56M=3e@{b+@3YXQ=eDmwVVxy`=Bl??Y zi^k%Mp8_NDVhg=~Qp2^lj?aokN+h*|Re5fFrOIN@YLsn+*$DO1m#n*v*szbdvsIWu ze{o`J#Ng>%Zdz|DF(7mQj-+#VU+w`OX|xy5keDErXcl2h3fE`Y8RLHFD974M`f!|h4m3wvDW-Xqub7Gb%F^{fg`y3~6H^K5%%kxy;pH;99L^`g`$l#)=`F(mZ zbWaF3Rjbdv_e5!!_&fDH7J;oyV%7g3_?-uExZBEsXlgKaznaaPPvSL=Nfj+Iyx+{j z*el*kc;{PBE4~wz4tYgBL%2?EmE%Jh)|y66^PCaDT+ZiZyBebQO6(&?iN7!?K$-rTeRb?AGhq zZ@I6VU&K+7TM}B{uPFQFmjW<8;~>P8tb}E4V)NZ?Xx^zUgDbBWnvI*nyMpj5G>)J* zxr3u&qdjYkN0b-r(3&)~xTF>KHwQ`XZd=lC`0VB|hU89jS~vzfnU7Fe`CmB<5x%4| zmXW6s44G)(r8$=OR9M{v9vRfpU*JQx9({>(ffWIkS)U#&)}(fPXH*MsFteR`8GK1g zcDga|XF^pSv7N&b)X+mcY8YPVbja*(VjG3sO#I6$N6UAZmG*e6&gP@YnQ{qhrR8`b z=#$!be#Qb|6A6;R)I72J33dWcw?itxop+?YO11Dez=UGNgvySC$JMp4XU)u)*D@j z7(#x-9@y3BA;Qlito3HA{hrBB%$W!X=+$}}u*QhWjSyXQXAFAtT^hG_{V3$^*&uIDvBDl%AV-p5%^1DuI$P6klc^e5sgqzfyb zIOevW^Zvzu|0Q7DcdF;iGuddJ>VEN#-GL~VoRu|y$UOL(R|dUaHIn|)gjA;2@`oyV zn3WTXOPpnSl*EF>vi(y$#ltsoj9~*!0PpHPV>zarg*^GVjn)taWtB&%hm0=lB2 z7jSir{TK&a$QJ@CrIxpB@Sc98tBTO;{H6faUiqdse~PgT8@pk#%gfGZh`kUcMhU|n zt0~-!MOyi|RtxaXCy(%|wPW5p$D5lrU|9VtE%1xxb*M3NrC1ePGe#zTjFL%ft)|B; zoTlu|C2KB@TRB;F>jYqWvD*je9}LXWNy<<9>{aia6o#% zOIV-V_N?SEm(xK@V|9}NT244kV#Bpi<;+@vOgK zBTV{7tkRhsrf$XLz3FAs^v;l$z`Cdv1o}&9QmvzAfr2{TqShd&N#5smivg73Z{Sno zRG%TdX=+82n7v->)vYt`F1DJpD^!z01Qy3jXX->A&TAI=Pd0ys0l&_rvn0;)#2-l} z2qC#G(Gtt9=8#xCK4XDCmb{gAq}k5Si?)i9uTe-EwYG^#Lf5u?9x-;Il@ZZ(>CEl4 zU7e@LSO4zP29_koS0{S>b<501_pdnox11zpsePQNw1~e9eX?$dJkb*5P3G)Xcy{4J z=EO3k8(|$0^++^&fa62l(y|_egsWzgn*q(&W9)vKS!@RJ4AKhrM7)jQaP-=87G~Tj zW*X?RM7xA<^-^)&1I)>pWIn_H*YZ0&uL3{dyu_N4*kqRbF(|#aJFUW!Cy++D!yiZb zV*B*d&sfg~cTd#3ZLjHonl`6BH1}u^RE72#T6+|*;%6TwKPBGQ|@Qg&BI5)EyQi$e-IfFK4 z3s8Ms`!A2V&w)s(seR)&={!3zepY@!`5*wCmCJo^p5A>7F8DrNk2tm@-dZWpu2mdm z*~`r=iCN{OssCz*Zy4duv($URPW0u*OCKGhD$>R}3f2c#D~)z{x~cXifKS&*RM9_D zjlZ;hw0AUrZGqYUP(N~sBlc_GeAtd`flj4z;;jHF$TBZ1j$C9el}~^ynm2w$kQdA5 zVf=gN)iF}zb-p7Foo5cwQg*Zsu_wrBpn0jzB&Iw&14hMX8EW32`{w0r6}PS3BH7>R z2RH8cI_BxB30_i1=$l-zdbL6%7$)^JK85{jHxB?gvyBi+v(j@1o|wuRr|=$mvoRq+ z`sjRcbFK4Ip^x73|KJte_<8oE5?wIvz((zP$C8 zeqcI|vuas^iS~g`kOPoDVQh$J;S{KsYlg9WA7feS%mnHt(>Y9sccAdmu0|^RbE4i; z#duBN^6mggF&GD&(^mEw2L7y2RSVHyqQD+)59>i%r@Y(Mj)(MI61y~5FO;;)ob=Ch zb+!dy60C1FvCSB+bLuECd(RohmwS|d%=Y4yd^uyU)7w4{@p^#2;h6heXbE%|Z%c?` z+=r&O7g}uec%Y=c=^9cW4E9T>*sS*Om%8l-X|H%QI~q7Y+?bF1^fZ2%7BbC3qpA|k zpgs>;p@wa?SmhhI*jPQpNfIAV+1FXJ@QF+t!G##&eyo4#2C;N@7f|xELjoKZp(EDxDn;$)pQ@ev(-14fe2nW z7@*J{KS*hBN~w;+Mz&7<}R(jQJD^f>GkANHId2 zXHPP!essYcbANa(WB-C4Ersu#3@G&`1De((5EDFCx*>yHrLW54(X+hhx2mXiaB_dOo;P zLvmwEDfP8=P9d7L9!;iSxFh)QngbrMnI9ogO!ULZHExq-y>rasJhmdt+ZBUh+QUWX zO~ZzopnsD*yv%`jk{q)%>7n@%R=(5YS_PX&x|Yz1_+snxHF>iH;*V7xMZt=7zg5-# zj%XYz=S)dsCC*bTrl%OB#Zqu4hdP8f%N6?$X~nJEh`KYu+0pnQy|^~xHWyUoGxQdC z#t#{?$(9h8{FbkuQh03~UI!8q&}yJ>6VfpDi`=;~W*Yhr)=4vd%E%fnqdqPHJH`kl zvovR-gTduQ#j>9|$TFGzMxj=^Aa@?yz2{CyL;`_0qrqHc3=1RW&df^m%Rp#OP)iU(+}pjC|u=#Irxjjj!KK+ z!h$CzebB>k-H-EhrL{7tUSH@rRDVR*U`{4#8K#ODQRDsZQ} zkDYPloIU!Cql%|)ee~z1|D+zQG-`1CtS(oNo*RfBX*2Ez)^Z;|%GUN4)pmV<`_}7? z0!3=J*S;p(`<`w2f}&U+>|5rv5lX8dkKr*kDNI<%H%}1JL3_+ zu+9d5QacM69eO1&up8L*+-Qqh{|k4zOU>8Ubgg(Cpd-nI+bh9{C5o|9fOoMENo$n( z#wGDs<=SB}zjr*Mz6#_L?1v#p1!w3J0H@6MjMfx}O6B5dMjX0o&AIt4L(DbO!kmJ! zr8P?}+xnJaXoK%ht@-Ja#SyWb;m)C~)Q#L(i0OtN`e=uizBjT*FD?4O;fO)2|3n6fKEf-MDxPc~6ij_bMu-rE? z=@=8wDb&l-3+F0a));GYJc918#Tg!RWGI&D9%+-_h+fb@hxhb1@{Sv8;QeD9oiFJQ z&>&=otE1!0u))r10?c-)hudQ-v6sYk_%oROPx70E+IO^VFN5LDZbJ+r5{An#trGM0 z#6uQ$5ipOe8_}Ys2W8pv>*4W6{9g(Hf8UTZl?0X8zE=MNl7770O-khuDE8J^Capei zy2VR>@z~mco{fJ8=mMSeiW(_x&GPXleLO$$N|aQFBJHD?#P&h%cU+(}A0@SMH(S>& zq+tKW6VW6(+2zH?*aS^K8()fV@SC8D20Ht%H~#>hxA=%iVA#;yU&lPOIrnJ$TqM|t zQW5!8-npty0|I)BSTK6fWa;w*JTA zR(`e+fT1PVq3FlDH1S@;Lkm33JfT9gVcmp1uD%xs=?$USXRlh4fj1J9a6J4!C)A43 zSKTGp{1~P56gbz0ai99Gp>}@=8dNXvO98ySgxX78%F=r^`ca+5JzIO<&={OZCIMMdUOy zXtIZDyzm-rz|nKiFgQb6^4w#{XcdM`=Id+icx}=Y{%>N^vJ>kKz9L-EsKX*XG9B@U|!K>0gQ$z63 zy$<k6xP!Q%;tff#IvkV3@`*8Qe z2!PU844(yn*gOkBaF&uRFq3&;(1*1jmQa^ihUwbu^fq0#Y@4tQ5)&*zv=uY@O412k}GJ z!Wm4N$IIr`sU5LQTtdc0O)M8QpahOH{7aT}$#oouaS>v?c@CmH(fnSl3k`doKwAtE z0|%7k-?i+(K!pIRoCdNkvqCh_g&Q%og%4s!21_f>E7huktgVpgTqst~`9K!D*GRS! z_lkAqIZ=_qJPovx!m|D-%rT^iP$HEq)PJ>~H?i_K{oui8-BrVBWK`q5G7|4EsP5KjcSi%mR{ z-;9x`sn0#BSCZRq3q8=OY^`VBdve4K?dg0$s5DuRg7@Kaw6%C*W2~^!s(wr6$MyL0 zCYK7O3#OVH9(1aa#W|EOd%KknihgG_B^)r$(2BD>9?KW@(AG?cb2=H>qk!r% z(~E1;@J@GLEcvCuogOj0YWiZ!Exor-G;d}fkiC~K068jiOBZlldMk=B7WjK-7@C-v zPdn$(4=92&s^UL=Xg1fHu|$*(=s?|9;J}hySV})3_B1_McW{)mlUF60N7o&$JmjyD zA5gxU^U<)m5;QW-P#55VaR%(&3ar*`wKzYzdbABnQ5t`KanOndB|b4d_j2~SqKqEo zK4lQ$f9s#M=US)WMvgdV7$e7&%S|OP_8f9cuq=N0$w`;MFLgTgj1Zs$^amBp^2eg$ zdyWsCm#vL7b^Cam0maEeH#Mt?M~mVzn7nQobA3!WhoA>4`CfHRf~!rq{jg^kNZ_lc zuXNY^YnsfC?J$Xqr^T%Gw&%%TPyekfN!;R31#4!dW$KuvFDy5|Lw1T@=QSRkdQL{L z^;X93trp{>kJD?bYnROD&5yXz`DOhjHdmkoi7qfR!0I`p5Vq)>uaX6B1Q=-fdH^%v zH0S6%kllAW{CmXKnSK|XjsmWe*Y&%mn1J64W~x`OK=95JGO^D%J7jIONY%mm`{VnM z%oo@5<2>n|!77yLUy0OvpR6BLKw^}!muq^N%lwA-xgUBqjxeeb20q!}OLE$eNliSs zcf9z5+_%xe@<(3_4?|sVn#o)WZ|e_|MH7tm2M>(_RE)GnAG2d$zTy@n*pax9&Cj@w zk`W}Em-%FfAgFW`r6XBIJBR+doGjbVNB|)-MnM@V5MLeZf>R@tZ1lxiRWbi&rT9X@ zBIX(mWb=|3ysk@lEPc&xr5oSK*Nis@CRCd)S>uJAss)F>9peEo_Kv&min6a&zABUo*>^IN}BF=E;_;IQ?f~0Pjr#(xL;TT9GSy z@+MsCMDob{2&a43zaNM5LY>j^;>T7tV3vB!Slll{{vrsXF$VmjTD+=UKaKfYVb|18`xE#b^z{WJWv)BvZ2)OOE#~AH$j+8f{R>d1Sy) zePn?YRAteti(6X0VeR&5WsQSCiT}b`r&1jL91x4D@Az>^>vpVCaCj?ts)aM{B`cqB z?*7_CdQIVtO%!YCIy8;jr;p;cvr#QfHpeWd@#7j%XN1OwLoVv&u^*@Ui4GWWoUMLy z`PE_sk2rJOkWcbi1UVIs_qPZxFbns44ePj}F+lF#cmk9A7P^c~(K z63)+l%nP%dn&5fu#Blcg|4E0jDaB`Xoz{n8`Gd?h8x z+l)m~3E+f_x3q@j!W(Erfwr2AO18YkNiUW$C=hyPH(h-ph!UDA*nCr4D>9ex^gFZF zv32dNXM!7EGehz@{k}`hQoYN1~xw2?xsto~Vsj6%Un&$;-Y|t3qn7o#`?oO<8_~T5cueVZn zU;GxJBgw;7^5V>lU@}c(uzifILvUWP2AD&g;0JT}ua-~dDhi840!2T56;_sUOT^%C ziCL&f66Zze+M^qKOTty|r5|lwzS<_=YeP>ZL1iCtYH%K!`H(Gr>dYvkr`X5lcY zp{ZD9Sx+kkaNpa?TRaE}-e#_8ZdMYkPfy);GMOjV#k7*C+QV?Hp{2YzETt<7;VU4K36^+K{Jg^jhg?>rujaT!ofjUZEY|PuB}d_NNwa`^X4F%joU#Q z)k7F~)iY9~?^|fNU+%dCpqT5*J=Hlag4X--gXWeM3ijqoXPp?n!AyCZk)-}JlgAwX z{uL;1$`~^udjV+_n+Z2)a(Z=Ug~V(5lyTLoQcs2>sLR!m44>?Z*iF^?AF4nTWr`L_Sl?0Y!}Yf!<)SSC>p=3 zd>-1M80jv!wbNU$1O1>?xkzoOh(4&Dhz}&{$y!%mwQJf}Z>k$6MPjxLQ^;Ik-wp$( z++eU)ssa1O``J}53-(MTv57x{^*HoWukI&7{50Z};EPp4~4d=%4 z-yYr3c4WWK^}5~ux7PSa525!HUDR&8>!B8;NJ(Vw45>}YdU}RSb@Sx3Bjy&zAGOzU z>=onr#0EKuLpZ@@34>dV6>wMlGL6iq|D4}%&&UYLFb>{#t-9S=l83?g>EvXqUwmCD zfww)A8^UB!8=Jjz9Fh&aa2|lW2?^XsgpQ*kkK6K^1e+7|SdxjXWT<-LoN4fB-VBJZ z1beif47FN0%NT|d$-j6-UOM3?(H$nBED+7i&0tlCmu3)n2Ge4xsA_)-*YSIZWZibvssmI`klBE$y|0VuV>4Uv&hTJ< zkHP1jp^S3#8EeHArD*VuyuM$pAUHFCQt3rvtB6wdE?q1mkA&+Lx(3-uUPW9|iVs$6 zK#-9XENRQsTWU`2*sf0z;M+*4ZRb)wNx}QmHhMa6SKvQU?sD5ai;2{>OoSIVTqC4k^EjYcQ?Do(q!MoA|4MFB)&a) zy`@)KA(;wC0g8pMf-WocD)E&nctb)!3ML8=5jnGSV{Dv|W+aS>M+asI91n^w0L{G~ zXH+9Y%wPKQY{tdwP-=`~tK!PqNrkt@*XsvtZC}dHL51tP{yDE`+s~Bh$5?Wb_}G`< zJ(q%WJ|66YWN4Xa;2nN4V^)nX=c(j|))uVs30^MB;Kw6b3cI3$KU%2sVy^2ZFXSVs zaR~+lEnmjQg!z2=ASC=ON-Y@s%L2w6$o$-E?$bCp)8cSh;gHBY{oHSPsr9(J>Pq^< zf35VksyVZ*El2FEF5LPULy`*;p27*i@5gA@jtqO~7Z+rlbF60zo`CBJn(-+>2k>Sb zt1za z_sQq?aWQ40dSV<@sxD}wW%KL?iO6CueM9MlOCGzAzq|^NQNH?c|2de1bFd~eV#c0t z+FBI9~@kvT>U;T8QP?}>T1etrRK?GY?wT-7k>?DDLQ?Hz6V_Yr}#BuAdW3;btH z#%&h+Yp*hx6F?h&7_~?sOPq< z=nPJgH#*xdYhTBYkND%v9d-5pO7S7Z1?=Z=mr+k6Gp? zs|m*Q$SzN0S+eWerfuhWjpR=klWq=9)ux@GY3W^a)ZH(pHDa^zazFk?ck^n|kpO(HJ+aoZ8Z+~@ zBDAmzSy;1sR>vKYZmB>&DGK{j9CxaJ95JCm{)0R;%;(XTbE@J2Dmm$M;&!tpf=auk zHOfN-Y3dqQFAeO z!mQL6H?(a~tUtjdgtR>~>B;gH90@4-n1E?uf^K*^=uo(~ygy-nj$JE7V2hzzgQKvh zwmyr`z`hMU056MWdKXPJi*468^nSva%xoE2xNtVAG(#lBe+`>L?K z6RDW*MN9&VTcMWHJ8`UyB+2zOxz4SE8Z zA-_y7sua`9tK$aEhMSdo0rixUyme+DoUs>~<}1LItUMTfG>Jj?#}`>JvbQJ7@P}|( zHG(gA#}sfFXU{fOzol|Nyg_&{CD!vXtw-kaaCiICu&X`NVJwM#+tZ`NczATJ@x*bA zn~6iTnNl>c4%x=6ju6}$1=8-;aY0-$QG}3nQ<*a5S>(T;x_7=GlwAK6T=DHcUK$C{ z{c8V6d%qXme*QV3qV0xQQ2p6WaDO1JV?@`hQKyW-K`0(t6zkfvue}#_-%*R+;Cji0Yf7jsCH5kik|bbW%-=RHv6{F!kqc9 zM@c0c5KQzGf0S4+c5c4;yr$SIvTK3&{o3G~@(Dm)m2x|nZnbJeya#=wCSoFcdO$mASjJlO_vy4^AM)&xm<$ezHoi@t-R~?;oRD& zwFFsR)~IRn1>bd3W9J2LLbKV;m$q+ai}mU0d1Or-8|&y1PDMUJMd3yR*RG^xmc%P3 z%_JmLbiSI4*@aiWV^bcti&0&kdW8QZhT+8wHU7Jz!^713ev_Xt?b!;xa!0C}mBNDsd480@vHf0ywEXP7 z|A(uqj;eBd+JcCL(%p@ObhmUL=?>{ex=T6_-Q6hN-Einsy5k@%-S8c}`nz|1f3X&e z^Pc_gnR(`!XU`r0cHH+K5@*|6EDrw+1tHH)p^=+>zXTt*&A%j;WzL?otN%SQm(8|;xsT7n%WJzB(c#T}oYvhc5p@5G z41ki(I?n@9%ea@?U*;2^#=4ekznfO_f=wx_4P`Ypy^F5u?6cPa2&$~U)*3w zDD9hLE=4|mB9%-cBEzZsq9DLQ})gZFuhxoeL>??^#x1I3i{(iLf4` zeWHjr5eESarsBM(74}D-4g0XqV3Mr~ZMXqcG&WFtA7xVC)*n}Fg1rLzz!DT`&iDx{ z>=H^k!c|$F=hoRy`@RIC<*sa`yXvJg(^(WE7&ER>MO6a;Qg-8SlL&L{Sb#iOkV z9FRlQwh*x03Ab!QN1)Fa7fijV8JjE(uFbl#iNcO(NT?5J zIeMf>^6516B1Yh)+BMmAP|($2OU5s`DOIbeyv@9rlkUlvf!uvpd0uSr@#o0(5mEK# z`IZj<-lKxWhD86~wfD+nFr&P=Eg*xoiy1AQk_QQ443ls;CYSPqw9LL^B6(Xv*Ji-t z_{B&(PrJ29-tNU_LJGqZetY)PC@k=aragg6Q9dH`{m+wf$mIk-Qej_@p}kRs^VveX z6R1eLLFV?DpXhst>j~DZh|{?jo5pErd33)j=`#xSy3n%gAO|)As_FQVoo>0*=GJqq zM(4x=vsB{9n7Y{qWm5BCGr_?BT!$@w{k-N6?6cqupQT`al?|o3VCg;ju1~_PgrLx= zsWz1@HmNIRDU)hP$eqV0X-#08x+db`A(ztSB}*28p2RnbPVBhEs*{sZM2V}jz`VL^ z=UO5?>8Ma5##RkTXRQsS9{>*S7xypaDirH6eSL(nkeWCRBE-{Xaj{{i5&6(u%O44e zfq8j9cTU3`zO@!}@h`BaD!A%`4l+*hwu!~Qk-xu48JZrfw_p_Iq`0v=E&fHZhy5SS zWq-z8xmsBdmq$CaVV|&~e!kr7ISy=UX|4Q5VQ%HH`(7%_D6H=2#CVz0#pIMPtlRfq zhq5$1vr?ES>Vmqt=2o5*QSlPjKU}!(D1nfo1xHUrw`u#W_dH$zRCNFu0NaVV^S2>0=YOgMUu=rYsO z z0cv0w7C#HPh<(NDm2O@xI;!gP9bT(FchgUftw{vvIz#865BTFdxQUq|Wk#z2gFrLX zz$KO}qs@6olQ6XY{=9kDOIk5>OQ5_-=tKkN&Po$(ji!-pzMtMdRkVdX>zk+TJ>GS^e|TsD${Op8;a6#)rjcx_&Q-s% z4tU7jqQnu1nP%aRAVCl68-3Ou>TC{UZn@vX;K6L)xT5jADHG&SiElWN zf%0^0V)zZCq0Y4XuDex!0wz(RvnDj-yU;O@0szu*^HE$`OoG01Mce@pKwPDanM`;7xH0)OG!~+RuerF5AA8d4j&w7V2}qJx&4kq1}MMB zbv)-foG8rpelR@mxNiI%0rC31xds(a;&}HlZH5NjVW7czNxcUm=WeoGQyrffE60{V zvINs=??uE%o^2vfMs)|_MDC~m5vk%tAwRvkE5jF4P7ci$T6Q-A=<0?ybOKeqxd5vH zMx%&>)G)@@_6zokHvYX70nVRc?4+I9cl4J8DGG7@dp`z>U2DLJKdC)&)gxDRfF>6A zeUAlox|Pf2zmJJGpA4M``aEaSR|NQPrF=YRY9qn{0k@yH_^$dn&hNwX6}Y5Sm33pW#5}Nzuo-6U&XTWdmJBM$Izn4H_MDE0u_ch}+J;S* zffy@_8vnUOtt^t=nZ0EIi`}B4G-zxoqhGMjDK5jvLFazt!z*@NTduL#zpR-B$24u| z;vL$S4@lV8p~)!sCeT9>KO0>SJ|O(epvU4W6#Tmc+LP3OaNUMLyUZ_}R!vX3g|sF@ z+nEz9Ho~(!fFnaxv{&`nQqN{a5rk(QP2^>`;Y}XnbU0dtyaOSE8fr1!YERn&cL}}l zF@3&h&@A{H2S%~g5lK{FB2H5AasNE=Z2mLs@Y!uY()b|-BfJc+QP_ErKZT`TP6d;w zxfP?b;_0)DZ84RMzsm|$nCufcWQaeN6MICLJ&Ff9YjF3x)0)Kf%rQSa>ub(^)=iY< zNQh?m7;Y(9H|sxr9gv@l==N9PR4{&(xbOK^Vo-`p6l?tJ3MkH}J%N52m#|`W2_tgD zp(+K`{e%t~;kcb@IzM%F?P+QvS9HSdu4*U#>1hlD^q*o&8ag$nyLKU&rYf^Qk&+ji z*b@ft^!P(ZZ&ajDu$?r0Hg_D2xaZejM$4RN9VSn$Nn8Kvgj0- zKiDgeC_=nnM#Xc5`2_sk`iFXva;*!J^?PkQEr$QxMd5~)YifL+G8QSSuiQ%J{}h)p zBjB%RqPKxMuwTi%3AlcBnIXPccxM2~(&unYHJf~y^?BPI)az^dU$MQ3OV2Av zQ1ZY zoD%-;+69vzEo4@K;wyS=cE4scb#`4@;N{lrcZqooyX}p1GpogjZofB|dSCb5mVaLo zJ5T8B34E$zzAUoS9I?`6Yo@~^1Rh!{)s@e-3ZH8&EWN7@f4LoKw3;*@c;yB?p%>CKuR_ zRDToZ6&QrR`rS#FxuUIAD-;jHMR($%({#a^yHfsoL5`K!@$Za*Ec7Sl#!VArT*X<) z=96B5vp@GGG&g=Cj;PN=1rJYcjpiPV9@=h3oD{AS78CsM{oer~onoij=@!rrkbDI; z$Guw<OEG{RD7KhQhrGgf^YMw)@Ph&&dQPpQLv9Uyj9K3e$SIRXlV|?yjqUnr^&)@deQ?Gv22gK&r`W6IE`F zi|NCnH~ycgk^|_Fnt|^vNG^K}#+C2p^39shh&h;v)fl1U=gP+&rDiwu;;_z4kE4>e zd>yEu6GUtsM};KD92Iua^<|e;uW!ORmFU(wb|-zCHNyOPOne?p+5gYJa%2Dey z#x9tk{+3Oq_O`4F@twQIu}}x&Nib&Ka`-sNXYHK{*67#P$Mo?HD@Ez4nq51ObHq%Q z+BY3+UMcZaTZ|YDqH3a>8>6|qfx)qg-ha&H=S@|4HpW}QVl`JOf~&;eH+S&ez9@^! zZiAv<>)XRs#}ogjg<5kf+!^zh!}>*w(b3Vn*i)tp#>0^kzW(c9akU+=7fng0@B3#y zK+KMW5tS@N2w$0*C0I|)>ZzCd;ZC71C6I34m4nk7+KXypWu@I-NojhLEgM()Z2MzQ zhIQkOPaOWQhgy{w5iumfp{&Ur#CIj?^jKG|Td^`LbW)d}mf*a(s82gIyd5az zL-UeDT_EyUT1IvmBr(a5-eP1m8OAG{g^igLp^wsxMKC;9O6byT3dBr{`M#7aESB_dVG#L(9P_zs@Hutwnq_9j6~! z{0Sw-L}T$PI7)=lX}49`r6PeRGZ?j#2y~^t=!RM|1O>-15^J!$d$0E@^3@JM#)t&F zE14UL^_zc_&EUBxy15K?UxEzld1UOI)zgDMAn#0qAC=TVlo(>>duvE5a(8)~`MnI; z8TuZ9In(kxBTU66(_ATaa2JusK@}2b=cb2&@Z;zbflnR_momaqE#@}wmS>tti|A6P zUP)~MMDM1rn-E4kR5!mt7-R`95rDqN(ocqO&e!X@Q=2K@ zd^$vTEZ%hHPV4W#xwA#wk7KDd|*S^c~CVng|r0Xqj{_@y_K#Q>$h^ zbGtd@yr-~vM7yN&kgDH!!OUCi_U0$PZEFmdBTl$Q;zJ^4y&V**7S)Av;^igv(>vFd z9*4(8*jQbl6k3`*&IDKs}-qfo4i$kf||bhHc>+o2Zu0 zc}tZo!qOmSwn)n+%J>|>Q)km@;OEk4d>$Dvf<*L{$Z7fbPC`G82fwkPcB-zs=V9G! zeKp%IPWd)1m)v%9{{#?QX86Wc0B%XoHP>4C-X~&v%tnKyxy;(%b?4_}H|yD?fw2nl zyVfDWjpcI+Vk`}TOx2B?^ZUa9Se&v49(R&s*+FS`F}ff@7y=eLQS#hRlLx6>xIHC= z|6J!de+ku3yt>1NelC`gLTRdEHx!I(J2H?|6p2dkq{m<#N-wwhKIpzACUHqvQj;Se z)f>1)=>Q^Bn5x*!wn4(|=NfeJ9#gt-LA@rFYb$F?biw_0IMlc+=agQnCgqW{N#-8% z@$!PGI<6F3&+~*JT|?8J*RSe`nM);Vw@f~7YcXf)-EqJjGZ&l{j!y`%)UYYp`bPOd z-9w$_dAjUz)MU!=(l_ksC^_L2dnil#F3$YQrM5w&T@GX^wDw%3 za#C?bhIWjW#_%HMZMH3#VA_;_7;fY25^rh}PW8TEm>Qw9&OL4IF2~|z#SnOx&n)Ww zBWu$y=y$6oWcm#bubJvlRYb~)VJU0O$#A-~2OwiOMTOKs6C)qp5(IkYy0OE1Jn{UNRBV<7ywso|cFWS_Yu_lAOu%rFBN1sm(tr&?M~ zgh*l9vk#}vYJ9f$LRTb)Lw9H9VbhPu=ByDH?XVqp!ng!PXSL|3w`dlt*kcXUPCtO; zpIq6!n!hnxU$_uLYUH%WaZWDy%0W_A#V8}kc6|Ti)!GhxxhNu<_=j#zE~x9Tkh+Bv zk7J1bVBl?40xlk=+Y$Rq|Mu;Uk7Ls+3lDqUh>V`%0{&+a-Kb~w0&;dX%^eh6u18Bv zJ1mG>dIdM@$pS>;_*%h+!ezS;T1SmC@s~u0vC+Kx8e@uFJmnPTjj`re7_e^!F&4C| zD0u9*21M+N?{nGO8Vq4I1=k4frY?6HLwy{xmwG)~%EgCmAxc@5v7;v^V4}&F`Y?S? zpzX8$(`Ae?uT|`b=|%gz+Z9#o*BWHLKx?affyjMHI#Cyw-aqsUhY6;!!V?V3 zN|IL6sNVwI+%|BJ=2A{3ZQ=IfQ|0fTWKO7><_SxxqKp@R#Ob%XdN<~}tq`??_QOjS zgkZF@C$`BRX+9xII2>Xt`>SY+PI)(4WIfSXd|m zj659T1K;bn7Gt4aKQByg>^nT$i8lS~&Oq!@6@WW_1|XH5MHads9w}AS^#v>v@*LWN+}mzUex zKehoD1~ROG8yZ6{9r-8|ER)1R``F**fY3{H{iW{oorzJC=KY%jW$bYI@7kl%LTsHK_8oM`!nvs}d8}AoFAp`-N{6WI5y* zBib%E-Rt961NkC%&>&NCtQDB$r1ZGQJ3>)=<7l3=Mlq<$i8HnWCa=FSjA3MCoGgc* z?^}%3&;`d5(n1@u`h5`5zi^!_+|C>H%=ApNY_6Zf@`~3}&B9}w-9a>0hox9Vqo`oiv|0Zkd&T{YBY9hqqnW;x{LB!8vi zmUr8aB58su;QfjYZxVk$70D;QUF?rGxaqX^2p6s*Cci2Lja7|b{K9u+LIR3Rj7xU- z&r|48mzQLFOoCgsd~g|dJ};RX^8b2ye&}}FwD)Vhry)Pb@^&ei?o!^j=z;0WBG5~v zeUgv<7F#~bE3OFoLf4^P=5wZC<(3($YE@S6jvGq?&uXzrVfJyg=x+Z1bb*&aoki7| zk8MDHf$%D^B+A|hWP$Komc@cu2BWbUv+e-+o{HAfq1iJ`oU_(%hGWY!AYzY11+RX& zC#7UoZ*2L}aFIaf1-+Xt3%<>6t%Tv^pQbRx`mGml05>;Ch6UuImNY7T;;VYO%hPnF z*&1y2g+KYfm#znKjDIx$*#OG0B!E7tg!FcMH#PzD0WKJblh@Bp?ESl09xQY4pEno2 zq{T3tQDNBl^6PSNjup^UssRJ5WrqaB&!xv|?42{!r1vP1FsHyNIo**?e7k~0y2(Lb z(;o4-Oc@Ll2a|5<)>XPQxCJ85D-zEsn;>+7%=L5_MW z$E}n2C3t$ZpnEmtJ<$;jG`A~t7a zKpY{-u*z5!UX(s=YWH?IYc=kM}?(?dHvyW}IN@)y;l$=(TMaE5h>8jZ*ko z%iDjL=q<`bsjlXVdKv3Cm8*-dktc!PoqH@ZrUxuv_kyHpC;G3|Dm)T7SRk;tRxFYxZ7JEup*44NFlQxUN~milc0vA&1HXP zgk1!&40vNm3`KD%#*SvgPN_6jyv%yRnef9Ab19mr;@sj9Qf)n$24bp8!eV^&7unQa znD^y~GQ1o}xN%OtII(hWwZMAh%mQSH)ufqje4J!_XJynvZLTN2PEhgj=<_+_RJkbc z)DgW+zlSj=_~muNHc~n!bu1_J!dM5AykbJr5cwUtcbGNGHIll{Z(@oo94LbRYIzYy#`)33L>3@V#oU z#ajXAM(dI7oa&!OJrKuFYnGDYrs%gLG;?R{fePi7?7xSeLuT5(fF2ps3B7Y=-So!^ z?nd|8MN`3^Rxipw;$y{=IrZSr*W>3VuLUl5M`T15ksfL&)-mfY;0J@i=TGLe#I-}T z-}oew?N*6p>2&u(pt8@phWB+y#tfpb7Se+JX*6_2J&9w7#y*nTTAp4~rGL2o zHbD#0F4vLT3D^RIZ)(d`;w;rA~f^NtFQco+#K6jK!-hF62tl zAKpmxI871au|P;fX=kL^?45l9_WNKMWAxV~X)WbnM7Dcs&p4*p0bAHXoGs?23G{7{ zC{5F15eXEiotk-lv%N;TA%(ZSTC`l_CVHme^RTa{r}Xe-dd&ACpY}*lz}Ch5%a`mg zA#b4&;ap5Xc!nZkWbE8 zd3r^Haf8!RtsYhJojv1cc|Y)AzIN=yj#Bh21Qs3#(Zvmkwjcn9KSMD3-oD&N8#7?KNKAVY9c^d)1-vZl(gbjUou%On=J;X0WZ7_R zQZS84cMeowm>;RE@MiH32pQ42`)wa+kpudfZE+cgmQ3xh-x?5|b00<`OxeKg6oj93 zT0rmSCD)__8Wr@?7j zO`TxJ!7Sh;5LS>_2|1zpaev|x?-jIX8DHGHm`KxMNW_fP@ap!`?N&?IZwllye2;%GE5?;?+W(QdvtaOt1(Oz0y)Adn6a?t%x^ds z5*iI`xa~GXR}(N|!F)Djyp@+1wkTXX`p$&6(AE>Z$;OIf@aENahaX#wZT!|~e0Vlb zDIrB7Bk=Kh6FA$*w%3u>$Y;#0KGirVO~SkQB-`?E;*HuZrtDl>!BA3N6))ilNUJVx zpJ9hS&^yI3>UF&2#KoqoZRwRUdZMjJ|NL$L(a5@D;>d!Zb#QZB(dwpn(8&A6gWwR> z{P0}Gc6q5&u^(jT-$927MUr%C_fadtIb^a1@-QJxZQ?bV$djf`u5^3T_rPs8ZX63c zvlAxB*&0h-wAX5tBq4BYG@<4QGNKHj9lZa!sj<$DeO5;8_TnNqJ8qHH#XZU0)*$Kv zJA`^wDagJ=9?K=V{_Vx1P}5yVQAW`#ry13?anMf@|14m^7d0(kv$imyJmD93+g_AP zct5lfuQIkxH~_FxjT+_t+h8~P?fUJ)^RRTIo=9hQm|hV@WX}23mfO$P{L!wg=d4ty zm{f@IPDHfBeY!R?!i68N)KKvBqA57fH=DTiBsC@WeBv#eCW*%`(yF&4hqy@(KirEr`~+OJ4{inhI0cw9j zjBcCo$sVF?LAKeK?BgBWuL)2V>*Q3w4N{dr84LCG+ie$vBNk}jocV~Kk+)LH^;zQ3 z8Dh|u~DywNWkJPieMhFvcvTJ)J{&Uyq9hExB<4<)Aus1hUvyj zcuZlRC~9ZFYu$lbpBHYdItDs{(L$rUd4M2Pj_VtoD>uyFh=<`96!n6W%}ttwEMGVw zFfH~#@N_4;Q?8r@z;r}9Hd%Rz(XflhS%ywYT)ly5ijA;5Izz2Yk&$+u5+4&e6xMWZ zJ2XaQ8&jcLq5FQ{y`wunq)q;j+%1|hsb(;R?*x_1nA@$|Z9yeANq(zvAx{FB<(7K- z)|qjNQ$wJZa68P-v@J}kS67ybNA(P+%TdmTm_n5#ehSw@laSU_?3IG$zo8(#G-Oj*_sBue~A|@cU)l?IxV*x&QO0*#cybP2kjIIVNjfn>+mO^ zNoYAw5n#ldA3qDrznL;*+ukzDa?#LLqUWtgKNf9vb-x!{NraqrQ0+3JxdepCVk!1f zE5F-(5{hrGy2@%szcrGwfSR`q#6R=SU+s#VzY55?_m*XgTDxWHURAh+pL&$O%W`la zPSSkMp%we|-r3$^Ic#4fLoSWO`hHtr%SSr(XPPWlrsGXhkSyO;N#q*cY0%SG#-ZvF9kwK}s86s0)Q>TQVj5!im*A)RANEE50+D7UgrATNu5)Ex> zGx_Eo5^MRpj>Wre`?3WByom{F@AP)cw22>zEz+cml`(1Rlzy*;2z5>Tnu8O^Eq1~$ z%?_3G6j<$4{|aqn4p#At|^M%`s7+1V9dDO&lLg8&$s~JA{rU@>foY+KCVx{Cv5w zE9`07GwQ!)oq4jste~nLgZ=y#QuYv9JRS0o;a7)U!_prXIB^-~t_aEE;{= zcsDQ+sqjYs5`G;RO+c}1lB3EQj5ZZi({ z;g{N!-WIfuAnxIoSgJ2&(a5JQ&4@Sl{K3~D`bZ*myX8oDV5ACzy3F|)KRakgK5zyc=K|1^sL|DgqTZ~#Gh7VHT}hUp3vcqk_k7tA=PY;W z=4dzQL%7jJ72a||Qw-+wx{^ZKQztWzCNj@z{8d}bIlrhdZZHsU+lvLj^u|bgig7*$ z2tKgMOo=wyP^E40EE|Ns*DTkBjPE!Eh(3k!?vZq7&RL5QN}%Y53LG8mhRa&nqYYg* zqD7g%0f^e;X}9AzMA&Zjg_?nv5C~QP2%H)Vlx7~+Q zZVPqF>sV*wTZnBRpE3SvL!Z37U~5pVQ-G&bhi3fs%YB@Dscc5xSA#5B!xRFj6e+<3 z_L7#+DXcca_#KrnT8VBI?_6cFv9A2?vGd^^J6N%p4xc~zWF zR~!t@4dB|(0lqDfvRmDYs4o^S>MbXyHKvVY9l+3vAuUEB>KG8ivpXy@v6lN1O(UXk zbIOIAaOI51rV?PLpzv(((9Xyuefcda_5eBE3S_uAX$k20&jdyzcoCjc9v^ykfazwoQ3N&C?*b_+eFhJJ(_?=eUiDZ8+zf&88mVt~ONIyz*@~9T~5C%A*s-ZA#P#@v5BsZ}t z9auqO_yCL@9yuha_hLpSSj;Iid_U@DXZRSPGOyIt zcr$2e(w?slIOU(!6M*ZW+5qFQ)>&?vGoONC-0ULn9M$Rz0+hgRYywh(LbA> zUA$88oe^uwb)@S?`_WXgn$CD@9{%jphhd+c57{AV(yCqZV4Oz+v$ak?52aa+b>Zqz z!Mm}Cz?%WG+vFJG8 z`?XhNdiZcUQiMRavznu8^kez(IM&ch&fBLK#z|8%iU-@AWh1*=ev6A}VA_ZW+M$8n zcwi(Uud{0T_I{5p)dcNDurCTLbzrK??0l43{DsYfzda$GNA9VS3S9b!Vpq^o(9m>+ z!^D}w4f%2SW5CyEQcEuCi+}s3l`k`YpW1=`WEK9kDZaRny0QsJI(|;0t2dX+(Naxc zGz+4cMB>x|$!q}HfSg>rn&&6sU$4oMav$@B(B@%m2=1x~d>U{>emWV9{|sFpUiJQM(KcGqy-j=)ym&&u;LPY8A`*F{-!M=&0XEXtG_C;b&L<`i z;SR=)qH0GPkG-?39ad_q*lc^hfBcqO^+NW(Zt{^r=0lo2uSi1;Y$y+(uISX#i< zU`nX52@6{&AIb@__OGtFDq){O550L|57w+g3A%i(v+|TZk5XmH8N@%#?n1=(?)L4{ zEHEc=`ufC&`Yg>{!ybhDBgQxz;I1xI5%9&;u>5G18$?WW#7%KL0J=(?`3 zCAdxdZ9N|-5DtMC{krg;OB>BJ zHW7$ItfmlrkVg$DD*Plkwrz}fVximpvhii_*ahpm8eez1b9TuJwl#j*PNCK!wH!`W zizQ!{gpVbwoSSB;w!l-AVZC|>l659F{G4ipG|rFIhM`N5@?wFwt#ECa8Bt>mVC zVb75`P&T?d4rdGDq`y9Xnvhw#7B3zDOu`APw2HIG6|}se2J1vAB^Zxide0P}w~r+P zZvDWQaQ!X|L$b*<)6E36tK{MK!m`V5AWceBoy5v}q@JALIt(;&7w?h85m;N2=sVi; zz2+qa&~-I4mZa#$0 zgXumHp59q-p9Pm*5$?6o)GfoKQw_X49$a^XOY1{n@5qyv&+Mr{wS7Af3Q*5vg^yYF z-4=eV(XQ=Q<%oZXEto)NZO@|dVL2=Du66ThvI`pcIhm(tOjP^+tQ~s66}JY#fqx-7 z(%D$|(%b@b69mkXn0FXV@<$*GAUgE!wi}E47NX~t5KUvf#ZUI3-=4^5275c@E#F4f z%LlWg$Cq4z?j-2wDazlB#MdmUAHx`gI0vo3J0sgFeBzH0D{DoicVwkIpNa!cdo3tv z$qtq<1XWKcweEVDlP*OAiZwz^=*a77p`dTwCIkcfeP3`6k=bYq=Q0Gp;3B(#UBv01 z_;@?;wiPpA>TIcXyJYf}tbjD0^lB|JH_60eeSh562QcgM#<$TElb|bWq=IkO2qpGN z)+@A`wCmEp%rp`!T|*PyYaY%Ct%85Tf?ry-Bra;4kw$FE$6H4}?1_F+`cmkAoUmgl z`iG*5qjc_H+8mv+xHKcjZpYx2DAScFz$7nLo42^Y9#02H({xl!4q3La+&~R3=!Y*J z_%7JcA@5<^f4KqPG$9zG3X54)4C^ljI@;l)r*)apIZA!@di{xKaOSZIBlcEw87wwG zly6xySh%~BGuVE?^BLj<1218=wg}rnJ`or7uV>~zyDyY+4epGo=RAC=PeSoYcu?!b zr$oVzV@t6NJXg9jm>4+)sKj<3TxNvfj`TtNYEFQ+{#nDc(AmL|K|K4ULZ` zUj9-@jO?^7x3QX|m0OgT0*9$VzmGij)hQZon^_YwN58e;erhITq0x43e) zFyi;E^h|<|`@#>ZP|#WT@gmf}57;GdJG>u=e+tL;U@Y7ZPGZv=up5bH02xvbe+kd+ zZykph_ICodIEI*~{*#~~%D@v`{OZoi46HlF7UzZ`OFZv?U*t1KqpxKQ68Rs^99tULQ|5QfehCxvo~8q9dVRkakw|vVLT|q zcFCFC^K}?C;8s^`-X+iDhoPX_7AE+X@TfIo3+x)(A%{?|t9$bm(-Uqm4@YCdcE`?# z0k&}Q5vOR8;70dnzW>Mj{et{_(P*8X1m5Hi&U~n;9v_-aaQuYhwhNaKn18Gy#XYL{ zzrTeFegQ(Ic3)UFct2uRF>#QnZUtbjY3*ZZsTbx*^rFx-iVDEs?zbg3U;tW~U{NeC za=KZZ@|fep5YZEo=*ow4u!^)o-&I^!fX6=yY)bKtGw!7DTYLj*R{XVXHk>l?^VR`% zoMaHB$WAfcfy7!@#+b$F-$XcH;WLs^zPs48tzNy{Ujf+t*Fi+;_#=Xv>`gJxR7Y z94mCEB*tYJbIyg|wR#mLZ?usA&H~6La$RYCal=B@zOZD;WoK3v)Bkt#Aka~d8uH!w zrKZm-m}ZAMK=dg}4#7^cys?r-tB02zjO^!GBWd{_Z1?ZC{5lRWK_Req4@;(u9m@H z1f|o7mJQ${y8Xz}mhl3Ou6g@_!WrL z!!@1WK5|`$rNIh-%}Db=)@GFg(0_4LLs8YQy{UIubtja)6lG(RD=v??Aixy2mbOKE zCizn{?>{CRhIP<%aV;fiu6cT>Es)n6oAq+&fZHSfL*C^6lj&cNT+Ia z+_`9!KYS))$-q3_mUZ7~S}4*V@9~X`w^cK7{lT71#(S&1Lp99Gw)OLo=v|rI_vC-w z@B1^_Z3X40my>UFSARRN80!zbGprZWzcsog!&IdHyq&3^L9o@>tgW6SG$clqCc8`1 z_iyMAIKT*;VO824d_o~0me5K8lCX#E8T8Vh;3CDa3NPdynxKx~(_yhrH@1fCpFSLt zNFQ}uZj)A>iCxN_aEWt^sgs>kA_nd#%hs2|vDn7AK;1&;53PmWxEK5*i#{ia{cvAU zm1ka)8*-%-E0e-rq{b>jT`So{GU~**h@tmY?eXtzgG3Ts@FtBHqdP7|f8LJ@n&8+# zXTd1N#Leims)`||5TKlnIb71r5V5$ujDKK=1#v0At8R{nU{R;zy7L!xM4mB{48?qD(B}mYrY~> z9$J`&;g9;H`iJd312vu)#Gmm3mFRx!P|qlf;U^w0RCQ(US>gjdu1a9dH-BE6v1dR} z&+8uFrtnB<{UMtE>PqAjx1!r3zqLamOk|+!d^O)_vUz9#H&s>Yqvjbyc+7Y&?>6~K z?I%E@ph8^IyGw=;(CC<*r8D{C@kfnF+Gj2LALaio$;Wp22H3qR+JEC;2-R!}Zsa_X zB7&bv(d-e!+D1SYV-8)e>(CSszf4=m1>@OP^8FEg#|WYxU_?(Kh{`_ zV^C__&VLWYmm%7DRR#ZkYl!?{aB6{$%?l0Q1CJU}&Sm?*@ti6K*=h?cK$+aXc?ORk zI#Vvum6IuARZN4{9|YodVy1u`GBfvmYh(+a_96Mm;CP4*^ng!%DRmw(qWG>Q$EzFOZk*WZ)^-XQ)mK5} zY<+?s4rnr7T$M$#t@$?+o?)ExI!S>XSeDlPLb+Dx(ocNt18OvfPi#h3dQuC7J0 zZyGQoQ}^FUkhQS!nT~aXJzYi%>!mIgaIFem^%~j!%M6`SAlu>m`G@9TkB1T?8As9A zOL#II9M#8X1wt%b;KbbOT6INsxU{$Mg%20U+(iDg0`XwQwQyujD zZA(T2A`qDD@=Mc7cxve6+tH+G`l7+fq4Lt8zmDxo7R~z%dQmBfe^&AwT7?nMwC!54 zhEc{c(LQ#}gFtPmtbY9$-~}zSmJm4IqBn|r5LQIX7%DPl{9J7(~)MG-} z9b7v~q9HDdI9lWSt@g9=f8BTqvZIuot=~2OzV`EX8k)F&BjFx1(o1OJF2C+@^(0WZ zt8}#-d1LG3s6=jkxUtZ~x?SYDL||y*K}Y#^JOv$|!TtuVTH#RfobsG538`v|*fxQB zsqVioh5sALlQil67s3$E5cOi%_DF_eWb(k+KI=e15qsE-#6B|!2RESHS5_mV63oT= z<8I|R-ZfqQ?CKN=tqUB}%V<&~TIGVX5V=1+kv}K&mB99Pj_8v|IGoIdQOVv>dA>s} z9Bb>s{SvraiJX6eFd7$%G3p9*Ov-K(B0getg!__ZaYi1AVh|S7LbuL&JRSkkrzAsa zIA%JDET;VTB_RBX=a~=?ey^3C7S{jTkWNm=D23zju81rhpN_@WKDQ@I4iSd1><ymxk zkn755VQjgM1d9f98U|j%)0ygsJC_Qo-uht=|*F+E`#?OrbVP?mb1XT3Xjqo_G9Ljp_x;g(c5H zg`vE2Zxuv+%Y;8hl*5CdX6pH3g?|MHG;3>9X&iAU#SJt;)3I^xEf?SguS$!+U(ARu zf^!{o4RyiHBuf&{1NT+8HCnh8v$oozOF3{!kl#trh~PimvPkE95%nu}9_$`9Sp>Ld)%xhG(hppJZr>3V}d7cp!NsIhghc z)5WgBte&F*%b?17IHU>wTSCX8i$E^CppVN~tA#ak82VQu32F|9yIEE@=*7*Z7&Way?qo-IR zTj`_bPHBB{g;^=PWnX_>*4qDt(d;P$Wj~=JSx{wzV^fl&(-hA+$$#Rx@pQaZ& zYINJ3-q#na{0Ut)4j2=688k|;ItQ0eD7vcvj2d z58lqM&u~CzZkw-la2qsXBlUxXU0{N@!wSL_Gc~d;}-)Y$=2V^S7&&r@^=0qcJ z=zdrG_mDG8$QSak+aidQ!a`H7c!ng9>UO7(x!*j6V=XWj0+(|+Qm1(SK8zaL%0?h` zo69RDBBQ6B7CFt@YPg>p?Xd2Dwqtuv+UD)YJbOICBmzG?_}jmqo7g4*PE=_kG3F8H zLYOoqMlD(Y81F5ipZQAZHNb@NQpFqViB4JJXCzRFEWw~PIe+=~$1VAkwGGv!aH=85|j z2>PsrYzo@jFQIVo`jjaki}P0eP1$TvFa|ae_XE7&``DikpEQN^!>(R=e7on+)CWN7 zR0rJ{FWUAcZBv1(#2H~r&4NFVB^UAaQh7wBtL)=2$c(_4^P!MwTg013screYb_gDJ zhF??#Q}Ng6#NpK;siF>i5n_n~%{W$E^3}U9Tuz#RIW|-L?ata!Y?Do^9i?jiY;-CD zbenaO`u7M!hqH=#!)-_MqVwYax%~g059cS~OdO?_IX2Z2S~y`tI5b)OXK_m6*=g2Y zL15(mumd(FqZW4Kca8^tKlhhK!opawa(rupRfPQS;T=Zf>4nn*S6l?M>Oapw|KNMq zGmkGl65CwN&)xu()82}o>m|i?eF*Ija`-eabsKGQ+3pM);x6}Fr zIhro={zpvsliAf@LrErd{X~|{Jmz>+zsv)h`kUMOl1-eW{50mRzTbK86KbZmSicLE zO|JU4^2Z~BjtQEjJd7cms6~~GcO^#;ACiVA zlG_^331=E~sr()Tq+gbe;);A63AMs{m40ma%ZG zIVd@^IUeP|k^T3xYA{w2PG>$w(EM4yXs4$+#_M3~{%!y(41yI@{t$g4)N*$_?Ia(5 z29m^Io?(Uo_p{$5a>IJ+|JZu#s5aZBd$I$`Ph zmu*L+8l9-yX?qt(lQ-7s$l2?;_Ouu!SF{3s{iOMibAEdL`dGEcK^Tf~D10xwm&$FO#+esNoU_dO`xF0s zB{kI7dgt+PzP*NhTN^2nk8eDEQ1UH{D4|QY<^s_d8Z|6EF1X0C5OC;mOz=*}moHGh z+YNGtg14zJT5qgd(HiSn!o-K3E{(JWesScKEbm;+liTY4ZNHpn40;HEcLd>x;QkL# zb>l37y?g^F2J2IUHyUYIs3TqA1y{wtPd7bGBNa3X;|<>5oU}_rNk0qsteNSL9$W?e z0nFlzrszamyRHdKr9fkDRy>xE&I1L~@kwg=#dsyOFmeLffdYJCp?k*hT*)*tt?=N| zdItWNC5iizf+Z}rtBPXtD{iep2|(aB%>5;u(5P!qa!Pw@>T)TOjmY;&!XcEP`}_r^l`>O~I{~9YzoDVpJAZ<)WOVvw zox(SzF^!+5N^QF%iErdTsCFxV#g9Cgp_a<#oS2g)dg9Ao-Ty4~qywvc$zo-Yi>~}^ z+b6u8Vlw~32CDWLL-L`UeR10Cjm==Js<=FusT5zRvwe|Nfd5SJ!ToZ#@8Bc%V}h2i z;4ElxKvYo}x+aN>vnyTM#Wr0WdFZCoBowQL;gp)VGX%-jqBn~lT;ozCywfe)GD8Gv zuf_f+ihPOqdPOl`x#s;@;dh#^c@{(D7mkxL#75y;m=Z_DyxDj@-~TD0)UaO*h+W9O zMJHQ~#S{#+8%DpE<%nhA_|%&aRm{9oQtDiu_k_TBiHNJo?!`w2Fm7uerff-e6lAIi zmg9p>A2x<%=YaFua_oMR4dSrPw0)mlTi&>gPl^z z#45fu*nEjdBF(vG*gkf%p)_tGOyyL)3UCbKft-Tn!O}hkattvtleK{WuvfTm?%g#W z2BD)@vaBq=-w4O}gDjcXfk{v9@_PIp-&eB65USPG#j^3l>I7~a{14-9xH z2Mr+?33^Z39_E@i(Jc#I0hs08e>v9)f{FMtgycEjT&ICb?$EQiP^ABjbtM!SY}fjo z8|R_|td-KFoam?@yN$Q=8nk)YrZoNo^FW(kK^U-j@hMeX4EdR)7+%@OR`;vy33RY6 zBOE;XSUr(tI`g{?uiHDbLevx1UY-mU&?yYjrz5B>AQz2qTxy&*n zR)mtDMMY`mlD`<7ILBKiz!XyN=cR=q(3pryEd%ZDtpZVv_5^zLOJ5ob;m*^k3 zhf5#M*z3^#w4nts!3?7~a4~p&eX{LjZ?!>Mc>PaAgf{HLaQipAGel&(!pl!|?*d+o z+G8E_sDsVjm9FcH%h;D8NKImf*;lu}wujPvFvGi&wo515CC#3Kr7+Jyo4D)isK)fF zaG|k36pe|K&Nh13R_CXxyD%k5svX`7C%-qH^1Q#WXAtvwyrD@xzp@>mcA~`|MJwvP zW<3Z`mc#S7>G)}jZpGpEDDE)wI5ENmS(3WASXIE4vN=B|SZ1trm^_zvtF%$Fe;Nz=C%^2!^@T!xy$Q;T(Hueo@u;7u$_MAZOixI%_iCt;L%q>G8sa$}Ju30RmC3}dqH(T!3 z8rODUXm?;aqQn*qq<36&==nl=*t@I2?PF9d|nY%(6Ofr7Im29A|ANgrNH^idc;sp`O6*6gI+VYdkNTzkpTT-Uw zE{3r~4*fy$BJifBpjzmOmBRX0Y=1Tce1y>=5_X0%_gXQrr;iL{DPkzLowxmBU}hk^ zJ?U9!VjyZKAb264bjW#PENdh-HGaR4fBxTE?g%hCRJTgTl~h=2lcC@E`K77zvi9Y7 zzT=mzq_pq`v)o2a?tMe^xS1iDVnWCOBAMQB_-2foZsd&+?v>s=}|p*K5pU zhJ@pF2?iGN+AaDDg=YxVy^ueeNPdU)PJ=n8EvxYWIfwL#Z7xwiIYa@D$4HI#it$wr zg6aaxAZF7GV_4P@Pn1SSHom%Agm;+BB>MEo^D+Irk=ux1gwN#9Ikg+nGxBMF8-vKe?4=URz)o(`nFhuw~CJU@~xW^TK>6nrKmJloMeLp*R zLNuM--pB8T>Z6oVU^?7MyhTl$c_JgEcsYOS9t_fkakg#552p_49AaD{OQ7$TL4KSN+Dt4KlgdV}Qlvf3ErdY8M3olJ`iO8zqO?OZr*?#v_Jm zP1cdEgocO%rcdR>o>{4tX?pxHEh24c_QKk=?Zw64aE{Tooobsc<}lFef=e0GG7n+* z#$=mUe@88~dMu+T_>WmIUhDKOz+=9vX|ks>YcDuFU?yyeztx%B_oa>z)U*?|P%~x{ zZW@BhZ<9reP&%*IWNaqPMPpDXHugT7i+DRDkCVBAGpa6V!7F3KNeTR!m$d;%8`gnK z46}%96R8J!h|%I(zSAlS!uPOi?#Nd@EQuH{A5Z%CbNy~{PR!E0=I9jD(vRK?fWrjr&5k1xRM^4E}}wB{?5J?IR4EscP0O;gm)K0~RY5L9pqMb^*ig?A)_L zvxZ&2Jwd|5>%7hP>v`(2a|ug$j_bHbE*jhD+9)c(T@5^7|Y)-T;g(4pPHU10e#x-s8jF$z#O{)xqES zB((PiSlH>Mo8)7#nK2(=%&yo>#T6C{h5_Pf0ZT2UK~3BV$V|LpGAaf*I)8j22rjf8e`q8v1$|#i;2i1}3vp$5`^I=HLM_ zPv<;E$mR}l6uVFW&-6jVN1iONi@Tj{gOKF#$CR4~nWv*ra#A~95;`A(nLliJgllD$ zElU?K+P?H=iSvSmTfelD6KjCNpy!vy4lErRN1AUo1`g5Mr2gq+W z83T7|IKY;U0Jj82qDjbimcw5V^1u}|DXfwkrpqj6-0@|*0`%W?@EddKt?JL|!xeQC zyDR3GqW2%#>lR86?kC(o+l-7?hnyvU5%trJya{`8wL-EnkP6$NR0I^XXKESib91)R zK=b}c2|xMx&62!*O>1g@Y`4PwEQ_15TdPm1DR@lHzHy**s;bk2b9v%Al#5prs*N|! z(p^qq=6PA4PTRz7;-U~N%~3NnqA4}2OS_9?`dylEf*TCKA~Ke>E1ifO-GNc8y@QS%{0w&r-L zxt-puDs>o9L{jKtkTZNUtx!}`W!v~tjVGOy#mdO2Jt2LOTar53`E2s@VuORQF%#Y7 zrI@0?W{eoC``uQu)Ai?={49o(B%ru<_oVk6#BAU@WCW>BxtsDNxR?0ZI;(v)1WfK| zidI3g11vn_wKRF;UPfle@+W9yI{QvYw)C}CH3Bp4K;YWAQG~)*4b0b4ORHgsP79{k zW16egNP3!##_`}J9H4~wAj6Gt#)z0;hx3tIYW%onEX`)O{QiG1u0LSLB+Oqa;$urB zUAN4;{a3L{aG2*~_v>#6Ka+XnlO%mar|vB(u_~Fl%;ns=>2_iDO2-)vmb-Hm;qr{0 zkrtLL3PIh2gjzfG3%-GBJwSuPdfJrqA=yN_FVXUL?JnRw;69P4yYO!w(htt>eQ&Au z4mk?{2npkPZ07@#_iMwujFD&EZtN2pKdAC0lQHvu>d{K_f|~23@zN7*Zt)AwB|vhHY76;ze zd(GC?d3f>_Ov>4-H!gj^>`h-bhfjK2uEztV1g@}7W59l9vLh48>G`&EwRJ!Bf%7T* zQ$>aUUj*r|SC)?mA#{@Z2%EnvQ92FqUi*I5M@21VGJVy9prN+E997#`yWx=tXZr)S zUOLMS7oqKDw0>+ zHxsAeyru&qhl-60Fc_JgLm#Am1{QB}s{_+&noB`fT`ldqBo>{btMgoRs|nSE-@`uS z2tA&UXFa$)I`Th;Di21xAp?V+y$Ry)8O7fZ?Sz~=9NV~l>FpjLvHE>4G~;+?FMb{K;f-P==^6a@WNxBJ`zXkY_b&0aD^vIkcmpk^)sAcF2NOR zVarbE0@W(=|HpT@JmJo}#c00XON97g-@O)wb6j^%YV}mjtpEA}Ps#2>LDy#DDMM*_uKdXk<)&C>P>Pzn;2qil*IH-QET-%UAsCZC#7@de@~i*xeQ+)AG_4 z$>R635eH@mR>#ubq@CdU91&Cc$5_R5$$$Hmf2}0~3#8bnynQ>_!|3|vx6#{8e>b~~ z#XNCjO4PTSjh}ll#(imsCAi85)3^s9HaiMZv3QoV<^uSAP{}$j29g6*q!fzng9p3+ z7}qxBXNa+G#@ZABk!{o`3RpM7mh6hBQb_C6i4{(`O?0dCMAue5ljM4fs{V7;{C=p7 z(xr2@+N9m4_^B-1du{6M9d$3h@<;|$GEMi8M}7N!PHCRD?V6gRB7bPGz1Ld$-YFEz zUsE}iSIIbvaO9b${nXbB_9RA@zHd)q5)a`aeNmy2$GcHQu_fb^cFTL}{-FqKoPn>$ z#uM|Z>(g1bGOhRXj}1vZ->3dBh6^=^5~gnpK+V+h%c2JhXI}7qB!Ej- z@y3d|Op7##rhGz>iY>I!f8duaN{BA*Y%vS>^6{r3Qo~~nZMfdHiKPQ zNnV%{FPKapYJlE7F@lI8q3FOkTF^<<@~H@ne2@pW75f*}{BL6Qy$AjQvU&MFKM74v0lk7nqn}OZ@Of#dGb~Q{&>5&}A7+`NTIclEi+%cxdlm zunM-lI!xw@%9_z*J3DOf_m9Kw3jsH0aP8UZ)D-Mwd$W}h8VOx_>wc3AG-pDIZC&3XFm^qW0P)O{JPM5-Wn85@nC(;j*i!NHSWc)H;*(kAj|J1n$>pGrP&f*_Wot>uAPxEt zGV+JFaF-CNgKZ!rji?h#)kq)S6{uyGMgCymcdk3TBBpW;9m(&L1=3V5Q< zcOi9=UhnqqD+6RcsBy_-7OTRwxOtW=(ag`2WLyqTV=%gkhYym5ieG=?9AFN``}`5h z>X&1-hnCDmkaIM)3w1dSXplZ>vE}2knYPeo^+4Fxm(sf`Pi^H!Q9Te0TgLLW)jin4 zhKjT6vU;ccn_K)r-j#r5KC+3_(u{PL$|YLlk^FkQmugW{98zV|8qM`Cm&sQ?|p#gH(IBgJAF*gq0TD8FoVlZF7}W`D|b!UszT zlgkm)kv|+>$7$g}af2j06vaHI<-d?!fVLyXX|FPB-L(` zrE4u4Bk%H)vi35)4|e1>+`Ida>41UdVbQs4OH$w#_jsLzX72qBJi`BIT4OMMn=<^b z5Z!-GEx(C+>Dolzx>lzoH4<1Od=jzSqcI8)(F&C%ph_%WtYuQ4iR?K*&6LVbR79-}p845IXhyDSim z>NsV-)xUY9j04v10zYP`?Vf@|lD?5{rnLnQms z!!Go$!?`rM>J=0g@o)KC9`_iPas`6gX|*i#Z=aBG71IhWwM<_USw(-(1OWYdiFA}H zv3GI->LvErhde;uBp4~{+VA8{9iaU<_d0}eT@M`xmYZKRmPLpWhLoLCY`Xw1=BZyi zy80XcHN$8FMsXis%HZ03K1VcW>|IcLJ2P$6H}IR1{uZi*N11I7^;93}4s|QGMbT6r z+&sZi#j$ARzZqI0446O{x}=e^?hdNHu};V(Z1s>-IyMtTBjGlB48}u6o2(rV`S6$M z{Ss^WvlwwG&g=z2kHEca{+_YUluPzcv)X7eUs9z7+bNN!?jedym>nOcv-u~qX4(+F$YsD{m) zm{C0lOtNXo=X`ncu!OOPpjG!H?CwCf=76J=^@e}h!5mG3!<)%s&lS|ZELZy!4?ACc zx4EmBE3Ml(WCN^MIhn-3YXs*V-)mW9u;qH<0q!^mNP_{RI2d2++Q<}f=E^ROqNuzz zy9ZUWp9^el0 z<)x=uRSRjfeO7lATeTY8f^U}+)mD0TC#~*LI>W+b%LyK>SANz##o;hpmJd(}!n|W^ z5^Tc4U5K@0nCDRPlMzp%whil74OK3F;gzA!VvWvE&)?g`!wOewJfj7^RWCo0>>mUr zzcJeiVx7rbfw$U&p)>}$h(C>l`uw=wqR#V6UOn5KH(ils#;$@@Dt2d4o&Fop^H+hIsiBr2Hz82k>sHQjv&SJed_jkBn zWLEC;3I_y}A~07w`N3fnRJ{5|&piX;6u_{CZ*b@s(M>4750tB;^ZD}tK<5zal7eKY z!&Zg322+VqA7^nnqY-2JpbNgIIl`#OY{lSHxTaelr@=vwL12`1ozDX_PSRc9%`b9O;v&N6 zbFl+X5sQxu>B&{E)Ulo3l}I9>q}unwmZ4#`M|1An$+nWtwy|-trgKX) z3mdG3cg-al~T!DWPwxQte{40lDZ1)!V>N+;7{8O0vli300C zOVB?XtV5_-Lc@~7V)y}5<&|a5*E5YNEd(ijcyg{nSg7tX>p6GC*1=C_-7pbVQHsXyh>MRY z3j`Z7Yf;owOQktZdLIS&~~!%s&9cw`&b2 z<{3~M7f^HT_56iA@%Lp#F=jpqOL`hY)P5BXIs zbP?6RtvPPj^r*WKe;41YTI@lwO$WzTfeR41;dUHBIf``hU+a zAABf^Zl!1M5;!8{dZjz`H;=h*}rhe6x;d%YDJmXL0=LyUy+BQryg0x*k$z3qbn1AyA zGQYrDY*X}|i$?cA-JlMIfu{M)fH8Occ14WT7htIM)){rcbQ@y2P0RMF8;UVujm&F1 zm_)5C%5p-wJ91yRwsbNLWYi2SWjQSfFU;y-##A=h-r8ciglu( za0M0^A4J)jxnwouU~=W?a%aYD8oU^cw7e+pp;ZmM9)eQy{=vNuU!t5sd9w{}zd?1cpq+8N^pg2jKdA^_$ zB~PiJKl8<2)CWb}JidXPoX+>aGiJnafv!IFPfcz8^W>sM7>pdxLd81AR3?bR+9hap zYPtWJouh{VLtS$C7o&e+#SZC|mE!j1dg`Hox=K%t7yU26Q)C+M=i&zL?@;hgq>bWd zP;H;_iHiVVP^WCmfg_oQy(&Ryiq5IM;Z$TJrq|co00P!l+R{AR zOeNDor*IBXa%+tK&iwB&LP`7@sU$?O);EWtarItLSn&!KY=nXi?Y0NW+>SBt;ye2-MPxf>Z#!ehoY>H0L=#w8-R?i{BcAgXGX(TB1llS~bim;7 zS+C8x2nqitf*g_f*?mgBLR|3Pz!?!$apcOAx4`Hvt{RPRILaqSiV1)#eN3~+2$x30fm*qCU_V`2XD1Tp=r}$#{EaSbO4~BuJF_h{DD6s znR~u;iQ7b83h{>8r;%434fGPx_O;DdChd=n5(G0!!l4gB*@63VthL8ry;p3okzy`! zqF%rAqVU>I?dnI^zd9@;LYOyoKb>n>9QVKYE(KjoZtP<9BBd_g|GvVgxQiW%O9MP$ z&bam<9r1UvoIPaf=>;*r@CDZS6p+7gEi9mhM#nz~{5ZVbI%ki#e$X-Og3Zkx`1FB( z882~4cNVrS!%^!36wSXzWKZzbG$on zJQ+LrI)EUy&LUsMoO$2W2T(zly8BJ0;!64sR!Q?42B=2qE|wy$WW}tp+nE~j_RCh~ zXF{vrn3T<>hUrCN_wwr(<0(SuSI8RJmaSPYWQ#XTnIc}V+!5U0GLkVKU)&0wMJgxm zQ>}h(3uZ)HS%FHB5HgsXf;0kp1aJtK zwL_F7+dv*qGNvjHhf;{rF=neBhIm;zHK5(AQxn zFQniCHq+cu^YKOrmkR^w9#`jO?fzHDZ!yMQBU>87mO=V#keXk|V_+)vkqJL%W9v3T0nK5DXulU_A@ABlcdLk zOi+2d8_0L~H_El_Jq+Iq>a~;@C!mEh7EE0Vy71;VWuTn+uEu45R3+jSQMoTm7 z`MTh~m)d$jWx@Q^6!*~z(dD<_j@d|78Can9FQH<3tqk)D{*usw8TFav;|bb18FKD= z8$J^a^hrCRTtI(n{7NZ&x>TSZg3yR}EM41v5Fd1JpK7U}0&#t~MV% zJ}suf7QX;jiqRAvwHFADFO%DJbtzev#3vWU+OHm1NqN$WpdTau+E-A1vZXh=P$o3- zEkXcuD>m+30dw)GJF@0Emos7-!j`V&qqeh?+Ob8vpEV`bCSvI!@%j5SM%Q?X&aVP) z7!a|2H{7LHUSvbGsrOEA-tdYGi%aI7uk#`|@}uGXTk`Q(Ox>j>&4rOY!WC!w>zY=pIq_70cf zD|wKt#U;W!llaq?G6p11GMGRY12Fg&%Paw^*s}d*ZikB#v`Q9Ot*paDIzS>mhFpU; z;vR(vlguzA-%#!x?0&B|9j0=#k30@>$1tBA(;T5xEX3*e4_%m4^uXWQ^YN1riKiGX zAAo7sX`uH@c&I+LV4cWw4m}L^dedeO^1k~ad#VLagsxvUjZ>Ee`Up4)qxN?4rXPwZ zx|?#2d;XQ}&PjZ`L1ne8tufqp3i_X8mD~`{kVhkx@77pvDl$i{m1C2YD5=pTqeYu@ z&pY%@-`x`nYg~_quV$>e!{pA&r23DwDxdX#j@w&Kst{H&M`8qz*NYZUy3#WOHaq*g zZI7_qztk}TqP7ig)czIkPLM^wSy~7886ZVW`wCKL5JW2|IRL1 ziEXrpT;3djV{1M+r@18tQs^YEATH@wJO8kqFl@?@W0CygRcdsXg5mg4;AQ=;jas2M zhLUli_vaZ6VoaD=iAl|)QfR&@V}mJN4n8xk@$hWq6Vg@BoApT92zmHu-JPogET*;{ z7a&u-?b*67iUm6H>@~*;(>;Ip=`?OYN=3Q~umneRx{e8^*eZnJrAbn#mjd0?%Dy9M zdi(TG$7}wY_wl5~R{9$X!g)Q1U$6!)JM1H-8jv3rw-;>}iIxy26A?Z&!8LduD0EAt z9;4YczWh|Hjgd^gHM|j5j0st_ajwv%SR=pI{LFG;Tq5TE$R?KQDYYr%sw|ySA#BWQ z;z3iGp*w;;9?&99hb{fcoZx_e7WnJOrD`wrPAb*Li(*VYZY~DSR3f>b-$D>028Z}( zJzxF6CYR9rljwl)Z6hqv`J^}77Qd^GK2^M-qfU(a4kpu{xlC)Fk-6FDZ z2@_}fek&=P(**ZARQ_S7pFhY@4Rc}AGT96IAwi>UOeS}|t(IE6ha(T6)bDieL@vZ0 zNc%9RL^pp7cQ=8ERZO)x9JG5c$7)@B0v$maHN^PIk7^HrC6e>0rQ!~HwG!xY@sup@ zY5az2ZYQrzyoC$Y0RV-%i6yWwq3$Gf8R+o#-OR>p##*MxITQg)BSZ^_Np%6aZtfwy z@P$v;|Ly{aBcWtc+1i>6;F{UH-xxGa4R=cqfe-#~BaD!XmBg(Za?{(r>+uIAtnou` zT(J$(NDje>#)>`Zhk2O-e@FP`q(r|Y9=IFpZHrGWAUTV@gijj19O4~O)Nd#1w|ab^ z{Yh1LM*i?2_9SBI`)TGHHWPDxmcg5ad+GE@C|+gjSm#OQ#xFKp&`hQmzZ1+REImz02wzjajGdJG)?`$+A$u7F&tTs9h$61lA`XqV zlSTAZnczX!&l%*BvbPSCxhfs=Bacb6+c`j3>05?-u8)4^ahj?e1vb$XN8b}#PPYzM zfg%0~jGd8GnC5T6CBAMS-@mS_jhiR8phjo1ldN|}R7aTrZ-vl>gwf0WR=ML}*KaxHvhU)HH`0yPZi{;c^uV5k|z@6ik>4!a|S-Dj3_4L@6LxxEzIq^KWru zYn=gPv~$#YKCJmM5%M5}Kz!x70}w)X`e?_P-1>?&r>QyM3rC73A6TpR+(%S*-q9^A zxlfWZebUk)h5}vS8Z-iW`Dzz_9N89tCRr)@#&xGqbxw=@JG_y?Y5 zJ8bOKoLIw*Va7E7__ED#gTrQgAL~NKIfYCix7~NhWaTyU$;YO^ApB`fe~`L2+}H^{ zeL*87r8@VBa8|&Qmt*8z^M`4+Vzw}mB>;tRS?70|q_@2V%Fom4IKC|+Ur(&hq|QQd zpcA?C*w zV9T#o{{4MJ-as*`fK-`JZ6Q->EN8qcK9)~s`^7WJl zGUghA{0zC0^0x<-%i}p#cOOG*#Fm z5mnCXdGr}dBWJKyFJ@}pZAiEz)Xo6eDv*N6#M*|1xf>>MTl+GD!k|S34QXA~Pifvs zHqwt8bszgRrON0-YV#LpotxpvQ7FW(eqoE8dm~13FEPYBXK0;pBA5A~wsE8kEF{XY z!W7Su2E6M?A3(kO?G`$tnY1pF!i-CTkgChCfb`PKkkIK8=o`R*Ab+8jP4V>PBrX9e+B-;qSy@e2I!^-Y=Fw5 z$0a`CyYk(b5GL*kJY6~_n8-G~pA5tJV6%+^KpkQe)1>@)sJ#ECn1D!k2TO{0aoiJA z5qB?M3jWfe_J{6dwT*(uI_fyKAWSO`?n&y5(wRu?^D|jySkPA8Y98mB6xZWBkhfw+ zn1V>AfSjqKD`voWQT!XxO$i{0ikD3m)#VPlXx8c%?k2s@<)Wk%qo5F+U{id+Id7)) z)=L2c_EerrYLNmIb-tIxF^A zbBb48pxRwRyjy2sy{?wi1MfKx(4M%CPmiWWOFM$Pk3J*gAI>QRsDxfn!J2C9%M=s4iSsuZ;sg;Eq*q5aX< zc9xuKy(*Nb-k{6~N=LFLVfXhR@Sm^}$v-;Udk_l34T)<&W6*H*uD#NoQ0zlG20jP; z%iF}0w5EjbR&rdKkIA546p3<}3$CM*qZ6Z4%6kuV#UU{oK#{X(>^xL*oRa|Om? z5H|!6@WAJEBR9|s^TcV(&BhmwU&lJ)@gBS%@Jp!z^C<5t4x9R!7fU8#U-61x%O#-+ zk|c~nCpXyO+A1r9e&~tk&|*k2Zy}n>+aBs+llJQdyZMJUR2?#2SkJPOpeJM4heeMy zk7g=Sz5{hW!>T2nG!%-0ysBHs!ukb|oYi=8k0Mz`$$>9^NbD5nvf8WdK@S*F{Mc5q zQY4g=JR+{5fu=E+xx3Sr4Z20|&D$D0@td3xJFM2+K4md+28YA|fB^_bfP%Qy80nz6 zGfYOf-tOXvuD%D5og;n#TMm3Khmdlt!C3GZ(-weQC42ILO-%|%na&>b?w6jWmInfL zQmPYipR0uJSBh+Z%}@F3Z$DZTjWiB>m7WE4l`2bw|0On53i_$07{x5KY-6I6wp}D& z8!4>(0n2eq8al_?f=5dn*%eXsLgvoDFw<}Dx`lOQ5*-l2m*zNd<_Z2GkbfqTHu2?# z`q+BiaRV#Qid=2_WB{a}l?G$*Mq1NOk{M(M;b$`?rCCNj3hj>cS+X_%WQbe}d3J#v6yc&oHmAEnxB{^U9bvClyzhM-1{>=*} zobfI;>Dg(l>1K51z?T(#M%Hdb+hoJ=%6#evo}D#;(etmIEI2caW`p~2U>OO zIAane8T}Hs_tRnJS^^@MgH0YSu*2~Adx>X4L1T~NdqjH10ORr zvVX-wi)YJNOs$Qx4bcL_-uGJ6Blr9++izH$DZac9=V3@Gm9zgQ#zTt1DPLacu1!Xg z2WgI>2`ke-ETlCd-Z^&KQd3x?j<42pxFCCPTgW$+90V@kU#y|smRqa)3%v{zd8Ycw z-rv&&ojsnI=#L(B48@tNk*?qL85k$K!!lsfvtd%WPNlh<)obI)H#dQP=aWC2aSivk za$6r2+Z@LZqR@W%=|XAxfQ~v#t>0Ul+f0gDda1dT9r+;x^5a{LN_JU(MsV_U$+7gj zrWS0ua(?JYg`~2Jeb1l_+oETb9tpcnC|D*O>%v8p^w|rzAJ9X$Wh&RIjPCVH{^)>U zobmZ7p>d~~$GUVF)~aWULHKP(z(c!WC|f@C&+6l8v7?;hn4b6ci(_j)JPS-pW&enq z7ZZ6QD-Af()9Tyte8ae+%m@zq>P-e|uLcKLhaJqAqkF-qzO36PMrl<$&92^;dRMZ~8n`p$?e;7Ap%i`y#RUF_u)cbo zL{v$|A@t%H*xa)w(#DfGk*%G0*e}(z-Ejn6SR&P!ShybWYE>}R)GAz;fU4%37ye}a zgQfbDqqZfl=7)Y)q3jw?r){|h{j*_y=u%emwmV6CK;@?pmkG!cF1pm=+Z{XOZRaXF zB397BT)b?J4l6@)M6yBD%Kg4C>s-vSPL@W`2{<7p;n6e?fP{GdwFdLHrwPg;kq z9VSxL2ZoJ)$dq}LxOi>l%~Yjc@;91zYFQdPlDe-lXsB!1ixSi4Lysqv)*D5+MU+2% z&|hnM_<1By$NE8@e8%|P?B$fBO1~nUp5z{fYl}p1d?`){=^wyq9$||~!R`wDp7^e{ z99$RQfT348H@~gWcY#%}ahuPHVxmK}(Db|C*4C`9E-RgZeMuh+8P%a!_q#i}Y=)DC zUJCD0HZ|UOxmOwUhh({#tcQ}UbZf5}xoHc1xQF@}d|0y>jISa>*rz&sK0F6QR(Xol z_Ug8@u#cph%-Z-#b1!cGN*tr@B44KAqVSyRq)cyqWUw_+?&2i94fxye*VOBi1(ezO zEzNzi^8JC9f=t4y#=K`yaYNM2Qj0@ArQ>zn^MNihkLv65ODnkab+-9-!GrlSlK3$G zi7zti`;jX1flb{eF5Bjja1IIttj%AkHh zx$^lEulC%eq*-$Q@TIL^i%*L+_V`J}VEZ7rE_)v_&l+I1ILQ05E5BKh06XtS8@6OR zXng{#T@F_u4CTIA?XHz`m`q)l8!RzaR47}L%uqRN%^luPHKFCpU=EyOm)=p5=FZx5 z(Ou5azwYRmZ(d@+J;C3XGx##p;kb}lOU+#G;DU6;`hkwQ=8crI(KwE6k&YVZ0rE!K z@wOa?hc{i4iz~sWHnOZJ{cc4}qesDHj_!{aPYB&xhkHNpX2_7mKkHxtegC#;!&d^n zZ<3`x7e&O`pbf_@`F06NWao3c;hhCd-L=E7rJJJ{hPnq9qOz>yaleMBb76veZxM9>a-mUho|4)KCy$FzDaIY#p>JhfXiAd^tTV#>ymB z*#m3t`G`m!3_HbKmotB#U40TrxfJms?-EWPp0V8{@H*NNh0ll7zdV58ZR;cUtbv6e z=uFM0M0JL#H8&o{QEb94c~*|7U9juY6}V=bd#$NALi#M)wdX`P!$JKqF< zw-7i&lyXc-DwB#;+wo(KhFcGiFoKQ?EAK{7OspH5-mUT zs}80@3Oh+8`*IoP<&HbHY=e~?Q%D(Y(7HP-f&*<%S7xz%C|~&&0Zyxlj%oSij9E!U9!WV)D>CgpK)Htbx*M{98= z(#rfWTmXiHcSviAWWIDUOW!lq^ro_)g->r0Zxk$THg-s7)SdOY*9VuxdppaefH=JM zd;{n#y6TKa7u}N>sj+?&m!%ME^yrS%jGKGh&d{HShL^5cItul;{T}BRY30-Q5LS1e zp|>wm6Vy=K&;qJtj)W#bwiC>76fwMHKi71}wL_lmgzr8q@dT zefmLnYp*_xghs(#el+oZ9B`y{m)XVrdvNv}F7b+OrE)?C(gHY^(HSvuD@^r>r+SH~ z@0Xnoo^A`f=2PWTFN-J3m^npdqN!@=n~6ds7nXgbl5VFgMm=&3Pw8qwUpGZ#wCokB zLuvb_9NAQ!0;m1|$K6}TMY(nV!-@!4fRsuIN_R;NBPG%e14t{~C@}~KhzJPMFm!h# zF@v;9cMdheC^FPAA}#&D!27<>(Q|(9o>$KsKO=L^zSiEW_xi5AbIVAn?#ZSs@2d!P zKc_wLh%N-ejzRg_S~Hw{@G$W~%eY62DU zs=H6w)0z!1UKXE?j8cp3Hl_uqSdjZ{FrGRSllfinm}t( zNRy^V)1va^$eH_@Ww-mmLkjo|AETADi&0@>?j*GMp-iw%{+rPS4SSAb*)Uj<%sIT% zStO^u6wlnZpDZcU@mA!Cz0a|yVfJwxo}mDZnrzL_P+GY>9$(h}Sq(P5I)iQ7*>^2| zr^;b@!5y%e!tWXmOXD3$bbYlRj{#!3N&cJ_F_}VH?J?SNiQhSTK;M?Uk$Nj!7_BXz zmndbu+)Te>s;-%?CdA1lDp!eOp@!pf`-Zdb?mwK*(XjTZpW(>jc%$~#N|bvrQRqG`B$uKXZp1mkT#tG`x^+ z;Bhf9TGBb#*02DHA>F%Q11Hq$CYjvI9HAkLF9_|EHp}YlV9RL%=(iese&?nv?~6Nq z!60B*PZg=fqR(cnk*r&{?fqJOZmTnkZB@fSce459+bBZ%2h+`r*t_o;-D%w>Ls9Q1 zGSyeNr9%#l%|u2i$*SGI?(jYFLHS$LwKf75djwj%NUTt|@R`IaQ8^TZqRQ$1&nkuH)SC~u#&&Yqx_5hFPJpyx*8PKV61Ru%!h}cQ#7?! zGDa>PKHunJuN$KzL75&A`vxQ!MyVt(A_-}=J5_c zCPF1)1>d{+49~tkVNSmy7|f2KDHgw`&sE8<5<4c6Xx^DBMzxdhg56Vl!?}AlMxFT& zZgvr$cYQQj9s?0j@bYGGFKGKDNah;z=v|F?Vbx=`>)!pHpWeo_;Ij{cjVjAR9KtQC zAZC_L%si9Hs~dcRQk7*l7L`65;5hOeuTnYSc5R|I8f7R^`!4zOEisHt^vWZFi;Nec z=f1z_Ml;q!x`WEawc$EZVze9=J@u0)@HgT<+^7_y6m;iv%=3WJZ`LQYHKJL}{CCA; z1?61aN1)Z-YE`h@indglg|3^tl{C-qLF5F6-5%22-{$KK0cozDe1&e#>XRij@=O`e zIn5~%e5B%`h|$Q*D1Rsw_S8SS4T=Ga}U>3Hv8>~6?r>i>D@jfbA)2afDNO3D!BgIDw&)7_NVzs5Yngk`o?$o^_% zsjE1xqxBYxw(KmFrMI6aooHnD?S8v(#6M+I5h1*zT{lyz^10z%THLJs zh;~fbV-d_pvIc2XzgX;$oLnARgCeSb>{D~h{5rwKTgOudP~lpfKn-wMVg46W=X4<8 z&YJy}^I((gOH1$qM%B4a^`#$)yD9xmWItQ?r*U7zcojUMj1YS{&GKDA+wB-f{kN4M z?VYIAM{iY&@1k&3wH6JKK=&o;s-4oD?n7?kWA6F2AGbjG3>riD5@BUyhbC;9Af8bp zlb($ix`j<5D^m+%Q>gJF8&R>oN$t=j@~A>pN86IoC@(l%ztB?kV~d79Kku2%c`0>= z^rulQU-vz(=&vQWZlb>5K;g8|KVTe*_n7Wk;HIK{H}WIA#garWSY@86wT3eu5Nxw4 z-j!AL7GJEgf&+@OAnw`G%rk7aIIsD6sFX@K793%Rj zVI7+q5#dFNK^IQU>ZkiCf7!Nk{@Dy4vT9_XB_%PPdCdPBy-8lh4fV&s{6Bp@X z9)w>8-XS$i{^cZ6_9WxnIR*`0yhF(xllOc)8hF6dTb~2~5;Mj89|d|?TlS@x7%LOw zwX0@U0e1Q`eqz&g;D?7E05}7Uz4g}H+N*i@{hBwg6@)c19C-Eq+s+fgk?Jh`e@sLp zRw@Y%)?8?z;oV-_@;Y#|qt5g{T{I(n(Ky8Wa*^u5zpb`ZD^cH@es12~9SCM8gn0If ziDZj)D|I&2zp#>&?ExOMO*TD)_(w=;#Nzc8!XD8e~YWnX_oe9>d2D~9!LS_iUwJkMYWcoe2u9{K=gqi<% z(qE2@ZF@IH8{nTJ9HI)p^Ylud*>pCaZ;m{T)c+v~%8WbI8l;y`}W(dBzVlAK9#-!RWx(lTz6d6el!y zdM&(PuiXCXFkWW3>le$aew@*3ebYk_4ByrX+L_(o#)1(}Gy7dCIKg-J+$lB0uq>Hi z#FPVY)+?)8LQhZ6`f6_XOQ3lUAVA;>ZN_7K2g2a&q?p?-=fZq{d?aK|k}!^Hnj%)wbMk__W~bg(#%NRqI@MRS zY^U%&`9wPr0j*wTJ-EY@!6IQWkd%f*;DYwp!c{Zl&28#a#RkJ~i`Pfea?lqITyZIX zA!#7L-#V7wROMFJlP}vFGg_5q<m0M653&3Ba+u|n;+ME6cm^_C}_Gr`KH8y@U08YQiiCf&0g@iQ`c>pweU zT+-Nt7*pHfG}gbDF6nnnZCGgYWZfNNYG}})bvyQm+wMdK?j7t9JYl7N>&$A5#eP6l zCQ*X-8ro5wByGw~MU?hO=8Ys~+cVpb2G#h30edR?^Gg8AKEeJ*8J)xFzj^gG+{3b1 zmK&%fcaLednt}HUmI=Gdql?02+5>MQRP0k7$wS(BG>z+PZc}g%2V_jd_9A!mW2B86 zphuFhve0<@7ig_1O6m#nkqK0mfZbT(?P3vWM+f#!B@*$+4Pw*2l?BfVDGvP3_tE2# zcG2L~-%41qg62BC!Pdxpi%}scPx0oQ!rDG2okp3$D|7A^9H=ZC=i0M2D7(kju#!N( zp=E|cVvrm(LXOil$b63{twGmzyS{Ez^|E%_VeccseA%@$hhqxO23j~Di0bw3C3tFt z!PUt+ULYl2N0$b6_Fs=Jwpg2O8bm(8c<6*)C7(`mN!k~ccBC&4@FeWj-`u-ST4XVvPBM?YB&ndqhkuT zoq@y`8xhAQKoH?Q1F;TS2r*74tOGpgsiI*4zHNJT91$%?Xhzj`qFaG|xR7=PmG?_> ze7JWUnaJxY1I9AHz9cjIny`S5bfQi@$3>-}YjHMB9u*F?V?QMgnqTa3>#Do{Ovpas zN|S!CzDZ}Ak~R&N#VojaDNoqcjCfYRy%wzGs24AAsso^hQX;o}UI{#9`&=|bb4B1* za=JwgQnkj~2J3W)iz9Kf8%3lYKNK*mf;-uKmztE(i683UbmdH#9eA);OM7jCZA~>* z^jY)WSZZnF5Z~g4iq&4`THCD0grn&^p1RxgWtv%3f$5~^%R@#?S0OB=5;bmP`6uUmN!*6ZRDy_g=xD6Pay za-4|Nh78Z31%KCV28A9;UK)hEXK(kgO{K;4$k`WRF^SK0g^yZY4n8_t4{&Rz;ZzE? zEM#}4f86cHTgGMSkj`s7*T#mq<~1mWrrhIkEpEI;MHs!(lC=>>QUV#*v2_3bGaRuv zLhbz{#dI5s(-;=z)or?fJfRkUA+`b>hXBJx&AqDeXWPb+U(5j z`S7RMKUBB6zvb1l!^f}rWYUs5Pt;zY zq3|wlp7~5a9B!9e!h7U2GEv7UBQkKSeviauTdRE|ihYyGvz63FPFB7-k~5=V5iC{I^41qKMKV+* zrYEa@bb-(hI-O5R^ycL_Q-Fhf@OLbB{_0W%y!G?+he>KV`%sAix#f>aCu19S-*O`* zkAIppRgLO6mT4FwTqkM;%0LpM$vFk%v~;062Fp?T6_7LCf_n*@cl~*s< zNG0V|`eZ$GLKbPWqB{012#|cI;ov#{Akrc0xL)tQhE9>qFlP9k?UJ^n4o*I zbVRv#GlKKO~x+?St@f6xl_3^-K6x^w<*I~;-;A}(ifE&TU963v9DeewpY-VFic_YURnW5|jNHqcZqYGs9PQB-;$agr%r z@oW;@+cMJc_X?>=gTP|EUGgok1Sd7qU^Sedd?i*-5$~65r+qk_bV(}_ct8wOo-1=N zS1OVmPr2pIj6E89JbZn~E30LksFhg^>f{q{d<%YlIN4ILOy42c!2_AW!P=!iU_#>N zP$u}$apzgnD?w^Xa7vdt z4+T_L-z$HzQUdY89DhDBVOn@J!xkAvF-@iE9m8+3-^9327w7jtWI}nHIWrPfW9u5`pcXetPIASxD8p3I zB>wyL?&x~<=CTPFUxtFNO%6%bE75w$#cd9hnoHWeK)CZOr%VysM(A@xop*!B*KP?| zB(Gf6O$!+Nev>jjh~O=(R(lJVny`or;t(GQX?Zuj$wS$3v39?33f?4@m$s1)$c9NUDu#c0rGSJ`ra2i>StDwZBAx&iwc zHSnyvCn{5DD|$kW>4Bu`?crb!dot_LX}Ix&D?;U+$U)7XU%#W?E)Ax`$Q13QU0cG4BxHGFtgcki}U!H@V=;rx|7 zJx9Nyz?f}%jOL&&U+|eN*(WPZr1T!aF0Q57;8e%6;NFnZt$`m49n?oT)y>~NG(RSK z!JFDGi4|m|3-fANC5b5=YE3tXv%HDC$)6o-VtPD{n^v7jH@RWL(U|v=rN$A~#@X?`T;isccX0{XCB2y^vmURlQqEivL2)VUbJiqv8dP;lzxg z)^~Tlw(_ZO)~g}C?OtSHIVD?$Zt_CJRz!EXBAi=f?NVJVb<&XrG|tzl(E2 zkMq4+=!G377sP6I&%x-Jj$%W3tD!425a&GP@F94tmS^WQZDJTwz^gXj>^V5_UcOS} z!6NpYH-2|h-m}^~L!?Tl_{OdC;4V|`+5Y^p0Mm@}!7cX_$vZV`HdrRbC}cpUcidCU zEX8dFEG#lNM2z*-2{iAdcFQ?<{0J$pV%^(r>NqOe34Thl`GI#Fa;9@#G_OZ(=A?|PJS!7?QKqwiblu=B zF(^?;a~vBV?~$itj-GRlF`&7oWU}_C=(f?(XMI~AGqrGw0>v*H!v+hT2ECu{5MKTH zuyJ`Edj|2`X;~7VS$ACSTT9o}aoGbK;*6dJ2VBHn#oU*ygy{-EsvEVwYdmu-8Kkpt zZDGpa$+vg-h?NCuP~YOf5C}B0Cqnza_WDU3aFXl7h z1&A0HpR0~O%dVL+Q+mt{#`*$Q|VHu7dMc<4amyX;M{EC4SCbm1$^6H za1LYdrL)3M<`aAl>-KW>t3S|N-)4P)y{2uLpjnIaBjquU2Y4Ut8|pK7t2ZZC1pRO} zdzH{UuAyY}Xyj=9HznDY_!p1&ST3Uianlj;O52{Lb2RfqqB?3}@?{R~p_KI4w~^j9 zKJZT)R5ird@=9Ml`}j2udy>>uc>0GsIdzhytE^nu4pR?^lhaFb4AzlK0jogIHk*^>LrB=J*%dc_o(yH6i1g(!v4(mEO^&3)+(+poT0dckMXqpfWd zvS_i4D{8+=2|@7`U;J<%q}g1;oub~GtFoR}1yT{|GPU7f6X<6Y`h*<&~``6 zaNsoRl=fWvq;_g;jolk*sieUM+IuUl3y=DUJ`~y;6}Lpv-q=h{+t4AVn0aIx*POvQ z8a@Wio4my#(!*~iV&)y#;UG~{bFpbOdFZ*?yBags_%WjC=#8S4DeYJqOwC@%twQwL z%7VDc9#BOB*Fgt*bXWXxCFQgZsDs+3mK4LqK~=n0nt0Q?UA^pF zS~x45OJ#%TzF{%K%aa|A=Xn( zYIoy9boP6b3Pr5S`%d@UC@&;fy1|_HGCw}yY=vvQ@n4fYl~R z>ag)KH&v~vR#IF3T(@~_kaPF}^x!i_GYRxq$znIx>|kYXeENxN=&CM=2H9Xrl8+Z0 z>IUwSUauOrYSA>+vr(liW!4!ShYdf?aYGf&oG5uVjOabQlEU6px1Ga3f5Z=dIIgOBdQk{lT61rF@Hm{DyadWb$q-TVA_@lDm-L*%%s{47|yQZ zXln&&&&rJt)tM!BL+NZz={!^KZXUsvG>SLbzLSwPr!L)38;bx!J)PuVTlRHQQlK!W~hr_*+9(m8nF+<^41Etw~o$piOqh0-A_U8|zh& z0ZHEkbx!q$v-n0AW4HB7x7g}WI6Fr=L`#mF&cM~t?z$(zmAZzg*9hrcx<<*W*ZZEc zO)I6P&R`GZ_?6^fAO6bPaYcWMtHj4Az9F7whU?g<*Ih-X2oMx z@0{dVN}sc;hEx!~+olocsC=K1NP?h1sjg+d*jlguvwHFwHr^7B(j-1>5Wb>Ni0&BS>Qaarnu_Z6!M9hz1ORBUPs$U8i5mgFj}UOS0Al@JYK zo9Qo+euf8Zjp!c5(0*-il#Gwtzp>&p+}N^Zkb3Sy*Xs`xrhbm5L|0RZy>5=O#)@4} z!Rpi++50Oq>m{4)q3&X&wXm7hnAM*j9zthSindbJ7UzKAGg*ekGV0qG6o=^4Wq5jh z=bX*Z^qOo_y*9^8>Bbox5uXHUC7_U)lxWuM*k*OTzEwEj~)+ zC|s2ZH}~kCDL1O`jHAC(r;Vd4nM{?E)<|j^Yz%Ir-Ge6Te|bIJ@6|MdIAETHQtvrz zoS%l$gsED>3Hn*t^!z3Y)yfddms{Jr`Khe~ee&4S=)8U{?h`yg^9sn;HX-ZubCOP_ zrjL}pN8g(EXiV2_zD5uGM34@t#R|C)PlE33<9i%3w69r;-2>5C*R|_TUuu3G%qO5i z@z*Bnxwa5`Yb`>WUkiH&&(-WoulUK!=SjNn{;H2c9@riF8gOHabniZ)meo>goQS}d!qP;N<;q@{v)ZOg7V_GDMkniLCl zZrWLRcaty)jX#JcUZu>$&M$dty5H8InV7(+MB|`U4eSozc)eayu1<#3*n+iR&CrL| zA~~hN9Kg|meTAyZxk3>iva&^SoEUEYayOqj4MlkZ@l&r%%akc7HxQ@YMnzPw7jY2m zw7NSctl|iqBb+7Y6SX+}&NB zRZd{x9r~P>`Jk>hf%nALcqi@*iXg>9`o^&^@oO3-?{?&9xP86eN`@xC;Lfhm&0FR+ zo_Jo5w_c7@cyafE$Dmm&PZW{%?eK85h{$pS^2rO#D7Zc07&Pj0si4k4{AY$4L*)b> zp9-E}xf+tDo$9<)cI~l&+r`c#39GQ|40gxGuf|QjNBe=A2X3}ydnUIfUi?%;Two0h zFGIh|oZ&rDp5Mo_^yquX&L06n+%D>^-obSqsyDBnuCl?UB@Kat*Jy4518%|(d_GFf#$}XjD#{L?G$H*5MBMD{Ed0PrfN}KLt=C^a_Lcc!Mf_0VE+Q& zd2v2Z4QyUzeJ48W;GoF;8c?d@nLd9Qwz8#{#=8~ZYYKX>-^K5m=hjfS&rwaNl%Zfv zc#H~2xu%qIAq&3Y80SROfj~Uh9MKhcP%q@NMO(TN7$eVglWL_=ZN zurOJ<@6SfxHqul?*CJx)AkKtfoEUgGl_@AM*1hi9vbriAeFPSL=;~+itcO9)xl35A zmcOdPMa8Zkq=r-1Fx1YK6qtT9t^s}Yovye=3&W{{fX#z@Snmy1w@$px)>%=pXWcOt z5R=BulpIG?R6iiT`A&wJkO%K9Xw;y`tCyZCIB-a~oE429dOKMhD? zK#xXSrxW_Vk@GB~iM!6~dR8qob+0-NA_mQ3TLqs;6t&u_nl1qg9 z2VQBOwf8D|@kht8_Y9XBDGss+y1j5e)21Iy-YGY9gd?rQzyrc;ZE!=Te07FSu88pz zps0oi_Lc>U6JY%(X@;w841Aok5vw|Mt`3j9Lx#G)E~nNiVL0J5ZMBp0qw11JN&~Ut zmV#=o)fX%!$0tbE5Hb$P2{w>okR5Ts!vlqcaUNK@%gd`{oKmAP9^xgdQpg4+0po#q zQ|8*N4f-Nyni5=YND+E>3$$pB^=b##(Sfvuk%zNdV6Y9B^&6yPw{Tr@1@xn5d>|OJnVKT0+5|qB3Kj*ZekF_2#!wwi)=uO(C&Yf`4Fr!KrX{6Hv10dAbFo`N zsqB*7=p;UuGaG%DjGS%T?Wtvsp_w&T{MZ&ln}5vJ_Utb6`2uxtkxPIGid0<5Ij#5p z3ItD`IJHb>Et-G!V}o9&ksFWcV)*G+b;mt<<3ENybNCue0GX{)CuBIto>7MGg4FKa zx)l}je*pk+k-j0>B8dfX0*Xm~22{y8m;R6O_V-Y%J%=9iMs>ZY0cS&|YO7>m&y<{u z&Gr+*miqURrJP6;=~DDezT+_MjnI((rW=jT$A~(9KDqN}Q$M5euc>Xkd^w;4;x$>| zRoL1k=?eHN@bKS=h@!zKyKs1ff$U}Hj!CkL$hENnw(SMu2kY2PTqwWEZ@*yxmKg#dF55Tck-qAknId_i9L-Cy)p@$gvOnA$C z0$~!i{Po3uBZbWi&$l#ptmP3{M`D*?-}{C*@wtDcN99simH?zmVE{&NX+Q}67Y+f^ z>3h5rB5;!SQ|g4r8Qj7x1^np~tA^H3ZHu5kh)hoWusYee5jdM}(r2HrwA!?^yj^o%#ce=1p6}ckiAc-oT{HG`+*pT z`{Bz$mRi#1^?%1f0XVl*DFFJE4HFrT^gJnN+f~~F6o%)=EkSW23d&PSDDLgI_>IT@ zR*Zb$9nU=_XVbx5T^6$05|bo!!_i{VlTj8?g%HU6&9$XwbsniAl8D2UPoLG6qh^A)F1V;TMaB$EXYLU(C0B5I{cd3y zH0A*VKn3$YKEJND<`L50DAGgtld-AR+;t-)G*#L|$!dNy@fIh3m1<^g8yJLg9J&3c z1X)N)fh8i4_V?ZbRWOs){daU6Ap+>ZgmtT@m-zgp0xnIq5H@d&K7IlD1M@fZ6pvES z%&+7}Q-C{9H$24u7@oe^Ni$0=1jzUT3jh?X3mK*V<8|_nbscouy_`i_+Gq+VUgmp& z_l%9M^8)}r6o3$%-`RfR_M4PRWu5j}Xz{nw6kjk!ht+P*ZtWkuP%Id#0Bv#-oucyQ z1O$F}01Pdc+BkZxI|e4Ol8Y-qk$btOOCP5lq)pz%A&Ke>Nj9ktH4wIRJC}o2$y|JCBNWk0A%tC!p_frXEf}}oP|B$8iG$HQN@9@lv@?T~q4>x3IO~mx_RI{sh zvnM9dh%XCWuNk7OPgyc`(fs}IEQu!jc^4tqpwn!+?7iEGdS1b-badfu9R6sKlo}~e z_a#s8m;OURy21c|xo2ED0`7?P+>O7wHP~B9r3-jt1OR*O7S^2p3wnF@uAw&k9_#je zfDJRsX0wmdN;Wbl(9Y;K2i&9G2jz-Dq-b)juXUBbCVp%$~iccOdt-xA?ze;sYZJUj%tb_3bXO3UAK-Ao%HX z#U)+kG9J(r5v)XPgdg-*EOI854Bq%=7>uB~BvM&2p;Nih`V0VWpArvzD}OFHlu`N* z+-K%XA_!1&E&H@fykj;C2TZk=m1Jv&&y)P#4(QmzK0jz2tDWIWSpEPrWl4yx zh?OGL|IDG!v8Pp~RF(HyM9o^PJ z93A3d&5~4`N;N5#r4#5AsE+ZD*Kyl7<+EGcFj4nrM4EXA(I232CFshSYyWm>t`5|pxaRsB#w9Gc?Ly7F0tW4<(o`lUPZrWA4fsmKo*)C9b}>zH3_O!%Dr}RiV2F#gP}mf_ZvCs|hCbnnA{~) zzgdIXDpx`+^TK>c5aipWJ^>4_5|w-y&9sT}W~iGc>@Z$S*a-!{r)(BcbS-8+syi_T z8+BG8|7(7Ls?A^W_w`lxL0UfpdMoT>WBiXj_c?}Sta1QYX?N@tQb@(Sy_1&3TK4Mh z7599!rT}-0NLu$A^KgKbU+kxjso9(=8&TaP7@3|^WfPfOQ(G$AX+v~1|6;FU^x^Y7 zV;cqUq=DY;C+oLkNSK^dcuY8riz_26{w_NH(}y?;+m8UwEu77p%8Kzw2s{6W&Fv!g@6oR;;T&Hg@1~qR z4@=)wPJ;<(wj@g`qrA9&Ue7?hKX=8q1SEbVY2roR8u6yj-F=mq8$E?Ei}3juif#qK z`NUj_v6!K=rcmNK+3a45RV{u(dGqO#!NyX0*SXTzu$UK2Awkx0`lKAxg84Qnp0NuW z(~WhItH1l?ms0VUUfeX)|L!?htP>lam4W8Iy-U!k)Hs8Ae9OV~WEjkD%tV)}7~Q6= z-8V}71pclrH?3`ew43Sb)$mo?m;f!vBaSq9olj_0f%X#hsEN;lkm%}xbo+uvG50+y z6*xSl8fay3*%{&E`@@iOOFf1H#7)6gC>oPUU zq!^StGR3Ks^4dqx=Cz$JJGjNUjt-$>SYHhk!n`Sdwj{eT%^gpFK6LYBsNh+rNdF_eoQ#ZT0CsPUT zT$8uhp+QP|y{|uZJZrQF)wUqD1_m`YDZ=xf=`=a26m*A1zkghRg$WfLxwy~%C+Rp(Ol#I!PyB)}G6+ta%Z?mf(uMD?8NkSE6Il!Mr zx|FLQyx2&|nzW8mJxOl^n*N_acNMCTCM=s(&8x`tIxI7B4cs0x6fLYATRZbjAz@+Bi?p$uA7JW+?|rByU!LE z5o#KHs5JMWCfsHkW_aHurfetM=i%u1ASUKXj3*h`XabtMl~9v#pLegKEpT1QLX1U^ z)!E!*S6fTcuf{d~; zxtvcCZDg*rg4nBS+!%dPy8MUVJ&kYt@$LX_O^SzU^iQDyJOGe(0c}|l<6HQ@xr4Ll zR>~g;cC{F8#Mu53?4FJ@^a6+_?$O)-nXsK&%uFd@Q1+-R-S_?!wNp%u#Az5ADJ1@T zn104O4TjSIr7O^a`X8J;ZF>eB|G&vEFzEjg|NheAQho?E!-lI|SKlL0~$cqnvLH&&s z^8aPuO==U!VMhM{&PM--o9?pzU`EvLe;eEyGYH9FN_``W`>J6}D`oeGda-ff@ehJ? z3t9Rs?nDK>Jmx0-r;x$P6|VjuDGKvMO*qN2{|giTMH2o+#{cmCfB1wya)*EF&;K_M z_~$c|o_6~Es&M>$u2J;(9bvad#coHM77riq`V-!M&+Iw&tt0%vmy3#1AGpyoM>}6d zzv$2j27}Q7ZC_c|v5qNVNuanP1GI?k48P}f`riB&E=kML?uAJb`E#8hjC?@xE&?dr z8t`CBFOjpv$z2I1p>J*nVC7<_^~4wqMuse;O;4%i+re?wHg8a&HJN%H9cJ z9}yWheP@F68HAg@d6rGe+MfFNIiH!ArAu+Nu6_LEm>)Np{`qSuDNNuiA-1 zfNRMS20q4R8`$}qb-KddEFw%tyh8Ds-ChX^)mE=ZA`vDj&RLUfFlRdR z5y2=Y+GLoghZo{NOm_pSt51_q#7)(z4e^a$MUMzkm$?ZA!I6&30zjte1N3$LX(p=F zq$J1u%H-rHN!)SMKV8kmZVK6r2^agxO$NbfUIQI-^xc~L@<{_#%lXC}S3YGkXrT|3 zwZ!=6Uq52axzeYxjG|D5*Q^F}is^4yFVhRAeaafiXy#w`%#n}$4&a4L=JmX%_3Ks% z?7#1dqWFA8V@^t@%cfNs4>C$hVQ&7hOlG@@CiMGRy}cm!;1N~;^#eVTzwK#}w2Wz6 zW@U{4JwIkcDXUsbADt)c~E{p4mVp0MFR)$8c)d+XI+6b zKinv-zVwZ|?OEn%QDaHCwE1m@rY0(kEiL#p#!%KV55+Y$aZ5ErqRGfrLN2J9`G#G2 zWWzdAzb^0^(1iTsV&*TD)!+PS7teXnC5K(Pka=Q|_JY;WeuxWkm zjQ|)un{`KC4~i#}LE%J@Sxm9H)@^yj^mT)jFjbJ>_VkdN((Nay0M7VnEGNXUIWNyo zku0nmX6taEOdNfz9EUJ6)AKEyILi7m~xB@+E)(-3T#eZ|I>5; z?pIn$a;tMmzAlhe(A{OJ^B`q^Yn_o(xAduXJQuuiT2zHhR5bZ!M4HUT`;ZRjisnR_ z)&Z+$^&Tn-wDYgutJGVP?J;y*t9Ch{j_!DYSUK=&T9gOsx;`#LC13$k)x%9Xms$N<6^^>peJS(npHR81d}9H*%Ow`p zp~@7Oojk-i)sf*K$@#AL5X{28WozMm>S11rsS*W`ZuYI1<(L5CA>5srN?rAcNc))H zZLcA=Zt@sEIobOWf`&M$I+rX8N3p1W21)LkXA^t@9NgBQI3>9| z)6;+3%>x`C!(03susOL`>DKkfNuD*Y_7wKC52C&m$pe!XstF_QD;d22rt?NSB!VnyN)%E2;Ti^D0Om zW-heJI+CM$B8=-$MlIbm6pf;(PC7xB$gA5sj1OkskqN3neowZTO%fTu3SecE&kGp; z83X{KybTIb=5xeSPJeKmVCoC1$PzF1x&h+uyKV+%&R%@eXyYh9J!5?2$l+LxhNz~Ligwz(Kb)KU22-E8KS{}_7Z*3cY7XF9|bi- z?&As{AZst*HG_zq5H(Ok71(S{I_(9*B#y47Na#zT zr(i`{%sgi?>b*<5$ZIXj5?2E;`Q{B*HJbzD?e!T2@sw7Ho|G{nFUqAk>K-u)m!~Rj zEFE&L61oGiF59l9&_ER(-4^9)vc02 zAv@=yc@7_Tn<_Z>Vh0JOaVfu1mfqv<{Atkou%VkgV~_eIh<231ph;IRRogOxyl3O9 zt);8{LA>)1Z&e^j#zY+oy1y&ObJb-6h@lomgicGErEASrC+9Kr(Q)?Hgq@Ky6H0!w zM6aTp+7*()Q|4I#p*MC@U8PM-C0^C&{%@!L-(`wH8*l&4ZBZ=>=Xl$+p#c-2O5;1D zu#>tu5;%?Ji$_)s%CB+cGbzPZe&PijbEqSG= zGo%*NKAt~qa{t*}+uoCpYZNJvKmb$eSkkAh6MF9w$VN?T*tjUPzbO0oySCqAxBs&* zHMXOxMsY|hu+31WZj<*eqJlPw9P?E1he0G@QzJRNWb2!iQUqB*jrnz|>bh2m=+CQT z<-qZ#Vn7As|Co$etwkl&C~lC)o(gPYU%m*TYW_sxASkdU zM)RBaxa+-Wn6p%Kt~7z~ncm9)EMO1*viHN@v54OE{MP^*cwz#3Ak})l>CJ_%hA_>< zDDyVrURCVY)19hi@_b386D3$fSX5rlwW`%)f*mavLF()Y8Qh$3}jw5IT8_>Bo zeFyFf@5mZC_Y(5Q#xoG@j-`Asj}!;0QDP=~vIhqJ(xF&4ys-ju5YIq@4@^eZ2UqaI zBhAl6Ct1eU{vNv0ypz6ocGiV@m90)m?M;Lx=RupD>rfF3cL#^l7tduAiCQ&A0b8aI3o!a3KhJZ!9Hmafu)jUC)y;-GeEus^HLn z&OSOLOVe+-zzc>L1c96Wu}d~e`m-Q;M%m@vJc;V4?EhQZ+CCY}P2J}VHl7!r{rISz zY0ks%-`sb3z5TPpdHshq+xKwaQY~6`=~=+cRmC28WxsTeRj*#V@RfarQP2HJ!7t_m z4{g{MYs$ZC-;;{MlfqLq%4e2rJT|A`?Xt})eb?`5bawr?KWp>pslW#I&LUL_cJ%Ix z$*hLB)0Ga^vN`ET7lPWvqLw$dUd%mxuwcp@wovPkDetoQSY*AdWBMjM2@ly9)LtK4 zd37D{&Gmu*GLQPd+B02!@?1?`$pyExgYVb-t<&BsyC7P*&r3;)>m;I4`@G{+hM6?#gb<^X_L>`f(`tkI=BbCTi?RF*+^rp@e%!}=?);+a6n2l$(wpD6_58B* zeaapt+QK>Yzq@sKoy^62<>=p&{M{TMSH$(?oj74(a!K1>ynCf($1AS8uZ%px*Uh#0 zW)&LqdAIp&zYQgSQ=R*rRi#BTF$Oq_+8ShdroV3g$-(=gy=dBTmn5XxpA&`F_=T9c$*7)+ZJwJzgysqJKei+xovO z@qap{JpU(}tp8}UxQ4gA>&x=f7e9Be$aTK_s(8h#TY1xVIbB^o^|evYwAWHM^JXQR zJ}aH1y*PE}oMQ_ooepo`h(3tqu$R+khCyOqS^1phUG)<-KRNjDaQpi-_G`6|~IeWjXUJ}2u>}}|j9vQ85d8;D)rd1Xxm3W4RP0s^%p$ zNuAf~eJy!ZKPzUw%Js{y&DXE2Syi^ACM|W-@0g42MVpp9op7h^m45KvqeTpF7aN}U z)$>2M`g~p1{e2=^Ytp%&0g{;?A3doxAT5#%*|c*GW%WVsjY%Wau}mZ4$K_D zW_fqrlG{7wwx53aVLF?M<5V>@1@$v0ciE}GwA!nfe#(E=4(nN1#s&vwaDrBY9%P%l cMWgXQ`?L7!8{Z;0-ZKD!r>mdKI;Vst00qddqW}N^ literal 0 HcmV?d00001 diff --git a/docs/guides/04_dygraph_to_static/index_cn.rst b/docs/guides/04_dygraph_to_static/index_cn.rst index e3d976d0c52..f441221275d 100644 --- a/docs/guides/04_dygraph_to_static/index_cn.rst +++ b/docs/guides/04_dygraph_to_static/index_cn.rst @@ -2,11 +2,46 @@ 动态图转静态图 ############### -动态图在接口易用性,交互式调试等方面具有诸多优势,但在工业界的许多部署场景中(如大型推荐系统、移动端)Python执行开销较大,与C++有一定的差距,静态图部署更具优势。 +========================= +什么是动态图和静态图? +========================= -PaddlePaddle 在2.0版本之后,正式支持动态图转静态图(@to_static)的功能,对动态图代码进行智能化分析,自动转换为静态图网络结构,兼顾了动态图易用性和静态图部署性能两方面的优势。 +在深度学习模型构建上,飞桨框架支持动态图编程和静态图编程两种方式,其代码编写和执行方式均存在差异。 -如下将详细地介绍动静转换的各个模块内容: +* **动态图编程:** 采用 Python 的编程风格,解析式地执行每一行网络代码,并同时返回计算结果。在 `模型开发 <../02_paddle2.0_develop/index_cn.html>`_ 章节中,介绍的都是动态图编程方式。 + +* **静态图编程:** 采用先编译后执行的方式。需先在代码中预定义完整的神经网络结构,飞桨框架会将神经网络描述为 `Program` 的数据结构,并对 `Program` 进行编译优化,再调用执行器获得计算结果。 + +动态图编程体验更佳、更易调试,但是因为采用 Python 实时执行的方式,开销较大,在性能方面与 C++ 有一定差距;静态图调试难度大,但是将前端 Python 编写的神经网络预定义为 Program描述,转到 C++ 端重新解析执行,脱离了 Python 依赖,往往执行性能更佳,并且预先拥有完整网络结构也更利于全局优化。 + +========================= +什么场景下需要动态图转静态图? +========================= + +飞桨框架在设计时,考虑同时兼顾动态图的高易用性和静态图的高性能优势,采用『动静统一』的方案: + +* **在模型开发时,推荐采用动态图编程。** 可获得更好的编程体验、更易用的接口、更友好的调试交互机制。 + +* **在模型训练或者推理部署时,只需添加一行装饰器 @to_static,即可将动态图代码转写为静态图代码,并在底层自动使用静态图执行器运行。** 可获得更好的模型运行性能。 + +方案如下图所示: + +.. figure:: images/dygraph_to_static.png + :width: 800px + :align: center + + +.. centered:: 图1 飞桨框架动静统一方案示意图 + + +.. note:: + 飞桨框架 2.0 及以上版本默认的编程模式是动态图模式,包括使用高层 API 编程和基础的 API 编程。如果想切换到静态图模式编程,可以在程序的开始执行 `enable_static()` 函数。如果程序已经使用动态图的模式编写了,想转成静态图模式训练或者保存模型用于部署,可以使用装饰器 @to_static。 + +想了解动态图和静态图的详细对比介绍,可参见 +`动态图和静态图的差异 `_。 + + +**以下将详细地介绍动静转换的各个模块内容:** - `使用样例 `_ : 介绍了动静转换 @to_static 的基本用法 From 47d7dc435dacdb2cb215731ce76487412824a21f Mon Sep 17 00:00:00 2001 From: Tao Luo Date: Thu, 2 Dec 2021 11:49:33 +0800 Subject: [PATCH 32/35] add deg2rad & rad2deg docs (#4121) * add deg2rad & rad2deg docs * fix file name --- docs/api/paddle/Overview_cn.rst | 2 ++ docs/api/paddle/Tensor_cn.rst | 22 +++++++++++++++ docs/api/paddle/deg2rad_cn.rst | 44 +++++++++++++++++++++++++++++ docs/api/paddle/rad2deg_cn.rst | 50 +++++++++++++++++++++++++++++++++ 4 files changed, 118 insertions(+) create mode 100644 docs/api/paddle/deg2rad_cn.rst create mode 100644 docs/api/paddle/rad2deg_cn.rst diff --git a/docs/api/paddle/Overview_cn.rst b/docs/api/paddle/Overview_cn.rst index 4a46417a212..5de293cdbb7 100755 --- a/docs/api/paddle/Overview_cn.rst +++ b/docs/api/paddle/Overview_cn.rst @@ -112,6 +112,8 @@ tensor数学操作 " :ref:`paddle.diagonal ` ", "根据给定的轴 axis 返回输入 Tensor 的局部视图" " :ref:`paddle.trunc ` ", "对输入 Tensor 每个元素的小数部分进行截断" " :ref:`paddle.log1p ` ", "该OP计算Log1p(加一的自然对数)结果" + " :ref:`paddle.rad2deg ` ", "将元素从弧度的角度转换为度" + " :ref:`paddle.deg2rad ` ", "将元素从度的角度转换为弧度" .. _tensor_logic: diff --git a/docs/api/paddle/Tensor_cn.rst b/docs/api/paddle/Tensor_cn.rst index 53ae7d96efe..a6318d41925 100755 --- a/docs/api/paddle/Tensor_cn.rst +++ b/docs/api/paddle/Tensor_cn.rst @@ -671,6 +671,17 @@ cumsum(axis=None, dtype=None, name=None) 请参考 :ref:`cn_api_tensor_cn_cumsum` +deg2rad(x, name=None) +::::::::: + +将元素从度的角度转换为弧度 + +返回:计算后的Tensor + +返回类型:Tensor + +请参考 :ref:`cn_api_paddle_tensor_deg2rad` + detach() ::::::::: @@ -1479,6 +1490,17 @@ prod(axis=None, keepdim=False, dtype=None, name=None) 请参考 :ref:`cn_api_tensor_cn_prod` +rad2deg(x, name=None) +::::::::: + +将元素从弧度的角度转换为度 + +返回:计算后的Tensor + +返回类型:Tensor + +请参考 :ref:`cn_api_paddle_tensor_rad2deg` + rank() ::::::::: diff --git a/docs/api/paddle/deg2rad_cn.rst b/docs/api/paddle/deg2rad_cn.rst new file mode 100644 index 00000000000..026fd311ad3 --- /dev/null +++ b/docs/api/paddle/deg2rad_cn.rst @@ -0,0 +1,44 @@ +.. _cn_api_paddle_tensor_deg2rad: + +deg2rad +------------------------------- + +.. py:function:: paddle.deg2rad(x, name=None) + +将元素从弧度的角度转换为度 + +.. math:: + + deg2rad(x)=\pi * x / 180 + +参数 +::::::::: + +- **x** (Tensor) - 输入的Tensor,数据类型为:int32、int64、float32、float64。 +- **name** (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。 + +返回 +::::::::: + +输出Tensor,与 ``x`` 维度相同、数据类型相同(输入为int时,输出数据类型为float32)。 + +代码示例 +::::::::: + +.. code-block:: python + + import paddle + import numpy as np + + x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0]) + result1 = paddle.deg2rad(x1) + print(result1) + # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [3.14159274, -3.14159274, 6.28318548, -6.28318548, 1.57079637, + # -1.57079637]) + + x2 = paddle.to_tensor(180) + result2 = paddle.deg2rad(x2) + print(result2) + # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [3.14159274]) diff --git a/docs/api/paddle/rad2deg_cn.rst b/docs/api/paddle/rad2deg_cn.rst new file mode 100644 index 00000000000..3baa5f80a3d --- /dev/null +++ b/docs/api/paddle/rad2deg_cn.rst @@ -0,0 +1,50 @@ +.. _cn_api_paddle_tensor_rad2deg: + +rad2deg +------------------------------- + +.. py:function:: paddle.rad2deg(x, name=None) + +将元素从弧度的角度转换为度 + +.. math:: + + rad2deg(x)=180/ \pi * x + +参数 +::::::::: + +- **x** (Tensor) - 输入的Tensor,数据类型为:int32、int64、float32、float64。 +- **name** (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。 + +返回 +::::::::: + +输出Tensor,与 ``x`` 维度相同、数据类型相同(输入为int时,输出数据类型为float32)。 + +代码示例 +::::::::: + +.. code-block:: python + + import paddle + import numpy as np + + x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570]) + result1 = paddle.rad2deg(x1) + print(result1) + # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [180.02334595, -180.02334595, 359.98937988, -359.98937988, + # 9.95437622 , -89.95437622]) + + x2 = paddle.to_tensor(np.pi/2) + result2 = paddle.rad2deg(x2) + print(result2) + # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [90.]) + + x3 = paddle.to_tensor(1) + result3 = paddle.rad2deg(x3) + print(result3) + # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [57.29578018]) From 41af9ffa1ce28f46f00e664d47c5f95a511ae46a Mon Sep 17 00:00:00 2001 From: Feiyu Chan Date: Thu, 2 Dec 2021 12:59:59 +0800 Subject: [PATCH 33/35] add doc for paddle.angle (#4124) * add doc for paddle.angle * fix inline math format, fix typos * add angle to index * add to methods for Tensor --- docs/api/paddle/Overview_cn.rst | 1 + docs/api/paddle/Tensor/Overview_en.rst | 1 + docs/api/paddle/Tensor_cn.rst | 9 +++++++++ docs/api/paddle/angle_cn.rst | 27 ++++++++++++++++++++++++++ 4 files changed, 38 insertions(+) create mode 100644 docs/api/paddle/angle_cn.rst diff --git a/docs/api/paddle/Overview_cn.rst b/docs/api/paddle/Overview_cn.rst index 5de293cdbb7..30472846ce8 100755 --- a/docs/api/paddle/Overview_cn.rst +++ b/docs/api/paddle/Overview_cn.rst @@ -32,6 +32,7 @@ tensor数学操作 :widths: 10, 30 " :ref:`paddle.abs ` ", "绝对值函数" + " :ref:`paddle.angle ` ", "相位角函数" " :ref:`paddle.acos ` ", "arccosine函数" " :ref:`paddle.add ` ", "Tensor逐元素相加" " :ref:`paddle.add_n ` ", "对输入的一至多个Tensor或LoDTensor求和" diff --git a/docs/api/paddle/Tensor/Overview_en.rst b/docs/api/paddle/Tensor/Overview_en.rst index 0b66e16ee97..d78dd3e9883 100644 --- a/docs/api/paddle/Tensor/Overview_en.rst +++ b/docs/api/paddle/Tensor/Overview_en.rst @@ -69,6 +69,7 @@ Methods addmm all allclose + angle any argmax argmin diff --git a/docs/api/paddle/Tensor_cn.rst b/docs/api/paddle/Tensor_cn.rst index a6318d41925..ef5717b3eb5 100755 --- a/docs/api/paddle/Tensor_cn.rst +++ b/docs/api/paddle/Tensor_cn.rst @@ -212,6 +212,15 @@ abs(name=None) 请参考 :ref:`cn_api_fluid_layers_abs` +angle(name=None) +::::::::: + +返回:计算后的Tensor + +返回类型:Tensor + +请参考 :ref:`cn_api_paddle_angle` + acos(name=None) ::::::::: diff --git a/docs/api/paddle/angle_cn.rst b/docs/api/paddle/angle_cn.rst new file mode 100644 index 00000000000..8b56b58982e --- /dev/null +++ b/docs/api/paddle/angle_cn.rst @@ -0,0 +1,27 @@ +.. _cn_api_paddle_angle: + +angle +------------------------------- + +.. py:function:: paddle.angle(x, name=None) + + +逐元素计算复数的相位角。对于非负实数,相位角为 0,而对于负实数,相位角为 :math:`\pi`. + +.. math:: + + angle(x) = arctan2(x.imag, x.real) + +参数 +::::::::: + - x (Tensor) - 输入的Tensor,数据类型为:complex64, complex128 或 float32, float64。 + - name (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。 + +返回 +::::::::: +输出实数Tensor,与 ``x`` 的数值精度一致。 + +代码示例 +::::::::: + +COPY-FROM: paddle.angle \ No newline at end of file From 7d1ea19e78db3dd1f90c062d7da8f59efa963d5c Mon Sep 17 00:00:00 2001 From: Chen Long <1300851984@qq.com> Date: Mon, 6 Dec 2021 09:42:43 +0800 Subject: [PATCH 34/35] fix jit (#4128) * fix jit * fix jit * add jit example * fix style * fix style --- docs/api/paddle/Overview_cn.rst | 2 +- docs/api/paddle/broadcast_tensors_cn.rst | 5 +- .../04_dygraph_to_static/basic_usage_cn.md | 44 +- .../04_dygraph_to_static/case_analysis_cn.md | 2 +- .../04_dygraph_to_static/grammar_list_cn.md | 6 +- docs/guides/04_dygraph_to_static/index_cn.rst | 10 +- .../04_dygraph_to_static/principle_cn.md | 3 +- docs/practices/index_cn.rst | 4 + .../practices/jit/image_search_with_jit.ipynb | 780 ++++++++++++++++++ docs/practices/jit/index_cn.rst | 13 + 10 files changed, 832 insertions(+), 37 deletions(-) create mode 100644 docs/practices/jit/image_search_with_jit.ipynb create mode 100644 docs/practices/jit/index_cn.rst diff --git a/docs/api/paddle/Overview_cn.rst b/docs/api/paddle/Overview_cn.rst index 30472846ce8..d34f0c32de5 100755 --- a/docs/api/paddle/Overview_cn.rst +++ b/docs/api/paddle/Overview_cn.rst @@ -298,7 +298,7 @@ tensor元素操作相关(如:转置,reshape等) .. einsum: 爱因斯坦求和 -:::::: +:::::::::::::::::: .. csv-table:: :header: "API名称", "API功能" diff --git a/docs/api/paddle/broadcast_tensors_cn.rst b/docs/api/paddle/broadcast_tensors_cn.rst index 227b9528def..0110f268601 100644 --- a/docs/api/paddle/broadcast_tensors_cn.rst +++ b/docs/api/paddle/broadcast_tensors_cn.rst @@ -9,12 +9,11 @@ broadcast_tensors 输入应符合Broadcast规范 .. note:: - 如您想了解更多Broadcasting内容,请参见 :ref:`cn_user_guide_broadcasting` 。 + 如想了解更多Broadcasting内容,请参见 :ref:`cn_user_guide_broadcasting` 。 参数 ::::::::: - - inputs (list(Tensor)|tuple(Tensor)) - 一组输入Tensor,数据类型为:bool、float32、float64、int32或int64。 - - 所有的输入Tensor均需要满足rank <= 5 + - inputs (list(Tensor)|tuple(Tensor)) - 一组输入Tensor,数据类型为:bool、float32、float64、int32或int64。所有的输入Tensor均需要满足rank <= 5。 - name (str,可选) - 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name` 。 返回 diff --git a/docs/guides/04_dygraph_to_static/basic_usage_cn.md b/docs/guides/04_dygraph_to_static/basic_usage_cn.md index 07fb0f8b864..eb45f0d83b2 100644 --- a/docs/guides/04_dygraph_to_static/basic_usage_cn.md +++ b/docs/guides/04_dygraph_to_static/basic_usage_cn.md @@ -3,11 +3,11 @@ ## 一、 使用 @to_static 进行动静转换 -动静转换(@to_static)通过解析 Python 代码(抽象语法树,下简称:AST) 实现一行代码即可转为静态图功能,即只需在待转化的函数前添加一个装饰器 ``@paddle.jit.to_static`` 。 +动静转换(@to_static)通过解析 Python 代码(抽象语法树,下简称:AST) 实现一行代码即可将动态图转为静态图的功能,只需在待转化的函数前添加一个装饰器 ``@paddle.jit.to_static`` 。 如下是使用 @to_static 进行动静转换的两种方式: -- 方式一:使用 @to_static 装饰器装饰 ``Model`` 的 ``forward`` 函数 +- 方式一:使用 @to_static 装饰器装饰 ``SimpleNet`` (继承了 ``nn.Layer``) 的 ``forward`` 函数: ```python import paddle @@ -57,7 +57,7 @@ paddle.jit.save(net, './net') ``` -动转静 @to_static 除了支持预测模型导出,还兼容转为静态图子图训练,仅需要在 ``forward`` 函数上添加此装饰器即可,不需要修改任何其他的代码。基本执行流程如下: +方式一和方式二的主要区别是,使用 @to_static 除了支持预测模型导出外,在模型训练时,还会转为静态图子图训练,而方式二仅支持预测模型导出。@to_static 的基本执行流程如下图: @@ -65,7 +65,7 @@ ## 二、动转静模型导出 -动转静模块**是架在动态图与静态图的一个桥梁**,旨在打破动态图与静态部署的鸿沟,消除部署时对模型代码的依赖,打通与预测端的交互逻辑。下图展示了**动态图模型训练——>动转静模型导出——>静态预测部署**的流程。 +动转静模块**是架在动态图与静态图的一个桥梁**,旨在打破动态图模型训练与静态部署的鸿沟,消除部署时对模型代码的依赖,打通与预测端的交互逻辑。下图展示了**动态图模型训练——>动转静模型导出——>静态预测部署**的流程。 @@ -73,13 +73,19 @@ 在处理逻辑上,动转静主要包含两个主要模块: -+ **代码层面**:将所有的 Paddle ``layers`` 接口在静态图模式下执行以转为 ``Op`` ,从而生成完整的静态 ``Program`` ++ **代码层面**:将模型中所有的 ``layers`` 接口在静态图模式下执行以转为 ``Op`` ,从而生成完整的静态 ``Program`` + **Tensor层面**:将所有的 ``Parameters`` 和 ``Buffers`` 转为**可导出的 ``Variable`` 参数**( ``persistable=True`` ) -### 2.1 forward 函数导出 +### 2.1 通过 ``forward`` 导出预测模型 -如下是一个简单的 ``Model`` 的代码: +通过 ``forward`` 导出预测模型导出一般包括三个步骤: + ++ **切换 `eval()` 模式**:类似 `Dropout` 、`LayerNorm` 等接口在 `train()` 和 `eval()` 的行为存在较大的差异,在模型导出前,**请务必确认模型已切换到正确的模式,否则导出的模型在预测阶段可能出现输出结果不符合预期的情况。** ++ **构造 `InputSpec` 信息**:InputSpec 用于表示输入的shape、dtype、name信息,且支持用 `None` 表示动态shape(如输入的 batch_size 维度),是辅助动静转换的必要描述信息。 ++ **调用 `save` 接口**:调用 `paddle.jit.save`接口,若传入的参数是类实例,则默认对 `forward` 函数进行 `@to_static` 装饰,并导出其对应的模型文件和参数文件。 + +如下是一个简单的示例: ```python import paddle @@ -115,27 +121,19 @@ y_spec = InputSpec(shape=[3], dtype='float32', name='y') net = paddle.jit.save(net, path='simple_net', input_spec=[x_spec, y_spec]) # 动静转换 ``` -执行上述代码样例后,在当前目录下会生成三个文件: +执行上述代码样例后,在当前目录下会生成三个文件,即代表成功导出预测模型: ``` simple_net.pdiparams // 存放模型中所有的权重数据 simple_net.pdimodel // 存放模型的网络结构 simple_net.pdiparams.info // 存放额外的其他信息 ``` - -预测模型导出一般包括三个步骤: - -+ **切换 `eval()` 模式**:类似 `Dropout` 、`LayerNorm` 等接口在 `train()` 和 `eval()` 的行为存在较大的差异,在模型导出前,**请务必确认模型已切换到正确的模式,否则导出的模型在预测阶段可能出现输出结果不符合预期的情况。** -+ **构造 `InputSpec` 信息**:InputSpec 用于表示输入的shape、dtype、name信息,且支持用 `None` 表示动态shape(如输入的 batch_size 维度),是辅助动静转换的必要描述信息。 -+ **调用 `save` 接口**:调用 `paddle.jit.save`接口,若传入的参数是类实例,则默认对 `forward` 函数进行 `@to_static` 装饰,并导出其对应的模型文件和参数文件。 - - ### 2.2 使用 InputSpec 指定模型输入 Tensor 信息 动静转换在生成静态图 Program 时,依赖输入 Tensor 的 shape、dtype 和 name 信息。因此,Paddle 提供了 InputSpec 接口,用于指定输入 Tensor 的描述信息,并支持动态 shape 特性。 -#### 2.2.1 InputSpec 构造 +#### 2.2.1 构造 InputSpec **方式一:直接构造** @@ -168,7 +166,7 @@ x_spec = InputSpec.from_tensor(x, name='x') print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x) ``` -> 注:若未在 ``from_tensor`` 中指定新的name,则默认使用与源Tensor相同的name。 +> 注:若未在 ``from_tensor`` 中指定新的 ``name``,则默认使用与源 Tensor 相同的 ``name``。 **方式三:由 numpy.ndarray** @@ -184,19 +182,19 @@ x_spec = InputSpec.from_numpy(x, name='x') print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x) ``` -> 注:若未在 ``from_numpy`` 中指定新的 name,则默认使用 None 。 +> 注:若未在 ``from_numpy`` 中指定新的 ``name``,则默认使用 ``None`` 。 #### 2.2.2 基本用法 -**方式一: @to_static 装饰器模式** +**方式一: 在 @to_static 装饰器中调用** 如下是一个简单的使用样例: ```python import paddle +from paddle.nn import Layer from paddle.jit import to_static from paddle.static import InputSpec -from paddle.fluid.dygraph import Layer class SimpleNet(Layer): def __init__(self): @@ -223,7 +221,7 @@ paddle.jit.save(net, './simple_net') > 3. 若被装饰函数中包括非 Tensor 参数,推荐函数的非 Tensor 参数设置默认值,如 ``forward(self, x, use_bn=False)`` -**方式二:to_static函数调用** +**方式二:在 to_static 函数中调用** 若期望在动态图下训练模型,在训练完成后保存预测模型,并指定预测时需要的签名信息,则可以选择在保存模型时,直接调用 ``to_static`` 函数。使用样例如下: @@ -253,7 +251,7 @@ paddle.jit.save(net, './simple_net') 如上述样例代码中,在完成训练后,可以借助 ``to_static(net, input_spec=...)`` 形式对模型实例进行处理。Paddle 会根据 input_spec 信息对 forward 函数进行递归的动转静,得到完整的静态图,且包括当前训练好的参数数据。 -**方式三:支持 list 和 dict 推导** +**方式三:通过 list 和 dict 推导** 上述两个样例中,被装饰的 forward 函数的参数均为 Tensor 。这种情况下,参数个数必须与 InputSpec 个数相同。但当被装饰的函数参数为 list 或 dict 类型时,``input_spec`` 需要与函数参数保持相同的嵌套结构。 diff --git a/docs/guides/04_dygraph_to_static/case_analysis_cn.md b/docs/guides/04_dygraph_to_static/case_analysis_cn.md index 4afbf9ab093..3307e753f6f 100644 --- a/docs/guides/04_dygraph_to_static/case_analysis_cn.md +++ b/docs/guides/04_dygraph_to_static/case_analysis_cn.md @@ -1,7 +1,7 @@ # 案例解析 -在[【使用样例】](./basic_usage_cn.html)章节我们介绍了动转静的用法和机制,下面会结合一些具体的模型代码,解答动转静中比较常见的问题。 +在[【使用样例】](./basic_usage_cn.html)章节介绍了动转静的用法和机制,下面会结合一些具体的模型代码,解答动转静中比较常见的问题。 ## 一、 @to_static 放在哪里? diff --git a/docs/guides/04_dygraph_to_static/grammar_list_cn.md b/docs/guides/04_dygraph_to_static/grammar_list_cn.md index ced8b5df3a3..bc9e73f7fdf 100644 --- a/docs/guides/04_dygraph_to_static/grammar_list_cn.md +++ b/docs/guides/04_dygraph_to_static/grammar_list_cn.md @@ -2,7 +2,7 @@ ## 一、主要针对场景 -本文档概览性介绍了飞桨动转静功能的语法支持情况,旨在向用户提供一个便捷的语法速查表,**主要适用于如下场景**: +本文档概览性介绍了飞桨动转静功能的语法支持情况,旨在提供一个便捷的语法速查表,**主要适用于如下场景**: 1. 不确定当前动态图模型是否可以正确转化为静态图 @@ -11,9 +11,9 @@ 3. 当出现不支持的语法时,如何修改源码适配动转静语法 -若您初次接触动转静功能,或对此功能尚不熟悉,推荐您阅读:[使用样例](./basic_usage_cn.html); +若你初次接触动转静功能,或对此功能尚不熟悉,推荐阅读:[使用样例](./basic_usage_cn.html); -若您动静转换遇到了问题,或想学习调试的技巧,推荐您阅读:[报错调试](./debugging_cn.html)。 +若你动静转换遇到了问题,或想学习调试的技巧,推荐阅读:[报错调试](./debugging_cn.html)。 ## 二、语法支持速查列表 diff --git a/docs/guides/04_dygraph_to_static/index_cn.rst b/docs/guides/04_dygraph_to_static/index_cn.rst index f441221275d..bf443b324a9 100644 --- a/docs/guides/04_dygraph_to_static/index_cn.rst +++ b/docs/guides/04_dygraph_to_static/index_cn.rst @@ -26,12 +26,13 @@ 方案如下图所示: -.. figure:: images/dygraph_to_static.png +.. image:: images/dygraph_to_static.png :width: 800px - :align: center + :class: center +.. rst-class:: center -.. centered:: 图1 飞桨框架动静统一方案示意图 +图1 飞桨框架动静统一方案示意图 .. note:: @@ -62,5 +63,4 @@ principle_cn.md grammar_list_cn.md case_analysis_cn.md - debugging_cn.md - + debugging_cn.md \ No newline at end of file diff --git a/docs/guides/04_dygraph_to_static/principle_cn.md b/docs/guides/04_dygraph_to_static/principle_cn.md index 3fb9f769ccb..39fad087ac7 100644 --- a/docs/guides/04_dygraph_to_static/principle_cn.md +++ b/docs/guides/04_dygraph_to_static/principle_cn.md @@ -40,7 +40,8 @@ class SimpleNet(paddle.nn.Layer): net = SimpleNet() -x_spec = InputSpec(shape=[None, 10], name='x') +# 通过 InputSpec 设置 Placeholder 信息 +x_spec = InputSpec(shape=[None, 10], name='x') y_spec = InputSpec(shape=[3], name='y') net = paddle.jit.to_static(net, input_spec=[x_spec, y_spec]) # 动静转换 diff --git a/docs/practices/index_cn.rst b/docs/practices/index_cn.rst index fe8a731775c..992bb490f53 100644 --- a/docs/practices/index_cn.rst +++ b/docs/practices/index_cn.rst @@ -46,6 +46,9 @@ - `异常数据检测 <./time_series/autoencoder.html>`_ : 介绍使用 PaddlePaddle 完成时序数据异常点检测。 +动转静: + - `使用动转静完成以图搜图 <./jit/image_search_with_jit.html>`_ : 介绍使用 PaddlePaddle 通过动转静完成以图搜图。 + .. toctree:: :hidden: @@ -56,3 +59,4 @@ recommendations/index_cn.rst reinforcement_learning/index_cn.rst time_series/index_cn.rst + jit/index_cn.rst diff --git a/docs/practices/jit/image_search_with_jit.ipynb b/docs/practices/jit/image_search_with_jit.ipynb new file mode 100644 index 00000000000..ffddbfec3ca --- /dev/null +++ b/docs/practices/jit/image_search_with_jit.ipynb @@ -0,0 +1,780 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 使用动转静完成以图搜图\n", + "\n", + "作者: [PaddlePaddle](https://github.com/PaddlePaddle)\n", + "\n", + "日期: 2021.12\n", + "\n", + "摘要: 本示例简要介绍如何通过飞桨开源框架,使用动转静功能,完成图片搜索。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 一、简要介绍\n", + "\n", + "在深度学习模型开发中,动态图代码更易编写和debug,但在部署性能上,静态图更具优势。而飞桨框架支持动态图转静态图(下文简称动转静)的功能,支持使用动态图编写组网代码,飞桨框架会对代码进行分析,自动转换为静态图网络结构,兼顾了动态图易用性和静态图部署性能两方面优势。\n", + "\n", + "本示例简要介绍如何通过飞桨开源框架,使用动转静功能,完成图片搜索的部署。\n", + "\n", + "本示例中的的大部分代码都源于 [基于图片相似度的图片搜索](https://www.paddlepaddle.org.cn/documentation/docs/zh/tutorial/cv_case/image_search/image_search.html) ,如果你想要了解关于组网和训练的更多信息,可以参考该示例。本示例将重点介绍,如何使用动转静完成模型的部署。\n", + "\n", + "关于动转静的更多文档,可以参考:[动态图转静态图-使用文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/04_dygraph_to_static/index_cn.html)" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 二、环境配置" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "import paddle\n", + "import paddle.nn.functional as F\n", + "import numpy as np\n", + "import random\n", + "import matplotlib.pyplot as plt\n", + "from PIL import Image\n", + "from collections import defaultdict\n", + "\n", + "print(paddle.__version__)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.0\n" + ] + } + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 三、数据加载\n", + "\n", + "### 3.1 数据集介绍\n", + "\n", + "本示例采用 [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) 数据集。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "import paddle.vision.transforms as T\n", + "\n", + "transform = T.Compose([T.Transpose((2, 0, 1))])\n", + "\n", + "cifar10_train = paddle.vision.datasets.Cifar10(mode='train', transform=transform)\n", + "x_train = np.zeros((50000, 3, 32, 32))\n", + "y_train = np.zeros((50000, 1), dtype='int32')\n", + "\n", + "for i in range(len(cifar10_train)):\n", + " train_image, train_label = cifar10_train[i]\n", + " \n", + " # normalize the data\n", + " x_train[i,:, :, :] = train_image / 255.\n", + " y_train[i, 0] = train_label\n", + "\n", + "y_train = np.squeeze(y_train)\n", + "\n", + "cifar10_test = paddle.vision.datasets.cifar.Cifar10(mode='test', transform=transform)\n", + "x_test = np.zeros((10000, 3, 32, 32), dtype='float32')\n", + "y_test = np.zeros((10000, 1), dtype='int64')\n", + "\n", + "for i in range(len(cifar10_test)):\n", + " test_image, test_label = cifar10_test[i]\n", + " \n", + " # normalize the data\n", + " x_test[i,:, :, :] = test_image / 255.\n", + " y_test[i, 0] = test_label\n", + "\n", + "y_test = np.squeeze(y_test)\n", + "\n", + "height_width = 32\n", + "\n", + "def show_collage(examples):\n", + " box_size = height_width + 2\n", + " num_rows, num_cols = examples.shape[:2]\n", + "\n", + " collage = Image.new(\n", + " mode=\"RGB\",\n", + " size=(num_cols * box_size, num_rows * box_size),\n", + " color=(255, 255, 255),\n", + " )\n", + " for row_idx in range(num_rows):\n", + " for col_idx in range(num_cols):\n", + " array = (np.array(examples[row_idx, col_idx]) * 255).astype(np.uint8)\n", + " array = array.transpose(1,2,0)\n", + " collage.paste(\n", + " Image.fromarray(array), (col_idx * box_size, row_idx * box_size)\n", + " )\n", + "\n", + " collage = collage.resize((2 * num_cols * box_size, 2 * num_rows * box_size))\n", + " return collage\n", + "\n", + "sample_idxs = np.random.randint(0, 50000, size=(5, 5))\n", + "examples = x_train[sample_idxs]\n", + "show_collage(examples)" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### 3.2 构建训练数据\n", + "图片检索的模型的训练样本跟常见的分类任务的训练样本不太一样的地方在于,每个训练样本并不是一个(image, class)这样的形式。而是(image0, image1, similary_or_not)的形式,即,每一个训练样本由两张图片组成,而其label是这两张图片是否相似的标志位(0或者1)。\n", + "\n", + "很自然的能够想到,来自同一个类别的两张图片,是相似的图片,而来自不同类别的两张图片,应该是不相似的图片。\n", + "\n", + "为了能够方便的抽样出相似图片(以及不相似图片)的样本,先建立能够根据类别找到该类别下所有图片的索引。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "class_idx_to_train_idxs = defaultdict(list)\n", + "for y_train_idx, y in enumerate(y_train):\n", + " class_idx_to_train_idxs[y].append(y_train_idx)\n", + "\n", + "class_idx_to_test_idxs = defaultdict(list)\n", + "for y_test_idx, y in enumerate(y_test):\n", + " class_idx_to_test_idxs[y].append(y_test_idx)\n", + "\n", + "num_classes = 10\n", + "\n", + "def reader_creator(num_batchs):\n", + " def reader():\n", + " iter_step = 0\n", + " while True:\n", + " if iter_step >= num_batchs:\n", + " break\n", + " iter_step += 1\n", + " x = np.empty((2, num_classes, 3, height_width, height_width), dtype=np.float32)\n", + " for class_idx in range(num_classes):\n", + " examples_for_class = class_idx_to_train_idxs[class_idx]\n", + " anchor_idx = random.choice(examples_for_class)\n", + " positive_idx = random.choice(examples_for_class)\n", + " while positive_idx == anchor_idx:\n", + " positive_idx = random.choice(examples_for_class)\n", + " x[0, class_idx] = x_train[anchor_idx]\n", + " x[1, class_idx] = x_train[positive_idx]\n", + " yield x\n", + "\n", + " return reader\n", + "\n", + "def anchor_positive_pairs(num_batchs=100):\n", + " return reader_creator(num_batchs)\n", + "\n", + "pairs_train_reader = anchor_positive_pairs(num_batchs=1000)" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 四、模型组网:把图片转换为高维的向量表示的网络\n", + "目标是首先把图片转换为高维空间的表示,然后计算图片在高维空间表示时的相似度。 下面的网络结构用来把一个形状为(3, 32, 32)的图片转换成形状为(8,)的向量。在有些资料中也会把这个转换成的向量称为Embedding,请注意,这与自然语言处理领域的词向量的区别。 下面的模型由三个连续的卷积加一个全局均值池化,然后用一个线性全链接层映射到维数为8的向量空间。为了后续计算余弦相似度时的便利,还在最后做了归一化。(即,余弦相似度的分母部分)" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "class MyNet(paddle.nn.Layer):\n", + " def __init__(self):\n", + " super(MyNet, self).__init__()\n", + "\n", + " self.conv1 = paddle.nn.Conv2D(in_channels=3, \n", + " out_channels=32, \n", + " kernel_size=(3, 3),\n", + " stride=2)\n", + " \n", + " self.conv2 = paddle.nn.Conv2D(in_channels=32, \n", + " out_channels=64, \n", + " kernel_size=(3,3), \n", + " stride=2) \n", + " \n", + " self.conv3 = paddle.nn.Conv2D(in_channels=64, \n", + " out_channels=128, \n", + " kernel_size=(3,3),\n", + " stride=2)\n", + " \n", + " self.gloabl_pool = paddle.nn.AdaptiveAvgPool2D((1,1))\n", + "\n", + " self.fc1 = paddle.nn.Linear(in_features=128, out_features=8)\n", + " \n", + " def forward(self, x):\n", + " x = self.conv1(x)\n", + " x = F.relu(x)\n", + " x = self.conv2(x)\n", + " x = F.relu(x)\n", + " x = self.conv3(x)\n", + " x = F.relu(x)\n", + " x = self.gloabl_pool(x)\n", + " x = paddle.squeeze(x, axis=[2, 3])\n", + " x = self.fc1(x)\n", + " x = x / paddle.norm(x, axis=1, keepdim=True)\n", + " return x" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 五、模型训练" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "def train(model):\n", + " print('start training ... ')\n", + " model.train()\n", + "\n", + " inverse_temperature = paddle.to_tensor(np.array([1.0/0.2], dtype='float32'))\n", + "\n", + " epoch_num = 20\n", + " \n", + " opt = paddle.optimizer.Adam(learning_rate=0.0001,\n", + " parameters=model.parameters())\n", + " \n", + " for epoch in range(epoch_num):\n", + " for batch_id, data in enumerate(pairs_train_reader()):\n", + " anchors_data, positives_data = data[0], data[1]\n", + "\n", + " anchors = paddle.to_tensor(anchors_data)\n", + " positives = paddle.to_tensor(positives_data)\n", + " \n", + " anchor_embeddings = model(anchors)\n", + " positive_embeddings = model(positives)\n", + " \n", + " similarities = paddle.matmul(anchor_embeddings, positive_embeddings, transpose_y=True) \n", + " similarities = paddle.multiply(similarities, inverse_temperature)\n", + " \n", + " sparse_labels = paddle.arange(0, num_classes, dtype='int64')\n", + "\n", + " loss = F.cross_entropy(similarities, sparse_labels)\n", + " \n", + " if batch_id % 500 == 0:\n", + " print(\"epoch: {}, batch_id: {}, loss is: {}\".format(epoch, batch_id, loss.numpy()))\n", + " loss.backward()\n", + " opt.step()\n", + " opt.clear_grad()\n", + "\n", + "model = MyNet()\n", + "train(model)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "W1203 09:42:06.354787 104 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1\n", + "W1203 09:42:06.359786 104 device_context.cc:465] device: 0, cuDNN Version: 7.6.\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "start training ... \n", + "epoch: 0, batch_id: 0, loss is: [2.3075619]\n", + "epoch: 0, batch_id: 500, loss is: [1.9298995]\n", + "epoch: 1, batch_id: 0, loss is: [1.7443665]\n", + "epoch: 1, batch_id: 500, loss is: [2.2623153]\n", + "epoch: 2, batch_id: 0, loss is: [2.2922273]\n", + "epoch: 2, batch_id: 500, loss is: [2.2985363]\n", + "epoch: 3, batch_id: 0, loss is: [2.2139223]\n", + "epoch: 3, batch_id: 500, loss is: [1.7750809]\n", + "epoch: 4, batch_id: 0, loss is: [2.2329998]\n", + "epoch: 4, batch_id: 500, loss is: [2.202569]\n", + "epoch: 5, batch_id: 0, loss is: [1.8858416]\n", + "epoch: 5, batch_id: 500, loss is: [2.0760386]\n", + "epoch: 6, batch_id: 0, loss is: [1.750076]\n", + "epoch: 6, batch_id: 500, loss is: [1.9625857]\n", + "epoch: 7, batch_id: 0, loss is: [2.0362983]\n", + "epoch: 7, batch_id: 500, loss is: [1.9722912]\n", + "epoch: 8, batch_id: 0, loss is: [2.1468532]\n", + "epoch: 8, batch_id: 500, loss is: [1.8924134]\n", + "epoch: 9, batch_id: 0, loss is: [2.0176272]\n", + "epoch: 9, batch_id: 500, loss is: [1.874192]\n", + "epoch: 10, batch_id: 0, loss is: [1.670248]\n", + "epoch: 10, batch_id: 500, loss is: [2.1149437]\n", + "epoch: 11, batch_id: 0, loss is: [1.6959581]\n", + "epoch: 11, batch_id: 500, loss is: [1.7163551]\n", + "epoch: 12, batch_id: 0, loss is: [2.1149023]\n", + "epoch: 12, batch_id: 500, loss is: [1.5345385]\n", + "epoch: 13, batch_id: 0, loss is: [1.5874553]\n", + "epoch: 13, batch_id: 500, loss is: [1.9915801]\n", + "epoch: 14, batch_id: 0, loss is: [2.3038936]\n", + "epoch: 14, batch_id: 500, loss is: [1.9974185]\n", + "epoch: 15, batch_id: 0, loss is: [2.2840767]\n", + "epoch: 15, batch_id: 500, loss is: [2.654189]\n", + "epoch: 16, batch_id: 0, loss is: [1.4491551]\n", + "epoch: 16, batch_id: 500, loss is: [1.9145182]\n", + "epoch: 17, batch_id: 0, loss is: [1.6488547]\n", + "epoch: 17, batch_id: 500, loss is: [1.8082515]\n", + "epoch: 18, batch_id: 0, loss is: [2.1301975]\n", + "epoch: 18, batch_id: 500, loss is: [2.1468956]\n", + "epoch: 19, batch_id: 0, loss is: [1.6691527]\n", + "epoch: 19, batch_id: 500, loss is: [1.8820274]\n" + ] + } + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 六、模型预测\n", + "前述的模型训练训练结束之后,就可以用该网络结构来计算出任意一张图片的高维向量表示(embedding),通过计算该图片与图片库中其他图片的高维向量表示之间的相似度,就可以按照相似程度进行排序,排序越靠前,则相似程度越高。\n", + "\n", + "下面对测试集中所有的图片都两两计算相似度,然后选一部分相似的图片展示出来。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "near_neighbours_per_example = 10\n", + "\n", + "x_test_t = paddle.to_tensor(x_test)\n", + "test_images_embeddings = model(x_test_t)\n", + "similarities_matrix = paddle.matmul(test_images_embeddings, test_images_embeddings, transpose_y=True) \n", + "\n", + "indicies = paddle.argsort(similarities_matrix, descending=True)\n", + "indicies = indicies.numpy()" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "examples = np.empty(\n", + " (\n", + " num_classes,\n", + " near_neighbours_per_example + 1,\n", + " 3,\n", + " height_width,\n", + " height_width,\n", + " ),\n", + " dtype=np.float32,\n", + ")\n", + "\n", + "for row_idx in range(num_classes):\n", + " examples_for_class = class_idx_to_test_idxs[row_idx]\n", + " anchor_idx = random.choice(examples_for_class)\n", + " \n", + " examples[row_idx, 0] = x_test[anchor_idx]\n", + " anchor_near_neighbours = indicies[anchor_idx][1:near_neighbours_per_example+1]\n", + " for col_idx, nn_idx in enumerate(anchor_near_neighbours):\n", + " examples[row_idx, col_idx + 1] = x_test[nn_idx]\n", + "\n", + "show_collage(examples)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuwAAAKoCAIAAACjiz3RAAEAAElEQVR4nNz9S8wly7ImCH1m5u4R6/E/8rFzP8/j3luvW1VUCSF1SwxoRkgMWmJET1ALBBIzGCABLTFvUTNmiEFPeohgABPUE9QMoJtS0X1b9bh17j2vffYrc+/M/B9rrYhwdzNj4BFrrf/PzH3OrS6oglDuf2euf61YER7u5p999pkZ/Qf/m/81ACKqtdZaVY3IiSjGCKAuh6q6mYjEGEWEiNxdVU1NVQESERFhZnc3M3en5WivmJm5AWBmELk7AADH9x//WXKecq61gsndqxkRrVerGCMTgdjA5lDTP/qTv/bf+m//2598+hmA/+LP/tm/97/89/9v//F/sl6vYozMDKCddTn3+4/21e39RHR8pR3nr5y//u4r7Z3nv22vnL8OtLPZ+QWUUvb74d/6t/7Nf/8f/Ht//+//KYBf/uaf/e/+w3/wn//j/7TregLXUlWLmRFxjL1IRwiqlqdJ1SQQMxPDAdPiZIhOJGx95LSKoUucUgHZVM0RUuyZBa5m7gZ3dmchCaFzUK06lTwMh2pVJJphGqtWB+T66tnPfvbHV5eXZnkcd7c3r6dpcAMxi0gIIUo4jMN3L7/507/5d/7H/4P/yV/7478B4He/+/b/+H/4j37xl7/qVykEInIiEJiFiQSAm6mZmWmtuRZVcycRWfVps1o/ubzcrDd934UgDlLTNhtVtdZaSpn/WbSquRuEqltVzaXmXMwQINxmK9TMHCAmQODkgM+HzeNhplVN1cxqrcOU/+7f/Zv/w//+f/ePfv4TAH/257/6X/yD/+A//of/+aaLUcjdAHMY4AQwQA444GAiYQ4S2noBHCC4A+ZmgMOP0wFkIGJmISa3NmUx/+J83sxXDpgB5g7A3N3N3N0cy0QWAhMIYGJupy9Vx7H81/+N/8r/6n/27/7tv/lHAKacX715fRgObYISERETEcDw9m2Pl02b1dau8OwG6J13PvzU6bNtdOZxa0vEZbnOZVDofJXZ2TfO53F3VdtuVp9/8mLV9wD+8psf/rf/5//7n/3F132MiQNDCAQGYD6PIR+/293c1E2Xa2IHGdgJBGdUhhGcAHIGyI0AtLP4+RqHO5GRpDJd3d88233z8d1f9PTt4epww9P3B92VoL5NdHEdLleZw24fxpFrYQKHIF0n/ZpN6f71z/+r/7X/5v/0f/7ib/wpgJff/eb/+h/9h7/95T8hDgyQ1qJ2qKrgEDoC52qqZqjkDEsMZrIotU+lCx6EAB6Vs3opRm49Q4gq2IklkBHnjKLupCAwM5y1shmrwlUNE4uGEIjYlMyEQGZwJzUrWtThgYQ5hQjXrJO7RRZTHcbxb/2tv/fv/Dv/o5/+9I8BHMbpt9/9cLcfhOmhGXzPvDo/fuTNj377rtVtB8/T8/jsCETedhtYW/o4zUmQE0Ds3F4xV631crv++aefblY9gB/e/vCf/L/+H99+902SxCzNVswbmx9XIeDmoDaHiZkAIpC7gJhARMQcQMwswiBSNzdvM59AxBQkuHstuWo1M3dg2W3dnZjhcG+XKwRedtgaAm+2KyYax6lWNwMgRARSq9Nnn33+b/4b/41nzz4C8O03v/u//J/+97/+5T9PXScSzve+Hz8ejjyIQYTja+/ujx/6u5m99/Uff2fbI6Y8/slf/9v/9n/nv/fZFz9r7wxm2izY0ZqbOdEMNTBbt3kjV9VHm/2j+ffuK8ePExH5sqkv932EOOcgxt2rqrs3EANmZg4hhBDOQQwMIoLfP/L/v3u4z4/QloE9LpcZPro7IEBbkqZqTkYMIoeZulaCMJiV2NzgaJ/CEcQ0226AWnFHVVXLxMYEkALtpztcLecyjJOo5mncT9OQ8wgQi4ACqblrLmPVSbUet0B3L1VzrixsPj98JmczQAFqN7XYgtPNm7mq5lJizsRkJiBuk/DRYdrAMQFCgdmdRQBSNZi6u5qDfAEYMHO4HYGEn8/aZmhEhMjdRURYHj4ThSmMQQQ3oP1xHP9zULM7cG9oCUdM4HCFnxtQmp9dW6fWgM4RdhvOPgwA1t5vBIMDsCMKm+/tdB28/L0tN4MbHqJnones0o+uprN94SFs+QCG+fDZaLmt+T1HewD4wxVN7z3P0ar8+JWe/3QsE+DR8z79eXxt89/nG/5RTwiAmk8FXmWFECVAQGFSKcRiXCGBQ5DIAMNZhADKU7DSaS04wTR3VPWixq5CIDfARAC4kDqcyZwM7g53V28TjtwBdSJrlhnuUCU41RmighkyYzmcFkU7zfJoicFEIhKCEHFb/w2Bz7Odmn2GmsHB5IBzQ80E+X1T6F/V4fCji/Hu7/7AQ83UVGHuZGZq5qaqWlUBNOBkpm7LVzERwEQMciImMLN4Mwtt0IkBMIhOLjdcG1B/Z8o5ACYiZncnOHFbwQzA1EXo9Ozd4OQNv5m+72x/teNfy6c6H6GUQkTMYmbNvzWbVzoxM/ORUGm7jKqeSBdrKwBEM6FCxOeTgqidg2ecBQBu7s0AHX91DmIAhBgBlFKahY5EMca+70MIzdA6sZlXDTFGJn54R/SugXuXXznHfQ/f/C6/cvrE+esNIZ7bN3+H0Tn/rvOznTM0zZ42PH8+z6i9qgqYNUhuBoKbqhdXrVVrzQDFKEwwM6taSzEYOTMTWTUYKrmaq3GAeQAhGxGxm7o7gRuNY1TVspqVUs2VAgWHmhoZWMFuhlLvd4cf1PY1T+O43+/uas3CIaSYPKmyOQ6H3TDelXJo4wPA3A/jeLcbimpM0vC7MDPgbov/T815WSYCuXutNuW8Hw5q2uUppRhCJJCamlrVWmstuaiquTNzCCIhsAgxGWGasqsPdSpVTY3YwA6Ququ5WW0bBzEB3lgZIjixBGZ3YkKRBAoLq9eepWnxMnlwB58zMfPccZv/SmzOTg5jEhAI7ubahn0xYeCZLmifVVpshZ/hEaIzbmZBPXS+Hdu8KRMAMIwbEwSw27INm8EKrJ7mGM0L8LhG2mI/+653DJcDmNHTclGzYX38zuWcj1bHGRNDfnpPu0Wed5qzvYZmEGPH67HjzRIfVxk5zX8M1B4HsTuD2M4woC0+wIKXiYlB7CAHO4PgBCaAZ8DDM0BY7vR0o6eNHzN5Varf7qFDF2SzSfcUQeFOw+jhHqHzkKSXTtgKwTiQa9H9fVem514+d7UzL24svs81ikUGQ4k8CAcCUXGDs8HAoGpeqztREBC5GgOojsXj9Kk2CgAdoxPE4CyAAg5VK2oOZTYiIiQgMAsERBwirfpExHn0Ul0ryBVcCUZQUx2zmSEzp0CpQxQODHeKTIFmuvAPP/4QDuBDh39gb16mmzWSxRgLJ+fuM1HSGMeZF/czwPpeqONetIylgIVhVVVrNdOqZcoZoJASqLHm6m6AO2xmZJkDcRAOwjEGiQxnV0L7bQgxBgJVrc22QdVrcYOTeNvN3N2UiIIkYSGacRKBRAIRmTIxBFAzVzXVZqDMzV2h1VUfbM2z1fKGevhHYMrZnnUydJgXBtHZBx9spO/uofNHzdqisYfj7Gc/T6/QuSV8x+FoR1BVIjJbVreZqrU1yiKygJhmp9rqX/ZvAoGJQcR8hCu0OE/k89YSTnsAkeMUbGJmEfGzY34Xs9YKQN3aP2OMIQQROYIYIlczejCE//9zuHutteZCYCZ2d/IZMZoZeTUlVTXVmV0016q1qqkbHOpuTqZwK2riniLB2V1NoW3PdidyZmZnaw/ITdWqVQCBxUHwCjiLo23+mA7jTSl7LXmahnHYm2mICawi5s5VtZS92mT+gInJtU6lcGAnJ2JmKBnc3I2JWEREYghExEwLf4haa6MiqmoJJZXUpSQsZm6mLcpZSjVTB4UAUGDmIIGFIUzg2ldXh5cKBTeYRGamWmtt69yXDZgAsBCABotp8XAfPhiDVddste1cD5mYheBpUxTOxnBjt2YCHK4tEnTGxPARpbR1v+zt7ZUTE2MnEIDZ4iyUeFu77XtpwTcLGJlNM8GI9PhNH5p1v3diYrlcnxHTYgk/7M++b4dqVqKZEQWcGpt4YmL8gaU6e0ZHN+Cxo4LGNRyvsw0Iz2bQnciFHARncpA5wUFEy2D5YpD5iKGc2Ijc2w07ADma1EcMNMFNbcw+ZeqDe/TE1UOuMoGFGRKoI/Vomt2rk2stJed+GALVQy5nIAa51lxqIHGGkxNBmB3UwhfkKgxyYYdzCwkREwiyeDoI7ARiosZ2KkDkLcro7EGQ2Akwg7nByaDMJEzgZjzmJ8wMoeYVOdxAanARD+rqZqrOHEiE4eZVtWpV0/9yPv+/5MMXBnJZy04LnlmWVJtS/KEztMPMc9ZxKmg208zdhD0ycRJ3mGtzq8waje1uFcyBY2ROQkEoBI6RuyhBZn4sMMcgMQVm0krm5haqag6ciw8GB6QFh43hDjMHS4AISWBmYQ4ArIKZuhRV1Upx0+ZgMQgQYo9B3gGL3sxXu//20mOHHu0MD/jgB7HwD6Cfh8vjrzAh/pD9/DGIWQiGJks4sQvtnxVovAstgKPW6u6NxpIgwkJETG00mZmYZxvbkEoT0CxfTi2KuPyLFuXK6TAzIQ4hmDmsNizVeKD2GRA5uaqVnEspfhYvX5Dl2d3O2OvxIH4I+z/0Gts4zO9/9IkTMnu/mT4/52OG5pwH8hbdpJkanD9iNg3DOAwMoRgZ8OaNuruqu6nCzZmc26NSqkWbOIm4PVPAYG7mFZFTSiHKMGmtWmo1J2YSWYQIs8bC4cbUtiZ1d/MKQgiMwHBm9pJ3FWRaaylq00xl8OzOEpRIJUDCabhmDo6aRqq5/i2c7A6fbS1JiIlIZhTd3Bw1VZsJqahq5u4igRyqmmuptZqqmxOTKlqsk5iJSRxRZLNaCUsIudRi0AbAvVRyNbVSiqph2aEIIJ752RadNrUpl1yrLVEYd4epa3VlI6bZCvg8euZzWIDImQF2RfMRILKMReN1re2nBG8MPgBeYns4rVLDzHP4fIkz6mnsPZnPD1lnuMONkWD4YpObp0VCHoSEz7kEHJf8MsN/PEazzNgZTXDb8735sv4eDLQwjm1KH7/WW2zHcXQN27WSOzX/9dEyPl/Q778yAs+M3pn1mVEj2oYigAixgMFmZEpmZjBzmiUSTjbDqKA0+5lGC5AlZxjcZteQma3xXO7sSqbkTrBSy33e13DfUQ4UnDeMC/hGeBUTyMZMpVLRqsZkwSodSj4cJrXjHDPXQl6iUBfEHIC4RTPKxcwqswt7FLggEMxB5OwQMncvpg3OB+Ft72qkcKLT8xHiVaSOyQzVMFVkRakAeRB3+DiVDLBbkuDWBFJGMA5gJzg4yCqyqo+TsqCLTIT9WMYxj9M0Tvk4qXx+Dv6hB/eHzLcfPx7y3Eejg3mrbTe+RHAxM9yNfcASciUAPvsZHxR4mfk02mGvFqZAgUAp8nYV1n3sopRSXt/c7crAVoSoT0mETBEjb9erPnWJWWQRDwYW5na5ArTXmZm6KCwxRncbp3J3mOr9kKvFEBgaBSWXPGagoJO4juu+DzGakakpNKb45PLKzMicgOoOSAwShBl6sVmHI+3atqQmh3RvC+/kKDx+RmevzyhmpmII4CYTe+djjCPyf+CANcvU2Gg7f74LA//oleU87XVzajPygX0IyxNaeHyipkNsG/9xOjaapeEYnhmwGGJoIIbADaw0EEPER2bluD03NURDrMffPgIxZtY2uhCiA2zcIgUz172MM50rHv8/cpyM7/93jkeUkpuXUkrOGquwtBGiZgvMzMnUGsomwKqaQ4uauwg7qKqbO6k6PIgJS9+lEHgqalZzVjMKUdoEXu6z0WMQITi0eVpmmONNbc6o6iLpYJMAACwOVFVvrgfIQuAQ5KFj0571TNbBrNo8hZ1ABnGYgRdPQ7UF0MwMjhbmNFNT9yiBwGbawknuTiDBLBWfMZDOtxREuhThiMpqWlVLLVJa7BqqrqpNGuNHNplnj40I5iilzBKi42EKqzCG8eLKNL//AYgB2MHNKXJXN2kqP8xCJDtyDTRHJM5X5ZF5MMyeEM32dl74bg5mgru7uptrBQgSuMkagAaAZkjkRG5wfaSJOQaDZzfLH3oA7xzHCMrRNNG8Nfi8+z984u704N/z7baxNdWiVtyUOcSwYWaAzxyRR1fyexxlAs9gcPlCRlM2QoiEEIVS4sAkRG5e1dRMzdXcnNTdDQoyJ3VyIj1iGjo+q/dvq942eUJD55qzMYJQz2FN4oQOGqlKEGcmik5WzJRCSOtUXLTSSTgFAEwaWJN4YBQla7jUCOZwbsPeArLsVs3VACCQg1zNjWarywI1ZJtHvUVWGEjBIe5OubI2ZwcexdZJDSiFi7pmL2xMvOw8Lm15EpFQEJjMUUEGOZzaAlgwy79+h/uyVQuREMNhIDjUj9TCjx1mGLONo0p0jpRi7FJYr9Llur/YrmqpZiZEfVcI1KfAAqiEIOv1KoYINwaJkAhC4GXfJDeDu5ZiRCIcEgUhogiiXE1kIm3bKLMEEVvkrVYrzCIQCM4ECtKluFqtzDSmECYhB0hSjDGwwGKKH4rz0XvW7/Kb9/37KEOe/3X67bvrfR77s9d+ZKj9XRvygbc9OMLpChZPual6mxFS1fYrdxeRpvkSka7rYowhzJIUIjDLchIcPwLMseOmoSFu0qdZ1vBei9CuIcUogdXMjgjxqCMhBjNVVvdZ6vtwDPwMObWdpcUGHgzAGePSGCN3P8bC2nZzDmLe5XLOL/4I1x695wH70u7i4Z3OI9a0CGefd/em2217stUKgIWXsI+pVjjAgeC1VjOYKoFJBA63WqtZ9cjeC8fIfR9FWIbJTEvOauQI7qLVMXsgDjgxmQvI1ZpgcM4aaSFAeNPPkDAT2CO3OzfXmktDt4DFGGKMdEIxTu7sLkTCzEwOgrYQCACQWinVQUTk6qqqtaDp8OGaa+WqZmqWVYOEwAG05DS5C3MUljCTP1XVzU115ojdU5AgZE45uxYnM4bL8XmdyU8aO2BtygALKnrwqOHqWmHs1pReM20wK219BiVu5k7mZKZaRUMIbQnAzWaRXdtmjia08RDAgteP8JKcAEELxUKtuikAYcC98VVVlYmYCcQEb4jubJKSqWrJdUla+NDh58vjfb8/TuE2/HAjELMcce6DE51jswUpNfNi6jmPY97XmkNIF9uYJAC0AKl5HZ8NvT88/Xn8GUf6yZfRJBjBAygJp8h9lC5KFygIByY3r+a1EZXmql7dVa2qF0U1qHl1LQ51qMPazZ3kOGjMhi3CgFk34w4Yu69YnnebrtsGxwA4psmsmrnEknikeCiFY9psVxdxcxHlYn1x1I8zI0V0EUGIiNSghkDGxCmYOqnHOeGKLLC6aVVyZhEXBjMpGMzEwgSQMRp6EWuUCltkB1yNwCCBEGL0PupF7w4RTsPEZTCt5MIuBLLZsM+UVXNkKMpMDYO970goBIQ+nmwynTF8/2WEL3hoXT/E0Dx43U/zjQjkLRzmwhLBgZicFGTWsBdmy0/zDD+63cfzmfuUbZx0zZQ62qzCdp1WXey7uFqtsGLjcHExVi1ulaHu6mbMEmJXzXdDMa0dI8WQLIUYhcWdtFotteYCtxAodXFc9yFGcjZriXJaqlUiZnKJsUPVUlUPU6Y9dVVjEwPGEGOCsLkZtaB4S3hkpzl/8iHcMCI7Z/9nK/RgzAE4OYMf7IZ8XMsOEI6+z0Nx6TKm86hi4eTnCwCcH7CtPiNgf/jOMwBEcHKn85UPAAhBxNFoaBBmX1mY2z5RRXyW0jkBbZsSlhBmkcrxSbcwQZu07dTSJPXuR+hDLRptREYK/SD/LC3qwGE2HyeI0L7NwURs8Fnq+6PHzAX/AVj7A8fvxY/L+z4AZX7f2R7j2ePpZlOxjBITNbMEgra0LQKAlnCJWW3CCjQhlxUNgYQoxdD3SYRCC+0tOblqmLe0o4vNJAYiqCsI3IIgMHKoOYgCoTFtTACxm6qZai2lAj7PhxZDfHTX3sJVTguvbS1UR15dm8ofRK7OhAaDui5Vq/f3d7lkMyuqxCQsDUxT29TdYwgiwiJETDbn7DSjy8REFAM3mScTmaqbwRlESk4Ec9cl59nU7LgkjzT048dibuZubo38bKqDd55pE1KoqznMyJ3cwEIEWzIFiNiZHYsW2OenfKRo/HS6I9Scc9HNXNjaozRzN3WWeZwBXdDGIq6mGQ2b/tjcxPETH5rtBDSOT8ex2WsPIn2/ijGeQ5zTc3/P35tO0UrJ0zSUMsTUb6wA9pBuOUKZ0xj8yHW32cUOEXATUTK6SH2kPoYucRckCQJBGO6kRtVhhib01hkOeq1eFQ3iZPfiUDN11BabWnbxZcl4mygNPbU/rBarSQULFIjQSatqhZvXjkJiI6EkiRKvujjFMrF053aD3WnO+TerbA6wEhuTOkhNYEvuLqhJR4nY3Ggx/gvtfdwR5utnuDa/A16UskHhxJ7YUkBkl5BCf9lP4VaHacy15bgICTHNPKmptUgoZMbLyo4oFBKTSZ/OI+3/WhwEZ6Cl0MO0ljLmAoOkRByd8Ht5PgCY3Q8LQus+XV+sLy7Wqy5u1v1muxWJ3Xpbci5lLNN+HO5rMZ8l9pRLvdkdrNbrVYrMTUvUwjhVq2rRWhlOQdxtzBOrBpJajdx4ToYicwSmzaZ3T8M4Ag4iMyuluoM5eLNgZtRkqi3OSI5W1+FHvZd3WJBl5D686JZf2Htem0+I953z+Pq7Z56XkL/Hbpy/Yg+/FKHruwbLZ7PaBoBnbpQWgt7NINJEBcQzNd74RBDxkpS0BI4eQO8Wh2pOvLewgjGTmLexbQ6s08KIzF8NcaDpn1pACWi0CcwZbOYe4kl8MUM5nx3iGRousZIFMS6D/iDEN5/YGysxW+oHXum8wfAM0gFgueV5w8MxfHb63oeegQM0m5mHsGwmOsxOD28ZRqFl6GYdNBO1jC41deZZkQ1vJIcQGOau1BKBIYhB+pRWfWKmFEMMIYTgrg3NqJ2nb4OIrBIJOTMJyNmNatWGkJuTH0DWiNhZIVtrLbUqkbsHZvYlnfU06dzNXbWqMtqTm43+DJCVWlaFu/t6vbq+vrh+crW92B4Oh9/8dhhuD1WVSj5OKiIsWisOQZoav+8SlkI01NAAQYJI4OaUSgwsErsu95qmiQ5hnKa6ZKqbakGF28IhkakZP1xs8wxr7Myiz/UGIZcVMX858azNmO/fqpEsrFzzYBrbsxC5flpC3riYJSOmpWHOXICZVTWtNXullt4FkINJYDCYeQWRxDBLcM191iH6kaiYZxktjNNprrZ18453MTsogLuZjuPw9s2bYRqJqO/7p9xoAz4N1TtnOFtN5EZzOEmLWhETs2KuMJmh17z/nq+gWVrxAWTprhVaOXCSEFPsY1h33EfqI5JQZBJycZUZ/0OJIrHxnAvrcDVpCiNXVLNqnOHVrCqyIiuKUVapBjXVOiNRd2dXNmOzOT2qGA2Zadd1uJbYEwbTCWxRa1CNGkOXZI3UhdQb9qPJVGFL6M3da/Y8VPHMDNUIeIt3uVU3JhVmOTqPREgpwVF0HGs1I2LqGOQNilG1OdOxzSkiZHZ1O1Q388gexQkGQ6kSUvfk2YtNjVq/r645F1UTCszUNNBVraoauzAExExOJkyhef4dr1Jbbcc59lfLuv4Qy/KHHA8cyHkLa2IyZ4aIwFxzvr+9++G7V6p2+eTp5uK661chdYujQKcNkh5s4gQPXPqom1W8ulg/e3p9fbXt+67v+1Xfh5DAUksZh/v7Wx+H2zyNZnAXiO930w8/3MJx2fchJCFnV27ZkqgiFnvpYlxt1iDalbGUYtBajawGd2JW86nk2KXr64sUw+4w1KpBSM2mKasWeAhcSsruLkSBqFqBEQmRoUmuH46tN3ZmMTMPqc7jKLZ8iIe/WYbk0Qp9dJwxKHT62KJhdcCXvMvZjfeZDfd3rvN0HqL5ms95pRAkOHBU1BDNUAbNMBNZuw82IoJDzVo66xI/Ov05Rntm/UuTK87+cNs05+ttIRRYoylPQ3iahbxcJGH2/BcQY8sWv0ijfvxo72CaFbrnUb1Hft6RxPIlE+j0+fO3nR2niMnijv/4YeePxOwEYh4hVgIFkShRjjGk9jEHM0QoxaDs7nQGr8kdqqYOU8CInJpEOkZJUYhp2dBZ2RqCMDOt7j7n3zUSRSJx4JnKhpla28CIyawpMFr0oJECx5TCOcSg7lXLo3DbrNc1OYK8tvmSt7xXa1DO4MzdetM9eXb10fNn+8Ph9v7tmIfDflS1GGKMMaZI5HWRxKgaGeBtNXoIQZjb+pjFe8ztxQDEELtea7E+59DFYZxyqTnnkkvOMLMFVaDFKOCP3AL4ko50qh8yPz5a5v2CcucfJ4/9ne3X54DUKexC59PybAOHLcGtNpC1VrMCUyaSFnxyBxjM5gqmyM7S1NYwmzW8jh/3xk4X+ujVJarL5lbKNE3DlKdSsoioaqmlaAkS+VRh4d2Fefpqh5tb1apWWyLXUsLjXTLmuGptAXJ49/KEsUl8tZJtL6s+hpT6GFaJekEUD9wySJ3NFvIMAvYmJljKVznP/3Nzc65GFa5OqlSqT4ZiMhkXQ1XSSlWh5sUR1CKU3RwtX83ZsvpOJl2FGIiCegcylhq6mlZ1tc2bXlM04pF54rinoEdDM0csXashGKPlUfkspmrf0eKlbg5vUjN3Lzqrv7n537RQLgt4nWlQoCiqYygOdw4eyJ1MgckoraRfXUSPXX/LOzKvVXWuW8rUUukILmxMmDcUwB2mLUnS8Kjc07/qg0DCDJjlPBx2N29e//Dq1Xdff2uO5y8+/ejj8uzFx7HrTpPrA4cQNgnbHl1ACNyluF6vt9uL1WolQYLEELtac2Av424pHeLuJAxTn8ZiauNYSq+RSYiEaJatgiIkxhCiqIOV4VpqMfPInDoOIeVaSx5gNUVZdbGUTHAiqmqlqKm7CZN0cRJmIeliYDLAAwMO1bmi0MPDF1bj3WgAL2TJjwzKu4vx3Tef77ofOh6xv++xPz9+hKPFpQVDLP7fHCTi5lcSMQkRVI2YYxRmnMot8JxkMhMZcIcv4mVHKwyrtOgvjpTJ4si6z3ULz0FDe4HgYMCt6dLmXcVt5oBPue+EliiARlssHvtxAOm0U5w2j6PBnW9kzo84c01PYazl42fh/hm9Gxm1Pe+RN7B8G7CYaT/+hPuSQNIqF50FYImpS13fJQmBiI9FbZUIKQhLiknFc65zTq/BycxhqtWh7g0GhTDX9BGaaxLM0tqjDFbN1Kq6KlyJmGMk4iBB3L2UqbEUTCBmYmfyWpzJhWevzt2BVrurBcjrVPI0DseqxM2Ems8CH4gsdRTJAVcnNoDY4IRqSmQh+Hodnz6/vKzr++E26zSM39Rc16vV9dXl06dPDP76zevd7qDVVS2jtHgNuTGvW1b/PBu5FRQOMQYWWTQuXlS32/UwTYfDuNsf7u93qjUo3OgEW+ZgjZ2BDydHE6AuOnO3ZcpQG4iHkWGC81znanZKfZlF7gsmP87R07wxOiZ9zqFcc5urbTVNqqpCq7orjABmJikgcQIHIYLEQCxwAhQw89potwfz8z1ZRX4+xXGkG4mY3KyO05DLFFOIUUJKIQaDT6UQtyD0KdNhCYierMr8gxqIKWqaYkgpMktb3TAjPq2Ucybm+HdfnMjjFafAL676w0frTRdSEnBgokiVoeQONXMQ5oqqC2dGj0DlnLKxlEglcW6Ra2EPVB3qUkDVoSaqVlWK6pRbaE8F1cgUIHVUNb03OhA4ErFLDyJilVi61WR17FZ7jfdWpjJ57O66dT1qyJoYDcwkgYngRq4uOlcVImKY1ymbsAlbZGIqRGBCmjUBkGAGqg6yJgn2QMJAy9POhmogpWa8XFVhjU9MBY4g0pzUxpcVNScTCAsjCgmjD0SEkqHmRmwGdTXNeZj2h3xUEPqcMmKOR/Hl9xz/EqDP4oljmWjuEKYuBK3T7f39d9989au/+MW3335zd3cnIe73B3O7uLraXl6c5dG/f+eOwk+3Yb9hRi15yrm402q12Ww27kYsIUQiLyGEEEPoJCTzKpDUpVWnScKYx/u7fS9Yp20XhIXBFFIgWHA2t2E8VLAQxyBjzjCsu77vVn3fH6bhsL+3kmsuGZ7HMZdKxFltzGrVVCdyJJE+pSCB+z4quxuzaLWC+mDFtFCWGczfJU3R5j87kZ+KTLzzrsY+PKja8A6eeRc3kZ8V8DxnW935pIh5fM6j9TB/TMMACItHzFgiJDbXb6BjcGeOZXAg4hCMiGQWBOuR33ggEWpMQws2Ork/2NqPl+6L/GD+1HuojzOGaf53wwKNJXwXsrm7qhZVnrkgYoBahdaz97dYQHulARdQE+sslejPznwOSs5x5aMwKuOv4OY+wrDvPGmQSBCOcDZtWb1aVdv68kghiDlq9VK0VrgCDemoaysnTsSzC+5avVYHWy21qehbMMSt/YRpS0bjhSVhgriZFqtViahhUbLGXruRaivNTiAIiBc1jMFVa1EtRxAjzOu+267XXZdijDEIsbijNjZoLqJC0s7lCEKqOeehlFFCuL66ePLk6tWr72vR1ap/cn39xRefG1xNzbxM6oaWUHoWdJMl2ORLoSMwc2AGN6/fooUuhhhDYIZZyaNWgXFT6KgfH4q/Y3zn0rdzAO7BQ3woRD2by+2bW/pvI60ANDNCi6R7XoHH6mw0pyXh6ImbkTvDhd3ZrfpcOnRG8yCuJFFCgJNqATURDrm5maoWs/r7puj5XAXweCGY1XEac84sHEKMMRJzNfVaUopzlta8E2DJFrLl5wxvzM2s1lrMjCUFOZeB/8hx7jI+tGLC19v44mq17UOXAiQ5gDqZ5oadzWwp93K29o7xoEXRDyxRPj7BOCECU3IyokqzlssMtfhUdLRSKBsyoVgro+KAmnt2B7kziBAIzO4mUbRQCl6fFuuIUFFLpDG2CtnzwQRhisJRaE4Int0cdkfTkjXFDMGdiKnKcfxaMgOpGdTgDuEmcCYhUvNKMJBBOICZkpCIAjBXGNlcPgoy/3FhdxgvgxMEAPdNSaJmDq1ubgTTWsdccqn/qpiYo+8BkBOYSAKT2zSMu7s333715de/++23v/vy7c1bh3dd6rqQUjj6HT9+0UQe2SPU6pRLVlV3DiHF2NVazlUUjV8GSCTEEDfrzswvN71rLbWMUzZ3I1I1cpJEBKpVa/WxwsBRQhNnwZw4gIsLN76lqN7d70Lgw34oqixRDbk0EAMGdV1pqgNv6chOpl7VWnOWh5DCzv68izDpnbX27nv8nRfPbMWDVJgPDO2/pGkSmvz2KDUA0PpHLP7iwnMQMQsTU9MPki9CoYZXnLF4NmeeG2Bmj2/+NMUfTvaF7JhNIDHjPFgyA6Vjprs1Ac+DE8PUS8mDe51L75E0PYeZtfM3ksabgYERkVur2ienC6HHj2euoHO6L7Rnv0THcO5Pn1/S2V02L/Bkf4/RCPczYcpyDW5kylpg7jW3qE0Fw5SDioip2nAopagrubtpCzeSodW9IHaaCMNQh6EehuLw/W4cDlMZaxM2zQsOBBgRJJAETpFCADlU3aq7uQRiglslmqtDOtxMq6obGGBhcpHAIu6iLZP4eCcxxudPnnz24rmEQIDOJWu5mJJbdW0FHEWoVVCIMex3h1cvXxLT9mITmC8vttvNmpy2F9unz55+8ZMvAB+HA9zyqK4eRAIRM0IIKaXWoaK5mUxEUBi5khNaDxdVawUEo3CK0ney6qLV0OoSNaWQt7poSzT0fPbODZaaHmBZ4Y1veiBym3M6iJhYiJs2Ek7kxw4LTaOy4GhiYieCc5Npn/QE8/QwJo/CTFLJJjU1kJiZ1zKaGUgDUQwpBFFzLbWFhN1ar4Zca/Ef3WD8jC5ZJq0tZAq33lXTNOaSe+lprrNoWTWAFtGNwxf01fRpJ2ZlHih301pKLVq17dcEQePA3LnlVdmjSzljYtqCoVMQlgnrLlyu0+U6rVZ97Ncg1umQ8zSVWkqtNbcWW2azwOvo/2FhZY5EMjV0unxn02cCRFBpPcrY1JUwmk1qk9u++AGYjKqS8dx4iUAt8cUNxi22Y4ZqVFZRx877VeACraFC9PxegiBFdB1EMKnBkUKFi9ZQ52iXA2SOqiYEJgthRozqVt2q+lR1LOzOq8h95HWIAs9aippISJC5310QwKxGq5lQAhuj1di0INwnITJqnUVQAYiQkHQBDIO7mh2qlmpB3NyMqtF74hZ43473gRl4ZgQffOBsDZ5tqzTvN22Z2PJ3B5g4dCnm4fDD96++/u2vf/WLP3/zw8tap8vN+uLJ9YtPP/3pz//4+YtP++1mnlOPqYQHJt3M8jCO+71zn/rSaDs4ucGaD0mtFoTWWnPOtWhMabXuL7erGPijZxdEXutkbsVpqDZNBYwVEpOPh1GrcYxwqtPkVc0qqg1DHnAPoUH9MJXJbHr9Fu5aFUQx9URcq5t5rZVIVqqs1YurqWptwY1a6ziOq5wf1Irwcx7gfWSMgzBL7nAkuR4/0iOP8wAtnP39Xf8cD98zW9BjZd4Pqd7a/3mphXH+y3AuuXgQCXl8ovZZWozqO7w0Pf6Ef2B0/uo4nZY/x+LI/C5oIKKYZLtdP316vVqt2u04eK4JUXXh0lvhS13qRJgdbfdjN/p9i26mKk/RpT9sbf6ew2B2Lhpwr9VyrqpixiXPTYJYmMjVHVxrsXGophY4OEhnXfq8JzrYIGao1XPxXLz1jYCBvMl+l/puTCIi5BI4BArBCaZatRgMTBRau5cmep8LsjVpY/VKcBGZecBGLS6NV+ZhSTF8/OzZ+NlATLWUw2HIJas5VbfAMK5QAlg4pth3SQKb6X6///7ly3G8uLq46lN6en217tdPnjy5fnJ1dXVhZqtV16cEK1DEEAWwplZeJoMIN8zLS/YtuZEz3N1q28vIVcijUJdESzANM/W4VABotVDPD7e2TbCbtDDi8fcGPNAotWugYznA+dE272feR8mAGXViLkVNYHZGK0mwZKC5mzWz2p4XkdesRk7ugSX2PchBwiGlGIiozBO+5Vx7tVo1m9U/gC98cLsLjpnhuplP0zQOY7uoEEzdD+OUYrfpe5PQ9Ek4VcJ91wa42dxW1swaR/aY13z/NZ4vzwcnZeZVF7frbrvuVn0XukTEKl5i6NRK1VJyq++sWpdErfkRPOC0l/PP4vDln77Ui4O5e3VTy5NOBx0GncYy7HK+DbpPKMYtT4Ed7HOpnlanuSEacwPKyMMuBtkkMa0Y9t104LMSPsze8LG7lWog76IzMKkQjGdSlBywWb0LsjleaSCDV7OibtrCkO3RtXMr4NRyZlsqAIcGs6hRL8LmSlaJESL3GoSPS1vN0Zo5OEDEQVzEATfzSu7eKhF90Lz72f/pFPR5ZEAfTZrjX87nxJyGgtPudjpbY2GExdV2d3e3b159+ZtfffPbX/7w6uvhsFv16erqyec/+eLTn/zs48++2FxcKxoctgW1HAMkD7YY8iavEU6pW/V9v0qpYw6N8YG7t2AfkZuPw3jYjytQ33cgD1HW6241pPtdHoveHqYGYswt7A9wq6Uw0PUdOdVpQlVmeNUyFK1mRJlllFiJx1Kar8QcGmLWCjOoGolmMzYtueZSSi7mTs3xyPmynqpCn4/k+xYbveexvJ+w+dCzfqzy/MDhZ2v5X5yWCUuEuK1kLJjUl+rvx9myuFBNwemGh1lbx8DT8eeHdvdHfu2jQhyn65kZmUXf3qTjc4loX5Tkp3nGzOv16rPPP/07f+dPnz17mvOkWt2pVp1yLVPOudRaS9FS8jjmKU85j7k5hLUl184uMs3lZU8jc2SqFuVKI3jnCz/SQ3hoDT+I1k4uBM336ovruQzLNE2HYWByeGiQum1haqzVi9ZcapkqE6cmAfFZ6drIVCYIB+HgLmbkhhCkT9161XaQPJVi7jGxBGaJYJfgLERsWus0uRUnRmAWWcALzKw6zLyo1aZ/1NKS17hVKxHR1IW+747gOKX4yYuPyAnwYTi8ffPm7v7+ME2qiMII0qoDs3AIkroUY3A383p3c5PzSIbYdS9efESQ9ebi8vqCmGrOptW0WiluiMxGlHM+Ti0JQZbAWAgIjddAM7itZ4Fa6zOqhWAhUIzcaYCDWaRqqQqYVhCdWhe7taIi1U0wW3W0YgtzCzfMzjeIghxLFsz9axfCraVF29H3I3eeIUrLC2cmuDAFmYWT2qg2EmER4RAEBK5tmXYpXj+56PpozqrIxaapmrZ0ciMmkNdazGqrM/mBSXl2nLwrXyoaExExB1cah3x/v89TTX1OKanq3f2u7/urzWYVu+be2RKuWUzUzHEwkbppLVVLa/tAJEwyF/Jon7WTaVv4qvbjXEf/AMcI06rvtuvVugtBxFSdVIRjWK1F1FHPj1LmhDqdZemzXtpmLqjdLTvsSLESZmygtZSxTGMZ93XcT8P+MOzH/T7v9mm661Gaq+hE5mTOTY9byQBqLQvcDNPktzdhKluRqKU77K5ub0OdI30+w4VashowZpUA7jgQZXNyxFABN4IqV6VsjIrgzi2nkIO6tyrTLec+zz3oSMhUazHMHbxIiYkqGu8bWWLqKMasTmoQikncJYiZk5pqRVWrBmMwcRQGOQUPkYqSGlRJvdU4PjN1c4UWO9rO9kznklcLivGGPXD0GRwNjx2xyrEWNpayEw3ez5tTQ57NL0Ng7kK3u7v98ld/+fXv/vLbr369v/shSL2+6mJMV0+uvvjZz1589tOQNsXZiBzm3BxxAZY6jo/2F+FVt766eNJdXF8/e/Hk+sl2u02pZ0mtsicJgWIMkdzH/XB7cztOWc1jis2IkHBVDFPO399JCCCapmm3u3ez9apfdV23qgLPwwjVENi05v2kamD21KMXihEsJNQKnVZwe5ZavapJtGrIZkMpwzAOh0nVJAjgRXV6UJjNz4+GKOkUYp2fDc3Cv8eA8rzM3RkMPeNkjplH8ysfoHH4PCd33ld56W27ELAPvhrvpCbhvNjdwy948Cb3M9S7AJ0Pb9E4Pvh/8eMEdIiI0f6gVavEXP2V+EEonYiJttvNz372kz/6o59LYLgV1ZLrlGsZ8zjlPJVpzMM4Hg7DMI7DcBincZryOEzTVKap5JxLKWb1VDl7Uerw3GLuoYmfkftj+PKh44yz/LEhcveqNedCc6EgIiKWSCRmbOZTrrlULVVYatBAREQhhDljwR3gttk1bW/rBhGDpBi6SLnYOGaHt9wlgxkZsTY9oc3xIBehmZsh6JJQDKJAwZzNqWaaFO5L8XYzCZRS6tKpWISIbLerabwgeJ/Eawa5HCSGXFRzCePEqrOusW0nQuRgV6+5TlMOIW5Wq9StNtuLzWYjQnBrIlKtRasJMRE1DGdLgd8UYxCOQQhMwlBtJVRaVRudm52qaqm1wLSND7wVANAglRnklM7S+AGYKay6RTeae4zPMSOgWT9zwI+F55aS4nOfSfdjw8hjD+HFpDSL7QQyB8yZ4K3Xm5u7mhAnki5K6kRjkOoTSCttt90Xn764uFyp+v4wvX17f1Pr2FrbNGkAtaSxBx3g/mrHvGm0XKhQsw2He5Z93/Wl5Ddv3my3m4+ePrtYbYlAcwnXtjzorAEU0GIXdRbEtLRcftAn/LHlAdDUWD9yda08ZoqRGVrKYToYPMXQdV2KUSTEGJfMLi051xadXY4ZzZhBlVVh5k7qswDZ3Q0FVmudcp3yeJjGQzncl2E/DbvDsB+HoY6D50O1agRD6zPEjVs1oDUSax3b2c1Lxv6exxyIuWYfDt39HdeTXMlaqlF2g1cjMpjOohlhl+hMrkAlVxd3qgaDta5QIuzgaliKH7mZZXBTt2hFnduQtvVgrSI0wxAtRjQAJOzMCJHcnNyLQtESj+a6NM5iczk1BKksKObVYbPq/cOTaNlc7Ozv9KDU8nuZGF8cXjgAOcmbWm5b+yBTq9TqWvPt/f77b7/97a9/8eq7346HNyna1cV2tVqlbvP8k0+ffvRic3mVVepps7NHqOURE+NOxYNJ6lab9XrdpxhlKVLaEtxoDiLC4GplKsXJWChFEdmP01SsKIZio07MlQOXqdztJjM3j9XqqMqwVviOK5upVjdzAlhdqtEcv2dq5ahNXc0rtDXUbruLo6qOpezHXNVCCESoprmecw6zGNLmWtPzINPptpkeb1Hv1oM5QY3ZSTl/R8P9bQl/cGf0M87m6NU/mgFnuUuOuRHWw8rjYXlCR8blvcfRFT27yKXwyjn7smxdP8bEPD71GeFxOhvmgvSPQMxC8biYGC/1EtqlmeVczLDebL74yedffPHpqu8P4zBNxdRK0TzVaSrjYdofhuEwHMZhGIfD4XA4DPd3+9vb3d3d3e3t7W63G4Z9zrnR3cfY+TEr29Hg4KzNBABraRmPb+1M4niEL8dHejaUOAvUnQba3c20ElgksoQYIzMr5mbjqkVN3fQweBdjiimlGIM4SLWqOgExoO9C34cYSdiZPDB1KeaiBwaD130XUsh1yq2kFyCt1WqAkYeIECDBiYy09ZMPIUoMQsxmNI26o5yzN2Y6CKWALlE8q9oJd4cxGRF1Xby83EqQ1Wo15lxUx2na7ffTNJZaVPWwO4hI33Uxxc36IvWRwVqVEbinVd+vV31rS5piikG0lmksjT5p+s1pmg6HQ+sYmlLsu7ju+y7FGAOAJoxoBaPn3OA6Vi1qZg5mCZGILYSgFmMMXaybdc9H97DZUTN39aVUYMMrs5BtZmGImw6TqLWuDcJ+rIrjaBTNMq18rhvfHrq50SLfInNQaP3qzJPQZZCLLq430QkHkaGPOU9Pnlz8zZ9/8fTJxZTz65s7sVqmYTxYsTrnptCxjOdfxb84e6e7uxGcRbrV6kLC/fc/vJ2madX30zS8+u7b6+urn3z++dPr61Z/UltaltHizFEbliYnr6XUUsw8SItoSBNaYdl2T47CyVr5h60TQCQSmKmUMgyH12/vipZV12222wtDv14fu6aEEIKILo1sdTnmSgG1+JQ1F1UvbnAUK6qqdap1KNMw5kMeD3k45GGX97s87oc85GmqOXMt1VxBQgHUAALBYYCSKEAwNhcyaPFxADK5c84YM+12UF1uGcVorDRWsLAEJsZUoEzEiOIxgYnMUZjNWJsIx91h1VGNW1sCwE1dHU5o8kICq4lq62pfawtFqQMexWAuRFPXuToxgngMarlWL2ao6q2kWpeChCgSCMTQoAiSuaUfwBZlET2wbDODfg4O7FQDnQBqxYNxYmse4InmK7q5l1IcHig1YN7aCAMEI2lJlQyC3ty//fUv/uKr3/7q5cvfuo0vPrp8erW52Gy2F5eby6ebq4/6zUUFK0uLLtDCHLRswUb7+8O1UszfjvpmtI05XFUnK4NaZmdrFQSdTavWQm5dCDGEQ7Gb+8NgTsRjruNYp9KajTtgUgGWi4truIuIEcZiDgdFNF+UAq06IhImd6rVLI8GBTFLbOmi8FaeYr7oQBTAAMy9qpfqBoPD1Go+bbLz7uJqpiRoKjw3Y4AgS1RsIchAaBK0hUKYH1rjno8gc97CmqDUQbWRuHNFXz973OdEEJaYSxMC2rL3o8UMj5mhcwFym4t7PiBi38/E/N6DZ8TSiMHfn1nwfn0JgNZXcOmM3d45wxq0H60O7Qxi5s+QA878QNBj5qXo7n7/6tX3b9++/elPP79+cn2NK/MWdrBaLGfNuY5DnqZpGMcGYvb7w93t7vb2/vb27vb29u3N27dv3tzd3e52u1LKfEnMBPNW+6oN7rxC21U6/AGk+9BxNvr+I5jxfNxmXSiJO6tB216IRgu5m5UKIaSYGvWyTFBbugcaUcskcmYKIilJVyyKgKjrUkji0GpVG+ssRCARZvYQEIKzODNLaEH30Ko1g8TMrVbmCnrk4vOjQTBTs9rqZaUuOkFi6LUr1cacYwqHQxqncRqnnMtSXCGu+i6mSMRtlQpJSimlyAxmXvVd33VMMKtm2nTn7k3BqqUUEck55BxLKV1KKSUi1Fpb9GDZw0qpU6sO5yTUmpgKxNxMRVhYUpx7axyf4aIsbXoqnMolLd4EY27qyDN3QUSYlXSLXnUpbXBeg3EewxbJhjnZ3GG48d0hyfWm/+hqdbFNBN/JtI80Zrq66J6t4nUfRirWY78Jh3U47JAnqw5zal2tWhTr906598/DdufmTbc4DOPbt28Oh8NmvS5lur15K+S7+7txOKw3G4ncAmfL8mijt2iCzGrNtWbAmZg5nPGpf2Ao/T2HEyvYqg5j3h0OU845FyeK/VpibBUj521p6Uo7x811jiWZmeWpOrKa1SLgVZfEeFcPuYzjcJ8P99M05vEwDfs8HPKwr2UqVqqaORlIncy41ZhqicUwODOHzoWbT+I1k1a3TCB11zJpda3TGVxr69dbtXgGmVOpgCBEZTGCM7NIYgvmXCrM68m3auCZ0TrYkaJ4i5VzK69LbtR4P/fWxprIAyM0GGnGboy5sk7LaqvVa/GiTiIRAEhbA3BnJ2reizDVYwnrx3Pn+OdxiOGRQvPhdDv9pQHbqjbl3HY9Ziq1EknslnY4xKyeh3F//+a7r7/83a///Ltvvzwc3vSrEMPFxeXmxfMX10+e9dun0l9q6GpjI+aedE4GglETp51i+6cLroabsb45TE/HcRz3hx1HcmWPqWvt1ZzYaq7D/TAdJMl6u0L17HNvWGJKKRBxZ7NdaD+EhQB3V7eixdyJ2Qy5qgPMrcy9qYHU4XPiGIfWzXSRKTpA3nfSJQkiDHETA9dWAMzMFsnE2WFLs7e22x5jNN6IXxgpWaNTiAxsZ0b9qGjyReBxYiLoIS1zpFAerdeHf3A6lS0pL+/OiyXa++h34UySj2NWzlI968SOzAeOJLGjVYZhbvlNraBI86YWm32aiB/e2o+MDh/VJ7zgGGtbPUkjMZvP65h1d+b+gIlxlKKvXv3w//xP/+E0Dmb6d/7un3788fO+71UroESIUVJK6/VGq065DOMwHIb9fri+GoYhT1Mep+ntmzdfffPVt19//d133x0Oh7m7grDVOk77PA1eyrF0yLGpn71XUn2SuRzDBscheTd392yF+ywUCyExJUI0RxmLwzgSyEUIYPhsMd0biHU1c6+1TqoG51qtZJRMVZMwC3MKkSiWiq5LDqQYQpRqEpRLcVdoMZ4baJEEsBiRs1BKXQji3up5QFW1eqm11GLaSqwTMUSpVNR6ir+2GrNFJ7LW0UcpoKMYPHSOrnZdn9ab9TgMh8Ow3x+seopdCimFPgZxoPX2Y5YQRAK7Gwut16vtZhNjEJYoIaQYQqiqC7owM1fTXMowDjHErutYZKkXZwQQM6BqZgRpASESbiVd3K2C4KZ83pyLZodx6ck1B2ibRouBWRNIaOLqs1Xa+iX5PHlPYvIZ+dBSgMaX3YgAuMJJyYqDDIFjePbs4ovnF0/WAi03qPfMhxK6aH7/Zih3uQyU81WH8aLb30keMVQrSs7sarXU9/ZOOmdSvVVUoXYrzTd1atExMvMyDLu3b7///vvvXr/5fpom90JuRGZWd7vb+/ub2EfpAtm8EVuruY1jojscpZSh1ongRAISgrgDcwubB/aOT3GGh7bxwYYId1KnYlD1bKbg6si1jiXnWmIpYubupRQCGkt3NGmtalHrvVUJGA7ZtI6ZYrzcXGSUYbiZ8rC7vxn3tzqVPA7DYT9Ng5bscJIkMREpC4DRrWhVKIxb5NBIYrfaWp8Upnmo99VLaXkfyijRp4Ic7MwcOJGJGEV3uJrCREIMrETFoaXA0K+6VeAObDKVPGUzhSAQg1qPMpALUsjFdBhMHSBCECZ3dVMhbdGgFC2KrLqQgjNZEomCwObqNaNklOyl1FKtVIcYkYhWkBMzi5M7tRS/yl69GHlZkDrQ1gFazZG2a8ykB1OLus6Kltkg+rHthjc6YY5EuqOaZ9VpzE2URkCesoQYuAXJBeplGt68/PYv/vk/+fbrX9/fvSzTbZAi7Pv93TBerbcXl0+eG6+UQ3Wq5u5K1tLgncwFS4XApRyHn6Hqan435je7w+39zUVUyvvpcJd2r0lCS/ojF3M1LVMeqOfLjy4uKBh4ViAZWWsL4CCeq3m3XNUZxKhnVVUDkIvtD1Ot3uraZ3M3MIfU0bqnFFtlvBCCEJOpt9oaqz5t18ldmCIQnIPRzMnUUmqpJ6C86DDhTq1rXQvGAWj1S1RnX7lRw0IxCQvPfOpcFeJcYgMsT52xVO5eQspNp/lgl/OFtF6wUzvpvI/60SFsMOBh+7qZMzgt/5mJmfVUx+QOcBO/H83cCca0F5YeAGauVo72YMFThIUYPDeRmBnjs13BlyFdVLJHEONz1UBqHR+ZGMS+gJhG4Twigdyx3x9+9+VXMYTtdgOC8N9+8eK5u7U6JmZMYIA9hphi36f1arVej9OUc9ZpKodhIJab3d367u5yyt1qlUJsFALBiC6m8XBzc7PfH8bJtDYpPp1jkx89HnGqP3bMmSgSmIIZabVpyg4LjTgXIgoEMmJTbTVPF7Ktumtz11p1Mq3VVSlJlzpycAlTNhFxWGheVEuFMLfqFcZs3IKi3vhVI+IQRIJo9VqtqtbqpqitlHWT1c1NQEnVHzd+NlUtTQNic8oMS6PXiFk4hpBiiDGFELRYoNil2MXETGpGzBJjiJEDtyp9zFitV9vtdrVa5anGGEPrqW5s2hFI5z4Orqo568h5zKVb9evVOhCmcai1kgJkDndqYlJzqkzSGiuaWa1aSinlQVry+WNb+ImzbOAlkOoAWpelVi+vTfFWXcpb3bVWB3lmVxsSPa6CZkEbWFJzgxUiC7x5evnR589fbBPyGNlioq5YjOlis0pJYvDYpfVlXF1cr9aXr97s3twNN/fj3WHMOZMfg9+//1iCAm1H8dZLvNZxv7+5u399v3+T876UPE6tF0WtNr29+X77ep1WkcR5tmQ++zyNU3BXzbWMpQy1ZhCYA0MeKnbffzm/94JtrhZLICGJJLWNMblbrdM45mk6DAMRrTfr1WrVdV2Q2YXjJjkT5hA9phJTiCqxW/WrgJC6RIQpD/v9zsZSpmmcplrVjYiFOBKIXEmKczAKRuRkldwANrA36Buc3STX2bI5gYxQCK32zNmdE0OEY5AIBG3bjDta6j/clJxRTQIFDsaqyPDm2R373sGFECVEMitSzQK3djoi7mCFz1IIdwpCUTgGYmhkFpq7mXrr9G5GsMBuoZX8Va2kUBATg2EyF5RzZS/v6dFDDx7fEaee9KSPEOn5wXPOH6wlYE651HGYDi4AE4UViSu7erFht3/98uU3v/vtt7/95d3tqxinuGbzELvQdSmlVbfaxm47eVQEBblDMP/h1qRkCXC0S1Q8oJVaXYBpHG7veM2quR/GQfa3IFIzggsERNY0woKYuiABzlW1NaJu9K/P2H0GCN6K+RCb+lSpZUUKoU7E2tqSzzE/iXHVx6vLuOpDmPsXCgharZQ6FUsBQWAGRmOVJTRKmeiouTtfMWcsSeNRcFQxuHutNsdYYRKDSM8SZnrO0aoqgohwJmjzIyj7A5asHd9GADEYp7L35/XYfv+xiBbnHw34OFopdJrbT9Jc+58WRAIicXc1naYyjAMzX1xsUkpznfY5tfM0fc8wzMOLWxJPjwVUFsbneFWEtqPSWVHhOWPJznBVu8gm8NRX3//wj/7Rn025rPqVSLi62nR9D6dcbBrHhnCZZdXFPsW+S9NUp1zv7nZ3d/vdbnh7tx+qba6fXNLTKEymlqfNWj779Ekph1/96ldfffPy++/306SoDmKRU/b3vJU1nuZMoT0TcGdjckzlI55dleMAOcjBDgGxE6laqSXX7K4uESwhcIgSY2glcucHNzefNiaSICF2KQjTrH8LEuM6xsC0N6FM1syeE/lc57yaVjerzAjCLnAou4o0uap71an5tqWqEUFUIQJ3IeIQuOtSCOSoqjgH/a1eL1qSzYyqDUt5FHZECdJRlNCnpNW4hXaEHWbmwpJWXVwlFgLUTAlY9avNxcV6s83ZFqkDG9FqtUopuZuqlVJyzlq1FM11Cn3/5KPnKYY3P3y/v78rZXIzFjHjMRfV6lREJIZA7lZ1HMf9fr/b73XRKyyyDSMYN9PnaNEpMhxnLzHPAQUzrZWWnurNQi1gpWEfB5bMnBaCmFecAfMqUFAFRq0lIDy53H7+6fNnV5wPhV27t5h8vdp+/vlnm81qGA9ZzSgohT81enOz+/Xvvv3LX3/9i199udtXCRTCA2LpXeh98qCJhAOgVRuxVfM0Hob97f3L/fCm2j525mRV94AblbHi5Q/fckTqGZTXfZ9iIiZioxbgQCPkDuO0y+VQdWLpRITm1KQj4nl00PKTFp5m0aed74zeUtA9SIixi6mYGZtGCokEpd7fvL25vb3b74j58vry+vrJ06fPQoy2JK4TuwNM3PcrAkvonSXE6O6b9XrVr9x8GqdyGGuuDmJOLNwkru4OLk7BKShHSkG1TG5qHgCuhmFygwpUtdoxDt8ccGCOFBxvmIlWgk1Ha2FWr3Blqm5WMs96KyWMVUIhIW0zxBkKAXXCAGmpRB5F+8BxFYtbawx1rKQIc4OrezGUaiWYhFYxktwNZsxO7IYKql1HK5ARqaOaFS21Qo2UnAmJXBxJagnZURTmD5/jURHjc5s8OKzJCWkucjk/4zNzSWgYHsdMJHZHrXW/202H+yT80ZOnXaAkBh32u+G7r7/+5//4H//w3Tew8Wobnj675KC393ch9S8+/uz5R59K3BaLlaKROEiIe1AkEptLGZjpVLK5BwkEKqWcV+sW+MpV8nR3BzGrFeviHJyYAArMUUREwCAnCGiuUm8EsENnzFIBJ9fm+7iaqcKdWdDkAu7uHqBCVUkBUphbJuIUbNPL9cV6s4ptcxYmM8tm5uZarJDWDAShGsW7QOQCcCGz8rAPNU5xmUbiGzA32QKaP1tKHoahlAx413ddF4K1/rWmWgEIB5ZA5ES8BAcbglEAc+f3mWk775zTmuQtHIwv5oZndnKxkMeg0iycaW3NzI55nadjrpF0NpHmuM5yi/OMmkvH0YwjiLnUchin29v712/fEtOL8vTq4mK16iW04mhHGOILOz5HU/xhzAwAWunJ+dL5mMd8/G4cXzyCKOCs+MbZzIebYb8fvvzy6xjTJx9/nFL6+c+/ePpMWmMXbrnEcCEEBohZUowhTbrb7W9ubr5//cPuMBjxxcXFuu8Ss46H/c3rVZSPn12xbE0PDssTuWfiZO7VRrV6Ju4+3vgjLPnQKTkh/fck6xtYndUIsNKKsqBhbEjglGJoVZPNTAKBuhQdKHl00yAcRKKIsMB1LlfmwggEuLYKjwpu0nTCWc4vGQPsTO6udW7OMjdpciulllxqNQMLt+FjEXOfBTciXOtjZ8zMrFozmuZHkpj8OEmImDhK5I49tFrKTg5zMExEUt+nPjFjCQZR6rputYqpk7nJAJpOaM43dyOqpjRTtWYKA9PmYrvq4353MxwcVd3MjKvaOJZc1IlYOEqrxmPjOO6HcZzyg1ICZlB1Uzgfc7bPcMFcIgWEU+Kuqjc2z5Yoi7upHRt0ER1BjC8gZl6UDec5LJCtxC/6cLntt1dbqrK9WxeuSfvt9slHn3++Wa+Gcaxm4JhSv9psbu92q+1mqvXrly/f3nGSsPp9LYbnBQ64W85FtZSaVYt5yXk4HO6mch+ibi9TTBcl51rVzKoyEyvyMO0Ow+14SAFV0FEQIPHcpAGqeRp3w3if82CmIa5ag4izpkj/4kcDIyGG5Cl1nZraNGrVcRzhftjv94fDMAxGbjBmudxcUOrhZGZV50RrBiIxpa6XHiwhRlXrulXXrYhEFaWqqUloIhsBsRGZK3EFkZFYSNwJYGyTl0jj5IYKaCla3bU2ktSWKvfVZv3i+UMABZYYJAQmQcsscwPcgpODVFVrnoJ5SAFkHIhdTN0X929m69WYqWeJQBYrVp2oYR4mW3A2OagFD7RJ7LQC7NQyrSvIWs81aymK6u5e0UBjoyCYyEQ8BYj4AtDemVpzgW8Cu53MoMEJ5LyUzZjfCzwEtcwMGMbD4fbtm93tm4t1//lHzy7WKYruDvfffvP1737zm5ff/fpwc7PuubvYXl2u+k23ubiI3fb5iy+un34W4oV6pxQcRG5iGqpKdZip+0R2GIeb27fVrNtuYrdCDMD6NMFUD/v92ze3+128X4+7fdluOokugYPEFEIXJUWR0Irbt4REb6QIwEZwUrgxzaEyV3Mzdp/1SnBnt2YTnVYdBwaIqrEIEfNmleZyjn2abTVDa1WAWjE0KMxFqO9kXaUqS+NxW+WN98gd5idgrYZRUXJvm7y7MZACM4u7hUBMjZyYPTNqIkL3s235uLk1mq2la75/rT5Y7n4M0/8LauJaS43H90Yms9zilOA7JwnN/2IpU359e//Nt9999fU3bnZ39+KzTz7+5NNPLlMvEsmb3zlfFfGJcZ991vZd83RlwtzMcC5U2l4OC2JZinXMLHe7IOWF9F4Gx+bdFI5pnF5+9+q/+LN/Ym5EbE59F7su9atORGDQ4iVPcAoxcmQmUp2+/uZ3X/3uy6mW1HWb7fZys+kDD7d++2o8uOfhcP10+9MvPhPpxjF2/dCttjlPP7z5brfPTfDQnG4c7/aENc9fw/yk27+bvupc2QdqLehQFG6lFHPjyDFyt0rdKq1WvTBrNYbLiqOEFFPO+baMqiZRhIWc3ed8NHJ2pSnXYdDDLo/DWEvh6Iv6phGEEAhzEgnEgFd1uCIEBqh1fjQFwBJEiJmCzZYQjWjhVpPEYWcVrxqGaIV4WrWv2fv1GaH7LBJciFyHL8SGO4hYQuy7PqUOoOYbEXGMKYYIkJoRwdyhM+p2M52jwEWtKtRhxCzCKTWVpzPb3JRda846DuOYq8+6jVZcF6WUqdSi58omc63Q4lVs7uuLmRinE0xp3RRUlYhExGymDBuDbFXNzdVPLgUt5gSnGTHHpg1u1DGeRHyC+sLyVRljOSjlbqVXsnq2+nyz/ejy6irFKOviTiHEVb++vL643h3GnF/98ObyYrO57VPfXW43IZzRvyfzM/9YyhP7lMv9/d1h2OdpUsvEqj6WfCDOT59vL666WksttdQ65TpMk5kliZtNx2y1DHky9mJdDEFji7aT1ToMh7vhcFfq2LTjIpFIWmlvPy6H99DIjbuam9KdzPE5GcNOghgEHPuaiuZhsvvhUEyZuNQqMfarVa7lcBiT3NfriXqTGIv7YRh3+/1+ODDxxcV2s7nYbDYxBDNjzzGmFHuRjiWAAgvFlILE+cm33rLkLaCPGOPlVlIU1FoyxrFMuZRSc9Ypoygrw0gx14Wrjoo5Hfp0U2IkRkGJiVipQqs4CIFAWr2YVnKPVMlSEO46DoIpa5tLRMIxQGnMrrBEIIFwMSp1VjDPtdBbWXAigN2gU5lC5ilnTVy9GipcCUYUnaSa2twjFp2A3DC3hnViCEsK0iWJkc6UTL4Ej0CASHM8506S5lZynquHz7zjUgesbbpzbRhmIpLgZve3t6+//35380N8/vRi3T253Ew23N++/MWf/2fffv11gF1cBKuDagBwcXH92edPV9tn3fppTJfgtVFqQe3gLmPxu/s8TKo2lHJXppc3r3/71W+y1mcvPn7+8ScfffbZkycnAmPK9avvbn7xm1ddTJtVd729u9h23Sb0fYqp61Ncddyn2MeYQmgeJLEH4kDCLMTMoVUAJyFpjYu4Vc9jIiJzEyGDM1GMCIHVGmfH6szEKfB6ldZdjCFodbMWpjVXWHUvTUgvKcaLC4aQm5GVKVdo1lJqeVgjyn0hgN0Vpmq5kiOGVtbK+y5eXa2ZkWtxuIQAt1qruRFImITBcwtLb3NgZixs8bz8JPU9gdYWwjyPwLeOh6Cl/eDx3cfL9Vkqvxx4cCcILALMNMjMIfhxL2mbQkMtxE34CHZ4NRvG6fbu/s3bmzdvb7UWcjU1MFfDxfaqSz1LI9XNW+mE00Wfff8xXnWiU/lkm+gURToL1vip2vvjY4Zc7q5q93e7X/3qNxLD5eW1cHj+0fXF5QakMcYoQUKrssUhBme2itUqhOAilpxC4MgtZ1gKkZacVacpM8uz5x+pp6++2UlYf/LZ5w7/+tvVy+++e/3DzTBM1DIa/fzB/Yt4maqoFc6LOEooBEpdSF3outiqydVcGUghpBBjjCI0DNFVFwRZ2ZhbzQ5nVZ/GOh5qLeZzKV4KwiLzNgKH25xX157arLR0Um2rzN0JYJtnogPOTCJtypiaqvkwTtN4Yi/cUaqWok0E22rPNuncEQNgYenaOjAzMqd5Z3MiijHGGBunA2usT5g11wTV0tLhsUgFTdVMQc6BE6XgIOGUgtY8Idc6upcWSmt1Q0opteoMlDHzjq3ezCMPxk1nJsbOJirOYoHHWNE8YvMx52abudWZ97IFt82r4FThdqZsyFoV3k2ST9f0WW9X9S4dfvC9IWoXxtj16ydP19uPVqljZjEFOIS4XvWb7daB9aZfr7tVH1d96tdd36ezDebx0VyDUuput3vz9s133327292DLCXebFPo1Gyi4KvYrdC1aHKtmnMdpqxaBbxKXYzkqLVSISdWMicWZjeSmg+17LUObpmlY2466sfX8xjt/wGHeUut35OQWfWSvZZW4HIspRXqATikzpzGw/1+d7i9uY/SrTbrXOvN3d3N3f1hPBBLJqjE2K2Y5qJwxCIhikTmyBzgFEJs2NRbDWxXcmOASCDiMaJLTCHECIkeJp5GJoKCyAKxuc/VhlqDi6z2cBAcpqgVBSCn5qlEcwaruo5aqiqRJVOQpRgCkcEN6i7mwpwkgFrBPTCFEKJLHANljjVUVBM4A64GyWTkoJJrda0SajVrbbxYJIQIB0s0x1S1mpOgpUwxkzgc3tqRqUENzR999HCAVjSgFcpW1doWZgM7AnI1b7IBSEsZaerOufyagdtW3xofTgOsdlEuL1ZXF/3tcBCa4EOQerldscX9bmq1CWJcP3n22fbyhfPavCuWWjljhvVgDOPw1TfD65uh6F2trzW/2t++/OEVp3D55Om7c6yo3e7GV2/2fSy7NO3uDttN2lz2622/6tddil2iLskqpi6EECRGDpFCkEhBWFqCp0QEbtyMLwXWnV1E5ggaL4WUQwgOELEqpmxVLU/FatFaiLhkNXViKjnv9vvDMI5jDqkz5X7VG7Afp5ub/f1uPw7jIefD6K266WmOLUXAMWcjmdZWgoVDYAnouvT0+iL1qVptCZ21ai3FARZx95KLqTqfwQaaHUh3JxKaO/mcT25v9p3P1/gs5SIHtUzlVhn6pKNdGOsPHTOIMbOZBAcYrVg/0UJtNw0/M1iYJJRSD8P+7m53d3s/DmNgUve3b9/mKe8Ow8d3w09++rOPnoZ113Hreux4wCtRszszrCG0Z+dYelS363daOjSeZVwd1Um2ZKCcmzua9w9rTbCq1levXocQLy+ehJC6vgsx3Ny8DkGeXF1dXV5dPrlKMZqZOszw/KOrP/mTz0sdv//+zVjU85APFlKqeXRTh42TVpPr9ZPtpaTUPXmy/nt//08vry+//faLX/zzX/yjf/ifDbu9g4mdWldeX0L48IVJOh/8E1XjJ0Vnm2FoaY0c0TrtcUAIHhOHyDFJjEFEmADzpVU1xRjW6zU71Zxzya41hBBCBNidtPo05jIZUexiv+r60KHvowQeIrdoZ61mWgAzKFiJFUS1GjHcnBov6p5zVVWiwsIxiITQbiLnXGq+u9/d7++1zjoSc59KHXKRubqMmy3JOnOvk+MozRnHbuq61OoSdO5BJHIwyy113Fux+hBSiiJ0OORSJq1KMOK5+yMxxySRYz/3hOSuj7v7t6p5f7gtOhGxA7mWUovDeYlStpnUYrkPmb55erXoJx2DrS3Iv8TGMMOyoxeBkwPRSlI1R9jbGZr34JgXHojR1LwGI7YY4rrvX2ziz6/pJ1fe11d6V0va0Uo6vwnpo+1m1W0uWtrg0gJTQFStDnncD8OYJxHqUkiBg5xzvssfbztI61FJ98Pwl7/58pe//NWvfvnrw2F3eb35+MX1T37+8VXfeWiOaSuPxkRBHMmsq+pmbIgsXZckEGBqVTOIASFGdqDWAXYQlAAl0kAmLXgJt1km2PIF2tifxH0LP+PnF044RfG01vub29ffvdpbbiUISyl5OIxmHkCAqEUOfUxBiGw/HKZvX30/5vrk+bNq+vL1m/vdzhkiwe5uzRFEymrl5q7F3dvGwjJ3muO5REe1VsO2VlYlkISA6tNUJ2st6j0YsaSuY5HocUXEIUaFYZpQJ64FB7a8QxA/uZ+mqrlmKiaBQUYUWIKDCsas436aajHAUjR170oRghuqgakP0rGsowgHdoFICl3fdSwxg0t1Uxe1DsQMVddcdBgP9/dvximrUejEZ+zSW6q28hKyE3Kp+5KnajKXeGMiUGCGscDMp+zT1NoUPqgMC/ImXnSt0zgMh/v7+7uquevSZrO9vn4SYyg5mzq1wg0kWDq++zITyNGa9jG0T+Gyv37x8dOrq81mE4rzs6fbv/k3fv786aXlMuz3jkkkmEu1CNqAtlWlmhiJgoAaCZci03747s9/+fLXv31b6lv4myS5D2m9fvHpiz/+k7/27OOPOSU/ZhECDqpOxUgMmLSMeRynrLVUszWXqPfsIuhiikJR0KXQb2KXYuAgJAxnQQjUSIMgHLvAxFAIS9eJiLT86gAOQaIwM5thn6e3N/d3d/s8TWYWgqjaOIyqKiK5lN393ZSLO4cY+9W3MUQQ5aq7/bQfhuEwOlFcb3+ap/MKrqY6y3GwtEZ1d9Ws1Z1DTH2fLq8uLi63LOxA1bmoEgAJctgPL1++PEwjcxJuG7Y7Wa15miZ3xNgHSRKEjoQMGgezZAs1y0ckQViEiQ3uxA6uWsxMpPU9NJupfZ+tafMdzrbLsMimCEx0LOo/a2nmYnMtmETMDtSiu8Pw+s3bH9683e33pdQgoiI1j7d3d0PRobhTLMWeX1+u+xXJ7BMs+5T7QrzMWmYC0RLEXcaTmNyhrWKGH9OV5ubBcF/0Bu+JuR2hl7tPU379+uZXf/mbLqXtZl3qc2btuhBaQVVmW62CiMSQRJ4/v/zrf/3nLPzVl1+/ubmvVeFqdYLXvotBYOBcocbqVNWcwILLy/Wq+ym7vX31Gll394eci1prDdZMcjO7Mxn+7gW/92jbPBFEOARwoBAQ0twS6Pydag0uGOBdlwCf2EHVVFIMXd/1q77r0rrvhcJmTe7hMIzOgwS7WK1IaDx0B8kiRmgZEOpeuRXjl9b2k2b5owiq51xzKUwUYhCRIOKtahS8qLaqx8d5a2Y51zGX6E0F3HZztPASzkCMz0SMw9RbybcW3BFiJnJXraaVQEEUcBHp+9T3XSmTmQiTCMWYUkoxpphiSCHEtnsHBrtryeNQlBkhBiZxKCg3hEFoYvSFFJzDK3hHQ+JLUPdx7MPPcMzZuxtas5lisubuHKW8ekRvzZnRym5GXlaR1tu03Wy3m+tPt/Gzq/HJtUq8nUqxXRFNEjO6y8Y6sCTAPU/mZhJrzbvx8Ob29ma3V8fFxfbZVChw33ePmBhrjsGSjr4fDl9+/c2f/eN/+otf/PK3v/26lOnZR5fFy+VH2/5SSJxnycXMhTZxaxJp/boEBEGxOuZK6sE5SVr3GkNwmNrEKIEtkAHGPv95RLu8y8S0Vx41HXiALc1smMrdzqcD1exERWsdh2puoUOIwiz9KnSJUpDIw5jf7u8nt9EV8Pv7Xck5pGiu+93OaiX4drMJIUamwGCRGGOMncbRmrQWql7Mi7kSuTDHbtVfdZ2CmBRaSja1ak4OZ4EQUoCwd8kJSEFqilqYMe0PFsLx9gwoVXOuThBjsDM1eURrVu7aSvSaqsHcS5DIBEAVEixGWcn68vKiTwmgENKq23SdxKjcehNQdF+1DhBqpUz5bncr3/e3u5spHyj24I4kBmz6XrQyZCqWa/WhYj8pVxL2SCTkQt6YeTNUQ507sz1aA42JgXs1zVonq6NroUABukqcYhi1FDd39bn1Umvz1zJJwSAykGpkenJ1gbKHHrpERIWoBPHtpvv00xcpxLdv3johdiHG7vL6Rbd+Almrx+qszgq3Vq2hFt8d9NX3+uU3+ddfDe7jqtfn1/3T6xdfvPj8J5999Mknm8vLqegjc83EzNweRK3VoeEgKSasyJ3GcQJBO2a3kgch69ep61IKMUoUphi4eaEiSCmsyJnFsjFxMRFhVUNDMCHEGMxsf5jevr37+tvXb2/up3FSNSJW1TyNaiocaq2HYa/VGsLmJtUCzDAVm3LJU459/ySkR1TGnBNjDnEmSApJgtU6jUNr4nF5efHs2bPtxUbbViTMRMzicFO7Dbf73b2bE1LL7ApCIYlq3DFqadkhlFJo86zq3AalZXQzM1rAHWBwFI4pkQQnlFL2e8p58rk/S5Mm/Ni+GWpVOorEzzgPoCkznObMGwJLKfX+fvfDmzfffvvd65ub4TC6QyR2yZm8ZN3tDmN+uR/K6zc3P/vsk48/en55fdF3nQNuqmruM8z2lqnlRiBugTlrG1krvEHuPnfhXNrPNK9x2QWthQzOKLI5Wka0JImAUwql2O9+97W5cqBx+uM/+uOfxNTd3e/v73YvX7662G6ef/T86sn1ert+8vTyb/ytv3b95MknL559/c3Lly+/v7u91zxJwPXTyyAcYpyy3t7t3r69vbu/H6bpn/7TfzZOh5//9LOf//Tz6e//vctu/cu/+M2r73/Yl1pVjaiJeXgZ1oexifOQ34OnMgtEyEOilFqHZw5RWAiOWi1PRcTM1Kq6KRGCSIoSU1ynPnTsakShC2m77q+ebK6uLp482a77niFj9jdvbigMpvX64gKgcTceoh46zmZFyU3FLQZfr2LXsSSGkDlmdyhbLnUYJ2buiJKRQEi4EXjBhCOxnEIt7j7lOkzFQNGOPBxwKvzW9iG0nAVvtRuFpJWCCiGmwGRmpZRJtTJxCGJeRbBadxeXGyJXXTXEtl5v1uvVerXpV33qU+pS6jsW9orDYf/6zas3b4NzHaeRnHnIw1jHUQnVXaWpN3yunMDsxHjYCmbWTZL5UZa8NHVprgABS+8PzNwLGc0aH5uZRAPMWV3VqkOFmhhFtNI0OkM33fD0ovvJTy+ePft43X98vcLT1cu0vqvr8RCqjy6l7/tQcKj0/bquLi6fCry8/aGUqcT+YHQzjDf7w9vbHcX40aefdOvNVOr24qJxCcvNuLupm5Zaavnh9Q9/+Ztf//lf/vIf/5O/+Oqrl7v7SZiy126bPr1/vnnSpZ7k6EFYJRALBwI7CaGJfrR6nab9/a4cMo226TYvntt2uyauoErsrTAaQHxkpI5h7nN4fowzPxj5+TdL2H0hpEGdSVcIh6zjvpQ8TaPtD6hKkigl7xM9vUpXK+tDWAtAo+ZpX+8OuygSWPoQO4lV6/1hP+12w2FYX2wvLy4vNuvNKkpIqVv1XW9lKtPorQlRzWYFDIkhpm69WW2f9BsSkA/D/vD6h2GXqbaAWhtodTjV6oE1htCFntZCdH97ZyK+5Ci4ey46ZlOQKIGNWWPIIgIWli5FgtUpl1JUqxfBqotElHON0bsOqVt99smnT6+vmElCTHEdYgyJOQaWyNIRdyAheK15Goebu5v+8uPXN69vb98QKsLKKca0Yl5NKpl2VrhSGc33ubYFuEohBUpkwu5gOJNAYhANEuRh01R3NG+zsNh6ldbdE2F0qdts1leXmyDSiY9TnmqLAXNrP9YgB8BEDDfN2sXwsy8+v1zR17/7y/3+5u7uzXrLZiWGuFlv930u9UbS6vOf/Ozy+lnqnoTuisJqqjAihVcUJoqReRjvfvfb/Mtf9d+/ebrPnlK3uXz+sz/a/PWffvazT6+fXYeUqrWAwIm5ZOYuhj6JiMHdhMBi7ky83vQphXI3mSOlWPP05s3tcNiJUEppvVqvur7vulUX+3VarWK/CixeijNbKeamY8luVnI1MyYmEQpyOAzffvv9y1evX716u9sNOns7RD4nAizCCYXPRDLTUQpCoNAMEMcUJKZ4EvUTUZQYOTQTJUFWXbddba3qmzevWXB9dfXR8+effPJpSvGH169U62a93Ww3m/VWTW9vbkqenj9/ul5tTMnU3WvXxydPLo3s5u2b3W4/jYUpbDZrZp6mcRh1ytVMhVk4xMDurnUyNSeELl1sN6vNJqSUS7m5eXt/f7/b7WvJLYeTOMy16YjOyNn5CG2rbb11Zt3JsrUYoE2TKGIgV9/th2++e/Xty5evXn2/2+9begX5rL90slJtyPsh13GY6jgOw+GT/PH19VXqOmGyuRwJyOGthI2DuDV4bTqAhTGeQUzbOnkuf7CoDcwbC6On3NeHx5IKToGDu93f33/zjcXIZlkCf/bZixSjEMpUtJZq9TAerp88Wa/XFxebFNNmlS4vt9vt6vvvf9jd3U9D8ut1rXWq9v3rt29ub16/vbnf7YZh+vLLL/s+/Pynn7x48VyUk/Huzd3+fqeUUVUJ5mpW3Y1PguU/kIxxIhcxiS6CECjGAEep1VQJVdgaMjSrDROyUBJKMfW9RJZVt153q22/enK1/ujZ9vnT7dMnWxbe7Ycu5P19LKNf9RHOY9dNfcnVDXWoVquSehAPbCIsc3IJtX5JOvtbLffbh7FUpRBDCCyEVr4gBHngWarmosy6VCVvYuJTpX7M8NTMlBgcJXZh1fchBhZabbqUJAQEJWIOHGISCdyv4rPn1yHwOI5u1qXU9d1qte77ftX3qUsSJQSRGNwtj1rrBJC5g0ViSqGLaUXcpTSktBuGaa7dqgZvhaJb0f73hmO9FXKfWUziBaSeRLKtiJLqmd7LGuRRc1dlkKcEWpLDWvbtusPlij952n/68frTLy63l5ewdWQ1DvvKZeAoLOSRLVcPeaTh227vh2EnasPLr8s01c3VFLpdpbsx397t9sNocIki7meTcL6JeU25a9X9bvfV11//6te//vJ3X/3w/a17SDHQvd7c3t3e31/tVmvE1k+nIcrWkDIKB+bYOlM6VPWw379+/Xq4HWjEk229uLju1iB3YogEFoohEMXAkSEtjMw4Tg0QzmAj4f3D//AgIulSv92kCJ+6YRhkL7HWbJNptcnUCkXYTbQYeXcvQ67FcnVV61K6ur5uLjMp+OAlTyMAQgwxpdD3AcQiMYTIEkAoWlWruRFziJxS38Vtn7Z9d9FLcNNyF3TYl5ydwOpCcPfWu6vVvlI4HEqkRJXZHlYeH3LZj7mHRAvExuy1jDHG1EmgZAITzyizD6ccBO5+OOS+T085XF1efvLpZx8/f+5QJuHQsUSOkUNkiSyJJcHF4VpKng6p20p/sd0+fbN+NRzugFyrUxCWsNoIdyseD/cZRe8OY9UKacpPZ2cPgmbCjeA018d8aOKMyGOUGMk7EawDeRCOElJKqz4RkaALQrForlaMdNHMLWkH82LqY7h4/lQw/PAdD8PdN99+mcs9Bx7H/MMPd29vdmO29Xb75PlnT569cF4b+lrFnEBwdrAa6jTW4c3L/Jtf02+/TG/uLg55b+QUuucfXX3+xfNPPlptVlMpWrRV6jqficwUGAINjBbjDyQEYYkUQsu5TCm5Wc719m5vaiLSd8Oq6/uU+j52q7hepc02rjbdqk8hBHdhkAjcbS7NUnUqdSj55mb33XevXr+5vbsfSq7MrRwdMZhlwYlLkRG36m4EXRhhahKudrQWeidARtzFLsWusQeAi6S+D1aJSE3NTUVku71IKbx580N1j0H6rluve1UdhrjZrlPfaXEtrXNTTUkuL9eG2ndyf78a9hOB15stEQ6HGCPvyUsuBBdGDAQQLMI9xrBepe12fXl9td5u1XyzWb9+/bqUkqcJSwHeHzmCHc0Ylp4tNtM37qhqTCSRDChTef3m7S9/9euvvv32MIylKAjCHJvmys2cREQd01Rev3lz2N2/ffv27n7/2f+bsf9qkiTJ0kSxQ5QYcxIsWVU1H7KzsyvYSwRP+P8CAQQiwJ25Q7uLJwvqzMyUnYMHNY+M6um9u/6QUpUkItzMXPXoR7968/rN66Hva37GS6HxWQ+ylCTI2ZNSK7JzHcNI6XzWE1mCsEupedhfEkgXnehCftUZWpEUFNnQNM1/+uO3h+PueDj83X/+2//6X/7+6tU1lDyOx59++FFAN9uLq5ubd2+/GobVmzfX63W/vdrc3d3f396NxyOUfH/38C///t37D592h6fjcQpzUcG7u4erq21JZT0M21+vYCp//Od/+9x2YLwtOarMcZ7GIJIMG2Z+yVd8yew9Q0cvFuXqSCyKCQmX8mKmkiGGOtqhMeYMEiBWeS0jEjpLnTHbvrve3lwM26Ht1kO7Hfx247ZbD5QfTUpHvW/yVPKaCwHlxpbOiRZkMCnFCCUoQpGiORWlRdJYFOaYYxbjXEuMiDnLbjcizcPQd63DhpF4YXC+nCyhqJbqAYTyzPzrLxRDUGW8OSc26Bpuu+bq6rJpfZHsnOl6bywbj6pq2HpnvXPY+sbbN29eiSgqUC0NWPbpKhArMUzplEII4zE87nYfbz8/HXZjmow1Q9N2vr++MmGOD/e7x6fHx8fH0+mYUwEVQwZBUAtqwWdF1wt4qQ5dAAjEoDX1YtFs1bVGi9YVRaUA4NK9K6qYRFSEGocXG2aiw1HGScOsbaNfv4Lff9X87W8ubq4G8usp0f39uDulo2aj1nHbeb/ZdI0zU5ACIcBPYB+aYdB5nn9+L1nM9evm6l1785atPRxPnz59fnp6CiEycYxB5HnuV1VFAQYEIq3ZGHOYx6mkhKDWMhuUHMM4HnaHw1Or6p03CFCyzPOsKkRsLTfeFeecIKjGEJ72x0+f78fdaIpn6pNawUYEEQoYJosNA4Iz3DI3hAaBzVkKX80EzzKh5VPyUmP0rIh5cTvAsK675qvXr1vrQY7jOO6fxvu78PSUTlOYpjmGst+dxqMoQEwuAyqzUkIwq9asB3ZIg2XhJjXMSGQskorkUnKRJdIRsajGUmIMItlYss40rWt875t1065tuwJijUE0w2qAUjCnJfwxl8rYW2sFIMU45RRV0mkMuZQXc1sROc3hMI2AiOoMQ1ZNORvbGFpZywYkYaxLRGXWsmhJ+XA8Ipi+9Tc312/evru6us5xKkUAWbFWoBmoktcldk2LKCh2vm2b5rrvHxp/f//p9vHTNE0BoWnbzfoaDR3G6RRZyucwFgRCAyVrQlVWAQZmAixFsmBB1hdDTBUlGIN91w6Ne5ZL1Q/DMiOgkmNnmhYoZDlNMaWiiipQu7bPZ3E0xrSNjX3TNPb+/vTv//7PP/xgnWv2+/m779/nQm/e/eriestupdQmNUVRkBeMlJUthHna3X2av/9O/vin/sefX++POAUISafYNl3TDQUwlFKPzgue8YvPfMGSLeTe8No6Ni4qIpiYKSPEpNaQcw4BjHUIpuQUQw7j6UAjITKDseQ89Z1re9+1vuu6rl21TeM9G1NzTfU0zg8Pjz/f3j487sfTnLIosG+8tQaRKneBC7G1bBxSJOdQSqqLlKllZILWmK4f+r6vdTTPLyL2Ted9F+NUSkKElDAln0IaT4ecEjNtLy9U0VpPuNxQ1RLjXEQRYVgNw7Bx1quwCigU0VDSHNNkLa7XQ4oFlGrS0jRNp1N77Pw0nuIUpIhhYOa+XTGzMdx23WrdbzbrzeWlte7m5rrvu93u6XQ6qpwtJC82jTPkff70Y1VKq4L8cohBqpVLpdK/OTw97t9/+PTh4+e7u8fnoFYmcoaZiFFEq9FUVcqc0nQaY4xFNeaYRS4vLtrG1wDcRSZwtpMQkYLmcvaAnU/lS/qjoojW+1WDWMtZZPQXNTF/9qqETkppGo8xh5pMNnQrAtxuBjaWyIQ4PTw+plJU4PLycrvpfWtfvbnuV916PUynk+TUdN3dbv/5/n5/ODw87EAMkxGwKSYpQgCW0FvTNe1mtWqAE1NhnMO0e7ofx2M1E8I5/ud/+GMTATMQKbNaS86yNQbOKvH6Oa/gFIAQIzEhsm/add9uHV/1/XW3uuhX62696rtVZ3tGF1KW4KewKfLWuuDoChiVrPFNoz3QivlxhgPKSU0smouUpJa5CjpjluM4zyEbJOOYAHOO4xRUwbA1zMh/HhFdXyKQi1AqKoqAdA5hZq4QID1XGYsUY7kfmu12fXVz3TYuSWbCrm/ZUM3yI2RGrPGHTeOctaWq68uCEJSSU6pBd/Mc5nmaxnE8HMb9/ni/ezrOUwZp2qblzpJvvO+6nsn4xntvn57s8bCPYa6HP2blX/pnFhN3dRupLG46AgB8hhIJEOhMN6kCCSHBkrwqS/KqSGvNu0vvnd5y2lOZLFxu7H/+Q/s3v+l+82bdtc1+tiHkEuI8RskzlEKCXQvAHDtW0FzylGPUA9zflmnKt3fW+u2wtqDWGlOgpBjnOcUoJVlGIv2zN1PXAyZCa4euv766vrm+vr3dzXNWAQIxjIyoWeKcRtaSjLNWREuUIgVRJAsiAxQ1CEXmOZ7GcDxN0xhbbrJyEhMzpYwAYAow13BHIMwxjSmScYEIa4MfEC0LM+GXY+YCI385APyiTxBAETNT8Yb6zlrTdQO3rfUudE3cH8Px6MYpTbOkVFKmrCZBLiVpCahkCcYRWguODWNPVKxFNMS2otN6pgHrTVdVIjbGNJ1t26ZpXNP0vll736trgkiM80k0IGYiYtLajViSlFyPewiLereKZsg4dg5f0kmSQ05NyaaQFJQiUxBjsfU9AS/1o6Xqq1hUUs4lZwDwzl1sNhfbi7Zbsx+KIlACrDEcDEALvlHzEhSgRI0nTMGqcpgFpRga2RQyRdmYdrO5dl3XzfEwFkP/XhKIFMlqaqSeaCmSqZBCLjU5Nk/xz/K6gYhab4fOt94gKZQMJeWUJGcVRURLBEyGCFBTVC3lxb4F1bplmJzjvjWxdW1jpeS726dSxLfredbDMTbdZn3xenv5lu26QFOUihoABkJAAcilxMP+/qdv/3380w/D014TGLSB9RZFmC68N94pYvkiwvizdWyJSCmaiWBgaC0EVdAgx31iKiFZ8kSEzMCktboqS16O7AJYkJQZdo5dYxpvu6btu3XXNK4xzlnDNuV8PJzuHx8+fr7dH0epYJ81TGSQYFGXwnkKXOguBUXA2qV6DnsAUWWmxjvvPRt+Sc2KyDSGGJLzltggZWNAJOYcAIpKmadpngIoOtv0w4oYiDDnFOZaOFWsdV3XdO0A4AAQoMR43O8CpGIMETrvoAaOSBEiz6zGorN4BIkhohbDPAyNd54Ym6Ybhq7v277rfNN2XX8aT9baKhuUqjyBhTv7j45RY4wVlVK+PDgqNUJ+ydNRlZTi427/3Xc//PjT+/3hVASq+yYXKUVE0ZBaAkJVRUJlQlAqqlOM7z9+PI7Hx93u1atXb1+/2m63nfdEVDuia/DZYvN+1hEDwhKss6hDEDFqhmec/pl1+nMB4EJV6CJ8Xk7GqhXStCXLp0+3KeXj4fjh/V//L//tv/zqV+9+9/vfhxQ+ffq02+0eHx+7rnv79tXNzfX28vrictsPfZpDnKambZWYrBnn0/5wfLjdMdnX/WvvWxA47Y+nh8Ptp48EsL24wHZlh75d9bGEx7tPnz59+Omnnw+HAwidqyNfRPwqnkt4zm8E0Vgyho0ha7ltnHOeyapkZqpnwwylzp+l5IoFDP2wXV++3m6uDK2IfSI6FgPqmRrrJYb7/X2YdpjnLuTf4QY8+OKk4AW0N94euH3g8b3gx4K33jzF+TiPRVUNCCuCjFN6eDqkWNZD770hJMSaE6YppRgZCEVTmGOK+bmlth76chHUpEKEWGMUvLNN67z33nvnvLOV+yFrTdO4rmuG1eC8lfOYCwuPkSVLzjmmlFPOOaWQpnmepxBqIEfOOecQYowxxmleisrH02kapzDOIYmAoaZp0inu+33X9qvVarPevu1fXV9vd7vHjx8/PDzcT6eTiFjL1hp8RvurkguWvDo4q8yryLUy0IvqtO66SwInwVICCYgoggRCKJvO/O5Ns+5oZY77HoD43evuf/+v269eDSrNOOFxn467uYQAZdYy55xjxKATnaDHFhlUNGWYQpqmOaeZRS/6fv3q1cXNdePdHLJj6pyF1SBanOO+c/yCuVjEyYiEbI29efXqv/zX/0LWj1OKMT8+7lWk7fr1atW1PaGZT0FiNmvHZCwJSJYiAlCSRhApWXIJU0qhiBAb33Zr16yy8GkuIeZSYlUSk1T6gRDZGMfGGsPGGeu9aZxxzhhrTEUfucZoLFAkwbIdwFnq/7woz9PT/mBDHJw3rkFuTLdBYtP0br3tY5aYNeU8hTCOYZzzNIeYbEklZXl4iinaObi2aQSQTDEWrEPrrbVErEAVSiw5E2Hjh7Zr+qFvGu+sc857NwCZIGUc58PT7vj4dDxMeZxNSRRmnUZIWUWMM2wQjSGDBi1nsEBOqe+HZ62SAgChMmXUKAJZU9ZpKjbHZpxFRCHFXFLMORdCEiklFyRcrfqb66ubm5thtQmFdEwxioIwA7OQKqLg0vRVKgMq+VSOn9LDXdntJc6FwStcNM5ZNxXqhvXm4qZfbbLA4RSHdo3KYRojIbNRJUSJICip0vsxxTnOT09Tzi9YfkUCNAQGC5YEUt0Sc5yOJWdCYrLAFtFAQcxCMpPkUgQAmQwiqgATWWtap12LsTWtt5YppxRiUdamv/jrv/vt5fXbX/3mD5uLawFOhYuS4mJyQpScwxh2n9//9O//xz/G9/e/M5d4+fZ9OjzZ+TPmYTXcOFLS2ucMUFtmfjHxq6rmknMWlKAFIfYkFyRFx9PdPoIl48i5LJJUSrVlkRpCIYLFd4OquYCMIY4hEinhjuHOELOpuUlGVVMsKceYo0ECYxiJVCDFnCKcw8QIoCw+SlwK4omMZXZOEUtOJZcqD6Uq9iWmLycCCHP88POHu9u73//Vry4uh6JBSpRYAEvXN9lYINSioOR9d/3q9XhqQjimGCRnBSg5gup4OmhW5paQAMs0j8fjbhwPIhlAEVkVtUabIliLK9MaFElBc0wxglLbmK71gOobN/RN23isQ+RywaEUSalUen9pEEk5pZzlF5k3pgat1bDfxXgg+sIuBDHleTp9+nz70/uPn27v55hqHWM1l6iCFkUkW538AFBKkVxr0ouU05RSSTGlEKOqpJzXw+C9f7GQgpYCz6qlMxmwJAXUYh5VrUrmugQvWTIE/xOQRl2ra8ubiEzT/PnzXQwhhpkNpRx//Ztvmr5ZrdZIdDge5nm6u7srIqK02qyd813fNd4aZ33bsuMYZ0T8N/l2PAUAiCGd9qcn+7S/ezzsD8b51faSu3WzWQ+bAahshqbxNoakAvMcSsm15eysqIBlqnmZOkJorfXeOsvOGu+ssxaWiCGimgeuZ6RMxCipJee6y8tXr19dXzLamOf9aY4lZihqyfSoNpd9LtGhbxpwnkkAMpRSfFMakU4yj4cR7JEOp5ymkU8lieQCoKWUXE5TGKdZBRSUGAnUGmgaI6LOkTFAJCpLafYvboACADKz97Ztm7b1Tevatula75umTjHG2vpZIyRmrMG7NdZWlnzbIlpyzqnOJyHEGFOKYQ7H0zhP8zTPMcSYUopxnmOMMaUQwjyHEOYQQohJitSzDUsUCWU6Tk1zSCkOfb/ZrJxfr1ZtDVz/XOIcJ1nKPV8+TM8M6PIbAvISdIYvbIiebTzPmZRVtFhACwO0Rq97eHOJK0tzYDV2s7arxswz3j2mh13Z7aZpjCUXAjXesKWsuTCMiipsDRsGhuxyzpqQ1Ax9e3G5urzqh0FRSXLjaLPq1+sVMliDVxcba39ZXI8gCoQIRG3fvfvq65j17uEpxVzKn3KKlxfbm5vrm+vr9bqbpqMx2PnBGOPY55RTyYBgrUVCEckZpCCTHbq1OFq1W+u7cU4hH+d5DGEKMZScoEgNeEREQiZmw+y8813XDF07DNZagFpPaL33TdM4a7FWjDMhoKh6m58XMlXVLGmKp1TUJOuFiagAghMj2FrrFQVItcRkp9GPU5mmFEKIIeWSQDALn2ZKBZGUuFCQWBjAEKq18NyXQeR8s15vNuv1sFo1TWPYMhkCnkIcT8fHp6fD49N8PJVUVDEvWr8KnkhKmueAnJfWNUGUSqV+gchqCldIicgEkJI0JYgx+6J+CgKKmFMucyg5FyJkZmfYW9u1Tdt2OcvD0+4YfwI2MUzE0ne28dawq+mU9RRhmAmpzKd5PIbxUA5PkgI4o75tuzWTMwlM0wlSUSDGtvWXF9vr7cWDYC6ZwZAaQq0sCVCNvKRJUsmLNfr5lXM+HQ+UsbPo7DJSlDSWkoGZtAgIoQAigTpWsCBU+78FAGqViiRIgjO6nKaucethOB52BTLbpl9fvH3325vXX11cvjaun0KuBpLzh1IABDRLSQTa+5b6dTSbI9APjd4VGqm869pozaJHXna1v7CRIAIQFqQEOudYUm4cMAhFMWoaXFGa0m43LeNV9Vguiu3aK1gEtFStnIhmKKoFAJaUnEWXqogEzLjIDxaMt+JbC5J/xrrOqAwzV/OTc4I456JasGp6Fpv6LzzJKaX7+/unpydjfrdarYraHOcZRlXL27VkFaW2bUqOJaeua4mlPM1hjgvVJlqnnBotI6iAUooCMLGj2k5MvIRlaI0kYCJqbGOAO9fMc7DOdsOq8V5UnG+cb6x1SCjV/i3FMFiDtRFNoZYnAoCEHCWlFyWjYEJK1eyjVb5Z9xxdbqUInMbw8cPHnz98+HR7fxhHIiZjFECLvkCy2LreWiNSUgqpFEVFAoLqK8Jxmh8eHwlxnsPldrtardq2dd4bwwCaawvruWJmUfIjViXdWQoquqA0tJjDsD6pX7bKut/Bs39s2VTgfAZGPjvQDsfTH7/9bn/cf/v9t3//93/3N3/7h9/97jdff/N1CNNuv/v8+f79+0/73Wm9WV1eXm7WQ9e12+16s91stuvLy+3bt2+H/v/5xz/+MI7z/d39pw+fTSrhOOaifhhKQ2JbZFcUvbFX11fGUIpA6N6/f388HkhVSAno/HShwOJhrm+FERvnurZpHHprnLOGqGRFVSYmUlWqgASgGmZmZ03Xd5ubm3evv3q7shQO+7v5pzIVAHTWrVeb1puhbZscDBIBkRgoIiFryVgKSsEc5PCYqVF779LYGPIQIc1kKZd8HOfTGESLMcZYNEZJpfFwc90BUtM4Yw1S7Tozzn3p6KmsgDXcDu3Vdn3z6uriYt33XdN4b42xpnbvAUA580AlpzDnXErOJaaUcimllJxLyTGlGEJMMeeUc8o5x5imaYwhpZxiTNMUQgjzPMeY6j9b6jZEq+N0EetlDWWOczjsDyrl4mK72qxWvm8aiyiK5XB4etrvphimF/kKy7Kx+PjwPNDUA1JVtwPA4kMGVYWioqAkVUoAVWWREAoiG8gWxuvB/OZa0fAkvDuV7787fbyffrov+zGRzK3BTd9v1v1q06EhdwoJrDab5HrrjTOlgYnbkr0r2GB3sbp5O6y3xrhpmiSFzlt7temGtfOWGd6+fuWc+/KRIVTCypEkUUBsmu7Nm7f/7b/9N2vtPI+H/f7tm9fffP31r7/5zWbdjeMRoTRNR0Tn25IFFA1myWGaFUHJ9e26sQMIW+5Q7dPhmGIYx9PxdNgfDvM0lpRUCiMQIeGSYuqsb/pu2Ky3VxfG8DiOotr4ZrPZ3Ly6aZsm5czMfdc55wDRkH0eYkjRKhshzCWlPB9nUGBV0lIkIyoTGmu8c9w3zar3UrBkSbGklEOMU0hzlJzyGOcU55jmnNW5ZrMdbq4aZCxZsyIyO994d3X95uLicuhXvmmN8VpkPp0O+/Hx9v7+/jacjpqyZwNNm6JmFGWQFPOcJGU5TPW4yIgegFJOYT5Nk5w9CiIaQjiM4zyLiolRc1FU7Yr6JggqYsk5TXOuLt++9Rd9uxp63/Qq+MPPHz7cHjLYmPM8Hr3jN68uN+uV9QOQTaUw86pru8Z760ByCFm4wdWl5BSkGNf0w2VrPYScVR93j/vTng3kdHz35qqE33zwt8fTCKTEZCw31nbOGSIAPY6Te7RD2z6jfTWrdJrm8WnXGbnZ9qvOskHEUlPysAovMworkbVMxM4D1N2viJZckqQQ5vF0LDkQUSm5a/zrV9cpRT9FdJvNZnPz6mqzXouUME9ard+10BEEJSMVRvDOvn377ub/cfH4cf/DH++/Hx/+FekRmQytjFNjmahqIl7s+PqM9RMhO2bnEIqgPE7RZuzUbB297lgBA8Ux7PY/j4eYw35KSYKIoBgAQmBQhEIL82AMqggpKTiqiEXNLydYtkGqciEpCmdxMz7vZcvP9CUugRAImNE7q4oRAywwFFXHQMlZX+T35JIPh8PhcBApxhgCzwQE0HhPxEzGGL9Zb0I47Q8P/aazzljvYg4hRBH1XPXuvTN9Aa4SVuZuWL3qhkxLH9+ZSZGz0ZAI+3I5XOcYY05JiyCKCmYh35DxaAwyi0qKk+TQOlq3dsZUUi2SI0SaNM1PQedJX6zJJhcFAKmNDcTPFwsQcykx5nEKh9N0msKCrhApopRSloUbAKp437N1UBKKAJHWEnlQRMwFoJTjUQkx5jxP83oc1+vNar3q+16kPD08xhisNW3T9MPKGBNVEZGtNdZVMF+kLJF7FQcSQU7GNc9c8v/Fq+I3z39TRHNOu93+NJ6Op+M8h2kaEfHXv/5mvR62m+10ivvjcZ5nkSKlxDCt16vVajUMw83NZds2Xdsi4MXl1U8/fnDEOZd5jkTGtV0DThJENEhGFUHJGN+366vLVyFIyWDt3TgeU0pKzwmxy/1+/oEX0ajoErCFCKollZySZClZpNRnEtkY55q26bpu6Ltt31+0w5aMikjuhoQ5dN3s25Nx3Pau6/1S3skqrFkgJiyJVIwWW6J9usOsoKKHApGNMwUNGchQBAqS+MY4Y60DwwUksxPfGDZsbIX6IWcpAtbiS9ZCtTDjet1f31y8fnt1ud0476zh+s5rWXTOJcY4z9M8hxRijDHEGGOKMaXKWeUiUnLOKaUsWc9BQTmnEOYQYwxxmubTaZpDrJijak13xkpI1YT7Z8N7Tf5HhBjjHOaYgqp67zYX2ylMny8uHvfH3WEKL6ixv/TSpUkT6ni9vGGoOt5zlY1KqSUxoIKoBMiMhEoaW6tvLw1a/nSgD3flX78/fPdeniZVwHWH3lpgi8ahadmyb6xBg21jG+sdMRVJiUnazrumd5fv+svXXdszEopYws2qR6LVeuu9R9TtemNe0BYFNGntQBAQQGJHpu/7X3/zTU7x8f724fHh1eubm5ur7Xq9Xg1d06KKsQaBSik1b7KACEpKcQQbyRWTQcAgqVApFEMZp1CriXIu0zQfDscwjwrFe2OtscwELIXmkMaUohQ0BISPDw8557brQopN2+Scx2kyNXuXCBGyfEFiACr5YI0HqyJzlihFNGeJMQIUMujUqkHLjqwjQkatjTOacwkpTWEexzCOOo8FoKhIKTjPcBphDqBZRYHYNo2xToBzxpTJijN2AKM5lFJ09/j4cHurJTk2XTOQ5aBJGc3QE2gJJU1xHuc0R00ZS8mSIeZpjoeQ8vkZq4YEBuNNK2pSzpKS5DhjOo0zAnpvCL1zaE1RwLZpVv2671dg+4j+8TiLxKwYUhyPh9ZbAg2hsE9ALqlYZ0Ipq1xalxFgzgjoTdugSkoRncWmJbaUtYQwhbFIZhLN6fpi44G37fZ4GpMkQLDWNM71TWMNA+BpHLf3269fv/POf7ktSKI6T2EuU5pOXcNNY52ryTciuYAoKrFx3jXWOzaOrGHDFjBXH79yycikWXJIWVWcM33fD8MgGIpxbAiglBIkZQUL7BANLrlcCpBBCiF4tt32or/5hrunf3g//6yPt8YdnbRGi3HIxiz1F1IT+f8DzI/EzIZRQQSmUvYguyiOcO3JMzYkNsc4zW0oGxVkPRaJRRYKaKn5VSABqJlrzxANFkFQJdBaR4cAiDUvf7E/wHl8+cUPddaLVY2MiEjOqqRFGdk71zStc56IpUjJGc4bPyEaYwBhHKenp13RCJpRa9U5saGmdWRgf3hUzIoXxrGAoGEszIreNJ48FYaCYA0ig4phw7YBrKSHasmggoAKuFR3I5Iq2ARSCkKAfEoxlYxFLRu2LZBRJJGUS0QtfWuvtn2KrLkAmFIg5wKzQpjKNL08WJoF7UIFQmaLiFWNgkCS59M0n+ZAxrb9sIq5xvWmVIvfMgDUkxQSA1lBU7SCMKiqKcVSCi55ZZwzjuOUcj4ej/1ud3FxvApXN0Aphm+///50OvZ9/+rVq+3l1TCsxvGkCG3Xs/PnTPwFX2GkOmDmXLpuYP4Cjz+b8vRMTsELVObZ3IuItfoEQXdPx3/4h3/69Onzt999/3d/9zf/6//yf/vq66/effX1TUq7/dM4Hh8fH5+eHtq2Wa/X19fX2812NfR/89d/vV5t/uqv/uZf/+WPu4enhgz7ZtX1KWt6OqZTUCEBQsEUtYQco1jb3ly/Wa02t58//vFP//r49FBLKGApClliCOsbKUVOp9N4HNt2WDoEROeQ5inNc5znkhMgceN967vVMAyrYTWshv6CqQmJphwnQd5cmDXZ/iJ33UOSUuDm6tI3bREoQioERTAn1MKgDpVQ+lXXzCPN+3D4HFIABGOJDCpJVywb6gSZyDtgyoCRSJ21xpIxAqilJIBkbGYrz4oFUU05EMl2O1y/2m42nfNUSghzjiHNc5imKYQ5xBTmeZqmGGNJOee8zC6L409qJK6elU8Vs4OqsVSbSoopnMbT8XQKsSAQIlNtyqgy/iqBrnMFVvkdM6Nx7LtWRMIcpmkig8a69Wb7+vW7wzHe3u5zetZgwflUJAvqVxk9qsoYQJAqRwUtAMhYi1FqMUIGASZCqvmBZIjJEKAoCJGZo/3xk/7T9+Efvt8/7GS9aq4v1m+ur1Z9SyRKdAqFoqpy29hNh65NBcs8nx52jyx6sVr3q6ubV++GzbUhV4o6YuyavvNsjG9aw0ZFvXVfXGOgScpccsmpBn0TcMpikPu++9XXX+f//X99fHxQkK7zUlSy9L5jOjvsoLb5QQEpUlKKrWlzzBX+JYCUyjynmZIx3DZ2GJqmsQDKBDurSGW97fuua70nNWnWnKCIWtcQmyI55hRjZGtyyZXvnkNw1iCTtVZB6aULBiERad90l21rKY0pjylPad6f0ukQ44isNpiUorOe2dWpm5kA2HjbrNZe1YTYhFnCJPNcxjmFFFNmJMpZJKsCGuNMJyKfPz883p+G1eniIl2/sm3ToLGKcDwcdo8PlpH6nhwzs+ZI3KwvLtq2NWjiHHdPx8Nuf9rtw+kYw5hiPmXYZ3hWkRByb5rr/vLq8g2Se9yfdrvdfvckIU/HyaEZ2qHv2sosA2Dj7WZo0XUnagqwEbWOO9t4EeO9YeZ2XahN2SgzOa/OFW4SWgMsAlNRQeuNcwadL94AIpUU4nya53nKMeUIOTaGt/3wanX1m7eYi2ZJolodQ75xhlkB5mnePT1tL2+G7tybWJO1rXPtMO7DH3/4oDlsVv1qaPvOA8g8nlIKWsA5v16v+n7o+q7p2rZpeQklx7Mu0Ia5G6cxhFlLRgRjyBoCkDAdbz//PJ3Grt8615FmRQNIWoOVQRUKohpm6xoaNlOb3hf5kHNuGk/Wa3BkHBoGPqftwRkjfzkl1yQShAIAKGQmkE9RAsClwrahreHBIwOujF5E2EV6AN2Hckw5IQkaYaMooklzQi1aWYXnKDdcmJAqu1v2quc/O6MvL6KR4JxzjQoAIjEGEQCgksUaNwyrYbVqu84YowI55edMNWvt1c3V/n54eHya5tMUTkSy6tq28daZtmlXqxRSOI2H03wI6dT1LTom5qbvLJgeG1uMnGJKxBcdNU0VCNY+J8SKTAcUQWYCeg6bkxglCSjazqEjhVJUjSIthk4UgCIqUph1s2obvmAQAtSC0xgeH/ZHKWUc0zjqF5clGOtcvUBEaIxFQC0VYAZEBkBmO6zWyMa4ZjWcpjnM0ziO0xzmlKKonDdhhSIp52oyUpWcU01uRURjTEopxsTM1poQYpFFXz/P008/vw8hvHqNVwrGNU3bZREA8E1nnK9j1tmrgDXRRwTYFPdC1f8XX+cj+JfxVavcCVkBFCSGfDyNx+O4e9od9kcputsf37x+3fWdYeOcqz6XcRyrHyqGeHV13XX9N19/tVpttuv17ee70/4ERdumnee8T2ILSNRaxYcAOUlOJMJdt3r1+k3XdZ/vP+2P+7pzICEsg+Av1ONhCtNpiisXnVUFKRjnHENKsaRQYhJjiFvXNMMwbId+5a0ncCVhTkTWOcfrTctoumawxgsaQcd+Zbsei2Dt8JGCQqgCCIxqSH1s2dsCOk7zaZxBBZkIybBaYwEqA4CWhVBRhRjYiDGFqZrVSpHCVAjlF+8lzON0PI2Hw6ElSkdrYsxxjnNI8ziN4zTP0xxjmOdpmlNKkqtasSggMwNSdb4xs3W2bVpjDdPiHREtrjgylHKeQ4RxquM1YY0vJ5GzKUNVRInZWcOGkIVIFTHE+PDwKKopxc207de9KParzeXl9Wbz0HUDvQyI+7KWnNXlKl9WlsXQCUTIbLq23ax6azCEk5QMwGSc7TwiakqmkQhwiObzwR2D/fkePu90zMyeLi+619ery+3G+yaVJKCKBpEsg3di+IBaSim5ZAG0fmg2r4eLt/3qom06SaBYnLPWEhlkY6z1AFxyeflGRDWUNOUopdQWJ66dCmwd0TB0v/3tr6+uto9PD2Gedk+7MI7rfmib1jfeOWuMqUdGAS2SLRpHTpyg1hItCSGijohgHas4hb7vGm9t2zreY4G0vuiGvu/bjtTEE4S5xJCJqycWrXPW2u3FxbBaCcg0z9M8AbaIyNYA6C/fCwSRqcisapmxJUuOTRIBGychIRYiygolJJFCiI7YOuucAfZMhhgtMzsDncPUwRxzSCFEZUPOSiqCqMSGKU7z09NOMpzGmDKgddvNujHVnaCipQiKFAExxvm2M75ZX16vhpVln1P2w6kZdr57Ohz243iYD/sENjW9LkUz4J376uZd/s34+vXXxja7/fHh8fHu7m6aJmYa+v7m+nq1WjfeWWOQ0DBbZxJ5Ql+AGiiNoca1AjDPIwKuup6NLwXBWNN41zjvrXHGGCMCDIxIxnlryaMalAIlZkm55CKqhGAUFdn6ZujbFXELyFlSLWFHIrKMTKrAMVK7Wa82bF9QlgjMxrd9DHMGexpP47y7uz84iyI5zAcp2bDp2vZwGler09B3Xd/1fe/bxlnHhgnRGmO5c9YYa0JwOUdFiDm5Zg6ZixrIscQTNA2BMYhAkgW1avMYQNUY9t6j80FpV+BBcIcsjNayBXDWGzKEVP4HIksEIGCu56eg5UlLzJpQCqmxumIcHLYEA5RBc1ukU3gCGoEiY2LItRSvKjawajHkuSXq5RLzHyye/4OXiKqWnAMhKxB7tt67pnHeIVJM6WWmGhE55wBpvz8eRw1xMgZVNOdCTOMU5xCd98zcNn46HVfrvl33bdcZ37CxBkFC2N89gWs3Q9/07dKhUp/hxfpf1SRMVIu6CIBKSONxBJWhcc56ZRUAC4iisjRvAVEhMs75oV85Iiip5Jyk5CzTFKYppFx+UZgKYLquh7q1Exo2AFCylFxyzsaYtu2stYiUcr4a5wrbn06np8fHh4eH+6f7cZoFRErOKRDmGOaUQrUWlVJijDlXac8C6XvvVqu1sfl4PMWYnp520zR9+vzZ+6Zp+2G9tb4h49g2AMDGMzk9w2jLCFM7ZmpH4csJBoGwFp5+AWCqeXd5NF7AM2dYhojQWQaVp8fTv/zTH+/uHv/hH/7pD3/47W9/++uvv/lqu90Mw6qUPI2neQ53tw9PD7u72/uL7fbm5tXQtX/4w2+/+urtbnc4HadxDPlhb1vvQlYoAOx9o4pBaZ7LNOe29Tc3r11jN3+6vL2/m+dJipiKJTjLzj5znKpaksxTPB4mAHDeI1AKmpNI1lIkJSEEZts03arfNL7LOY9jPp3SRaLtatN4W1ICRVNT95EH0zltrBiCKJiFcoFcNAsqIgpIkczpqPM+HHb7x/1+NzpHzhEzV4E/iVAtAVFkFCRDVACKFFkuqC4HCPyyx4OITNP4+fazQry9fb8eGuesKEmBnKXEXCmjhT8KMedcliFGjDH9MLBxyyNEpmmHy6vLvu8Mk6LmkkqJIiWEVdt2zrdZUGQfQs5FSBXKc8tW1UGDc9g0xjijkFOJ8Tju94e727uuay8uL66urq5fXffdgGi2F9dffzO/efPmGR5HXcoknrWLz3hvnV+gKFEdHayz3eX26q9++27d0zzdhTCFZNAO/cU2qzze31obRrDvD/xphOPMH3ZWqXn3yjQe373errteiy0JBRq2pus778HSiLo7hLs0TVEs8Wp98fpy8+7t62826y0z5ySgSEzeWEEjUJCZnVOlJL9IhReVKcUpxaUmnggUUTTEGEIwhOvVYAzO4bR/ery7vSsxrfvh8uLy9evXm+2G0JCCLHpXZDTWWTSV+Cw5ZVSIKSiwBSJi6xzI+nK7vdiv3WdzigfbkW9c4z2DYyRmYZNFpKgA4/ZiuxpW7756531zPBxO42GcJmNtbTBHUPOsxAQoouMcH56OKGHqm953DXvb2o4te8p5w4y5lHmOp+N0OIw5RIfYebda9SJSUuYlmlmFFAxT15i+a9gKc0DQgxRLQooIUvLptA9zziUrKrBKmW8ut9bbfrXqhyHnKKgxJ+ub9XrT9avNsGnbjsmo08422344brdP43h3OuJun1eP9voNnjf+vu3/7q//89fXr27evPVNN0/zfn+4f7g/HI8xJcNmtVp1/dA0rbO29tpE0Yj2ihtk05vsmQwwKKScVAUZQUlFkY3xroYhOGMab1HRhayC1hnLaFBLkSloKBTBoqEGDRAho2EuzhzVFjECVJZSG9VaDqM1vxGLtshdgfN8WcN3kZzv1hcEZO4/f/70888Pt5+O+8cYR8LUNnazXq+G/jROT/t927i28U3XDn2/Xa+7vvPWWefYWeP94GwvvWhZbdarzXqc5mmWOZSUhck2FrwR71FBpxBjjTRRZDbOuM0wBDWf9sfPu+OEJrs2zAFU2TnnGzYGkZ4PyqIAWfWXo4TWgAimSoMngQSaVFPUBEWpiIdLjx2ID5OF5Bz0bNaOjoonhVHzqDloCaRZsbZIgwC+YBLr3vS8W/33XvXJ/3PzFCzupSr5qPORgODSd/JFE1NExjkcx0kZmtayddYaJRsLSMqnKT4+HZnZOdc1zWF3WK+6zeWwXq/79ZqbPpk07w4/ffcdNp1/tW22zdLYSc8/SlGNikoEwKpKiAygqYwP9x+xiB+s7a1lVAQWRQUgBiSoe2DuJWXtNWd4PN7vd4fj/vT0eLi7fXh4OEa14NqXdTDGVR2VVrkLioBiLlBUAZG88845w0ZV+zaXnCs5ver6xnlAJXyaY5KSUwyIlFIoJSEILP1LKkWKSE15qNe9hhJGjDHG/W6fchKBvl9dXb+6vLw2rql97wBYmzDP6N4iE3tx6/5yXO8vbvb5BQB1FKUl+ff5gUFGEIGY0sP97nG3v79/uL9/uL29e3raff3N19c3V13Xtk1vjJvHKed8Oo2gSkjb7Wa1XrXtqu2a42ne70dlE4si2eNhylmYOSUJKccsZFzTDav1VlDabmiarhYQtk0DgCGEzfbCGPv8g4OSCMSY5ylKQUKWTJKrpoIJiZARGYERTMkwngLo4e7zY+e7xjjTsxZEgByTkgjSJLyj3TxagSAQRGMqIYRQRABRVbLk29vPu8+3x8fd6Wk+7XLyJnsoqajIHKRkqf1EYJC8sY6ZC2Ih/CIKIQCC+JK5rezeHMLt3d3h8NR5a62BqsvRxTZdpD5ZlUMSUYXFFMQiyMCAimSIXA2Ab7veWkbGUpJCAdCc07DadMOajW+au7u7p+NxTDmXAqKkqgpLoyRRSaVABpGUUgohxBhLTofD6TTNx9N0OJxW623X96Wgc77rOv4PSExVg9Swy7OEucZIKFp2pvHeW9uu+tXr6+ubS5cTzWE6ngy5zfb166TFWdR8Utcc1ZRUxoyZyTfJMvSeNt269W2KLOi88+yN8QwYUgopnk7hpKRNuxmGm6v1V5ebt6vVhbVeclAUYw0gJilzDKfpVAo41+aix+P8atJvfhPP9wVygVi0goCoQHUSWwLy0RETIzMQipQ4h0lKAaKm69k6AWRmKVlBCalG99aqeyBQVmOM9w4NAgKTcd4z8qofXGeLKft5XzgjAaMlMa6xRMBOc05Z5qJCxhjvXNsq6P3T4+PTU8oFrJ1yjiKIkF4cVmt10tNhTEHnsbnc4NCSJ0aAYi06sjXu2qVCPooBnjTnCDDlLJPgNBoCZ5mZxBAwEpIzxvc9G44lw8T1M1f7YypXfjwessicQk5z41gRV+vN9vLqdNozgnHOt916te2Hddt1zrp6+kL2jfO+aeywgrCF4SCmbbeXZBZa3Dn/9u0329Vmc3llvc+pXMzh8tXxNI7jPKmqc976xvnWGGZEAEgKQgaNt8YMHhwTag0LLyIlaZGiKAJISxchgTXsnCOFxhYVYEOEAApjyvOUxoxZjSIDOjaWvRXDAVWBApgCJEACUlRK7RQQFUBVEKAObYGXgjgAQCR2Tb9mFqHxmKZTnudUK9hymXPR0zi1TdM2rmls07imbVb9MI+n9Wo9DIN1Doisc8PQGWtJCRCJuem6GDSEHEISQWONYTCURdFQVhAgAiSAgpI0p+Np/Pa7j3/606fHp/08xxiCQzC2cd6SYaBfwDD/cYioqlwiWgQrBFINOFkxK88FVIlopYUkKxRL7AFbQBGocUGIxagScwRNICpL4NFZSPA/Y7YFACAgeG6gfb7SAqqypBEYrvd6CauCXwxkIjJO8/44CkIBbdu6yTdIGOMcpjjPsyo471rvTnt3HJppOsYxlCJmrY3XkuaSJyykGlVThS3OV0lFSpYIFadFqW58VUw5pRwxlxznFOZSQBGqXBDBKFKJFFOcxvm4m3YPh/v7x9vPt09PT6fjtN8fnx4Pp8MUggbhlw44U7XQ1WVUu51SzlVLqarMpvKaqMCe1TlV7dp21XVd1xrL1rpPt7fTHGKYAFGkltstkVBMprB+iUZWrQmMzwXUMUVmc3N986tf/+bXv/ndqzfvmCgVKUuE67nut9pWF6s7AqooFACBv/DYPVNILycYeLZnL69F5C3nq89sAVRR9rvxX07//v79h3/7tz/95re//k9/+ze//8Nvv/n666ura0smprDf7cbx+P79T4+Pt69e36zXW2u79Xpou77rh67thv7h88e73f4UYx6n8eHxIWdYr9dXV9fWegUy7Jp2aNveObder41xuZSvvvqVez7xIxnjDHtUlgwZCiGqECgisjEMSM55FYwhn04zYNw97ff7icCmOU2HcbteMWPNwKtaaG9907bGMlASDUXnKU6H/SGkKKoqWkT2+/1PP3+4/3Q47WQ6UDiV0WRrQaSEGLSoqXH9DdLK9I33DhWX8A9EVCWBxFAILJ4XMiLyvnHWl5xPOcynGRFq9NbCvxDVD1mV6oJCjQWxzM55Zk9sEYmYia0C1U5sZLKGfdOQIUOLov/6Vbi6fv3zT+//7d/+lH/+8PCwm+fE7JCWbjBASSUfT0easKq2RXItJgOQ0ymk9HB/v/POt33vXMNs371+9VIJfx5ick4ikgnBWwuIWcoiJQZdedf2rSFvvTPOt31n7VVKye3IuvXrN2+yquQ4Tyfftdxa65ByITdPfAhPIwYIR2L1zrd+1fWXK2F5Oj7t9rvj422cj0J2e3H55s3fvL7+ami2jqykOIVJoFjrbOOy6OP+cHd7/+HT59NpYnZzjPcPu7/6q//0n//+f7u6Oq+EaBSMCAggCiCiEpMBZIqa83iK06Hk2HXmzdvLaQrTnArKYT7hwQQphk2WRKiGjWVjmQ2RqaZQUDLk2obVQe1dIyZAIlz1q7f8bhW3cw7zPM3TnBJYZt+apueQ0mkq85TjdEpaqHUpxj/+8O3T095YL84+TZOfg6I63z6HqgnoHMv+NJ8OYTrNuZixE4OKWkCTtbQibJtmaIZhc3V5LWEax9MhTqcU53GeUpgMwdC11pqqSyTkxgPbhhdZIhAgk2GDzrm+73MscwjjPN8/PU7T2Pftqm83FxdFEt0Tqq4vLi82V8Nq0za9YUO07HigwEjO2oEMtZ01DqIMqy85McTWDRdBeVIzRijCxXZ2O/SrzGHOkgFViEfypMCaHZN3trWuYW6d61prnYWlFquUUoqWUgSqsxcEANhUvwAjAjgBVUIQhVR0LjALHgoK2FKkxml4Zzway6jIs3BWFNJcNGIdj6q7hgQ0AUxA8nJVrvWQSydBs7m8ad3qV+9+PU37p4dPHz58d3v7/vHxXvJT37dd27Sta1vftc08huk0Hleni8stMx/H0Tft19+86/u+lCgidTjuO9M1lEoVmtcmsACqltFaImNFIaQS5vE+zN9/ePj//n/+6f/44+eP9/l0FEiirTems96goaWkWBRwKWnVL004sAT4KpEy8zJBs0LNmZ5V72YJuUwFVpibgqRclELRU85zKaWmKhAZIsMcUMaSCkANXzjL6/AFS/28S/1Sy/u8qeFLtOZZCAoAyMZY56331jlio7U76AVuU0THMez2pyySKubtGu8GwzyNMofpcIwpF+bYWB49nw5uGk9pzsDs0PRqjDFXr264711jn5NGFz+YqEiJJQGCAGCRJX9ZMZXS9T3knFKS/T4yCCiLgKAIJoFYYAzz8bC//fz5hx9+vP386fHpaZ5nKRpjOp3maYxhjLspVUPSMsTUYaLqBYqUFEuKMef85f4pFChUVYpMUFvfmBWhHuKzyNPjU4wplbzcCxUANGzEOkQSlUWcq2pMzU5ecJpSxBhs2361WlffdY4pVfauuvKJcAkkB3yO50dVAFJG+r8SxNR9EZ4ppPNDUH+tXwKXD1zl90FUck6n03Q4nHZPx/3+NI/xdJymMX3z9bvrywvvTNd2AFIOIacwTQdjqPFqXWfJrfqWEA0zgAjI59uHOY4Cxbft9c31ZrMJMR6PIwB33co71/f9ZrNxzuciV5c3NR4DliGmtbZnrkAcKRjE6kZGQGCDRLYUnaYZYS+ih/2JiEvS8TTtd/vNqjeGDX8ZYpiNNZYNsRHALBrH6XR//zjOU6VnAWCew+PD/v7+eNrl6aQqWbEwVw9QUlHm4r3tB+usYxoa7wCSQql3XJVQY7FoTIdnjp+QrHXONqXEUlLJWWSpYKoEoDGL58wQLBn4xMYYJmOsM1VajIRICpSyjNMMCKKlUevEOHTGWGu9da7phqYZjPW5KLFBpIfHfYxaiiAt1vwipcRS1yuQRb2nQCqgIYeQcy7M5PzBOe9889XbV+kFnVyDHay1bePZICMyoJQSchKnxNb3zeZy3bW9wXa16pu2913vG+NFgMly27kmlty3HRO3/YoMTnmqtgvLgBaNUmPIGWO9Y2/FSND5GHfHcEyKYAZnm759vR7ebYZXjXFYyhxPOUcwZNCSMXmK9w/7775//6dvv3983BHxOIeHxz2An6bpFxtMUSm5XgJmA464XulcSpxzDITSta5tTIhpf5xD1CnMKZfD6WSdtY6cs85YVVFlJdaaqQBQm32yiIAiiCU1ZJip8Q1Y9rmbYjjxieRQqDjrjbHEPMdUKEXJIYZU0jRPOWcgtI33Xe+7Dpii5Cwyp/TsUBCBmGWKYlSZZDelkE6SY45jiidDuuq79Wq1XW+7ZrDsfd+CBdOaMBsYqdQOdmcLmyWNP+dSZiTjGi+MUJSALNnGu9Z4i249HPeHw+E0jmEuoiHlFZmLqxvfNM57LWW7uVgNm6bpLdeRQhazKSoQGYCWwDFDLgdvG/slF1qQZm4OFLWgFBBABTCKUmhWEkHAoqKZGIE8ABF4RRAhFAPsbWedreHjhgxYi0yqqkVSziFFUHDeGmOqvJAWOYPkIhqLScV564pkFqUiWevkpbXCpp51sohIVszMglzL7xSpgGaUjPQXMAytyndyrltdbWhbYjh6Zx6ebotAjXIqUpsv42mcnT22zvdtc1qfYkrWuXGe2zb0Qx9TKjkVEUQ1xjWuccZbNs4YFSm5pJhJgatYlEEUQSnlEmOcTofx6THtnmzgFRrrzeXgt6u26z1bUjrDtVUy+GeETt2ei6IBqgYyBBJQLIqatKQiUWQW6am0gFYRFbPonEsspTohSQEBDaAgWqxp+UvKBsJyr583r/O3XUwJy//8x2sLsDiQAVSBibxzTeOds2wZ8c9je6Dq4VKeQmZbyBbgaA7zoz8xm91+3u3nw2GOKSKSM3y0eGzM4XQa5zQVHY9xWp86tjklg5Q+fbanUcsCXohARdZDjgpgjAVgFa1DjkxBdwfIER8fxFAiEFBWAAERTQVihjGE4/H46fb2u+9+uLu7H8cxlcLERTTGHKY0j3E/xfzSnZRSFFEpOaUcY0oxVQxmKQdQrRJLImoaz8x6frExV1dXxlq25lPb3H6+PRxPpUi1vCOStZaIStGqPakXnIistbg0UwAhAZCI5JRjCCkEVKCapsdsmK0xgISE5x6oRaeNqkhkziky9Wbqmadd+EFVPZfePWMzcB5m66NDBCJfvEuoSIhMRlVLhtvPj6fjP/7ww/t/+ud//+2vv/mbv/rtr3/99du3r169ur64HEoJommej2EMRN65zrp21TXGbJEkpPD+4/uUp/W2v9hcvfvqDQL+/PP7T59uc9GuW23W62FY9UNvjc0Fum7FZM5DDFvfuWZjHRvLTIhIoHXPxCJao1JTzulwPB5GKZBTQeXpFJ4ed58+f2pbx0zG1j6hxddFSIa58cYyIMppPH3+fHsaR0TDzNbYUnQ6TfvDfDikcc65JJGMkOu6paKI2ftSinZdTzA0bkCqinJVBVC2FBBd26xrHk+9sIaMcw2Br6tMLrl6sQCQma21xhhm85waQsSEjER1bl2OIgI5Z5mkSIpxCtH7yRpDTduu+lXbYRFkY5xvXr1+3bbd9fX1er3+9ruf3v98ezycqFZFQy0EEKiVybVAHSvqp6XUkZeKwDSFSki9fXUZQjhvllJKBoDNZn1zc7Xdrglg3O3HcZxTcq2/ev26HVpFZSLP7dX2ctisTDuAbQl0IIMFxtM4z1OJyRqzWg0hhrv3d/vdk0NoqAytrjytt2RamBHHPH2+vT3F3eH0yEhXN68Gt/HYrLqVBZ+mSLaQlqIJSNmwsZaNSyncfn769rv3//zP397d3SNSiOk0zW9ffxND+rKxSJYcYpjrmdA4hyhgDWiGkjQnUvHWIDfI0Im2Xb8/zA8P+6enXUqxbZtXr6+NWamSACmSYC1kAC0SUhzDOKeUSjZEXdN2Tcu+YUM1KsSwdWw9uyJijSFmRJxjUMpQE6wRvbN91/rmt4Dk22G13qw3KyKUlHN6EXYnGlIpyl23ts7GQlOYxv3u8Hj7cPs+haP3Zrtav3n16ubyeru5XK1W7brtu2FNK8llnqacEwFClhJSmuc5zCmGEJJtXDd0koQEnHGrYbtqu+Ybm2PZ7fcPu93D7gmZ227tmmGz6uAmX1xelZScbZhtFW5W3LlmHlYvGyoYUKclSnQlUInPG1RU/Zz0QwQmAARB0RhlfyrzGGMgyA0XNiy2Na6x3gmYKcaocsQyrFr0xmo5no5aivdN0zSdb5k5SykBpCQAJeeMc1gRT0IAkVIgBZXiPL5ad13jxxCnEO0cFdRzclpsQSkCczJzTPOM7HB9UZpe0Sy2UBASRKZfiDWWVQBANBUBQvJMiBAppPj4+Pi025UiRJwLzLGkoqBzjsEaXA/98TiHVFbrtW+9ID087g/Hk4iUnGIORNy3w6pfrdfrtmktk/HsrFm4XtUkCZH7xhV1s8mbVf/V1cXpKKuDBLHed5tVf3M1XGw640iXTH99tri+pGBUtZSccxKDtaiOgBFEQTOWAlgAk+AcdQdiASygUVXVVKAIFmFEMNVTpwVQDCIwLkCBoizEwrI5LVAQgADUMPul5P1571ZAVAEolXtgRgXNxbDpm6ZvG+cM8RJx/efDj0IBEmAgJ8rTnEN8un84QT2PhXAax5wzERmmxuDOUbOnu9384fG4XX267PreOYvMTcvff+K2JSSss5+IiKRc5hRLZXIUS1liQSRmmidJMWvJBIWxhoDi0pyIChiyTCE+7fYfP93vj6dS/S+QVEEKhLmMp7CfvkQSQEVi5NxGlHNNRM21JU5EaoZHiIEQfdsYY84jomIN4WPuum7o+0Ozn+cAWkQQgJErUy7LZnWWQT7fo1JkiTYVSDEeD4fbT5+0lDqXFCnG2BSTc02tP1zKCBZsCAVARFar/s96Op43m5e26vrrL5QN8CxwRGZEPKtkVAGJCUVUNMeQp+npcDg+PDzdfbp9uLv7/Pn2r/7qt2/fvRrWTdOwJacqKZSc5pJzyYlYLPN6011dby4v16rom9XQbqyhw/H06fPH+/t7AByG1XpzMfQr33gmzkWt9c/AEhEZP7j2wnk2lpfxS1kEWKGUQjnGlFPMOaWSRRKoIiqGOU7TNI4H45ipkklYBWtVe2qIvDPOEIFO83R//zDPkdlaY4x1KhDnOE1pDikXFUFREkEpKIJaFrrTWJ6nkgLkWJ1fz4UjnBLFACm+VNfXRGzPdb0skksui58cidjVAFE2WCscEStCowgLMSlapCAoEVqD3hGThnmcppJzds5fbK+G9abruqapYhR/c9V460DRGG/I3t7eT/OUUloYK1Q4X2uB5+LpJSIbiSosGWI4jdPxdHop7K/WJ+/d5eXFr3/1tbP28fb2dByzFN93129f2dZP86SlOLBd57PIcYqYxDK3xqqk/e5pnE5JsnctMRWR4/542h/9qmsbGjyuOlmtg5jpOONpll3YBRmRyPvOt2tDfZ5k3M9Y7uPp1HeOSEOcixQkZ/zUHuL9/f6nnz59+Hh//7B7fDyoaghJQI/H8cV7UYZiIIvmWsxpABkMqYAW0FTJJULHapBVAZsGVenpYZ/CdDqdQDPBpbNsDSFqSiFklSQ55jDHcZ6O02GMc0rJW3d1cXF9edk475hLUQK0zOS9WZDa6h8TEe6bBkQMASENfdc0DRk21hvfOt9470QUJeMLj6UCFMGsDOyFzFSbnqb4tDt9/nR33N8zlVXfHh7vHy4uNsNmvd1ur7fr7XoYVt41xnnbtIQMWYqNzB7AhBCKJFjmdwUgJtv4fr262K4GQr6cxuvj6em4T0Wbpuv7brPuDUPfr6umXormXOrUXkrSXEQKSNZqYJMsOaUwxTCmND9TlgXgJHgQ4sqzgpSYw+GQj4eSAsUxhb2RBKYxvqGmS8yQRKUglcPQlvsHa+3heASRpm27rhv6wRhTVGJO0zQDQGp7ay0CIBHVwJxcQg4hzKmIgrVZ7TTnOfh5lpK5CjAEIWacAs4BQ6RhTc5B2xcmAEQVFcRfRvV/WQIAkMgCgOh0Os3j6f7+w48//vj4+DjPs6oCkCgWITKOmRrTaEn7w5zToyIlwY2iIucshhEQS07TPAHAyc/zEFLM69Vq6FrnbC2qkJRBBESJ0RlSZES8ulj99W++6vxw+xSOURVt0zYX22Gz8saoaFlaRc4zjID88n0ogNb3iJUjQKN1Baw+SYGsGARRkEFZgBSKVrk4oCgrGFADUn3HzxzP8kWwpiBWpmGJhFjaA59dE4hL1fEzLLNMPtUqKERcizCMYaJzp3IdMp8XMdUYZQrFxiKYFUopJUVRAGaqLdyqwkxZoAjMRU+x7MP8MJe7x2lwu85az4ash+aenGNiRFgMx6KplFDr/ZBEQYqWIlIAcsacNMcoOYNKRQMBlrBXRSTKojHraY67w2kKufqu6zypiiHDmGDOLwN7wRAy1hgwIERGwJwk53OwewjTPE/TWFSsc2xoqY+sR3tEVUk5qapzrm09keZcztkn1aq96KKXWhnVUhQAKuiIgCJlPJ1uP38ElU8fPzjnrLFI6KzzbWe9N9aZmkKPIFJvJSuiAlnHOecvj9iXb7oM0c/oS/2d83+DnE1aNS+kPguqUMtvqsYZ0FV4QVWPh9O34/Tx46d//ud/++rrN7/73a/+5j/97ve//9U3v3rb902Y4jyG8TQdj9Mcj9Y1znevrrZ/+zd/eHqcUsJpTI+P9+/ff/r555+edk/e+b7v+37ouo6YAZBUkL60KCAb26ya/tI7Y567uyqkq1JKimESnVKs3QNf3jwggKBKliwLyVp/V5dEYESsMa0AJec0j7EIVNmCFCm5TFOIKZUiRGidB9BSbMk5pVQgSykikFOZp3Dcnxhhubl1+weMcdqP929f7VI83xesQJhhMsQERu35stbxcgGKiPF8F0QE4Nx0hihSwjyzwU3XbjbdxeVKtdw/3N89PtzfPQKaq6vx4mq8uLhYDUPTNl3TtK3vu+63v/7VerW62m5//On9jz/9dHd3fzqNpRRkJl4KGaskbekGqNcRBeq4J+YsHXhemBeCUkF849+8fbPdrHfbbYyRmI0z3PoCMs9djgGyqOaHxzvYERIMbXtzudEcH55uxzDZvrekUwzTPOcoju3NZnu1Usex9bNtdcxhPx72IxfQrh0uLlbW+DTR3d3jw8c7SGm9ai8uVtfXF4Zpd9iPU0gJRAnZHg7TTz9/fNodkG3bDTmmkjWWhOePLwAgqqHSGPGNUeXlXG4Ea3cEKVkybKkw1dR8BMscfe6cHY0pxnTWrbp23bfEHEM6nI773Xjaj4fdab8/HI+H43yY4lxbHX719TekdHVxbdnNIeYckYERrDOiWksiYk6llIbY9t3gHBnTta1zjo0htsiG2KBqkeJAzMt2C0RFLkAxQ3V4lwxAho0jNFA0xnBIE6Z5d/tBUrHOrbari8urm1dvXr16c3PzdrO98n1vnVVXShvbYRXiHNMsIMBQcpSlq9QRO1VjrNus/Xpz8RpUFEWZiAwjQjbWSSolSykL7phLzDmVlEpOOQURRJYU03Ge7o+Hx+PheprL0oqzRKsQ2Xr0QJWimHNOMWDJ5fHx9O0/4+MdATKbyTVMXJWRxOgb/7Qe2NqUEiJa61zjvfeGDVSvigoBGT6XzC+eOhCVIqVAAWbjeiiYjqccAuSEOZYcJZWUVULJIZZcMkj56hu9fq3bm/oRhy8fphd5tzULXpQYrTHOuOk0ff784cfvv/33f/s/b2/fp3RaPoUAqkim6YbtxcX21fXlfDr86z/94+PT0fqWyOUiXQj1eTCWVUvOUkqJQaYxHo/jZrW6vrrYrIam8aAyz2MRZWuZDaMAETh+fbPdDMPvfjN//Lz//HC8350UaLPx694aLCrpjOQ/TzFfzmJIYIisJTaETLW2GIlU2DBrSiIZEQhIhEvWWBBFUBbsty7ARaWAJJR69WvuVYWaEQBRENAoEAAxAmCpHe6yWD8VKSNm1Ipr1Otcg4+p2iEAhIm8Y2erU5fwHILy4lhZRMcp7PZjBvTOIS5wjSLykkjCbJ1xnplBMSNkhKQQEgWBw5QcJgYkHNUckZmRAUC01C9UVJJIERU5q1oVRAGKgCTRUqAIgRAoACmQKCsQKCEIYFaMAkkJ2FXz1nOORQEVtIpfMqIAwBAzKimqYWOMZeQ6uyFWd0wSgaIQU55SgqWCVc+u1VL3zZRyzqnCG4jLo/zydXZ4vRAtlVL3t1Io51ykhBibe2+tNcyIaIwx3rN1bJbUI0SoEnsy3jZt2/bbi/Uvysb+0us/oDJ0Vu3UH4aZn3PwgCqKvQhOl495KSXGfJrDfn94fNzd3T/c3T/sjvvD8Rhz+erdq7ZtnPe55BhSKZEKMXervn1zc+P4dHd3eJz2nz5++Pjx4+l4AIAqhRmGofF+UT5Jfqk7JiLnO9etnTWG+YXpTlGllEhIClgyqEbJRUCkACjwwsQs54I6AhcFFVwqWgAUstazq6iIErIAgVARSbHMqeRUy6LrAw2oCqRC1QlXm9EUi2DOkDOURd8EFSGLqcxJYvll0AEurG1l0J953HMSZeXLq0h/mbvrl0OgBbcrIhIDxplTsCLpeNgddk/H/VHBWnMgsiiUQmpaH9suD13b+qZpXr269t52q9Y13DTu893t4XBKWUTKUmVfRZs1TXc5/+iiRWWyzGcLyPNLASCnVCrH2jZwuc05AaBASVIkJ01ZKgmfc8yaFQgwr/vV4ADToRyPaXRBMguAxDla0sayJ2XIWkJME4Q8SxFBw9ab1rvWYysBTrvx6X73cPcY5vHhEe8eutuHB0LeH07jGGKodZwQYjqe5tM01x8SqwGpwIvORCAEz9hbBlNhTloekHMGOiuyMBVAEdGsCMoUXGqca50DkaFtO+ctcS75eNj//PP7u9un037ePR0eH3b7434Mp5gDolxdXl1sLlPKSymIKqmiAhFZ5hDjdDxO01RU2Jiu64xtVYENV9cEMSOx4lLTkQGUyNGfCeJQBGOufl/RAgoMZIEdksUyMZJ31iAcDsenx/uPP3/XtN31zau3X/3qm1//4e27X9+8ebcaNsYYblrvHUvrSp2sZp0mJKrZilJgOo6Zgzdkreu9ReMyOSUCVAUGQmHhJFKk2GJKycXmHItNOSVjOOVYcoxBn6bx/ng6zjHmXxTaIS53rGZIqXG2W6EClZwfH8PdY/nhWxMCKaBxSCyAgEREszFT6+upDKm6VCwbZiIEREaiJU91sXkSKTMwA4ISgiHTtc36ioFld5DjUcaThEnjrDFrVklFclHC4q22LcwziEARwLphCxZB+TP0AgBAReI8neb9/d39d3/60/ff/vv33/1biqer6023vtCckZj90Pbb1cXV9fXV29c343739Li//fQhhPL4uB/nqT34tq1i1YVxkSKlKCp5y5v1EEOIl5vV0BumlEIFOpgNakEgRmobs+qb1arpO7Ne2eGOQ9J+1fadMSQgWc8+kgoC/9m7eBZlnlnuWk/EhMAiwoQgdcUsQlpqhUEtl6lOIoEKloCQAgHRcqxeNuRaNV5jVeof0BKIhzU9SZESSUJNWHsVq54EGcAjqsJM7C0bY5ANVbC5CpHPqoLldqjGLHMqHItUFysuSQu56JJeq5yFpHZxQyWuFIsyKImwCmmNQ+dazwvwxZMssLSNlWrA0sURXLuAFUVRhGqvHJIqiRpdphpFFOCCJMACWBQr+iGCoFoEk2D55SNm2BgCIKmyE0wus7Fd36voNM1PT0+2OTVxOE3T4XSKIaiUknMO8xymeZxiyjXaBkFFloDV54jVogWeB54v+qIqwVZVKAKAZAwnKVMKuFOs1o+SVWsNAulSO14/C8jW+2Gzvbx599XXv/rV1yIvhxg974u/AGAAFsCAmfFcKAkARFiBG3ymks6j6Jf5C5CYfOOtc1JUQU9j/P6H9/eP999//+P3P7z/+7//2//y93/75vWr7daXIiFMoGSIRMmzg3J6vHv4+ceffvzxx8f93jAPq9XV9dV6vW6a1jCrSM5FSsEX5nFEst77pvXWMPMZagFQAS0sbNiQMUzWTiHOc+asRVGB2TCpWXLnVKEUKbq4b7CGQBcoUvVkiEQGmZWNAGUpSTQrZFUEwYKSMyJIzrWhEwEIgAmdwc7S4M2mdVgHo3qEKRq4sHarpvnSlnwWcS8AreL5OfhyXHu+d7r8/TNK86zGB0wh3YXjfv/w8NCIpsfd0zwnJutcb8iUVI67fZgm68yxbYah64au65u2ba5utv2621wM16+u/vTttz/99P729n6aoiox1fGYdAFoz1w0AKEwgjXGmC+iSzgTo9M07XZPt3e31pI1nEo6HI/TPKcUY4w5pFoClVWVjQKBArMEWYPXudVDnPP+1BxdXK0b4E1HlCmeHh+nEfSJbDanFn3b+tWwuvRulRI8fdrt94fjcZrGSRVz1t1h//PHW1USwRShZJGSq4SuKkpEJOfa0FCe69yfLzshttakxp0XZAIAoQJQ2xkBBVgUafEYKEpBcGycsW3TeOv7ofXGlpj2x/3PP/30j//4z58/3JdC0xifHvfH03HOE5K0bXN5AY1vvW9ENOdMSM5YJEVGRorzfPvx0/F4bNp2vdl0F77v+/oEvFh5z+ooBAZmtY2xL8cYBRDVnDMIni0SlMCq8ew7Q+ly0//V73/bNf7u7v79j99++6//8OnnHz7++O3PP37/4cPHX/329nd//Z/evvtmtd50XcvWGOMdDTnOx+NTZc5BFADjPB/2O51mJ8WT6drGDyveXtAwkLfKUBQVql5dSZi5cGFjjJQiLon4EKbDUackD4fx6TjGrHU+Wx4wAEJFFAYgQCTy/WDbXlPRkMYpBtPkKcDuiWMiNpUQqlJBRSqWlYiJgUgBM0KpEVsCWFNOFLAUJAJr0DnwHrwna8lb9sZcXLj+0jDlrLqf4oePab+DEkuRJTYFFRtHvEIty9SiWUFQBUWoCGV9HpVxKTWEnNLTw8N3f/zTj99///OPP+139znPF9v+V9+8u9yuQdT5tt+8aoerZlh3fb/ummmzL0l++O6PP33/7cPDE5ka0WsAJaeEhG3XMHPJAKJMuF718zSNx8vteui71jl2zjGSEqt1yKQiojXBQYa1kmldyyECk6PaJlAKLGJNPQMyL7S0Z2r7BfQNzywNERGbZQPSmrFf1y2hBdIRBVl2sTOwrpVMqeQC1rEGSBRg+atVG8jMDGSBFMVCKSDAikTITgFLzg5h65kQ9wmLs44sqKmfcURCQ+rAWvcCUUYgo+QAHZA7A0EAgEVVFKFAEZlTQESpbQDLzioEagBq4VNVPxHIMy32fLXOlByed67F+FUQBVAQzwWdhAikyqIkSlAUUBAqpS1Q553nPl1MWVLKqeoRzi+TciJAIzUeh0QAmR2zIWOMTSkLEHuvbKMAkjUEKc6nnHLMx+NxHGdVRQRryFq21nlXO/bqsV3PzqcXMCPWTBpQhZikiCJxzTUoJeaU5mk+HvYpRWUDQIiKoLyorIl936lx3SYvBNVf4mB/+XrJJSFKnVGqbLsCnmefOSzC4Re01BINQUQEylC7CE+n+XA8jKc5xCIF18OFt/12s7LWIVApkrMcD4dPH55++OHzjz/89Pnz59PpBKpt2603m4vLi/WwdtaCak4paEz4C00/IrGx1nn7iyFmgWtBMrBltkzO2BCsS5VkFCEkQmEVVSVgAiBEW4cYBVUoCkmxysGAiJAJqV6EVHKqiAcoiQhqSVKBqOqcBxUERVVSQS0ohVW4Hu2grhGgjA1b91JwDaAv5pgXUvvnN/ssmFoEV1+62M8sGTMnwHlO4xiPx6NiiTkRmdb3iwGkaCoxp5QCpRhSnKcwTXOzXg+b7do5c3V1iUiAYK211jw8PMY5VUc3gLyYmGr+NRICsGmcX/X9s5oKEa01xpjVatU2bQjxeBr7vhXVpGXOcZrHnCLlKm8XRBAsCgUVSpnnaQ9FJI4QRzjNoERpttZ5oJLTYToozI0vHi2V1mDvTY/kctTTYX643e0Ph1yKlILECnwa426/n+eUM6BaEBDIAEVVyZBxBhFL7YB9bmF7edmhZsMoLdAj1HX1/GeAsIR/VY9ggVrFrCmmmmveuMawJYCSynSa7j/fffz4SdXGWE7HeQpz0eQb23X9xfby5vpmu72wxiKQMw7RkEEFLTmHKTzcPZzG080ra9k0rumaDs7BCs+7CSzYHBIBsbVsfgmQae07qjOyCBQgZctNZ9ueOLZtt1ptVqse0JyOT4g6jcdpPI4xRzUJLTZDRnMZ03qz9k3jvLPWllimKcxzyDlznfNEYoz5eIjTHBWKc3kzezbOGrAEzHUhBSQE5brqEJxLs1CVawxPSjLNcQqplLMu68WLlpRTxNoX2FgEkqL58oY3F+R7zA84R+AMzCSAAFpb8KocnpmQXg4TeFaNqgimSMTQtuZy6y8v7OWl6ToyDCUb11hEqq03RabjqLsDoCgqIAITkAE26Jxai4S4nEQrdCFQBH6JxBBRSvHw9PTzDz/867/+y4effz4e9kxwdXX51VevfvXr31xdbAnQ+a5b39huw65jYxwhG/v1rwGJY8xF4XTancYx55RyTDESUT+0xlqV2gUs+0Obi8whHk/r9WpYdU3bNU2TfZGkyDkDshKIZiAgw21ngLqcSQpVCjnLwmGfB8r/IIcVeBkZ92d/hYhUjUpR0KWS8UVw+fIsw+I2AllkihUCrt8Tl67rhTwiAAYxAERoiTyzQUItBGCJiFjJFsDE2jK87qxB3gUZLWfCoqoFMpTK+Nfimpc/uQIqsAJrTWJbPmLLSRnqzCYCgGoAkM7OKSHAvGzwuJRunzGpF9JXEH32y+BZZwQCkBEEYCncweWXmqWC52FFUQVUUKUmEcsiEkIlrabHX0Ix5ng8kgILoUKq6V2o1hh2TMjGGGOtQfQN9orDClZ9m+bpE+I8TSqaUqwQiwga44euXa1Wbdtb65GJKpAJNTFQS86qiqjGGOedAkxjnGOKWZOoqOQU4jQ+PdxNpymUaKyxzjlnnTXWGCIDaG079Jvrq5vXl1fX/TDUAuSXT1WdP15uouenaBllzn2QX+AWxC/3t5Sq6ZHnL6Ln3VREicBZB2CLFFX+9PHh3/wPF5vXIPZX33x1ebVpvEeS8XD64Yef/9//r//fd9++3x9DLtC27co5Mm69Xm83m/VqY5El5wmnkgqfqb/zooPEbIxla81/GGJQjHJhdsY23sfYtCnOcZ5zjloKKhgFVANM6C0go0B1vkmRVCSWkkULVOwGVERySbnkVHLKKgVVQIsWyUuBxDKBwDmcLscSQ5jG0+jZGkdMUj+ioiXlkkXLSxnZGdI6vzX4S6/niwwAemY0n9EwY60Tn3KY5zxOkQiabmiatmkGZzwjLcQQaN1lRfIcpuPR7Pe7p6envu+877q2+91vfnuxvby8uHr/888f3n/cPe1qIDcCKQERGWZrDRMhqGXXtu3N1eUL6zt671dD/4ff/9W7r98552IszglZbvohG5woc8aBjGMGhCj5FEPJySo0Ns+7W5Vo9o/r6WRj7gtcxMkgz+TGnG6PO/T4ttt0q8vt9hr9ek7N02G+vf34tDuOpxlAm6axzqRYyAQFFmGAgqhUNz1BADJVzb1EbC1k8nL5n61eACKSYgzTTMiLNhFqOx0gKAGiVM88EWhdd3LRaQpPj7v9ftysNwBs2FrHje+8bRiNZA1xShmQqekaIr/Zrr75+qvf//73v/3t7969fWe5FkY4ZjSWc46HwzHMabc/xhi9a4d+7W1ryGPFDWFx9YqILGdFJEVApJcCn+UdCgKdoXtVIvTO9gOUCU5BAU+nEzOyNf2wWl1cHE+HkIoQH0O63e3dx0+R3G6c1/t117Xeeeu85jDu7qfDbp7m1jfVddm0bY6xxFTmOeSMxlCYOSdSQTCIDPVnr/tGkdqMVu9EZSCkaMlFskKpWVjyCyU8nPUS9SNRsmhGw+ha3qz826/g9Vew22FKaC0yUYXra3A7ggIWRAUEQkJmQ4yIqEsFXSoAAmyo79uvv77+v/9vwx9+67YXkNL884d0OGhRDcka1sZZb0tja7yDsVatVdNq2+l6gGGNziLrWQixdMXry8ohRAA4HY///sc/fvunP/74809xmtbbi1c3l998/e6rd69evbpZDT0RIls0nZIrQLFozgWV++3VV2yNb4eLqz/98V8+vP/p8XCc5wlAEfEY5FmwpppPIRYwIek4l/Up9Z3v+6Yf+raN7hRd27ZdS9YoFkDAUgjVmsYaq4VFKStghpRVSh2Vzy2Qv1ii5PmtVpUmVNqp6jWQnoVHCnXoQ3hmB87Pab0uRZe4umWzBxQC0SJEDqq/gRiUQQmEoLAh10BveFDXA/SIBDgJBtVoubf8bmgboqNNe6BHkp3kU9KclRRKkXkK0zQ+RxKoYhHIolmR5JxoT4sPHgAUdPGTI6AInusq6XywqYfRJaldEQF+Ue+jRRW+ZPhKfSxhoWyeSYGa7YF12QY828Mqh6b1Wy1CT1WtbLgu3/zFBmNiCKhKQiB1iFFFLcYyUEXFmJlVjbVO1LBZrVfJ+8PuybkGiReOALQIIDZd11xdbjfbq67ryRhmw4YRIOdcSkkpl5KlZGZuukYBwxynkMegS1tHnKM/YtF5f2yM7zertu+btvGNd84RO1FDrm36zXqz6bvBGvvf2xT/4uuZWnr5r15myZy30gUrfPkPdWHNqt2H63s/HcPHjw//9q/fk5ow5a++fnN9c0mET0+nu7vHDx8+fb69A7S+6VerVdN2Stz3vXPOGuPIIPMiq0virH1JWxAZMtaYOsSclbD1x6g2VhIGUWuMszlZ50xKUUuGko0UkCy5gCohgSIsC2lVN6goCGguGlOaQ5zinGPKWaSUsyOoVLPs+Ri8XJ2qEBaFlHUM2U3JWmQ2gPXwAblQKlSE//wU8z93d35xVnhxsxCp9nWLAmY2TG3bN75xrjFkan53xbIIEZac6BxjmKfpuD+2TbNabfph6Lr+6uLSkOnbtvPt7e3t0243z/O5lwCZyVtrDBtE75phGF4iMTW4bxiGt+/evX33rqRMBB6JVR0hIkxaRFJL0ICgSpJIZVYtLZIraPcFcuQwY1bPdjBmbSyxHW0DJY+GoKHh4rJbbckOMfF+P3++O/z0/uNuf1IR66wCGGNCyCGmeiIgYkAlItUqhiZjDC1SQkVAqRGU58fq5QWXApIXnn/JL1iKyhAWMThhbSpAUNVScA75aXfcPR1BTd8POYPztnH90K3Xw6brHnM5KeGq69uu7drm4nL77u3rt2/frVYrZlNKkVKYQYQEMMVyPE3743QaA4Cycc61RLbC1cuhGBWBahuX1kxFUECiX4r76jEZngUNAFXW5JoGYlOCqWp9Z42xbtqsu2GwTRshC3EUPYW0O41uvydrk+jhNDrrjLGa47i7S+NRJFX1GDtP3WBEk6gQSS6ZuSBqVa8bZwBUFEoRzTnVxLlUZBntCSGlnEJMMaqUOsH82Xa5nBxwQQkVRIsgKjqgrrWv3sjrN+XH72D/iEhQw0cUlHDZTEFAKg5ATCCiBZFIiZiMAWIRId/yzbX71a+H//S3m7/5a7vZlnFC9vDjj+PHT+VwIuVkXd5sszWFMRss1mRjM/nsWu1adm2jwLmccffzgeeXSEz9SCOi9X5zcUGXF29uXr178+qrd2+vri76rnPeEaICZeSipIJSoAAwknWuY/PaWLAugxrftqu7aZoqbl4hQmMItIQwI2gs9LCf5/T0uB/bzvWdH4beec+Gnfdd29nGkUEyhMzGOmc6ww2hI7aALgM/VxUC6gs38y+Xqf/uAoYA+AVQ+Mt/YfkKCoCLUuL8+AoUUAFQBCPIVQuDaBkba/rGrnu7MtQLdlI6RRSYiwbVyNg52lpqmTriBgmcZipz1igiqjlVed7L1ndUZEUWJXkeYvCF3a/SH1UEBBXGLQRIQLSghItTC6EChuf6yvqvQZUUQYEUYCFMVJZjElVV5QL4KpwfdT2zERXI1C8T4ILYLA1ML78VAAAYKKKgC11AWErJ6f/P3p/0yJYk6YKYDKp6zrHR3e8QU2ZWZc0odvXj62rysUEQBAg2CDS44I7gglyQv4oAN1xywRWXBHrR4KbZZKNfTZlVlZmRkRFxZx9sOJOqiggXeo6Zud8bWclqgM1Fat70MDc3O4MeHT4R+eSTKDGiGgJLltP5itzK5Cbwlasa9hU7j5IAhAm8p2ZZba/WL18+X6+36JjZOedMLcYxxZxSHMexH3ozLfCIFgtXgRtpjDoMMWGojGgj/Fkm0pvPXq6vN76uqqYJoTYKY4JsRDyx1VTkk2OquFtOxn15cUlruvxpEz+GTr9evgOzz6asngaWciYqGnSMAF0bv/n19+MQHx52t3cPP/3jP1gsmsP+0LZjVS+fPXvBrqrrxXK18qEyZOd9TnnsB67qyvv1alVVlSO/Wq3YncMWxJMOKhWtqlM4pqCrMlNMkNATOk8heLMMpiiCOco4DF2XU9KJI4GI4D0yMjtmYiIcYzocZTembtjnYSgF04sNC2ZW9BcLhJlHEgMSETAnCG12OKJXYzYiYnJEKMY95BGCPd4vn/TtD/nJLh/Noz+BIlFVL0LdEBozEjMhk6GplSzywmAlBmJEBjVJOY/9uO/2BtA096v1+vr6Zr3dXG+vr9bbl89ffPjw/vvvvyt5nuMwxpxAzRF5x1VV1VW1qHxwdAKXE4hZrzfb7bOb54zAmtzY4dhpHMLxOB6OY+w8GUqyseUcN0iB3dJXFbMHQDAxxhBctWwWm83VM7dY56Z5hvIi7jPmpvamdtiPt3f3b963b9/v39/d9f2AgCG4cYhEnGLuh2GMI6A5x8Uza4ZsRDiBmDkncCphNvMEL8g9QESBqZ6i9yWeRooASMXkgmJjlYCICYrpGHW/7z/c7sZovqqfvxyqZlGHxdX22Weff7lvB8V3QPT5l1999tlnL18+32w2daiWi2YYxg8f7qiMMAIkZMfjON7f398+7IcklfdIHtGLYsrFP1rYHDhx1fA0eY0QEN15V7hscwSqVDD37IR8yVXarFcvnt2E4NNw8KExCopg6A0dIEPRrDIYU+7HCNg54jQMh/t3MrbBkfe1ArmqQXLmg68aGToZE4WAzRJ95UNdVQ07NrU8xtH6NIw555hilrGUrUOyfuj7vh2H3iSVEBPiOZ5kppIlp0yOJyIQqJphNhIBZnp2wy+eS1MrYqkQAxNlUiZnCBgAsMHsBjcAAwIXar/Zog+i4K+uwh/8mH/6U37xJaxvkg+ZVZt1xtDdPQx3O2zWmUP/+Ve96WDWgnWALUBnlthBVa/QfT6kbT+6QMTOLjmIdt6ZVaVZLv7kz/7086++3O/3hHhztd2sVoumCd4ZYpy3Ti1BBDAgImADG7OAgV+sPvvqJ5urqz/+s7847A/jOJ54+ITAnlIc9g8PD/f3D3f3h/3h4d0DmDSNW9S+ritmFDVA8OxDFaplFergvPe+8r6uw7Jplk2zahYbV6+4WqJzMG+bszPlPGewbC30qGKjzp5CnSNGduKYwJQBppcIZuLEIADOKGZys2eVpOpRHQgyBY+1cy8Wi+eL+nrhG1ZLAilZzgbmiRgwEFSgINHY+QYaT+sKB4G21ZQ0m01JH5drKiE5j+wBaYqgFR22qfKgTdSzwgwGBRA0waIYCg4MAUipEMMn7rGiTImbaISKZAgKRW2uABgkA2MUhELqPUXbzAyLP9nwXBTIZh9ymcgIaKZMxmT8GMc4lQwAZZdWQDVNKRVnl+dARN65ZApgRca35GXMVa4dO48gZopU3D9GRCG4uq7Ye3beO6cqzOg4h+AcM4CNccw5k5n3NTlnyAYpjpEAnPe8XFb2rK79i6++WD+79nXFoSLyUfDQ5zFN8j+aU45ZP0WGn4bcI1rGU7DzxB9z+sCT2IeI2MynmT9QashMAnwxxtvbuxjHrm+PbduPw7NnN4Rs4G5uXi6aK2LP7IgZkAAZiER0jGMJeFdV5Zyvmqaq6ycJSqUE6MQestlBZDaLmxR6bgkFkHOOEIiAVCDFHDwRpXHUnE0VS4S1qP+WkksMLJZIO8iskWQsHj4FNCSdawLAPIunnEwDcky+Mr8Qt8xuYcRMjpmVmJkFJXsU18yexKethAWKB+pJe+KJefInAGBXymVicbcUpxRA2ZALcQmJkRmZJ9FOyJIMRCSNMbo+Nn2uK6uC826zWSIpoK43y7Hrh37ohz6OUXNmxLquq1DVVageF+acxJNyzjkjE8aYHu643fs4NkO76Y9jHjwZ5QhjT2q+qgKHRWiqqvLOs2PwjqraL9bV+npx9ZwXS/FhAXmRDoduv9s93N0+vHv78P7d/v3t8f6hO3RtTpmInOOuGxExZxHJKSUAmNQMS0YBu7Lvm6pZRlNiQkRVZX4kRlAeqePgfT3x/y5ADJT8iPK8J7+AZrEiHcQuILkhpv3heHe/M0PLsns4mGJVVYvFwgV/fb29ubm+vr5umkZSPh7a/f2hyEoSABAiITGPMR72+w93d207WA27XXu7fOjHFLy3wjtncgV0c5ELh9kjCXWdHo+WIi07IR2AaZdwzjnnRyAkV9XNcrEIwdd1AECdHDoleGiSYhyHMUZDJ6KGwMSx6x/2xxy7xrvtNgM5Fxp0Hnxwda1plWMicm65ouKZFkuSVERzNhUiIEcooFlTiilHkXw4HA6HXd+3qplACZ/i/YkHaiXnY6Y0G6IoOueub+T5C1yvIHgcE6oAsiISoBUFWAAAVAQrKq7FoeacLtdw8zysN4sqLD/77Oov/nz7J39WvfjMNStjVK+23HbN+pX6+4jmMJMbQ+gRO9FWcqvaq0QUIPAEGWyb0jIm5mqS1BBTEZNH6aJq5r1vnj27vrkZhgERF00T2CGCqWWRE1/LaA6qTcwIKwUcnXONX69Wy2fPXwzjmFOCmS5HaMSQ4nDY7e9v7969e3f77sPd3d3Qd8QaRXMfy3BABMdaCWTkbByUxVTBiNRlc2J+Un8rI/SRG/5yhBV1cisXXQoUfLRkTf4LLKQyuwAQdvHz44PPk21uDOacS0YAREAeyIMJgmApH2EESGDegAxFczJkds7ZguKVqJh6hA75yJj5qbp9QWOAp6zMebkHQ6ALc8dopqThFO9RMzr7O8uCM1XOsvl9oykZx+Z+M4NJG3rmAl0GgwEnodk576aMivNGfIopTb9eNidlaUMCJAG0oimtmmJ0FVXNwoGPoNYPQ9cCYO1ZJHd9P8aIiOwcGJeEVTUdhrFt22Pbel83TYOIeYLjAqCOnQXLIimn9ng0wO3Wk/NEqhZjPKbY1wx1RQteLFeLm5vt6vrKVbUh9UNO49h2wxgFJ5dpTnE0ewxiTqUJYHpRwMolRrn8uIicPgMz7inAqLypqkRUYq8l7DfXQy7saTTVmHR3SP143B9297u7r7760U9+/NPt9vrHP75WNZE8DLHtuphzuSYDiznndBzj0KTGOQ8I7C4rcp/mwCx/adMQQwBgKqcGIFA1LfmTRIyBmcEoBK1C8CHHBJqL1pKpWhaJYxr6mBODpZQgRYdaO9LgihkhgBlIzetcqnn26hcQY+w9V0u33LrVM79eOS5ICye5XRWigPUa0V1OULVHGKVAmcuxeIkUL5/Ro9dgqpIzEhTaf7Fy6EQ+LXmEjOjZEUHtfOPDqqrNjL2rqqpZVJbHD28PYmIO0dH1s+3Ns40mScPYd117bA/7vaTsvfcuVME3VXXKsVbVtm3v7u7evHnjnXOE1O3h7W+a4/4ZUSDYsCgbEaNv2K3YBbdY8GLhFku/WlWrpVvU3FShWdSLVagb5xsjjFklDq6344fd3//sN7/++tu728Nh3/eDxChF8YemvNIykQ0RiLAU8WBm53wIVV03ADAMQyGiqmpRlw8h5JxPusOlEaH3VajybCuWx1wgss0+ZAVT0TzmPMYYU2bnn714oUbDMIzj+ObN23dv3x93h/1+d7976IehruqqqRhw6Lp3b94iwtCP4zAMbZ9iMhVCct4RMxDkrDHGoR+6thub+M1vvj223XKxLCQkIq5CCFVVVSEE79hRKSAMYGbMfBLuQ5g4DDixTqwseQjg2LPzRt7QGXkgB8RmkNMoOTIhOfSkKGPs9t2+ClUlxugCsWNiJY4KKQooRDFi76raJIH3CDWAelFCDiE450V0HI7H41FTdI6D5+BLXT1VTV3XHg/HY7vf73f73X3XtyIRi0GLT9ZlQzRCmIQlSsVeJjIlx7a91ucv4tWVLRsvGUXAeSAG8qUkqSACkhFpWbIYyVe2WODVM3j5xeKrL3/0Bz9+/uMfr778UX19w6F23jPj0EC/vrq/evmz7RfftJyIUrKxj6OkUfIoKeVEIE2wVeNDMAcRLZtkExFgU5WcJCadis+c5u+0KhPRolmUNTaKFP9QkbCaVripctBUM/A0+SXLFMhH8KFy3s+cOQAAAvHO1/Xy+vrZl1/++Hg43N/fH3YPXXfs++MwdGBWVXVdNxMtoQ6+CqEKoaqrqgm+Dq5iVxF5YI/O22lTn/eR00KklrPmnFPRPlfFEv+ZHYbTrARDMLKJ1lJ0QUo85JzAfRn0nMfwrD6BBoBqNpppUiRx7Whq2dLamzdhnUGCYcnXQJEopMosiEmqfHiWcaOwI/8urFi8AE9lus9PRYt8KFFRXzOaLdaZb1vke5CxwCtGBC2289lAVdCzSwVPHQWGZjYPazMrYjUTPkcAnKtoAsAk/HASLzYtjoM5HbFs3wXXi1rRYr7cxV17PBRLFoiNUEXiGEHVMIMqOTbgnGIchqE7mloXWESGoVPVxWIRPKNlkSHGzjmnWYdh7Lu+Ch0AiAoSFqeJqjl2WWZl4pTUMMaEgt2Q2uPheLyXNFLwzlGoOASPCKAKYKoSh75tu8Pu2A+JpnUq993zxynWn2iXCOZyRD759WMQc/ruKbp0erql580Ap3JXmmTsOu26tm0PbTcgVmD++vp501SqmagbY0wiJWPAzLKI5jxGTFmc9wQ8puXjq7oAMXMCcAk9T+W7qfglJ88mEtCcMswg4L1jrzkTCJoxgIlIyrHvBoMEZjnDlAUV6mYJLiiCGmSFDCjKUzmvxyAGAThUYbEMi5Vv1q5eMs880kI6UCFFcjX8gCfm4zbftT2iOPzwh0VhAvUIPIN9gDO2J0JH5FyRZgywqInQBVd44n3f3+5u27Gn4Jab1er5i0Vdo2ge09hUXRWWVcg5O3LOOcduvVycyOOqOgzD8Xj87ttvx74nBB776nD3DGx9dV03deXNPJJzFCpfLX21cIsFNw03C7dYutWCm4qCJ+/UcWcWh24Yxq7ru7bruu4337751a9e/eabN8fjMI5JBAEKeqG5xpnCLDZtBiKKWELdSDT5WlJKKcUCYk4D+1Nxugn/XHT7CWVOJNqyr2TVOMZ+GMcxSs51FRaLKsZ+HIe7u9ucZX+/6/tBNHvnF2FZL+qC/CyLmOaYxn48HA5xjEzonQdCVyTTzTw7qGtQQ6LD/giAKUrT1AWZ2eyZVzPHwkxTTofZ4xh/mTAwZXsAUHFXIiCzCyHUCyW4P3RMHwjt1dv3bT8agmPPITjvCCHH2PcdH47RmMPSBfPOxpiHmFWhnjIvq1CFnBFMcSo7CoTESOM43t7fPtzefnjzdhy7ug6r9fL6arNoGnZsYDnnvm/v7+/3+4dhaGMcVDOYIJzz3qfHoGoiRjxZoMXdamaSTA2rCjfX9NlXcnuXwweLo7nK2JX81AwlRQ2VUBkXi+WzZ1eL7VbrZWoWXWjsiy/Xf/4Xz//wp8vnL8mHse9zypa1j+mu798M8XuFV4BTafk0ZkliaiDEUPuwWbjtqtmsN5vVJjiHZpoFNKlozklzVvloQbbJF1K4ZUU+xM5K7pOf04BmTvCFxpyBqthMjEIiBEacKMxQyKPEnqhulqu1ba9urm6etYfD8Xho20Pfd2ZWIEzV1CEE9sTesXfeB+8rxwEncRYUQ8MforOUWaGqUvTtQYtmbxHwJUAEkTl4VEg+BHQRxDn7FX7wDLPfDQrDSRBUFVMmgATSGm0crkhqtMqwFBlnBAJQw6xqWTQJi5JlL7BU8lxnbkZ0e3rqvlAVkWwmgDTJAk+YalrzLwAcAvL0dzrj05OX/iJwMXnrDaZKB3O6Ek1BTZ1GAlKJDUyOlVMIeEZxpVTiOZinAGaluIDpRzrK7sPt+7JfIjl0hAYiAmpsOA5DjMmQ2zj0x8PQHVX1wKCqQ9c6xOfPni2aelGHGNu3b78fhx6RcpJhGLq2FRHXs82eGANkcmoWxzjGySjs+yFJd7/fHw7742EPmq2qrK64aThH3e2GnKvFUgFKRcaHu33bjwXBM+vh8EIeOclLCvCUnfQxzQWeruNniPMknGRTDvYjl4AZMINzjngSmJkBTxGO0zykMQ0xiSRqD+Mf/ZHe3Nx4zzZJTzkDNAUVSVkkJTMdYypZ5JtnodTlmZ7rRK0qI8PKqgygiAKnGE/JVFMHZggEyIpsiIrESK5iDMoIDsFjKW6ZUlMPoR66buwHHQaC0WHVuAWLKIAYiFk2k6xTZi7ADJeRkJDR+cotl3XT+KJeSRNlBCcXanGFPKmfYhfuUjhNmMtnMjPPTz4PeOpjmy9lztsocTWAkhisxXgtVhEwY/DkHTsmR+g8h9r74J3jO0gptofdAwfPZLBZk3cgQpId6LIOq7ouD4uYEexqu3Hu7FUSkZTS17/61etXr1Sk9tXL9dZ98aX+4Z/w1SbpaCTETIuGt1u/WNXOB18FH9g5YKemOea2Hdr+sDs83D68v394uL/fHw/d2KXdfv/+/YdxiIQYghOZGM0Ak0cwBM+EalbCSSK5CGSf/DGIWOBLaTFGMyOi4oZ5ErCbf71YaAs92Galb1U1yFnHIXZt13V92x5i7CUPOfcpJtWoaqLZBVdCZlVVhbpqmrqq6hACEYlI23Z1CDnl5WKxXC6Xq6UPocBWQhqG/vb27nhsU05gUFVhvd6UChKuIMlSqqaYWliyOsy7yzT+spfYpez9tDcy+qpabK8ltr/87s0vvh7y0O0e3t8fe3A1h8bXCxcW6CsB6mNOh6NLyCH5qvLO5bFvh1gxrTabq+vr5bKuKkcEonMFYp48ZA+H3T//7B++/qd/+u6bX7WHfb0I2+vtl59/+eVXX/7oRz8K3uecYhyOx/3xeDDLpmKawbJpnqQTpodSdqOsgFJY7URIJYRQCC9mzYZ+8meaeXj/NnZdIhKEBJYBklpUHZMIGHn66ssv/vTf/tXnX34h7O4Px/33rw5mI3lxgTgA8JCtH2LO6fb27he//uabb7453r3m9mHh0aMRKTGyIxeaqmmaxWq1Wa+Wm2q5rpbrarEiZBHRJKI6VRO5yLIsgETVFNUMixx6SS/R2SiC03JWJLQfeXHKylwWPzRDyHoy+MvyW1AHik77Lrlmtama5fbmuYioihVZ9uJNpznPAayoCRqS2kQYLeC4kMeRCCcPynlulDzh00KGRYCj1HSxyXNzatNSNZm80y1Mt/sDQfO54exeRjMdVe6SHgzeJ10RXrPbMl8xLRkrhMBABdmLaczF/YimZshAPriV5QUwZpULQUU1TSnnHEUrtqnPSzQCT4J+NmUqyexLgwIwyEoYoKiAnkJgZYMAACPTuV4YznQHADKVKY3LsHD4ZvsKZvA6jRwu9TZmzsApdqc2uWEeZ4uD67ruBGKcYyJSU9RSEE9FzRCHnGMcSr2SOHRFQyR4Xi0Xz66vnz9/FmMnkh7u7xjJDOIYO+rGGJmw5MSYqgESspqllLPmLFkNYpR+jLv9ru9bkUgAopJEoiimHLt+FKlSNLC+G8a+k7HVmIozTklTGj/2spxaWffhopd/69D5dLO5FDZMiKeAJJvLKWiRP9KSEWMWxyjZNKNk9d6pyvXNFTsfQgAiABKxmKJZMpGcNGnKKiLadp085ffQ/M8IYZKqhjJ15+E+z/+T3qMVIIFE5hjNITiCUJg1Kt4HpsC+RterG8SNljKp+OKINlArculFgVtPA6vsk8TkfOBm4ReLEEou8pRZR5PrG7gogz3uxYt/5dcTDD85by+7/LdP8qetjHEkUzAuHlECJnLMwbsQOASu6sCOACE4XNQhLhpfVZumabyvmFW1bJIhcFU13ocSIzPT5jFXCeagUtu2AEDknV987ht8+YV/+TyOR8mjmcGyoZsbbBaqlgwFQIeYch/j0PfDsd3f7+4+3L1/++HV3f3Dfn/s2jENkmJKORsIzqKLSOwcI5KZOe8XTeM8q2hKse+HYSgOG4WJRBVxfhx6Esme0Qh8hOABzmN7ei6lwsDMji0EoGGMfT/0Xd93XYwDodW136xXIlJgk26NyNVN3dR1CFUIPpT/h8DEZtYPw3a9FpH1ar1cLhfLxvsAhRvD1PfD1dWH3W7f95334fmLl5vNtq4nDDQNCNQSViniowa2WCweccgu/pVJYhO3gZwPzWobe2r3D32bhmM/9MLNdlWvXKhdaNg35GogBxyycU5CkKKC4yRxjGJNFdab7Waz8d4zojkiRSs1aL3Pktvj8e37t//0z//4y3/82f2710Pfssfmff3+3Zv7h1tEuLm+Hsc+pTgM/Tj2RFC0DNDMVCbq5TyaNWeNWQyx6MwQIKEZZBM1QMSI3G2e7W66+wSdO2SzDJpNxSypxpwHiGASvFstVsPNi/jsRUzp2A8HSUPf3R72i4ddxqAIdw8P++NhGPq7u/vvX7/a724DxOsFLoIr1Qpc8Vk0Tb1c1avNYnNVNRuuamBvhGKTcEZZEudN+2l7BJ0BT7xXnZ7dv7Ayl4VjckPPLtsLN/HsJkBgZMfOeTqBCSi4sBj5ZoAmp+3UQKe03hl2/LCb5NPtHHH66IsTl7Es2J/+yG+75XmDV7OkMGajrD3CgHh00DnbOFwyLAwadBUCZ2MVEiUsqASZ2ChxGtlAM+ZLeTiAonasKqpsk9YuFszxJI52up9zrxekVJ5JMYTmJQPKz5OVaVMc8HRTCKf7OmcEX9i0CgBUJKTnP9gklFc2pCnJ9vLK3InmS3MWOCARGRkZQIxRzJIKmNaVU0EwAZPKM5FzjFUVnj9/LpIeHm41i2Zlojhm03ZK8z6VhdLSd5ZFFRTQRCFnG2Ls+85MF03jnXPIRBwVNSpZjqp9GhBMk5KlRc2eSYHUVDQ+FlOd2ikyd/nzNIuebEgXrrALEP2RwVquvhTxTqmQxVSnpLHCOSoyEIaAKca7u/dqwh7VJNR/dn19Uy8WtQGRU9VxjP0wdB2NOKac8igxxhjj+dkgFIpHMcKmmGG5zImAhQA0hZImkDMThwEJkWhigE8rRtGgNkfoED1wbbywMEITOWevmsyynRKxxSTDJPM6dUSR/JuEzKuKfPDeF73bErekOcnFCTl+/GAmfTzCWU7t1OvllkosaurVeajMnt2L46A9/h2KWWNqRrP/bHaEFkuImNhxqb1lqjFFAvj85eefvfysLgUjQ4UAGSkZJgAErEJwzpf+MgPm85RGPFXaOjUdxy7q6Na+vlmmNo9d1n7UlDBnGYex68a+H8a+67tj37Vdd2y74+F4PB4eHh7u7+7aYzfVKkhiZoXJDahzIgQQITv2zlV1vVwuvXcqGmP0PhReiOo4jYwi7slsZiUj6STeUDwij0HMycqZdgYzK+RMs0KhMhEZx7Hrurbr+q6PMYJB0zRNU7948cKV/c1554JzvjR2znvnnWfmk4ZkSrnvO1MLVQih8n6qzI6IiJRSvLra9v0oKt755XpT1zXPfNucZRxHtYna7L0jZkLarM8estmCnDzVs1QMIKCCsfOuaEfWy3F93bf7YTjm1JuKsUNyQAHRT0mnpZYLsRqMMWsWIOfrxXp7tVytEEEkc6mzDsjOhRCO7eHu9sNvfvPrX339i/fv36zrsGrckPqhP/7y9v1hv2vqOv74R965IjBREiPQBAmRwExULypym1kpxgsGwhNTG0HNsoiBIlo39O/F3hp+n+EQp7QelUKszSIxx8GZLjXcH3a/fvX6rm2Ph93h8HDY7eqq+dU337Rj3l7fC9jt/e1u99B1x67r23ZA1C9ebB1tgw/MgYjJBQ4VV41vGl8vwmLJPhhyAbgKWviYSMBIYI/0QmYP7TQQYUYwpdjfNElhyqbHaZ2hy2X5PPNx9rKezB5CAJoqnU3GkalBEphqiXx8GJiF1BRs4qCUtF6cwluEeLFfPFlqipeiJBCcTLIye04Gw6N95GJcTmwZ0FlP77c1m60LLIUDkAjIoanBnepO5T6nNcOWcRtoY7R0VCF6MzYlU1IQRGZQTHkYsllOrI+nf/GPzHc6FXEoeTknK2jqhEdwcLI4iSjlXOZwiR+BWeGoncJMZSedqL1l8Zy8MjPuOe/O02dKQLycTkXVtGQZn0wyMIOz8MfUHLEHAARiZGZHOAk9klFJ2itF/wyAmRFAREy1sE7LiZkIjBEYgZHIAFNW0VhQ1RROms1CFctmRQZHxMaYxpiGODrmZtE4XxGQAWUjEyA0MQURBCNDQ/LeM6MBiWrMwOSejrSnY/a3od+P3TN2QY55tKyYQbn3cyuEg2k4w4z3y4uU4sODffc9s3Or9cY5v1ytgw9zIhoiIiF65m4cUhZRFXlUkJueaHpM7nGcPJ8wdf7soZwhKFGptwGnJYJKCSKakDQSGzvwHkPlKoiJRFjVmeUZ8JbcluJduhi3QEjMjI5L4jcV9yzMIKawngGYSsH5iysnZAImIJzu6jKJBOCCWTpFAz6ZcYaXrx4/9ROx7BOP+2IOIgFUVVVXDTtf1YGZzUByLpKkVMp+Bk/kEEsNMDilJs33UtYVKi+YKeZx3+7f33/gxrXdcWzbfOyZqG5bQOyPx7Y9tn3bDm1f4Mww9t0wdH17bI/7QxwTIZtBFgMANmKeCh0BGRW6KhghikjOCcxEtAgvzUMUL7tk8ocxA8CE3qxUqn9KViiLw2MQo2qKNumWnVg1zrmqrpx3ZlaEE0IIhc0avHeuYnZESMTIyMRMswhZQRKq6/XSDKjoXxKd8roRUTT44EUmnR4fpuo/ZqAqiDEmKP1RroSdc+y8f6oRhfP0OIVbASfdPkbCUIW6qZplWCyaOIgkEdEpq4IB2IAEoBRIUQNR1YQG5uqGfD0IPrTjmw8PQ8x1VQUfPPu6JnQYh/Htm7dvXr86HvfNovqLP/2T9aK+3314/fr7f/7FL28/vH316rsQ3NXVVnIqHW4TexrNIKaUUroMo6iZigiC2SToKuUJqqhm1dS1h67bd6kdpI8QqVQAmKwOIcyBtUKoPYDE+4e7bmiPh4dx6EQECG8fbgXx0PeGsN8/tG07xiFnIeeW9XIRXOU9+4AUkBjZo6/IV1RcmqECYjPTDEpqCoiEPAkPaqlT8XTa0sUQvVybnszmH1qrP7nCzzEomIWN4GSzwmzSP4rbTGAFAYqG7Cw5e3IOz5f1uzpMbFJ7/5T3afIHTiRfUJiIjL9z0xmFz/2FgCQAg5mZjia9WifYKh2VN54XDA1ZYHVmrKBoDsAoDylHcGZzFeG5PXG3lN8uzXiYqRKPVexsWmBOOboXsY6T4hrOXA4o2+Llw55W/kdugidHmCgaj9erR538+BE57xuYUNJURwYmLxiCFtGRCWGq0aTgChizkJoPeUzjfr8bx3h/tzscu+ArZmdQ4lAT4AKY5NnKzp8LkFLLOY9xHIY4pOScrwTIyBFPFT8NyghAoAJpS9IVlnqNogzGT+Xt9UnZrkt/zCWWvAQoT7wvl6jz9DGcK9FcghsAmChmj5ylRoTOsUh+//49AAXfgMFP/+iP66oexlFEATGEUIUQ65qOh5QyIT067LSv21wk6+KEhoWGNrvqLv5U9oaiBT0jDwRCJCOaKokiKhE4IAVXyvypoiqbyeSJKcwIAyi1qeGEzWByDzG5Egm+8LYUnFRYl6xTwbK565wj59i5wkgvKJ0mVG2TiGmRogFCAtLpQgpqmyykU8fMzqgpDfhkSTwuO/q0BimYOsd+sUBEhOKuLMKSADYBdGYu5vUMtYpl+Wj6lF9CCCFURVNOLL9//+7f/+3ffPPtb3LOKcY0jJozEKnkfhjGYejjoKJYEssnIRDJMWOxARBLCVo1syxZZFYiJ8Bc3D/Ojdz2h/2BiERUtUhHikgGONO/SrYdETnnvPclIlN6YBiGx0Xg4KKvTpPFZiMKEKAkNznn6ro+rVDF2TOn7F1A5vkghTN4wpRIkwwKAqhkLdveCcMAAAAzzhRjE0k5JwMrKu8xjn3X5ZyQKAQPACGYOk35nGJdfNnwKG8TsZRnQYKpnC8hOPaeq6qWnHPOWWSyrqDo6pdyb6pmpXCBiJR8FKLvb/fHMb/+sL/erq7Xm6vVarNcbFdLMN4/tK++/f7+w/vlIvz4j378v/if/6efPX/2+tU3f/93fzN23e3Dbr+/f/9hwQ4dEYAxIUxqpZjF+m7s+/HC2W+GqAhiCgqAqGI551KMLudxHNru4YPtXi26t5/BLrkeVEGtCGMpAyE5rD2T965eIKZjhkiQvSfyjoJLktp+D5CJGSUvKrdqtsDOXEXOETESE3kspWeJkNyEZogVAEt2ECOjB0MkVxzGhT/1SPRm3hYL32W6a5zUjKcF6lE85qwx82TGPV4E4fSVadQVR24RwZtiVGWule8WzFK+bACIE3X9sQU7IYdHS8jl3+0kmzWl0hQN98noLXOw0DGnnJpLD+G88M3kkn+hnTxVCIYqgJaNS61yAzLDwSxla0V3Oa4cbT2vPS491AjOQM28ign3jCMylDl7sSbT3M4W3jnhEUupmbLZnT4GADaL3eMsoTnZISI22zzl86d99rSNXkKiU3T7k7vt6WiXl1o+8xFRAQDAeV9NXYvEk5vslAQ/M+WKf8lQFc1QFbIYmWWxYRhvb+/jGPshZgHnCKEQuGCOQ5bnj2pgRgqmU3YdiqEolH9kqEallMOFzhYBTHXQZilRna9WnRmR+8hh8f9Fs095YuAJ6Hv8V/tojp2+VdrJkaOqMXa3t7dV+HUIYbPdMPMkHGiGyMWUrFIMYQrN/C7XjJML9LHXAee/fOLCp7VjzkokI0MCcugmXpuClopIoDDR8soydAli7ORIRCxpE4/OdQYxAMTwSPAGq8ovFrUjxLJ+AQCSqkkJy86bKAJgUZ8tNRjO4AlmY+7ilua+v7gIBS3AXy9kpwoumx5r8UwQsJnlnHV+v8wSJSpArfgPygE+OUKYuaqqAlXbvtvtd1//6uu6bsxARHLOmpOqas4pp5RzTAlL3SVmR1h6VUXRkJmLrqCgTKjutJ/NGpo5S86CGAut9UTJgscWVVl3cs4FZJy8Lz88bidf7skXc/lAce4Z771ddNRpvUbEuY9Vp9osdqL6zQ9q2n9mC6x0oJhOuR3zYaebmCiBUyrW1NvESMafXO9+W5vLYE10LSREIGByvrAHOEtZrOcxYhOIsULiBBUTEcliqu0oY2qPbbzbdVer49Vqeb1abler683q/bvXb16/PR6Oy8Xi5WcvP//yqy9fvnQED3d3z58/b4eh67qHh4ftdrOoa8KSdSU55yR5HFM/xhjTJWNBRUQEDQ2liKmklHLOYJJi37W7eLjHeGwwVwuvwTRnEKWS2MqERI7IecfBu6pxwSETudoABKfEHCJUywzoq8De+1CjC+o8kJ9lAh0QTSWTCiunkKtnZwYSIFGRnQIshFk1VfuEJ+bJO5fz+vE69t+2lUE7O11Ojt1H5/34ks7XU3D8Dx19CrabqDJiYfPCxFo6XwGe8MvJ8VT0e+DMCzilF8O/ePuzPQlzanJBT6QGYpjURtFoYEWHjCijQcrRinA/HpV6ovyRh6kArSeG+mU7GT+PgQ5+vGn+cHedD356/fE7eBG9OkGcJxvxIxDzEY5xjn2xZ+dpDmYCk0+1/EOzQkFDtUJqATUCRRHoupjjbU5ZjXxokF0xaAqKRYQ5z9xOJQRhkmUiYkRSYmNDYk/kGR0jl7lCeML4DIUaMms/EIKCkD71xEzPvCymF5beJavx9DAePc7zO2dvzem5Xn7y9Ah/aBktK3txDjNxTvHN29fseLVeIuLzZy9CVQ/DqCJEqGbMXLQwvPefgpl28nQ+OgmcLvb0YkLuJ8+DlewlLIyRQrWfEDcSERsZEAArKpqZ4QRiUGcuGpkCoM2K7wCn0FHpyfNEnFgxxRUzMeuni2Om1aLZblauJFnYZDanrDHGmFJOKkXzACeUQ0SllsYpQjc/G4MLoW6cr6f8alOZ2bInTVUTdO6NqX9UrUAdK9kOCAiM81XpvBFf9O0TW6zAAiLy3nnvUwI0GPrhffpASNPwAzgtY4hQ2PWmmjUqouIJcgKVMr9IIJpRZ8r2yZtwPrWqIqBeiFxeXtWJTWVz5AgRCy2mDNcYI3yMzi9XdTuNK5yNW4THHLLTiS49vTYVP5lB7hT0KS/odPTi3iB3JnQXmoROEFmnMglgAFhy2svVMLP3LAIlYF/g/kRMuLibE/bG+ZvTPJ295BMqwnKyacQyQ0llKKU9FArLEaCsdQyqKq5w3c1E2166/nB/v68cr2q/aurNctHu796+vY1JrrZrX9Xv7x5MsTtGRb9Yb5vFwxBz1/YxprqqnXOqlZmK9MOQ2n6IMWW5zE6ynFKOAzKLWc4x5hjTmHOGnOPQ9u2d9a1jblbXTGSqMvaWE5aKPQyGpmbsnF8sq2ZZ1Ut2TgwMUYmZXfDeOx+cY+/JBQoVhdrIZStxSyZyxH6qQzVNFJxU4c1sYq5MkhOleqKqiYEiGT2yN2Dq2OnR2BRhnD5RKAnzBH4y2x4N00+ujACzp3aCBmfbatJTeoTLJ3t6ItsCnGTu55+/FRybmYlpVsnKRMVsg1LyRE9hlgkcFBxQin6UtaBsw1DqwztABQOc7JWSaXXezk+vT7G56RRWEjcADMEYkA0sq0ag7H2ufaw5ifZRq6QG6JF3zEfDQSTLpSSBTYukqp410sAMicqvT435k4sXHgMOmxvM2+UJcJx+PtlzL/fQS7QEMNH2TwKzpy+e0Qwzlnj0xRhz3vO8fBcfwbnpeXhMPAxVyKVEiZIixKhgKbGAAfuA7AqH10p93MmUO5tg03jF8hdiYq+E5J0IOx9C7X3lisjonLkwg5j5OGCApa4Emhld5L7+/6Zd8J7ktwz40opZHNP+3bs3X3+9ZKYQwo13ITiYPane+6ZpVqv0JNviXzjy5LaYfoFPzX6b5T6KfwVn9gqgERmZFSEDAiA0OiVGTsMLAOCsuXhaMqhEWGa2/Wm3xcKoxKm8/MXoJ6KmqdbLpuw6ZVypKieZrHbRSb2qDMHpKslALgy1H8T+9ET98RMO6XOPFPL1BfY6n+Bifk+u5lM25aNjmMGcaG1mJSaRs8R4KSCLU31wokljZppRYFDyoACo8K+p0MgewYsfuFeDE6j7QWfh6VRPFpGTS+bxZ/Wjd8rBf7APT0ee6DIwzeQpvfJsz52H57SbzAJ9jxHT9Cc9g1W8OAwAgHPoXDXjm5NN9jRD4XdtRbPEEBCIsBDCCaZlVwF1wuzFcwyqxgwqKtkEJOeUc4w5dTYcjhocN5WP3eGh7R0Akh+ifPfq7X7XmeTDIBwWVbPsx4NkQWBiz64isZxzytr2Q9v1MebLtERVHce+7w6JGc2klJpMY0xR4piHNvZ7Vq1DHTh451U1hc5yRrBSRhCKqGrwfrmqm2VdL9l5M1MkK5n4zI6Jidk78jWGCnylgJizGTI5IofkkVCnzD+A2VqYBUDoJCisxWoFEACFIvb9tM+nW7M51eCpHfbIGvuB9vRx46OZOe8OF2e1eR37yObTy6MhnmfKb2+qWnRiVKW4oWBKF38K959e6IkMeAJkelpZ7Heky5jqCdfMt4UAqGhClJmgrptnG035Q5d3qRMFb9I7a8GimOjjqrxTD51N/cKAnMJhFwv7ye16/u6MME63XJIJTmbPEy/LpTl06dE5HfC0q5ZgVvn6CSRdHuEUy77sGec9q5nIFNBSNRGxeVUpudeT46xU6xETRTAStb6Pqrher7z3qhJj7FInqlP1ai6LNECJos4gvFiqRMRm7OpylY7Yh+Cdn+p9TGzUkswPAJPHbiJNlDoLAG6ukv1oxODkGYBP+WAeffZTPpVLvPnkfZz83pMVcfre5XHm16A275lmx+P+669/qSLL5bJpqhfPX3pft20PSaiqkMiQNptHeiTz2KInGYhP5+OjW8fJWTGlAJSYSEkJKmwVAiglJgrOnOYXmZ2e8TTVJnKcAcDc8wCPBuKj3X3euvDkuD8hZUKsQ1jUFSLOLO8iWAdqXg0kyzT8gJB0ZkQhWCmfXPpzQkY4LzrF10NFhwBxSjV4HHKaI2lWdj0r+lSnciXznV7s++fdH8qJTq6cx2Om1Iwsc+zkmylumLNvCKCw3yYDDaeihVSknqYaLKcndXn4R+3js1++/vidj791iWnOFj+YzD6b06CFKYAwzZ3y+YsPTK+Ls6f0wMyPKfPwZDiazTHy4pUsZN5p8ZzKiBZcdephJCJANEUwQ0azSey06GUjlnfKTiKVD49m6MV4vNgYEfExqQwAAZUADJAQFGcpCzBTAiqA2qZRM5WqU2RGNWQlr1KZxpxizENM+RhT6vvREJD7KLf3+zj+pq4a50LfHxM4rhbMPZOvqiZUi5TMxjym2PXxcGjbth9TFj3PJZHct/v9w63jqZSNmKQ0xrEf+oOkAUXY1a5ZB1+zgmjOgFqpETCYEyVAcsy156YJTVMvVsTBtJCRHLIjwFL9mdhxqIArIa8AWqQ42Rl5Qy4+WAWdo64AMFWnsSKqW8JwE5QBtYJjLuyBspLotOHO9oVePCM8/Sw41T6xtBkAYFkKHmEVKyuTARQt2Wlm29mpMo32EgaDk6tnCnoW/+y8npgqnj/xEaixOZqkRTGEys2gCJzcCeWLcw7L5AOYl6rpuNMZ8dKAmibu5Yye3rL5Ds8wzeYeRoTCL0NAyGC+ab780Y9zku8/HN/f73YxOwEOa0NNOtMdTzejk0kwc/+1ZMqLSPFynjyrZfbJxB/Tk/vkhGNOkOI0H08ppievzMnfc6bXzN1VjlPgS+FUlFD42Y45b7401ZSeojVTc198+bmIiuScc1FsE8kp5TGmYUgypCxZxEpNDJGJwqKGoiYigKnKmVzJvfXsHQiVVQ35lIE15bRN7AqY7gVwKkRLWL7iHE6pwKZFbfMklGx2cTNlEy2FgM6DzCznHDW5mBBgTtk9m9mnxK/TVx5bv6dFGKe6aY8owpcgpjynj4e5lS9Pj60MZAMziym2basq9bJRlZxls76KUc2QvQMoVRn59MxszrIkvBR9nAfg/OPRuwgISIqTAVlqsiCyIhAqoVKxnib5qSwmqiftoMKIVoBTXvX01E5dP7VCrTm7KGbDmQyUCw9DVS56BxGdI+8YEExNwKBIkUyLzLTPiaiZErEh6lxS7XwQm7zAeDJAyrKEQAwFGuPJtLdJ3FHnHS9nKSrPRA5LfBomT5UV/uhFBOo0ZkpUTR+FTqxULFLVYRiePoOL5wOzeYUgJ7eEI1KYvIrTQgBY+jyJxpT/ZWPwB9u0WsK8/H3SUVG076bLEzm2x4fdjubFAhGJgSehL41xVD3T+gr1hYirqjKzrutSSkzsgqttErUDO2l+Ff+T5ixjHE1tWnucA0BRKU9o7lWYGZPF+GCYHa+qhkTeeSQqxSwLnbkQhFRkPAABAABJREFUueSzz09HKP6wxGdrz+Zgx0z7PG8ZMKXe2byUl9u/NO9O0252eiIAATlA4pKSoqZJLatmo8wVqu66Uc2GQZsquaqOcWjHNMQ8jqNnd2xbZL8/Ho+HY9t1u91h3/bdEJOeqwMCgEhu2/1udxt8ySVH1RzjMI5dHFtQ9Rw8sgKKgomqmpIzRgoOkVjMk/NNxZUHTxwCVgskB2YMjOQQGWBixSszcEByCqwGimoAGQitLHAT9of52RgUtn9J6QIzlXlFNwNRiwpJHmWjlBlOj/r0hDSALvwTagSfts5O33q05M6GVHH0kcLEtsX5o+cvnB5lWc3mvMszMCg+SbO5dPgjd+bpRnLOKaWU0okQewpcXpJPJ4bYtKgULAxmU24wqGoWULEptmQAc5cViHcRTpqu+/Kuy+yeJ9rkWWcnxgJgSNmkjfm+j2DZCy/rFGDa2U93Y2YpZ8sxpTQ7NjSlVJKtLu8FJwYFlUVdVcyMiIkKlNEnuQKTr/1i6b40eBCRmPES6k0ZXiiiczQOROSx53i2AJlTymUFuHw07q/+6j9QlZRSTlmm02nb9h9uHz58uOu6u2FIokV+SZNYLjhmWvQ1png47rNUq+XSeV4tFzIpT8zZYaXok5QCRaVm1oRNcZoXWLKP6OSxNJDCYipDCq3MmWk9MQBAFchS9kI4dVbfjwBdN0JO/jJmZqchPP+nfG3yK5zhy6MvnFe88/i5GFofgYvZfJ+HMpz8WWU6YUzp2Havvnv17Z+++tEXP95sny2Xm6oKYtgN4zDUZyRrNsTUD4OqOib76EyTA+HizqYNjJAMHCiXtC5ER8QEDFAURwgBDdVA1ERMwLJaNss2wRcpuv7zTH7aGzPmvrjfs91AiCI6xpTSOf467yR6Ms9FcsopxTyOaRxTKcojWc2QSQ1RZmKHlWkBk34DohEAYgmBTeYVCSEDsZXkBDXU6esqWTJhBChnNcfozYhL6EOnJ2SnHfVy4bMpLqVyEUsWkb7vP3oYv63Z9PgBAE5RA5yHGz1xbf/r27SRwJOV/nErDqTyOsb47t2716/f0JSTCMzkvQ+eneOc02F/yJKDr5wjJDLVlFNVVc+fvQCEu7v7fugdu1D7pq4MrO86EZkLOQXnHBKOw/jw8BBjdI6rKtTNAhHHcczzijmr8xUzSQDJ+0BEE7dNC2msAsQ05phSHMZcippliX/w0+nmzWLO/ZgMLDFRKcONCECPGE6zcQkw1Uw+rQNFkQdmNphZGRCFaAyqYLmgHix+REEGXxExqxo4yTJ2Muzvh9H5F8uGnQKOMd0/7G7vbvcPd33fNt+u6+X9oe26buj6fhjarutSKlkNfHpmIvlwfHjY3y2ayjlSk5yGfmhTGtXUu4BuIQpD34kNKAqIVgXyAV3FITh0IVRhueZAWROAJSMyQHBEDOgNSQ1m6hqRlfo+IIBqrGCSTS1NBIOTzf8IxIBC2TJNzUwmU0fURrExZrUTPC3FbuZo9nl42lTl8WJ/Lp65x1Dy3CZMe8EdKe9NCUVlV7j0WEyOFwSYAzEXrTDHz57BAmIUTnnuZiZF6/W8GdsYY9cPRFQyyXGecTOImeHFRB2bvow2vywKTKqUM2jRNiiX+Qj3aenPy3v/CMRYkZshAizOybBcu3bovv3uddeN728fDscByGrzoY9kXpHktKxPNlgPMAwtpJSICczK3g9ohEjEiKBa5BUKykEDK9c2G/OIxca2KQUEz1vkzApAFJGUk4oWbOQcm0HRFKBJagHMIOcMCFUIRGymhcyuMmWw46RS5lJKEg9d15crKc395Cc/NtOUs2QpN2IGbdddXe+ur6+vrq6O3WBmRUSp5HTOVrKqKKAyYxX8arXyzpdRZVN2AQKUOp8wU4js9NRnIAkAUFAdI1+4MbRMuxIBNJhzcYuRhwhiOeef/OSLuq7KnazXq7/+63+DAHVdOe8+AU0u2iMQ88SDP+dEzAe4dNfgxej69KEnL+C0D5qdeqAoFBJfba5efrZ59mJ5c7NZrTYhBAMcU37xYuX9FE5q6uqPf/IFmAVfShw8OsP5BB+DmGLxTwq+gAhuSsowouJbL/HIySoQMFFQsFJwwACkTOapJ87/eQzpPgIx0zWgqo45//EffNXMz8U5d3W9LROxZCRlkZhSTJJSHlNOMeVZ7ouIYQYx03C5BDGzJ4bKRCogBhGKSAkTETpm7zg4LptxqTzAjI7JMQXnHD8BMVN61FlX4uLhAehivWaenstms/l3/+7fLZdLmIVYPn7+AIAEJ6PyMqOS0BCBz95ERDA1ECly2vPK9vGYPI+up+9fLuinJ3Lp0isvCoPnr/7qrzabTXmHiVeL5XazIaZyvcQ069VxTpmRc87eB+cmZf2UclVVm/UGESVpMzTM7IOvK6+qjpyKELNzvgrBeU+EY4igEGNkxyH4ul4g4uhLfUpBnEpDAUDxBwOQD6EoDhQcw8SlHmT0klKKvioSWKvl6vQImsr/6Y+eg4H3XJLgYO5hsyfdc/LT2Kk6WMEwJ3fNZNwXEFNmik6FAczAVAXU5vQHBdUYY3dM3S51d03Az599tl6tEblrD188q/b3L7vD3ju+ef7Sh7of4zimmGKh15gaEP/bf/NX69Wq3Esdwh988YVoburaMYrmnMdh6EUyMnpXN9W6Iu/FSAFVkRjrikLl6sr54NkHX4XFEhlzHs0EbOJfIRY3DKpBUYkvvC1AxHIwM4U5800VTvn2UzTmDGIMSOciVsXoMQRViwpfXi2Dm54LM6+WNZxM1vOQnEAMXbjS56DVD4GYyYVymlOXIGZa/R6BmB9Y+su5LrzIZ8/QVJ9xukpVWy8bN4+x1XL5b//qv4cITV077+cQ2HT2Egkt7+DkwtZzanfZU4p5rwYiUwGJORb3CMScLd+5PQIx0+UZgE0mqTZNuLrZbNbLZbXo+9Evbg7HDgirUK2X2xBqI/rLP/uz5WJRDrJer/7jv/6PAKBpmuD9KfpRni1OgV0wtRM+w2nNPIOV8p/irzp5jx41QAAQlZyzqRYCILsiGJvMjOel2MxEsgF475m4oKWU0inYjQhIxMQiue36v/63//3TfAGAoiQ1u87m/4lqSpPrTGSqN3pyr13aq2XUEKLjKfZzseU9GiOfMBHx4v8TeMNLm/LpOMRH/zGzugpXV5vgPQB0Xf/dd68O+5b4cd7Cp9sj78zv2n6Hj8+b1tNuOCXIOOeqqq5C8D4wu7JAqFoIvF7XzjEAjDHd3u/7YcTf4U4+eZmnbj0Z/Xju6fmS5kd4CYjs/LzgyXP8wZNdHLeMk6aunl1vq+ABQETGfihSjHZCdsXTqo+CbqcHbheX9+Rc+NHLM/A/uXanXKl59J9+nqbZ43s7RTMet+kNZg51XeT7uq775ptvSsGBH8IZ51751N+nXeEJbJ6j+L/lgD94ootj2SPt00etrDKr1eonP/nJYrEAgJzzsW1TiheHOBlYE9fHzll+05MlwlIxYHY+FwEWArBzTelTwHxWV1K1Szf1lNN8iSnmNWiGYOdJhHNsaRotWuxXDCGslstCIxtT/vDQdkOcv3xpeuBHw/gMK8/g/FG/2cX/L6bDPKvPULf8qmaF+quJEIIPjh1M7O8hp6SSEdF5T0hymY9egiGI69Xqi89fNnUNAGOMt7v7fhxPghfFfVk6p5DF5w0T0GbyYPlXTFZEZEaYE1rOcBqfjg2crY/LSM/l2n7RY6dmT15c9IYa1I63i9rzRCscY84qj57I5cEvD/zYTvpU+8QsfXScT1zyD1qxT/748eQzM8dcBc9EANAPw6vXbw5tW+qBPDrjJybdp7ZBu3xxia4/OfV/662anZ4rADCh846ZGUlVh5hEpEzEAhQMcblYvHz+rKoqAOi6/tvvvjscjjy5Ceab+ZSFjnCeUY+DrNPcevJUHs++eQRPfAdAxEvPzRlIzsYbzlhwxhvnqVnWJRVdrVc/+uqrxaKZzvivWzp/337fft9+337fft9+337f/rtt/3qluN+337fft9+337fft9+337f/Dpv7AV/679TwyX8f/wGhsL0KFRwRseRh2jnhXs10jGNb3NpzzApsUnLAKc/CphAnnlRcpxM09fLm+nnwFQAktcMgY6ECncMNn7wzu6CRAJWKYJo1a86CJg4lOKxCAIQx5ZSzZgHTqQgAzXI3E9EDSFHVkkhWyABI7J1nJjJhNGbkiUBMAKRQtKFATkJsZmZWVdXVdlPC//3Qf//mVdu23rlSa2bic4uqlKzGUrGEEGDWSTckYseIePJWFy8dIjliQJiThpAJS7GbiYFNpEXvPhdVLyNAdlxVFQLEFGWqloVIpFp47CWPfy61PCXwOxEZxr6u6y9eftHUDQDknNu2TTnB2Vv4OKDzeBidIqz0SG/mXxX+exxU+NQ4+OSbdvHKvPPL5aKExlVkGIZxGIahzynpFEe2iw6fPPTecVMFx1yq8CRRAGB2lwoHqloqDLgizcFkAClLljOpkomcrwqX8OQ0PYeJmbzz7JimJCL65Kg/3Q8ilhECACKp6x9SGidWZBmJc2SvkIQIyTvniC+YXlM0eZ6Vk2ddzSQLk6vquQb4VMBkjhrRNCXVVCTN/OK5RKVNeeYlOzLnlCWZ6aSyUwoYzxkNpStCaNbrqxLbinG8v78dhh7neqQwu69/e/vBmMO/sCB+Ovb4aB396J1zX1yEGso91c3i+bMXIdQAoGo5JVGd7uUcYDmF/c5vziPi4iy/w/U/CaVdXu6TdhnbeXzGp4ec124gIu/cKW4YRRWgRPgL12ZiVYqI5MJ7UDMinkpkqKqdmWGIBAjELoQ5+D51w9wJn3oUpiYqdl7mTVU1l9SFs0yNzlfLzKdqs2VwZ8kpRkZcNXWZ+3kcunfvUt8B4cTbMxMtZcMlikRRZlwFv67DtqlC4BPBBkzBFE8M/8ehmTluikgM5IAZcdpjwKDkqZrIxEQHjKJtlC6mPmY1C84FZu+IZ5kJnMpsUCGX5Cw557pZ3Hz+eVXXAJBSvH946Lo2poyAVfBVcFVwzKhz/88bExgoIrppZwFRFdEsKlOUGM1AragtzJmMZmUVm0f9ma/yJHLrnWsWNRGlGFNKKQuYOe+ICE9KWvNyZwDe+cVi6X24DKO7y5KGlwSH32W7wJn49fT9MvIQklrXDyklIAzOLRaNQ8yax3Ho+3aMQ0zjm7ev//4f/u7d+zeIKppzjmaZyBwRc1C1GKOBhoCImpOalhURgehPfvoX/+n/9H/1+cuvAOAwyP/zu8PrQ3SEjDBvgAZoRAqAoEULZS4FX3CVabBosU/doTu2+11P6Xjtjy+37qvPXyLT97d3d/f7fn+0sa8xe87o1RiUWIFECDOGDsZe3nfDfZSDkqtXz26er5tQWbdwsmmorgjZAQXDkMD1Qn20bpQYs5rmLDnpj7768n/yP/4fvXj+DABevXn1f/w//5/+7ud/d3O1Xi8WVfBomvpx7Pq+HSQLEVXBL6oFA6R+SDkqqqv8artmzzHGUmyl0FYd+1WzRqR26LNmIqqrarvchODVABg5hCjp4bDfHw9920kWR7Rdr7/66nNkfPf+fTt05JCDD3UYY/xwezvGVPnGu+DZh1Av69ViuVov1t3Qfv3tr376kz/8P/xv/vc//ckfAUDbtn/z93/74cN7cszE7JiIJ3mxEyti2nUAwURkGKIZBBemtHMEhQsVS7zkNFyuXk+C7SUzxXDKqTrvamW8Tsy6T6SwT8dR06z64ubmP/iLP9uu1wAwDsN3X//626+//s03X9/df4h5HGMcY4pxKuIJUPhh8Hy7/pMffb5ZLcckxz7eHnsh3qw3dTXxnU1hjOO+PZLJVROultX1apHV3u7afTfErFkUzOrF8ub5Z6Gqx1FyKrKr4Jxz7Jjcollc31yv1qumbuq6rqqKiQuiutzAp3QbsxDccr10vvB7Hv7xF/+P29vvilSuStFWSFk1K+RsSazyzfPrq1XduAmpgNmUM5lSVDXniBmZNcd0PAxNvf7Jj//42c3ndbNmF2AmiiIAOy40pRSHQ3s/jr2qEnFdLxh9qWeCgGMcDvu7/fFuv/+QNdZ1KceBWWTMOeaYYowxx2iff/6H/8P/wf/s5uYlANzf3/7f//P/2zff/LJU9kagk4Ig4qXE1ieWMDivdfr4bTjpa3400Ozi52nMzNlul6T7GfZN0iEnBqdNXLCU8xCHP/qjP/9f/mf/6y+++DEA5Jxub++HYXTenblFF/kgJ47X5ZXonNFSlrYntJ3zletl5stTEHNJLSjvIs2iBgiA9IjOMp+g4PecJ8O0rqvnz56FEAAgir5txxFsVQdGiOMwDEPbdn3fjX3X7nf3dx8Ox3ZMUjeLly9f1nUVxzGlqJIQwTlP7I14ud6+fPn5arstdH2c8Q3haRoDgJXaxWY4ptz3fc4613ezNA79fh9jNCJABmJFHMGqunp+db2sGjIDIHCoZjnGw3737s3rVXD/5o//8Gq1AoDu3bt/+L/+Xz7848+oCeqoF+lzPsZ0exze7Lo3x+5t360a/x9+ef0f/8Hn/8mffvXl803yYKiIgjli7FAyYsmTKlKKhQSmZpANgAPXa6zXtFijr428KUCW1PbH+11uj5x6lCzo3hzGv3+z+/nrh1+8vYvZPr/evNysnq+aZeWBiJjYBxeCD5WYtW1/2B/u73Y//tM//8/+t/+7L//wDwHg4eHhv/gv/vN/+PnP3n3YMeKPPn/21ec3X32+XTRuGIecYpYsOYtYzpo0Bc/b7dI5P4i1w7g/9vvjcDzEGJHAZ8OYR2Zarpq6Co5Diml/aMdxBDATUxFJknK2k+nLE0fr5ubqz/70p4vaf3j/9vbD7Ye7g6htr9fNonaegwtV5UMI3jlCVoGbm5d//ud/+eL555eKJE5mSavfAcSchvu0HeCjSfJoApTUj64fbu/u+nFg5rqutromtMNhdzjsjseHfuxSGr979d3f/sN/8/rN9wZZNOUcATKhOiLngqrFMRpqVZFjUAU0LEUgDcE5HsaunDSKvjnEX98PgdHhXGsHARCoiLUbghmhWmGnm6IK5Rhyp/2+Pzwcd/v7+4OX7ovVgEO9rgQJPrz+/u372+7hQcc+YPacyem0MGbAwbiTsNddl3855neKg6vr9Wb47MX1smpwWHobF6Gqg7FX9Fn9KNwJtqP2g4wpq2rKkmJGgnEcy720XfezX/z8v/yv/8tnV5vNcrGoA5rGfhiOXXvoU0wAUDm/rBsGyP0omsFBWFSrq43zHMcxpZRSzinHlB369XLDzseck2YTrUK42mybpmHnyDMGP8Txw8P97rAfuj6LeMLr7fbDw4+I4NXr1/v2AAQcXKhDFt0fjikKkSdkBG7qxfX2Zru92qy3u+Pu7/7574/98di15V6Gvv/6619+8803oQo+hBACE5MBIEzyi8wlpba4FlLKh2NrCot65YOnj0BMMa1+GMQUZE0ziEGcCi/NRQhnL53aSSfm8WGg+NdARZNkVEgplz/lnHd3d6++/faf//Fnb9+86lM/jsMYJaaYc1YRAyBE7+DL51fV+Ic3m3U3pPvj8GbfCrubq2cnMpqKdUN393DvIH++WfSbZdquY9ZvPjzcHroxaRY1sKpebK7f+qpJEdSMiYruMxMT8mKxfPbw7Nnzm+c3z21raOicOwkwnLYcnS1+sNAsGwAGgJTHD3ffvn79j0geoWRQ53EchzH1YxqipgzLejV2n10tV54Mp4JWpZhrjjGpimNiB541xbh76FfLm+vNZlUvGMhCEUBQAyVEAFd0cXLq09AO/THlhMiSRsdBhYog5zB0h92H27s3H26/i7lfLoNz3gxTlj6OfRyGoR/62A+Ss/6b//A/mcbY0H/zzS//4R/+fVVXjn2Rq5wkF+lUGfAJoboAaIMTWPkYxDxd2OBys38EYqZcBzspWDz5OWXBzYXCToT2mMa27wyg76f5ImJ9P7Rt50NwTIhIXHbsuYzlyTSdHCAFO51UuC5AzEdTRKe0Gbu4sTItPgIxZYW/ADGPlbfKAQqIUVHNSaeqYapyNVG8RfUwjr0ZeecYo0iX0n4YDofD/v5ud3d7d/uuPR6jWLNYGWHd1H3fj+OYYw9mzAzEYrS5vlF2z5ia1dJPT7KongKp4XyxWEp4ivZZjjGnJHMCvw5dv79/GPre2BEHChU4lxgrIDh2h25M/UBE1XrJzqvkXT++e7iPlU95mvup6+7+8edv/t//FS6r7LlTPaR01w2vd8dfv9//+uHwDqAGgD999nn/R8OiJ3qGDpQELELsrD9QHhGKThZYSbgGKbVfDdB8A80VLq5tdY1haexMkXKWfZve3w0PD9g9aBoT8LuH4Zff3P/Nbz78+2/ejNl++vLZT55f/fhmc72oyTERo/dcVWGxzGr7fXv74e7t6/c556GdxliKw/u3v/76F3/z7ffvTOz+7fOHd8+O9zfbTQ1okuPQt8MwDGMehtjFPnj34vm2qqtBsR3jbt/t9v3uEGMkpmZMtjvukOnmZtvUNSh23fDh9r7vegAw0SkVLxUQw8TkPHpHztNPfvRVs4Dn1+u7u9fv37/9/tX7fhibVc3BGVBVVev1YrVcLuua0I2jvNztrq5u6nq5Xq1P2rDuDGEmoR+8tGgvrF6Esx4VIJTMfzsN5TJ9iuWrJknyMI63d/fffveqbduq8svloh/WYxxefffN+9u3x+PdmAYz2+0Oh+NDlpRzUssAUBIsxdQsT8ElJFBy3lWLyjlvSmKWNRcP5GnWeYKKITA6MCpi0MxQ8A5M1VUR2AwkZ8nJYmv9IXa7fNx1x0PfHnJ39N5CWLpmDY5AY2VxRaNfSA4g5AwZgJxoHXPdjc19Hx46fhh8sm990yyXN9fL7XX9Yhu3S2s8Bt+QX6lbRAyj0NDJEKWQx4mo8s4AvNPkuK48Tc5zCCG8fP7iy8+/aCpfeQ7ekZlj50LlmmUcY4oJRTOhAUBTVWFRLavQVKGuCNFVVY4pDbHv+5wkZ+mGoalptVyp2fF4yEnarkOk1VVwIWRVE/PEq2axahblcS6aGpDMrArNImnKySKI6KJuPvvyCwTu2qHvxyGOFdfb5Wa72lR11Uu1WK/q5ZLm1MQY4/u3b7//9pvlYtksFoumYSZN0RE1i0VTVy5UzE4BkD07n9GklMNjZh8IGdDoUpyqrNLzv/OyC5NVjQBoNJfJLBnmZRA8Sho7Fbw859RNg36yLxXAFC+rdJiZaBbLgAjMlMm74DwsrFaVqX4CAjMul6tQ1ewdjkrsfKiYnff+lK2NaMzOOfLg6hCqEIgdmBJ79t6jsZoBitrbt+8NHbsqVPWiCTWFkquSJY45xRTVZLNa0xzZIUJTyKVq/AxkZsv/Uk8VEICYQwiOPRHlnPs+mHVdL5LElMEYlUBRJ01nBCyxSCZyaopgROZYEGi5covFyrsASKamKgBWPKJl351iRui8XwYB1V7Vcp4yTImByDnH7L3zgdijJgMHQFZqnhirkAqKgGbRfM5LRUTvQ1XVoao8u2nLP9et+6SYwhmy0CVauVAcmUvrXARrPgIoT96XqQqS2VMQAzqros+Pw9QMmMQshHBKLS5elllODfCUVFcW3EmAe7rmuVwHTing813MLsenrqTJI/URurn0cc7RmmnVx8vyU+diPmfv06ME6vPImnrOJJmaqLkih+pDXVdD60SymSwXTVN5JlfV9XpZo3NgNQKMpjmOKaac+5gzmhy361UTFoGdZwU0JLPibYMSii0JdFlATcnAEdusf06AZCCSc8oExA6rEMJiwU0FoLE7Pux39+/eseMXX321vb4Ovq4crQIvwxxJBSCiqq7rxUIqb94HIp8SmeNoYSVNytj2i5oXm+3i+ln1/CU+ex4IxKLJAGMwJEwDSSoya6iltrIyJURk9uoa5cYwmHoTNiMEJGTnfWiaPAyx50Fs1DyKkfN10yzXiyC22S6utstn15tny6byHhGjmfngV8sEoEBjyoeurxb1aX/xDp5v+UfPHY58PI4Sd+9vo+r++bPN8+dXTNr37X6327fd/nB82LdMuLtfL1YLdSEbxDHmMSOo855dGCQe2zsx9RUMqW/37cPD/sOH+6HtgdCyjmPOufAUkIico6bG5SKsVrXIlXd6dbVcL798dlVtV+727m7XtfvusGuTC+GFXSGnKmwRXNsOt1S9fvV906yrUF2CGACbHMU4m22fGtyl3sgU6Z5S/kxzzsMwqsrJ9DHQrNIPw8N+/+79+2+/fdX3fdPUTVO9+1B1/fG7b399d/8uyVE0geEw5G5oi96mFSVyBJok8nKZPezYOfahauqGmFM0lXyaJ6d5w2gezaO5KZikpmqSQCICkPeGZGKk4jWz9gRtlt0w3MV2J+3RxraCoSHy5DV3+30GGeKwRxs8GyFmA8pQZauHtDx0zaFb7HvXjiq5C+H5tgnXm83Ner2plzVUnnxVITcRm6hVNDdmGLNGwaIY5B0hep5zETfrpZsHGRHVdb1cLhchOAY0MRFEYu+DERIjoGV1iGhgpOg91xUFL2AndUZDZGYfqpy1aPx45xAp+bG4aaIkI0TmiaOUMoj6quLgibiqnCGiwWKx8hziGEUEAa+WVz/64g+aank89rvD/vbh3sia0DBijDGlGLyvq/oELnNOu9vb29ev02ablsvUNISQh84RrddraZoqBOeCEaOvoKrHbH03ILOqAkzL+ay1jTMIUQXTUyW3eVmdnS7T2guTKt5EYTrpnj/am2ZGCJy2paKBZQYGhEW+9NxERCSX7rWJDkSMgDjNIkRkT4vlMgRf6m8wUwheyBHzabUvfCImdEjB++A9EsO0YTHxVLU9x9y2bTJqGkDnRF0x2xQ05TzENA4jMz979ryu63EcT+rdVGRzzhdvT10KU+GnjGjOITtGghSFiNEIgZk8I5tCzmKgREWrYebfkDNQU8FZxJnZO+ehaE4UEIjTSnwiApkBIntfi1iKqppUQMBKdXPRnHIaU4opqaEaljxuAMyCJmSTThgU8fEzSQSRmaco278axEyhpTOIOZUaPf/4l0AM4qVj+/J9QDR8DGLQzJk6F54Usp0jSGfwcnqGJwLjDF+KJ+biCvEMYh5DGIMTQPnIzX7BM5kDSecxU0zXYrg+8dDbPGVm4/Zc5K78WSWnLJZFnYMynSf+HFEIoQmMpqhKzAwKZt77kkneq3Xt/dB3qlIxxXaX+w3mJWuFxAYkBmomJqY6qiCgc2xIZohgNEeSEJHAuGBwBO9cXdd101RN4+sqDt1h9/Du29/85utfAlrbPjz/7PPVaivjcHy4rdfLEiMux2FyzN5cIB9cCMhJehE3Ul2HxVgPQ1VVvllYvRh9PVCVigqXiIqXyBjJm2M1VDQDU0MyjwEZM7qsPo5mkrwNPiAVXggCE/oQ2IdkGLNlIEUiZvbOBYeqIXBduWUdNot6EQIiDjkndqWMlvdcN9VyvWyWixOIcY6u1tUXzxqM9UPQaGgadw/JILmKquD6mJNaKTmkKY0xvc05PLQQqrLcKQICgcEwtsdjt9/tYs4I5Jxr2+5wOB52+7Ef1UyTxYkfA8iuqgITZzP24fnz689evthuNpv12tPiahmWAdYL/uZ1boc+5pyQsqkSmnOSYd/3SXa3t/cvXuwva9A6O83cuVDm443hNMwnMQIkkpxTTClH1Xw4Ht+9ezuOfaiKzhSo5CEP+8Ph3bsPH25vbz/cp5wXiwUxSo5te3h4uM25q5bIDiRrHCSJqGUDVVMTVYRSBNJUiCkEHyrX1FVdV855Ee2HcRhHhRTjeBENMARFUJrnimSJ3dGGHY33RGir50Ih9mOtcVvlKxebMI51+/rQRewctjUP3tvCJ5duu/t3w0NWS0NKoobGnKkeZNGnVT8u94fmw73vejCTyucXy+rm6qeffZ4226oKAC4JJvF9rJL50SBrVB2l7JUIVDYax965OgQf2CG9uN76GVoWdUgRrarKM/btPg5D4biIAqiyASMF582sH8Y4RuxplKgmknOOybI6JOdcs16qWNeOoiJZgqdFVUfmMadsKgWbEqlId2yHcWxWWhMuVjUHL2bMvN1syTDHbGJocL29+cPPf3q1vTGj3WH39fff7I4PwNB17XHojmOLopXzp4JPknO7ezjc3jozSGlsD5ZzPB4d4rhet1XtiZwPvm4sVJFdQha1qlnEcahCKJXqihPN5liPGU5decESs1LlBownMYJpCb6wL22WHjkP8QJxps3mVO5kqi5lhEYXDBybykHkQksvyyiqIpFDZMeMwI598Mumdo4JkRkdc/CQ0YGBqtG8PyAAAToE72iW4BO9KIk7oywEmFhzBeWwIzU0sJTSKOLuH968eZPGwTnvHTvvF4vFZnvVNM1U6csMJ0CGp83STMdxGIbeecdMQCqiOUeVTETee8LgnROROEYyISZ2ziGWYiuIYICGaJpFLCXNWaQQsdQAjPDkhinu3aLriojoXRCnzKPkqTYWERrYOA6H4+H+/v5hv48xZ5GcMyIyBQMSJVXO2QCwbhaLxXlRvlilTqGWsmdfhF3OT/y8Tc91c84evrMD4rzZ47xb2+MjwOnIp3dK2ZfT6RBn2D15CKfBdAr8FCz7mMN+PvI0xsuaYHYhMHtxdpuDWY9CQvNILp96Ega6NFMJ4BxQu/jr2Z90qtqIJwyFUFRNJxAzgwXCqW7f6cSaU4rZYspMzopKuCgi1nXjCCqHlsbjw20aBlWl0FC1qOtFXdem8vbNq+N+XwdHmiAPlnqQiJAdOSUyYxFJMQ7t8f7uzkCvNttmuXJVA1BqEBZdbyTEApxCCKvVarFeh2blfADV3Pbth9t333zzy7//2yF297evn3322WZzg6aH+/fyxZfxL8dTVxfSjyGB8xhqU+503wmA966qfAjeeyPfK77vI++6USTlrBrTMI73HaZ+wdwwB3KEZArEVDkCoJh1iNINLdKwXaXVslk2lfMemMGAHZNzSS0KUPDsCHCwIkMuIpLAMqNWjAuHRMTIncFx7AcByZkJlstmtVqexCGZ3Xq9fvFsS/mwXVDUphv1bn/c7ztwd/WiJnBhcb29xuttV1N1e7ffHePDw2icquBWK+drj86lZB/u7t7fHu5vj+OQ2oexqGWCSe0ceRuGBAaNC0BgrPWyvn52XVUux+GLly/++j/667/8s7/4/MWPls0ycILKbYJbeD/G3EY45N5cqFfX1eqGF1djOz50H/pxOPZjjPGyrIorEOkCyuNHIAaLwS8qSUQk9V232913QyeSdvvdq9ev+v4YKu8cIULOqR+Hw+F4e3v3sNt33aAGi2ahJu3x0LVtP7TMstYQKhIViZqyipQC2GJqCGCKRVC52LhEiIwGFmOKMXfdMMYInHN+VEp6NgPMTHNWiYP2OxruKrknhHSQLJzaY8W52bqtp00Fg+VDGAc3QOiVxprAszpIeYwpjqqZDF0GHsH3UrVpmXRFtkgazMBxbkJeL+KLK7m+rq+vQ7U0wCQ0Jh7VJ6iSUVJQK9WLodSQJSbH3nsXvK+D944dwqoOfCq8PpUVtLqu6+Akj5JTjqqqmg2zeiRHVLFXlYiUTXLOBpYtSxbNQkjec1jU69UajepqsCQIYCJM7L1lMAMbxtHATHQcx6EfxjESs68qx66pG8/UhHqzXAfyGsXEGGjVrFfVauEW3leMtDvsRNJxbIdhOO737dBGiRrPUv2mmsch9X0ehkyYB9CUhrYlM4mxc84BBh+qxUp96MAy+1DVmvPesaZYN413jqAIYDt27Jy7LFEP82Yz1dxWkWn34qlA17RFzev/2bx+6myfClefDdCn9QCK96IE/ouoaVYD1YziCR0hEQYEZ26aNtPmca6heLlRlPHgnXnPJZ8DEYjQOVZDMFCwUnMeAYmZpiykUicWFEqmgPTjcH9/LzkRkmNy3m+3VyFUdRWQ3IyGnrKIbBJmFSu5ImpmSqCOKXiHhEy1Zyc5RRUC847LVU6adQaAZKSSi1cUmX0pZquaU06AYGRIgFKMYYISDQEAA1FRUREFNTUCBDXt+263393e3e3296pRLYkKGBIKsiP2ABxCberYOecZP9r4//+9TU4+uBhdeAYb/1LTUwBngkAnQWL73Q/ypD2Ggfb45yOv/PSmXX7CHn0R4ck4L7CtRNmSKM71shxzXdcRJMe+2+8+vH09jkNYbBfbZ5tqUVUVgIWqcs4RoqmMfXv//i2ajHFYXz+rVzfVcuMX6zjG+3dv37/+/rvffJtzevH82bMXn928/Lxarg24qNLRVLGEkJhZ/dRczul4f//mN9/86h9+9suf//13v/znYWy7w927VzfL9ZYQh+7gVWIcz/1f2D9mgpjZZ4fiG6uzC74CWA65aoJw2Cd7te96wyHmYgGP/XD40MLYr4Jbel+zEZKIkfeLVW2MfZ/6ruuPh8bRj5/nYGkFNVsl7MycGQGR81WohULlcwKiSdNcBc0cUR18E3zlyMwYFEQlqwiAmSdcNfWiufSO68NueNgNOav3rgmLZoHMlszq2jOTZvXE20XNTVgALapGX++tHYlxsfDX24WrQp+5j2OKbY7K6B2ajlmzElbOY7WoxPvBRxFAdOSJal6sm6vrtWNqW3p2c/NHf/THP/3pTxd1HRyH4Dx4roJmubnd37X5KM2IjG45ZGdtPh7jMamhxbJuXDSXReBE1MWZM1n8nye/JpGqjOPY9e2h3d1+eP/q9fcP+4csue2Pt3e349gxF6vDcs7DkMYhDcMYo2Q1JBbBLHLcd0M/pCTkDChXFZAzU8k5xywqMHuCcCrAhAoMAioqMY85xzRKHG0cRFQ4nELM0wxyzMxsICmnFJP1O9ffLWB/0yjkdPvwXX8ccDhwTaF+Vq03TbMgdstGYjMuIVkaGZIhKLGYY08h5uUw+oee3+7woeMuhqamL2/kej1sa/Wc1k1cLIZm2XPdpzAMMBpGYwUH5IoN4BzOmyp6R5V3VR2CD1XwxfcNqpIiarpYMQxMibFqquWiITbnHBwOQ9tLTigWyHlkh6QElXc01REEAyTvq6auvK/rsFqurrfXFVe5y/1xOO52aYxF3NMHL2CHw/54QAQc+z7HpFnSGDXlit12sV4tl5vl+nqzDRxkzCDgiCFjPI63x/e+qsc8QlYClJTSMKRxHLru2B6Ou53MhDhEcIgegUFpTkhWwpxF+nYA8kjBhSqpEh1zVOcX67Xkse+P91XVVLXzDtVC8MvVarVcrtZrH0KpDyZzGRhAIEBVSympCBA6F6rK8cQhnmxhKoGOR5GA8/qPaFbIj3MGG85VJ6fPmomknFMJ8JpZVkspqiqhlvBV8LyM9SKwiaKzlHNMOSvZTMifT6uI6IOrPIbgnOPikK+8ayb5dxDVxFJ2OXboHLObwkQqpmaKQI4Boe97U52YJ4A5y83Vla1WWAwLhKkwqBlcOAmc8875IkYsksHAB7cwUuUkxFyBoqQ4qjomx3UIvqorplNdVkMkMElIzL6u6sVySQgpjWY4JgbUeVnBUtZxSpwCTCn1Qx9jBBNyZBZE8v54uH+4f//hw/5wT6xT+XFB00jsq6apar/dXpnJ0Hf6uAjcCXqe37QSx/mEh+O87z7Cd2fvhT2FfJ9454fa5UY+sZIm38ujcvTn0M5HAPfifk6OllJ3G2cQ8wQQ24xq5ts612P+hF/9MQPmjNdnU/YUrzo7Mk96/HD6jE1RQyh1OmGqQ3CJlokohBAgq0EW4ZJbxy4EL3XdH/evvn/1+tuv337zy5zjzcsvPvuxbW5ehOBjjM67m5sbB9oddrv7u/39h9988+tqudrcvHjx5U8++9FPv/jJH/Zd/8//+LN//Lu//cU//eMw9M+fvfjJT3/653/5V1/95KebZy+qqtKpWsQEsABJVSWLSD7sdr/6+c//6W/+/c/+6//Xq9/8sm8f1FJ/vH/7XeWrCohySpu6OdV5tZKuCDqKJLGskFxwm23tg2lcurDNLjgS19xH/fr+8LYduj6LEgY/9OPtm2Pu2nXgmn3lvCnEJOTD+vrKyPa73XDYabv/bBWWjDcVoRdk0eyz+SgOAFfrTV3XAhxSS4hW6rIAMlMVwnq5XC0b0pTHmNOYY1ZBNHLExOjIN9UkPQwAx3b4259990//8OtlSFeb6sVLvtk2L5/XIXDVrPohvnn1FsaukbxeLT/bfPH8+TPffHho+6px61Vzc7NJwq/e9X08LJq83XJTrXSMmBOaMJvzyN4RYfFXZwGqwuJ6U9XeoUhK4Ny6WTy7ubm63lgeATNxzew5c6g2q8XmehMHjvsIMbvjbT+m+zHGpLCtK3L0ZL64GKW4mwuBi4kcT5VEEBBKcrrkrm/vHm7v7j/c3b97/+7t6zdv9vt9Nh3jeOwOcRzUxEwALGeNQ85RRVSBgByxi85yysfjMA7RxJDNNMdgvlJESSnnXHALIRAYihiCIgNrkdPIEEVFxy6nCKZkaKWY03kFMkvjELsDW0SJlIXToYZuSWlBoAgNjAa9cWrYWY5d3yvImPphaEHHygnCXN55NIi66POiHzfHzu86vT9oH80Ia2ebZny2EcYUwrBoRlcNEMbEQ4aYKaJT8qVmeAm/OS4GN3nnKs9V8FXlg/eemdBMskjMedA8wqNEGbVSIhfBhRDq2g0D4miilo38zGQrXCkE9EQegdF5V9eV90xoHBwQMHO9rFi5Px4jGhJ67+o6GGLMKSfRLMH5m+0VINZ1s7naPlttr5v1qllvl9vnm5vgQh4jKHj2OcrRunGIY98lSZX3m9XayAA159x3Xe5j7IZTgS5CrBxX3gVmjyilrLOjrJBFomZn6EWimSGOOZtjIkgpCiA5rkLFTKhWVX6z2cTNVtNQ1Y0ii2GRnCh7FTOr5m44qmR2rq4XDokDFo+7loKxJ/f7FIZCRCiq8WUHw5kV8UlPTBHRL6VA5nemmmIGWiJeauZ9FpFiJWeRKKLFYU8T/aLsMIZmpoATm2OqqqyCKoxkSEzkmAhAABAf8SuhhJmm+ssQUwIzIlSzmDIxHw779bIxyy4EBJqjE5d3RI59ofQW0hsxOGRCMOCUycBZNik1i6FweImwhEuKigkQogESEjKGEBCxbduhTwCFfVnoMkDERZcIJgwJOec4xpzFTNhxVYWc8/1uf3t3+7DbtW3rArJDQlaxOCpAqpKtrWmaNTH31p7qTM3T/4xiSg+jAsxJbb/dZ1NCXY9ZsL8rZPlv0S7IJ79ru/B8lNt8hIqevnx8D/gv3tTsZvk0+JkgziXXpwxk/dhhc/qKqSaRxHkcc8xDr3EASaDCAAjWHtuHu/uHhzuVGKpqe30jsSfNnrEOftnUg+f7vtvd36U4iKgSNevXz97e/nh3NLA4jL/5xc+/+ad/ePX11+M49Lt7k9hUwTPXdaiDm+oIAyKy8x6wTEAhkNjv337/629+8fNf/+LnH96+8qxIdmwFiNg7ZDaA434vM/kSAIBQEZJpm1LX90eurFlUTYOaoF6SWzuierNOvr5N+JBz32Y1dlL1Pb1rIXW2jFazMOMMYmhBSUx3D6MNssZ6jdUh83GUbhiJTFkVpvx89r5Q5kuAFg3RkICZnGPPzEAoOSdJIslEUCZ/KQIhAF8MljHm718//OKb2+0SvtTN5jneNPW2wcqzgU/DSDnmoY9HM++Wq2e+Xo4Cz4ahrnm1bG6ut0loVQ3X69VXL7ddSioAkjFHTTHFQS0jIoKCpZxzN+RMTIsFouE4SE5VhQvS4/7u+1eh7/ZMtNlerReLRXCZ/HJ9dZ1scG186Hf3/d2+O3R7M1s2ixNZ7HKYuW5IAGqQzbKpBO826zV7j+YAQC1mScMwfvjw/utv/vnVq2/u7l8/3D+0x2EcRQBFTURy1HEcRTIiStYUJSbJkhUIKRAZOZGcuz7mUUwJEfIozmVXCXPGwnOayoMwAGrWklQiwqKaJGdRSToOYkLeVYCW4pjieLKQck77h9uHt2+W0C1INpVrWOpKPbBlA/PbzWa7WZMBmEVN33849kM7jm2OrYO0roAoRPVpTGnXNw/Hm9uHm8NxETs064OPL1f5+kqeb+OLbVouR3C9+aO4rqdhxCyExOxCqILznrHUzAM0ILbgeFG7pgpVmCvjIaKJ5DGPXYzDOMYU16WO6zT7Lac0HI97LJwVRERGJCsdjowsiFjK66JjX9dhVYW6qptQ1ZVJPh53fd+lYey52VZbk6KG54i5WSyun91UdS2q4xCPhwOILupmsVxuVqu6qpmdJ+8hLCwsuQk+xIxGFkLgmleLVXvsbu/uBGy7WG3c5iW8eDg8b159pynfv7/VdN5gCKmp6lVTNyEE50ohz96yAWsGE01ZouYYe8eOmBBh7HsdhmRgiK7QZlW953a3PK7Xh92mrpfoKkUSsZRyjAkA6rpSzV2/N5O6brabbUDkZqpEK4WiUSL2iEBUkjwQ0MxSiqZGTIUQC1iq0So8Tuc5hZMAjBDNTjVnoNRiRyTwjkoRRSYEyKpZ1aZTT2xTg+Jr0XEcAzIykXcpSkp56NtxjMEF9sFxkX0iy1bCL6bOAM2K24eRFA0MSUwFFImzaB/H/XF///C+8rCIq6Ze+FA5doD8hBpC7Jk9oiMsAwPIyDlkBzHBGNUQKg4oYlmIoNSAzDlZyU0kckQASkBIhIBDP951h3HIccwpywxhwHtX1cE7JkI1TSnLVCMYYDbNc5bd4Xj/sGu7fkwJmJEcOVLVfkg5jW0XU0qh8lWFkyLgGXHYHB1TuqggaAaqSqdVbyoTU4CfXWzNeorMULmmx/H104Z9QgpPoEfxL0HJkiiU3bO34vQTTS8QAp7S6T4NAcxOiGG6wjJwJ89IKbuOE6PofKFTdtWJ5jiXQpxdTGefzdx1MHuMHvNpbD7kIyfUY1KzzRdpZwbRxd2oStfvu34gsjSkd69eDYeDY1zU9dV264g8u7qu1puVpiGQQmpTt9Nx1SzXVPsjWuy7+9vb+9s7AhSVPiX58PD9q7fv375Lfceob3/1j8Pd6yWmpqIaJR0f3n7zi8bT9bZZBMawAA6AjMyhqV0m58mzVSwsfb9/d3h4M4y7lHsDQgU1BVYEcsDOsUc+lajEYo86TmCHOLxp+75eVs+/CKuFQ62TbbfqiFebqmowuTSkPFIGY+NFdpT9MgVLjqEU3TRST0AuCscMrYbVonn2+bObTR39eBuz7yRbrBskhyhkCkk0JYkiMWczICJHzgAYvRmOMXfDYGnMOQoYEjixQjFV0ywi43gyvUStH/Ldbjwckzn/2R/YM+DRYOjSw8PxuDt2bbSYPqSUMpK/aTbLL14s0SqH0AS3XblQhT/5bCkU1C3UVcoOENg09sPD/a7dH/pDm4cjpP0wdg+H/vYY37fj2PfVsHcG0Kxc3P/9f/Nf/XvnD8c2VPUXX3z5xReff/nZy/Wiqa9urtnv5Q3c7ncfPrz/8NCPvfeuNoCU0J5G593r169UU5Yh5z6l2DT1Zy8/X6+3nhsAy7kf49B1w/t37z+8+3B/e3fY7/MQKwp145FdyVbKOQ3jkHNGQFHNWWNKMeUkkoRSkjGNacg5imQtTLWcTbOpKDtwnk6sfkAxQ8lSLE5hyCmboaqkKMMxg2FdA5LG9IjgYzmOD2/j7XfLkJ0Hp4HZDHIyS8ZARM4BYlIb+mF3OBwO++NxbzLUThtvKaIZtL1JO7pd7/dd2PXNGIlAF5U9u9Lrbbq5Gbfr2DSRq15dFBqAMiAQuGLWBh+Cc+y4aFOVocZQOW4qrib1UyPLJlllkNzn2OY4aEyaruEMYlRyHvthv9uDYbNYIJIPoa4aq7Ji8i44ZkBjRCJyta+3y3q9KBpBqtK3x7Efu2NnWQcecE0VV1VVF0m0zXb72WefLZcrRIz9+PDwAGqb1Xq73d5cXTvi4+GYxkxGq2p53axDXQ3kh2EY+/EwDN0w7vb7d+/fx5wW61Voaqq8JGVwDgMpXRr8hctSyl16ZjMzxAWbR4/IOee+7SXmBAAEtXeAmLKkLKOoIZp3xkBgBDj2SpBVYgitkQdyapRFhn40Ve9ZJfXDAcGaptGu9yKpWRqgGmS0kopFzFQsLQRAcuxUdewHVS3yncE5nrirk8jX5c4iIipCCISlxPG0fRS1ByuaWaXuGhEgiqqoIkOBR6XiWskwmp1pYEAKLKC5JPyICgqQIOIs+oIqKlkzS4zZbBSDlFIWmRJrQADRCKKkduhTTm/ee5Fx1a5Xq/VysV4uVnWznJ0u016jApJBxcydbnNS3vQGImYAgRwpSSREyjmLYs5p2rSIjBkRyZAMTW0cx91ufzx0MeacTYEQCQhCcItFVVWOHSpIGqMaFBq0IarmlOI4xvuH/f5wKJT2nJEZAEgBYpS+H1VNVVbrxszPmcznNouAi076MOfk5MKImPfxYhzNBZrPe3aRIoJCEZxUGeBi9z+/nH6dPT6TT+IUNbrwlhRJs9n9d54V/1oqzxQagTm0dHKvPIqhwYxV5pNd/PECoDw5NMzJWJ9M7Dgvs+WnnuvYX8ocPLp/gJziw+3bD7vd2B6Gdvj266/bhwfHtN1s5PPPkbCp3NV2o+PV2O0JNPVtu7urQp0lD0N/d/v+7sOH3f19ezgGF9R0GOOYUtIHyWmzWlSeDrdvcr93lpHYWZax292+v9+s9ndfbTfbes2InEwlp4msYIKaLIOmTmInqReJCqKlpDYi2v+HsD9rsuRKtvRAHfZgw5l8iAFIIId7s+oW2U3yoUVahP+/X1qkhWR3F/tW3coJmUAgIjzc/UxmtidV7QfziEBmlZD2AEAc7uLH/BzbW7fqWt/CFb3w4uz/chFS9Op5bvKc88cp543e3r3Z9v0w9J4CZWKk0JNSTe1SLDcnaGSu44jD/taFwCYGpogAZMRIDOzIQyDfxRgOr1qwh8vHfJ3LXJeBb/bqIySB0qDmIlWaqojAupghGSAjmVjJOXtjVHTsmI3MwKihIlc1U2H7O8uOmuXSznkGxpu/PrQmmw61ydPzvEwJasKWUdvmoqc67A7bGMGTWBMH9sE/913YbPtxtxv23odOA3Pw0THY5uZmN1+X6/OlzVeSaynLeSr78+I/nq+XS0gRRYT6a7W//vXHT9P8fJp86L758PSrh6dPv3q+u73ZjH2tNZcqUqVlKanljK3VMEvOoPoPz4/713/9X2stczoty3le5s2w+d1vf//69dvNZkuIOU8ppbTI9TJJttHvws7zHvu46UPfxc4xI8JLraeqoqLa1EotueZpTs/H+dPj84dPP9d5JjNDYzICVCM0h0qoRoa4NupAAEBt5bkDIEizmkEaikhKdTpnVSu1MkPTVEr56k5qGU/v3OnH/mYTObS5nEutywyIwziQiwJuyu3pfDmfTtfzU0kzmnYBDhusRR+ey3Wux3PjpbxqtcdWu265GfMutNuN3d3UcTtzWMCnGtPCpRmiRY9j7/w+kAuAXgBFxVQJwbPrguuC74L73Elfif3VtKokqVeVRTWbVGyV9DV+LmLUrOW6XOezOTT07PuuG/sxgo/IWtqLEwyBHbuui0PX7Yau72MfS86fHh6On07Hh+N8ndGw+GaFD9vDzeFwc9jvd/u7m9tX9/fjuHHsWqmX81lF+xh3+939/StT+/jh43S+othm3N4fbru+X/rl4eHj337465//8ucffvzbp+fHKSVFiN0QYx/6gbwDszQVa0Yvu8C6KCLiSyPCEZkCeRdc4D70221u7cOHh+vluoqROXoENGyqBqURc9/FPnrvgBEYgXjl5UtrBuTIRUMUaTWX+ZxqSU0ygtWrl8tVzucudEQkAAVMiIAdee/7Dp1TMHKuix0ClJRVBAG9c10X+2HYbDfsPZoZfl3KbB082Ut6s9p69EcDEBFVMSRgI4hMgEyA60AFCMkxr7rktVPgCC34PsbgWBSzQFUWChR6atgMWhUVTbk1NTUQgVokYxM1TKmZpdKaGQMxucpcVTrwuabzPIEKYDpdn7ab7c3+cH/zyu5eD8MQ/Fcrr6qlpSxLYcfMBAS0YltU1VjtxUodmdhImKVhrVVNvmzuSAqqvAqSAaFJrSWnpdaCSN45oIDkkCBE7jrf9c4FApAWiYi6bmD2rVlrUlJd4xyWlETFEEVNXjrnUEWXVGppBna4zMzRwH5ZkK1qYpEqsj4XSIQGCC8ZJISKgLZmPhOsWwi9SCVgLf8+g68+78v2BYP10qP57NEBtLVBZwZg9KJdWb+CL6NL+Gq0XguZFf75klqiX/sZ68Ht77U9X76qYAS4irIMXobNCgJERI4/t/Rk/TUvmmlbyxEC+EyaAbHPeS1frO5/vwsYroqCrxXQL4qhv/9+g89uPvwcHvzyjy/3+7W+LDl9/Omvf3v3t83mkOb80w9/vRyPiLbfbabr0+3N7ThE9/qe2nw0TdN5ulyOnx5yFXr4cLlcf/zrDw/v319Op1YaIwKSYxJlNW15eXz40HmqOaOZSgMzp6LSWi3LPJ+fj5ebY+hGZldyXeYlzVfQ5oKvWqFhXWZHGGNwjr+Ep7wQBYnA4CXj5YuGjIm7ToI/TZeH8/w05WYupDQgb2/vt8MWE6IBe00y52u1qhiZDZ3jEPo+vi55s1zPrRbDlw6Z82HoRnZBwTFgQnz3fCwfPvbpeBzsuI9vio2DCTRVgNrIDB2j2drTe5msqFlrOS01Wth0PjgAqkVprq4BOVcVfKJuBYcCAAAThMjMsMzLT8s1pfRvu2EcAjnODUSNTFEbqnheundT7LoYiExLzjXlvCTPeLMf7m8Pr97eD7st+BjHfrcbD/vDze2d5ygeYRwdv/FInVG/lPj6crlcNF2m8+XpOF8/HZ/PDx8+XT49nhTh+bz8/OHxz3/84XDY7W+23dCDw6W1OMbtYbCjWG0lzXmeVfUfNTHv3v2xtTync0rXeVn6OJrK5fy82++8d62lkqUkLFlaqabsoPfsohvGMO7Gzdh1IXh2DEwGqC8AGWgqpZVpWp6epw8fH3ab7uNTf5rOpeZV/LU2g5nAOXQBAFuT3GpZUbMmqGoEAIoqsM5QtOlL0Io1BWM2dr9oK5lwuYR6isCBQJpJLSVlAVRyAros7TzNz+fjPF3KcoVWGAkqnQQBdUl1zm1OMJiz6EuAD6zngfOug92uO9xBHJcGpZGAR8TozDGMHXfRxS4AcVOoTavYyrkJ3jpvnZNIRmBNmrYqrakUtayatM0mxaBZaybVNH0VYRhY05bqpBMDRRexGRGiWojBnEcAESmleLI+hGEc+34g5nRNl/P5+HCcT7MTt4u76Ltx2Oy2+5vD7av7u7ub2/1mu9tsN8MYQ2QkAY8jSm2E6NAHjkpGyM75Lvqh78GglLKk5Xg6vXv37k9//vMffvjTp+Nz1UY+jMNuM26HsYau945RaTfu9rvdFxIRIKBnjsH30fsIAujI9yFuh/GwT601UWZXlgSm0Xs0IzAQrQzM2HnXxRgYCBVMDEBVmrZSGyCxNSRWA7PS6iwtmykQNmlpmc/SJmQCbGbZzJg5dmGF5jLPKSlCH6MjVtHVEUcAV6Zhs0HCrh+KaGtfnVawbmEv0wlTFUAI3jN5UzEVadoF10cXPBOvDmNABHYUnHOOnKPVoaKmnjl6z4y16VJWI7+Lw8bYtyrrgYsdhOBRKQTvHL/8MBqhOl51PgagqlaKaEtzTpfrtdXayjRdw2Y4XS/nNC2tNGb20Xebkb17KWJSnefCziGiGDGZtYqmLyqCF4Pwut6igpUioujcl5nbi8UJ12wvEREBUGYMITrXIUVEB2TB8zC6EBHZDDB4c8zD0LML0iClok3NrJSSUlY0/Lz/muGXbd5Upba0LLF/wVX8ciFTldYac1tbzSuX76UwWXszn3tW64HbbF3MEddJEhojAa0GccUv4m+DzxwcfFHBwgoufvGMwy+KGDV6aWj8QkW9Snf0FxKrl2nT5y1f7R9Kiv/WtdZbq0XeESEh8/qCzFaQ7tceiRm8jMXAzBThF6DIlwLty6MJ8LVagxfkz/+ZdEY/R2zBL77bFFZA1S9/upb8+PNPP/3x3/pxV3N7/PhpvpybtuncScuSpzdv3zoER46RtUqWZbqcU5Pc9HQ6vX/37vx8rCmBAKEhOQB0hOAdISzzVQhbLWa2ep+pVqrVt5ZTOj0/fXz/bkkFfZxKraWaNALLzN6hZ7wen0HaCxN5FSCH4L1HxFqrNKm11lq/jmDArmZPtb2/zh/P03GuyN02FwPohk232WdJ0ioRozGRY8cUiRWINTiKwyjNe2clZ3QkqqU17/x208c4GEepUq7TUvJ8nZf56rNaLVODsUtMLjreBteH4Ml7RlQl1c45Zt51YRtczxAd9tH5LpgRk9oKiQ9BRAPBEBx99nQS0TjGYYzPR5zn8vDpdL4ufR9CH12M7BkAyBCMoJikq9kVxEy01VpzzTk7psO+7D6l8acn552Bi31/c7v77rs3//4//PN+f5NmKUlaFSY3DIOBIx670Vu3hZhavDY3GhlSBcmXOedleWj18nzs+7jZ9eNuu9lvwTnRygyOUWQ1uv1DyQ8A4Ob5vZkA5BAaIYO1h48/Xc/P293Q99F5BuVSvDQ0Aa0qVUDzCadrd6mHAx4O4bCP/eC7sM5rVhXfqiooTVLW8/n84fHbj48/Pxzfn6fnVpbWiogRkPfeOSQnonlZlut1Ph0v01QIVmGo0stfU00kOD/cDYggWhDFB7/Zdp8j4gARvEMfwIcaAiNDACAIS8O54Xm6Pj18XK5H0CWgbDomxVZqzvo4WTNDIx/Cq7vxsO3vN72a/Ov5XGvxM40MN5G6nkSAEcdgceQ+Ou/9agJU0Naa1MLNGD055xjZmcMMpeWlmOYmZQUQAzS1hlgJ1VilrfyBalK/Vv0ATGQKeUkXBQRa4oQAwftNPxBzafU6T0+PTyF4DrEfe2t6vUx/+eGvz49PLZU+xG/uvrm7ubu9ub053OwPN+Nm08cYfPDEaJDnNJ9naU1EmmgtNZfc9f1ShIgePz2R2eZug8yfnh+v8/R0Ov74008/vPvx4fi8SKuEWaFjt9nt7m7v97sbJl6WxIjDd99/96vvw+eQICJyXYibvt9vY4jS1Dk3bsdu04dhCCK1SnThejpJTsEhiGUzEgVxSByRPADq5749mqzlhgMDEU0IjMTOK3WowRs7JMeIZNhES2vaWmtSRCnEMcQQwmbcNLDj5bKkJbFbWXOOHQHkUq7TNZ7PRDTumijkw/Kll44vtKR1s1AxQbbNdtgOXR8YzZYpEeFu2w19JEY1AAJi8p594M9xnqCqJoYI3jMCLLkaJvKBg9/4fS/SSl1xNC4WAdeM+mHwISIiM4aODLSUUqtKA1Uz1VryeZ4u13S95ta0LZAmvHaX6XyejtfpfJmul9rq5uYQug5e5uL1OmV0zgCCkGNDEwZyjlZqoIqmWtEUlFqBlNCAmZg9O8+EILIC/laYvhiaj97HsNnsuzggRABSE+ewHwOxlDKLGTnnHTsHzOjZmcJEi6iUUtZ0G+/XpjivIyImDsE7xBCoSamF+67/JexO9SXlzrm2umpFXhA5hLDaFMBQldYBFyCAEZFnCgiEaohAnoHVVl2k6kocNoOXVvGqpTQxkM/tFYTPHQs0UwB5aYO81C9r+bKK7+FlgGUvdhmDNcvSdC0Jvpqq7HMv5kW+s67b+MI69cH7EMlASgNTJCJmco6IDfClUyii2prU1soLN/kFh4S6Sr1ePH1MAG7tWBkqAKsifAGFfR2j/YMm5nMX6utX4LOC5x9mfK2Wp48f3v3w567fILDkYjWVvEiZyBq0jNYCh/k85aXU0pCx5GQix8t8Op/m6dxKUmnQLEtBcuyd8yGEGPtICCpVVq/RGuhQKvlqg9Vajs+Pc0q5/KeiZoAhxO04emZr1REMnZ+v15qX9URNxMMwjOPY972ZXa/XaZpSXlLOX579IvrTPP3peP7heP1wXpasfVelVFBjF0Xx8XTMadoMwXEj0+5lZ1BrCYCd77wPRBvT0UdftV0uZwIahxhiFPQFQZw51s6DIzOR82X+dClENHp4tRs2b2+HTRc738+eVNh024Wx63512H53s3mzc7tt7IYAjnMxc9QNHsnFEFXEofaRvyA8nOP9YXN7tztPz8DaxSFG74MbN/FwM4bOqa0mOGrN5lQu13x5urTcAjsfN/3uPo5dvx2Wmv/64eP5+dKu4oh3h+Gf/t2nAvrqze31Wh8frz//+AkavHl1s99sQ+xi7GM3xH789a9vf/eb15oOnx5u/vCnzd/eHz+c6nmqtZbLZbmen0IXtzeHMPRKWJupCTsOXRe6SET/8DFzzBlAPQshIYRa4HpO13NWmXKKMQYwlzKLEgJZw5rVVBmslYSmCAZMStShMjhby1ohIDBbF3Hsx/jG38UR4ohPJz9dH5c05VwQsOtcDOyjNkFmaFUvWNCM0QxUtCmaKSGRcxYCjbvIDDmjYYuRNhtP/Lm6BHAEHoTKjK4xdRQDhY4atllgqlKvoNMQsA8++mhNpzZVAyLPxJG57+K4G/uxq8E9p/S3paWlbJ27Jw1JfYBA3AU39NRH7uKKkKd1xdBatSUQJWqMzEjYxF78N8W0qjVDW2OnCQRMEODrcqb2OaD7ZekwMatigMXKFS7JzaDWxah78SE0k7mkyzL76i7Xa9/3hDxN0+X5XJd6szm8vr3/7s03r+9e39zc3Nzc7G8OLvias4oxYaut5DZP8+V6XZal1JZSnpbZB//h+eiYL+dT531TZaIPnx4eT8/ny+Xx+Pzw/Di10pgpdt4F3w3so/MhhkBACRYEcN77X8RBAAEF54YubIbQ9drUOdeNfewjeScAL/leZk1E1ok8EYcQkcDA1KQ0JDA0QK2myZoArDmvpkKkzhmRkSNEQt+RD44YFbTWlmoxNREAWCGhXdf1fV9NY4y55FKKNDFRC+aZpbVlmnMuz8OQazOj+5vbL3RIMxOV1lqTJtLUBBlCoM0m3G5Hz5TmAgB9x+PYs2NR9cFH4JcqybFztM4a1pKIHZtoqkURPAA7Z4jw2XhEAJ6xCyTAfSDvyQBcoH7wRFYrtiKtQKtNRRZp1QppQRVQaUWTmBaTtNQlpXk6n8/k/e/+5V+2+3Xjt5Tada4uVHYMjIBAioBIslZqrCpam0oFo1awFEIACWaARMSEampf6CUIQLCqf2LnhjEG7sCo1gpgnslAVJuqEKzKhAaKiCatttba5w0JDdGjdy54D0DCHGNAM4uFHTADEQTvgw+/1PB+rmMEgNanbO0krZSpla2sHA3YjMEccXAYyQ8AKLkaYggR2aTkoqm2omrrHJRftBGCJqYK0AAUAQD5605vumpevhQx+mW3/2wk+lzEqCquiuMvYuRfkrv+W9dn9Y2iNlNrab4+f3hf08Qh+BhD1/sQyDt20YeekEwEVMwa2Np8fyn31vYa8ef4JTUQNQVFMjADJNC/0/3+t1/O5xv6B/TRf9XBEZH5cj09PS8xBx88MoiAtNpswnMg7nwILk6nZZmWmgp5LDlJLct0XeaplaytrR0eM0UyJiQPwdEaJwmtWq22vhIDEam11VrTPD8/Pao9Pj0fU6nO+X4Yb3aH4Jy2Epj2m8FMHcLQdTHG9TgaQuj7HgBak1rrssy/lPuk2v76dPzrccquC9sOfeu6wa0kaEA1WEpOy+JYuwAOCZ0zrNpUYK2JOYQwhpGd894VqYaKCuM4ILnLkkVq7FzYbzQfXNStZihFcoVWGCQqDayDNyZiABN1YPvO3+36b/fjN/v+dsShY+dByIAUjZBWvT6KmUNh+ColcY73u+H+dnM8DQjqfGRyq76KETyjISIQs2sCQJBzE7UqGhyP293bX3077neN8ePDp+P886dPF5gbMlUtm4/+hx9+ui7zkvXDx9Mf/8vfylxe3+7vDvvddrvfHw43d/vDnmgconRebjbum7uNtCa2mMpZYcm1pJRSaqJ+6Dg4UapFHfnOefsFSfLL5Q6HiGBIwo6DG3MygimnxgwmrWaoLV+vtSqQY1NqWQmpj34x+XTVpO3a2na5dmOkSAovyhhVFQUVq9Wco83Oi1ZEh+rToqfzdLmezHQc+nETt+BUISdJyfLCJTtTFdFSG6IhuhB914VhdLsDc9BSFKz6CMOG+XMRgwAMwKXaaZYSbePcuNmMN71BOD37BnzrW90Pm03wwQTm83w5Zkfu1d1dN/aRDQnVcF7Kzx8en46nx6dnU7Pdfhs71DoGPWz7oYurOFMNWhGV3GqtrckLdFhAFmtNoSJUhLb625CY2SG9OFjRUISkqqiaGKxZIEBfHhkzram20kKIBJjmtJ7hFjcvaQlddF1oKuhJwc7XCyHVXFFx043f3Lz97/7df/jm1eve9Z0P0YfRD6Prm8jT07nU2g8DIlazueQPj0+fPn16Op6u1+uSEzL1m5GIa85DF/72/qdW61/+9ten07GpgqMQg0ZH0ne+c857dlXlMl075z1zq0sqKS/l6fhca/38GUNipujd0IVxUAEmRO8ErUlNOU/zfL1cTsdzXmZmJu/Jd+Sjj6S1pXkuOffeOUcKkqWeUm4AMQZmZ0BMtiYgMxITexd86LvYEZK1VmNeJp99ETUf++1mO45jCN4R3t3dOe9Oz8eSc8oGZn4YVrJna+34fJzmRYHv7+9a+5JxYTmlJS05lyoNbF0XqiPpO972Pe62iERkwTMHZ02HcSBv8CIXZmYQAfjyljM31dKKmCgoZEylSG2r+N1MmwroGgXgVp24Zx+DeU8WnASSbFKsVRyIBgodmxnOGdCAQci0lbKYpDS///AQ+vH/vizrvajaktq81G7UKBjRA6FZU0ARXNnmtk5I25ouj7V4Ipa2zlxetjLEtYIxQkI0sWrami4AsYuRzCaRWluec9Waa1KrDc0xN26IrMZLaXOaaitruME6MIkh9F2EtTEuVD0BILOF4IYuDv3Qhe5LEWNmL/WRKqq+NBTWOQk2JFNEpADQqYWqwdizhcF1MYwIWmpjxM5HclwbLaLXVFTNexeYIxChajORqtLQGhPwWuCsTYvVc/RZdbtOltQMPtun1j+UvnzT2qFZV2MVaSrt8xD+yxPz8lO2Vi6MQGyKrUitea75049//k//y//j9PhzHPt+uxm3u26z6cZxe3N/9/a33bg3MQP7kh622vkRDZmcdzEEdmxmrbZ5yk1esGArCGDtYP39VvG1H7O2dED/senyj5rez2VNEy1VAAVNiZmAAwYFRcE81+PjmYGXa6o5gWanXFJSx2aN1tcMus43cZVoIaIpqNacl5JMWofGiMEHUaiKTdqSFiRcG7DPz08lV+/DEuP89BS9Z7RNF13ddn2/7fubw2G32y7LYma1VgNw7LquE2m1lhi/HsaWUv707uHdaf7u9//h23G/XGbzFIce0UzUWNc4BTBDo+AiGpbaTBTNTFvJCzONu33sogJYLYMaGYz9mJZ8fH5UtW9e328PA+9CnG76cnXLVZarq3mgdrsJ9yP1rMVaa01EHMJN595uwje7+GbjN0E8K2IVIwQjYEBu2kqqNae8TDUvX0Zjjvkwdq8Ow3E/ojYxbtVSFmlCYN3i2bEPrgsNiTqy0WMfGNV8x7ev9v/D//Av+8PNw/EoKffOhchx4O0YX98Oh717/HSc5so+TOd5us6n4/Vyub778Gmz6e9ud9++ebV/Gh0hY3F2ASkmRA12HmpHrTmRAGYilpdaiqCjJlqyeOepyXI/q8g/amLG3gEYEDrnOh+Z7BpSK2ICtbViLZc2z1kMXOcRqLTmOJBzxnZJyyXlT+fLuOl2N4PvWbQ2qdJExESgVUlLiZ1782bvg7teS0q5Nm0iVbNa4SZcisveDHOTpgXI2KEZAuNKtWGPLmCIHDpip84pEiE6F8x/zU0DBHBqWEpOi5Xm3U59U55rrdfT0zydzcSH0A0750JOxZz4fnSGm+3ou2BSai3zUo6X6eHT8+l8macpeocmjqHzOEQaexcDN9HWahORVnU1XKkYKJMBCFgBrQYVoAHYirxeVe8EguuzrwqqqEpiK9bU/t4zZrYKRZWIiNlAVE3B1kmqNTJhA2PnQC2ltLDfdpttv9292d3d3H3/3a8Pm11d2hr5p1VbLrnm+XJdSilNiF2VNpe13YzsPTDPJS8p6fF5bQsPMVznayn5rz/+eJ4uLoR+M+z9DfsQO47IfezRdJkv83I9ojmmUvOS02WZnk+nv9v4a11yWnICx/YiqgBPDomaai55mufL5bosyYXIkT2x4xDYmdSiixMFB6hgYNK0lVYAENckKGLy3nWRkLQyoqcYyHtkRkZHLhAKehcEjEN0jlW1lELB931XWz0dj7VWQSEAz+7l4Gq2LEvOBcjlJX15+NdtR1pb0fpISGSqpUlWbYjQRc+OwYxW/xKTj8EIFB0zuTV3TIq0agDM3PW9xthEEdF530Rqk9qaW1MGmB1zRLUXR34BIUQpScFo1aCxitWE84XyHGrpVbfemAiMwEiqygqfbDLP+c3j45fiUlVzaUuqL60oAwMiYrQXpct6Y0uSWhusgyaAlzxMM1BQ+iJeBUJjv1rTRcRyTbUmhJ7JobVaUsqpSlNqiKJggq1iM8NmmEqbprnkhKvAiH3XxRCc985WguCAGgmR2al3vh/Gvuu891+7fWsm+Ysj4CUNa9XDGgqYKCKhc8TIEbBTDEROKSg5ADFmJRT2ArQIzRXnCmZszjG6hojWmmoVUTVUdIaeiJERXmDcL5i31aNmsmZ7vRQx9ssaYG3FvPxrrb3k/7wTg8RcU7l+epweP12PD+9/+C9//I//z/PTx37s4jj2wxjHsduM25u7T29+3BzedP1u2N3sbm9D1zUDWwFcCIiEBq1WaXUtp4jJI+CqT0b+Os36hd36y8Doy1Pwy8nR/zGDZ239rClmawnE6FYdDAqmy6wCeSkq1XMjZ61mM0egjtAzK/MqwHnJGmNap0hVJC0zmnZ9YOYVmQKGRqTSckpi0mpZ5msrVaqXmsWlwt4TWI5sZVM23WbnmLouxhjXOBGpdX2VznGM8ZcBw6XKx+P0nORfbu5/9avvtbRqdWH1zFqrke9CIO0dKcKKHAjeiUPE4BCNEGIfN7tdNw5VhEoxcpJyyuV8Oh2fn5z3Pn6zO2zDyHHpu+XUzbFbKJY5ah6C20ZEgqQvnE1G8Gwbb1uPm0CdN+dAQdHMA4pptReyeCspp2vJX8fiwfObu+2v396k6cgo17mdtbWmpYFbqiCGAE2h1cqEDMRo4+BDcKHvQ++aSKvFmWwjvb3ZssxEdTOGt68223EE9GToAIfo7242nnH9mCFCqfl8fpZ69WQqJc0XUOld7x2PDLwNzlMX6XLFaapLak2MHIlqzU2dZN+1soYD/93l1jbvS1QbrmWjtqbWoDUpNddaW1Nmdp6QVKB45r4PgGGal9Pxcr6cY6Rvvr/bboNYWUPd1m06L+V0vniPqexj1y2zldLUWuzd6JxaY2pKspTF1KoZeu22wEFF1YwA43rUc045VIWyJOFmzpNz/3gUQDWWqqmeUnEFt11Ncrq+e3c8Xx4ezylXdm7c7KgHFpiWqgrj3YERgGyeLs+n8+Uyz8uyLGlZcmutC247djfbcLMJu03fdx0i5VKXNJeSTSpYQxNEZQIiYDY0E2yGCugIw0sS7WosUDFtqGZqzZoBsBEBA1NDLvo5dPnzyqFkRgCMPrjI0RCkNWKOfee8A0QViT5YE1MlwF2/+dWb717fvRrGDSJ+ejqejidSu9nu8tCnMjdpS0pLKXOtAqQAojJstpvdvu+70+n0r//2rz/9/P5yvZRaiSi3erpeW2tAPAybbui7vg8UmILv2Dk/9H1ruaZjSvPHclkdFLmU0/VyvpzaZ0hUa+18Pj98fFCVfhhUoY/d7WG/2W1iCOSoNVlyvszLspQAwTPnxkzkAFkROTCRc86RqRAhBRdAEcybeUTv/bAdD70jzROpMHkS1LkqNEdEBtEF74MxKmKtJZ/PrmTf991mBIBSakrZO4dmJrqeQYnIRNQA4R/nr4TAhMQrv42BWtU65+U8zYRsYAE8IjA6NDYAZCIDQmJCNhWtNc1NGjofQj/0o3PhhU2LuKRUgCkVT+wdu+CRsIqUWpeUc66tKiy2ZAqeAhOrQCntck5Pn9p8VZHGfuh2sR/MhSaaZ00qc9E556nmRcoXGekqpM251tpqa7W24NB78AgmItVqkSXV6ZJF2mqP5sDBsffEjKs4Yo3CUVNH7JxHRFNrrS1z6txchhHYWqtpmZ+Opyqt3wTveR28mFRRE8Mlt+k65ZQIqe9j1w19H4N3hCCgTNR3nsizC85hCCHGLsbuSxDM12fms9PZvlqn7Qv/BIl8CBw6tl7QrxmRrTVCReeISQBrlWkpU2rNiIjRBfCs0FQkQasga0NAwCmQB0YTETEFJgQw1aba1Bqsjnd70c+gAcALUXBV89pqwVwbSCL/6Bi3r0lJCGsShV/K8dPf/vcf/+3/+9MP//np47tlvqg0nOeSzudHRGYXHbEHDtubt29/93/5zX/4H/f398P2kFKR1hwDgZlaSfl6PdVcAKnrusPNoes9aBXRolTFWm3rbrcKKfWr8vjlD6ov8mH7ZRH5y/rmlxWMcy6GEGJ0LqAhiCGQd27sB0LKKedSW1VEAWcIai0DKANGxxI8ijQDlWYGxOgCw/oUl9Zq80zOOe95rbPZBURnCKpac5YmvM5l0QjEERCqtDbNReo8zdOY0rSUVdW7zIuUUuZJg28qquIdxxC+iGHFYGqWjf04vvr2m8N2W63+/PSxALWcGN1uGCWEVmbQagLIbuh33lnwSqQG2o/j4e42DkMRc2lR4OOcH9+9e3p4eD6edoedMXIffdj5jjhCF+W+b2M2KsAEnqkh6hq+yEikpAVbBq1mQOyAX8poMiA1kwaGjAja8jKlNH0Js4zB/frtbTl/o21msncfL6nMilgNCjKjI/St6umSSKUL7B1vtx364EKXa/1f/tf/dx/C3b4PpP/+N3dvDvx0/OQYbrfj/c3tsDk4F6u0IvWb+00RbUZgiGKtlGWeVXTc+dr04aSXY2JZbob4m7fb++1wj/a85HcP9F7maaopq1cGY1txoV/gHX9fNjtEARAzMUXVqmpmTaW1irVKqdLaS6+BGRR0SUvJzYcRSefULnN5eD6HQOPNwB7MsllTRUBi8oC4/vR5WnpDsMAhOCQGcZabkLSmKkWqqRoZR4yA5FEECSkEz4wIRmzOIZGYAZI675gNWZB/eTfG2lzLMC+cMoFbiN5fLh+n+XKtijwMg4+WcuMGS8ramjhE1VrKNKXn8/V6nVNOTRohbsf+Ztfd7sfXN5vXN8PQOUQrtYhIzqnVjNYIG4IiKhEw2kvOnb24AwiRkZEIFNS0NTGVdfRR0BsiAzIgAopZ0pDV/z2FylaN3QuXdfX4OB/7yM6pSFMlAECK3g9dv4lDz96qzJfLnNP1Ol3OZ0aSVnPuPNPKci2qDUCQkXiNExnH4f7+brPdnKdzaa1JqytZsFomIqRxs3XM/Th471exoRp7dn306q1sOoU8p7mUJmo5l2WZ8y+COVV1nufL8eQQ87SoWBs3Ywz92H+GzkEzLa2WWqmJVdUk0AqReZPYmgPJaAJaWinStAmAAwZVMLHWtJRKipYLaWNSM6hNzMyxewGEOCLPDWyptRpwDp2I6+L68pq0df9DwM95K7S2IlZp3pf3hIk2fb/fjLmUKmKMohmt1FJTWpJzXVw5/vyVTLbuelZBahMoraZ5EqDO9SEOw2YfYgfk1tQI12X0ndTmiYNzvovEpKC11nlNPU1NpCIKgTIAttysNtFWpeTaSlauhM4RkWfsvMZN6sLTZRaRUip/Nb5/pg+X0kqtuS4zMkpYVzCGVuq8tMs5XS8LAhAGP6zKY/oS86RmqwzFzNCtpBYTsVKaavLkNt0iXkupacmn07m0qrjp++gZzVSqqBmQX3tjtRTVxuRi9H0fQyBAkyYAFnwM0YXQOb+O+9wqOv67CQwhEgERfA5TfMEvA8JKzkai1dVFjZl4ZZ2SIiJRQGZDVABk53wgx8wUO+c9ooJhw+CQP8/NLBigkIGtZZgCrRs72CreAgQEW+PkcY1TJ1jFxbCyFlZhLzR5OS/D/9GFhKy1nJ9++vTzf/n4079dz88+dM55JjOtrYkhqpKIzNN8eX5U4GG7/+7Xv91utmyGIFbrlNLlfJmul2U6mbTQ9W0cUcsZIU3nJkJh9H3f90MM8UXMY59lx1+LGFuLGPjcg1lpRi865dV2+vkiwj64sQsueiRHimrSRMmEDNCsplxKAWLngDwig2rDBgjMiF0MDrGxa7U2acjEjgwRBQjRv+AgPTsSVQBkzwisZk2tVRERgxUN9YKMZgI1a9LOdUmtNoCmxo5j17VSQZq1oiCAa/jr3+ViqkFtmkq5Xq+5pDi+6l1/KfO05LosKOB9h6o1F21FGbELQ+y6SN43cgpgoeuYPbvQReYYvYtW2+n9+zWzd16mh8cHZjh0bsPE/YAs6IQ8YvEAIL6rGGqliiCoCioGzaAiF/bOO3JQZCXfY1PVKgBIwTF9Lp8/z/u8d6/u9vXb+2U+57ScLglXmZYRECM5INdqneaqpZSOhz70Q4jBxcCt5NPxWAGiHm73wzc34dW4f/Cl1haRTcEAnaOhC0hBtUtFz1lbM48ohR025/SwC6XC0xByqlYbBfTRb7fd3cA3teud6wid6OO5pAZF4SUqFxnxH+tmAHAqxUDNGpgIkSooVIMmimrgnTPAUkqusmYXXS4nNf703GLcs9sUdQIdsHduH8OAkAFaU3Q+bPqxViE3llo5RB832+3OMZVyqS2KYalhWXKuqVVQbBwM11WWgRoFx9tt10d2Dr1Hz4SkYkVUVE2tiWbmr8nvCIrWek1jvbol69PjJO5R3BOFELu+C10MjNbyLERa8zKnhyXllFup0mQ9xJFzfQhjF1/dbP7p25vXt5tN72Nw7DDnZc2nBFPHRBQImaCsRSaCqqgpWFuBWdWogvPIzsCrcm6uKZAj8EH8KOC0VqrJy1wqPGXny9j0y+HSUIFEUVVr1VoBCQiYmBAds5oJQMs1OHezP9zf3A4hXI9Pf/y3/7yk5GIAQhWJMZLVZY5oK643gPNGjITMDgxqLZmplRK8//abb1VtNblfp2tTpa4bhqHv+67r+qE3s2VZlqXkXBUATfs+cLjpRvd05NPpvFzmlJOp8i8Ycabacqlzym7CVKWJbya3BxQxFQBAz+idMRgoqmjNS4OKaFq8yQZV0SoCqbSWm2gFhBC988attVavOc+ngOokMyBxNKBSm5q9dAxUiTl0HpDyagiOXonGujczZFpNlQgw9r33XmsVEYCV7fx3h8vg3Kvbw/nVK1NjxK7ElOdSrthUa1aNaEbIL+4d702AqJE1a6XVnEpNRaakHDfDfvTdnvuRQ4fkVjJ4P8L+5p7Woss5H+MaF7om54hoyS3ntKQppaWklKbrdHpWc16dcFeux5IKXqaQW6+2uT3sXt1VwJ8/HB+Yo8HefQ0ZBQBrTVqptaaUWkvWfKDODTH6ANCul9Pj4zRPxbsQQjcMEDzHjohh5f5Yk1parXWNI2htzbK2UrTkjEqdOw+xbxVSrpfLnGpGRwbWR48AtQkhdX1UREJoreW8eBcQ1DvqYhCVtCRV4K6L0Q9DYEdrbGSuOaWvzpG1HCfniR19kfrzSnbxALr2QaQlRQB2jmMX+uA7ZofoRFmRgNAH3G7HfujMDAm8Q8ZmhYSIvavaxBSVnAVUlFbFBN2Lg8i0ATmCdcdSM5MmChVlrV8YAEABpSo2MWkKYNAEpNk/xEB9MSYh2EuKl4Go5LI0rX3fE5p3wbnV3IZNjNh1myDSzsdnVVzOD48//enhz286bNv9nokul8vPP3/445/+fDk/99522/7u/n5q8cNPP3x6Or17904NX7/99te//d2//Pf/3X6/b02+1C8rHng1YtlnS/+XmgYRW2vr2/GZzfhyM45x1/nD6JXRiAg4q1zykgU8MyOleWmqvmcO7CISG6iImKgiuS52EDvpWiklpUVMiRGQQojOgQo6T947JCWnaMAvamVUkNZEVEWB2FH0zjvnmRGUnRbNqdVqXDySCyEMw2C1aUkOlE2FnKKZNJWveAU0Q5VlPv3tT3/cbjofeHezZ0CPVJa5zNl531qbzmfT1ncdA1o3AFBpgibsmESneVbmcbsbxs397d2u7zkv0Mpc0nm6/Ou//uv79+++e3P/7f3B7cZ+ODwrJIjBFY/m2VWFJJrNstasrZFPFK9uuIZNDR7IkhYFYTOzWlsFREYKPnRDH7uvAZCOebcd6t3N9XL7/Hz644+f1MRECMATR+edc9q0FSupiVpTqtAA6mC6pXa3V1Ut5dyWutttxj2/5pvTpby7lB+vz/iYbm92v//+ZhP89ZKnp8tPH8656e3NuN24u7tuO9Chp9YI2/bV3iuAZ0eh16473HWvCV6N3Tfb8O3G/fD++of386dJgJmCp+BpJV39gztJNRuYaDMFA8sVRLLamhPpnAvIIOqoNgW1qq1RqdosN6njBokCc+dcDGHbdVvPjVDFMMb+9nAAwHG4vS5ZwHzsdruDc5iWWIpvwoS+5DOotJbFjFV1bVArqsLqMggdj73rOhccIkKzdSAnteVcm+OvhRm3tjk93X76uJ9nl9rc7IJ93+2HLvZj1w3d0EfHZCrLslyu0+Uynacllwpmjmns4jBE5/qhC4ft8Pp28+vXu8OuDw4BccW+IzQAJQRCJTAEYWgAArYCNJ0i6cv5m42ccmjmlspTdZfMRZg8gQvKowJLyUGuOzRt+ZhoLEH05W4Isfd+8DGSC+y9d0isCByD956QFABEtYkBkRkjMoHVVtKUljnS0PddPw5913XRq7bpOiHxdnfwGBCQABkICZG9ijw+PqrZkhOYhRD6GEvOasrsQgh918cuMlKVpqKgSojeudiFbnABAb2t/2uNHKuQXlh8XxZlBW0mVapWqVJD06YqpmKqoJ8zQJCJEMzEJKupakaTSpgR1IxEVKquVQixqoDiCmktVgmFoSlQKrEqlSpqRs6t7GNE7FJA4qoA3nnrYimgSgAr1qqV7BC84z6GhlAL5FZFFNBUvuZzOed22+3dzc2cipjxsnimTIyYEVWtiqnamiPgHDlRNZGcU57P0iqypxA3wyaOt/u7t8Nu56JH55EYAcFeAhxXFicxI/m1r0BETBwChGBd38cyLMs8T5MhFzEBRN9Dv4HL1l0nKGWNvnW1BC0xxjeHTSQcHd0ftv7zFAYRvferNQwNSy4zSB/REZJxLS2llHMSUe/8GtDiAjGj2hruybLOUtQQURVKqaXUUqSUJk21gbPTHLIpn87T+Tznljm4tXvqiUSMPXvnDTCE4B2jqUiVVkSqmTfVWouKtRhVnAib2ctvyWU3Lb9oYBA759ya9uC+OHEACM1WzR8gmVSA1bhRsDXEBtoUvQgLkgkas2P+rLZRs2r1ZUDE7NCxkqERmwcBZUQxIAJQEUFlB55JnX/B3Khoy1WbmhjaS1FsVmsrlklKNTXABmtP9r++7MXnigi0Nr/U0Iw5BK/e+xC8dwQApQo7N25GMwGppQhATedPH/72B9B8uL2pBj9/+PTw8fHx6amVSYJgiWxzEfzbu/MP757+/OMHQP7td0+l2t3rt973pRRZayv87Mk2WPXSK1/gxXn19fqi6vv6RUe0G/vDZkiGzRAMCrSc5rJUE/U+SFVyTI7JOWRVlBfZqgg5iyv8HNkQqzatVZoAKAAzOu8dMQOs7qW10aCEDZBAtbVWWqumZIyeBUxM6XNtuMrAU07sIhC7EEKMAspWCA2ZFHWVN//iXnAf3YZNpuP54f3HD/tm1ZFjA62lVa0ZSymX00lFateT2dB1zkUjQwMFlSXPqcY55ZT3N4ebw81uHN68fl2XOWt9//BwnqfT+eTIwIQNs2d3tSi8cf0muE0XwCxJSuwyYkIkcrOLcxinuM0xKNmsqdXMLXMxys0zqioQ+Rh9jPi5iEFEF8J2M765vz19N324LFPDKo/nuaKZihAyk4FBqbqUloqK8cbT/uDuh+BFSqtPSaOTGKCPzDW0ipsGrWgCrVJVqolqS1aXlqempkIqsTUumQqQY7kbedvHClAblipNJTgaHDbCree3uy4t9f1zOmet7KgLrgscPPxXQ0wnkPUF1GWl1ZSstCaqYkTIIQTmGCMpmIJO02zqUm7kx64b+75rDTvfxdB3cRyG/diRYwKgsR9fv7r33r+5T+dpOV3mptDHAcnImNHnHIqxSW1lLklKK6ai+kJ1B3Pa1Dn03saBvAcfgBBY2SkKk6sCCI71y17pU3r9l78Of/hTzwFiH4ah7jf/7vb2btxUcC72u91WzZ6eT5fL9NO795fLBQzJsY+h6/x+293uxvt9f7sfbnbD2DlHBlqqMDM7x4FoXQelVWsJW0JriABISh7Ig+8AfWME6jjujMai8Xmmn2Z9uOI5+9zWdQxNCdRQup1z32014nTJ9bbCl0asI7cfNrfbnXN+GIebw40LIbVSTJvDKk2qSGkgJlIuT8eRomx2++3md//8a1Elps043t/fd7GrpT4/Ha/Xa2stxDgMQ62KK7TfBTeO03z5y1/+8vz8XFqttRUpsetGEVVdWS8r9KnUUmsVESKKcdjsNtv91ne0FPESd9tt4LgbbqbLdHx67EP80iEDJCKH7AG9gTNkQ6dAoiBirVmrqgbEjp0nZiToUJ2JkhIoI+JLFA0iMr2wVdFMQYW0empb1zaso9PW7NOcSoHSzJAcmZnlmkGt1YpI1WB9EgjAE6oBiWjNkhMwdp42MRSCRTXNS8vFAFv+ms9FRH0/bLa73bSk1tSQgIduazArHBW1qARRUkMjh2wgtZTz+fL0+ASOX7397v6b72/efD/s7ih0hrhu0oykAiLSaqk5qwisZ/HV+Cpi8BK+xI588LGLtsKtmV0/ROf89hDrq+2SLGfLuU2Xcn6crnP9y7XfbW7evL3Z3d9u+7ff3IXoPxdkvN1tDofDbrd3Dq9zrblNl4pCErHkKqLeE7Mbh26zjf0QvGNAq7mqonNmimZA5JjY1NKSUyop1ZyaNG2ptaU6YlOa5nS6TGLiu0SOwSDG4JmJnSOHnrebbcl1WZZaW0nLPDEzqmiaFxF1zABaajKznEvJtZS2O1y+iMdX0a8P3nvv2H3+3BmA0Rd+JIJaM2mgKFJLycJXINeASkMlhz4433nfe9+FGM1kTlNd5nptpsCBuGPfMTlGBWF0LoKiAqk0scTsvHfek2fnfehCR0BSas0lL1mbMimjIVspy/l8RF5aEzXg1tj5X/bJ0cx0TblVYEACxxycj8579NZAK4AHIvAOVVVaAnOonXdu6IbogeNIVH/++U+fnt+7EI+X5U9//hmRf//7372+3bT5Yzod3x0fH0/l3/52+tPH+adTQ3Lna1Hg7e2r59OUUm6tro6qzy48JARmMLDP9rQ1lwnHcby/v4+xe8HzfF6UHbvdZnuz3Z5KXXLT2qSkNF3P5+l0mbt+ezjcjsPInpFADEUtFS21iRixNEDvPTMrIKIzlZKSiDF558B7BrRWQNRaM1MBbETIzq8j5pRzloqOVJtpxOiUacWEroCenCs3WsVUzjnUgAZIRs45UecaM3/ZX6Lj7282D4fN3eC9pE/vfyq13t2+CS4SCNg6k12m67GWtkyTttbFiLzzHRKwSCt1meZZVbou3Nwefv39r7bDsN2Mv/nNb8bD9pvHxw+PD4/Pz5fzKS8pTXl0XubUMbza9q8P/Te7fWRKck3dOfm4sEPyk49zv5mGPQ2xgl7U5QSWU5zKJpfBIXTeCIAdOf/LyBFQ9D7c3uz/HWN3++rmzTvy/+mPf3k/p7ws2g3gWNiBmJ4vC1NiAHcTf/Vm++0hlum6pOxrw+Cxj5PQ85zU7Lvvdt/6cCpkQKkkLU0lx77dvfZNYdOR1PLTQzKxu9Hd7vBua1unU9VatMyatLTZTQZ//el4OaeAEJnH6MYeZ/bcBz9G13kktH/oxDTNCqZmYtaa5aq51FpNxCMFRHYuILvVwczktVEpgi4430XvC8Gm77rYBxc8xeB9cI6Q+jAE7qKPPEbCqM3lKg4DErhInoKnASGIIBgjEedJWxGrKtVMAdi/mEyMHdJnjcGqTickBC/iHLkvYwtWHUpSqTRu5bCD2328ubm/uXOhPy2aBedlmeb88eHTw6en82WqtQ4hjL3bbfubw+bVze7VYXN/GPfbbjMEh1ZqbqIrngRBERSsgVaUZFoVoGi3yFChM/ZKodWQxaUCCt6FTqkv1h1z/HlyDylcUlgWbdMsabGSGGogfb2Vredd4Nxak6/vzHpK7vthGIZxs9luN+QcFedAxZGoRPKNwzb0KBKI17Nf6OKw3ajZklLsuv1u3/lwOp0ZMPoAxNvNJsbhUq+1Vm0mquT6Lx8IVQWCPvTsvIjUWgCstbZGD6aURIWJ+74LwXnParqUcrpeSsmOeDNst5F7jPk68YuJ5cv+QQpU9SVsaK7teLkqk5+WVOrT4/P1OlcxIAYm516CLKrA6pkRWJcWJGRE8EjGTsxMjQA8Qedh9LYNmAvw0l7oO6YqIGZru0AFAFHMjHENcSwpmYrVgiJksk6ypHppbc3yWZakKnn5euI301qXVmeC5hk8A0TnXRCAuVwMVawVqViIgRxizvl6nS9TnoX6cT+++u7u+3++//b7btyWJqkUmcmaELKJiplWaKqiq4dwVdjKKlE0VURwjD74fuiJWVWJnfMRvWfvzUDmrLlIKXU6geNy/Dg/P2jOmxj6/e6wCYf96B1/LciGbjMOfdcBKALm3LTOeappEEJ0Pux2ntkNw7Dd9l0XnENprZbamjU2AGpNX2RSosuSlqUsc0mpllytNdQ12ZtTbdfrYgRuSsi8cjXUe8dSqxBzF7qxH+a+n3FRaWlZCFGaTpfJzLxzgFYqicgy55JrE1nmX3Zi0DnnXfAu8LpYga2KenqhY5iBKTQDBUMQA20qolSaQm2iwOg6dclcxtirdAaiy7ldp3zK0oyCj9th7PbeB9VVGLJqExCAPTlH5rxz7Agcuy7GrUMnXBmS1EmhxYAhcIiu1GSI6HzKRZEYgGL/D+dLxJcZGXsyk+vx4/nTu/lyLOml9CFGdugciQDTOjMJIQYybE2F+LosDx9PUxE1vEzp54/n25ub3/3ue+Ywl3w5na5zeTqV6zmR4m7oyHnGOl+ffv7rH/P0lHJptemqFcMv4y1gRkNUWx9qRCRmvru73e/3fT/8g1EJ1wR7x65UNkWTyLbpfSt+qSoqwEiO1uVdBURBgRSwSgMRU2vBrVI8UwW1mps0AQ+MRMET0hqiTsjwJYnIBzVAdj7GpWYjiDHEGGPvA9MqcXNEbZ1aaQMEMvQOGZyZIRgyoX61Za3XEP2//+auff86Hg7S+0tN0/kUqY+xb5LVGqF51uDJBLXVtMzn8wkdjjC4wKqSUpkuUyspObSyDAxlsyEDRNzvtrHvNvvt8P7DX0qdztePn44OSUQC0ymXs4J0w24YmuvrsIPdDWc1DjqOueuvoQMfG9pVsSZVXpoiVyFRKxE9ra1u+PvuOCH1XXgdDuP9Pbjw07vHy+X68bGpqUdTMscQPe56x4iRjNdAXET0AUS1SsotPc8p6cOHqQ9+c78dhm5ucl3KdJwdyW7jwDv2qmJimKteFwGVMQiAH7sueG4mV81puWjTT8+JyV+rT2AITZHYuRCdhM4Pfeyj+yWB7GsRY8UADFaou5ZWU56XDNB68p2aiYJIAyRP1IdIN1ENickAtBmbwtB3XecQrDWpJEBIUHM5Hc/OeTMotVmrpIbSHHkfRoyj9G0z7rfj/nq4v8xPS760lsQWsBkgGVQi9Z5idD6wAjYBQiM0MGJEo+BoYOq/Vpfe6e0+f/+2vP0m39+lwy6NG3IbXxHa8vx8fPfu/aeHx/P52lT7YTjcHPZ9uN/3395v3tzvX7262W/HlakK0MzMBc9mskrBJJW0ksWKs2QUq79/sjd/md+eZMeeith5atdJpqvVkskuiDP4aN1t7b9NeHO1OM9T+vHanp80PXlethvcvUV7BdjJy0zqFzaAakYx3Lx51fd9Trmm1Exd58fdJoaACtzUqkBpmmsXYgw9kCff1VyO5+k6pT5sgvNPD5/SvOyH7bjd3h9uVPG5nc6XS21Kjsdl6Mfud7/73fe//v50Oc9paU1O5/M8zykvWhQNdPUVqxKT9z6E6L1TaU/Pj9dy/fT8AcFeHV7th673IyRBBa3tS1tpFYzl1iBXQhXVZK3+VPzDR0MsVaYlLUsupTI5JeLgYnCqZV5qUWtNBcABriMz712MQdFdC4hh9IGYiYAcOI8K5hw4MsFVlFBfXgWSAgKiAopZrXWZ5+PzM5rWnBg0Oiaw6XwqSxKDlOs0X+cltVqu80U+n/hrzY8PPz28/8uUitZMlj1j37lmmBsZKJA0Xepc0pLy0qVUHp5OU7F48/buV79++8//1/vvvu83GyMQmdfwJmLnmU3U0AwNGQGMnWcmIJTalstUcpFapdUmuUzpcj37ELa7LTtHrTFxN44GMDWoYsUAdofNZlPH8Tgt8/PHny//abzdH377T95/pdwSvYyTmNnMEKDkeromRt5v2243bnfbYYwx+hBCFwOTM8WqUquU3JDUDFXsxQBc2vUyL0su9WWxLilpLWDG7FVxKRWZaEpIyERmWLhKMyTuYiSioe932y0RltJKrq1eSy7n84UYYxeJCSrWWq/XueQKADn/gnCNyOy9D977L0UM/QLSslbptnY7jODlv8AY1hZAk2Z50ZSzTeI8dJHZoCWbpnq+5NQa+rHdbw6H4IaqrWkTaVVNBD3iOPrg1rOgtiaoUtmAQAu2AjVXMKGu77phsxvFqhFiiHC9CrviIo1b/KXZCoGInPchBhf8fHr68Mf/+NO//W/vfvi35+NDbuIc+0AhMLFDgNhB6OJms419CCFMSzpe88+P8//vr5ePpyQqyMH320N3mJser/PTqTwfy/E6m9q3r8Z/Gja+P6DzKpUJl8c/vT9SW2PCPy9HCLAGWCKAoTOOSkExAPsQnPe+tRd6x98ZlMy0Vc1ZUrJWGXE/xvjd6/ubfLy2qhy9kWUyQoWmZgAhdsgkrdZcUs4lcfCO2RExSDNpJmpOCIVZvGdiNmAxZl43i+BcYOeRuKrOOVURIPCBx947wlbqfLm0lKGpAyIzlUpgyKhETZ2qIsF6fmutfVGPb7rwP/3uVzfLp9KNz+h+LHpp9vz4jHhilr5328N2HMahj2ku85RF7XQ6NlNj6jSKSauGip4oEkDNp48fjh/en88X38Vvvvv2cHv3m19/v9vurMhP9tP5dGm1+cCpyNPzw+P5mFTevHo9jtu2ve2/+W4XRzON+13r3PVF3MCtH0GAlwLLXK7AtUFpBK4pqH3VKYKt4mcBU+/ptu++vd9893rz9Dgy1iXVnn1uFtBuN/7mzejIlQKo8POHY8mp78NS9MendLykVB+vV3k+1f12228Pu8V9/HR5Ol8v8zwO4Z9/99p5f56meakxECL5cTPEendT72/C7d0d4TCDwHRaynSas0DebPp4863bt3R6P08pYwBHw7jpN+PLQWo9nfyyiMklAwAgq6FIU6uADRGNRK3lkmqFWpWQ+8GHELvYI3kkEJHcMllzYNhqvlzOJnl+6eg6Znae2TETGDRRAGT24CNp55xj8AFHiuSoD/4mt7nqInYBOBucQWeADKBMwERgJqa2pqCs/CZwBD1B9yXUTIKf374+Tt9Pd/fLdleGLoFPczme0vuH408/Pfz1b+9OT0eRut0Oh+3NN69v7nfDq0P/ze14d9jsD9uu6w1R1ZqYypq6JialSZaatBSQamoZwySbx+Xwc979cI6XZoGXJnBKbq5jqZucUrk200R9cGNwlRVLms7p6Sk//dCOH7VcIRR1CC2g9URI+JLL8nm51dRqNuU+UheW6TpNUxHppR+22+2wPWy2HTktVZdSlqyiBjSnUo3meXk6Xr3jm/0ydqCKjr0PvguRAEUNAMS0tAKC5Ml3fhtjz70h+hBKbbU2Jn6Z2qiWWs2UiJ1zIUTvAyDmmq/1el7O5+slhsDO98O4daOVGvwaAf31Q2agsNoW2ABBVOZ5hsVEtDatTUUVDIkRGclTiF4VqzSRNTLHmqGYkZmpBsCmNudaFVp0JgK1ttpKI2k2rzIGs6ZriDAooBGtFnYFBYXc2rQs7nQisJzLKlOsTc7XmTAJQK6ypCXllFNe0tcTfynp04cfHt79wcgrIIk65yKZA8lkCuYgg2hdsIirXGoDMe62u9vvfv3m+9/u7l/7YVTEVmutZa2NVhSQAgAhOnLkich3cXVIASFlz2pICLiioXPJVUQ2u71zHqkiAjsPSL5bR3PmyG/HUWIoz4/n6Xx9/LGkK/dDOh3tc0EGAIzIL2x+7rteiuRJTEAECd04jttd7z0RkhnUIiKQ5jbPpZbGzl5Sf5FErNY2z2m+prwWMdcktTpE710IvQEZ1aZaq8xz9t4jUgg+BkAk55xjIrMy9KIClttS5nlZlpSXEqIzVRVpTXOuJZdSqojmXyDhV8yVc8E5v2aewD+GHdoKGARYPX+rfQgMARSbNWmibQ1vBXBOtKBnxspSIE8yp6yOnE/niV1UUiUDM0Z0zkdHY2eOJJcm1UQEV1QJiVVp0ogRgYBIiYwcAKHvMVT0DQWYHf9jJwaBkAhMJc/t8vTp009/efr4Yy6ZYxy7EGMYRxcCgVGrqpUbhKReG+fmr7k8nfLHp+nDcXl/TNJq19tdd6hGj5dpTvD4lK9XTQ3GQOPgbnd+3HpyrtVWSq7pJK2pvdi6YDUqvLAiAAyJgvktR+fGwSiI1HW/F5FfWpNg1c6UIjlZLajimEPvb8a+HfT5UpYiasakIYABzrUhsQ++71zHUHO22gDAOXbOex9yrjWlRjAOYbvrt7tN7Dv2HsmpgXOh6zq/Dvx88CEYYVURMyNgR11HBNZSuR6Pm9hNp4tVA9HVYQqEucllyanISl0WUZGvUVB98P/0+rA5vXqG4LM+yTwVrdIMMICqIYJ1wfVdX3qNYZ5SqaKltZQLslstGUSe0FafCiikZfn06RMHP2w3/Tj2Qzf2/ZtXr0Bs7E6lVheo1Hx8goJ0ruJTzV6SYY09bsSh8NhnwkstRat550P03vE44Di0U0wqIObEzNZM0L97a0xNDcjQA2w9fnOIz/cDS308LkvSPNdWJTDe7qJ37vlYa5PH45Jq64cuV33/1OYE7AN3vGO6vTlsb1+PQxgyFWPuuv1h+Pb7XwXvCU/znLsA5LChMacen5vZ41VKqe8e68NzuSZkH/24G29uNpvNPE8fPsjj1Ao56kLsYh/Xe2P6h3YfgJvnBZGQPAKICoB2nSOgmlFKmaZTK5eU1TFvWz+OY9cRIZqg1Cq1tJzzXJNCzZdT9CtZHb1j518OEyGscjvPLvA6bgqOHTEDrgSNXc83wUnFSeEs9qT6bPVZdTItiA1NQQWhAoEZwxoDKw6BETqElxNMi93Tr3/9c52u4JdCea7n6/Xj0/nnD5/evfvw/HguuTLiZvRvbsd//mb321/dvXm1P+zGoXPeewXKRYjXqDgyhNpKrXMtc5Nsgs60Q2tufKLXP1z3//tP3c/HkvKfsJ6G9oQcbfPbbvv77f2bUvjTzzAvi3b7ZgGei80/6eU/4/ldSGfPamMfox97GwJ6Hggdc1tZ4C8Fmek1L+c8T7Woo3Neni+ny3ka+qGL4+vDqzd3b3Z9P58vZUqyacu0PB0vy/WoSPOSnk/noetzkf02vnr1ptUyXS7zvBieFJmZ+qE3IgNw3tcmnz49AoKoGgKt0Vcv2q9gorWpAXax6/qu63t2vknLLU15KjX7ELbb7f7mcDgceopSy2YzdN0vRWTABI4heHLsEHFl6qwm2eCtrqwRMGbyTomNmZGdD6bmRbSVVnKWWs2kihhAafB8Sbmq8+zYIpXA2nkgJFFSQVEQQ1vdtviS9mqAqihmWpouyRAJsKzDkZd6QhSgSWtt/bV1qTnV+mUlq3n59P4vH378z8O4D13HqwRCFkbYclNQr4tarplq4awF/LC7ebV/882vfv/Pu/tX7GmeL6YmtbWS1YzIGaOuBL3WmgoScmDuvJnlJaeSslZBdY7YHGVENCZgxxwC+mCYRa2JsQPfhwjSWvHO7/cHHLq2XFSW0/XjfHr+8Ic/7F99X1L6urmrmaqJ+BBu9rebbtu5UWrrY9xshmEYvHfSaqq1Fm0VtEHO+XxZTCVGjCF654kYgAo1EV1Snq5pWUqtEoO/vT3s97tx3Jrh8Xw9Xy/X+ZRLnZfM7GLXdX2/3e6244CgiSAtsYQKxrXCaZnSXMCIOawfm1ak1rYqRlJah31fMq1eNDHO+y86hr/TmZrBC3vuhchCSGhoiiJgwlKa1KZmK1573XAce3BuRmBVarVcL8/vfk7z4oeO+8AxdHGI3Rg9R1dUU1URVQQTy3MSNAIFRzhsAhI2tWspbZ7V4JxlqpDMCQcmdL9IF191vGCAUssyHR+fnz78cHl+VLPt/Tdb+Cb46NkximjLtRTLF0myYDo2IstzPZ/rw6fl8VSUXTd0UjkEZpC0zD9+BEI4Picz2u02oTdRmabr0iR4HLEM2JQVGAyJibxjRBQ1WznKRASE3GnYxMPb21/9S0P/87ufvHetyXoe+Lud0rTlpaXFmhCgc9YH3o+9I3e3l5TrMk2iwp5zMy0qSEN0/RC7uw2ZrZnqAMDsnI/naamlVGmvXx1evTrc3B2G7eC6gM4DOKbOuw1TBGBEYs8cfOgCd8HHwJ7IKapoKtPx9PDjz88PD9fHk+al9waoVdrzdap1LWL4pf+CX7vjweGrbeRtxMzHXFwurOQ3PfqAUImhlBq83x+2m9HFLnapLlUUSFRakzH26LyKgXnuuOvDYdOF6fLp+VSkXK/Xh48fz+dzcH63GQ//7vcrFL5ou07Xx0+fSsldF4T48Xq9zOlxWoq0sfPiOGnL1/M5Lej5cHOz8cF3Drcb2e6M0JCCgsc1sPWzY/Tl6UcFr63ZKeGcXvXuN7eDq00W+fTx9PA4TUseBioiQJCk1GbAYW4qTylXOCced7e/++dv3ry52fTd7c3u229eEeHbh2PKKQS+vel++91NQHh6f6rL3MeqoJdmD8/Hv/11+evH8+Xy/ulZPj7OVeSwC//8u1f/0//4+1f3u+v58sc/fnz34fzjwwybve87751ncvRy6Fptcl+LGG1AiOSR1sFix9F1JeA8wSwyT9f5KsvSHLFqFElVJISRqTMBWMnpAE2lLU1rIWZkZ8zAbIhrmqdjCkyenUPn2BE5z+ycdxyc70I39rtdN4zQdcCDWF9zn9TVFkUTQIG1lCEGEDUEAFUVMXlJkn25mYL0QP2P0M9LW+acp3Q6TR8/PX14+PTw4VPNZTsOt/vtN292v/n25ve/efWrN7c3N9uh78mhGbamarrGJJu21kotSylrQ6QRMrEz113l8Lfp7s/Pw/tjnebScfJwhvlnc13cvQ6D9Xu3lHB5HpbUZElWj5SeY3u/o7/5zWPzKWW7LLPD0IcQPeM67dUXlPvnh99qk5TzNE9qkksWNcdhO+zf3n/77f2v7ra3DHbOx5QKEYlhbm3OuZnVUtmxD15NS6tGVGudcqpNUlNjLrWKWojehTCOo6qeLueUUhNhx13fM/ubm9uh3/R9X1L++OljyTmEzvlghnWdJ0gSa8gY2PsYyBEwGBtGjEOMffwyuUQAzxS966MPPjIzESIbrMnHhiImZmaKDM650HWx3wA6cv0K0lymOeWaahVpjCvFyHLKuUkuAGCIQmjM4IgcIQLaGvBMDCsiBBGBAVDNAJFL9rW0WhlJSm6t1nUDQxbT2oqKIlmtdZrnKaVfLM1qsoBeybxD9E49C2sxxIgKAE6hVqACkl1WDMHvbl7dvnozbreEeD2fUilSWs2l5GwGzoe1u4UEtTQDY8eGAIVVNS0p5VylmhoRqUrNpZZihmvvDggNoaksy+K8d55WKjCCOed83O1/9V2dj/OPf1iOj/OHD8cP79vaef18Gmu1LjOY2DD2XYz7/dZEnKOu80woTZe5znOZp1KySLPWWsqJyACYiT9Po9AUSqk5VxFjDl0Mu93uV9++fnV/t9vfGNDpdPn09Pjw+D7XOUY/jOPhcHN7e397e9fHUNPcSvbOBRdUmalIs1YtBO85OvJMK8GYdaWd1Vpr/fK+EK6dGOec+0URQ5/pJqu9RkFVAQ0EwBRMRWuSeU7n03WZF2nFDJhp6IfgvXfOCBHIMQfHilSlXZ4ep3nyfQxD7zdjN+xoMNcFjSuF2FAVwdSaSAFFBGJkJG8IubVWyyJVDVPJWVSAkF1EjN7R3wEwKKd0eXw8PT58+Pn9+fF9vXyUVtZsZCRcO1O11VRLzlVEUtM5NzFu4koCAdxv43DXT0Uen68pSy35eLqIVeeo5jIE3sRu25M3Q0JgYkeD58GtmTnOucjOrYb82kxNAdQ56oJX7CYN4AhM1eQzz9e+WKx/WcTUWltrBATEBmSKAOgceaLewYABQH0Xr0nmuWSwzvN+099tu86xtWrSTA2J0IVh8KlMTdurV7tX9/ubu9247bljZG/mCSNTjxDAiNiHro/d0I09BQ+MhmYoZIqjDuxlLlRbJ2aZBxZAya2JNMe4ipZbkyZ/hyJiou3gtXenIlyKLYuZ4wNCdK20mleMm2x3277rFEmdq3POVUrJjAzj6GMA9ggteoy9H/aj67q7eVnSROSu1+nTw2MX4zdv3+72277vkVwS2ewOu90hpaWUtJRScwV2cdwEGLZjN0RvyK3WlotTxtYoRu4i7TZtuRHvQCtqI20C/yC6QkRGcCampXKzfQz7rvvZzjmV59N0vixIxoiilmq7pJKLFcW+88GFOHSvdpubu8M3b95883Z3swk3u2G/DwYGLapSP/jt4DqsVoprE9rSo2bVusjpOP/8Mf31p+vHx/J8LPNUN5vu7Zv9br8NnastP3x6/OnnTz8/XD6d8uDrEKproA1BHFr7+1ESAIDz1DE5H8J6piJCtJAzMOWal9LmaU7ztRJCU0rlHOfz0B82/X3wo6NAnWfz2hqjEiEyA3EDEsAmWnNNbbFWQdoKz0QzQvJurZLD0PWHm5tIb4f+rh82rr8x21yv46cL1RRRM0ABLkiFXAHLDZJY0ZeZdK02mb1QCEvR9++vP/xwLLmWkvKSlnnJy+IB9ptNd8vfv7357a/u/vnXr755fdjvxmGIzB6ZcJWLBhARWclf+dpqkbYiC9gRDx7B91M4/HTe/3/e9R+eWqfnVzd6d3OrzX/8cSrgxtttt3c+nli4d+VaTuXj32D5ueOPb+7gP/zTq+3w3fly+fnD43/5w8+SMNDr6DsTKYVSqbm2rxmQhggkWabjUXNnre02293r29//5vf/8//tf357f5+m84eff/rbDz9dzud+s1GAIgKEDBDG7na/HbreOThfns+nS0q5qTFzqE1U53nm4O/v729vDofbu5Tz+Tqdztfj6chMd/f32+32n377zzF2feyPx6MaPB+fffCAMKelahEoxuI755ClVTO9zmd2uOnHjIV7F4avpEtEDN73fRzGvut6z54dI7/kC6uRiBmuIS8GgD52sT8wRalrnlt75sen83GppdZCZqVVMGAQv75jn4N6DRFN0RqYfi5iCAAN10SYVWuMiEiIIYS2GR1xK6srS8QQicW01AymzFhbuVyu13lunwMgnXc3t9v5zT7EIcTgPCJoa83EGIGMfHNWgHKFiuYc9+P27i6Om/Ppkh+ertN1muaU0jzN18u1NQ0+9P2w2237fvDeOe85OF68uy4G1laYrgqYgVhJy/l8qSWHPkYw1YqKCCKtzMvknN/utqpaW1XVJS00jpvbN/L2crl9e/nwYT59uF6+6nsAQExTTtM8Oed3dTMMXYzOOSZUdlpqaotdL/lySqfjkubSpCEqM/lAZkBEXdchoCpIkyWV1qTrhmHY3RzuXt3fffP21f2ru8PhltlPS3p8fnr34W+X69FMxrF/+/r+1d3t3WGPJs+1mMGayEwICA5sVUB1wXdEzrHrO2L2CUsp2dRE5MtqhojM7L1fzSyfD5xonweZgGKGYl+6MWBN0pLPx8v5+fT0+DxPs6giomd/2O+Dj855UdNmxD4Og0e3ZHm+nqanBzWg6LvNtttsN/1hu9/c3Axd5wCQTAEEQQARGQkJseW0VJW5WlHQhQ3IkMwAiDy63mHvHX/lXSECnI/Pf/qP/6+//fk/v//wvpV0GProEa2aVpNqKmACauvteIba5OlYZgm0uR96981hvN242/u70yz/239694cfn98fJ5uyiBxG3vXlbuQ3EXcxMnWhG+P+btP7g0u9M3Q+dOM47p3zVUSqlKotp5auwdlhPxSl+bE8PHz8w8+XrA7AXr9+hYjOuXXG99UrYFZEmqnzvaKrotdkaqn3NTIEgj6GoQ/b/eZ5zh+OUykaHG37cLffbAJbzSYNABWgIrqoGG4VdRzH7TZuty72hj4ZZBMHllASAANh8NvDZuj7SN7lWs/HUypJAZgper9cp/P5PM+zY3CBXEugYoSeCQFFoNSWUk1FyldMDCCh71wMZHWu06VdLpU8SxFx1zktl2udz9N13G437B2QA4bc8pIyVCWDJrs+bMfbO2bUujiPfrPp99t/GoY0X5dlfvz06d3PPzOS90wIKc/IUSm6GN+83Yu28/HpMk+xtmGnN6LMNAwRWptPp6p26IcQwsaHjj07h2um3DhAmmSZS5oq4FcZPCIxm3PrUInRPMXODyLu54fpL++ePzxfcpVXN3EzBgOcU3u+1DnpUOBtP/z2199++83r/XYfg9dW2/U8JcGJdYpMICmrtWXB6UP583k6P10+fbyIyGHXLQ3+9DG/e5ofTtfjeT5fF1MYYv/qbvvr7+43Y/zjX358Pp7/+OePP/749PF5WqrJ8dJakdE7G5pXbYuZ/tIBBwAuhoGYfPDOITlgJqIIqMRZrNaaS01NGoGVgoY11ZRzrkmH7hDj6DD44ME5gjUAl5A5IBuiGNRaa85FpRZpObfatDYzRTRmDs51wS/XJ2lXlestf7Oh2xDHjoDkjE0cKKCgVYKKVsxmoIvBVeAqVsSyWDL4oldoDx+PP/30gGatlbTMUguB3Wzit7fj3c3m+29vf/3N7a/e3hz2o/crTdjUTKSuIGDVVlspJZeSpFUyI0Bk9Ow5hIX2H9rrn1J/nKSktAlzIETcGg/Uv0JFEyjnT8vxeJ1Ejpmun/D0Ry8fDvvpzbj99vbtbjduBtA2Pfysuehu5L53QCAq8vedGCbexmHjOyzigt5udrv93dv773/73e/u9reB/GUp03m6Xqbz5VoUOARkHvzAjhyuzgbMOS9pefj0uCyZY4ix6xFF5DJPXDh2Mfb9ULfrUMmFgIitSUp5M24Ph5v7u/v9fvfp08OHh5/n5WJoRcqSptySYuVIrusZSQyktnme1mFlk2YOyX1VwuNnNc2qACRyhtReiMQOkIAJCNeyxhAh9hBHH4YNMpmaNCL7+PiBLkyCBOi890yOQNciR3R9PhXITKxllSaf23S6+kHB0OTLYEnNGEyKB6JaSikl1SaKSF7ApFUAJYJaS0q5lK9Ncna4O4T5vuPgnSfnAI1aCWqOXHQUI/atue4gO4s5Hoa7t69/9V0chmWZtVlk31xQbo3ZESmo1dYwF8ekZiGIq5DQAFfYgNQmpkZIBB6gzPPx+dha67WR9/F8ciGklJclLyl5H7o+EphI09bm6eI8bzb7YX8XD69g2E/t/ZRy+3wvojov6TotABCC5VxjF1zkLjKjwv+frT97liQ70jwxVT2bLb7eJfbIyEwABXR191STL0OhCIfCoQj5d1OEfCCHIz3TzZ6uKiSARGZGxN19sfUsqsoHu5GZwIy/RIjEQ7i5m9vR5ft+nyoK5JmHczw+jU+P3TRFBXEO6yqoGhG21vB6jUTO+NWaXr/GcqVNs12tdtvt/mK/u7rYbrfrpm1U0fhBUBjLalyJlLryFxe79WZdNS1qaTcbQTC+DnWcpkxmZK1TzHUT6sa1rUMj0zwDTDkv8ixjrf2128Is44MlY/NL6oD8DJd9Zs+CCDAQs5TIwxi7rjudT+f+OA0zi1rjmtoAGOurEGpEBTSWDIiQC/0wzVLGeZj6kTud+t7Xp94/TfsN8aVuV8Z7QAAtwnmpL5Y3uTAsQFAVRVBx2bZbA2gJKwPe6N8qYnQe+x++//6P//zP94cHb9C/ehHWNSErFNFMKM4RAZaihBoCeatDL4oSamxbs638xda/2deNz9+vfB0smaQiHmVl6aKGqxVetRg8TJlFiofiySIZIST0Ar6oU/VZJask4VyYM6acGaYxyc3d9DRgJLbNZrvb7vf7EMLPwt6fL6QwH7r+/nD2lSr6yACgvYVgwRutrGm9FwUTUko5izIAqFrQirC2JAyLGqcAKqh1WLeWQaxH1jJOU8yqOKsKsFWwRNZ7V7fBEpLOJU15HLt+uL3/PM2zsX61XocX18bYXDim5EpCjoYTiggaYWHWUoSzlKV0Kyq/+lbQIFpAKqBziX1iI+dTDtwN8zRMqR9J9Xg6u8rbUIks6ZXMXHKOMcVGxYfKBZdmVOCpaEVUr7c+BHKu60cgyyJFdE5pipFs8PWGfDDWIKuqImAIla1ooTc6gzH38zCnYbBEIpRdJsgloCEDqzX5QHOlzkXhmezfrPoQiZaMdkHWyPh4Th/v++8/H3+6P3djqoO53oS31/Vm4/s5jWN+xGKs8d5fXK73+8aixqk/PB6lzPsWOo+fP+kiXwNS8jgO4+1PT91p4iLGUNtU55H/5WN3f4ppQcsas93Ur64uX7/ch8qeh/Hu6fDp5unHj4fD05iSKKDArFJIbCDJwUnJoH9zHQBgq1WNiGQAF4KJAoIUTuM8jtOUcxEF49ASOU+IEOMQ53k4j1U4rNeXq3rXVGvrwjInBERrTfDBB++sA9BScpyGoTtP3RCHMemcc0y5TPPUS1GV+8Pt7cPnq7uXb07nl+8/XL36IGK5WNTgnTPGkEHAAhDVTCF0SR+HmLL2ihmQfz74c0mP9w93Nzd15VV1HAYDsl+F9y9Xf/jm1ZvXl5vtumkrZ52SZSVYEBwl5ZKYGZFYoeSUMxc1ROpN8QQEosaw3z6W6++OV5/PsHL3VdMXyXc9fjwfAb1zrxFlvu3H80+Hh/s0TdZZ4OzkvFnp69cXL15sDCmX7Kxdt+tXLy4zw9X11Wq9XmAmBsH+ShMTnH2527/dXzgD23rz6t37l6/eXV+/q0Pz+dPHkiKnaZpH56xf4gNZ1s1qtWqauskp3t3eTePorJ3n2HVDLNmKAJmqUSJUhGEcpx9/PJxOp65fbzZVXb969aqqwjiMpZQYIyC0q+r1mysfdPXPnkyJJcU4TnMfc1RSp845S4ZSTIZoNs6SdeSYeSFS/SpABcEYsFaJssCcU2KZWfISLGStJYfWIiE6a7xz1tXFmuD3m9XaW4NsDN/cfZzGLnvjiDbrTV05ZxBESsmZVQCXoFtV5pRyjjHnnDmJMi/5Ac88LEAEAWXxzjbeEiIy5IWIx4BmwYoRKC4Bw8Dwq40lGAPNWtcXaoJaD86goZp0h2ZH1aWvdnW9MbYVCGxr8S2G2tcBEEtKOeZScko5pjhP8zSO8zTnlJ/jJEVEhVNKOU1z7Pp+Gqc4RwEx3jtvvTOcUn84CvMc6xxTjsn5UEQLcyy5rkU444JeK7nvTtZS27Q2BLu50vZy0NBn5C9PgFzK07E7nMftZm1DTS6gtcY7F6xHQAGJMGWJXe6Ow/HYxZRtsIrWFFbSImKDzcLoXFvvrl+s/+H366pe1c3a2krBOGfa2loDXFI/dg9Pj+M4GmM2270x5J2xwSpgFgneXbx6tXvxMkWexzJ0qR/S229SYbEOjRGiPPXn+9vbOCUVQKSqrqu6IvMLvMs8v6wx9KWIUURdSgdc8qYVRFCUctY5yhRzypm1GAvOExUIvt7vL1+8eHV9/Wq7WSMwgJCytehC6IdBg0VHCtIPQ4lDimOvmOZ1cAnhom0bYwxLKinNcwQFv0yHrF0kgp4MAwKBMUtqNJCKh2LkF6AiohoULulw6h+OQx9122CwedNUdbXy3gBAFdx206JK3/cpR0c6xVKHVWRqVh4MTYmGiR8ez+expFJ8cFfb1ht6s6uuV2bd+P3Kbje1CD8eO+06XwYz1rNxZB2RA+oVnoAcWieCKTGnWcp5nvtzN5zG3E3UbF795t/89v3Xv3nx5tVms7bW/t0uCQBizB9vHr77809VtSJbMXo05C0QCWhxRI0P69qvW18QjhOjcSWlPM9lmoqYPA8qDNYWMqNSn9JhHLKUyjPiLEW5RJFJhRGsMcYFs9+v3jYvAJvz+RDn/tyNT0+Hm9tPKZfVevfu/Yevv/2NtmrDx8QyD53Nw8YIKU4i45RiWmjdiEDMUER/no4vcqpMbGu1oQgP85kzhhy2CWkh2xTV4+lMhupVS9bVBim4kUWUp2kIY7/KG+NIEedUxsfOGl01VXBkq3Z39eJdTCJlvbtQY7rzCSjvQ13y9HQY4zg+PT5m1nqzI+dEgGMc49g9Pd1//jwPozOuqupmk6p1MnWo2rppmypUrq7Z2TGlyXn+OfX9C3nZWhQyRehp5v/8/d3/+M8//csPD7dPgwBt6/D1Zfvvv958874ZU7lozfd38Tyb9drXQbvz01/+dHN7czj3Y1vTP3yzN4QfP3WnLimodaaq3TDmn344GDLffHW9r8PTXB5O083jcOzmUJvddvXq9fX7dy8+vH9hDd7dPtw+HO4O3fE0nvtSGJgXXHTJIDPybG2qS8kC8veZo9Y8cyP0SxLGM2AZUJAEDRiLSGQJrfNEqqQlS0x9KUVAmAsLB78y5A3aBWbrhFHEE1lrMfgSXBPcXNVz1cdqKjlm5oISSxqmIcb58elxSqmgyUpiGuv8PM8lF48OgZRR1bAYDN5XG0sZ8eHL2PWXl7DM8zSNo0WpvL3YVJvGv7xcff368nffvnpxtbVVBUSLmIZFVYQllRJziVwE1RTVUhbUmKpSLCGiYTCprIdy+TluPh1s36cNle3Wkr+c2R47HCacZszTlLrzcLg/3H/WMm433ns0nldtvdk2ddOwaiqKpgq1tOvNMM5dPzDgdrOy1iwgkJ8PS+/c66uru6sXaR5aX12sttt6bRSHbnh8eCgprmpvrdnvL0LdTimTMU29auumbdoJSQRjKlw0ppyZc2HGjCn6GBfMTlHuzt1pGFLhi+lyvd4aY4MPJZcY4ziOh8NT2/i6sd35xJwBJOdpnocYx8wZCRE1ToRIKUbnPTZglBa6S3rWbfzqcUbLfNUy4JRKP+dzLGkhgltLWMhaspacokebUh0nBXe5XrvgGwdx3a5XbdvWidQSNrVv6mCtIYAv86tnRuuie+CF+Vo4syzw9KVCUOayrKhSttZumgYQEJhZCgsSgHFARGCFFz/ks6nll+tAdZ5Dnam21pMl52zlzKX1b0zzyjVXoV5b35Cp0AZwTpCWgD8lp15AF8xyKbnknHJMMc0pxhRTyqnkklOeY/RuBBFkBZbMGURk+R7jPM9znObz6fRwb+q6cT6QdS44V1fOmZITEErJJcVR1FmzXm9FBZvWbHa4WkNV4ZeDn1nHOQ9zbleoaApDLlpYWEAQsUCOHIc8dNPQjeM4FRFb2cUzVbIIswr4qtru9hf7NxcXLy8vXtTtxri6CAxjApVVhZymw9P57u7mX//4r33ft6vNZrvb7S+46MP9072k4Mx601xeX6/Wu03btC0aM9pQmiXJiBQxo8apakoW5sV3VkQ5hPBrYsSimCGin51x+iV6DJcA5efomGUaDUiGjLXeh7pCkqZRQ9W62V1fv76+ut7tLlZtswS7EoFx6CvrxnooMZbY9/00TXGOLEIGQbxKUknIhtAo58VXLSyFE7Il7w04tGzBGDSgjKJABpBQBTkqp1/3l6qScj73UzcmJQjBrdvqYrdptxehqhTUW1PXVU6TzlFyEgBCCg69g00lM/PjMCtg4yyAekvr2jpjKkuXa7duqHIYvF1S3EW0pAxpoADWWTIGAcdpejg8jrEomSKQUuGSVKY5xkMXwdb7y3ev3n348PU3X3391e7qwlk3zXOMv8itnp/JAnPkaWZEtipgFEGzPkuSVcGb0oS4Hq31LpKvLDFziTGNU2JT4swixXAiOyid5vx4igy621hVOh3PY9/lNKqwIWctuQAx88XLKzLp9uan0zHPUzqdzvcPtyWX1apv262zPjRVs1oZ56aUSpyb2lmkwlIKK7MlsM6rkDEj/BI1BgqQQYvDsHbrbVi3purz3PUpGmzX3gewSBaHcQY4NHGu6rqq68oarb2CES0pzfM8GG+tc4gwlCjMWcCisdY3a3rxGlRL29ZSipmjAhpDADyP0zyOzKyCOZUyj90wD+fzfHoajofz4RDHiIDOV/V6HdatbarVfrO/3q+bJqkyw5lhzcBfHsnMPA1j7E8CeZzT6Zz+67/++D/8L9//5z9/ujl0sXBd27p2VWXrym5qt67tt683ZOLnk6AjTuMwpZvbux8/Ph7P824Tri5D8O7QpfunaZozWVqv62kuHx/ier36/fpyddH23dlMvNklW/ng3dXF7qu3L1+9uGhq3/fjzf3xx0+Ph/M8zblkEf4ScsFaUpm0eGPTirkowN+d/GC5sC5CAUJLxhAgifXQrFy7qYZBC2tJgEjGueDcym1K4b4fUizjeIxxHqa+qTZ1vQm+MehzMWnG2bpcx6aqqqqqQlg1NW/z3Pc8RxTw3tWbVRK+Pzze3Hz+8YcfxmG8u70pZLJzddvk88kUppwsmiLMnDMn25pN1WqoVDyoI/D0q0QoXCTpZFFhv65+9+HF+zeX15ebzboJ3hUyJTMCLz2ZKBTOmScueYllLUWYc84jQvGWkoTHsT2lVQ/tSTYnWXczTv3ZcsSAFxfX3377tqrapxP/6S/3/+P/+K+fP94bSMLkmr0zq6qGyguRtq2zzhaAKYOQ9WENwak9HPrD7Z9+rKrq97/7zX63W3r0nw2K3vvXL188vX71eHeHaDXJ8en4w0/3c4zCpa3Cpr3arLdX1y+yaDfMMSUQJTDKoIzWeucqAABi4xyKZGGeZwH13lvryLnEPMwdII7TXNeH4IO1lllKKTHO0zTc3Hz885//yJyfHh+ZeZ7jHGMuRUQJgXMZu3EJEVytqfbVulk550vMcZynYfo5MRUABUnJofUiOJfpPKanKUcGFwBRCyckciGgLQVnMJP3Y5zzvgnrgBVZg1BXvgkBcgQtzDEmZfFkHJE1RM9kPWVrXAjeWgNIos8jWERcoozTHIeun/ohjpMxZrPZCCgSIlrjqiwoxogCiHBKUTg/d/S/bi4VMCJNSKhohAJj7ewl+lcYXovbzuIgGRAGnBDn5epBBRS/qHHQonHeVCHASkWFnynVZZGDSuEY0zROwzgMw9APfd8P8zSVnAeAkWgchvv7+2EcUNEFVzXt5fXl26/eb9ZNjrMQcko5Jo7FkDm1T6jCjvx+s3lzvbq+MM79fCmqyIKp6DQX4QgI1pGKZkBNErt8PPT9eRinOZVMztRVFYLTHIUFLDobLvZXb999ePX66/3uVdOswPhUNE0pcSJA5yotseu6v/z5j/+v/+f/4+72/vLq5fuvvv7DH/7RWvP9X747Hh5I88Xl/rd/+P1X3/z23dsPxoRUxjkJO6uGkMQYH6xdGUI0LlQULBhQVOf9z2bLJWbTmOcy5gutQIlQhQyRGrGWSpbCSryIb8ASWsKqrkqJwVUXu+v99mq/vaxDvcQv11WwFhcAG3lwytvLbT/093eP5nhWiQZpu9tcXu93u/Wqqbwjg2qBrLOooZQiXLjkpEKcyRg0hMYAGkVC46z1oFrSlOOvA1MXUX8e5pxL2azxYlNf7q8uX7xtr16aUKUYU5wfhulwGG4+P6aha71B5n4erSFrdkPUj58PLvhvX+/WK3vXz7kUycUarCpUiwVVkKytiEKoojEpNH6zXe0vL6vQMsPN3eH7v3768eZ+mOclZ7owiyiaylT7D7/98H/8P//3v//Dv9lf7HwIhXlMmf9XYxgAMMas2t1+d71eb4Kv0BhFZUlzijzhlDhlyADqqXbW2GCdW359aZpiMVJKEh1BBuUe7GEsD49sXdjtLhHg3PcP92UcirL6IMYIQMrQvvkmdBP/D//THx/uzm1bK5fz6ZxTfjqMm4vrIrpvV7vd/mm16W+xsAI5sha4IKIlaT2t1+sqlMeuN+YX7YUCRFTxZnXRXuf89uGyK+f0BMJcVZVZt4gCklMc83Ee+r5t68uLy2az2axXSpSKlpL6/my9X7984dzWhSCcg1+yE9QGs7/yiOAMCRdjgwLXVQDhrGqNvdjtY9LTkO6fTj99unu8ux2f7nkaDCAnnqZZwYRV45vGtdX6cveyf7nZrAKRzvN0HNa7xF/Ol5zL3ePjw82P57G7eTj9+YfHf/7u4//8v/zp091TZq0au1o5U9Oh6F8PSVFXlWt88/oiJJm7mE8PD/OcrcWqaaCTxD6xX4f27dumbqafPh0ycx2CtXa3T5cX2/dfvXt1vXl8uGs39ev315lVsq2q6upipcDffffTzd3T59vj4TTEmQvzsvxdBIxEIEWGOZGauGMuuATC/7qOsbjEiqA1RAZJpaSSpmmaYsw5L8WBKAgLTBnE+FCF4EQEKcU5pzLkIaU8ZYk1r51tLbgoOINJc5yrUNf1Zru+vNr7sG7aSnIyBZq6vnxxzYjb+ztnbH88Pzw9TeN4PDzYx7aNLcyTLZzUYpGUkqCgp9asRGoCAkUQRCXQXwhRRFgHc7ltXl6uPry5+P23r968uliva2NtTFyEUZbODBGUZWmHkwgTAgigZJSEIkXNzKtz2dzO+8e8Pem2l3oUw/NkYmclJlAVs23q/bb2MB5rrmAyMhKpD+TX6ypo7YqhLBwByvnUE1F1va1We1+thrl0w3A4HM9dB4Ci4IOva79eNdb+kp3kvHPOEmKO6XQ88Xl66kYB2K1X1hpEdc7u9nsk58PQD2OcJilcsoDSqt0g0DBNGpMAFdEoWXKa01yFarVZCwKj5pK7vs+ZY0zeeSJShUUmWwoxM5eMCCpIaGMs05QKyxLmol/cCFpEMueY05yUledMRS3Ar/KSYRmbERpFEIFcZI45K7lAABhTUgVRJKcFjRpkyedhfDw81hhLbeLYA2twvgQvjIAoCqyISoAWiRAERZRVQBf7kbEWkUQBnrsZVFGryFNka8ARERlCAqqdwwbaGiLrWDhlFgY0yAaX+Ne/xRIogRhkQiEiMo3SJsoqpQoQNGWFDAAEiqoI8sw5RSRj4Us+NhEZQ0u4LhqylqwBwICACgoCS0U7zdM4jkPfn8/dNAwpxieA4+NjySXOMcfsnSMgg2iJgnPeGGBRQYPGk0VAVE3zbAhdVe9fvyTzh6++/m3VNM9XosCsC7luNinNOecsWqbKekCey3iYzofh1A8pFyLy3ofgg3OFWUqRLAR2s9pfXr66fvF6tb4iMrFIjPOcSwHwRMZYYwwBxGm6v7398Ycfh27y1n/19kOoqv7YHx+OILGkXNWrqt5cX75p25asQWfUoBKiscaj82i8M+QUYSrTmKZhHv8mYvh5ErPUMeZLEcOgoLTQ10hULWlhIVFTkOgZ6Rvq2hqzbtfXly/2m4u2XqPCNE6gYIwzhkBYiQHFWPOsT68rZ50IIIAhY60jMLRIJgiRkBGRKGcTEyyCNygKKkYJlBVQAIEycgHVNE85/toBBwpQNat3X3+DpLWbd61lNcduGvGEfuKSU4x9Px0P3eNxhJyDMcGYUDmDUESHKT91sWEC69pVvdskQGMVCmsfczdlEC6swScyJoqz3lZtXbcrF4Igjik99dPN4XTzdE6lfIkc4ZxLqM3lZn318v1v/+Efv/3db0VySilOOefy993xc3FpnK+bZr1Zr6sQEECAi5D1RsiALfMs5Fxo26atrHPBIkEpOeeYsyoAFNG55FHMhDBnjRkVjahV1Wku/ZjHUUGwABmjzDBFC7hNDLf3/cePt5t1FSxyKlKYOfbdcehO201rEKrgmrpmiWS9ILJmAmi8MQiNNznzYmn65UtZNO11aBxdCnz1bu6iO4+dMDTB+VVrvY1xOkzjNEykRUrertaOqKpDAZjmbkqRhcnY9XZrbTCuJuOQhKUIF1S1ZIhIAQHR+UYkC6suo1ElFYhzPjwdbz8/3ny6u7+9HR5udJ4q55VlniKQbVkaAUUoTeQpZmOKaB7G7ul0fTGU8txYxpR++nT/x3/5y8f7ux8+P/7l49OPH58+3T5MMdV1qIJd1b4KLgEdZrXHvKnRB0tkrza+jcCcIEHwtmpCu2JnzTQx7Onrr6/ev8fdxXae46ohznHf0nq9vtr57aYO/hXLpXESUzkdc4pFpByOp7/89fPN3bEf0hyLsKjos3SRCGBh2SgZ0zTN1eX15eWl9/7vYwccOUPW2oBEomVK+diNj8fjw213PpU8u5QgzhznUnJfhSAKq3VTtytf8TTO4zTN0zhME/OUUt82F860II6E+nGwJ3TWXMWr1cW2bWvXWs1JxhRCtV6vyFgQSeN0fPGoIt08ljzPwwkgapphitrFPMxxmmzttq+vmgtHNhlTEPNCv1PBn1cwlnDX2m/fbf/Dv/3mq7fXbVt5azJzLHnhihqkRb6ruig3ki4kfETSQpAIBawb4ubH4fVtuu7oYjDbCVsAXNFEBjgHGabhHB/c+e72cxnpfDzKeHyxZ5Qq5WgtrleurowhznE4nbquOz3cpVfx7fvf/Dcv3r41ko6PN7effni6v7u8vH777t2L19cvX1/t1tWHDy+ryi/XUric+vPT+TiM/TinpzkW8hnMdru9vLrcb1bMJcZojXWh8nNxsTDlJJJzRqKry+umbfPNDfddLhJznkpchnQhBDCERMYa42xmppzrClJM5+7Mhau62m62FxdX6/XKWyfM4ziMc05RxyHTkqMNQI6CcwiQqQDr4eFpHue6qqzCyvhd3dpfCKQKqiQLQRUXFzQJO4ObpiYkTrnk4pUdWgwefSBXEcLd41083dxbpFLGaSYyvq5UnUFL5Mxy36IhVSnPMlgBHWY2NjlvCFFKQQBrLAAyS5znsetSnJjT0q0TGSO6Cb6q3ZT55nDOnJQZIFsHzqMzRL/qxhDBIFogAmNNbdxF1ovzGKYSs94ufDBrTHDWEgIskClCssY7JFqGOkhIZJ7LKPP8twU5AM+p28ylgLAlqkNlt8RNCyIW8Kcf/oqE+9321cuXr169Wm82ZKmp693FtqlbSwYB2qrF0Bgy1lkHhICr9Wa/bZrff/X69VfrzeZLESM5lTSlWCUQ5VJ6i8PkvCcjmMfYP/XzEAuTIoWqruvKW+es8wETpnGcoJim2q7XF6FaIdnIpR/nw6mfYyZyzllAdWS2q/Xl7mK/3T3Vj6QgmQmo8fXVxVVlDGEmwvHYPd3cz9+M6/W+2VRsaUiZEXxwIRhviVQQyOdYr9b+VDEsS6WfdSSL8so456w1y2IR0aiILrnKCz/fALNYlQX2y0zO+dqG3fZiu9lu23XlK28dFyYyXDjnXAoqABo1IMhAio6o9t47L6I58zimvpuqMDvjPNVUWTJIDogZTQHCnAszI6ohMoSgKqgLMjUXllLiPKdfMW8AgYx99fbt//X/9n9/vL873n863v348e4v3/3wVxFAIl95770lz6VAgaaqry+323UAlJi47/NYeBZr0GbyFNrtDqoVNKE5ddP9n366uT/GGL0190du6kqNud631XpnquqxL4eu+/xw+uunhz8/dH0x683lilzOKY7j3J/a9fb167evX79ZbddgcLHaqSISwXOg2d/OY/BZreS9CR6lFAV13jvwoQpN5GHIVRXevr5ataGUJDlCTlxKZi1K1gKAFi2sTNZ5h1XlrCEuUym58ACQnCNE64OxFkWoabeb7YvCEMJa+OZ8PFYONlXjvCnMmueHm58Mlul8cChXF9tSGWSOc8qZEXTXVlPKzCnPo6Qki6n2y6WYUGHTuooujP8QzZj8/WPhEUKgqvbNZj2M9vBwH+fEOXnrUNEZG5zjFPvzsR9jVQ/MYm212RfjK0ukoFo4p8QlKRdDWFXBIJTyjGYi4MUEejyc7x5Pn26f7h9PQz/lJCmVNM4Dj6hKgG3r122z3+/X+83+cn+93Tlnxm4Yu+l0dzhdHjk/OxPnOf/5h9v/z//0x//6p+9/un/qxjJHZoCqClWwjTcr7xrnHXkB17NOg+TTtArm7aVbXVVF9OaUTulUVfLiulVetFnt73738tXrq8MxjsOg8Zz7U39siqClA4l/9/Z9qBqA6XA+lnR37p4eHp9ubw8/fT6cu1kBFwnMc89LhIZEJKZsrdltth++/uqf/unf/+43v2nbmv829t0SEiEZMgrIRcc+3d+db+4Oj/f9NAJBmyONfY5jSjnOvpC1orreNN7bdtWQRZE8z3GO58JFFZzNABUIcczKYgDU4av5Tasr61AVZ04yaX0+W2OnaeIizvmqahIIeusdOgsApmRIklOe5zQSWjuFanLrCb3JALNBUYRfB/QEZ15dtUF2X729eHm9FdWFv7RYMWnJSUYEVZbCOQmXL+nJiojMNBX3MNY309XH6fV93g3gRk6pJI9lFwYbz/F4J/NgDXLKp8c7mHUae5B0ubfO1t1QmHNlBVjmOfb9+enx9nQ89t3EjO8/ffbOecpxGtdt8+GrN9/+9jdfvX/7+tXl1b7d1ubV1vnn/F0opRzPp/P5vIxDnrpRrG+2Fz44552odqdzSmWzu/BFj8fjMMyoIipzTipqWeaUmEUXRukzH2hxvBTmYsk6Z5csEgWJKXIpXd8xF9ZSN5Wxpq6b4CsCbJoVKx6OnQimvCQMswp+4a8IFxmGqRQB1pUPbajXdWN/4cQshQuBiBSVnCFHU2aLrsZsyE6Qs+aKyYo1IiSCkiiVKXaicwQ1qqooCkqiCiwikIEEDKMjVs0plsV0rwIAhtB7QwhSMgF4YxFBikhOlEYn2RslQgviiYI1VbBNDUPk2aSi8yDMXAAUSBH170RkCIiARtGAN7TNsonshinHNKUUS8rCQgjOmFBZY51Bh0vOzZcPbJnHLH98GR4sbhtaEp6fJf7MzLKIvp13hNjUlXOuqevNqt3t9u/evVtvNgpCRN5baxfcPjrniNCiIUP4HBvpV629uggvXrz0/nmdxMxjN3SnLlgPTaULvHSCeZYS89xPw7GXrCE0PjjrnHNuKWAV0Bq/2VQXFy92u+um2QDZxGWa4jBN0zQV1rapjME4jTwPAFLXYb/frderFDmnqCrGmOCDNo01wjmfx+F0PHbn0+biItQ2KR+G45wKl5qzjaglpXHo+v40zlPmEmOMKcmvdCREBAoppThJShlAnSPvrHfWmGfzj4ou4zdELWyFESFUod1vr1dNYwBLyhxz4ZJiBlBrEZCEFYQRBUA8Ue1dW4cqWCJgLtM4n069KuaY0rxq28pXi00dVBTAIi4cFnXGGYMCgiqwyLkEtBQpRX8l7F0OzPV6s7+4ePvu3cPN649/3X4PfP5rerz7PE+jr1xd16t2bY0tRSpvFcg639R+jnweu5kpqcGMt6dccLw/DESubi6sJxUTZ+mGpIBzsU0joQpk3efH6dTHYzfcH7pPj939cThH8PVm/+JtUzUpxv54eBJVsjGXaZrGaZznOeVcmJe79otW9H/1QiUDzmMVSIiQyFQByBQp68xjlesqvLlY1bWbJohzKWgJILJQLk5ESHyglbEcXGDyAQ2aVSu5lKtL62xVilMwxgIhiuBm0wZfG6bddr/bbstcGg8vL7erui7Ml+sqdoezA577QOLbelI+H8/9FOeYVKUNzhKOEyNn5SxSftHEERnnKFTWm4aqV6/qfjafbgd+HGfMKLEOFwBNVdXWV8qqakQg5zKPwzCO/fHYj1OZEygR1SnBanfpvQeeOc4pzjnNnJMhaOrKGqNSpBROEZQN6DQMt7d39w/Hh2Pfj0kEjPXkKjVzipMnbFftixfXX3/z4cWrl+tNu1m3m1XNJd/149Mch+NpOP+CV4ipfLo9fvf93b/+5fb+eIblIeSWNbdbqEWoCIpAxtSOizydJmH57etmtwr9rMaS83HdwuUaJaeuPxvIVYAXV/Xb1zstOfVP06E6PYSHw3Bz7A6PRHbrK86lP3WHU3c4nA+fb+9vb0/H8xQjW/vMe0RCNLSo4YCILG3329//7tt//P0/fPjwbr/bAhph+TUb2jIXVQDMojrP0/HY/fTT0+fPh+4US7LW2pJpPM8pFSRhTvf3h2maYtpeXGx2u03dVIb0dOr7bpymgRmMjWgaVZIoKgwCZvB3/ZPtfRWszPH88Khzubt/IMU5xr4bz8OohqrVqtrUF5cXzaoGLnmYJ1tPdVON7VzieRrLQzSrw0aB3OCcqNKXFAIAgKqy33x1uXFHAuj7WUFZSkpJhAHBAAqRIQIg4ZJjApXggnPkTBFxA1d3Q/X//bT5PF2a+mIq+HT82J/u4unJyjSvwOg8nk5NsO+/etFWzdRNkgjJUah2e3SBgMbzsTs9dV13ejocT6dT3x1jnIRlnkbO8x9fvdpf7nfbzT/97/73r15cfPjw8tVluw1QySzjaQW9gedxXy7leDz2Xb8OdWBIh7M6WbfVqq2naerP54e7+xCCrVpr3A8/fSylXF1cWWvnHLuuO3VdzslYS4TO2SCOjARG9mytD9YYY9A5i+StTaV00ymnzJCUdEpjP3bD1LWp9a5qVqumqTf7fd00P/70008//nA4PSVOIpJZETQVBgUD6BTIWBeqxvuqboh+CRqsgvfOMpc4p3ns89iZdLZq7RyMcQ13WdQx2IhQCOeElo1Nxs6IMWtJzCWDCCpZUNQMqEBGnScfPIDMc2RmQiIQwwVJiK0BQM4E6qyxCChFtagT9IrOWouWSnDaWvUGCU2dJNqoJpdUYpGskLkw6N8txhbcESioGIAWsEEkBCbNJfbHp8PxeDqdO2vd9YvrzXbrfYWAKTMihhCstwYJiZZgaoNIhqyxCLAkBuPSrKsu3mBjKHjvvTXGiKS69hcX2+1ms9vtLy8vQlU908ZUnjOBEMksb5hB1SAZJCILSnmO+VcRCiWXw+Ph4ebBG2/J1m0TqmAdpjz3/TCcpxyLJWt9cD4gwQIuZ+Bpnpq6ff/VN7/9wz9ev3wbqjallMo0TnGeo3CxZIO3qOVwfIzDIU0nJd5fbHYX25vPd1McixRWiSXNJVWIrFxKGcfx8elhc7G9uL62Tk7Hu8Ohq+sGl43q+Xhzd1PytG7dPHVdd47zpL8i9lpjmLk79efT+Xg8quh2s9rvd9fXl23rARenvaAuamAMBVGx8q4KqyY0yNh1xzhPvGSGI9V11baVtTbOUaSUXIwplXfrtl61vmms9zCOaZ4p53w+nh6qsF2tVut2vambNtSVs8aBumfvFGJwwRhcPLykIqAKWMiIMeZXzkRQVWYAcdbU++12s7l++eLqzZvdf/0v//l/+H9//vGvfYyzlIw5OFBlmOTzYycIr60XtFEoCQmY81j++a9P5gf56dNdW9X/4d/5ugrOmFXlY4yRZRbMM+Pcn7v+/vbeaBrHvh/nblYxvlltXrx49eGrD6tVOw3jffD90J1O/Xd/+ZMN9Te//aZugnfOO7/wIRRUlqjIv12/AhSk4iyHCkzwxnpXt0SkkphZ1hKcvWjJWPGsCWx2DbNMRadhNJDq1uyuN2HdSlUzmlgYQZ0jZt3vLqZ5lTKlrDnHUlSKvdh5kGwgvLq+ljjm0W9q+vrtu/1qrSIueK+p9E+usCFWRzPoqeuPxzOXQiR1MM6gMjqDqizMP7uTFiq0kEO0zpvdhX2b7W8PY7J3f3o6j2e4uLysgt9udpx5DlPlbWE8n3s5HftxGI7HlDMWBTUsPmViDVVVldjnaUhxzilyTkTQ1MEagyCSucQUpymO3fl4fHx46IYxMqnxvmnIOJYMREDn1ts3r1/9w2+//W/+6d+/ffPSe3KkRkp3Ok8HY7SksZ/Ggfnn80Uez/PDaY4MZF0VHBliYSLwwVlrU+FxznVTjGsuL7cpl/vHcY7C4qfsPh6mmxMDht3GX9UWZDqeUxvy/c3tfu1/9+3r/WWlF/tTa7WY+wMfDsfbw/G//PExMc5zxxLBcD/N94fuPEYWRaIlER0JF3GbImZRJKpXzVcf3v93/93/6XfffE3CKcYl8uhvJjECosqgWUSK5FTSOMVhSPNcSgbLqWScYuIs1hGAypRVFQmQINTOWwdAqpgix8Qlq3HF2KJgNC+BMFYNowM1kIXneX46nebz6Ix11htrlLDergOtjbfNptm/3PvK5TmOZpACWZEIdYKcxzmlOXKVoXJMC1D+V05ea81u05a+QcSUMqCKsoiACCCIqpaFi4cgAiUbg5bEECLixOamD395av94V98NsGqeHM2+3K3khuJnnrphEAThwrVZW9w505CxYJyiy7n0Q386HQ+P94fHx+7wdDydTudujhFVqlA1bb1Zr5va1R63q/DuzcVvv/nq3avLy3218mLLKMMwpoPODchzpfxMa51jaytQUGahrFJinB7mOU7pfDo569xPPwHAx0+fAbRIroIfp6nv++PpJCx10yhoKjOXrMIEQMZYQ8osoKhqCMAgsKYSMyc0CKKZYz92T6cnMrYkAQUXXF3Xb968RcCx7+c488yFFwa8MsuXWBVEMkoUVaPoL6N+UFBVZSlSciopaokektNC8YzGujIteZZWijERURESmIxWxQijsnCeWYSQrEXyxI7YIDukgB4AnElKaowxuLjzxTsyACpMCJUlh2ok0xKCZoksoEUEdkZqB6RaMjiAlcNNZQbFbJAUGExIbJ3DX8kv0DyHB6bEfY5j6bspzrMKz1KiSorz8PBwp0hkiUWs8zml4/GMiPv9rm4ba6y11jtnrTVfBjOgyszCsty0XBhR6XlE46wjQOz7szW4WjVtE5zFFKfCackYLzkjgrXOWGPo+cfhrK+xIWOUNcfUl2MTHJf8fI+xxGHqT/2pOVmyLFoKG0uZ0zyXIkDWO+et9847tBgqX7e1s2TQ7ncXX3/7zfsPX6+3GySM4xBTFhYD2gZrrW+9yfM8dIf+/KAyoZHL6/2b7mXOqV3XxqGSACkaIAJ0VFXOWkrzEOfemsvGYzBiJJZZuMg0zefj4fT0AJoatzWgwRpv7a/lSqqaYj4dz7c3dzc3tyWV7Wb94kWvoldXu7qtvbOGSESLLqlaZMk431SuQtGSUxynaR5YeFGDixbnjfO+5EwowZFzxhq0FhEL2uJrCJFUlSWlqcQ45jgP49h1oW1C24ZQVc62xjpEDZUNXo0xiNYSCqgsggtWNmTobwQ+z457FWNcqCtfV75pjQlzP5H1D0+30zQOSccYRXI3ajfMxyGeJ0aizw/9eUpt0xSwY6Z5mh+epsHnzzcPu3WtJVae6rrSokKGFRCwn/LxaSSeAkURlkzW1uvVZtWuUUWlhDo0m1VoV9pNp9Pp5ubTx48fr19cv3xxVYWgvIR6A+qvMwYBAKzBdRP262q78ZvGo1pD3gaHiLp002y8o8oqkhQUIWHRDJCRjYW6rnYX1au3m/WuUefEICsDMCqLUpY2lzoXSpnn6HPSkkNT18FGKfj6ct3gK05uVeHbF9fbZg2CRWTKsUhsK3JBVTUnJozKkQjNYmxDtCQLSf3vUhQQCdGIGLI+hLDf44cPLzvOn7ruFLs099Xq4vr6RVU3h8cDpzjNeZ7nOfZzHOM8KYCAZRNzmNOY4pSFce6HNHYpzlISiJABTsUQISgnTlMauq47Pp6Oh/P5mHJBV9ebZrPZWW/X23YeL+L5vKn8N+/f/Pbrrz589Xq/W5U88TyWsR/PT8P5qT8duvN5Gkf5hRGlQyxDKoUB0ThrjKFcAAG5qDhwjtrGbddVE3ycOWV21npnmOwp6k9PUxf55W61af3GqbDd1TFy+fzTAzKsLFTv9ruN5zqQbxJU/Yz3h+E4nIYpxTgjcahtZun7FPMSp72IGQGJyBnnHCvklF1wL652v/n2w7/7t//m9Yvrv/75L+euqxvz95oYIUVkAFBSdOwqqGpbN44ZkFQ1CoAiL9JMQ9ZaC6DH45ByFIlVqHLSvst9zyUXrcErICuiBRZjXV2H3a598eLi6mo/DVNfzt0wDl0fQliv/eV+v1qvnXc2eOd91YRmUzHz4ekwRylums3UA0Qypl6FBpxTQwwwAzAAA/wK4qGoalSNAizxboRgjYGltS2FU5aShYsxUAfrnXGYVMzE5rY3/+nG/ssN3j+V8/mmm2+uNukPv21XV3LY0OMDP9x3wrjb7rbblSiK+u3ly6qp+n58PHz+l3/506cffzwcHvvzaZ76UjIRtm17eXX58uXL1+/evH79+s2rl69fXry83lxu/Marh6TTIT0Np6kfx24czjtsrr+M+5akn8I8TTNzsdZk1NPxaZwnLqCKhJiZv//xryWXru8AdJw66wwLAwAREuEcuxhj13cxJgA1xvjgmHEaRyIkREUsLMIZSMgSLaO2XIapu7vHcZyewuNhc3Hqri/2+/Vmc3Gx3+135/405ynlOUZGVCRjiZCWfDscCx/H6U3Xpy9VP4vM8ziNo/VOlBXEGnWBHCqWUQsSF2IFiUhUgVoQyLEIZAhsAzUVAGkEYbaUq0ouV2VVlWCyt+isW/TISEBIhIIoBGroGdBrCLxRp2KVQTjr8s+FAWNhAS1EzBqzzGIghIr8tjbENiuFMQK6um3xy1QJCYxX8iKk3TjdPH46jX3RCtA5Q0i42WxiLrePhxhTzrnv+8LleDj++OMPiPjVV19dXF4469q2vbi4WN48wDJ5ETSgwnGeYowpRkQIISBhSqVwKVyEC6g4S9M0DEPH/Ax6Z2YuhYjqpvI+OGsMWSJqmhYJAS0Sxqnr4l+MiR/yf/vr07LEcj6eci7heLTeW/fMva1D6+ziBnXW2arxm117+eJi1TTIdHlx/c1vv3nx6tp6k/M0D2cuHKp6FYK1i1yJTlOKczcMR8JsDLx8dUEkde2db5p1ICehsQDOGzVomjY0q7U1CpIccGjs+5f7imAc4jxFK5bWjYMr1LJZV6VEzPP1fu+s+6WCyWWc5u48PD0ebz8/DP3gvX+4fxqG8asPb95/9Tbst87ZwhLHmGZOc6ZFEE0UpzHHmbVYSxYplzJN0xTncRx9cMHTatPsmm2oqOSpSBrjOXNfrUiokmK5cM6iIoLzNJWxo4MxdW2qtq7bjQ+1IrVNIMRVW1lPRM4QoAiAgDALGcKfC2VVUFUpHGPkUmCanHXbzeq3v/02EF+/vPjjd//8w48/3d0/nU/dguUELd5Su7olxHlOVbN9+/6bZr1Lhbu+L3OWOD3e3YwndE6MM6vN2haKOQOir6qc8uOQanIfXlZVoMMoxWya3U5Ef/jzn31wl69eosG2XberOcYSY7y/e3i4f7zc70zTIOXlfFiA2PQriW9w7u31Dk9XF1dVFXyORpiARLUUiKp5ZhWylaBRLFJizt0Us4Kt7Hq/+vDuxevXq+srbFoQAlki0SSjMCKIsYIkYkSAuc5MOdclt5yHPOa3e/eyuTLUesOVdZaIJEwxn6bB+tReuc0aDGZD+fGGeQZFx7wIoVgE4TmZ4m8Q90v4mioRoEGtav/u3XVX0nef78bHcTwdfGjfv/86Ff0Lff9we3vqunk4xfkkkoMzzntScQSND7UPKJhjGftp6gfOkZSdswqYSkZQFcixTH3szuPpOA79nKIoGke2qdsX1y+2F1tyCpplHrfBvX9xebltvdXj4fbweNcfn+L5/PR0+Hjz8OOnu4fDYZgG/pXuShFkiWFRWaoHY0gYunN0iO9erL5+u337+koY/vzn+zmXy8v11b5hS6du/unhWHv/33x4//56PQ39MOF1Kx8fuv/85+OPf+26+9Px9y//wz++Jl9NTAOEmVaZZjEdWa2MYzYxcozChZ7TQRQUZJkbW2d8HVghFm6b+psPX/3+t9+8ffnCO3c4n4/H7rVbIZm/IfYa+2xYUlCHWDd2t2/GMZaiLKlwQQLjFJQURPVZM5yLDkN6fDx654VdihKjqCCzSmHRbFBA1FjjDTqDpCC5xCmmlIDIVlW9Wq8vLnbX16vN2hhCQ0jGOANApeRpLuNcZtaMpD4YQkIMlTqnlpJBUWBE/ju9gqqKilnuPlAENSAqAirKWTkqZxAFsqwmiZ0ZC/mZNrfJ/XjkT49x6gbpH3H+3tf4cvXN1WW1rVuHY3c8ZsTNJrQrn3I8HE+httbS4XD89OOPf/nuu9ubz3GeRIq1tF/v9hf7V69evH/39t27N2/fvXp5fXl9sbnYVJuGKkwQuzycx9Nh7IchTmOcYpqqkn8lVETrvfUejCHCdrOKwonT2OWcGNEsuPeUUkoppoioc+qX1tQ6W4UKENKcpmkax6kURiTnvLUGgQV4kWcoYhHhZy/0YvcthQuwDmOfE49mmMepSGbOSCDK63X78tXL1bY9dcfD8XGKEyguj13VJceRh1jGxPwzelxknudpnmpCWFIenUVyKDnGKKrMIKwAbK2GoI0VwpwydrPkokykSJyyMiOpr3RXy+WGayOO1JB+cfwgAIsCq/Kyl1EAACIgXLTFKoJFoYgySxIckyz0aC46TZyyFuAEgM5Xoa5s5Wq2rtpfXLqfbcmAaIyAiQmfDuOf/vLT4zGQrZ2v6qquqlBVNRGu2sZ7F7wnBBUWKYhKCAisnLNKToZzZHYABgFFn+WQzDnO4zgO8zyDQgy+5HI4noZxTClZa7br1lpMcY5pjrFwYVVhFmExxtRNFYJfJj3G2vV6Q2TbIoRW+LHMP67WxJyWK3kW7ljznDmuC2ukWq3XF/v9erNetXXwzhJ6Z6vGrzf1/mK7ahpPbrvZv3p5uWoDaeZUIE9WxKutwHgkRFBOjmNtIQcCIG99U13uVvX1fgfoLq73aIyBfZmDR7aE1roQmroNAVim3jqz80gr36vMpNm7VLm4DgRcV3aeJ1vSrl39LB5nlnGc5nFWQe/qpl7HqXTnMc6JuZSSFxrWer0uLE+Pp3M3piJNvdqt9gg8dKcYJyKwDp13ELXvcz9Mh5yMpXYV5rImEudoGE7393f90Clws65sFUrEkpkLCRdhLUljzCmXophUk6CZUxHtRy8lbtZ1CMF7Z7yzBi0hmufbF/72papcypL5RADW1FXlm7apV02oq1BVoW7MlNI4ppgtCqrGlFSgG5Na9t7Vlc/9RGg2m+3Uw6E7nPu03zhftWSMA6N5BsDKGVAFQmvMxbbdtNa6PKhHY2LOw/Ehe7PdtSY0oaqqqiFzzjmfjufT8VwKIy0hXl9M7fo3yTaGsPV2U7t1ZZyjWJBVFYpgQRRWSbkUkWCtJYxJcpGFrdqs7O6qefF2//JVs9uOVZUBRZdJqhgSBER1FsgqGEACAAZfuBl7d3rAqZTQEARvnUUonDIIEwoClzwbn+sV7l+YYNFad76vUaQfdBx1FuQMKZWUivw9VA0RDZBVsAykCuTs7nL3JsavXl/EIkPuZe5qb9qmOV1czP3Qn499P8xDZ5D9urUVBW+Dt94iasnjkFmncUgpGhDnbFs3iBCnMaVcEse5TGNOGYxrmq1pcG0seR8uLy/eXl9cXO1cQITEY1+B7K1Cf7y77Z5Oj3f3t/35pPPcdf3t4+nx8ambUkx/44D7sshY9HdirVrnhCGnJKLOUlPb7bqeJ5mmMkxpt2URGWLq55QLr73snFx6eZqlEIALKtPj03zs4xJZuwrm8vqC0F9f7b7JVK2aw+PN0HfMMgzp8TCOpagiLbtUIjKgqCCMzpC3hNSwXF9d/pvf/ubDm9dxHh6fptvHx2nKL66WlfCvipjK+y9/FwHYrOtXr3aFeZpSnKMCiANfYUEtqWRGI8Za610DwH0/qyZlo2pUDBlSRVEEkUWtQgIgkof56eYhj2UYxhjndrO+uKovL6+3u/16swHEru+mvp/jwjU3Oaenx2PXD3NOAtis1gAsOXlXjAVryFkREMts6JddsoKIZpGo8oUvv9QuJQMzSCKZyaAJjWCY2E3ZDtlEt5X1u3uA8/wxdQ9mfGjlqVmdry/W23XYbbbemhj58+fjFGW1Dq6C0/Hw+Pjpu3+N0zj0p1PXnbruKMJ1XW221y9eXr95+/bDN19//dW7r969fHmx3rSmomLKAPEQj+dhntIcU0opJxYWVDLG++Cd/5l5Q8Y063a12wTjkMjDekzpNI5xzgwsXHjKAMgipeQ5R0Qh8vg8l0vMSZhjnJdAvgVACaAi8uW8x8IiSwSL8FK/LFFtuWRDBhS4lCFmFXHBAso098H7ULnf/ObrzW5zOB3/0//vf/7p40/zNLMIKpVSYkzGLfoEj1/yxkQkxjjHyXlPZLz3KnXJkmaZYiwsAAZVQYs14oPZtlRRFWeVA3dxKolZiDOjqBq1YNbB7VpbWWNJFt/Z8m2LaiwwJkgZmJWZWRhUEQiYpBhhykpFIQlG1jEqAxCpqsZUsigDi2UNxjZNUzXNOmz3F2/evPU//0YQWauYw7mjm5vpj3+8/3xXjK+qqm7bdtU2bbvyodrvNs75KtRIkHNo6+r6cm+I1puVMSanjAQpTTSo957IwkJmU8gpztMwDn1KqZSCA5zP/cePn4/HY4zJe//yel/XvpRYSimZRRW/INyIzDzahZRirLXODeOoiqupN4aMPqHcpLJVfZ72EVFbh/223V1dttttqJvVZrvfXVxdXb18+fLq+uLycte2tTfkDBoLzkHw1htj0XrrQ+WNRk0JmBssiGrTgCUyEQIpQCXx9X69byClvkhERNVLeY+AjnyjoOlyDSU5KBbAGINoFK0hiI/3GcSktFVZNVYrJ2BUgCETgXd0Op907BvvzZezv5RyPp2nIa7abfV2c7l7dXtz992f/ng6PX386Waep1LKMMxv3r5hge//8uP53FvjLi+vr3aXaMvp9DTPY9PWra99WApWncb+6fGxcGlWoX1s7m8fRPh4fJrGY5GerFu3gZWmkbkwaQXCJXOMMnouvDgJKGbm2M1pPoEOp9DUwYeqadpm1a5X9WZdO4to/q6xfG6U4XnVaABgnqenh/s/fvfHP333r7efP5c8X1zuvffCkZ1etuFqW19dNmPWf/3YFfDTPLLw6TQmVl/XJHI6PGqaDUEjWVxSRSoDEWLxKOqc+mBDVYVggocp6ThNJZcGU2OMlwjil7EcIhWWcYzjFLOoIimQLDFVskTx/HJSinCJU5l7yTUCEyMIEAmgsqGSTU6psBpmayizMJhQu2plt1fh8rJp1mSrgjQgRjJExiA5AoOMCiRklAygBTJoCKhSWntnICWT0pxiEUZBFs45K4uhkiUyDGA5rO360q0a17QoIzg8fP+np7kkA04E+mHqh1kUiH7FISMk68lVAkYQGdQR+bq6vL74N795ZwD/+NNT7p+m40NYX+02q3i5PzzegqpkIVIE9N6v1k21rghzGo/zMGeGWEYiqJuwadv9dqssTw+c4hznaZ65FAh1u399HVbe1+isOpFtXb+9Wq8bixjz1I/dXe6O98PYdd2np+PNuXsYB1bZes+Fz+d5HGIC4PxrpxWYL6OLJbzFWtMEomCyBWvNPOduzCkLWrPZrwv2h6c+x+n6shHF3arZODo/PNzE45B1yNoxPE0wMBxnzg9J3Ml5+4ffyJv3717/4dW/+8evHw7nv/7pT/e3t30/fro7pRTHGQwjorV15arggmfJU9+rCBj0zjdV/fX7t//0j394ebH/r//yX368uf10d2rrrSIuKcK/FDHOGH0OGEFCU/lwsd/ExOfjnOYyTElY1S2DT1XhIgWFrHGqVDgxFy6MhM5a66xxaOxSWaAqqqoIT+P4ePswTxkQXXAXV9u2Xa9W2xDqoppi7Ifx3J36vs85GYMiPI2xsCybCkBFJCQMwQdPzmVrVVQspb/tYL74P0BBC6iiMHJRyczCogWcgANos4Yx08B2KH6U1UTN7Xk+nbrY3cp4F0y/brBtSCXnlAHIWV/XIZVp6M/cnZ8en47HU3c6x2kqJRmDq1W13W6uXly/fv36/ft379+/ff/29esX+8tttQ7odNLUp3SI/XE6n6ZhjIlTEQYFIrIG8TkX45c+DLSIFNTgLTnnSI1BjRMrMzDrM1WYn3GwhRbhCAssBxsgS8kpF2ZVWoI9mWkJ/iVCVWTmL0WMsHApJefMzCKCgMyMhKBQOI1jDyDT1DdNvdvtQ1jvdlsw0LSNc26eZhEGNSKSYqKiokbyL24LVS2cS8kijERIRNYiVMrKSVPJzKDCwGJQuomCA6xIPPpGKqNJcmEEYFRcDlQQ4kxJIUHJheXZZ68iGjN2M81JmaEIFsbnZb2AsIogA7BAUsgFUzaAYI1B0sxQQIqqFFFiZCXr6nblvNvtdvbLJEaExjmcunA80P39/Pnm9PlucqEKIXjvm7pqmna73V5cXjqynBMgCrNBbKoAAFJKSSnnJKI5zs65sHhDl9tYdJqn8+k4DMMyYxMu/TClOOeU+q4zhoKFnCoEVtUlY/eX24YkaylIgEDGGOuKMBdumjp4s6rH3Xr0Vn4+LK012/Xq9curtx++3l+/CE273m4vdleXl5eXV1cXl7uLy03b1pUlglLiJHnSkpCLBYGU5uFcRIqyshhWEjVIC1Vnac0RFUidREkjSCICQ86aCgkzJxY2mgiyU7YgxCSCWTCXMsYEkq2KJUK0uIiYAAnFGLCZ3DSGUrz8EsurojnmkjnUvmpCsPU0Jmt9LjxPsyo771ggZmGBv/7149iPTd0461OcCXyM4xQHskoeyFKKeZzHYehO52OMczd6f3DOPqaUj8eD8LzeULOujLfOOqgRVR3pEhrhU7G1pAJSUASVRUtyFpTLNJeYZrJTPcVNzohS18ZZhwR/K4n5u0caAkDJ+XQ6//DDjz98/9fh/EiE64uVtpVz1ojbrevr/erlRdNF+Xjg86zTHIWzkakyzrp1dF4BiygXKYUBIiKQRqtkJBml5asTIBYsi6eGZxRee9hUVJMWFQRVAFYtC/FcwRjrnCu2iAKooiohGud+VZEpkCiwcFFDDlFQpGRFY2zt0LslLwQNWQreoQNXmdCauiGyOaZ+mqCyvXfFOmdshWgIPKBRNYCkaJQMkCVj0FRoKg1YV1xq0LkgF1azRIpIYbFcJBbNGSApTkV1iiq8uaivrtPNjwcLCtY6h4qGgRR+vRkDACJrjfcKBgBYGYxBa9t29dWbVyXJMOb7QcbD3TwnoWBQ6zqs2lZjNKTNarvabFebNXk7jv0c+5KtgFFPoQ7WhBBsW3sp3FlEKSVNPGdk1zb1y6v97sW2XjuDRYc+CFc863mY59PcPY2P99If/ZTiuT/ePt0fu0/zWJDm1cogDWNSgZW3m7o25pfj0hiyhhaaH7MyC6tYY6o6OGfGJKc+dWNsmvricmWsGbtujunT7ckY461vKhtTOnVpLDqDSaYGG6o6wDk+dFmgb4INoXpxud9eraltvPphFfLZQ46VIVBgUUJy3jbrplq3vqpKyZaAS6maarPaXO+ufvvt1y8udsr5z3/9y59+/JTVe78C+Dt2F1jUL2sYBUAw5Fatu7zA4WXhDHx3yDESAllywUgG5rR0t9bYEGoRSYkB0AfywQRvnSVSRAEpwAC5lGEc7x7ud0Uuri63u+319bX31Tinp9MhzjnmmFIax+F8Os5xhi/2y7pu6rbNXA7HJ5XcNlXTVFUVvE9oAKQQTb8axMDiFHJUWUIEhhJB2CAoQUaMUE1QR/FxDlEpFylg2bRD8Z9u+puPD8fb7+fTj1A636ALW0Dz9PQ0zZOqHcZknRPu//zdX7rzeZyGnBIghhAudxeXV5dv3r569+7t+w/v37999fbV1eW6bmw2PHF30913mkZOkUtKJeVUMpckhWUZjZIUUVUuMaX0M7Uzl/x0OjwcD3hpgjWl8FxykpIhMxRFRSIVzSWxClkgMoBYisQ5cS4KqqBLvLAqI6paVIVS8vJ5MavIUsSAiAr8ImFDQFXNOZHDJlTB2ZLTOHIujjkBqkBJnMZ5jPO8pE+JCCCoakozaNSCeeiEfwXv0i8BfMJcCqvaUKm1hRwP49SNaWZgLQnyXJ563G6kbWzduvWapGjKEjOAYGWD924ciBMISQaJC0l02V2rlkIpmcIESqymgFsGNYSCUECLICmQojGOamsMkbPGGCMIRTWVPDGOLGUJZCJrXbDhFzJsznQ8+ru76niQpycceo1JyOgs8XzqEcB7v9ls+vOwWW9D5Y0xAFBKiWniUhAXkBURIS4phs45a9EYRFSWmNI0jnGeY4wppZyLte71q1eX+8uPH3+a42wICcD7YIjkOcb5OXXvFy4fAhAC6jQMp8PJGFq11duX9s2l36/X7jlmBJy1lxe7b7/+8I//4Z9evXvvqqau27ZZNXUTqqquvEFUzmBMieP5/m46PaXupHGmZT2rJXFJnFWUGCygNXYZKBhAQjKEaEiRRZNoVikAZMij8Uy+CKc0YEkBxaqAgCgx2swaY1TOAdioKIAoFSUGAGBD6MjmInFMdXsFP1OhEZemmbMWTfM0T9PMLIhkjGWWw+FUWA7dIIpPDycpvFmlzXod4+QcIYGCTHGOkru+S3N8Ohz64ZxyjGme5igCXCDOqe97g5zmkJIWts3KhaoOzjmLImzm2YTsLWbWeQBOgKwGirc1l9iP8xQ5F4E020htsqXUqs/e+79VxC7nP/y8oxHRaZrvbh9uPt1S7qva8WolLKwoSGqsIqacc1q6Epzm4o15uUNrsSsSQdfeFfXekSVWmFCBiK1BT6WwUaUkOCQG5W7M/YyzxtrBuvX7dV0FPwhIySmnzOwQrHd1XTVNVdeVsix39ML5qJoazS/ORF87W3lREoUmoGQ5j1MRE9rG22rXeFasW1O16GoxQcmpEGedzt2Y0jnO5AhCsB4sAsii4ACralQRiAQJkFgJWVFTEUWTbMiuZlWGpDmrMDAjkrJoUZozHk4uS5nGhwDycr2tWuedC06CqRi1WWd/TkBnll9844s7CZwDNIRgdIngADJ2f3H5vuCU0Hx6/PHh5hRvwNZCbrNq7OvX3npEuH59tblYhdrP83Q+PHanUYq1oa72GwxGOQsnKRGKGClGsqYRYgzgt1i/bt2LbdusnZS5G46xO52maezOj493U3fC2G8NfbXbhWZ9qNNjnyQNfZ6R0RlTitY+XK7c+1fXP29dCNE68sF456J1CJSzTmNEgN1m450bYnk4z4+nzgV7fbW+3K+7c/v59vGPf/rEUr796spfBKiqRNrHkQlCW12gef1y3c/pfHO+P5Qf2+p623+4vnEyiqmezvOnv97fPBy7YX58mo7nPM1iDdXB7DZNu1u7ULOUxiEzh8q/evHyH3/zb75+/VI43d7f/HR7e3s4NM1OVP4WoQ4AYEspy/miz4U/OWvaprm83MY5j+OUUllyPQwSI2hikVJKQgTvjDF2AV96T1Vt27bxzgGTFMxJUQGtEbIM6Hy4ur568+7N1fUVgrl/OKTEAnkhOBGhiMxxnufJOX+59847F7xEzbmoFGOsc7WlAEpcTJHlhP6bXz1JNpIAjahwURVUtElpYpzZz9pE8TNTFhXhJRYlzdPh8/3Tx5+m4495ugfImUMuRQTRBB9WxtdJbeGbvusOTw9DPxpH7arZbLdXVxevXr18+/b1+6/evn398tXLy6tdu2ttgKTzKc2H+fwYx66kuRReOiERYBVFQPN8/Dyj93IuOf9cSahqzDnmlEEIeMoxlqQIZEkYAcFYI4vRQpiAFmUWCIFkVVo+FSRDpKUUeG6TllznpaRYHpDPsXjPA5jFpv9c5TCbAiAipXDOjLnYnGPKsR+6p8OTIADAdrv13sdFBZCLqEhhjmUcOuHy8xdDhLTMzAmRAGUx5FjjLBKxcCoFGIpqSjoU7YW2gtdr2/jlLQEu1BYjRaWfZJxBiDNIWorvxaampIKFSZUQrZARICU0RIBMmBCEEBEtkn0mwFtrrTPOK7miEFMxWSABVauqakKofAjW2p9Flznr44Pc3EjfSddpKQhgiKyKTMOccjLGzFMqic9tH6pgrTVEpZRpHlKOqoyIzlpj7QK7I0PGPDdEwlJKySnnXEpOzAIIm/Vms1kra9+dqFMEFWYQQwT4M14fYAl5QdRnVDI+iyqmcVRVyeliVRHU/guMAQCstbvtZrq6uLrc7zZrJoOgaZ5LzAAna7FqXbsKu3WtcXy6+XS+vZmfHmQcDeAiDyjAWVhkocCBQTKgKM/WcYNkzAKYZABmziKK6NB4tb4ox9hDSTWp0cUnTkIhK8aUlbPXbJRFhQWyIqsiiAG0aBjMwFRfvpMvBFJCdNYF5x3ZlGSepnHsc04LkMYgllS6bhyTiOI4RgKwROPQ931vDIqyAsSStSRQzimlHJG0qiyiL1lj5Mwp55jijMK9UVASsVKsrhxUWAyqCrMx1vjWMqAh5ARWxRtpqibniKcJxxRzMQZdILLL9/W/wVZZ4r6Ul/AnEuYiPA3j8XgY+9O+0sY5T5xQEVEVM6eYMM625IVcjCJiEPet8c7mXg0IIVZV++LVi6ry3TBwmgywI2MsESMATrF8ehwud6vt9YcG3N2pNzKFAM4FAMOsuSyZ8YqI3pIzgFK0JAQxuIxCOTOX7H5uxpbkZwY9j6UUqNYeiIrAFHmCZHxo2nWoXNVwtZawYnIlSRpjGroxlzKPZNHN+8DFqD7nXwn8zHRdLCSKKABGoYBEBLWu1E0xwM5BHJV5eW+oagqXYVJgfHhyh3O8+3xc+dL8vlKEzBgzgHAsWhQZiBX+xpy0PD9FFsT9sp4vOSOQD/Vuf/nVOxQw4/TTNJ36bhCqwmrXti0XEEAbWgY7p9J1w/Hx4fx4kgJVsyanVbCSDcdp7glZNI1GUoWFKHthXzo7HvCEPFOKY3/7+fz4OJ670/F49/Awj4PX9GazfrvaB99smtSGGfUYk4DG4Fxl/bquXu2a11eX3tkvT2Q01vjgQu1TTsKqqjFmY0hY0RNZnwre3J8J8c1ru123u3XlvH04zX0/oKEplc+HuTIIqM3K7rbB1PbioVo1FoFTkTHxcUz3h87qPGU49/nwNJ1P091xvnuah6koYNuE/ba92K3XF9tQt0QoVzthBtS3L1//299/u2vqz59++O7Hv94cTt2cXJD/TTC0neL4nJz6zGEnKGDJbLdNjOuu71LOIAlAwZIhVMWSJZVJNBvfBBsWTI2xpa7d5cWmqleSfc6U5sV/K3XT7C9fvn3/4R/+8Id37143qyYmBrI+1NOUYkwlx3PnU45THI+nmFn2BEoYc55STDkjKpEhssyUomROWZMIl19s/ACSIZ9kfgLXFAyR/SxuZD+JTYKFDasRQBVRFQIBAcmTnE/583f55ifpH4QnBZwjnE7ny4v95cuvvvrwdbNeff/99//xP/6n+7s7kby72Fy9ePHq1av3799+9dXbD+/fvHp5dblftZ6cjJAe5s+P5+lU5o5LBAABYFSxRmEhd/BSJi7xdAsrn2VZ55Rfqn5CF5ytnFrMWqY0xZKsMxWEWVRFnfcibNgW4VwKAJA11lmozfMIBAkRS2GAWVUXuwoAI+KimiAkQGCUlMs4T8vaWAFQAQ2gAhcep9EYg1+Y7vNE59NpgZm0q9X1yxfXV9fO+dPp9N133/X9IzOnFOM4dsOxfCliFmanc845T2SdL8/hmyVrSSoLlVKUQERn0JR17mQuwNGsnTpFVUksaKQELtYURGeQDCCCQwNEZBDIAJCCsqgiETkwFogAF1CqWihLBKBBY6wjsoII1oGv0FVIdRFjstoClaAN9Wa79XUFloz5RbCQEt/djZ8+daXYaRJjTB2qOrS5FMCBiwpLL1POfPRn77x11hrLwjHOOScVBlRryFrrvEN63iMuwtrFWPsluxW8c0tLsIDxmqYqeV4WUkmFiYiUAJB+2Sgh4JIrAkCAZImauhFWVCxJlxXVz/eYNbTerE5Pfhz6T59+Og3jPCVOwplzyT64/dX2xcuLr968dJqefvrp9Omn+f5epsk750MV2kDeAgGIlMRSCuQCpYCIUUUlQjBA1iDRslXLIqpKYCx4z8oxjcAxI5iliUIDVBU1mVmlJMkIrCAiUhhEFXH5AWNiOhUIL59y/lnfg1UIbdN4u+q7Mcap789T7LmkUC96M4/GFaaisljki/A0T8fjE2BJJQtAURURUBaAqvLOYtsGYWbWFMs0Td2pN5DiNJeUh/NUssaRxyaRM6psrKnrttk0XoN3jmqEAN6qdxqcplyySbbNisUSV17XVfDe4pfE7V8WMKqLGBnAAAAhFdE4zUM/xGkwlK8vVvv9Smub++KNKSJTf+7A1NAyVc75CtGgOKLaVcH7yiFiGRPvtvt/+Mf/w2a9+eP3fz4/fQzyZLAwVchCIMd+/q+n+Ltw+d/+9/+XzXbzH//Tfzzc/oDaRTGQdcg8p5y5gKJFCg6MxvH81AcCNCJSloTYYUybzfXVNVT1cu4z8zDEfpQmhMqF4Hwy1bmkY39uWvPtt6+urldVNdTN7Nc5aT6ep9QPwzDlCHVV5UglERcLbEEtCzCIgiCCs4zEaBQIEAyCgjKRmgoqY6CxaTZDByLcHVWEQOuc4OnACdSvvYj86Z/HTTO+vd55ccdRH88lStclfhxTP8WYC8vPXgsQlZKizJMaJ0iLJViRgCyZ4Krm1SvrQvDOtT98/OP3nw/DiY1Ft2rX2yzaTfNh6ETieD48PdwPT0eJOa7WvnZ15cTbbLCLM3BJU29k3lbIQDJFGR8Of43jZyelTOP4dHw8d900z904H4c55+iUUd1XUS+Cr9r1ajVb61SnmZms3Xq/X69fX26vd9ufixhEJOdcFepVKBxzLDlxZp6n3HejNe7qamcIfvp4PB96ZW6+ff3t16/fvrnavbj8dPt0vL//fH/60ylugv3dh+3rdfX6KjRT+ksAZ7TyaCzVFYHB48SF+dxNc2QVylk/P8WPT/OUpKr99eX2+uXl+mK/2u8323W7apsqiHB3Hl5e7L999zLG8Y8/fv8/f/fd4zgxOSSLaBRA/9Y2ZlPOhESERkmWn5MoEdWV2+6aqxc7UTU09H3OWQuAMD5TU7WIFJFlHE7O26ryTVtVVRVnI7A0wuA8rVerzW6z2q6btnU+iEBKeZ7TNMVpWhLGpnmegSBUYb1eOx9W603dtgqYOFtvlcvyM0kxW5kYWBVESPiXukwEpix9AlFb0M/sJ3FjcbNSERRFVEVQAqEvCUoIxWFa2bkx06CRSxQkmQs8xYf1+ngeLsdkqsKihLher3b79fXLF2/fvX//9s1X7968fnX56nKzWflgGPNQ+sepf4jnh2k6l5RUwTgPSEVEAXWRni7RVkhAC+NmkdfyEkP087UQUai9r60iFxGWhCjOeUtYci6FRaWIyLPipABrxrwcF2TsIj1BNDZQ3a4JyRIWLuN4ZmW7ZA6QRUOWsGppR/uU0vHpME+Tii5Z5yqSMkNZ1uXPUwNCZJZF0nd5dRV8tVlvDNrt+kEZvPfzPN7dfqRfbZOR0FpnrTfGLsMHgJRTTCnmGLkkAjVGRREIFJf/DlQgJ515QftAFlyEvWjUWrKevrwsGkvWorGARgFY5flDWOKKyBBaQ2i++JUMGmssEhVAsU59DbYmqoxayuoYAcl637Q1WVv07xxwyILMJEqAtBhjhVkKIyAiqUIuzDLFGM0SJ0BWQXNZ9EYMoERQhbA2BhWncc4lE30hHumXolyRVqu2bbbbdVU5VVmtGs6x77qSC6qgJeuXXRgtG8Cfd8KgBKKK4KxrmlYE5mFSLlyAufzcJSOidVYR+r7LXfd4PA39lOdlAJirOkzxhSHdr9sA5Xw6nQ+H+ekJUg51w2okeGOQAUQQFIWBY5IYtRRiRUUCMICW0BAiKXNWeS7Z1DkGTjmC5oxAqioKSIgsaFgBUAl1+VBEtGRWZhAhVhWNBfus0zjJzzZ+lr4fDsdzcDJ04+l0GsYulwQo1hrnHJFRskiOED2JJfSeyFDKKaYooGSMBVJQBEOoFitCMCiLq62kPM3j+ejrIOdTF8fCDMocx6mkIgiZMxnTrso6qwJVtYoa64z3FCoySJagXomtGSlakzyVxlpniP5XoxhEtNY5H6wla61znoukuYiCqBiCtnarxidrCYRZWZBc1azXl69fuXpX5fDYjY/3n0CKtYGsK5wLi3Fhd/Xq9//2P+x3u6EU4BHmWPKUhWLmWPIY4zjlqfj99ZuXLy6///jX/nQ/dOMQBUrqkpzHaZ6jqoJynLunh0/f/Qvf3+x8VQNAinGapnmaXrx++/XXvwHY/FyUlQLDZHKhw6S1wCB+QhpQrKvsehXWjYFJoRROmWNMZZ5kGiEnJDDzRH0npzprjsZrVMMkZI2v7MaIM6KYVUQYVNhAJlBjCMkhVGRcKWi9AIoIKmDKejxNfcawSaL8+Kgc9XjOTvXhnG/POYGMmU9THGLKrH9DiVnsl6WIgCAtxjFFBKPoHBlX19U1qtViqJQU/V3X5zLHqaBE1mGepjjMczefD+O5hxwrA40RU2ZMs5WCJac4cY55GjiOmJOkmOI4pzIdH5U5z2mc5vM4DHGeCo+Fx6LMbIB9P/316TQUjYWHnAuoEDBoAUAgUlze+a8mSwhIaIz1FKrFHoQygwgMY6xCNIjWmCJ4OKfvf3w0SHVV7S/2u/VKFUyJZU6nU+oyd5GPXXQPp9MwPzz1w5iIyBOx8GmYf7yXxiMX9s5ut+3OVqsTt0kwuNWqfvX64sWLi2a7qddN04aqcVXwhmhTr17sNm2F8xTHnCJQu9kDWENe+H8jZ9QuAFJc/CvPOFJA1WWV/vr1ZRVcFY6PD/3xMIyFjUUrBECqwIWTxFK0qnxtfQjeOBIoUxqmWTmTD1W72Wz3Tb12iuXx6SmlpAhdN3y+uX98OHZdPw7DnEZErRrfrJqLi8umXa/WG+c9izhvcxrnsctpGIYBgWoUX6kFH2eP7EC/OBTUHMvqNu8Lbwv6rMiCIiAgqGoUEYUAkZAADCIgCtF627z/5islPPVz7gfRInMZzpkLk/W3t58vLvclp+1mdfVP//53v//th6/fv351/WK/3a3ryjCmszz9dB4e0nQuaRTOokpkfV2pgoqWUkpiUVlU7sspU55/FMgsmXPJLPw3WFhjqGldVRvRpKLWqgPyjgpitCbnPEwxlcKFS2HOLMxDGTIlICKyBiyRo/8/Y//VLEmSpQlihygxM6eXBUlarLu6e9gSweIFvx0PkBWIYBeYnZ3Z7pmeri6SlZnBLnNmZkrOOXhQ95uRNb0CuKTczIh7M8KJmumn3/kI83KxvL15NXSDFtntHn/4YZzHiRhAUQGJ0LG/vrn65tuvS8r/8H/8/fsf35WUrCo5BMDGEpkYIQR2i76/2mwB8XF3IMDT8fTsn0EAFO+uX3/55uuvvvrydNr/b//b/7LdbN1Fe4GIzgfvI6Fr7QEth2Oep5yz1MoMAVhMCcg7jA4XHjtP0REjoIEIGpIRKTrw3q9817EnYGxFRgGcB+eRPCA1OomY2yeNSEStr4mb8qB5WtvsBcmh68gFIk+GyGKGRI6998EbIjR67KWfy/PV9er21XacbaqKCCXNKSURA4DgfREBAGYEsCLZKiBy6304p+oaqBp5t72+RuJcPqVcweAla7t1J5Vq7Oj27ubV29suOqlSt0upeTwdc62ERN51MQ59jNEjQKlSa2k1PVVUFAwxeHd7dw0G9+8/MKVGf73cAgygSJ3mVGCXBU7H4zwnFRFTM0EAh+TJOw4EIK2fChSJLPbSL2e/UOKk1cyiQ7KcUxErJgbFUIEAGIwRHCGSqTSdFhiqSKmgIgZAGZFajYUBgSABIFFw3HfmyEyklopJU5JaoApUK2JZQS56IACY5/Sn777/+3/4L8Etapbd/nEcRwNz3jnvELlWAwQ39DF2CBAZh0DL9cIFB4SMzETIxEyeybs2LiHPlx2gppymw6G/vgrPT/vD83Q65mnKqUgpc651SlkMDvt593w87TbL1RBiWKxD9L34WIwNXIjOYwU0Rg0I7qV9HanRopdr3y2WG3Kdc8SOnfO1CoDvh5UPHZE3IxUEcrXW05iruvXdF9/+7V/9d//632xvX58K//4Pf/h//j/+7/lwbxQKuN14mqqtr26//cUvf/uv//Z6s/h0//t8HB4/xnHKh1mfT3k3plTE++DJTePhdPIGVowejjLPyUeccnl4PhxPE6jWMj/c//iP9fl3/wghxGGxJqSUk0l1jH/zr/5t+h/+r5etEhiYKSJ1s/L9wUKqc6XiV/1qsbi+xuViNq3Hk9YduKlYGROeTjHNXAt5iuOJHh5yTenBT8A+WbQwdEveXlEfuSM0K7XU+Vi11sjVefMekbJCVvCGEYgAFQDVSq7j4bh/GMV9ePSeAXoiPhyhpvzDY3q/K9BxVjimMuVaFQDJfqI526i9ubCkJTsDsjGBVWQ0Ekd6d70I/u2i6//5u0//8PsP3314fBxlEjTnU552u9183GMpm7778na7WCyL8x3IwBgJi2gu83zcTYd9nU4ppbnkMhedS81VUs2lTqpJdQbIgBVQmdH03TTSn79fxQgAu5yOJSuhESlgEdnvjz/Mu6/evU85v+AxVVBVAGWPwYcQPHDNc02pHI/TaRy3m9XN3c14HH/3x8fv/rz75++evnx7++rVzXbdf/nq6nrdrbfDfj9+Gsunf/yIvyv7w/THd4enQ1Vy7Hh3mEpOT490vRm+fLN9/fr6iy9uXovScrj9ePh4yC6EL7+4ub3ZDIul865YGvfTw1yWy/Vvvvn17dX6eHg4HJ83N3e/gqGCH0/z7uN9SaUZGuwz8O/a2U3ad0CAiC+Vd87xatlBq0uUkvNUShVBFkQkEbzQAECMqk5E5zkx11yLmAk4IOc8ukDMWKXu94eUigGM43Q8juM4n8b5NI7zfGSHvqO+375588V2cxNiB4CpJCIbxw51YstM6oiDwz5EACKl6BaE/AJi9rV/zAvlaOjUDEDJDFGpSQXOrl8Dw9YHdx7uO88uGDEAMqFDMnKIMI/H02G3Xnbr9fLmX/3Nzc3217/+xZdvbraLuAjoodb5MB4/ToeP6XCf0ygmhoTsiTwQmYFoqS2GVbUFcbSn2k7MZq1mmQidc8G5nyzWLdleQVErADCdlZLGGLwrxaVazuV2LeK1WtasJMSOWEgFVVAkdD05CjEA63RyalItB2JlVqgIYMAU+OrmWkoZFr0PrBVVzrutgV0gOwcfFovF9dUVElWxVEqep/3uWUoNLhDierW6u71dL7ofb263q7XjF+qSnPPsAhKr6llRlXMuRc1ahCIAoIEjHKIbPC0Cem4GNzADBVJDJIe+oxj9EHzPHhuI8UbB2JkLxB7RkeF5loZI5/LsltHLQIzN59b0rwoEDl1AcoSIrQnUkNixY2I6R918XtLh3PX19vWb28NJ5wyOP9SSUxUA8iE6H1lURc3EVJlbK7hdigrO/7RPTKx1QjWYB8zoCAEMrdGL1g/d1c32+vaKUOdp5pGRsVWanCVA7U+zdmdtaZd0rstSUzUiXix6JpoO0busarXSy+nSANRA2ybK6F2wCIBNdACLfrFaLoduCCFiVQWopgJggKZ0SpLqaTZIVsCgJxdMKFeshsWgCioSYAMx50+y+cTQDJrovwntCBuuMUADBiVGcswcyPfqudRShRQFUAC1KaOFAR1T8J9plcr9w9P3P7531INhqXOtlZ0jYEQ2g6qGAMFH3w1MOAReD3697vpF7PqA3OCC846DZ+/IMzqHjgBRyYoK1Ux9tC7AahkO6/Gwn4+H6XhKpzGfRi3FSpKcxpoqFi3T1A2hlmg6hKFX6J2PsYvsDUkZX+ogiAAN7HOTpaqk8TQeD4jKjpwPKjoexjwfEYxcMI4CIVWcs6Qi3TB88e1f/epv/7uv/vpvt1fXKes4TT50T0k/7IpRfTxOpdpyOawWXuVUsnicowcfgqEb53waZxFxjF0IUNOf/vC73dPq8f7jdBqPUx7n7IrNOc/TLKUSomnd757y6WmeTmbQxQUR1VoYrYt+e3Wbc2qvhZBC8F3XhzTMgmOZk6qY474fVtdxuZ5E6/FUnseaJ3BViLKEKVExE6BZ+Djr/bOMYyYYDVxFoD4OWzCCq7X0QRyrFnt+xuNesY5DL3evYte5JJJTzRlqZTEFMvLFRQ2dcwWrKCH5OBjQh/s6ndLzKKOCA8omWaTUKm1i9NPDTKRJGFRBpZ0HxBjMPDpDEvbQdy74VeejQzcd53F/en56SmOBMBQVycUhL1err2/W//rX3w5d9+5xN6vqPM615JKn0+F0PBz3u3H3PM7zrJpzlVQki1arChmwIGYiQTREQzBDrUV2zx0SEyXTUasQAKKoTansc87H9PD8XIp89mLM7MyTs/PoIRirUirTnPLz8yE4d3V9RcCfPh4/PR53p3c/vD98/eXxqzeb13dLF8BH7/twTDpOaZ7G/WE6jFIqokMGVKRiNCot0fmh39ysX395553r+u712/SU2NhdL2IXmcDmnA/H6XAqY7IhLl5dr26vhseHH0qpv/jql6/ehqp4f3//z7lGdIj4l4m9zTUnJZuagTK7EDoiZwqmZqbsYLHkdXKnyaVUc4Y2g2RAUVUxkYozzhMfGKuWEAI5771vs/5aak6ldjXlMo6pChIzoFsut0xdN6xO43Ic96bZB4pdvLm5ubt7G3wU0eN4EJn6wNZx77qh4+Xg+x59NATpaLnurxydN0sxPIk/VudAmC6iX0REozP/QgCoJqqmWpt0YjxMH97ff/r0kFPynqMPfRdXy357ffXq9d2XX3/961/96ssv39xcb7erfuk5wIzpse5343iYxv04HmqdCRV8z0hiIKqlqta52Z+hCWYRRRG0ndHhkgTJ7dTvWIOPXdfTBcSI6Ok0nY5T3/XculwBVQEBow/Yn+cop9MoCnRpXxNVhQoqYEUBRKGW7BCmxbpjN552pZ6MMoQAUauYmqRSjvNwmg6gZqTs2XdOynnwBYyOnWc/xLjshqvt9vb21gxSyYfDQTQfj0+nwzM7H+PArJ8+dqS69GE7LB39xMQQO2KHxCpaas21VhQdYpIAAQAASURBVFUAct6ZmZViUNnQM3Ux9oE9G6FVOe+aiiiE7CLHpe96jp4CEyISIzkgb8DgPLiA6N3Z33t+NCMQEDcXAzQbCKIBsIIBI7mzRhDPApMzRGjSFG3+hPM1472/ur5++/aL9WQpoXd/rLXWKuS8jz6ECEA55/F4AsBhGJgol1JKLVWk/VGmajbN6f7jvXNcyuyctakQYxMLikfH7LfbzXqzWW82iKoAqeQpzYrAwSFTNTpOdS7mqBBRK11yzEDc5jAq2graQ/DL5eDITLWkaPayYSIQ+9itt1fofL9IVQoxOiJGHrp+vdpstpvYxTomQFRAQcomeZwPu/nD8XjIuRAgkAdaeX+z8EsGV4UbdQZACATWcIrBuRsFDM3QFM+95i3lBhjMmkXbO0feG/sCdCq1ZsMKzqB35JCRkcn1IXarni6WUTWbcz2MCVURCcmYXOwGMgWzWqUCEpCSM/ZA6KJbrIfN1bDdLBeLjjx756Jn37y6eFkCWtUqakWtCOIdrZZdDLxd9eOUx2PaH+fdbnx+Pvkn2h/SOFbTWtJptHme+XRyu6fou875vh/61bbvB/ZB2QM6JE8t4hPRGH8av+Z5fP/dP73/4TupMxF23QAIeUqf/vznmkcOEeIq83CY5DhnBd1cbX77r/7NX//dvx6WC1GpkqpmId7N+p++ezTQKaUuuEUodXz/n/79/9wHfv/9H2o69d73Ppa8r3kaHKGPQwxpevr3/+v/HIKrIiVXK5lNJYvkjKaBkJHIcDrljJpTLqWonZqjnhkd0bcPz/VSbUFM/aJfbhYnCDA3EaCCOYdhFQcH9PCwq/OzTUcE9f1gLiZ1ybh6NsKEAqXICfcTWh3BFB2FFDL2oePd6ji4slphLe79vf/uO3v+eLhel//x393e3tKYZJotJTfNWlXAmx/8xsKXX78KewhxCYYFFzXLH/50PI1zUgwLz54lFwOTRlV8NlAytVpzyUmgHY0V1ETUWNE8mpozIxRGZtguO3hzhbk6kf3zw3F3mMts6BYhDJvl63X/N7/48v/23/+rwPgf/tN//tOPH/ePn+aiRa2WlMfT8Xh8fHw+nKYZsELTuaE5rkYZsALVtlzOAhCYDVTqyYABBS0RCCKoFdNTSWoyQt3P+fP5GIIiInAwAPVkAlTIFdAiInL/6YnMtuv1drX61bf8/tPjn358//H3H7/7sLvZ9F/cLa+2fbcIMYbFsBhinEcfQ09dfTrk/XEUxe1qtdkOiyHcbbvNVb9edXdXm9VyseoXvzTv1q8quHm3Ozw/Pj99eD48f/qwP87Y9dfrfvX2drlZ+fcfCvn+3/7q3/XL63E6fff9d3Y65Wnynl/SQc8gptZiZ0Xb+favWs1MqohWsYqosePlMm42Q55hPM0ZDC/kGoCKWAFIyROzqPULXq0H73umwBRroTRb7kE6BCDnQtdHZrdcQskypXwaj4fD4zTtRecQ/Gq1WiwWJpqm+XTYHfe7mmaHthz6zWpYL4cYGTCbVSHtwvqlaNAAskCuRiStPuYcWAGIeI6UNTjHMamez/hSJKcMANvtertZrJbD1dXm1d3t7d3Nzc329au7r7548+rV9fVm0bHZeCzHp7T/OJ+epuNhTlOuWdHYMxGbkZhJNVU1VDNtkzpqUVYIYIbQPHt2fnLEgA5JAYA+S7wytZTqNCUV8l6RkImNwbHrYnTkRKRQ8UjKTC4Ynq1nl00XxExV51Ef7y0d9l2Ioom8dV0Ig8PQunmRgNBB0QJm5Cn0gcgKYSlFRE3Reb9cLrar9Xa5WQ4DItZaPGNw1PxTNQuyM7DT5B4eP3pAKYXxM+87NI7AIXHL2LvMO4idt+ZnUQBQ58ixI2YgUHyZczIDg7GLXVys/NBTdBSIWg4YeSCHQMCenCfy+BmIoeaCAtQ2ywNsm3F7bmdDD5KdcQsiEQIoXUq5ft6ccllmrYiXh6Ebhi4GP5daSy2lEDMiI2IMvuv8mzc3XRfTPM8pz6mUWrV1B1QhwuCJmfyi19Yzdy59NDAk4uB9cB4RiVyIoS8aYu9DF7vExNH7hngAQQENCNG4lT8ggjUdrBC5EGLXhX7Ro0gpNSXXItXhzMQYEPnYhdgDBQDrex9D8M51IXahG4beTEstCgDOg+9Smh8P0/1p/rg/nKpY9AakWRfO1drX3q0cRIegRgDtImymN3jhx4BQ20fSiNEWxthMaKaOZ+aqllJJCqcpSc5c68rRZr1YOIQqgCw+dsue3CUcEjHGEILPs6mpJ0fMRIhStRQFAB/IhzYlDA6Xy+7men13s7heD0Pv0bNj8gSODPGSBSC1ta43QR6YOiKKPnhnQ7dY1rSu6zFvNtN6vRgW/fNzOzwXA1MtNeWSaD4l9rPzc1qOKlFLWCxCGAKy56YzQwKTz5mYkuf7H//4wz/9fS4TmcUYmRnQxudDYCshnLKdynT/fHre7T3DomeGetw/PX38oeQkUj+9+x41xUBVCqJte79ZxFerGHV+/90/Edh8OoDqcuirwHZ3JLQYgvfOMxOAaEapq9jx0CmAGohaqZKKgBqTIwQy0VpTnuc5zTlXEQKrUk/TdDjN9RKvYIjWMrPJAE0UTJuhwEpKWdLu+JznvdPZO4oYzMWpYhYSZTBAsyyUNTg0FEEDJOQixzor2CrseqddXIoNBbb7Ofzx3Xe75/LtV9J1OiUp1YpUZOxWJEquR6duWC+uvF+srqTa06fpadw/PszTOCFwF9k5MiPH6BhjcCH85ExU0FpLzUmAEdkhNkEAWEFKSAbEaiRAhOgcbgeHN4v0ZvXu1SKd9j/uZhAXlpvNan1zs767u7u7vQ1kr683jw+PH+4fng6z+UDE7HzohtD1Lgumqqbm0BArUQUsRgYELZ/DzFoaEUAGEwNSMwQlBABUMLWkKlAR7Fik/lxMQkQ+RAQOnVMxk2wFNEtRHee8P0zH0zT0/c3thh2N8/gIzyJ5f6iq9fk4DYtuMcRV3zmCmqUqeR+6aKeJfHRX18svvrh7c3d1s43rKIvlkjgy99uNB9eH1VU1OoJaPu12LceZh2HxxZsv3766JZ2fHp7+/P179Fe//evl3fXt0zM8dmExBNTK/BIQfQExc5rMzBSYXNdFIieqqiWnLCKIZqgOue+Gqw3lmZ4f8mgZjM/dudZuhlqKcUJA3/W9d6u+X4rvtLqcbRo5DwQQhmF1c3213a68D1W0Fi0VjuPx4aF7fnaH46N3HLwHlaf7hw/v333/w592z/eq82oZuzhsN3e3V1c+uJRPJc0ZEvHQNPxtmaEU1EIWCehSDItwDqVVkarQhmmEl5kCO1r03avb67evrhfL/ub25vXbN19+8eXr1zfXm8Wycx4SyVQfP+3mYznu8nicp7GUVE3MDIMns6omJUtVbdphQmZmZmub3vnEaaYNurfxFhqjEmlLbZFapLwAfwMQsXku01iYOIQQQ4gxcue7IVaqx/0Bag3IHKJ5ENGcitRqVcyMCBwhMRvIafd4gmd2rlv4YduFpafISgBihL4Pw3qzJk9aauh8v+iKQ2SQU2sVFO/DarV69erV3fWtiX589+542JsJgToEJQISICPSUtPT/hGrjPv9aZr0JcPjPJGiplNRa0IlNKA230FSdEBg5NCQxFANCRmDc+TZMVFAF1zsYt+HIXBkDNQgYPNLIzEQN5zUJkV4LiNok4ym9rIzcjVoP3VWwYKBnTVhCHSOFztvZWfg+zJ+raU+PT5/un9w3IPKZr3cbtfHMZ/mrHI4uQmR+i5sN/2XX979zW9/td2u5pTSnOepzHPOKaeUU84qQoQGqGCnab6/f5zGqZHXDIhAqppLORxO4yn3w2a1DLc3sxQCJcl5OSy8d2ZnlsjUWncEIqhILllMiSnEfhiWwxDm0yHP8zTpOOGLFt7MSpVcRRQMiJB9dFfXm+Wid8yOnUMHYKfTYTruBYxi5H5ZT3L//PjpcEqA7GNYLKvCPo/7VONhdBAWV4PrGFTI9HyEPL+lTQmNBEhqztpwrAVZImETIPJo8Jzq85QOZTwVTamCSjQJ193m9fWrTW+lFrFJsFv2eGFifPC3d1ev31w9PY41WwwRQUsutRTLGZ3zPsZ+6Lo4dGER6WY9fHG3fXO7Wg8+BFICM0EtpkWlaBWRUqWKiLWpuSmcwa9jtubo7npYrmx7rTe36fbV+Ph4eLjf7XbHw2Ge59ySJkVUpNRsIkmUtHae1kNkhgZikRFM8fOUGMl5f//9w/e/K7mYVgYN0ferHoy3q2iI90+7p93p/nGnIttVjDr//u//3+9+/5+e7j/llKMPIurS4etrHzx30S+7uOj6oesN4XDcjyVrla7vtpvlcrlExCJyfXUVgi+5MGLoQgjeOwdAanoG90gAgMjILFXnaZ7HNE1pnNMppSmlPKfnp+cff/yhnBM5AABUdUxlP8+niecEYJUQiTGVcb5PSetxOpqWhaeu69RRzXpMmoqWaojmEIPHEii6LjpG0JosT8f0NB1P0uPch25Yrjlcbe6+XT/uyn/949M4P+xlucpAhoQumovUrbpc4zRzOpUMGgb/1S9fS9HD4WFM5fkw1TmthtgHih4J6Bh56MNGbD10Z+78UgRRSlJjZo8+cDsLmZBkVAQgIxbyCGYlUZnWPH+95v/hl69YS/2nHz6OZQh+2fXRdyL28Pi49LTu4/Wik/F0fD641XZYbzZXa7653azWu8fH+/vHw2mcECbQCloAzYAM2IBUCURRCpmCMREZMrUBk6EBGaGRABYgATmd+1hedhhwREMXOXSLVS9VH8pBZ6nO1VpRfVL9+PjEgb96++brr66vlzAet9N8PM75OcF+qu8fHk00BoqeHENoEMYwRrfe9G9erf76V2/+7q9/fbVeTMcdqjwfLOU8DMFK/fj0Q1WNbIqa2eGwvXt7c715/W9++3dXS/7w/o+//+Mf/tf/8Pvl+ovf/Oqj8+HH999/+PjuNO5VWyDWzw7JzlRaVq9zPoTIzGIFtJhlM20jIWKPnUN186TDcByPtWS9hI0ooQJorSoVzQJixxy9D955qZSStMD7NlJnwhA4Riei4qEKGtRxjNPkxglKnh8ePu6ent5//+7djz/8+ON3p9PeOZu3q86HLnSrxdJ5j+iZ0QfvQ4+fnWLaAJ4QEcisrTA1Az07N5o+AVtgEhkggg98fbO9vd2uV4ur69Xt3c3d3e3rV3fb9WLwSHWcD/t0eJgPT/m0z+Mxz6lUqWCNCWYiM6tFqojpeciPLdDAiImBAO2SKAsm5yRbMsAzF2RnGcLn/Jip5VzTXBBJCVSynetGRaqgQe89dIM4rVVylTmnmoqZEZFj9sEFx45ZVcY5FzNzzi/i6nodli5bKVqdgGPfdR15OqVTTblCRQcoCAyKQg6HuFiv1svlMoZOVedp2h8ONefbm6sQXErzaRr3+0NVQ1AzrVJBtRIoo322yIiY2ZFz7Fz7D2KvZOwjILIYEDkwYgQiQTJkxyHErq0i7wOHzsXOxxCj84HPR/Cmu8AGYgiJ2qSz+cQN23NAa59Ge7ehZag0Yqal5rzAnvOk6WfJyT9/iOg4zsfj2EVAtKur9dvXt6Xobn9QtcZ+eWeLwS8XIQbyDsyYwDOSd5Qjd9mX7EUVmnYF0AARKOdaRdHAEbXeqXnK81TSXEsyBI5+WPTLeThpLJvVqovBQM6mJFURyaXO0zxO+Xk/VpGu79mFYbFar2JJx4mKZjYIL2N+Vc05T/M8pxmIxyl59cvUhcCqTqpkzaXmNB/TaZeqGHt1MYPbj+k0Fb9ehWHhuh6KGOUida5VwA/rfrvqQDKYQnOatfbfFgaFRADOzIHx+eaCROwIgbiCt6l+uj+Os8wKSTArNb1eJTdcra9fr7XUlCtOxS/8y7XvHV9tFzc3y5LyaJnIVFSK1CKg4MiFboj94EOInhcR1z1vF2Ez+D4QsVW7NJZIVqlSm++ydVZoMwOcVeFt2TWCjxAQ1HCxrMvVcrlarFf98/Px6el0OIzjmOa55KylmkqRAmXG2mNL4PRntTkQggL8vDpJ0QpB8Q5MUGsFBaY4hPjK9S5kVUkzX6376N0Xd5vrzcLS4XB6OD4+Sq3QDX3ff3m3GfrY97GPvgvBs2f2cyn4jKcRCtYuxNVi4btusViw46vtxjk3zxMYtmwkal0gKgat3pmZiZiBsFadxpSmPOc6p3LKeZrTPM1PD099x2/evnqp6ShVHnfHTw/73SmkDKbZMfZdx+bFKKkUqSqKimJWyYrJ7jhPcy4ihOadc0QIEBwuenQEqnUucpxKSvZ6w6/uFuO88LTK0lWcISytLmbhrNxH73wQiFV8Kbw75B/fz99/mH74MK6v4mqzBkVFHFPORU0EpHikRQzBx5x7U2XAZe/5s89GzVRMVNCwaSixCdKloLKZAzNFEDOQAjWxzJuov3qzzrWc5tw/5RoCgZZ5fn56+j7aq9Uw9N3t1XbZx+BHcs6H2C9WffSbxXC1XG5i9/z0/Jim5zLva5lFzQxVnACqIYiQKRgCsl3OCgBkaAbcDsMILVZh+jyOBEBFa6mlzAjc4UKZXOtSAmTvut6tln5Y0WphtyvbDiTD4nDUD48VJ1b1ZZ+e97lkcSFUo5TrlBPPNUbXL/122y0GCs4YgMF3cVVKOUz5NB260ZdcH552uZR+4cda3j8cpwyd6242q2++vBkinfY/zpmq8v44/td//seH5/un3dPD81OtElxsbPfnF4wLPjSvVQyx6ztEK7UUNDXgCgRI1Dy5yOCnZd1uhvlU97VWk0bGEzXPhaqBc51zERERqwvmI7kAjpldEhnH6flwAB9q3/cAqIpz0uNpnOdjKbPKvNvt/uH/2E1j/vj+0/Pj4/6wy2kCrR+H7vH+4fHxvuTj69e3bXsLsYvd8DJOIiTvQvCB2SGCiKjZJTSlJYYwtZJCVa2CYMIQO//F9evtenl7vb3aLjfLbtGHwVc8fTiMu7R/nPafynyQmqWUkouqKaARULPYZTAxqQqIjY4lRjBtEYIYWsw+gjV3hiqYteA2AClFUYgdm9lFT31ZYTKNU85lvdo65+ZpnlNm792cQaRzfrNYXS02VXSc5sf9fp5nzRVEuxiXi2GzWg59DESAWAAKUw4ee+6WrJDzuBc9H4vFZJzHeRpLyqdxn+pcpGRJqeYu9G/ffHm1ve5jN83T/adP82ks83xztf3Nb36zWS0P++cPnz5J1cM4NoVu1w3EDN6H9fLllEzU0It37NSH2HUx9dVAzXzsAUwUSQqBIYIyCjGygxB9N8QYgwshRN/1PkYKPngOTIzn680QAZma16zFpjTgoqaGqBcaoOX7ETem5XItn+ELAODF5dy0MY2fafjg89a0syy3aqXimO6uN97xajXsDsdW45lSYsY+uvk0/v6f/0DMbbbTJHjnuYoBtvQaYjACIxHLWeec1cABOHah1MUqaYWabPd4BIN5SmjW956R16vYdxHYLryqqerhMB7H0+PT7vvv36vim7evAHlYLLdXa7A8Bszj6fwBXUDMnObj6Xg47qacdrsjEI7Tfjl0wXlCBgUpOaUTaI4MBpyBZ8WpqpC7Wm3jalnQkiR2jsF5r4tl9+r19dvrpclsVhXPzcbQ3Fet/4bAoTJUNCHEFvfnHBm4JK48zvY8GfnFcojG05hTmmQ+ADu/7LvtwkQgFe8m7txFQgbMtFqFzTrsHm0ec8m1JEkpqYpjT3EIi1Ucls55RxBJOi4BC9ss2QSlajN1VbBqZyM4OmRyF+cmEAFd4s7P+MWo6d+NyDkXYhfX68XtaT4cpv3u9Px83O+O+8N4GlOaC5BFT9Fx+yc4DtwGp5eQ0c9CCDfbq9dfful8MMCcZmLoFx2x3wht53yz6XN57bzru2696BxjLUW1wjdvicg5H7tuGBZDP/TDQESlFlUFxFrL6vbqsD/unvaE1PXDerv56qtFjNExG1gpuVQppaqdtcamrkFks4pGoKIqCDD00HVhrbGqFqm5SC2Svrr67V+9fvvNb9brRXstOdcfPzx99/2nXJdZsOSD97jdrJebdb9Yh+BD7acpTbtpznVBUkSenw6n0ygqROC9l6rH44xgm1Xo+xAjiunplIj8ab6ay3aW22nsfnj39Onx2Xf9MtxwD9zH5dXKueF4DM+7+sP3h9//8f4f/vHdDx8PuwS//m00id67NMs8F8cMjrQmqzDEhQ+dd9x5x2pDIP5pv0QgZ8StJrdANgQQJUSEirWYOtMiQghCUlSSpBNavlqF33zzyg3rVx9P//zhcL87Ph4f5z3LaWVfvvmbX/3q7ds3X33xNoFP3LmuQ3I+9MvVym+2X63X+6f7H+/fv9893Z/0MOeUVYqhAgAoACgwAaKhKQGdjQJ0UV6iKqKJAUCq8hJ6o2o119P+9Pj8MQZakmfn05hzLkUkRH51F794vfjqi+2XV8MXfe4gjZbm4/x0TAdwV1/d9q9V0CDjL95+5Yjeffzw8On+0+NuWLjffPF2e92JzO/fvTs85ruru6+/fht7N5X9dDqkUz7tp93uOKY5s00q+1P1HL7YXOvNBuA4rG7ffPXbZNtMN39+9/5/+ff/L1Xr+kXsF13XLZcbZvd5HAkAuKEbEInYe++dc4YV1RCVGRiJwCEwNJo94GIRttthOpV5PpSiBgiAxm2spCJVak0pHfYiwl2PPjjH0bkmQD4eT4CYqp5iCGZQip3Gcjgen3cPp9NzmvfjeDod59N+3u2P8zTXWlSqSc2lgGk/+P1hu1z5KjmEGHxX62yfa68M1ExVzUhUtTnJ4GyKADw3zTiH7GPwHDu3WvY3V+vtZtgM/dBx56qTWVPKp/1x9zDuH9O4lzo3XuHM2RP/dM9RMzXTMwVwJn9URQQB2dnFEIUKoIDaTBjEYNZEG0yICkKGn8/5EIHI+TAshlZZ2+K8HCFIMdGuD579nMucc9UqJj7y4PtXNzfrxcK3pFgEH2K3XRXPTyUVrF2HVWDOXCtWa9BKUtGSZskV1WIM0fneh8F3i2H19RdfrBYrKWU6niwn0rocupvr7Zu7281qFZjmeY4xnNJsYAoKBMZQ2Srb55ZxJCZ25JwH6IdFVSMfFSCEYGbEU6mljXnbiR3ZUQyu60NjXmIMfe9CwEblYPPsnt+oy7QCXzL4G8nROvR+eg7nsRZiWwwALfTsbBnDn52F/8Uc1Zc1ZoYG4LzbbJb90G83qzGleUxzyiklNXWeAazWUmtVgVbvpHCRvbSCD2AANKXj4VRSERGpWgEEoEquUk+n6XiY9s/Heay1lt3uIc8HgNxFSsExAQd23jlmx8TMZuBDKKK7wykXXa5W85xTKmAwDL2HdXI8LBYvdWPO0Xo9XF0tF4sARD7gnNLDw/z4iNwqtxVUqtSZyRZ9QMVxn56O01wE2Q+L1WK9maSIQvCTAQUPQx+22+XNzbpWJ1IUrRnQWqkOASMzIzEJWDUtANAaK8mRCBaFJJqKAvBysWHXjWGepzEHWq4Xw3rZrVemFVLOTN2yexH2OsdX29WbV1d5msDs+XFKU6pSABBD9MMqLtaxH4iMrHoUD4lstorV1FDOFC1Ycyt+pgpv2qnmd7twL9AsAqDQFCPGDN5bjHFY9KtlWa/TdrPYbBa73eL5eb8/jKfTbKaNZl8OQx9jDM45YmqS58/XKRDzsFyur6597AwgpclMvGMi6owWXdiuByQKIQTvHHOVOp5OItUxMzvnOMTY9UPshtgNgIg51VIVlMl67BGwDbhjjD74ro9d1xESgIUu1CrznGsTEoCZaK2iZtZKl1DNBLBxq0TsPJAXCmSZteOwHvjV9Spc4hVyqZ8edj98eCICNap1DB6JnOv6pQ/DerP2PqXy5PZpLoBOtCJxCJEIHRM5V4rmQmoKLmCIYQjM6GO5uupWm9fsXx1Pi1OSd+/3z097dq5bLNFZqrw/cM7y6eP044/jH//w8M9/+Pi733+4343Fuc3V8/sf7vvOT8cJ1frgDYtM4zzJPHWOcdV71CGP4yo691JrRUS+4zCYZVBREQHldnoDQq2g1ZRB0KCalipZSjItXQyv4tCtb/rNBO4Dgn74dJyO6ZOOy8hfv33tfHj16nYGfk5a0INZrSoBex8X19t1hCHIzdI9HU6707Q/5HEquWqqOolmUGwpS2ZtQm4Azb2DqAZAiNROcPCzFA8RTVPaPx2ZbNOvFoshkG567sgNA729im9vurvrcL0NW8+uWhUjX5W8gfMhuI5ubjfLuPrv/+7f9aH/45+/+93v/vk0/aPz9vr15u5uPY/jx4/P82n/43o3V9lcLaa8P+yf7t89pcPkEKrKyepklittl7we4nrZMZlz7urqrkg8pXIY97/7wz8+PO4Wq6ur67tXd6+Xw/q/iYkBt1ls1ayKAICZqNWL3RqJiNGBUSnSlCSx46ur5TzXw2FMKYugATGQIqhKrfPp9JzLaf9ssaPFklarYbvd+oGk0jyL6ThN4XnnACDNdRzTbjfudvvd/jHnkZ3WUk6HOSdt/V7M3jkPoDFw7PoQovcEWsbjfERjohC51rP3XVVTLuOcojfH1OY66NjMVFREVQQJvHdD320366vt8mq9XK/iMrLDqnlf96dDPmmeLac8T9N4zGU2U2sQCM8J9o1daXyPkiGqoamZSKlngaapGhNrVUJWbPGApHa+IQIRIblWY08mJUsL7718PsS8WC1X281yvVqv14tu4Z0DlTLP02GHqmhWSh7naT8en6ejQL26Xn519+qvf/HLLoSPn+73h9Mksozh+usvxdPT938o87SA6Jmqd1jdKauIKlQtVsbEgMthsQhddCEwO6S+G9arNQHO+2PXheXNFhBDjDfX14vgWYTU0IAcokMlK1bGMmq13elwnPbyM01Mi2txxLxYLsmHvkorIxWpPsZSapM8N1c3MvmmwQwuOBe8896R41YvaEBodMYvdP7ygjyae719+I1eNbu4ks0QCM9kCxienclw3kngvMGf0eS/gGOsuYCIkYP3npkWxDfUDNrwwty0AJ+WkJvmPKc8zmWc0zi1fJyUUsm5llJLlpTyNCc0c4RwzjkAEz0dx/tPDwSu74bTePjTH38/z4f1sl+thv3qNCyHYRH7vuv7fhi62IV+AavVql8MijRL2R+np8fnD+8/DAEWPQ59Hx0vlwu+bDB93/36N9/0nXTDogpsNstP94/v3r1/etrnlLXYeYIC1bEFR1ptPJXjYZ5K7ZeLblguV+vOKiGMh4MoREdddEMf+j7kVHLVarWVGpu17FMjQAXLYKpQCpopkhIaYZ2zPO/T+/vpeJiAhvWwHIb11KecFlr616/65fYqrlYqCYK3EFabhXNnZ2Lw7tXd9S++/TLG0MXuD/XHaRoNBSj4ftGt1v16Hfsg6QgykyqpaTmV3FhRYCLHZ9czIhG00SSefVV4Pt8C4CWV6qdMrXZuMjVFZRIG8o763q3W/fXN8nBYHw7j8TjWUp1z/RDWq34YuhjaOYNaSgL+DPGTC9HHDtmbKTuSWspcCMCxi32/Wa2JXclzlZpLKSWXkuaUS84I2HU+xMCn6Lx3HIiYGi8tF68N0XK1JGJkmlNK98n50Pd9jJG9IyIfO6dnbl2oqhUSy1BSKaYVDNFATYjRczHTnOc0z9Ocaq4EuljevqR1l6qPu9PHh0MMwblIaIh4OpVuqQBhub65vrsj5t3r4/Pj8+Pjk5xOt7fXzvlhWATnDVHUsoiCEVnswmrR9SEw8vW2/+W3V8vBPz7NHz89f3r/dDqNXWfeBwP/tKvf/eH5w7vTH/94+uHH0/2nw9NuOo6zKjLj8Wn3H/8///sihvHxuWf0PmQsu0N9msZa8vXV6tXt9arjq8GtO/8CYpDY90tdbMjNmmbIk4mck0tR0ZRNQLNKRRCzJFqSVFAl0K7jrluF5drFuBiCg/TpPuX5dH//8bsf/rzdXm2v1xqie9g/jzmXfMjldMBloLcLv10Ov1q8pXIlKR0O48fHw/1+fDylhzHdT+mUc6lVWxKiqQAIgBgCnM/PBOAAKsDSIb8sMzNTLVWnUaSWH7vnuzu9u+oW1wtIOXrcLNySDPKcS9Bhq6GrpcBwWG1Q55J2iRxfLde/+PoX/9P/9H+5u3717v27//D2P+Yyqx5+/e2bzWb4/e/r/dPj/ccj8cP98Xl7ve46Px2O3/3+B6/1r7692y67KJQMKvLrV1d//dtffPuLb6LvrUAX/HYZb7fxZhOHzn2Q/Onp0zEnMQs+3K6v8efzV+c4iNYqIipWTaFKNVVspTCOIyjW2mpfIATeboeU6/PzIeUyT2LFjAAEDFQ0z/MxJQJTzzge3XwqknFeVO9PzJ7I4TkOX9OUx3He78fj6XQa96olRgaDPFUA9nHwrgkiOHheLLqbq83r17eb9TbGOI2nNJ9SOi0WqxcQYwBVtYq6Zqc9W5uxoTHn2FEI0S2Gbr0arrerq1W/XsTem7O5psN0ekinQ02j5qSllFxSyWpK3p1H1kgtuOy8MZ/TjwwZEY0uPfRnEy2AGlYxaxSLoRoZIBKBoV14AQNV0SpSav2M7QNEdMGHLoYuxC72QxecB5XJ5HSwkpOKqtqUS8pJpQbmm836ze3V3dXaFN6bzrVkAMeYHZF3fdc5qKvgSAk4GppgzQakhADRhbYzE3JgP3TdInQheAa1UkmKB2XP5Nh3HsmOx91EPOdZUSkwd84IIKA5E5WiuUr5mZW/FfUiAYL3wYjd2QxEtVYArFUaCGgl3MgUvAuBnHfnUZRz2KobXoDRTx/BeWIBbUb9YoS5/O7Za/8ZFMGf/hC4fPP/lHr5/GFmpWoqQk4IGZCI0HvvvWPHrSD+7OwTqbXWWnLOc8rTlMc5j+M0TvM0zvOU5pRTzinn1sQtYrVKFa3tWjQbuoGgpvlgmsbTMc2HnMdSKCd3IqwqpeQ0p3nOOadaS6mqKt67xdBXUTMdx9PDw6fNkt31kjp3oRvOryVG//bNjacTOi8V1psesb579+Nut3t+Oua5OHKOyTtzDh2TVp2mkmYtYgMyIgbvl93AhMfd82yJWUR1mvNhSrUWaQEDdrGjitZc5+mUi4iCGoghIjrnAUxKHqf0vJ8ed/P+kEMfQNQhdt5F7ghpvenYR0FWZPDqCXz3U04MM68Wi1e3NzEET67mqlb1o2RhF9okkxwpQo6UF5H7gARiWqElMDGT8y83KGpu/DNHd6kdOy+AC/6FMyF3ZmJRFdWMGBE8RXN9HxeLbrXsx+3ydJpLrQToHMfIzjX6qSFyIHp5HQDNZJ/nPB6BnCEYSJubmmnR4rxnZuedVlQFYGJz7D1XLVhVrFQ1KJYLnvlP9syIcA7QP7vdOuecmInVkquY+OC9eTIFYmYCRkIT0WymbBDIkAxMKqARATICM3pHCOac8y44l0spVmsM3Ut2l5rNxaasREYOHQcASEn2+/nh8eiGA8dF7LqqpghFK6D1fVwt17c3d9F3c85VVVtwMgg77mPsXIjM61XvwqaIHo7z8VhBLTjqAprow32Sefz0bvf+x/0PP5zun8bxNOUqwVNkR51zUO/f/TgGZ3kaHDpGUjfHbhY5jrNjaBKV3nMf3UvBOBH5fgGrjQ+xOq4moFWlCiihA23JqkIiAAImZ9uLqWr1oDEgx874BglKHoeI0zgy0/7wqFZ9twgOhoBT0mmaD2OeUzkOsXPXfdetgr/ixRJVcn6+Od0fxk/H6dMxfRzn/ZRKzlKK1lpFi2gxqGh61iycV5Bk+PZ61fmLk9esVgGAvhucw5ub7avbxes19qCJCA0IWIRKtWJU/SJ0q4XDK+pfJeDnw1zVqvQx3l1tvnz79ptvfvXm7VsO/t2HPx8PH+5uboJzjg5gJ4DjnOePD4+HaYoxjsfx+/ePC2dvXy+2V8PdZuv7FXWL12/e/OJXf3V7d4fIpzGryv6wH8dTzknUiugp5QruOE8p/2R/eXm4nLKYFCligoIKqsKXiBUfXA+GolilIAkR+XWooofdqpb6aKOoGFBLZtNqpQoYgmIBN8902qfd42OMu9AhMwF4M0ZDEctnY2qtUkQKoFhVYnYcvO9CN4QQveeuC6vl8tXt1dfffPnF65tX10tmYXQ5Tw+H593+4SWTAOGcjX8+e6iAqRk4x32Mq9VwtVltN8v1ZrnqQ+/MWdb8lI774+k5z4ecT1rr5U8CcMwYmYC9QzQVBUVENkO99D4TIzAat/JFRCXSFxe3qUFWwCxERsBwpiPONhlVKbWqVaml1lJyTeUnJuYcVwYGiLXWx6cnx9SFkNO0H4/Hw0FEidC7iKAL9qsQv1isty6m5/1pmp8fHg9zwtVw0vzdh/fLxeJ6selW66ilTCNAUQBDSdzoNfaLtUg9HY5pSsmnOabaZ0dYcwIVbwSqpRZFwOz28/Fp9xhCcCFkrNg5hxERXAyh71hql7z3n2mvLoSJnqPjzgF/0PylzCEEZgFEPeM+ZEfRsffsGjjw3nmPzKLnyoyXTQUBTBFAz15eRG4tiC1GoelbXpy8L2Dn/ItWctAGjQZNjt3O1u0Xbb71ubJPbZrS4ThWseSrYyIi7xqCwdYm6fiMZ4L3XfSw7BvPawpqKmJStVZtyz/XlEstRWqppWqpNedcSs6p1laha2J66jv55psb1SvHhC162Oo0yjyNtNs7RyF6AExFyMrdzXroAiFKnfe7h4cHDFxz8jXnYXuQS1Q/M21WwUqnwAZ8hUOt0z/+V1dyeX4+jsc5ON+gZAgcvDO1OZVSTdGp2TwnFV2vV30fjsfnZ8hWxv1p/u7d/ThP5IAJgIGYnGM1zFmfH8cf/vzheXeqFZCDj0PX9UPfm+rheDiNp3Gcp1yL4sLC/vkZAclh8BQ79tGnqsexqBWECigKP/WnICIzLRb90Pd97IJ3fe8B9HE3Malq0XwyxGjjOujtenG1GUJw545K51wIzgem0KqwAfgCdNs4qQFsUNBzg6oZQnORNxtxK9FBAzIEa9FGpBzYO98Pi/WmqqiKGKiBwHmxYTORENbPJDEgJR8e3j+9+wOw59iFbhFi70NUlXE81eMJQ+xiUBVyrut6A3AhhVj6UmtLYpMqOYEKkgJJJUCH6JwhA5hoFU1s2uR6np2PYeh9CA4J0MRMCMl5zwS1oGPyIcYYcwwiFUSZXeyiD84TOGbm2LKuSy5pmhZXr0PsLp8Lset8HELf993gPYBJmvPT0+FU//TDx8f1H76LfURCUyk1e+IQKAZ3vdmE0D/tdlOeiUEJDBgM57lkzWQ2T1NVjYFrltB1r165WpPJNJ12//ynj/vHw2lfxlEMcL2Oy1UzUBCycyEE7yMn0tw7RQMzocB8czMN3X73lErdHw5DjAjgP+tNI2Lf9W65hr6v3s1Sc80lJ1Ul9tjMztqE4NY624jZatGaax45RYy4WfZff3FLbF+8vZnn6bA/PD89PX56Z+wVvZlnK2XcHR/3j4cpLpbdasndYGq+d1dLf7dZffHqOpW6m/Nuqk9JTlNK81TSlNOcU0lVsmhqaZukiNqYGBb721++XfXh5T6WU2F2X3715vXr7d/+7Ve3K9SnH5/vH++neSwcLa6CvwJfXSgx+s1yezesNgvU2rE+H+ZUBVFZ1URj7NarTbH6/bs/fnz3p+hjTbXj7fXK+hhyzaKQinzaPx+Op1OuQPjxcLh+dfPLr7798uu/Xl19eXV1e3O98g6m8fD8vPv46en+8eHj44fv3t0/H3KpbMDMnfMde4+If9H87Bp8qVLFBK1l27Y2FjUBVUVkQmLipikhT8tluLldpVzGKackooaoRKjUokoAjVWpFMmzTVNyzlxUJjDzCAzWkkzPVqHGxBOAqjFhiLHr+q4fYuxCcKvV4u7u5ss3r7/55svr7TKwqKQQuq4bujgE153TJs6HmOahVUQO3jGzd9x1cb3sNuvhar1YL/tlHyIb1UnTvpwe5+PTfHzOaVQTACTnEdkafGBHjOwYzUCqnb0rpO0YZq2ghl7iLwwVzkLGNr9AbboXIDi/7S+uXVU1UWk2znquQfqZ4rrNP8RkzjlNM5gNMVgtKmKmqWZCdMgLCleL7fWw+Gp5tfJdnst8OKVpTlLIQi3z9PQkqtd3b25Xi4FsPhzmYz5owWqgRkyew7Docy2H42kuWRWqSq2ZVPM0omrPnghFTRlA2TKBmg9+WC4EIaFCIGJm79ATYktc5b9gyJuOGADZubaqzqqDpnpWAUBRI6oXEOOCZ+ccOUZ2SExErU0HkRpOuUx91M7sFtEZgv78nfz/8TAAvRAUDeNfYm/hc+bivMByrSlnIjaFgkhEmUvzj7PjdiYNwQfnnHdEzE25ysDUgpfPZbymesYzVWqtUrU2Tq6UUnLOdZ7zPE0551IrqBJdAUJriDyPR9XalABA0RQRu0C8WXQhpLmUWmL0wUOteZ4mrSXn+Wqc5JLh0dKzPOciBOxDCIueo2dEnOd6POboVaKCOeec85HO7nfRaqWWeRrTNIKqd9z1MXRd1XSY6w+fdvtpDtE73wqsOPhohvMs95+Ov//+4eFhX6uRC4vlerFYLoZsZrvdbpzGXLKYsQuhK6mkUuaG/S3Z7pg/3UPKwXl1TpnrkPPnZzJCDI0SYEYTtJrT3L1/OmU2nWRGJF7HeruKV6tuuehag3qr4nQ+Oh/O3RRAFwALn3F1rQG+gd0X431LJwRAbIIuAzNga0vRFBA8gCK2Y4vUKlKrFFVRMBBUxRaS/rnbQkVOh/3++ZF88N1gimhIwRRMpIrA6XCQHLznjjvfrg7A4IMZSNVSS025EplUJmREQ0UmdE6JTFsReqkvwUJgaZJpnJmdbyobRLRG/UCthkwhdIiIoIRmBHTOvgZRRSLHTOykKrJy8Ox/YsiIKIQuxiHG4INjh1KhiKY5W07ueNztdhycoRKj976PMZfE5Jb9yvv4tNuP0ylrrqaArejGtKpJ7bt493hz9+rqzZvN1d2GiObx9Pjx4/Fh93w/Pd+PUgmBh86xj+w6JDQlxFZDQVbFRBBUa60lIfFqteg6b1q1pKqYxRg9snu5l4jamApWXYTIvdbjoRA3CaZrFduqqEgKgApiBOjZKbOZSEklTcTed2GziuRub2/WOafnx6fvvT08Po9zTlLBKtWC5QjlBHWq1Z1KeZxyPc560pA9LcNm8IvoujjcbbmSLyI1TSVNaZ5KLlm0qCUDARUURCMEb+qkvv32dtn59lq8c9dXV9989eVqNdzeLV/frVlPD3N9POV9hozO+R7DQI6BXCVAz+vNahm7Mp4C1e3iMI55rLDw5Nl57xexe327/rvffHHdTZCOp5rvNnHZX3PcGMg8y/N+enf/3HV+vekXQ3zz9ubN17/55pd/94tf/nZz9TZEJ+VwGp8fdw/3Dw8/3j8+Pe9P00kQ+2W/yplziYNzkZE/q+W7PFyxrKZVq5ni2Q1LplqlFK0AwsQIjpHUqN17ncPr62XK8vh4PB6TZm00A3M7kyAYmhpIBUVDK2plFgRjEkJmcoiIBEzA3IRH2na64LjrwqLv+qEfhqHr48319TfffPnFm9e3d1eB9XTY1zIR4WZ1FVy4vfsqxB4udxktRXMRwhj8YjlsVqurzXKzHlaL2EVkzSQj7B/nfJJ0qPlU8ljylHNSVSSHSABOFaSKARJjq3k3MxEwNWZEREYGMLVWC+6aUdTAFKoCABiSO4/Y0Z0jSrXWmqWWqqWV4OnZc91K0cGAnfMv97LL9g65lFJ1TpPmejpYBOy9j6v1MSWrOpi7CYuvF9evV+vtagEMj/mIio4JFVJJOhnW2oVYFbt+/eb2ejzs3j88p/p8nHJW9V100ch7x4R9AC0ZrNZ0mkcsxVIBkQaDffTYBWATg1IKVIyagHCuFRidd0ZYtFapdiFFXl4LYrvXuZY+1/ra2rfUjLCRW6pqjgAMuYmhvGNmZAJyZmh27idoypWfMlwu/3qJfCUg+BlBb5cvL8NA/PxbcOmGbDuWXbDLOQRZ9fOejqbcaYGJ8JLjduGH2loRqYW4dd8wNxDTehDPyYefT7scgQsOAl7+7NbNYC0LW6q23opLXACIqLVuA0WRNo1UM2mkjQqoQhWVqojmA3nHBjCnnNI85/IyszSpaT6cjg9ZkMhr39Vy8g5DCESshlVAFBBd3w23N3c++N3+sN8dd89jTmk8nQ673fNjz8GpAXln7Mc6//h4DIfRhciemIGZvPegOM/6/Hh89zjv9qnWypxmtanmY5oQYTyNKaeqCkQRVBk5MHoQyPM4jo+78MSn4831zWq9CX2PjuuwOH6WRXTh7kUc09V2CfbGIWzXH/7450/Ph6OcjuT7u7vtm9vletWFEIyZ2DkXvY/sIrPDiz8fAD5HFZfTRctFPocLAVw6O/FCCxKgARKZ4dnaZs2edWYGmRjBEE2NzEwJVayCmdCLORYAxHTK5TSXAA6oEByt5Ow8OWZCM5sPO539cjVYIKuFAQNTZG7R3lJLLaHWKKpnDbIJXtZsFTFTEykiQggAUuV5d/zx3aeicHt7s1ovh+Ck1MNhbwaL1WoYhr4fmLmKGCgyI9M8j6ZWUgakOHSqetifqtQQ6I3B28uIn5Bj6PvYB8/EoKZZapKStTp1INVKntL0fDpUqV3XdzHEGD5+fPjxhw+Ofcp5PJ32h92c83keDSxqUspi6N9+8ebf/nd/+zf/9ptf/+Zrj+7xw+P8PGEJTvshVL/gFungvPOBEFkUDaiFYpRS0jzN0zGlPI6nEMJ6vV72nUNIOSG1mzsL+5d7Rcr53ftPOD188/Z19AGcUyK1c1SDgZkpCSgiokAtqBZDUJCaJ9VSy4TJITCFfrMM61VnUm9X8WY73N8/vf/0+Onh+XE3Wh4DplUPxBH6QGT74/Hh8eOnfHrs7e3g7jb9zWa52ayvtptXmz7G3iRaHWqZVU0AFViZBEFRDJQQqFacx+6r7RDPIGZYDH/3t7/tO+57V+r08Ond+4/v3/3wdBgLxX6zWd282t5cdUMvHklqrrV6dHEIb++2q05k9vvD9P4pXy27YRgculpOUY6/vuOt8v7TeIDTeiDu19d3m66Pku15l/704+FxP2VLq9X6F1/85usvf/XVF99eX1/1vZumTx/u//7D/ff3h/3uNB+yaeRlP3DvqIPVg79/fhQ03wmyws9ilQAAnFht0w0Do/Ne0A58tel8HXnvgJCac9XUEGkY+s1aNuvleKpHK9py9AmdkjGCkSmolBa1YAaqhmAICtRMIkQE5NB5pBZ0hcaEMfBi4NXSrzfDerVeLhc3N9evX2222z5Gq3k6jU85TV0cgo/r1c1mfevYv2yWMfjlol+thvV6uV4vtqvF1WpYDr4PyJDrfKrzsU6HOh9KOtWaREuVImqAyOwQ2BoF1bYjhbO4pfHHlzpBarZIRTU0I1AysrP2D18QCJ9D2C7brZkYiJqaQev0ISakdhE4cxZ8eHGOIGI7EaWcAbGaEpMDXIV4t1oRwNPxqFXW3L3uNr9c3V33Azkc6wyAioDeEVYgEBOQMuf56bi/mTZvPGMfq6cEMtaci0QC8sRpUgR1hF1gQCoiIioipUIVRQAkRkKialYNMpuazmlUMxFh5wYiRiqq0tI6f272eamcbhSrqlKz6CCaGROq2iVKmdGAiF6EA0QE7XhjBkBEF+YdGyF/Vlf+BD7aGfmz0dXncIX/W5Lm7F9rP4N2ZmYaV6J/YbH+2eMl56cVEGHbgaDhMSGplZwnZkdtOdCFeiJgPnvvz1Y3+skL09zIdm5EgjaEuoA8NQA1uUQeoTSgI42R0aq11UGbXp68SfPK1VLmlHNz255ft+Y8TdMhVQDgnMM0noh0MfjNZlAxAgjedZ33gc/Hc2wgrahKTmOaxmk8cXHTeJqmaZ5nk1wFK/jg0BmxKIMqCigVVfC82KzAc62ZmZaLvh9iDBEJ44C1dgqAznWh226225vFchlVbU6uAiKpmFSRKloEVEopP9Nd4RlOGAHE6K82S4LX7BBM7x+p1Hy19ndXw3a96LrI3hs58tH76Fx0HNpV/aKe+lxNdbkkAQGMXlbI2c9q2oaa7X8AsHPU9DkLFABBzyNNPocw6ln7D3p2yjr6bGQpIqdx2p/GwVgVa67JMbFz3vngEbBWKc4hVLOW/uxKy4COkZmaSTSVmqsWMSYeusCItWYVqY0SEjFTJFTRnMr9/dMPf/5hyvVwOK7Wy8E5k3I6HhFhvd0uFkPXdUzUcraBGyHKUmWeEyJ2QzTT02FUrV3nQhzqpWiQiEKIXRdb9K2YAQF6ZjJ2RIwGWmud5jmlPM+Fzw6r5/fhnpHALM3zbrdPOTUNHRIDIpgN/VBKfv3mWqssumEIXT0kUsRqfej80vrOe8/tRuK8M+DaLg4EFctAViUjI1JLSOu7Lnadcy6VUrRNJgw5vNzKpjn98bvvdXzYrtY3qw7IIXtk1xwZ9ayJAVYEU80FanGqL+eaMk2gyEaeqOucDwwKgx8Wg18O3TDExdANw2656K+vVnO1rDSDGwGPu8Pp+X6eDq4nyh2x+S72puig76AfAKqBGGgTbjKwB++AqeWgIwLUAhPCNoI73/26GL/++gvTeZ6PH++P90+HHz7uPuxyNbxedf1yWC+79RBCFEac5vF42p8WI4cYAneBT2NhsM1me3V9OwwLqXX39EM6/sAyLVhGPfU8L7fbxfV6e7dZLAaHPE306jU87qfj/BTi8MXrX766+Wq72XqvKX//tP/nHx/+w7v7Pz+P8ywG3MVuueq3a8Vu4YY1hweZcu3D5P3Ugng+fzjRpt9oJ1oxk1JRRGspZioVjY2AgJ0CqELboxz5ZTfcXl/VBKp7tSRCCgzOmTEYqFapRVlNnSmbNvMsXwyxZhcTo3PoHDgHwWMfYTHAdsOvXg+311dXV9v1atn3iHSY836aDrvxYxpTNy8Xw3qzvnY+/hR45d319abIm1e326vNsOh8ZHOWKe3rcSx1qnnWmkSSSBKrLQLbyAMZIhJ7ALIqYIBMbesQA6hARNS2orMvCQ3QBEBAjUDMVKCNkF7svoBnIHgeAFQEATBGNqTWSweOEJBIW3xMFz8DMYTee2RMOSGS7+JqWL5ert8s128XS8j13f09Kry9fnXXrzfcsdmU5yxpRsuM0HlW8B6ByYjmOv/5w/cGpd86Bj1BSq7OkCepddas9VRn9FwJfIyLEL2AurmCn/MejPu+C12kGKpHsWoMPrhqWuYpzXOZZkfsDFAUCdXOBPtnmpgziGmfN5ghIdmZVAEANTpbAy+WeMbz/wPNFIZgqgotRxdbph+8vNttw4BWytqsRZfp3eeQ4/wzbUPCv/h9vPA0Zw4GGrNnqudAuZ9ey1mISRfg03B/08IDopG1WEcDMBSDFkl3Dg5GIkUEFTqHv4EBIKG1ODhszuaftk/6zPTUQgNA4ayvucTcXb4nIiqXajC9ZPlqyyYqteSSpf7UYq1gpdY555StiunhuHueAPJmHb7+ent11UuRFtXHVHeHh1p0HNPpOOU0Oee1ZtUMWksqzw/3j88PeRpD4OF2u94sl5t17BxhZTRmQiBVFIFa7kRqqYkcDH3suxhCQKRaq6oaIrP3oetjvxyGEBhwUFmksibERb/oY/ARkKqJAX4u9H4ZWQKotnHlYtW/xbuu88fjdZ7n6PFms+qGDpwH9s4FHzofupbY0oZBeOFXLiukAb6Xv+dM1Ciek8QAQBEuEYvwQg02VxNDw+rtiINmTHTRy7WVRUaIYJUdv4xgRGR/PD4/76tyLkJkjpCbmYnPoj/nXCrz/njwwZeih/1RDPpFF7xHJKk6zvk05eOYhq77+su7xRBTTiLaXphIbVG8Uks6pef9qaSSUn73/uPHT/fe0DMERh94Gmfv2HlCNBGpIqWZV41ULZfiCBdDiN61Tt0d1OXiqqT5/H4heudC8L7ZI0w8hYFR9JxYbYhoHPtBgHMukpOaoRkjniOdVEsptWqTGrVqra7vHNt42D9++Pjxz/cPd8+43ZRjquOJNG+WkSC+TMbaDVkUUKS269+MDR2QZwfDol8uuq7rhmXsgo9dbyIiqZQ0ZRd+KuUdx/k//9Mfyv7jV2/eLuMrQOd9rL6rBmKmtXoCIodMKFpy0TTVWkGKihaReRotawBG56x6IFOtCBYD3Vwvl8v+9eu73WEeUymCClSB7h/3//TPf/ruaZ/qATSFsArLdXd1G66ucLWULmYsrsySTlATgZwPm+wQAoADooukr0Io4OXlBOccb69WHz7wd99/+NOfv/+0O00CGPzgebPut0PsGSJadM5QD6eDig4Y535AK0+Ph9/945+rha//6lc3r38xDMt5PPzTf/mHw9N366HafHp+PBHb7Zv1crmsUlOe43Jx1W/X1693+/n7H/5LShnqmOfHPFuanz49//t3j//l+/vvnk5PqRZyPPTDarG6Xo8O3XI59auD2xyPJ8USB74mzKb6+c3didS2d2ATrqGpgkijQNuEmFQVoWoLCTQmZId+6PDmaiPFUqlqOk1azxFqbM02iKAKVg0QrHHoDIiAaM2twnwW0ziHfeeWS79c9Mth2GyG7VW32vjFgM6VUlKpIlCmdDpMT1KM0Hft7PkZJPOOb6+XjKvbq37VsaNKMkk6lvkg41HrLFLtQuWq2blXmpsOGJrK4UWCKXap3cVmwAzMjS8GO6fONG/dz6cVbU80VcuiVrWaipmCKZNhK6E8p6sBEvLZCIyg9jl5cR5KiIiqD74bhtVmtV5trtfbV8utTvNhd0Cg169eXy3WdUzH8bSr6bFMz5JHkOIJyTtHLXFORQ/j7sOj/enHED2N9WTeXMeubXxFM1QSR9E7dowUHLGPEox9Zob1auX7rhKOVsYiporETYqiolpEUXXOhoyN0/behfAzQv7nD0Qi/ElnS0DnPcHOlWb08rZ89lBVInrZg3/23XND1k9naPiMPbG/wO3/4u+0ry3A8AxlXsiM/9a4hOdyw59+iZcnCQB2RlIIl3smqDXA1vy7zZl/VoRC01Od8/cb/nqxEdHnmXvn5KN23AA9D7sEVPU8Yjr/cw5LAgTTphPD2h4in78MPXe7o6mJKTvebhaIbnO1muda81l6U0stRdIsIfgu+sXQOcfbzWK97peLqCarhVeJOlA/xDevb66vN4vVEKMjrIRG2FY+IzGTQ4CqGRli8OeJIbZ4e0BkJkcuOHJMRAjEZhZEB0JoZemKIrWWKuUzIfzPPgMAaPEzjp1zwxBz2pQ0Yws4c4zM7IP3wfvonCdyhASG9iKyuny9rLGfLvCXZESAlypdffmbL7zgGcrAhSK0n24R2koM2jTpcrNwfKl8P78UZEAGYCDXOsGCD4RWa0WixXLJjmvJKaV5nsYpPT3uU6k+hhhDHzoEnHM9jul5d+y6METIyz7nrGaNF2zssohJKXlOJnnRe2KcSpWSUlFzFIaIRiWnmg1RW0pozmWacqkKQE2Z5hjLSH1wXegQLZd5PPwkHgcAZvSe2FE7wBg79CQiaiqiVdXAHHvvrJbWDqOgIqp04V2JyHtEM0R1dKbbvfcIWMb5058//rD+Qe7m6bgv08SoXR89O+faxwoGpmZYTRkQWteHYrvHmjj17Nk334AhILfcC1YAFPhMcDnN6fd//P54/8O//u1vr5d9lApAQKSAtRQQUVRAc+hAquZSU4GSQQXActH9aaqUO0FFDjE4AgOhFlftfdd3y9VivVVRVHBAbEAf33+E3Ue8BxywOLddL7a317dffnFze7VchDCgxVKgCBSA7FDRAKGCVTRF8ABMyIIEUNQyaHVwLk5zzq1Xq/Vm433wodtsblwcNmkOnu+u17frfjW4vnNd7wVlmk8p8dM+1USOcHfCp9GhGzBcoVscj+N02n//w7vd0/3NVeeUDqmPgbOu5jLklKYZVHHRsw8OzGn1eUoHO0ohSbno/YfHdx/3z/uTphLUHBGRehSyakDgyQ1h2Awbj6pTP2AI3jH9jFJ3JRcAQCTAtm83/EHe+bN+pRmyqpoZEjvXOfIOmDxfb9EM5pLFtMpRUiVyiG0fIgYnZkpohsiGpNisFUTMSGSE0IIgCbmL4Xq7urrarJarxWLVdU5k3h8S7lU0KVTFWrXkXBz1Pjp2XEpOaX6hx4On19d9B97DUU9pzqPksaaT1ElLaaIBYGIIiKSgBgTnwNDGnICCqGltLQJmaI45BN95H5zzRGAmpnLuaEcjND6fBknUapUmn1DVUmqRKloAlMiYqHXFADpEMFJAZRIFVBEzAdFS00twn4gcT+M0zl0/DMOwWq+HxQIdVQQKQXIdpxmJoQ958O/2j/fH+/1hvx+PhzydJE2s6sjFEJgQUHJOVafT0x/+MHrvzCwGvtou+5CPx6mIIhMgaK3FIFX05KJRcN7HIZK72V5TDIc05yRQVKEqm6KhgSNmH1gBiyBL6L1zAaLv+/4lSblN5i4SlsaTvIgl7eXry7caIKGL2vFfhCA/G/GcAQ+1ZIRzuMel2vvlp16UNH/xZ/6MldFzyMx5OHV+yp8LYtpXxIvuhxCo5f207+J5y7KXpqw2jFQyOsMVIHwZrTYlMoBBS7Bpz7FNiy4ymEt+4wugMmvgxETPMzhQuUhpTM6wxwzbJW2gZi1I/8zQnF84sQs+Di6wKJnBsJDlpqQkuUitrcrUpHWcZWnxpvOU53k2gxjjcrW8vtkSwXJNtbxmR/0Q1uuhH7zzyAxMimCg0gasdJmrGVj7hA3PuT54pjndOZTLEF5ar4FVsVWSqYqUMs/z6TQuVrPIX66NdrxgYkBWtBZfC7JUKVYrtKC2JsB2jtnTOTQB4S8g8/8/0nD7y/VzhtHa1hE0/oXONB+3aZU20aDhWd9t1txsLyd+x369urq6vuv6Zb8YVou+X/R935nKYb+LPrz94gvn+PHh4XDYTfMoChUoFTvOUxfFbX3fx6VzzCg5Geh4PGidtfkZQwstYFTTIlors66W4XqzFIBxTikXyZUI++CZWQxEVbRqYzGUJhMTY6boXdd3xCC5GCA7R4RVBJBe3j5EQDq3QCIjN87RqBLkoqYipdQiCBgcYxfFuSbwItBm3LqgRmRExxg9d8H3/eCcJ6LOuU8/fPgduP3NA0LN0xy9Cy3wgBwCiUmL8EKCcxtYu9owhhIpcKqp4fw5FUvFWoMuQCl1nnMp9SUcNqX85x8/3X//3e//9P3tqrsZOFgVsSIyp2QICoIq3jypaKlaquQCasg8J3veTVPVbtai1HWD9955JGwtjdVUDClGBxiAnAEjAqyjvF53h203H46zrG+vvvjy1S//6pd3d1dM4igFGKEAWMYKhHpRe5BxO0eZgiJgFZnnjHNeibU3gJkXi/Xdzdtf/OK0WF7PWVNO43hCgtWi74OLrNFz30UBNRprlSm5nJgQUtkON3/l4wLd6vnplNLvj6fjp904JbZTcBwzuRkYd+uQohoz0dOj8zwCfjfN6fEpzUkdH6PP990OIB/nzVx+TVo7rQAVspVqhxPXXXTECpalWn4TqrHGRbwbunX4bGoBZyamlSqDIQmimRJRQCZHnsmpSq1ZpQIauwurokZgzmnXwWrtxuTGCVUVsCV1GajCGU1fqkeQEI08Bu98cN4xApaqwfnlcri+Wr++215fbZfLddd1SKxaa55KGnMZiybBamgI5LrOe+ccq1WR8rLxE0iwk8+PkidJY8mnWmapybSavUy62YARUc9rtYmKEcHgbBZSaesYscVFNBWCSut/agVJZAZErTCo7VgkYrVI8wCL1FyKiKhVpHPiPZylruWc2WAEyIgoIipVay15etmb8aKsafdaUJunqRxPOs6dUTlOPzw+iFn88x/DMLz7+PH5sEspp5JmzQlq8YbMEcgBswFoVSm5zNP0REQxRmaP4ABFtOZctdb2+VRyiBnIA/lO0BF750yt5JJSSnPK05ytqjIwgRkCGZCo5FRAANRqVS0+zT+BSzOrVUopZ385AAAofk5fnX8O4ByqjIZtIvAX28OL8uiyYs+g4gwnsCmuz2qSn07D/ydff/Ynt180EGOoAGJapdYz3/cTzyaNCKiuLShqxBLBZYoIhC8aIKwVLt3SjVm41FK2jvWz4uf8979clWZmCq2u8jM5jOm58fGs/7VGuqiqwueaGbiQge1NVQAzKyWXnGv5bJxk2vookWKrZ/TBueCHQUutInbuDgJUQalWipQiOZVciqoycdfH5WrpGK+vHYB4T6FzsWPvAFDbKQXBrGpTNLeJIhLBmfkAUa1V2h0HCRlZrSmXz58SIgIYnzOWi6mo5FpLzqmUbJ83QjToh+dcZsB2QyN2iM7QvNYqUgyMmYldY2AveFo/gy0X9gx+4tc++1s+W0WfcTafa+IupOJf8jo/H2/Cy0/+pOkFAAAfwu2rV/P+m9j1sev66LuhG4a+1tKCZYgZAehSVOKYu65TRZ1Sey6M4B0hell1IkIgWux8S1MENVQ1RTRxZOzYe9+HzhD7SLl4KaJm1EQGaqoC5+gwJCTPbGfpoIqIKJQshQwxGeh0Gk+n+cUB17SAqtWgZQMAIYLa2ZJ6vgVTIAaHGiNYMx8Ck/LlbIKXxgrvKHofg/PnbhnsY59P0/37j2WcgqdaZ2iZZdY0nSBaRVWKVDPVM/3bPqxa61xyyrnUUi8KejM1BCCqtc6nfDyeXlilXOqH+8c//undf/mvv7vqOL9aXw8+QCVCYjQzlSrFBBRMoBQoRUtRMWCcpvL8fDpMyZ1SVhuGIQRerjpg1xyrYgrIzAjQNg5ksGjptgNZxXy12CUNq267ilfrsF17AAMjUG8YrUYkIxQ0UZHLNPzsPCHAnMrj04HcsatyATFutdy8fv2FGd7eHEvVWmtOycCCd8SAKkwUvDeDTUmlVFFt9QW2tavX5n3crLcxRBFDoO31q0W97rqemVWUiGMXmAlMEdCMq5haVcPY3zqviGejA+Iw9OvY26Z5eqGaiaggAJ9PsqgAq07BjI36brHZvF6tV8wvxc/gFM7zdNNqUBCB0XsHil6RoaKK1FRFMzlAAtWsBlVJJM/pWOQUYl4sbXG0JvqrxYqUmtXEGF3w0TtyFBBITbx3i0U/LLouBkQqVbo43N3e3lxfb6/W6/Vq6JfOe0AoeTzao+RkapJL0mwI3gUK5Ch459QaZjo/ap4PH//4/MN/hsayW9FmvkVEdK3ZTxVUMwCYnlW7eJbstZVk1bDRTY6Y0YNiLXNNwtSKvZSIne8InbV5lrakMm4bSXs0kQICOPbYmgYuEgk0MZGqhZgi9oQotUrJJaeURrOXDA9eLpfr1cq5oFX2j4815/F4jOw/3H6SXP7445/GcfyHd39m70oRYl50PXpKljOLFCXh3pJnxwqaa0pTyamZEgyMiL0PqjiOZZ7KlAqIhegC+xl5JH8it+K4CT2YHe8/Za1TrceajvOUTWzyHBxHJ0azqOTCoqyzP5yUMJF99fYXOaWXG1nOZZpnM2Pm8wZAn0OQn1SU5xzAi0D6869tSb983J8zK/DyIz+N6y4+k3+Jy/kcEl02JHh5DkaoYKJaRXKt9TMBqZmlnKZ5BNPimp0N6HziPEOZtrs0AS8AUJvYnCU+P7UgImDz5jV+Bl6mFBcEBtAwzEWk29AKNEnvi0rmJwVMI2sue+Wl4sBMARSslpymqaT8AvprLc+7x4/3H7wb2EUmJnLsWE3neS61agUk511g9qGj0KEqmXlVhwSO2MfQdd4RiRBYJTJiI6dMhmzt8AKKpg2RM51Rf9OMnE07DXuAVlMoUFWtVjWDphfSMzg4v/0qqlrBKkIl/FxwbaoiLbzuosoFJDOr1QAUTQAMiKjRaGYmoti6Puxz8NFw7OepzZ+vnzMV9tJ/fsa9PwMxZnCOlPkXYPTLKNDOdXNWTaXB0/ZXxC58/c1XC1f7YUDEPI+AMHSxVM5Dfzyefvz+O6nVrA3/qQ/R+7ga6mmazSR4Qqio2jHE7eKCaxUAmJGZgAykgoEnZObQOWYmMzUJBD4yBl9rOR1PKaVcpNRaqpgaEgNQ1zlmTGme5vR8PKm2iAl4OhxLzuP+sHlzny/CXjOttZSayCEgtOXuRFCkBRAbcdPIIZ3dYiEG71306BwyfiaHR2Rm77275DWoGgF7cFLK/rBnRiQhtiSCZ/RVaxVRqdK2YDLAVvleas0pTfOU59QGraWUak1WQuRYipxO85vH51LO6cNV6vPh8OOx/u//8e97zfKbL+DN9d120XfeB1IRlYJaLYtphZKwZqhJq5Vsp+P0/Hx8PJzAH+Za+j6GQF28cZ5au4epGJCJVLFTKlLFGdDhiNNhiXK3jF3Q6i3oiOne5plIkBDYg/fgI4IS1oYCoNkpRdsqRMI8po/vH1mfbkvpz/uLW602IXTDYjVNU87FTOl8tGqjtrPEs41Z24AUzD67J18UgfDTtXC5UrDp/C43Mzz/CNqZKoXzNd1uDY0pgBciG8778tn+e/lxMwNTx67ru8Vi6b1/uSrdr3/xP55FgVrNKiI49M7F4HrHAYxNtORJrZIDZue8J3SkKFKmfJpryrWepvT89TiOVQRK1pxqKWqCjjiG6H1g8gikKs65YeiGvgvRI1IVjb67vr5Zr9fD0HddH0NH5zay8XR6nsb9nI65TFmKIXgOy357e/Wmi4No3WxfOXd+Mcx+WN6U6y/R0LBNCFtpNzf7NF4O5+3tuPD+5zcOrBXcEBCzd4TMyKZWclaphNKKmpmd9z0Rn7FKYz+ltZme/4a2rbStC9utGK3lc6KJaS1aCbGlL2gVqaWWfPXqF86fQ6IWi8W/+Zt/E0NAIFPNNc/TfDoeCWmz3phKt74ax1MrnnTOdV23Xqxc9BVqZVVW8hh9cMysYFVryW3AVWutUonIew9AJWtKdZoyiMXQUlnQEUd0Cx+3/eCAppyylGKWpaaSKxiw4+A4BkWb8yy5oAiKkpqYJZDf/OI3fXe2vndd94tvvzWw4D3RGcR8boH+CxBjl03rZyCmCWk+O7H+DMS0a+Rybf0FDLpMq37aDv/b3//cRN0ilqXN7EW+/eab7hLe1fX9t7/6KwAL7uzYac+5iaoaq3JhYc5iT0R94dXgQhI0ENMImZfze4NEFyL+/NyaPPfiZ1GAs3fuIpE5T4jOQovPbxkNxMAZs0itOaVvf/03XX8u53MubrZfpVy869kFRmJ27NnM5jTXKqZAxN5F5z07Pi9gAMBGL5FzzjnHSE31BSCACqiIRtyYRwZrETZngfb52QKd93ozadU8eiE11Vp0dft8G0R4ATGgKqol52k+3dx+G0J3eS1he/UawM5I8vyGNu9fAzEGoIjwkiR0TnTCl69wATEvN1z4b0FMe3zeP3f575fb9+WZXm78L2v7AmWggRg9y65qreXm9mt/eS2h67/4xV9dXV13Xaeq0+kgIiF4kTpcHw/7w2G3q7X6EJgZmt6dqKrOKYmII2NER8DELbyhaQHhrB9v76qYQUsqDjEgYbOoNmUeIddaD4fDPKdSGx+pYIDMRA6JRHSe52nOY6qqwI4b4ZZzTsfxm9/8XTec19gwLP7qb/4WEXwIban8f9n7t15ZkiU9EPvMzN0jMnNd9t5VdS59utmUhtRlRtAAhCBigAEEQfoD4jOf9Zv0Azhvg5EAPehBD4IgjGbAkUYSxGlyyBa7m93nUnVq39ZamRkR7mamB/eIjFyXfau9q46E49hYlRUZGeF3N/vM7DMCVXqAecAbRF8T3cdYhZiYIocAaQDr7PNeuQpmDaSaXL2QGYGdCByYBcxwN3VzLaqVoaDas9lmBKmiedM4lZxnfu2sbnWdsoipHY/jn/+Df7jZbGtbLq+u/yf/0398efH83/vzr7/6s19d/uJnm59/tXlxudskZ7hqmSYyjXAx9TJZyZKnrC4WLm6Hrzd/EvcHY1xeX/Q//7m8+BrXL7DtACNTqpmxiVGM4kSlkIPjGMMVXx38l9NVscyxv9p237zgq47FSQTSw0EXA3RkKFy5KLz6XblXAJhCiLf94Zqf/32KrS1ElWc8xtjlPJWcQV45Prz1VZ22RjPQPDud1UxR5O7TNFWYSlhiTMSoa5mZzOCulYNiscg3Te+Ug7pFazBLlV7mxdNsFk2dAAAwcZX7iSABIYQ1EkO/+fbftM2ynuVoIdBzwmvCjGPP652agOYnpn01K7nupzVcdla4qhTRfAaqnbtSGVbSbXJ3pprHLlQFlliq/FaRe9NSw0Tdq6WBhEMMHTM7PITU97vqFqdlGu5elek4exkApxOrAi5tR1k2mnsA7/w/VeCp2K03Ar0ZH55XFM2y6bIx0SxINvn0nHTNsYoJ9jk2qwm97u4W02Z79ZWEDsA4jS9fvTwOh3lDNDPToiAECQByzqq66H+VioSZbLa2n5Z/rc9y1NWxpnZkeg0J1uZOu9rUSYhD03jmWJc6sHMvVGHbFt/Rec92+G538cuf/7LvNwCmaXr1+vVxOLZz/Xy3X/2Pry4/cEl4SGF3+tH6nrOvz2/xd10/f84yiO7ed/3z589STACmaXz98vfD8bh07epls/ixVPWR2iw3Pajv6svzGq7PQsyi12qere9alzW4hOYn0292z7/+pp79pYx3ty+nPNRDZFncjpmIEgBmU/CqdfMHOu8Eh/tp5Z3JYqeWz7AXnX7jq8bMj7nXBetWValOTWPsLy6+CiEBUC3H423J09k8odND1x39Ac4v999676sHUs0jdz0yGA92n2X1x9hvd8+qPmZapuOdaSZmOFQV7lTTWWjNsVvcrbFHujeFuSbPaQr0Ak2uZOEVOtkmC7X9eda9l84hd6thBT6vApxkP8LMn9R25XmPcXdT3W4vvvnlr7p+A2Ach+9//93xsF/vRsu7lpmwgK0L6FJF0ZUeTqsPK7By2Ztprvxqy53bPR/Jp6Fp5lg/2xR92bTrzm/qm+3uZz//edf3APb7/b/7m785HA7bLu76btPHPsUUg/DijW9wn7NqVX/ilgyuqI3TVNS8JvrpqqgWWWjuj9YGd9dG2Qpyo1IqxbI5jIiFUxdFmKrmRFwF73n79QUZOZ1lRKXoMAwU+s3zX8gsKy991KIFluW/mtzrKTE/7vTbZZeYNTSc/3b1uf72NJK0voXo0TV4f08+/S81wPv05UM944/lj+WP5Y/lj+WP5Y/lj+UPv/D7b/lj+WP5Y/lj+WP5Y/lj+WP5wyvh7767AR4F+b9AeQL1+QQsqMJ/fQrPrzYpCoDjMP76d9/fHQ6r8I8F9K6BCHN0xJLtCCvYq3kTNaBysfLMoOSpg2ZscobtlmvLHfNj3tWdJ1/R6r9pF9vNn/zim03ftafPQbQzlvsDe+5DhvZDnjbD0aeHnlpcO6N6dEoL/sAw5W9f3eyHiekhcPjOWn3al4+bIepXj/youU+sfcjqAwh1+Ldd+ub5ZRcDgFzsze0wTjoj9qsHzUYTByrZkFbivpZTkFaI6E+AfdYp3aXw7LKLQQAM4/Tt79/sD+OcA4GWqt3DcZf/fL56f+hMe/zH7ma+23a/+OZZ3yUAQ9Zv3w6HSVlqa04WivMn3jdXLmatey88Mz89Xak6/709m2a6vNOXi6nvnvW6bins3gW+6GMfl+WCYczf/v52f5hO9qLlde9ZxB9rGnu8rI0IdWasfXre+cM2Lj//5rLvIoBc7O2+jFnp/ZV/+rGn2VdJCJyhDK36t0JsZp6c3SGeOsw+YBLP+UeqRahLfL2LMTCAcczfvbw9HMdqbZ/rdjLpPmoWqZ23tiRj7skWzrg24dOSZa4Z32gehvPzCIvtaf5Ls6Xt5PDVIgZml88uhevLbQwBwJT15dv9ccxzDPt6ld/vsfP5/65RfOTnq0avv/BH/rM+TB75yRyO6mbed+H51TbNSbnD//b/9C8BzDELy8z9oPKxpihbncdnhu/ZcI9H5Rw/W//1kplPxf78l8/+l//4H/z8xQWAX//u+//NP/vf/T/+4i83mz6mWMWVRmMdkkgMHCV0MfQxpEqAubhMnsynaGyoalpKznma8mhWvPIjzX4kDnNXR6OrAp22LPLZi8hsJsUDltFvRxxqsvQaR1umcjwe/sN//x/8r//p/+rf+/t/Wu8Ycz4MeX8cJ1Vux2BlzwAw51umU6+0BUr06JDMHpmPF59N1etnLW/Ban41/oF6JlZXtErQzMVg5iTEiXnbd5e7XQgBwLevbv6T/+M//4u/+k2XRKoReOmNB14g5+cnLXV7xCT7sI0nb5Q6JGeT6exUa73XBFsGCROjRhfNvyQvqmMu//DPfvZP/uf/6E+/eQHgze3wf/mv//bvvr0NgZnOqlPTphKRoyb0HY7HI4BNv4uxmxlQfBF/v0R5x3NVvRT9019c/cf/6O9982IL4Nvv3vyz/+z//Bf/+t+lFBZ/ycaG1SbTSnp+eKqvFrDfv2O58fEa2eOTdP7VwzNoPQ2BojaO+T/47/3ZP/0n/7O//6c/A/Dt2+E/+S/+6l/+9m677VLils+MA7Hw6gQhagQRYLQsrbXqzX34ZK9v8WJzrBy3ZewP5i0RsRMbiTM5O7sFJ3Y4xIDKk1MdHefNwh0oZuwadfrVVfcf/tlXf/717mobQyAA3/7+9p/9Z//VX/yb33YxiPCHSDHzjv3k+n7nrDsD4+tJCYAqNWFohBTVI+fdG35RG6fy7//DX/zTf/KP//xPXwB4uy//13/x8te/3wdZde7sD/SwHY+3omYIdjNwwUZQNnTT0zFRMcjBtqN3juQgIwWUWyUZc5zA2ZOfVC19fhcAmHsu9quvt//x//jrr687AN+9vP1P//f//L/9y9/FIMzUUpTMjOwgBBFqb4RXSm+uqZSdZrb6etCoKdwFIu2EquljKcaQOum6FGOIkYOwCNeARq8sCXnKRU29cnmbupqpmjvNj2k0bMSYU4WYuxfVX/3yxX/0j/77Xz+/AvDyzf7/8J//q3/7dy9TOGmbs1CFOvo4RV8QZjGxXiFe9+E7ZIYls6m3Y3NR/uvV6uW+GnWefbJ8ccWC16iACktosWnKf+9Pnv8v/qN/+POvLutrwr/+dy+B5pS/Er8/qHy0EPNEGppPEGJUdZgMwDC2ELi7w/D//ld//Z//3/7l5eUu9V3NzxQkhJBiSBKScAzSxbhJse9SEmGvQZuNUWzxTXNzL1pynqZpHMZDKZNXMngi1KBQqFuxGrtIMwe9GwCuQowtQsy8IVZHpCbEWCNVMoPbNEx3d7fudrc/1rZk1Vdv99++fPub717fDTlICFS5wZq83YIsajbnSsGP1Rw8c8YCZjH20XGl+eR64NLVfCxp9Y05VT4/h9fEQazB3ZWmglIUkfgi8S++fvbf/fM/uwgBwH6Y/uKvf/tf/jd/telDlEWIWUt2eLxu7xRiHtGziGaF5Mz9dfXtyrVwJcQISFpYw0LU5UY+aTmOk7ofhhYyOmb9u+9u/82/ex0jL6pze75zYyiBqo2H4+2r1y/N/Ory+W5zmbotc7BKvfLOI/yHlDlo5pHnq/qUFUTjHDK6P05/8W9+/V/+3/+y26RQg49QiSrhfE84Xk7v+2VOGfR4i2gtBq1qZu/cYGYhZnWTr14G5KKHYQTx/tjGZT+Vv/jt3T//69cXF5tNJ4FdmEliFWJonm8NoK07Yo0aq2KKNWHlpCTAAfB9IWZmpJurxvVLIiM2gpOSaTJnZ0CMWIVmXXjmL4RbFWKsJJ1ubscdPOnU/enz6qS8P45/8a9/91/813+97WMMbPfm8Klv113WjoDHutPxMUJMddqlykMjEmMgqpwV9l4hJhc9HCc49sdGrzBm/fX3x7/89V2Umr79U4QYhxNc3BUhgyKNz+T7S7ze+G2x8Nq+Pvi10U4RjPMcidba5bQIMTRP1ncKMbzQjfqUDaAxN9qLw3H8b/8/v/uv/p//NqUYWppPVH3VoMwUY6jkdQQQ1w4MNTcwUftc47JKyWbG1jCXIByTxCgphb5P213f96nrJEUJsWWQ85rgo0oxChC7USmqaiWrOYkIE4cakS7EgiA1VM/NbSpFQpjmtgxj+atfv/wXf/nbrsYdCtdThU+nlWARKWgtxBCeFmLOLlfqidnpG7C1ENPSecyheqsnzEJMFfvbgM1LlqgUPR5H99O5DyB0UQDMmV9qrVahno8P9TmC4k9pYvdLfctawzuBd6cTx1df3L9nuaJMDothiddCkHB99eKbr35xfXXR9R1qQJcIcwgSmRnOxBI4xiRV+wSWUNUaJOFzNmUPKjFKjEyMXMRVawpIJ7hqzfblcGKnRmcGM6tIRdPwauTPHNBT425rp6maWwEMZoALkVrpum6ZHNOUf/27l//i3/zt/+tf/c33b45dt00hSgUMuGYtY66T9eTQP2dHnJHI0wFUCbyfBjIcjRKtjWmT51pMUhNx3c3nReg1q5C5Ekow1cJD1mnKmthf7Ph/9A//7Odff32x2wBgpr6L2223qa78i058PmkI9y60/3kSiXmwn54LMfdnUe3bOSarMvPWpdso8RknVLpCTszCFjiepBUiSjF0XUihCjHr+tAsxLC5DyOG4z5PpQtpk/oYJYVUg10/GVd/b3nHGaPmxJziab0wc9/ttrur1Nftl+a2w6lmLlzLaOen9/JGapjcAy2j3v1QiCEAhsefhndcXQ14KApOXb/lmeWWmfu+22z7ftP1iYWMa4JZEpqz8GA1Q3iOzmskyVV4dQAwPu2Ep7XcLnEV5uovqQkxYBhDzYvq6KWIujiBgktgTs41bZA4Kg1UTRkpbCJF7obxX//b38Th5udfbXebBICJui5sN3HbxxDkqTE9VzUfP/5bl3+UEANYFWKEa5A2wVVVrbJIvKuEwgC6LvBqvcRAKUoUkpMQ80RG1Sfq4wDB2cgQiMKGx+cxP8Pb7fDrDFECUSq8LSxG5vPPm/WBDPA5m/c7emmeXksGK3GqiXTXbYmh61KKIUidL8wAC7FQCJxiYCZ3ZUEIIkFiiCwCR+UjqEKMFh2nsZTiiqIlT5nAm00XYwghdF3abrfbTdpsJaWQotRMmURu1s/p60EkpjRNJZfSktzPHeXuDmOmIKGiLAafsm42u4VFnZhSDH0Xu6q/VPqHlaK7JKeb//LJQoWzyKClc/DYnJw3lZrAd3WCE7CwLs1CzHJi4UyIOSkYlS/RNIR4pkEGkVmRP50Rp8Y8MtarifAQtH93IVpVevW0cwzmg4QYEIJhrQ2LyKa/uLx4dnmx67oErqmXpWaLBqDmAISJ2YkNjejKz/bqGl/uAAkLgTypEaHyBVf526gSpLrDmbESYnwRYmoKVq94X0VoGmkpA1AtqqKWoQqYRAlReCWQZdVXN/u/+e2r/+Yvf/fb3+83u+subSJRYA4sMwLJVUiXFrOORqQmTaRZTLfUSEweF2L8gRBTLWzWhJhKp9YkvGJuZqUlGzQrsMymmuk45WEYc2L92aVdb7fDmOcupSAcozS2kfkigIezbA0knYXanv0Kyyw6/+1q2bzzW6tH6QyinhZA3fjcAHYygCHc9JP5a+EG8z4txFRUBnmahmEcx6GULEwxSl22P4kQA/JgLny2KYcQQ6y7Z5PnZrH3JMTMIMjjEQCzEAN8jBDDTwgxtNx17+3nGK0RizqHcH7AcEqcAgVpkgtqdirCwhxT5ZDG99AyhdIivDbbA/vSExWXIl9ixNt1hsOd3ODmpqpZdYRNoCJu0UicHGISzHvEnkNHzPUs9dMZzixxOg7f3775vitTPl8vQWKQn0iIIaI5bxHVihIRO79/4pZgYbUpE2qOPBbGSoh593MeCMrzMBEoMCKXXg5bfbXVv5uKdHQ18oua00ZJlsSA7WQ6vZHeI8S0n52+FSHh0/8TkQjHGEIMUdqUIZw2t66LEggwFlQQJYZYVeUqxAgzQGaWS8m5qFrO0/E4miHFSERmrpXuPXAsCIErvzwxiVCgSHOTCGKGklXVrKXkbCyYqqZe4FT5SpgZ5sxUGV+XVlZbYRD+wkJM1QgfBGBXIab9z2nI2v7jDlpwZUKzATd+GpHG0LKU8FS1nhzlh5+fODbe/dv1lZUr2WNHV73n/FfVOrCec0xck7oRR+LAXO2NEcQzJ0BxOLkXc88OqgS+MD9pBjVZ+2mwq4ygwRiAVg53qhgPBGQVY54df5vJoml+7nAnRuXUqZJbCIGZVTln6JjVrHLorXyHAcAMY9a7o76+85d3tKWw0RRZIksnMUgQkdD8fVi8Qr9gZyZib8INgdCyCWE2lMxCzapUzMiBmXPBDTXfzkympg2tUnNVL2aVpbuoWXGdULQU8JDlcJwShmDD7b5yIiwDtkKI2ojfR+/ODEwr2PmRs3F1vD1ZVs/xtbxfn9L4gn35S85LfXyWoAwwJmNaI9CzdDf7UM01YWeHm1M7+hympkVzTcJrC4C6TLZ3qwmfUt6xBGe3r5Plx1uGAq86Ni2eXU0OP2lFaMLKgsSvR8HfsfT5wUidKS0PNBVaTc/1r8zP7m+rtk3b+hMXaEBhZ3Zmt7oCCRU/JWo0TgRvnM40c2NwTWZYN8v5ZVVoa74yXlHuyqZTWbkMWrxkzaNOQz7up+GOkftN2qbQSRRQLq4Qy72lrWyuJCYQqk6AluC6LjbNUy6r7OL3+ur8YDiVh9ef3oE/bkatOD88ZwXWPK0f7ULQtmlaz/eHI7y+/uBq9V4iI6r0WkfXtzb93obfWImIv6I4EBTLO85mKebDcT4snqr+mYD1yE0V8mZucDi1DPMVuq55VBFCZe2jGClGDkLEtfIeBSGQhMAkIJh7KZZzHoZxysXVh3E6Ho5a9HCI/abbHtJ2WzNPxJhCjCyB2uECVJMsMQUiq2CLs5mVStWolblN6y3FfBzLOOY1SePjfXCaV6cRb39bH6xG8ZEZuOrIKqLQ+Z/lziocP+jrRrmDmpXkVJMmn3jjirv36nX21P+fLxWJqOZbADAmcnA9jFVd69HDrmrFQKrVBOQneawCK5XobxbvJISqbzoUAATk9dSrTlsAC7BQpAJokhAxVXdO95qEmVJKIlIKu9s0kTc3F3o4MOZUjLPFyS16H9AThMGKyByIxViIRZnB7MLE1ZuRnNmFvaXzkTPLEj2cTgDmOdVkGUfNSkbm7k7mMCdTbbySSqYkhczICkzJC1F2z/DsIJSsXt5nPn8gqX5Q+fTj/f2PdTvf/JoQs8CNH/GwlcLhrurv3Tt+umLeWlkLrfXyc+HDMZP/NvuKL9v9HJ7z4Hcn8rv5+jzu/qjEtT5AHkFiFniHqmuWnf+2iiz1yYYmTdIskzUgZd0APp1vMwaJJlzM5qQabURcM2J5JUErbsXyWIahDIfpeJjGYZrGGLnvA7OIiDgKKRqGaeyz79BcydnnxmlOfPXkEP10ZXHyxdOy1I9Wl1mnqDmZx2LjZNOoPtGYJduZe6jNP/nMhRpXNS0olbnLHO9aMacgHCLFWD/TDCSA2Yk9SMWl2InULBcOkccxD8NEE9x1ylMpZZymYQiHQ7fZ9n2fUhdiCjGKCAdmXiVoI6IlNKUB6KhgbwtagZdc7HDMw5Cf8kn9EmXWIn2t/XxCaTb/d5bwDtnz48oZkPITlOrGoWWaJlWTIMIxsOSaNRdeERdTcwKcyQylpqOZ214nhTS8Sqr6ycKCQMRupQos7uo1wMitlEJEMQWAshYr2nyEbVYMhHim0RWhvk9BwjhBNbMwGwuRe5AYRGTxiSGQsKTYdd2238S+v+z7TRIkQRQKgUQoBIh4/cfsoQozBGYXcRYnqupL9QBoVJ44349qy81n3auZjazy2mvlRq2Z9dTZnM3JnBWsUAVH6OSsDpBlUZdEnDYWOyc+O8wMtD4tz2wqdDqu1tp/+/jIBPbTA979nDPNvgr/J4xh7fMx227X723e+mdhs1UZ4TOhk1ZPmG0UVP3KW6qkBgqc6RAPAdgZMXrY3g8t7zhoqjp8znvsNX0nmrsrCHwGxp8e6u3mFRk/1h25Nkn4/dnVPvtyzf2hc8VKgDwbl1aF+uv5oCIHeXO7nSvpzM5izM1Jt5mS6MS0MCMxCysrAAY7kdXdwUDmgTywCZRhddU4hEECZjey4jqVaZiOh3J3Nx32wzAUJ09b3lyFixdhuwGxq7kUGDEnxJ4qHuwtgae32ejsKtBIHuijCbsWT4Ll832d9tQ36/7/8FL77eFbPrb4vUX58b8nwEDGcEMhdyOZqDe+OpLcGh1LkeRtbGt++KaXfsx7fX7VE0fhMquYnRlVcAFRdaeVwBX9lyASWQIvAX/Vel0N9GrqqMk0qWq6IYqqEZwIMUYzL1nHMY/jeLcfum5IXUwpxi6kEGMKKUiMHIW4JkisdhVvkdWGmgOVWdgrGKw+TXo8TuOY1zaHR1q/shg92EmelCQek25rDerKs+alM+N5M8r7EGU/9TI5ag7gs+fPfqsLDL6U/39CYlw1lzKC2JxVhUy4hvWcNlxrmDrDHOp2dlw6C7ND3IVdZjtMS9zR/hfuJt6y01UXdO66DkQ+WjE1B8Fn5HN+tAMAC6cUQwjFcnPXcWYSgYcQWM72MSESlhhSChxDjCFGsSgehaQJMSQCFoiAGdXqLG0zd+a6hTec81yIWXUZAMwB2+4VNqLGJo4m0xuRUd1JWi651ry5cQpxCDjEEMAhQMIXdF89q/mH/+DBKfHFeR7p4V7wh1Z81nEXFVbed/O9nYcefPjAo+69t51umNlSqvBUReL7NakS2SxqOUDwNsJVEpm1Cpr9ctB0RHNthP0kxEk4igcGwxkm7qwmZmJGWmCTlimPA8bDOB44j9E1hF4uLtPVV3H3jLre3c2UWNlZSFwiSKoAWIE9bwvLawj2+zXNTynr4+rTH/9TAzDr0kYN4OLd4Bfmz++M3lqYyDZmAea1U09CzOesPBFi5BglRAo8y/2EBsoQzE2NWEHasuYRz+7FFac3L0Xrpl/djgAwUwgcU9hYVw+IcczjmMexZoufpqwhlBAkSIxJUgwpcQwkUg0PxMKMGloNh5OwsFSMTxVFvRTLxWpKsh+h1DhzVfVmAUTVIj727Y+7uDz2kI8WYpZz+d4D6bTN/CjlwY7q7iWP03R0EneBEExIa86p6oXJaJnHAKl62mmquzvIFGxmCmWrSnQgsNUkStRCjhu07QCoBnBvtxvAi06mhYjIQEQCVG3AqfnNilCIXNkEHE7M1acFcAlr0b3utc7wlh2NnEmZTACGCEhADGKwoMYGs4AELAQmZjBjiciuSAz4JMSstf96oW7urWVEFbWaxR7y+pi6IKtO7E0LqYkvnUAEIRibsKPGYb+jPOYI9mCEqY3zY2O/NObe1ZPc4Kf2rm2vJ3n2nr3k3tNOwP/5nd4Am/s/8BUuMc+QWQX5IqfUDy11jtXwnMV1eSYFuH/rWtJ5rK/WN596jM6O0uWmlvFnheicqrT8Pbevr9TqWQp4MDOopQx3Ym9OLMAMIfAiUtaYZzgR3MndteSSQehT18e4jSkFUJiYpmBTV6bNmGMZkI9WRrVSdMo5s+VCxl2SXZDttTz7BW2fW7qAiFlhNmYE5+bK4ad8nHX+OMHZjd24Jhxdw0ofUc4xGH9w/f7nhzluPld5xCI+1+mRsfrowl7RbBMgFVwUfXbIx5vJXltnRGxKMCKphhS4EbiSqSwTaqnpE694iGadFWLqurjZtmxJSwJLB4youFu2YmXMFIp0KaYUUqjSDhzODbtXbk6LJz8sEdnttn3vqpqzTlM+Hse7/TiMkxU1R85eihJcBhLhEKWC8cQQ5hCrj2R9YlWLA1G1VdbYEgdm3+ilOedliYemGQ3B2V9aO/Y+/Lv0YVX7Ta3yqxEjBI4hETO1eb8Gux709hrqvYdSzxiMzd59S/kUJIawAO/r+fETb9RmNpVpKiOFABICwZnABmaIC1e03JaTpbJGrHwAZjHM1dXB7kEWyx7BqmY349p1G2bmEENK0WEiNWUbcY13nk87swpbgxc+NTe4McFno0MLcTovXPEYUCCv/6TdKrN7WRNiBCxEc5zwLMQ0E0IVYuwkxNyjtwIRwU9CDJqK0SZv9WScpzc17/h6lDB5NdCKV7nKGYFcvijMMVsG1rDSMgNbpEz1AHvPc1afv5Dw7TWL6cmx9w+trHatGekF8OiKPr9h/fP7l979vnt31TfN0Urv+vXqW3r01au2EM3rean6PWlJAIGzmbuCnIW7FLab7qLfRnEl92nwwy0Nh03RjWbYWCyPVsgMjBRi33Nk2fYxbnd+sSmpP3JSsBGBqjm5nlNuql6d5eGrzeOUWvZHKH9ImMqnlTayDpl8W+z6rY5vNd9ZR0q9WrASGrfhF2kpM2+23eXlVpjhXjla6m7JLFVaLmZkNQSRa0xHDTllglVBDM6M4MTStMq6x4YQQoCZxOipizEGCiEcZByzFnNnVdfipRigxIWrEEMQ5hg5RJEgwgy4MIVoLTzP4ea5qJ4bHb5UqbIQrEz7t6+/K3lIfb/ZXoTLxBxM7ZMn+yIKP7qNPiLEPJzuzVGKqspg5Fad+5uP8RxpUm0mp63jx/WPcfdsZdKJ1UmMIdxQCDeqlW1h1VgQihX/Us1WXz33qkEI4mgGJCg3p6kqy1S63WpiYmERMkC4muaJQeI1Q7W5s6PUXZK5BqSqm7opwZbkCE6r6BAA5MRO5EIIhCAIgsAkzMJBOApLqBHk1MSXJsRUJIaI6eRGD1SFcF4z3qjyloEyOqFLXlclu0GtOr6T1b+VFMzJQOpki9eBEzuZkAYCUyR0hLiSYwgzoHRiSVr5r6zL+SHX8H4Aiz8Eg4VqTDuBWpg0ZmtpJRCsP2QQQXhp6CPONfev+Er9r73Fswqy/s0Zgnf/kSdH7Zo+fhzHYRhyyY1GaBYW/wBKNXsy1RCsFYY11/CkLxERrPIcYY7nat/MU2nhwzuNHT2BB6zjEtaBnWukZ/EnAFDd6BfPa3KQ6wylLi9AlcQXcpcTpjS3xps+AgEiTGBwdULXx9jF7ba/2G2vLnZMZTjuh5ubw2/+2u5unvW9dIljgPCIaMTGkRA64yC47jzEMHI52DR6Kgh1o3Fyg6mxo2It1XFYHcUbVQyclq3zM5+7D/fwlfV37VJQvV4+z9uXqf/+G88/0/0Vdq/Ug6XZCA08ej/g8g7jAeOIwCZj0VhUxKlqUi3gYo3CtmY61rgssPTMgrKvrq/8EBCCXF7uXry4Cizmnqcp51LUHSAWd6hp5QM0UCnV0uTuJEJGQPXwYGKGO7MZmTGRcCX6MniLXAuBsUnOCIHiEEpxOJfsw5DHMU+5mFlVlIkgTCEQRw4igZnZhTmEUo8CAO6Wi03ZSjkLtjgP7vWZ4BhzLxHm6MJGG1g/tYXaji2e17gBICESQGHTsH/5+7/9i+F4d/XiZ/TNr7YXz1iSWXZTooYLLd1Nq7NglrROO0yrX9vb/VFg75N9Yppld3n9Ty7nO1BMs2mCOHGTA7jiJ2bLgfROtoO6l1e+Fyf3SsBI7WqzDNQeNqLmtwl3dWgNe5v5KdrGPs+beiu7mgFWCswEaE7tzN4Cc88KMRgszKG5vCxlwW4aJnNCZtb+8zznjKp71XL8NiylgYGOuXEL3t1WNC+/IJxs9w4Ck4PMiV2cXbzKcMaNHFre6VrxqYUw22hsUaznOLyZjLN6DzfA6QvU4YNLi3p3DMfjXXx7d/smCoUYmWUFC/zki6aOKT9Azp5CYtYHwJkI4sBsm3z0LevH3rv+oZ0wb6nOjwmXT5WHN9XWipu4OoyDhF3Xb/qLTb/dcBezlGMcb7vjTcp3AUNMHW0Sup0h5DGPLjlsCyc3Z86B95GK+hhsYOpQlQ+gsnEvMtVJUvlsMsPHlYXm8cu+hvnD2To+pRAcpBQzbQpvC5MZ3DznqeQRsWNha/5O9ITev45j+ojCzJtNd3m5DcQOy5PkXHKx6hlg7qVoKZW3hRysjlzMDKwOwM3ROMVcBEzVV5yWXZ3g5l753Jg5pQB305oCpzqzkxO5k1pNWQMmKHsxsDqzC7GwCzMHYqaZjcmK2pQtTx8anfTJM5SYoUXzYTq8PL799fFw1ycp18/dAQqAAvrhT7PV8DnsHXbJDxJimr8UKoM2oXJsz3Rhvjrb2+b3U8QoOVzdtGq7zCxENfCYYF59+9oZXuvYBsvnT960Z6KGTBgZQa0JMUzM7LUHKg0FVSDA3fI0GtS0tGeamzbnwnqoEpFwYIhldzOdFGqhOa5wbkjM+QjNvAirjGDVJx5UxQWpdEwuAmkO88ZEzIuc7jU6CbPM0qyeLWuML/qzk1UJbRZi5ugrrtDTbLVvok6lVW8PYQKTC5uwCWsDR9YKWYvyWUT/FcryCBTzQEvDEiELr3zKxRaBi8i5ZnQgZgaxQ7yKb1j6s+kXJ62qHcLrd/n6zpn0swqj55VcG5LPrlcJbyYfIeIYAsMOh4PrtOkENl5fv+j7LXOFmhc4Z2G8PYkFn6u8z/uh9iP5OT50nrHuvqhxNkInn6FK6NqkSvKV1rvWqOh++Ov6Jff8YDALp2dD0KZzo9lbXT1hYPUmpko6UKfPSYUkInKFF3JjopTixeVue9FvEydkHl7F2zfPvn+Zjjf8rPO0na6fl+658bNh4sPNfq+Uu8tCsZRc8ts0ve19skgUIsuWKbmzryKwyMHOFYSZe9yqku7QpW2fYdQfxHw1HXeBpKimjgIRnUDHzwgCnUbgQ55JOI3L++6bN6oaNu8UIFFCCpJFFVrKdCyh834Dkdrlq+W+lJOQ/Z74/scKM1KSrguRCeAUYMpF3QzqMPOiUtSzelYrBebI6lkLqtnJCFW1ZDCXmu5E5mS5whyoJViSUGF8wODFypjHyXLxonAiCiJSh6/RNrpDC9RR4MxWef+YZ08XWFEdpjKM41l0Utt+6qlXz8XTSqcVHtNuXxb68vWq25b1Z1amw1s9vAp629EQMLAVuFdIoPrTPw7+rZCw9neN49oMtlNzhl9P249GYhxwsLVQlXbMnCsaP12pq6gF0FeM5KS981nQr1ElQ64S1yzSLMtw3oNaj1MdguZqMbs61Z+ZlVLMS4tFdpBVRxFyArnBamwTw6mS3ZZsMKQYEDjbu84tZmb2uUELDIMn/zVCgva3ijLLudw29MqQsYLRfKbrOyExABai6DlTns+wYxOlMJuvTtkX5ouf0wC/PkQVZlayl1JTGrplturLJhSYhDgyJFBMEHaSJxSy+rSHKuNnm71tawJKHjQfX70Ek6YUYgyBO2aq6PLnet1PWtohKbNKs/rqngDk5x/q9bqxfgTZ5vLvA+9/tMZqxu4phC6FXRe3AcmGOLwJd7/b3L69OOZeJF3/vFxubne7PV9OeTeAxy6MhUq8KCTFB8+HfXbzKfLoMgIFMCBYZTh1Y88wl8Urse0gcp+898uX2TXSqtwwe/h+5v2af5wpzdyoy5kDstvk+ai5c8vusVXkSb390wth3uWIhIIJB3czqLmai0LUqZhnUzMvqmpmqrkGVovDGMTsqGgR47Srz2zswiJSWaddi1W33Jw1qxkERBx4PtK8Oc47w8mNDTCDc8PKCUxwYq9CzJT1S/NVERxWdDqg7DvJEk1QYAU/GP97d8U/TIhpxNtANdKAZhKwyson88HncOM5v9uPLM4QkXDlg5fKV+tWucGrpxXcZu6PVjdlq3iAN8nHqw98O+Eq2BEqgofKnGLk1LzAzaw62TismJqVYloMDiYOMTCJu5dSagAnDK7QYlpUsxIopsSBdSpNgrg30LM8NdONLOJLE9JWfianUtHc+rdh7i0UY3E/b/YDmgUVAAsVfpPlCM4gwIxBcK5gVHVVrusQKyGG2Z0qNiQSILTitj81pr327Kx6KOqc/7Cp4TRjgPX0gamXyadRj4d8uPOSmTiEIDFwipKidH3Y7qgTSITMDW3ZBXx+JNYH3NnBe9LV7h+XC8j0iLq5esQiSxMRYNN4fPMqM/nF7qLfbEJMQlwB5up15Q3DaL+93yk/oLwTiWm7/CKeEmZm3kVxP7Wo/nUsMG+zU9Z8Yc5EIgJCscrd1miL6excqyESvs5uPR+jhrOev1fRldbelEZ3snVXVYWyrYfZIWKe8u23NA9MTT0Mpk2IXYiJEKYj9t/LzW+u3/7NpuTQ/RzX30w//xO93AkXmTyPPqhO0hUSk+DmBmTHQeHuG2Sn7ChObrPGyT65Hlmn4MWdQAEUnEKBuIu7y9ITn3XMV+1tEryZz7TgRlx3yAUuX9M4/6DC85a1vvhREufTpUW0VeoHnnMiCCF6MTc2ho6uk3lCU11q+WynkLuXotOkVJO/NhZ0J67WdTjc3OZkJOrmRU3VSjZTN6vZ243InUqNPj2B7NY4NZg5CMfAKTABagwSSAUiGnTCEG8p/gA0Omnn0ODpanlpJndyRzEelbI18B0zmrkCzhbYitYI2ZN/191S99XK6OEKy1SmAN31MWcQ3DTDjeDMNZCV50Pm1LHv7vbT5/nDven0aUhMA2BwQl/mcJWPfdxnLfVop1lOcYM1IabtfTUjBOauqdl6zWbtpGb8JDcCCYlI4tgTm5FrcdPqLiYs5JqrOUOqx41rsVKsFHNHiNR1XZCYc7Z5P4cB5ppLKcWKSUAMkQNjUrdFm33QoJNQ8o4yizXnkAxVEb0dvKezoRpLH/KNVfnNZ9reudAs7DQDDQPMxi1Raw288lMdnfkRIeZhuS9GnF8HmicffOUqXvM5hMCm5GzZpzze6XB0YkjwFCV3rj2IJPWUvP3oTDxcz9B3V3L5+acUqv1DRHDVfDyM+y4dj3fTNGy3l8zQj7AO/4GWdv6yCzwKb/pIhONURrVibubc3Jg/565wMrw9WZrA/ohSMJs5G9UMSYgpBuEyBRxS3u/y8SKP4jimpNvLuHse+82m3Ho5vh6nMpH6xkkITl7IC6B1ExRxE5sJHgkgUmMdKL9lOwZkJ4HsjPoqzduiRfzQ8kDoPztoaFZdsuajllG1UIz99polkIEU1nLUrIWph1jah4ha9GCtfaFCp0gBN5TRczG2wqmUIVrPIsT07qPxE4qZH4/5cBi1CzFUJ1bM8JqZwZzMMOvNlYfZtJGFovruVDnSyJrLBVsLdlBnoCo+QhwCxygsDIe660nO9Hp/VSsXaaX5rBPVzLZzSjOumS2KcwHrlz2cm7ecWynTUacjWxGoenYr8PJFJ0YTYt596iwuMScWdjcm5+an4+asK4rWWfn9FE6CdU0+bSKawwwLH8SM4c4iJu6D3rPl2M2M2Vxd4YFiimETuy0HV7dRzWCM6uugzDxldxBx5b8zg6qrmrtR6ne7ixTC3d1dniaq0J/D1YpayRlmDAksRAKDm8HplLCx9eFJTKdlN1ourBbyjMFQMyehJmytNDMIRCBufOzkwJJg/dRjXBGX2ueLplwTz1TbGp29vb2xuh1Uq+78bw0LzaO40AMQnQMNj6AOa+1/XrY+b5+BJRCSBArswQY92p2PUsiJYWTuxmaxmn5pDjKfB7/O24eb/r3XLipJ7Xdb8yv46e8HbOur0VKzUvI4DnkarTpMLWfNTxSt5A/+1TrX/yx/zo6xmVbotA+QCyEGXPby7LIj8JvDAUMp2d2dSbmSGsw5Fuep1xBQnM8BX7/wvKrr69XjxM4m0gq4JJon5hkSw21GVAc3cokhhtglYfLhVuj4PMnV9XWHsjf8fnNVQvzay248XB7v4u3++/1EY4QIMVgLW3Yb2XMn3gtvOtbEexc4OxGKUT5yvgnT74PdsRQLvQcQiyPMcvkpku68rGHL9xw859iVtFaf5rPXBJeURz2+Gg9vDtNBthey7UPYciaQM8hgjZ2cAcBsvS5s9XwCaIZwzoSeWVNywN1XdZ4V/sdq/uHozAOFZ0aYrWgZj3kYDCM8TNOYemUBMZGRLynrHnraPfH25Xozja5KKX67H1+/PW42XYqR2UDUkvI13KOGdMK0Enl4S/FF7AsO7uwAuQA2czBWT0szB8zMSOFFbShGQnX7q1nsyBsjMdUsv4DWdDoluxFQaZ9dCA52EkNN/u1WaWpY7vm40FkvnA6Ze73x8MpSrF6Zf0eAlTIc9oe7t/lwYzCSS7fJvVRXFpw8b54Y6SdO/9mxwZtR6Pwhn8gTQ1C2zF6IHJyIgj2i2//YpZHhmFmNRprruvzn0XJvkIjZ6w5pRvAUAshipsIwJyIWIZvNa5UPRs3M4FUMdzBzDCFKFdWVatx5vaWYlUKOipW4uRW1UtGaR2r4GBJzgluWja4x31VyGDcr2ay4lSDEXZKa75fFZygFWDwwsby4bk0+yzGYKU+Xk9tw5sBQDbt16ztBQlQNWU929tMDsb7+iC5YGxqJe3FymqDkmbkwGzuREIlzYE4xdB3FBJFZ/vhwFeRhHT58q71fmKrA2J5QStkf7u7ubnYX1xKSe/xkmOcPpxBRinyxoecX6eurCIcZcvFjhtWM8XCYq+GHB6zZ6sM71bqWgpVryqPZkloZRJoNoDoXsLg7uSbWyyQ/u7jalHgsOo5lkgCdZP+mE7uY9jwOm6mk0hO2gBPXvJkq0MjWiSfxLCAFTGGj6Lgpr7vyMpbX7EcjTC4T3KjmfHJAZwbBH1jowQdeHcAOMHEA4PlQjq+G4xvB8wv7U2cCmGf5RM9idtar7x5RZJVj6pFb89rUz8RMZv5D1sv7yrJYquzb0uSNx+NwuHPqSPppGouVCGOIPSId/qBi5seh3O5zMY7JK00uoWIh1RjKczqsRqZQpep7IX1U+WJmULBNzIaINfGwGBkBcIZxIzGx6hFY02yRC8hcs1uBOZPE2DNH1My9agriKseABF5jHz5vhzzRS2UYjof93o4HZ5c4mI6wgsfl9c9TPlCIIWDJz0AwZyusR88HInB/ycIG82amIP/svAcfVCqVi5qpGRMTOTuIZni5xgn72pzkXm0fzeuOKMQowsXMCdMwBSOXJEQCDwxvOURt1laa46xZ9dNkQs0Szu5W1Kdp1Jy5fuNm6lrUTWvglKmpe5lKyTU35Vlj7oEfOP/34FK7LExWbByOw3DI0yEFxtXlZrsLiVl4xhrbCxYh5ixOZ9axV9tjfcMc31TXHhYvaOc5cXf9bvaLXz+yAUMLEvZYqVU5qwhWqkHTtitBWR6Gu7eHw9usE8hIWAJLimG3CZfXsruibushucu9tp2960FN1rf6qeWPVvhdYjHOUBg4EQkXLTc3b1PqN9tLCSmlHXPyk+Hui6wYmlHGxzcQWv1b9f0Dl6EVgwSAajZwI6LIsk3hxWX82bP0s2vRMk1DPhzzrZM5RWEm8mLNKQx0xuv98MR8iMH4qT5Lxsn76NGqLQ/Xx3xUtP9nB7kLULmQxvGgQlcX3S+fp18939lx/+rm7jjc7vKYLO/Gl71oH9Xhl8Rb4jduZgTmGvLKhAiNNdFSPcx0ommf9OZav7vwN4nvzH1PffGuoM/eKaKDCYV8Tivj77OPPV0WBge0TaBhTTPGs0KnvLgebbylGE0nh80EDHURz+jr+ZD4aiNfb0c1SGLW1GuwJhPZUyvrbKA+AoM5+93yiYmYJXCA43A83t3ecVCkYSjjRktfQYsazfH5irvn7MfRDCWoV3KMyCRrFNsrpx0YHNhNglfEhWpCutaMyv6w2sObZF2FIfcafUMgr+YOcUVlHdLJpgmmYDdoLqO7iUi32V7tNjHGUiwXHYZS3GqSYIMQYZrwA+PQnkBo5g2yMsY4VK0yY/k0ErtNx5IH09JOTGp43TzF7uNkZ0w2y96F5VdtG7q3KX8UEtN2O4Yx1PMw3r5yK7IZuLvy/pqlewj1/JjFvRoire40C1qCZpBZ4lrPSl32Zl6zIIUQppynUnKeJvMppCjsWsir7YzMtSkizXozH9Jg5hBEmLmUou4lZ1dtgriaOxhek0sGYS2aVUtWq0jOoyuO1kgM3Xd8aX6+jfioksQ4wV21TOPxUMgE6lb6nSb0xLFtP2iUA/UlTIQ5xG19PNRGnpA8oBoGGv9OpZ9kdzf2Fta9kBI/Ue71//v3bmqW9spv7OxgKzmP03E/DUd3rfGEQTikFLs+bLbUbTV0TmHOnvNxb/w8paWZnXuY2d0Oh7ubm/7Z/na7u4yxZ4b+aOEpn2dRrlid4UwUSAIhkSdMCYPzdJGmXfSO2MChoiE85w36kQvdX+xtFyAi9+pjP2kpMaR42XcpiGQoyjHluyukHfyyDBdBeyGj0EtKtqEWaHHaSZhJGBACKetR8hjGu629ucTLCxyZMVLnvC28K+gLkkHmmvmMb36urlkJpKDVVG8B5wJnK6SZtMAUEPCCB9FHLo2TsMLMPzqlxsyHJUIixIEkGNGkZczTNhVwoBob+vlq5kBRTBlgL65MEIYLhJwxIzEkXHleQM4szk4177CRwqgGkjTsBVTBMKJFSfA5ZKzNLxcydiN1uAIZNpkerEzuxb24TiLcp81F2lxtOUY6Hg1WMrI7E0UhNiIjD3D+4ltfBZQ8q45FSVVcPY8lj80ZiwJ45Zv5w160LuERfeiJn7X43MoLAh+n4+3r74bjHYW+u/rZxc9i3CW0PE8NMVv9/HQsriWsz1oqBmTurupofLjNekogFlrirqupcSavbCpLCGG72YQQHcdc1FTHogfcRuFsWeHO6hQcbi1VbktlAGe4EAWISQjEMuUMU7NSyXRcVUtmcN93IcQK+JYpjzmbzhbUFj4AzFpVVauwaEv3Fcz5jrMCCdx1SXOYDj6Nw9syjMP+Ik+7y8t+swvSEQmWID8CTi60885KVWtelFuc3s0zx4zXKBA4LVHoc20eEWKewi2eRGVO6AstEjwCSYC6FZsmm0bPpepkQiwcUuxC7Fk6pWQmNicnefqN7z3Y6emaP15lanFcTV2tjubceJN9yuNx2B+Od+N03OEZC5kvdOAfe4p8YKWazuTuXOPgV9+eIQBrtOMMmJnnRl0s5nO6GLAzOyPbeHc4+LT3IQbvJV118Q2zgasBicHU2BT9LDrwQXNnP5v1FX/sxncMyzvGq8KyxMSeSx730NHFtd8U8+NYXk4v+eZ33e1v+vHmWdztJCTKnVhHmChJFAZQfGmBu7ekxiF4EKBIedWPOY1vLv12F/ZJaJTrka8O9OzIVxP15sGb4MBwhbvNuWB+0H64LJG5f5t23BjSAGIJsaYOJCdWpVKA0DgIZl34sTqcXVltUG22r/7vRym++ksUYnd59TyEzjhyv8tm4zjkNHUSQxAHJlUzp1UNzxPmfMybndSghtLETiNv5BpuGUCQKLEjiSShcoWLkIPJSU0LuS3+My0ccd5ia2NozlzmIEYQgKyFjVh2n8gzfBQfSY/IA5ADed9119vLy4t00Qtgk09eRi/ZjYUDEZE7uwXSMKNtT5ZHcNB2/xKr8fBvbYFTI091ZoVoFc7coUXzOE1D0al6Q8/68mkUPnDmN43BQWT3HBY+HolxAKiM/SVPh9vXwzjF272H3SWF0PXMcnb/A9z3y5X1ad/8eev77+tjZ/UxA50ExNmC4HBzLTraYELK7kTG1iaCsRAHFhFhcjEW5iABsCAC92kcXYuW4tU5XbWULCyOyOTCZA4vaktm0cf0Ma4aBz0CvTz0j+GZi5iZY+o2m63lUeB5OozHIzHgGbCeTEJHDAY5w3GeFH0+w2ow0on5h5ok7445swGcrJmJKvFBc5j8xBjhM6vCjF+s/joqSYPCS7GSXZXMSZgZTMwsQWKUyCEyB3NyPxHhr4whP5Khk5lZmIVxEiNMNec8Hof9MBxU8xeQ458un6PZzX3dC1yJQEzmpRgmm+7KQaa3XYLzMyoXHYXMTG72BU3hn1iqcY3chTwxCXExPk7e6THub8L4ttObK/gF90k8iBM5m9S1AjpzzalHEciEMpFu4R1NvdxtfBC2zJu9XNzy9YGuBt4VivZZhuFBmY/Bx781AIwgIYXYc3CQaKGSERJmCsuPKpWT4gfV+F3l3Vr1cuoLSCSkbnvlkgrYQweGowCZqQR4cS/TpIYYkrBQ8/C7fx58eDGw1UzpbmbZ86jliDyoTgyE1MduG7tNCB1xdJLZn73quE7slVOyMu460VrTXxpc6UOZnFBgGT4BRQK6GNF7OeTMQzYtmkHUBdp2cdPFQJ5LA/cN1iB0d7iSO8+uUl+yEJhJIsXkErPDTKMXd3U1qHMgYnbzeQg+eV94gMQ8jNY5u32lOFX+FydzECRK6tNmg9f2+ve/9levITsDP/vqF2G78xZXWelIbPW0k4/TU9avH1CIqManSQgCm9V4mg3r3rIANKKgeq2yA7m7e856PI4lmpbC7kwMaC4ZShwIwu4EUsAFMYSYJHYxMJm7mguxu3kgh+o0ZStZS1YrVukCzN11GCc3xBiarr6YpespveoAvu8V81RZQoea+whz4ChBZNN14253e/NqON4e9zclH82L6dRvL2PacmBqRLyLpajigTXdkDc9oAJcZy+i1Qdjcp/DPupXj1hfn0Q0Znj15CfRZiPVNYHqxlD9oxvY6rlYzjCceEFQyXsoMHcSPDApsldna7KWk69qCgCMTuDHO4o3bO89DvWnJs4tJczUmiEEruZudzcnuFbHt+NhnMauy45AtCzAH02fbaWZDgn3dLR765AAZ3I1N9WSNY+wiVwDE4UgiYZOMe0Pb18FttiZMQJSH+Jkru41z1bTL1Zcik/OhypyPnRQWtft3tk7h+tRU0Dm/aSBHiDHEixZzAS+7bouxD5Jv+lGi4fJLgkJALJjMsqQkGKILO7OKl7ES80+PwtBBCc3V7cp+ShEEtnhKQnbNoMOvntNz2/p2YG2IyWttCINzgKqS6ytPHg+vtRYITqhpctR5RWOcYKTEZFwSBw7YScEzaTZWUHip/TAj6BBi0fCvStmxh+aXsBnPeihMnmvnJTkuTdW+H3bIOdYSw7OwWOP7gIIrkZBQuSYPEULMjHIcx7uDsWENtecAqM5bTqcPiW1PIGEKBAzoKqTD7dl/1rHOy8jiEK3TZvLze4q9hcsHTiq80zJbNWVu/rCGMOctPKB14bVNlaHX5i7sWby7GUk5CB6sYnPn10GtuEuHt7SnZRhcIWnGFNKzDJN5TjaMOlobhKdo1WHbjBg1Cj6PnqOvZcvo6rAbk7CJMIxhX7LsRvMWYugELuAxUOgAGKl6htHNbapdSzgj2e8vzcAoGqBOwfZPz46yQEi50ChC90GzMf9zTi9TZvnqd9eXV7ydvNTUWBQS8jI0hzPTuD1iVC4LtrWB7xE3NTD8XAcU9ZKoS4kYHO1GiDNVmeZuhszhZBSkCQEUGA3chAMhlK0ZCuTm3qDD8lYAHJCVncUcxNmcCDiKBKD5MyPSsoNiZlhRwJWEUAzd33dwedfAETCIYSQUhTWMmg+juPdeBxDYKq2K7PYOcfEHMCkXs/Z1dmwZHzRCkxj+XIJh1o2J58reUpa8vHFTlFTp1EzEDVG/FZF11KmXHJGXWCV8hIkIlFk26Xn1xfU7W6O4904HnIxB3EiWjKqrOUr+3LxQczcdV3f9yklkeCWq5uhWTke9/v97fGw77ttiMwsX5pJ87MVInctefQyiCsL3KOLmGPMNu2LlxzCDSfhrjO2sdgEZA5K4vMeOmPQP7ofRS0NoJW+22wiukgS0mTxqKUwo9ITuGopmrMTjKQYcracvagbwaWlf22s5WZuhazEIGGzRRfF+qx0N9FN2b7F9Z52mWJp069ujTWd9ecBBedj5p2uaGjW6QC4awsRhxnMDfaHNf/ei8Q0gNZJQOIcXAKgHDgECgFB1PV4PA7H43g8ZFCy2CPEGcH5AdoC13y/xIBa1ukwHd7ocEs6EbNrdlciqCMkp+Bes/gBgBPrTMJVo0hlRvxrqxrfANzMjSy7HQiTWGbWCA+gSCUKLFBJErvocITQby9it4WkccSx2GSizCYJiIYIFwcbqTOcvtRet+ofkpT63UW3vTi8CaXA4ASL7sGKl4O3bNGEU4bgz+AQ9hFCzOxMgpr11iRy2nLsDD4eb25f/t3FxYX/yS/Er43CimL1KcDy/mR9KPW/uzb3lHtqQgsxSJZTvZF7EogJRk42J13x5vc3E+o7vPjxOJagndS0i5GCCCu7CjnB1KhasRlIsMQu7DCPNYGG6ZTHPB41T9K4jIlZOEUjMSeYlZKLai4lCIdAFEJKyQhaLM5cj7Xe5zCMz/8egjP1Vp9RkKprMEAQFokpphRjFNZS8nA4wkoueRq3F6Xb7kLXs0RyUoAqzZ/N9iCi5iOP5e3U/p7MdjU2weYs2e7NUWY9Uoue+ajuBaBm/a1mFyyjUSdQRV4ZBq9IwDSOwzRN7s5V9hcWkMSQunB9ufnzP/km9hffvnr93euSp33OJn0giga40WxYaorASht4ULPZB34Nj9Hq75PF4e7CYbPZXlxcXFxejOPheCjmRuxmZX+4S2/fXF/d9JuLC+lIIlx/CiCmdcSyRJcBmKXIlaGxUiKxEJGVrNNUU3SJcAgsMXhJY9ke7445H0mwvSSE7b5w4YB+g5jAQSrRMzcO5ofo7wzTrPaEVk1gZVZkgB8ByGjBqKvByLkyIldpeD4nnEEchLsudBGEoi4D4gAuEHeu2mIZdLTpMBQhmiB3RodSJncLvrjpGMgM6q5mxazjLm6eMV+Qyzj68bbcWtz79kjRiRzKlSf+JL/8sMCktgYbv+dqN1zBVqfec4ObmauSk2hmz+bFKDYCtnci8eu/y/V7/jFPF59Vog+Z3wt5+H1kkNzrsNcQS3NUREvdzIwYwhwZgZxcp/Hw6tvvDsejSkqbK/IBHlwFYP9kizcRk7BICMRGDoWOVg4oh0DOJKaDjTxRUKcIDiCRjrma5Y3I3Guaa2ZJIMEcqlOhLTggBHMvxfIx59uEMUQJ5GxWxunNywOzm5acJyUO212/u+y3l2FzVTxOXiaXEpI5OwcgmguM3cmgRqMRfxCkDNS5xGfn0ZOn87zVGzkTEEK4uLo6Xj+7+3475gMcpCX5FPRmPBZldu5IthwCqGbjWCBsnjeA94s19yrxiVmsDWTEzsFIzM118PEtjW+47NmnyrD0UwQkzHAF5j1v1ukx73BEM0DTaPl56UWHF1MUF8QZ1iEisFMgY5CYF815GgqxG2nREiPcNQ+l5Fy0jGMeJ9fMQiEEDpFiotAXSC5WcnYzL1ZJ8YgtADEGJz/K9CgS8wToedq0FiTmbIMhcngpJU/j8XgYx6OWoqooBeNY1FVVteQ82G6Xug2FxCwgMZIKyJ+sljxvQba8kRmVIwvEIMPZFvoDBg6ongo1c0VDzmosO8MEajZZGbKOCiUhochBRDgwpxRj4BSoE0S24BnTcbq7mYp3HDlFBrtXJofmWvnligPE3HX97uLq+tmLnLOa2rEouZmN03AcDsfhME2jb2x9NMy//gMq69oRM4twENdArE4oZmMpPMEKRu2GUg7Hyf1uVIfcDiomnZQtp45DZxKcgkig5irk7z3YFqnxMXnlyfJoD1YXaoILSxTEwCyeixe1oJ7FiqurilEw8GRuJbMXponTAByUB+LSDJIOU1ghFAngxC6hSOdhC75QC3fsd5iOxBNSqSlsZuBmruFn5Df/sLU3G3vZlW2qSMwiSP348vNjpRnZPuDGRnpWLS/uCnIrdtxPXHJXNJgxfNuncLGLXRelwI5qERacEuQTO37GxUmYIVFDIonONWC+kJGXsYx7Q/V3KZw2jFCthg71ml/PmaRjDkQyk8QAZtTyKJhREZ6ilMTWdxJC1SsMUDhCYFAqSi6R0oWF3WBdVjkqTS5GBBZicYgrt52OAJZ3sXf9gHJSu2cwn5mChMBd9mCT58P+cPtb8HRXDh5St/kmbb9m3rBE+5ik1u8oTwoxZ3J3k+6btbrqSw4vjqKuagy7SHbRlYiB7Egs5/DmWjef5ff1/zx44/uLLwvwVE45B6qQO9Oizud8VV24IhdNsGTUmWQGVIc18myq7sIiNSlEJa8jK3myMU/7m2EqJRwpbmLqRYS9mOmUVbW4mpCAOaR+s92FboPUTcVv745aCrEQq1evc7jDJYYwc2We6U+EOT9Sk7ful8bYOzvEoDJ7GRGJQEuZDre3b75/+d3vDvvX7hYCdzGpQ3POWQ+HQ0pvt7uL3cXlxdVV7DZEiQECWdsVqRG2wW2JSzKbAZhHEKH1F+e6YKvvvSFulitfHGlcoMEtVr82cqBUXIcAWLZyUN07ZwqIElqQZeAokmIKTGUcXr/8Dhxfv3rz9uWrN999PzoTUnchwl2NFgBmT/p1RtAPnnR46oys+uLiJ80sqd9dXH/9jYGkMgFZvi0lu6mWUvJUSvZKwFlT7cyd9SXKMjKrS/OcwWLimZOdr1bnjNB4U0VjTNsLiwleik4558M03h5GcZCxhWQyTtPxePNK3dUZkuLYSb8JcSuxD7yV0MWu4xCouqyDQGwN+vG5DnM3zBjASiXEHHO44u+qQkHlSKU5MZ5R1bwZbe8yU2aKZImNyVX9OE3O0segnBVHzyOrB+UID64U1EgMNCEckA6IhcSdyAyaqeyFjpst+k2HTkbZ5iKT0lhwGOmm8Ghs5Ew2Q4ruqFG/dMKLmvvXY8PuJxfad6DUM1I4+3nN+18b0tlDi1kgIYgQjDxDJyJjeuQYqW+xynw1U3Df+/asmh+FoL+r1PlWGbd4btLcvLZJeDssvQHAzMZUTG0Yx2G/f0s8XTz75tmzX/78l9fPLuN1n9Vev3y7v9uXHKEbCZ1I+ARVoUqiDGOHkEh34ds8TWNxt+mtWWZy8uLlqDD1EbaJvuMilrPVXI4wEBOxkRiLk1jNOVR3e5YQYmBmRrexbei6EIMwsZsrscfEMcYocZzs5ZvDYcI+BzNyghpKEbMAIga7cXPaAgAwUaVTf2qMHMtaohl1e7/79vItzSQdpqrTNBwPeRjEQrCoh3LH3/8u/Yvwpt/rMfTXL77+H1xJn9JzZiL9uGFYgnjtHMH8JMbeGmVdweQY+77nKcbgXo6H2+9pc4ktIwkgn0FD/9RCAPG8lhfIghnMjsp6V73EmqOQzrTOABTubjAikLk1ZzxTy0OZDnrc56lMEVBMTkGCQN1dVc3AJGACB0gEh1kEdiJa+Hdd5JQzrPILL/vO0815z7cV/HIDE7MorJTpeNzf3Ly5u3vDzDHFAgohoMWhmwgf93fT8UCad5fXob+UINWw8aQ2VKWtRpu+1pp+6B7G7gwP8MToiYQMrkBRrwSYKDppPmgZABUhoer7JCIchIMw3Kbx8Ob19+r85u3d3c3b4XAoFMo0xLyhKDTz535prMOb3CYx9RdXL9RozAqmNzemxzstVrSoqbsuEuPKBvCHisQAIGKR2PUWgptqiToNppO6MXNMgUMsXrKNw36f8whnCsHRJ2QhOFFx0mLuLilJDAwQv4vJl1Z/zy+/H4mpfxf108xIC9xFhJzzNDkwWY3/Hr0Mprc6HmDGNGdIdTWTAWHP3R02R/QKhhXSSexO6G4bh80GsY/KoVg8FByLHjMNhQfj3CL8zM9r1Rxq8GMNtQMAS+AYrYuwwqSwya046R8SbbTP1mRU/lEAjw20z7Gj2cpkZdQymup0PNy9eSNGXaHrftOlbrvdImLMx8PxzX6fha5D7MgZkE+j5+GWMNqJmWMf+8u4HV0ntcGnAoDMzCa4mg+EIWJwEZ9KywBJEBEiblk7ZiGGmSSEFGPHfYoxivSJdyl0qbEzGAwMDgTAFVPR46j7ERpZg4DYXMhQ08TwHIzQ9ugW38of7Ij9cYXmkweAm2nJ03CchsHVSGGap+PhcHgV0E9sFDdeifs+69R/RIh5zO7VtteK4AlxEgqBrE9XF7sXL17sMYBwd/dWf/M3l8rXv0x9TM5d4xpvvjyzlkrzs9pXnxKXdAJiTj9tOkOV14iFFn4fYrTcREw1hURNd0FODBFvPlZLlq1qcDUzdzMramPxUYdyuJkOt54PAUJRPEWLySi4ZcApSJWPnNiCTE46ZM5GMhnITNuOzEwUiJyE3X0cx5roejliz5qzwjDWCatXPjOYqVxAZBWBIvIap29uUx4Px4O6s0g3TCnEEJgBuAF2AI37O8+Tq11/1YW4ATmMauLMVo1TVc4grTlfsFehlirRe+VkoNMxs0Bhjw1jk76qhsrwyNQxbYQCwUq26mBZylTjYqYBZRIYCzNAsmT8JHfTko+Dq3k2vL07HMcBDBJRt2xFUBhCRJi9KT5hGT1xptZy5lngXr0GQkzh8pqdQ0jJkIuWnI9FZ9dOcpAROX38EvjBhU5MQLSYBM9m4PLpdKAwk0ThAJjERKknaCRPQn0XrAwS3DANw900afVAIVcBuhglxHHykid1BLPoKaTExMs6XWbyqgb3O/sM/DsrLaXSop80H/5lN3dzraweUrLnoYAF3UUIFHkSvdX963K8cS8Q8uDORMQFclPSa9rc8dVAOzViH4LedLjZpf2unza9kfCUeci+n/KhyGA0OmWwMldfAV+cOkCzFjnThPsMyNxrJkArp4T6gZmX3yw98A5jUHUNIjiDRAJ1HTa96yhs5tnyZF7gkUjWO2ndjeu76sn3Q1CWWX9cj9cadp4xqep+xwhMDsyBuPWW2sx2gtSUcOyax3E4HsbhMA0HL6UMg44jOVue8jge9ndO+fa7/ZubN9///nvX9NXzbbcJXI04i6X8fo89uQyX3XYG0AKlTdpemw5lutE8uaMmYISrAwXTUafAzN5SJ7GIwOEopVJr1G2aJYYU+20M2577PqQYuyR95BREorAImNUtl3x3t3/16u2rl3ffvxky9f3zqxASUSLihlEt/Y0Tgspzm++NI+G0nOoRzY9Bn0vzH/988liCk5tZHqdpHEueVCezDAoSN9uLFxfbXbf7Znf5dUw71FDe98ydJ8oDC8xHIzHMIMtlyGW4mfY3locYQ0hpKsN0d/N28rtCni6vQ9ftXnAIrviRlcsKbkDAzC1D69lKouayCnilzSGnqhAvrhIOqMHc1ExLcR1h0MHGo+sY2YSjdaGkNElUsJsBys30AycykmKkZlAjVhA75hzPlaga5szuMFVVxUI890T5wF1kydQBVOTaipac81QKsbizRYsqQmAYYAxoDq6FzAJTYFLD+8frMVT7hyAxvP5XgWN3UkUuKNlLMS1aspdC5uws1eTQ0m67mZUanahlzFqcshlC6HadxY676EzW9JPTsfilc325A8TC3PXbaxaQ5XxQ05JfAjRN0ziOqrkSx73vPPrDKcxEYBCcJEr0IOiENl242CbXISV2n+5uXg0DiCmGmLpN3++6tOOwKWZuzS30hzK8fWxxd1PzUrJC3bRwTD1TFAQdaLq1w1sb9wSjQBZQCHA5WHpp/Uva3PFmQoRNwe82eLWT26uUu+iMUIoMoxwmOWaMhgnIgBLNwW9WSZaWPdvP/7yjMHOFaX9Iq2cXQIIwRQGo2GR5tDgZKyi+4+0/6NUfWwjuljWb1Ug+EglE8nCOMOCmZRrG4/5wdzMOe1K3qQT3ACvTePPm1d964U72Ogx5HIdp03csMYSEH9KoiqPX/YmZKIXNLullPu4sT5YnN63kFF7MDVmLi0QSFiFmbq5REFQ9k0hqVLJs+rDpQp84BYriAnO1DLOaOocpqx+G8vZuen0zvN3noZDH6JwgiSigJp9cjI913lWwoHoB1pDWL1+Yuev6rusGdoeSWOjS5uLry+d/1l19HTcvYrqWtAXxExT1n1I+QoipZCFMrtNwuP1+//q7u5e/vX3zu3EcsmPMOkzHPN1sjwXp0mTzdXfRd1s3fXSnog9axR9X3HGiv2wS5ZmWcx+vd6+mFUI1AVaWf7TUrZp9yiVn9+JwwRTIYmSRiJB0040xFuOiTUQyn3VZYnVqDjluZFafTEQcAjuxq4NadhPmiqDc0zoX+pYZZVnQkFl99tVNc6NWd8Hm3Cxmplq4wlDCjZWXEERSDFeXF8+fXV9dX/ddR0Iwt1MwweqUWaJ1mq3kDA+aZUR81DG8gDStjXB3qOmkMC02FZtUzUzdFDW8lb0p9/BK+6NEXrQqtjAQWD0k6bebXRe515Ag0TlAgmHJnUVUQx0+doKd/j6Fda9axwzA3Ikope7q8hn8T4WlTD4M4+FwvLm9fTGM/aZUUl/zz70ePqDQSXx8twy9wKc1xMYJxEQSpEth24erXf/iekfI200yHV5+95uDBImp6y8vr77qt8+luwDHXryYg4hIWKQZbRon0+LP8f7ynq6i030nrc0dcDUbJhMh5thLSiIdVMY9HW90uLM8SHAOrAHqNOXwRvvfYfMdb/bUFSCUQ0evr+Orq3TYRhDHYYqHEvZDOpQ0eVIPRjIHRbk5E2AVH3I/1QMVbXiSoAVzWMF97ZlogWFOiFRbePPMbsUawgGCuapBzRgK1elg3nNXZmDfZyNOq989uOtDkJinEbKze+5dWSKc6o6WtRyPtzlnAsXQbbcXzAHkvqihdWxroGIex+PdzZvXw/EQSTqSTYriyOP+d3dv/vqvJxeJ1xe7q6vr6xdXz37W7644dsoArLnFPZhr75CqGzszB2dYw8YRqcNml7dXVqZJYTrWrQnu5F5TWHNkCaEZdBzEFLvALCGGlGKMMaXUdUkkMAtUs5ap6mVwEIMjKEzFD8O4H6bjyJ4ut33P6SJsLzgkogB3pgqu1+25kezVFjKBlElWQ9POG1pDy/SIFnV/l6OzU+H0a4MTwMR9t/n6q29o+P3wMuWjc6T+8uL6xd97/s3/sLv4BacLBRxkxGTVAfojuBbm+XWfTeDjkRhgmsbbV9+/+e43d6++naa7kDYbCRo63N1Mxzd+d/P6+2/7y6+fffMntPtRlUubkycBWIsy9dsmr6z6zNEc2JbFRyB2o1J8Kj5OPkyaR4eCvaahCEKRmZOUKCZcHYSJQTaLF8zE4lSjdqrNyqQmRSRqJLfVzdCBSs5owvw4T8xHlrPZJhJCCEFCCMHcQoh9n/ou1ThoIfQpXFzsnj97cf3sxW53ySGaL6QsPyokQEB1tFFYdrh6qfnjKThxETVyeGFWgSY4W57Go5ZJK3ssHCB1KMiZuaNuE6TfUdyxRAXMyYl9lZj0R2xeA+e7bvPs+isYhqG8ffvG1O7u7l6/eUVM280uxjiLE3/gYEzdFZ1QU4WllGLqU7fpu802igW2w/7NZruLd3vmEFO/2T7rt89cOoPE4LLsgEROzfnkizZ6Jr1rn43AYEgAiPJAZZD8RsYbKUOACoOEM1PWMFr/vW1+z9s3iBOUoT3td7K/iMdtmAK4aBgyH3I45jRaKhQLglVwfRZ4Zyvj6tKZNPzFCwOmejwey2Hvw8HGfVZw322vLDBb6/9zBWpVTnarLwybObzk6e7uZhyHIHHTe7/ZBl6zpTaKL2YE4ZRCClIJSV2zg0hEVcdxGMbxMOSw2T2/epa6ZxeXP99dfB3SjkTA8Erb+gmlkaPPcUoEkhhsk7ZXmsc8Zi8FcIbNitnK9l4JrQCRRXaJMYUoQYKIiLuVXLRoDR0tms3dIZDEYaMuw+STRoQupkRpS3HrsSeWyjZDaB7xM5Z9Mpaxg74gEsPeGLeIwBxiv9l1/ZaYwQiRY59Ct4vds9T/jOLWdVDLcHuKX/cTygcJMbMPARGc3TVPN69fv/r+5fHuLnXhxde/kC5t9rfpzfdMf1umPN693b/5Pg97V62EPzOtz2oBz1I/8BAheX+Z8Yn19ld9l2cJxioAUqXHipSY18wpqOCuVSmnuiXWzEoMYjUbBjsOPkw+TpYnI6VEEsnIwF5poQM5k7upV67CurMTsQRvuXLdHDAIHDVdAJGbovpyE6sZiIQETiEo07uVYcz2zsfGZ4ZI3Nmca4hS1/fb7W6z2Wz7TZdSSunq6qLrkquBXMi3m+1XL54/f/H19fVXsd9NxlndvEXss8Nr4qcm0H/+LYybLZzqwlOwwQ1cXBlCoYe4E6m7w8lUXDv2C2GfjuXN93k4juNeS65TIQMGVpLoATtED07JKLoZFpBsnZX34yu8UlyeGotHijvcDeCUts+eMVF8tfv+22+/vbs9/PrXvx6G4y9+8fPLiyuRRFW8/VFSI1Db+ObjlU5j/BjK1LSBRQBhgnCIMYaYhIODs1pg6je7y8vr3cVlf3NbijOFlLapuygQOIU5qVrdCJqHo3Pz5qLT+999cD7s/ebHBjh88YJBc4upLzNyZ+IYJERhEbJSbt4UvSF/G/1mg9KHCg+xktyhe2nb3/ruFW0GYvJ9T9OztL8K0zYxQ6bCB5XbHPYaJ+8KkpIopLSdZQXZVUikXWs+MThziXlPqeffEge0ACQV7K23zFYjb70xdwUBOZc3b2+Oty8xvrTp1oy2vrkkdDFOyua86nM3O1vs7wZX7t322M3vXynze3WahtubN8N43PS7EJL7mtKF2qYuJMLbTTK/1PJiv78tYz68vRkPh0MulsdcBk5pd/XVi5/96pu/9w+effWri+3zPm2JgwJWtctPWGJVeheGNFfPempz7LrtleVpPB6sTOwmECYmbhy2ax+mECTG1Pd9SjHFKELuriVP01hKKTmXUnIpVoNEiJ1i6Kjf7jhuU5CAUEgKgko0CpWPraZ+OR10oFkkrac24NRgmCca7TNB/P3BehyuOg0IwDYfr87sFBxSDKV4Ke6GGIIwTXk4DkfuNUiVXmZwoUX3fwQUs3jvrcunRCcxSQhd1+/cbbPdXX3zZ/3uYjsOm8vvOpa7Ny/zpPl4V4ZBS3YOoNCCDOey/M9n3q1Xi7zO+CrErNI5NeTW6n5H86YCsDDA5ORZy37vh4Nkk6JkmbiFbSqsmAlpkOCaQYVIhDkQCzt5FWLYWQzNIQazMF6xlsYKMttOHM19ryYH+8HtXyMxHGPq+u1ud5mnYyk5Ru5STDEgQIRjDFcXl89efH15/Tz2O3BUc/2M4vFHlrazE9dk9sQgSF0bbddxIyi4epXHMAx0PEx3ZRoGEJwog00E0sG5IAhFR3AEhwLNu/KngjncvUb2bPogEpllHPObNy/3+z2gMYnDL3bXKfK8Qf4hltlpmwRg5hhiijHGKCIOzsWi8KaL3Wa72V10/Vb3gzsxBZFgLuY1h8Rs+XDAf8Q83oCZ85yAgGBcRj7ehPK647tNGProKTAzDJw13mn3HS6+o4sDJ2fd8OFCjldh2IbMkGz9Ictd6falO3pSDgpWUA29MIBsRUa0nnUzxyLX0IFPbf5HOKy4mdqUdRiLj8WmyUoJ3cGt8KxQzfHeH69Nvr8sh847pJkmG7ubWs5l5CJdGU0rkl3lvQJCDNT3cnXVMSHEi2ncbjd9EC55OuzvfBxNs0MvNtvnX3/zi1/9vW9++aeXVz8LvCWPVoM5oHh8YD6gtKx1MzMAnNg5pNDvfBqOXW/jASXXE4UBYQksIszMoZUYY2QWomrlr3xdOZeiqnmaKg5jNaUeCQm5eEIQ6UQ6ouQUmjkGXLNek+Pk30cnb5il09lrBO7HtfXDS13SVVM30JTLlLMqCCwUCMhlnPKx9yzt4P3Mh//HCDFNtqeu3/7sl392cXE5DIfQdc+++VW3212TXz//+rrvX/3ub7/73W+hWqYhTxN3W2JGnT90StTS9KNmSKiwTGO5/aDKnKCY1TUiYq7oHGqSjOrrJA3Zq04yNmsqoCV/M9Wj0911mqabGzocoqTIzIGdK/unTprVipFGJ5LB0AdOYA4EdidTEJEwWBjEzAY4qYBY5oTUTGQMMnUrVpEhU9Ocp5yzrfXOpY9WfT9vNO/ZFLzuTSyx21xcvzDX8XBnXmBqhYNIl7qLy6vr6+vd1fPQ7TLIipcaVD73qfs7N7UKGCyEr/MANO3+PGzsqQHE6gUtfQ/VxeAAN0Crec47g9VZhCYOMVF/+TxPw82bl3nKVX4sxEAvXaTYc+xJOofAiI3h9pCF5T2YMp2m6/2r81M+RENF61AmYjNicEqb66vncO+6+O23v73b73/3u9/mnOWXMUhiErQUQ4904Lt9FJqu/zGw/9KexmVMq+ecP5ubVxcxQYiDSEoxpZRilMAEKlmzeEqRQ+r7i67b7PdjKcVMzQw1d7ovyA/qOdDouFZeHesxegqPeajxz/wR5k5WZ1NFKYiYQM3x0dVU1ZU0GKQc+rLf2fGSpwvWPlAITHA1mgrfavcdX76ky8LSyfgsvL4Oh20oQjSW/qjpZkp76wbvM0clMqpbAOa8SmjJvmrdlv5sn2lOX21P2ZaqBr+OD1rihvDIHPD1pKnOfo1oxY2AEDYxXmrZOR1NRy2jTUfXkSk6E1YaVFtwM9azdP56FD7QV2ZGwpnmz0tt55pW4JyInIlDCH2fsh0VU9ZJi6GwuMF0KpNE2l1snj/vv/l6R0jffb+/uQ0SyD3n6TBOR2gmYum2u2df/exP/ju/+NWfP3/xVddvPceSpTiZGchBOjuPnDC/ByY+v3e8UM0/FIgFLM1cxPBAErqe+s3Q9RZDzq45OzmFQCGISIwhpdR1XYxRJBCRquY8qmrOuZSplNKMB9rcmOrbZvYocY4myTkpooJtDrat0D2btwVRu3zGOecLRE6PuVeth2lpti9XVv85FZ/9bNq9M+FwnWhM4ubHYTgOA+DEAc6mrmU0O4Im5syezZQaeeqMkp71fH28PVz1M3R5/6uPRmIM4Njtrr/qNttxHCmE/uJ57DcsEkKKpuQ8jgpOTOymvuxNZ33xpUpzXuUTnVG1VoBrNsEKhBOR1xCL1pONYpjcrRJ0Q7Oai7AEVKfLGm7txdxyMQ5xNJlC6llcUB04vSV9r1BiS60Crh7RblrHh6gSlhczd2dASy55KjrhB0YinBdmSd3m6vlXxNgLT+OBrJAjpbTdXlxdPdtdPgv9BSQVhbp/oRS7H1xWElv1/wdbVTNm6M5JMmh0BkKIncTOwUXdvDi5SeAIDimknkMHDjNi+dOXtn84QMTEXbd59uyFw4bh+Pb29TBMd3f7cRy3G+MAInb/EQGKDy7MJMxMEOEgEqPEIEGkggJmrupFHRz67eVmdylv925eyqSaEYSY4c0qvXoqzVrEFx8pc4dZKRZMmUss+40OO88b184tOtjgRMU4K08uo0QViWxbHnd86GnPTsXSsaTbsr3V/mipcFSQzZL7rGae9vkFdT4dj7UynxkWvKc2zJ/NDEbM/eYS5UWmu9GGMh5Mc5mGMg2UttSY+Jy+SMDeQiOCp9Pl1KMxiKTYbaKOWbNXMxeB4SzOgpiw3VqIUy46jYe3N69vbm+G4aBWiBGSUGAOMXTbdHGdtpex24g4bCxT1hKdeub51G11+Dh0ghlS/wnNQpmzU+SAGFOMA9NQsuUco1T0JYbYoBjmKhGWUnLO0zROecxTVlM35+pwYc1g0lRe1EhWAQdwMK72I56PsHqANX2Am8TMc3f6Sg4lZv7Itn5gqbO7xWvVSTgrLU4Ec5rjSxxszgb1ldTykStgNszfm6YfJMSsQ4/dySlQ3IrEPmWACKzFipF7DLuvLr+yrwvU0G0uiJgqeQO1n54q8APDk/zBssVsMmOBcHUaBGEmiakLQkDCIK/bDs1hBCReCfRZOKa43WoehuMhj9qlEJMwAjEHCko+ZsuWuzRKGGOYIE2GmUwd7BK5OXERiREJDOaqeQKqsRRwKo5iZkWrKTiXwSyvBEw/Ty7rS3D8XOkVJDADH+4G4kYFzETg1PXXz7+OUQS2v8E0HETCbndxdXV9cf283+yc4uSsWG1gviSXwip8x3wGgs5HgMyXsJo2JDUi6r0j6wDxovT5LE/W7YzmkWtUq2CvDS9OY3GYurkauYsZmRWDg5mFYupDt6EQK4sZ2u/gD+y779YjjWZd7B7ah1MGq/e08P5bvG461YSQUrq+fuamm23/5s1rApdipWgIJEwPqBA+qM7v0I+9Qt9nzZmX0Azw0flzzn7u1SEdwsRSE+GRBBKpHul1LpA5cjFz3uyuLi6fd+ntNOQ8HXM+pBglxKIVk13xAMw29VmO+ZQdYU7rurgf+KKPonrycpuRXqPdaAp06Oy41XED69RCUYZ6IJVQQIWZQL3ohUxRck9j9OzFBoTRw62mvfVH20yI5myOGkA98wYTrDlo+2rP9VlnXZaLn9x+74/j4sHwEIt6ZHybqXSt1vq8hZhDKYTdxbMuYrobDz6U4S0c0zjmYQhSQMnNzL1xRFR0nNeP/3Th5mwJzQDcYyIXE4R5E+NV6gx6kBQkCSeIWRTqN13oIKL7w/e//d2r169e/f73L1++fP36zetScr/dpJSYiDgi9NJtj1N+e/eWeAgcxj2Idt32a5FE1DJYnXrsvCvnas9IzNzZBEh1iQkklXDKHe7sLoARhECu03S0PHbpIsWu7/oYY3WRKiWrqpnlXKZpHMdxnMaaDJyZBTLPWnDbsBhOIKnHGYRdAihQy9mxzB6COC2ZxOY0x21h1f53As9w2GOleljM9Dl1eOpvz0K1AdQQ8bnXGr8TVa4SMjJleAwcI5OYkRZnAzNF5s4oKNjBzXXtfp/XxridYzBrdLmBMDV+Z/X7T0FiACYRkiAh1Rgb02rbjhIv0wWujdW0214wyyys/Sia5SqzMzVvEyZmo2XfrNhmZVdfksjRHG9LAHGIabsrZThOR83Zp2weEjoKAQRTz8XINOQSNEdXJnVmhZtDQSLCIkRCADwwwSofsyrg8IrLkLUh0VJUy6SWzcrnU0atykshhCC9l80hpRgTufZdd3l1fXl13fc7CX32Gg3uRj+dO0wrj7yem/NvTQbOTlTlo6Lm4zSOY87Nm98ZDCIOIfUh9ZBQLf2nZ/20MNOpWD1mRaTvNs+evWiRxoBw8C/p0vsZNLFKbMgUhENoumVd4NxmPpmTgSX1qd/2qbes0zTIuA+bLVPiBiPjR8Bd5lIT1c9aKZGrk+foh94PCaNwrpn5zPKkQaMcJe2lKxL64OAccAw+iLsiDJ4O3h89DZ4yolL0OX/IKfBxtiJh3vja5XkLfG/Lm97+maasw0kocB/4KvhzlNs8vHZn1TJNI28KryQrAD/VUnEnQgxxmzxDtetTv5XNhtk4QDloKdPd4XB7+/blq+/fvnl7d3ccRnXnEHu+CGROILAYJQ4xWz4Od4xDYC5jCBFxcx04nFnOPrIwIzACQ2pQndVsjJOXKd/ejIc7zaMQqueLiLiTqjffJ1N36FwAiASw+ZyVrpnegGoTIIPUQ4wDS6AQmmNLjTCeFcbWdY1DvalqTaad3XvJwexfJjppkflA7jBjUEpd1/exS2UILDOkRIRT/r0f+spPQWLmiq6QAKIWcMY1DSrVfnTvKNH2WYQrizjHmj2Vz2zhS8OxlsI+1BvmqerRDLjUlGAQAosImFB3E6cGM1DFKQhkLVuSt1QdBnAI8eKSoXk8jjqN47Ho5ICYgaioFnUhh5vAOrYgDqEiTMyFoqQOklQJAAvBodUDnYoVNVMmDkGqWcFAZllLdtN7ct6sls6QzKxbzRfo7Kq3cWkavDuTByECYAU6mRUS2l7sLi8unz1/sbu4co7qNeJ7IQHx02gsSMBjeJA/XZqH4IepbifFbNXq02fH7HRTVYMKFxAzuelwuDvc3ozDIU+TwojEXSBd6LYhbYhD9Qg8mx/nr3nykFhsy9Roku/V+Qeghwa0HaimmkhdfwUKEs2s7zciDHebMwt/WnkUiaHFKXd17fTNmcL54AlzxFSdZS0LZGNEN1clhkTpuhQCG9TA5kQkm74v01Sm43gM3e4ixUSIi0Y4o25YPj/NP/g+ucdhBqsuMeLzk0/PdAcRcRC2yKZSvC+5x0BxUsoDZTHt1Samt9bd9dtjv8vdZhu49+zTwX0ikkzdEZsjdiP1hQJYaAGBFu+A+SCZcdPTWeOr/8yf2qI5n6dz4co6f380Hxvfk7Z67z6fk506gSSkbofdc5Sf51wMGPMUzOLsP0Fno7+Y+d7x3vcXXxzLGgDzyC2zjm3uiJL62IuMu026uozXFwGKPObbm7dv37559fr1cTiaKdA/u77cbMrb27fHw77kyXKunJeEIAxCydPh7aTCEvmCg4KLszaZ8+NP0xaZJCRMQnDyYmUah3x7k29ejzff7998Z2W/2/ZJJIQOTsMwEkNkgdNq9i7uui6kSBKz6t3+ME1ZYdXoU/3nqnO4VwcIEZEoIRYwqKVEauYsaifyyazgpyjgU2rjx3xiZrTvnZ1wf+e7fwmLRWBG14ip6zbb3eVmd+FTH8UCg1zdsptWkKXxsmGOslkg08qodO/5cw3NFl4lc5xt7Z+YxXoJz7Q5lWJ9o0NIuiBCUK/pIhyzNvLFBfzZ+uowA2q6ZV82Rm8Si7VkRrO/BRM5oMttLEg9b3bx4lJ1ymVSzTlP5ubEBqNK1EUQWIQmMhYohxi4cMfd1iiOk6sZWYE7QZ2Za8IPNSN3IQKE2ZlUndzuny8fX+7beM1MHTqOw+14PLhpSvFiu7u6utpsdxK7bGK2EJN8nmyi53X5/IVm3yVYGYfj8bifxnEq2cg4pC720u1Ct5XYg4Pd9734wyp1/YqEriORYGY1FRQenkZfsHw4Lc0MTRMJcxCJQYQbfxYTMUst8JZZk1n6zTbn6TDsy3ScjncgMWxd4uyG+LF7wg+EcIg5cDCyQIVYlX1imcC5uE7kg3Ox+Io2t7zNoacYOnFRLXAlVqQB3d43R99kSoXCbDy6Z2VtdXx3ciRvu+eTa+VkT/qBhVolrAbLxC26q9Jfqx8GdS9lCycmdp7lqZ+sEGkKnlJy2hqs66ULxfWYh2m/P7y92b+9OR4OahZi2nVps+m2uRRwz/J2ON5NdPA8uhk5mZVx2At7SilJn7pt7HpiXk25T+lbZhJulCtOYGZhniwfbt8c3n4/HW4Cl9j3MYqaqbq5ESEEEhEmqRGqMUqMMXUb6XYRpGFHx2OeBisZcLgRbDHtg5lZWISZ2IzNijqBWeKC1VVHGq94jLdwFqyEGHZUrvjPMUrvKpVzLaZNv73aXb2gcouyZyZA3coct/f5yyclgFw0iSpD0aL3kNd4Vm+kKbPwNisqcywL3Vven2nttJE0Z3e4emU1cjaCVTiX2FlPytGSuxNgbwK6OU1OHFK6vGbYYEWPt6ZquRiIg6QUu5Qik0DZS3CNBArBQ+9xy91lRtwf85CzZnMlEYFzKexEPmsmTITA7JQVzhRZIstDvrsT7FEdh0+5U3wGXdaITfNmISY3nfI4HW/vbl6O4x6wzXZz/fz5dncBjllJZx7+k1Jy9qgZ9lm8cRxnSJAvr1wjM9Z4AO5pl0+N17vktiZ+zuo6cQ1gICKYWcnTME1DLlN1do8c4/ay212HfsexU4g3miB/6l3v8S95HKqpKuWjrfuAbfHUorkYQCwhioNbRnJgSVZ2uml+/rKk7tdrhWU+AFsw4y0PIlqq3Z1ASxQWAXO6+mW7d4JbZb4QCkFCkphCEBEmsJCEwBKq21kQEWHASbjfXaiVYlPWfLx9PY5ZumecNiSxZognbrtHy+XbOunx3XaeDzQ7Ot3/vqlz3mitTpEUM3QMDiROwVGCkpsVKpmRmV1JDhyHuH3bX+43O4tC5KoKM+M0GU9IR4933k2eHNEgvmApq4UInGGRLZfOCnk6ITHuDXR7IMzReXm0Nx7pnwd+M0TVXaFJJwwh6Ym3xdKk42QOsxZ1cwKF3lM+Vtd6JMIPZ/X0RgPtwrrpcLELfX8h0qnl47B/8/rVm1fHw6EMasDm+vq6S31KfQidcBimoXgyl5zVeTJk9QKzPNnN20Kg589+9vz5z7ruSmTjFMwIJPN59GS/1XrfX+MVHRNmBkt1uuUkROPtDSYrR6YipGZ5yjrkqpWIcECV8vuuSymGmqlWzZm447S72sVuHG5efT/u33geYMakjKorOwlRYBImMrGiufhUjCI2lyyR5tVKmI9YgrfYxnn7IjiRrDaXUwPv461+b3wfXjkvjtMJUmESdRDFrttdXz3/udhhvHUicldr+W6ri1glTD6tg3ujsH77w2+Xs2m58olIDLeN1fzkSmSLHOMOR/UEBx7f8b9UYW+OFFQbqnBjpRkLokBmhLqwm32iRf2vFL0CZg6x20iZ4rAnm3wcrJSsLohdijFIDBKI2ApbCfAghBiREkKESxDljOJmptUrpvpFQprySjAhEDNEXNie3q3OBneRIuat+l6xmWbEzPI4Ho+H4/5gXvqLfre77LcXsduasxvZGkE7K8ulPwgYY7XBM4MJ7przNA7H/fF4GPNUzC3ELm27i2f9xbXEDXH8cVywfniponSNlSRaRRasy2xxeXDU3XvOY2Wldj4GoNPjrjIPHsct3Tszc2AJIaQQQxCg+s0LiMyc2YUosAQJKfVyQe42Tgc7HrxkxUgyoW6+RCwfC+n/UCQGIHBAAlmiLPBq0CWYmMQx9kPXT33KKbiAmgQfMrqRwujx6GH0UDwwpEY0W7Vi3dfvq+diEwQdWEcd1o3IYGSfyhv7Ce1uMjkDHbg3dIrBSBYf9S+MwSzNf7LFItR3dLXjr65DDPl43L+5ff3ddy9v3uZx7A09xT72293mous2IXTMgUCOtNvqOE03tzcONsDcyEzdyzSWzUWM283meewuiGIuCxfX2lXpI0qFXpjBTDRbVacUHUVtqixgNW1wUXUXkhrjEWLqt7urGBMqn0ae3C0hpu6iu7hOJZsRE+zwlgt1rAwvRJxi6JLECGYCxC2amhuxCYOZ543hxHdW/5nzqa8J7F+SsPdUfE55lUJ3sb38Woe3x7u3Wizk0mn5ITDMu+fnx+ROAtA8kls2Mz/FHNV8QEBNQUhw8KwJ6bKg1+fu58+dNHuFiHtoapiaw0xLjR8mZkH18jU0XkoSYVgDbxvuSgoYyEk4ROl71o1DJytlzGrY9B0RxRBiYLi6FXKr+T/dbCq5qGopVkqZspZJUbwGxxN1MRFBVd2UYUxgEUgo93DpKqecJVd5tMB8QRJnAKS2wnyc8jgWdcTYXV4+211dcewVwbxmjKb5uPRG1NMsb3NwUnvaCYpZATP38KB2zcxh/iEepB+mz1U51Orh02wQpnmahuN+v7+5O+yPYy5OMW3S7mp79VV/8YxD500ZOcMTHr733QvDaRb27921JLp/tAXv9Mz1RZq4Xy/4DAs2EbcamCvP10opJHKvhOcAr87N+ZSs+veqsg2boTnf+HlnNHdCXqFxjwsKswW96u0SJKQYYxAnspr+1LwUJYIIC0vX9bY1jZ2bH/a3qg4Slw41ytrc1Bq+TTi98cneqxrnqYvnmj/sYZ8NyLO1pzazxoE6nJk5MfViSShhNFdxD86d951tEncUghvcQBkxIx6pGzyOLpOzguoyqSNjdY3O3TUjMa0eOB0qXnVVYIVSzsvnqSavYZhPtDXXR1jztADEnI065w3JJEySYo0N/BAY5pPq4I+JCw9ldJLAF7v47Co8u+Tj/vC7v/t3f/VXf/W3v/5WbfvzX/wH1y++6i4uQuqZAiBaRKvshZjStk9bkTi7CSp7aZupG1zco5qAqisnuFJpvA+JIcI9nzqu0SzCIhBhImaCgDhIhf2lysPuBBKR6sySYuz6zcXl1dWLrxz06uXL/d0hj8ew4csr6lPfba82DAE2SY5vhKa7XozcszviJm53sdsSC8BCzCGKREjkGBr79Qwq1cD+ujHx+TqqhL33vatO+/i6jY/s3Ws85vzzakDb3AaImQKHTeyfUbw+ljAeB3S5m7Kbc5sNddq7PZhyD9GXp3CadflEJIZWC7Y1Y4U+2/LxR9fmGxIDNPpsg9UMiE4kAoIpE8/WOQeBnIyohrQBs6m6OtgQB4kdUuc68MgATLUULaVySZKDzF3NWI3NjDTbNBXkrJUeQzW7F3eFO7PEKO4oZbKcHYXdGBBCdfp62Bz3xollc2SZkZmREYzhjW+63jofBFYxMSL6/7L3J72yLEmaIPaJiKqZufsZ7vTGmHOKyko2QTTJbu6JArggQYKbBsFG8y/wb3DHLXcE2FsuyU0XuGgCLHRXodhVxYzKoaoyol+8+d3pnOPuZqoqIlyomrn5uee+KSIyswqh7+K8c8zNzdTUVEVFPvlERCT0/XDR92HYXsZu6xzU2U77FmjWjv9W4bLv2xjkZiWN4/Fuv787HA9TUe6G7uJ6c/2k312HfgsW/MY2+99Ju4+01MZzOrhZI6MZFuYz59GCep5gZMwKjQNE4Pt1075jq1mn51azXzhgDlV1dbgQuUhwpyBd17lSTH2O/TYWIw7GnYfeOPgcrfAb9ObtbRbt7kbEvhDXraZmYQgH6oZ+iLYtxgZDjNzFvo/cdTGwEk2OYpIsTtaN1k8eknGxumQqs7Cyr81ajrk57csbpPbF9r/fzeV/v+NpWl+TgwA2g0sXuoseLuKxH8D0mxbK/g7ta80GkCpNCTevj598/MVH//3Hn3z+Rbd59u6HYdhe9pstSzSteUfgzVvsXYhd7KN0QgI4TGGFXGFwy2pWzOHO7BV/fxiR/HaNmUPgECA8KzHEsev6zXbYXgSokIbq7TQjsAiHGPphGHYXu6tHxZxu9sYTonM3xH7T9UPs+yDMV4869siwsRdLZCpE1G3i7lo2O449c2AQiRsBHD0Gl6bEzJ5LX5w76wDkGvRU9G8BibHK3AAYPITN4277TPqnVG4VnRp96+C879zCm6bAwz7CB9/82pVd/+ZmM81ZxproXUva9Qbz20UxyRpvhLx5cACHk5tVUeYgRUEthExzfUZyqyIP1JKeVHgO7BQgHYUIjhxERFQ9pzSOMvZdiDGGQUmSuuUiomY5uU/FU8qlFPfsrmoF7kyNFGZqVkpOE9nEsCgBqq3swJnnz/xhKOYeFoL5Z5Wm7HBVI5J+c9l1vduFBJLQG8RdHOzOzdKAVRzZ2lqYiYoOq/Y1vXFzO+/AkiV1RQ/4bVl1vqARFaFwIpCZpzwdj/v94e44jQre9NuLx+9cPn43bC8gEU4wJ29xQEs/3jar/z61BY7BaanPFFhiVN/6YqNXYp+7u52hMmcQxZll+Y0ci0W+r6/gqHeu4TLUcCBzV3czzaVMOTvgFttjuMNCLYFK0kncxgHg4NwZD87BHEvY1zmi9XDf6ExutMpkdD7HVkuljt5JtM8+2Pm7oMhxF3e9pyN1ic02ceil79BJ2FJQl4PRschRu2SiDnVjuNQYUUd1ENfpPuMMsxXnqxsvuEsjD54hMa0wird/K+HuNSTX3L4m5P5bcRfcgTbOBjKAiTn024tHvfZFDKFjIlN9aOTvo3pf39qcZH7D5n9TTaM3/vBS7O4u5bHcvPIXXx4+/mz//PU0Oro+xN3Am85gptmM5uqKXis7CFEfpI+xCyHB3ZUskxdycxuLjtkmoc4JTpnYvUZir1bZt5QGRAjCIUgQEm7Z1wNTv9lePXlHyCMKWfaSSx7TOLq5iIQQYt93w7bb7AS0uZ5MOoJ3m+3V48fb7aaWWeqGIcjjrgv5sB1vX1opfdeF7UXcPuL+wrgDiQSnKnqJjUMrIwy0xJhNcTlVg1/eC4zFTGQVaNlyt8480PnMe3L7m+ZYncUMzCUL2d28EFi6MDzeXE9Xz+5C/4qlJ+7dydb7x+I4/1rc5Ru3EnxvJOYt7d5s+LuwhA3QmtHYQCABzUV3F5kPrzoNeQ1Tq0nCDQZ3Ilueo1UXD8ydc2AOIlJTSuScx5RDVu8AJzeouhRVK6OVqXjOWUsxyzBFrTkOJqo+CnNTV4UWkAEEsyVH+L3mbtbSDJgRDOZkXpexwepFl9z/TZqaOTOThI5jIBqYjbgqeCcyL7doPAMA50XqL8ewOI/mYplNyzHMgnflSzp72b+r905w0zId98fD3TiNahaGi+3V44tHzzaXjzn2TrKuoPjvFxLz9kZzpC1zpRRSTRYxk6oxa43NpjjLU4Z5avyGSEwtHRxEKuasWsl6VjOQet0gayRnvRsHYrB0odsGIydxjkSdEos76FsIp68ZkYcO2qz0ww0Mc1rqxVSiWKXHw91ZigxjtztwSKI+CCKP4hEhGxfnrDyVcLSQTXwmIVYf1uJVXbyNvtx/pQLWlBjf/Ix/GxDoKmYRYAldv3PEwsWIHVQ5qL/rTnx9c6/Fdn0EXu/pWEKhziVSFykyCc02E5ognyO7mCWEMPR93/fHAxUtlibXVEhTPqYy1Xoq3EDzKvTugRJnZvXXdLJlSKpKTC06xdQPw6Mn72yHLkK9THncH/c3ZlamTMQcJHRdHDZx2EaJl489bna1auTm4qrr+1aakbsgHIMwS8qFSuk2m7jdheGC4kYRHCJoSozNNl3VQNrSXysxtnKMEJF5MP7dRyc1kqk5QCJh222fPnr2k2Hz2Mz73RWRWN3pftuMxfBdl1B71fSAoFy1lSawOnruk3vw12/d6D4u2Hwkbl5KrbtY4+qZwUZgqo5Mn520Xs2U9WMYHFZVl9lkIuLI0rlE5iAsRkZExXxMmaasUVU8EgchKVaoHIrmosXUTF0LbC4EZwaDq7kpeUt+KmChqlLhPoffqcX5+FJQw1fYDFa/rGgpsJkeQ0YAMTM5sZ/MUcwmYtXDbbYUedGCzen+TVZm7htH5y7VRMGt+sI3vNK32o73XjGa4tXGx8zzNO5vj/u7nAuH/uLxs+tn7188etJvd6BQn4lnd+cslhxocSLffiX/zrwd37o17AREIK6yjoVritxKO6swGJyxNtnXo2pLDnyqzK9vNDvrx7xSir0qTEIUQghBmNnMU071C2paszuomaoRrNb2AQkRSDqJgyipwyDONbPfGlpep/F+eMybOG6obtMO1qwk9zm7zoLEOLzxV2gBYwhel9XR/EuKfRgsgkKRjorwaycyKYVHw9FlspBcskuLr6mQilcPmmPOPk7z1uJrUGkpW1Szap5SkNW0jbVvv5H28m0s1DZe3pC8OgQgYukcxCwOmFbXzGmTm9fmd+vPwpqq1/iGLp2eon0XqBCJGAn3F9tH7+zy3fS6QKK6qRUhIaI5iLR+1UDsTBzisN1uN5v9a5lU8/GYp0NmDZt91qx1wKnNF4cAfL6Pvu1Rz2QAEbj+45p2jggg9r7vnzx7B+UqsFsaj3evXr+Q4+GQUmaqOuMQhiH2g/TbR6HPRZmFmSQEZrGalrzWJCPiXmVzCS1xu439hrvBOQrEITybqkTO5JiBk/Zc9e05YWbLnTBYQhQKcpbxahHjcJ8l7X2s+k0p/cY5C12yvvUGeBpInTleXD/74dX15KYkASFqKYsRsLz9t6Evb87weXmfVLTafrtIzN+D5kuuOwBNVyWuZmJVYpqdVNHSNcROaBJmTkMKOBMF4mgt3K1ewQ3I6lwcxbzABKZO0EKWi2ZTc3VTuNFsFzfaq5UabEauNUBJyJ1MyOS+2cbwBYSBGYxMhGpkg5NU3cdmiiPNJed8Tkk971+zMtkm25KXy3wuy3nCYNrPFkLhbXPA6R/W/+z837Lx/bZ07dOGStWDoaVMh+PtzXg8ssRus7l6+t7l03f77aWETm1ej//+YzDUMBVviigTE1XOLM9wva110FWW2LdtPzW46/u1mhM+BK5KDOC5FLjTnOwSgJqVYkzOzbFQi3gGDgMHsurSnRNnA/itvyVrOckJcBic3K1VkJlJ08YwuBfSg3ghDiISnAMVllxETVRlMh6dJ+fsXMAEE69+5pMz6NT7WbU6daMd9gd2R/+tW6Hf3M5D1itCJFVDbord3wvvalNNjZhjHHaXw/E6HF+DgqpZKRJrasHafDX8xBKGYTtstiFEOHnVpmHmpqqmukCz8KaH+PlF5g58AyxW1Zd6CVqcUiGE3aVgK0yep9hF1XLz6nXKGWAOMQ6bbrPl2Es39KGPtexvdXs7qGbiJ6rOYum1312SW9f3EjpIdBIncTC3fd+ABqnPu/yiIs/hMucsDwJMfnecmBOrcv6/NfK7hC5c8rCFqcETxN2+BTj5ndvfnRLzG8oxf2DKLZdseTacqyOkBbZQy9Rba8hUm24uMF0xGm+enarrGZMTUXBIcS4Oo1ZU2QEjVlBSQnEEMzVYMqp3hJq7u8CJSUjcPaM4jFy1gjSm8MLsHUcW66gE0hWAUW2/1n87eXRq93gBX8znuBMnWpK20Bw85tBqqcMItdrCMuh1/1ssRT/pxW/gLWs9ZvVhLfmn6q7u6jBnqjlFTE9Z1h98e9/EUFmyKdbqmQSQFUtjOtzsb1+nKffb64vHzx69+4OLx88k9muptCjqK9P9O9u9zda32dL57u1toMfaylnJoYa5VBdI82rOR5mpMmkDM89F3+HAnMbAzrPEru51+sXuJx9emp+GarUlV+QABAYJkQhHkSjMXClTZuaCugeSw03ViIgCsTDBwcRGzCIdByctpL7q4Hce1CWXg+OB3CNvcGLgM3e/UmiInFyZEyMRFwQFKzFYyEmShWwxm6RCWTmDE7iwmNfCIa0uScMyV8toQTeXYV9xYhyrlXVijtX0QHV51wl+RnOmdXvraHztCjqbVzXzKxzkS+5ROJkzwWug7hqhnK9GD1553R5i4Xzd6W/+eS9gpsaGEiP2fdcPHHo4a1EtJYSemMhX2qGTg92IOHT9dhguJA4knYQueOFAXexh7qWQOTu8CsmWFfQtm2mrH7T0cIXEtEduSYdOxZVALfUpg4k2TDml3dWrXErOhWPXby/67Y5C58zuNf9HFUmtkKOhguUEpoghSEsTQ8QGIWKvTDgHWoLWebmvROzagFmK6SxdF6vh3g+8jId07TMM5m0IzXxkWdLkLfl9TZ1KDleHAktpJ8Ic23dmAdy/79va2h2wPu8/KCTGa0YdBFSVxMms7t41TJ6aPcYzKkNe/6rGGs26A0gBolrqDg4OLhESSSI3HCQgRJcI6Vw6I9E6rRjMIpVgY0aNhwnAwTA3NZjpPPvdYXAlVyFjvrfrEwxmpmZqpEZMUMLCbKvl5Oe5VuuezoEYdcmuN6RWZQGLglcjLRoUaUSnENAG41gL7Ko6GalBDWqujtM/c3Uv7qX9WbXw3xApX40AUCc6M6zoeDwcD/ucC0t3+ejZ9bP3d9ePu80ORG+u538vG6HFgDYirhODeR0WRLxsk3Bqe3kTT8vx5Xrroah25PdrzByEg7AwE5Nb25FrZmwQE04aRGX/OsBKXCM6isK9ui6+Zw++ufmc1LyZps1GNALYzJmVKDPGKGOUzAwid3IFq0mxMOY4FcmFsrGSKMTAjpO7azHV/eyuZ7DA6edb+vi33yoWzFCvtWsMDZlyJvK3KbZ/R83ciZi6ru+6QTjCSbOWXLquFqVccovP2IqBwDHWtLy72O+8P5i4CIlEV7WSYMb1zBZx8j1n4YLEzDK1bhlUUQ4nkERh6XfXl4+fOVGa0mZ3sbm4isMWIdR8lmikPWciQq1TzE2JcVCMFAlwc4NjXYJxVprrvXyh8s4Dh+WkN9/ob7L2v6kZztJx2unVOGxOi/87bd+gxHxrz+v3PP/7NWt1FOws3N9Mc1Etzj2Ya7hPDb9hpqpC194xk8ROiBQOd27AILkQ82y3OXEgMQoQDyF0vZVtNDBnIyeJ3A8ybPvtVeh3zNS2GhGRTtxJXQvIMtwdOmcZNTUHTEQoRitFLU85e8kOmzWbZSTJveo9rkbFasZa4tk8dyMn4lqUr9F7W31WI2YnarEYzcliDZNojmtagZCzz75p2ZWyW8tTm9OishQnNa9KVTEqxsVYTSrDs5gXM5grNyLLN77Hr7Emq6whzIYXUTG7O+z3x5FCv+t3T9/78PLpO3GzBXPl2XPTFh9u1db8lpEIq278pivw6/GYlXRqlncLPqZ6CLN+ystHbdM0kDcC+2yz05t76CkZUCvC9mZS6PnMpuBXAMwBa8l2KpootawAszBQmcatShmhri92s2VuspATJFBoHB6mBny2yift8c7u/9Z2Ks07/2mnqlr1o8VAW5AYb0iMw91MyayEMAWeujD2MUvL3RLUYrGQNI5JcgnZRcFG4nOR3tll1y6KWU08EQHujflqNTU4a3ZF1Z8zYDj3lnAv5823QWLoa0fPl87VVBEAkZ6QTQCgBunR6Qorhsr6Jg/0gWZv/Nu6991bhZnJyYmoi33XDULRzHMuOZdWNOb+l6oqX0P6d8P2qr+4NhttIoeBWUvWlEmVbYbn2i77nfcpImq+KHKiFXY6M75bdUNmGXZXz94bdjsrGrv+4vpx6AZntpqUiUB+MlS8ul2rWml+SmFTS4x5fXeOE9qKhbK2Xu8N7auv9t4ra0jM6X3dB9tPise3eqcruX2mojT8ZtUrnK3c74a7rM85rZ2HSsv9B4XE1B0WaBDFwpjFQr2vb0y8kiSrvgv3Jt2pVnNGDWgN4sIQd8RAm20gShxLTkoABx76MFzGzUUcdszCEmKM1VDNOemYtEzu5jNXpMXzqLM7E0HELRZ39+JOGaxzJdJ1q1eoAePONCsWVa7O0a8nc7DRGFHrLjQ2QCM2tmRPOPs5L4PKqFjEPy2Xr4Rfn2nB5tCTa4ncuXFLXd1N3QhmDntI8H2/1pZEddKBKPbb66fDsLl4/Gxzce0Sly3h74dr/zdrK91lRthw7mxY1+SxhsM0/aO98TOKXE0CXBMffdesnTX2Dc7CIYQQQsWC6i2Y2d1L48ETM6NmupOaE4yIYbpkw/6dt1m6zWK1Qiju8AIHwYVKlBQlR8lChRzuXJyLS9KQSsg5FAsKNvBc9XqJW1yAemAezwfs4Dd+/u1lYPm2zRrmDNzbbv6eNHcHOIRu6He73ZUWDRK/qQQ7MYcQh2F7NeyuxunWNcOLg0spuWSr5JOakOt7aTC1NSSGm4JRF91SuqYSLo3A3bC9erTZbmFaWceQ6FxzJKBaCTxrUi1mYe38aSp+y7pL827WuE3zkj/h6Kdxm6su3VtxhGDEf78gt99m++0pMX8ra+EkoBdJsZLY9ccqcKcaUO7z3g7UJAwMK+DAlSVlVguDckVrjNxZyANbIIiBmbfdZek2x25K1Shgob6P/YUMF3F72XfbfrPdbjfMVKbx7u7lfnxVyuQlkTlTAKBuahVYIa6au3ROopoNNEIT4lmy28rIcKNTKgqa5bP5Km78NNOXtKw1jz0TuB5sHIuTgb/8bPfiszGtN2nrgdCuivazjbI3pd8FDqDAFVSc9KFl9O3e6bkdwN70P6ocI5KwubjgLgh3Xddvd5Do7mYPR6d/p3v9XbWmVrg3S48WrM2x0mZmrGGd4nK2y05smkUxPc0iX04lZ5ozU5+1OWjt1CcQ0JR6ImaEILGLITZyYE2eFkIwB6w0FxIRi4QoIXAIHITNXYsRV0Vc64qsgOFMZ3lzE33zPdYncmBR0ebowjcfYvGYV1XcxeFwFWgIpQtlO2jfWQDI2MHFJVmctEtZigbT4C5tfzBd9JbZQ9Wo0ycT+M1+u6PxLZccHqsX9jASM3f5+7WTbvVgHn06DZXPa9bdyVoo5ywmaR1tejZDviNySffBG3/zZX3do7i7M1HgbjtcPnv6npld7K67rifi+4Z7vYk1tCmEbru93m+v8PrLAmYK5pxUJ80ZpAigQKcX+H0GfEHHFpSsKjHcmDLs1f8oiP2Wup7cnAgsc4FfIqCGXszDTV4hxQaS+QymtBCjU/1vzNOuoh31x1qQV/iUH/InEYKTyJnAO3l/FyPwWwRvvjmf743PcvzbSNc3GTbf7l7/QSMxp+aobvt5e24bfX3RMDUrZNQI+mao6RWboGSDM1Ra0BAChy4MFsglI2dycxbueum23G+l3/UX19uLq4vtjqDHu9cy3gJobFdvUZ1qamZmCidmIZCB3Z2c1Tk753Pitru6F9gELShHFAKoFXsBG4JRS3tNEKs7FDOklRRomDvjhHyeg8C0cr64NfMaDauyqhxYS1MzZ9+yykg2a+xk8wIUhyowQifTRHpwZP9aVu93alVImwMs3bBDv+1iDCFUj1lNhfzbutffVaP559eu+5MOs4by199qR9aiqv5koNY/un+DB7A/Qi2HVDnwJMJdjF0MtVLSIqFYmJVpNmuZEAJ3VYMJHJjVljKWDTp823Ot+v7153ztGdYmrIMqBtu+Q0ZcQsxdLDFaFDDETNQ5mYwlTkVyFrMWdDInRtelV9UTvBS28hmJWffYT/9beUHbmUs+ivtP4Xj4+G+1+b2AdsxK7Rlu9PerMXPo+93jR0/N0cfLGDsifG1mYWKJw+Zis72S2BMF8uLuqpOWyaymDqtKTFkRa75bm0HH6pltSgwtViG3tUgQZjCkEsUUbZAJLZv8Q066mkusmS6Yl2pb0e3r69W/3PFMiSGu2tDZpR2+BLP8B9maEvNtBMnXt++aX+x3wJ6Zt+tqYZwk/jzbiLz6i9zc1a0m0IWbgcEuUucXkxmRK0EBdYCIhQNTFA8svbhDQugHjj2FnuMQthfd9jIMGyvJcGsGMmfAmdzd1Ip5U2JU4eTiaKEJJjU3p1pDw5fBcXWdvNxaniyxcVJlKsxCJEwiFBkinhlCzmzMxsxCzKJcdepamA81PTbPq22ezCtrafHfN7ZmVV+qPgN1t0VvadpLUTUtpoUskWkxOloebZrIDt4d3MqiW8wWaWvfBf9YX4GYpRs28Jr5Zkk1/G3B4Tfn29tm4LmSd1/rf8CsXM389dDSSgy9rTUhxYwaQneaq6cr1PdS3ZLUslm1ktdzh9Fcf006vmlJO60Am9OjVLTvZCY63IgRgggTi4SqxHRdH0Ngdnc1bTEVTCwkSl61ZvIg1EWOUaIIE7uZO7XsLXAnqyBMy7m47PM4JVF5aKzWw7qgU37+IHV6VYq5zACMuzHICcZsXdTYmwQjAjyaUlIei4xFUmEzBkhQo9GMa04nzGhkDUhccVww827mXi2ZnICqQqExzdtxW2xdnOqdwOY8Py0JzemdzQb/Q2Nx79BJE6HVKbQyiIxKG+dWhYtmXHoORgCdIzFfd0c6m5pnxx/q8gITf6dGRCHGIYTHAOAds1Bb8vd65I3r6M7Mm2Gz2VwM3XYMneUMT6ZH16N7rqKndp9mteC79QkgIql1jFYLndC0VjSmVmsNRkalJFZvvs+KzuK+r/yaBZr0+VNfmTYPvfdzGbUcqVWXl10EmAk7bZGf3sNaGLRvzsnRfyvt2+zvb4t+qgeJyFZ74te08PdREf9tNHOzyvyuhiURMbwG7lS+LNXEW/WcueJSe7MOwNRQi6cREQtRF0NX1K0oOHTDRRyG2A399qLfbCV2Di7qOWspamqw5ja1aiWqVTWm7jLurkWhap4tJ8vJ9GQfiNBu2z19PHz47i4GGS66vgsiHJhFqg4jjXlQu0YQWgoNGzMxG9DyujJByBcr/E0tYu2k87lIkzdKZLOjVaFG5qRG6lwMpmSFPLEZFcqTxuNo4pvHXXz6+LIa7qfX8Zu/USJhAXjGgvXvpREJzIJg7aKj1c83z5yFSIvj5fXxJR3F2tnXjLXVDb62K1Vw8xtc63s5CQkg9iDcRYkhsCCyhCBdjDEEJlYzq7W7iBqTjMlbjVwKtTzeDLS7zxjeCr23dfTCb9TeMGS9wIt5NGeu24MbqoY15zdSJwJDOWceM4/KSaUY1zAvbmmrDefuhmb/16D3mdm7an7+W40QXLaSpsXc6/fy8e+MM7O2Kf3e8fYMK5P+d9WL799YKFKoKe3DmdJ4v1VtkRjcxX47bHabXer7rHdsU/S74HdiR/IMBGsqx/ecg63ECp1UjPYeK4O86QwM1PiKez6r1s/5B877cC/Gh76VmvUQcLBctB6uCtE3c+G+iVP4NpjDV5+cdect7+zbjPt9u/H+n/fPDzOd07FogKuTvt5uXllS86XrGzit3wc69/W61W+C0FCF+6hpCV4JA5V2SE3T5JbM1VDd3iTEFKi5iKkldjQ3z65CLjE4BQNzCF3sTD0fR2fph83F1fXu8rLfbJw7uE/TOB3243icplSyWvG6MbURUnPThnYD7lrS0XIiTV6ypuSaFh5gjOHdd67/+A8/EOHXd6kbhhA6As0554mJWr7qmZLccM1aKX7hR9Bcam/F63poIp5+8xZPYcscdCOrEWFzzV5315qoV4mLmJvRlCylXIT8KuKnP3y23Q7LG63Ajn0tEvNtPKlW0ZealfItVzibD98LQV3jYT4Tqx5s5y7kZg37OZaz7sFZnxeIYXmhs5cdaO+T5rRa7feqas/1vM8QtZlDc6+dFNdqea38SbRcfzGXmYOgi2Ho+y4GEYoiMQQRIaa5SJYpqJrFbkYgZmKhECoKSKjaP5DVipouCad9Qcx53tSrNFhcUm9/I6ufmBEkP7Pw3T27Z/d+5el3hxcnVhoz14XIRJooZx6zFBMHVZ69V3HQ+DRY63ttZtb7P+BIWmbI4sACsLiz1uhBm+FeN1KDkZc6AgvZ7Pu3Mz352+2BwIxTv3VzeQhxwUNz+3S5+1/51kDMaQ+cUy1bw7Hc3wYVtWBjOIMQRIauv95d2H5zOBrZYUfY4aa3ffSDQZQEyIDB5S02hc8/37iRuxYrOZNVf9KSt2V5xJqn/jRP117EVh6gfave7WSF+Jtb/urIem7Mfso3ulfPXKTKSZlYiZqVJJvrcxFX37+33trq/bZBWYO3b5JmTrdp3z3/9A0d4P4ZZ1rBsvugid8T160eWYqKrS98hsT8loykv7NGZ+vF52O8KDUnUqBTZYLUIhgMuKsr0KSzmpt7tV17R5fVQ3AOIQpJLizddru72F1stxsSPk5jSrlMZTrsj4f9NE45FS0OmQG/ukU5qAU8wMxKyZYTW3Ytfp4dLobw9NElMV3ttuOUa4LqCvi31UNUMU3HajNzRwsTOdvYCJgj9lZjtRqjdWtC3E46aVUamvrSvua10hSc2IK7GWV1LeZMtBV6cn2xGbrfwhu937maG2etKf+9aw+G49TBf1MOLztPy2LEDQesahoR1XQmwKzEUHPmLA//NuH+rbpaE9CAmLhm0guRuy4OXR+7KIKmxBCbe3FtWfPNiarHEzV1TQjCgakWtTarM7yoFatuUtg9o/QMpToZrd96I/cFOV2auqprLVxaq44YwWpgqjEKO8FdCFQSSuFUgrkwL2jX3IeVxtRW1uz/WWqUnaEcVezS6at8QjvggJ6vMloOOqjJozcxst+8rXWadUTbv09tduF97Tntp1e4vY/x6uLKj7vuzpEOF1R2/rqzO7ERPPiCkXyvZqWUUsi5JqXGoqoSUIvbAGtta7W/z+9jjXytDA87U1kALLWQVt9atybT37jX/IX1kVbqzu+dctaWu7zt55s9mZ1Bp/uf9/NtO8w3t4f04PvdXn/8sDvpOy2pNR6zfm9/2/rQjLq4N8RgTig0q3aV90ct7LgWUxImruEvRc2Vmd28mDog1IXQMQ/mMhVTSQMG5hBD7PrN5cXVbjO4lePx+Prm5nAcvXieUjoepsMxT6rZPICk7hWNJFkrIph7MVODg5gDecX6ZdFHgvD15W63Gd5/+thqgoS3mD4A7k3+Nyb82j5828Q6ty3PLdHl8Mnf6z5HQxAgcAdpQ77AQghB+i6eXf6bZsPbUZNle5uDVFb9WKsyD/pWv1dbbWm1quG69y1a5WQ33LsVPXT3il3ggbc4G8KL15rOMJgFcalpi9EwmOrNWYuY1uc39ABa3ea+FGNmZmHmwBxDiDHGwH3f9X0fYyT2QBwlEBHc2EFcqyRRGwNQZf6GGEQIBDMr3saoqKlC1e1kTrVtyU99WpAPYJl1b3jK28CfflmQmNbMPZtnhRq5s8FRFYXZhjBlBRUTAlkhNTaEhaFANIe/VmSm5cVux2neYKyyHk4TYek5zRFh1R5fPVeNLZypMQAqIUUNZBAlGM8JW3+7jXCamQ+vBZ8ho/vffGDLfOOch858aINZZvCpPyek7OyOs4xYb/B1JN+Y51h938kwZ5Fws8Dh4vJK8uXFLeEwbuk42FVX9qxJyU6rofVk3R+c32XWSOdmZqql5AJnX8Pac9CREQHEdO4hXICQ9nCrweH1mABNwWpnLJURVs+8Hh8CcP9ei3fy/L2oeSmqetJjCCBhrnmfWuoF57oc+DTac24tPvW/1UU7jdUZ9fGNWeerJzp7d29wy9pqqqUrqSExMyeGZoQG7BbEhM9oyv9hRSfNWm3DKtZro44IDEI1h3uQEEREIhPgop58sYBBIqGPF10YhIKZaRmzZskTB3SBhxiiwEo6HO/u9revb19PU2IEUys5uRmRiEQWELtVHL06DSqQXBVjIqcaXgRXWyN1RBRDiCFs/m7G8e9nW1YsvfHLb7nRLJgik3xbWn91BhGdlveMBTYi7MoFhEWlmD+di1/cV2JOSEzNyNK+xNTyhJ6BvW/Yc+dPdF+XrOpLEIkx9F3XxS4G6bvQxShBAOdlZ/JG/kUD/IhqTSep4UiBBSAztCS+DhSzYlZsLnl+3p23jOHbYKV7Sja9gcQ4zEiLaBGVWhCTFkzMzc1NUcQJbEruANf4vdOrqGEk5D7nNZi30oUgyThDlE57Mc00CQJAtjYVVmDCKr0MGVhVVMX0dxHjMLdlM/73rq1m8dcuvzPHnzlx6Dc72V3arnOF+BT0SJprPsx55nxPJlKrs0KnLKuLq7ei7cCckHLRTXzeqt9QYtzvKzHrLf9sTqzs0Aa+rO/yRrun8NXAkfPYLnctXpKTGJicCWRVW7HTlU1kuUlDfeYA8NbROfkxYf2aVr2qO/Fb+DFnE98dgDYWw+xDmgGkpsS4ezHX5FrWA/RbzBPzt7xaHkAFZy5hJfQKkczce3EyVXVCgAQJXTdI7EU64S4IM9xCZ1pqCSAGYjdcbp9GGXIpOY2KbChpPIaoXbeN4mW8O+7Lixdf3R3uppRA1MctEwsxxUibDSwwm3lJZSy1CHxNv2WoTj1IYGKGurqx+MN+bJ+lNt40DtZy9B5E/ztuy31pvq+t+nlPyTitdJzQi/vL7+v5Unyf+HZu37zFdn9bmzFg9rZrnQavkjyZwCAXMLg7z6+wyuZCZ3YJCC0U4FyIzBrMUrqkkUNn+5KbQjKTl6qjkKoC0ZSYEx4zj96s86yy+MJrrvK5MAmd/3A2tARC7UFIiGYNJm6GoY8xBImtVDU11pMZEaw6ZtyqrURg5lo9URpnRirg4HPxCletYIwVVW1ZoH3do1n8fQsVcfWu5y+fzXSCd547nfo89dV5zFBu2wSzMyDspE5wNgYRmbbNZ7YvaxNaAS4reJm9Rua+McfaM/FpLaw2JEdDYlbnz8Qu1aAlauFvF4LxtY3u/X6+vvhBsbDaVe9rt6uT7h+nt2yfC4j40H2WPW75eMlqc7/n86eL+rX4Th9QcOvYO2qe21rukzls+v6CthdlHNJxLElFiZXd2Zrn7l4Yzqoni7rgi/75xpOuv+Tzm58BCQfO0mL7+S9vjM+MQ6yPNFjm/klnaMcJ5zi/dF0qJ+zEATeDGsyWzrhZOe6nww2ihCDExLP6tUZiWl6o1e+nF9wSuztOqtgiCE/G1Hx8Jdur+GiCaKXBAQB02QVsrmxypsRYKTamnKcrX+lkQdWW4ajTbQ3Ufj0sX29urSenrjRR++Z6X1N4zj+4d876+utz/CQiraitEDK4e1HL6urEFCgSkYAEFJijMxgCcokhhMjSs/QIHYU+dF0ghmbNOeWjmrJI6LdhuGAKpodsllRVU8455gxVK2k63Ew5v765PabkYAkxSIWka5UxMgebq1kpXtStuLaEK6VYKVq0GLlFUqvJsTW/IcvcrKE4p/FYn3I2xA+bF99ii3hre7tkXS2eEzjsK6b6iUjc3kvRwOTnThB644pva/TGOe0Kb5QO8vWnZzbB6ddaQXHOru9Obc7XREGVehIa5Yj6VQl7B8xc1bSe6qcLz+4gOLBUPK6yvUbLrF7e3Me5Y63a1BypebaB3h+EWRG690jz9/ykHDhwWlhmrk0uYP2tCqiISAgSggQRJoK7qWspZkaUG75QEwG4O8AtYT3N5lh9+Us+IbhRSjZO0zhNU8qp5Dk5dr2t3HubM3n2NC4LjvXmGyxFcymquqyXIYQfP7n86smeJqV8JHIXaBvRWnQE3GQ7V+PwbP6tpFyNUTrbMHCaV3Z/hc7fb4knT8rZPMArYi+dLmFwqEopg6mo0jolgUO1yojVir4v7R/sBJaTVnLbV/8e+NLq3xufrP63ussb63fWhkqxXLToaZDaerGZ4np6s2f9eWiTebO394/MV2n+BnI3dwaxROEdD095866pqFwzBragRgarUfTuTMts9Ad6oubnWS8WYm+hmuXB5/MrX55mFwwRTqZFFTEn4+sMN11hKr5O+VzlzooTs37vjcVFb5qyJxk5O4BofharMbPLw6Rp/OKTX330b/5yGLpqsdCixKwMsHUemuZa8vZ3DZVh5lmJYXerHqtaUnnW4R1ocU9eS8XWYrGNVuz35vRiAmHm7vpKATK3UvR4nN7dlTT9T5ZvhSlX+6L6a6sScxrpr0fS6/31jR3mWykxb1mRZ0rMm37xkxKjU9a8ejFmPhWdsvUeRAYJkZjd4Bw49ixCMKokRBYQKzriQeJWNrsuBHLN43G6eWVWSHqXTfLopezH8XjcT8eDawpME453eGnNNcXOnUtP3Dl6teAgd02q+2nM04FqFU9zNU/ZtKhrhmW1rJpSTuwaxU3zdNxP077VTFgNJJpYfMtreNvx9SnfeMb3abT65Y3N5hyPMfcx5cM0uVsUmQ05vvedr2/3l+k8Mxt6UbWMU0BVA13PlZjT7031qYEN5CAwQ4gjMTGBWYgCIMwgdHxyKLl7KmXKpS3VcySmRfLP92qLtrmda/Y4w8IFbHAKG3TuahM9FYCpfA1mEDtXXQPNVXHCZpTWKNQcZ7CK+Jz1TDMraqplWS/VElAzuNdUG7UUkqmrwdRSSmpZzQBnlprfbpaebmQFylRTBpDXHHNuJZeiVgr2Y769O+wP0zRNRYvV2NSmxNy3qh9iwPj9Nzi3XHQ85pSmZbe82g7/6c9/vKPw8b/97ObVbU2mYE4VhSGvRCqnk4JCC2q2mlP3psl8ZKXEPCS1CFgKi6+PErB2Ji1PWntg7ga1zkosRiUt0tzcp6zHMRMhqNQ7trCvr13M/FY80k8a9wOdpwdBjtnWf/j4vFnSEo5UreTDmKep2GmOIRdLSV1QXRNzD2clZlaAvu7BTk/xwN/G817jTg5xEEN0E+KHdkHKT12uUnhEHiybcSHOgMOFwLP9tWTuOb39op6KJT1R0t09pXwcpxJEeJZ7NKsvXGWac6UjMM29OldiVuGBbyox6zlPKzL8+v+8lnhvyN71bFkUHVWbUklTXt7L/u7mL//VP/2n/+9/stttuy7yG47mk4G1HJnvWEVa3/e73bbruirzCJRLOR6OZtb3fYh1eDXn4m6V/l+7JCJFy/FwnKaxlKKqtZ/nUVfNoXTvjZtbynm/P17wzWH/j5bj4U9+/HR5kWiT+utVl1Nr0+jNZf82JWZtHX4/JWa+gqlltZ988Gjom0fsYrf9H/7DP2aJFxeP+s1GQiQmqDNLFzsOwcjBFGrBLXdwQOxjt9lsNl0IDCvTtL99XYpy10uMUcQ0HQ+X4/i4TEdYESJyK5pqKhjiGPodxy1JL9KFEEAOKymNh8NdTiOZAsbE5p6LqxZogRdYUcu5ZHbdCszK7TT+R3/284vd9qEhWdDgv02H0bdp92DqRRSe9XA3xH/4k/cA72NYCFlvIjFf3x5QYuoHiwsGOEdi6jlvUWLQREyziWs+QOZYg3SIYuAgECZy+tkHTzd9Iyn3UX7wzgWAKHMlztW95tjnRYnx5i3ieaG3KON2fnMGzQpSlWpNiaGmh3EtUVHPBlbg7ZlN/KZ5sKZPVjermj97tIlz/p7t0P/8Dz+QIMNm6Ptu6GIM0irrAqqa8xwlDReuPMDQKr5XNiATMYlApNZIIveKMVopPqZyux+PUy4lm9oZJvGbKTFFbZzKn/3RB7tNX4/s+vinP3znAvQrptevtlSLYRCBmKwpMWhKzFLEg1cIxErmvAWSaPPqLUrMm7JuUWLuTfRZiamuPxezqPajHzzr5zm228Q//aP34Oi7EELLtV8ZCfa1a3+OinpQicFb5AatBuH8gzfUr/n4aa3R3NB4rzal8vM/fGe3WdYLffh0gHuQOY1+u+qCs71pAr39+R5qsxLDaDnlnEBsEhIsv5PS3qjn7YfUPXLqnYkoVCXmNLnWu+fc1Lyo/eDZ0EeenyX88L1rcwsisih4df0uqswiW6oR1TbI1TOuH/QBJQaoaorPE+WszXc8gSzfVonJRT9896qPba/cDt0f/fT9V89/ttlsYww0+1Xv3eqszcpr9X33fb/bXXRdt/gRSy6H46EqMTEEEMM1nSsxNZJAtRzeosSsoi7vaQhVUfZcyng8/vFPP9yuol/po89fPzAYv6Pmp/99z634pOLD3YcuPr7adFEAHMfp08+f74+jSOAF0APQXBt0hud5pdpyYycSAe5uWtRr9q5KZ3Qz1Zpsf5ZI1e/vXuOmWUBSbefl0m6mqu41G1t1VjSiEmaErfIHqFI13YvbxW774fvvbYYB/2G1MZXPX97uxzSHJf6W2new4b72ErNFSCuFaOkqAUMfH11uuyAAcrHXd+OUZgDkDfP7od1gmXk43W598lq5euhay41WUvDr1+tqfa2WmbvHKLtNDMIAplS+en57nFIt67gkqpm/5GZtotbeLDb33LcTO4JO76FNc3eYW9ElPdB5V97o+UPS4K3PWFfgbtO9/+x66CNm9GKa8nicStHz7y2/+fkvv01p913V8fn3mg7Fh767ut7FGACMU/niq7vDMbWouGX4H1ZQ1n1YnfOmUvV1XfzNhmKRqPN7eefpRbUtc/GbQ56SNVP/rFe++u5v0IHz1ztbCEaW3YubOjFxDw4tsVCDR9Z65cMXNkcf+XoXYmAAueirm+OY8n0xdlqn9ObBr7n+N4z6126Qb3ubJyfX6gZ1TfZduL5sNszhcPzo1x/f3t4J8xyi940b8kk2VDqeiKwTZfkcTNRkSSWANstlJTmoYcD17NW7+BYaQQUwzS4vL370wx9sty3uhX5jTtnv2+/b79vv2+/b79vv2+/b30H7DVJl/b79vv2+/b79vv2+/b79vv3dtfDixXOsvG0A7gO/bwHJ3mhrfP2eg83Pfjx0yvrozEqe3WJr9+xyA3d367ru4vIqhAAArq4H90wLsDpTaNb3mxkEjplctob51+g71uc0d2fLPmHq41RyVlUT4aHvYxSqsZ1ui8/o6x509UllXhMPFB8TdwBSSi9evpzGkVZ+i3v+iwedCyt/wPLkKxD67T5grCDFN6PHsPgVlp91DO/Rrxw1AGuz3b777nvDMAAopdzd3KWU5lzC9MDTEAhkblpKybnkqXKcfc4XUEmyUlOrifCSMdOWl+juc4hIo5UwiFlEJNBcApdqLGEr3lDHi53InP1U2HceInd3DzFstxsRqe/l9cuX0zTWinSnx57/O/3p7n6CTGuQ0irO+oTBL2MKmh3sJ6ZB6+XyCuYXUW9g9Uu+NAA1cICaJ8LbVKy+Uus3mydPn3V9D0Cn6fD8eZ5GaoSFFgHQAN65TEdNVle9/NKuTQbXmv/bzFv/cXBEAAEAAElEQVRNTnhZBwueMl9rox2xA2pa3VTCEkIMIUgQENVio0DLU+kwJmdGlFbxVM2mqRQ1B8cQNptuGLbDcCUcAUzj+OXnnx/2e14oRb9puz//Z1fx6QTHam29iWe/4W5cHJTr7rm7m212u3fee78fBgA55ZtXt3nKzS2+3NndWg3WYtrKOaxu8lbP6r3D9326D4zVuuv0wI8HKG0E1EjM0m/6J8+edn0HQK3sp7tSMrPMD7F2UC4MeMdcyrX5Im0Vw1FIa5EYd8CYPYSayRpwmHnOOo45ZzV3Zuo66TvZDCEEdoBqqmumyitqc7R6loioJgZaRoLARMKN68LSSdgRBQDHw+GTj351d7uvKa5p9aUzkUogIuG2z6wFA3HNqCTM0nwgjWDQqrzUjAUxRhYBoFrSNGnOZgq3pQLJvbc6BwnOmZza9PdlYOu82ewun77/w37YAhjT+NmLT/fjfkXVPwWG+4mPQyuxdk5YWT3wWuwtx8/OpbmffjqwnMBV3FTWC7zm9/b7LDOak1TBzHbD7r0n7w9do16E//af/jcAmvw/rVRr73jFPAS1pCurC9P83blzpyjDlq+CMEeUm1Wn6RvqTGu1qrNXFmKt/FonciP+YJbp7m6qWkp+5733/kf/8f/40ZMnAEz3uv8ryy/mzdKA0hJcuAFGTlxltKl7AdS9Ml18vn1dSrBajwMKFHYFnJmIBRwgERQPt/mjX7/66qvD/jjuttuf/eSDp48vYnSBmk5uGaY1scbyOn391H72ss3VPcnmJ/2z/zl17wF4+fLlP/6v/vGvfvXLECuNjE6+y0peo7kgFHBeop3m67d9rtXgq/vQsrR8NYmWVqNLWxy4rbN6tHq7ZqraouNK0crlqzG1BBjcPed8OBz+5B/8g//sf/e//9GPfwLg7vb2v/tn/+LLz7+IsZPYEkSuCUptmonkNO5fv3r14ssXX34yHm6J2cxz0ZJVVaPQdoiX2/7qercZ+hDYDZqymzEZubkpw4UpMIfAEqPEfthebC+uOYSURoOHEEPoQuhFggSCRKdYqJ88ZshcsqONnaqXUh4/uv6Tn//B5dUFgFcvX/zX//gff/LRR5vdNsYIoM1q07ql14lEbppLTlPOU87J4BJiiF3XDywCBxMEBLjVWE5VJycWZiHU7CsiEqQStkRgVCuGmLuZVmq5aYK5sJhZzrkULWbE3PVdiIGo6hUF6oBrLuPx+KOf/dE/+l/9r9//8AcADi+e/9X/8//x4qNf8vUF9cFg7sVtcncnYYkSYwH2NmVVAnUkFxw3MUoXsttdmg7HaZxGd++7jtT1dp9Tzg4DE4lpydN+nNLd5AXCm01xuzvepZLcaDNsHz9+enV9fXF1RVHGnIolWDLNpUxADpJ3Az26jJtdJ5v+bpw+/vTl67sC2jx6fP0HP3v2s5/+/Kc//p/tNk8BfPHZ5//3//K//Os//0U/dBLkbI9dka8XubX85usEdPOOWqXRskLX3FyfCW2tjlgTunVJrXm3a4ZVo2bXrN0tUG0+r5QyTeMf/+mf/W//8//ihz/5KYDbV7f/7f/rn3758VcXl4+GfiOtgLOWMqXpcDzeHQ6vx/Fumo6mmbkS+07GwVmOVAKWPB/rtbZo+qehWGR4Y4XN5FCaR2DFFmsVP3kuk1FnvR/H46vXr3/w0x/+o//N/+L9H34AYD/d/etf/8tXt8+HuGGQaiml1LJrTMyCTgB4sgy3AJihFOSMlKmoAZomv73lwx7T6JYL+7Tp9eqxbAYWJjOdRn3x/PZXv/zq+fO7Qy79EN5/9+JHH179wQ+vHj0alImZ+4BNlKHr3Gg/lVwLgQYOQcjZCpsD7MRg5j7SbpAugsiGzXsXj/6jGK8BfPLrX/1f/s//p3/xz/582CAG4iUdJWZT19omGiNvBhFGLqpqpQXVo+v7q+vr7e4yDlti0aKmylq0TNOUmGV3cXX9+PGjJ8822y1Ad3c3X3zy0c2LL9PxFjp1NcKLa8giABJURrMAgTgyCQVmAQuIFNAqsEvKx8PhD/7hf/y//D/8Hz/86Z8A+OzFp/+3/+r/+otf/fnQb0KoyUg4NiKLGVxRmWXscHV1d3GQkdQiX8Gt0t4cALuT+2x8tN3W522JmL3NUCV2njO3EQB1sKMD9Sw9dQBGTZOnxElJQXXncQIRB4awRSs+peOf/vR/8J//o//iJ+//rM698MlnnwCAz9ocgLrlE4hobXHSSolZK+SzEsMnZWmtxMz26Gy4zYTBUzhUkydqswZeM2w2ZWZRYpaF5O5WtKQ8OTyn1C5gRdNLS585ByIQClCaMuEKKDkAJVeYumcguxe0GkB+4pC34jxGpIARzAF1UuNcaMp0nPyTz25/8Reffvn8QMQfvv/Ou9fl8fDIczaf3EbXEVYwZxda59GZw1+xiBt3mGezKTo6HeujjOP4y1/9zS9+8ed914cgTWy0V19zdRE/rMTAUXMMtLx6Zlo1R2o5ULDSJNcSjIgFtfaN21ID3R1eMZKquqiaqqpaKaXG7GrNP2JucLNxmu5ubw223+/rtdOUv/js849++VE/DCFWQ+QsJ0HVk5nDeLx78cUnX3328fPPPkrH2xCCmR/GKefiwLaLj642T66205OL3W7T9x2BNKmbEozcTNU1W5oYFgOHrgvdZnNxdfn4aej7nIu5S4gSui4OIUQWUIjgPvPm6H2iaMbWxsfdvBRLOcG8lFKfZRrHX//qb/7tX/7r3dVVZea7Wsm5aCmluBmDyJ3MteQ8HVOaUp4MzhIkdqEbRAIcgbkTYXZDNV+Lw0iEODAFZmEJIYQuhBBiCBFgLS2zgpoWTSWnlEeoMgc3Lzll1aJKxN3QSRAAapZyMnUm0lwO+30udjwc2vaZ0s3nn7/41S/l0aV3ojapJtjocEjP0oUYC+xOD7lkmHckY9hs+z5sYiHcTdP+MB72BzXvushmdnsoKY/uCiYEL6WM+/F4vLnLydg3m8y+n/ZJM4y224v09J3D9aPN5U6ZbqdD1ol9chT3HELZdNpH/yoAzDmG26Qvbo7F48XFM5fDly/uHj2++GGZ6rMc9/u/+sUv/vk/+Seb7RBjIFkF8K9JyG+0MyWmGjBVwbe2hDBH/SyRga0MG9V1AliDkRbQqwlSJrT0Qw6AueEBVPWYmexfcjocDqZ2WNbLmD776PNP/t2nT57ki+1lCJGJzEtO4/Hw+u7uxeubL+9uXx3HO81TCxITWkA+a3325anPlJg5VG7mrs8RdiclptaVrUoMzQUZCGBqEGaNhBAmpqbHwAAzvbm7++KLL3LO47HJsVLSy5svvnjxcR+2BMo5lVLUAXdiZvGOAbbkBW4BZIopI02YRtei8DIe/fUrvruh4xElZbLjbqPP3g2XF6Hvgha9uTl8/Ovnf/mLX3/62au7XDab7gcfXL38yWMbn7337iV1oetk1/vUhU0Xi+LVXR6zg0mCdDEICYxbfhGGMA0dpw33PUTcQNvLhAgAdzc3//Kf/Tf/9T/7ix3Qt6J7NSvmrMTUXFOELmK3gQhyhipKS9mObsDVo2Gzuwz91klyLlYKabaSS8mbze6d9z549/33D++8t7m4cMfrl88/+pu/fv7Zx4ebr1C0DwhSa0TVrqJjJme34C4kHXGAEImzOFclxk3V0jgebg3Mx8NtfS/7cf/nv/zzf/KL/8/FdhdjT0QB3JEwCGQFlj1r3UnQav2KOxuJETGRuHG131CVGPM5CxrV3XbJCkLc5grIiI0JoZaFqyhvT/Ko21x32+vuCoTb6e4m3b4ur48+Ggzk3JaOwIU8lKyH6eCg/bhfVnEIwgtW46do6VpMgSSEeZa3GT2HJNBJQPj6dzS1YMkc6lwhPJOmnDRtploJ3HJcmhm1KtIOSMUQdE4ACnAN4jwh9kTuGs5QfXKP7n1NpQUXQAg6YyoKmBERHGzuXO8CRzOhTm6bmteUhSMLgwKMpwk3e3v+Yvrsi/2vP3351//us3/x57+ckv3spx9eXg+OK4lXbnvXwghAcMKS3Gu26c7gZwDWKsvBQQY3BD8JXqp5VPsuhhCIm7CpKnhVAhg0ZyNYKTHNN9UKtgjEXdDcLq0Cb33qVdqu2biqHgSvhfOapq1WJZTNCIyZNVS7ojDFtIHcaqpKzGra98NCXCeiICHEIEEkBGqeihnko9mN4VZyPh4PJU99CJvd5eVmULOX+31R7fv++nL7zpOrx9fbi8thtxu2220IXU320Cqbqo93d6+ff56PexEKIYTQSRAIOIZNv3OwmRMxx56Eau5kIQ+wwO5MxsEAd7VausLJTEROPiAm9JH7nmNAFJCwkueaJTEnd49cn9CFQV0UodgFdXMnBeVSspqQUCCKHAI7xLwOe8sqAyJ1LznXJcLMhMjkYGfAvcLdkcjVi4KcmBghDGJmteaXsJtn1ZTzmJIZQojmUBLnU30u6YeLH/x4KoX6YNBputUyEgYikbAliSzkljclaB61JEbo49Bthrjrh8i9XlxOebxJpRQEMDk/fuxmya04zJgKQlY7Hg+v78ZUcgwlsEWqxfP6rr/eXUgMk9u+TBlHoSSisafNZthtwuVFSGP65LNXn351+PRGtRueffDeD3/ygz/5w589uR5UXwJhUVSYeej7zXa72Q4hhhXScdq8cb+djIpqtTQEzpofsComcJqLRM5WVIt4nxeUz4bBySAjIjjXjJfVaPNTsT9CC9wAzM0JIavEuIgxYuqHfre7uLq8ury47mLHzGYlp+PQcwwOzwwPgbT0Fd0h4SV384zEvKHEzEUqpLkd+EyJqb97w1rmYDWeUz+iHScmEmYmSJUYVSSZWdaiZpvNpuu7k90L6kGdgXJRQ8mTGgihVrhT9ZEcDBcBiYHUKQGF3F1hgEHMO/AmkPScWVQ5dMYiXdddXGxzKnd7crqTELuhu4gxxs5zPB7k5jZe7Lodb+IQhugxkjmmYmPm4+QOYZHUSRdCF4WZqoA0o0TYkxdH7KlTWeotCctu2FwBu4Cua9Ca0IpV2uxsdAFDByF0MlvHDGJwoAAqU5omLeZTKqUUqAlTP3TDxeU7733w3gcfXj96FLu+qGrJjx4/1TwJm+XDEMAEdQdzCKGLcdsFBucCdXaORjWbnxK3wuh1OnOXPByGi0csYV4vsum3u83lpt/EGIlcIJ0HAYNdoclLca0e+rqRszktJZOFiWqREXLnGoqodY+AOingYBAYzgwOdZSqrYoOkIpbuut1v/nxo3d/cP3ue9fvM/HLm+efv/7so9cfvzi+SshEvOENm6haUTfGiOxOXRyIZBn4UHNoNSWmHWxWR52wC/RCixeT5iQZfloqjcJS8YxqzZDPaS3IiQju5Fw3xQXLmZUY1H2V51Ll7kQO8zl6iluur1mJEWdjYT7hmdWMAOLcfwaYWAGDK6BwbckhqioLdgiowPXkSURzCaohJ6hyznw4+qub8sVXx48/vfno41e//PVX/+6///yv/+bLGMNm9+xne58SqbI0V2lVElqNOjsNx9zHkydnnVhF5vzV82etPl/LxtEeqcFjsxLTXs2ZZ6gmRltcg9Xb6uaoe3PFnQhsi4NullfEgZqUArM7snpWqJuaccPR3BaNRs3Mgpup1QRnqsVMY4whhDPbd3ZNzq+6KquzCjm7GdM4jsd9ShMzD91wsdsJU+yCk1/sttfXl4+fXF3sNn0f+j4Ow9B3XU1IUDUtAo8XexEc725MM7kLi8TAwhJj7LZEoeTi7hICkWtWcmNSYm050QgthxDMa6I0pvX+x0x9J0MX+kghkMOLlZTGaRpVlVk4IAgLQFK15M7hxayojynvxymrBxa4D11EM/9YSEBetwRnKeZjSqoqzDEEgktbF3CQgM0ZsJRFyQwuEvoaN20Vy4UWo1LcvagVwMFO4BAlxsUFTiHEJ48203shRPMSx13Oe7MjOYQHpsAi7GraWT5qHuHC3Y67HpEo0BCo5663PueirGALIgAyuTq5CRfErDxOtrvIuYyOiTyzu1AMHEMYQihmaZxsOlIZ2TKxSQgB4kZ3d+XmJn3xZX7xmpJvL3ZPP/zBz372sx//+IcfdqF88cWraUymS8E7qmSCEGOIYRX4uSgxay3GMYuSloyuje08S6vn1LQUbwnNKzpOFcoAEYRAs/XWvjsbeFWPcG6pYRecsknIRoOqhsKsN4CXMGMiEpEQYxdj33d97IXZPAYBPOU09H0/pV6tL0KLEsPfWolZnNFNcWmQC4MIRjX77KqS130lhjnUerbtU2YQ1IwKh65r7u+TEoPgIs6GuYLWnLa1Snd1N3LX6pFgNSoKLa1WrytcIfCOGCIELszEmjOORxamnOhwxDTBnEWkFxIJZnw44uUr6zpPRqpsBbEDwaeM2wNPk6siBPQD8VY2fddHqZ5BN2J1T1bcyUiHsCRCJ6Iuxg2w6dBFInKmBlud7N/6yIwgJARhJ7cGY4k4sRHlUqaSp6Rjasla+y72u27YXT16+uzx02f9MBCRpiQh9Nvt5uIiTQdNHAXk5qoOAkeRLvZdYEFxMiiJkVvJDuOWxartreTCStxtlo2fiGLouth3EoMIYDw/UK00EJxg7K6tODgRWc2XaNxgOnJj96rKoObgLV4MZKhlP4jATixEsdYHFAeYEAFWg7gz6NHu6sfv/+iP3v/ZB09/KMRfvfpi9+XORMMrmUohyC5s2WgaU/KcocJUWIXOasEEOq3lE5pSeVZ1RS98n3kxLFvSqoRdFQXmsFId980PMa+qyjMkeN2Eyb3mYl+v+tU/oJWwIRDZSVUi9mWVovGr1uKKhChwU7G0iRwYnAExN5gSwgzMZEYhKpUzJdVINS/Fp2TjQfd3+vpVefFi/OKL/Uef3fz609e//vTFZ1+9/ur17cvb/d3erq9lf8i3N4fXr2+Ph27YFQ5uKauXRlBkWkDpebRWP2fdwzErzis5682Fo5XNVjEkczCRuTcdZvEhoYEtRM4kMVafDbtbVjNVMJm5WdHKraCTf66KaIIzLBD1gUJgIi5e/aNmWoUeADJrKcSo3gqQ+f7F3V3P0mG3J2nPoqqzAKNGy6kIiqESPY6HwzQec5rYARbput0Qry6HvpeLi+1wset3OwnRHdncjrlk2/RBgphVdFh2Vxex+8Fxf7V/9TqnI4Ni7KLEKDHETjgIi5s6kZmaKqBMAlawLYWBZp16Ybetpxj3MWz72MUIopw1T+P+9vY4pRhDF8LQdUMXQ6WYMZiYhIr7mNRv717dHY7HSUTgtumiMMiMoOTOzCKBY6DQTaXsj8esFoT7GAgm1PAgp1YjxpwFyICZi2Az9EMXuXqjzXOxqZSUyzCUKemYc1GVnvuuPy0ZBgaRy2G7uSaRvqQp3R7HFzYdUEgQujAIiWFrOlk6whnxQsFjOVDJPbuYS6iyUquV4MwQEYpEHWWD72XoLi625DRmuzkcvnr9MmsK285LOaoeS3k15kNO2Sf1Qmpl1HHyw3T36Rcvb26nonL15Mmf/ekf/vSPfvKzP/jho8eXDNy9vnn1/DmVuLj52g7C845yvpTugcxV2nGrp00AzA1EwiQSh74j4WKaSh4PyaZcSjGzWq2A2cnARFa37+qzrTbmDCs2dy2owqEzIfBEtpoXKwCUbJpn3kRbL23NmBXTYiGyV49Nc1ipzyycaigvDnxgYcasSTF1F2Y/TWYHaGFBeiXcyVxXq41gSx3XxqthvphhKNS87jxfbJHdNBMT2p0YFt2jilotzWAgs1oORoktu5pnz7WAnBm7kap7Ni/a2GJGDGeIECOwGd3ejod9esFTLvn29nB3m1JS91pznozsmMoXr9Lk08VethvdbLnrmMUJcGPLVlKJQemKd71s4nDR92xwgxaoOtRInUfjGKELogwmCgQhhOqRa5pdHY/mn2N3mQ0OBlhYyImJmI24oGaEtJItJcvq5pBewrDZXF5eXF9tLnYAUs4ppVSKE5FEls44O7m5FXM1Qynu3MXOA7IhOYpbMU15cmgXuFKDq51cjItzwalSeiUfC1VgwJzUSAvBYUTNY9KsXXchISZhofr+YPMaYzIQOdzZwXCIm7s6oMSJmciiBaHOmRiFyYhm95SRe2C63G5/+OFPfvbTn7/79EMiGl5f+k72ZS8e0lFhPHQ9io3lMNk42cRW9uZwXdLz4m0FIOc+1vfUtime0dDFHdB4t1XmAw63JvyrHjNb/TOKs6wvZprR2vrde3V/bK3Y0rIcV4uQT91cd5urC23uMs0JlakWYgNC9d4QGVHNR6dmlrKmUacxHw7T4ZD3h3zzenz54vji+fTixfTydX59l798efj0y+OXLw7Pbw6HlIhCSeHli/Gj//6rX/zil6S3P/vR9sk1CAWuVkvien1uXz3BPARnIuWBNkspM6soyYzi1L2VzKqthPvXYaY+hj7WYk6YipkqYFpKDpxLUXN1VLFKTbsyhgegJxpEYhAIZ+NsKN6gCT8j0RhAVRdqkozBQSr2wedJkNDsUVc1h4K8TR5rfFhzN9XKPsvTpKWAKiOJOXS7QXabcLHt+m0nQ3AOqqQlp2lUGLLEyI7AsXNY7OKwuwhdRyTTYe8lg0jVcyoIBaEFFWgDjQpAaoVMGSYwPenQ92bWfIwQmCJzYHJQUsspHQ/HKWWhLQ8cg/QxhhpKUHE04ezuKBKCg9QMREU15cQwNqv2LwIzkTM7m5aSUjK1oQvuxkCoOnvdfEAFkELerPzKRozbrmM4wVytiHchpmhd1j2nbKZmIYYYZV3TKnmePEUqQQQc4NEnLg7SUg0CDpFDT9jSsHUnyKCqnko1nYkRe4gZO08lT7mUoh4CC3MwoOQydo7YD730XfHeXW5vckEplnIZj4f9lF6nMpm6WCUFlqTlLr++Gz/6/FYNT548efr08Q8/ePKDd6+uN1FKvrm9+er55199/pXY7qTEPNxohkjOFtm6ynT9bUZuKYoMfRdiLG5dKYG7GHOappyzabbG2IPX0jlzhmVmZhECmXujipnBm0k6Kxwntn0d/dY/vSeQAdSwhVxKKiUFERIBTDXnkormxiKfRac/NFVn/H796DRLW6KK9rBIiCKRRZgExIvePnP/a7fP7av7EpnWUvrNZgZVJLiSGaoKpO5wYnMykDpK1mIN8CXj2ZXnVNMtMxkRIbuzmaeSp/GomtlJqyAYs9nsBmMCkIq93udk0+0RXRf6QWLHMXIQiiKklqfUB2bEbWe8QyRigytInZtcNNKCKa9rPdTdUBjC4LlyypyNuwlpqQUuCARIPZkMRGB2qiQ4z2pTsal4VhjQk4Rhs724unz0aHd5mVIqqg54W4AdSXSSCnkU41zczECWlJz5WHQyzU7qxdSYYGCqfgYIMYOVGMQRq+2ibfEAV9YmwckUzb3faDwEAlXGs0hgJpAC6k1ZR+UBAEbkzYfuIGU3cGIisCAwCYjAVsWTqZOBLXK47DePrx49ffLO02fvPXr0jsEPPm5vry63j8Z+mrKieGChoF3PReKk0ZO+LHdCZ+kRw9oZ0SZn89/6XKKloYt19dGJHEbzc3iDSgkkNQUlmdEc0ULeSO2zRnFKxr1Q+r3a9TOrzn2xLBagwb1pkKg74InpunSf2s9Tgt6mHdn8WA0yduLZs12QJ3v98vDJr19+8vHtxx9/9fzF7e3t4eWrmy+/fHl3dyyKYXvxzrsfXF09NnREMWWFknDgLF99evz/HT969eVXH/3q6X/6P/3Jn/zRo6dPeOjcNQFGjcpTJ381X7h1hU5Fv+Y6LudYzPzHbL9R82ycLDZf4B3MaiIRBaGhk4tNv910IpINlfGqJaeUS9GsnoumnK0UN6vqHcM7eEc0iIdACAKVUMBW9SWuxgYWM26tlRKz1Jp+QepWGc6TOVZytbYapQBarUCtWJOWknNKx3FfcnJTYypqY7ZjRt9HdSk5x8ljRywkMWTzaTpOedSjh8gikWKkY+w2u+3FtXTDxeNn3WY33d2Mx+NxfzyOOhSK/SCBYZ6mZKZMRixFlVnFlchz7ZtVDZ6YsWxAbZCrdDUjb0+UU0lTSrn0ncMpsEQmdq7VsDFb5jXAOwQJXRRiEE1TspSEnGHsYJEYi8fiko4pHY9HApkNBDC5kFdbfPbR1nCVokVZQiAOJIFYoDB3uBDFGLuAwFa01pfUICGsUFgzPexvXr766pinLnbCVMZxfH2TxwNcpxAzh07CEHqKsfDOYXBzReh6FCE1AqKAa+D04XBz+/IwTR4FMciQNE+Hw0txSlEuNhxDxBCH3VYZI+x2TC9eH++Ox+LFyDkwArtgSuX2xeFwzJHlnWfXf/LHP/7gB88uBzq8ev7r21dF9Xa6e33z4vnnX2zkqWZb1kidZ1VXoErUPN9e12bo8vfJ7eLE7uweRboQOiLv+ssNSraUpuPxuL+7mdLoM27NoFA1T5EQYxx6gKaUbRw15ZStrfemBtTJw8vdFzWA4XVDPIEX5qWknI45jzkfRchNzHWaDtO0n6a9lsk9t2gQx4z8tF7NAG0zHU/ys81fCFf/atf1Q99vu2ErIRDIvRrJFTlSVXUtlchfNbFmDMKrs/+UpaBK1IVjsNJn3F01p5SOsEzugYiMrTCUXBxi0hgC5DWexN2U3J3AwYOBjKyQqyFPOZcx5eOYjoepJOWm1xdzF+YoAczVw6ZGKZthOk6JhbsgMUroQuxCHwI5Usm9sGkePE0ylk0dUTgZxDk6cYYdzHZAWeRxddGwoN2mji0TkSxKTE0NwCBmCEFm7pQRGyg7JvWx+FhsNC8GB4w5Dpvt1dXVo8eX19eH/V5Vu5xj6mLXSxchbGB1MyMDF/OUFIRsYir7lPe5FHciH2KIgaMEFnFUwSBBnJFit1nZvF5JolRZdzJTwWugZWVyVgAJBGdyYYoiaJHypuZQcYMTF2qkUhCBnETZDcggQDoSYfcAFgKI1JGdTER2Q//O46fvPH22211KHIg7KylNKU2ZPAgNrFlLLpSj+HY3EPXJhnL0rd10fO5OWm2bK5XzPCaw6rfrCq7Ljusr4XFSc2ZQ3tCcTt7kxYP6+pmq+3At5nba265waqePqyBzBnxWNfnkgyJo8fFoN6/Ki6/yJ78+/PLfvfrooxcff/Lli5ev98fx5vbmxcuvzPLF5ebdftdv+s32AsRpSq9f7zwBLm5Ih/JVmva3h+NxAvH+MP7JH12/9yxuIqJgXcVrxlJWJci5gf+zB/HrRuZbtEb1FaZAiOxDQIxkJDB2hRUqHVWGVMplnDwns+ItiQlcXIU9eGYnJvfAQx+NWC2blerJX4IK0eC0Wpi62aMuIhJCqLSQU6vqCohms7QRaipQr15KyWlK0zSaNiujqKVcklqhoBwyENVDmgC49F6ya7KcspopWDLlAJFc1Jwl9FYsj+N4mHIqZswkRcFqxASby0bUvYNBZOwFntmFsHYjrf2b8yi7k3tjPMFRUwfMZJSKMrJXg8ZULanmYqmYqYbAXQxNkzVHozWxu5pqIXZHpjxO0zRNQQRmi8G0TAmfhzSXUkqJc2nGwCxuqGSsSqdzpJzhLYpGGOHsQu455ePBXEdhgltK+Wafp1G9eAix2Mb8qu+H/kour0jY0sGPt7rPXkrTZ93JtO4uKedxGtPoRcBjdLgWEw6vS0lp6slcsxKZyKR+dDo4T1U3YzewgWq5eIdvuvBoN7zz/vV7711cX3fu5e5mHPdj1qRcDofb/au78cm0cGIA1LQLqkZsftKwiWkRPmerqqkvPleJd6iaMbtVFl37BjP6TlwlRyZvwUWVgiKEIFI5ltx1Rb1oWVzrvvp/lYcnt8Rib2EWsGer34qmlMaUDtMk5oWJTMs0HY+H22k8qOYZV/5acdBUmZr9qN2VRUKIXYzdMPTDtu83fb8hZjdXLUYKhdecSmTeQiKWzCpvNl7E2YMfq9lxLLf7NIKLEHcuEZErk50Z0rMIR3DnRXMpbl6J39XlzKoKPSQdrZSU0jRN0zQe83QsWpwgRO5IpeQKLdWhJgAG1Yp6GIAl50LoQhcCEWUrUYKWKYCvA2ybxSkIdxvqOg49JLgbQn8ul6sPkdECzKqbQmaSZVUWm0Ot6jjNdVktxWwY1Y7FjsXG6gOq75tZ+mFzcXH9+PHjJ0+DiJulNFVqVAgdSQSLW0ULCMQONnTGvRGPOh0LDBRjCDEOXeiYidhIwFFCcHayEEPPZ85+A6ySmpwZ7ObqVFWXpdYYtej6JRCNAHdWp+KWneDCgMwsDyJ2ArMJvMOMCAnAVhV6N3frYni0ffJ09+TZ1ZOL7ZU67o6j4G6ajq+ev757dZdGdaXm0slKLMN2iH1Qymmfh2N3Rt1v7hVUUGgGCyrcyCtiaTu5mjnURhOzwHer5MzFi0RgIq+UMcEcqktV6MNXb6Ne9eRv4YpLzce8Oa69CW8nsmY3NTG00qvapqIwnKZe3VmsWkURFNjriOe7u+njj/a//De3f/0Xt7/8m5effvL85atXh+PrqRwVlpXA3cXV9kc/fucHP3jvvfcfEzjncdvL9W6D5GlSNSIZiDxN6de/tuPx4y8+vzvc/ejPfv74xx8M/QVME0xrDeK5j4Az8WIyOciJbYE22kA3To27G5GshcTincYJ0K2j0ThBDLiq5qlMOSB2oSMisCE4hGu94pz9yJyELRsgHIUAK6paShktu8S+j5Fjx8FyLiU1x48RNSfZbIcBRGSLNVbtPFlpyu6uRUvOIDiRqi7RTaUU1aKmVkouSUsyU3dzhWqpyQSVqXR9jsPIxaejpARJZkaojgsCQdVcC8RzORwPU5rscLvPKYGs217snnzY765DDBKqLWUxxlrig4U41JK0CQohGKK6GKq/s5L9zva/2bp3ppqQRoJw1tkkJnMCM9yolHIYx5vb21RUOCrQMSOEnDWAuhg2McYg5JZzNneS5o/IKVnO3jD19q6bQ4IZXhHpknJKuXCIIDQWuAlX3gyxM09FpzyNaVItZC5YrOcqkGmg0DvyOB48TeWoU8akZdRjntSNu9tdmjBs5dn7j9/5cdzs0v7m7stPxpev891xgLMbrJQ0HQ6HVJK6Kunt3d0xF2fuuu31xeOu34xKx/1E5Q650LEUtSxEXbe7vOxitHQwqMUwuuXpSOD3nl1dbPqL62F7NYSQj+OdopuO6ebVS6by6NEGjJfFkVfKZis8WYqWGhbBaMRVaxazn7/DRe7UuuIEd9XiwGaaiDybplJSznDEGKCFyYY+VDp5iEGIXJUZoYtgTg4fJ9fkmoU9Bp5pgU2yERYisC/rFwQ3Y67e7eVZXDXnfBzHW2bj8RbwknPOKU9jypNqWeHUZ81nqJNqSDRWQoWq/tJ3w3YYNn2/iV0fYmSQuZaSS55yTqqpLs0ad2hu7qhpJlsA48IyWIUPvM2yLMVf3ubnr4pKlIjoGpgldh1HUekRd9INseslQm0c92YapBMOQgFFLU2v/fDxzT5P+/GQj4dpKtmyM+rrFdU85ankBAIzW1GHkWAJIHMjq65sNy5GKe9DjRQiYTuqT1BQfrWL1318fNk/2Q7DozhcCMfefegvrngumFp9EKh0nlourz65NIvevYbCOrsZwA5DK3NvQHEf1fdF74od1I+GDFICuRsFid1mu7t+8uTpO+/EGNzt7u62wnwSYwidSKzovQhChMHD0FO3NabMSdkpSOz67bbfhRDNAKQaR84R5CwcuVvNBndviV9YqsbuQGGAJZJw1f6qCUVMxE6sIDfPnI0OxqNjcgoUryM6FDO16oOqeBsQK2uDHQxmh6tl80xuV8PlH3/4J+9cvcvGbP2r13dWPnsVb9Nx/PzzT58/f7G/OaaUHBNTQXGJoRuGzXVPgx5fj/3zKFiSQAJrJIaa9tGmp9RMW1XqNSt8Vhqag5caMawipme4O6gFaTdyWOO6nTduIOJqPwYzarY+X28ezV5rXJkVBnS2gs01W06VpNa2+sqJcwe4CS3DOObXr19/+vGrv/7Ll//mL17/27+6+/jj21evbo7j3mkEZwrkIGKJXbfdbba7oevFnUKk0HEXJQbRbJV96s65hLvb4+3tnRV99ujyyVX/3tOBKMAmr/grFouaUWlq7aEN5PBTxoGltSRy36lV5xVcc8rwycAaZNgECUTEMOLq+HMxg2hgt0DEHIZILKpIOR2P6u5sRVBi14NkjJISqbqbLbVoK/SihurPr0AyL2rvypdUEZdSMjEZUclZTVWLqhbNqmpqbqWU1NxbMDNUD9M0pTGVmJW4c+OciiCLaH1MESau4d9a51cq+XBIh/14vDvCMew2sothe91dPg5eyLNqgimhrsxahFnALSIpsAFWKuW+Zi1qsXTzFKsJpCqORI3xSMIk7Ayr9FGqs9jcvZQyjeOUS9c5s3TELEJZhWgIoY8xBPElhaDDa+g/UScSRQK3bBxE0hKLEDU3VrFUSiqlm1NLUQsecQc7kxIbyqQ55clU0UDIM6d4IIrETpbVNaVcikjwroqcAjMrOZVcDNRt4+YxvOu3U+w+U7mDZVQeS3HNlrJlskPSu8OUnbYXV9eP3/vwg590m+3dcX93+/ru5VflmCQZmBBCDBEUYghlJPVSAhctQUsgPL7aPrrsLy5jHKRQGY9+mPJ4TOPx2IvZGLhoh0auXK1+a3OJbfESoVlOwMqJvlJirKFJDjevhbunNIFdqc6lg6rFGAKDgKEfLi+vLrbbro/C8JIJkC4W09eHcXRzU3KLTBJkJsHM4DRWGOasxDggYFeOceXmc8t5mqb98RiAQkDNZN2Wi6n7dxQL5vOu3rKOuZOaIRc1o6YzTdWBVUpyVXP15lYggIWjcEeywKvftlgNMSRq16uxxCh9R9sYLsNmoCgFPcKW+430QxxIfHRWUzDBmU3UKOVCE6ajHo55mkpKmrIVbaEiIHM0SdJsKTsjUy7jbO5QM1cvbIXALCKFfVJ1zcH1OIanmzBatt40+mXY9BRZepOtr0J5K8qykgheSXZtU6wKZKXd182SvDKnDSjApD4Vm4olswxSZnfAlZglxG7Y7C6vrx89JsI4HkPsmJklSIih6zh0uag5SKr/nEPXO3cKQHqJLDF0fdfFoQssRd1dwE6BObo7MWiVkqBOC6DGEnklagtADm5RtVxFYFXXhECsjZBBIJAX+J1ZIAxEgYmcK5MEcIcRPMLVPTvcqYUxlRjCZf/ow0c/+ODRDx5tH49jAnhK5cZuDzhOd4eXX7487o8MXOy2/UVfDuX2q9FS59zxZugvbNBewhnMDyAsFLNmxzPXCIOWH6NSYRwO4ga8NulQlX0Q3LU6bGbBsexrvrxip5ah3G0hxFRuLjP7ydxt4MScORXgWWPCKozKZ37++kncrUxTGQ9zpDDmMCUCnIhJSN1zoc8+f/3n/+qXf/mvP/u3f/n8k0/2N6/9sC9JJwqZuFroFQchU93vD69v7/rtRkIwdhdXFKXs5DOvhmPsPdt4PL5+rZ99dvvFl9uxXCEItILVlZpZg6gFznM6Qwfq+Nqszy/oRY3mqQFHREBNpLOknWqeb8KMwTS6NRNglstEKWNUnwKV0ve9hFCZ4YCxm5WMMpEpk4hwH4W73rmPpZBwTqNbIR179AhhHEIqMWcttegukRGTtb5hNu6JuH5Cc4fmZ3EtOaVUP8ol55xLyfPOrV4dDyWrZXetlELVMqW0Px7DzR0I2Fkh86kI8tBpFznGqnzADOYwMzc+HtPzFzfHw0SGYbPtL57srt/dXj3tt1ua9pqmcZzMchSW6qLl4CzEwR3E3EVmUHZTbQ76miV30acdnkyPRa0UsGS3ArgwRJypcnSrd61iPswiHCK5tBxRYICYRGgQ6YSBmQeu6gQi6oKIDFE4hNjHLkhgFqqsOkfFqbLalDUVK2ZW8xC0NcJNSSZyIiNLmpNmUxOe6fjLHKukrSDbsJHQqZqwyjAwomSCFreJ+yEQ65TS/hDDhaDbbB4/fvzBRNDDDefj4FpC31P/fL9/fff65b7cjLi4uP7hz/7sZ3/48x/+7A+7fnj5/MVnH//qV2N5dTcZXETisA3CwikJUwBUjS2aXkTpBZvt0HUS3aW4By9jfv78LqWy21CkcLydvOQ+yG4b5SxuWsmMzMhqBGXdR06oLc34rJ+J8pPVRQRzHdME4W67CWDDOI7T4Th1QXabTex3FxdPri8vNkMMAbACgkjYT+PdmGtuJiGEEJqI81nIka+QmDPAtQQEKkMX+LReLKXxeLzrO4YlcAv5rnxLX36fwdcFEZ3XIBGajGBadDRnMqiWnFRtHI9z5mAWIXfLecppzPmompbMVrNYCcJ9jC4WnH0O6litcJoH2KskP5mrXcR777mxFTdm6bp4KcMz326TUEkMUGBRdJYItKFhQtqPd1PKJfl01OPd9OL14cXLm5u7w1RKUaSMosbcMAJHcRgY5FTRDhBCNQndyF2EyUW91PTpBPNC1HzIbsWS8vOC6ZBvIr28Oby4OTx5vHv65Mnltex2vYf+8RydZIC6Z0MxiJo0w9pbpGYz1K0l7mW4QZt6QwpW4qKu6qo160XNkeZwEiEJIXbdsN1uLi7VbPP6NsSOOJCwhBj7XmI8Hg5aLHaIMcS4odCpUXaEuOHYS+A+BpbYwuTNDewQgxi8QOxc9awujxb3zsSEgEAGT+TqUvEsJ2JCJIZTMGq5dolAnq1ks9HRQcixdZKWDMlmNwLIS1SGCNVUSXY5PPr5+z//4MmPLuIj0+AozIElGHA8HA43t8fbPbldP754dLV9st3dPZ/+4vlnd4d8LH2PsOk8RnZaaqG0FhY8cElBSICrplKsAv7FmirPp2pG7kQsMUhNE8Cw0MBFXvHpVsaPzxPhe7Vz7MXP/lru4aZ50ulIoSMSInKR04JjYrJxGr96fvzrf/PF//eff/QXv/jsk1/f3tyMamgRkexzzjcnCHMwxX4/vXx5KyGGLt7tj3fHwz4dJk3EIQSOkZnFQTSGceRpspevxhevxsMxZ+9EmMGw4Gsl5hTqtlAueP53anWLB84k7mk83zh8GmsrJU3kk7AFxNLFIDJ7mdWtQIvlpCm5EtWlAgiR9H3oB4DH41063kIzWQ5EXaAuyFnujTlUDdSY9yCjNYPqPLeYaiklcyIQqgZTSlHVOZO+W8muSUuZOdjk7iklp4OTpJyn4zEKkMZO9HIj2MUYGUAuWnL1SXlRu7ubbm6PKeluuw2bXbe76jYXQYIQQRp9+jT0M+ESIHMjN8CYPAqbISm9OcmK6qu7wxevXg9TYonFbH+cJjWt8aK0xCowAZWnEkNw8xrxTgQOCCAWioEJXlP9mhU3qxQZhhATYiQWd0s5jeMIsyDExC1/IphIqiiu+zKt0uSfPF71iLdsBS3F6moOZbPi1Me+C92mKGvxIMKx77pgjjwasU7F9oe8P+omhThshiFeP8qccsc0ypAOELnod2FzkbrB4q7fpOvH7/z4p//ghz/9k/c+/FGIsYsX+Zg+3/ya+GWCUSun5K34GMhYWKQTiVE6cmcpzsUAhQGaNadUzDj2xJQP2bMHCV3oTjlvACEKQkEoCs85UerI1NxQzU7DfSWGAICp+skdSCk5MUI0B0gcMk6pFIvdtrgoxCDuxCyhixyEOIxODi5Fcy5arAsSKrN99t0xG0DcAiZqcjwHYI4ixNA+hoUI7+4l55zGlDqZyZUnXgvwjWL0TEczSym7WxBlyZSnllpzBg6IycxyTlqmnEfVDCgAZgohSIhdHLqORIL7ooS9zX10v8VITx9H4r5YJMQg4cL6p8e4UaYIZ9I+INTkFgLuWCnR/ljyIU03d9Or59NXN+PN3eE4TalYMS2q5tayOjmYtK5tssp8m3P4MNwVzpXhYQshwa1ZWDWpPVSNj8qaeWI/HHGzH1/cppd3/OiRX12ZddN7PzqNdjEvilIQxBcrHACRtZ27IuszWcCaj4JaulV1K0ZW8+AxdRFwV8RqqUgjWHXdEPtNiIPEPsbS9/1ms8vbVHIuKfd913d91++c4iEZF49CTs5CQihqx6I1Oj25OESCqnua0n6a1N7YNGEOYzApkMizW6kDy+ygmuU+OxUwwB1BiJipJ96abM32Vg5mjBCMeicCCXH1ragZnEMdZBXETbx49/K9Hz37g6eX741T1mIxDiHGIMGKVb6TufZ9ePL0+t2nT54Ojz4/3B32z1/cTf2ES3BN3FVzDq2foiWGIp91D/e6f+z3+/3d/m6/n6Zk6sTcxUBMXj2lBhbp+67vYt/R0MVt38UQiAOLEEciqVPezMlbMaRqZLeVttSNasF8tg4+XECfOtILxrPaVuoV18w+d02mSajePFTXZC1UA8CAm7vDX/zVr/+7f/7rf/UvP/7oV6/HydUMPIKLA4AwNubC7gRn6t10f5fVb8asLHSYxpvb/cubm5J8F3abTdhddCGGYsZ3dDySQ4/HcnNXXt/qcaSL3RCELAczJpY5ox1XvMnhjTRnDOPKFl2exYqZKrcdfZZhbYgAMl8RBZfN093N1PPEnhCJUAtitGJj6m5ZdTrYNFku4J67SBRKSsw5bkjiQNKxBMuTllRy1hr4O8vjmd5ERHOc1WL6LQl95lRZy7Oomuac4U4ojXlTrKIIVkox12w6uWb3ll/O1HPKqehxzK9vY9dLJ9TBL3rBoyFE3m4Yhuk4TlMys6x+mHy/T8djIQnd7nK4fhSGLYhtOjpy4MyRsOm1CNASN9U3YDAt6jBz4oBONsRsE7L6wlavbUrlk89f/NtffbbZbkIXHZTVpilBJBibS2VjCIiInCVK6GLn1mxkCUwUqW9qjmpJ45jKnJyXmMBWstbchGb7o6WS0nTYdP22H2KMHKKDY+yGbuhi7w4hrtOV0PLMzt4+YnhgCksmtEbPW9aLjVmPRQkcYthsr2Qa9+O+QOMQnUWoo6I6HSzcluPR8iQdD53zrie5tI3jzvnlngPR5dMnMjw+5ttsWbnfPXrnwx9eXT2FsqpH6jf9xWZzFfrdPueURtyqaj4eDlpKYI4x9kPfBSESt7I/liSMy6F3spTdvN9I4CCbzh12MHdjEBAXVImYYpS+k76LXQxNuaEKNjXGGGYlZnblVDCD5zUEd8mqU05J90mNYxSJ3YDDmKdsx6S3x9zf7k3tGLDddRePLrvYg0N2zoYp6/6YrJQgUSR0IQRpnniq3ukKnq7WkXtj7XYxrkPfvWaIUTNzRn1pZ3qDeyNrNbTp1FBvyQ0CQCl6PIyqWYRbFjqylnrOrJjn4rmUkqai2UpRzVkzYCFIP/Tb7cXF1oN0NNecocVhsxa8DS9vyXFOu4vI9e5C+No9EEQg3cR9QTDifuMhSC8QIQiRgGJ07nXDfTqOh6/y4dPXhxevp4PlYjppzqoOY0aMIuzIdcF2SkVNnRABZ7AwyM0KL+k9Wud8EUhmXgN+Gc5UzOVImIrdjOXFmF6OdnVzuLjcYtj+0Z/mZcxVPRcUhapXf3ots9demprDiclBVb6o1tfkVul1BTAXoBemELuhB9GUqolIbq5FtZhDmLsYt12/a4TrUggUY7Ccuo6jxBAHNfaD+1i8JHNjdyu6z7mkaRpTKaomDmYJxWxK0/s3N+mUkoDIuZLB6g6JhPxSdXKEmkgPAHlxy+4GEeIkMjD1jJ5pC7rkzfugl2V8WfS1UqAI4qEmYkVwF5gTJLCaHXPpwvDB5Yc/fvwH7179oI/b25svlfTRo8f90GmxaRq1ZHMLm3hxNbzz3uNn18/66dF08E8/TV/u99c/vwD6ukeaanFdhxmFxZGDqraXMh6Pdze3z1+8eP3q1c3t3ThNbhCWfuiEyRox02PX7Xa73W6z2/a7ofNN7GIXYh+7PvbVGKJmb7jN3hPDw1r8gkn8Rs1MrWTmAGKILtckSCkYj/rpJ4e/+osv/+pff/Hxx7evXyUKgYWcfE4FPKeTsepbC2Y+jilpOaZM4lPOx2kaU4KRU4FkiiKdmWnobbPryMPhiM8+O/71X7/sAn70o93j614osFQAhlaIyzLsDzy1O0oppVSTiGsUBtEiy05IjKNmyGc0YW1uxUoyzwiRGzbGxIGI2MxZ4VTrUjFL6HYSI0oN4WYOkUQ0G1Ewm4oWdQYCrSgF93CgKjYrQ4q5gjF8P0+MllJyTbI+E0AqabA0haZkK4msMGp9GTY39Vq/EGJWnItQgUeKal3VlsxsmvI4JmLKBdNUplycOMQu9EPoeuIAgD2zO0NR82ZLfQuNcdSCS82LaVGTaLFnpsgkD8zUJsg0ZPWaHwxgEaoBhK2wSYtDE+YgIYZQipq2KNhGcXGY5VJSyck0t/1HvXjJRUvNAlElMvFReBP7cbMZ6kNJNJKcCzlqD3gOJ8RS0BpUPbw818Kpzoz1VLO67x6mjNuui7VyjWVX1z0OQhKzczErFlImLeQavEQyicIqPilsgiaRLl5d9rtHUWkydg8Ut2F3zSbp1VFzntLxcHN7uNsf0jTBRrhNU0nTdJjctIuRWLoa0Vmj1xUKpMIAQcmUgggFhkRzUFcz3pdaGHWehAiBY01rGOdc8C3Sunle8LASczruRJ4xZk9Zsx45atdvqgPQHVn1OI03ey55OjAl3fH2koZOuKNosd/FfgO+tTnqTEREiKDLgDNmbGz2BPlCI6N7OkqrzXLydZ2tvnVb4yKLh7l9xQzmzBy9rk1Ss2w2Fc255FzymMthLFMuWoqZwkw1jykZVKJsNsNVLmoAB5CoUq8+9LuuxR6eNo63NSbeypbjJSCAsHNQBHYJQl1PffROEBgUQULODtr4No7HY55e7w8vx/E2FyU1My3FTYOQCPdBmKFeiJyZWIkK1brnRs7MwByAbtW9OtcnnKWotbg/B8ypKFCXjFmpkU9JLeVye3NQPb1Bd5hDDWqtUMXML20pI7xm1J6ZFeYMn5P/GcGdHYE5xBiHYXtxYUR3excRU01jOuwPx8OopkwSu34YNgxrOUhjd7nbmKbQIstpSp7NW/LuklWLWc6apykdDseUshV2EDFnszFNN/u9npEsZydgARR+cD2aGpqm0pHbvHMXEJEXplTrIDMMzM4Xgmx6g5xgd65MLeUQAWxNfzcng5jswuUH1z96b/cBZck5A5AgIUYCl3FM42huYRP63e7R06tn7757ER8dbunuJt3djrnkIcqujwEZc/mb9TQLrYoRUd3b9nd3n3/22Reff/7ZZ5+/evXqcBhLKU4UJQ6bPjCZFnclx7AZHj95auWKdIcS9ehdH4ftxQZXMQ4SYU4Gp3k6AXO+pzaC82q0RY/3NvObZQ+vyWW5QTirnXPJ87J6lFrpR83NXBQwJgYFYgLFacTnn05/85f7v/7z21//8piOHkKkEECu7mbRSQGYG1sOLg1mcGg2L2VMIxgKL2rEgeHZp2NRSmNyKQZHuLi89IL9Yfp3/+Y2j+n5l3f/yX/y4z/6o+HJ49BHqaRVmnnsJ2lUKUetStQJncpaimpz3MxubibymjKqsqvc3V3dnIzJhZhdoao5ORWgIxIHgQLHTRCBm3Igc3LOdpRuGLaPpet1JBYDh+qncIg6Z4WrKYoBqGlCZ7b1XFzJ3WfCYBUXIBEJqxKPwBJtMbGKE9Vw5OrZV9WipZSsOXnJ7EXYqfoAa3wJOIQu9t1m23dslA4xet+FrgtglGRTKqlY30UWAin//xn70yVJkiQ9EORLRFTVzM+IPKqqC0APMNgh2uP932N3lmiAGUx3V1VWHnG5u5mpiggf+0PUPDyyG5hVckqK9PQMNzMVFWH++DuEp5lSnojYLawrmKVMuRB619a1N49IKSFShO/8ZCQIMLWulWq1rpgmxGXnh79pPEX48eHuD9+/L2WSnJBYXddtM1NCZzeJPUoHABiJeYRRd9UeFs7DdAfCLVTNuochgSC6R+tta7a11swMcAxCcIQXcFrKNJcpl4k4GdKq1rYKGLhLxYmQkAJiV5T4zgC9zpT2oNmvScvu0ao9P536588idJiXlDIENo/T82d1y8YTplmmwsSJEiO7Qbg76trs11/i6VdqZz4+mGSclwmwBISBeqy1bs8NnrftdH7ePv3153/6yz/977+dPsbNHJm9dndIyONsjUANR3Mxo4iFBZm9Qe9BgR4UTgGknYi5HERMyNacvqJ9iEhCw7mNEl7nR3i1CNxFzleE5nUTvxY0A+dEZGDujB5VFTT2ww2BGSG06/l0rq2lBKIo6Z5kmZfpUObp/qHXZudzvZxPQOxXB1CHwNi5gLZH5o1x4B7earZzdb8y/N6Q/YYt7hvKf7wmSsJ1avnKwEJAitc8a/QAtQBMx9sD8yAEbm173rbWa6vr6bJtp7We1rqpjldLHmZ67k3DiLm0VjWqRtc4r1vil+Px7v0jswjHYENe1RK7MbFjvO12gJxSn7weHQmBGYgMCJwYgRNJwiyQklMCIHKnQLLliz1vn9bT57M6hXB4BCh4J4icUhbJkgKhxiBdBjExUXYjN/OrX/we46fh5HvgAcAoScd8jkadAWAOYEgCcE0C8gAz1mD7msUD12J3fLCBYTu/M3ZHhdHeWVDEjl4TCRPjaN6DwolDiGSa5pvj7f29BagpINXaX06nz58/P94/ppQAIKW0zFPmKInmqdjN0XoL7xiurV0um0ebyrDiM/O+ba315ghdofWo1ax3C0ACNauttlrfnv0OCIFkhJ38GaKGo+OR8kPiWQLBPWyCGO6kjmbIgAzAFrASMgACZ4SjbC+wnR0C80KUCcCREAW7eW8WxjMc30/f/en+392mh89//83ApvfHfJxNrZ6305cv1jrP6XB7OCz5+/ePj48/wsqfP/708cMvGJf7I/7h8fjd7THs2au7fvu8DCRmYJvm0Vt/+vLlp59++vtPP338+PF0Orem7g5AIlJrSYQRimCJkdF7XbaLhOp6xoQ2Tel4q+bIlMd8DADCLV7d7famfd88AmA4HP33MZjfG8e8dhn2b1Lk3d0NvaMHcQx6VWte1/j1l/6//5eX//K/fvjbP5++fOqmyDyoSwBB8JrpFDpE7bhbMtJgwJtqYABRACCQg23adN02H/4EcigP7x+/m2Rp2wX9cjpffvugX559rehIyORm/z0Y6vqe8O37aLW1Mch7/YkdzRrXmDBdYekBA7hGKPQWqk4eETYgSgtEQU4UBilyLKMAolQkF84TWEboZuptM8O+nnutvXULD04hcB1MoH2zeH7/Bt5C26/fD3dVbb3xkDjDdXzopqrae9dq2sFU0PdtefxlCMQ0zWWa5nlKDN2cAGIkBpiZmnfdP1ciSokdKSVkyYRk3Ta/FKHwmYjAPVx7Xc0DIZj5OsfcB9fu3nsfgAW5G4G7/M5LVUTubm+/e3zMpUhKSNR6eybcttXNMHZq7+sxQ0wpJzNTj9ab9r5Pc91C1d0wjAicIPYMKUCSxGUqmYSBwM10W8G8944B5oHUu0c1a2rMpF1661utgsQI+wOGOLCcPYPmend+d+vCo7d+ri9IEO7TNAuXZvayXqq2jOm2HOblIR0PRSijCwYzBpUArF+++KePklBuiOaDHO8EHLTb+eLmEWwV9HzZnr6sp7+vH3+qL7/1fiYskDIpI3OQBw5aI48mKjwQIclALhmHhdHunolkxCwikAS499/ztPDVzWKfy+6jljd1yw5jvnkIX2fae9WDEQAWYeq7E4xIIvCwAHNrq7XaiCE7T/n5Enxam0NY6yFpunt4nMpEIz2HcEwIYhgTXZ2px7wviDAIaeQGabwBbGDv69+2fL97yH73HXz1kh0zn/AYaLkqpJzmw03ODLa1qtVde23bpW2Xtm1127Z121R9YIqO3ezcew8DwuRmgRZgHtO6IshxXYkkwueypJSuPiL/gwsJhCEjEMS+PD06ABEJUELOQAwxgEyM7nrR7Us7P7V1taBECbVpuGOEIEwjeprZAUwGjynQHQF3G3Z3M/UdPhnY/3AGh2tKAuKevI00HtdwRKTRmDmGg5mbGqqhf70vzLwcluMxpQR8RXJxLJqrmevQoI8i+jrdQxmbobmjGzNwSvM8z8u8LN1cUgag2trLy+nTp08Pdw83x6NpF6apJCPPDJrYLYdpuLlrXdduwc2IOuKe+7ZbbwEDppwXpBRqEYEI6paEl2n65oEZNjZOUSnODo50K3yktDAW0sHU4F2yDE7ewAKYIRjIiT0QCDqJGilgC8wgQELkYR7m4O5hFTNO75Z37+fvD3JDjtvpHOx35SFPpW21raurstDh5nC4mZdJ5jKTS6+hasT+cJ+m2/Lju9vHw+HL84s2VVf73ba8o2HmrbXT6fTxw4e///TTr7/+2rsSUsk59tHD7jkrRIlpnuSwTEXEVD+9nMyakC3zdL95M7DgQ/dcCrNQOBEC7ZZAYxPZm9vrCQLxVWBxzXt9c3bv6m5A2G1QBxV+tx37imhEhHsoOkB0CEcngOn83P7+L/3/+K+n/8//+8P//n98+fLbxTsQUYA7aIQiGoACtCGHDpBAAUTC4fpGMCRio+ABiIDu3lo1bRZOwImmf/jx+x++/3f/8Ic/5hRhL+v69/t7zfPkiGP0utvLD1Tla+1x1efBdeMFAAB3H/tLV/Udyoq9btvnfkDj48BABEYUBAqzukZbwzwitFtvjSixqM8BAiN0KU3D3soA2cEQFJnAQ9eTubXaL6dzPT21VgEJ08QzCUgRcueqPmqxuJ4TrxXoaynwmjJ53ZGjq/beI4CYroRCcDXtu4zaXTmCBXfjvf1IA0lyc5jneWbyUAhENb+c1yyUhCNiKLgCkZmngiIRgUOeprXXdmZv9XFaJqAwN9vWS+9qqqlkZkYiNYsrS3+gWm49Aqr37skxv7UjYubj4Xh395BLlpQQcdvWXqu3WtXAbVfrDswKiZinZUZhY2wnu6yn2hoNvNkV3NFNGHMSQgGSMsuS53K4uXt8Ny0zUdRtffr0cX15sVrBXYQ9QnvtvTc1YhIBZibiNvcRickiQ5vigaredY/ygdf68Hq8sAAnRKOA6G7Uuxs219atu5FEzHfTD+8O799Pgtm7pCwlE0/xnPV8ac/PcnuzpMI39/n+EXrTl+e2ra0qZRZOVoCSTv5848/3qXeEyhDESYolWAdJMzOllFgSELADISRmkURIABZmSuyBDsW5ODGCICXOib4JGR0P5hDw7KUnIrxtn77+6Nc6YK8pr99QHy6hFh455fvDMs+FIFqvp8t5rVs3NUdEV36mj7++XM7hgAhMURK/e/cdvwdT9da8bdrWHn0wJSEgBkj8yivba8sO0SH0LQo73Kwj/Pp4xatnAb6mGHyFtIe5OtOOJaB1rd1UNQAklTKVXGS7XGrfzpfT6eXlcj7VtropjTw/DA81Bw1qHjWie0R4b0i0BZBbCJ/V/HB6CTdt9d3jD8fDrQi/NRHfMeW31TIBpEDzMcp2hwAz6xSc4UBYPBJoeKvkAcT1VH/7+eMvf/30fLIWQqWIeW3g7gwkhFkkiYx9NJMQkoWbKUCAjTtu4SM3eC9Xwj1Ch1wYgBEoAHDELyMGDua7DferGFBi9y5qqYfpa9OWkrx/9+7HHx8s3FRb13AfcZhBMlw+xwyRRvaHmWvH8MHAJwfKgQYgOS+HMk1EDA5A7ABb68+n028fPtze3IAbIxF4EuFQAyF0gzAEN0QAYiFmIOi69V7NDcCZiUwiKKVyONwLI4ETBRGZW6vtx++/zyl9vS8SQRCGruiOLDTdFLlBZA8zGpzo4eA3ltiEhtDFESA7YiVYwb5E/7DppjxFSTRlFIbmod63rloBazlOt3+6/dP3x+966+Yd0XNJ0zSz8KVurm0+zPNhuX//bsop2sVO7ak9ReNlmX78h8cvXx6nA/3w7vZY5LN77a2Z6e/USaa9935+Ob2cTs/Pz7/+/MvT81OtFZGYGWBoaX1QEBwwMWThpaQiZL1dLuunz09bXZlinsvLpT+dty/P6+FwM89LKTkz5ZRSHmLRvV7dWRMB124j3jBm/H/gQ/Bt2f+7TsUBOsDw5B6YPbctPv5i/+1/u/yX/+/L//lfn3755byttu/oCNckyFHEjH1kJ01cnRcFMO2Sb+gDlTR3h0BmhkwOWfKh3P7w3Q//8R//w3/+j//h9i5hPH95XlJ6eveey4RDyRa/45K8QlFf//UbJKbWVms1tX3T8j3x5VWOAmOgjkhEjMDDJqdV6x0idquVrSIwc2rTHG5hDdFTTq9YSGsbuZM1sNrrttXtfK7rZR2xzIhAGh7onBOAMZhjXKMivnkn/7pF/HqTQtVUdVj8jYLMI0bUwLgiDIgi+MoZ2kcA6B6m4A0gEJxZCLyrt6atK440oStfUoiEkThhmkOO2mNtbUw/hx9P4BiquJmSMfEV14Ed2enaESBjQgQEx6tG8vUiojIfl5v7XLKIIAJLal0BEdctJYY9GGYgMR5EkhIwK0I1i8u5u4XpmKWhO4NlEWamRIlTmY/Hu/e37797//2P82Eh9PPp+deUv7Ccn5+sNRYevrIIBmDu3pqezquqnUpaSpmX6bAcSikkbIEWQ0hI3+a973fGUYGd0yj9wsMcFNCEAJCyUJnLdHefjzcc7uulMqh2EbRWAQJZPE9WZpfinNHAgbQ1b415QwafMSZHf7m35z9kY6YvFNvI2SY0xPHICaBQniTvcXoUiIN7AEAoIjPMEJBQ0MBUO0VKCam83Sjw69dX01T4ynqB12ft1U/89X+82kmBu3VVM2PkKafb43J7cxDGrW4R1lW31mtXQDBa6emTXM7WjYjmqTze3R3f3xzmYtr7tm2nUyUAUAMNd3BEvIYwIgAiESChAznT10Sr6+N/jRVz+h/uh68Lcx+UBGr3uun5fFHtlFhSNldzb21d1/NlPV/Wy1a3rn00R/uwyt0tekQ1V3fzQNpzHTHGirWuugW8PH8+5Pl4uFumBST9X7yuQVIOBSLgYUti6h3VWTv14Qlo0Wq4A3M/n0+fTi/PW3MOKcSMe+3jRCRCSViYIggAUxCF99AI8vBw3DFVi+HbcK1cA9zc4wqNXI0+XpfFiGYCf6U99+5n6B/t5fPprFdODDPf3t48Pt40ja0r1+YekjJJQk7Eo4TZu2PtzbT1RuSWiIRoZEWJA0jiaZZcAMnBAMnc11o/f3n629/+lkW898M8a6vghqP5jRjsHwiyICChsWkQQKhbj7CUUiDXDkiSUilFskRipOH/W7fjYeavTj97WnkYhaEjkCAVpoQjwgzCKYb4ER0gkHzI/Ea8DCEqgSOqkyEN9oybNw1BUMeOpDxFPqb799N375bHQ5qiNzUfvFnrPTAwPE/pcLw93N7cHI7isdVzvdSnOAkU4fTw7vZP//5dWfDx/oaStt7PtXbT3x1Asm3b8/PzX/7lL7/9+uv5clnPF1XNuYyydByiAODmphZMmYgJsxC4nZ6/fH6+/Prh87pVTpRz+vDpNM0fl8NhmZfD4bDM82Euh2U+HI7zPOVccpEkOaWUJA36J+5Wedd5MY5R8FewZmdJ7WPt6z34ymH8+h3ACnAGAAISkNb46WP/6Z/af/lfT//tv27Pn9lsAu5IfWeh7H2Dw1goEDCiRwMRKWxHfAmJkM2ha1PoAS5Cx+W4lGnO5fZw93j/7n/+n/7T/+v//j/95//05/fvS0rP5xXcf03pnFMjMG0OPpIpEXa+8/hVA3kavhZf30t41NZqrebXIiZ2N/B9u3PwK4s2MzOM9qGZqpuN091677GnmTERCWtbmWI+LAjR1tVCKjwTJ4k1+lrX88t5/fDctqqEnhgyRdjWeg9OOE0JU0PSAZNExDWuxfcx4RVCe5VJvO5j7mYuHjHG0+5m2ntrfWu9qSmEM8BIX0CiCMcAgrBenz5/bFtallxyTrkkBAIzg64+gveGsi4iIIwlleOSD3c8P2oPFpwy5lLG8IiZSimIhCJ7aB8Otjuoamu6bRuzLJxSWRiIlbSJv43lJaay8HIrZRTlgHm6pSTzIZ/PFI4iI8Ecx9QdQVhEcBFWgNO2VtVtrU27NkW3RIBEC3JKJZXl5uH9j3/6D48//PHh/XdlmiD0+cuHdr70y9bXtZsRExJMUwp0r6EO5nDZ2vPpjOCZ+ebm+P13393e3aVCGujIyIkJmQiQ3lb9HtG9KmgqiQAlQjioeAa8RYngkuRmXsp0IM7a+qXW/vwMAAk9nT+mpeT0XTve23Tc1G2tyS3M0YNUxVZIyDcl1cj2wvpcMtw6/xXsN2svFptqd+ge3bsA85wOy3EpE4Cv9bzVc20XAE8551yW+QBAvWpr22XdhCHdHIKmr1b+AAwkQLLL/OPrCfVVbn3dPtBf/7yXOwSvfp29q7tPJS9zvjlM97fHUsq6bVu3tdlprW7maF4b4ClJRcCUUmIKiCRpmRYE15QTkjAgaicP7+C2V/qv9dRgrpiwQUnlVS4e+2jRhqsIh8TV82b8B3/NuNiV8/uzZg6mVjc9vVyenr6o9mkpLHQ6fZYK5+fPp9PTup1rr11Nh9WGAyExMrm5evPhmQ2EkEiWlG5yPuaylMxIU2Im4VDT6tZ94I4YX+1qvg6Sr8++u66tb5UnDEmDXBHWoXW7MPZGFIQGZhDhhL5u2roF03xg6G4K3cAMIHiYJY276yNqDwghYHdhM3cd20rv4U6EO04dO3N/mGjE3pDzGCPtHyPR0FlGgDs0i23bftP1/sOnre/qJCKapulwOOZAUU+1O2IpUyqFpOxQmTt47625g5szB3PKSbKIiDhwiTBikBSULKCbO6B6XNbtw4eP/01Ya+3r+v7hPicRDnB16703jyAchB6Eoe/PpeSy8Xbuq6uVvEgiR1OL2lqEUiFGJkRwCzPwr+bjCIjIBEyGEAiCkcDA0ff5yKjqaUwOYvB8RnwjuhAkwAmhoRx42rKzb177pdNnLZU5SDBnSMd89+P8h4fD+0VmMCetxJyWCRK9fP5CmfJSDrc3dw/vpzKJup7X9qm2F9uUS+bjQ1qW5fs/v5sWPNwsFz29bNvzeun2zSwJAOTjp09Pnz///W9/+/XXX1tr6J5SWkoaAvMtNtiL2OEn5mOiw4jhuq2X0/Pz8/PpvDVOLJlPlypyzjmVVKZ5mqfpsEyHZTkeDsthnss8zWUq0zSVeZpLLikNEv8rfYq+HhhjuPRvzYFf9+FvGTOO1IjW3YiVws3PZ/v4uf7y6+m3j7a2ok5D/DZuE46hH+zpVwCBe0wpUVAAYhATIyaCTCiElfKyHMv93fGHdw8Pt8fjVO5ujo8P93/+04//83+8+cMf8O62i7QbDTOwPvirGMFjdD3m4bsnMQbAa0DJt2/MvbW21dpVX72t9mrSRxzUcO0Z8/AgcDd10zCLACLaHUxjZKWzAgdg2y7CcNc7E7TLuZn0CweljJW9ga7bWl9O7bR1DysCtxNlBgvA4U+ekCAR4VfCPiJEjPhbQhorhfB1cni9k2Na445j3mzWe+t9+OZ3M0MIv0q0X/9iJnBzbb2RlkxYci45EaLW0TMNvHhIwJmJECRxzjJNKR+yOyPcl0Tz8ShZrAcRp1KCeFgQjoAYxOGToa22bWspgQeiiJA4EenvwD8M4iAJSiCJmHLKlEpeDmW5RG8ZjcPQFSBGCgOmREQoUsymeSrr2tbq5qaK4YmYEJmEWYgl5+lwc3t7/3C8uculuPW2rZInZLaA7i4OoycbgtkeoeZNfV3PZj0hdfVpWoadpwNyniYgD0cAFkR869oZgY4MOWUmRjdEc+oRzqgQQIHhpgYaGEhuvV5O3lqzNsdW5omWvNJy2fz559/kZbtNLPWspzNow5w5F8nkDLWdYX05ODhIt4phBOQUyqiBrmbkaCGIJQtiqFHrY8RtpBqShAhJTN0BzTHc62at+tsFQ2+/6O1J+vXa4Y7h97yzynCo6iyG976N+S0zSSJmEMGcGSAfDtPpUuRFEHUU7aoNIRJLkrIs0/GwLPM0TQW8oY9WWURyWBtzlF3d/gYUQgDDiCQs9Lsn5mrZ7e7O9Nap/N+6XrfMGDll1ruZq7uobpfzE7FdXr5czi/bdqmt9a5q5oDuESOjGHmEjCKEEDLzktKh5JuSDyWXJEwkQcJlKmNmydf05v8+oREAA0mJGgUEJKeURjAJojMYRR8NCCRGCAh3iObYgUMyCkBXMBsTGWEYSadEGEC+xxMHGsBe9GnrTWu7ZpvTUAGGW5iDmw9GLyIAhcMrOWoP5ryWtgMp3po+nc+fXs79utkhojDnnAkZAykbMOcyS8mI4uG9dXUL8z3GHCmnkpjmnEtOOWVHquYdQIG6o9oI2LyaXam5tuhNEKytt4fDVARDASw8RreKSAbBnMoEe8aJR+uGpFwmA1a0rWnvtaklRqYh83f8nVfEcHcPghHDNYoY9CEN37vkwRSHCKfrkHwYOYBDGDkiggQvyIFxcW2qzzxZvllu5nLMXA755jHfzZRRVcMggFPitLhFXbe8TMu7x7u7x+PxNiFZPdva9RT6AmQgE8IiZVke3r2bjiA5tU0/v5y/vJz7v8qul7/89a+n5+fPnz6v5zNHJOaZYMoyTXM3fxo9BKJCBAZd+wQwG67kpqaOOkh6BgHera21Ea78RCKSMuecplxKznMp8zQt83I8LLe3N3c3x9u7w2GZSp4kJSQBRAfac1J3bCLGsR+/Mxy8tk5vBjKB1JkbEQshkTtGtXbRdYO+UTS0jqH7aAcBBJEZxMEJ8gh+gOEgtvNLCYEJBQg8FPhIoo/vj//uH//0j//4x//4j3/47nHJSecJjwc5LOkwr8Iv55dTxJeIj4BnAscgiALBIyTMgQA49j+PIkYxNOKbI9wjtq2uWx2500OCeZUI4lcqzaAAgqL3GIb6CGNMQhAxKPnmvWnrazOoW50oXHsh3y6Xc+fnMMWU2G+yP85AxES4Nf3w9CLkf3ycbiYBCA6nngCFcKTQj91/50zuNKYrCjO6w7dshbhur6GhqqbatGpvqt1VR1tp4DpazGvGvQgGYQSJCJMw51JyIgzozMSS4EqVIpGUE2KwsFBQdPGNyzJ991jmcrw7CEUzU+pcChN7Nw+vXckjI5oNT7na1h5Oqh4OSEyEBDYIcNdDInrvtTVkImZJIpKnaV4Ox+OxeW/Qa1hz7+E2Wm8URgByTyJzypvkhtgdIoIQJ5FpdyNEM++q6gP0NDLzbq1b67a2ftpq3WrJzIRhHgah4AodrHattbspMPXaz+eN06UFpamU43FCDAs3AzOW6avfHaJIyiWVUkgkwNRqr6feVm/q5tvGmo/p5aUcH+9uDsXZ6rnZ2dpm5HxYPOByio9PXz7/7Sll+dPtciSP0xOLyDwLQA7uGl9O6+X5JB5A6f1kc54Pqcw8NG3Uu3O32FbLrCVYSMhKIozSO7laX7cNhFLqCJFFrERt2/Pl8vTieq2mcSeGXIU6X4uY6xD298yY6z1FRGQmU6vdtqo6xH8Mgd50rVWEAgKWIsdDniapSg6MxMKUhKYkd8flxx/e//Ddd7d3x5Kwnnrvl9bXrs0dYA80s29fyZV+DY7iyPH60t5gmKP2V3d6TRxEgJ1E+Poe9/cOCMBMzJJznufJnEpJhF7X54h2OT9t62ndtlpb6900HEcvF4CUOQWg0p7DllI6ztOxTMeplJT2KDSUaVpub+/v7u/nZUnDFx/pLZ1/h2JegUvggkfQy1Y7pMg3iSlFDgSjkigLCENKkBMAYG/epKatYjXUiAAPdGcAIEgCKQEzEqEFAqDT0JCPRtFNra1bb23UoMwEHmE9zKNrhDnhngEMgICEw4UOIShcDGxAyyNHFyC0uV6J+NetLAYlJZFgxmDhNAGTqm61nl6e27ahGZiiW2ae52kp05yk5JxSNkDoGjpcSrSrtW7qXpv2tq2Xs24rux9LljC9vV2mRKjMlHPOZRZJgOQNIFPKZS7z7XxcygG5PL1cWkB3BEFq/eWk3mtvzuEJ6atXOLxZY05o5D3APApGBucwCI4RIOuIaAAA6OThGPDKM0O1DkqoGKYmHtlQjVvQKR357s/v//x4dy+cwqBVO7dnKshCBMSppAhgBmvlcLg/Pt4d3wuStW5VdXOrCTplnIoV3BJnvL15lw4WAKfL+vHz8+fn03CX+KaIWdetq4rIYZ4TRGYqwnOWqSQ17y2FXaNNd9aim7nZlXAPgMTIQcPoa5iKmlt4h8DWqcJolBNJTmnKeZ6m47Lc3h7ub4+P55v7u5ub4828HFJZeP9Ldp1R7KzN4b6xn4hfd6bfX0FkTEbDRHdwl3JEsV5qTX1trYUFrBFtuLdi7OwYBAGE3ZlqV0sZBCEgx1DmZ2EoE35/vP/zu3/4T3/69//Lf/zzD98vSc4sm/CKuLp97u2lb8+mL4hnJiMUpgwxCBmIo0QboVtAgxgfABDiKmz8qk/ckZhta62pqgjTmJgM88AdJB/hPuGu6B1Mx7/SiI8IAveu7gZn00/buSog4F3hY7ZAez5tny7xa7MtUmJ4d+T8fppzuj3ypcdvT6et2do9sWFoiqDUiQ0Ex74VdOVgX0Wk+4Gw5w58e2PGjN8wfPjftNab9TYsUQaFfgdr9qnU0LUSUCCQiBANq0giAueBko47RwBBRCJ7VlouU84pc4gE55yXKU8ThiGxB/Tee1dAIuBxWhERovc+3ApaBGrrbsYCu3PYm23M3Zu22uquA0cAxCQ5c8oph1n06totuptaWISPCGKtDRyEuLBkTpnZADFiN7iDULPWNzqfn15e5vN5Ot5xKh5oQT1gszi3vm5bVWIiilD1reum1hxb19Y7Q0jOwjxmIlEriCxLTqVQkKv1Wlm+ji2IMKWUcxbBoNAYhhFojm4eGgwATdvLczu+6DKh8JRQJFo3hgDKrt4vJz13BEQVJdUsQAWn2ecbL4tSqgbP1S+bloBJYEk0OSaGInnm/DmlC3Z0mgjCtffNQjyCSJjAEEy9qRlcyMYhhlLE3XRbB8b+dpkhxb/eKr75gb2uGct2d1YFjECwiNq1qjsg07CmxAEZmiQkEsK5pONhcgAPJklTnqd5PsyHx3fv//DHP717eDwsJbSueFaH7mGAyInDAzrEbl//Oigff45AYvyWEgNETCOyxx3cwW24ql5R6ddnhHgc10QEPMJxRChlK6WYQ0qEqG2rXS+Xy8tlu6x19EV6hdT3D2Q8CAlo5PaWJIeSDlOaS06SEAiZM6dlubm9vb+5uSulMDN+Cx/9WxdSEDmxAhIIsBACCyTClDEXKAVyjsym2pufe3xp/tx7VTWzsR8QjqQOYGYRJtwTC0dum7ubmrWutWpr2vuI/hxeIm7mat41wEAo0N0pwJkCCIfWAkA8DB3iOkAZoyEipmEmvC8eoJF9lhJyAiBDdqKmVtfLej6fTy9aG0MwQEaQnKdpOizLnFLJmTl3CMXWo4M1Nau11tZG1KKau+vZ7QvTr0vhsL5ejktJEqWU5XAgZC0lkGvryHw4HAon7DZPh8CUp+dTbZem7OAEa2MNYsSBl41R2e9u1YCyd4fh3al/LAhkgFFUx8hzD0BDMQpwEPdwNbTBR+8WZkh4d1jSLAc7vl/ePc4Pd+WWkBr05if3joQe5MjDt0ZKKSUvy2HKS6Ic2qNaNIAu5EgsyzTNuQikFDyXArKt25fPT18+fPn89HL6N5CYw/E45bKkYnUlU7QO2gQxMxjiseSIiNrNTUMj3IDUqOtwixzdXCrInHAPjISRjX1l1O/K4LDw2ruZt67rup1OL89fyvPT8vhw+/7d4/394/EupgklDcKRWmut1QBMeWLJiK/bz6tJyTdE+DFYAQJiImYQwoLlLufHLW63Or2cVu+mCRSH/UwQwDDY4GFYdnVeGaRCxGEb4I7AjFyADyRTTHgJe1Y7m2/qk7q9XPQX188Q57AttId3BDNEhBFRa0QKREQBjIAcIbsCNsgDws17oZJfi5iIGH7ztbbWOkIE0V4GD5jIB5wUEaNX0+HhgR5IyOMo02i9v9T620n/+VPtTo93N+VxAZTAeG7+80v764u+dBLC08N0d5j+dJh/vJumw3Jp/fnlhCTNAtQ8CIqLYWQGEooYltoOV1IM4KtnzDj6X6+dSmvdKABh8Ge1N1M1d7iSa0b0Sji4w+A0DLMZRhwkNojoXcGJgAPZHGh3YwDG3SV9mpbDzW0uE9Kg1jRyIQhADKTe+/Pnz6Z2uL1NZQZiFMopqUVXr7XVrUJA26qq5hyDHO57nBPA4JH0vtUNMNys91paCVumMuWUUsooAmER5m47RdKtrevWL70pGDJJKVOrfa11hAV3Mzartl2qbo68/EzT4fjwrizH4OQsilIDL92e1o3CCFEY3aO23rt1DzV31VLy8Tjf3B7nuQz7rGGWmDglKeGOyJy+JtkS0TSVqSSz3qqtzboD8UScIi6CcczThCU9v1j+sM1lPpZDyRxLDQ/t0V3XFU4fb4L+8Mc/5eWIHiATLg90e5vub1BEm62BZ6PVUhAwYgFLvt13vcs3//7m9kLl49xOHRqnzly7hysTh5M5uoWHN2tqF1ScDlNKWTJHcOsI6Q1DDl6RmCEH/IoGXJEPev3zVUMwslQ8ANShqm1dmzkSEyciIaQIcgezGPzTxPRwcyx5tsBU5rvbx9v7d3f37+4fv3t8/908Lei6np6CLgqbYwcJoQRMWluYI8RgLsNrEQMEAULf+CohEXFiTnt4hzuYAiAwBNFXhhwADcJFSog8XFKxo+dQDSkrqrE4gGlft+18Xi+XdVtbG6QfCMCrx16EW7iDE0JGFKZJaGLKLCklkUwgLDml+bjc3x4eD/OtSBlZknsZcCVVx7fCcA9TXSPWnJFnkgzkA9ukwBy8ULnBxBitr9vLx/OH315+fnr57XLeatfewzQAiEaQ4XBdScyC6OjDxcdtjJHWra+b9x7uSBQw7CvVVb2pqe7aA0J3DSCMnV6IRAGGEB4AhjGMi8ARcZqmaZpffTsRkUVSypEzoKhHt2jaLtvl9PR5u5y9dwoXFmHORCWnKZd5KkuZcspADObcHUnNo3W9bOtWewSIMJYSimF6Wc8ffvs1eu3r6eY4L0UOh0NAAJABGtBp3eZlef/dj/fHW+w2lQNSLsvx6XL+cr48nS+btpSYMM/Cs3AiBrfdmOgtFEOIjMTAAexABuy72zgHZMcAjzHvC0YXVHRUTZt6D8RQb129Oa90lPnHdw+Ph7sbOc6ypJKqtohQNaRIRMKCRDoaQutFptt3724eHwOoXVawFlWxiQAVcU58+26e0gRbEpZCXLV+efryy4dfPj59ellPCn1Aj1+LmIf7R+29lWJbhl6jrrY5mlFoABbhnlJXa+g1NNwDJYCQcyAAVWSSxAlw5BTR9aC9ogVXDigMz4pQswg31d5ar1tva291zAYDGGOETJH1VrftcjkH8nLAPGpKGmjELuX9ltc79mUHMhQHCScIxkgMmbyYpa1j62GMQfvgD69uikIggQwBDubQAxQAEJzBIAJcAUVNerXT8/mXn37NgtNMZveP32GZtPXq/RL+jL7hQEEDrznehqw0uPUSFAhMEeRAGuhDRmTJu4qmqwIJYsQ6t1a31kZMnsBrETMGXbu0CR1cIWwMPkeoARNRkAI0tfPavjxvHz5dgMvj3U0uJeUCrheT56Yv1V+qM+E8++dK73H6/vY+leWH53MWSgzgqq4GZLELFAGZRobPG6YOjGnRf4+7tHNAABBUm2qzPTtpZyzCN7UowFWujQgiw8uKAVHVMEBEHLmbUbh7MFFEIFBOZZ4Oh+NdytmjBwAgMeEI/UJmB+i1au/TsqQCLEyJicg9ttoua922LSIul3Ve11LmYc33u9Dg3aFGuQOYqZsjwG4EInLNWWQigpHzbWrUEQiDmEQGdyxlSjnIKOUgqaq928ulikF6ero5nWrXEWAiaS7zzbTcpumA55e6XSI0B0NEd+uuXTUiRHia0nKY52USEWYCliQpS86piGSzoQ57M08JIA9Q67221nsD4FKmWxYyn8T9bppTmjxUt5fz+bmkmyVTmmbw8FrDunflvkrKjzdzvn+3KVaetdz5cqA8QfS6nbZtNRQoS8qcUpB0AmPXDDZnspLvmL/0+OzwErgxGbFQAkQCERQhgb5egQMUwsQcENETZ4a3AMZbuHwUA2/W1ds2dB/DXHvPADALG8MYEY6Q4cUcGBHmoe6ChIRTKSz56GhIZbl5fPzx4f2P9+9+vL17t9zcEHJbL7WZ0+SQgzIlLMKgCb1ZOILRsCW+YkIIETEy37/pkwcGsFc2g827+/6MpQbInCTlUqY5EYu7h6LaNZSNhtI3lZnCozfoXWvra2tb610NBndtQKcAPtQ74YTARIm4SCpSpjxN5ZDLJDSlNJW8LIfbw3yb04wk/39opgAgAntQ55RIBq4Ju3jPAnpEN/RAa3qu5+fLy8v5tG6X1kJtnBeDxzqSZfdothGmahHhCBbRwxtEHx56TBS0i2pxl3i5u0EAM49E8HAPjqsWEmPYtbvFHvy3C7SH3fZrcRkA5jG68C30UvXSdVPd1st6erJWeTz2NGK8OImkxCWnaZpKLkCMra+tA4R7773WumnvJCUzR0pjuYXpdjmfKSYO9BZzQQCW5E7nrXeDl60ejnb/WJcJZinzke8BeSrTeqCnp82ULidETEmWwzInRgtvzan/fnpBBmQkhA5gDp24MQODOQWKCwIQjBykNPABZWvDP0DdNtPNpPMcy006fnd4fHd3P6cJg1q3pjZWuDDBwO4DCYIBEkFJsizLVCZ0DQ2BQEANEYCcoxQ+vCsTJ/3MzFRY1m6//vrrTz/9/en5aatbZEX65qSR77/7cVvPX1zXtgYhUgRFmGpTCyTkxJQIBYKiWziQcE55vgkAuGzAGwnyrmDdawwY9Uz4rjS/MkyGM8LwBArEHnDZWtDJI9wDQSiAI5i51e18vrycTkCCnFAkiPjqi+gxPBfc3+jFEQPJgRWkhVBw7oBbj6o4doprBTDygEfTYAEY6B7qPmgk5qEeHSAQK4FwXBQYnbeNz5U+nekvv9Bffv3rz19+/b99/tP/4//55x9+TIw3GNX6OmxncfcJ8cEcJOosxG58famOaEDmbA7uaOqm3a5ZHzDQCzPtvdZaa8tJmAkgrgd+AAT5kB45YNBVYEVj82NGd0fuHq311npYTEXePxy/f7xdDmndeqPWiSTZBIPon581fbHyh3QzZ/3h/cOcOQJqq+cTamDI5JQIab+7BO5fUfGhUIidw7THxFzfy+Aa6rD/7q2pdt/jLfcKyGO3KBtR3O7qatrbjnITjRpZ1QGIcnLEVhu4dnXhUHdEKnmZ59syHyUntRoQxInzBCQAgSlxyiysvbXeSftUEiJqRO39fFlP50urzQJeTqc8z9O8cMI3iRnXI/DN6D88eu+XCO26rWvanSJIeKcvIgYYEHBOkxeNbjU34C1EeJoZYVpmglgv5/NlfblsGfiyba334eAnkubp+Pjw3eV8vpxezPTp88feVxJGcAH3sK7OhMtSDjdLmQsnCQQkmuZ5Odwc5mPOc0B0DTW1N74XYa6nrT2dN6/NA0KmnO8PjyVNMV84fEkSRBePLnraTnLBmWfMmW4FtxqnEyIKATEGJZ/vYL53yOdL881mVmyX7bef69NHEc4PDw+HaWaD9uJ9G0mfOUzQH2cp2WVrBekyzZ0zOKEjI7lHNzu3STZRsCnnIikjBgPOJc/5rVv/7jSGdLWpvA4137BpAV8LCLzmMe6xn5RgOixB2i4N94zEIaozCyOixDkzIzJKwjxNN/f3j398ePeH+3c/zodbSmzqAcjpEigODJISyrwsqBv2rXsHbwC2s05ecWV/faFfLxzp0sxItI+c3eiVDwPIKd/c3S+HQ0rk7nXdam/WtVXvFuYGREnK8XZxL1s9B5Ka9661dzXft6UxqRl7VThgCCIjC0ninNMyT7eHw91huSnlUPKc85zzVKaFKF3jLq4th79+fePZixiQHFI4B4KTehg4DGv16urRt/HAt/NlW8+1b2GdPUbuJVA4WYz9eijnh3sJjnQkI+oUlbHl7IhMzt1AdzuecAggDEE3hNcRlA+PeB3cmIElv22jBsbtY2d9U/Wb+6XWL6ezxnZp+nxeL7U2s9BO3hJCyTkhSgDH+BhJmIRlymWaZmQGIrpcIFS1ql5cV3DPkJgEhAIoghO4YFAYmLp27dy2dpZ1rV4Nt26nrc/HinKsFf7w/nGZ83Qzy5IOdoNZPn75HOauJkLTzeEwJV9bd9cBlb9hXQIpkhInQGhqsmIhoY28eTggckYptACBAZpYn7qLqdnWan2psbl0XrC8n++/Pz7eyJFdtq5uplUJaMoTp4Qg5tG1ezgDJMaplFIKB2FXpLNwPswzcj5fyAnKFNNB5vuUifASjJEz6Lr+7S9//Zd/+cvLy8nNEB3pmxRXOR6PTFAvs/fV0dwFlNzQzAKYWQqiB7q72tZVc84iOTAFBBDjqD0JGJiuwOI1Mhf3WRINo2fwiKu1BxIyIKj7VjvGCQEIE5iHasrJerus2+V8ppTn3syU3EZfEnvfu7tLf3vF/nsgItA6bBdbT9pXj44URFe5E+IeDAsxrKsdwsPDwhzUQQE8wAi6Q9NgDAJHsGFcYs/b88W2jvXmbk753cPdLHDcLp96dQpjBCaigdYRBzLE8JRiDIEQB3EQD/aAUcqYqTm/7SWHDnlMlA7LBDvmMZSWPuIVDJwRQL5qBGhPJyBg4TKlSVPuU7HbAx5vlvd3h/vbJRdZLUHulLlYBzYIB5Jzg5dKNfJcyt3tbWJoXdcqQdQNMc/BOYAi3tYuABBIQI4wpNG4lzRv78p4L6Px1Ou0+3d37pVnuZPjI8wcEdW8m4s6gIdjYCTYTRfco3XziDkAmUfeIkkmESYHBOJMkgDxGmwCw80hACzc3NEjIGrX82U7XzbXjoh127bL+fIypWKm8FYBR4Q555xzSol5L0rHmwpzM2MiZhKm4QnJYzhvHhZu3nuvrTc1lHz7eMg5LSVp22rvgRVZJOVpnss8CwshMuCUysPtvX33o7dNEDPL+fwlwsxauCv2CEDCnHOZJsmJszDlMs+Hm5vD8ZjzREhNW++9j1ymrzclevO62ebex1OQEI1YJCgRmBE5ozNhSpCSp6xprkReq7fmDQ0K3jzS4eCHh5aPKx/Oiue2WVvb+cVPH7e//zf97WcmWO5ujzeHglpfPBCAFHKJJJQksaC6WqPwTNY4LBGgCDEEemDuKTJs2gf5g2PwYVNK6XcRXW+nSG+++XaPQMQxrBwENRgVOYskpokRsbOv6DZlSWlX9MLIQpzmXKYkWaaJp6Uc72/uvr+5fz/f3uayBAWQylTSPJd5KdOkoYxQ5gN7jnpB61rdXRGGsJeui37XLvz+cbjGKo3Ob4AwBEAsmXM5HG7vH+dlQfDWaq89HIaHtVkAhuRUZllu79y38/lZTifi827aGaMXGr/6imUNSj6QcFrm483x9vb28fb2/nC8W5ZjKXNKU+LCLMwJh+f8nhIGO7v+37yIWHLkKVACUwRDBCABRLQWaO6KO+7lRMHkDE4wAkFGOUrMDOEAZqatVXQDYjPX3pt2DyOKKbMIkyL2gG595KQPhiOh07DZhwAYlhXkEKGGBDhSd645fwiwi7bGmfD12e9qn55efvntsweuXU/ntbbqEYyxCHJiiRBAARIkvmZiEVNKkktmEYsQJgg3ba4VQxNCYUzCYQEggSbgZUR8IDACRph53ZqjXVqs6muPTU9BP9WtW2/vH2+nKVFiYUwliySm8f+hBRgishAL/huwmQWag+3pmB3jggCIHdERGZkkpYKEBrFFXWWtsa1at3PrT026LGm5n+7u59tjXshJuxtFuLkZ7dyA3Q8gPBAxMRdJmZMEYVOolbIwc0qCmIRBERANPbyb71SCAKzr+uVvP/30t7/9fFnX/Sn4drkJISRJx+ORwBpDByXr6uGhAIJ5YkplhjxNSL61JmkWTrWrucUrcYGpSBKS4dt0zcwFC1cbW3gMN9wBUhCiCAvTsJiqVZ/i7PZrXbfz5XxYZiYys9pqQnK33U31ymnb8R4YI5vrGxoRqoZhCJ0g2FZcP9Xzh61+6XZ26szD1Cpg4DK8P70AiOHh4PsueFUAOVztq8cP0YgowNXrT7/9KhO9f387L3xY3hEfn5/h/NQQWkm8zLmUSUpiYRAGSZgm4MmpAOWADJBiDN/QA9HDLL7hxETE0CjVupkfx3fh6kAaZuYK4UwInADRAzGCr+gnS5aUUJIBBpc0x+F4fH+3LFNBSZAsLz4fRWEj7m5OKHWz86VfKt7MuSwHQrusKzLJtDSnFtgCe4C7E8TrJ3cNTQbcAyB37eVrGXPlxBgMapTZiPD42n9iXN/xIK9c9adIDtHNoXaPLUkWFpCkARlJ8qwA7VRtpKwmcUKFUHOKGMcPsSARhFtvbd2sdSZOpbAkAFI1DyXi3vx8qed1E4SSAkx1O58+uZQ5yvHqgrjvyfM839zcDFur3boo4pqPGW4W7m5giE5jO/He6rpenl+eP3/69HJ6WbuWw82Pf/qHm+ORwM7PX1rt5pgmu3l4/4c//vH7778/HJY0uCGED8djoR8PRe4Oh9t5+fDxl9Ppy+n87F1hd7pGYiFOyMIpL8txubm7vX0s0xLATXXb6rpttfVu9jodc8AWskXaFLoZAmD0zM8tb+410EiISuHl5jDfHB+/v7l7kDLVy+Xzx+ftyxm6pnI8/OG9PN7Zwx87L5+/XE6XprX2y/PT82/tw9/a3/9PaS8Piyw3x+nmINbbtqJDLiDTzMshplmBA/okAq3Keqq599t7zzzC6xgkGRkH9a3uyThIwYN58PboxHhlWu+GONcFNijn44f2zLW9egn0QKRcypIwiYFQl2AOPc4yTZIK8VR4WvLx7nD7sCzHnOc0zTzPaTqU+YZSUXXAioIAwInn43z7cG+6qbcIz6UIlugP4N3sEs0JhxHn62ZmVx7P1zpmRMMgEYrsDfTujc9pmvJ0XG7ubu8fUpLett6HthHM3MeeLJTzvBznw/EufF5vz5d1O13WdVtb1xiC7+GAOHJ6rxAvIuU839+9f/f43f39++PNXZmWlCYiRhxB07xb7AN9LWL2/fK1PXwLj4mkW8geTgEMKIBOAkGb6QbgPBXMhUUSxaGV4yyFkSEswACcAIUy53DwPixUmiEbJQ000zBFD2bJTO6AYW6m4IjgEIZ7KTJm+wMh1z3WENkDTAkBMQ2ZGIBiUASF4dA9qX5FLlvtP/384Z/++RdJGACtaYQLEydkYEamES9LLJQG3Xr3mmBk5pRyNh/cPustek+EzLLkJCKuAOhBIuRLknkqU5GcUhIhQhspa4YAmFJqqn/969++fPp0fvnyxx/ff/f9u+U4B8C6bkxS8kScuvWnl5NpWTgRMlzhyTcPDEZ408aaBJIE+9ndg4EYMSxCgpmYmMOrxnbZnuP80lddlV9wocOPxz9+d3g4lgKEa61kmnJiEk5IAGbWtWtrgJRKzrlMcyk5CySs4S+bE+HtQomCGUxYjNHaprX6M+KUp6y3VKL1L0+nX3765ae///KhJsXC7MH+TfsiCCBC87xgGHlHrdE2V0+YEJJzARJGnJDurE+1joHPUIEiEnNi4iBkZkmSJAnxbtMQYG6DmTwcmWJ31HYEGrdn4LkWvm3N1FvtW6vHZZ5yZiYL4JzHQ+zuOAL5vl70di4bAWagHQAQjcBIL1FP1l7Uzh4bkBLv4TwBPo7dXaI4troxIhi5ZgPMGUDpbiV8VdCDkLrVtf76kf/pX/5yeyv3d3wz65endnnpDKoFmZCYISdEIZbg7Fhg9CJGY76tw3/I0YzUyOybRTaEOluttbZvQjtHiatq3t2NmLtwBIYOy7hwZgdKxPNhWkTcjaXMNzjPy3HJIhRIjshSUnLmjtgRws16a1vta48WkvME3nDbEKlMs0DiAFTz1v1br6GdmHuVSyDRlRkFb96L6z7ICHf/t7PMh/LNfei4mDlSGuo3VVOrxJ5zURLcGlIIsgH1QETmPHOag6R7tKYOgVGJSTJwQhIy87r1bW2tdY9ILCwJdvmJr1u9XLZaO0/5FcPX3gAZWN92YwOJmabpmyLGXzNyh6VzBLh5gEVTtda29XJ6eX5++vL89PlSqxMfS3n37vvHhwfXTYhOL2cARpGH9z/88cc/PN7fE8K6nq1W7zZOtWVZ3r//TrUDhrme10tX7+qALHmeDjfLzd1yc3M4Hg7Hm/lwk+cZiVvT2lvtrWu3q+HQ1/sS1J2bWjfAIALcNnPr6t1AnZx7zLSkjurUnS+K20l//unL+fNnZj483mB5wOXBoGzn/vm3zy9fnq1e2tOHy6//ok+/SjvdTpSWQ7m5SUuh3igXchfhNM00zZCzGwZ7kgS9R93C3efijArIVESKoJRkm9vae5g5MCMlSonSWyoJfmMV822VfMVjEJkQXk2pDDAckDnlBdOcnErqnROFTglzIipUpmU+3h1uH49375fjXZmWVGYuE+dCkpkFANwNfadCpbkc729Na21r741YiDDNR+0rnT9Cp6u7Vbwu+n8dHufjIUEYpigDJiCRXOY8H6bDzbwcUs5IGAH7xMtczdTMAZg55VzKlPMEkI+372tr2zb8BYM26KY722QQ9wICHJFF8jwf7+7e3T98f3//bp6PLJmIB40Ydzro169RxETAaBuugdxvzxdiLsGzAzgQ7EZ1EiTOTJxwOeJUEIDJ5z7Py5SFBaABhDuCE0FiDuWtQ2993bRaKCRFDARBnxmLSBI2BUbgoZm86j7i6we9f9YxpNU2OlYdlpRIOOKrEAiCQskc1F21vz4yavbl6eXjaZsZkkAEEAFTCBAjC+08mJJTSikJ7yUijlQr4sTiUkoqORXmIsI0vN8yEytEgAR5YpiyTCWXnFMSZo5A1d6NzDFQWAi0X86n9fxibTudnp5Oz8fbIzFttb28nJs6koBHa75Cl8ysrhZmb9UWAB2pU3KZIM+UOFg1OHDKOTMPV2BmTiyI1Fxjg95d1bnLnczf5Xfv53f3840IIMb1hBroGXgM3zIbdZ4kycPvD4WCUTG6gRuxcMrIgkyUjNjB3ZptgDhFmtmwrpePH778/PHp0+ly5tvMQjuj/M0lEE5I01QoLPpqW6nIyJLLRJguit0izBHk9ubR576uW23a0QFdhLPkxDlcB1N2AGiEcCWcIAkLpykXEYYAN1PdjYMHzgRIQGJmurVW+1rb81SWuSzTNC3TjEi088/cd3rNOA73Z+b6fjxia9E2IEUkAIZ2QVsxKkIDViCnEXv6SiYdyrNhdjSsWJjZQDC6goJrxA40wKtDHgxqXkT4pb785e//Mi/9sLR397K+vHjviYMlmoGMMANmSRmjaGQ0iT2dDSzMjIaJoqn2aqrfEGPHw9Naq7VdwwcAAnzY2HUN6xwW5kgsBF43cOVwIqbiC9J0POQ5HbznpDchIjkLWZgDKezKDO291c2sMxMTqPatW3PMqURPW/Nae8aJs8wpkXn3s0YfwvDRMA5mEr7mBP+uFwMYdDUz21G4uPokww6T79sEQnhY70HIMlxYkruHazO/tOpg2aA4dFe1HHMmBGfmsuTpLpXboNQ8cGuwqW5PRLDc3JXDXV7EHLZqL+ft5emFmaa7x1wmB+tNt7Wez+u2VlVnTqlMnLOUqeREaWpBu3T9dVcmYuacMjPvXf0IxPHxJ/Mwd92pe+fz85cvL09P55fny+XUWgskmfI0zcfj7e3tvffVW38+fkmcbu7u3/3w4x9/+MN8OG51+/Tp48uXj9u6ukfO5e7unoiWu7tDveDThxb+sm1rU5ZpPj7cPf7w+P3729ubw/FQ5oklh9Pa+2WtrTU33WvDtyqYQAwEI/MBrBeDyWEyEI1oGpsqtabQgC7An7fNc1nWD59/+uefzp+/lJvpjkkuZs9G+HJ5WT///Zen336tn369fPz7+bd/yeLf//lP8w/vy+OtHDImBAxMTCYkgpKH70eYAQKlxJr5UnFr+vS0bluTjDmWaQlnV4oWdmlmqpKTSOIp4/xaxCAAQoyMQX6D5cEVg7n+M3bYcP8Ewvep45LnWwQGN18OoB20E4OUtBwON3fvb+8fl5vH+XBX5kPKM0ralQZEjASEexQSAee03N66W211vbwEYo/AMsl0oDRTPVM47ula+xlLcfXwvj4vu9nAdfNBYiYZM8JUFk4TIDVVDKt1660N44DWtakCjMhBJCQIEsk3t48R4eZj7v+MsG4XHYIdt1GEmRslKmU+HO6Otw/H48M03aQ0jXl7xFV9O3qUawUzmnuHYYrPRMOC8VuXqPiKVCLtU3wgpnmJeaGH91ASrBcMTctNWdaSPgkieoA7gQtHFnGkupFqnIfpdaAhYuKppMMh7cmy6AE4RNdugys5EpJidz13GNrVvU40w53zG8i4ExgH2G5oFt1G4tsrV8Zr1wZQApAgjWRLhszIFMJUSpmmJec5p8Hi40EdD8RgACEJWZb55uZwdzpCuKkhcZlKjDIAHCNlglxyLiXtwSY0rDi7Qg90CmERgpJ43baff/3l06cPP/3y8+G4lLlE0HltvYcD5zQzAhjWTbG1WrWpu1/5cA5+obTmR7i9T+UA6OFP1IPo7ngoqYQDAQ5uVE6LV8qnz+mSi+shlf/w7o8/zO+O8yGlhBxEmAnH8CyGc7S5N2XCaZ7KnFOeEgkqhAUlImEQwpylHCQdWAQ8KBtlBwYIjsohQpk61V8///3njz+d6ynIUqE0UYj/bp4kAIMALrkUm5aeLy/IPZCRDVg9ardeayKcl4mzeHcIZAJUGFH1QuLDy20fKgAze3jXZm6OwMippDkXZgbzutXW+lB2GGAAQ4SCdvXatdm61nrZ8nFpdwjzYTcAo+Dda/ebKuwtdAFrhfUCLAP06ecXaFt4B4qdnAKj1oYYgrsdf96pPIONykO3gMEII9r6VcntdvUIDgxAr7p9+PQhpSZUf3g/T9Lm7Ic5ZefaAskUTMMTgiQgdUT1ADMwB3V0209HU9fept8hLgCjiBlWMe67ltHdR/aza6MwIw4iAfC6gjYwIxY2iFRmdZKcy1xSBCVCFomIsAj3fV8fpi1mLQgb4Fa3rW5bncVNm6/NtEc+sKQEqTgZ80a9D8XOTojZDbN+dze+udxMVYFH4+f/vR8dZa27RxAwESCg7slGXZtbt+iq4RlcQzUnDgADOq0KtAatOaebeckCaCFCPmJAkDyodd22tq5VhHTkuxJ6xGXbTpe1thYBw+Q+gByIy8wyN6XfVZa999ba6AZ2/QgRQYzyGiPA3M2118vp5fz05cunj5eXU9tW7RXCmXNiSkzClFPhJK5293Iq83Zze393+3A4HJjo+fzy2y8///TTPz89fTGN4+39v//3/3h3fy9TzocFc3ZiQwJJ03K8ub2/vX+8vX+3HJc8FRS2gN611tZ6M1dEEGZIkCR9bWIioit0pQDerZxSpGLMrfett7U5th6wAjyFQ123PB/rl/Pp5XJ5utRthaB8vNWOzGk7X06fP50+/HL5+7+sH//eXn6Vd3eHx8ebP/xpPk45I4MFBJUldtmVkAgJgboTAvPOjdBuL2fdep0XiGno4LqGNdOtaW8rOaZEuVj/Rpz4Fom5jpECAF6Jer+7rj8zSLQp50k4MUCU4tq0diQsh+lwe3tz/93x/mGab/N8zNMiKeM1j32Mzr/anEIgc5qm+Xi8ubtHxtqaqxEzSSGeiDJY/waJfMUKfv8w7J0CsiTJkqdpWub5SJwsvLcKYBDee++qvVtT66qqioQSg5LBiITEKU/z4ebm7sGsuncizOfcex28wj3yOryU+e7u4e7uYTnelXnhlJH4dfiIiFfN1OCs02A2BuxSEHpzfftQUwANe77hRTjYuTsAsj/2EEEefCUIDhqZAej17sVVBADh5jr8thIDMWUkcgC9NhBDkRSvhjp7vTi0I0SJEMkdwtXN0QwQCWhQJHfGg6O7ta6q/e2evNOJEIQoSySGRJAYhElEUsqllJxLYkYEYRkfhcNu2CxZDsflod1ZrSWlXtuggqs5WLcgAslMOeeUMnMapq2xpx47BEJYeGekeRI3/nI5n162z0+fJUueMpGoIfG0HG7mac6SEdG0W7PeTd8g6OFhF8cNjzLd8zyHK1kThJRvD4e5LO4YEYE2wmUphHvKbUKKezl+d3j37vggwsMPFBCRIkYcLwYhCgtkSszTnMuUWRI7RSdETpxyzlQKp4KQITjCAT14i6y0IIIICmfG3Gt/+vWXv/32y0/NVi6QZ0kTKdnvTG9GMAcO46RSlq3MGnhpNmSBzbFu7fzynAkPjJJEkChnnNO5bi+nl94qIWchJ0eCIRdiYXJYTYfRy9CtMPMyTRj7NFWVjM2vo2BhQ8TWeu+t17a1VrsGUZkPd+s2H7qkRDSWuw8h1BjGvO4B5nBe43R2kQjQ3i6fv8S2aTgIc2JWCn91ugQAuCay7/PyfUzOmAiYwAnYwPY6njxA98dtN+tGc38+X+yn9fzy6buH5R9+uP3xu9uSFrO8bt61ScPUMDeSFMwKSO6m5uNr6BoB0B3AfLl7F/77/IHWe22tdTV1EUYEc1e12rq1RmBK7IgS4dtqbXPtxFmCI9d03gBoyblkFk4ICGHqYYEeEEROOJTcYF0RzONyOW2X03oSx6rr5bJ1JKJUUimOhO7j8PYrfwUjRunncYWR4neB3Pto2bQjCNM31c5omcdA/i1N0HxkxpG799atd/Ygj3rp2lPCYAitvSSe57Ku21/+9mvQRw8/Hg9//vH7797d390+zvPEqUiZiFNAN3PtZu6hcblsnLdpKR5w2ep5XdWUGMtcUs69Wa2OD7NMB1r1q3sagJq9nF6+PD0vcy+5yDW59ur/4eBuqm2r5+eXLx9+e/nyeTu9uGpJPKfZwwAFhcisb5tpX26OIHJf+/lyYRYHcnev2+X5y8df/vbf/uv/9stvv6r5u+9+mJaJc5qXhVJCSZyn6XCTi93d3N093N3c3k7zgUi6hrZN1bTtPCQWFmIMMLGS8+tENtytVmx1SpQKYaI0Ec9iwXWlTaE2QFDEE0SHetHzc7m5txpcJuHcf/14el5zoP54SXf3ala3ta+n9vIx6vNc0sPju/d/+PO7P/z5ID6BZVADomXzYPA+TD+ICZl892fdAwFwrdAcYHbCRh7Qa2+tV+u1nWvTWln6PJ0vq/nrEftGNbZzw+PbwgX3tYXXMVPsMjoiZiQhzpKZ0BhcEERY8nJ7c3x4PD5+t9zcpTSJZGTZ84reitURR2qAuwMgEUnJy+1NMMT5rLVBUwRBzAgZYxuo4/569leK//q1RgQEiZQyL9N8nMqcJKt5PZ/MPU+FGN3MPNSiq/XW1ZSFADIxkYyxfozwwzTNy+29h+U81cNLa5u7hptZjNFImZbbu3d3d+/neSGRgHC3gBjJQkQkQ3AzzuZdfvhaCo7dlAEZ3kyTYwj5gR08dls1cJJAi9qwWwRSLhjgrV9O7XSqp62tvQ8bKUa1CCUzN49goXnJxNBac4yUsORhiB3dYzOvqnWw1+16Yl9t8j0CLICREyMTZHYgjxaxK+kHlyBgJPWihqvqW07MmHEzQBLIQok97XgMJmF5e7EgBvOg2IK5uWuApyS3x6MgFeG7l+N6WevWtq5rrc5kTkyURVIaXjjDWk9QRrCfgYa6uzZkOUxFiFXtSfvTy5fa67gFAalMh/u79vDwbpnmxNK7qvmwRX+tlsOir10vmg6UKAF4IOWcUplvpsNhPgAnD29We9PW6rZtoTjhdEz5vhxmmVPKJfE4WC1ibbX2rerGTMflsOQp7WkhQAQEhEHhIpLLVObDTPOceIIOWhshhfcOz56V7xIfl0JzTgDldHn55de//sunn/4OUOcjzwfmiRHawPtenxf5+uSQpDKX5WY+3lVD1QAHQcqCjYLCXbsTCFEIc87NbRQSV6cmBzBVI0QohYlSktGxJ0lCQldSnbB42iPC/UqJNNp7dA+35r13h01OksrztHymlJBonmd6jX7fK5i3bqqwbv5yspTdXC8X/fzFnl70vNau6uCxBxV9vZuxi2EIAPf2aJcPM0EQsMEVOgk1eDVtcAdHoEH10NZPL+18mhAipenmSLmIqhKpdOKOqTEnEFZEvNqgmZu5j9eDQxplI8r1251suMUMwJgJhtBmOCZ3M3IzNDPDcOgV3ZmylCXPB0qlNj9Rxxi8nEHyJyQgJ2IQskxplgmLCSBANLCo/fNvv1J7mSUEDJDyNKcycUpm/k2lcjXp2Xey18nzv3G5m5rqHqX89u39vkPeEa+4Bkx+HVENH7/wMOytYTgh4lxujgsTndetqo3u7Xyc725nlBspC0pGTogcAWYabgP+V7OuypZas9N5vVw2dx/idEDYDamRkYUlmL8+Lu7RWrtc1nDoaolYRFiGbAYAHMz6tl1enk9fPp++fNlOJ9eWEKcsQuhuHhQE5F3XU68r3t1Oy/H23Xc0rdo7SHL3MPVe+3o5Pz89ff7Uuonk8+m01S2Vgsy5zIfjrZqH6c28LMs8TUVEAMksurqquTsgjjOHiYc1CL8ZvyJiIpyEUpaeqGF1F7WuFq1prVprixiLv3NXcidKzPPy+ChYLg6Ibpi6IzgZIqZMIhCaBO8f3n//pz+//+M/3H/3Y+pn0Y1dvaun2aRGtxF5hSQsCBaAdjUFYglkB3BQNd1WR2h9NTMGEQoDMMXatDUN/7cX3O/X1L9eaNe7aUN4OUJSWSQxB0UUiZBUlrv7+fZhWu7ydBTJTAzDKvrr6v23XgASSyrLwQE0cIuL6QpxVSFExDjQv76s36MxSCP9TURKKcs0Haf5ICwQob1u60m1m00kDIC99da79q6q5kosCLuyCQhGrNAYlOdc5vmIAFm49zqyqcPj2sEejrcPh8NtyTORwHVADDsGI2++6FoTIvyeE8O/Q2IchsUNBiA6QmAQB0BYx95ABNyZJVTrZbuct7W2rWvvZmaBChGANsAUEZ7nzAzM4eBJJCdiHG2St66199rHqW3XaeLXDCrwIEBXJxnqWEYiMAf32G0iIAIdIwCvZpXfbMjCJADCwEwyNLkETLSXLmMb2FVJI04yImyk2oEbY8rTAGJxLvl8vpxPZzpdwi2UnYCZikguqeRdBCkiQ2bl0B3Mu9mwZWdiiizERK5a11V9SOdTb0YgWfL98SYRD1EMMiJ/BWHdQ2vbtrqmdkHlgAhCYuFEQEwspQACK0FsbVvDPBNTng+L3M2HzHnwRHKSxGIR3UPCFTwxlpSnPBXJzDSodswCRuow8CpJBUHAwFrXGsEU2JpfjBRzYpZ5pkTR2/Nl/e3zh19Oz0+5wM0xzwtjRtdv+QoAcnVfQkLiwsvdw3uPfHh+eX5urXKgZTqSWu+C5obEApIABUCIMnN3IEDgwfts1c3mUiTn4+EICwAQiUwlA+C61iELYBFkpGCIHYsxxHADDyREJtjA3Z5PF4uPGtjMiYVZppyRdt/K1/D1643xutrlpJytGb6c9cPn9vPH7dcvl6fLee2qAQaBsYtNEGD4M47JEcQuHh5OhgjElAfeqqHdm0OLYQNOGnC1q0Xy4Nbh6Wy/fN6WY318B3kiAWCwpoqdqHaWYEYhJIrBxsNwivFwgvs4LNrXqn+3WgFT663XrdZahZGIbEg0AAHIvHftm1l4IMI8zYf7d/f3d7d3d8R8XuvpUlvra9PbI84TpZSZOVAKxHTabmSC4zuY3h2nA4S/XL5c+pe//dM//Zb84XZ6/3D3ww/f3T3cz/MSxNbX3tWvvyveVBk7kW7sx6/fvm7LO17tJvCq7XxTRQ64d+jmX//Sa/FCSFKKB9R+wfA5Z0Cy1qtqzsxUjss8lQmhpqpuPiNAX9t62uoxzXOWaRyI4RZmiJFLIiEW8YBW9bRuzy+Xy3n1CAZU3b3jAsDdAEwYk1ydTceacTDVWquq4m5vhVcjG4+u7Xw5ff58eXnq6xndlpyKcEmCiO676oG09fPLdnru9/flUI53DzwdL+cTQZgHmGbiQy7HaT6WeYWeUMDDumrvGHgz39hDn1NRrUKR0yChjZwXJKTEaQRE7Ih2gMUwcf96WDLTzbLc3xy74Mnr+fzSLltvJTy3dW3bdlkvDtqxIE4HdHRip+nmMP3wnf2ZT//wDxZebg5pmSllMC1Cup3rz4dS8A//8T/96T//L+//8Ofbu1s/QWweFobUAWqMuoETEHMmAVcO0kAGYUl5mr0Dn5iqt1rVI8iUAg7ldhEyRTcN274d843xiwd4jIDUr0sM4OuBPJh7HiO0zHxrxtSn3tUdiCQVoomIglByPtzeTsuRJSMJUdptvcfft8dRo8dAc+P6WzAAiCTlyT2ahnW3y+bhEIYwUq/smjtLEYG+Dxz2NTZIMKnkvEzTcZlvp+mQJLl7revl8ly3c9emVpEZkHq1um69NtM+DnsiZCHmwboduk4DdwwgYpEUuRBhuONu+sRInPI8zzc5L8wZUa52DWPcJkRCLDSSIr9ik7iXOQDkzjxM9l4lkjvOGlcjmiFq36Mwo4eHYSABckBor5dtO9emTU1HhnfoTvQnJKKcZRQeSOHuIzwYcMTEaq+6bW1rrWsf2Sxj0AHuYWN1uEZYddJBLAFkjgjvdlV1jHWDRmgj9+bN+YKIwpAQeLgTjsQQwvGur6Tm3WBiMB/cXLta795bmBGEMAtlwhhTGkRQVdMGnsNdEmeRnHMpZZ6mnBMSmPngAKiFmoENv6feLcC6UExZ3JIa7bGAruv55STlfLylALMOBMO+8K1ktKue6/qrfGkWBadCOSVO6tvahNucS8o5M0ZAvfTEdCiFKN/fHZZ5YhS3gD2ggwhxYkkxL94FYJKUUMIQkEqWXHKZJje40ErASMWVoyuEQ/bIgkWc1FzDKnmHkqd7ZPD1w+fz+tvp9EW13dzlaSbJrOHNfu+sJLCHA4yACkrEN0CUJ5LUtgt7eKstUV3XtnV1ICAIdAt1RMqUOlx3EPaR+Yym5uJJEhJDADELCwJ06+Gxo++jTvPAgTMyuQgipciSEiHWWlXtdF4tPgZgKQURH27vp6lcX7y/hS7CoVddV0XVtfuHL9vPHy5/+/X5l4/b80U3hQgOCAR9BXARCOBKzxwM/IF4Eu1J5QAOAcC7/wyYo+F1gDpG6g6kQefuH5/X5fPp/fOWy3JIKRNBcBhDRxJIDIkjCQgN/tjORhy4vloDb9+EcuP+DlvvtdXWWskiwteJ78CIrNfatg2Q5vmQ5pvbd98/vnu8PR4i3OP5cjmvW2ut125TKaVkkQws2qQYPaTleDMxpKUsEHbO6cOz/vXjh/O6LjkCbuZpOswLEvURUKJqaq/dyVUAMERHQ5Tu/ibw/fXy3afl/6JvvtozeKDDnhDFlCUcRXuAIqF79K4p8ZTnw2E+zKXkZN3EvYNJ9NCqbWuttW6UgYF2aKN3Mxu7OIkEUG1+Wdv5vNXawAEYBt8lsSBhIPg1ge/1REREEUmSiBiBxhjYDBCDyEN7X7ftdDp/eerbmVwzQWbOwsJISEG429h7b5eX9eXLer6XXHKZkSTAvXf3CHNAymW6u7lbt7bWfjzeEI58mQaAh2UJU3RrDZl8KqNn40B2QCYOGFst8aBSunfsbvZWOYKEOaeUcyezBs1sbVbb5/CsvfdWu/aRl7JpnKFL6tkjTfPdD++hLHh7u7WOTMEMSKAVc+Zpzse7RW7u/uE/3P3h35XDDUk2To4SoAYckiGVCHdJzpPzhBbBaFJdeohRwYlFgzJnBOymZp49EqYyLQTFAE21bzL4rV8f//CvPfc3AXGjY7ketwhjHlrNtx5VKVmY750oS04piwgQck45Lyw5AMPCCQZ1YqC2CAD89Tf8q7WNyMwpl2K6bluYaw3rMZp7973ogSu59w0Sg4gj/jrnKZc5l0lSBsSB8a3baWun3hr1YRkq2ryuXVtzVWQkRGZkJiLwsHC33qx3tw6+a4BDciBF+M7rIibklKecZ5GJKBHu44xBY78WMWNBDVbvPpobcEcAkAfxKHR+5508XPACrt0PjDJGGASgFJwyUVCDoN0damjFISzAA8IcCPb6gIhYOEVydxZEwPAYstbx0Lfe1O1aKO05waP3jMGUUSW24Qu6ezZfFe9wbb4c8Otaul4EIAQZd1uuwaIEYhIhSSIy2pndJQsJINx9ONxGU1CjCNldhyEQLKxrL2fRLAQZAPaUh5xLKaUUEY4wQOPEyUSTezgyDKmRmSeCObHOJZFrmFp0DTNy07atl9OJMBBdOKbMqchrRBciDNrxpnZBBQrJtEgqecq55FxynihJaI2AcCeEkjkJHee55OyG44NVdwNFlpTKLImJGAItQk17DwguKctU0uwyHAjxGn3l4GbarKoJBvtoVAADSINq1frx9MuHl1+e+0kFjjd3eJQI3bQ258zfpI0JEe91KFEgI0eed2Sp181a021NqRCfLc6tajMcfgRbj5DEeULT4eXMiUtaANA8ttrdkdjDPKU0lSLM4bvXGSCmUco6QPiomnOSlIlIulomufC61tp7P51OEUEI2pX+TMQPww06PPwNoBwRqtq27tqfNv/10/Nff3n6558+ffzQW83uaSw/jABwhEAA+joQYdxvrkd8/fZV5z92wQDQAAuw6/AkYrBCEivo5/Mpf8qPvz1P+VgeHrPMHuGKQcSAMryLHQiMUa8kxLFIDKyS168iBYRx3gR4V62ttd7NDAFtFBIBFt5b37btcrqkUu4flruHx/fvv3t89zDn7NYDgCi+fP70/HL5+OUJEYUlcRIpB7m55ce7dEOSEdDBPehWHiey2p4qlPv7m9u7u2meiVh772rWzc2GjJNox0riGtm4oxdxFRu/VVsADHvCYdkQb+D4HbN5pffF/nNgioiCOAbwiBQY21bXy9Z6d4tlyu/ePXz37mEuKRHExGxwrhUUXYuqt2qtuUwhHgihprXWrVYiYxwG0FI33VYdSeEBEOHbtiXhfMgsw6UlWt1q3V73MiKcpul4PLIkRAwfLubmrmG+1Xp6/rI+v/T1gqYpUR5mEaMPFSASZiB0DO/ry/r86fzlIMITPoiUOSdFctWm0Z0ozffvvsdUqloqk6Ssar21JGmZi2t5+eJhlktZ5nme53maRiTI6z5FO+0LwmNoJVJKb6FYJ2gYz2rPFp1Li7Y9fXYFYfLBleMUkivQh/PWIKeHeMjpcHeQebm0rXrvrUWHJOK91nqysHz3fj5M+bt/hzfvWkDUahYeREaGSeYDQkSbmAXyrXFy6kauki2pGiClDLQALUGrxao90MUgUZrLxJKNWC1yyfPhjljeVBHXOeur1+KVBjNWKg64GSEAuunL2lcFw4mQgxKQ4EhKz4uk5BBMTMM6tXtD9ajiYzq3q3R2MuF1JQNcO5sde0Akykm6IHi1fjFdTdvAmx1GAXGFKd6gk4gonHIuKRdJCZkC3NRr39Z6Weu5tXNvNQZTD9g69NW0ebgTydD6MhNCmKlqr3XtddXe3AwCCCmROOx0/FckhnZeRxoTSCQZBcx1UMJXoGEcHyMjEWFsYvhaxPBbBRzsJhUjESX20ysaUMA0Y8p4d8NTFm9snZeJpikQwwzAkJwYGPEN7rvvLTxADIzwsOEhWdu21d6aqVo4AiCyx56gOdxaY99rPdTIfUSyASAQB/geibDfil1h4K9oMwBCJAxBIBxvgwIJRIgzSxoumsNwfEQuAoa7Wjdnja5kxrGrdwOF3SjLoBjlJANll5RTGu4wSYQBAcxgBNwmKiHMFIge3rvXais2AhNa+pwcXS1qs6163RxDz6dn85YyL0s6LFMq6ZVHQkTLXI7LPMWUo2RMs5S7w+H+5vbu5m45HHlZuum2XtbLVls3dxZKmYe+b+jHzXXtag4llVuZbtI8zQcCatu62aVqQ3dcmEBcERmnacJA9MCwVAgKWESrbdOGElOi4RKKgOfz88vp0z/9/C///PnnL7T5cToevy9LafZFegT2w8T8Zh8T2GuaQc8MGOSYjIicUu516ywB1DRgU61xaa27A6OFs3DKyZob+MgDFpFwqK0PYQh4mDuZDTPTcalZDLnRdZEFABEPEn7Js3nMZT6dzy/r+XK+XOpWa/v04RMTL/MsLDfH46i9vrkC3KI131r7+NT++vPnv/z9088fnk8vwXjcYzeAxpMUO+/Pd1LgTo4ZhYt7OIbTtdrbdSd7/DSbD779lftOBMhqWmv7+PTyt18+TulwzI8pzUIsDEDBPLhgIOgMSr4nHo4iCd3dlVy/QWKu15UW01SVkK5pIOAOaq7q3VyAcinLvEzzNE1TFongcTC3utXWztt5XWvvTvH/4+y/muRIsnVRbCl3j8jMqoLo7pktj7i0e8kH0oz8/3+DNOM9Yp89qhWAEpkZEe6+BB88slDomX0Ew8ZgPWg0KjMi3H2tb30Cs0zvpsrHlCcpCSJiaUt3ZUIHO87TIcuH9+/u7u44ZQ9UU9VuZm4+uP/fdFo3xXTAzehlf/b//1zuMMgcbmo29sSUMiNSILXeyRQsSk7v3z18fP8w8aDLGFgyK0BEaQJODmJObm5qgV5r3dZtqzVnSkCBbIFr7cuyh/qGR8S4tyMsNw2n9q229kY1Rkgl53maJe1FjLuG9d58a72vy3p+2a4XdMuEQiiMr/wBBBAhACJ0CLBe63Jenh9TykCY5xNzAsKOCMQoeTrdf3Q73N83dWDK0yHn4bbAACgEbh1cS7o7zId5mqYy+XC1GvTYYYQ31BaARBQeIl+7MTV7vl4/n89nxBXAaQImhyUQpGSSRECRMk2TW1Q9X8zOvW3aiSElyokEoe3DzSGxM+As73+Qu7s4ve9causW5k3BgFEgTTJ1DNDgQDJMERxhjuLpACCIlcMTSzidDLber1uN6OxBKCScSso5eVCUMh+Ob+kXr8oUvL2f+Hrfd1fG8X6Bh29dz2tvQZwhOYzszzY3LQZAyMKBRIRAYWGqsOOO7u6D9fBqSw574bITdfdS/jYc3dOPetO2at9UG/pwlxjk3t17/Der4GbbBwFurmBgZr0PykdtfettNTM39GDrqDW8j/PdtSfTPrLJgMJNTZtpd+1uCiOeDenWh4zR9fCZFiLmPbZERgrmrYbhV8404Aj+JRxQxG0EQ+T7YPVbwkK8AjG3zcLNwG3fbd2Glamab2qbusYI5gymEEHCHUMxs/EiI3JAxPC2MjeN1rTV1mprqmq3GT0ODNLA9tvs4wGaI+FO9Y0AIr+5bnzlOEX8NspyX/7whlgy/AJHwlIaWqQxdx7JF6NPHk4+uyTVnQZdCWGwjFhYEucsCMwsKRdJWSTdhsDhQAycBijNMgIjIkI1WtYsacpSm6hZUKhF676u/XyurUerq0UvnlKaAfLNqQRgFDEl302Hox7mmDJJFp5zmcskkjjlaZpJuxAxggh5sFAk4SHAYGYWZqGRjMokRUrmwiEYxChJ8lQmJiQUN+hgDJiyMBEYE5NkDo6hrFPYKHscMyUSJuv++OvjL48//vGXP/28/Fqnng+Hh9P381QuvQKvSPmUv3HrFsRdIOQ2/B5hPApEIk4soSlCukt2Tj3Wy7psrUsiTiLMlGTrFTDGyy4i5gOOA2SGW6y59j6i+4TZVN1UmzkGY9Bg4XOaD6fj6f50uAfEdVnO18v08nwp52kbV338/GUuhRCJ6Hg4jLX49qUK4Kb4vPWfPp3/5Q+f/viXx/OLmUpJjnTrUQMjBpp7M165tVAEMAbcvlc4QYRBOMKOCGwPd3RC4LHSAB1gmHlDdz8v6x9//JmhPBy/n6b37x/meUrEyhyZUTAoOnqE0qhhAgnAwYAsyB3/1tGvbq232rqaM7sNWsqOfGAgcyqpTCkVIfJh30YsIvM8D3K4JAHE3vrz07muKpy3rHrw83ye82Ruj8t57RsQSMb5iO/f33348O50dwqkZjY8+QY/bdQou1WOB7w2dIPYsvcwN6+pr7syAMEea7O3xq+Uxh3F3eXJMUyZBl1og916OBMLILkZIRq1ueSH+/t39/fizbRBuBPhNIekMh358EDliCLgbq32sPW6Lsuy1QpckqM6mft12S7r2qqaOYQHMCGTJEmZJXmgdt9qr7W/+ivgPiVISRIxgUcEhyJqvdatXs/1erG6TjllYaHdfWtP+8Wd9xdE7uFmWtft8szCHjqdtny4JylMJLlMAZxkPsxdW1dzQBISSdNUwm1bztaq1hVcS8mHw2EucynFAgNHRB7i4HSGwTCHDcjZ3yIxtbU//fjzH/78I9490HykNJUy0V0hlruHBy6zAjoLkNRWnxjU4mW9Pp2f1+WcJIl7RmgIBsAe4SiQId/T/AB3h43S0loyD1dvlTC4FGam8OimUMOc1BBB1QOEysQ5KDUKJ+bkeNJoW73aJXTDaDsHnmmaMrNAh+NxEqbXk9IcugVbBMTNhfDWnQUAkgO4RVVfel+7burINAup9svLEyESM0tO5YDDBGiY6/sw2RkDJFfv5CySApiDd9sUfEPBiTcaX7NQs961Vq3bSLrdARygGD5U7vvU8pVDNmIAXXvfaktIQcwRYdZGeoWq9lZV1Q3M2BW0hnZ3A+4S5Fz4sBwkJUl54M27dsBtVFcAMCLkAEYjNRxeRqM3SB7jbM7MMqb/8HWf3ZVggHu5PIoYJAOkVx3069L3QHO0m0kwhKt61E7rhrBRtyiFmJeX9dOn86enc+0GzMImhEkgIsx1mEpEEKcJiQM8LMyaqZp6a622VrV3M3ffc3XQPGDUP94NzPd+CwAcHUBBKQCInL66XCFF7PrZPQ3wzSaGo++87QQDVREeQSf0mrrjCI6ITMFIiYZ3ZowWEIbKnHa9OjOlJJATIbKkUiYeFUzAoGOyCDJTRNr31V3mDQGmcZgHwLzuypUIC1rWlvjyclmuS9WtIpU+kesUw6kLAACY8JDKQ5lPfCp+AHRmZGZ3P19WwzTf3x/m3I/FdUKMraJ6IwRGQpQkOZec5kSMoVBkOk53FHJ5Xt29ZJhKurv7AIDarTcF6uKcUpGUZErEDATNrC9urszK4ZyCGIXzuraf//LlX3/5858ff3rqT3QP99Pp4+ljFun0q5Ikmk95ljejZBlDAVO1Yakz0j4RddgO9N5aW7a2tra2Vnsz0wj1YAbKkoAkVEx3oGxQu1hkD2SOgGCCGO4mb4v0oe1DAiIi4TzNx+Pd3f27u9M9Mx+Pp/l4zPN0mA/n6/V8Pr+cn1vrn798YZEyTQCYRN4OxR2gO142+/VL/fGX80+/Xr88NVNhEAQmGLpAfC2w91Z1dBY3te8g6ykMPxOjfdV6gBuoQw+wG31m/6EIhCAEmdBV/eV8eTw8vlyfm31I0/HujpmDKZiQwME4VIw8DMA5BqEYLUAAvslO+vq93F+RmCTylV0y0jlTScg5T8QSEdpbay2JiBQWmehARIFk5tp0uW7W3D3WXh/Xl816SUVdX9alulLi+2l+uHu4+/DueP8uzwePXRjgYGo67GoAvokU+Zsf+K8Nb+BvfrfXudL4NcLMFfY5dYAbs2knlv3dSpKSkFkWLswlJQ4MYaBEQEUm54KUuExIEhE+tDa9Lct127bebUIBTOrQ1Nat1lpHDEK4mVqYg1moamvbVsf+j8SvklEEHAPwlBIJI0QYqjfrdTm/XF+e2nIBN86SCAWDCGW4OQKMt4sYkdnNm5lb121pSxo4NBGlCVkmzJmJcikRB3cbmlF3R4QkbN3BLVwJnAiTcB4wdM5/o4hxDYuAQCSIyG86GHO/bu1yrSVrTkGCiEwCKZdyuE/T3AcZE4U4bQDae0eq1ntv2jarm25Lu27uwKUgAGLGxCHUWbbaF/QiEOjoLlkgTwAOrQEXSrO7WhAAKWfkROXARKgdw4kZzfNaswHDAsOfkTBIQIQ5JUmMkRO/DYBUB1VQHUy315DFV+5pqEPrtjQ717apO2JChIBQbdtlYUgpiXDKGQiSpEgZMSHQKMyJEMCDkQdcGhEUY9ZJ+HUf2k9NNwsIU1fbIUwLMzf1UQ3gvnu4u/fuav6253d31db71hoDmLAAoulIpSUiQRY0d1frqtV6jREXRC6Uom6l1lp6Z34Vn8aeOAe7NeXtdUbEG3EWb1v4rrkTkaFFertGYQwq95SRfeQ9iIP7hv+bzcGBLGhUT4jhoRo1bOV2lSASdogV/fny8unx6fH52tWRWVAyBzOaWXgfO0ogMSVHVm3WLW4svda0d1XTwV2nMThCQKJUMgQYd2tdWwv3wVnZ9zEwGEXLHkAzOE+vhkO/zbQKoBEfCYPHOWaQOCRbw8N7/9IEyBCCIDdqo7mrublTANENiBERkUhZmFNKZZqYEyK6u7pRDPbMjSUdu0HzLqewyMlLKaXm3ru6RUQAJdr61mvdFhjyvfQ1UO92EWBGnlAKcQK0CEIsOU1lMk9EYmpDc8OMkjiFsAcBJi4yROrEzFJyLlMpMpd8MI0AjRhIJosMzSuZa6Cz4EilT5kDSE17a31b1aokZwLf0BE9ULe4PtXr81Z7D44yy2HOhzILSKasNIkcjnJH+EpJAwFAc1+Xa11XbRU8cspmfrkutTZz691q68v1en5+btuaM+VcnDCJ5DTYr3NvvN/EgJTlWA4A1Gp1N2EK99ZG9RO4O+/uo05zZ5FpOp7u7k/37093D9N8SClNB5tPx/l0Op3O89PT8GC+Xq/n88UjcikB8P7h/dsGwQPWDl+u/Q+/vPzx5/PzxVvPDIVpkigpEgUDgI7k9QiAwOH6BkjAON5KHLcSYIjzhwBqh5a8uxqYkwP4mGdHAAcFZCIhEfCOUdWuVT853c3Hw/17EgoasyoPd3JL2sk0ubq7hasDO6nhHG9NfN50Zq31bau9a062i3cQkYRTASBOnsscgFV1q22uteQkMuh9UqbjfRAEIDITPx8vy9p7hwbRvEFXi+gMPM2H+9Px/d3p+4f5/QMf7rAUdEA3cI1ug/QKHviGAQDwCmQhDsrPvo9/Q+MN3z3xRgQ2wO1XeEXERjpojBhMpiBECDLVVqs7cs5DmQ4RREyAVqs1TaVwOdAUhbPnk2Ju6jjudNsUGVzX5botL713AJZ84DSbYx114SDJh/fW0UBz7cu6MRKAOqTpkEqZDoehn4ZRNzILJxbhxMKom6+tXc4vT59+ff78xXvNTBzO4CPCbWxto2iGcEBhZgSCIR8NBWvRVtuySmJKOZUsoiwxlJ7h0rVrb62p9d669c21M8ZcEgQMKYgwZ0ljTo/j04YDOQQ5R0QQ+W84MYSSpmMux4SMbtabBrcWDqGG2L23FhEpFZF8uvu+A6BVLFNQ9L4u55fz56fn50sA+8NDKnNIBu+9reHrals65FJSTCJFaJ58PqCZ4TW45BPH4HYhYylUZixHYmE3giAmaBXjKa6XrrX1LQxIMkgGmQ0yO0l0Cn+79t1ADdWGUz+8KWJ2uFQ9tq5r7VtVDZCchZghyBXVdPPzU0AoMarWnPNcZjgcoWRmBgA3BQxEAXSLDu5xs33bXWxHoRo3mlTACG83A0ABFHAyQ49ACKLXP2u12sgxfV3v4Wrael/7BmFdJRHRYGEkmabZiaTRGn7t60V71Wa2w4VJO6puZi1MI/x13jPuw05Ng9fJEAze1LCfY2AmFk5CiTnxzfHlKy9kX7xvqvr9V9sPavO3IrgAdCBDsr1+6hZrxwvCufiVaMrlg6U4b49frp8+P395uVzVg5kTY+IgRLc2cC3ChJK5zN1jXVetjb2HqTbV3tVGfzVG6MPDz8s8P7x7SCn3rW2Xy/npqW2G9KpF8FEEBwU4AcXA7GjcqnACQ7DXOmb3vAnwwHBAhAHuC9AIfaSdN7RTBRggjdzFCIvo5k2tqHJOBGNcx4mEOUWKlFIppZRJREaNxSOnZVgCEgLsIjYbHDx3p2ACZhEWVW29u5kHmGgiFAIRJMCpyFTylKeU8ldefwAqRoeI5oEezjif5vnDuw+S7hRpW5bWr62tW+/deoQnkcRpksNwJTM168ZFHu4/TmnWDgh+uqMIF8QIvS6NGeZpmlMJMhbMhUQICU19XbZlvW7bJUATZ+i5Xwtopp5sRbZp4uPddA+04FRLJiQHA9Ey6X3B4wE/MqavRczgw27rsl1etK7g3ij1pk8v53WrtsvTaIABDj7lxCJBlFI+zBMjWe+1tVo3VQWAkR8RAdYhHIjoJjrxCCAiEYEINQgFcw+glOf5cDcf78p8TKVIEoTIU0ml5FKSSE4p5UTM9XNd1+3L41NKJafS3pgRqcXLor8+rj/+ev70uNSOQJmwMGZCJkDcDX98n1wP3A9elQujwg6ECNQBUAE43dxoHIbF7ggfcNhJLYBADIREjBiOYQ2hmZ8dnlO+zoecCAmGywm6oxlRYlUyBbMI0yACV+D5LbD0erlHa9oGd+OrNggQiVMazVbJGYnNorW+1VZKF5FBQSfiXOb7ByBKkqb5dH56vl7XXnt0Bw8MgIRUpun47u74cD/fv8unB55PlDK4gzWtqzl2VdXubyzEbiDs6y9vyq6/FiL9GySZ113QAQZNz3DkQOxczd77gD9Gnm2kDAxAfH1ZrsdtOr0vdycOd06eT81IlyW0Wm+KmCS79m251m0DJM6TlAOmYg6taau9tTZ8tYZYOjEljLCudQWSAJpPp0EQe/28o39KIiTMFM11uV7OL8/r9aJ1IzDmROAETjCoE0AIcTNjRwAiQQliRohwD22hyduiGzPnMs0sBTntqQDhgOwIMawzWg2thDFlOc6TuxNAmBMiMxNy7GbwMBxSAWjMHokcAUTeyCyRUDJwcnOrzbv3wN6AA7xtiMHa3SPUseBUjlnYe5SUppLnnMokJKBaew9OMpaxDxCh9sUqeyl4j7kkTBAUm7IphXA+JIEwrcsWwHg40XygPBMxhzMGAQZxqpUkhZrWFi4kXs2pKwA5htla272/NYd0AENwHAc3QMQrxQEBaMx2wiyG39FQZIc7uDEQebd6qVdazhOG9jJ7r2F91kMpE3uCCDKRAA8Z8sTwIBp252M8AEj4yocBd3fVsTe2vjVdu61t+J4FEw71inbfFr2s9sZPdfwL01Ybg5qyMJNA4JDQCxUXiBQqHZGGrhw9xps2OFgR5q4jVeF2C14BlUGewT21ESE8INBYI4boekDWY4ABPkzL99ZjTKFuU2Afeyb4ML4y9W+9VRyghzUzV9foHVeNl+aP2a8ZlDnJHEr6fH7+dH16XtZ1UzdAguGEPLCHAcMwCaC4umpvddNWBRVMm5qq+U1PMCJOKFAkzfP8cP8wzXOv7SrcW7spO/cN9PYDxu98Y2WPAARB8BtUCQcS4zcNwmAeDEcMHi7JO/ckEEAQmRgQh+Fn6731zpoS00A4B5MaPDglSSmVklIiRI+w1yJmkGgCzcNtIMWuXe3G/sHdMzwUUFUZcSrp7nhESUE0H48P9/d3dw/TfCTm2wsWrVrdumBFppLzcZ5Ph7u70z2nu6X35/Pjslzcq6qaKgSMaMnT4R6Ba18BIHGe8vF4eF9kXqIh2ZRmRA+13qpuChi5SC4pKAJNrXtUstDu2zIEE4oY4AyWPbJCagHeIHE5lfv3/r2gK17EJjULddGDd3JlXSneLH1xc+u9rdft+hJtc+1usW3t+fmybE09UCTlaQ/KhSI5pVI4l2k+HI8nEQnVtm3bem11672P7Arr++DWTMLDzMCHEwRP0wwQtWLzZmYOyKnIdJBp5jJB4lEhE3AuxMRZ0lSmXDISde3Lul6vy5cvj1OZr9f1NY+wd//0Zfvx5+unz+fLtSKnMiUyHvK8QPAwH8t9eC+98jggDBwRIZTAAPRm4uQAMPJ99oZk9DXuw2tvIBAwhAYw3KUoUJjRvboviKvwnBiZ0HzkeLA5s7E4m6EqmAkJBzrl+ZvstBtBJiK6auvaB1kvAIcfHCJLIkQmLimJSAS0blvtU++py6CvATEgl8MdlZOcPpb7q5ye8nmpVbv5KPURMUs6HNLdfMjTSaY7mu4pZzLvbfWt9W69q6nGaD13TTqOj+mvkqSdHX3jJb7dPnd7vLeOyXuH9xX1BwAPiEASIPSxv0QEgAgjE4ZbykDkQJ9+fU7p+PHf/x/lw/fQqgYgz1Rb1E3bBcUEs+dkFnWtvVuajpASHWZI2apbs157XeuyXHtv83Q4Hg/3d/NpnpIwYnhbldmmOeL1w904MSIpCTKG97atT4+fz0+P7poSc2BiJthVazykGzeZxzCYYOJAkJSHGbSZujZvrMRMWaeZOFOioAwQARTEHqCqrdZer+x2KCKH2e6OW+3gbtoDgBD9NZYYAPe81BiyOhrW5289PBAUYYPA1qA2DNxZptFoyZlPhVkj1mWN3kvOhDlcH5g+nE4PD/dBpBBPy3V7vKzr1VTzNJHQ0GKtW0WMcnpHmM1TvyouzxnidDjmw1yyh3ULDhA8PVCZ9gwicA4nM2T2+VDKgTrE1hXAsfnlUr0fSk6g2C7TdVLT17VCgRxIjnSjlo3l7bEfMhBAwETGhGbh2juiMkdiES7CyE6+tesXCvV+8t77uvV5O90/lDJrNxYHD8lAiSNQIQANEZiIhUehOPYJGE2RaW/bui4v1/Pj9fKybstaTTUAmDkQ3KJXu176D1frb13hA9y9q1JDRN09SIAhRs7SYGon5sKcmRXIgh2YpJSS5yyZEAPcQ8cMfUQCxaDHjK3N99iyESnEzEg0WVfv7B2dAwKdBntw2MnsrjHA+6wORyUY5qHaVJvtiJC99jDuvmq7tootum4rPDf43OKXo/U7OEkhOal6/7KdP12WpZkauCpSBJPhCLpVN4BAQnKLrV62uul6Na8oER59uPkOPF0tVL0p53y6O71/9+7d3cN8mFU1M7feA2C9Lq8qk3Er0HF0pISIX9G9gcfAN9eO4URA2IDZ3G2MIBDGIG7fHcMAkJhFeLwUA0xtrUnaR08jHk5SivAhEBORXLIM5G/Xu7x2hhgBbmHDixKghfeRIQwBGDjoW71G+PFwKPPxY8rAiUUOh/nDw7u7+we5FTFmcVnb82Ux4XQqD/f333/47v7uXcnHTtK3bWt1q5WjhxmoIxIGl3y4f/dBmC+X54g4Hu6O8/uSH4Rm4U3EDnfM7H1rrS7EhqS5kGQy4Nbb9fzi1lNKYbBt3cxZEjMDTh4ZMUGQdguzOef38QD6j1OfzvWzqa/WKZj4AVp6+vL5y91z71+rGIk978W0NVtX61VVW1O3Gq69KRgjkaRpmmdJuUxTmedyOMyH0+F4SpLCTNtWl2vdllq3Vqu21rEVD1YLQFWNrhEwuNkpZwDo5tDVA4aHh6pGwNjkhw0BAjCTMA+FHzAFgpp9eXxaluvzy3men87n84B/9iLm8/XnXy4vL7VWo5RoKN1gBKz5axFzA1hvY9wbALN3HGG4+8jEb3Kabvj0jtHuW+XuHTHWADoSDL1DrQAqYqUgI6iBBUYwmRA7OZMxMpIhAnkkzvKbXKvXlaNqrekg39MbA9ndSnOQ7yDMtNaaUmrNWnYmirGBsXA5MBU+Ms8Nyr3M5+W6tNaGQJoIs8g0yXw4pOlI6YgyBSXAiN7VXHfH/lccZuhfMG7apEFkRLzNhv7Xr52aNIIkkAIRBptjb5mDEVNKKWeUAhbrebs02IIbZKXd6sM0eq3atkQ8gGVz6I7BuRwnzEXKHTJja4QkwtM03b37CEgP9+/uj/P9IRXG0G7mZha78d03D4WERDgLe1jd1u16rsvFtc4loRw5PCHl3SF5jBsCcDc8ffXFCkTJYoYOYeau6txwQ0XuuQASzQAJnMVvqcfu5tZdlTESS0ppysUN7HaqAREywetcHunVwHEAiRTf5NogADITMWiAKXbjiIwwKVO9uASItGqX56uhTNrz4SBC8OFBiOfD4T3AWvuvnx7r0nRrtWu4SU6UGDxaba5K9Lmu21xSYciqPE8kSaaJpYeBHCAgQTlgykiB6CNHEQM4p+P07r5u98fD8yNt2xrWSMLJLLpba5fH+3cPr2s/Arp5646y52XFnoACHsNeExygWwzZQQCoBaLVrqmLuUc4BaB31+pWIQ7h1lpFIJYcDiyJk3l0sS6W6EbIQwQjEh8i5CFkxMAAjzDX1uu2XdflvK7PtS5d3T2C2MMDzKKufl39pbp+yyJzBzPvfXgUBSJhDNsBAqSvXOAdAoBgIqbBZCHiG/Ltr29vAOyM+6Ge8gBwszDvAMAuLNJ0y1qGmSihwPCdha8WLUCEoxEZeq9AhzB31X6rY9Rdv25dYN3Pzb6Qk0brfm5w7nhRcKAZwq1tW+0vL/18sdYhAjCcYbe7Vd3PBQAKQHD33kCboA873CHPVHUzD3MYkGTO8+Fwd3c6nU4lpcwiRHY83r17GC4RrdZ9Jr4L2AB9D/R+02D9DUAZh+0tIQ5wxV19d52w/T2jseTDHAAGexeIENHMuvauXVVZdfjKiKSU8600GiUTEckwKkTCkdOyC6mCXL11g1E5RkAgMzsEq0Z4N4WOZSoP81HKDGVWx7VthBjEO24DAADmvqxtrf0+093d/T/8wz/98+//+eO73wXKy/n8cn5atnNr68QgzMKzpJLzfDjclzIjIacEgHO5z+lOVQwJMDPb8NscL4gkBnBzteZded3q+byatikLIXUDZirTxCweaAAeHc0xWBDnqRDfxRZgaIbLtrYaAD0V1u5rvWztEm+gGAFKIEKSAblW1a0BGjGe7o4yqV+uqhFuzHQ8Pcyn+/l4mk+n4/E0HY7TNDML2HhAW9u2dYiir5e21qOrdlPV5Xp9tRpDZmIGQCQBZIzQtl1eHnPOx7uH+XiQPFpZv/kwIAmXabpnROJBpdq2uizbl8fHp+dntf3LtK6ffr38+uu1bh4jUQs7QTiBD3ASd+D1q5TgzQu6I6SxT4gRgJADEOLW2gKMoINxdBtA0Cuo4wgUwGOnaC0ul3ZdugekTIcDMMZWtVu4E6CGja5IBIiAMRug8/SbGuYrEmNmvfdae+taKCHR14JqFFthbtHD3ZxZtpNnQ3bOIIQZZQaeMR0Sz8cMkO+kPMvj5/Xy0lqLcCYqJR0Oh+lwSvkAkg0IHCJAzVrbemvhsRP69l+/snHjtjUC4U378BtPRXjdC3+zKXz9510HGx6ht4Ct8QfCTbXRsP1OWfIxQBp3nU9P14ZPFyQY0+dtrctW0Z35kKQEgAF6PlJMEwtL4TwDhCSY5nx3d8xl+iEfp8Pdu3cPJQvaatulnp/assDWhpAA3qJKBMSUBBNjr307P9fLE2o9FCnHkhAoAtTdlIDGPnX7msOdPIkkZghESRwErmYW7h6q7q4AK1FzQ3OaDcsBSEao8VgRQpgIGMADMQYXg4E4iIIBZRd3IgA6kCPd5imBiO7Ir6U4IOLE+ZQKMkUHV2OHWSQBUdtW6Jv5ZWvPj9fWg379pRxPd+8/Pnx4d93qe4DDfPzw8O679x/7pT/Vx21r7iHq5TAhkCnU8/P1558ywv1hev/h/fd//w/z3TEfi2R06wAmU0EsRhxA+5ILBw/DyHM5vnuAhE8///l8/vT48qmrvit0LJIQW63r58vybvFbN2YR19of1zoBicY+A/HRaY8iZgSUWXfvDjr6EA9oilhFEMJLYpYgJsl5OhxSOmgPi1i3zSJKKRx97caJcykpZ+ZhrA6AaH3PcN4Nz4gYIgy8W2+t1m3t9Wq2AiCnoRZyc22xdbh2WPRbU4JAuNUx7hqu48QaFJxAHm2Datt9LxGGCi5oZwCZ75piQNyVLsP/YNCOx2bn6G7ae2BEuGrqfa1NxnpDlNfIakIm4iAJpvDBuIpbEQMe0W04hzezNjRQty2sOfxq+CNKAQryhbEBhhiCqm5b/+l6vtryCesluRqhkwAzCqO7j2TuwQoZhlQiQMQFpq503Vo3Vwvtbq1b1wjPOZ2Ox9Pd3enuvuQc5r3WIGTiu/v78NDawqz37u5E/NVaI27KdsDY5djhr2IuAMJBA8W0U5TUIrrZKN+SullwGvlfY9AUO3JLDEjuYTaKKGXtgCApiaQyTRHQezf31pUHICsiQsIkQghgNspPUlK1ICRJCZlzgQAEjNY6EgWAg09l/ru//4f59K4GP12u288/XZZla/275xfV23ox39bN1R/u7v/5H/7p//p//N//4ff/PtHh85cvXz7/t59++ePWXxgN03yY5+PhbppOkmeWbIC9tWaWqUg6QUyPzytiP84J3S4vL+Y13AMU0QK0XXtrtqywbq31DUhNI2cmllymu+M7Snzt162tW2uCKZf7lKeMKTVW77We1tDepW5bj9qjtXiG8sLzOviXexGDIiw5T8cyn/pSEYgZpKQ0z02dn19qVeI8H+4f3n083r+bDqfpeDzMhzLNKSUihvCREKGtbts6H5fpcmm1AexKwfPzk5mu14sQIlI3G6djQAgTg6N11xquEU63VOBXLSIBQEqTMCAHYmv69PTc+tPlury8QWJU/el5fTyvDgjEN/7rgGEG+z/+phHLb65dCg/MIACMO1F9TI8swG5RIGMg/4rr+G4ABaSK16s+P29PL9frdrq/m6SgAHj3PVByT3YdpDpncEfn5PA3KDHg4OC4u8V0TVnolZM3eGx7CBwEkbPVXlr3piQ5M82YJkwHTDPnA8gBE86cAQUAUkq1bmFKiLmUw+k0HU9pOiJnH7YDrq1ura2qDQBw2NTuaMtOjttNoXbTO/hr04v/yeum9B+7MDkQU9D4fqraGkEMt24cuUZTNozn5y/mPeUhB829tQAkTiyZOJmDOjgm2H28Jk4HxFGHdq1Lmbg8/G6++3B3dyKKtjxXROkdHCAIJAPQb9qxHduPsN7Wy7ler4xwmMpxKlmYPKJrq234y928GcbmeLM/JYoxk3P08WqOonlIZfqqmzgIBQoypZG36WNYJ5ISo+QcJKm0DKJInMvwGSOm230cHHF8JSw5vskMG+9VRGut1ZZG7Y2ABIHU3Or1vF7s2m1tui5qGrisZasQeH5+up5frLXj8fTu/u67D++387qdt1ZdLXTrXR1Cbbv2y2P78otYb6cjQ3z3z/8+3T2kuRCZ9QAPSgIoowElIkbgIGIOJp5LOU6nfvjw4eHD/d2PAtE1uyU1RoZmujTd2qvVpblfmj5vrZHI0M/t6QIRsHfIQDjsXy3QgwBHpWNEtFZLIqXkVE7z8eF4ene8e2Ceau2q3s2iVeLxWpo6mpuqiqiw3MztbzJlYhJiYkeybtp1jIE13AAMkQjd0SE0QAM6gCL517HBWAuMyEPva2bWm1kfI4vYcxYRHFzVwoMRE0IQEuOYug5n/hiHMQy11FB+j6HvPrbGwBjWSIoIux6KBRyMbZjd7VpgYkJBMjIafuU37fFexJjrQGLc9S1RKcCan1s8Bh6BBdGEWHhK6tBAq9nVt5dYr1grQIRwMI4ebTDiLCIGOX680CLFg8xV3c16b95r772HuTCnMk+H6XS6OxyPJWcicrMeDkIwaH8nq8tiXe2sZv4m8nwvZUZqdOwDN/dvNzMmFsYR3mwOHrevrZpUk7sE8G2iPhDQCCAcbhywF0buZkbMETACrQZj1yPMoquRGrETEQgRJybcaaVAAYRkQAboQCzMOAiZ0sfwCUQO83x69y6V43au29bO1/Xp+cVMv/v9Y7udlYCAAjLJ6XR6uHt/On3I+VhrXNbtfD6vyxWTp+GLWqa708M83yEn9ai91t7MvLst63r1eHpZEPH9wzGzb+uT6gYIxJgSAGjvtXerFTyQ07AEllxYJOVpoiwK7cUen9tL3XSieeJ5ToeUMhGVNk1cZzk29g4GsBktkK5l6tN7J/n6bARZJE+HuwfySJSjNymS51IORw04vVxqVUAuZT7dvZuPp1ym4cy9z3nG9gsYY+qfcp6Oh9O9me39udrL8xMiPH/51FvtvV+WTU2tK4XNUyqCU86HKQntKQC8xxmPzXgocYAxlQJHj3cP28ePH7vZ0/PTdVlek2zN/by2a++JJ+Y8CFHDfWnENsOuB3w9VODt+XTTyxABCQpDSpgIRmTybufo2APMkHa5tYfvf+fXMw5IzOO62KfHyx///MuHj3z//nf5NGM4IkL/mrtLCOGB5gBGOOKo/0YFEB4OrmZba633OcrYCWMYeruFK4QjQTBxDlOt6tU408HlDsvM0yxpJinOCSGILE/zw4fvDqe7wVsK95Ty4f4hlWnsPRGu2q0udb207apagcZ06jY8er12nGC/n+Ma3MG//i5/88I32AAgIHEABSIiYbiphgUjgqtRWKvRXcpMOXn3l0/b9lJSnvN8nI73I3onCZIkC3JwMxjAPaCRcMkiqbgLQ+jluStkSUzUVN1tW5u1IJllJuTJ96CAr90Yjh4bycxbrcvl2motKUmRQ05JiAxCTEhGgjQiiggA3FBxRCBmHnOOXXPJhEgsKSdGTorYrdftikgT5wQgSIO5MKbmKad8mCF8DoFae3iZDznnRImQIMBG4wYQGGMebwHqoR72BiJX7Z+fHn/+8ul4KInQEYDxgtZbfV6u11YHIS6lOacijuhQz8/Xz78snz/p9Yfp3TE9zN99vFsu7y8vrSpvva3Levn8ZNtSYsXtyR4/d+/e9fhDj+lEd+8wQ9gWRmFD1A0YTuEJZDT7LExTTllCO5rezYePD+8/Prx/wbMQD+kP2Fg+X4E9j1i6vtSuoimGKf7ucL/rxNlHBbmjFKOwQdSArt7UFVKa3x0fvn/34fd37z7Opzsg5q3WrdZ1NTMzJSJkAIdeu/ZgHsZ3wweYeMDMo05lFmKtrbVqboHILCmxOUXsMzNERw4WSpOkLK9uqjioFCJMDGDhrtpb30zVfZDYZJQp6IAQJASE+ygjMWYZpC0idosIddNwdVcfLxEJsQAg+PC/wbAIM/fee2Oq4Gjie9QAMjkhMqEh9htgeuOx7dHtYK7am1k364PpdXsuvllbvBUqggJYEqeU00QKVc3QvCja5t6iA2qSyCKIUU3VdHcnQERi5DTKw67tsl5qg16jb7at1UyZZD7O7z9+nI+HkVoTDqoGQxlqDszEKU/T3f29dd3q2q2P42Cfxt7AYvg6SvpmExtC9D3fEQGHc65q6631ntXU3MIlgIiQGTDUg905nN/Oqfay0gcUlHIJJPNQs0BUd2wage4BRJyQSQZGjYDohKyO1kPNY1gzMDFnmkm4TLlVZlbH89PLv/751x9//uXXL5+fL+fa2w9//4+t9/EZONH0vhy/O8ynQ6A8PV3r9vPL5fLly6etbjnn6ThPmQtxlpJGtaHee6t17VrDvNr64/WP69pfXq5I8fJyzIJ1W8wsEERkKoUJVDsSlFwOd8f7d/fH01wyDQ+X7rbp+mX99V9f/uvz8kxW7vjDEd4f+R4LSyIRSSXPvbTeaq8G5Keejv040/3vEuc3PjHEhCnhfGSgLBO6S05pKmmeI7Act67mgSnlaTrkMokIE8HwxBtYHO14+/DvySnKNO8cQQ8MlyS9rcK0XC/Luqzr5jUCVQhL4kORaeRdpVHnkhBF3HS8A5qMQCRJqXgc7+4+fPy4tPr4/Nx6fyXDe3jt2sLYQwAHoDI60wC/zT//FunkmwMVEBADGYhBBBJBGqOR4ZdkAENn98oftIBvCWDi7rXal8f1v/63X+Yjznel2jiRwfpN6L8zcCh4GJgT3G7jX18Brm67QGz/vrtGwN29N3cDAkhCIuHWWq9di1OGlKgEFaeEKLGzWIBIZD7kaRrOnqZGnKbDiURMu2l3d+2tr5e2Xnqv5hY3uu7Ozb8d7X9dqvhfzZL/Z66xkQxLmN3yLgEioiN4aG+hqKgmFdREK1vxzrZAlZymY9EGSGU+CBOxAIsD1m7L2i4v51ZrlpiOXcpJUpE8eZlFpLdary/qIXoAgK11cCiSmYTELKIHfCOBARpj0MFjaU2tWxHKQklSFkICYGbkUcQPOBkGT+J1YBkBCIwkSHp7uwN2YYm5dsXuRCSWFgDXwEEKhIDEmcvM84kJD1Swrsu2BvK2VbcYh0mtTSMwEYpwkkA089b7um5A1G/dmEds2pfeqJPnRJKASAFW05fWr2vXAGHhfAtAH6r1ZenXq22VCVLJx/vj6eHueFoul96a1nX7/OlTvTxNWCe95vUq4BvKel1q7xoRROHkgSOEPigCnMCZIjESCSfiUohA6xZd5/l0un8/zXfna127KVRJ4G7EzPJN0GD3aBZiDuwjio92ThzF4KAjwJBf+0iI3JegBXRDxyzTu/nu++P9D8e7d2WegVHKxOmq2q213hsAMxAimwegGyvd/FUQUPef+do7kbbtej1v21W1R4zh301ivccTBg65rby1vBk2cswiA0VyD+29ta2rDlpfIBLyyHkcarSBkkKIhMXun04RN8f+XcaChAhITAyBsWuqyACGjZf2rRPj1yF1OBgRIfKg/L3S9HcoBwkBAgc01cz0N8nPEajGrSdkDhKOhI7kglEDN0Mwd/VBuHNhROIsYmHDGgYAiBCCiIglIUtEWEDtvlYd43VzJ+b5cLh7d3/37qFM0xCWDAL1mOYOV1GERMxlmqfDnLO0ht/4Q4ya+Ca9+puI/atqgQgdycPVbSAxfeQ0jpMmAiMMoqsxwh6dQPS1JNqhniACyZlY3LH37mED3FJ3NCd1tsCh4mdGIAqm7NC9177WrV4WG5VQkpwLIDkli/jycnl6vvzpLz/+/Ovn83q9ruvatvN1sRv1goTKfeJ73kS/1Gf69Q9M6XK5LNfr1hZhnufTVITVHWCttXuERe+9bVvXNtD/3rTV5r6Bx7q1hlBrM/PB9TE1QujWc+KcRRKkQnlKuSQgqNYu2/XL8unny1/+cvnjdVtKnEDkwst96R77MGaHHiRC1LF5qlQ6TACF3k4tBBFQiLAkEZgPCIiciQWYEShNw1hgGCGx4M1aeT90IsYBvP8OMBIIcLCHmxtEYPDhcPjw8aMwXy6Xw3Ldtm29Xur5KfqWBFKSeZ7nw1xKyTkJCwtH4Ne2fg/oQkRkkXme33/8eN3qjz/+9JZ0GRAGCuAGGqAEgjsuSEHjLcZ/s0wAgLeeMwMDCkQgCUbgGylK/Wb9hLjT12nU1oAOAU4IHOCq8PTY/7//+dOmWkP++Z/13bv7UnK4DcNgJkgcwsSSABIEIeS3n+4NPvFVbNz6mMXdkElwd+td0TUY9wm9e9uWbV1L71lduhNboDMMvr+ZqZuR4HC9dg9XH3d3cO7d1LR7r71eel3cfDwOH03GMAJ88zlxtyz1VwnSt1XMoEm/Ji3sX+rNg9sfHyEzJyRSUxrWBEwCHOZuA6ZWU7LeuS2ypZQkp5ymORAoJW1VmANdsMSxGPJa/fHp/PNfftyuL3PC08N7h/kO0/HujjgDStseXz4/QZrvv/+7PM9mHQGchIQYEUz7urlZvNG1B3FQwht7ygHdA3wn8RAiMjHu+oJxrEUEEY2yxsxMkZiLCADqkLhEdHM2i/Bq0cgiUViytmrvtbbe1cxSymUSyhOVg6R8nE64LDU+r8u1/vJJt7Zdl+v1crlcFVwOUz4eprsDsPTW13W7nC/Ltv6//p//j9t3IckTlTmYQZKUwpwIAIGuqZmLETNJEWEIRt0TDQJCh7U3ojDPOR2maZ6KCGqv15fnx1+enz+lWO/Ifpc5M0fv/fJy+fLr5enjUR6EwAJtN8Hx2I8FJhEmJmYEjN7rdY2qMt2l44eQw6JY1424HQ6WEShJKgXpm/Uy1OVMmISFOe0eZBARquoRQCNCB9F3u4UAcCAPBippvi/HD3l+SOVOcpLMB8aUU13WpbXeqxnmKEwUQEM3siORBIgEBoCI+yIAdK/1+vLy+eXl81YXtW5fvWAG5Q4gHMMZ4a0lPCAEBhCKJAgiSjvy13prrfZeu6o7ITNJYuEb9sMsxQwQp2kKNwRgFggL292DiHGnGe6gNCIMO0Zy23q3LoOOnph0zycAckcAg4F8vW72PrCLnfJlwxbX1Mzfon0RAnrn/aFbRkyEk2vUFhEmNoLZL15b9E4BSdIYy42/Yvi+IN4quiQWsG31vCyX67ps21KXrh2F58Ph/cePp/tTmkogDCbmPqPdx9MBMRIlEVkkpVRSqqLNImI45/JeDe4/Onz86LdaSrjpzgaWj4BoEerWzcwGh5osws3RzMHIgcCBaSf8edwUr4NpF4gokjERkvTeW2/hMVhIHtDUoHYDzkWEklAidHGiDrZsj+f1Tz/+5eV8DoDD4fj9998dDgcAUNN1qY9PLz/98uvz+dpHF+TwltiLhHIUneyX/nl71J8uP6YQq4pGHOXudJfKXEpR2NbWLp9+QaQ5TQDQeldVdyPCOfNpOsbDyQMirGt3B5bIkpgYAszV3CwQMMz0cjlr6Hw6Ktnz9vz58uuP5z98Xn557l/MXCEKni71cq3bgzoHNtVN62rb6suKLxu+QGze1MPOVzd7M04atTkCISXMwCREqZsvy+rmJWXJqeRMMnK+hof6DW67kThfV+ZXUNQHnhsAmEo+nE4RgSw552NvW0kX6H0NAZeU8jSXec6lpCQjpwOQwF8nL/hq+YBEKZfT6f7+4Xp3dz/Px1cjMhgG/gAO6mAUX4VDAPzNsflvXwExBpQGbuG8q6gH2HgboN4+zL7lvFYe/jpk5QBYa6+/Ls2tBv346/bDDx+OxxnBByEzMeeU52k+He+mlAXx8IBvXVh+c7l77723Zm9HtQGjtoB9XjB6kA5tq9uyrauUiiyObIFizsIRMZjtHkgAiEQEIDR8t/zm8a11a+t1u57retERrfw/BFeGkmiMkuNvdjL/9rVTuGmoEkZQijkHIwsDQu/hrhBmbmFm2q2zJ4k8eThbIPFUJuEQJjPuFq56Pi/PTy8vz8/18tIzBkq+u8jxTlL21mpt6/X68uUpeOI8j0OOhR1lGOwQIEL9zTd35A4U6lW9W5iHgZuDme3OLLcx5a5VYAaAUcSoKiK4ByKwsACx7Eaqqq4MQaDmSh7APqwVDK7LFg5pmlPKSAyUDFg45yIaGC/Pl2V9/PXT+cvT8nI+Xy7X5aoY6XQod8fp7ogi2nVZ1vPLOU9lq3V8ESKSqeT5kIUlCYogCyPnwMPRKDUnFMKZWSKwB5h7uPa2Xq/Lcm2qEyHnxInDra7X69OX5y+/PD39/PTyCaP1KT1MHzNnbe18vnz++eeH7z68uytlLjsFddwu3DGKncdIvBN8LdRCNVb1pl7VVzNws0ozY/Hfqsbg1igTYRaeSpqmnKdUknj4um6tq0WoekB0BRtx64gAg/gKAQQ4ADJBFGYpcwaAeT72rdat7RQUdiIHGi7Lww4IiXhv6hzM1NRM67qeX14+n89P27Y0bbeBA97GrTv/eNS+b1a61bps23UqwxsMh2+reTTttW1rbebBLIkSiAen2yuKqrZrZfzme/A6NN+RhsHxtdid9mxsCGodPRrBqAMRAMKCBYABCYH3Igb3RIdx9/cHuMcb7bQbf7P2GdMs3x8TAiEjJ0gU7pEC0NgMtrVer2sLtQQkPOI5YC8HEUcYN6EgSSB21XXbrsu6jbreHYSmPB3v708P9/M8OYANG1/TXTmGvj9iGFnWOLTQKeWUk2u4OxGM/71y/P7tXeoViSEngkB3U/M+Yo2HusEdI6Irg1EAM6TBzQzw2xgJ4Ib5E7EIc2JJqXeq4m6EPIyggShYFAiDIjiALWBTuNb+dFl/+vz4X//w518/f3b30+n0fF0e3r2TlNxsuSwvL5fn82XdeghZDIebN+uFgDJE1quf3XrTRIr92iWmu/yhlFxrZYRBWu69CssshUgQgomTYM58nErJiTmp+rKuy7pBZEA4TJMwm2ltFdomjEIpLC7n6/N6icuXSvWiL8/1y+ftp2s/KxgyBWqn9WJPj9tdOZfE+Lw9XvT5CteFzzVfqm/hphtsNV6u8FbNN7KTcHfghz0xqa3bT3/5cVvXu+Ph4f7h3Xcfcp7cY6gsxknz24Z7VPi3VJ3xwu8oJjNxSnkqkwkjxaEnLr6u4tabpCxlSmXKpUhKN4In3EYue7LxEN8CIDHnXE6nu4/f/e79+48p3Zz7IjwMYMgqzSAcSGCfqRLeVMFvF/abawSCIaCD6+593xGYMDEMssFNhw17TCqOEDigCIZ9gOoADsREKQK23n/6dfly/sN//pdfP354OBzLDfwFISySHu7vf//9D9+///Dh4X5++Naw+zWl44Y+du29dzON0aOMvQSQWIYLjrpr1y4ttLa6rpcL8uyAaqBFU05JBGlkcpM7RLjtneNrB2Lhrq3V9bJentbLU93OsEur8fW5v+qMXskxQ/zwFYeJb6oeHO/GvlPsX+rtvx1EAEB2t3AId4foGkIgmQgxvKntKDf4nrEHoeHV1Ck1CJ+yJAE5nAJw2/pW2+OXx5fnF+09AM1ijAW2ZUGIvp2fnx9fXl62ZQGJ5XIBylIyAntiH0KzAATiN6FvDqhIm0XbtvO6rtqbO4YxesIgd2HGiN57eBBzzllSYmYEMDNmHgJUBycQJOKUw9wC1FwtMIbs1dSgr7VqbLVf15Zy+e6HvxtxwhHQugIb5xIkav749Pyf/vN/+fnHn+qybLU10xCSufBUZC4j5aDWdrlcfvfD963tc3EkTFOeT4cjz4zYvKsBZeYy37+Xg7WwmtGPScihbnnb2rpel+Xy5cuvX758+rttS/f3IkIQ1/PT519+/Okv//rLj394fvrxvL0AAqeHRWZOU11af7nOf/7x+P79Dz98PJUMTIQSQsEEo3TgxJwpJ0TEbsOZcN36r0+ffvr082V5dm8s4kjVundT1dq6f1XBjMWJGERISeQwl/v7w/F0OBwO4fHy8nK5rlttW/QIDFcLi3BCwZ0AVut6rcvVWnNVI/KUCFJJ8+l4p7W2vrS29d4QV5HMdAt2JiQRkYzEAeEWqq3VWrfrsjy/nJ8vy8tat9aG09OOcIDDLuIZpdObOka7Pj9/fnz8RQQOZQaIwbRBQndT14AYSpkiOUlKnJmYeGj4ZaQ3m1lXRWyIsFvoxi0QRHeVkpupdu3Neu/aEI3A0R0cwtVz4ZEIgYkwiOSVtLbv9rciZl8Z8OoD95VBnqS8v/+HxA8KARASGN7dL+AUVtd6/XVZvlw0NAoK0qhdYSC+klLsOuURQ+tbb8u6bOvSewMYkYnp/uHh7u6uTAUQrav2bma+i1uHATvDOOPM3GEEQojklLKxGxjL0Mv6YKKMLe2ve95xutHNoBkJwcBjT8dqqqqqbuQ0TH4cjBELyCsZKyBUVU0LxF4RjhqNmXKylIjJwwlFUsolB9Kqbg4a5BrqVrf6+HT+5dcvf/rx1z/85ad//fNPv3z6ZGbzPD9f13fvHg6HAzP3pm3rrZuPvhIghoPUV7whggxEiSojlSC9+rmesa0850LyGduSJyFJnHKaDtPh7u6eMV0WDaTT6TDP0yHnJMyItXaCK/oiuCWhh3enlJNaX9fl5fyC4Yd0crPz+fzr9uVX+7zQFQ8KyYIt5Vx4ZkTEcN/O/XMsUfslEVV/WfG68bZO106LdtXOm8rZ7HxBe2t2d/P8GDwNDCRkUutPT1+eHx+v06R1O97Nh0MGHMkdvy1iYtdCB94C/hwCAWgoOxDJiZiRh/96JARKaCWRlS5MuZTjMc9HyRMP94U3UMc3tQYCEjIyEB0Ox48fP75//34QJ78pR2CXxg2jjH1Sja8Ko//eFREwjIrAMZRACbsPERGMOf4OCQESYADw7fdeY7EdgJDQndSxNX86b5erUsxaJTC6tWVbuzYEeDid/vH36z/9vv7T38G7H5rpv9kEhIfeLnf7GtMBSCxAgAYW0VSxbUCZ01KXC0oBovDhgO6ejAdhEBEsboXiLjSKm35BW63LZbu+rNdzb8uufCGGG3X3N3dsrzBf6bz/y4yYEd3CgTR0jcMcRjU6R4pxNJHIru3EYfn1BuclDAwLV9Pe1WytUOO6rE9fHs8vL3VbwxSDWrda17ScXavW67qufc8Cq9vlHMhFDwiQywSAEToa1revjLmd1+3L5bK9vFwv16U2U0VyQewEDDDc1UcRM8qXcN9bdSJgdgI3Q0RgZEyTTGbu2gFs4FjgGhbd+9ZjqdbMIYgxY5j1vixXC5wCWDIAMHHiBEDLtj1dLuu6NlVgBBfWhlugNkAOgN77ddu2rq8jDULMwlOSiUt4tN4cPcKT8JQKhUDHhHYoiYCuGVNukmg+FhQYeJ27iwgTtr6+nD///Muff/n052t9JobD3cOHD7+7f//DhFSv17X2T5++vP/0pVYNZBIJiwAH90AmEuZEnJHYzWyr2+VyfTn/+ssvf/xv//rjn/94vbwweBI2xK311np0bc3+Zs9MgMxUMh8P5eH+cDo9wDjwOJ0vFwAARHPvhO7IPHKStbdtXc7rcmltU1UkTuphQUhlnqfDIa1TrVVbhejh6rjbswIRqXTuQ1wdEarW27qu5+tyvq7XdV1ra1273UTPAHDj9iIhAfnbuViE1Xpd1+flmtH7AAhSSnOZ3Q2FpSkG5uFonkqWIpKIRr6YpJKTFAA0M8WGCG+Z6WMKbXYDbXcerrt5hGHUsPBAM8+mKRmnEEFkuvEH/nur+G/8FlKSQ85Ig1gQEdHVwHRbQ14snla9bArBTOjgHtHNuw0GkaDsBW6Yt9a3bVuWZV3X7gYA0zxP83x3dzdO7r152iu22EfcOxGZYHf+3XFsYmHORDrqlSHbgNinY69N2t/aquAWNEVMZGOo5N5Ua+9ZeybCiHECBo4sM9q13Ig74O0OsTssIzii38rQ2QGJJZcyH0+ORE3XrbXWtt5Nt5enl7/85ce//OWnP/3405/+8uOnL19ezhcA9MByvgJyU08iEeBqelOMAgDE16iI8axYUDIwBoV516a69tV7n/k6SS7ZJ6I0lTnPKU+H+ThPd4S5aweS0+n+cJjyGMMhIvRVkqYi1MrE9/enPKWultJCVDD0NB+aVbmuvdnn65cXfJyQCskkU5IiLEwQoGC2+cW61eWakFyqptZQm1QNtQDt3F2aajd6e8gIwigaHEfEOiIQOFhty/PT52c1bdsPv/v+4eHuZoGACPhXr/QYEe5Yxz6hGneLEJ2AMNx6XXW9mHfoG0bPSSQXmY+H00M5nDgVZMFXlux4Dfc3KiIACHnMQAymaX737sO7d+9F0tfPAAywJ9xDBA497MAkYZCFffgtfosTfPN0x79wcAvrqBGNIYYsIfZUeQKgwEGbG4UREngM5XooYARIoCMhsSSYHo7v/t3v//2Hd+9qb59fnl7Of/78dF7WtaTry4teLxqefv/P16725lN9sz2MIUtXHVlneaSjeiAhI2EIIIBray0ikBKnpdUXWgVZAGm/HxESYax0YwfhqPleG5DwiOhtq+u5Lue6LmpVMgjtWQBv79vrlvH2ulUw30It+MpH+nZ32OXHOOApjP0ej25PPZqaNAAGIco54W7+hBFh4URSpjxMO8rhKHk24Ova+rW1Zst1Pb88rZeXvl0wIsqcet/WMwloyqHN3ZCJmNT7en3q1rUeEexwOhByeHdrPkYAt2/duv78+OWPv/ys1+f+8rxtG2onBiXUIHVzU3A38z0bL0J7B3dixp0ReJt5iEguczm5wbZcoq0YLdzJPMY0r3l3TGW+f3hf5iMiLJfn9vw8He6+/+H3h3lG00x0dzi+f3j//uN3z+sG1wu7UpbRuA8Qe+Df3Qw4Tcev41cEyBAlgseuqgqk4JAh3VEuwcA5UaScgVMufLoDAzs93H38/XfHhyNguLmM4hJ9bcsvz3/59flnSPTd+x/+t//4f/t3v/+n358ebF398nJel/P5/PJyVgOkjJzC1Fsn9BARJOHMnMKir+385fnzjz/++V/+8Id//Zd/+df/ulyeHyY5znNJ3AM0vHXt1Vv7OrTEfeHGsEsjDGEsmeZJ5jkhycioBhz2MdjVRNgdRBDR3bTW6/nyfL48b3U9aENmVe29MiFLKvPhcDi59g1ce4Xo5mBGgBTEATXCAEFEmAmCutbW162uddu2G48gAJF476Y89smJg9u3fT8GkZtty/WL65ZImKXklPPD8XSsva9bdXPmPKUyz/NcDikNPSYPAikLM6cI7xoI7qA7mYMQfTBHx0TJhsUMIEKwmzV3tdYNcvOsVgqUYMIUPOght3l67CsX3rIrB6K2m0jt38fc174udQUhJAwiIDLK1dO509MGl4bNMIggwsyr6ta8mqnjSPjAYbKiOzN9uS7rsgZhmaf7+/vD8ThP06hgXjk0Qw2Arxw1JBxFjLnt8U57jibx8DlUs6Cd5TKMfOMN1e+23QHc3N6BCIUJggMkAB2xm22t5VZFxu0nRsTEwBxEo2gaFnZuPhT3DMHgYA0InYAl8zwhJ2TJ8/F49wCSqStclv74uV4v5+fHH//y43/6z//lD3/6y8+/fvry5Xldr8JYynw83h8Pd6UcCBkQmSCAgGAMT/Z91b/2Y4SUp1RKzp5gw+u5r5feQp3iasvRD5Pcfzjdv7v/mMvRQEQmSUeIJNSJkvBMkG1wJYUsMiKI5JyjHLgcZ8kcFSY4ST4K+WFKvW8GtOL2C/ysfs2Fc0pFipAQIEQgMGK4tAbW47rjIQgGoREG5JhAggAyapJvzpGvSAyOwvXGC1G3rW7ryyWntNXN3EcRsy80gmEYcDvYYqiAvrkG9jiKVmFiAjdtW68X1EahzJzKnE930+k+70UMD4/d/dgYmNG++e+j8/FQUsqn093hcGT+yonZvcWAvqlQdtL5N0yW/8FFg/HnBhqBDkHAuBN4bYcbxj3eV3IABBHdktJtH0AiMeVM5eHw/u/f//0PH7/beks4PT5dHuFa+7K1jfAlp/n93cvz86L/NhIDe7bt8O3V9LV0g9fVFw5d1cOJhbiQTD0VSjNLHhRHBPDwPd9jL2J2Q4abCMzDrNW1bZe2XXurHkYyxvcxADi4lS9vnMv/hwjXf+/aAerbX0IAI7DSA1S9gaEQZ0aWJMBDIRXhEcMxKZUsKSOnbtCqGXhtui7rumytrr231htGABFvK52fzTWngmG1NXV3CDPty5l6C9dcUmgF5zGduwXL7Vfr7edff/3jjz9iW2G72LaxdhcAYBYe9kQ0Ngsa47bovYcZ8uBQIGB4WDBSByDmbIAUMN6q3ZYMzLw37xbBkDIxavhyvaxVt2qnu3a8u7/X7qpMdJjmD+/e//7v/m4Lo8cv17YBExDuD8oDAIkYzRww5/IK4RFAAsyBAu7gmcABUvQMMHGeKEUSQqAEKPmYpjQf5ofT/cd3H3/3/fvvP+aSCYIS5cTM6NGvy/PWlvd33//u+7/73//j//4ffveP9xiXx8fnu/vN9Lqt5+uldXNgogxsoRYOHrjW3j8/uptu2+X56fGXnz79+c9/+dc//PTjn3/99AuC3n94x6WAWZh7a9abDDOtt2/ROD/JiYJoZ93QYNBnIRJEMuvu3t27iYGbIRGEh7m2Vpf1el2u67rUuiJRStw7RWJkZBGRlFI2TRDq5jBwFBHOJQJaW3tv29YAAoFbq+t6Xbdl2wdJOg7QsZMhYVDASASxUPTfZKYhOoCaVVUMkCQpwcQikqcsU05zRDClLGWa5nmac55HEQOAEYMXDADhbntI3Bv55GC7DndBZkRMgABIrhrgiEDCxJkojTAxIuE96vI2V0VAGqG5+18Z4BRAyDQqhtcty/S6vLycz5xkaNCBwFC3Tc9XuCy8NmqODmHgzaNqbM26u9/my4QUgWpWt7qtW63Vw3Oe58N8PB0P84H4ZivwFecaDfXbdgt2Qys1j131NByOyXBEm+zCLaLbcfa3YuwI/eYMhkgsMhi4BuwRI1ig5Mx7GjiSMNLQhA6VOAHsmVquCuF4y7dmSCJSTicpM3BO0/Fw9wAs0XpzwJfH2urz8+Mvv/z857/8+U8//vj49HJdN1dNKc/z8XC8K9OJpBgEAHISYecOERoI6D58Xt/uuUREQqBoEb1bs+7sQGikWOB0PL67e/dwukeZr82BBKUIlWPMRGkqUxIJN2aULERoNufiCJAmykWQAaoBIJJLpsPpAN49+OKXh3aq7RmHIdAg4/oIjaDhnubQw0ediXCLDY+BhjBQIBt9k18PIDcGykDdEIeNtAcwGeLa+rW2rZvedMv7Hx3LcZC8YLDI9vI7fmMTEohEORctWYTDtS5X7zUnKtNBylTm43Q4lfm4d6sDSAkfM9wdJyG8nV4Qg5MokEvJubw6qQ9dCAztN4yB7e0/GTE88be4MH91janYmA+52wgroYFDgAfYjfy7Izp42xheDRQiEDwiMIIY0yFND9OHj4fvfn//g4VlTOfrtfam6EtbjWDt/eVlvbxsrylwN3BiXEOYGRFhZq331rUUZ6DXUQ6OIhLBLEw7wooonCfRo7fNUrPUVQUQHIyM6JXlsd+TERqA4ea9tW1p67XV1cwGkw0CX4VHX8XVN+hlf0SA8VqB/o9u82sdjbsvVHgYBo6sRN8Lm3C31gydWAonQUlDgUWjqWWhlJDYgLR5b1uQsrCqtm1R7TgikQlVNdrmERa21W0qMyH0tmhvXa2rmiprJ8ZeD9aW0CHUcjXV3WADAKC1/vPPP//xT3+aGNg7tI291Q7dBJJEkgkxMzDYQJ4GzdFBByMeAgLdw4IAmXFdea2A0rqCOZPvMj8MhhB0D9Bevzw/b3B5utZ1U3f8YPjdurXezbpQLjm9f//w7/75nzExZvn0/Lhp74PxtDcbSMQCJOz8JjsJECU4AckQ+mZxCMIuSChoU1ZOHhC6JaLT6fDx93/3j//xP3z3+x/m0/FwPJTjIWdkpilTKcKMrl2Afvjwu//wT//h//If/uM/vf+IL0+0Xd6/uz/b9vz8uKzL1np3TJwRICzUowNfXi6ffvzT8y+/XL88nj//+vzpp+Xp87ZeXftJaMrzhGRN176uqktdQHUGKWT0elAhIAFLSALmGC5x2ltv1bTlUuZpImLVpmZVu3oHlqbg6t3DzHvvtbZlXS7X62G5juajKwIN9fN451EkIZgqAgKnNB1O9+/eI/Ll/PLy/PT4+GVdF4jovV6v52W51lbbEAKbucdIlickIARGiOGzOhjtX3cggCCClEVkTBG9N2VKKWWRPKeJU2LOSZJwZsnMWSTjYABG+NiQ0XbSnI/+bQAVI+YNQBCdARmRChwONx4iAhIPV5uh4SnDRpKH0PrWEg54Y3zoCAA0D2QcnOiv75haPz9/+vL5k6SMzDhCtRGa1mWBek29c4+9smwGVWNTVw9KNAiIQ9HXatuua11Xc5OUHt4/3N3dz/PEzIPC/HVUNM6hcRvGmhtcP3W1EU8QELEDMYzG4Ap7DXxTI/3tcRJiIPmgHAUMW2ZmiaFZJVHz3rW3npgkMbMIJ2QJR3+DgrjvzBi/eRFGADLn6XD/8L4c74AL5znPBwvssAgRRmivL+fz49OXp+fny3LtNtyPmFPJ0zHPJ0wHo6TeBaiUgwBGrA23VltYp4hvHc0iIswdwYBIKZyHSg5yxsN9fv/h4d3Du1wOzbC2SoJ3TOU4H++mxJmFCJAgJFGeCyAfT9Br9GqAIcnVuva2rnWr9XicPnw4zhMjysWf360Pl/OXGldTNfYb1xS+3ncBBHEPBbc9lRkAh/E+MAZD0F6K7Jd8+5gQAFyHyX2rrWuMEOewAALg1580rBD2+wG7rHAXF349zMdNI6KUUinTfJjbde5LNrcgBs6S51zmVCZJeR85BAF4BAHuksSIIARkxkBzDx/GASGSdp7Em5/CxCklFo7XyidgP4T+atDx+sp+81uIOI6+mzd5gMUukLqxPm4F25u/ZxhsDm07wBhbOYqk43Q6TidGcfWu3dSE0zTN8zwbOAGZxrr0delvm/6/7gQCwMyGb++uUBoRKiMhjffqwc1abcQ1a0/aVRu1DTkFgHt2H9boe6eyS5twkEzQtVtd+naxvoGPincHjcckzr8tYv7m5HhXf/9PX7dyKr7e/33Ju7tbmGL0bswuAjCGaHjDijUAHcEcoiMBQ8YINwiHsNEuD0abmY43tFvvrRGianO3vQsjliQ555QYIcLsFnD7zXcxs8vLy/PTk04pMaAaDbEXOlWz0ANRAWDVG3AIiMAISYiHU0Coe98d2GTjoiwzsBCQB40wUQQQBIGo2jf1TePi+LxZa4HAMtWX63q+LvOUMRzMi8iHd+/UVcNSTo/n82Vbh5YGxkD366D/6/MipCKlpIkRAJxgcKrVLdoo3XIeTsKp5Ol4f/f+u4+/+/vvfvheskgS4j2i00zdGoMeE+GhfH9//93Du/f398fjQddrYp5KEoZel+vysqxL7cpzGm5TqA4hL9dP/+f/+Z9+/C//efvyRc9PUa8UjRJOUz4cT3MuGQWAuzMhJClEaQrKOdEbKgkPx2KkAFTzrfXrsuWSp7nmac6FC/F8PG69zXXt1gIDKDqA2nDy9d7btq3Lcl6ux5QoF046mLIM3ziuhnkwcyrlcDrdv3vPnCTlALwuY3q01rqt27qPkszMbae9j9k9ve6RN1HFb1wuY4Rj4y5qM7PWEZpJz8ny5BQAadQjDrfMHhxJPYNqdMs43res8QqPXDIYpik3/JYTc2JKxIzA468aGRnMiZmJEiHv6+gG+96KmNsW4uaBIyDsbT6Xm62Xl/PTZ2IB4hi+0eMB1boutlbf1Nyim28KzaKba4Q4xbCwBQj11lqtW+s9IlKSw+FwOB6EOQJ2X6pvG6fftFCvyLGPdErf8cnd0wf5xvgZfsrwtit9u1EhJ+QcJIHkEEwwIgUwEEkw0C1MzW3MKXlAU4Ml6OB88yIZmLqqUlciQPYcyJKmw+l4/w64oBTOpbYO7q5NW13X9eXl5en55Xxdt9o1IEgCANPE00nmOywnzEUIy5Tnh7uEkMolpQstC7VVep/K4Rslb7ijBzswuAAkoMDElCbOk0guSNK7N3VTBaSuzUG5EMueH5WIcmJJiSVNU9IG66WZGWcjwzL1blJ1+DkWyUmmjYsgQwwP8hFtF7T7bsRwqBwN6teniA47NE97Etg3WB8AAMjwbBtzIkYMCFer6/b8+HQ9n4mozIWEb4Om2ElNe17uuB/DOST2Qc4wGHVXsxEOGgjMmMt8evgQHoFUr1dww1w4zSzl5vyLMNyNkABiuMkZ7kRIGi4HQY4RADzS7t7sy0iUcy5lmqaJhcwcAjDoxtS41cLj+97C217/+ZbdNkbHgkDoMNY6wT5/oWFnDoCDeAMQtP+h8SuNY/MVyfdIRKfDIZd8WS/t5+3x/Pzl+vR5e2lmxJK5kAOZWEV9M+N//Wyv6wl2e2/TIbS2ve0Id1MlGHz8wTNDNWtqvUPXoK5B60ia9XkOyyGJeJ/guBlCjA4k3L1vfXnp2xmiSULOGZAC0MNvz//rNex7v1Y0sIus/3pP+XYnwN/88yh+d4Dw9SHE8BBxRIiIVutIsyP2W2rs7l3EzELBqdAsLFmYHSElNuOx6xEJD5QywrRHeO+KgGaKiJJylikf5HA43r97f3f/kFKO3dqLvyX3AISDKai6kxMCUiB3gKujr7o2m4kkRjq5hhsiJKE557vjIQmbm3f1voUphbFMRXk6pJIn5hTe0YHCASgjtnCt9arxEvVKuVFxSRjcIh7Pl8PjY0pkvXN4uBei7+7umeg0H/78y6+fnh5f1mvt3b/2GKPx+xoLQchTOR7mewjdo/sMDDkU2rKyeQJPOXPm6Xg83n2Y53cIWXuEK1iIiBNY1OvlupyfUZff309W6OPMhdxcVzNz6A5hPdralpf1/HS5vKxtPdw9pKmEM3bzFnXb/vBf/uVf/9//H9ouDwn//sPDw7sPcldwyi6JglMLUC6aOuCGFuDFPB/vkeT2XYhJmDNAMqNt84hmHoGSyilNmqdAllSmaT7M87X3OlTIEKDmyOQAZtrbul6fl+uUM5eSypRLpJEiFABmXmttbVXVPJUjpzzNeZpympCSA7fmAHR+/rKu19619d7VbHjhEALCjoPT6Pg8IjRGNtLN9Br2pmtwQ0d74RFq3c2tbg2uI0FDcs6H4+H0gIguKSQPU7TRB47/MoLcwQYW/VU+GTtwCwg7qzpLKinlUc3wHjQwvFNGs0q3Cnj/FeiVEDOyM9QdSBK/nToBuFvb6nK+OIAHAlAYhoGad+trq9e61TryVkMdm5uGmQcaQkQYxh7f1mpvagqIzCJJhhNghL9N06DhkooE6DEiGvZKMQbzz4b8MnYTCEQiTEww9pNbS/u1gqQ3EBkSsmTOMyVBwjB1gCBhFhqJIiPZKtAtfKij4EbevZVRA9cbmHqtIyMFgl00HIjTlMsB0gQsiALR+nbdLs/r9Xw5X56eXp7Py9a0GxrQLg3PB5hOMN3HdJdPD4e7++P93f39kV23py/by7ms11ZX13Z6950kub1iY+boQI4ZMQMaUbBwSjkhydbj5VqtL+6BQBS0rS/EYQC5HIhkEikpIaP2hgDz3ZQLm5tqpCITyTTTvKR0ZuZEwj1si+3ql3N/ueoFchCSh9qQBQ1Aak/jRtl1b8RB4QDoThAEYLd+e2f63IqYrxs0IRC5ad22y/nl8cuXy/Xy/v7dPI+MpNvri3u6+65M2ssAosEh3PEYBwC69bDjvEmpzMc7CAiirVzathIxcoE3L/3taBuIJQoCEhoRjoDrQLqpX4jilhr79WJmIRlIDLODAzqSE8aN8/P6xXfKCr7+vFsRg4S8FzFjdgZAMXYHNH/9zjeYC2jcObi54gwjuJtbirt3i3bdzn/+ZBHxdH0593UL3bS7ugBPnA9yEMg4XGlen8atRow3B6m719ZqrbU2ItyPJXcL29NihtBotyrv0jpxAxQzd7dRtngyln1pedyKmIBw1Xqty3O0C1PkeaI8eWCrbQRUxc3jboi/bmjObVXEV1g3/m2vhf/eNUhUeEuRHDf/xsQy82VrgGbqAcAAA5xPSSiL5GBCYRImJ4yc/WbbMG6mK8UoxWCUboPSkMo0z9Nhnqfj6XT/8DDPQ+nw9TXB39Qx7uCKIQgMRKNVGNPnblHRyQ2sh6qZIkRKfAhsyXKAmUW36I5qya1AZBbOpUwHQqqbuQX4CHwKNMCAsOiuSuwZgRlCusfT5Zy+CHJsh7mMM5YIIOZcTtPhkKciOdFmYLfIpPjttwAgomkqh8NsrtwZIbBjV1DVbmoAmCghMGbRoGq+tPXlSoQslJKklFTtsqw//fkvl+fPCfXvv3+PqveTJNu2y/MZ2Jsu6utWtfUsfJhyKZwLl5zKlAFI1JBMiLS1uiy5Lczl/lDevTvB3eQlNUBQFA/0QWFgSWgQ0BqwwLcF8QiX0UDXGC0x0jLN1zzN5XBXOLGkXKZpmnpruju/o7AlEQ9w1963Wpe6Lb0de2+vQpLxgptprdu6LqoKAxweMIakXHie7Xh3X+vW6iLXNNbveJPH0xlmNOpKSgAjCwUMhv3lt88mXjeT/fRVV+29daeARCyS0zQBYZ4ms3nPRQIf64UAHTGcPdwREcAsAtxxdLQAcKtEKOc0pzzlXFIqLJkpMcmO6+ANr0G8GXYH3rrN2I8RR/dAJA8acUv0TZ8c7jEMOmEnC5hare26rUuta9PWVdXU3APVQs0hwlSDCBHdvbVet22o4Qa9xdVMdfe9+GZbf71/e4zdzbhrv5evA/HXqJQRehU34jPdirPXwPlvVoxkyVMqiQCMGnoAMiCPN5N3R5+bXHWMMEanGe4+Akww9qBBba05IAsFd6mttt67eWDiNLJreq3Xl6eXx88vT49PT89fHs9P523t4JQ5lZymNM339x/f//CP9+9+SId3h/v3pw8fD/d381xQ+3b6sr286La0bel1PXz4HUn+dgsAEkRHnjAgwIQQDaJ6v7ZaopEDEwohQ1jdVgSLoPXiTlNKejxkSWZQSgn2CDpfzl2tWE6ZCJXFUgb3dr48ObRr/XTZLuYhMEkIO4sxId0ceszHlh8RI3VqFJU3Vx0C9AG/0283M7nNLXyAktb8crk8ffny5cvn6/Xy/YfvDodDTllYRm16A/rHsRU7VoHE41gcElkfb8fXQ45gkDRmIKKUt+l0OT9r1yBWDzcP9519MQKzgICIKVOYiI2ZScQOhA5AiFkGjeb25t4oGqO/IB4SN/ABlkOMlT7eXYRbmQIIMHRXI5GEQAgSwV4hITgGMg4PbwcYX+5mernDMOOPjoS2iHALVzdz3Zp9eYFle/6RMRA7gRI4Ym+tLrUEP9yd3s3vTvmUubzyYIZ5wG1BvoI94RFba9dlmUoBiMQDCAV3cDB0p+H1Yt0697q1bWOegITdxxBsbAC3ZBYEUBiO4uFmvW/X9frIXu/upuPplE/v1eL58Ysvywhji3hVd72pX77uD2OTeMOIuu1j7l/ZM6/XX//fMYAhHL3RYHNwYhQi81hr79o8ggmzMCABWBbMeZpKxpRGntdw3UAiCGZiVXUXt+yusPsmAFFKuUxlng6Hw+EwHw7TPE/TnNLe4Q0m4KunwP4JY4BDwQhMtzI3ADDGwKD7GDyKE5gDRIjT1nHdeuoe4GjAxhlgwpTyXb7/MD98LPMhtC/LtdfG1kCbVgPDLNOMMRkoCjE5ESKZ69Plxbw3214OhxOnIsLMgdjdL9el9R7uFMTIhOCjD6SBt31lxBFByjwdxEDcpEzSF6mXqM1WGsHaFq1zRayX2n56aebRL8s7maeUE5Ms1+vPf/nLj3/615fHX0umd//wezYDI97O519/aqti5HO1T+elqn/48N0//8M//v3f/fD9h/vjIZfEAGGMDPJwf/zh+x+WH34HV74rlA8lEq2hrXs4cSeuxC1M1VmIkwPUrrV/5SqNg8FcFQyAPNA0VB1hy/kll3y4e2ApiJhSmqeDdTU11zCtylxKGqG0XZtqVe03EfLo3Mfu5BFa67Iul25KwuYBQMMWExyIMKc0TWUq0zTNU5m2tnXrYUjEjqE2LPYDAIefGTLujBgm+GYtjCphb1E8TE2bdutGEM4JhBkhaHfKdjAfL+CImBwWi4ML4juV2GxQRQjBiWComCRNUznmMudcEifitBN4RzbTbe71VwUwvIFfPcgDQNmQGXer0tt6QWKWnDOTDKjMLJZam9m6bi+XpSt189prNzMbbE4kwDAbkL+qLsuyrKubY0So9VqX85WJp2ki5thNo4YwbXw22ImNwBEEQbCb8iHiGBkMDw73nQS0z68Jcfj2EoW7syR+c77goPKmnMvMBL2Rqw7AZxCdmUhe2U3hsPd06A5qQTe/MgDgm2+5BYhTYAJa8vlyOV+m04NMJwLotV0vL0+fPn3++ZdPv376/Onp0+P58VJX5ZDjdHq4e3j//vvfffzh7z/+8E8PH34/3X2Y796Xu3uZJiS01qeHc1+u1ra6XK7np/Lhe0rlzWYLO3EicToQEZh5KKx1eYHzS1lO6eHheJpY9gmcWV+u27q0btelCsv7d+/meYrAUvLD9cHUPn/+3NUPp+M8lykzYnT12vrnT7XqNNEruAABAABJREFU0uNybucDnL6Tv+co3GW8kcgO5B7q4OFgYd2rYneOABtaujGjIUIUQL2NPm7XbYTpO2HZ3S+Xy/Pz8+XyUusa4DvKFjuV5jZSpFc50v6Ubyb/5u6q+yF0o4jAPn5NmZglsxRHqts2jCK6OfY+Ak+Qvo52EAfcRogO4QZD17zzb5ACv0VixmGOt/xAHMcMIQyXTALwYdx247SM0RDuQSZIuJsX70yG/Ugdgrt97LHXQaOkHryS4cFNAeFhFqDh6taHDMIIKzTfkBCZQ9iRPCB6SMghH+7nh/v54ZDmLOltIMRbJOZ1G4mI3vu6bpd0BcTjPCUh2NGLYYRjMIRTrtqudc2IbO6Sy+6fEBbuLoklESKgD5gLQrXV1rbeKpARpzQdp8N9V0uXa6XNd/7/cLMaKs1XeBluL4a730jP/+sX3WCPuIFbA5gZNnkRrh791tUB8AimS8xjjAgp4wC0CZmZSBCka1LVm8OXjp4VAZnTNB/KNM/zPM2HeZ5zKSyCg9OzI0njHf7NBNaHOHZsSvtX3/9oGDgCAXkgO6ZRiwWQKfAejwQM0JENkSnNwOTQWo/elq5hURBZcgKmjEIZLbb/H3t/8mvLluYJQl+31jKzvfc553bv+vMmuiQiMzIjIimyqgYFAwbME+UECZUQAoYgBFMGDPgLmJUAFaoSc2ZIiFFBJpWVEiVFRlSqsoisDPcMf819955mN2a2mu/7GCzb557rHikBoxq4vefPr+45Z59t21bzrd/3a9ZSmztyPw2b21pW89a8zfNlxyGJEDMgqvuc83lZSqeIb0l1gOYbNv7iNtzdrJk27EZpMYglbhmxVWhNCInQiQ1sLed6n1u5YE6XpzCNHIIBni/nD99+c/z0QbVMUzqEJGbtUtVtebyf5wo8Hs/Hp+Viwl+9/9FPf/Jbrw+HUYi0uisxCOIY+G63e//u3fLuqxVzwupExWytrVREQ25ElblhM0dU8avLwpc8EtvgiE6hRHBUh1LtMufzOS9rTYMyEaOkOOjQatVSLZfKRIEZwdTUrbaWa11ayz1B7Dqqm2qtNdeSc17XWiQlMwPoYdFgV6P6ziYJMQzjsNOJGHrMhLqVRt3GaAvffkZ6f61EMH82wOVOuu8+SNWVEQchDiJBujDzOu16xCNzt+onRkR3ZxfTwCqqwawvTr6Rd0MMIaU0hTgECcIBia9VBG3B6tvs/oIRCtBZhr4VMW4EQE2fY6Ne3gsycpDIUSQGClW9mSNiznWZc2lUzavW2lptiohBRGhj+jhiqWWe53VdTRUMTK3lcnk6dXPlMKS+GncxyHM3+7kz7Ya+uf29GC3Wd4qOpCMAbX++buzEyBJZMvGXnNFNkSaBicAbkqniM7npqlHoFUwXH4FTV3+rIkAD7C4KwMYbZu1szuYQ0vHp4SFN+5B2FMLT4+P9x4/3P3y4//jD/af7h6fzcdVGw3B7k3aHuzfvXr17/+b916/ffn3z+kf723dp9yruDjxOGIKBtdpkd9dKtpLlcranh/hq9wUS00kSRIRMAxIJVddstbbZLvflPuXEEVF2IoFJIqG5rrnUZT49PgEQmq3jYO4idD49qurpdDSHZT3spmk3jUEY3NdlvX94nMsFpVXwQW8JdtB656aX3QbYEAhBHTsC09zVXLceqBv1NvimfvvVJVmYBdztGoSqaufL5Xg+dWVgKSXnUnNptQUi38xWkHuD58oRfj65atPWaisVAEIIhNxFns6dW8KEDBQi8A5A4lpLdtXS1EyZUJglxM6mR+9niL6TERIQXDVQ1kdUL6SfRxiAOqhhc+BeQxkwEQFx5+UhG7nhRgvf1hICRCfoisw+Bn3rivXUrq1MMVNFa956n6IjhdYbVbg1nNWhmTVrRUuz6qCMJCghhHEahbk1K7mtS2EPh/Hudn932L+e0m6gEFle1GQvOJj9pRG6HLq1tuZ8vJwBIQgJJyQkDO4OqK4GqMSEYJov2b3WFkoedrcdB0EAVzNpEpWJkbxL19y01lJbU2AiaTg2HBWik6IEIgYvdhV4PbOMrm/wSyTm+Rs+38wLZumvk6nhykzsNOwrjtgvNYfmSuY9t1LQzPpWEaMkoWHo3PARwwAcN1oTURAIEltrrala815gq7rbcyMpxhRjjCnFGIW534fZtVm2vfVf2WLgxReugxE+0wZ6FwGvHO8e9+gEusHybmSG1gCKwXI8p7UGQAETbRNTTFMMHIFEEqRprLrcP66XOZfm1i28eq5K08v5ss6Resot9kSgqpqbVm2K5s9uCgho+jKfBwBMbT7Pl6dzDMKCJMjBh0OyAeZWDJHjKBTZSVs7rk/WzlHP6WkXY3Sm2XVtZVkX9DLthmCCVlxd9jvIPp/PSz2u7qeynttxf3Pz9c9+5yc//q2Jgp3m1RsxxTiEmGIMt9P09bu389u3n04f29qW0upMldWg90bRlBHYiZgMnYgwJUjpWVrQZSydmOzgQISMxAhB2BRL8bx6KRYZ0FFkiMmH6rnosiyMwJsinQC8ljXnS85La8Vts5Vq2nJecpez1bKsSyyTgvda2x20qdbmrfWzNwmN0yDsNzZ1MmlrNddSaqm1NFX15uaO0O1le/7A9ly6IVRtralQc3Ag31rcDZllGKfdtI9piCESom+QUa/Uxdz6sY9YcDMO7RZr1bwPfiAUYeEQWUKQyBIIaatgtqMEAuGmAoFrt+sz+gJ4LWIczE2JeqA3d2nS53GG0KEQYEZiJ9zych1MrZQ6Z6sGQK6qNWcEx5Swm0EANLc153mZS86k28JSctH26KYpRQ7sSFsWlht03MoVDJ1pQ1wUmrYtVb6j+O5kHdcnZ3cgJwczc9QuKSFxdpRALJ9rMndXdTVyFyIOMSC1VkCNoJ/nAHFzEgNnBOsi/041UG3mqNaIOmJFKtI9WbteiTg8jD9ITBIGJ/7++w/fffPLjz98uL+///TwdJzXinG43R/e/ujt+x9/9fVP7959tb99Ne5uZbgJaU9pj2FwFicGAY6BhoFaa7lK2sUwhbsAV2MOROi9BwRGYoy9FwEIqlBLW34o31Yviy5vd+9eH96+2h/u9hM5XM5nMDwfL7UZqFvR0pZZ62PnSiMyh7Is4hQggrAb5MXmU83VYoxEMbUB2prrXDE3LICKbE7qWI0MAIysmZqbY3f+MAQj8979QDAnd/oidESQCNxp65pjM1tyXnNWN3df13y5XM7n8zLPyIQU+vjcvpuoIxQbkbcTMWqtpQCgmzFL7zVd1xrq/nOCnDoxXkIr2Vpp1pvU6kC4VeGbGHBzvdmIJ/CZi9KLshcXAZGTd3+cbpaI4ET9z4AAtkl4qacM9DN9n7GEL3YsAzTo76QnMninw/m1gNmIYKiw4Yauak29NWvqzdBIOnodYkwhpiCRiVBb5/dFGV8dXt8c7qbhkEIK0FnfL/aYq6wfvzxy9vyBNVMMHWOI3dDp+tkwYxDc6GNuRevcTSHcetSgiQR3AwRnZt6mnra6rkvJuTkRheKyVPeluPXsvCvK0r1i7Hkvv76rF0WNA7x8w///XYhARP2wt8V+ewezqPe/Oqs3xBjSwCGhJOYAHACACJmFkEKwZtqaWt8k3HpTDLcaKEmM0nmCLIS0nee+uKtfaY31ig22ttp1HsAW/Ls9qWvh3R+kw+ZhjQgM5OBuZA2hOq5rltLEYQryahpkSsOUdiEmIpFEw2SlHRSOgGefsbRth1BQ99YUmq/ouOlQNsv3Tc6JCM9uQOj+a4/E3WvRkhUVcOAYgsSEY7AWZZ3NQDgRCBg098VQFaCBL7WtJWt9LJfZSgOPSCjRzDVXUGNAU1/qMq/5YvWiTdl5HIfdIcSpFb8c51xXRExjGybfHYQl3L1+8+arr5Yfvr+oNRerUKsqbCJhNwJg5J4dpaPEXRxudl94RPVPuYsMmCiwMAIzqXmpWkrNazEC3gLDWEIMIYoIM7P5Fae0Zb2cz3Ga9ut8U8qqugsoRGBgpdbz+Xw6n7O2nVkPmr669NYO0tSSzY2ZUoqxszjN1Kz2pbHV1jaxUq+6ai3LsqQQXzpf9HK7IzF97G8LJzOLbO+5w4DdAbY1o2bUGtXup0dE6D0VgRGRAfg66wlxs36RLj7iTt3dmI7Xad3hd3jRTfpiYnz+QmdJXvOHXmaLbLuasERAburrupRSc66tlg4FLsu8VmVhAGut9lpSiYnQ3ItpzrnUqqrPVMNayqrqDuO0Q2YZ0pb19LxIWXfLJO/Ocma11Wbaf96v/26Hj62ZtJFrNjkfEdAmd/tiyqiCNjAlF8TNNsbRGUEEU5QQmBBFgNAJrScsbTuPGbirwjNxOIRgaqbArSEVB5QQkQRQFOnD99//8N13j/f35/OlNKM4Ht4cbsa7Nz/+7Xdf//Tt+68Pd6/DNLGMzgNSQhmMu+sbMQExYAAyQQnG0ljigeiFmLc/nd6F6NgmOjOCoGqpp/ZQaymwLr6sVJsoB58kMYdpml7d3ar5YX9g5lJwWZfLvJhbGoYQgwgBetVq4NZ0LUuzDmoiGkEzV6iwrnjOsDq0rcwGdd8Mk5zMXa0bi1zlIgjgYLpBrV8sZxs5rj9KA2yqpbamThIA2rqsp6enh/v7w+HAUViY5So47Et477Soa2slryXXmkurxR20lBBTiIMEdkBwtK0NJ0zcPbeZpYrUFWuxfmZuTmx+tdm1fgjpEIUT9sLMAa45Fl/2X0kYxc2tOdD22QCDM6B3n7yO33aq75Uec/WRvu5GnVjT62jo/SkHJ3DGqyYHEBDNtmBot9parZabNjNF9CAcQ+cvphSTMIO6VQeTIQzDbprSfjfdjGlKnJiF/Yu+eDdJ2+6rC7fw837qm/uk9YK1U1p6nUfOQjQGEgY3UKds3lpezo+tFoDbXrAaoTXEbnXo5GQlr/PllEtmEQJZq9llmZfVtVldtKluGtHrAWxryeFfw4nxl5QZeMZU4Itlevvo4SUMgy8WUIDrqtq5jVuxwNev9FegECkOwMlReqHK3PULodtkiVvTfr4C8M9OEv17RIRYmKk7zr24p+dgjS1J73nxVkc1NHXr6m5EJPLNCVGhq0q6uWlHFDvMfJX0ORIQOAERVITizmoD0S6l/as3r25vXg9pYiZVIAJJget0c5jMYmvNHDdokDpYBOgArhuIDlev9W3cQK+gDPCZbv1FOUyA0SBVs+AyhjGNwQJoKwHAigoIGWsz9QDxVRzGw93rELgup6U+rEs+r/MKSkiLiDRry+ytEYWe2tcGKIpuIfrIYVzW9nScH05LbjBfLg4epjYd7M5ZDcdXr2/f//jTtx9LQwpu0JU9bmTmoOAOIC5KKED7ML65ff329k3k68kSOssa0ZwcIksQ6Y+xmZZWSlvXzNmUiWIMfQiJcAgSRNR7/aOt6el8dsMYx3Hc72/udvvdxEMYAsdQVD98+vT09JT2E1KIcYxxEGYzay3n9XK5nOblYtqYEIP0KqIvQ2pRtWl3JiVGYgVoXpdlOZ6O+/0d82f7yg1udlO3Tt9AAGIOgsxiZq3WLtXs9D+T2pSxdbkm9Rni/Rxm3mXiXbAA2xGcEAmcrNMQ3HoRs83HPgmMnmfoNjGvMx22GDvo3Nhu0HjteuNLrB+RYhxjGK3SsiyP9/fLOjt6XguzM/u6nk/nVVg6NRYASlsBQJgBoWqrtZnaVUzhZj0fqRpe5OGhod+8fhWHuNFdrh0BuAbjNOtHvty09fDK7ufZF4JOAKa+7GMX+ZIjeW9UE12tcLY1C1zBGmhzJQB3bd4qgEkKwxD2uzFGATAGYAQiI3Im34x6m3fegbuqNkSotbZQtTbhiByaKgK15vNaDPDx8fHh/tPpeGxNJU5373aH6Z3cvD+8/fHu7u3ucOBhMhHjCBgABG0DhtkMrJOagNkpAqE4DcOEL3jKz0uyAZoCIgMkAEImdmq1rueW13Z6PN//sHz4/vHtp92Pvtq9u9u9GsbpJz+bQpApJUKstV7O6/3jMbcaBpEoIgwIzZesWixnqD5UDk5sqq34vPrTEj7N8rSERbkRkFt3VgH2jZm+uVP0lr2Bu1uX6W2uIl+cLcXsc7mN7mreKeKtWc7l6Xj88OHD/uZAjOp69+p1GgYJQViIiTp30Vpdl3U517y2Zt60wxwFMcQ27Bk4uDkRaG/ycJczMUjoRSq4umsP82hq5g3VNuMDIiZk7vU+2NW449k58fkionHY7cZDB0RVmzV3bICIm202AsOVqoPgz53Q/mv8ehJB71VPX4I2gUcXtZu7ae/VIfYWbbNSrRQrVbOqupkQC8WB4xDGISTBQMZu20oUZdhN+zFNMQxC3fbcq2oHPPq9mOm6rs9/hi8vd60Vaik1l9INN7pnFoJAzwRm6g7g5uTurZS21prBVVtpwy7EJBJYRISREN1znk/Hh9pqiKlpM208E5iCq6CBN23FdbP+M2udkEhAsIUAbDqOWmsptdb2eeN319ZqrbXWl5J4gGd1GG3kjS97TPB55QRExmvt0mEVUzZA4IAcDcWc0LpJIV+rUibv4Ad5d+LoP9vrvS7N3qgDoKa2qepsQ5rMW62tVdP2siRDZmB+RgE3L6ErTaoLWx36rNr2jH4r5oZ21QkZMKEDmFk/KVcDRVaQ6pINQc3UtJWz1mym4Oaubt0x9FpYeY/gseciBp4xse0m+mx3s1pqKa3p5wgFIBJJLAlADaSpsIqzm2EP4jO3ql6yqlPjRDSg7JDZsahLa1CqZlMHVVYsbT2fSl7VXYLsdiMyraDuhIY554fH+5SSMQwxlcsCDnEax8P+9PTITC2vFCSO+7S7E1b17C6E2ciaOXZ75jDGYYq7aTzc7m9eT9PNCyTmWnHatorA9gk4EKwlX+YzoqFpDIFo1xEUYsKef7TpSKxZa60Q0WU+HS+P++OnNAaOW9daOADR5qhcS87LulzQm5mt63leTk+nh/PpsWl2qz0llpCgk1PA3BsiMQoxk0QmQKOqbVPB4Oc76fGWIeeuPlTVWrU10+pKxg6mLtxCaMlMmoo2LkVCFIkhDCKhm9RtHjAcun3LllwIjBuaublT9jkIm/LoerSAXytirm8PthbqNjcdutymruuaS23t83zZahpHM6/Nci25ZiQA8mk33Lbd8TR3KYIDIHpvrAB0vxokQEEEFjW3Wmou/VrXXFrjEMKYbuGOCUtupZRWm5q5OyOSowFY01JqzmvVBhs1ALyT1s2823DgNkGtUxgIEFCblvbFvfR1tOalldDQwExbLWVlQkwchcZBUgxmzU3RejxtNcW+bdVczPXaWaoOzsyZKXMQEpQgy1JLu8xreDo64GVZzufz+TxnRRoO0/5dePXTcPs+HV6H8QAhNQzmgsabXrjrz/rO1nrvpcc8IAsJBI74TFdw92batBISgztuRs9O7mwWzLA01GI+5/Npfjzpp1P69HB4//7dj1+/erPf7/cyZARyLNqyl0J1xXU1gwbgrqClrqWV0nKrakYIFD2Y2+JrxnOmS6Gl4KVBdQdzdCNEFEDmnrPIW3vh+TQJPdm+tdbU9KUkTWq39veN26rmplCrzXN+fDqu81Jrblbn+XyeL1+9//rm9m633w/jKCGAQ2s1L5fldLw8PWjNMcQgIUpwgNaUY3MZQJKgMPRqSmHzWrtyCYTF43a0r0W7ONIbITB3RKbbOBECXrEk1E5KfNFLFgl3N6/f3L2rra41r+tcS2na1M2px3E5sNNWe3cHaNgaF8wigtihFhIXoWAMAoJOPVZATau2bv+joEBgqM1q81KtNOiUNQNzRmQngRCMsaCaInEMY4ophhQkCgVUbmZWq4uBoVe7XNbnRDszO18u8K+/zDUv85IidT836GY8lJjQOTO4MwK6oxmqtVZW9aXmdT6f0rDvRYyIiAiSm5Za17xcVBsxicSUBiJya4yQAhNj5xpujHtQANjG2VVE0ffLXPJ8ueRl9Rf3sq7rMl8Qccs+vK6KXzr0fEauEa7/xd43QkTpvNQehElEgYM5dVd8A2ral1ZVZuze/9coDELaSt/+Jvsre++iu2vDjbDdz3AdvgO3roTILwsyYKIoNARKgkK9v9g6utO7pCzg1mozs83xCL1/CO5udevc45YGT/0PJH6Z8/3DEbJeYkyI5K5uGfzS6mPND/M8L+uai1/3W9/Owb4BsBtGds0+NbOrvLNTImqt87LknJ/RGCKKw5DGybQ1h6fZKGeUmm1dl7moGkRXr7maIUXzEC/LKiE0xQLBeASuZNVA1aFoO67L6fR0XC4odPf6Nk7RzaiRrEEv2Vud16cfHr6JHLl4AB6GIU0pTTGNcUypzZkIp90+ECG0mop6Uddm2ooCcZh2w2G/vz0c9gcZ9xBHfya/O6jXprUZ54rVGgD0pJQQhYQfH4+1lkA87aZpwo0NhuROal61lVaqVrVmYA3a2vJ5Pn28/059ndeHFAdX2o27r979CAHn9TKfnz798I2Ij8NARFrb6fJ4//DDw8MP63o2rUzIxITSCwdEQ2xEyBSRA4ZgiM10zfPp8jTnY483BwBVX5b1dL6YQwxFzbS1krW1VqsJSR6nISQmCTGkvHJIHAKxsAhzEOlTO7AE5sgSpaeOEG80iN5lhysF7aVv1lZ6fMZjvvzz5/Xni3PVdrTweb6cTsd1We3F3C8155JBiRCGacAA5g0QJpBx2o3D7vHh+PR0npcl11pqNTBkipG3IMNqWnXR+XG9XM6XkvOyLPO6cA5pHMFtSCEGOT0eT+dza2runaiu2MhBay25rCXX1hRcn1nA6lsRY5vR4NUNjIkFsdbWLvN5WT+vyaq6LPPlfErCoNVa1VpqWVMSmILQGAiZANTNFNTMoYJZq4DSmq3rqtr6JtZPJf3TZQBCYQmSpni5SHqkMDpSrbrUNpemccfDK9l/RdMriFNz1NrQGIVICDefBzdQICdj9b56gLCTICMo4pY2+cyWcF3LOufFzIUFe0QRNHdAJ0BwMerA1tLWhzmfH5/w++92f/X68ou701evb17fDDcDDqiY17yUdfW82rz6nCFXbArNvPUt2s2BmEmSRMLuSu7kpiro5GyFSgNzY3QKQMxCKL2j1+3CtsWs78LatK5Vy8uDpbx/87qvA/05JuFW1iHw68P+6fFBCMch3d7dvH3z9v2PfvT6zZv9zd1ut0vjIBLAvdaSh7BGngKb6jCkGGIMEQBqayRpuL0bpp2ESEybjlsYnxlQpuYKqtp9EEq9ojHWWRG8eUX2hsNzGwvdvKm9fv06XA189vvdn/wbfxJDLLWuZV3XuZRStZnpdjrtDBf+XMRsLVDYPNOeixgCZpKAgZHRN/pgFzpW646MvYgx9aZeFVoD7WRfUAwUprgbwxg5ELIrMIY0DCkOMSRm2eY9OEAPEkOt+rPf/61hHPq9HA6Hf+vf/rd3ux1AN4XsT6jvV8BMQXga0s1uNwwJAbZbYorMMXCMLN291KE5lqZrXlW1xx5LGEVCd4ljYQRXK6rVeiYiApGEEBHRzZggxh587Wa9IWMO1jskiAjed9XNOqdvlr//B39zHHf9Xnb7/d/+4z8BxGEYQwhfnPZelDL/miIGPsMqm5+AmyoipSGN025/czMME0lgks6YoavQmq4m4oCb2tE3h8LepyJi7vlfvdD3fl9w7dmZm7VSy49+8nVKmzRxP01//Lf+IEQZQxCijng0VQdH6mnfDOC1NHN7SWTeaO9qm//zFS/qYzsyjzEexmkX4yAigIRu7sUtq76y+r7Wee0G2vD8Hm1rq3a2tl//1reaso/HfvL0Tk3Nf+dv/sFuGvu9xCH++Hd+TISqph2hBSNuzfPrujQzwmDmpRQAlDDGYTfublmCWV3L2/fLu7nMrTYDBfSS19Px8Xw5HueLM97cHdIY0IEVZOVEwzBNwziEmAQlKAaUFEKIQgHTEHe7Hd0dbg4HrRawmxs3g6Zupk2rAZEMQ9hN4343jcNO4v7ta45bC2Z32P3Jf/1Put0lM3vH/8yJMMY4jmk3TUOKQWQcx7ub2xCDalvX9fh0vCyXpay11da5sQAxxGl3s9/vd+M4TeM0TmkYo4zvv3r/5t2bx8f74+kxDvHrH//k7u5V/43gsL+Z4hDeHO/W9eLWmIlJCLreHxCdSImQUJAZWKwTseu6LJff+72/MY7j83z5wz/5N8BpGBIzm3uPDG9NW1MmHtKYJHReV5d7EvcWFTFtdCAi6QI9lkC0CaevOOg1lmWbHS8au89Vyeem5F9fxHxBSbjWPjnntz9+87Pf/enzOiYir25fazNyVrXc3qpVtQaIgYIqrEs+n+enx9M8z2vuVimKxGlIgQWA+lY4L/PT09M8X1ptpeRlySxyc3fz7v27H//sa5Hw6dPD+TKrqgNQV9shgrm11mqrtVMVtyJmm/JdZP25iOmAMBEJADXVJV/++I/+cL/7vI79nb/7d5nwcNinINbrmFZjlJu725ub/X6/E2GtTa2BGl5JSQ7c1ErOatqDdRwcriwscKfNSSJJGkgiUAAkM6jm2QnSPrz+cTi8pekO44jEQOIYkIU4EgckBqAtXYh68AMwgxCQICMaYjV4P2K6Apdj3P3XfvS3ETxKYmJEMLDaj6bGG1ZsBtXsqOWutrOZgQzD9Opmf3t3u7vbhX3EhA1DydHqnlv1vOicfS3Q1wS7xvN0dEW6exv20Q+C4EpzxVw4K6groRMDX6ttAqKtiPENq3AAN9WWf+9Hf3NI0+cBeP907KOyj9bW2rqu67Ku69Jq7ZXEln4W47WR1J3raWNTqZqptgZ+VXJ2uYRvijS6stCu8+LXKKFXWtZLSsULIPP5Jz7Psj4SQwi73dRR5ZzLpw+f5sv8IkljM3/z59913R6vqqoX7+nz77junldXnSuv7fmtXQHGLRDxpVan82W6Dx/3tqNffcE3o50vGLGd/o/uPk7D669exRQBYJ7nn//855fL5cuP6yVXBIlI+DkJa7uljlxs/c4Ncbi2isGv23c3P3jeYeGLSYXbvW9b41V2s31a173y+m62z+b6pb556DRO7776Kg0DAKzL8v13387nyzXE4MtH+QVW/evX5zb9M+l6Y8PQ1a2Xntv5vct7lUK9XJN9++fz4gwvOTrP7//z4uwbHGMppsPtTQgBANZSPnz6NC/r9TPx5/EL17fQf2x7qedfcX0DL5D2z3dHCITd8vM6eQB8y65w7YZh17QHeAmkwpej6Ysn9AUvqaMzu2n80VfvhpQAoNV2OV7y2imW4FsKmG9hee7bctvLvs0dWTpwba6q3ZtkGzNmpq1p9/1FYJHejEUHMOymT9d+BtJmz7EpIoiQmRHQ1Hxz5u8T6iUHC7ufCl3JqBIkTqkTKdZ1/e7bby/ny7MRzvZJbDzW/kP9OMRBGJEculitqeqVVLT9RsJtbPFmXNsXNe5MtdZq00ZEMUYRebYR6pEgTZub9qXveYxd561fF7PeuAbo7u+m4zC9efsuxQR9vnz7y/l87q/s29q4UckRNueibf7S55EPz0PwOmEREbZS/vOh4VfrkV8fRb/2hV//4l8zAh3crTUdxvT67eu+jqnqPF9qrZ1J2C0aoC+Infej1rSPHNsOGv04/UzucQB3NWutabequioMupQ9pYSEtdTnCfK8ZOBzsbIN8Oe3/blF9PlmXp6uri3y/W739dfvx+s69u0338yXs/SI+GuXgxBli67uh/NtIMFz8fd87/4cV/5SBQHPj2xjssAGmWx228QYUk+3BuTrA9nU4NdPEq+/D69fhO2p43ajgeFGUAgAILf14/H7pcwv1/btPW290+tq3tyLu7o7bJOnE2OJqWeD29YO6iXh1UXwOX/Hn9/WdVh28mPf99Shp1NuH9h1z/9i430ebM+FwhinNzdfRdnOln+dbuE312+u31y/uX5z/eb6zfWb67/y118TOP6b6zfXb67fXL+5fnP95vrN9V/9S/6zf/rnSMidPvkMgH3u7XymB8MVP+/fsb3AhhNtfqDm3Q51w4oJu1/c1ecWCGADDZ/bH9dXAezOuLipNlStO3xs+Nxn8mJ/g+5mh8PhJz/76TRN21u24qaf39n1v/4M5oN1hZtaA3C6NlauqKM9d1w6tA7Q/0wbNLbFwJL3RPXaSikAMAyp68rcvDUFoBgiEV8x4K0XBVfnjhc9Be9go5sxh2HYMQsA1FYez5/WvGytKGZENDWAZ8c62J7Fc5isv+hVbH2lTl42MzXVjQ7SoXuiZ+y0/5x5/y5VVQAMWxOwW2oIXp1Get9dQuTuBIVkbq3WnFczpWszK0ic4k5IAGBZ5l9+81fny4mvnzYhMKMQ9ixkIrz2vDrgvOHiG9dju8ve3tv49Z2AB4i2WX2pAxBuUXRNrWlXHPcWRM+x7sMGuzRBzbvN2Gaq8vxLt+4DBiYmYPJx3N++eh/iFVL+7tvLFeqH534RdqfJ68tcn0gfSs+UAvz8RfTr43vGTl8C978yyb68vvjbX0FSn3/wS6Ac+7wbx+nt23ed4uNabTl6y4ifW1hd9wRbe+xqhgTXZ7H1VPuoo+v8eh7gtg28K1nKPw/0bSH5jPkD8ecwddjE4tf3vH0WL/pvLzuY3RacJIb9XTchzev6w7ffzZfL54yIq8V4D3nrfE/mwCzCxN3gEbq5k6o2+9wBvLaS8XnMXPsDWyY6bWPvOrU2GdTzo6BrD2hbQq7L54bs45bF6VumkqlOu937r78exhEAlnX59rtvzpczdw8JhGsjDBE3KfTz78IvRuHnQXD91X08b+69ppuNRWccbu0PfL7DrU/tz08bXsZUfL6exzxeu9X+rIgzm8bdV29/NKQBAFTLZf1U24LI2wM16IFUZhAkTtOOGEuZS1tbK2ZGyGqQa3XHIEGYCA2gGVRARwo9VoIA4zUyu6pd1rKWVqsHCbeHvQiXWnOpuVZVQ6QgMqZEhK2V1mptVe2ao7K1b7wHsQFgLZtH5n46/PTrn43DBAC1lePlvtT1Ol9+ZQq+GKGf//957G5B5c+WX782qLfXweuUui4aXza5P7eonp/zr7aXXw6DF/+zFKfb6V2QBADLsv7yu+/P53Onf/SV2cFVtbVmpt0b7XNL/nm1et6yr/3XX/2dL8Rcv/JV/HzDG8v1mZeC10bzdcA91yGfu/DXvqqp2X43ff3+3Ths7ST53/yv/tcSeJyGFAPxJvUztVJrq9bVfbVU825P6b5ZPPdR78gkgWOMQ0wIVGtmxHFKQ4oxhhgCBzH3vBZTZxEzW9espp1GxcybOgWAEERIQv+ecp7Xp+NpnrM27YJPM1NXA0CApq2s69/7N//N/9n/4n/++3/w+wBgVpblu1ou5oCOm7EIsjua9tZda5pLvczr8XK5N2jDsAsSAVibrXltWt2dmIIEZnSohCQyIgpYtxfIgE4UrOG65seH47fffs9EP/utr+/uDkSYS328n4niV+9+NAxTD7F1R1Nr2hAhRkYCbZtXd98nzFqp7XB48zu/83d20y0APJ7v/+9/+n/9y2/+QhVEwrTbIVJeFjcVEeLuaOa9bgghIIC2amrW6Z6IHGQYRgTL67zOSz7PWgsihijTtIspdtoOArp5a7bmMs/L5Xw5nc+E9PrVq3G3I5Y0DrvDjYgUrQgUYpp2h9tXX+3v3kyH1ygxl/L08OnbX/5ivZyGyDEyB/7q9uu/9fUf3Qx3APDLb/7q3/vf/2//9J/+v6ZxF0J0wCR4M8rtJK9v0mEMMbE7rEXXtc1rawYs3N3KHKw1M3MEjkxj4sBIBknCfrcnorXmpaxzmZt54FCrH0/5eM6P51zUYpJhkN1AKWAQBMSquKx2vJTzXC+XVovaRvVFZuRAIUhKYT+FV/t4M+IU9G/8/h//t/47/+7b978DAN9++91/8H/89//8z/50GJKIQGf9d66POyLyxmETANCmSBg7pR0AEOXKpkZEVXVwunKlttn7zKr5dVbLF8vE5690JchW2fe08WtV2rfRbv1npjnnv/E3/uDv//1/8JOf/BQAbD6uf/Ef69O3JKH7npn6mmtpaggOiORdJxCIBPtuW7s7ESKGEJn4GlejzVrV4uCxz3kUcGzVzB3YAbRhq63OpdSq4BBYdmkIJKAATkTiAM3MUa81FfUUD+2aOOjqUUTkpm2ez/H1T776u//t4e4rAPjhu+/+z//Bf/hf/Pk/i8MkwgBG7HIN+TC0VY1kOhze3exvbvZpHCWM3KCd5vl8uZxOx5wzoHlPGiEREpF+oHBrqs1ViZyEwxCG3bQHojWXJc/zci5t7Ubprg6IFsUISmtuzoDdf9cVCAWNsGItui7VHENKYJovlz/8oz/67/+P/0e/9Xu/BwDffvvN/+E//N/903/2p9M4pBQ5UAwSk8QkHLp7dn9VAwDprF5EfA54cTQHN+9VXOAwDCOjqOoyrw+PT+fLeVlXItztpphCPzO2WgGcu1kL9UOaEWFXAPSh1V+fyLu2qROUVC3n2k+bnXX7t/7G3/nv/f3/wW/95HcBYF4//ef/8v/y8fgvKYzoATLWbMtc1sXWBV/dvf/bf+uP0yTffvrnH+5//vD0TSkl0u6y6C8/PqjS21fvD1MaZAV6KvCDsYXhleFUKo8YfpSG2xgS0afj/Of/6vuff3d8+NTevnr77/y9P7m9Pfzyh4+//PDDtx8+Xi6ZOb65e/W7P/3pmOT49N3D08dPj/eX5VzVmoOpOCCSTlN68/oVGH76eHx8PB5P5z/5w//G//R/+L/8/d/9mwBwvDz8kz//v3378eeBw1WbstUHBgZg16IDn2vyjdfl3u2lAPxaxHSXkGs9v50V3EyxO3k6oREgOBmQbS991dICUHdBc9CNOgvPrwUbpwS6FYUBgLqq1p++/YP/5t/5B+9ufgoA33z73b/37/+f/tM//bNhiMMw7HY7EWmmy7w8PT2s8wWtMljYnPpcezAnIF9ZmO6+uaBeGYqweQlu/zTXZ1+q7mKwcewciDjElIZpnKY4jCEmCVFCYgkikfmqebga/6iZqm8yvVqXZfnjP/yD/8m/+w9+77d/thUx/8n/8x+HKLvd0Mnw1IU/ta1rblVVrTbrtClg9E5aNqctWtFJKA0hpTTGARzWdRHCm5tpNw1xiDFGCdHc12VVc+HQWjueLrVWZmLmEAJ1ExhCZozCIUoznS/58Xj+8MP96XRptWkzA3ezBpvzUadSo+PpeLou7qp6qe3JttHCSAwY3EkbqKl7Ke285PvT5ePT8UOzMk03wgM41arzPLdWAIGFYgwiiNTcCSyZkasjmcTGBIhhvtQfPjx8+P7T99//MO2GcT8r3JVcj8f5w3dPKe2R6m53OB1PtSpLcPPWKhKOQwKEkrO7B2F0a63DQgDoTTeDu1zXv/rh53/x7X/OFIOkeB7MfLmctNUgIkK8efJaD5NSbXXNpgrXcjbEtNtNCD5fTvPptBzP3moKYRjT/rAPKfj1vGvqteq85OPT6enx+PT0JCF8/aOvb+5uWUJIMY0jEtXWiHgYpsPd6zflfFvP03qGkEotDw8fv/nwX86nxyQYk0hiN/29t78PAwDA+Xz60z/9T/+j/8d/st9TjMkdh0Cv9/z2Jn39enp1k8ZR3GBe8ulSHs+lNGCRkGRKgui1aWuuilFoN4UhkBjsQnp9c5tiVG9Lzcf1mJsiyHlpHz6eP9xffjgua7WYwm4ndzuZRh4iA2Kudrq0T4/r47GcTy0XNQNAYAQOGAeJUVKKhym8OcTbCfaxqdnf+3f+u/25XC7n/+zP/+w//kf/cNqNMQbALUkbEcEcCYW6cj0AQNPGRGkYul6ml5tBpCNbpubuRISEm2vq/9dFTAcO+4r1XMQ4gJurA/jGCL6uLygiTXVdFkRalmV7nZbb4y/Lh3+BkiiEIKLqeam56TaByIUgshiyIoKbWu08WAAKIRGRGRiYqa61XNbF3NOQUoiJAjjUogYGDI7avOaW5zX3iJzIYRdiQMbmhMQcAbxoVW89CMQAtXmr2lT72UXNEJElNK2X89PNb/3h3R/8W8MdAECel1/8xb/453/6Z7v9bQhiXh0qoTIpUm3QZrWQbt68/q03r96+vhv2+xj3oUK5Pz7ePz48PPywzDMgAJJwIBImIQYkdVetzY0QY8AYOA6ShjS547yslzzP66m0BbyYV2/mRJCiEuSmqkYG3cncFBgZG3qGvOq8FAdK0+RNl4cndJjPm6XCeT7/2T/7s3/0j//h4TCNY2LBlMI4pWEMElEiSRSkLZ00SCCi7nzZRwJhJ18jATFy4BDDwMimdjnPP3y6fzqelnUhwpubfRoCgJlrLQXRJYiEgMyOpH30pkTM2mncPY6ju9CyMDF2JfDcw72glbquixtc5u1eals+Hf/Ft5/+jOOOLMIKZdHzOR9P7fHB3rz+rbtXd7evdo+nH+6P33z7w//7dH7yxo/n5RcfPrrJj97+zpvD4WZsLPeVfqGUjW8r7HIZJxznYXgTwsj43cPTn/0Xf/kvvz1eTvyT9z/73Z+ly3L45//yX/3Fz3/5l3/1/dNxIYw/evv69PQ7Nwc5Hn95f/z+49P9ab6Uqs0YbWoKpc5B+PZwY4qfPh4fHs6nI9Sqp8vpuibP/+rjP/8vf/lnUQaRcAUkELA7l31GGb4sYsx6Wjm9KGLQzaFLvEEREEkQyR1s8/Pt5rYIhgZk3c4H++N94c/nXSMOn/UFG7TvBNg9sQwRmrWmKxLkus39p+PxH/+Tf/KP/qN/yEMad9NhfwgxqNu8LE+Pj3Y5gxUAFQZGQDc1b80BUET6gc3Mmv6qgdn/bxcNcb+L4xTCwDEFSRJiCElCYGa5mid5t/I1aO6mmnM5nc/gfr7Mz68kt69uhSUNIYQQAoNDrWqKzA5gIdIAoGreN0wwMGPEEAQQmzpHGqchRmFErRoEhen2dj+NA0chEZbgAByDmRFJXldZ12bKzBJCTElECImFQ2AJJMyqBhhKs2lcWmuVybpXKYCqGbgj1lrO+ZKG4dmFEHuTQlDB3ZkoEgXA5EDKaFYdACo119BqHLoNnroXVWitNV3VVIQIDUmRMAQoFU6nvM5qrQ0jv303DJGrrvP58ed/+Zc//PDg7revhnFHJPrw3dP33z7+8MPjzU2pba1N7h8/5FwPh70I11qJJEZy88t8Bof9fnSzp8dHB7u5PcT4LDUCRIppurl9e3tzJxzXXNdlqaF2dwcmGYcUY2CmVsrpdMpLW5cCbiHE/vwFmJ3BnUwYYgyDxPHusN/tx3FIjrDmXK1tYiRCRiUQoRjDNIzD4XB3c3PHwk31fDzVUsBdQtRBySXyfcv28PEBWBwh55laCWBeWm2rVq775dknhlmmcX/Y8TTuJQRzT0IciELCMFJIEoK7SXUkU2ulGTmxcKSUhBtpRr1oU0MFMRBAQAqEvI/DYRyd7JRvTzlfsrrPEhqKogCYGrK6GESk2P3NmlbCjFbZQwyBCNwByYk9RBrH7uHLiDxncNdc9Dhr224FmGkcx/3hME1DjLEbSfUixq3rFIJsWjx3d2ZOKREJwCb3FQmEiFtYj1+dcghgi0K/liYbPvSMJW9aM+yRXXaFnjf1UF9Eu/wdtqbjJs/o56emGoJMVylfH2TGrMwKTmb9pKXEHXAFUAdrvXXqqEgApACKQZEMeDUxg1prVa8Vzgt8OlppngYYgiepBF6bOjgKOpqqlmalIoDEwIxIllGV1APRkATd1zJXqw6ublWtllZK97aCWjVnBYRhiAa6Lqcfj29/t5YbAAAIMb776v3v/s7v3bx+I8JrnmtZtK2qxWyp3thtGO/evHr7+vWbm5s07WPapWKlGFQtVU8iBs7MKcYdkxhY01zqrK0BYxzCbroZ4yQQUFGL1trMGhNM45CcHYpq0dackNNgzKm5VrXqLltJieZerZEKKw8CFIZpsmJiNo4TXZ8Ls+x2u9vb28Nhl5IAWIwyjWMahMQlUhyEpXcBJISgpsu85LxaM0AMkUSisAiLcKCeQOPKhCHwNI0AMO0mJpqmgYVMm1oNEhBAgoQYJUUkqrUy8zgMgLiuay39KGluDR2FIhF5b85Xs+ZMLByieOBIz1pUxE0I3h38RSm2trNLbRnWp/X4w+NjSOPt9FNEaYrqv7h/+mH1JU3KFFLylMJ+upnGJLFkfbifzUoNcECP6wpPWYvovK5u690N/uxHb3/6o69e3SU301I0q9QUKphaPef56VMUJDkfXkO43d+VsWYHG6O8yYt9/PD98eny8MulVG9KZBGoRBmedbWOqrLUcCZRoHB1R950NvC5GckIiB026aaA1hHEsDmBAyCCGWhzVNCGCCjdDk0cyJ9tH8AdgbszyEa36AVKL5IQ+ntze25EO/RTjDMgullXBqq1qhhjes4aM9V8eYJyVA3ZMrZFRJDFHKKQ7Ua0wGihq+h6073bSBDhJl/UTfTqtnEuNh/5rva7rpj/2gsBrNai4MuydgcNIQkhxhhjCCGGEGI/ETIHIhZCDBLIwdKYAr9It5BXr15BBwmJU4rggNjA0J3crGOVqtqj8wCNAYJwioGYqwEJpiEGIQTX2phAmKZxTEPwnnuEiESBe+Y1qkmIomabDztRf5vEPb6mSy8hhDAMaRpHbS0TqRnh57gDQyw5aNUY08v2JJEzb0+/WyYgJgcmRDVUy4jmWBFVhNwFHdSsVdPawJwAhVgYadv5Yy318f70eD+76t2r4d3bIQjXVrTVmgs63tweXr26jSloa8fjfHyaa1VVyzkDwul0LKWI4DAmQDBrl8ulVVuWhQhjZG3tdDojwf4w0YtOaz9xSkwhDIiiWs1AQmImdA8hjOMuxgjg1ryp59pyaeCbxQ0Cm/o6r63W8/lUcyHAMKZx2k3TFIOotbVUs47X9SKemCRIGpKNaRhSSkGAsdWS50teV3YwCZ6b16alxXQPLMCEjObaStFWwJQIsFBeLs+GV4jIHDbHLeT+NwbUgKtzdW693EdxZANU6wMmvd7f7FMorR0v67KcSvOmpMyGDkAEOEh4ezgMQ1js5rjmj+e5GX98mlPM0xiRHQmFBSkABqQA2N1uyXrImyD1qHJ0YpfQETgGJAdcmzbVJbenWduVZ4WIMcaUUkopxshMHKjzyTo8KRKeV/Ar1hiJuLdMuqfIMy/mWqZc28x/fRHz+b/PXeFrEfMCs4ENgOleNxt/iOjKdcCmigi98NoWMveltUvJzQiQiNAdtbqptZ4FBooEgkIgBARICqBGtXGzplC6p3tplqs/XdqHR1uKs+iY6DDSEIgkmNtaam3VzczZXYhAGBDMa4WmBBbJh5TRyrKeS8m1tVJ7CFvrxg1IXIotc0ahu1d7CVDrfCirXpEqZt7vD2/evn37/r2IHE+Pl/NpWaTWxRzJVRDH6WY37adxSimGIESRwEVCDDIkImeCKDzGsEeSajXXzcdZrZGEOKZhGCIGr559rdUAt4ARQTAEVdCGhkhCgMIBG3gzM+iRF05ujtqwiSiZOUtIQdEkhu2A+3nuS+zBpENkgo7ESCAkJdp8oZ/XTwAIzI1YUf3KTxTpQdcCBtVqB/aJISUBGDumFYIQgnb+BTIiiLCwBBZkZmJhjjG5e6WqpGS0cXuA0blXpmCAQN2xjcidQTg830tvOmhryCZoJAqmbMoJ4i6GFB2RKOx3o1MVmsypWDXKw2giHoIiWGsIOhzi68Hhsjytqt1ho4IV0uCVQ311i7tD+ur1zfs3h8PA8wJJZBenu0morWVdI6Lr4uZhqBIhUhg1amHQfcDb81M9PRy9LqeHOa9GIupECuDd4v35cgc1V9u4K3R1x4dnRlWPaL2SX3z7FBywMwZ70EuHZBARwQ3RkSps9groAOZkBgq+kQ7o2i4G30oW2Dp6/WxDV+anbviPCziB2+ZMD6Ae0QQ/34uDFgAFNWtYltqYkQNyYKQQAgETuvShdr3dnvLjDs/2JQ5XBl0nPLmp6pYO9swyu5IFnylj/fcTMwsjoTmYtVa1OhTiwhxir2aChBhjIInAgViYSJt6y2D1hfIa5M2bu9ZqB5lFhIkRhIEJBcA6iyXnpcc5IUCIPEQZokgICt2r3xCMETlKT9ILQQC81WbYODhv/B1QVyQfhogAtV5pr305di+5XgtMBAcRmabRzRCh1gqOuKHu3N2Vi6ROL7hOfsAefNGP10AIgiAIAdAMcbO+LLlWBQiMwY2tQcveGhAGYordw5YtBh7TNB/P9x8u337zQOjor0wD82hNmYa3r9/f3cLb969vX+2F5XSc50tRw9ubV4f9zTyv65rXXLTpumYRGcddq3b/6WldiwjFEJY511Lmy8qCrdoL8+GNYldbu398NIV1zQgwjCFwcLMYwrjbEeI8X+Y159JK06JGSNYJjYCl1ON8vJyPT49HAL+9vR2GsQE2RzTfuoTNehgdGJgZM6cU0W2IQUChLbVYXVevC2ohB2tlXubl9Pj08QPHGOOAIobdAw+IOMUggZExL7NfwcZO96tNudatJ+qUBZfil6IxKzIIYvWOnBIBBuLbcfrZu7evduNlWb7Fh48Px1pKK6kxBO6hsSCB9mN8ddhDpFMt6fGYm35/f3+YCCiu1bVbRYaejmlmUNWruYI7OYkjbAxn2ILgzKAfKrCpFzNr9WmuL4sYot4/IsQtFuNqkwWbiQmSu/dyp4/8vtMQbV7anT75sojpEe3PqyFApyU820d8LmLsWhvi9WftxaEHP/fk4dnCxK+dpZ5o9/yrm+nTfL5/eFRHdXBzbZult5o1g+YOAAz9wImOQTFV45whV6tqzdRdi9FSw+PMH094XtGsjIO/fz28eTXc3e1qbd989+F0roTCkkJMiG51davogYCImlARXE0veT4u8zxflnVeS15cmxCkINM0muHxNKcxhsO4nxKGxGN8kfoOSBii3NzsJIRclvlyUfXWHJlFOHIY0xg4IJC716ZlXquutWS3ItQwWCBiZCY2IHViDFFGRMl1dRB1UHAgkwAwiJnmmrtVPZD3MWNAYKatAThiYiDdaPOIDr1UDClIoO6uv+XFdoTjmZPt3XVL1YyJd7txHGOITOQGxazmJTt6z4LccHekISZwV3PoiZNKSkjamTJ61WkoM4bA0LrBf+2z0zdXm02X4JCZRYIgoLaef7FF3LrZ5hBu7g7azA0CByZAJDM39pd2UKp6Pp8vp2NEGRIKm7KaNwny5u3r28OP3755c3M4DJOel3Y63T89fmy6sBiJB3aWmsv8w6W2RW7GQwwUoZAX1QLIHlmSpaHGqdE4GMSbYbxJYQBUkLv97fuvQhK92S2X81MIeRgwJpOJLRB4RUMMyTLlJa9rzrnkXHNuy9wQtfvu1vI5CgYdsUWuiTygk5MCbZbvV0ZaX7jNryVMZ5abmje0YkwiExO6mpoBOQOQILqCr+YFIBIIYCRkBTIHQCV0pq1C6IE7HZFFJACmDYwBMGoG0P1WoeHGtyR3RFNsGfUG3Z4nC8QkAMCRhfuDUldFNgmBRBiZEBAd3YwIwLfELUBw70hDX8s3jp45gBMEJDIHQ6erl9uv0XsdiJA4xDTt9xKiAbWmeV3qmrVlrV7K5gbVBzmxgAiTMLO6rUte5qNq+1zEHG6mUkpfHmOKjEyojTbvURbWHl+LWpsT4ZBkHOKYQojRUNShtQzgW+wbECMGQYdrY52w1zAADubGEIOYumrtQDcSbahkreoGCN1pkpDGcUBwd809/mbzhGYFcIUchxDii1ArAOzp09elzRGQocsZtORyWdbLuuZS1I1cQZu1aq2puzF3Oh92HDaGOMQJPZ+elk8fnlhwnOL5nIcxzpfiBnevbiXE129fxSHUtpbiImm3o5RSCHK5zJ1gSUSqWmuL0XKu9/dPrem7d6/HcSDc+JNmvq7rsqydrLfNf7Ocs5bVmptZjIE5hRjcVSQgs5nmUpuaxJRGV0dTNyIgkhAr+Lqup/PlfL4w8zhpda+ODVlCcIDmWJupbnPDrIPpQQiiMIK2subWSsluCqa1VK3bcotAHMIwjBSCoSuAGiBJiTHEwJHKsrzcXNWsNVPRDhCoeW2+FrusLQQGtMhkzauhAgGBiOxSenvYv7vZnZPUUr+bhqIGjrUZuZWm6oYIQXhIQZIg42VMhzEepnC7CynB2qAqWO8Woal6Vc+1FlUjwICdFrSJbwCupBQDAANU8KqeF71k1RfBifTXXEhEjJvDYcc/Ou7SMRjczse82U7j9jrPZUovYvz6WT3XN9fv367PzP/rNzz/F67IDMKWH9KzjvubUVV3U5WXsc+l1g/3j99+/706qbn2MGRv5lobZoVSGQBjJ5MKoiTnST3mDK1BV3UwmzGpS5NYOazMzclBFowt7MLNG6i1fpxXZOJBZFQZ3DS3k7ZC5OBqXgFWAgQ1y74WnldaFshz8VoD2SC+K+wIl6XepEjjlG6mZoQpPAcmu3trtbRca3a01mrnOhEJMbJgkBg4IKCZNjUtVrU1y+45Ccg+WQNo5E3NsntgcCFBQcS+U0FTr7VGdAR0Mic1bOr98GFEPa+EQLE1B3NCB+vtBiYiRohkhAZopFBRTbfgiN4ZeiE66W7Rqq25WScOihCiobNb62C+G7i6kopITImJg0Qy2+qRbQvpaaSO6D1PSoR6h6AvenZtQPIWBN3bEYagzuxoBqCtaa1atwQXRHSDVhs4qhkYCgd3VHdwxReKlv5goKf2VVVsCNW8kWhIAZmHxMLA7CLEDNpKq6tDRi+ELZDFCGJQmzelsiZrqkWsVjNANkNwMpQmZHtm9LAXGRhRFZ2GFG8OFJDHMD8FBfQQq2O31DOH6gamVIo/Hdenc8mtODowAELbGL9g7cXB0tAX8UuAKBAIxF28P0G/SonQOyvluQe86V6tumdABoopEHFH+BzUsfWmTDNDB3PqTGsB4842FnLZiKqtbXUMwJYWLj0z3AHNCAzAFEy9E0cJDMgAvVWri7cMz0syEYUYkUlSDCLdSlMNqIMRzHKNLgXXTkGGF1nLQD1I+QrsWK9tKYTgLo4IDbfz8fMR6rrWbtbyIiGFmGKIAzC32nrgac1qtUsGO1GWOtANiIjMTOZWa5vPR3tZxAzd5xzczEKIfc4Jc4iCWxHTmJQFci2EME1xGuI4hhCSYWxmuTi4J2Eipn5/aGYuzMgyjSOzqFUzBSYEUiFhZjZE7qfVnEuptdSsqj1JIkUPLOOQhNBMmdnMAZA4AFAPOBmGEkN80U56htrpmfZIDuaqtuR6PM/358vjuqytKTiaWi3aBYdEPdLWiY3Yo8QUYgqJgHMul8uFBJ6O4YeP9+rlcrmA4+F2N0xTHMiszXM15Xfv3pRS85prKZdL7sgECYFjKdVtvpyXh4fHNMTb25vXr29rWYlgn/e55NP59Pj02K4PxsxaK3ld6tLAMIbE1A/ngExAUGutra61AvGr129q08fHp2VdXNWJ0m6Swk8iQBzigIQKsKqtDiMLT3uo1Y5z3Vy4scflEgIHociC4KZrrksttRkQq+N8WcuagYCJowgxoTcGImJwL7XVVtbLHAKPu9Ty6tfcyi2Sb7Mx7aRDaOZr1UtW4qqOkREdSvXmhIwikgKPgQ+DCA35bv/jN6+QwrlZKa1CFfSiUzfWV1PLrZWMWhPDYQz5ZqxOpflaLFetWlVbLbYUnddWmiFzHIh7j3nDQJAQaMsBdEd0wGawNi/VX9Qw14Lkmk66xQgSdZxjUxv1hUCEuZ8B4BmMfIZhnkuTrQ5C1OuZuE/9l1/6a4uY5/Voo9o5bIH1iEQUQuitq/5TZtv7ee7x51L+6rvv/8Vf/isn7so9dONg7rgWXgrPiyDLYR92N2HcUYpG7IAoFAYKwxCHUVJC5LC24eES95/C0xIMYgz4ale/ejf97LfeNPPqdngqQBPg4CClFjmPpWRAqs3WebVWCLOEGpIOU8HdLOejHD/W+QnrxSzP2QDNKIX97d1XX929HU9npBSekRgzXZbL4+OnlFhiPJ3mXAoH4UCAlQlYiBFcW6sFinktS54B6zT6fheH4bXW5fRwmeustbonlgFJGjACmICCtayrZ8YmAFrbqqV6KVZKLYAmkSVwYGFC6jYPbmAghMAcWIJwEkdQbdmLcu1VKwpJGoaUXvBIPq8ArZRSa2lNiHv6CBGxSDTbMshMoYELWzeuJ4YtRH1zsiZEYCAw7+EzLIK0NSu76MXsORO0e4tv+IG2BuYsYmq1lJLL5pPL4s1y0y4zIWai4AatVa2m+sLjAoCJd8N+jDuomFspvhppjMHIntbTevk0X+7zNI67nQQZUkyRylKhLQ6NaNiNYUo730+ivMzaql2y1YoGTMBq0NyLOZpf5kbeYnQRU861uZOGRAwjI4I/VUMUK621SzOqQLmpLut8esKPH30+gxrwQOM+uuJyqVYBFNDwebJ5Qz1SvWeZAg+IA7ipi4N5J050n/y+Sm8utF1g0xW9qu5AOkTbkYO5ZV+LNzV3raa9MaO0JZibkRNhhEAQycnUvHhrvhnAM5EwggCBQzM0p24f4qZmVgGQ0Xt50WorpbWizwsZIYYYeUhxGIJI9yxwA0IJceN3uIOZbtondHxumV1Tkq9iODQAc2OWOAxEiMJUuOWiqB2GN3/2O7hGCEmnwgIScJfRW+o05IqoqgDesSQHV6veFNwrIWhz9/l01Be0YmEBJEZMZoBIXct45SxZb40SDRwxFCH0/RinMYxjYpaijA3MGRyCMBNjL/wB1Ehta+8jexQhYkBYIc9Waq2mysIhBGbKObfWSq29iHF36TM/CAEMKSGg+bY4u1NRc4USSgjhVyY/uLvjNVAYumN1qaclP8zLw7Keam1demaberNbJmwwDBEIUYpDkMGU11kf78+fPj2GSONOHh/PIVIpLYj0OOeSay52fCxuuNuNIYS+ZYOBCA9D4kCtaq26LufLeXG3lOLN7e5wMz09roDad5B5uczz6eWD6ZyGIIzOMUrgzhW1juOVVlptiBSHeLi5VQdForO0nGOUYRgaUxxSGgZwIqZhmtK0i7s9pmFVrMWyuhoSIBMSS+9VoJubuumy5mptbQ0l7PY3Eqayam2AqH0dRUJtiqQiQYhSJPe6rmvNudb1cjq/vBd3R3BmvFpTkDvUZsvaEFwVAwMD1AZrMyF2BCZMQlOUFLDp9NXdYam6PF0urarWyJiLlqJrqUvOBFpr9aoCOIa4H1JDqs2HoLm0tVquttYegtY5dOIA2PMfvU8DIkA0MLfaw4eUTL01/3UOPsKVj/ASibkCLVcHBH6mvzz/5fM3fDFabTOs0M3zxp5Vi1uz6YuukD9XQM9FzPYJu6NBP3f3aM/+Bq5OS2LmHTvuV63t08Pj9x8/hjgAUm1KhGkScznOcJnpMkscUtpPhxjThGkSoEAoBDGFYb8bp10cByCRYmmaA8XwKicOU2BLdLq7sdtdRRb77dt3C5rvmseqmEtdl7HUZiBr9sdjXpfc6opaCc20ImfCk8AtyAPmJygnLRfiNu7C/u5V2u94YF9c8WULxlXrul4ej59CjLU6IAVJxJ070FPnrNYM2V3caC3lSbgFjPsUbm8mqwjLxZbsmMGzeQOLPWsnMCCgetvCr8iat+KlQq1Qi1XAbkAhHCI7Va2gPbEYhJlDSCmlFFIAtLouqlYCoRIBRTPgiCH8ahEDDj2Ou18sQL1KpoTIfcj0JhQ6uWKnLBCAmRpCa+YETlsMrFn3wukSz817xjsR4KpShI3ngX0cu7madpoDGNDmVsUiQdVNa1NnArIOCkPNWkqtrdaqzyGjiBiIGVirmam5oiiIu9VW5tLScnlYD3dgU5S03x0Ou4PaA4KYgSAxYgjEYcDK5bwsqy25FWvGYAal6gWbaXbLl7kmTjcSAYOiFV+XNheVyGNKmAZABRJsDutqBspB1WpeLRc0J44hjSlEcEWtXotqUVdA/2KqatG2qgUzYWwAiBslggAJtjPKVSTkAK7u6t763AYF0wpGLBzQG1rx7phD6mwOeg1U601nEZSEKeBATgrmDGDZrHVhk6tjT37C5qBOpt5Udes4X5E1A6uuas385UKGyIwixJvyhrZgWgrXgI5tqYPuU+RI20gCAGQEf7Y7u5oobX0mEpHOlqFN3wDdjwsAPnvB9GObKqmyuAhPu6nTwHIuJedex1h3C1AzU7AGimAKALV8DhgGAHGvhDQMwZ2amjZ1RSeA5j0YgQXHmJKHUhsDTAOPYxiH4A5trgBNGNGROwAFRghBpBnUUkspl6bDONzd3UxjRIajw4f86XI5qeI4YRCSEESYcAsX7FKzba8AZKIgoX/sRMIczUhqc8V1WelFj3/D9Zy2f4Ec0b02m5dyPy8fl/xY62LGbnL1m0IkDsIhUAwsjIgeOA7pQDTMZ/34w/ztN5+++eUP0y6Ou3g557tXzpQc8HRaTueKNJQVj0+ViIUtCCBSSimlIQQRIUcgslqX0+mY13pzs//qq9eHm1EClDrPyzGXpdQll1Oti1+blkSYUrq52bMLOV6zeMxMydHMtRkYDOM0DMO42xtAdZcgbc2BMA4jEU77XVNNYxWR/c3t7ZvXb969c4CPHz9djqe2NnRmghjDbhwYsdVS87os85LzZVlya43wcDvdvfs6kHCYzg8PWmcwFWY3X3Nj112iOIzjLqRc7OHhcjqe5/n+4b7W9ryQESIzxSgpiRn24dddScxqrSQEaNaRjxjCIUVzY4IxMgVR0DfH4eEUvntqpeZmthZZV52XcrwsgTygq5pXo4YBQ+DoABgsCKWAQ4W1cKhG3JBaVgdn7Qm3TUEbIKYkgRAVWzPLWtWsuTa7huo8L8rXcdnDtTfy0gbDdDYNXFtOG9XgWog882OICMB1U8VaVe3H7rY1CTplD5nZzJ67QnAVV8NzC+nFL3r+e0fs9VMIga7E3v5SLMY99gUAAMxtWed1nYN03wsCDjTs1IZlDmeNK6QYdzdv7t7/KLy6tRB1rebAUYYUhnGIQ5IYnQQiKjKa+1vj3QSM1tZVuGCeh93+93/yCmhXdSgtrA2KgcKNGlULlxWfnvTxYX68fzqf5nVZS6sz1EqjDzum12E4+frY5vsU6+v34+t3o7Ff8nnO51w/K+AAgQUA25rP6imEIUjYPjpmd/VazWqeL80LpoCxAM6MNZCNgvsYnaRE9NTY21LX2ZbauBR0FE5TYEZXEkdxR1dWJW3UGqqyI4ISAFNIExtpnslzxx1D5DimYTeNYxwTWV3dl1wwMoGLxEkJl4Ivib3XEhV9E6JZ08YNREgkEpGoNq3a1GBzF0RgN3QDAytNzQy4MlLotn7u1lqtpTVrVnpC4gbIvRifva9NiMJChH08tlYBIIiE0HOwGZFrabXUVktVhWKIzQxKrh1Nz+vnpHRwUNemxSqBApAAqF3OuVYt3iis60PO791oCPu7w5s3d18hXeLsrVXkVEpbuUyjIYszKnqxUnUFrmq85JaX1e2sda2l3O0PP359CNOhAOQyP83388w3KQIYUCFUCQwuNoN6jz9HQh7GlIY94CicllOx4mWukqgUdb1yZ5+rSlqVl0ZEGMANTA0c3AyNqKsUeVvcgPqzMzUw82buqNaWugAyxAlQi63Fl8ampIiK5EgkLDGIEBO4UBh4ijQQcjMLlXLlXJeia9NSrTtoOaFfpYhm5obW85eMwMGbm2JzqSCtq7SveyX0IF/fCMUM5giAm2dtF4Gbg3cfK2YC9Kbu7oQEjmZds6RIPS/S8ppVBBGEGEIA3iiAviUq9TOYe7fSM62lOAAxjWHa7ydCLlXXNc/zpeRSa621qlYDQNbOar7OEXvZtBTG7iTB5tRL7xfUcuv8I2QKuB0tU8QQhJnVFMGYXHo0JSICopswDUlao7wWyyUvi7ve3e2CEBEFIgQjNIlhGmU3BZGgLbZWc83m1g1j+r/E2GO8AQSIRWIIgztRzqq2xhiEX94MOIExOgMwAIFZhZzL02W5n9enWhc1BRAA2jLEGIUpxRgDywbYQpQhxalkuv94+uaXD99/e3//8eg2tVKZMcUUJNWqp/NpWYua1kJ50WGIducUOUqEAMMwxiTcDynWAHJrhkg3t4e7u4MI1rpc5qd5OZopYOtF+3OjgIiGlPb7fZIEjnVdW63Nr8FyBIaIwikNwzCEGA1gnAZ0y+Zg2mpTszQONwiqFmLc394dbm7SOC7zcj5dHu+fvJaAMKWYQreeIW21meXSllzn3IoZxkBhmG7ubqZDjLvTzf3l8UPNCyOXWkubm0FVDQjDOIQYayutliXPterLjZ876sxMxBuNGxzcVa2guyvBVsQUR0RSbeaG7syYUtjrcLufbneXMUlYyRo4YGtWSltzWQP2iMTaQKv2VqyhAzozMjETMDMHCyEMSasBIpXqy4KXpWqzTgPvq5CDUb0yZP35gXy+rrAK8xWDIfq81iHhi0plY9327+5MW9qcArQ3C1pnonTvV9/ccrursl+tYtydrh5T9gKneUZ0vtj9XuBARLS5yLiLiIMzfUZi3L1WLcWaMlOqDubR2q7AfsVdixNLijfDsB/2N+HtW05RL2tRA+HAFISA2YkB0NSz+yrokdd9aIG82Ml0zmclm3bShlApHJrFpWF1VGHFoMC5xVd38nQ7ftqF49M8z/W8tmO2ec5lnm05Qz4aH8wnTDkdUhipaKvZqkJHW6/zBUSIyGpbgCylxIydeCpkbs20tma1NgbhKQSuQUqSSo5WsMyIlsly4uKxAGmr1IyqI3gkAKTIDBSQAyq4ltawKRkE5CCEQMLApI5ouNEesfPTgLgL7xwFGDBETlFq7EqC1NTXL5aw7dEAgohICM/9RBEZhimIbImJbcNprHv1uDtA8+5LploUHYSQGQNzt0m3Z+f0zuLd6CEKDqq2lTOdAN9Z3qqqDYG6uxGLEJAZIXKUZAFKbh3Ybs26y23R2trnuW9guc1Lm8EieUAIrqZNW8sMGLg4FLMGBoxpGu4Ouze5HTcpiYNWbVJoUhav5EYGZOiKnBGhNnWtaurNwYVoSMM+TbvWZpeG1ABNbXVT9VWtsBKip0DqiATX8l5CGBCTNQbDzaGt02YJXvItDazhWnEuTm4N20v807tvAoN27q32cGAzcEVQAiSQIBJTHFKa4oCoJCUqNjcDQ9TODxaQSIGByYCNI/ZOCRtRCGNiLoGKcmklt1K9Vqvq3XhE7RoTyh0QcjJ0AzVojs2xvRxj2wHsKhHo6NumcoDuQe0IfWVE5s4EAQN0QCaGTsHcliNz565EA4cgQkgigtdAaDc324y2wUxBez1iplprpTUIo48hRUkSh10cxpJLzrmUXGtpeTWJ2opZ07yaKjF/JugAyBCkL4lVzU3VFB0ArOvM3b01c2zC1EOyAUgVcmlmimBRKMRIJH1RIYQUeD/EXOs8ryezyzIraM6HOgRxwmZTCLDfpWm4Oexe3UTiwLQDhKoVFiSGEERikMAkYL02dGIWCSmmERGBvLU6jCHGFycYJ3RGF3JxZwRSq2s7ntf78+VxXS9mjsjgvMmAECRgjJxiiBJ7RxMRo0yRx0tZv/3lp5//y28+fP9wOS93t8MQw+3t9Ob1DVM8HdcPH84f78uyNDNkghAQEWIMjAjg3Z5/GEZVz8sFXYIMPPCru5tpGkpd58vx8fHT5XKahilFMQ1Mgp8XZYopTbtpSJObZ/J1dS8GCIGJmIUBkTuT3NEBPDA3pmxaljVfGpGHGIYpIVFMab+/EYm1lPl8rvOyns6X40kI7NVNEMg5NIDLZT7P82Vel6y1E5aGYZimGNPh7u7Nm6+W09O3v8DL0yOh5LW0hkteS1450OGwG6f4Gu+YyUCHcXzmkCJij3h1Q21uhn0TRnIkgx6f3f3Iu3nTZuberXodiWKKh2m6O+xf3+wXs/NaIxFSpzd2LzJVs7XBUvK8rnPJSg6MAZkJKfAgHAx2tokOkXDN+vBkoDafsVRoxAgEAsBIAqzErlSR0OmFyBIRmalTv3uSK9HVrdKNgLY0W+4eUQ7ovYJhls2BplcwtV0ul2VZSim9eUq8SSyvrWaH3tTS5gABQEIEgG4c38y6Edn2IW+Aj3e48trJopdIDAC6+7PhJgC4oxk3jblNgIdZuahoS8b7Ru/DzV0a0v7GIJ5R9PbmcNjHfa5rVVXVpq1Wrw04qtpxuVzmZT6v5OxlN0RmaE2XeT2dHuDy8OGwe3V3+17CHhqaYwFsPFA6pHAY7+5udvzqMOV1UItzpYczfHpYvv/+8eHT4+k4rTY2HzmshTBroXVmzsh7DtMzvwcRJZAIVi1mRASOvq5Lsy7JV9CmzZoyAeHCu2CHyYYA1srpqS6nE3v2diRfh1gpGEQiQQSszcCBYZAYeQgYIDdXaM2bMwhxDEJMDgBGy7pKQzQnImAEhObNam6rVQ/NOKBRoGGcrBmjVBXt581arozN69kRcRyn3W6XhhhjTEMchumwv4khtaamBgAl5+P5lHPuba5+DDInVci5NS2oHgNP0xBFEEXEWdDca1W11hMAam1uiAjMHgKbeV4LuJq7Nq2tASJ47FuduZbs7jikSTie9VyL1typO9qBAfDPPJJm7VyOx/YQ+TZSIEqg5C2yaxx4HFIamKQbuXLkXZJXQU7E5vDkVhyNvASujLxidbKQGByBZoPaDFF86Iug8Zvb2/3NYdgNeZlTwle3eyG3XJa85DZrW8wxJL85ILCsCpfsBmiG2kzLenwojx+Xp4+X5Vg1WxdKE/nn7QWt4LrABQy0RlDc2kcESIAOzRsomqIpNAUEYAJGILAQwzDGm93h1as3t9PdJCMDNNs3r7oxOYs1dTVsjg1BXauCOkIjchZH4ZGDS4QwKaq6VauLLpd6eSqnS70Ua+rN3dEQjKg3wrolLZh5NW/P7VfqpJpuMQGdfuH0bL3iYARoWw3H2FtJ5u7IiERCAYFc3bSpOSIQmatv5zAD4C2HaOMIMnXbetLWQPFKd0EDNy3LDGYENBql3U2axmHaqWrtirGc67rquray1lbW+bJcznEYXzblJQq7g7mCGrihdzs522aE4xa13WVcsAXdNFVAQ0ZmCTEgiquiQxAcYhiGhEQppTSkUccQBdBbq64IZrtxHMc0HcbdNOymAMjgqbR2uoTaFPu5uTviu6uZ9gMqMm7tWmQiEYpRYpRn3wsAANsaSQCgWmtbl/VpXp5yXlprcLU5BIDuZ5kSpxRSiEIRnckJEAFDre30dPzmr7759q++PR9PrpZi3O2mw2E/jENZfF30fGxPj2VZEIn2O+loVowCLKott6ZmIt2WYwGgEGJKYdpNIfCyXM6XYykZwJgRUbSOwunzogxIAIzIBA7Y9zglAARCZwLGzpNorbp7RUQ3RzfzbhBaWDAO4zANMcY0DMMwtWbL6Xw+Hsuy1jUvl5kZ97uxVl3XjOBLzlWdYhrCMCBhkDCGcTd1isg47cgthKFLhSVIGqOCVs2qTbVGCEOKup9yOez2e+Yvevzu3lTBddtoCVlQmIiR0N3B1NGcoGvTiKkLCRwAo4T9NN7td68Ou3OtjkDbBNsS4EupudVL9cu65lqbNUVHJ3LYdPmEzN7zeoiJBJdIoLFlvZzUqmp1x47Pd+IcEbl0Zxv84qDccY5OOgG8ntW84wJ01QSSu5sauBMQEfWiBwBb02VZ53m+zHPJubZGV9bMdioC7EvMVb6N9HxUAnSWrjbqZxhwkNDZZkhA/hIIuqZjPc92d/6CjgPUfFz1Rusd0F32YDxwGNPu7Zu73xl3tyn5EB4ZzuqVhNMwIAdurdZSSnFQUy01Z63LesnrpZYVAddcEYIwquVSF615nY9lPgm0YTiUBtkwA1WKLiMPN8PuQjwOg8dARH5rw+3teHeb9of0w6vDx/u7p8fj5fQA9TjbzJdLBZSg4LnU0a+UBQIQpiCkhmaeawGFtdRmjbFRd0JXU3VBGjUwYBRj8paxVGB3RgvUYmgpWSAgBQRvawdHKTKPQ4g7hhjnVS+XBdwBDJlDEhIyMyhuVlRJEFFQwRWsgbkar1WUaqFE2M+ByILMVrE3f15agyEiMccYh2GcxmkYwn4/3b46jOPIQNpsi30jCoL7HTLOx6fjuhZ1b6AK1rTlXGsrXlsLzMQ0INM2xtx1iyxRb01bU/ct84IAnBygIlgncBHiJh0txd0IhUmm6fDu7Xtifnx4fDqeTsfL6Xg6nS7Lsmr7FSRGV10WXZAnYhMEhhBwYkRhTCmwbNsjOqIzQURL5GMgDZhDbNOAQ2wELUdOdXQ8sHnTruYhFAxDGISjh2napWEUCb2PQ4iEVmxtOitko+JIyBgHA4GSwTKUYstSweZ8sfsP6/E+z0+lrD28A39NH+wKtUIWE6/WdVhI3UHpunkruJEbqgEiBqFuhzLK7vX+7Zubt3eHt4dhnzCSu5q0VnIprTUwcu2CP0MzV6vatHs9e3FSZJYQwhCHKZGwOxSrFxNBxABCOBuuumStBtrPQLyZ+DqQAzuwv4T86Or+28WNXWp0PQ11/98OCAL1kAO4AsAiQYSAvLqiQ23AyCSGrmCfreHYiRE3ByoGuPqSU6NuKNzRQdXaWlnXC4k5G8rQ+RgiMYTUhpxzTUMbciu51kIhNoBht6MXQkuJgk2tlWpNCYxQm+m1Yd+V6IxI5qi1KYI5kyGCc8CYQpf7diUdIRALB0ERcUjDcHeHN69eEUMQbE21mQPcHA4hynRIMTIRNIUYOAYJQUQYAKjHpjQ1hdbttABJwAFaUwQ09Z7p9UUv2cEdzdER1Fpt67KeL5eHJZ/NHEEAHMHUKwByoBB5HLuZTiQKYAGcEKiaPz4dP3z33be/+MWn77/VsoyJb+/2d6/uxulgLvefHr7/7vHxYZnPtSmnkVIK4xRjkhAiMazZ8zqr+e0Ncbc3AhSRGEOM7Kjz5bQscwiBiSREBIlR4ouTpZtprWVd0BwBXBs5bFWBKzgygZvWXFQVEIiYQ1I16/wvJxByREIahzGlhICl5NPT0/HpKa+r9WgG7I1wmHMG89yUYrrbH4ZxCikBo4EB45KX+/sHNK7Lcjot5/PKggAeBh454mqEkNcVAYgkMN3e7m/vDj14ZitfmpaiiM0EEUACRwwpcAzc/bvNvVVrauwwprgb0hAjgDdzdxDmw5juDuPd0/C0hKzVqnHXGDIBYm7tvK5PuR1Lbq5I3X5rI8v6pkMyRCQkJg7CCKj7UIstF3fNl1rzqkV7RI90wTUzR+HA9MKPpG8x/RIH6/kevgGnKIElMABsmkUHIEAGDkxMpep5Xj7d3y/zxd0QYPP6EJGOA26OzBSEWVgC0Va7C/e5FSSqEEIppaxrpTqMQ4ipk110k8tu3aeuhLpW+V2w+JlP4yDF7072Vts759cQpv3u9s2bt1//+Cc//dnvHw5DtY/r5S+PP/x8betcylSTgxNDAEYKJJjX5XI+LWVxK4w1CAIyMimSgTuSjKOjz5eLXZ6Gceh5fNXAOCyKp6KN0rB7LcMEyISBMaZwe7t7/+r9qx+9f31c3314rN/9cPzml989fPft6dN3y1wOGoKQ1vLVU6r6GYkJRJFEKRWFx9PFaAFCAGOoaG6GatpK3gUewn4XWLCaUq4jtIFjQL4YXlzWOERmFCWrerZcVUOwKcDNgNM+yLg/Rj0/rbNnUjUAYiMGwAZsSMTCjGzu2VsxLT1AIbusvoIHoiiRILrGalBUmzmykHw2iCPCYRim3TQOwzAMuym9efP6t3/nZwDwi5//1dP9Ebz7/tM0jK/v3s5xfvj0dDqem1lzU+hkBlMzrc3NQiiMmGIgh+bN3AnRiTrVt7vxIYObZVUiZ7YQOMZEiEFbq621llVLreMw3d2+/ulPf/tv/+Ef7feHh/uHT/cPnz4+fPvtd7/4xb/67vvvL49zXvOzvYJ3ebWrejNsCjXEcBgOgZK2QsQOal7dFRxVi9asuYDCKFOMw25v0w7HsYGr7w6MUea6rHFuWVsltB63x0HYEvFAGNRwzXq55NNpvVxazdZsxVCFPSTgZBqKQWnoVe0869N9Xi7zfLTTp5rPZg3RqSOmoLW1rcO73Q66gao2APQCCMhRgKCTvn3rRQgiY2BkNHIMYQqHt7c/+u13v/368DqGGJDI0ZvWyvViy9MlrxkAmCXGEEi4d6SICtRSWymtanY3IhinKb17FWFyZ6tOF0oe3w2vbsbpAuenevy4Pq2weu/eoOE1XZEB6fMQu86ZZ8peR4OIYDssAVzb0L2I6X3Gq/sJpxAIyKAVx9rNFnoYJ3cmGBETB+hFDABsaiFhcmFlM70a5lkj6v5GyzyXqnNp07LuD7tpHGNMKQYmbCwah1ZL08ZpAObd4fZ5fwEAEUEAKGAEFhjAsJED9GjWK2UdyR3aZuVpwoiEgUkc1F2bmoF1u17hZlbV1ByJYowSo6OVvLhZos2dNwwyDoEFVVt35tiAB6ZeBbbaFBQBe98XkMG7pMj6Hg8Az7j950EGXSuvtdYlX+b1tORzrdkBANhdAQDRiTEkSUmGgUUCeXAXczJDN6i5zKfThw8fP366n+clxDhO4+tXt/vdTis+Pa0ffjh+/HieL2pKRJRivLnZ3dzup2kMMWhuZq5q2DZCQs61tdZxGmLoljxIOI6TmTOyGwbhlwWZqS7z+Xx8aqlEFiJixI2NBh0Iq6aqJbsbsxAFgsCEEkU99mBrVSul5iW32mqz8+V8PB7XdUXw0AMfmJmDA9VmAO4sYRx3t7f7w80wDUBYtZZaSi6n80mL5cv8+Hhel5IGCoElMXAorWizZV6s2TAM8v8h60+aJTm2LF1sN9qYmTeniwbAbauyqh4fS55ICQfkkPz3HHJEkeKryryZtwEC0ZzG3a1R1d1woH4iAlkHA0AAQYR7mKnq1r3X+lbiaRqmafzaiTEDadaqMRuRBUZmzxGnTOMQQ2RAF7UNBBHIIUXOKabY00Q62RJSoCnyFGkIFBnFAHvXzF1Vl1Ze1vVpLRdVcScmZgcCdCcEvqIxHMDUDd3NkQiHzIddLDdmrnZRa9quzVEA5/77xkAhfD8Z70S7EF4VJz2I8/X2cRXH9PlYxzYyIzEhgqgs63aZ52VdW2sx8Kv/6HWAcEWAEiMFphCoJ3iZgvepkkPKgUPAYSCAWVaRtq6g5jmPIYQupnk1F3Sp71eQDPy2owQGofFdTT/i+FM6vDsebt+9uf/TT29++vHdD+/fpmyX+dOz1o0U3Wq12ixE7K4WAmAHA9nqvJWlN69DIEB2RHFXVUQPMZOawVbV1lqImBz6CtDSLi+XRTwMT2GYYkoxJAKe0g3bPB5+2O9+GMbjtEvH3fE42K+jf2Qt5wjsWwvzeTldBpHvnox7n7BC06XV6hYSM0EAIQMxVtWmJXuIAXIKMVgpOM/m6iGkNHgMuyHbOGEgCoJ1qwmrgA8MI/vIMrGmRCY+IkR3UjXwDtQDUCbIAwVgRK6iZtJEGxE4kHRWkgpiu+bRoCqqB6DAIYeQriTTq6g/DjnFyIGIiVNIu3FXSn1+fPnw80dyZuIQ6P729v72PnO0ZttSm2oex3dvH1JOa1kvl9PT8+dWW60t9qBdwmbNASiwO14DXJCR+uZDPbBWzQApJ2ImQiC4XpdFJKXpeHP3+9//6b/8l//94fbNy+l0Op1ens5//8ffhzSp+PPzS63tuyIGmmhtrXFjKurMPABHisnJwclAzaTrNB028UvRp61eyLJbSIlbRCIjVCdADgiTS9ECIm6pgpuYkzJZEIvqDAbLJvParvOHpgYN2TEBZLDoxbVKmze7LHC52Olk80tbXmx5Ni9ATDFgiAxojcC+KUkBEUMKaYiRQ/DgDAhAkQABr01kJEDmQByYGRiRYIrjbb67293teIqNrdbNDHsHorWybm1pVo1CBAygDEiEhmzmSmwhJhGVUlut5uLmh/0uUDSRUmq5bOItW9zthnFIOQ5G/NLOVYu7dgoEEpETkIUUkX6zBXx1pr3uCOadyPC6m8FVMdPDTvB6ywJ0NwQnsIDet/netlPswgAH7Jswdf3jFeVx7RUzOSFeIUUkAmbeRFWrFzE0VddmrU3TFGO8ssuJOCRkzuZ5rCkP+P04iQmBMQZEJwegnk9keg2udAR3Qu5U1i4EU8MQGQR8EyLtKGYXDUwAr1xRsybN1KShmq7rFplv726HlKUVQDNTV7jqvJqKNHRnQAMS01qqmzGRu5soMV35f126BN8ZTb9dksERzK1KW8s6L8/rdhHd3B0Awam3H0LAlMMwDTmlGBCBVaM2rA1aE22yzvPL49Pnzy/nuRqlw/3bm5v9m4c3Q8xPj7M+Lr/8cnp5qqYhxcyRjofd27d3b9/cHY4ToS/zupXW/9RNvdZyPl+WZdnv9zFFA3X0PGRikizSVKoqCAXloK/sRxCVl+enp8+f9tN+N+3Gns3rAcAJUUW2dTFtgWFIaZpGToNibIrGTCGWbZNaWxUtdT7NqrJspdTSqrh6HnJ4jXiIKQNxl4jnnIZpisPIOVNKzMjAVNkdltPy+cOX+XQplwuhxSFgDCFht+UVadtWW2xEFOKYYvx+zOfurVmrnjMQYcw0jDxNdNjF3ZRjCJ1Mr62pGjgweuLeZotdbeBu6EamDMKgTGbs1wuEanM9b+vTsjyuazHkIYfAkXvqT0/iZQAQBVU1lWYmgEQBmIYp3N8bBcUgdKHTaptcLX2A6K6BOYZvOpL+q73CcOHV9dznA8yBe35r1+H3oU7XZqrptrWn5+d5XhB8yDmnBG6llCoSCBWZMXAADoT9N2JKgQ2wltKauWKMATznnMZxDCGo+WVZ5nleSzkecBzHmFLoFjsw640nhGtF87ptfGuRU9ThgY+/P7754/sffv/n3/34hx/vfvd+2k/sdlqWL+X5X9rLz9lqZvYGUoEjIoGbiUnVWqVsbW2tpMBEIQY2YLsGzgkScMgUKQ1GDo6ROB6GEQG3JlsVr3WbNz2vmPIwjSlGclzo8eXx07D/eXf703h4t5veHG53v99Pz+9+/Pvb/PHj88vT+fMnWss8L6PZ10LZW1NRRw6A2HTbrJFQZBiQCFABm0M1FWDiENOQUtpKe3qetdVhSIdjON7cHMY0RAN3Eshpi3FLTYZAmYxtw8Zch9AgaUuqrCqqurDnQOwphuN+yCGq4aVsJAbQAicEDoQk1LcnUWvWXB0dKeQMgRTS96NkxJgwRaR+1lUpa7m8XM6nyy9/+/CPv//cRcyBUZftze0dAEppWlXV37x/+H/9P/6fDw/3f//w93/513/+/67L88uTVhVq1YAQxashsCe/SnQxBAochpQAkLBttS7VqiqzkHNgCwgxUGuwbnXcw/HuzQ8//fH9+9+/u3n/8FBMzAV//fRhTPta5O9/+7tU+fqOuXspUraWuaKvoGpWYxjUQ+dCqqt5Q3Aig7AoPy7wj+ftpZwP7Pvd87A7pMOB0qDISxNbiy4rzgs0NwyNrLXVK1mzaZ+wCjL4vNVlbdrQlFTE0CAiMAlBc2/FltXOL/b86POFt4Xralqc1BycWUO2PAEJbAUwfAPFEOO4G463uxynSLEnRQOBg6lHAGIOjEzXvxAYHWAXj+/z24PulpfTXJ6ktX6PcoTrsIZpOEwxTdRdIOjIjKbuSkBjnihyMSnSWrNV2lw2Aai1bWs5Xy6mmpewb7u79w+H6T7m/dgeH9cvVbZAXZdB5sYachq+y7T61oi5zo8A7DVQ4KstoPsorxjga+YPmliRTQEie0BPjIYEBObu6HotY/y1sLn2w9XctCEgIwamwKGrAxGxE3SAXR3VpG6LSqnrXKYppUxEgMGBuw7Z3KHjZb6b9IX+NZjIuTNrMEZSZVG7yp5BRaTDB83dVd0RCB2gNbuKMdzBPEYOoXX1bwdLiRiqNdV1LRpjrRq5b6NdemMi1prWKqbKhDFEBwKB5q4q6D3guiM4OgzRrtM7eHWn//ZHTWpdt3LZ6qXKqt5F5N2GCswcE6aUUggBGdTLJufzdrm0yyKilphV2jxLFca43928mQ50dzPdHvbk/vJ4Xhucz61WJAwhpGHgw2G8vT0eb/Z5iK1utYqo5TxQCOfzPM/ry8tJVQ6HHTOaqSogMjO4saEg1h7S+f1kXFXm8/n8/MTuiWmICZkISc1aabWWdVsJLO1ySnHIiWJqHoBo4GiK27xu87pdLlYLIKrp1qqbE3OkSJEoUh5GAMBrlXAdk1CMHCP3Q5oRX2Mvaq1PTy/nl5NVGca4p8Apx4yOQDH6WlsTsJq3mlJIQ+DfNC+AEJkhR9qNYb+P+108Tumwy4f9FEOoIvMC0qqrNgTu+VlIIVDkHnrvTURMI9EQQgIEB0YAt602IpdeMgRmwxCwC1n6lL+T5B0ADBysdT0AWuBe7+G0Z8MgkI1AHM3b1syte6j0FYLw3XfpDEm8OmB7w5JeHdTXoqbTAZi6XNfM5mVdlmWZL622nFKOacjJXV2l1WYiQMaBriNq78W9VHBzaK2pODqbmYpo4JQTpjQOQxPZtlJLXWgGAA6MGDqM4fWTf1fjI35/8UIOeXdz/7b84Y+/+8Pvf/fnH9+8e8jHvZo8Pb98evryj6dPf6nrUw6wy1PgBBg6h6tf1zrGtb+0DuhOPadO1cS1SQVCQiZgjhMTYsoQE6dMAOzOzCkGdDufXprDOAw55xxiCBHplNZLq6tsL3R42k23++FmOKTwu2m/C58PYwihVR93b4ji9bAEEHNxJ0Yn1AjdwWaO5EBOotrD4sWhqCuEPE6TSkrWHChAzuGwPx6mIXhz95Cw1rTfVfI1BYyoESxYgXrBAsnKiFLJ0cBEEQEjcsKcKSduBsGRopEZkTFwxIAApiidOK9gBgEtpkiBUSBw/Fr0IwKxI6m5mikAuKIUK4usc5svhaAFwsS47da6rgDcSnOFnMaH27f/9Mf/+PbtGwR/fn4ahpHOJwBQdXVVcHFVcjJ0JHAGDMwhECMyuDP1SFRrYtsmbDambopDd0ZMMe4Oh4eb27e7/e2YDyMcrqdISj+8/9vd7UOM2b8LGzIDbSZNTQ2CI7iqnOelShiGPMR+FjmAAToFg1AbXM715fRi3vy4wSYkwINtEIuJNdVqro6KiChimxUVAERvFdatIvk8L9taRGIPreo7m5M31Vp13fR8ttOTn59xW0MrIFvV4qAYA05Hmg487HKpuLTCGb6d+4R5jMM+55gCp6u+CK4C0i6H68neRPh6zuLEaZfHuIatXOp5bSIG3jV6xBxjSHkYc055RKJWG7hS10Q4pxTyMI67HTBzipfLGRGqGGAzNyAIgQwdDUnCYGPkKYy7bBMgnuuLmXV0oYMiMnwVwFz3sW/yua+Mhq9uyu6Goz7r0ea9QQTQ6xQAC5EOU05EVaQ2raJNTPrO5QpOBHzV0vTtAa6JU4js9FpyuPeCyby/K+5uJqoNvFaTGmNCZKTgGJCYmFSlrKvU9r1eKaijOxEyoYsruEcOlkAMxKD1MBXvcbvW73Tm0Jq2pmYG4IjcR+9EJOKqZuxuLq3VKo7YxEqRVvWjftmP47SLKfcION2atipNzN1jiIDgSNxIWxVwvr4Q3RGCnZ+NAN5Rfn0E/F3V72YqdatLKbNqA1BEMLjKX7vvKecYQwCF1ppWfX6c//bXL7/8+vJ4WojDj+/eHA4HpGk8vL190zDcjzEdBz8M1bb1stZNo1sMMbgSM49D3u/Gw34ax4RoTbS26gj7w1FEP3z49Pj56eV0TjF0SJEKOKKri7hUkwaqaIq1eqvfSP2qui7LOl/202A6qlY1AgwiejnPpWwAMuQQ4xDT4EgKaEhIIRNVKMvL/PmXjy+Pn1stw5BDShwDxav7yUzBkZgAQN1dFdCgNyrsCooFBxNrUmstUq9vQa84KQanyGlMAyPHtEopJtXVbF23EDAPAb8jETHjMNDhwMcDPdymh9vdcT/shrCfhsNxR0TrVhK5tgZqSwNAEgd1YMIcOccganNri2hM4yHXCWcyyQjudllXDhRCvjnGrFNRqaZ96IkGHLDHFcF19NRbiegCDu5gREARhl04ElogQwQCn7di6oaqaq3pb+ziiMSI5AD26lhlvhYxXzkxeNX/dtyDl1JfTqd1WVsVJhpiGIY05ARmZFbQtm1Btx49jATmVpvWZqoKDkh9r8uB2d1aq1xDCDxOkyO2pvO8XC7nJi1EDolDzITUJexXGfv1g9PrAAsAIAa+v939h9/f/x//+/vf/3i7z4b45fnp4/PLr59+/fD86Zfzl38M0f/wu5+Ox920H1POgGLggAxIoubuIURwcA9iqArmagTq2lozt1YkhjQMQxxzHAdMsbiDW3WjEPY3N6ei669PLy9z4LAbdnd3N9OEmADLZT65rKfl8z/GNO2nm3x4s9u9H344vnvYv3tzu98f3r855GH4WsQYvqoqCQiIApq6qm9NUawTfxC4OT6v9bbBj+ObcQrLPJS1HI9xnMJhSrthACkAgDEhlHW2SC+iK2EbQkwour34Zgm2fVJEzMKbgahBVyRd7SUOpBwgCoJbAM+BEbgKmHoXjzNRSCGPkSxilfANdwXQY6ystVY1jRxSjAPzEELLeTcMB3CPhEOklLKpiepWChA/3D+8efM2cDIxVyfAnPIwDhwZkNQczJubuOmmwCGlHGNijghYSkMH5BQCpUBNyrpsXh13mQlLdfMwDNP+8Hba3aY0AQaD662LAZa1NjUDRgrMAeHbHcYVQZCBcohpmET85XLGBY83gJPl+I0UwDFxzEaxKDwvm21MIYcWorKIiq2mxpacMQzkSBpNvNZa1cOU0MTn+WJWL+fTtizoewJmJogcUq4Etch5aeeLnE56fvRtJikBxK2a1eoGwy68+2G8fTvmabgs66LnvEf8GvpOyIk4MzICu/e7lhO4B/eu8XUyAFdAdEcFRHJQrWIiPYImxohMIeaQY4gxxRBD6HnNiJgiW2sqRQFjTinnw+HIHI+396eXl48fP2zLCk6AfNhPhNjqJKKuGFMG46DpXb6b+KAOPIfT9lx1cwM1qf2U/Qoh/EpjQPxaxFwhea+zpJ5e5Kaq7uCEiICmVxH9YRp/9/5+yrGU7XJZnk6XZStihqDaKvbwKyM1dQOCK7nmuu1a92NcGVxI1FUkZM4A2PFIYmWVuq7u4EAKjMSBWU2X7bLMZ/ue2Nt6TeMEQGbgBkQUQkqJ1FGt820UsYsoyc27JtHMTdyuaUdMkbBHU4hZuL7gVyCImahKlW3eym5K+T6PUU2bWmkmBoBMgaITWXcno+uokcE6D4ORuKcNY5+eEhBdzWPfVot701ZbqW1t2sVlnXNq7gIIzBwCx5jIsa2tLGU5rb9+ePrX//nrzx9enuaSxzFCds95ykC73f4+03g/hEOsCZ83rZfN1WMImTma+DCk29vD/f1xvx9SCmoVABAZ0c18WbaPHz8/fn5yhxSvaXytqQu4ofXMW0UzMmOz4Ba+Vsp99kgEgTthFsystnJZtpfnc60lJSYKrYEYBYohDikMtfj8cnn59PT04fPTr58v52dzA/PcRVVwTTYmREDigIgUEjOiu/bubiDKKaUQurB42ebaqokRYgghxijmFALHzGFEZnaOsaQkklRbLU1pXpHtfP5GH2amwzHf34/3x+HNbX5/tzvuxhwxD3kaEiKgiaawH5OqO1mgQAgdJsTkkVDUl9pW0RDSlMd9TCyWIgP6LIWMevdojIGtQV21mZghAjn3daIGIibNVMEByLGznsDcyYExD2HvKAaAGNi3VVSxVdmg9cHu969ZX4FdI4uveNzuKHR4jTbp3RrzrZZ12dZ1bfXKHyNwBg+ExAwWQVk2cDAmZEZzEBEptXu+mON+l2KMMQZEFBEQE6lEiTkMKe13k6mWU9m2dZ7nEEOMMXDolJn+gQ3AwV/7w/BaxNC7u2GA7Xd3eD8VlXXZnp4uv3x5/vj08vnl5fPl9GxjMFAMYKhiAj21EK4h2h0EgMitQlPdtuqOYYhIFAKLukpDBMcEDMZQXaRpp5xC4DTkEGMp9fR8IsM21AiE6mHKvf6Ssq2GK6ctn/al7DkON3E3pZQmxx/ubnZ5SN+eC6ISGFhD84i9VabqbugKog7gRL41ezqvt5daLd7f3P3hz1Mrq/ucUgNAN2BIyMRpHHfp9q4R+GVuBJXRyZtJCa67ZAA4CC9Cc8NVrKpY9Vq6RwNVjYgjgysER4ZOEetY11e4GGOIRAYWjOk32ouYOQ2BA3OIOU8pTe7RLCANxIOpdCucA6mBmHUWLzBtpf79Hz9//hT//us/Hp8eW2vQEwzcekyruDWzJoYRmHIKxJQYCQzdgDB286OCuEJzK5si4lYVeRj394fD25j26jwvJVABdCbOIYqZOhKFnMech6+vGSKmkHIYEqdEaQi5giMXQ3SOzhEpIJCZEVOK4zje7Mb7/VTmSS2k40083PAwmoetydkNInNMiZECZhvGzarUim6MhA51W1U3bcVdwBuSx2gYgSKIQt3aemnz2ZYzlJVaJVBktCF53kNAvHuIP/1hd/N2zyGGMxwvcTokCt+WTHcMEAN2q0CHaThhb75SP6Ohw+IQkQHRkQzJu1yM1JSRYx6GaUypc165s0vQgdDVyZ2AIgfO45DHKcacBgOkdV3dUUUBkDjmGHIKKtbEwKmJpKLZcwi57AQQqtaqxcHUVE3U9Pum8vc+xr5LIOLXIfhXve+/d2gBAiCj5cjHKR+mVCMMBDlAkdGJl1I+Pz7X0gIYaSfUkRMGRGByBzT0TjgFtFdLBAQEBXQkUEPsomIEN+u0IlAgAGyIoq3VdZsvZt9lJy1FCYABzViNzByQmSnngByIuTVRc7omdJPK1Yba6bFNRPvWT5GJQUHFQJyIUojcu7lQYdnWtWzrqiY//vQmxry2tSq0PpCIiaIDVhR1cKaQeWc29vwORDIA1R4NczVIG0P/118fjLuVum51brqZCwC5cc/sQTJijAljJOagxebT+vjx6fOHL7/84+lvf31+eqkNIgJdLhJyjSKqEDkfBv3dKMfQHPzceJXsPmKeAINI2x+m9z+8ef/+bpqGwAhOgcM4TpfL9vjl+fPnx4+/fl7mdb/fp5zykIh5K1VE3UNHDIKZad/SOYRv7iQm3h2m29vjYb+bxiEPuVZ7enl5erpcThd3G3ejowCtxjkdh+FwF4b9y6fTx7//81//z3/+8I+/L/MlJBrHnGJKIUTiQExEgSnGiEAgyiHu97sYSKX0YdOU83GaUkyXy3k9X17OL+o6DmNOab+fwIC3knKOeYc8mqEaUhhikjx6AZRST+fl5fTl4fihlnp9wwLf3+9/fH9zs0sPh93bm91+yADOhKjibqgtEu6HwYGBhRwTQ0Alb+gNQU11KXWrkkIe83CYpkBIkR19lebiZMIa4xC7rtbApK8fdEcndxHfNqlV1f3ruNfBOwxd3Qw4Rj4chhTDYRdb0dZwW8vpRXYDf6/vURXRFqyboJkDpZRiN4sDOnyzS7tDa/VyuWxbcYOUUo+MtVYbwpgDM0dGZWJ0835Z6a9xmedLa40IdjvOQx7HsfcZ3cQATZs0RDMEOhz2iLjWsm3b+XQGwmEcYorf7z9daHy1O75WZDnQT3dxp8bt0/z85bJdzuVybqe5bR4SD3sL54o+a7vU2VccdGAiInBydyOikDIQA7Ta2lbry2lGovvhOA4ZiFXbthUHNS9FHKsUANkqA47jBIFdQd1qbdu6QXMvGhFU2qiHERA5AZIiq1KZ62anSr/uRXc3W043v//94f7mJuev12R0JiWsrgXUGQBIpedgMXTRnhu6LUX9JNPT+cvLdneX//xPP4HXz5/+tV4+X+ZNN9tljswOFGI+HA8ICrhJdXc1MUIbkhPh2OmtjacKL4s9nde6bBcGrmoU1JEgRzY3QCOrDiJgTgQByBj9mjDcd+5CXL9qLzjw/rg73h0DjNO4n/bHmKfacN2sCYuytCag6F6aKoATYeC2bk+nl//5r//y/OkLoj/PT8/L02l9alK67IE6HtBR3EWdwS0COAWMOSWPo6mLumhFBwbCkAh6Le1rsWEX3uzf7A9vAdM814+fn7dNYgzTOMZDRGIk5hj3u8Nu2n9lKjLxYdrf7G/GOEZIbCHHcH8/QAzDmDLvyGOnJWLkMR7vpvc/3f8RWzrSShDevbmZ9iR0XprKRd3pkEPgXN2NOR7C5hFFoIYcY0BCqWAtBywRWitINQ9OyTzIJlVqrUtri1lFRo4EhhqzHDKOnPZDvHuze/en2+FmLM0rys3Dfn8z8XdFTHci9nrlehJd5ftdO+/Xv70uOCRmiIFy4AHJmsu81qA4HUNMOWZOPRvEAbzLN8TBOqQhphTyAJTUWQ0AQ0hDTNWhGECtgo4pBmInayK6lhkIh/kwhv273Y8Y+VyfNzlXrWiGPQUKv3aUf9Nxwe9TTZAI0dyaNOrZg9129VrF9ZIHzFwrmSdoeQpv79+lYYrj9HKZ/8df/vLp07MWM1XsmAsHZ4p8ZUyIaNm6JYU7U5sYmFDJXLBHsCNg6HLJUltT6Qm1KlJWECnL2ey7TsxWlBDjNc6mu6EcqfdjQnInIlGjqzmQeqoTIKkqaE9o1/780MHNTNDMmCiF4Mzi2NSIgju21qRJnwhqATFwIEe2nut9vTs6E3KIAGDCpgaAYgqgHXDQqRsA3KOOvn/BrimSJv410KHnhRO+xlOHQAnZYxgRLmVt86WUVSNND29/PNze7g4DQFjm6iKD1/so72I5hlrAAOi5RfHkHIACMxz249u392/e3OXBkdXdumN5W9bPX758/vQ4Xy69DdMDjdV8XVtrFq7+ltCjO7vPseexvR784XhzvCsPNze34zA6kLl2gIhTAAfkBJTESD0Qj0i5VTu9nD/8/ZcPf/v5/PTsrkPe5Zhi6EGA3CPiYkrdcW21xph2h11OQUqU1lQU3dCslfL85el0eakqIcUUkhNMkyBQnkYOKaZBlVoRkWsk9NeBq5jWUtb1m82SmfZTvjkMhzFNY8wBr4A2da3NTL01UGOAzLzLiACRwV2r6mWr4svTvP3y6fm8lMO4c1MEoEAewMCbu4C5NVYYDHsMKzBZ6819Q4VurOsM66valYCIDMwNWrdjACDQkEIOvBuCNRPFdaaI22EX+TtVf2/EdF9H9ymFEDjw98qZ7uartW1bWZZNRXIecoqZA5iWTa6ZTISBkIle5WZ2TbQV2bZNRMZxiDHmlFOMrY9ECRHBVMUrWggh5pxtGnfjqCKt1XVZSyk552/XKfhuovQbST/c7lkvpu1lq3Iu86Wuq22i4kweklDaTOYiy7YNOSmTCSECsJr1XGMzxx7z1UNfHDqkkHMMMQCimxsyAKi0YmZlqwGJYkDgrbRStlqbNCV1xdbqVkukLVKMEJJB5DAgBGteZSn6y7rO0i7Tzdu4sxRH+oZRd3FraBYIIwcGFW+1KfQateMXHBEUYBN9nrdfPj/d3D28/fHdbthNZa/tsp1m85ZCjkghpoAEbu5N5bCt5raoKaERecpIBqiAbMRkZnVzq1bmYgUgJeSIELtnAhxJwcG4VwdMBqBGQKDeXM18dS9fm8qIGCLnMSWadrvD/nAT4nS+lMfnZSvaBEpV9IbAVbSZX+Gn0GFjZgBS25fnp+fzl+qrgzITIqEjOLmzKtSqyZmnMKbxuD9O04QUzaC1drlcpD1qFTdRVwAzJ+Q47W5++OH3P/zw+2l34xDW0gBmIhKxcZjErNQGQHd3D2/u38QYX4uYMKWbXbqJSGjgzQh4nCYachpC8uyFtJmZE9KQdvvx5jje1Zs20hoI7u+HkGwthIBbZEfaE0WmtYERRiKCNoUJIR13uyknJHWphE7kDlXRjaAn/rgqOTBxCCFGd0FgMW/jqA83/HAIt7vhcLub3uwg5XmxZZU8pJi/j4MAu9Jgvsox8bV3TgDfTwUAujkRmCAECKBUip4u2+PTaRjS7cP9V9YUc0CHzpW9svk7Dy0E4tCto2Vry1rXTaqYI5nZ6bIx1hSZENTVOhPFcbhcKMWUxkw5cQocxCui9XbQ958Pvlu4/XoDX/OW3HsL38kRAPkVZeUIhAEgM2XGgJAQOQbmEMZh2O12x5thyOfLM4jOz2st6hgMWYmcGAIbAAG4aTXp6UiI2J2ejkhsQGiqIggIKQbrSQUI2EsTU3ABN7cG33WIQi2GiIIO7tLM3VGcyCEQAPQ5AgegnmHUKUDmnfJjpIJKoHg9jB3ADcHUIFCMERzAnIKlOOShSS0pJiQGQDVQA0Q2h1KrNpVSzZQYgImACTEwO6Ga41U+Ze7IFIchcoRlC/ztktxxate+ECCam7k6GnfgEBNzJEpMOY1peHcgH86n5fkkxzmOu3f/9b/9328f3s7r5cvjlw8//02XpyO1+6HdsRxYFrfKPCZelQooAOZAh914f393d3dnuJkWd3df5vPl8+dPv374cDqdwG0apt1uGIZs5tvalrmpw35ipkjMoIpApl7rVuv27eCP8ebhfqH3d/tbdHg5nczt7vY2D8c4npvYMOScY4ohDVMKY1vl85ePf/3nv/zyt388Pz2hWs4xxRT5WsF0uWDMwzAO4zA4gADEFMfdNOYkIWzrfKmXbVsu55ettL/+279ttb754d3xcLMbd6beijLFECMRm/O21dPprNJSYhMoW221BsZhSBx2eRzx1WKNAIEoEscQ0GHdipIGDgQdd975r1qrmWOOiREJtJldqv36Umpdfn06/Z9//WVZt4f9PiUWEKOucHDLnR9tAK0oBCQKTBCxGQgYoHq3D5j4lZpoTgAOV4YBWnORngPKIVAMFCLR6Ga4ZYs03B5TxxB8vwF04EwI1DciIromN/q1WhDVZVm3bZUmTDwMw5hzRDJp2hqBm5qT95h51es9A4nNQc1UFIGmcbffH1LKHMiBEBm4w7pN1MicEMFSDOGw25np6XJRadu25ZyGYezZBddY4q5wfAVDAAAShIDIutRStG1S1bRHpzp4A9g8NPF5bmVt6RbHQLVpE3WpVctaVhFDom4wH8eMeGit1rK6V6Z9HuI4TYCdrOamak1MrQIs22YCp9NyfjnV2gAxJh5yTANTcLO61bUtIUPaxRhoNNKyrc8vj/npY9meDuenuPsSYJP3NwADAJjZJlu1lvMuDkHIqJAVMdAmYmI9e5Qic0RKsDb5158/YODpmH54e4tpSNNxfX7SJnsLGGDcDcQBQEXzTo9IvswuzZEcsQG4gfe7W6S0zwTHRLN/OslqgCNy5hAxUArMPWMVSJtUNQVG7QesW5EVq3i7iG1fc9PcTaw52jANh+Px5va+Ffzy5fMvv3w6X0ppuq4VoRGFItJEu2QVmHaH/R/+9Of/9n/5P7ZlWf/f6/P5i4gYNMDIhIABnd1JRcraGMIYh/vj3fu37/fHW+IESKL6+PiprKd1LqVcwC3llIY8xcNPP/30n//Tf/njn//TuJvGYQgxNfFtu0iTw/6wlPp8PonqDz+8/93vfpeHfN3HIA50N9Ad2MWsigJJIAqBp2HI7CzFqzdXZ2SMOechcMox5dsQWIfRwCUYZk/HPGLEPQChOmMzsyIOMPguD/s3d/dT3rf6orW6mqupiYJqM3YHI2uYY9ofEg3MFztbc9VA7fbG/+Ofh5/eD3f7IeRx9bS2nMkjVO+Opd/eXgzUUK/BkNdsZiB09OuY9ApNQKeO7/OAilLk5XT+8PHzhw+fDofdjz+9R0Tu/CcK139mNgD3aipiyp0Gp1arnl4uj49Pnz8/i5TdfjD156dzWSv2ZJWIMVAMwQxTejH2BMPM5+4zIoGeJ9DlpF83sFehyvWeQ0i9cSDS5eR4VfcxBu7hluDuATQTHDIfctyFsIt5iEHNT3Mr9WwYDP3+sMcmT0Dr3MRYgYxYkRRAwAjIjWrox7mYoUFXNjACI5MqWf/TJiSkPGZk7OlTTGwQy6XE+BsEadi2hn2M0QNLwTsJCbVTlzuCjwDJXpXGncnV0+0IMTBSF6mQI/gr3cO7JEVUWrtmfHRNMgKagairOjGAea1Vaut5wdRda13TgASARMBfPSYAMXIaIimmFEKg7zRkrxbsa/SN9fgSJAoBQwhMiSgRpRiGlJM2uH3z8HSqLxe+vX34j//0T2/e/vDp069Q1ue2yvp0d4A3GW4zjoxgPCNnDQykasy43+9vb28Oh8MwjluTWrdtrefT5enx6fT8XMvK5HlK4zSmFMC9Ne0mDiIOIcYQGVFEpbaybaVutX7XvQhhf7y75R9udzdS27zWqC1PN+OBediVKoTQGWyucH46bev2t3/7+9/+8q9PX76UWqYUewFD3PVY3agTUhrSMIYUAWBwiznlHrBL5KaXy2Xb1qfHx8u8fv70Wcx3h2OORWYV0XlZkHkcp5wHdQagdS0AwIHdqqm6tRAjxRgi5CF/B4p1bdJaa8IbgLok4iHkyEToAH7NljF37xxJRIPS9Mulzps9v8y/fnn+669fVJqpTrtEAT2ggkMAjCyIBcHd1TQaxMDODBzAO9AXzdEMewqbuYNoE8WofYZt1mscQ4JAzAFToEDXiBCTME38fScGX+sARPh+fmzXeTiCo6q32pZlKaUSYow5xpxiCojiziG4SGsNHXIM/Zd0B+m1FlB3XzJxSkNOQ+/3XgGqDqZwvX739i94DLzfTR0uoA6tta3UlHII33hQ8FskxLXot1albNqqippc8x6qlLXVrVgTMN3msl5K2Wpk3kqtUhWqaC3SRM0du7KZCXMKbu102dbV3WHaj2kcYwqITt205N6rtK1Ua6oqKdLd3Y7BoSmju4vIBg0tkFKAkKMUIxbz2uoyz634mMBVaFkO+0nlOrJ0MPGmIEAQmAkJyJSSsSqKgzMZ8ytQibGqfX55pl9gPPBa37+9uwth5LQnUiN3FGQLEWMOSQZRrWJU3TBwEKIG1FwaanFR0y1gvNntiGjZWiteRBQrcEBkQgpMkQICuXdI6LWEFgXR5lJcikh7VVOBuYlUkdZnFaraGtTaCPn+/i5EegpQy4x05b0jAwcecLi7u/vxxx//9B/+abmc7v9/9//4kJfy0qSCO0TOORJHFRB3VCDDzHGMeUrDLo8UBwqJAhLK8+exbiHGCAjjOE27m2l684ff/+6Pv//dT+/fAVPHsqnItq2l1k6LUZUYeRqHcfx+7aMJuwSKkQARGJWhBEMqoKDazhbH0mp7NapEIgp8BRo7bKbVm5BCdCa0iAVQwNEUrQFiGuh2n++O+/sYwrI9brX0VEQAV9PWGomzBTBKIWaEQgibqSugjqMfb/D2nu4e+HbHDlAuDYQShOggRUr5lsgN17a5qkqfzfYl5WCOdC1irtgPB3bv6tTazja3Z//85enx8fnl5UyIdasiquohIMCV5wJIrK69qwZg/U4uMC/bly9PHz9+/vjxs4M++K0DPL3Ml/NSa0HyYYjDEIecajMOSaIS0RKXKquDXRsu9FWqANfipFPWeqaAX/OlAb66Z/rUzImQrpYFQ7cY7TiEdze797f7N8fDzW4acprX+vn5y7aIh5yGMOZIt/vosE0qyuKkyM18a22VslVpbMyuau7o1zgm6HUSIiMAsrqpuhERp5gQmhR3dcDo3CKlnH/TVN7W2lE015EQQjd+X8sXDsgMxE7Wb7VkwEDQr1euiJ4yBwYOEBgJKAQiRndXqa3pvNXzZXs+X5ZlxVa996nMrIpWwYhu1sqmovTKQkVAbWLofvV8UOBoEZkdCWKOMQdsEGPgEL57OL2Dd3V09TLYEYgocAicmQbCTBiImAKnabh5e393KR8fJU55t9/d7EdfUsn2DGeD009Ter/Px2lgJhXNJURlUhCxMISHN2/evn03jCMAqvg8b58+fv7w84dff/11Web9bkrxGGJAigBWSsUQY8x5GGNMwzAkDr3qXuZ5ns/qKvKNr8Acht3tnuVwvJNS57kxb3l3AE75cFNK29allWKtLafz4y8fHz99+dtf/u3x05eybSESj4FyQMK+GK6HInPKQ4xDZ9fu9oeUE4fIzIlHa8LM8zzPl0/zeVnmTQ0+f3h8+Xiqc2lNFX1/c2AKw9vxeDgcjsfdYbdta2vb5aUwuaNHxhBIEVP+hodU1fM8P5/OBlpjjI4JuSWfUhyHmGOMhK0paCliqurm4L5s+suXs4p9/PL8+HJ6WeYYcGcNjUBR1VtRYwo5ArMpEGIvEtEcHJCJPACYA6CRO5iRqIqYmnKqSh4jdz+0G1qPsmdxdSe6FuhkMWIM3xN7ofvwumb9Wr6YQSdFAfZkuVbbumzLvJrpfn8cxrGb616jjWITW9faWHE3OCCFyOaq6igYUh9UMwWiCEBu5kDMCE6ujgQQ2IEcr2ZvDrybJiBsKmutqlpK0Wm6DmhfffLmZm5f81PU9LLO53W2HtjkBmat6jaXy8t5Pc28rQyiq86n8PhlWLettSLWFCoScAyIvm3V3VOIiNThistStq2eTnXcTbf3vjtMORMhOSCGkBK3putlQdPdlIZ0t9vnpy8vXz48Xl7O63KpjSf0mIgsqMzzwkyLKYNpIGJEbV6WzYuspxfTV3Ff50ChqCmrIUB0njhDMAlN1CI7kwdGIFQiA9+0/fr0pfz30+Ppy3/9T//1x9ub3c2b6JHwU7Ol1QUJOVLIGYpAdB4jwW3OyEEBt207V3ve6qWsCyEcb4Yhj82VzuXjOhdZQPrx1hgyUyAOQtIRO92UD689NWv23dIHcG+tlrJu63Kmk7dfwfI05D/84ac0DOf58re//eXLl1/r8hJjyEOiQLvdBEjv3r9/ePM251Fqvb29vznevJw/SimmxpRSHiIPbVUIYDEPIUYEUtVtq3HBBGmkPIyHw/T2zT6EO7UdBR6Gabe/Ox7f/+6nn94/HG/3ozhwiMM0miqib+vy6fPH88vLMMTDYbw8/rrM56/PRU0v87ys22HIOe6oJZehlbiu9eVpVjUvgW7Hdd1akzR0Q4Oji9mqsnrdVJoWa9XEGqNoVHPfGm4tMu8xTDmMu/wwDPfmdV7red5MiSgyKqrIpu6eHANjzMygm2znbbusJZnsdnzYI5ButS3Epricq9SccYq2lcu2novJN2FZJxgSNOt1gSMCKCBdexz46l8EdHRTK82Wcz379qgffv18Op1djYBalXUpBEzIRJGu3ToKEQ266EzdqTXZtu356fTx468///zx518/A3pRjzGc53I6ry+nk5qMYxrHlIe41BZzlqE1Xpa0zD43L53n3sXkXx3WV6NG6rpi7iTMboVBwMCMXdTnir3dhOCmgWSX7O1d/Kff3f/0cHc37nMaiJP6penTeV6d590h7QY47PKUowmbJzGuCmutp+X8cjGRlbwxWiAXB7jGN1wTTAmuEYjmoCLsHFIMFKMkAzM1CpynNIzjb2B3pdTrJoDOV+By7wCbGVJnfsEVY0wIEQMRA0BHyKZInDgE5IBEhOZE6NbN4tZaK+s6z8v5dCq1TIEYrwHl7j34pocjKYB3IzUTv/o/jAA6LwSRgrOzU6AQGcDN7d/N+AGAEJAcza94227DIQ4cOfQ2TIQ+vvEmKsTc92Jp6/zyeQ1qp1/G+vkNLzy2NwPfDDAMESgk1CgAfbaKYRynh7dv7t7cEeO6raeX86dPn//2t3/8+suH0/lMCMebm/00AkIT34r07MmOZo4xxhgZyVpTlVprrRUZv5eBM8f9/kESp2EyW5BHddmKhMzjtEtZTWWb59Pj0+nx6fTl6fnTl0+/flyXBZmGMachDbshjzmmSNwZ2NQT1fsRS4QpMAcKnYgEAEgiVkqrVbatNrGytrZ9krWdHy+AfHx7N+6PMQzjuN/vDxR52OVtW7bt7D5fnoIKmqk7DikNKX19NGa2bvWybJyCOyZgI0ISZooWMlLkEDCQ4hjcEA1RTMzgfFnWrT6dL0stGCkO0RM1RnNvqmsTQ+QGHIzAQ+jx6CCdEelocM0+A/NatTVv4k2cTGmrhmYQEHpC06sYz8wMzdAQkMyhL4BvL5i7t9ZKKd2rDuD8ysS5IneBzbSUsq1rKaXnLMUYifhqMyQiDkgirZp5qa0D+ilcWVPkHVuAPe7jta977QC5IyCHQI7oAMR98koU2BHWUgyxiqhIl/W/No3+3TgMek1TatnKyiECgVtrW5lPl6fn0/Pn53KZqVVkKDBcAn5JcayJSIHEQTBgRHAHVXHzBk5I4D3JD2sFWcpWCHBT52mKKXXyD1MK/orCSYnCFIYdDYOTSyCbX1DNVCqWDSkYshhQqIRDpDhMuxQix2TOrVlr35/8AOSAbqamFoHIiTlCMh1bY4gIRIiRjcDcDUzcWpHlU1GzKd1D9XeHEFM0dzGpsqIwUEAmDJEzDTgBYkjErACb45ArltVn28yN3Hc5//Ru4HG9fFjLtqkVNCdKhmieOqHOmdXkKtjz/kahOqvx12+CiDGESOxmdVvOlRgG9DiNu5v74+6Qm1xi1DLH/TSkGInx5uYY4vDw8GY37ra11NJuDoef3v8gchpzqGppmHbjLoShWWPBaD6lEN2oVZQG0hRKRUQys3o8DsNwew1vQx6G6XicxoTb5fkF2ELKw8gMTdrp5fF8el7XRWudxrCf0rI8vzyPIu31HZNVni/tJbZ75hxhBMwAJFLnba6touQxL/OybKXEXQxICTXAanpuujSvKuLNtYGIO5snAAInM0CQlMPNcf/+5vAm8P2yndYtrhsTmBsxcuYY2N0UmjIZRy49qtWVWVOEcaI8BEcWi60NaMRWCCUHDbjqWtr6205M1yiogetV0vv6EK+rDAl7mks/K9a2Ps6Pvy7L5/p8OpnqOE6H3Q4MtrX0zCwOOUZyIEBETuxg6qpN1UspL8+XT58eP376/Onzly9fngzBMQxjlipraafLWltdS8tbTTk60u3tCq2t8rLRWqEZKAJ8K16+28de0566vA8AwLtU1r/qZNzcOonC3VVKDBIIDhP+8G7/+/d3hzgy56phbXh7e4txGKa82/F+wpScHMGDQ25Ka7HLtoXkQFLaUhs1QXBAe5XSuXb8NRFfe8zgatr1TD0BhgNfhzmRQ/xNhkKoVYiAQy8Fu6eXu1yhA+VUtWpVUwULTJwyIBE5BuhRATFxTBQCgrs2MTWrRQBiIFeVVssyX84vpna42YfAbmoq11BDVTMLgRAwxsgU0EFNABxf6bx9T++488ABEUuttZTuFP8G80Loki5EJVYgRyDmxByYAnEkDITk7rUWaW2eL/Ppsl3mulzkXP7tv/9/tkMO8680f3qX12GMh0yREbgfG0igshWrPgzT7e3x4f39/m5fdZvPTx9+/eXvf/23f/7n//ny9BJiuLu9vb972O3Gbau+VWqFQ5ymXYxpK9W01/FUVVW0Gz3ot7EDzPF4fK8lqchW17Xiy1zW5TGP+cff/xQ4gNv8cv7L//yXT//4UOZZtmoqMbCYIsEwDfvbw24aY4qEaABijuAqtbhK2RBBvcWITHtmsqa1tmWptVqMQxqQcF3XeXl+ujydz4/z/ub2zU+/f3jz49t3P909vE1DBALOGAcYxR3m09NUyrxu1cwPu2nKA792yMyhqm7NRvGUOHLywIJUwKJJUvLQA9hzQA4hKOhWt3nbXuZVWxmT52GIU4xDCokBsDUpDbbmTQ0LMGlky4kDJkZUN3cXsSbqotq0NW3VRLyJiwGSQWmKaqhM5EpXQTmCm5tB94aju2qPP/q2WlR1nueXl5exDbWkkmKIoccd9zrGDVtr67qKNDMfhnQdAyH3ssiRsBePEk1l2xoCADBxUus5hapmfmVlu78edh2g10HigWMPhvXe/HUnpuAh59xURdU7Fk/kaue9lvvU82i/bmQ9+pIIwEBbWU+nzx++fPz4+fnToy3LjtGHiLoDBGfa67g/xhyYGB2slNp1SUigoobWpYo5TSWSNKkFTueqTq3JbuJh5CFS4AAJY4qugAwYNAY93AT0u/00nh+X82k5z5cybw6RjUGcs6cc4rA75PshTsR0JT/x4N8gHv0Kj+4GqggYOgtscKJJWwyA7iZgxcS1GWhP5lXDx5f5v/+Pf5mfzv/bH9/8dI9jthi9akMpSCaAGDljzGNyZzNwEMQhxDCNKCPMYWulbsua0vF3PzwMt+3j/Hxuq3ozAydQxyoEPjBFRJTawNTM3Ik9OEaFoR/t1x2Zw+3h5u54wxjQRerctLiSeckrAdFxn3J4Q36bmGIgB3+4ux93x/ubO0T69cPHti37afdPf/7zw8Pw9Pz4+PxSFdJwA85N2wjBI2fyIA3rmlEzWrG2XdrL6QtzOez49vYuJFbVyzyDFSvLy6dfTr88hbQfbh4Od3c393dbWf/1L/98enligpvD/scf3k0jPT9/COy1levah1rw81k/4Ty2dhg5pZAwI6Bpa60VcF/r8jJfjsu2v02JeMQ64qXCs+qiAiKGLmbYaoIQiRJlzoOL5ib7iA/vHv7peHzTBNZFa71pcgG7oAsDTsMw3Rwd6vnlSdzTGKSFHOo0SLyDgXQYEEN0Gg32gDcp+O30BWwBLJEXrA3Kv5PrfjOLdCMK+hXo1g+i73FyJiCLXb6sj39d5se1tu1w2L19uH/37iHGsK7lsqy1yTgdBmS/NkEIKXCIZlpLvZyXL5+/fPz185fPj8/Pp2VdRQHgaZzGIScFF7VazUGaQWiexzq3Et0KtkbSOwXu4B2567+Zi9VSyrYyIoarrPcaP95hu10DY9L1bGYibaWoGpnJDofh4X43xYwQLyvd3h7+83/6D9UsROZgkatDNWlu6JBKQ+BqHDnvIGiVVbSqCLinzh8AF2lSm5n1893doGcAmbdau52UiatfWWoIv6nLwlcnJhHGSDn2/pKDgNpVqtuLQ3N1YHQncILOrEYiioFCN4IDIICYiVRHpJAIoYe5ujZyGFJIgVstHJgQY4yoioY9qCaGSMgITupgwRVeBTr9413l4O6urYkIXkve738MQNyruxACUYwhMUckJuTegxGrrdSybesySynQKteLzfXyD5328QDznsp+h0NIIXxFLSMRMTo7DIF2h+nuOA4DNV0ev3z8+OHnv/3tr//4+19/+fkXN/jhh/d3d/eH401OWWQOAYeBYxrGYUTiUupVeeDXMURIKYET4/dFDBHntGMt8/J8WtbTvJ7ntWwrkruKOdRlOT09f/rl14+//IqiDJhTIGYHY+ZhGHb73X6/CzG4qKigGgC0UpTIWkUEIK85uaqZbts2L8s8r9vWQhg4Dmna82kr23NZGyLvDzc//v4PP/3xz3dv3w3TWFoBtTDmNATz1FobD5/Pp7mt4o45DWP+TVQ6OF6fJBIFxsBOrmjVZW2I5kI2xRRjHFNUJ2nVxEqpIi0PHIYQpwQxKICoG5ERA5mLStMGKmTmxpGuxiCHJlababVatNSq0ikI191HxLAZB3BmtFfXgTkQelN3CIZEZt2g/90uZmbLMp/OJ9FWc4ohhBg49HkydnlNbW1dNwDrEXpfrc5d1tJVIRZSjC6Ido38RURmRnMzFRMFAGbszd5eInEPhwRmxBC4QxfMQV+ZwkSUYkpJSin9o6oq96sOXues/+4H0dEVBFXaNl/Onx+ffv34/PFxPV2gVGL3ltTREC2gk3OeOKaUgqts26pqgTNzj9nuuiuMsds/VNRb1VoksEcOOdG1M41I1IfS6OQOHjIfb/OYpv14HPJLa23ZKohytByZA7k3t2YIHoKH7ICOzcMI30PV+hzfHd25W1cYc8JxYjcnI1PZpGLbahE1d0JDcg9b0Q/LFyhyzD7w9PaenAJQD1ppTV3MHEKKCYBbA1FXUWmkwu6ROQlJq5tqmYZgKd0fjy/rdi5NTQzZSM3FQBgDdlKqIbqzU+BIIWpE5OFbERPCzf745v4+4IgeXbBuulw2qXI5GTKb1RRhiDkSAjiHMO0O0/42p1HFyly9tSkN493DzTG+ubt5ej5ftlY1LEud5xMTjtMwBEjkGRXbKisXo1l8qWUY/XafpmEMidXE1NpmbZ7LVtqMwGO8OQ1PX6bPu3Wb//pvf1nnc86h3t+OSdfliajG9K156WgWi3JtTs1CCEjBUoYQNQM7BS0E7EVbFXFnAiY31E3aubWtSlJz8mLIzCPzgfDIOORMKgHKEPluzA853bemhHrY/17MlstfXesQ425Kh8Mgvm7lpE2QOXjcDWaHgEMLUHOsQGQYFZJCIpQhA4E2lUAtkoffHpavKlD6Joz7+p9+w/EncAABXb1c5Py8LKcVg+UY3zzcPjzcMofWZKsVOXZKIHLX3xMAiEgtrZS6LtvlPF8ul2WZpRUGM/e6LkwwTSnnNExjb+EAEAIDoJEKYsUmLh0o/jpUsd+0Lb1vECK1gtn1itOxbmYIYIEA3bR1p7ibqaqBSUWppqIOEHMInI1DGMLxIToSkIM396W1pZa1NVUjZGhGziE5OE2l7syEHOatiEITb9JcFFTBXd2v2XPWB9zoKg5fRYEIAKraAXzfihhiIgImD4GGIeYYicnNgaCJNDV0D0yd1BuQAiGTIyhdsRMOKu7uRuCOqmiCKkQcmTxyCpQCTikw8WEaY+BtWdQ973ZjzgauZk2aAzC9Un+cI5FINW1wbW0BUc9Qa6ZgZggQroTTbwJSBzVrra1mllJipsCROAEiOlkXK6zbtpVSitXKDhP4QS9SnvLpkmk63Iw3Y54iBlBtq0kzFQRF58hhP7jzuHtzvDmkVp5//bD+9a//+m//+q9/+ee/PD0+uvnDm4d37969f/9+nPZuYIDM8XizS2nMaVQzBDTVVqsSmTvHuNvvU8tqjcNv7Hx9cnGaL48vz5+fv2zrZZfjNI3kUJf1/Pj88vg0n2YtMobYXRBOABRyip0sMu33TLjOs4t3LGPZChFGIiRstW7bVmpxh5fz+fn5fD7P21Y5jhzz7vauCizPS8B42N38+b/85//6f/tvf/hPfx4GLmX9/PQE4G/z+3E6EFrZwXh4zNPSVgkBx3Hq1phrQYaUmIcQBo6ZOUYOEZkMCATtVLfnpWXk+2m0aYekav50Xr+ct9Mqzngz5jSxMjTXpm6GgBQjAhByK1trIkVNG+AmoshICCAGtXnZvBQrzcAtJ2ZGJr8WMwam7uho6uZNmjk0h6qexRIhkzmIibnb1+NfVdd1uVzO5tokckfvBCZCBHJAUxCR1hoz5ZQRUUWktRQTEaYQwaG6uwNhUIl126S1HuYaYzDXtRRVQfQYechpGEJkYPRuxgagPu7tqbld/9NtDAAUQ8ghbiGodaOkEUCn4gDCV0Tm9bkABMKADlLrZT59/vT04dP510/tvCZg51Tq1qRWWIQR+vNbOESOOZnbVlrdWgye09BpwoiGaByA2dzFDZkwEKKpC4Kqq7r02XFHVpIBVkU0iinmmI77OKS8zIvbiZH2MT7c3VKMn1/O2/xojbam0+ENxklDNJ4cv619U3ADcopEKVIKzAFDiCGGQAEUpelSVt7OQgLNFMCcyYOol9JezudfP4fdeHs8HinuQs4coNWttG1ZCzrzoEwjI4tKWdblcrmcT2VZkChGUqm1XkpZMOzf3D5cNtg+fKq1OBlER0YAV6/mjgSB0BjdY0ijAdkQwneAOGa+Odz8+O79frxNcSCn08vl57///Pj4/Pj43NSRKIYgMU45jcO0H8eb+3cx70W9lhYoUsKABhhznA5jevfw7rLJx8flwy+fn7ePvq0Pt/vbfZoCxEhteVqW00VDAVbiFKO2JMXNlJgO03Gz8uXzqZ19xIMTPZcP26efG0ipy+X8YtJipPn08eXxZ4B2/7D7059+HF7dSYQYcszTOMRDCiNGhSQ8QmCP01TXXGYcQqbY4+AjWGwNt6KXdVvbVjwaIkPjQGPYZX6L/h78JseEIzBJ5ENrVAshDodDGvfj4SX97e/PZS373W7aZYwo0hpxQ3Mjx3zYj9OgwavL3MoToAhog1ptUdIQNQCqB+I4DDR8lzOIiEwYmGMITOE65P1awQChc7/Yd1YVVMJCWBGNmMIw8M3x8Obh9vZ42GqVraq6iLUmzTTGQExopkUul8s6z+Zaa22tmQqB5YhhiiImqplsPyUKiYjmudTaEGHI8XgY00SeVE1EFK/jXRM3cdfv1z5ijCESaqva2vVJEbuDSnMzxA6VMbwah5gxIKFscDnZp4/z/WEZ0y4f8pTHPY8xZkBWE9WiGkvhZfZlXddNCS0ldGYFAMyqRyYaYno5L+fLcpm30jZrFjAaoqj0fjTAq8SwC3ZfsaKttba1Wuv3l8trQkIIEAIxIzH2ngf1lGBw6gpGJgRgxE656Vdr4oiA4AZ+9XERXS0bxMiEkTFH3o9Jbg5MtJ/GFFhEsNUR9zFGRzDTrush6mkzBO6KwOxSzbtbA64++mtjBJCQHAl/04lx1SqtiFTsiQsciQJhMO9bqJbS5nkppXZFUTAfvd3S5rzco98yHcfjtBszomuRtpkZigCYYYIQ8i55nA6HmEK7nD89nZ9++ce//frLP07PTyp6PB4fHh5ub293ux2HKKLEHCnspl3OI3Hs2cW1Wq31WskTppw5sgrHGL+uGFU5X16eT0+X5VylEEMMHIhlq59//jjPy+cPH89PL7I1NOwPrT+FXgh2eI+auWPPDEDmr3cIInYwqVLWss6rJiulVVFRU3NzyDGn/ZDH/RQGEnh7//anP//ppz/9frrZtTIvZV62pfvVcz5G5nbAm9vny2nZ5sWtNvem+t2CgRR4CJwIAyJhF8WCqpmYV9OtccQcY87sJstav7xcvly2YjbuOOWUMs3amqoqGgABImEIpE7CIObmYO5qLqKOjoAKoAbVvBmoA/UXgtH1ihtQAlOwaySam3lTM0VCs8jGmBiYHL9PgumVpbRaa7iabogQ5YrzJ4TuhDIz6/CXjn+5dgncu8vbzBAp52ghEGBFbM0JPaUgCr6au3KkPMRxl8cxMVogCARECI4O18XQfXjXcXbPde9jSQr4Ogt/5XJe/Z/fgi0AwB1ErBQpsj6/nD5/nh8fdT4HhWGcGsHLWlUUmsUmtZZtC3gGIMdAYLLMpaw1sLUMDgGcODgAhIjDEHa71ARypEAQEBgczcDMRRE9xmAInJIjXKM2OTLHTEnbeHu3IzDCcDjkd8dshMtc6zbPRdZSmmHaOaU9Uvx6E/ZXvUIv2hixmyU58rDLKSRQ1qacggVbdVUUQ+h4z4YODdXt5TI/ndLWbh2HEMcYrWpzUGkLqAshRUWMhOa+iiylLLVuiAJkhrXpuiyXuJve3L0pkr48ruumJqDkkAHIpVXFzt7ri8O667sbFL7d6h1MjBx3Q95NEyFFsraOCFu8QFXnGBOnIYTUzf0AYK5N161KASxE1iJvMdY8aIjQZdVSpSzbOs/ctuBDppDIQGxba3GysMMwBCZwrKsuhJwgpjCmQCq+qs4K1KrKl/LyVOdZFgfJkcccU0iMTdslZfrhh9sff3yTc3w9+YlpDDwyM3Fz2poXq8qMgWIaYuScKBF7lbYsRaVdFp832ipuihXd0dBaxDAxg43bcgv+QDASeo4rAZ1Pi+kw7qebwy7tdmm8fHnMrToiiFkptogWpwbRhQw4QGQ0cjMncTSzKm2pG4uF6JnNMBQNhjTttt0+Mn/r9hFRIAoUmFiv+KWvRQxiP/EJERiFQRGqe0U3J8JhGHa73bSb8pCWsm2lXC5bU39+eYk5TrALgbzJcrmcXp7WZaZAW123UmprZsYEKZGSl6pDsH0OcRwROYRynmd0uNmNx/0wjIyhOZiaEfB107HOIvPvv8iY024cekdAX/clUxNRd0UAIL/q7YiYYqBERG52meEf/3iJlE3x3Ts43IVdHscxxBAdolloimWDGCwEYqpIYqTQoLqlSLsxuyoDBqKrt1g1oAIFBSy1NTFQ825TBffu9XD6GonTP+pvOjG9dkmJQiIHV+uhKH7tpHcPJXpvhqCbttLNwsCMZsjcc7cjcQiEABZYGcGBwQ1hTBGOh2mcCHFImZhNFLCLbzqsipiJ3JmJiUNgdBd0QkMXV0M0fc048C62ZkZA6ylvr9/GzGrdal3UWuAYYkpxRIjuZGpNtBVZ17Isq5mP+31k8WXNWt9kSwf+6W64vd0PxyOlUUtTldaPHlFFb5y3MMY9e0oUrdTn+XL59PTl8fGT1Hp/ezOOu7fv3j88POx2k4GrqYHHlIl4mMaUEgABWs7ZzEqpZtopN0QYQ4iRv7cll1J+/vC3f7z8w8Bzpvfv7us5r8/nx1++fPn4eD6fay2X04yOkUNHXhoYMBAFFZ8vC4cgDoGprJu7x4Qpp2mcmNlUWisiVpZyPs3D6IiYco55cKcQ0jAOu9v7/W6/+7/+1+Mw3exv0jRK5vP8fD59WZaLg+VhSGnM+ZBCNgtv3s7Lsjw/ftnO9cv58ng6NZGvVf+QaEhEdFX4uyCYo5g3C4YZ88P++B9/+uEwxKfnx3m+fHx6eZpb3g07HmJIgdBKUVHAgK8dBesGNMboxA7MFImYgNB6nCW6Y3AySERMkHIggKamCmruhhJfEQiIAKIK1fQqno3MTAEDsfK/K5XRAbuPD690KLWrsB7omhcRiAh7PjsiMDMSmMpSiqqqWuA45pEzpRBK5G1xd40xOngfoeYUx2nY7YdpN7hUcmUC6omUV52ME13N8wZgJgAEfdhEhOCMvbF5jZkA7/ja77gXZm3b1tO5LNv5y+P582M9nzJoHoZxt5ubfz6tTetEETm42batm5S1ltaE0efz1koDlxi1Vt/thmlPIWJItL/JKedWXcSYLMeQmQkcVUGII4/TCIExRHEMnlVVXaqZ+wqh3b+ZjjsOwGMejjuo2m6zlHmezy+bPa9rmW7L8f739CpIhFeSsqkiQr8Eiaq7e4BE7oEIkSkOkRrJUM6CgogGZBYkwZgG0lZEzmtZizdl5iFHMNHKK5pIq8LMqBwTB8i51qFxKIab6eZenVSsXS7nQ7p/8/CT8/Fvvz6flyqtCpnv0INXqGKKiCpQ3cCMOYFHJGWyr99Fmjx+fvr04dPIicGYMJC8f3e8v5+qkkMgTowhANStPj+dlnVdfvngmJFyWe308ax13Q162MHtbUS287p9OW0fvixfPj+dn58nFCmDrG324ibN3NM47W9w3CknJ1ouUoukkXNyje6bJs8IqrNeLvPH0y9fynPBMu2H2x/evn9ze/9wczyMQ04xgpM8PNzE+NXbH1D2IKNjUWpg59bOy7w44H7cHXf3t/sfxhBQZF3mz1++1PLy+OTnJQtMhiDgYtVKix44tKa6LejOOaUcMUdzLZ9//bQd5E+H+5ubcX+TAMcx47OVeVHfaGUrIEXJPaCwitVa6lplu6DOFJQG2LamquKbJgLjyHltU4FhupHj7Rheib2IwMDhij7nDlWAb0UMoBliv2FxhLEpQqsmYK4YIA45DpkCm/tWysv5/Onzc4gpRHLQe30TY6jrcjk9P375VNuax7TUOq/Lstba3AwCeWDFYFPwKVIakgGr4VoKI94cd7fHcciorB0XfrUr9Cgi/1o6AwAw82433t7eEJKZlVrqVksRM0DqvEhkRg49UyUzRgRmQAKfV/iXf/v8/Hz58Onxj3949x//03/48UcL7IF345CRUhNLAXKCIedxaPFS7GUWW7EZuDJ6ZvQc2aec4pTHKeV5rc2ginEIpbVWwMy6qldEzMGJu12qm8Ppt5tyyDkQY4rEDCJNmnX6AGKPBAdiZO5+rGza1uUFpHLAwP51mMOMMXJKgXq6IaOpIaMjDikE5kNXXzuouyGEK/od3Xr/htx7tqV3JRVTpx2yY1c4doPqtfjt+Xb/i+PCTcXcAnOKKYSBKZmyKaqYVG1VeoQCIsUYI3hrheo6oYwJxiHknGLMTlFdzdCdzE0UKtEMaeapDdEiVCi1rqfLy7JcCPF4POyG3f5wc3t3v9vtYg5I5OhAwJFDiHlIMSRVFcH+vfF1hsrcqc9urt/bYETlPD9fludp2qUUkmc5XZ4/P/7y1w+//vxpnhcOpK1pEwBwc8Geb4fAIGLbWigsQBRisCZIROyAnPIYYmi1iEhrWktTg2lXdvtD9/72CPbIcRrH29ub++Ptfpgyh6oyL8+X7bKVRbsoOwZHkF6LAA3T7ubu/uH9Dy8BSlsvW9XXSz8RjjlMYwzcxWKmji6m1draogMPOTDvd+PNLldZ4/NFzB3pcDje3x4OU3ZsLiDVMJh3+a26O3TlWu8vRaIcODACmQEqAiNEhe6iC0Q5RzCXZuY9jg1MyAMRE3QUGrpqjzr1EMCAgACd/hfd1f+iK4NvAM8rQKbzFq4cl+ubWRVaqW5GHANzjDHF6DHE2H/nGgKpETGScYwx5ZRySjlCQHbpcMCmfp1vI9A1VA3cTNXN0LtRv4/cekzWdzkD/04TY6rlfF4eH+uylZcXXVdSjYwYGQOZeDGoClV7j8q0aVMVdzBjBKlVm5q2EFQdgD1OOXBkJE6Uc2jF5nkDfZULGqiYWGWIKQ0ck3Ps43h3of7We/Ng4yHRyBk4IkUoImVEyV51OV3ms73ItCjDUNfZvwuBw1eVc4ei905gc92sgXHwwBgwUEgxDWkkiZEBWS20BrVoK9hKW5te1ras1ioOgQhCRI6EBqZaRAy5AVKIGrOmDLVha6AIYC4u8zIP+3rcHyjfvn/75TLXLy9fatXmBgSVmoAgoBEoORE6CzkSKcG3L6Kq27ws57lsm+wGZwqBpv2EiOaBMDAGNELRxaAwNXC3pp1LssqyLK0VQIyRrKjq9vjl84fHy69P2/k0WykhAVmVItt6FmnIIR3iHmkYMqVdNV8u56qec2JgawbmOaUwghrEWnIOI6UceH87PTzcvH139/bN3f4wdgtBs20YviVygxG0wUs02Iwah4vK6XQ+q7jLlkOgm4cYzVoV2UoptWgpsZZBMAlvzgLeGVQAGFqjl1NV3Xb7AFMaE6v66fllW8vheJOHhsFbfUEsgRVMRWET3cANgZzcHFuDzeWyLqczQtnfUMQJORKiqW0Nz5VjmBrc4gh379P92zcxxa+Pxr/76S3l69q66mG7dx7JApVIhUidICCTmm61vFwunx4fS6vztm2lLMsCuD0/D8ywziuAr5fLPJ/nyzOQ7Y/7UuV8WeZlraWyC0cnNEQjUNBGrmOOpVnXWwwpTUPKySsTdMXFNSL82mT5vhPTaxsCiJERYgxUQkAWLCpiiBh6ZHDiEEPgSECm3md+VaWet3Vbz+ulWT3cHffHcUiUGSJpCERgKYYYphhT4KYe1qJV1RFUpcDG4ImRhpBSzCGlEMalLFtbijhWd0czUb06Sw0M3MyuLBvAr3lP34qYYUxIGAOayrYVkRoYU0rTNCGgW0GkaZxubm4fHt63Vv72r/9ju7xMY8gpEmVAMtMQKA8xp8jMpl43UBFAREPXEAPEEAFQVJsaMlP8inLvd8rOXbbe/ek6JSKIkZ2x91/UGLCz+Ymuh8X1Rfq2kV27GjGlKfKAHsyw9bljExEF9xgTMcXIWNW22ZYLSjW3zTAaoRi7ohm6oaMBCfDi8VGHCwwa2alhW1u7LLVQCO/evR3ieNzfxpRVryS7EIMDgAGxB+aUYmA2k96GIKScc68RmQkJRaSuWy3Nv3b70QGNGIZhYPf5/PL46fM///d//vmvH+oiqoYMZtLKBubQJ4IAgODq1LRVqVvdeIs5ESIjKpAjUYghJWSqrbUml/P58fFpdzj+9DtGusK4CJzdWV1Le355fnn6Upal1lJBOIXdcZemsYoDwSYbzs/koNrUZH84/vmf/vPT7eHnv/1Ldfw6t2DG3ZR2U7IrnNvdQcRLlXlZ2QDMLnVbpd7G8fbtw9uGx49LGOE//OF379/cDKGdlxMpalVwMABVNXUAMjNVQ4dAmJiHEGNEJ1P0Cm7k2TEwoSMT55RUvVYDMnFzBTUEJ+ZAaFE0iENRdVBH7b1UxNdb1m/3sasF+lXd18WqSNj/l9eA1q+LTVW3zdxdao0hTlPeTbuUUwqBMMaI4FobOSgJhRAVmF8ZSMwhppAIAoGr1dpUmvVrFnYrIpiZibVmtWkVrbVRCP1D/aZ8+W3hpdKWL4/zx4+2Va91IIIhb24VodZy2bSIlKaXtcSE0xQjMBOY2cvLTGDULZhiHBQSJEOn2OX9SMgQ3C0UFmuiWgUosarXtZC0XeQhJiQmBzBgx5wjIYg2d+its8SBalvmy7asJBLVfZXtaT2X7fxS2dPpj3/4auUlhMAUAva4u47PAUZBu5SlqGQcEqXA7AQhpV2CaUrEQZXXVV9OSxM0oqL+spTn03p+maJHN2OnMWa0Zt5EBVWQGQhC8mmfgIatWCneqlnzbV1bLSmnh8Ptn/7wp7XI+TJftlOpzZjEVbxdb8dESEDR2Z1A0AW/2mC+6s8RDAlDMGbBnsQhrIJO3LQtRbc6iPCYwjA1xctLAfbj7aH5Td6HIfnEUrfWzuv58fn5catbvQU4pJDQWy2Pz+fS2jDuj9ldYKJ4PByr2c/L4qQ3+900hVpWQ4fjAEOAQ4j3O2q7goUGyFM8Hqeb4+54u8+J3aWpVK2tP8T+VQytRt1AYYbQItVGZiK1aElLq7Pp4rq6ZgyacyTYRTqATFVIueFuC9gIMGFOYbe1MK/nrZqHkvMOcUSHsi6n01Oz7fPT9PADK3yu9ZwjRKJqVkSbuiuiGmuFiqlZqavMC5HFm5tdvh2PtxiibdW1bdYajDy+G8fh3f7t2x//GPNrUrq5mNYm4JVDJGAkfA257q5gIyQmpsZ6QZ2JPaU4xCHPdfv1y5e1LKbt7dv7Ydw5gqO7SdnWLx9//cf8b/O8nE/n1oRDnPbTfY0ienrZ5vNsbctknZ2r5lLrfDlBiPl4P+Tg4GqGYIEwBhImb9eE2qsR5uqn9q/3GFWd58vp9DKOY85DzjGmHKJvVbeiDp4ipxRSTiERE5iqtGrNQPuBG4qVx9NpeoxPl5e3y+0+heRaF4o9jDjHnCJxUOEh2zgMYpDHERHX88VUEDwQxhAShxTDMLSXy+qXdW1KSCEG7LkASMRM6lVN/auwGr9SyK9FTEyMiExg2mUnBkzMlIdE1wIl3T/cv3v3w48//H5dLs+ffoY673djTtGdzVENQyCOgSMHDk4GFoVAr+N/QAemq/QakDAghtSvqh22Qf0A7sLDXqRQx26G6/gL0R1QUAXMrpfc19X+eu4jxpByGmMaQhgBoyo0cREV6TpIYOaMzJFj4M5sd1NVbWZVrYrGWpwdpIIpABhyhbz4cPE8cyJGwGa1tFbdccjjcX84TIf9uAfkda2OkHNCZhFx9J6RRIhmVkvZtq22Zu4hRA7doQXm6m4iotJ+IyDv2A2TVurp6enp8cvL6VlN7x7ukbgj8loTEyH3ECP1ljkQAIGDitZSADDlTBxDSESxkxFTGoZRch7Pp8vz42ldym46xBCW01mKRMXoHJDLsoibWtNaASzkMB72e9iFlDBSyMnJtzpv89xqcfeU0vuf/ng43orqfnroEOvrA0+cMouSG2JXhqjhlQ7uTWQt9bSsN2XM43A47N893DSl37+9vztOUk6LgQtKA3PV7ntxR2RwEHU0B/ZA1MMuehgsgTM6MJE7uDN2pRf2mTYSA3buNPUKMClXUWZS/bo60NxN/Tt5z/U9g/5/Yn9tga5M5Gu79tWLhL2x5f7a4HlNAg8hIKGZOnDOKUVCkK14qRsHzsMQgcbd/ubmZtrthnFMARM6uroKghl5z9ISNxWzLoCqIlWbmIipGhB9uzOav1qTftOKMZH1+Xn98iUABg6H3ZiQSJopNHVDC5HUCcAAMQ3DOA4VpWqrrbhaCgEARMTQEgRDcwJA7MkO5mIOMUZGNFN1r6roqACEjMjgqE1NHdQQDAEcwdCN3AI6gRNq89JqaQ0AA4cxpczyUpZFP3/J4/PnX6TW10KZD4fpeJxiDIhuYAQEhAZWWmmqxugMYuSgnEJkHKbEHNTIUZYauHITqmYvl/XxeX45TAN5DObaQ+/4Cq+41qsUIuYRvLvtmAG5mrW1rMtlvpzTbkwxDnlEIKm2rWJATu5OYEbIMeYcpimP4GhU6DsjrwOYuqmroyEHTgq4baK1eSnZLCJDVT2vVhoj5F26eTiq0af6KKstMUAY0s1uSDi1jZaFFL2Jlspqx91wN6VpyA4h/f/Z+q9nOZZszRNbyt0jIjO3gjqq6lZdaT09PSQfaPz/zUg+0rpnOKpvX1XiCIgtUkSEuy/Bh0jgoG4zDWYANsywM3ZGuC9f6/t+37A3VkyDQ9IefVVd+3aWJMYknITd0IKRE+ZCPpB5WO7YKQcLMINb9KYQatab1rUty+FX8nh49OZ9VaeOxThIMAllJWNkBAy3LVeb0EtKgjIOuySDrtG9DdATWTClyMKDB83LeVl7mUhNLIqBm+s8n+Y+vyz0vOKwmy3qOElmFIvLar2ZIDHEEE5MJaOMBJMgy810f7N7O+1fUSqaa9dafYVcZP+WeRh03d3cM3+Nvb4ijuKaY0/bRMkdtnEthOegFJliYiTnLqmxSADMy6KtZsbW6v2rV0KJmQG9ret8rI/vP768nOZ1ccQy7Q+ucQVfdRkCMySMYFf31Q1rxZdnYC7TLjOWRHG1Aq7uabMlqhkzIF45tts+++s95tFrb7WJyJZLy6lwYq4WWM0tCaXEaaNvhXqYhwa4b+c2AtdY1v7p5fLjz4+H/WHgRAAEnoRzL4ONSBMAOQAxj+MInBzCTZ8ICUzSlYDFjCyZhYHQANamplqbGYAHAgCxCIKD0pZ3HbAl+H69lG2srsAIwsgpJcFceJrG3W4AIHUdh/0333333Xe/efvmm5enj/vdaGu+2e9zlla1mwttHusNwBVIWEpiwmWtZmaqWx1CFESbq1CAeasHr+l0mzc8AuIqlmRi3oTJ5O6GsHXGrcZmynC7pos7fO6SEdJQRrMDUglMatC79RZqtuVsswgDZEQWTkk8cRpyK6k6Wjfr6lpbvQQ3NI0wIHBMC04zTCtkJc7sgN6bhkWRYTftXz3cTeOIzhE47QSJckkWZqrokVkyc5i33o6n03xZuiIT85CYU8oSYX3pvTUzveZZf35aCMnV5uNpOR5//vFPz88fy05++/DDP/z9fyTK//xP//KHf/mX48tLndcEIEhUJEmizCmLCCNuUDsZx92Qp7FMSZJVVZIy7PY3Yt3aqh9+/LieX57GDwT44c8/a211d7zsX46fHkP40hrndH9/d3O7T5Jyyu4AyMNuLMNUSl4uy+PjL5fjCZBevf7mh9/+3evXv+FUbng3DNOvdxkBEAoRGpJGQDAYknuhMGSkWu3D47lIur91YfrtuwdAfnMoiexlXdtSzdCMu2p3c1cAFBKA0A7utob3rghhLiIAFLGVzs4A6K6OZoYeQAwpczbALVCLkSWEwYKycekCLbZQVww3M+229q+qmOsW9hcey+3PW8FgfmUwMnPOWUS2IoYplVymcRAWd1jr2loD98NuLKMwT8RmoWKy2+3yMN2/enV3d39zezuUxGBo3bqBeRZCEUJUt9rraorWvbW+9t7jcxL2liCiqnp9p0Sfab3x5R7zruvxub48pelmGnfTw33PSeoKa7elDwY3h9IbZYn9rtzf302H4dQuPkOn5gHMvBm3iIKFOQkSW5CbWu/aqqDshomp1Fa7tqU2STLtp2k3jcOEgHVZuxoEAXntBtQs1COAAgFW13CrQMYSQWmih9fYI1d/Oc716dOfPr3/U+/rdi05p7dvXz09vmmtq/oGfiZAD1BVJ+dI6IgQyMEJJSfkLdEuSCAVlkFYRT2eT+cPn+TtYZwS7AdAR23gishCklhG4uxO5JZSixhIBpKB8Ay21Es7nR7/+Md/TdPl8aTLvGg3a1HPHVRSZiGGiJLKPt9Mw2GQSV1NVv6KqRgRqtbVLAhQhIdW9fHT83o+J+sHhn0ZUT3mJVoPoXzYv76/Q0p+qfPFPpy7UpJxN0xlXFdc5nHYTaVMubHAq8Ph1e10sx8oy3j3dm52qS1C1hafnk7HcwumFjpI6lW7QAAiC7BASEQOdVibW7e5rd7VexK8HEpOjOhqvbb5dlxMf82Bqm1ptXpmssxKGfM0Ykq+m4aSbwiSewQoomdJwLQ/7IZL1kWb1xEtCXJOEhlJeo/5Mq+1ez+4+2o9wjADMMy1zc99gX64bw/3MI6lcHC34t2hCXIKLo3FMuOg+/TmkIKGcvMu37zJ4x0PAx56937qa0guu9cA1GaArRC4PvrExFvxsSnlzdztOkqycHf1oFG54LifHqxT1BeWMyMxoCCH2eV45oDe+m5/KMNOEPu6no/Hl+eny3xxgchc+QJuPq/TmKcHPPCIwdZbXdpy6efoUVu1HhD7/SRld7crWruul/Ox8TI1br33Zp3d+SqODaCAv9j3ATauKBIxoSBn5jwAeWumzTgU1RxMWzRt5orhCEBAGAFu5mHOLyf9x39+D5jHcc+pCBn3zmsra28WLGltahDjbioTqkVvNQmlBOOQAuCy9rCQlEYm4BEIu5qr1rr2rt0AiBMJMqZNk8TMTE2L/KWTV/DzQizMw1CIchl4GEsZCwB2K+M0DtOmvxlSTlmoJB6GnEVM3SEoEfLWXbbY4OsA4K69t1p7b6peqyEKMUspiQWR/DMOcAN5bd1TQiJm4c+RNAgQSIAATluKmqO7hl+lMghfd2JIOAsNBsmMunpXU4MtmPKLwZ+ZWJiFqZTh9tbu7uYPezNrra+XM2yttAgH7MAL8Bn5DLDCamCSA3nFAOY8jfvD7mY37UspmxcEUYAQCWqr4QEOqQghres6X+bz6bKuDSlhls0qAwGqVmttrbq1AP1yLWG2Xubzy0sFuby8PH14nM+XVNLdq9s3379JaZjrMs+X49NT9O7hal08gcf2y80DYhN7DqN5xDbtMHc1UwskHqZp2u/KkLXX+XxGB2/Na1v8pLWuyyWEmsNw2N0eRqZdSZgoTHuvlQoHZAA3a+fT8+nlJaXB73zI+5vDjbZ1wpxS/ryQQTdXN0HiCI4AcMEQRslihoKCDvOlHo/zIJJLuhkzIEKf17kv51OdV7fADSyv0XtAhJIDwNZ4MO9mlISJAoFZtpwAjA3Ia2Hh6v5Ze4cshLEhKc08EAMoWCh/9hwlQUQw97VbU/va03MtXz53NPEz0HsjL/y7NsyX2KPtxDOOIyEtS1VVBLSSkCAlASwRrWkFjB3nm/uH777/4e7hYSgDgrXl0ueLd/AwdEOMzb6u20m2t16rtm6GmAYmIro2hNzNnd2dPst0/tLD71Gr1zXKhIiSS9rvY7fD1uJ4AZoBQzsnwbv7/d3DzbAbYmFzWJfFTJUdAPCzfhgAW3ciQ0B3dPWQkEQi4qiObBAO0M27xhiIAKFqTd0x2Dk8WC0UwpkQSAAEIkFDwB4eAra7lVuF01KXdjo+f3p5eq/9Ok4S4dvb3e3t7uXlbFa3opmYgZ0MMIIQIFxNASAXQUa7Tq8jGFKRoqk38VqP58uj4NNxd5goYU6EEIloRGHORfKeOJtRgEVU5Ja9CmcMtBaLtHU9//TjH12Op1Weni/aFAO9gQMibFmhMMCww92Od6PsmtSLJPkq1wI2KhAmpuLGx6f56fH53/71j7bO39zuDodJxHJEMyVzFk7MQ8opj3eHm+PBx/OlRqytLyk5lzTe3Nw+vF5ncyKL17c3N/shZeExD8M0OqVlXqtjYA8MCwdXcLZoaskYiIAZnB0Zg4KQKcmWVtp6r6ro6GCZicJMa9M2W3w+WCICCaRC01DGTAzAgEMZU8ZxnFKazKJFC6sWDcBEeNzJuBd6iVCnz8RrMjYAdetae7Ne27rW80zhtZsCIacSQi20qlfTApYJkZ0pGIzBEnCRNORUkhDk+9t9h6HzLiQTMAYRCW1DUE6IZOprXZf6aygvOOAqsAhYAkFgv5IOIALIwg2cIsAoYdrlEaak3ZZ1PZ8Py7ysl7U1rbWd8eLursEPiST11lqvRg13PtxkngQLSXZKlUYo+zKUhIG1kV4wngPQ7NTX2ubz5Xx6nsILcRLA1qyZdjHrviW5/Wqp/vevCFBzVTcPi7AAAWQiEUiMSCDotFXT7r13c0MM2lR/FqGuqtaj9bq294F4f3+Xcnp1N405XbFIjuGwYba2xZIJNwmoCOXCANDdoAdQgEdBnizfHibtuqy1dXeIIJZUiNB7IASLBOJQyr/PTgoPJBRGTClnEcEySC4pZQbAaTelXJbWX86XMlzWZQlXxmBCIgwIxEiMKNBNw8GRASDMW23LZV7WtWtv6r2hOQLgsBtvCDNRIDtEuLqrRzBDks1sKEz82bgdG8xnw8dAoKjbVjAxJiFh+mo2hhFkTt2we/Suatc7cPshEgBvWZKCxEzTWN6+o97q4/OivsxzdHXTGIoQKeVLjC+Bj65nPzc7R8bqnEZKLEMZDoeb3TQJJcIkJQsnYbHw2hY3d3UIEEoWcXw5HY/n82V2hzJmZiHmiFg3Ov0yt7a6t816sl1J7/3Th/e//OnPUxrrZZlfZls9lUSM5+U0Qtw+HL7/zXdtvbwXOj0+tl5ZGBHA2M3cExCqm1pwPnNOacqcEgB1s+N8YUKCyLt89+6Wc2z0obvbg41al6X36rOmcdgfDoebcT/QmGwQFWi92myt2ay90S1Za31drfepjJmZ1MlhkDJgoS/EXvd17XXpKCjBaCEBwhgoCmyMhDIQU3Nde187QoT21vv5U6u1rrWuVcFdEIS4waZwcoi+yUEizNEBoaoVZ0AS4o1T3A3UTbu1TQ9FhMhXbQiGmtaOPENKm58PyxaggciEyKgWrVvtv/r5fu27AMTnZDW6mqtj40NsY6NrlgNiSqmUMgxDKWUj8W1DU+Jr/wYQkrCXPPZUStrtb958+93f/O3fPbx+zUjLfH788PNLmxu4a7NWCQJKAty4BN5aa7Vp14CUiINkk0X/BWn48zly0/puXyHARCiIarb2Ls1GlLv7+xGcy5MkZgGzvBvz/f3d3cMhjyMNxSweH59r7e6WhCRxKRlBeoPLubniWIpw5iKyOdTBSDBTllJa1een0zzXzDyORZBaxLJWAys7hvBmHRGGPFCehrKHjoZzpBV6R1yTwbhLNzfjy3FuyzKfjv7FAUdYSiqFAcPBr3FrIsAB6AhchAnItiUFQSGaKkAAciBJkcFzW2Wt67xcnsmeTrv7Q9plpEIiO6YJS6Ey8nBAymhIpERrthVjTUxozYbaxvR8qu9/+dOpvj+uMtfQ1hMLh6AnsiyUMmGBwsrSaZBEBIUzs3zRjxNyTuOYb3blxir84V//+C//9C//9F//aZfo1f/tP+wfbqckxVyFA4hzYU69OwseDrdvXvHTwstxeXz/oY3T64dXN+Ph1btvuODtfhet3aVBCNdQMxhTGcsoh8PafFkroux2e3X79PxpVW0OBRgREciBwgE8wDFzEaAgqc5RPcL4CkwKMKTeSRn8M3lc6HA7PLzev74Zp+zdF1VPiRKlcZpEUu1N/UyOvS+tz8xeJhgPlEeqqxAzkQAld7LoGhXQ3X1Z1pfjWaNj1PO8INLDqzcykeVH4A/n5clsjjEBhCt6x6VXByqFKVEaU0kT0bBaerzYWk8QDqvAlilJESLacW316emnu7zvn3VXoGifWN8nnHJMiFMHsXD9fG757LQOJEABzEMmuWNmCOxqL0+nxaoHqfo6rxv3ZCiF0ahgflPyxLt3w3Cb0yCcr2QElu2MlJLJ2DO8FN7N7ZfVPrTa9Pn03KMLjglSJkgbjQiceMsGujIZYiNFfNXn9/DadWlNuqZu3B3ZE3u4CwVxCAGC941BjoEBbqZXjoVbM+1m6mrdvKr1+5txHOTh4W8Pd/eonnIadzsgNEC1uiyzaQBQaxURmIkYiWmEgdhaNw1zd2G8OUwR0NSQ+LyaA5dxQogO3UwBQYSncRrHiekzrRtA4sqdAAYixpQob2N7QEBMOQPA88spQrKkqEsSKlnctLmb2bYEE2N8tqJ3tbas81zneanaHaK7XxZtPRDRiCa1tOVAAnwe1AUAEiPLJvllh3Dc8vsC6JqCg4xEKEIUQAhCUEr6uiJzBzdQDbWwK2/42vSnz2JhJmQmZBIZixTRsNMsSMv7H9d2jmVp2oSo03TEcgw76VJ1jj5jRqNJ+Cbf3u8Ot4f9YSgDEhJITkNKmUV6b/Myq1pcg8TJaj+dLsfjuauLJOaURBDBrC/zpa5za1W1m1XVXwE+4daW+fT0dNbj8jJ/+PHRtR8eDr3qy9OTqjLK7f3ht7//7Tjmn/7Al5dndFNdvLN20W7IpBstIJ0pS9kVYqaUEQLMS5H9vty/feAUl5djPa3YY+C8zusvP/3cetsf9uN+LNMwjkmoc9RBxpx9dezRbbXOZGWisKmUTPzq4fXDzSF6W0/nvtRI8uUUEA5eQ1cL6YDOSIW4CGOggqsDIm/SiV7bfJm7sYG3Wi/HS12bRXQHDhCKDetWqy2ru/vWTSEKkg3/TZv9XkRkqw/czZCJAKl3sw0zvemrtsYJAAQk2/K5mJm2NAzaUmQBul8N1F9emxqGcUujulqA4HMOK3312gZJAFtckly/otZ7dzUANlfVrYcEKcswZCS62Y/3N/uHh5tXD3cEeOI4PSKDJwojUDd1B47tGWYiJiHqG/F8axExS+BXMy+81iwUf6nqR2CmlFOZprK/GQ/30+2r4e6Qw1YzC0P2cJumYbcfHaJ2NQMPcidV2ET4nFLAZohrvfVeFQ+0myTnkgS3SlFdASmlrBprrbX3y35iwg0lrqrdlYctWCwDgoc4FEw3nFK2qft5qU9VAZhTyeMwDCmhujf9cuKPCLfu1iMMMJhFcso5Ewf3gMBC7IFEaAhO4BBXQCchEXLC5DwMOar4ShZ2WefjfD4MnGhKMrEkTwOlifINcaFA5+7x4hFonQCEIAsMhdIKPtd1bfOF1r55/0U4C2fCRLgt4ExAHCTITs6bSOjXj4UIM2NBT8u5/ulff/qX//qvP//hp7d3e+5WAEgbmHM4Rmjvp9MpfvplHC8pxNUKg4SdXs7rXD+WnRzysD+84b5jb5czdI+AnAaahrQbaRiFGNXsTB6Io0AHEARBypKGkgoTsSmBp4gikAYkiYjQulxejoOH7nZjzgwYZm1d57vD3Zf4dCIsA0572h2ocMRqHJoRKeVxHAl4vZyjW8LctfZeS+aUoAySkogmJA4QBwYEQAMxEjfvx9Oxu659YOz1Mg/DMAxlPJQmrftxXWNeqlgnROugSsvZjHyXtmw1J3RCb1GXXi8NvF4CEhI5gqI5keO5tvV0+bTefXNNFAJwi77Y+qK2iDTKhDDCdiTZMh8JkljyDooRDKXk3c0uD6WrPx8vOQ9IMybBjEjhoXVdELwMJBPuDwPd+vgmD4eUi7BsoYVXMS4CcWABwUzsMTeYn0MbLNbR1oEAQVGJe+5VvQcnTiQUV8AaBLjD1+3kKwKcKZA8SA1VN4i6CzkwCEHEhmtx3CBcbtpNu1lzq6p9W4kU0OpaPz0+PT09t24sOWcpJZehePja+hbV0rsKZ3crJUeMIoiEpTCgGXRyA3AiHIr4fmpqiBzHuRmWLAjBUUzJEc0jGPhr0yWAAIRHqCEEbo2KCAIHVQVkolRbfzn+cj5esvAuxTQW1GFd167eHUpOiSUJhVpXd7P5sjw9Ps/zqgEgmEoG17XrWi2lVHyLrQSAIASk7czqRMDCxNtMBhAIHTelLyJAgG0xwQyChMQQKSxPu+kLjCgCwlE1VNX06nilbRgVfk3jJBRGJkaWxDkPqdAwUN5Ph/eSTu//dFyeY54ZqVO8yG6Brr1Cn6U+00CWX+NhHMZpf3u3H/fC3JtCiFBJkoPAI2rrvXVEQuYI7N0ul3WeG3PiIZeSc5YAq3U5nY69rcwU4Wtdlrp42Jedsgh5q+//9Pzpx+enX56EKIwSZ0RclmUs4zTufvd3v3v33evD3fTLH//w+MtPl+dLrxQhkhRFMIWDBjkwllI2j7XkwimPYz7c3dwcRvrdb7S2+flsq2VIj+8/Lk279r/+299P++F8eWnt0ttZmxe5OUxphFwdZlXSFm0tnL97981Qyrt378pwqMvl9PK8LCfaPdi9QQEAwABSpNUBGzGXYZiEh1wgYPGGEMgoDIjWe3s+K1ciFjOr6urgQAAhGAk9rNfe5rVd5i0elESgJBqLpJS3/qHklDMnxLDtQ6egHMTNe+9uV03IluztqmFG2SAlTBLMIAIsGBGuYRGxpax+efbxmm6yva70wM/RKRvq6mtTUu+9966qm8exR/Ta1mUx1WwpJ6p1GQoIswiOJSFRZqDo3lZrK+WEod6XsJqFIIs1bt16V+MQSSUP+z06SLe5dTAHRGARIBJJxIz0pVW0xS991Z1BBOG0m+7evrv77ncP3/0u3d43Cm2XNJwHXVECwnJJgPjp5aX16IqXy2pKAan16mEsgEyGhL1778tQMDBJ2u+mnLn3pba21pWId/uEjECkZsfziQhubm5TShG4eRKFch6GCFgWWxt1L5KmMozL2V9efqrn824Q5pLYC48D5UL5y0JmqufT8Xw6qnVmSjnnoQylEEaKAA8MMAAWCorAMAjbUgo23R0BC05jTr4bMAa2Hv24nA8XKZJLuZW86ySOO+J7yiMRGW0nELV2snq0diFYc4bDvriMkEnRYrauSMS5pJQSMQMjUCABMSBfkwaueNKvwH0RrB2Xix5fLj/94ZdPPz+S0aFME4uYttPFunpHbf5U6+nTJ/vxQ8rj7XAgyq1j9FqXZV7156eXhLvXe9qVnEe5VH88vmAq999+X25vNbMRKzJ1IJfe2rkduyrmGKZhuhlvHg77/SQpqSJ4IhwGGW7yWJjJbVnmp+dPAXF3e8gluW+4/OX2/tvymdgL4EhKUikjsbGvApYjcZZxGlzh5UX7GlPaMks3dDUJpcSZKQfQprPfcKxpiFRCoV5eFrnkQ91lQa8zIFhUIBFBdxEpVvl8vCBg0E57Ol+wUdzsoJr3usSq3U9rs/O6rD1MC8CQeOeBiy7NVJ0U3HhF71/0sB6+xHJeznzsZcmUhYVMIBgSQAIuPlLLOsdCvR+cd+nu4XbYT6el7t/vhnHIa847KiOPiQSE3MIbMuUD7b6f6C48ewg4BDrQBqv1TSKAiCgEODDfZj/Gks08fMg60MVbbZ0XHin8lHjklBKkuIYNWGw7qX1FiSKiYRqG3ZTyQJwjkhlZmLgJBvHmiHANIA8I81Czrmqteq+mVU3N1cogD6/uXr/aEcayLJfzUmsfb6YyTilxV4XA1vV8PtfaxnGHAIf9oWRWq1vaQkpcgt1779UxGGMo/Or+QExN9bJ2RmOmQUa33FSX2lbVrv0viL29KSKgoROmRMkAAsNR1QODmeraTsfjurTbwxT7zEwlpXVZ69oVCCLmmYVwWddlbb3Zy/Hy/v2nda2p5PEwlt2UgIFWRMjDWMaRN80zABGltGViOwCQfG40IXogbI5kdySEcAt3CCAgoiTCLBgwjsNfdGIC3MMN4mrH+mwhCdjgN4k5Sdo6IiJZpBAVQfKIqS4r+vwhlpdnrW31euJqELmvg50mfQbMa9txxDAM0/4wDTt06HUOw03j4uGq1lpvTRHRHZZaz5dlYwQfDlMpQ0oJMXqrbZ1bW1XblunaWu29f7HyM/NhNw05L+f58f3T40/HJDyNY87iYKpdd62UfHN/c//6jjMOIxGt4P30VNtizZwkCTIbgrq3XucFiVDquNvf3Q+3+8O3b9/dPdwixjovj/B4ejrXc12aKlDe7V999/3+ZoRf4HLWMJckKaeUJBwdoBCy8JB4HCbZH3a73es3b9zp58vz6fx8PD0nI/3c6oeA0GDHqcjdONzupt0wlGEwd+S5dg1kRDSC7u7qFETkm33aAQMJMTgcPexzOrO6mwZiIGHANjq/9ii/eJ+JIW9DlMTA1iy6aetbojggBmy0FUdzYr+yeb+Y3rZO3l+mv12ff/rM1Nk8TxgQ/pla9Ksp6DOWdYsdcTd33II/VDcDtsg2O8UAB9cIQzfvtc3n0/OnlHi/31tfvK9gjcFlU/MYqZuZAbIHbX0e4kSf40QQkbY20ZfUpK/e2ldXAiEcOUUpUCYoe0iThSk0Q3YiZIxAQ2i9fXqZL5feWtTV5vPauyHC1RD3OdOgdwXAeV6mcdCbQSKbu20h4RhqjkyHw16tO3rVqm7bsNcdWlVJnHaDA5jNq9vajDEIiIkYt4B6QgJGSsiFJVMi+HKAia5Nw3IRpJRTyUMZSxZESOLmarCqNzfDcHAPsAAPoAjGYHBmGkoekSCLQE1SXdfWllonVQfGxQECSiZOwsKgFK69zcvpxesRY0W3xDQOKXg0lKaG2M9r9yBJwkloi5wE0+jde3dt2s0MYWs1/PoKp9bidJyfHo9Pn17m0zyKFBboqsvc2iLuCIOpno7HD0tdnIjL3XiYhh2WKRqgqwYda31e+ZB1J3FTEo9yFPNkeeK8l8BwNEAgMono6G2thpqGyEM41qoX6ZEgmxFEY1QhM6TgFBSUQwYKCC7IBSkYTEKSDFdJ2uen3yx6cyAyh4YUHImJENkjmkbrnjHUQru7IucsNAqOBNnDuge4CVlJkBJJwgA9Xy7u0G0ZspB1SdR0USf3Zpvm1MK7UhAmMCMzNgwgccRVe+ttqda0qVd1cM0AEzqq4Tofl1a7YgjwBOD2pYgJDhg0SrdKVkkvyAOnQyZBcZYuNIvP1C7es+OBUuacxcFTljLk3X7qsNu/lTKhYPga7cmiOZtkSWkvcsAetnnrw64KFIirHwrAIYAoZCTZMWS25gaoBFTCyOyk6zn0kxROyIBEcW0CwH+X/whElHIqQ05JiASBMQjDGV0ERZgpzMEQDKKHsQMEbbZQM2tNw4wJbm+mv/vb3755dUBoZv7+/aexDBu6q3j6gqJQ1d5bSrlk2e12pfC8YG0dnZy3XiWm5IgW7pRIUja3l5OodfOOIWXI4Oyzb2QRbe1r+LjMcyO6QlmIkjtAkDv25uYOZOvae1e35fHTB2jDfbYNmOceXfu6tvmyuNlS67y0pfbn4+X9h0ftenO7e5vkdU5p4FwWYnp49fpwd8gD0zYYYhmGcRtdeXiAAgYTAWLYRteopnpdJ/HKDmPilFNOWRCHoXwBK20q8e1UvHETt7g5gLiO4ZizpJxTlpw5IUkEGVhntsNh99u/6iUtuZzop6f37y+rznCRmIudJpxvaAGGCGOgoQzjMI3j6N0hFrNt6Aiu2nuvtdWmIuKq7Vyfn19Op7MDDmPZTSMTqrZ1uax1RnAEb731VlW/dGEAAFKS1w8Pb149/Fv50c3rotX786ejZAg2xAj3ab/z8MPh8MP4u2mfhWtiB/vlqEtvAQYcVIh3eRw4R9XVzh2CA+++/f637775mx9+N+6nT8+Pz5fTh/fHP//rn378tz89Pz211t798A1Pu3zYp8tuwJZot9uPVA490ro2i0hZdrvp4e5uN90xch4GSbl2C4Ea/en0lDBtIkrYnDKqQvzm1cM397f3u2kaB8l56YrPL+dlbYZm3q0HUpIsDNqbbg6HbeYAQK7goN1MlTCEAcARQYiYnAEpEDZSsqISIINQJIFEMpBw4m7WzWoPdSdm+pxEyJJYmAU33b3Z1emvGm4O4IBfqUvw8zCJCDce7lY7b9fp4a7hxqwiW8rKVUW/lTII4BFIlJgPh8Pd3e3t3c1QqPe51bUtZwyLvBIGM1pb4+0b7z16RVP3Hm7MzClpC3O31rvGWrVW+wy/o7gGplzn9F/qsq0j/HUOXCBZ4gXhcVnr07GWl9JTFJl7nFe7LK3V2aMjp2XVD4+nl+f1cml1UW3KjPt92U2ljGWaMmV2jw2S01o9X47TEcxGAEaUPHBAdNU85G+/e+tgx+OTuS9tdSNADIf5OIf1acqYSK2Z+eVygm4DUML2+q6sedKItRuEEXgRLsK/tpQJMae8GySVJDmRZJEhpcKSiN3gvDZc1nVp4AaGQeAWdpVlhiBlkpzKkMpw2Eks0D8NZORV2zxfTrHGRQVKHGAgpMJEPoOd+vpyeXm0+jJmJyIGzJQ8pZuxxB0xd3851wZ0jXNBgOiuW8jo1l8ARYK4Roh+vskisFZ9enp5/PS0zDUMpAgGrJfz5RiMyiiUwsPndT6d5+oCUPW4TOM03d4EjQMLUjKEudfTadkP7X6UfDOd2rggGC7VWBmNKJgRYdvrA5TNhIBoPZ5+Ps8kzFtyC4CEc+bhZtoPKROAu651AYj3LzmlTQLlXdtbpN981pEEgAWsaqfZuihFsyCIcIt1tdawK1uQGqtR7+g9JSGGPcMOPKsu6j3cCnUkyiJZEkG0Oq+1m69DloRYBp7rKTUzv3Q7t7WC2kCb/QwBQFJKmUoZKCWtfen1VFf3LlkTkxNhKEVXA+3ts8EXOVPYr5s/CZZXOL0jIOYOvlrMtD/sh5ShozZfPtZ2dO9yuMNRpCTUvi7L2tpKBDe303Drd7/PMvm6LOf3df3QffUowBWTAYYQUFxjUa/c8W3/8q0fYxDuwB7ZPYFBtEVlxPwqmdrlcdVjP2lMa95DEgsr6uQQGFdZxdctZRAhEd7SzTJRJsrohWFgyoxEoM5QKRgNAZnMDIF6rRW6mhLEOJUffnjz//i//09v39y9/+Xn8/n0b//6x9PzaZ7rd9+8vbs7DGNh4pJLzqn3ts1bxmFwZw8Lx6aA5oQgAmMZOjXrTd2EaMi0G6VVvMwtwIQKIIe79lbr2tv6ZZQMANJqJ8aNvWvGZtGbImNvpmaB2Gp39UC/nC8D6uEmpQAIMoNl6WvtZqqmTX1tfVn1dOmXDoQJJHMqkjMRD9OAmN+8e3243Qc0APPwzaskkhHQfEOHqHkEhNsGRQOHCFUkICKAMAvCIGJhTlv+wNeGi+uCRkC4nXs2Kh4jM0uSlCVnyVlSJg7E5tZ6m3tt4TqMfnMXt7PPqhet/dxmRa0Sx8LrJOEYz6rWFGEja4m5MbFDIKK71brdsqrqAKFml8uyLEtAbGWvZInQ3tbeqmknAiawvm17/LVtjJn3N/uH1w9v3rx6f/f8KOflss7n+fTCaRQRBsB1WWqtgHS4v+cEdX3s9bKez9rq/ALuFuahgArRvOoKibnIVMo3r199+/r1vgx1rj/924//9I//8q//9Kcf//jnDz//bKo3dzfjbkSmYJKSB9gNiadpJ8NtIFXr7j4Uyjnvpt1hf0PAJBxBDl6GUbKsvc7rbF9myQDNvSPSMMh+h8MQJXWibuhJXJO69YgIYCJJSRDauvba1SECWcJxQ8xTIhqy+I5SBrWAQCHMiXICpk17hr0DhbuACxQBQSTB4lgEE8eVGwPggLwFwCJeowQC/LPLKLbEkf9/4v7Pihe8ak4AcJOjBGz9Ff/Mlvo8V4ptrgRwNUSlJOMw3NzsD4fdUDKi1rqsl1NbLxQebkTEwklwLELg3tewZtbNHK7lE6pB016rzUuvq6tRXHFLGzz033uRAK7kzq+/4kg1oC91eT5e/Ody0XJ766zN0ZENqGto68dz/fh4eXq6XE61rwaG45BLLlsfCHhLakOWFGZdbVnW04UCPKVJJLMIYJhpQEhmIJKatHU1NUOEQADrva/RaxMU5i0GuLUG0RX7OhUaZFzUQaMUKgmHRFl+DecLACVURhHkhEVwSrxLUiQzsho4YjXFJdzMt5+Vb2QJDwsnJ6Ihl4OknQBb6AXZevSlLowhLdanmSBdajXQpWDiOEV/Cb2E9tAAIQjU5hZBGAlhSDQkYoJtE7JwQEJwAzcL8wqRMm9AfZSvILeblRQA1rVe5qX1Lllev3l4eHVr3pf5sitMJUlOoptBZsth16bKEGUUTFSQgcDRqurcz6t1LCknHqas4EHdYgUSZEIyQuCwASOz0AZxjTDrZmraDIgpbQu+4QV8WVNioi2hMMKoIhEnIQurdaWya9q+PPvdcVU8r6ASCR3Q1RtGC6pdxQCDOJACcJOXEGaBAb2Ept7WYADCwmkouyiHIspA1ntbZ8KOnoK59rL2U2lqPqstrTcJh0wA2ExbBCZImUgIgNSwKtRuHoYSLJiICSSCyAA3ypC6mSt6XdZruxAAGXiItA+shDOHBSyc16HQEIp2qevzsrwYBrTU6rzMp+My46U2620s6dWrW0tp/458qPbS4iWaWV+NVsqNulLyIGIEdIernBZhswJ8Pn5AgCO5s7u4gbU1ckeeMpHQLeuq7bx2MLmLYaTgiBS02Rm2fL2vFrGS0lhyllQyD1mSsIRmgoFhzJyHbIFcO641GLGiKrqGiDEToudED6+mH377+u///rffvHtz2I1/+MOf/vCvfzi+nANxXZc3rx/u7m4P+52bf97dAsC39i2TMCeOYHcyZwJKQGDNA8LUA0GzQBIAb+Zk2rd6brvVw/Rr7I3Ypm4kDEczaF1hXgnRXTe3jHUD9wDUrtrZOiG4OXaNy9xPl1WtOwSIKCRnllFu0zTk9OZ+9/AwpZQAcLcbh2H/7pvXN7e72i+trevaEGk7BkdEAHqIh7drpwgRcShFhZe6qjsjRnhvFg7TEPDVifPzSrZ1alAYA74EDQYgC1ESESlZSpZBWBDRo2tvy3I+Xl7mea5rWxatMuDNQ+400Cftn6StCZYEmtNQkevS8DL3Wt26mxFgzjkCmFGtny+Xy+XSW3cDhdjs0xG+P+zKMKSRA63XtbZVrQOGEGKwKkqiXIZpN/LnVRmJ0jDcvbr/67/96+VFn356bnXtrS9zXc9rKSLMdVkv5/O8rHm/L7vDw7ff1eU0v3zSuULt8wWs+gqdYa1VDWG42b199fDtt9/87q9+8+r+bn5++ed/+cP/+//5//rf/7f/+svPn+q6TiXdP9x+992bN6/vI3pbL0IgwzDkYZhuyvBg7gZr94UdAyhJLmkAEI+o3Txov7u9vZmR0Vy/aOEtYAE4RjxZpGYnqLRWN1VTNa9dL2tztcwwEKaUKNwslrWvvUeAJCFOyJyQDtPAJe89uoFqRAQ4EG7WNouA3qKCO2OXSAk8UYnISBFBYYwuCHxNaMVAcAA138RSm4aKfk0ZCoh/XwpcUU+bXR8258uWtbrprzAgbNuZY1uDIMJ770SoygiYRIZhONzsb24Pu7EgeF3m08vzfH4xXRMTMRYrqrWty3o+Eob2atZ7r2buVz0vAISqLks7n2ttjpBQkoQAAlyjWDdnCf6Fn+orPGQEWGBXiKrn/vL+eU6759tvvx9v95xKmW6QzGe8nPrLyT4+1aenpS09OohnBqxrrM1Wa2xOwRgcQICsZq3Z+VIBeBoEBi4syAjAbvb08oy0OQbShq5BNCbfYp7rsiIP+/1InBKKXtrx+Ym03k4yjTmTCImd6nknY4bEcZUjATjA6nFWbWqe+7AbC6f9kBJyqxYWOVHOBOBqGl1ic24gBiAGuAUwjtO4K2UCxTb3CNDmrqtqrXZu8tOjGgyvj0dfb0cYx1KtPTPUsWRHTBS9tfVcmynn5AHauLduramCQWMAQSbeVtpotWO0/QiJScqVOPr5HqOcU04SAO5mYON+/Jt/+P1v3hx4/lB7hTJJzsM0jcjDWMammVI4UbMsJBQAVkItOkazbms9z9rnMkh2ECZGYEB2EiABCPNwDs2Jp9vDkPLGzQQAd6u1b2BJd+xdwWE7vwuzOgBh625uZtEt1rYejy/j/uELSTkCm9HSEwe7ccIGWM1nNM48eAwhuHHLmQHJCX1jjoVSb9yDMSUpIunuML3NbTemLvC4YWsJiIAiQm2t/Vi1OzSP1VwZHZkc/FLnqs4cJBThpuHKZtlC3VC7CaZcJua9wyThUhrX6K22Wpf58vJ0+jIWj01kQp73hCRxQVxTPJMvBMF61PkUy7kLxXw6f/jp53Y5BnkwI403+4kQq1x8PC+4KHlHV/feozVv1bQlU0CBAFcz3xoyCBhbsrRtRBLEQDEDDTILa4v1SiSQ9unmO8Roxz/WXps2DhUEYCYKIicjEvp1tExE0zDc7MYsaUh5HHIiROvkKuglyd3tASWVpfFlcQaDcHckyllykTzgfpe+/eHut7999fbt7XffvNmViYL//MefP3547xCn0/H5+fXbN2/evH6VsgBQTgkoHFy1b/AHABQRh8DeEQwRmLfkAOvr2msnMCFHUG2+zGeiRAgpiXyOg/u1iPkcEgVbBdpAvSvitkhHAKiamSGgq28tl4DozVq1ZbHaPBBJJOUhESfzMTCIx5zv9mW/S0kIIqZpmKZhmmQYGJkBuHeMwIhNLeC9+1rbUusyL2rKzClJyTkibItvNHCzvnYX70UTGSWC/+6s/DlVCbcFCpAIWTiJ5CxFZBAuSGSureu8Xs6Xl9Pp5XS6zHNba9OmlvLw8IqIua4JzjuTQoGSetBlaTSvpj3cXJVBck4eEWCqrda19w6wHdMJkZi5lJLHknNihq51qXOri5liBDGhkCgxcSpcSv6i7/GIqp2SvPvu7fHT+V/+z389vhzVbZnrOtcyppRTndfL6Tyf592dlXE4PLzt63l+/FCf19OnZ9Om3WqrvboMkqZyW8Zvv//2u++/KWM6nZ5//OOf/s///R//+N/++eOPP1/Oc07ycH//zbev3r67uzkU74tVHbLkNOQ8Hvb3N7dvNWDpPq9HknAgNehmCOQe3c0DNzW8EG0w4s/XAnO3p6X99DLPvkmUDMKEoOQUjlWVA6aUchYmiO7arbW+rNURckBKmACFaV9KoWgRFqAa7gG+fQfbBpIRrorgaBYbRhMAAd08EEIQNyjjxkV3ANusNYER6MJl4xMRAATDFQrw726wLVWRr62+XyMyCLcQduzdzHqE9d4QMSXeytyt4BamnPMwZCF017q25XJe57nWNUIRuak2baZq2rWtCKG9qbbWmrlj2qKbIyLMondblro2Zw4BpJQI3MNxQ+BeSTawxWHCf/eK4AgOIDerrbZAOu6dcdghAViPttrpuD4/r8/Hdrx0UCMjCrAOtdratBs2B1BDJ4iEDhEWBgGmGtpxtHB3yUyMvev5ZQWCzc+CDgGBHJIgglmuNtWck0hCx2r9+fmIbS24T4kpUc5pmtI0Skkg9Cu+yz3mZqel5QhQHQj2kmBwwGi1NQsoaetgEYB5wNarJbx2rT6fHAgxNoqZGZgZhIH2vrxc4NPTap4F4VDa+TDApN4vjD4Og6OYNtNW19aMCruFL2vblpTar0Nyto0aFIBh4BKm4UphHEa/pqUTQcpMDOfLvNQZ2Pc30/e///bbV/uXPxz7ZV16H1pHbVV7N+3aOigFD8BCwegeKlo5CCNDqPd11fURq4ywJIOSh3HMu4mGHEwGV8poTvnmcBhySVtuMaBHtKbuTiTuoNrdr7U5EanZutbem5maeYSv6yqEN7v91km6rmPd1xrJhQOQCdC7dgjCtgNGZicMRAVsARWgEyVhFikIRVtFSGU8TMM3d4dv1l4GeWZAdGeMIdNQ2D0Cu/nS1YM8wJAQSZA9wh0UKEQwZbg2+FVcESMQE4ZjiPsImIPFyZ1EA5eqp/N6qsvpZVb9tXkZEMDII1GwXchXXJ+6MUTQfGl9de1u0V7i+Ofox+cyTGm6ubm5m4Zx4EQX8plnd9/2W4Mw96014LaZTzaDQFzV3g6gFgbWPSJgS5DZ0g4IkSEMAoAY8yS7NxwNl08Nuoc7BjKTJERDA+S/1PQL0WG3u7+5ycxDLrtpZAitBt0ZYTfl25t9GsbSLO9b2o35eD69nAln9EoI4xCvHqbf/f7db37z+v5+fzhMBHm3+9g1no+LhgNCKbnkIsLTbkB0ZFBTawFuGxWOORGKQ6SEEREWCAiC2sK0mnYCTwyJwcjNOiKNQwnwc0lJ+OsqRhBpm8Ju+HJ313DAa6wPIHQ17bax8928NSW3ZW7rqr0HoExjLlMZpkFSAghAQmJhygQlYWJC8GnkkljbvK5qoRGKuFX6DVHdY136y8vldJkvl9ncUqJhKIf9RExra717t2Zq3qolGTZZDSb/FUC6eUNg03QDXE+iRMIkzDnRNkbPROLgq/fLOr+cn1+Oj+fT+XQ8vzzPa20Blkq5ubu9mdItrDLp4WxFV6V87nRcWlqqh8P1wI0psbmZtdaquQJgztk3OLkwMqrrpqtw11bbfLloq0SQmAgBGJMwYKTMKf1qG9PeH5+fT8t8uDm8/f7tm+9ef/r49PTpuC5tXeqwpDLkOq+X4+lyOu3nJQ134/7Vw9vefni6fFz/7R/nZZm7h3r3WKab8vawe/32zT/8h3/47jffPJ0+vf/xp//jf/nffv7zz679m7ev3ry53+2n779/e//6dtxnTqH1lGk8PNzs9wdJw83Nw+s33wFnKcPz6eOyvKjTaV4Bz0KCyIbUus/z6fjykoinYfjSvTSPeekfHy+mn5Ic194RYhzlsCt3h2nMGSNKSfv9uCsJ3HpbtbfetWlzJJEMgeHAAilLJOgQGq7mm+keEAy0m7bmphGA5tctextHblBNBBTiTN4R1MM9gjAiNAw1eodSJGVBQkYC2JLTuVWEq8QOAIAQhSkLy8Yo2gTpBLSRlpAzFFVdllDtl8up1nUcx2kCgIQY7gEIpQgzreulrRZWW71YbwSAIkBUVXNvHoZh4baFOvbea6seLgSAfBXuOLhH67pWJYlCmCJjQNceYTmyQMLPjZhtIIt/4UwkBBbKnMYiOQ9mImBtvZysQfjSl+fn4/HDh/nTp8v5XHsDJhJmCgSIVm2tqpEtQGu35m4NA4WwI6zV57kva5+WZZrKNA7DOKy9/fLhUd3vX93sD+OQkzBBAiHmlEV4mIaUCyKCQzj0qs+Psy5zEXSGLSRGhErhzChfaZXMfZ7r6VQHQuiGzVhplGnguMzLJsRQdxHJKTUARyRGYsaNP2UOAN363Fy1xlK1KRlOuQClajirLU0j0Mxar6fTCu4InZnTkBT6orVpa9oVpDCb4Xlen0/r5aKrE2HCBGRIhEzETCjgAp1thV69zZ9lMnBlC6FHf3z59HR8ooQ3r/avvnt4eNi1l11dTy/z3KqN3Z/X9nh8fnx5vqw9Y35zuJ0yExi5YjPiYEiMIahtXX+8rFAi7seb3XS4fXX7cA9JkJmFRCQnKSkPKSdhJkYkDAIAcwDALfluG2gEgoObman7xlMMd3fw6Kq1rYfb7/bT/ktxWeu61rajAZmuYVnRQlH7yiFpc174xfzkMTtWlJIKDtNYyu58bkRpSt/d7X7/6ub7c/PEGR0IIgvf7MdhzGttzBHQNAAMUEKGkggBK4SVzJKiJMxbsLySqYQlhiQUmYkC2yJOjAnWHtXh0vX5eHl+Pl0WOx2r2RdGFAIRCQkTNwIkrfZyOYZGOJphGBDiWus6n1+ePt7djN99/+Zwd7PfFR4GZV0sPNw0wgJj23XDXM1ksw4CICHIxsIOcA3r7s29AQJIZmEUYEdMrCIRBDgwEkoiueFYYL5POhsnIqaSM2fw5ubXucWX50VEbm8Obx7umWgoeb/bUehyMmtROO/302E/ld1hR/ku8KH2x5fT+58/fPr4+EKnw37YjQ/ffnvzD//w/Q8/vNntB4ToqsvaTuf1PLc8DoEiUhBxWS6AfRyTgy/rbGaVOYkkKUnEgwJhCGYi7aCto3MnQDAMZYJtpI5IEViyHA77UvL5fC45fZ3LK59TesPdVTdcT1z1sMGAW5CHM2NmFAIz703XVWvVzXFQxmG/n8qYUxbaMpIQEZDCE2NO1/69JEb0cI3QzUHk7tukv7V+vtSnp/P5NF+WxSOGIrVp7yqJDcAc1MLNwd3Me9euViD9u6n/VYUQCLCdlVk4MyXmwpSFMxJHePe61Pm8nE+X8+l0Oh1Pp5fz6eWi5mlIA1Ma8jgw9bskS6ZFz/E8x1OLjmkoQxmGnPP2/okIwFtbW6sRQRuBx2ELU0xJCDDCzXq/CnhbuBOxMPGV4Eeb9zkl/qLq94jaWjdLN+Xu9d23v333+Olpntd1XnrXXrf/bL2cT+fjy+F8mQ6HcbeXuzf27W+efjrm3U+OL12tNVMHGUQkjbtxf7tLAz/9/PTx009PLx/V26u3D6WMgTCM5dXrm2lfNgqENyeIoQxDGTaPOxKlPN7dv8HE9Eytzc/Hl/PlkoiYE0pWhctlvZxPAC5fiS7dfVn05dhUL4i4tM5Md7cDEEoWEt6XcjjsXz3c7Bnr6VzdIhwxmD/PbQC2s0UmJCEB7wFKAIFCBIgGSIrhHT3gGiC6MVrDOugWeO7EQAKUwC229Ap0CHf1cCdAxN63zjMQAhMyIgH+u1YME8km6f3cNtt08bRJxzEx82afqnXV3hGDGVNKsE1wrn3HVpca1sBbWAszwqtAJ7bMpi0ApbVNnuDuZqrh5BIQvUerVquuVdfaa1MJoJTcDTxUm4fn3piFiOIzg+C/ayoBAhOJpMTDMDIpyepuy9xX03aZ5+fT6TSfat3o4MRDwcJcjJjAw8wEXMDJe9PaVAGDIYshRtPatbnX1te6ttZvN3Bztdr7M52b9t1+mMZSchZhDGRmEgaCMOsR3v18Xj49XqKub14fLMjVQtXNEEKEEv/a7vOArlB7EJMAXMwuqc+rRqK1qUaIegCKSMpJ1Ry2ZpZvnIcNNde1z70u6+zLxdeeECgYnE7Vzqs2840xzUy9r2vTRM5ACGFh3bq6AgGSgIg5zc3nqqt6C+QwCsDARDIMOaEEOwTM9VKBe1+X3r92wiFGt/r4/PE0v5Rdvn19KIeUdlwOpT3L+Xy59DV3WyKCQLJQbe69t2WdKcC6p3qCnkZfIBdC673V0/HIu/Tw7s3dw7ffvP3t3at7gwAiSZxFxi1BB5ERaYOe+NYTIEROLJ8HkhHgfg1Lv77b+AxwdA8PS+NDkfz5BgtCzxz7IoccjNQdGqI6WA1oGmgegSCdhm7VwoEolWG3v7+9fec05bL74c3ffHP3Q+aD2wuEMcMwZjEfhlwKO2DOMGQoCZUBmDmjEGUKNA93g5BELALMbrRNojfLWE4FgWqzagGqzTeVKfXwperpBPO5+ZdOTCCpUE/oDBW9Rp17Xea+qpsTpTxMCGhmda3WFgh/eLjT7h4OqJXm6pfqa7ce1wTXq1EuInCz+dGV9USAjmAEm612+1ySMDMyhUJgEDHLToabnFISYS5sN1wOjFvUoG+eCHT8Cp/81SK23403N3sASJKk5DAIRsoyDjLtJmZmFinjkMcDlWE6tcXWuWrtifM3b/Y/fH//3btXd4cdISx1PZ4uT8fz6VKPlwppGXdrrWpmbuiO5m7hvVezQEQK3DgpBMwIKdC0t9a1NghFhJxlsAA0M9Ypc3IzypmnKUvCw26Yxr8k9hIBbq4uj9jsBJv76Fra0EZZSIS7kaZCoVab1mbbNJQTpyGVIeWMLBtEzMwBA5lBRErJSACokiTnLMLeLRxgi97VmNd6PJ6Op8vpvMxz27QyCGTRTpdFhIZxkJSQSASJMzNvljEiZk5f1H24JS6xhCMCJ05MiSUzFebCJEQcYc3q0i6Xy8vl8rIsy+qlpE4AAQAASURBVDyvx+P5+HJe5kVS2o03+920qdrHu12JW1iez6f5zy/nRwd+fXv/7t3dw+v9/qBLi27uqtqXZamtIZAw9Lh+0cICwnEjnGlvzVUFEETGklLeEhIdCZF4GFLOvwp7EVEkc8ooPB6mH37/w/nl/PTx2XqLqxfRemuX8+l4fL45v+zrzR4Ow3Rz/+aHh2+edg//mHYfl94CQBhyypI5QE+X5/Ri8+WFJb79/i3+wK9ev8tlaK2bdwAz1K1ZmbGkMpKMCrgs56qBfLu/jTQON4eHcHt80g8f3i/zmdGZJZUdcYmg3mrX5l9px8OjLn2+OGMXETCQxCXllMTDkWF/s3/z+tX3b16VsE+trwSSMA9CmR2QiRAhTN2A3DnIAc1xm5h8lncxITA6oCEFI4jw5sxHp+hbShujhbimAETQ2Jq11tUjPBiNfF0VATFhYtgAQ9vvX5mTYGMYXjMsgAAAKba/EiIxAvIwDOFea+29L8sKiERcihFxa3KZZ+21rbNrFfbEkIWZ2MERUCQJJfDQ1pZ53uQvTLhJOE1NI5aql7mfzv18Xualdg0gyRHqRupdO7nXpSIyEiUiRI9rO+rrEmYbgzES5zyM+50B0bmu62p91fU4vzwv8xwdM8GUBRAPkwyJ2Dw81uboSDGws/hiW24kcgQikkOYha29m62tqTqj5Fxuppulri/n83md93W6uzu8us85p3ANRA0NDXDUDuvFPz0ePz6eCgKXqUz71WttTdeltS4kOX19GiPABDgEkSM6eHdaNRBDATeRJCJySmLGGza9W/QAQhEZSkGmbq2vtZ5ebD2h9SEhKlnE43l5mVWDx2HY3+x3+8JJPVQtunfo2td1qbOFpiEzD5iydmxADdiRAukaXI1QSn64vyuU23Gt5/X49OTmwLS2/pWKPCK0tsvz8dNc5+9+eHPz6qbBOmvQkGQs5671NNPacRpuH+7G+9vj83k9zXZePi0zvoi61EV0mDCvuC9bPMfxsu6n6d33f/23f/s//u63P+z309KbuTGSEGakTScIAYQUjn6FDhACoW2ca4NwcMDADLIxlK5FTMAVHAnBMDDw580SbyZ+c5u+u8978bbguVLj4j74UrRF60eANuRUYqz73p2CSip0c/uNYrm/t9v9/V//5u93eXd6fvr0+LS2WXLc3e2aCTE6uIiPo9zty7QfL+EdN7kuHzKxoZitpg4MnDxlC25Rq3p3GGiUXAhSzGtrtbXFKVKmcV/yrqBwW22+6K+dGEdeMx1LNNET1mNfz3W+rLVWM8spMyfcIiERUSSQW4v50p7P54D5Y3t/9OdKc/O6nWS2qm9LRBUhkasMPPQaVcsJpQAxSU5MyDmAI8CWLT+DeX833r4qw1iSMAukAdOOekNz6N1dIwzU3CKACLfByva0EI1Dmnalq6vTuWrvba29cORxzGXo3eyycuSSDjc3rwKHH9MvQjIU3g/5m9d37x7uDsNIiHWttbefPzz98vHTeVmPl/U4r2b+9u7u4W53e1tyQY21a7cwpJTymKQ4gDpc82E0Wm8vL891OZUUzLjf71K243kGAKKxdO/qzFxyMOLtfjhMg/BXnZjtL7jJSK7HSqKrMpACRICGkvcj3ezKVGg9Wzfv6hZBTDnLOA3jVFg2jye4ulaLAETZQtOIKAK3WSciQZA7RKCqz7M+n84fPz2fzpfWrfcwCyLoFlZ1rSsxmuMwQskJE4uwiCAzIAbiX67KQCTCKRARUtqGR5IJE1FCpAjr1us6X5bTfD7N82W+rPNc50ttrRNxTjmnkiQTIIvshjvo7Unl/RwfV9Dd7vvf/PY3v/vd7e1dTgW6m2/hO7qu67ysHugOXa1r7705ODIFbmdWM9MIS4mYaBhSykgcAJQgIUVKW6r150qZebc73MTtOO0yl29/+93p5fynP/y0ziuY9dq167bJXc7H88vTzenWHl5xmcbD/eHh7f2714eHj/P8bN1TTrv9uD/s0pBqXS8Lefi0m6bdlHPZ39yLpK7Wa12Xi1oldCBKkiWJqvfLfDw9pVzH4e043U77PRPOkonYwVtvbisASF0lDyWNRDhNZRzHL3Px8LgmcXZlliQyljyWlIS3qY6kNE7Tze39EFZPp7rOPTyVbB4WcAUEuRMTOUR3Ne9mPRwxQAiQHDwsUJ0D6Fp5AHho9zAjtECMQO+G6smCIeSz61giHJBYGJnVfe1VwQSSsF9FMf++g4F4hfNu0V1IQb+aS4AIUxIf8qgDIkZ4a/V0ht77OIzCcjoeZwLrlcDGQRjZt3ANZJE0DeMwDITcm170TBgeGwfMzL12a2qXuZ8v9XLpl7muazNHThtOzwFwS03qvXNvktL1YQHYhsVfX0gAwsaeIVSziCiEiLioQm3RlCzGlAIoXJHodkpDRgzV7oFIQLaiCZKLoNhVT2LXEhbxOtO3xoBTWZlkzAWRLrWqKwZ9jq7edIMQBlvuTm9Yq69rvyw1Upa8G3d3aBd0qKVxHni7rl8ZOFdUd49IASakjk2D0bsFEHLAlZu/kZp968QFwHZGCw+r6t6WpVZvnQCMEFuo+cvS1+6UhnE37Xa7cZcSLbidYJq1ufW6Wu+AKKUolqX7afW5ezXogI7I4ATIyIVlV8ZJhq5yqf6iF10bpuTd4Kuq37dE4l6HTD98+80P33075gIOiBIoPagaIPqhjN/91e/G/f5ymp/ef/r53/54fH4xB7AgNPSq87FBqSLYe3PnPL558+033/xwd/NqyIm5qikFEoQEkge4A8Jm8b0GNABt2LArYmhDIgVe73fH7QEHBAoCiABn//WIjAiJaUiYJYSjQ4IYIsCs+Jr6om1tiCvtvI+9q6qFOaWyf7j/7bT7lgF34+7V4XW9LB9++fTzz7/MyyyJ7x9um64aK0ofJ7q5T7e3adiR1o1PCcJUMnPn5aovwQ7YADp6Z+3YV3UHmNcxcQAZs6MFYaTEZZAypjKmVFzSV0GDhn4mf0FtHjNYNe261l43EUJKQ8nCuW1Fj2EZSikjMp/73NZ+8pcZTxbdopubXx/GK4Fy281oc0oibw8mAGEmFs6QmJDELax3D0PVCILhVobbTIkB0MEdzdmdvKtJI2vGBeP6TX7NG7l+LsJJ2By06bzW2tZomnYplR2nslyWaEvhMe8gSxmyFUmJqTBmioSRCDIxBdS1Lg09fJjGt+/eHs/Lh0+PL8fz+w+f7m7zzQ3noWis7iGckgxDGZlS17aJFk375XR+fnp8enqyvuB+mKaSysAJAijlPl2zXzScUgK0GDMN+esV93Mm2TVo4bOuaFPEEjFiKhlppJsd391OQl4vTT0sAonKkKfduNtP435EdMQgwtZ0qSuE0xb3hEREkhKlBEjuYFuLKbB1fzldPnx6/vDxaak1SSaWnDMRA6CaqwZaLHPbkuZERFjylrXNZGaq+muuDRKxiCTwRJATD8yZKW0X5mFmtdb5dD5dLufLssyXZb4s69JaU0KZ9uMwjEzFlSRLTnm3G8/H+m9P9sdP7Qzj27ff/g//0//lr//Df5imAwRKSohoprEsS12Pp5Oqb7wO8zDrQMGQkDe3i4cb4mYQlaEQJ0Q0JCZhxAiAr4nwIunVwyucYio7awqOp5fLd7/58/wyP77/VJfWa9equrb1cjk+fjzcHPTtWxhH4jIe7t5+9+277x/Pj0t0m/bl9mH/6u394XbvEWpehl053AxTId6QdLEfxhiHVlKrS+trBIhkRLicj2udn48f9vu7795qFhKCptbaChAPD6+mcbhcTrWt7obUc87jMOVy8/b+9TZAua57sNmtPTGOY9nvhnHIicm89W5dTYMwDUOi2/sHQhj307oFmXZra1NzQIyAHrHONte2qKobMpYiTOTmYQ7hdE1uR2ugqm2tpkYBiBhI7g5qHHEd8m3iOUJKXIaRGJtZa21ZFHhDEIH7dhj9grKDzbd0Bclt9T9t5/wrKByRiLEMhYWH2pZlXtf1+fm5lCKvRLg+zhfCyELTVCQlTmJugJBTHsfd7c3tmDNa77UtdYnoQBFg6moO1XRZ/XSqp3O7zH1Z21q7AyYzMzdzJGSEQPAtC1k7MW0uvq5bH+dXha9DAIIkcmsf3j8TpofbhzyOts4CPOaJOLvksQfFEhD7QUpBiOiCERwk86mip13JRQCg1d567wHASSTlXAoRWFvNtNaaU8lpGMv46g6AY78fh7GIoy01tBEDlAIM6qZKhAkwqYMCcd5Nh4ddOuh+WWhnF/glPUbglyvxiN61rjUQKPMwlghUiwbW1IEQLRSiVW21tdYU7BokxQAI6hqm0SysO0FI8ojm8LJq7zY3A5TdON0c9tM0jEMiHMO0V+i9ns6L1jVLcEqYxtrl03H+5bk/z+2ips7EAQAcUZAKkBgWSbtByhRRlkt3c2SHL8rrcLe6cu83SXY3h//h93/9d7/7/W6fdDnPjXsjpwEzUs73r7/7j//x//rtD9/3pj/9+cf/efeff/rzn717q7rMOqueveusR2KJoJx2N4eH2/ubaR8WvXVwYCeCKxh2EwZt8CRAIozYdAC+4QauyAvaPBOAG+Xx6uILJNrCHwxc5at7zBxqt9Myd6Le8mq0GqwqWrGvoQ0Tc3iCYDffZMrjcPvu/i1LyYLWl/Px049/+sM//rd//rc//Pl0XlnKw83UbX48/gyit2+G1+/GmwfiZGddezcGStunCraGzq4OCd1cuxlFUk9tudR5XXtvu2GaprzbszRxRGLohCXT/pBff2P3b/YpfzZbGLSj10cNqGi8bTka7ugiPO2H16/uUxqB02VOYZf7w+7tm4fpbnrB+dhPK89OHbZSUbuZbSKVzzQ7h82EjwyC+Lmi4YISmAgZERmjg7foatUcCGgfvAPHqD3CdF5b1VZN0YJWtNqiCFkwkG+N469s/AgbVcLbOj99emqtTiXzfi/5AEjzcrToOKibujYMLQKjoIJ7a8fnp8NErx9uwGFdKlB5/eoBaUhpuL29+c//8//39PL4488/5dz3BwS+JbaU8jRMQ97nMkaAaY/wMF3nyy8//fjhw4fj8SUx3hwGloSUsoikcR+hFr33WmurvTXT6ALG6H/hTipFiChlZsYIgIgw3xyjSALAiWjIfHuQw2Fw043OGQDEJEmGsZSSc86IvrUTEa9sng1tCgC46QGZN+F/67asOs/1+Xj++Pjy+HQ8nZduGgNlJGFBBFM1NzcHBFXv3VpVYYl0nRoBQOu99r8g9yESUwIsDIW5MGZEBgiLrn2t7TLP5/P5dLlclrquS2u1uwVzYty2bepdkagMKXHOw4HGu5rvbF9vDjff/s3f/PC7v3r9+nVVtd4B3cKWdTldzufz5Xy5mLkHbh0ID6NAZERED9/IbMxYioxFypAkEXEgeoCb9dZU9dcNhoiHMg4wMQkm2t/d3r99/frbtx9++vj86bmvta29rZpH07VdXl7Oz0/r6aS7Qy553N+9/e67D99++vmff+lL3R+Gm/v97cPt7rALxK7OLJyHcX8gxvPlHB5SsiCVxL2mWpOpIUq3WJZ5vpzWeRbKdTkvlxcDXWp9+vRhafM4lHGaHIBzITBhGnMZh7GM0zT8ahcHuEajMUPJdLMf9vthLIIcvUHrvlZdmlWDGMvu9r7kdNMPra51beta58vcWw/E2vR4qW1ty6UtvRsEC5EBMKIpARJRILliN1/W1loLVYYYmEWYGYHIBdwdNlX59tNGTMSjJBJsiHOPHqgK2nwrYjb+ytevK0XxilL8+h8ANhskIn+ptjHcbVmW1lqtNdzXZRGmu7uDbOiilMJVGIdhmsb9YXebhdt8ntt8fD72vnBCziw5WeBc9XTpx8t6mdu86Nq6WVyjpIm23YWIArfZk6oqb52YgK6tq355XhBRhLJQTth6Oz0/Iqbb/a3kApxISh6cTYMYofeEDjFwCIKFIwQzmcN6qYywK4Pk4rQaYG+rhxJsmTLXs3yE995qXa6XzCyJhpQTkndzq9qrCApKKiwkKByWkEQd1ubnudUet/td4aQndcqXppfa7cvQ0l1bs962EF7E8HBVRY/WLRBDmkLU1nrvZhrgQVvoJyFtObTh1sF1I4Jv+7oF9IjglFPZHXb7/W4YNuY+mmGAREjv4QY85DwMmPZh/nx5+fiyHFddNQA4IWznagYCjeW4poEPXHYy4OF2ADkulfwvbiIBuB3Hv/7huzfv3v2Pf/t3b1+/fnz6cHx/vjyvl3O/rAYgd4e7V2+//f67v/rNb35jHuOwP53naX8IDetWa59rPa6X8/lcX16WWo3QQs/Hl+PzE9/eUslXRoU7bG2WjZOIYBrX0QPC1SoD/rl6D0CIuMIrPqtkAmAraFzDOH6l3MIGUza9tNpRVNOqaVFfFc1xG/tTQpKMyO6uvfXawXB/uMlpAm8vl9PHD7/86c//9uOPf3h6fkYs0zQNO2kasjJm2t/l6QaRFjMFXdihcM5Arr1rXz1WR/fNpBPgHhycXSRUTWsNoalwyixAVcPdGGO3y/7qkAZ5eHMjWb6sYeLMwYQUgB4OAuMhDUGZ5e7u9v7uLsnUFBGhLW0osj8M5ZCee9WYIzpFbIKQhspEktgzcmbk61gBgZm2bjIGfXY+wqbHx00O06rX1dScElBxyu7hoAAEbnANKTAAAwnOIISBEBb01WeybZWZZUhhLK13W5aGTrWCWeJh2N0+bAeedZnn83NXHRPdHUay0XuEaa/NVLWZYkXBoQx3t7u/+s03Ybqul19+yt6Xrn1Z67r2cUhScpGxpEE4uzuTNF3W0/L09Pj4+Gm+nHOSaSy5DEjSuxOHpFyEB+Zw01bbWs+XBbrWRInh60VZhjELSxmyCPumNLetRoEINI0ssN+nw00Zp7GtNSLMjQgSMmdJ6ZogQyIQ0buahqoRbmF8vJU2KQkQm3utbV7ry/ny6ePLx8eXj59Op3lp5gCkqhhAAkS49cbDg1kIKQyX1QB6SpZzREE3X3tb16+i0q/1pRAlgoSQADi2ulfXpZ4ul+fz+Xw5L8u61tZbVfNgkWm38+6991o7EU427qciQEgp7+/ufvM38vDtq2/ffv9X3x/ubwNc69rMMOE8L+8/fPz08fH5+WWtlZABMdyRrqTg8K23GAghzMKcs+RBhrGUIeWc3PVyOa+tznPdzfXLtUSEmtfamndEopSmm8Pd61e3D3ep5Hq5rEsflw4HAPX1crm8PF+en+vhLuVh2t++/eaHj99+2u//23qed4fxcLvb3+6G3QhE3cJNgS13SihGA6AHCgnlJONUrI+9tmVtOq+mzbUzQmh/ef7gFs4yL8vHpw8Bcf9wX8aJ03CzOxyGKTNFNwAHR9NfybCIyIScIGceRznsh8N+YAl1dYfW/bLq8VKfz+thHA+H2+F2D9601XWp8/lyPL6sy2rmp3M9nrU3X+e29n4lkLuyQEZPwiylhxxXe770T8/H3vsuy81YxrEcpmHIwgiqXVWreuvaFN0dARJwDkwoU8klGXa9bDkuZhHo8UUad01H+gxewSs2L7b4RfiMZdmccVtVcbU6m3nvfVnmecZe22435lLGaZfSkLIwDTmnaRj202Ec9ozRca3Nnp6P83xKg4z74XB7a0jneT2e19Pc5qWtS2/dkSmXMoxjGTIz0aal3AYsZmZqLgLJIXrvvbWvCmWchrwb8yDQa2vz0SEttYYMXYYYPKmgrtarhE7iDs6h3qO21hTcxMNce8/sNGFOzEkYM0V3hAj33qsLIUMQglqdl2imkjKlNETOjSI4XLXXtq4pcUrDMPBuN1okiCAkCzgv659/en/7sBumbzPxUu3pvP78dMwPJ1X7/Ly41wqm42GYpswEHtq1BXLtahE1TMHXXrv2AIdt93YUuVq3wsNdAUISUSQICQAPEHaiMspwe7Pf76aSc4QtS7euwow0EBVKOO3HMu6cd7iu5+Xx6bycVu/OOV3RLJvUbF37cvo0pzkOd/fj7t3rtzfj0n/8GfxXlyURTaV8/+7d3/z+r3/44fv/9Pf/UGv9X/8//+UP//ovUdvl5fLx8TiN0189vH7z7ttp3BMmBRun/W9/99ev37xLJExEyL3383z+wx/+8F/+83/++eefLfTx6dP/+r/8l7D+n/7Tf5revLarxsoAgom3wsTNrDnCBgy4oiKAYMtTjS21Oa6U6qtucnvrjhHhoPiVmx9xw0tatdYR1cqidGmt92ACGVhwLMnykFgE3LS3Vqu2FaNq74+PH3755U9/+Ld/+dOPf3g8/qyht7e3Ke26dVdKucjow05I+un8Yn3p1ZnykA8JqK51bm1VqsFhCUDMeWvKliy3e/ZEoulmyA87ZgGYXbv1qBR6e7cb9+Nuba/e3aX8JcyS9vtyc7tDy3Wxi18wx5u3+5KTWLkZ7u8Od4Rlqa69tvnRvKfiefRMPWl393BKkZU8BFrBaRcMzgNxTohCkRgTI8PX5JCNoOaMTIRmBsvZ5ottWzCQAei2RUjmRDlxEgQAzpj2abcrqanNBlXXCP/KycsgOx7vpxFXz3m6nBc7ntsgy7zo61f7b777tmn9048/vbw8uasw7waWN3f7Aq2ewZsQa7N1qR0ZyLV5AGfx7769H4f/9OnjNx/e/wTRWVIEpTwNaceQMYSAkShLXi6XD+8/fvjw4XI+pSzffvN2v98hYu16Oa8WbRh92A1TymXIPBVvbRpKQmzrnL+SXvxaxOSSmTZXhQcDAJCgmZmuAFhyypkCQtWaqpnxluDLzNc4gID43PVWR0AmlpQ4JaINKAXbbH9t7Tyvzy/nXz4+fno8ni+tqQESIqo6hmbmq2fqetjd1uMwM0Jta29ZcpawaHWe5+Uvx/ybqueaCuvugapa13aZ5+Pp9HI+n+dLa13NPSKYBQAIvWnrvbv7MAw5cUmcknCS6fbu+7/9O3V/eHf/8HArJXVtqrW13qs/H4/v379/ej721iNimzpcTygQm14G4RpcKyRZqAxpGPI4DcOQc86tri96XFfV/rlf++Xu9XBzjGvU8LSf7l7f3Tzc5jE7QKu6zk2rWTNL2ub59Ph4PNzkcSeSX715/e7bb24f7pbLZdiVPEhKTEwOgA4iCXkIHIMSMkN0BUAzA2NwhPgiXUVwxBCWcH95+jjPS5CsrR3PL0RcshBzmva73c3DzetEvJ4u59Pz0/ETLNzvGwwAAEggwqXgNOb9rhx2eTclxC0cB8DRDHqPtZsBDfvd7ZgSuWtfl/VyOudxOB9P82W+LNq6LmurTfX/x96f9Nq2Zelh2KjmnGutvfc55xaviniRBTOSZEiUBcqyXAhww7ChlgG76Y7/AA2oza47Ut+GoB9gwA33DLjhlgVBbtANioRYmJkkM/nivXjFvfcUu1hrzWKM4cZc+9zzIjLTpFhAAmLivXvP3WftvVcxizHH+Ap1IQDrbhUggRjZDJai96f8/mm+f5zdFHbDLkYR3g3hZoxR0C2oWW6+FJ1zqVVNlRAZgBzIMZEckpDonGtutbr+mn/SFpq8kPaHH/N+tlcQAJwIYgwOo7sv81pyzWvNucYUiIWYq6pnZ0YkdmSROAwTgc14LlWP5/V8vsQaGxKlpuCnSz5elstcc25VDYhTjOM4DEMMYatL9h2ymTlgrYWFQ4x/BjdpI5rUVlYtC9TV0YpWRuTpkNLo5aL53GZlI+ladpFbl4ZzchnUsLQMCE7BeSQCJmWr1joBt7WiHXPjiF3XZ21KoXCQatGppRgYwZrmqs08LFlijGPqGD11rNXP5+XrX73b34z7w5iYvv3+4Yf3j0+XdW36opQMkXGKcrMfdmPEVhBVrTpYVa3qbk3Bqreu0tEFqhgQgDddBsKtDufYLV8AENyJIAXahWE3DUMUBOhqftocgRGDyEAgIgkp1IZLtsuqS3VFxhAoMAUCQSdSJG2e59zQonECuZt2PiJJ+BFzhPnmcPjp559/8tnnP/nJTz598/a77747PZ6OD6fbwz6kqZo786tPPnn76acxJjAwNeHw9s0nevc6SghBYgittvP5pK390R/90bjb3d3eTdP49Hj/q2++/oO/9Hv26q77k6m2rVdDxwa5WXc+dnfqwtNIG1rjWhrfKnk9E9nXxr4MmP/IcAwRhD1EikMEGIolJUICERNGdidDFOqGqixCxODoVlWPteYP919//8Mvf3j//cPxw1rvgWXaSwjp8bGaQUxjmigOgtzquliZ2TmQTALEuFY3Zw6BlYqHVrgaMFggC4DDmCgI5bCLNJCjtwAYQIurMA7TKOa5WyK/HDGAboTG6CiBYoiH23E3TNLGgXbmUMta1llriSJDihyJA7BDQHIVR4yUAnsLMAyQRjVrEAAIXdEqmPSdr7n1TRECAoEbKLGyW17b+amu5yZE40BJWJDUgRwDBmUQFibrBE1mEQ5qSMrk9BJAqo5rg+pxv9vdYnp1Wluj8+OjOpXmnIbPv/zS0ZZaHu7vwRtoCwIyRsFDq6ItpxiawjyXCghUqhRiIeTDyPvhzd0hHSYpZRmGMAzTkA4xTkwRUcyotnq+LO8/PP3y629Px6eYwps3r37y059Mu3G+rHq8mJdS1LA5VQ4SBMfEEqdhGISk5nI4fNQiAgAZx4EQial3QjNHoC6jaNpKWdGQKALoslxO53lZ1qbKEhmll45UW621Bw2lqKoJh2EIMcYQI4M5QqlNzdUs53o+zw+Pxx8+PDydFoLAHIDQ3a0222QSQgji7jnnnhtyVwckojUXWbq+g86X0/l80WejQXjp0mvu1dxaq6Us83o8X46n0/Fy2SY/YmZhDlJLmc+XXHIpJcZwd3d49fr2sJ+GMUoM42H6w7vXQCQBCa0LcDZvpa4Pp9O79/c/vHu3rjkNYwyRsLMluoJfa83AQVA4ShAmwBhkGMM4jrtx7JpS61wu53WeV2GR8JI25gDWxfBCDDGl3W68fX1z8+Yw7AYUrrWtc5kvOe3TMEWr+vjhQxyGNB1uX72+fXXz2RefvP3s7Xw+SRJDa1ZrLegiEnfTYX+4i+mGRAIk1aW1Oee5LEfQEpiFOlWYRDgEAUit6sPDO+SnNO0dEbQ6aFkuNaVxd5jSuJ9eMYjOeD798Ef/6I/fHu7/nS///Tc320wXY5gmvrmZbvfjfpJueEXA60pIJBRYAjBRkLTf7W52MTCYDXlN+0ucJg4fsn6f9eE4z6dlruYbrXmDoxOFYIjHpb07568/XB7Oy5qrEA6tFquOFsSnAQ5JQohEYhRzs+Nluczrsqylqhu02tQrCk3jGGOMJJfM53XGF+ALvMr5d5+ka/YFr4gAc6JeRrGrEh8iphhjiENaH++f8lq7jaWbN9V5uag2cN/tdsR8d3sbh4EBAKVUmNd2XtpAwRbV49oMns7zeV6WpTYF5hBj2u334zTEJMhgrrDJk28OUF6AmGJKLN10I3wUVDSdL6fj48NQSik1oAmDeXWm6eYVANl61DMrVuWmAQDBo1SgMUExBhqz+ZzPFJMTKzBxJBiQFgAGaGBmZkqoQODcqY9m6qZaLFSaNU3jsBsmQm7Eav54uhTVBiahlTzUajm3p6f5l9++D1FiCJH8q3/8y199/X2pJiE+D3chutmPb+72r+9uUqQ6N1J1aGauBs1cTR3M2RHR1B2tc547pwyJUJxTcECrzR2ECBzVTYjHOO7imIIQeC21Szyaced6x7gjL+awLOXhXO8f57moU0hpIAlMKOzAbowVEZhMQm7w4Xgmh2kcALB1zenrzBVCePPmzcD2yaef3b16BYilNnMbd9OXv/OzdVnef/hh2E2ffPrpm7dvRaS1pqWC+xhT9+7o0i9mm3QaEX/+6Wf/wf/4fxKj/L2/9/cu82WelzXnPs9cdSK2AikTo2zCjF1Q0R0YEPBqIOrQPVe7HLW/DGj82uBFcBnhsI93t68dJvuAzU1Y3JXctOg6F2zqEFgkDeM47uIwANtafrjMjw9PXz8cfzgvp6IZZAkxpp0hYFNtCsM4DvsgwZEykTALhziEYUwJkVU0YbwZJ6r8dG551bpW8jZKjkn2Q0xpAJJAZuvqYOQSGJOwBqaUliU/Pp0eno71mu1TtadjfnxYkkJgvtlFHjjhxLZLsgPHD8f78/H4/vv31trrV/u721ccohGACFMMJogYMCh5GjCOzkOGXJ1AzWrVnKuSA0AtzdS7sRsLERJYQfIQ4XzKxw9rOesUw91h2Mdx5JTJkTiG6AEjB+LWSBtqBg1uxVQdELqF+lWHrOnjcTnO9e5u93q6MZch7d6HXwU0JwCh27evdvvRQd//8G4+HdfLueSzWYsxDIMQ3jCjOl2WWjc8X+fcsJAg8C7Rl1985u5EKCGkFINEIgHgpn48Lb/69oevfvnVn/zTX7LgL37xl3/3937ns598GkRYjqXh5WJVc6mml7V5NY3Cu7Tb7w/TMOwB+M0nn4QYPwYxtMlw6LbwmhMJATm6udVaBYmZmKiWkkvtkF5GAkLrkUtr3YHZzGtVd2QRZtmAjuCqlpuqugOU0pZlvczrvOScaxBi6JmhzudDZopBYkrduK625t7nQ6gA6woi0M1Y5nnJ669hYra9QXfLU6u1rWtZlvU0L+d5vizLoupILBKoG2h7R4nbMKbDfvfmzetXdzfDENMwSgxpTIdhh4RNc87Lsi55XbW282W+v398enzIObv3kEhgU93sZ6DgRsI9FIgxCtEQwjimYRiGNBJTrWWel8fHp9P5OE1Da/mFvbi7qVsDRHRGVxHc34y3b25u39zev3tYns7LUubLOszD7mZsrc3n0+P9h/FwG6N89vbNmzevPvnsk+PjY4HSKwsAkGLa7w53d6+n8cYpqpl3+HQrJa/L5WwlX/dEydzVjZgDIHhrtblV8EbEoZPDrIIWdN2Kf6ZrzqfT8d27b6lqu/qnEOEwyH4K+92426UhSYrECOg8BHYg3BLQCMycUph2IQVCkpoxJgWn0+Wc8/35+HS5XPIKGIjIwdUMwZqDAqrBcS335+X+sjyt2RSGgNXNyWPiaQqHSW7GkKKEmDiOzeDmHE6XcLnIZS05t3Wtc66gJGCRg4wTkzStP3Ln+jPbVRj3x8mOXkftOC0WEUIsa6lVW2tE1Fqb5+VyOa15VW03uRxubpoDcnC3OZfjZTnN+bQ0JauoS1ua2XlZ1tLUnUNIaZymabeb4iBdRUytq2TBhnYAhQallFxzhF5y/3iK7t6laDKyqg1MIIi2ouUUA3Fq1jQt3hLSQBYBoRGtBggWXEBGcVBsytT5U4iuRqrCNIwpEbRWMoLHKIzs4OqggA4ATMCkoNXq2gpjAERXX5ectRlTFGjFl3Opxda1vX9/YiRyiOgffvXu+OHkauGFLDQihkApchASwrblMRUMDcjd1JqjdYh2j1yEUZh7nURb64O3WyJ0b1oiDoApxLtxv5c0OKLaOi8AtTVHEIfABGnAVvE8n4/z+sNj++4pL01RQhoHkoDQCBXIncEZwNDYtVkrBS+enkZGPOZl1Y8EBRG5vbsbxe9e3U3T1AluIYbDzeHtp5+uyzIeDsM03b1+dXN7S8Sq2rNKJLGjWJD7/03NAXEYhmEYf/7znxPTn/zJn3Ssg5ldcen43MEJyMkRt5TLcyjTD+4zfJ9v3R3hR77oH6OXl9gLBzQgY4ZoHl0VDdImlqwVxFpkMJFBZIhpjMMY0sBB3GtrpbR1zcuSl2Zl3PE4DdMumQoFwGYclMXN0T0G2QViRh7iNI07QDJXMpzSPhRuJXupLRgaBmhkCN1vGLA2a3Nz0GoOwkEEmKrpZVnvH46Pr88fS5bgTt6VyohkHAeOwVSakSay1h5PT6fHD/PlcQhxN43TtKtma66rt9KrAohE/mwx27Hc1rwVK7mVlQzN0UtWa47IwiZh05VGdK04H+vlodTFDm+H/X6IHNEZvD2Hjf1huoO6F7NiWsyamqm/hCq5u7WKtQrYJPHVNODtXtorRru528dddAFOfPf6Ds0ewRlUSFUDi4gwIZlrraq1uHW5C0NwsAbQCEOUeEh7QDYzRyIRAyrVlnU5nS7vfnj/1S//2Q8//HBey+tXt7vD7bS/IZZmlksXzcvnS0ZGjuDcRCxGiiGNE4+7ePOqHW5vWeRjEFNrBkAzULWeWmQ2Rgaiqk3NALj7JtaiABRijBHAqKccNym3UrNXAHTrsT8CQGttXQ3RVDXXpgZIlGvNtdbWiISotabanAWZUJhiDFEkBI6hJ4siFWrNilvTaobEymw9O5Zza+1Z6LI/P0IEs2pqreWmubZ5Leual3Wdl2WttYlISGEYuy8dtEoOGqK8un31+tWrN29f76cdCccYWRI4aLm4m2qpeVmW8+Uyz8tyero83B/XpaSYSGRjKpmhOxO5uZsSQgqSUoidui1hiHEa05BSiLG1cj6fPty/e/f++9PpYbcf37z94qPniLm22vLq1EAbeHOt4xRevb397MvPn+5Pvzqvy5rP5yWdh5u8a1Vzzpfz8d3336REP3l7c3s7ffr524eHh/vj+17OjiKv7l69fvPp3d0nwuFymfNyKvNjqzNjo5qpqTVTbcVbqbMDMCMTdWfgYUjIxCE5QEVDhxQoIHgt6+XyiO9V/eH+h+PpB9Uz4avnEcOE4yi7fZymMAwxdP1BQnSbklRD16Yb4BSRxSVYCMjCMYi7HU/nWn71w/tffvf9w/m4No1JkEC1ubmCIXJQyeqPy/qU82rWAA1dCZycI+8Pw+3ddNjxPkkQCSkOUwLAffLbiS57vszlMpfjecHHnFuFshLJzW4XYyhtTYHxmZ2IW8yCtAFpu/vj8yuE3Q/SAYE3n6U+rRgzH25uRIIId2XP2srpfFqWOdfSzL8oX6iDIrRS3z88/fDh4fG0zEtVVNbil6pu1QoSxWEYxt1u2g/jEEWIAaE5GAEYYLdO7UuTmbVW1mU2VZbwsl5JSFGCcHRlcpxiREHSE9dHrp+gs/dUonCUcSQBwKVWz3m1wg5I1JAxRHDVOrsVNTJTVZ6mw+efHmL08+nJtKUwuPuy5twqOITI+9sxjUykYFZrq6CRo4OtWsqqfloZqF3a8f7i1aHh5VS+rQ/L03kk5Kq4VlGPAC/r4qqt1pLXbEK5KqoRGneiMDqAuSsYOFOQwEIhMTIaeqsttwbugZgBmTgQD3EcYkox7Ybp1XSIju081yWfy+LeWCDGQDwIE4SYT/W7+/Ov3t9/+1geVlgpcgghMgt17wskRwYScHNjbdgc1YqV99+B+eUyv13O7boZE5abm5vCNg6jiEC3g93vhfnm9kaCjIfDOI7T4WaYJjR3864yzcidse4Ivj16daD9/ma334+7HQBM09RaizFKCD3zvnXba1m0d+TnBMtzmNL5+ZsZO6JvgqjbxOvPafwto3NdLA3ajMuTiza1Mj9oaxYjh4hIxGEIh9cMmGQUOYQwSUySoqQxhpSyhvCE9JhbNtTbu7u721c3+9uS07gLBZrzU1UteS+U9ulNwuzaUhqm/S0ROtRgGsY4NLGGu5ACiLeSl6dSltN8NkWqCY16oEtSZXAZIjocT5cfPjy8/3B6evvRdoCF9q9k/0bwCQQxhgmQl7WYLWaorTydjyXPQ8K7aTjsdiGE87Jc2uURzzMs5s7ISaJVv8x5mddW1Io39Rq0XFqeyAiRoFV3A8KNeSDSCVxYV1+ffD01VBjGMEzRAWuxUhXIsFJtrVlzdTc09aqaW6tNS9OcW63tudInCLcBFm6xnhhmWZ4OuE5v9mk3vPr8zeFu93S+r20mhRTDOAzkB9sNgEDM4Nh5j1yVW5a8ILVxQCG11g2PKJIHAnBY1R3cmbLqw+n0/Q/vv/rq21998+33336L5F/85LPPfvo5j7tzLuX9Qynrw4en7797+OUv73P1V2/u9iEBQG76+HQ2AwrDGCcehjiOPxK7c1d36FYhquabmoI5srv3lBajIJCquzszs7BVd7cu9uVdCMVcFUzBAUSI0EtBcIYexOSqBkCUSyml9tC+U5TBkZBZwjDEaRhSitc9lguTCwOggpNuqsK14roiIbZm9jLqB0AiIDCtzWrVudZ1C2LWtZRsZswUU0hDTCkyczMLgccpMfGnn759dfdqmqYUI7JIkB4PgZampZZ8WZfzfDmezqfzfDnO82U1xTDuJMZeTbgOaWDGCMJC4zikMYUQUwxjSkNK05h6pneeL+8/vHv37rvj8X5ZTigl54u5frwWgO7Yac2tAZFPu/Tmk1df/t4Xl6fT+eF4/67Nc5HHy+5mlCQOzpHlKOv5YHUlgpiihNBqgwymKsi7YdiPQxICV/bMurAu6DkyOjOFUBxMYVVttTYzFgkigUGYYwgsRBIcPIKiWxQc2BIa6DpfHtZST/OH3E4cNKaPPH4imoa4n4aUIrOYoaoLOhPGwKbYtCzrMi/rkktVMCQXgSBg3hyezucP94/3D8en87JUq4ACwOgbcBqsGuama7Ol1lybgjuioQGhCKcYpiFNQxwipcgSJA6hP/Ex0DjKbpVlKpe5DJHI2/FSVjWrDVQZMQpHkR8RrRCvRtaEeGX6wMsXcStmb8mZLghmiJhS7B3b1BChlJpLWUsppdbWDKCZzesyny/vHx7vn05zqdVQnNxIHaBrFcQwjbtx3I3TGIMQbiIRnQGHBNtM1bUAYZMWMHMJVmt9zvYx82G/u9kf1uLaGgtzQKYabQn1AijO0ES0UHWKKODooN1CgxBCCE4htKw1e8sl5zVDM0Dyadzf3rw9HCSl1EoRDq3W7jYSCUMKQ0pDkiCgrV50cTMRB6QKwZSWFTzn8pSXp5nVE1JTr3M5rdkC3w3jlHYcwmF/+OjRY1ZqWZZ1HLMKr7mimlkLRF0wgtCBAKir3nVHFUZ3V22tlZwdnEKSEGIIQ4hTGsc0THHcDeMuDtw8U1VsCIQc4jCJYHMsuZa83j9evv1w/vZ+fjdbBgn7EIYkkRxdVU07Vwu7AhOSOmnFVtSXuXjTsua5fgT1E9E4juJFgvQwAhGHGJnocHPLIexvblKMEiMSuymCI9BWywFQcFdwtI5fdIBxtwsxHo9HAGCRlIaYkoioamej9hgFr+25n2+ByOZ8+LE9p3BeBjGm2o2VXk7JZl5yvTxdyipqaZ4BkRIFQjBrQC5RhKI7l2KnyzmEp5AmkUgeSk7rAstac1sUWohDSvsYBwLZ7amALnZRbM2i6ohhIIyG1Wl0vgVGluxWmDgS74YhEgTgumJduFafa2nqpI4q5kAMgSy5k1updjzNj4+n07GuS31eY5CAB5ARbHVVL2rePNfc1A201vU8n6GVXYwpRTM/L/lSTnO4LHEpVNSMkTG6VS9rLmu14t7QG3jGtppmlYEQO1MJGJABBFAcybAVyEcrJ4OKJECBULA6YLOqhg5Uay2tFbPivoIGb7nVgq1p6/aH+hE8HgheJ9DYbvzCFVwvY4B4czu8Ouzf3oZdXMvSaokQrJTS1IlS2ocgyAxAql6b1tJymQuT+yoBCCu4CvGUpsgDeqzFai1Zm6sfl+VX795/9fWv/uk/+fqHH96vl+WLLz75+V/5t7/88gtHfTwveTnlZV4v+TxnM0JEM9Bm2rySWzEEjOG4pqYON6W+XPulI/M3Z9/OiGtVjYAAEGNMKSYA0uq1tI5aISLD5u7dvdc3aRlSrefTomoxBZ2iCFB3O1Pt0qjmvq5r7UWrzr1UQwRCTjHc7PfTOATp4ngdemvdDg0FiNxMCdFNSymEXV75hZ7qFQasnmtf1HQtNZeSl3WptYUYRDgNMcYkMQCgVkshvH3zahiGt6/fjuPozVUtCiKheXXtiqPLZZ6Py+V4no+n+XRc8qW06kQJkQAZER3Mu+Ueo4gMzCGEcRpjjJ1tOw3jOKQhJTW7zOcP9x++/uafffvDN7nMwArYHD9GMEQUooQo0IzImTyIiLB+9rr84ZctL+fHx1rL44dzfX+UyAbmrnHgvQ7Qcl7mPOtlXi+X+fR4TmOwomwu7tByPn0gcNG8kxISIsQUBCzmwCWXUjTk4gBLzqW21lQFYpAEwkyIGIhkjOIq5IPYbkATPa5P87KWdsKg0824u5lYnlU7aRrTbkxRghvl5lbdB0NyEkaApaxPl9OHp+P902VeW3MciJAR1C7n+Zuvvv76l9/M5xVAQAZQNwB369Dy7kin5k3NVMG3fqVgBDTGtE/DICFuymhEHDhGDoMECUFCC2kI01QPh7abUgoS7ufvH+c5lwInJUKAIB/dLTZDUeLOaO4iD4ib30VPtOLL/MBWYdqS7ggugff7XWe0rgjCHEIgopSGIEG13T8+PD08vX+4P14u6kAhSoxxGlCEBUUgJE5xEAnM1PUlwLdk8QaFJ8AuPL6l881r1WZU6rp8BMKHIG/fvv700zf3D5dlnr2RMEyRoii1E7KkcVwgfThCXuqZnMEBtZorEEkYxoExXMqqtUKztubTUy7qksLt7T6lw+FmzxJqnl11ns9EIALjGDiytaIF9sMOJJqqmY6TkEjaTWWByxPmY10elnqaB/ebwIrAjAPhYRje3N4expgIP/3s8xDTcxCzLOvlMg/DGILMcwG31jAJJI7MKMJOBEyO2BRaNXdDMiVtWmspgGgUJNIwDPtxnOIwSEosZF6XVRURKKUppoljGHdD0/b48OHD/fH9u+/vH+4fjvO5oqdxSONuf5CUDDzXUkputYgAIdBgxCbshU1Jmzk5mWu1Wq09U0eIKMaILfbYYqvmEMWU9jc3YUi3r+7AvZnlUuQqWO7m6qpurRcxmUptuRQzSym11v74j/+4Z4vv7vZDGkQEzPRafe9f9ByCf8zNXJMxvxbBwIskTf9BVQGc6CqLtz0XXcv56fSuHZ/UI+CQYooWW9ZlPgPQtLsdwqSudYbTMT89za2BZsjp5umxfP/D04fHx7VdnEousRSEEUKA/QTFveZcMRtNCrKW4CgA0XR/Lrci1ECbXZZZmzlxFKG21nmuT0/5tFRldCACQDBTYFBR1WoLhPNip6fL5bSUFV6yLB2sWilQTBJoWee2eRer5eVSclnWcwSUkIDk/vFUz09zPNuu0A16dG0KZKrgDaw0KwYVSUkMUNmqe3Vxlg6sRBTCIBwDI2Ir0C6aH1u7eJAgAxpZ8dbNLg0Awa02LdUWa7PrBZVcZ9UB9Gqs8jILGxg+m2iYdM8XB0hSLY3T20N6fSv7BExFbc3lss55zpfjhQnu0iChL2sxpGTmec3z5XgBLdkVqhohRxnGm1dvo4zL3JZ2OZd6mpfq/v7p+Kdff/fVN9//6rsPOdvt7Sd/8Ff+B//h//x/9frN7d//B//Nt3/64YcfvivrsotDjLuf/s6n5r6ul1ZzLYoOSFSW8uHdPdJRm4X4psNwtyCm75hNnRCAaZNHAHBzRhpijDGYec4151Zz66xhRERGwM1J9hlLqKZNlRq2RqVWIkDCbkOdS2va1nVtrSFADDKmSNYxE8NuGqdxGDvmc+NWGDoQkzCLMzNpa13VQLXvs6VrYDxfTGcBqmmz2qw2ba1qq2YGRBxDiDGmFEUCsriBM8RBQjykNAxjQqSmxcERIoGZFWtLLedlvZzO59O8XpbSfaRrVvBuCd4tX7s8FDJCjByTxMQxhhQHEWHkGMM0jSkEJlrzcn///vsfvnv3/ofz5UgCISQOAemFAikCMXFgJLryv4yIxjG+/uTwxZdvP/zeZ8uSW8VlWU9PKzEiWoi024/zZf7w/kNe2jyfas3eFJWhNSvVytqWU9PmVtwKWAPHGONuSEJYApcYcq5dE5mZz8taaiulWGugAhCJiUgiQQAgbwFKomqsiSGL1wBxCPub3bTfkTxbC9GY4jQMgQM41mqGFgJE4WEMXn1pubb1eDo+HY/ny1xyBRhBbT5f7j/cv/v+3eOHR23GHJmdQBGMEYfIzOQmhtjVn7WaqfWkCDtK5/8Au6E1bxWUTdRA3VsDRibkJEHQx2QGEtdc4XFW86U05WDqXvVH+j0AsAkKdEfkjobhfrc+ZmKeZ/neJz8GM+CEyDEAdB0Vm6aRmZpqSsHd5mVuWo8PT8u6AsEwDSxh2o9xHDgECcwCEkg4EPUcj2+eNs+6e12E9gqLcUdz725RBpB/JEkAAF3ItzZrhI7EQUIQQTKkRmQZrdR2mdfVncCYvdPuBIG9AuEkjCGaavVSc57XxjVcTsvpvE67QRXNoQvkWKuEGgNwgNYqOkYmJmwxAvphP4VhdB9mtvq0LOtJl4ZrGdwwIAkzcwC8mabP3ry52U8Evr+5+agKDe6O3dbbHWozcBM0QiVoDgRsTMRBDDac7NWufJPEel6Ney7CwVVb1v6RKCCJA8XgyM68NDzP5bsPxx9+ePhwf7zMpXniYdqNKYzjNE3EXLWqNkbQLhfVvdStmam7XeVwEQwN3fFHFDhCIiK/4pZ6KYeYQwgS5PXr1602B8i1cowG0GptpdZa1A26h1cIzUzNAFFCyKW8e/8hxXh3d/vJJ5+mlD5WfK5GXb279iz9yw7vLxpcEzDPndw2AHn/rbv/6L0AZr4WO+dGTsMwethh2CFqs2W2Cq1w9S7hbqUUoXg5fRJhv5A9PD58uL8/np+qrUBtWfV8zBGeoghBjqGSVsSKUpxKM2IIJLsGN3PbCQohKKS1ntVB4s4ByjyvBefF1xVoYGRyoq5xw+hJUAizeq3emqHTEMIQB8ZnFoypN6UCgziCFjU3IDMwdW9YXZqbVLdLrsuaC7d2WCT6BEm6eNRG+kArBIXJUYhcICbssFtBDtT9Z4ERA7GQuKHW1oq7AgvuboKMIAM4qTmDIYCBecveVvdKaEyd797MKjg6mL3k8AMAgQdfk89JC5C0SLCLN3e7dHfAJNWszC3ncj7O87zWXKOI5GoswjBSSCGlEGOqxFTrqmDgDcmEaNjtxttPgiSTsijLWr219TIvuTT1IMOru09E0mefffZXfvHX/vJf/Wu7Xfrm2+/jd9+TTBJ5d3Nze3h1e3gDYI+P73N+QpwJlAFBYbksTb2pz+e5ozyvQQwyoPWsqwQ256YOAATEgCFJFG6tVdVlruvatJo7MgsxKkBPtoCDmSH2EoYRIwDUqoAoTM2sFF1zLSXPuaiaEO3GIUlsQyXmYUjjMMQUmIgECcEBVaEWByAJwYGEW+MOnmhmzowda0Ivdwbmqn4t3oIqtEquITAKQ4oxhBC74L+TAVDgEHi3G5G45qotu3nEANDATXUt6+U8P54up9P50llZ1giUwRFBEBkACXuVHQlBhGKUIckwhRACkxCyEKcQxiERQS359PTwq2+++uZXvzyejw6+PxzSEAGRecSXdQsCEg6RN0u/XAGp1soBbt+MP/uDz82AKb379uFyOj28O7daAGDc73eHE/7y67q28+WRsO2nOAwJWivLZb08Caze1pIv8+UI5mk43L16/frudjcNNWAOHINIDHFIw5piik+n+XQ65dpaJmsDMYZNOaW6F1f3Osc0vr29Gafxnt28mq/jbs/E1yAGx5TGlMJWS1IgR5KYYhiGqFbMXXVdTqfjw/n4tM6vQW+06vvv3n3/zXePD09lrcxhDDFycdMIPjAdxpBSBKDabF6aVijFWwFAZmICFBJ3LM3WVS9LE3N2FUBFLNqgREwsUTgGksgSK872fs4Ka1UFnMapur//cDyezy8HzDMDDnthgpCZmKlHMdc0TP/zR1xTcNy0wQARURiZUwjc1/gYJK/L0+MDES7zQoKH233XKYhpCCFQEGIEctzcm+AFuZuNO/oP3KFD8m1bXjZJM1VrTUsuz65WtdYP9++//eHbx+OqatPAkVOjQWQMw4CBW1trPllZdL3UuoA3RAwiMQ1Bs633KONB4jiNTdmqCZ601FzK+3f3f/qnX8/LKQY1XZfLMefZtYSI4I3AmIswCjURGULgkF7dvRnHg9t0sjLz+8VzNaxmI1hkTGNgFlC7G4fP377ZH/bLcu5+atc+xkMaUkqdobpZWzE7QKmtNecIyCGJqKNbMTeWyBGJGIy8S3Ag1NbWnNGslExOYC5OieMURwrCgtX8Ms+Px/OH+w8/fPfD+XJ2Jx7uDsMYBuGBu02fuVEDVa0pBeEQmAhrbU0tF2vVwECQg0QHsrAII9Lzjn9LezCLo7l7a21dVxY202EcP/nkk5orItZWPUZ3vyzz5XRZltnch92YxnEg7gQMYunmJ6qW0vA7P/udn/zk856b6Z2k1xrsCo7pceGvpVuew5fnWupWQroGxB0N02WTeiDz3O1JLIwKjpJwfxsOh3SzH6xWgJgvFWwxBYoQhAXTkAhMl/PpYXl6//ju/undnJ+aFDS7XFZdnubHOiVJu+qSiZzYKRTk4oWdJgqTh/2qg1AaOJlPJUcHDbInNCNvPjcLasLAwtiTuWA6RrmbAkl4zJGwpTDe7BzflLevXoVwBZCiAzUMhULA0ah4y9pKA3NiChGcxBd/WmYvuRSAwcPeonAUDqHvRYGATdELQWMmi4PSYHHvwx7iQFFYWFDc3bsfrBlqs1yreQsTcmJzlORxTxJgW4FBvUGt2BYiiDEyQo6TIxo6Ejg7UN/qXeOYpu10fno83vN+CuMO4052U9pNw7STKGutp3Nel/Z4uqxrFRZweDieT5dFRA6HysN4m4ZhtwPC8zxXQyYUkZTSbtrJtGcJQ2w3cWfjCGPK330/5vqTL9Inb79kSuN0eP3m9c9//gdvXr2RQJ9/9pN1Xm4ON9bazWF/2B32uz2BL/Ob+fLhcnmX50srWtZWa9FqZmA/9huSbtKAoETETOQdD+hdtC2wcBf4r6010+a9tEbESOQIz84sPdM4DAnAu/V3qa2ZBmE1X3NZc8m51FYRMEgQRgtuGphlnIYY4qZNwpt/kyp1BEIICRybMhM3JDMC9xB4HMfxxwAfM7Nm1sAatOrWCDwwSUpOhCISgggHRDJDZGCmGGWaxtYsX3LdBKwAwFS1ljwvy/F8OZ3neS21uhubEUJgBqYQtqiIUwwxsgiFKClKSjKMUYJ0hz1BDiLCVGs+nR7f33//w/vvHo/3DpaGcZj2McTaHOCjmIe75ZzXvHpMDKyO3cqgtooEu8P4xc8+jzLtd6+/ufv+l3/yz07HoymW7LnAZan0dERtMdqbN+PtLgzD8Ob1zTAEt7YutcxPy3y8nI+ItN/DNO3BQSQQOhMLBQk2DJCGFoaVOLl5WXMSSiEGJDRvpggWGHvtHVqVYIkwEicOQxijDM9WHcJ0exjfvtkLj01hTcLstzdhtx+GcazmyFKzJmazcj4/PT7cH/aja/vw7sPD/cOyrE0bAAjRPsooMDLsh/jqZp+GiEiXtWmbO8WpU0yRiZCGKIhUmh7ndReRFBllDMGrqufmTpQkDGG44Tg6iTLMFSrKzZu3r4fd2y8+n/N6LDMJ/RkiK9vaSdcIZpvZqbv9baRT6M5r1yAGwBEMYCMKMRHFKCGKCBFxKfl0MiTQqhJ4t991e1oSYWZiRoRnMyfcfCq2fAwhbRCYLq/6MRnTPdWho8m01RfpcahqBs5DIHMQMAkeDx5vLCRAb23RfKa6Ssuqi1lVI9QggIbgokKQ4uA8qMdSdYwx8Irg1trjhwdtiwQDKyVfCHQ3BiIGdW1q3tCDCAUJ6E0L5LNDdXJvF4ds1CyYjYxpPwKYRHEAKzAIJobAsP74mRBRjCnGhEidVMyEIl05xw2cerGNus8VI1IMgQNVqApGRD3ka00LZjTTRgjoagJiCclFrHq181qeTvOHx+PD4+PTMqv7OO7SOE3TKJEQ22b87MhEoUepwjEGA8g5l2q1K84DMZIQ2cby1Jf96poagdra6XSa55mImLjkzMRRojdfluXx4Ulrs6r3Hz6cjueSV0Ac1nEYx3GcamkPD4/H02nNBYCGadofbg6HQ0qp1FJKtu4m8ELB+SUm5jl86Xfm5YvPBKXnX/k17/frI8QRTMAEnAklRR5GjokxEry6W0MulwpuJE2iJcYYiNxbKfN5vlyOzVZgk4juqLNd8jK3eRnoDgWm4ugArpqrMVckHiiqWytlpebK6EZNI6CpsZm37n5CLCHGKHFgYgRVhxYTTbsJWFDdwRCYQQKr0MdSMgAQOLMzGwKCuLMZqxkQIwqwYa52eVraxVUpIh1AkIUYiZAR1cAaaAVXIkSJjdFl72kPaQQO2yxB4L6JupiZqhugcvQQsBPPSJwSIQG6unY5EbRM3kQEafI0ShxxCDGiOLpCdSOxhFedWwdYgRaMq0w83Y63r4dXnwy7g4TUIXvkzMQiIUQIIRKg1mJqah5LyetaUkIANXAMHA7jMKSUQkwxJpDozMItAYxapjzvL3tVGAdHjONwuz/c3L66e/PmTls19SnGT169HoI42LTfjSlFieAtRYuhCdeZpa7KVKrNjsrAMY2IL3Ri8Kp+sfXkzl4102bKHWaCqt1Yo6uCbb0VkSQQEiNRz0USU0oJkarWWssyL+4aRNR8XfOaS2mdyCYde23mTiQhTON4tdoxdyMGERJBZkEgkeSAVNpVGESEeRjiOI37/e6j6I25q3lTb24VWgFrKBK7iVe/wI16j+gEgWUYUgj9/CsYEXCIIYRgANbaspbzZT0d13lt5uJOZuwOLCzCMaQYg4whRkkxxCgpSYwhxZCihCTMQkSEG4fctF0up+/effPdu18+nd+r1d1+PwxTCAmctKkq+zXAbE2Px6f788M07oY4hpgQuORzbRXdh2H47PPp7avPfv/34Ve/9+3f3fOvvv5O1adph7JrHgrAmOiTz/bx80PiYZh2u8ONpOho63J6eDrO58fWcggxtdpaLUW1ocjAGBFUAjjyYDDWOk7zNOxqLkmY0N1qqzlna4Cy36EMqlKWUsoxK7R5herUhCzAVa0/RPnk0/08vw5h507rWgh9N8YxRYnRHG5ubmpVVxhDuMzH777/FUFDh8f7D8tyUVdHqFoJ9fWYhjAdxniY4mE3BhEHfJrzurYYmIVECAVQOIU4BmLB0tr9+SLY0GKM0y1SN/BqDbhFp0OcPsU4npbytJ4+nJvL8PN/6/e++PJnn//sp/dP97Mt490Nh490PtvIpz333pUMaUse4rYYdPDsb+AfgTrw3G0j0tEmUwLu1gWetPVeE2NExK4SgZvTiW3f0GOV7SM6XWoTJncARyVVJGRgAG/thZ04uPnHtDIz725u3nz2+R1JqfVyenIeYHztw10lsJZbnrVcQisTGkZsSmtFbZrbAtbiYIGHGIni4MRZfb97zFVBOESxWh7eX9Yyu9fIeNiPd4chSbLamlZ1TQlDGAMPdV3Op8vD94X9IdCk2eaHk+cLaz2MYffmAAjLmktezRR1PZ8+VF2rtZcBGSF1EiABwpXQEWNiQmcDNGbvYo+A3RULxyEBWyvNdMtG9Ntb3cmdUJjYEZwQmCr4qczzWt49PB7npTQrovFuFI673U2KiQlNc55X8CYhICOCb+E0UkyDOpRmDmqmbo6dzd2R+1rN2nP2ws2btlKyO1zm5d27d8fjcbfbhRAv58t8WefTvOaszS6nS4qp5PLhw/tlWbeC5iNLkCGmXMr9hw/Lujr4brd/8/bTV29eldbuHx68T77ghBRC2JKIz7KlL4KVlyHLc+HJntN87s8aM9fFEV7GMu5k61BPu7WCl2A78hEK+pCGV69etbEe+amWLBFZXISEiXoE7sbkwxA1DpC01VZXLq3l89oqhF1iqSqg7vWSi7k188DOg7utdjKXixEjMZMIlXVprdS6ANQ0UEhx3McwBiJR9cqFo9D+4IS+XhostbZlyafjZTkvz1lYBGRgAe6rogdzdGNE3aBoniBje7rkcjJi3k1hh4QIDqYGTa0Vt6ptJUDh6E6O4nEPYQcyALGr1p4/AAQEMkQgBfSYABJKJwU49UDZwa25GZiRVYEWGAIPxIlFJKaQxiTCCN60sJ2S3qBv85hz8P1bfTXn21f7t5+8/uKz6eYAzNVsWcuaG5Pc7A/CodZqbtq0ZEIAEYnCrayno88UWrOcnXna37wehtHNEbEpuTkzdB9aRnh1e4gkx+PcGrIoiYpYLecfvv0KzfRyHNFpSMCYpoGZWy0lr3m+5NKI0zByjMCxGk+lGXHY3byWlxRrMzCD7kLynNRQ01qqMbYYGncjXVPzLvJp5oDODESMvIU11iHFiEQICtdEZesTZ2uta730fRICEbqqFq1mdJ36HRGJOQQehgiAtTZXQBIzwAAbfxU8BhmGNE1DSvFlJgasmTVrXdoKiYJIZOkCX+jea41b1r+LKhJha+bmTIyMMQYSVNc159NlPl3mtagpkURybNXdHYmFQ0wxDSEOEqPEKCmFYYhDDCnGGIWFiXjDyTmUUi6X44eH9+/ef//w+NBUJaRxvElpB0BN3VoxfWFv4e7qtdYZVjMaKRCAuQOgiIQ4pDiyB2tAqB/ef+rQ5nMJwzTubtJ0iAPvRr8NNgWOMsQ0DtMBmEsrpcyl1FIqi8Q4pnEvMmnjnMGNGYUQOTBJTEBRW4iHKLtWqnRXrbLkvJ5tZaRxvxvGFJgBoFWz6tgweBqFRtk/15KF6fYwvH29kzAZcCkRAIcgUUQ4mPsQpaq26qCYy3z/YGiVkc7zSb1JkrRLQIAad1EOQ7rbDfspTCkQkZpzlGPRh1L3Sy6IjUhiOExpjJLImGBu5XH1YaC9egYcSQKic1RKyiOkQ6X4uC5PazMO+9f73/n57//sd3/3cHejojev92Ec+IVw5yaWAV0bFxw+bkHNgX5EPSV84a+Emy4q4DYKiIiE2QGQSLWLOWz2NBKYmJl5k33YCOv+Mv9wTfj8aA+Nm0gW932qGWwCFX10vnw7gCHxMB5ub0trVVtpXIGhuVvRfK7zU13OYDUyhhiLcmmWm9ZaFT2qDELDbh+G2+YwlDpO4422MCRmMCuXpZyP56ZlTClwyIsStqalQa1Q1fJunBnru+9Pp8elZROIY9yxk84L1DWJ7dLw5s0bR/xw/3gBVW+MNeezoTqSaYUficMiddoRApLzNT+GDAAKoI49W0xbypnomcrQ12ZA6gQxYSKKEsQdGdnZs9W55PM8P65Pi1YOMQwSHIOkOERhATdbvVmzWtQUGM2hmbo7dsVbRyABZMS20fABwA3BieAFkuo6+lWbWs65lEJMr1+/DhJcPZfVqnqzsmZXK6GU2nJrCiAigFhVa9NSal7X0/lSag0h9ECKJeScW83gvTdQCNJx5b3/PAcu/Qdze6kWAy8QMB1Dgy+51v6sEvPioTiRTjqP56c1n9vNwabBCT0yy7QT9Do1FuRIgUSQ0L3V5q24KwuOYzRPldZWa6ut5FpbBoalQlT3QOBSVqWm4sZeIc+mPjcyDYKxB0VEAKja8jpfassSiTjGQSgIoLiDMhaU1aObN2RDbM3XpVwe8/npou0jA1GYhJkInUBoy4uYbhlWDADBlU3FOBGNwBGJwcDRzAy6LC8oCiMPFF1ISCaQCELOTtgYkLdMMm0CygRIgogQmNHRzd0RHM1Be93JxTGiBKRIQIFClCGGyHF7sgoltGkXXjNuC38zeMj8/RLXced6mPAQaIeureVlqbU2YdlNMo2jmZZaci7LZXHzEGNf5hAh56UUVfUQhpiShLAsc81V3QQtRTDNpo0RxyGCWWutFJfIw0DTJCH4enmyUjWvrDWhOyGBqVopa87rWkqrBsDIjIhhSBOOyQGQh2lPLxV71bopYxefFtwEBOuyroQYRRwcTU2t1FZV+5LvjsDGgIBd6kx7xF5KcYBSa8lF9aOUfreyFkH3PukSE3a9L6Lc0zDuLiJjStM07HYjES5LLrm1ZoguHROAAGBdFZ+F+KPeVV9EmntVa+7eRaxDTMyhB1eA1FccJkxCwoToTbWUZqZxCMgoEQ21lnJZLg9Pj/PlAoCSBuaIDUrOZkYIyECCIWBKHEeOgYbEuyEMKabYBXr5Cnl2N83l8u7D999+9837D/fLUmPYSxhSvGVKqmDazNQUnzMxzLybpjGPubTZFgcOIgiUQoySBgnjOGmz09PRKd++HXO+fbqfOe5evX519+b1bs+HAe6iste8rKWVABpD3A97rUUkiKT9YX97+/r1658cptdu43zGzBZEYhhiTIESEhMpk0bcl1KsZHAN452q7neKxPubaYhCqtpKztlqjRCAcYzxdvqEeXOxJsIhhTEGIFQAiOwOSOjogE5gCJXdsO/BtF6WWusc+io0yngzgYA1FcR9kJsh3u7SLkkQAPdW1RN/gnRBOKlCvKzmMYW3r/a7IQmaas3zfHG9IFwQL4Ajs8QB06hxrJJWCnNr3z0+Pq3z4c3t69evv/jy8+kwPpw+/PDhW/V1jB8XmD6taE/G9J/NvJuuIRKQgxOQvyB6wJUl2wHgCNiJ2X37yyKIKCJubt7cu44sUpfIY8Yr0PJlVh+upJIeljj2PTH2FYaZANANEM0dVLdlRprQM5YGoJkez5dzLne7XUR8PJ7WU5kvF1oLSdZyWh8f2rySQgwhTMlVda5Ly2vWTMYNJknDq7fD+PpyPpNchjE56LQbRFDrylhPF24VW4P5Ut77KUVytOZWwD7c6/sfvgKDfL5oqeI4pcT7lpB0XcVsN8jd3e7N29cGlKuZluoFUAGKGjpKtzp6XvW7Y2xIgZgJbcsrdCo4UKutqfcStTZwp1qxm0d/FPnuCw0AIgxDHNLQ7fQ236ucl5oh+jiEcTcRcy3q5kZrxYoAhs3Rmum6FgMHQEOvqoRCaobUKfJECqTo2GkIhJBiTOlFJ0OATejFiWi32027aRxGBFyXrPUSQwBHDsIiEiSkcTockImZXXVd1lartgaAu30LpfR6ZyllnmcVisJBSERiiimllFLf1PY71nebL1Myz9HMc5d+Dpdf/rOndrSr9n3MkHGkPebh8dsThPX2Lo1TwhBjhFycHTiGMY6SmDFh4ZbtMs9QXdEk8MCptpCzr2s5n2tdG6KDYIVGgMyBHL1VqwIUzWTNreRlLkg4HMZBm5/mY62ZUM1qKwuyj0MMiZ28Nq3mpVLOuFTwx0wC1dCBVX2d6/KhPT2e9Sp211ccCQyIgMTADF0czBzAqTKjJJpuYxxsmHi6DXFiFLJe0jVCQ3EGQkqEiQiAmDBQX0S59f7BLMJIROBgzau6uRsRigV0BgV3Qmcghi4jAQNhIBfCQEhCIVDk7kHYxazEJrm53X8i1zl5zfonv3r643/6+OZyeKjLYsfP3+rdITC2nIt7kzCkIaYogNCX6UeAVnUYh91uujncmNmH+4fVVkQHKg6ltvp0/HA+n3MugeFmNwQBMGXGnpgZhhACSoqHw/Dq1X6IIZ8ueS1WVs21gVnDoqVdXd5q06buhmpdC12mwwGASzMOA7wsJy3L2jqcbQs2uJSWlzWvKyLOwq1Vtw0uq3WDMrGwowMzamumZs3NcVOCh9aqmeJzzA6wqW8hubs2dXQgdjdtTRFqrUTUWgsiEhA8dTBAra2WptpUjZABvCcvryrDHer/ERCnvZgEm6Yws0iITNL3ab3kaGZEyB1hYFarlaruxiLE6KC1tsu8nudlWUqpHmNEDO7SCYbmzyuTOfjGTBEW6Q6PQiyEgj1gAlfVUvN5Pj88PT4eT2s29xjjKGEEHJpKq1ZrawovNW+IcIhxiKHUVluFZVaRyMBRUkhRAgKq1lxnw7K/HfK6K7kouFsteUVAbjTuOAkBsxMWrV6IiWttBhDicLh9dXv3yTS+ItytC85aAEyEh+jjAMNILN5Mq5s2sEpaGR1dwI2tqSPlha0CVLWmpXmpaFXc0ZSs4sf9mLu6NWvgoICdtGhO5uSu2FXozczJHBXA1XJTYRpiAkLZ8RRHdxCEQThEoUE8UAM184pujoOnO99/YoV2srQWgry+201DFIJa6+UM5G6DrIJn9AQOjJFArVzyZTk9LK09rk8r5GHHMtHSLuVYvn//w/cfflV04QDPWnfu3nG4HJgYzKTnSpA+hin0bP9IhB3o23nPP6rb9goS9N64lYaAnve+G0UQnfxqarMFMd1dmABc1cA7Wm/7mqsVQt/h932zgTsguW+q3M/jpVV9fDw+Pj5+VnJI0b3VMuvSwCHGpnWZj8e2VnH2GIIFg21WdEQFLEYNhEOSKIiNIAdsDRtb5uZieYQ6gjU3qDWrPuUSCJDBEJVZAe7bYk2h1IC2Cxx3zUWcuOWZEWWc4lb1N2/ZtXcpt6bN11p1mY9dnBMAVG1d1mVZiTgiGjqgW9dCFHTXXLP3xQC4NSBC84LiFWptpWlVVfAeP6BrIzfG7lGgpdUll8u65lYbtiDCwYldTWtV0wxdY65b34LmVporIhlabYrGFQlQSrOqXTlGyRHA1BBce53xR6kYcEIXppQiExHjOIzuEOjCAJG5NSPhnhkgEQmyJTKarvPScq6t5lxuDvvORA0h7HZTSjEyClNkijGkFFOMMYTuObPl07uiiD+Tadw7FKKzqZg2Bv9zAhBebiKtM1Q/XoaDNwelgAmgtezrXGkoDpdlVgZAX0UschBEaBFrrSWLiaQwykB00OXycLbLZTktWauNY/DIFRsZgpmat4pQsEVGQzMrrqURozV1BGhqtTbXUsuyzGcgq4cpVHbWarBWLJVLFkKeF2Kxpu3p8Xx8nM+nRS9e8kdFePdNBho3HQPqmkngBtbFNS0G2N+SNoqJ08SBGZW9sJOICqEQh45uI+rITwJiBwQwRCcgQRIMBAhuBopWydXBwJBIwAkUCZgxMATiwBQFE5EQEhF3CYgAG1C8mxcgAYFEGZ5FO5va8bTcP154ypwupu14DJ++kt0EBBoj91poDIGJK3krJNf8U2AKwqoO3lmuZgrr8gAAy3w/X07LshKilXGIzL10X4tqITAKMo0yjSJshCYE9VrIQTBXb1YaOgIwg4h03sYmIYEUQnKntebWfgTAkoeHx9Y050xIrRkRlVxbKa1WQjwDMGGvChEimGtt6CDCTbWYOoJqc3Tp0vudsAhO2M2oodVq7gDkdpXFqw0AI4u2tjH6TPO6zPPcJxcm3+0SQjDV1mpe11qVaWNlMCMTAlhZ17wu/tzJwKu2ZtoNWAGRSYgCkTh0Fd1+3WwOVQHAtVmr3SwFgdEUWrV5qY/H5XwpakLMSNENc9FStDV0ZwNU9VZbraTNzQi8RznclKGSKXRqjoOvpZ7ny8PT+XhZS0XmQ0okITpyrVBrq1Vrq82a+seADAFEKAaOSXQteT0pIA5h4F2kPQHP5+WyHJd8cWzjbpj2CUWXy1Hf48Pje215N8QvP7t7++bm9tUuBFlzPp3nWtpyvpTahmG4vX21399Zi5dF82wll9pWcBMO4zjsd/sQg3pTs6pmBoSE7gQt5/J03NSACMFqRQSJkUQAuTS9zE/sqfz+dYExOy/z4+XEItaRAQ4iLMSbkY83U1NDAyQWEAC34l5rJiSKzJF65mPB1qhlR6rgqqZatamhDWF8nT4Jt+M6rE2JYEghhhCF3NNtG10VzTTgmRWhFCdqLTfz9UnWe0cqtmJq1fX9pT78k2MzO83neT5lPSNvWvkAoKrzMh/PJ0c3bRK45wJ72YgQubsMsGzdtXtZb+Rr1g5j6VJ4RgCg1HATwr/K07mZuVlzAEIm7gR+6JZIPdxhZt/It7bF8Q4Orqa9IouIYGAGV2kPrrWu65Lr+ix2V2t9+HD/4dvvnj57PU0pn9+X01Ne1A00kpuWc66lLeprFPXIIpH5MAI6WRD0oJW0FOej5fee31F9svl8PlV2HcSotr2uYHXVXN1ncARgQgkiw4iA+VJrbtQUhGgMEgKXDERW14poVfLl8ti+X3N9ev9uWWdmIBEtlmt+On54ePd9K+X5uZxPp6enRwBXHfoNcDBUKlbMW17PaKZpIOBaFBwkIbArtuparJk69koeUitYl1nAnLk0neflkvOSS3V1dIOGCxBRrVVbfwJmzbwBGip6xaauSFStzWVphlIaYjTDVrQtKzQTJAZsYOiKXv2l8rg7ukkH7aXgfkVTOUQ63OynzXwUsU+yXbfYEYnQzewwaVPbPOc2+AoShSCEiG7uBmbCFGMU6ZXSjThnqtaNOs2JqUfc7g6mCNCrXtwdP2CbTp9pIm7uqqa1yzV9HC/rGan97KdvMICEnNdsFzuup3Uu4G0QT4MMQwpyEwGSxmSNGdIQ4zDuY2gw18WOx/lUFgeUQCESk6Jpy601WwpSw8zaoSSGDCzqvNYWWIZxjCJ5vqyX5fHhspQl3D9xAkreAJYMpYqVQUjGgQDqsi6np8v9d+f53kCBXih4mNta1nmdBQfs6tgGampm1lSbkrYkHm7RFdFREKkQgHhNJGngKdEQ0hhQNiGeznTsgYVfkRZXhqNqA9Pgyr1+3fM9juBdXWQINEROTIFJepEBcPtf3RGqd6SOE7qrVrOXFEuPoAPViZvl89dff//dt/mbffv0TfzpF69fyU1tTXJTMUcupZRlrnlpTRtDXnBhVNNWVm/ZtJRlftLZAWpeu29Ja3apy0oo0rNVVU21WUzTGG8iw3I5Vg6JQkwxh4KmjOzWmmYmjzEBxapYKpSspZQGKyK4tVLtcj7Nlx8xRuXnf/XfMbNSKhGN44BErTRrrWuMsgi6q/UcFiGAqyIAExMzBHYAswaIQbh7QCFttVVtqtrtmJyQzFHdOtEJAITZzEouDjAOg7kt8wIIu91we3vz5s2rEMK6lnXN85xba3QtZrMQExITon/209+JadgeDEoa7swAvEPKEYmZAiH1IMas69HhNvD7oIsakgFACOLorVWinfmQYlfUIBZx85xbbWpqDkCATCBMMcm0m9KQYowxhCASRLbdeB/+4AZrUtnv+ZO3cTetZuzAzGK+RTCtmVoxKD/94mfpei1C8W58q2Y3qa455zWT+5TibpwOu1tAmv0cfZr4Rsdi6m93p0P47HRekZMalLwOKX726u7t67vXb28l8DIv61pKLjWW14c8jdMXn38xjbdllbJCTlpzyXV1a4SUYpjGSYJ0/IeqA2B3/AZrKRTCpTUTJkDXpkSchiGkQCyt6SldbvevhLf6q4Th1dvfr6rEDA5VzR1YiJG5IxbAwa0pACIF2WZOM1dDpBgjEff0hIEROHe0h5qbqhogiSQz/KLWXFs1g76PYAobpgTNtOXKCCmFIYYhBQSMtZkDiDAzd60Q06aWq2Jrh/hqd1Pd2xef/+WUpn4t027/i3/73wGEaRxjiht0++qdhF1Fhja6NcAmgvesJwQI9CIN73B9IxLSNUmzXXrrKDm8QqvM/VkVnpncva+fqh+FOqz7pLL0NXyreAEiUmttWebf/4M/HKexX8s47X73D//aNKQvf/93hymOt5+ej+eyVldPQdyxV3LVjIWHIYQgBEEVlqzKwrv9zes3X3z60yHxqzf715++ffP5ab7MNa/oNgo4wJp1KbqoFrUuq8+IEiQNowJcLrUWRbNB+HaQwzTsdwMRrjkzwu00DjIQSMn19idPVauEwBKQYy7leHz/sz/8RZp227UM01/6vb8KAPvDPqVEfZcDhgzEbNBqXsFtiBGBW1FwpwBAbmgKrt2dwIEBI+IY4+1uTDGCcGl2WdellKqtJyi6vSIRquq2hqlpUzBkEDOsrao5MjZty7pUBeKEGNDJmmvJoC5XmB66Iugf/vyvTeN2LcgSxxtCZA74bJkOm/MiInYqg3e+ft9w+zazgTuoPbPo+1Tcow0khC2qUVUlAJYt1N7wVu7alFX7PMm0mYaZafcPEhFiZiYH+DXxJLjiItVa3L3C69gfhulnP/sr7jilAwpVPFusNFGFOp8X95oCpRRiiCHsI90luEl2N4bDfppiEoy6P7zWFu8OvzsvGQgP+90wiURjachNm68zk4UpjiEmGKJhqE3ARFACcxR21TzPx+PT+zfv53VGAQpOEQwhF29NXJOgxAjubVnX9bJePi/rJdfS/kf/7r9/c7jp1xLD9NNP/6qqCyaCPm+5grn1jFAHOyMCgfc4RhgjcWSKwmkIQ5Ih8CDUiSbPib/t9gF8dM5x96bNzGCD39kVjwoAwMSdBRskEMomKQQO2wbF0awbkGxBkruZvnn76ZU9A9M4/OHP/9K027365HPk+HR+Mp2nVG5u092rT+5ub0RClJSGkZCQqsMINLVmKcUYY0qDud7dxnFcW4f5IAHAftfV+UtrjgaIIIyIuqF3DNIw3t29jmlsqoQyxsHNOS6tFERQa6UtwJ7SgBzUqDYoxWqtWlYHZ4mltnF/efP60xA+GkDin/6TP+4FzZ4Dhytf7hoZbEV9+Ej/7a/DVSG3bwtgAzHiRiaFDaO4/dVNZ55n2+2THbqbQ99nqCkA8JYfFSTaRCLVzP1FCnNLZwJAGsabu1f9esy11sWsgW8ntr1h032/njq87Dn+rM70fKVmptqBP3Blx8KLMvFL/xzc6gebEy5uwdOLxLB5nwS01tp7ee+r3vcufj0FsCEON4e752vJba5W9LqZws0dk3tw0HGg1vdVDto056JqABvdnYhiF6UNgoS2UQp6tcKIOcVIJG64qTV5x113mCn2KcyvT7Kfc79nZl1h3D8CPqDHlNjXWlUNEg77m15rby2fTx9KWbarfh6u8OJWXWdE3DrV1nU+jurn8wDo5/VMoujZCfAf8YZe5ruvM+zm8Ecv+rl//M6P4ESz55nfATzG6XB4K5IAYF2X7777dr6cOxrrOZv+/MCf0QIvh8+vXev17OBl2zrsx3vhz93v42+ej91Oth/6saD6sdyEH5HA/S19iRmH6c3bT3qsnNfl/Xdfl3UZp4EIW+tWaQ7uXTTUrnfzud6BiO5gBlcEvqSYCFG1qLZatZsRAjgjArja9lDs+sRwI0CSA+jVrZIQhVCImAkQzBwB+gLbT0O1XTsDApKZNa3DtHvz+U/TMAJAzuu7D98t69xRRNfb+zxVuZnhRkTHF8O4b1yvIQIAAHTZSrlm2Drs6cXo37JugHidO7a+Cg5dbPB5yvNe8ACA7jx5nQCvd/jj90/T/s2bz1IcoIfnLbs1/KhJ9OLZ/3rPwR+pmG3d4uPR/Vu2W/9xXn5eMvHHb72e+8su9/zsXkxuvxbBvHw7sUiakBgASlnvH7/P68wkgGDdAJS7lqCCe0ew4sZBFgImFyLhjh8jr63My6XUomYAKJvCKDzPJWaAvu0TOvWj415frkZu2lqrtarpdlMJAMCs5zauM3c3QlbT1tNYftjffPmTL6dxAoDS1qfjD2uZr3uW59jvurr4ixvnzwtk37b0C+0x45/xWH/8hK9Ba//UF8/w+dFs09j2RJ77+vMfL55Oj4m2kuKh+yaWUu4/fMilhhABsWlzVyKPQimF7laLSLxF2q5mvXiN1w2Zg6tug/vX+oB5H9fX2wTXq+jStRIIyXxD/gF0WWTbHpRbv7oeYZhfV8m+NiG5e2saQtwfbp5jMvwzu+Nv22/bb9tv22/bb9tv22/bf8cb/f8/5Lftt+237bftt+237bftt+2/e01++Y//Xs+yUy+/94QXfkxSPef3NxcwVTe9SgI8l/F6cuta8d/e1HNJ2+dsabHrX7bVmp7Tm1fUwyZE0/H5SORE/pxRv+ZHoSeuQrrZv/qpxBEAlnn5+ptvTqdzL/T+er7+x58Av/nbF+3XM7S/8et/rsPgZY7vN978ovVS9eGw//LLL6dpBIDa9PGUc2mEv557xBd//fgaX5T8Pn7z9RFseUiHrUpxrfA9p92fM3K//pHwG/fKf+OHF/92MPAhyO1hCFcPyP++Z/ues+6Xy+Wrr766XC7/Gr/rz3n9X8kd3O12v/M7v7Pb7QDATHNdVJs7P39DL05cS1k9Ff2iCvai5tULJr20b9du9dLDeKurbHpp3YLOEdC3wgp04cB+7LU74sfvuFYvrkyOaxm5Z6bNRcI4Th2q1dQuS65Nn9PX8OOR4s9wpWv195r07tf6MhmPsGky+XZG1/LcjzP2eJ3JnotWHy/drwK2fh1p1+IVOIA6NAc1fy4Jj1E+uRlTYABYluWbb351Op3wBWWJsFektlLvVrwnFOGP1VdzU+tUc9hmFX/+9ucZmpiIuRsR6DVZ75uf08cp7UflEvCXz6NXdHs9IzDHKET0XNwcxunV6zcxJvg3Ml5+rf2ojgvb83vxa3yeOPHlq7/2+yuuYL/ff/nll+M4AkDJy/37b9b1zF2C97lIfC1G48vPhxez88dh8+J78eU/X/4SP4IYflybhhfoCHhZY+7l9pevXB/jc63T3IPEaXfbWdZ5Xe9/+G6d58DCdC00AliHVJl35Gsv8m7xwIvK9jM2A19c36+PAH857V+XHPx4W3rBtX+2OqymS2vdHRoAE/M+hUFYNiiufxxuZjLtpref8jOE9P/2n/8fGVgopZimaRgGSUJdagtwYxQzk7vWuuY8r+dzyYtpBTAgYCGRKCFKGCQEksAsREwoSALI5mhOHWikzzw+s4761dZMK3gxba15zm2dcy3FrKRoNzvaTZ6CCm9zJG0ToJtqbeWT3/0f/rv/i//D3Wc/B4Cvv/nm//x/+s/+9n/9d6ZxjBI3d7cXt5auLwE8k2ZfBEXbbPeiDvnnNeu8VTfYrGdfwG5+9N4rusGev8P/rM+vta3r/O/9e3/9P/6P/8Zf/st/CACPp/xf/e2vvv7hFEN36Px4hpvL6WbBii9WDr9enMHHVxCcHRA7/wAVwLb/EAGQkHvp0czVtWtBAkCXvTZ7ru9eO2L//M2v7sWKdb0uM6tqX356+x/+9d/75NWu/+rZI/cvvK3/6ttfHDz9GiDgL2jPDNivvvrqP/lP/pN/+A//4b+Ck/vN8/nnOOZfMpT5xS9+8Tf/5t/8xS9+AQC5Lt+++8fH88lsdCB0BVBUdIdmDmjIAAhu5EbeYcvcYTEIYGCKaCxoiGsjM2B3RuvcegVXNWtNW2m5tLyWvKoaAgOIGpuq6mpWHTvTxRCxG/30tZqRuPt1hBiGgWPowCt2BTNtenf79g/+0i/2+xsAuCz57/3jb94/nYSREByNAAhgO1l0c5AgU0pTGqdxJObSWq3N1FyVwK4IKXRgNWitmishECOzdFzBM+LKHa+CYx1Khj3K6BMAmmmzatbUm4EDEoAAkjsYmMOscF/tVNq8lrm0pdjPv7j93/4Hv//T13sA+PqbX/1n/9l//rf/678Th0QSwIwQokBiTERDisM4SYyANKR4uJlipG4SqdXmy/p0f1znDM1Ks3ltTV0QhSgFCpHDyHFKw35UotOyLiU3LbXV7lffutqXAQJsYmtd7EsdCakzulkISBQj8TSEu5v955++GofUmqmauf7+H/zh//I/+l9/+vlPAOCrr776T//T//Qf/IN/AP8iw+2fv/kVOfIca1+jO+xIG+jdqUNToFNnP1IEsfPF4Qq3h6skAmL3q/rrf/2v/42/8Tf+8A//EAA+vP/m//l//8+/+qd/dzftY4rche+6JmXPAGwfT93f/gr2cYBNQOHZIhwRkRwJu24z0XXzT0xI2zDr0D3kHsETEgAjcRc865KO16AA+xU8x6vuaBtG0My8tZZLef3qi3/rF/+zm5u3APDh++/+H//X/8vXf/SP3h72UwrkauANYFW4rLoupS5rBHs9xP0gQ5DIxP1UcOsW7o5dqhGRGPs9QARwdDfvwfRV3vY5hkcCFkTGDSKjRsCB06nZn17Of3o8/snj09OaCeSL3fTvfv7q9+/2r8bQ9b7UzRFdm+X8+ue/+Pn/5n93+Onv9G4gf/IP/jaDBBzGOE67YRrDKBiFSRioC5CiMLnX2ta8nOfTU17Pra5mDRm6eG1IQwgjx8QcWYQpEkekACjubE7qru7NXU1NrWnrrZZqragtrZR1bfOlzMe55AW87EZ7fYd3N74bNIYesz0HMaANcgVrrfxP//f9Ss6n89/+23/nv/p//7+S7FNK2NVRX4ycLmndIXXIHxfmPyuI+YsWC+9BjLuBXWc+AtiEXl6+t/+86Xa/eOXXwFClVIDFHU+nc38ll/b198c//up+iIGFr2HviyAGaZumXwYx3n1YbHsFHQDRGYDQCcGBFEGBtGPXvavNAZqjmXcN6+4i2Of+joW9GghcuZjQDSD9zwxitFlpzQ1yaS9/29u/jonsz2wfcaA/PsNfOwb+BefWp6env/W3/tYf/dEf/Ss5yX/z7Xg8Pj099Z9V29P54fH4RPwaKSE0cIXmqlAUDKzL1rQKqp3eQjEKUcf2NqsZQTmgs2QPDixuZM01m7shmrlrq3ldz5f1cs7Lok3RyQxKtlLyWo6lLubFXc2dEDkEYgEEIu4WviIhpiHudmEYJMYglMi5B1Hmv9t+3q+ltvbu4embHx6CIDMigRBGRhHiIIa21oqIY4y7Ie9bE5ZSra/bpgrW3LSnlhxEFZpW7wou3LMd+GKuwM1W03CjJ4F32V3rcb66qTWzpl4d3JERBSkAoEEzPxb7bq2Pa73kshSbm9/sU7kqw57P5//67/yd//K/+C9k2kkIrsboQ4Bd5EOMu3EYpx2nAZmmaXz95pAi11ZbrTW30+Plh+/uL8cFmuWipznXZkIchFKSkEhGClNMu1GJjsuylFxbrtrZ4taam5o3B3di3LaLbtAMHEC6P7YQMCuOFG53w+dvX/3ezz7bH6ZarakCaBBe16VfSx8v/+gf/aN/s938z28EfRXp8caGtN2ogQgOz0FMrXVdV0Q8n7c5eV3O/+yf/J3/73/zX94cbodxCCISmIW7Phh195GPPES80j1g+xm6BwVSBzH3OIsIgahHLUxIzMQ9V4aIXRCfSGDTyWQk6eaChAybIUl3iuxBDF3TnNT1fDtxqta6LAsA1LZJElzO57//d//u3////K0vXt+9msZIhuQNYCl2PJd1zp7LiPDJlG7HMEZOQoIsTAyMbtrUVTvPnBmZKYiQUF+DuuKAti4/0L+wB1uEghwACN27qiCqc3X5fsl//+H+Hx+Pv1zWY1U2/tlupC9e6dubL2+mfWRttbk6obWq8wzmbf6Y3pO3b3+KzuwxUEwhBCYmAAQF7Br9uHnBsAjjQAwS41DyXDUjOgmHmCQmokAUEcU9mAewiJAQxSGAI1ifKZqpt6baZeoUQMEUqtK6+ulU5qdlPs1WVmYN4HUEzQCCeBXq8OfJRIEKYFW8BgSdIh5lP+2mIaUeVF9dhbcD4LpodX7Eby5f16/5jTrQi0O3VNk1lLkOjheskhdHAkDXMn6mkMA1rHn+0BDK5eLjOD7L2yNiYEpCMXBnMsM1k4TXvGH/jz7+7N5lJ8AIHAlwo2ltgTptIT5133HrxCndbK/csZq3TjsHM++pPga4FvPwOWxBR/QrJPwlW8EdkMFs4yp9vHnXjcW/sSAG/pzo5HlU/cWH/XnHMHPPLf/3tI3j+Ow15g6mRDjs92/icAB0c9OqpTpXrM3VW8ll1VJLAweOzDggs6k2W0sB08pNKA447Fgiu1ldczlpa8iBiFmw1aU0zhVrS9YqqJW8zqfT6fL4dL6/rMfaFrXWCVAigZEdiZFjXx1IJKY0dYvdcZziYQjjEFIcfi0qJXQC69USER5i2A1hmtJuPynoh6enNa/mLbeFV44SzQgMAcnBaidfbAJhDQyvO11AcFPdtH+2/WaXtnLdpjIw6NRaNLpuMwIgogFUNwBkpMicRAigVEu52HkeR2geDaih/MGnt2PaaMlEOI7DsN+Nu4OIWFNCGwLepvDJYbcbRg4RYwCRcTce9vsYaC2lchasdWghDWFwNMTQGqKosQhH5igePJOvrsfLxdyLarPOaOSQJCCho1Wvubqak3MgTgEQrDSram4IyFEQ0NWZJcWU4pDSmNJEQaM7o0+76bmP/RsaLwREIMzMgZGJNgDCdXb2LUTYvMb6xO8IyMJMjLz5Rn38PKJSCjNP04trIR6GcTftx2m3BTHSe0V3N2CkTqt51lW4Wps9J2UItuIovaAr4XbklezKnfK6BTEkRALdQAP6kQJdwO4auHRaln/MxJADGmxEQjVnrog0pI+mvOpwan5fjFZV0btREnWeqYq3HcO4H/cid0OYIgtDEArdSQfQTRHc0BGQCYVJhEMISOiwSR32nBZfXSvQoadrUBDEHcwbkBNLzNW/mcs/PZ//6PHxver09u0+JGx+w9gCLwAWB04BqIBXE0Ql14abEsfW5PbuDTh5FXa5ah+ZI/a9xRaKe0NwFgwBCIUkUkik2U2BkGOkEJkTUwAUREYKjsExmGFtUFutpZRaSltzzSV3fUy7crda1ZyXdbmsNa9kJXCLAcYAkYARaKtuXItwfSG164O6NkQMIaQUU0ohhG3J//ODGPwLgpjf/MdfGMT4iyDmWjB8Lhs9H/nxY/Q3ltJaY3jxYHo9MnSpPuopz+v5bxkjA3ACx00u1BEM0QiM0ZmcCTaKKhr3mjohsRF5L0SpuRto/xjsQQxU1VK9qvfCurm5owIDEJL34eGwwSCuuaxeYepPxx2Q4HrGLx4NXEOZ37jl/1qau7fWcs6q3Z6dY4ybFdGP27/QKfU+9q/0TF98+D/HMf+S5aQQPrryurk2M0OiJGGHjOYGVJkAOFr2kpfS1lyxVAL3gCItqpM1qJnWC5iiJAmQJO7Qk0Fr6ks+lpwdMjOnEFvT5uAceBCopS7LUsrxfHw6Ph6X41wuqtm8gTsjCgVG6o5FTSKLMApKvpwXiseQwv4w6psD3h6CBHo5tBFTkCEJI4pwCHGIcUxxN077aWqu81qaWimlNKWctToC91xlM2vm5tdQG7ZyAwB2vYLnjN2mANRzoQZGFgg9cNc5MCQjdHcwZMTQAX3ogMhIfTiDe61KTOq0CwJMyAIcf3qXknzcwAhTFIkiIsFZCD2IxxjGNIwpgQSKkVOapnEchyAE1D23gSWEGCSpmSMBQ3BTCgEDm6CTN+tlH70qinShCCLmHpqguZOZo6MzcZBAQhAiqHd5MRICB1WLHIdxSDEBMAKJEBIIWnw5j70YL/8yY/8FYO+jdgIxMWFXDiMios7N3mLfbj3G3Mna5NgXHHuevrtSZI8/ET/Kafh1pmqtvRwv/VrC5jufgnRjm2eTLsKr3BNdFS6xT8DPFaRrENNFMOGFghTiNkH/2UHM9grRlo8hRAbiXgpDwF8PYhCp52MI0LZts8jHazGAxfyxNl9yRViUd4FGETQPiCHwIaRDjLskSYgZhFC6a5S5KxhvVSIiQGGUTTDaXDcDbnQkAvJr0hKYmEWA0dgckJzcqZrca/2nl/kfn88/5KJDevvmzW5300odall1ua/2uiiTkCFfvZtNBPmFCiGA7A87bVAWAmOMAgSq1ZE4DoBQ16qtkBmTJQKmwDGARI8DtFJrNnANTGHgtAuSHAiQEdmc1GDJ9TRfTpfLfJkvy7ws87yuy5JNG/bgFdHNTCtaFa2J6v7WxoBD8CHBOOGYSISoTzgOz2gMBEcG5Be412vn3to1Mfh8qc8DoL/+ZwYxv1lkevkL/3FY8xxR/bgq9aNPvWLrfjSEu28CXEMZQujbhOczumbfaAvWt8OeMT2dV2+IBt7cFNwAlRACQ2CMgkEwdFVAAAJDdCZANiaATYPe3ZAoEko3dq6mpba1Qi5tLa00y7VWc3cCEKTQQU4A6Lad0YuLf5lb8r+A9favG+T7XLo6n8/ff//9+XxGxN1u9+mnn+73++fe8Xwa/zxInX8dsdef95n99T/3Lv1GCey/9f108FprzjnngtJQyMFqbaZMKAC+rnaZ27paax07aICF0LXWsiz5nMFtsAFJPLAbNseytuVyuVzezesR0adpJxIcLUwUY6zFHt/X1c+n9elcTsoadmGQCGBelQzYiQzcjJGGGGKIzKIOa14vl1Nu9XwzJfliPyVCeOmbxkzTbjyskzclphBiDIk5gEnNUB3AA0JEB1MrZg3y1lO35atHDrTl7gE3mKNpzzji5kfdxUmsFyOEiYMwsYMXa81dEdVcqzHRECV2cT4EQuqOvtoagu6wQYBGPYZwFnsjFp4fqW9aVdYUtg0wIKkCFNXQGiJFwBjCEGMUkdBNx3xdqjlxEApUtRbXBmBIEBHIOyPDTH1zku37+etUSdCallIsd/dcAACr2qgGlzQmZvY+8ziambaWJAz7IUSpRfNSwyhMRO5dp+W/XZ/89S76477dowRiEpFu9CIvPFIN0JwMhSTyuJum/W6/7+KHTNy0rcvaWgWArgS2LPPp6ZjXGWtBtF4ScrwqSF3xTy++Hj5iUD5GDHAFcb/I3rvjFebch6rZtiwQwZXHsqkGdY4L8oYKuGqr+QabuB7T32LQ84NwzWkjQLfY8Bdp+ufTfT5rRET4uLyAgWf3U2t1mU95+R7skOTzw/4uhSmECXGikESEAwsLkzAyIV2vdcM0ADqCARmQISHghny1LsrlAFe1LQQCdAc0AARCjiyr4X3xr+b8Dx+fvj5dlOVuf/Pp3ZvDzc2cS72cz4/l20thPF2GfJP4ZuBpg5P/2hoL0lo1RXDuFWFHBOKqvlyWWmtZMoFNQ5DI3WhO3ZuhAimQAaibKiHHgEODWJqquoG2VtZcjuf5/uHx6XRelmX5/xH3X22SJMmVKCgiyszMedDkWQTd1eC7d8nD3v//MoO5wwA0GujuYllJgjo1oqoisg9qHhlZVd0gA8zVLzO//CI8PNzMlIgcOXJOP/TD0McYh6QqhVrvnCMAzclI9ppMxT7AfELToJUHa8HaUkB8OBaPeaTqWOB8NB5APHws3AcPFPKHHAuwBMk/XWsfmeQfFbXL74MHfKUUU0BBRVFFx49WXn9Uy6Rxtvzc+GPfe/ggAFTKQMeLfLQ1lMIOIzBCQmRDYg0Ei8FRsOQsOoPOFthRCRSQERVAiKAIiitbALImIFoAzCIxgzVSgEthzilKTpxE0CIFkLGCK+MixmOzxeNr0keVrv/dYzREBBCRYRiur69//etfv3//PqW0XC7/5E/+5NmzZ6vVqq7r//0U4z80fhqy6MNe9uOl+u88RCSloe+7tu0EOuMxc2oPO2ZyNsdIfdvFvs+JhRlQVJQZhFPs2na7O9zfC3M1mVfzVbXsfFURcR7u2+31Yf9uf7hRkGGY+lAbY411iUJMwzbe7uL9QfYRB3WKFslaLBpXqgaJUNWQsxQq660lMpFZE0fuD91Bber6eUpRVR7fHSKqqzCp6xQHVSAqHm06YGLRBJwSF/MfBIDRbqqUaItwmDVHnWWUkj5rAc7LkY+EpiiFI5KqQaSjQRpqVlBv0AAymSyalE1hNxC4ApeqZGFJQ85JRVE1EFot3QqKwkb4R6lPOWlFhLQ0Z6AoJObEbGh0M8rMXYyYIabctsP60G37vuM0IA+YoxE1qIhiARBAqLRdIGDOuSiVHU9MlcScEg+JE4MijAKxICIgao01oYifIwCqClkkY9lgVOlj8t7VFLwh5Qw/gZn/zeOh7QUBsTwgU2g55XAdYRYkQrJonfVV1Uyb+Xw6X87ni+ls1kwnxeGSmfu+TykDjJS/9nC4vbnZ3t609zdDu8spsgjRP8PbQ/qZb+tRHVY/RhEPlMGHpf3vtJpHIP6BoUA/giUevxKL35mMtauH75ChpgmzeeO9lyy7/b4bsjDGOlx4X3vvjAnWOipVYTIGjxn7mKweT9SHmA4R8FH09yOyxli7QIBSdEN0Pcu7tv1m1/6w79ZZlrPpfHlycnIym89d12+E7290t2/bbtjW/uVqam1dg7GArECfHtz29vaKwHmorAkADqy3xg1D9+H9h/12m1OaT5rm+dMwmVoC5twO/ZAzg7JIzmNvpTIQoQCv94euH2Lmru+3u916s725vT+0HRdJzDJHsNQvxIkhCoAkbHMe+sSIvAIyHptGG6umtAHBsTnxoZqhBab95D6NcfojLAYeFTLgUTkJ/wgS8+j1nx4tn8wiBZARbh7f7dM5BiNggvRHEuXHQOWPKy2PLuJh+jz6FIrIIBk1GcjeaHDQBNN4WwXjDdKI7lBRsESQomXPzKDkkMhacgV9dQCUWbAIzJM4qykJSOTYDYc2ZiBXG2vQBFQCLaVdUkSURyEMjp/vIer/mRb3/8jxQBwmImbe7/fff//9f/pP/+k3v/nNdrtdLpd/9Vd/9Vd/9Vd//dd//fTp0/Kyxxym/wis5afjk3nyaKZ9vAQo6/34hU8nyU9f/7Nf+RcOVYmxb9u9MbucrXXa9fvrq3fDIFU4I9NkAWYBVpTMkhmyQh76w+7+9v766vqHH7q2c1UzWZ6vnr2YLubeAciO23dDdz309wIsXJMPQEaQMkI/xMN233VttL02IgRAKhohs0Q2SQGNsQgBtDJUE1pkYc4ZAMpZpQ4GjjHGo7r0OAjROxuCB5WcMuckmTklioiEDJqEWQoPkayxxmKBgQGJwBQihUGjAJwZFIw1gJIJVRkADBnrHZEBFVSwqAaBEDgOh91eVevZ1IZAxowOY6LCGjknTUUPm4VzSiKqQKKU2LCgKogKc/aB86OzvxQAoNgZIICiEjCBsDIrmJxy6mOfMG8HyMJdHw9dt9m3bdcNOaacS8sUOkOAIkqAlfeTyXS1WJIxh/3+cDj03RCHIeaYcs4pcs4SBVgUQbiw5YCM4ciSJFXJ1d4Ga6xFg2QME+5SD4Bk7ATrqnLBUn/ohflfNQ9/Mi2Paee4g+FYGLLOWFsqR0UuG8o+iMb5KjST6eLk5OLi/PLJkxcvTk/PZrOZD15UyJD1HolUQYpTgzG2quIQ729v3n333Xf/8Pdvv/n99bsfusPegRoCAiWV8bR5NI75MRKVg1QfsAktoXGpzQNAOSD02BNBgCg4GqTh44MfcewHHRku8ID1/GiMmMpYReUsmTlnJGvrmmxxqcXjv8dMEqGwlR+0U8qFBGufnS1++frpZDJru/Td9+/u7zbf3e43rkuzqZvj0gdnKBh1KMc3Aij2hyo49kYrIRAIARIqFvKncMFgSspNpAhaev0VBIAsGERigc2Qvl7ff7Pe7IZMLsznJydnF4vTk+l0CqE9HA7rIW3vt+85baa1czRr3Ik6C5hlRBEehh36aFAQESwaRBGTCLb79vrmtt1tqyrobILOCdk2xa6P67YbMptRn8CAoggOOe2HXZ/lfnc4dH0fh7Ztd7vdbrfb7vYxMVljrCsUIGsMIhUz68hKCKpGwGQhk2g74DTirKaGhACw9MIUJjQJjC5tgAr0aURGiNYY55yzxhga+VwjYPpJQPMxiPnJWvuDQcynpN2Ph02J4h6//viPAoDow2H5U0rpPz8eJt0IczwQaQWACcUAe9LKQRNwGrD2Ghw7Kg3VADqqdCiwahLNnAWIBBGxkBCxdCBw5iHGQ9+3XdcNw/7Qbrb73b7bHQZW4wK7gEGsCxYNEaBiQWL+YwtD/+YhIl3X3d/fv3379s2bNzFGANhsNofDIaX0H13P+jeMcXaVOfkgQQHwkCg/Brf/veItEY0xte0+52vXDtbj/rD94e033WEI4SZUM1/VSIaldBPGnIY0tPvN+ub9u5v376/fvmsPHVrfzFdnd++W5yfzeR1chHgncZ3SXkky9+i8GJMAepaU8tBHESYPTk2EnJlzZk2MSYIgemM8YgATECoQo5klk8gInSBaUFIpevGPbyAUjLhMbdLMohktCT4Q0sUYtEjWGO8s2VLLJlAkJSwJFqCoSiHg4dgvW7KSEYE43jlVBURDpuv7t2++7/tufnJSz2eunpILoshZ9sMgORtSIrLWAmrOBdUBVWDBwoBUgciSmB9fT6FulUiinOMKmhh7ZuREWTFqB1l7EpDEPMTUDXHf9zEnFgbQUmsTLfkeNfXkyfn5+dn52emZtbZt27Zt+7Yf+n6IMcYh9n2KMQ+5OKMw5xhT33WHQ5diGtqBUxYWyc74bLxBb0ShZzFoJpwExQdfGer3ICz/5o3h4cQuzT6lwGfMyB011pChh1QViIwNvpo0s+Xi9Pz04snl8+dPnz1/+uL5YrHwzsahu77+0LZ7GNA6XzcTY23OSt5OZtPVWXXx9MnF5eV8Om2mU7Dm5v077lvlj22VP5fl/nxypuVoElUQJUBHAAAkj5Bp82+8KQ+/mkaOhDJzO8gwSE7GOXAGrR1z5k9+4Dh3SUc6zXE4a0/ns+fnZ7Pl6XrX39zubu72m/7Qd2oFA8LEFaUVF8gYg4CF9SiA+vA2Y60AwYwiRmCwoAuqOG5mo0nhWEpDMoTGDgLrbvh+u/9uu71qWwZs6ma+WK1WJ/PFYjJt0OC68kl00w+aewJ9OQx9ziJKhD8NLq01FSpxRlQFSyxy6Ie79Xa93xPh8uLi5PLCzGYH1ftDt9nttoeDKDRNXQXnTVCQmNP+0K73N/sutpm7IXZ92/V9HvqckhD6ynkfyFoAJGu994iUEnCWru8AiIxRArZmL/pum0W15EqLGoIRxYwISMfIoNRGRA0DCT1cDyJ676tQVaFCwhgjqDrvjTUAIIWcUiKbMdAfCzQ/PRV+JpQZa4AfgxhVRSlkl0/uKD3OEH+SeX/yyo8Frx+jQgjwUK4e91KQ8ugeaqGWwCNWlqYV1R5qKx6yyYyghLa4gGXWLKU5jUVLJwJJFozxKHBoQTWz7Lv+drO722zuN5vNZrfdHbohMRPZOtSprqWqsWqMD8YFM8b0R44dPArvHrCj//3j4aRX1ZRSSgkA5vP5arV68eLFV1999fz586ZpfoJ6/UeNP/Rbfoy+PApQjLXOlyj/o4tq4qz5k+z2D4Xa/6qhqinx/rBPux+Qbl0V9u3uzYcf9vutN1VdT6bLhQ0+Qsqcchzivm3v7u/eX7399oe7q9vD5tDHrEg+VFdX3589OX/28mIx88QH1AE1gUUSAgYxlACTArMSGGdtMMSaJfGQuRsGHdgrVtZVE1NVTp2AQzYiJmeCjMClaCtkrbHBojcl8Hi4chFpu67rWkKLiCWvMI5sMOhQUZmVAByRN9Y5i8aAobIta1KJrFI68oBLvZgZUIWL6iZkYc6AhRCjkkGDMcHYdn/4h1///dXV+8XJyfLs7OT8crpYVXUTB766vos5T6az6Ww+n1fO2US5qK6oqpZQgwySWNWRcAIAAIToDFlCZtHMZB0CgOjA+ZA1EiNYEZBOGUAKuUsgi2ZQIDRIFk1wnjnvDwdRravJ2er0L/7sL16/eDWfz0IIgDgaF2bOiePQ913Xtu1hv08pI2LKuevaD+8//O63v/twddV23RAjsHJMaNFWNkwCeEdArJyAmdR664wpHbb/8jn5eN/AkRJbCkaFkVFM3Kk8LyySfwSIYKx1VT1dnKzOn50/fX757NX502fnl5er09P5bG4IhnZ/9+7m7/77f33z3Td9fwghnF8+9VXd9cnXzeXTZ89fvnz9+svVl18sF4vVxYWfNL/7h797/+3X3WaNZXsvbTU/vhQdt39QgZEujKrEqBlBNIuQFdtYgzDybVVFgGgktoy4zWN+wohb/PQPHA8pRdCiOgcCuU/9esttazVh3UBTY6jGjfdxxyiCAD1G9R92HkM0revlbDFbnjJ2oZoYa5XwMMQf9luWyMpZxbllbayxgKAiWUgBlIxmhmPDLBoqAoyAgGiJQFnHbAKA8Oi+hAjGohAlsPeH+JvbzW/u7n/Y7Q+ZfWgW89lquVwsF/PZZNIEo2lWOWdBURNgBI05p5RU5AHHenxgWj9Z5siHvgeW6cSBCawW6qmfLYO3q6fPp+en6lwfY+tC7xMX1kxTkXNAkOKwjf3t9vD+5m7fRSabRYYYY4wSEzBbg9YaY6kAekRkyQJCBmLOMSUg9K4qdHxl3qWe9tk5UAR0ZuGhUDjGitsDdXR8yo/IDYjGmRBCPWkMkbUOQL13SMSZmQusC2NJbkRi/lgQ83iZPQL4AVSl/OJC0/r4TSkv+SgLg1hOIz1Kvf3r8JifLb+WwmSZFoTOgEE1ypCTQEoSGdSQRTCqlFmGHKOwGpGyA4O2BVaFEqQbEe6HtNkfPtxtbu7Xd5v1dnc4tD0LOldXDWKYOoQMkFUtACuY/1s4L//i8VBaCiGcnp7+8pe//PLLLz///PNnz56VIOb/7g/4SeRRNm7nXFXXdVM3TRNCMESimnJKQ+rjEPuh0Mlyyseu+P9VSEYBsub9sFu390msq5o+9vfDuktbm6jTarA7k9ygOaYhHvr2brd9e3339vrqh6v9Zs8JSsbatvthOOS0s9TxalY5CI4qby1552u11EvmxEPKaWBOjKyRgDUdctfnzBks2FC7OvhqFoInIWUDQsqQo2hSZmBGAQK0WNof4dPUQVVzzjEnY4CUCt1z9BInBBQcGwSVQVAFlUZJyNFhlpUVlBSAEXVMHHR0DS71XGVAGBVwRA0RoAEwOfP9/f2H6w/Vd82Tyyer1UkzmQ5Z3t1swFZPX7621bQWRDVZlUcep6Jq0SIHADLwI44WgRKqEIABMFAUlZmgB0mqOpbLMosWUo8hA4CMaoytfVhMpqfLExG+urrKzIvF6vPXn//i8z95+eJFVYWqCs4Fb521FgFFNcc09H3btofDPqYICinnrut++OGNs8Z6++7D+7ZtAVQKYkRqLAEiWMvAPQ9djkmZFZmZs/yr4upyuJaHZYyx1o5BTGlqH0EXVETAIomIZG01aeark5OLZ5cvPn/y4vXlsxenF5fl5ntnOcc09DGl+7vb92/fHHZr730eBhuq7b41LuzW95rj2cnpbP7i4vkzDD5yBAM5x2vh3B74UWrxzy0kBUHNKlEwAYiCQQYGURMIHByLO2WU/f+PozI/H9AAgGZOfRp2h369lbZVYGRNsxmG2lpPBKMM649vMTwqJQEUFHZIcciixrgQJpN6OqtiPKjsc/rQDUg7JAreg6UlusqgATRQOGsIBni8bhgDLSnZPClCHuWFFECptCoBIoBRHBg2KX+77/5xvfl6vb3vBrGubprlYrk6OVmtVrPppPJGYxcMGgQFFQAGYBFhKVWPn1IubX36ZLs93N59yCJqq+lyNbM+nF40i6UzZvH8qZ80fU7JRmf8fHm6ADCA3hiUnIZ+f39/2w3v1/urTdulbENtrLVVg8YMIqpKBAjKKQMqoEFUdQoKOXFOzDmTNy6Y0DTW1hp12Ox2w+Hb67bPaurKVjixyRgWgVEhF0UoCYEQCNJDClMCeR/cdDYNoWJWVUbInFPXqpQS9FhVPAYxPw2zjyJpDyfEg+ggPGKmPECEn+Aujwjhxy/8PPryOJQZeec/nXj4iDAFx2KWKquACimLUSQElZxSn2KGwUgP0iOoJWuMN+RYNaYYJeeshcSTcm7bbkiZVUAJiWJMm93+drN5f7u+3+73fd/HlDIbGyYTGyzV8+l0sbRuam1FzpagEn6OpQEPYT/9q8/Xn24Zj4/q8f+levzoBuuj/zy+iYjonJtMJk3T/Pmf//mf/umfPn36dDqdPnRZPwQ6P72Ef9/x0zd//PTL55xOp4vF4uTs9OTkZLlcTiYT65yIDH3fD2Nl9v729n693tyv27Ytza4/Js/93O/9IxuxoiRKO9m+79b7KD7OACD5SIZAIVKMea0Zc+a+HQ73h+379e13N7vbzbBPwtY6tFAEcVUzt9v97fsbiPFkOQuLWfCz2Xw+PVlklNvtpmu3w7rbbQ7trh36XvIgmoXUVWE+X80Xs+ViMqmd92KMlGwlg8bMh36IzCAqLKOT7ZjKoo4aSeOdUKKMGnO0aCeu9sYqgGRlUR7vufQqCEDGEDkytgQqwMJS9mMFQD0aINPx/0AyrndEMKiAjCqEinYyXX7+xZe73f1/+a9/s727/TBfzqeN9yGTXSdaPHlx9uSJcUZBWFgklyWMBVovnDVFQkV81NEjoplBxQQylSEn5BCQ0CAbZFRJRek8l9TIki1sCmGp6+ri5Pz1y1e//PJPjDHfffttHOLJ6dmzJ09fPn++WiyMIets8KHyVV03zjogVAFmTimn2KWcmJkzZ06XTy6aST1Zzc3f/+27Dx+EWQQUFYlyFsjJWGLl/dBuDvtde0DrhmHInP+FuOwDic1a65xzzllrrbVHlZVRDgVBAFVAWVVUjHGhahars8sXLy9ffPbk5Wdnl0/ny5PJZGKtBeE4sDKTsaFqJpPZbLYwqMagIcwpdd0hbXd91yLAyemJ8XZ2fjk7W/3iL/7ceZNiL8xX330bd3vWB8Lux48MDxyCgpQiUFG6SAo9Q0IUUMQ0sDQG59YSFtVgUQURQ1hAHFFAIQAlKht7Kf1RCXBV9djej6o0LjPW1KX9zf2w3vLugCkCgoLR3UFDZarKGCdjqaLccyzH0/FI+yh8kWJ8/+HmzdsPuVqoq6rpfHF2nhDV2rY9HFJ8e+izagbd5fjqdH5ehSlRheTKyjOoIEmByzNkQB3TehXMqklyTiwgxhECZBYAsMbscn5z6H6/3v7jdnPVtZGhCmE6WSxXpydn56uT0+lkYiEPWB54iVrGqxndDwjHTp/HSMxN299tD9/crCNrN5lcVs3Z2byeznxVBedWTy5cCDYOOHTSdZbZGWMBjcrQtl3b3h3aq/XuervbdkMS9ZQ8oSeDxhrngMAS0NizQ3isbioAmASGUW3p3zLOulCpwRx1SLJvOyGZ72w9rfzE2oCaVYRBGSSpdAIps4qpAT9GtUSAhEBkfahcIFLIXYo9ABGlHLmkVg9Ryk9bAR8HMWUpPu5kGVEZESkqtojjfvqIDfMQyYwzFEBVmRkftfX+m0cxoSkEK0ZlhSHzkHtKB+SDgcEZ9pacdQ7AYTEIkCTcpRRTZua+H3b7fR9T4bgB4jAMd+vN/XZ3u9vv277PObGwqAsUhMGgDcHXtbOVMd6QHWfQH7qWf794oBzDP2Lg/gtH2RmrqrLWnp2dXVxcnJ6eEpGIjBHAf3Ds8qPx8PQfroKIfAjTyWSxWJyenp6dnZ2cnZ6cni4Xi2Y69c6JSN/3wzD0fb/b7W5vb2+ur2+urm/v7jabTd/3IkWJ+996FQhqJNq0h8NGks3ZoLEmGyo9kspJVAAzwJCgjxCzZJFcuK1FYAQVCIurhQD3Obapt3nwqlPfNCcvnn/GKDH+/jbuD7fd/dV6vz10Xcc8KLC1WE/qSmrxDS2t8U5cVEIALCz0yDKkFHMmpZHg9YdxzEJfTyKIRbfDMDOzJJSxQk8GEBWUS0vhmMMIgI4ySmCg8CsVoQjGgDEI1iigsmRRVuGCgJIxAFQ1zYvXr65v3sp/4ZurD+n29s5ZH7ybLdzZ86aumqapqoBYJDQeRdojae1neGUKkFUY1QVjKwMEYBQJFIFBlQtzObNkUACjTAiigASKwfqLk/PXz1998dkXIfhJ1eSUVqvT09VqtVpWlQcEIrREzpjgfQgVOYtIICAiOQ8ppZwTMyNCM2msIRucAIe6urm7PRxalnLkirCIluBM9kO/3u/FuO2h62N6HKb/XDfPuCIeoBd3HKOyy4MgFh65fWPlr0Dapmqmy5OLJ89fP3v1+fmzF8uT02YyqUPlnTUAzCyqzrj5bPnsxWsiGoaWCOpmEhO76U176AFUgfaHdrvfh9VJPZutLs7j0N/d3HT7rj+0fdtxTD9h9zwOYuR49CAISBLpEg5qjSXA0XYDxKvYiTdk/pmcY7zEj9BLsbUpLDkDRkQ49t36sL+6jdudYYbMXWKTta4bbKbNEo0xwvmnO/NPkAtIOd/frd9/uIbpqpqvjPeL1SmQdaHe7Lbtbtsd9h+6Qe63PXMnvJtOLkK1cK4xBAp9lkPmNnOfM5fOQkRFUgQWzZwz55SSABjntZDlASyaXUpvDu0P+/31MPREwdXT+WI6X9aTmbVeRLq2xdzvd7u2PcQYWYVGyTQ0x8gWH7jTx2H/r1//w3p9+Pqb91H0qm9fDwOE6snZWVgsFrPpyZMnzWQSmTf77fsPH9pDW/oMQWTg/OH29s27d+9vru+3u8gKSJiTIku2htR6b8Bbi4V1gYDG+RCqMGlEwIuqNZQzGtSxQSYROdtUKae+NXetvltTs5guL5/Ui0YjS04qA3AHecvUZ+Dsl4r28aNi4UPbkatW03kdHLLJyVlfdV0aupSGxCmBjCW7sePy06f+IyTm4YvwwLogKjLBP61CPXySH4EwP3q3BzZM6Qo+hsmfvEb1yKaHjwaZD4UrVkkMPUCfc2wPqV3zcOctny7r+aQ2RGpITEG8UbLuD4ftdrc/HA6Hru26wnZRRBHt+mG72x76PqsYY2yxggMpvJxSyjNAzlprHRbhO9WfTbCOdW2lH82yPzp+Njp5/AjK/0XkSIn6GEQ9vOLxTS6b49gxi8jMOeeieveA7pSo4t8QATz6VJ9uF4/fCh+/EqFgSAoiR/4mYlXXp2enL1++fPbs2dMnT1erVakl1XUdqspaCwAxxiLJFYdhfzjc391dX1398OaHr7/55urqar/fZcnjLyq7vXy8Jz/i0PzMTUYAj1gZnFowOUMWyZCiHmEeZbZClVhjzLyp5ytsmG6Mvb2+bQ+dSBZABbLG1VU9beppPfPk+zbvbT+ZcgizL7/4FRDefthq+8P2/fb27V3XDZkzGDAGFJiGbt3fYJSqcugmCBkdEBlBiKBZJDNLlnL3juvgZ0j9pS5Ugi8w48rKqQizCFoTgnehiF0c4ddiXlme0ljTt2MfgKDKWO93hpxDltS2+z4m4WiIQl0HYxTUVf7Ji2fPb1+dnJ3+8G3o9/vUaVXXl6cXv/zVn37+5/+P5y+eT6dTzlmEi2ODFkubkeGrOEKxeCyUgyJEA9liFYzxRoozY5n8RaMtJmYREVBEVqXEoIhkjG9cuDg7vzy7aOqmqaqXL14i4GwyqeumCs7aUfsbRZkzM4tKUWfDcX/BYkYLoNa6xWxuXn8Wgq+8X8zm/+Pv/ucbfh9TSsKlUVEzCyKQ6WO63W57NPtdu+0iH3UmENEck8AfTcgSvnjvi9hNAWAer3p99LdQQ0iVVY1zk/l8dX55+fz15fOXi9PT2Xw+qavKOUsIrCmKIiCas5OzP/2r/+frX3wFqMYa53w/DDc3N9vtbugH61yYLiJrjMkNERSayezV6y9SO/S7fer6q7aTT8LMsRNpZDWNeAkiIjBxyt2uxyiTOhBZEeCsXRxcMnMHxvnCItHjXo7HiPbY3gSgWlRMsLTyKLAqESMhouOUD+vd/vpud/VB+ljXdc5yt95BO5yExi1OUI0xLmPm8c3LVMLjrfwEqWbmw/5we32dfTM/S/V8uVgsppPpanl6v1nf3t7eX7/v9pt3u27b99eH9uls9tlieTmdLEJA0N0Q13131/b7YRgS5wJ2AmTVzMIqLMzCgkDGKoKIoAIBxizbGA8iCaiazpaLk+XyZLJckXWHtr16n3c2Sjq0u/3Nze3+0GZhq+CJKmuCHVusxlX8aL+1b9592O266/tNzhyB0drF8qT2fjWfZ8Rt1w+irLrbHdbr7f5wcNYaQhK+v19/uLm5vrvf7Q99jIoGCXKOCMY4dNb6EMwxBbHeGGOsddY5NU5AyHuLiNaqcsrCbR+jGussOTWYAQ8Jrrd5utbTPtBsocYqKUgC6dDsmLoIQ/YnSvbjXqbKzDGllKNItjY09ZRoMmRtu7jdtt2hy13PKSlzYRvBp/v74yrDw3p7/O84dxW4xMqPSkijXgwqjTstPJxy5fj8X0NiPgY7iqbIbgmUsqMRogxIqkkgskLiLJEMs2If827f3tzc3t1ttrtt1/ZDTqpgrFdEFokpd93ArNYZ8sUERLKodd4bSwB5GIauIwoIzv5vsQ4o97lEHlLcj49524MzwyfjJ7hvQWKsLTRP5aONx4920v/g63j0AUUVlIiMsz6E2Wx+slo9efrks88+e/bs2cX5xXQ6tSOabo21Rey89FIRojAvU1otlycnJ4vFsm6a6XT69u0P6/U6DvFjZHasPMKjWPyPTDxCMmSsJW+JgIyAV+OOmm82YI12SaEGAxljnzfPuvdX9999V71/f3t/v237BKBI5Jz3vg4uEJg05GHIzOp9fX52GUJ4evHtt/PvHViJrFFUin0kGNSc0q7bqqif+mxyfWo9OjKgApxYkxCDETDHzLRshT/JxADGPBetMeXWIaox6NFYMmjIGsKi5cechiGnxDmDMKAiQemDQbSjFw5YAmOIrMGEqpDa9nB7d73f7znFJlQX5+fL5SlNyTrDwEWAHQC6mKxCNbXTxerFq89evHo9nc2sMcIMPylJl9MLj3ayHy8EQQjZUGlgBQEVUVFlUWFJzJmVRQoLgRAQWJKxNliqfTWfzKaTiTPGWbuYza2xVRWCD84ZY1BVpMQvpWjEbEov8Lg0sID1RGitDd6H4J0z1hoy1HYtq17d3XJ7KGe7iJAIGZOY17v9geGwaTeH/nG7+INs/8MWOlJ3nfPeO+e8c0X1drz8T+eqHr+owkhYhbBcrZ69ePXy8y+fvXx98eRpM5s2dTUJziJwHFIc0qEXUWt9sPbpk6dQGtKsI0PDMJzfr/f7Xdd2KWdjKVQ1ikpia4x3YTKdzxer2WJVT6bW+5/bIkpAhUd6rjCAZolDOuwHjOKNMR5AiRN3fYpMtjJA6AIZiwLF9p0Iiuw5YKn5ULnywiRBAAVkwFGZlHPq22Fzc9/e3KduIEEFE1nXu0Eou/mw6JjAWQoR42jB/oD8jrfvRwsfg0ULEvu279owmVfTarKaMOtsvqiqGlRYpd2u+z62SQ5R+wy3fV5WARF2fb/uu/uuP8RYHCmKN2IxZi9FXxgj89KzVcBbYNEsXKR0g6+mi+Xy7Pzk5Gw2mVgynFPkfmgPd7d3t/frbhhU1SJ5osoYT0QKoEpjU/rHYeMw5JQNYM7arnc37v2bZuZU8OXLmNI3b96lnFClbQ/Xt/dDjKHy1hAJ79Z3H65ud7uDCFvCzFI+rCCainyo66ZRgP1+r4jTyTxUVcHz26HjlBGpCCGnJEOfUkqiO+fsZDKVzICQRO93vb/eTU42A9XT6YnzDRISZkNRqE+wT/ZM0T3MfmZhZifMqe/a7bSm+cnpbDZlcrvDQNe35He5CqnrhkPLKY1x9AN74FGa/uOZ+yNgZiRrPYp1joyNR1/4MSfmD73tQ3XrRz//kRQzfkIyhmDs07QEYkCs1Um9hIXNvQXuLOqQpY+dsIjIEFPbdZvt4fb2frPZte0h5lSku8hYRFJAUXTGOOfRkiKm0kIBaIwPvjIC7W6nbOMgzUTqemZtKArbP3Np+okRxL9qPFRbSkKWc97v9/v9vm1bVa2qqmmayWRShYCmdEWNCffDj+vRybbczpLqle/K0VD1f3F8ig/RR67Sx1d88uryI+VZAECowsnJybNnz58+e/rkyZPzi4uz09Plctk0TXFFePxbVEb8vGz83jmazZqmWSwWl5eXT589/du//dvf/+7379+9KxgVjlJxY0m0YFHltuScHwKdj59OkbJx2dSJVExwIVhbW6mJKusbF6Y+rKrqvK7n3jlDotql+P56/Zt/eve3v/72v/3P3737sGZAa6CIesJo1yKgaqxx3npvl8vZl19+fnd18+b33+7uN3vb9/0wcAJhY1CZ+2GInNlphO6pPw2WgBRYMSaKHDIVk2gRZQGjaIuZNcDjk78sxkIIdWQRgQh87a01ZI2oDmlou8N2t9tst+u7u3a/i10nnMgAIiAZQ5aMdy5UdahDHXztjDWEKXa73f31zYfv3ny3vV9D5rPl6le/+OqzL798+vkX5O3Nzdvv3ny72Wz6IQ1ZJlU9PTk7uXi+PL1oJjNRiCmJcJkLx8RpnLFYUE+Rx+wLRERLYDAJQ86koCKSRXKWzJJFmJUBVJEMWgQCFjCAoQp1XXvrCElYhB+0HxURQvDWGsmcIKbInCWlbG02PhfVdBVAQEMWrSJBCJ4IcqbJbPbCvASkmJKxJv7d33Zdm6F8cAAlS6Sqm/1B+rxf9+t9n49mlohorIWxjaV0RxdrBOdDKBzeoiD443V0vENwBKByir6uFsvFi5ev/uwv/vLzr/7i/Pmr2XIRgg3OVI409rtuf7hbb9YbYQ1100zn9XIV6trVwThHoOxd5eywnKUhZc4wvjtSYksOBeIQhz6qgiFrnCPr8COdAEEJlArDtWw+KqIMEqHt4m4fKUET2FoiC6iSB+mzqOkyw+KcjEVR1EJFUICMSoAGtRgIH2VYEJlAEcSAJXIA2HfD7n67fn8zbNvaVq6uwFex69pOsuqs5TQASmWpIYxYwBwUBVMQv9Gt99Ha9848OVu8uFzGUCGR5kyAy+U8VNVitajrSoVB9U613e8G5Zsudrx+u93XziJin3OXuWdOWt5fM2sBQhGxuFUSUXluIsfmF9Ry7aRIohYwVPVsubx8+nQxmZgUPaRgq7XmffvDertPOROAR6qMqY0JRCiiGYAR9BMmiJURk0AA4Jj2292Hd++8NWScC9X17aZvD05zznHf9lnUeGcMGpHucNjsiifJKNyCqmSgeD8gkSqyKiuRsTY0LtQKwClmGUTAEiGhLUKrSsKQcxZmQgIRVRaRruf77eHt1Z3a+oIWs9KeiajKAl3KLpuJwsPWD5YwODOp/aT2tTd15eez2Xy5YLRq2rA/uCGObgEiibDMwo9Yy78ALCkvJqCC+OkDQPjxFUQParw/6XL6142fUGYffgECGFCH3Dia1MGSl0ip36euG/ouDrnr2rZrD+2hbdv9vt3uDu2hi3FgzWQMgVU1iAaAAI0x1lgyzgKRN4aLlQxZR0QiPPQDHsgEMt6WhALNf5CWXQlfhmG4vb198+bN1dXVdrtFxPl8fnFx8fLly7Ozs6qqHleaPv6wfATGHno1H5Oc/iM+8B8fD6EDWdPUzdn52fPnzz//4otnz56fnZ8u5ou6rgtxp8Dpj39EAKy1peBYvlgCnRLH+OBTSiqaU1qv1ymnQsvCI1OyqipjDDOnlB5oQI8HAdVoV7aCesahnlTT2vpKobamdmHqq1lVLaqwqv3Ek0UAUgF9cjKbV1Nkev/2drs+tCmXajhQQRVgLEcgAEDObJ1/+vTZl7/4xXffvIkDX13dru/Xh3YvkipPoiyKAtDvu35TYS8hk7UGFCJLFlUkNaBICThytEqkRxmkH10OGUvWGeeMIUVrTVMHZyjnvDvs3394f3VzfX1zc3d7d3d3e9ht89CrpKPcOxaRKeuqqg5N1dRV46wjgKE/rDc3t7dXH67e94eDU9otV9QPQ9seYkeV+/D+zbff/H6/24lIEgHrJouT+clZM104X0Vhzgm0bDI6BjHFYknHQKDo3jweheb7sXLBIilzypylZLtF4FgIFRmBDNm6npycnJ2cnFRVeABLR4YsAY6WUk7IDDFtt/s4xFDtF8vFub8whF176A9D32ZEaqZV3YRRvljVe++sv0jp5fMXV9fXze9+SwSko/MgjsUo6SMPXdy3XTsMD95wRGSdG4NLOwrXOeedc8a5h6KAjpD2T1kjAqCAQM6Garo4OXn++RdffPXVZ3/yixevXk2Wp1VTOVvEJmTgPOy2tx/evv3++xTz6uT0/Mmz6WzSOOO8I0sgkFQdoSCRNd4aa42Idn1kES6SRaoAUryKf4b2VyIXYZZc4mYSVAFRZIGUlTJkLupgBAYBJA15fTtEUesNEhhnyZjybI8EhUIyIig6L3gsMCkCoIDmlA/r/e5mfdi0Mki1qNQ1kXGIMvRZ0QAYIm/QghhO0HV5SF2WLGqER9llUXFu9bAPOGtOF5OL5XQLPhk0ygQSvJvPp5Pp1Dob05BzSrHPOQ9D1+Uc+7xFKIrPSTQLMAAUR24kckCWgFkBFano8UO5W6UeCp/W/kU556Hv0zAgaHCu8tZjtjis12Z36Da7Q85iAStrJ85NnKsMUYHli9XZo1GkKwVM0ayxzHx/twagPiE6f3u/zf2hwWhJxdiMVHI6IyQxDxEErGgUAVIkQGussw7J5Mz7fJDxljlLFsDklHMGIgcGVBlBjSEPmCsgcpkz5zS0A+fEmUFFQfthuLm+NcbX9UkV5s7WaK0wJjQJLYPVR+dWU7uT+WR5slislpPZbHWyms7nNlScs4gos7IqEoVQG+OGvt8fYowjRYYIC/HieDT+odz9GMfAAzOw5AzHYKiw0hQBHkuj/+wh+gdP1qK0+2DTAY+4O1i0udQQ1NbMane6spVzHLU7wB4Vc4rSD213d3u93a37oY8xcWZrMgURAKDCJmcAUiAkiyBFKpAMqjGZOcYEAqTJaCYUKpCrRNakygr0sx9+FCKExzHdv2g8lDyKEtebN29+/etf/83f/M3XX3+92+2MMaVT+v/8//2fo7snUdnfyXysuEvmhwL2WHojUi2+pubfx2rgk8rjHyY3P2JQqYh1bjqZPn329FdfffXZ558/f/58uVwWKkApdZWfKh/ygRlQvlswpMy5rN8S03gfzs7O//RP/9R7r6Dffvvt3d1d13aiYoz13td1PZ/PjTExxv1+X7g1P/qQlnDh/evZ7LOZ99bMqlllnUV1ZCrng3XBWUdoSYBTGnoAdc4v6+mXz5r9ffz7s9+/f38ddykXw1BlQUVSVs2qnGHo83ZzODnNi5OzL37x1f26c376j3//G0vfOcPMppoEMFjNmXMGlKC2TmbOrqkaUuhTlyWX3loh6lPeZXRKKAqi8IlgLyCSpaOwCBEhWm8nTQU5b+833339+//6P/7773739Yerq81m0x4OnCKBAAqiKAizqCCCRbLWGudDcMEaiyo59W23S7kn5WBMCHW/2/72N/9wdf3hd2++trU7HNa319dD147BgrHNdD6ZLayroIBwYylTj4/VIKoIStHRFhUuwcrDxAJgRVZUJEAVURbOzFkky2jcKiNpIoM6dFVdnyxPX796/eL5i6aZjPRHY0px0hgzWiQaQ2Rj2r599/72+tYafP782epkFbzb3K3fv/1w9f4ueP/FLz8P1ZloERZUGIuzLoQq+GAIEdAYIgPWGFNk1lQElFWSjI6fDwvBOReq0ATvrUUEQ4aMBTIlT1VVLJE3ji6IY3aEAKooDAbRUpg2s9OTZ69f//LP/vKLX/zq8sWL2XIegnOWiqsgZs3DcNhu3//w/d/+t/9raNtXL18aiZeX5wFPSQWEhDl13fb2dr8/ZBHv3Gw2M86TocTSD7HPyTpbBYPSc9znoeNRm+RhwbPIkDMBBoPGgCUKhix6Yz1Z20FWJKcUlAyh2srAoVvfHw59IoeKMls2xpqCu5vxkrUY7RIooaCWdMEwWGaSjrvtYf3+rr3f5QGNqZnqQWzq+nbfaRxcXU+m1WQ6sZYk5e6Q7u72t5vbQ9eKILPkXMrxKjyJf56Oa5/mVbVqamXXIQKIkaQ5EkIzmxrnYoopxcN+23etckycEUERMwIAcGnaK2IrhD6Yae0tIWeOSQ5JWBGtBVGUjJBx9EgYD8gSJ3Zde/P+nQGcVnVNODs7qZxLfepj2hwO+0PLLAFN49ws+GnwlbUoyso5Z8n8OI6xZA0ZRirew0dPT8UsSjkrD8Gk06mdN9aEEBXWh9gNnBPFbIGsklU0aNUX21ZTFP5UmUUBiJzz1hoRjkMfUxJVa4yzVFoNDaEVBhtyiimmoe/alB90q0U1przbdU196A5dXkRomMhkBSHU0ZH5eCWGZtP6dDU/OVvNl6tmOmkmE0CMKfcpxhzLidAPg4jW3jqqRRSIykxFhVGK9jhobJT4A6HMx/5qVCKAkokeS5A/pYgfz9T/ZXJM+e1oCb3FKpimdrUHscFCTazA0rUDKMQ4DEOf0lDQbGsRkErBUvSRihMCgBIpkhijRXFKBVWBkBEyAoNm0SSSRJJoNmr+1wUof3xFiCKSUrq7u/uHf/iHv/mbv/nP//k/f/vtt8MwWGuXyyUzf/7Z50+ePlksFs45HY/0st1BOQfoJy3TJUp44MT8r35IohACGaOix9zxZ8YD/GOtDSHMZrOLi4vPPvvsq1999eLFy9XqJAQ/Ric5P4QXIlJIPCWOeegGZ2aMCAKiUp4OAMymsxIGiUgVqt9//fX19c0wdIQUQqjrOoRQYK0/FL0ZwmmwMGtmvpl6X9vakQEQIrLGGjKIoMKJc04ppUyKBsAbfzoPT05PLk+Xq9lkfTjEXPCBnCSx4pCj6bvd9rC5263vd32XTk5nl5dPf/nVMHTp5ur+/u42DUHBzE9mNvghaRoSx2EWfKXOZ9OINUiWlCmPiR2R1cSGDVlLhQEKP7r5xUGnNF6TKQYA0HWHd2+++8df/93f/rf/9rvff32/Xrdtl1NCUG+JDKhmUR51bov+ERIZ44wjJFQRzcKDNTprfFXXpC4P3WG3u9/ef7i/9pVFzCklZA7BxeCrup5MZ/VkQsaKKLPkYgJwBMlKWlJQZ5WiMwyfdF0paFbNgGWtcsEFpFSIoOxU4/Yoouq8m04mF2fnr168fP702aRpiChn4Zy9cw8ey2N9esShNeechtx1XXnXro+7/WG72TR1lVPZKsdmgoKPCMvQD33fp1x4nMf+LQBRRiEdiy2qn+pWjPSX4CvnQBWJFIyW85vgiGIrjiRCeJS0q4IgknF2ulg8ff3ZZ7/86vUvv3r2+rPFyUldV0VFxpKiqhTdnLGoULhexozZS/GHFADIMe426/Vmq6qTyWQ2aaxBIwQsQ0p9HFKOnKPkQTmp5JFP/fHRSNkDvJ/60FTVtK7nztaqtMH79l0/9AfOzFnJWzBkHCDlnE085LvrXhFYqUqIRhzZ4AwRZpHMkBmNoSoUcWfHigNTSpz6vltvtx/uuR+Cq00IjI4zDt2Quo44WQxkaGC+ub3PsPnh/dW7q+v3N1f7/UEBhCUlVlBD6Oxp38dyHYQYkGqkmlAJ1KhDgZyAsyUTvK9C8MFbV6yrcaQ0jJ5aMFJdVAnVW3Myr189O2mCPxyG++3wbn1oByZjFRkMoRDoAyeMSluvAuQc293m3tr3k0kgdKhNcP1hfX17vy0sW1Vn7dS7eeWnwQZLoIUx/OPN3FpjjRUqJlLCxrjlydnTp8+fPH/mHOzucR7yn31+9uR06h3tuvjdh9372+F+hzf3Xb7RgROod8ZNQ2MJOQ4qjMJk0DlnvHcuINLQ7TNL5mysq6bTUDXGWCBTgniXYx76oe0AtJQqc4oMIgzAmhLGpHEYUupUGgREFESlUh4/kjOsNYvF9Ox8tTo/nc4WzntA2u8OSSUqd/2gIMx5vd4IM6wWTaiaxdxX9bDbx37I/ID6Pi5V/LEyhD5AMkSoKgVKVxnZqPBxn8WjGOVYSS1w4Sc1kY+/d9zIxsakspp1XNQwzidEJAPFYvQhaLLOLRYLQtO2Q6iqKoQ+VMZQLo2QKoKCwqJcZNyBLKJVMKoECAqsQGTQGgTyY4CALJpQk0ISTSyJJRlyJAL/fiTfctDmnA+Hw/fff/+f//N//pu/+Ztvvvlms9kUHtX9/f319fX19dV2s+Fnz8pPCbPmLCpjC59z5miPdWwDlVKcGoYhxui9P353vP96FCH8Fw7r3GKxrKo6xcR8xOAedQCMpZ+CVhoznU4vLi5evHjx+vXrly9fPn36tAAkOeeU0gPs91AwKkDLAzmmxDRlDxkjYBy7nAyZqqqK6PpqdWqtN8be3d5yzoVhU0K3YRj+kNMCEVaVMVN/VrupMcig4zmAKjkqpMwxpiElETVkHBkAchaNpaoKZyeLk+XszfWNDFGZWXjIg4p0XZdSdubq/PTD/fW22w6wgGk9ef702c2H21BPwBjjXQju/OK0aZqUJA05DzFYqE0FCbUXsuTBCdmsCkCCpESNFeNc7RvvPBIoforGlLsuAgqGLKDG2F5fv/v13/6P//lf/8vXv/3Hm6ubLICiFo0xELw1BkSJOROY0oynozAXiqgCEyghOu9rj9NAlUUDIppFJfdd2x18oMW8stbW3uikAebZfDqdTqtQo0LRwWLODw9ahFVYVXOOhYZCSgSlK+V4HarCKlmh8CRZmbWwL8rUOsqVoqrmlBpolvP5syeXr5+/ePLkKTODQt/1hIXX4kefSlVhVgHv3ZMnl1Xwfd/PFktAk1gVjK/q5cmiaUKoHCLosQygiqDS993V9dWHqw/7wz7mTPCxpicgxhi0xjiyHu0jOiweJcdHggGAKGZVJPJVsN4Xf5icE+dcTCiKGKApwoKqFjHU1fLk7NVnX7z+4hcXT57O5suiBmkNGgKjKpk5ZVUMk+nls1dATkXOzs8vnj0L8xWTLcQNJGSR/f6w224MUXDWGvDORFFNKsxD12/X6912U8JcGtH5x1MMrambycVi9WS6PF8uLlarZ1U1FYb3ze/Wv7+O9+vUH6InU1VoDaI1zld108bh/j4dYrvvoZpm8i5UfjFxgLjv+NBx2zIZWs1cVXkwVWZue+67mPf3+bBNh603ZJcNWsdoIGXuehhaj9kSDzF9uL1/tz5s9t2bH67fXd1c3d51XV8IEjkV8y+cTp933TBeCAMMjAM7g5UFchQMYM65i9n3Q0yH3eGwOxTLzMI+LvfhKGEHqiAqVqEK9Oxi8f/+qy9X8+n7q93Xb+728X0/HBBIQVFN0W4cm2DGykLZ8kA4t4ftu7dv4tBt1ndVsEO7v7n5sN3vWQQQnTXz2i0qNwkUDCiX0qs8aN2O+6QZ8VcEKEmIsdYF7ya1OVn5L59cPj0zv/r87PK0dqj7Q3z2Yfb1D+0/ftv2A99ag2RcCN6SD6GITnO5akAiQ0giqpCZmSWrCFoqgktkvSpFTgpkjDNWyCSyzvlQzlwQVlRVlKI8O7RDt8+p8h4ACQmRzCPWFSCit64A6fVkysx9N2x3+4GzOpOK5p/koetiys57RNNUwQVDisa62LfMCR4qBjpSrD/RiSkB4KNW3iOugscMAg1RQW+LUkw5R8fA5XhklYP5n+XJqB7zlHKBn363BDOqY7aHqoXbwjU3TTOdTBfzJRDENKScYhHI0rKtohaRAzRIBsCq0ugUg/BgoSlSIG0FVEQoKV0hDo2dDD/7gX/CEfoXjoLEbLfb9+/ff/3119999912u2XmwmspWinr9Xq32+WUhHm/3W23291u1/d9itFau1gsFovFbLWMMW43m/v7++122/f9d999BwC73e78/HyxWBQX6/II/rVBmLV2sVwuFsu+K7YzA3MuZfuHKyZEICoAzOXl5evXr1+9evXy5cuLi4uitlcCizz6Go7EnYe795i+g8dWDtBjZAZQtI4MkfclZQoppndv3202G8556LtCnSkQVEF6fnaeIYA1RM40wdVkdJCUOWeJnGPmPuV+iCkXsNJ6F7KRlKKz4CtLxiyXi9PTk+b79/uBnfWGbMnvc07CutvtdpttuzukLgJLqNxiPp/N58a5rBqZnWJd+8WsyUkGlwcildzHrPs2peyMAUARyMJF5iWLdHHwrCmVC/rJHFMAUUEBGYUTcua+79v97rDfD22bh0GQiqhN6RAeIQAtBxYAGkJkGCEOEBVUa6A4LlXOBGsAhFmySIwpp54yYUXOkBBpsDSfrlaL6WLu64pBY0rlaFZhHZ8n8LHUWHAaECGVmPKPn1EpVAt87C2X4hn1abKj6pw/XZ1eXjw5Oz1bLBZdNwx9H2Ns284Hb4w1xgKiKuScc2Rlnk4aQxRTqpomxcQMhDSdzirnQmVdcKWVm+ih4pX3+/2Hqw8frj4cuo6ZgQyKcGHiKyqoIQBQY5CKMtgnMw1LS5kCoLXBVfV0tlgtm8nEWgOgKcXhKOzYtYc0DJoKgVkMIllfT2YnZ5dnF09m81VVT2xBmAgIRDlzSrEfOLML1er8spmvyJjJbFZNmkG0u1+nlMhQXddDHIylug7WmLqugnfOWstaKrkpxtvr66v377fr9dD1Kp9kOMb66fzJ2eUvLp9/dXLxarY6X8zPF/ML72rOOe/zdLrYEvEwpM6G6RytV0AkY73XJPs2Sh/bpLZOao2v/GLiAXF74H2bD60YQ6tFqCqn1HMyw0Cpi9qvMbVG+mkdJllYwIgiZ40D5eQJDdko1O3Spt3f3O3ev7+5ur67u1/3Q08wNmaWosftzTalY01ZRIYMfbIBxZaeoRyHod0fWHHfD5v1/X677bsu509Uf8Y1JwAgCFJ5e3ky+eLF6Z//4sViNnf29n6v3t6BHkrcDT8+KPDRHwCVHONuu2HmvuuspdQd9vtt3/UISoCVNYs6LJtQe2MMZv15wz5brI7LLmmtI6K+a3fb226ji6fn/9+/fvaLz6cnCxOCUk45mifPZovF7m793XdvetCMRCFMvEGVojdNYJwqCJoMmBKnHBExeGetB+WiBaQinNKQZX9oVaRyFkRSFgEg64xjzAkyjZZXhli473dtW8fOe0/qGkCCQs1/0FdQLelxqOtQ+c39drvZ3t7dRuZqPlMiTlmEFTSnvN3scmKeT6dN0yzmzXTS733suxhjZi4cvJyLv0mRSvl0WR6z+YKsZGFmYWVC8iFUVV3XtXVOVYcYD/t927ZD37MIGVOyagAY7UDhUY/U8XEfjf+kVEw+mUBH3RhhZYacNQ7ZQHKkhIiqhqhpmuVqpcj1pGqHQzf03RBj7IfYxzRoBhEWHZtViQjQFnsxQlNgb0NUvCEFDZK11nkXvAuGLBZn0ofOHB3nJjywQP719bJybOect9vt/f39brcrVaQihFW+xTm3bdvuD7EfOmPe/vD222+/+fqbb25uboa+b5rm5auXr1+9/uzzz1n4+++///bbb96+fbvZbDabze9///vT09Mvvvjir//6r58/f17cu46hg/xxvO2T1WLtcrk8v7hs23672d7f3zNnBULUBxqMMSaEcHJy8vLVq1evXn322WdPnjxZLBZN0xBRjLFt2xgjHqXWR4oVUSk/FYbvQ+QxRjaEBk2JDxEEwNDY0AGqYKyZTCbL5TLGfr8zBQgswegD8vewRj65HgZlFAEBBLCsMMS4a4f7/X7btX0fAc1kMqk8saYBsrIY62rWqDpdrk7OLufzt4dE02buQhDJAhlLAgicOXOMkhMKE4oxQAYUYch5s9szU86pRBOgPKTYx166BCjjXVFkhiL8CQrMElOaLmauqSbzKQt/0s6no1E7EZTgQJCU0Pvq7Pz86dMnt7f3Qx/3bRdTAjBayoEIALkIzKAiFjdeUAEQVhUpABkSihhnnLMmZo7MQ2aR7AlrYzwaq5CFK2Mmi+np6Wq2WrqmTiqSBslc6oaiojLSYI011joSyXmIKUmSNvYPWv3j8jNYuiWMQSmNuQ/Y7CPhRGNs0zRnF5cXF5d1M3U2sMOchKVPXSqxSyksqiJnbg/72A8g0tRhvpgjmXa7U0WLtFosjF1aS8ZiZgFgYxQQRfMw9Jvt+v2Hd1fXV33Xq5QSmMqoPKtFd1FEoMC7j7mAH+caCGCo6pOLpxfPnj17/mK5XFpHAJA5dX132O3ub28+vH23ub1pt9ucE5f9mgy5UNXTqpo5VxvjjLVkDCGA5Bxj7Lru0MWYjHHTRbV03jhvvB/ScHVzd7+532821tH5+cVk0pycLM9OV2RMXdV13aA1VsCzVgkk8Yc377797e9v37zd3q8558cZhQ+Tpy//ajJ/8fKLvzq5eFnXs+AqRAPMOfZNPZ9MZpUPeb/LbZfjQM4VBjaQUTK9YN/LLvYMQ8eAhurKKWLb8xA1ZzTWTSbRWcrMykIsRtkDByO1VWe165MPvfOBNCEPRjk4D66JWnWDu9sO93vtkhMMaDwRY5EkAhJlYU6PAmVV5Rh1GBwZNrnv+8Ec2NWtgu72+7a9vr7ebjd91+YUZdQTgpJhFQwGUA3pcu7/5NXqz7588vnzc+enb2/YuLUCiMQx3yoaj3i014aPx8ZYNUdS1TgMG2EQjkMXY5czGyCDWDuznFSLSeWdQzKIAnhsKXm0YdtHXEIqZfgYI6ehtnI5d794Nfvyszm4BJggMWSaLkLX5ssTt5igJUZQa61BkpSBBY0zhKCAxqC1oqBS+iZMeX9rLKhyyqx5GNLQtiwizoJK6oecs6oojGsdlBUBEARyTl2Kh5x74Uy+8FAByT7YJ6lC2fmtIWtIpYjjcbnrJfcBKQ9D0zB0R/Z+CKGqwsRSGKq+63LOiKjCQx85JxXR0Wb9I0j6gNOUXNlbQkSypqrCfLGYz+bT2cyFoKp916/Xm816s91s2r7POXNm5n/+jJfjeNgQqOA9MvouZtCUeCC2GEEZfEYDBGismU4ngOA8VrXfHrw97Mn12KEoZ8ko+UFca6xOEQEZVAIg0GIgX0SFjLGV8Y2vJiFMvK+tHUV7f/Rpi2GUjLC3/ETp8l80RKRI7Ldtm1I69laMFaIY093t3Zs3b05WJ9673/3297/93T/99re/vb66GoY4mUzev39/c3W9224V8J9+99vf/u53796922w2Nzc3dV1Pp9O7u7vSs3NxcTGZNMdf+mPnmj86EInqumkm86aeAprddp3zwBpHCiRiVVWnp6cvXrz48k/+5PXr10+fPl2tVoWMnFIqW27OuXzloc74oF5aqJgPAjnwEaEhANCxpoAKRVBAcmYRRSRrbRWqFGOM6ejnjH+st1xAkqSBBydEwhH6Lu8OcXMY7g/D+tDv9i0SLQXrSkvphXM21k/EdL1msCY09WQx7XHazIGobXeSwRg7aZrLp0+ePH86XcyctyUYNo6st9ZbNJRFYhYWzpyHIR76/hD7NvYMiYFHFThFzppT5KyoIFmGIQ7Mp9vTrhtE5CdPbWQPyhGzADKhak7PL84vnkyn3ztrC3kCAABIlI8NyGXLASo9z6Bj17NIEQxAxsSaWC1rYomZY84k7KwGh8WfyWjyzkxnk9Vy0cxmpqoYVZhpzEQKQbtUMAkISUz5qKw85DykJI94McWSAGAUI/lZArmIEJmqqlYnpxeXT07OLqq6IevQiCJl0ZQStFAKi6qacs4pdn2Xh4ijCCx3+8Pd2w/MsjxdzVfLsJhZ75hjztmQLVLvMaab65sffvjhhzc/3FzdxL4HKVKDKKilHsbKqKRF7+Qnq0kBWNQguaqan5w+//zz569fP3n6bD5bWINEIKhDHA773fWH90iEyjwMqR8KEm59VTXTup5V1cRaT0dSlCpzikPXDV2XhgEUnPfOV76qyTlB2rX7q6t333/3zYf377wzn3/+5fOXLy8vLyfTGZJx1pH3gkgWndXgwQAObXvY7Nrdfuh65aNYHAAA+Gry7NWfnwzx4sWfzJcXzjpSSCnlvocsxjXNfFlPZ/vdlvs+dS0iDQyJQVSBCMgl4dgOfcz7qKzgvBHAmIQZFY2z3EclghQjcHKQKgONt1SZyhpR6PvobeetcTlxHAixni7c2RN7+bKvVuL3GHa+3tnqVtHsNvd56EQjIgHwWNx4/ExEjKoFYtbYdofINDC4StV2/XC7vt/ttnEYpBRDx2rDce6pOovTJlyezT57tnr1ZHE6nzJOqmbuqykWZQfJMG4+x+j8p5spIAKocI4xx4E559RLTqpqgTxh4+yyCfMmeGuJyjl1hDYeDWuPzK9STVBVYQnWPj8/f3VxuggEOoAIg4AQKaDGSeBnF/XT8+afvoG1ZBRQhJyYVEPw5D0iojFknCA6LupMWRS8McYYYcl5SJljzJCzcm6HnjmnlJQzoqIokTHWZhZVFWDVrJBAI2gGBEMWqVIlYz4WYMfONBFQRmCDUnl7ulwkAbU+Zo4KJGoRLSEAMufDYa+aAWS5WC4XC0umb1vhZKyRnNv9vt3v292OIxN9jMlVQFVYsipQse5rqmZST+fT1eny8vxiebKazObeBQXou2Gz2d7e3F1dXV1f39zd3W83m7YtXa8PPIoR4340x1RVyjFFx0kgY8lv7PsnkU4ycBaOwhkUwRNZcsHPbAh1FWrrglWjDMoAiXM/mJFUcZRVKhVvKGy8ojAgpbOK0FhjKhdm1WTpm6Wr5zY0ZCtDnqBsIo8I4o+OWz2etD/def/4EJEY4zAMpQD3mAeNgH3fv3371lm7vrsD0e++//7NDz+8//B+v90xs/fu5ur6zffff/vNN2jM+w8fPlxfX99cd10Hx6rN4XCoqkpVvfdNU8MjYL8Uff9ZPIaZ9/t9yvz8xXO6NHUzubp6f3f3YX/IohlQnXWLxeLzzz//4ssvv/jii1JCCiEUcKVcXWHDhKNOxkP48qAABkeor9yEYyyrqiA8HocAiijMnFIchtj3/TBEZkEk5ywczQtLRelngTERTV3uD2mPNCD3h3xo4649tDEOagewmz5nzr1C1Q2GDArklJ2vZxK6qFfbdj+wDZPZnCaTeUpp06/TwL4KT54+/z/+P/+vv/zzv371+evpYgYWGQSd8XVVT+q6OFyazArtMNxvttu272NKquhADSmoKEBWBsnFf00pM7fDYLuu7dphGFTl00haFbVY/SqSMAgRkKvq2en5k5PTd9Y5UVZlUAEUUQQue7oCgCggqKAAix45pWXTFYDE2sW8aYeYCQiySErsQXxQbwFNEcuTytJiUi+m06qZkK/GPuqxz6ZERAAAKsBZWKLCmC9kHY2QxktBQrKAtihwsOQsXHCaUvQ6vqGEUJ2enT179vzyydPFyamrGiUjAFyYwaLEuXgIFA5WTDHmlDgDAHccY7z54d3X//PvOcWXX3zx9PWrs5fPm8UMQbx3GIDIFILd73//7a9//Y/fff393dUtGoRySlmFIgmuCAoCIghCoD+WX1BVzczB2Ply9ezVqy9/9asnz1/W9cQ7RwjWoAlWUWZx4WvPOfLQdbtd37ZJ2Dg3mc2KMr0PNZIv+TCo5pRi3+0P+9wPIOCsDc5aSyA5Dzkj7Lf3V2+//fqf/u7r3/7WeQeSQ+VXJycz64CsGJfRlNKisdY7qLyvfVU5b/Dh4X28kio0z1//qo9sw0TA5Mwgkjln4T4Lk62XZ9PlaX/1PnX7uNtJ5oOYAYygLwi9Y+1zSiKFV5V7EShE7aLjRmXnLTxkFhFCNGisLZ1dsR8OIlZT4CxdVzk/O7s8+eKXZ3/1f9DqyXrX3a/3N/ebN9+/+d0/1u/efLu5u8qcrVEVKifjwxxDRGNNcM57z4pxv7sd0l5v1YZQTVh0u9sdDvuU4sigGBFAQMCi8+e9e3Kxev3i7MX5/HRaG6QMtqoX1WRhXYWAIqKlT21cSqOyy5FniqWbr8Qbgg/JryBgcVMJhqbeLms/r5xzlgBQmKyB0nXw6NEUOSgiMjQaCpS2FFOHMKmq4AiIlIyoVRBQMZwJpPIURlaWgiIhOesIpAhRjWyuIoRpKCMOOWXOEURyLrL1xbDdO0MEwzCoZJEsnKHo4RAiGQA8FoFLlTbHzCkLZgWriD825mCBxBxj9N4RYVV5520WjIKgKVsTLDmDpjixiOQUu06R0Bgb6klTO1/V1tQhOASZTut212yda9uWH9yDsbhg20DeOltVVd00s/l0Pp9Ol5PVanl6cjJfLqpqYp0XgDTk5Wq5Wq5Wq9XJyenV1Yerq6ub65vtdhvjUFh4PztUskpWIX3YrI86MeWOZJCBk2oSSIoMhAoGUCoC620gSDk45w1ZhCM/rdwzMIiFmFdaFQBIQRSwlDoRiJAc2dqGqW8WoVm4emZDTc4TFftahUdNrgpHiUZ46H/9t7QClXpKUSJ3zhUMXmmc+zHGq6urOAwf3r2XnG9ub+/X6/1+H4dBQQ1Se+i2u+393T1Zs9vv923bdV3KqcRVOTMAzGfz2Wz26tWr09MT78O/1qgy57zb74dhmM0Wy+Vq0kwnkwmRKvDhsCfE0oj08uXLV69eXVxcLBaLB9XgnHOMsXQ7P4iWFtM7fNSRVAT6StADAMcm6xLy4kNOX/ajIm6Rc44xi4gxtq5rIuSc94dDzvnYGvMzg0XaPt6u9+vdjhPvd/FwGA79Iami931Kd/ueOR1YKjcYNCqahhxqZr9gtYNQAgPGkckAiEDWeD/1509Of/HVV3/xl3/51VdfnZ9d1NMGCQWEjK2aanV6enp2dnc9k7zvY4QO933fxZhGnwsQ1SJZDqwcOQ9ZWS1Qijl2cfBDHGJ5lD+T2REW+7Sx1onG+Wo6X45U0I87XGmCebTBAj5QBR/x8R9eCYmlHZIoWWdKY5+3OKvMrLHkCAhRoQ5mNZ+fLJZNNXHGM9Cxv+dotQOgUuj/IKCAaOjIefu0Xo1ARMUxBlm5dGcD0bjCAABAVa21i8Xy5PRstljUzcRYB0fcpxDZVDFn6bqeDAFCzpwyFwO5lNJhv99u1uv72xzjbLVoljO/mKkhaxEAQsgiMPTx7Zu3v/71b/7xN/90d3s39IPz3gCN1CyDpKDFbhhBcZRre3wtAkVIRV1wq9PTy6dPL548WZ2dHfd49Nb4OpDBKkdh2Z3e7+9ut3e3Kfa2981isTw5nS9XVT2xxhVNGhBm4Tz0fdcPXS8pe+dMMU/gnFJkkQwauwPnASSX4IpGAtTDPjUuIgXAIq1U19PZrJnOjHU67okfh7F+tjx3kWMq7kwMKgAqykPf9jGKdRBqsFZFuOtT1k5NJE+B0FgfnBeBzggYpOJyighABkt0iiigjKNqhEFUNKMyYFV7hxiH1HW95ZQlU9dXoZmcPTl79dmzV5+F0ycn+3a7a093fd1MY0wp5jh0KQ4quSScop/uA4hkKBgKWU3idGjvuxjJTqYLRNN2XRwGPSpN/+iMIjJNUz97cv7q2cXFajatKyKP1MyW0+XJfjpduFBxG0cqxPHvw+T+RNtLBVih8E0/iv0CAVTWTrydOdM4MoilQgM0tiE+/jzWGrSGLFmD1iIaNIgmA7QpdTkBTsE16B0pqjDkqNwPQ7c/pEOfsgCgUTDWubpC1NynlGMcNWHJkLHGOVRWjnHo+0NCBOOcsc44730VqkpUbXsYeiCEhMI5j1l8ERAocgmKwpCStEM2XQzYuaA0ip0cgQrVzDpE3h864ywZ9JVnESyJiQo2bui8d2QQWEeWNLO0h04YYpTZfH4ynzZVPW1cFZw5W6Qhb09Wm/X67u6+bQ85ZUTw3oUqNJNmNp+tVsv5cjGfzyaTygXjnPXOWVO8pcfCe1OHyvvVavX02dP7++fv3r77/ddf//DmzfWHq0OMBVD7EQxwhOOiKqg+NDOX3BARFBAyqEBhDYImZIIMIpAZsFKVlIYhxm4YuiH2fer7HEsnORnyCkIAInD02RCFhICItnBjyAZTzfx05ZuFqabkayiuv2PsMmJS42cdK/YwktaB9dFz+ZcMVUVEZ918Nj89OTk9OXk/m+13+5wzjNVTSjnf3d1tt1uLNMLjOQOA9a7cGkFo+y5eXQFizkV5WA0ZGlUNtev677777uzs7Oovr54+ebpYmhACwIMYzz8/mPN2uzscWmvc2dn5+dnFyelSMQlkFraEl5eXL168ePrs2cnJaXlzES3KjQ8gU4nVnHMhhAcS7sOveCjvPtwZES64XekMOAr56gPfRaRoZVLTNMZg8O7QtpvttlTl/mAQo7Iehm9ubtfr+816t9sNbRv72AOZUNdkrQiTwZDYW2PJSNZ2309nMDlF7xtXR+u3zNK2HWe1ZBeL1enZyS///E/+9M9+9dUvf/Hs2ZNJPQ3eF+N2AK3r8Pz5s5evXl1/+G59N+wOXcwpixrrAE0GzhpzStwnTgyiEnOODKyAhmPmLknIkuWBxvS4DaYIjdA4famcaEjofKjquq7rECrv+8TMgsetcgweipvl2DB8lE0A0AeNJhEYmIE1WDKAzphpoLO5X8zCgCYpZMRJHc5PVucnZ001JQqDaC4d2sfTrjTMcR4rhUgIjlDVEthHXTBFQcSSdTaQRVVVATUgiqq5UO3LC61zzXTWzGbOV4aIFIpkObMCkjHOGMOC2+0+xuiDIyKWsSsSEQxiXVcnzy9TinbWJNCu72jvvHcAZG0fY3z//sPf/u3f/bf//t9++9vf9UO03iMaPfo4AYMaVAfGlJxIVVkfEclHtTMQMFhNqtOLs9Pzs7qujTGsqgQUjHHe+lD0LIKrmmYyXy5OL1bGypByPVtePH2yXJ14HxDBIKNGScQ59Yd2aDvOjIAlN08psXBKOQsLCHA+Wa4+/+KLxXwRQvXZF19eXlx66zglBgabATyQEREFJGf9pJmdnU5PTqiqhahwQR7vYiM2lplzElRD4JxJyEO33u9vt11/YMjGq3GQWNIwMA1OnQnkbOVsVCHn0LIlJS1TmIBIRXPm0qQBoG50vnbekg3WV76Z1A40JU79sO+HmKPP/ezEVKcXsyfPJ4uFryvNvQHfNJOSzvX9sN/ed22bhr2Obl0fqYoCmoFZmUAD4dS4Go2k1ElC48nYlJIKIwARyShFWHBrQSLn3WI2f/ns8uXTy8U0eBfU1LZanpzPLp/lk/OLydu3Q98p94CjNKseeYd0BB5UpairjZ9KCpY6EkINUWXtxNragEdVznmsHhQm56cu1ov5XKSzpiudEGSckulifne7fnM9udtNq2isbxBN5j4NnLb64Tb+cHX4cHfoomSBmNib8fgDZeEkipAJkazzxQDEWhKmmFVFSbUIXJePgqViiGgIGJELtSLr8ROXuAtViwQUZUWrakQeMq6HkUX7mPeH3jhrSgCJCITGggfyFNJQTRvf9UM3sIhq4efm3Hc9iwLovDLWVLPGzxfTqm5UsT9dbTer+fVst9vlnAixqkI9qWez2Ww+W66W09ls0tTWEktiTsI5x0GMAlkFQDIGrfMuVK5uqqapqiqQJe8sAd7c3HRdm1L6yRGjKlkkqsCDw+V40iIeOYkqpW8/l91CQbAI01kq8S5RMQ03zlrrjLFkLYoSKYzN+6PZ+cfGKSRjjfOubsJkGiYzX02tr4hcORZglNkqS3osIYk+agJXAWXQ/LMH5x8fztrVanVxfnF6ejqfzbpDFyUCGARQBGEecu77XlkASjfVaG0KRzQo5TzEpCXfQiyHWnmBIZNTur29fff27du3b1+8eNE0TV3VP05Q/uhQ0TikGKOqVr6azabemdu7q8N+Nwy9JTw/Pz87O5sv5nUdsLTUHnun07GvxtDo3Ou9L+rDJdQo44EGBKPc4gjF6FjhGNG4cryqFmOrru97EamrMJnWs+nUbzZv3759LELz05FFtv3w9m79zbffX1/fdwcehpw5ozGhqpz31hrvyXkK1jrrQLBvk9pZVjepZ8tTf3qI09nb7WY3xAE9npyuXn7++s//4i+++tUvnlxezqcTOzLkioBHCs49f/bsiy+++PDhO4WBpev6gciRMaqEwpI59zm1kWNWUc0iRyPhnIqay8eN+CdjvDmPQ1Ik8j5UVV1VVQjBGENjFjwyN8ZQ5ii1VkLhj7tKiWEEAYBVBdE41wTfqLmY2Gdnvg647qRPrI5mdTWfLyaTOZEXLuwlFigCL1KE0VmEcxbWEsSgIoBoZpBHQb+qskIWEADBUQ4LDZDyI2ZkWX5jSvEQ8haWsggBARpCo4rDkBDA2JH+yJz7YRi6ru97JmxOVgIaJjNTV8aWGEX3+/39/d3t7e3X33zz61//5utvvr67u8vCxtiy0kQEBKB0WiMgEokC6lgUeDQEBEhdcPW0mS/ns/ncOUeIQIDWOO9c8M55QkQBZ33woWrqyXySNYYsk9lysVhOmqk1BlSUk+ScMkhKaYic5ai8ZwCRmVPOqUwUUGfNyclJqKuz0wvn/Onp6aRukDUNgwCiOCICqyqgaMAYV9eT5XKyXNmqAmP1JwmACiiPaYVqBgJrvOSh399t76+v725utvvMcBSvURAd5cdIicBa40PwDDmzAhTxQSTDwn0/qIoxaEypYVBRUyNDQBaNJQJfVSkLH1Ifk3JOgNhM7XRufXCGHIFY8N708+by4uz25vLD8mS7uZc84OOc8+NzKfG6eDJz7+fOWwBOqetaJFMyJy2ywaPXqpafsoh1sMtZdXm2uDw7mS98NVm6ySpMTi2dPD/wi5ev33340B22uTuM3IWjIfDPpIrH0OpHfjWGqHa28UV0EqCU0D++yadIzJMnT5HW9ru1KqBxaL2Q2XTDP37zw3wmn72aV6uTpQtEtu+H7TrdXnW/+X73d1/f/v7tetNxz5C7XhmNkDOqwiAqmVkBkESUyHjvJ82kCmHwXlRKioDGgkp7OHDOnIec0pHMWCR6oqpi6cUeiTwFsa5cqKz3xloEBvioQF6IvUPkQxuROpVMhC5U1lokDZ5cVYHk7XbaDymlNmVWPHbiIHBOeWhTqggms0k4Xc1C01gXCCkO6cX2adf1mTMR1VVd15WvvK/C6F6GlFLsD23XtTkOAOhDbaxHMoAmakIcECwiGoOr1cKHP1nMZ3Vdf/PNtz98/33f9XA07BqvpZTONVuhB5X18eD6RL1mLKwDqaSMTI5sZQgqZ42rAvBEUkqASs4AIGdhFinAlCEgOKK/paBhjQnka1831WxWTWauro3zaAxAaQMrOPgD7nK0VJSHtpexc7RYb/x0xv78KHY/hM65s9PTp0+fXpxfzGfzm5vbQhEu4ToUwiMiWjz+JpXHsx8REMl8ulK0mHpoYdgMfX9/f//m++9fvnhROq4LMolHfgw8OhJ+biAhqUAchhgH1GkVwsnydHf+JA4DEZyenc7nM2uoGOwhKiIpQEmQQZUIiYz3zlnrrA0+QOG2MI9qZsdoUo/9cSWAkZE4rEjmqElJcRj2+8Nms9luN8PQz2aT+Xx+dn5uvQt19QDv4c+5WIvIoeuv77ff/vDh6sNaxSujggAi7iMSEaG14CusvGtC7UwAdXOxiGEyXZ6cBGf97Yfrdr+/vr4R4Nnp4vnrl7/46hevX78K1gKPFFtQBtas7Mg8e/q07bu7zQfF+OHd193h4A2hGs3MOXPMJYhJMemoOI+olEETSwYsJaexm++Thzz+ecQtUwAhwhB8XVdVVXnvCFGhaGtjid5xFNIFeqjYFMHtch8QVUkyjiQx76fzydl8dlFPn0z9yyVg7mJ7BzmGOizqpqkm5KqBNcbEIAIZNIlkYcmZc04l9wRFUgSWzCySU0459g9nv6qmGGM/2OAMW2EGUSql4DLZdXTCjjHtt7v9bp9TUii6ryLMIGIAHgRwCa0x3tvgQ0DEw6HdbG432/vY9SwZm0kdQj2ZTufLxfK08lXK3Yer97/5x3/4p9/+9utvvn334f16vREUwPIhVEGVtQRgpKioSqhG9cEe9wGJAVUVJKyaqplO6knjgy8rzVhjnfPeOe+99QRAWZ2xxjhjLDlng1WjPoQQgncWAYQzJ0bRxFmzCCsZYwuh0xgppjo0dv0paGWsr+o5c04ZRA0RZEl9z5yRLKmCMYU9oUCASM7V01kzn/umNs7ocNSMOF6MsOpIEZGcBgExqKnr+u395ubdm++/u3r3PvSpgcJCNcEZ8o4cKEhmBoC6qRhNN/TC6p23xhJhzMzMqlKFYAxyzoRgnbWWFDUJdFkp2MlsIkRtyikOUWEQGBASAENx9cycBtVspJ81brWaLlYn93c3sd8jEpWT4uOaGduFRMUas2rCaaxnzq/72LetAFDZRgs1AIr1u6iqCpHDSUWrmT2d+ZPFdLZcTVZP6tVTP7tEvzwwfPWrr27v7za3V91uo6kHZdSPkjvjDDkiqaN3qipQ2erHUMsYrCs/qbyzFhEFR5dUAgQlPBYGy7Bffva5t1fffnN72A/GGCRSMn2Ut9e7X//WnJ/Odp2ePtl757rtdrveXd9sf//93Q93cdAwX82aOXJMJEPWXmJC5XI/WRSOWbA1xjoH4MyDF4woi6SU+iFyTnpU4tMjP7SYljlrnDUGGUGBiIwzvrKhMb4iMqSRHpH7EMFYcs54ZxCg6wdRDYLes3dgnXHWTSf16eki5RJkdwkBEKw1zhgkqDxWHutgp9N6OpuGunYhOOdVdLGcpcQijERVqLzzZKnQv0SkRF05cxyG2LegIMzWBzIOyI5KV0BEhb9Ji+WcDMaUUs673Xa722PXfRopq0gWiSIgR6OiIxCDo23JcXApK5JmAi56MeiDI4tEqKJZSZS0dIKklItSaAmbsBTlABEtWWdtsKEKdV3Vja8q4xyZ0Y4bC2qjqgBy3EvHA2TsCymrW0ASSP630WKKhzPA6CP4o++WUOt4hwgfuCHjuny4P8eXHKcTHFkmOeeu6zabzW63Y84/U+/9Z4dqjnG/3W7W900IRb3U+zCbzsmo9x4QCo3Se/fQzauqiFpAb2ust/5xA3lEgrIP5czMpauoBDalajSKEwNCcfslUtWc0m63e//+3dXVh77vAYAMOe/rST3Epqoq69wfCchUISVpu7TZtpttaxEIbKmvjApBCGTUDdp7N3iuvIRgFKyx1WQyWy2W3rj7X9wWJxE0dnV+sjhd1pPGFlpAjGgBFYFEEZIwM1rnZvP55ZNnd3dX2/ur/tBpFtUs6eEPczFq1lG0CABYgRHEgBoCOmKCn45PO+KkCDUX4dYCellrFOCht3osFB1DIiI4/ltab7T4FapSVlQEY9F7V1d+OZs8WZ48m1dnkzTs1GS2SeaLZjlZVvUCXT0A9pwFMmgmZZBclJyK1xUSIRBIIcYfBQVjlEdBDOecUkxD1OJKAAIkqEpIQKrMBYIuJqm77XYYBmYG6wBHW9TyGrI0Qn6h8r6qfCBjchYgipm3fRtzIucqBPW+YlYistaCizG+ffv2t7/77dfffrvebskasoSsiFIW+1GwQ0fS0FFP5sHr9OOTACFDddNMptNQV8ZZJISxolrob9YQah5ro8X6i6wj6w2qcd46V7JxKG6LKswJRImsIeeOjgoqopmAmMyRwVpIkwoqwjlzTCoqOauqcYgy0nUABbBgY+SrqqprHwJZe7y844Uwx/YQh1gqTSn2IBk4t/tdt9/vd7v79eZ2vaskJwOGTOV9CJVxNhJmkSTKStbaEDALq4FQhJ58YNWqCpnZWaPCwzCAiqFRYI4F+sjemrpyrgm5C5KH3KUBMAmnHDmncnSqCOdB82Axe0shBB8q54K1zjhHxjwGMBBKjUQNQePsNLjGeYemTTGJWFeOt08bmkAVwBBNKjNv3LS2TVNX05Mwu6imJ9Vs4cLsMsmXX35xdf3hzTf/tL696naDsHzC+JJSNBoPs4f9WktRpjw3RGupcbZ21qAFpSNv5AhFfuqeZv/yq19Nq/mb727afX+IXRIm41lw18I/fr3ebv7nf/qb361Wsyo4yTlG3g+pTdSJP788W64ujPXdfre7v759/6bb9ihZOeeyB6EhD9467zwQIUFlnapmznEYhqEfKX2Si+b0A326tPwQYhWCIwVOIIhkyQUTGlM1xleG0DAY99FllIgmE3+yrC9PZ2So7/ZdP2SFnIw4pMqJoRDc5fmpNb58wl0XBaByJgRfVW61mJyuZovlvJnNQt047w2NLMu6qkIoyC1ZaxBLF5nkPBZ9ZfRmypILpMSUk7GeyOn4rEgRoQeyzoeKrDm7OD90/Yfr69u79Xa3++REVlVNwkkEheQxOQoBYXQYKemoogKhfmyKJudcqCqLwXkHgFkoZ819HKquG4YYx87PEeQAADSG0JBx5IILtfO1dYHIQOFbKSuoQmFTqmKBQLDgkajlX4XChWMhSaT/CiSmJMcAmnM+tO3d3d31zc16vU4pfcJ7GKNbeYyX/KGQ5fHXH6Msj1+Ax7v6ryLvCEvXdjfXHxbzqTMICOu7dd921lpjYBiG/X5bVSGEMJ1OisNcWXyqxjkYbTecs8ZaYw1R4QPJqE2XSjNR4eSOiO64chGAAC0qGGNSjNvt5t27d7/97W8/vH8nzFUVAIGZM7MihroKdY3b3R++FkQwpAbZkJaQ9+iVYxEItNjFZmDhLvXKxtopGut9aKpmNpnWIehf/uV0OpvO5+0Qzy8vjXe367UzNAu+9l6FQYxxKEhJoO3z/bY/7Nu6miwXp00z3623uR9yZlGQ0RKFBfWhlF7Q+LJroRA4Qks/mhUPj1VHzflCxdAhKYitXHEPMohUfP6IAHGU9jnmg3QsQgmCIDCQGiPWIgiBICB6ZyrnAmFtaT6p5tOmriO3ex4YMs7q5XJ+UU1WUk2iUq9ZJBFnxwLF9KIoirEglkMVVBUoZ05DPww/CmKEs+QUo6pA4cGYkYmJCAwjmSBn3u322822O7Q5JqhqIlNgvxgjEVFT+8rXdV3XTQh1CN45pwDL1XI/HK62d7fbdR+jsW4xXw4x13VtLAVrrHesmiRlSYpirDNEkrlIqMsoVqSlBYAAC8kio+QimPURiQEFIGub6XQymznnyBAYg6a4WTtvgyOjoinFvu+GOCggGYfkET0aQWPJWiJCUeBiLQSlkGyMc9ZX3hdvSRExx4ptSYFERIWBuTg+GOsK1n+sH5YpNk4dFgZVa4x3zllrjCl0jYfNgXNqN9ddF91kLioxRk5d7A+77frQDd0gMUGXpI9DMuitsy7Uq5kxpm37rk+RISMpkTHkrFMA791kUp8sV9a5IedhiHEY+q5FgJxSKfUjoqoMQ+oJakfBUTWvgWQrmsDk2OVhn4eOXQVkFClzSkOX+n2OrXCh33kXKsfJueoh9S3WfMU2ghAdYTCmcs47Z3PmYmhVhHGP+tDHW4HWUFP5SeO8I+Ocrea2Xrpq4nxwnhaz5vPPnl9f//9p+7MmyZLrTBA8i6rexVZfY8s9EyCJIku6eqRHZl5aZv74PPTLiIy0TElXD1kEQRBIAJmx+GL7XVT1nDMPes3DMxMAQQpLJTIyItzdzO6mevQ73/LlL//h9bu3fxhOB5EIZlS2vecZenr0CM+Vy5lzA4igzOSZa8c1MimBlqCziT9jP9GNuJvVsrs4vb6+eLhaPeyhS2LeiXFGzGqbA6acdseDI4wppmzRYL6++uzLr19/+sXti1dVVXWn4/vvfv/Lf/Bvv4Xj5iHGpKpAROSKOomZrfj3OmdmEMcUY9FUSEqmAkhlLXlSXpz1GmCmlpMpsvO+alzVcmjIVYSGJj9cq8A7Do49G6F5RjDtTt2AFj1CruvgqxDWq5njMMaESH6zTyptW7Vtu1i0FxeLm5vL9cWqbhvvK2ZXjDyK+RYgT+9DVLrCdhb4wFMn3kxFcoxZMubEnIk9IiIyIhiiKpDzAIjs6qZu57NQdsz0o8XU1AoS8zG86SftpPMyPDWcyodBRPSOq8oTInGIEupUVXUVQnDOFywokRQFLsBT1q0jF1yoXKhdqMk5QDIDKzXK+a4xNEXVUrkYgAGZTvle5a+qpJn0T1Ix/swoQPrQ993pVEgef2qt+ve9+FOJ/Dw1+t86VGUc+7u791XlzcSxe7i/7/oTgAJg33enk1+tkpmVLMbSJpoqEUUD8M49fYDS5AKYeAY555giCxcpU0kMmBwQiHm6E7HkM9zd3X3/7vv379+eTqebm+v1et3M23Y2M7MigCq6pz9zLEXaD3ZuquBTYVqinQEB2dDExjGCurYVJAohNHVdhdDWDbwBIE6q28MhtDNA7LruELzThlRMsnrnwSeFXTfebQ/fv3t8eNx1p0MclbFyXCUdJWfFIrKciJQFt6TpOhdjOysW00j0J2jYTzUJPF98ynV/EmrZWfY84TlnJKYMQnAMzETOikW1CEk0QAyEFWIAcyakGUGRiULwzYyCX1y+nF284GaVOOSsSRJqhJxFAGXCU1SssJLVUAUNjNhErbBmfnQoBqaS0aFndp7ITx5CAJBzijHFGBGcQzQpPBshAJvuKBARAyMiH3xVV1VVFVIcE9d1WK9WQxxOY68Gu8MhiQxj3B4OD5uNd3yxWBARO2bHyAgExEjEUyGNBgqAaKrTFGQIWtTwKqqanxneADJzqKr5Yj6bz5z3ULrWzjnnnXOOHQFEmZ77YRhEBJF9aKo6MUio68kpCgANSjYWEBGx8yGE2leVdw4RVA2dk49Ud1MRzclyNhFjMlQkzSqIzN6Tc2XzVzpxZyODwgyln04OpiL9IR97AlRmkJRjHGJ/3G/7vs8C5Bv0Td8PqjpXrIA9O/Vs7IzNpiqUgVArNABmbtrmxYub1fqCnT/1w92HD/d39ykllRwce0dE4JiIEZBy2TgyJ3aR3WjYD0PfnVIcpphHAFURiZJ6yyOhOed9VYWmFYTQtM8PigzovIkt5CuYKIRI9hOvnyLUs6mJb2aATL7mMKMwJ98iB2QmwrbxL26u3rx+9eLVq/XVzXazi4dcUH/VKXILi/k7nXWuZ/TFpjbulF6KSGLYJ+tGIwQGLJIWm1hqH4fL3dFJvFm0b64vfMB9HyOQIiM189n8xe3Nct4GsmHo7h43h37wRq8/+fL/8b/+P//mF3+zvLgoZkq///a369Xi//DuH//b8bDbMBEzBz89ddNEzI7YqZmSIJX2dMnumnb5pVQ7Q+gGZuM4smXIsa19CFXdtr5qyFdEboIHnj37iGBqaUyH3T4EXwdXe7fdbodxaDxpmjVNNZ+1dVOFqjaAJoRZRUOMdVPP5vP11fri8uL6er1er6uqLmrMctsV4ymA0nSHp2TXMmWqkkguTz0RmWrO2QQMBTEjeeeYicscaUZkloiRfVYoqWVa5KXPGv1aXGIsixE+efYWdjd+TJAulQwZmpEBlzQ5RGOHLiCZqZpz4BwWqRie9zCOWYo5CtiZSsLOBxcqX9XOByQqd+y5izUdtaEZqeJEhAEDNUOF8gkQEFXJlOyjvc2/OiaOwtOvP1ap/AhN+dGff4q7PP8efGZcW0C+pmnqusYzI/iP/uwfHWqaJWcZ3r3/PufY9cc61P3QiwozOs8pc11XABhC6ebXE6JS9NIOENE77wuVioimAIry4iaqKSZlTSkWNZOZOee8d84RefLem0F/Oj4+Pnz33Xdv3749Ho9VVX366adv3rwOdW1gXd+Nw6ii/8rBQEHxUBEVTVGR1ApzNgsSEKMjqhznLMPYGXBOQoh1HarKF41AVdXL9frVm0+qzaYbRxNT1Sw5ptGhisQsXqA+Dem7d/e/+cPbf/r1t/f3O1MZ+tMY1bkK2BknQ1NA0+IijYjkSiCZTQG/XFxgnuoUOxNhzuPsgUWAUMwdvHeMrKZjjF3hsRZzJgNELDFbxXUWyqNHQIghcFWRD0iEKhQVRlNQY4VgEkwsDafD7uB03lTU1IuXr4AX8zdfVFevpJ4nIEkjxIEgkZpmKg8KKIBACfsSBTVGRAeTIzY9N5BERGZAUjTHtF7MFm0Tmqqqq7qqyXEWKQ7xKSuQXzSNQ0K1giY552hyGzM6d22c94igqqLCSKvZvHJuvVztXh+32/3jfve43eYoH+4fwNQRqWld17PZrKoqNwylMCwKLkNDRZKSjFyU6gYZzmFlqvmjgRQRhapqZu18sWhmLTnG4iMQvPPesSckU8ljGvqx67qu68YxGlDTLIidYK6rlpjNimcKFQEL81TC+FAV0h4iEJh3zOdkOpuyooLmrDlqFmWBrKCKxFwH8k4RZXLwsfL0SZHxnAE6BMDzDIFgLMKp1xMpO0eQVMfjodvvxqEHwnZ50SyH06kb0ngU9FGlH5wFcN63gQzFUBTFkJ1Jcfpp2pevXn3xxRfri8vDsfvv//2fUtbtboMIbVtXlQcVz9TWHJjFIMY09qkfcq/mRXfH8Xjo4jhmiaJnKZWpyYiavKeqrqq6SZIp+Ga+oHMo2/nxAQRSo0GtFx3VstlZD0FgWFxiJwGNIagCpCHysUvdCOiWrlmTb4BYYUK/vKPlrLm6WF/fvry4ffPhfjcmwTxaHsUyADj0jtl7B0S57O+m00uT7ByBnQN2o+E+ymMXCaz2VhEGBgRUh+rseUPJbT581+9OtcWbeRXc+hBzJ+jq5uL66ubFyzevP1nM5wxyPB3ffrjbnU4x6VdffPGf//Zv/+qvflZVvjjmzupq8/hw//7tt7/6x/IYenZ1VdVVRcUJXFVFyhpNaJ6pGH3lqIXwWO4kU8uiYApFNS9AJgwGHOrZspmtnK8IGQqsQfycGqJqcUzHY0doTVP5EMys6/rj8ZgCe8JhPeYsRFRV4fJyxQRMeRxjqMNsvlhfXS4v1svVsp3PfQjncrzMjD9aF6cC4ulGB3vazIKqas460bIzYtbM07avxNAjZmJUE8A/HbB85sQI6VPU2kSKKUWMnT8DGRFYaQQQojGj9+QcgQKRMYFjqryvS9BOCDlLVsuKAnkySWBHzlOoODTsa+IAQDAViQZAeI7sMSwRXFMRgwZPvxdZPEGpYP49hBgi8s7N5/NXr169fPlSVY/H478bevnRKNusuq5Xq9XV1VWJwv53vI6ZmEnXnw4HX9U+Vk2WbGBE6MSp+ZyVmb0PT2UKlZNDAA7xWbYAPguvsFIRquYsIhpTjinFmAAMkbynMumbWUp56IfT6VSio7qu8963bXt5ebVYLVNO7z+8L8f7zFDxz43pLn7SeE1abjM1EDQ2zRqHaOAAwDlX1VWoQ0l0AgDv3Wq1BER3OhWmeE5ZK18ENCI6jmm72f3uN9/+6te/+ed/+d3j9oDEYILSZwVwDs0X9jUQIzOzAxMGQtVS3xMCIzniP4WemdmY8jCmMh8UMl5VVZj1uNs+Pj7st7uu64v4yzFVwbd1TUhjGlNMkkVNQACJSuvGERJhKtiNKhqhKEpGEUgpDUOWhsNFvWyv/Svzq/rlJ7C4SOSjGIqwiAM5C48QAEQmvrtkK270SAhqk+vT8+oZkZwLoZq31cW8vVkt1/NZM2vqpg6hYseGkMfYNYcYs5C/Wa/auuZi2oVQPL/K2juxRUocupmqSgZiDD4E5+t6tmiX86qtncMUhzjWzjn6iPsRYilMnigmgBOp2J73YQssrZOOF56BsETUNM18sZgvFk0786GakHk+fyo1ycV+o+u6Y9cVCBbqZl61DZA4F7wPBqCikjNzsZcphvWETOfND5TYCCYrekMzI+dART1LQs1ZWCArqgIyVx6ZS7l1DrFTU8lpTHEUOXsPPrsuRFRVdXZdThFyQseURVOWlAqjNgQXqgpcFXM+JKExau9qZnKOgyd0pAhRwMx7NoCsMpvNLq+v33zyyatXr4+n/tiNu/1h+3hPoG3bes85Z8cY6uAQc0xjtj5Dn60TpWG4e9hc323enE6zRVQF04mohCaeoW3r2azpjqGqmmYxW64uCqZwfmbKnE3J4JTkEFOXc9SnOI6nu7EkJNSr1ZzJdUMiA1dRUt9nN2Q3xwAcSn+2TFZN5S/Xy08++eSzLz7sdkcwkG6nsSunaDZfVnUNiOMYt/vdMIyIVEBf01LsIyJmxKPKXRxpD4foZoEXwS0rXxEQoPxwt+l+/+tfjkPM+25Jtr5cRQqHjOvbF7/4n//zl998fXN9O29aABviuNsfdsfj8djNF/NPXr+og8dzD6Otwu3t9YtXt/P5zIeKiUJVzWbzqmlKHZ3GoYCdBaStmJqqyuM49F1x+zBDLT64ks+m6WZmzFh5z828WV+3i0vnApZ8VTB2/jknRkSPx+5hs+uHcTZv5ot5P8SuG7rTYJnbKgzDOIxjStF7V1ceVnMmzTmHqqrbdr5c1fN5VTfOV8yeeTKcgLOQuNzJZcp8AgxEVKf/ZHKqLSKTwnojUlDNqSwVxM6FCok0Mxgosk4/rWb2A7KSGUg2SSZsJdkGflDElNgALBalxgqkImbkHYaKfWDnUHNpJ4InbkO1aGfDvM8pq4IoipESq0FxR2bfsG/JNcQVkDMgMCsR6oWZ8NTPLLrfgi1ODHY7qzxKRxMyoeBfXMc8gSylyHj16tV/+S//pfS2f//73xdvlTLlPV/1zz/7x7kvz79h2papVlV1cXHx8uXLTz755MWLF1UIpQIzfCpMf4z3/PSjltvNMXrPIThfsY2Ss2RRQ3PelTXIOW8GuVDc1QgJuFy9j0WMPcto1HNlKFkBLaeck6SUCYkqCiG0bYvIp9NwOnV9P+SUoOS4jbHrTqfTKYvM5nNk7Iehrms1ffLq/ZNHVIwzCWmyScFJukMEZqo5WTKVGNM4RvI1s6+qOlRVFYJzLqc0jP04jo5psZg1TZNzlhxTTIhzF6oqBDQYx7i5e/zNL//5X/7pV/f3m/0wKhGgISZGZfZMmNIAZuCA1ZEHQEEptv+GUFZUM0OHjs7Atj5jXWaRw6nb7I8xh1ntsHJtVbVtMx4OH95994dv/+Xh7q479iIl2YpXi+b28so7dzgeDofDYX8Yx2gACpiRIwgBAcM4ahxBxROYJJVRNAokRVXvqvnFy/n1mwqWkVp0YUQ/iOYsrBoASEEETKDwMFRUskk2LeJbKP0ONVTVMz32fMdyCLP5/PXV6mY5v6jrZdvOVvMQfKFVOu+gqiKSiGndXt7erFfLqqoAAUyIkJgKZlUW/NJfEcRJlm0EVOoRREOPNnfwoiGYz1dXnywvLufzZuyOWfLQD0M3xj5OiWmlXZSyinzsP2Kpa0xUTBUR6NzmBgB2PFssVut1O1827ayqGxdCqbEKTUxyTmOM4zD2p7479P1x6EdEbttZqIPzSEygzgDHNA6jMyQDZnI0hTWJCE4M8JJ7AGeNCzHCWceOiMRG2UhB1YjIsyGVnJryiBAq5By709Ad4zDklAFKYTQdCznfrq5N6bTbyjhAipCSI8/szZJJB9IhJgohxbiLo/bKbaDKHJpjdM6jYoyKWBLUnQIu56vFYr1cXV5dX7fz9ObNZrvdHg+bh+AYQU0MTZGQK0BQTApgyALUJ0n7Y/jD29X65quf7y4urg1dgS3RkImaKlysFqdu3Dw8eB9Wl+vLqysfwvmJKflXoIjRcBfTYz8eYhxznjQfqkVsRkzOu5vb2//8d3+7Xl8cuu6w3x8eH9C1D4d8t42LawYXCm+pTKNMuF4tv/nqi/2pH4ex8q57fG+pbxu/Xq9uXr6sqqrrxvcfPoy//vUwpiI3LTTLwq4UtUHkUWIe9P50mhMtvL9um1er+WXtGuSs/Hx1cX1/1KQe1ddVNZ9hs7j28xeff/4//d3fffH1l7Nm9vStYtb1/fHUIeFquXBYgqAIAILni4vV1dXVfLlsmhbAvA/OOUacoAYRRCDHhI4YuewYJkt1eeKLFgqcmRWvKjNjDu18sby4Wl7czJZrdAGglBFFZvpMpCN67Prt/jQmTQqKHMeUYspJEsIwxOOxPx5Pi8XgvXfkqsoDzMw0hCrUTV1C6F1FVCxWJ9AazthkufYAUFInVQvAlEWy5Kw5qUixhTfTsoJj8SYWKfpJZp02EEhgpugk58IN/gkN1lSz5qiOFBmnRlJhHpbN5vSrMMwByQgJrQpcV967j0JjAmRER+SZKx/qUPUhuaROUVDUQKkgMYE4EDtABkAoRfETseAJiQFT0MmUs6BSE3Q8qTlK+N+/B4kxQwDv/eXl5d/8zd/EGB8fH7uuu7+/L9Kbv2T8qX5Qwbratv3000+/+eabN2/erNdr7/0Pvaz+wrc4/45l0hCDyQHLAEQkpdR13fHYte2MiEpEQKGzmEHptBZAoczBP/LVLWtaaapONQYxAomoqvZ9H2Nk5uADlO1m6XhiwXgYCA0sS44xPte8/PmTVko9USnrEwGeBVEiiCmmlHIliojMznvvvGfCnEwkq+TS/MwxHY/H7eYxeELNplfLxQIV9/vTw/3j+7dvP3z/drM7nNIoSIaArFVw83lDTGBY1lowm3JIy+4MHQKw82X774q7+E+ZUoACmAyjWG3onGOiNI6PD3f/8s+//M0//9Nus8kxF7dtYqgqXq3mi/n8+vpiv9+/f/9+vz+klBHMe3aMZipJ4phjBFVGZBVNWWMyA66bdra6aNavm+vPzK9JwxhjHrPmDCYOkZjMWLEYy5maiZgUC5Xpjpv8sIrWRp6F8zHTvK2vVoub1fJ61rZADbs2BF/5nBIB+MLoYTJmms8W83lVVc4VU0f86DNkH8/OmQk0CQJKC8gENI3SPdjxO999H+rZMrxaNlWoaucCnDMrivVKabhNS/7TC54vxDltypDxeYY1EdV13c7mTTuv63kINbMvAJ2pKKCZxjgMQzd0x747DN0pZwuVq+qmnc28Z2DUDM4FQ8gmTkGEUGxK3sIERWTENCknYPLZLZnZgAjAyFb4NAhKE5VxaiGpFa9oIxRIfX/Ynnabvj+lNIrJk7EgFBpjaENd/GlyGro09DlGydlUNMexPwz9YZScwAw0AwiSCOSYnZE3p4YFWw2OQwhN3S4Wi3Y2r9umqmvnwu3t7Xa36w57Qtg8PqQ+KqARi7GZJrGsBpOenPox3t3fv3379sP796uLy3a2migmWMQdXFeu8kwEIbjLy4uLix8gMTp1OGFQ3Y1xO8Qupahy5vGebyAERAqhvlhfvX7zOlvuum7z8OiRhsTv7o/V4pGqWWiq9owmIMJ81nz+6et+iP3xVDFtP7SQ42o1W60W8+VSRQG3zm8RGYCmh8QKtEeFGZsknzKJ6mZI3qAmvu/iPut14+co4Rjjs/xBt1ivNFsKqsrgq2qxWL78/M3XX7988aqpmuczBSPO6roKwcyYSFWL/bwhMdFsNlutVsvVerZY5pRKVHuMMeWspgToPQdXee8AIEuJncili1pcSOysqoSiHUcCsHbW3NzevHz1+vLmdrZYj1nK+xrARJk8P/yi2vXD4TQYMTpn2EnKpkoIItAPebM9VHW9mC+D9yH4cznhSoOWmKbgNUXNJqAAxU9bAKYur4EAIBOBgdiU0SiSco6Soub0lBZhVkI5AKikBIOKmMFZxImopqCSohZ8eWqbnwFaM9OkEk3I0E1gBT1vJ0Fh1BmQmRozIXvGpq7aunKle1WcNhARQHKWJJNQndl7l9SUMBc9B7sSoAXTlJvhY5XyNBWalS/C+ZybwaSYm4SjXBihKIj6bBL91waW3ltxJKD5fP7VV1/lnN+/f388HgsSA8+IMk+L7k9eppSIU33w9Kmf8PDlcvmLX/zi7/7u716/fj2bz6ejOdPv/7IxlbOqJbRoALBSpGvO5TyfTqfvv//eOW6a6ilDoDBVJycrOm8Ziw74PJ4qQy04L1IIRYnNOefdbpezjmNyzi/mi5wTAJhaO2uXy9VsNvPelYDJ3Xa32+76UxdT+qPUoqe/Pf1JRBQAFTUJWHEuM9GMpkyYS0KMTMGepdNaaJbFxz/HuN/sPtzdvXv77u1333nPu2++/Pyzz1+/esXkHx837+8eDsdj1x0P+81p6KYcIYbc1pVDF5zlbCnlOKoIGiEiOERjAmZCR85EVcU5ct6xK2X9M0IMcT2b1YMwow9hNp851LsP7371y3/4b//1f//VL//+uD8gEjEZiVhSEBf46vr6+vZmHMdf//rX7z98OB1OkpMnNpCY+zQMKaWcC6udBDAp9RnF1YvrFxevPg0Xr2x2nayOCTOaoTEXR2wWsQSIoGTGhqpnSdGEWRpYBpOiAxjHIY7j05UKjm+X89fr5WXbNsjWjxkgS4NKWRKI5kySZOx79KFBVGZALNJEnLpHVBJE4FxxlFPkuOwrMWfRMgP3u9PdLw9v/3/j479Us6t2vqjnC9806Iqki5BMVWVMaMDeIRI7MMTSOCqbdjhfCSu0TfrYfy/N0ypUdd1W9cz5htCrmqSsnDObiQxxGPpT1x364z4OI1PlmatQVaEh58gxVeC8D1Ugz0YsgCQg2SgmVAXHps4cEXIhVGnR3ExzBQCAlaTKwpdiK5OcmprW7m2xAAEAAElEQVQIaLEOAtKk/bHb3h0e77rTYYhD6Qk8f/RVDNE385WaHbvD8XTcn46n46HE3O32m4fHD/tjNoBmEZpZHaqgiKdTrzBWVQLAro9l8nK+WjXtfLmomoqIJEUkWq5Wr9+8ScMQU/xw97A/DXUTPFIURZV+FMnGjlzwvgrpNOz2h3fv3v3ud98uVus3n1Z1MyvzPTtmh6DZNILlENzFerVer56KmNI2FrNsNmjeDeMhjoPkbMqFqmDTDKEGotYP6fFxu1yuLm5X1zdXX33xZRzzbnv87v3jvk+nYVytZ+uL9dN1r6vw5sW1icTuNAt8f7VWSVcXSwTYbLcPD9vv371//+FhHJMZqQLgdKtOu0NVySBRIpokOyTJMrw79m+709LRzEw+3/zf4kc/VeebVqJqVk2QEJu6vnn18uWbN4vFgiZUWSdKKRERTS7iZvYxGQGYeD6brZfrxXJVt+3peFTVLEqmOSVE4BCaqlou5szcD4OeQ/6QkJlF7GnV4YJskyEiO2zb9urq6vL6ejZbhLqRMYrkyTpRf5DTYWYlYDarxSx26jRPKVoAEFM+HLq6Olysj1VdAYJ3bGAFSicmPBMYoPAnctmzYKlZpyJGzcAMCcBEJxdByVklF1Gk5jxtSaykfk6b6cI2ExFLyQAcELApSIxj6TjojyEBtcknhp6JdErL42MRQ1gcJBjQEaBzVFehCoGx8JBKELqpaC4LkdoTJ4OzUrFImBZ/JAJCBcgfo8JsQl/K6S1FzFM8yjRNgEFxzy4OHmZGUibRf9/w3vsqvHr9+uc//3nXdcz83Xd/2O52p+NpHEdVnbrpf2w8p5g8NZKKVLuqqpubm5///OfffPNN2ZSUbsu/Sub9o0PVcs7jOAJAQVac8867EIIZbDYb7/1stgDAYhfLjOVpmvY5OoF19kw4M/VxygNt065XRIZhBBhF1YCcK2EFHkvavEhd1W3blqipYRhOp9Pj4+Nms+m6Lqf0k/vqR+erOOGLiEwmHElAcVLqagYzJsgplbhsETUFIkJCmcIFi6Aqdsfj/YcP3//hD3/49lsk0JyGPnZ9DKHebnffv7/bHg6noe+GY9+dJnWQd2JOJvNoVRCFbKjABISlU05TxwINDTMSn5txP7xqU/XqXDnPpro7bP75H//+7//P//qb3/zT3d27cSynHoHQiLiu51fXLz774quvv1JRbueLt28P232Mo0dQyf3YbzfbmN7H1BGB91g31Xy1XL+4vfr8s+svf7Z68zmvrrRqNbvCFS2zhzCpoCIKouLEWCu/CnBsNrFIwaQwVWTyOjsjMYhzxwuikARRTUXBBIAQlFENVCVpHkGZsPIOih1lCY1S0ZxTHMe+L3r7cnLO9D4EmERwOYuK5TjE48N4eBv335ElSUeVVGaLAmNPJkeilkRLImQhnpCZFCrMx8cOEZnQPbPxKcykqq59qJgdoqOCBhmYSBaRHIf+NHTHoT+NYy9ZQtOEyocQvK+QmZwLwYXgKu+ZyysTABUJsImIFemXIxZEhgmPIXtqEJdeRYkXLMvk2dxLSwoDUWFypeF03D6cDluV7DwbeBd+oO9TVQB0dRsku7oF2g5DN5yOKeaUpOv709CN0Zz3wfuqqtgxACZRUWXOYBDjAACOaUl0dX3z8tWr1WoVghdJjvxiOX9hL01kd9j/91/+UxJpEJkJAEUhZ1WZXH1D8OOQxn7YbDe/+/bbxepisbrw3psVeyc0kxT7nHomrWq3XDSLWcP8jEIKkAxGkT7LKcZuEhXDU8ZNebDKlrvrh+/fvkPEId1cXl8sZ6thSG/f33XdUDcVe/5Pf/szfeLaihHCoq1vr9aff/JKckKDvu/rpum6brM9vPtw//7ucbs75myEPLkMnXGfUherao5iqClbTNqnZKaHONZklcH1465Pz4oYAY4GfcrDaKODmml2uV5erdkxTO2Tib1auCDnEg2Ayn4bEcExL2aL1Wo1XyxCqPeyTyk6ZucITB27tqnW69X1zbUZpLs7EUk5ior3wQyHIU7PW0nBIDQQIgzBz2az1cXlYrVi5w3Rh4rUaU4mYKLnbcazyYzIOUaAoR8kZRMtWm0RPZ1GH46b3aFu61A5Ziqir1I/Fb4OFoGmqphMc+e5GDcwyFlNZQqrOoMnqqCiNtly6tl3eKr/CBGJuJB4VXISA0M2saw4DEOMSSSXzdLHzbGZWTIdQRF0As5UJ3UhABQvMkMyI0UyNATnGKvgg/MECKqaVbNoKuYj+WljUToaSAQwubhPAcAoiNmsmNl9ZBzYGXGZPtekWir3A5xZdkxIhIxgQEKoPwjl/vPjXAyVppUCgEBVVd98801T169evfrVP//qH/7+H3777W9P3SnFVPCJcrdYuf+mmcrKBF2aLMWKUETGcazrerlcvnr16osvvnj9+nVVVRMT+Unt8m8cZpCzjONYOjshBCCqqnqxXBLx6XR6//7OOR9jevnypXO+rtARiwoAiAohPQFLT9JfZmYuXJlpfo6xaJsyIfqqms0Xy9U6hJBiOhwPh8NxjGOZLsthdl233+/v7+8fHx9P3SmdOTF/FLgqp0tEcsopJRDUbBrF1Khkr6oCGKGlnEWK8X9WUUA0hJhiP3Z93w19F+MwjkN/PHb7/dB1MY6/Ed0fuofdsW5nfT/e3X24Px6POY46ZhsRwDlfzeowD9iwOigCZABAIPaM7Eo+CiKgmiRREyUBBvbMzuEPCb6mmtMoKTpfmcluu3n77a/+P//v/+2X//B/PNy/yxIFUAG1QAWhqlbXN5//7NO/+bvPv/4GEXF+cfHmw+lwSLFnE1DNSb7//Xfd8L+P4/eeYDbzl9er1599/s0v/vMX33zz6pM3s8u1hVoI2MyzIqkQGLOa5oxRLIqqChXLedbi1w9Y9giFy69FO4uTd+UZvTDjlODUxeMAwblZjY03x+YYfWMiKcYIFsGHuoKmpbom74FIDVOSvu+Ph/12+8DschzB7Py8o4JpylkkxrGY4WUFATJ0wDX5xtUNOpdSOh1P2+3usD9K0qnsUJCYtWhMGZnJEDRpkVqpmJkSQeV8xR8XfiKq26ZpGuYpSBkAPDvvGFVzTuPQDadj353GoZeUCLGqQ103znlihpLLWFdV8CXyuijJz9xKJgQtNroGKoSkMClJcVK94JMCsayTE2Yk2bKaiBoQE5ppSnHouv1+1w2nqvLL1TLl1M5nfFb0lO2gmRF638wXlzfd0L1/993YHcehjzFmBQVCECb03jv2pQJg58mgCl5EEHIWSymFqvrsiy+++eZnL168aNvGNKvSbLbyoWbmu4eHdj73noN3nh2Tz2cv+0JuCt5XlRt76k6n3/7222a2ePn6dTtrCPQsz4/dcT/2h+Bs3vp57espIhMAwAAzUDTDnLqY+jjGnFSnefQ8Ixe1HyNR1/e//s1v371/v/z1bLGYL2ZzEXvY7AHp8vLi+ubieOpTlBKtLDEbIAcOzq3Xy9Vq+Qd6fzqOh/1hs9n89tvv3t592O/3w5CK6ZpOHZWyoNCZQG4xZwIUAQE1RDHssg6YyeC7/XHIHwnkrp2vnBfLMWPqJCtzNWvrtv3RNAE/JLhOfIzzQseItQ+r5er29uXl9fV2tx3HoXSKSjY7IQAU8FzHcSyb4yI0RcIYs0EuAdylywNYkn58qcPZeUACIGQkQENVyHZOhPqjU3NKSVJ+ClYrW+euG/eH02I5W65mVRWmheTchjgDMaaaEUARyM7QmpmaWk4qxdbBtDRcsUTLFk1STimfA2sKXdsmWAmAEAUsZ0E1JFbUMckw9DFGkZ/iFgoaQceCxEyz23QoEyemgGMAZEiIHDw1dWiqKjiHZioiKUvMuSyEWZ66Kk9YRRGNTVRVMCQtsZJTFtKfKGLgXPahGWP5DIwF00IjBGRl+osrmB+PUiVZqMKLly/btr24vFwsF2bgvFsul6fjqZzqYRhyPlvu2lRqF1DEzguCARRK7OXl5Zdffvmzn/3s5cuX8+WC4I8s6n/xmGJASh0joojkvGcX5ov51dVNmV4ly3a7c+SL1nrWtkQsWpqhYGDEUx1Tqq5iLOu8Z3YiMcbUdf0wjDlnBAhV1Thf13XbtGp6PB43m83xeIwxNlWNCMfj8f7+fhjH7W57d3e32WyGYfwzwUlPo6B1CoaEwAiMBqZToqchWFEHoSNyTCXvDKzYqY3DMAxdHIZi+DR5PpnmmLbbfVYUDtVslnLeHbanPGRWrl3gih34uqoXbb1o3awCAkbvnTplIvQuAHHZmJXlyGJWRkYLdTj3kn5824AqmhKYpLg9PHz/h9/9y6/+8Q+/+xczQce+8ZbMUvZ1uHhx/eaLr958+c3tJ5+160tEvP1Em9VFSlHyCBItSR6Nqf31r36zebgnG6uAF+vF608/+fo//edPv/75crnw3olGUCv+GAImRDmJjqApZQMxMzACBTJicIDMjh3GUQ0QkIqjuVmxeKfnl0RTlpQTO+9duJiH1QKDTwBjlDHnGHMWNSRfhdDOqrYl58wgiYxj7Pqu604x9iHUMCHNkw5Op7ZnwWEMiYyda6+r9Rfe1/PVTbN6wa4e+mG32Wwft8f9UXMpYqZJrmQPEBZZUJlEDM08k6uqqvKzplrPZ+688BdOTKgrM8siwYwQGRENJKcUhzh0Y1+4tL2puBCqKlRV8ehi9q7yoQ5lz8lF0s2I5/R3AlNNeQpDmezraMIPbKKqw8eI8GkHZtMiUZLtjUglpdPxcDgcxrFHgsVyXtU+pjhbzMtmfhpIgARETNVssV6sj4vl6rC96/udlKAdLHg2goEqiBgysHOlNSw5e0eF1ljX9c2LFy9fvVosZsGhpGRmIXgfalFZX6xXq0XbtsE7LkdTWEyi42hmWc9uEaJ6f3//3XffvX//brmcz2fN1DqQHOOgOVaeZ7WvPDr6qBxRgNGgVxDRQTSKZH1SoP0YFUCiMt/uD4fHRx8qX4dgBqdunC0Ws/kMECdCiJqJ5pTMQMGDYVO3l+uLl7e3jDSOPRDuTl2XJQmIQDY1SWJiKqAfm5BApCZZpuB3Kf11MDEtTfdjjPKs0+devXqTRuva/Lg7xd2G2JNzyAwTgfGjauP8DtOkcZ5kJrEOA6xXqy+++Ord2/d3dx+G7mRmoMqMABqHcWubrh9yzvv9PuZchcpXVaE7nGgo9xUiigqx894579mxGYxjHMdUvEvNzn0SLbYHH9eisviJSByjitjHymBK11GFmPLh2B9PXRZBAjKaJuYpAndCnKAEzSEYTHCUiohmLbvRFFUVnS/JY4hoplkkplxMqHJOxExGOMXqop1pHJoFUDM5gdz1seu6mKKqWCHsPgdiLJmMJmQ4efpNmwgrRcykbkZjI+cI2rZezNq2rYJ3lsZSvqSYU0xSPISnWkxlqraSSD7nAcM5EhzPWQLP2kk/+R30XAwhGhCQIDhERwiMyACO7Y9Zw/+J8aRSf3YblwI3hLBYLJq2dc6/efOmhNLd39+/f/f+u7ffj3EsJQuIErFzXFVV0zZElGIUVUKazdrr6+vPPvv8r//6r3/xi1+sLy7gTBN4npr0dNr/1c9a6lwiQmQzVEUDQnSO/aydv7i9nc1mV5dXh8Nhs9lsthsffPDh8uKCiExNcgn8QodTuoKeQx+ruva+IuJxjF3Xb7e7ruuIaLlYzGazi/V6vlyy4/7Q39/d3b3/cDwcckyIkFL68OHD4bBv5/PD8XB392G/35eUSsCJcvTHDgWMABjUIXh2zqOShKxikyuzZERzjp0Z5Fwv23pW+cCgkuOYxiEOQxyGOI4pZTN1jktkRRZRQDHrx5RoiBZ7GTJn17hZtSRauEBce9+0oW5CqAGNgqkGZnBIjjwalMwFMEMFasGS5HGcz2ccWAtH7Zk8CRE8U2BE0zj224f7+w/vD9uHse/CrK7qlnmWomy3++Vi8de/+MXf/Zf/6etvvl6t16euU9UQws3tbag9gKWxH7s4HtPm4ThfrOtQ5fHkUBbz9sWLF5998fWLT75MWUQSGHo2Dg6BoKrzmPt+yAY4jFrglSnZA5iB2Tn2WQTRkM3MnR+vxJTomY+Dmg2SBwK3mruby9mbq6ptJMrhNHx42B37AcDYcV1XSw6z+Xw2nzE7UZUofd+fumNMPbNVtQt+IsEUofhTF8XAAFXBqGrb27+qly9Zu3a2WN38XLB+3L5/vL97vH/YH44qOs1gZ6qfiSqBMZW9oqk6x20d1qv5ct4u2+bVzVUVJvMCZA51xSHEnGKM7QwKoVBTTnGIY5fGPg2n2B1lHAgheF+FanJ4Zw6hrps6VMG5QlWeCB+hCsF7RNVsWODb4vxA50YSEpIjhKdJ1aaaa6LMA5iq5pRL5TF03ePD/Xb3CGDz2YwWreQ8DMNytXxCYhARvIeMBkSEVT1fX9x+8ulXJrEf94CGBEzkmBAsxtjHkTx7osKFr6pKnWtTk5I4H5q6Xi2Xi/nSewQQAHqaiRihqcPlxXqzXoFEKzxXyWI2iqU+qqQSNlM3dUz51PX39/dvv/9+vV54vvUOwaSk8DJaU7mm8gQKz/LsxOCkeBRqhEajDCRAYIqTTdPUgYEn9y4mB17VkmA8xf2hkyw5i2/a1fri5vblbL5yzllSySnnpGqQQRQYqquLm/pv6zGOZrrZH373h3e/+pdv//G///J33/728d13aTipJCt6NypAflndKBez+BJkYZNhj51P0fPlxa2X66HLue+RR0AynCxc/rXZ/Aej7H1ns/mXX319OJ36oft2Njvtdmk4oWVTSWnMOfX9oGopRigaDYAMuYQgF6p+KSTYubKGqVpKEmNOWZGY2Zso4oTYFG3oDz6GmmbNKaM9qWbweXUpWft+7LsxxaQiBE/d4qlTCxNEkcFMiwMfoqqVJV8lSooxRjVFFXbeOY9YTPy10AtySjlG9p6ATMRKs2VaNEBzNkTilMS6U9d1XY7pR7mv5VDOnBj3ZPd6HlMRU+4yheIPA01VzZqm8t4hJhXJSSSKxCxZJJ85yJKyjCnHAs0UGOpj6SSmMBFXf1LE/BCJmb6KiAYMygUOKUQd+Df1kn4ykAAMJwKy882k0rcXL170Q39/f/+7b7/9x1/+42a3PRwPiOh9aJqmnbXz+Xy1WhW+S9d1RZi9Wq0++eSTzz77/Ouvvnr9+vVsPoOnCvzfUGd9PPlEDgCLO1nR000hR6rMPJ/Nr66u1uv14XBApBJqMwxDKcTjGFNOAFC4j0hFGG/nfJ/KOW+AItJ13fF4zJKbuqnrum3bqqqJnIqeTt39/d3Dw0Oxli+N8O12u9lCVVen7vTw8HA6nnLO/wq1GgEcYe1dW4VFU/mKgafom9KjzoKo7EjNKKd2OWtXbdU4sKwpmggaOCJGMtGcU4npJsKyrqPzCpQNEmThjJV5dJ4r54krouDYV95VgT2CVY4MhT0yEduklTJVU0MDRFTRnELTNFR74Cf87eNVaeowa6rKu5iZwDTHOHQAury8mi+vHNX9sc8xXqyWX3/19Tff/Ozm5qaqq8PhoCJN3dRNU7cVEqU4G6qhw75p2xACMyXNpuKIm6pZLFaz2XJ/6lIUScJgRI4IkRlpijRCInaMBKCIYoAKRUjJyEDMzMoF2JWpO/uDNDtDNMfUVvXlcnazbi+W7H2375PaEGUYMyJ6I18hsW+apm1q58hMU0pd3x2O+37sffCzednTVFBa2TmX7nlZyMuZRXLV/Abn1w5yXdeuuYinbrPZ3N1/2O12fd+b2g+teUzVUEwEEbEKPrRuNW9Xi/nVxWoxaxrvLpYL5z62YGRKATOzwnACyaKmaRzjMMShi30Xh5OksdjXTRgLUbm3z7aQ+KzpX/a4rPoRcZ1kAYbwdLrBgMvEOYUwm4GqSp6IACmlcRiz5L7rD7vt2+++u797P44jMQXP6lhBnX/GiSEi71mmnQ8iV9Xs8vKmO2zu7/5Q1w1TsaWwLNKPkXtmx4CECMwspTnL6IGqytdVFULlvEcsgg8GpOJKJDkSyLz1syac9qexH6JaHHMcY04pxiSSEIwIPBMKpZT2+8P79++vrtfrZTuf1aaKYIzmHTrn6+AKveDpkVG1IeU+5dAEYhdCVflMWVDseXUwwfUiZ9d6VCMVFTBgrhxeXFx98ulnb16/mc/mjCQ6NfekuEoniTl7R69uL3ztkfjYjdc3L2bLlWQdh/64uRedliY6N5ImzhOAwpmAWQLPAImwFKpNXT2/LV3FftC4O+wftrtuHJdo7L1jgud99B8gTOVJe3aoJTQOoK6br3/2zWw1v7m9/u9///f/7b/+f7/79jfxtMs5ceEoEBNx3VSAqGYxxv507E+dZAEzEWM29j5UVQjeTIe+7/thTKqAzlehqiEmMyUldIzkg39mf1X6I6KatLgXT97pZ0khAplBinnoY98PaWzqUDHRudk1SSF1QnimjgkiqUhOo0hSSUWLpGaoYioIQMSFNVa2LJJyHJM3m0ISwdhNBQcoTqsdUYrSHY/d8VTUlWjww+LSzLJBBsgAMCFnWO4/nMATRDAUNTEEs9q7xntPRKCmyTSaRbWomkSTWhbJY8pDTEOSIWkS0OJROm21StRcIRjacyRmIu+d0ZentEcEM6SijTUFUzBFQ51O91+uTjpPEfARC7EnykhpLb189fLm9oaZd7vd7e2tAfzmN7+9v79n55ar5Zs3b968efPq1asXL17c3t46746H41MR8/Lly6urq9Vy1TQNO7YfGHL+2wYROucQyPG0wc05xzg65xAh52xgVV2tm4v1+qJt2+OxSykSua4bAPYpDqJSfFQRkL0r3QTnXAjBOwdEKhpzOnWnGMe6bhbz+WKxrOtGVIdhAMDDYX93d7/bbtGgqeumaQDg2Pdd1yFiP3S7zXboe8kfuaLP76qnPyMSVc7N6uZiMUepfO2ZDdDw7CKiiqZKGlU4jrP5YnE9b+YVglhKDqj2Nc4BFId+jMO43x/2+/2YohG4UPtm5uoWKmYYGCEIcRUqX7H3GACZiHxAX6P3AMAeSNGjkaEpmVGJelYxA0XLakm9b2tuAwYCKrfHuZ3NvJjNBLlynLxRf3GxXDBhVdWffvmz65dvZJTdh4d0PF6tV5+9+fT1q9dV5QHVOwJPVe3ZUcqpqHyYXQmiQUymSbKklOOQYp9kTJYyJJExdscTgDVzYHaachxi3/VjisRYV8FMTdkSaJECicWUdFpBTSXnXLrepQb+yO1DJjdr2qvlxe16fbmog8+KCUCI67YxJBVlQgRH5Cvn6+CDIwDLOZ7643a3GfpuuVyt15fL5aquG1XJKaUUC+ZnZsVD2kCIyPsKkU1FwMWUD6fD+7v3H+4+HE6HlJJjdyZU2ZRKZQYCEK2uq8Vqfn2xfvPq9upiPZ+1jiAPQ9N8XGBE5HA8HrtufQneFX9eS2MyFUkxxSF2p9if0jioZNc0wYfiOFwYL465UIlhUnZhIcMQPs3qU/KLmUGRa+JEdSCYZreCcJiCik4xVllVZRzjqeu77jT0/eP9hz/87l/u3313POzzOJqgqAxDH9P4hPUjogtcPNlUTCSDQRWa1fzi6uLFennlnBeVWLY0OAKCZwYxQM45mSmipjQ64ioUgw/IIgaGQEgOkEVyTmno9zkeA4knGYfjdrs/DTlFJRBQIZViMKSKgFNO1Rjj/d3d3fuL1y+v6oBmGQm8o6oqGZsOTPXZhKCq49DHODLPWhcuFu1J9DCOEVStJBqBTTN7BhNwjrkidkQukHPBV1XV1s3P/+pnf/M3v/jq8y8Ws5YAspoJEDrNY3946I77IZ7qdrZcfrZs5+hD09RV3YrpdrN5uH//u9/+uljbwg8304g07YgNDGDKTydgdoGBkNar1XO5uOv6YXc8vr27e/+wz4GRJh0eACjAD4COPz3KdMJM6/ksNJ+3bdvO58hc1fV3v/nV5v5uKOLJ6eW9AaYs/TAcT6euH2LKZ37+x0m2FM4A6EMVqsa5MBHsz2oahB8jMeVnoGiaGc6V3bOvq6WYhyH23TAMo2cHzwu1qVmqqpP/GFLGstFMUSWrJSmcGLOCzhGQkSuZY8XSo+hgVVXFREEN2ACBJ/P5okOJOA6pO566rv9TO2Z9ItA/pQ7A0/9LzAShFj2LMWEdQl3yu0tGi0SRMcuYJRYkxsykKEAUxFCBdEpePL+wip1FSD9sJ/20iJlIioikWGjOYIqqfG6b/fvVST+8ngYAzrn5fO6cY+bFYpFFfv/739d1XZxqX758+Z/+03/62c9+9ubNm5vbm8uLy4LElPyg2Wy2Xq+btnHsAOAvoYn8+UHEU74KlsZtjim6yMSYUixv2jQ1MzvnFouu6/qC2ZxOp9PpIJKD903TeOfI+7P0ughjWQHyRNE9DkPfto0P3lfeOVazOI7jGB8eHu/v7g6HffBuPm9ns5mIMLuYct/3XXfoTqeUEvykgvnxQADHXHs/q6vU1i44ZpgsUYEMyRRMM2SUnCNV86ZZtHVTlUgzQvYhIOI4JiKeCGpEvqmZ2IUZNwtXN+aBzKExBTJG8kyewSMyATBYacshgAGhkumTnWRZk5RLOknZX4hH5UI0g+dzReEieMbgmENom7ptqsr7+XL9yZffvPr0i26zZ4HN9981VZi1bVU1CqhqSoSIAiAiMmYirkPNREyClAAiQAFlMSYZxhRjkhRBoknKBeSkAYlJVHPOaojoHZOBKqqYKoOaCmgRIU2QaAHwcnFLKUX107Go2ZBTl1I2iVn0NEaB05CiGoUqAGkWJqrqpq7qELx37Ghy2ck5j2MUsbpu5/NlVTXOuRhlaiSJqErKeej7LOIYq6oKoXbOqbEhxDhud5vvv//+7bu3fd/bT1jhBadG5KZpLlbLm+uL28uLm8v1fNYyk4xpOA79cXiKTyqEWUnJIXlCVJWUwFA1axrz0MfuEPtDTiMgOe9DVbHz5eEiQCr7TpsMq2hq/H8kvgAyEBejj3IXwJOX+ZkCA5NioNAWizOT5CzjGId+PByPu+3j4/2H/W43jpHYuwqJzTSzgQvVR1N4AmJSZxpNNecUVRIBNnV7eXFzffViPlv6EKzLSQQzVVlNDdUMRFIcBmCnxOIDVxUX8EzU2BESgqoBZkkxdkO370+7oTsM3eF02B8Ou1MnZjhvvHeoSFnAitnzmVwxxrjd7bbbbd+fcm7MFBGY0TsuvNNi+WMf6ZXGaIGtDezbBqsKnO9SErOYRe2sh52gGEMAJo+IxFzVzWy5vLxY315d/vVfffPFZ2+uL9YOoSQfIBCBQU7D4f3+4fuue5wtL66u57icO6pccM67frj+/NM3b79786vLq/sP73tLOdoUxzp5RTsrzZmJjg8AwEyh8sE7RzSbzZ4rrdz393cfPjz+y+9/vzkOq5e3znnHPEVfmz0PUD63CPDpt+nvH/flIACO6erq2lX16vLm5sXr/+3/RbvTeDy8G/pTed/Szs5iKeUhxpRSzqqTJM5SSuN4rlXI1U17cXGxXq+8c+fnUBGLCsue+8RACfYBm5yenn+h7CQQzCzFPPRjd+y7eV95X4VqaqvAxO8x0yIfnfgSyGBmkkGzqUJhvU8anSw2KmYFMDVmJnJZYBxzTOK9VmpZlUUASMTOYhNR1a4bj4e+78bC6rWS4fKMgVZIczY5Kz478x+HFeSN2QXvm6qqvKfpaU1ZYoxD+ZUlmdmUKOM8sRAb6sTXn7hPU897ahifXeBKKfORJvMkt3669mZgiqZkTzHcxX7839VQeprNET8mX/5oVKFQ/ziEcHV19dVXX/0v/8v/8otf/OLi4mI2m/GEkTzd+szMeGbyPud4Pf+Xv/TjARCcHzQqq1ROKUZH7CjlMaYx5aimnsNs1lZVtVyuShv+eDzc3d3HOMzniwuD2WxeErUKH6JM1Co6xnEY+tPpNPSd5EVJORAVQByG8fHh8d27t/d3H4bT6eb26vJyvVots+RVd9GP4/Fw6Lo+pWSqeBaZw5/CxLD4+RN7R45LVYBFwcFk52g2A7IiX3ahrpoQaiQHSOSAEQ2gZOn5ULWz2TKtDVHJGQXzDfpGWFAqIy+ICQUhMhiCJyBEI7Q4TVciIIIgXPovRoZcnLENFCGbjpo08VjixsyePw6mMvZ93w3c1CYJVJi4aWbVcv3plz9/+dmXmz9812+2tXOYZejHUz86dOacGIFaHLNaSjFV7DwFZ0aYGUeEESE5JiA3CnQ5jynmHE1GxEyes+rh2INhG1xgDlXlHKccY9Y0xaQi2JQZn5OWJq6eQx9LQ4RpotaVY4kp3d0//uG7d95XXa/mvCLnosh3jEwkGpxfzBaL+aIKfspemSZMxhK5WM+qqkGkyf2cCIktS0rx1B232wcRXSxmxNiYMIEnFsn90D3c33377W+//+7tGOOTl0ExLi/NDlMNobm9vXn96vb17fW8CnkYN3cPwzh2++74eGybm3GIT7cYIwbCwOQBLI5JDJDAsqY+j8fUbXO/V40utL5uXDUj9ghMhqQAIiBiZFZ4BgU9JSqzOREbl0htQVIEwPJAlVui7L4EAMQARK1I2QshMGUZY4op9+O4O+664eS8ny/Xqks1FVRRqXNcrK/Zf9zxF1M2yTGPg8TR4mBp9EyXF9cvb9/cXL1YzD9s9qNZRkNmrqpQN6F06SUPyNa02DYcamKGovlm9o45SzIpAQynoT8cd5u79x8+vP+w2277UzdGrENYtKEOfohpTIKTE7ipQRbQlE9dfzodx2E8O0cAMRABTSyGmCQ+TcpMtKjDZVtdNGGxmt9W9WK1HAAF6W6zH6IwFw4zlAZH8RAhVkKsqrBerj55/fLnX3/21z/78uXVIrDlvhuyEHoiBlPLw3j47vj4y8P2XTpdbS8u6mq2pEBV7RBWs+bNqxdffPH5p59/vtlu3n+fk04bCnLFzCiAaTQ1E7JJROQ8N7O6qSqH2DRhiiMEAAB3ivEY47Hvu36cZQWFH/EZftJK+uPzIQKIGaARUOX91cXFbL6Kor/69W9+94d37z7cH4bkHSKiFrpewQPIg0Miw7IScqkhpOxoJ67tVHAWaKLoO7D4AfyILYLwk5TuHw4zy1nHMXanoTsNs7rOVeJzYVFqtrOPQjrTaacuH+gkny7tk1JzaM4AXGy8y+MSs3ZDNlPvs4AGFcoZjEQs58ljXlTHcey6ceg/eqr+dKV5KmT+9EKLpXNchVDXwXua7NNyzDmllFPKZedxdoaVXBIR8IdxLU+X2s4GWU//8idOZPl4Ra+gWLaXpdyhieT0HzF+2GOC8mc8O9p57y8uLt68efPll19+/vnnTdPQTyR1UDxwz82pf0cL6acDcXLdFUlaNmWRnOMYxxjHwtQmwtLSByBVSyl13Wkcx+PxkFJGxOVq1bTtk3tvOelZpO/7w+Gw3++643E+ny2G+TiO3lfIMAz9/f3dh3dvN5sHk1RXYbVarS9WSfTQjdvtLucch0FF/sLzb+cmqqpmNQHBYmnimEpfEnRSBCA5H5pm1jQzIm+lBrYnP0V2PrSzuQCg8wIuKiZ0wCFhdthQboycKCQUnRDUAqcIGoiqaBaVDCoGUwJCEcLQtO/JqkNOzC5Jfi5MmA7ETHOUFC2wTRgqV+2c29nq8vry6ha6+LhYexckpeNuu9/tWh+YXFYzUUJT05yEgFVMVcahG4eTSGTCumnrulWkJJpyEk2ASkzknSUZJ12JqxxX7DRTylGypKSS1LKpGBigTYHhppazprNTtxZvnGe3pYgcu+5xt589bKMQ+grZU4ngqTw5RiYfqtmsnc1mIQQkKlWRqRGQ5wAEddWGUBfomplVlUhE8uGw3+4eHx/vmalta2bnHHvvnHPjqCnGw+Fw/3C/3W5FhIu849mt5Bx7X6+Wy/VyOW9nAZ2Octyejsfjse9O++606ba7Yz7LXxHAMzoCsqxpzGbEGYnNssZT6o9jf8hpYHKhqqu6DVVL5KEY6xTysQqoARIwP4HG5XE+B04DOIQSG3wm8U78RtUiXCpFzJkXWHz+StYjqJaOJXnfeNeA80aYUUGVclqtbop58fSuWTQmHQeJg8YR0ggqnv1ycXFz/eLN609+9+79h4ddN4xgT5an4LwTzTElQ9XGick4jsPQpziqqnPeeyejSRbIMcauP+13m83793fv3j+cDoeYElLwDovYhcRQwDkjNQNKWRFRRIch9sMYY8rnttF5+SidhVz0U2Uw0ayu5k1dM9eOfVNbaL5Bj80M/bv77TaOY04JC0G4KIMkY05IzhGuFu2r26uvv3j9+ZvrReNIx9hl9bmuZ8wEliAfpH+Q0wfpPiTM3fb74+rK123NzOyaKlxerF+/fvXlV1/tDkcD5Pv3Q38STUg0FV8yiYaLzJcIJnszZpyKN3t2W86aMGub2bxPqFniMErKUOx/ESYA6qy2f7qN8AekmPPkDoAGipqBDDE4Wl9dvvzsi8vffPur3/ymVwT0wTvnApEzRAPIWdUU1XKOeexNYyEem6ohAUCMcfv4sHl8WFxccgiiImrsEMExGdMP9JaoxU622Ek+8b4+roLlusaYT6fheOwXs7puaorRh5QlkzIil0CPnBOXBoSpStYcNSXJEcSIGLDADTol3jMXt5SYYh/zaYg5J+9JabI5MsOcJgoTAJjaGGUYUhxTCYq2H5eOZzDm3Pd9+uoZSSiXAgk5hKqqq1B5digaJceUYs5Z1UyxNIPHMfZD33XdMOScJ+OniYR+LmfOMMrzT/EccJsg/NJFKuHjdv6c+tGe7akb9YMXes5x+eGB/pHC4tn+7+O/PG+0Fw6p9361Wl1eXi4Wi5KmXrr+HxGIH1BAfozB/Pnx058tJ6HA1sXQBZFUJafMRCm5GOMwDHEcJzX7GQP33oUQYhzqutrt9OHhQUQuLy9LjwwnE2cz05zT6XTa7Tabx4fT4VDXvq7rtp0ze19Z150+fHj7/sPb02lfBe8rP1/MLi8vk9jucArBp5Qln116/7VyzYqYVyTFOIxDEgAFBUAmrILzzAgIVixNDMj7ajZfte3SsVfFeHYfSjmrGXs/ny/YB2CflI5RwADIIbDQzEsPrlLthNUIGEWBYLItyCQqlgVzAgVFf/ZlQyQ6X8icJaWU2U8hHT8KZjUjNAblwt3MIkaunfNszuy88/PFxWJ+wc7Hsds+fNg9vA+rJVe1ZDFRYEYkdgHZKeAwxt1mv9/s85g8+6pZNPOV9wFAVZOCoGMEZDF2wpQAgL3zVWiCT72lJMcuDUkkZ8qZzTyTZwZGUCgd5SFKzKKGKphFozzTWSIo6ShxezgouLqdeV8xMXtvqhy8Y2bigkd6H4BoSJKzpCSoWFcNIzWhDs4XemxRaaSYx3F8uL+7u39/OO4Xi6V31Xy2qOt5XVfeu8LBHeMwjOOYIpgVa+nixmQGSFA39c3N9Wq5bEIdD8P7zUnGPPTjEOOoaRjyKJLhY8IwInpHTJZSPw4HccE7z96bpNjvx/4wDKcsUs8W7XzVNPMJ5wNkREYgsOLBaIiAViRfaGCiNsFO5BgFEUyy5BJCd2a7oZnJZH8NUwvPSkgBKpbIVg6+asJcgiXIQMxNi94ZAZuGrJerF95NSitTy33Mp17HHuKAOZoIA4KvPNWXFzdfffbF27u73/7+++1+b6o55W6I3rvlLKCBdBpTcqw5AYitL7bd8WQ5Bee8D2NMamo5pvF0Oh0eN5vv3z5+9/1G0hA8rpZVUzkFHMVGsayGAN6RC5UhukM3xpxKuzNLEiUo9FArSg7KOZx33+VYiKipm6pqRGEYkrmxna//6q/erD8Z6uW//Po33/7+D39I3REgl0RGAwcpq42iZjku2+r2avnqenW9ajyk3B+Skg+56MEtHyw9Yj56ja1Dh5L6+9P2Owq1IrTzCybfNvXNzc3PfvbzqBDq9vd/WN29f3s8bCWPooaW7aMlSNk0EhEDQEoxp7Hru8JSL8Mt18uU7Or6UowBIceYi1v5E83mvBwZGE1WsU+P2/QNz4cqiBk49AhN217fvri6fRHauW/nl9fX6/WybufOV+Vli0mc5twdd48f3g6nHZs4IucYkEQlxvj4eL+4W11c3zofzIycYze5ShO75/FJf8kws5Ty8TQcDt1yXld1xS44H3wYkQjBckp916UUgw/EpGY5pxT7NIx5jKAWSkYBgZqlLGbo2AFSMfDYH/v9acgphVCgNXXEBijJAIEYATCKjTGPMcb0xBj/8ZJjU7KH2g/7SfZxeSq2Ty6EUNd1CI4dqGUrJBiZVIeqJllTSjGO4ziOY86Gk92wTUmW55LoX1na/xhWNP16NnBi7PzHjedd+VLNlCaRc66qqiJpYObnDrxPNRP8B6Ev55ci5zx7T8SFzlIkgDnncn5Pp1MRRgFAWQDKtznnmqZdrS5Op24cx67rN5tNCGG5XDZN471n54hIRI7H43a73e92p+NxuZgdFvv9fk/sqpQPh91mc7ffP4omH+qmreeL+WKx6MdESJIl5z+qdPuTo9ThKaeUkwiCgZREUE+q5ogIbFLhEzs3ITHsggGKWMqS04TtkXNN05DzSo4yjBBNDJAISLANbu79bLTeqFdQkwQIACSKkgxE1bKQZlMkVCCeghqKgQqiWdYnGdgfqUDNrFhJokrBznNWY4/MKhnFmqptZ4tQN2N/PGzuDvfvLl+95qZlzaqKRQdghGqqNo5xt90d9gdQmM0WF5fXs/kKqso5RjBVVSy+eeiIKucKeikmqlQsCsdRRjFTDEYICqpo4Mgp25ijmolaVlPArJYkP7eKYuZZ287ahogmaC1mAGDnfV2Fusa6QrPy1LsQmJ0AqEmKKcWYc0Z2xQTy7H1VXL9hHIf3H96/f/82S6rqJoSqbWfBV46ne29/2BdRUiHqIZ5ZswrMXFX1crFYLRezutYo3ThoH4tFejJNoFlMDJ6j46o69N3xsN03MzRomsZCXZmXHMduN/bHnDOxb2aL+XxV1TPnKkRHSESlgpHp4ihOuDvimd6CUHAiK/kKVqSpU/sMAZCsXCwzLX5IT5tImOaRonitwkxqZMzq2M1mFAISeIMm6axeMrmPB5OijiOkRFIstoupJrHjxXz2+sXt69vbQg8CKLZkg2PyziGYZBWRyCqj5BwPu33XdcUvjSfysoKK5DwOQ98PY98j2Gq1XCxm69W8qis1iDknUQPwzCH4um0MOQSfRNU0Z4kppZQYUc+NC8uZcs7yMZ2tHD06NqLRzHKWGBui66vL+YvKzebz1WU9m314+3boTjkOYGIGhg6ImbCp/M3l8tXNxc3lar2YMTIYSkYwybHXlGx4SP0GTUKoiVbka8t9f7zDUCMSoUM/Q8T5Yvb6zes+ZwVE79mHh/u6O+xi30OO07UqSWoIzIxIOUkuTpTyA9WCe3F9WZE/7QYm/7jf51xSE7V4ShW8BM7JZQpAeJZAPRU3eKZ/GogV91c0gcxAROvV4urqYr5cZH31N3/7d59//vn68rKq6nQOb04xj0P3/rvf//L//K+P74xtZAD2Pitk0XEYHx/u67a9uL51dd3Ml75ukBFUEI3dMwlcYQBOUV9PHJcJbICJz4EAlrMeTkNVuXlbVSE49sWXBgnJQhzG424/DkOhjgJDltSfTn3XxdMAAG1d++DIsyGkrGaYWVW1H+PDZvuw2T/uTmBaZXKMJurZFYdWYnYuiMGYcj/E4ihzVrP/IMyyrMGFTT854mJx1kMDIDt7agMz+VAVbwXHjJZELQMonMVRIja1lLJMXWHDrDD5CiMYF0MjmlTp0yt/vL7T5zkHpugT4nLeJcOZZYdARAj6o23yD0qKP7KU/olGz/N/OQPIiIhN07Rt2zSNc+4JlXnedHv6zj/1Xn9+/JnvQaS6buu6RWQDKctEmR5Tyn3X73bb/f4QUzRTUzyruM3Mqqp6+fJVcYU+Ho/v37/vuv729vb6+mq1Wlc1O+cB4HQ47Dab0+k4jN04DN3ptN1sRK1p+/1uc9hvY+qryi2W8+VyMZ/P66YeUj4dT8fDQdPERaAzhPHnjxPNQExUsqonjwBGaoxAIAQ8mdwjADtmdpWvmlDVzL7wEmRaGMwAiDnUtVFOCqTiCG2qkVmJaz9vqlWCIVkSHTSpQUYKqIBjhqyKomxS1NTF5pqJmAkcERGgFAojlKxTUgR9dnnVbBjjMESpg+achiGOQ0oJYhpPpzwOnkPTtrPZvN8/dtvH4907O+38ckEm2VQTiBWDv1qlGmPc7/bdsWcOF5fXn33x9Wy+PI19W9eOwUSiQhJFlUDQehdVcoqdJHSYhiKCteLAXAfnLOWxNzVkT+gxMzIREiEZkKFEyUk+BkAG719eX3/y4iVTMKOc0hD7lBKyq9u2mc1Q1RZLz66qKu+9D8EbF+uKw+mwPWyD99fjkHJZIPncO9a+796+e/f23dtZW9+oVnVd1w1TsQHKx+Px3bt3796/64e+IMDlITI0EAkuXF9drhaL2gUZUr/rdczekAoxHVAMGdQhs300vEopfnj/4Q+//70I5JzW6zW2M1anaRyOm7HvELFuZvPFxXyx8qFlDgzOETEamqgUpk9ZhnBKSYHSPwHJUrpHaioyibl18p1Fooncp6AKWIoYKZ1uRD6TbIhdVc1AHFESIvQVOU+MQSGoOHRP85iZmSSQxMWVlajMk4TKALWny9Xi+mI1n7XeB82SUu66ocwMzjGokJn2Sc2y4tidulPXD6OZEgBiMZhEU0zZzHRW4acvlp9/9eX6+pZD0w3D3ft3adiqChNWdd02dd02hq5uqpiFGNU0pRjj6JhF8kQfV0BOxSns4/MCljQNlgQwqQ45QY4LkOuri9tPP//657/4/Ouvf//b3919/9328aE77U/DMMSsQMG7y6v1J69vP3l1s14uZ7OlDw0g5Sh5jGk4yrDV7m48bJFCtbiuisyIIA/bfkMmZua5vYoYmHl9sXgdb2JKQByapl0s79+/3T/cj4etpNE0mylxgWFIFfo+IppnYnb4bLl0i6bGpb15eQtG6LCpKxPJKRF6Kvw+g5KCqKAIyIAG9Hy790T+LI3syddRwQgYYNH6y3VzfbUMFb988+b151/e3Lxo2jaXOwpwHMbDbpdTqts5O8+aGYyJSqyFqvTd6XjYn47HOA7tYuWdLz64Roz/RhhmuoSqfT/uD7RpQlNX7ayVnMahNzDNaej6w3bXd91YlWKFsuSuO/VdH08jImjOVR1cFYCxFDEIKca8PZzu7neb3el4Gh0jIseYGCChMhESBg9WmQic+vHUjzFnVSX+44cwiZNUCwcIn7J7EQAUgZEAwRDRsfO+aH7NLKvmSdcklsVSlpRzLNkDkrNIVigFIgCQc1iCCIhsCn49VzJPRaqdSUA4tZOexh+DOPCcW/I/ZBQP0Pl8PpvNvPfjOB6Px77vU0pP/JL/ccM5t1xdLJcX49inJICESDqBMTKO436/L0ZzqopFIHeeA53zy+USAFT17u5uu909PDyUn4oxZZE1Uoxxv9ttt9uu63IchmE4HY9I3I9jVVeHwz7G3jtqqvnFxXq9Xs/mc3YupbTf7/b7fUmF/DcMnZzCDAyYkQlBgQk9Q0m5UQAmMAJiZMfsiVxJkFcDnTLcVQ2QyIVgyBqFFSpfvD0gGRn4ykkVFl4PKe1LHW2GyEhGZFrsVbXEpttZG4FGBGxIAA6mqkX/xH0lasch7/u0aAVi7vth6Lo4jgKw32z2m82iWaFBVdeOud/vj493+bDhy4vAXgnGLDFrFlO17P3QH/e7Td91oaqa5erm5au6nenjvWNGMNOsAipKqgwQGNUwS4pJaFRJggjBO1NyjJU3kpzGnETBUjYQRGQOwRtiFEPI8MMSnxBrFxrvwSglyWM/9jGmZEiSRcXQIK1HPIegBe+IfIxjyvHUnw6ng/f+eDoMw6DFzuU8zCyOMWfxvmrrtsR3IJCZxhj3+/3bd28/fPgwjiMiEhekAgnBvJ+17XqxaOpahhT7MfUjJPPOFQkzI7MCEDG7it3TQyiih1O/3R2axaFqGnZMJhSd5XE8HXJOXNW+auq6rUJLXDkKTM4TcslGUjEtbEktSIzi5L4GOKHIJcBJDcr8hOeoXSMyM5mcH9DKNygAQDGiYiQG8CBmA2vvJZkSxcwQSNEr1DG1qSH90VpXnCTOWyabdvdM2gTXVKGqgnMu5tJgyOMIqlpVYdZUs6ZZtZ4Rh5japslmQ8pJnjTTRsBMgSi07fz16xevX734u//5/3L96tMM/v5x07S/+vDu+9Nhh6CLWRuqQERjtCpUbYt1UzWz1sxiTOa0lMVmlnMyHH3fl+C5pwOZ9KkOwZWmXdI01o5uX716/Wl9eXP7xWdfvPv9Hx4+vNvuNpvdbns4jjE7R5988snnn336+tXr9cVlM1+60ACSJIl8GnIvKaa+y0l8veRmBoSqMeXOTHLsxm5PfuetxpqCdxerhZmmpKpoiKowDmPsexm7HFkJkShUFTPJxIZVRDD6MdTvKOfa8YvrS8chhKqeLxksDaNzFbpS/JpYMVVTmKQL54Z/UepAsUdDAELD6WsGloHVGi+XC/rk1eJx50JwaiCARs4XmzgiNTQ8pHPIj6kCStGPESEAlViic1rXZCioWqbRHzQ5JmucJzrJ05judgOAklGYYjqe8HF7bNrm+hYQYRz6mMax9/3ptN9uu+PpxMyeybGCjuOYxhjHPBktmFRgxE5Es2jOcjwOd4+HD3eHw34co2LFAChiMYlpLiERgOhVxyz7Y7c/dhP9bfqwz5wiClFRQLKJWClWyIwQFQHRxIyKHIgUTJmoIP9PaX5ZJGcZcx5zHkWGLH1KQ86p1EXZVExFANE5dkTFU96ADAyeARhPrRlVlZJPAoBmCgXxggn1srOQBazcE//DahggoqZplsvlarUKIXRdt9lsdrvd6XSaz+eFw/j8w//HDh+q69uX17cv37/9fhj60rE1BQEj0hjj8Xg8Ho9xHEWUmT5KKibDT79areo6tO3M7Ld3d/d/+MN39/f3j4+bV69e6Wd2OBy2281+txu6TnMahuF4PIwx8W5HzFkiIaxXi6qqb26uL6+u2vncALquf9w8bneb/FHa+hcQexVAFMSgCCM9c/DICExFggVgU//Ypn1noVpmMQIRNTmXyKKKyD4QkGRNwYAYU05jzCCIWFVmwbWOKhXIWUVKzkEueY6EpKhEapjlbISkCADmwBiskMVzqWPIntHzpkuc1ba93p/ybCY0pkPXn7rT2HUwjnfv3s9n67SOQ38q2czD6XjaPMbtA97ezJZrIE85m+Q8Zsk5EfSH7XH3OI5d0zar1cXiYs0uwG6rqiYKklGBVHF6DIEMQFRyGnIkw6by3nMvhqAVZ4lmpKPEcbRkZKjkXFOj53gcY87mS2ji+W5VkbHr+v0BgHPWoe9jzCJmSL30IgZm/akvXrreUfDOOzc4ypr6sTsNJx55t90eLg4pJVNDR4TEzlVVNV/Ms+RXL19dX996583MOcpZ4jhs95vvv//+/d2HlLJ33hF7opoxePZ1qJumrSpL2u26OCSP6AK7so1ENDAH4Jgo+CYUpz8AAANU8Al8NOqS8OmkOZlnkhS7Tgld61wIzJ7IEwai4L3zCKwJQdFwkhqUnXSxiWBAsGJTigBF7lV06o5JEWNRaZxd7QyguCdPO2+ksg44TA40SIf923DYYjc647pqfFWhYzLlcVytxOmEbgIiMgGjZAWTssgRaBHTmUbVBCaFgZ0IQKH4iceUnXO+aW5evfjmy89mTbV93MzWN65uBtEhm0+ak1oGJO9C07aLmxcvf/63f7dcrv6v//f/9eWbzwfFu7v7V68++f1vf/3+u98M/bFuKhU7HE6igw/NMrQXVxfXt1fOh5Szak4pK6IhZsm57w3odDpKnkITCSF4rCuuavaBidBBjt0hno6kerFeXVxdf/3FV9uH++3mcbvb3T08fP/+bn84iKQvP331xVffvP7ks+VqFkIFyADEzojJZJShGcibb5u6BsakKefeIpsqUgWG4zhq6Jt61lR121TeuZwkxtz1/X67q6vah8qHWkKFlplhPp8jwqk7RRXvXeEmZZHnM5xTM2KazRhwgcTsK5Ix9puqIubasMTRFcMZBEBDlGLhDDBlnOqTdQigAQqoKZoZKuXNzB9vL+2bLy4+bJrQskiOWSqxipiIio4Cidg574NzzsZRCv4HWAj95ZVLn1xEcowGpCKSzmb6//ZRBM+nLnZDLrlzmrMkjTCc9ofd7nA8HAEmxSIgiEjhtRORgWawJIbkRDSmPAxxf+jvHo7bbT8Wob2aiIlYBs0ihY5GmXzKw5iOp/7UjyL6Z9iXWlD+DFp6SFycqT+SkoqNBgH4otJDRDMVlSw555hzzBKzDCKD5EHyWDxqCv4vCqLE5BEDc3DsHE1I68dW0nmzcbbdVECCkvgGAkX6WlhzUw6T2ZOv73+MT8xPR9mANk1zcXGxXC5V9XQ6bbfbw+HQtm1p7Rco/3/Eu4cQXrx49fL1m8Nh3/VHfWIyGJiBZOn7/nQ6DcOQUvoRLFToqs652awl4uPx1PfD8Xjc7yOzKySf4+nw8PBwOh0kZxXpuxMCADsDFDMmqCpu22o2m9V1I2ZdP4r22+12t9t1p5NMJqZ/8TOhYPlMFkAgJnAITEhnR2gzQ8WzSpcL8qQmpoVJGscYYzYDJEIANnBsiNg4SOJ4GIbEZCEQNLqo05wpADAxAgCSIQGSIyobehFDADGeTO6L2hChONvan0FissKmz+/2o3MnHvbvN/vtoUtJCXDoh+PhwMb9YS+qzAzMqJK6Yzzs1Af2FcaEKcKYMkCv6bR7PO23cejrqqrbxldBgYuzSByGPA4GSICeWA0VFFVR1SSnmNggBGeoKAlMDI0IfOUp6zikPmlx/XQqoOoJK8fZyfPkZ1XtTv1hfyruOylGyWaApprzaGaOaey6NI6So0lGEyamokjWHMcREUs+XSnoi2W4mgJa8G4+ay8uLtfri6qqiIgYZUz7w/bx4W7zeH86HMisCsEjBabWU9tUs8Xc+WCCwxjTkHIUV3kksuLvT0RobIZqxBDCR3zcI90E/7oKN57naCFHhpQSQE5x7NEHnNJxGdARO+dd8N6BQc42EQBscopBNSg3gE04NE0+eKoqWQDBsQMwgokiA1Km9uKnj2h4pgACmpFaJeLGE+zf0v33vO8qpUWzqKoaHIGJDd1qDi4NT7eZmBVLMNAMdubjiGRL/dCPcciSCc0xeSZDcIzFBma+aG5vrz/94vOv//qvF/P55mHD1Xy2ujKuRrFw7oebEXNo2/n17YuqbtZXN59+/Ve3t29Gye1swcSztl7Mw377qJqHfjTwhnWYXbqquri5vrpaXqzapnZgIhSWCdC1wzDmrAAM6D/CwgACJnj2CkSTnPrj8bTfx+7kAJYXa7ry1+v18XjYH08Pm83Vi7vHzWPXHV/dXF3d3MyX66oJ+Cz02oeQqpqrFv0M0fv5nBxDGiB2SmwiRAG5BXRgyIjBsfceAC+Xi8Oyu2/bedsuFovuuJCxMxmYMpNVtTczGoAImElFYszDEJ+hSuAyoSoYZh/o6mJFRJj38ZilSowL4wbQA3gAAnNwBvMUwBSsONtO3rVimtESaIacQUeFkfJ+5u/f3Ij+4vq7u3i35yjjMPYuVA4rU+zjGMeRHc9m7Wq9Oj7MT3HQnJxDACy1NxARubqpvHcpjioGxqamEEvB8HQwZ1DjJ0jMs2FTrx7NMAtmLYkcxJhFc4z5eOp2h36760sTESedYjHXA09qCFGgG7IqpSTDkE79cDoNu8PYDcnAikl2zpLEIaqoEqKYJMl9TN0Quz7GIYHBOZLgI5Rx/pAgYpJNBPgsmMVn+8/CSkECR1QHX/vgiMnAxCRJzLmY3I0qo8igMqpG0aRT2UkAZdqo2DXeBcfe8QTT/qRdZGoikhEFRJAyTClcOnFjTEmtqGSlyGNNNT+vY/48KPJvhUxExDl3dXV1e3u72WxSSpvNZrPZXF1dPd0DT/j5f+D7AkCoqpdvXn/y6ed3d++Px93QSRYgpOLIpKoppXEculM3DIP3vtxmz96rSOLDYrl88+YNAOScT93JOXc8nn7961/vdtv7uw9j3xOhCByPx6EfgDmrjTGF4C4vlsF7QpeSvv/wsN0PZvDu/d1ht48xFszkz7sMPB+mptlKr5E1m7EKIRoTMqExA+gTDc4ReXaOHQBK1jymOIxDP6SYEIp9iQKgI/LONa0XFO6RBuiTqxLNcTnK6jDMopyAyv4VCBiIgTw6JlQHRJBtkn2blTm22BfJhFbiGf59Xqol0cdT+t1D13U9d5vNu83DfhDyRWkMarvd7rjddv2AzOv1erVYaEzdduOMXGhiNsmqY84qQ388PD70h30a+6byRCCSY06nrlOA7ngYT0dw7H1oKm+MeRxRBU1LxqyoJRuiyOnUgym1oar9fLlUFzfHbT8OIhkkkeSKqWrqNlQSxT9lkwBk0WPX7w4n5zwTFykxIqoZpCxiObo49kN3GrrT2J1iGxwrYPLeHJnlZEhE6BwhUgmHA9AY+xh7g+Q9zeezxWJRN40PnghjHu4fPtzfveuPB5RUOzYiAvSOq8bNZrOL5RKUNo/74TiAITMpQDIRQI/YBOcJDco5UPAfkdi5w79b+MUqLFrnK8xo0dIYY59iypHZwLKpCYAges8uOO+YUcXQZJoWP6IwKlgYb4CMRV1NICqSY3EB5tJSJiIWA6WCIoOUXTWVXWChRxilXI3RHffN/ffuu3/Gh02Tbb24bKrGGEViHk/V3Ls4FTFmlpLGmFEFVUAUVA0kSx7isD8dD1035tFAPINVbILMGGqetfWr19c/+/qLb37+9aeffd7OV4vLDL6dX72o22VSGJIUjEDEEHA2a5FvVheXzWJtXJ1i0hwd2dXVmvDTpnUPH95v7u5OfKya5a0LoVnVs1W7WLazummI0HIax6GfX3RD349jHobY9XG+uuWzXFzMjkl2Y5YgNQkT8hjHwyFsN7vH+8Xl1Wy5cDU75qpuluTIhdDMVqvVw8P9Yt66UCuW3sBzWQoSBwotNxcoyTUzciRuVK4Ynao4rtjP0C181TrHZVbxiG1VzepQB9c09fXVpeRRYw86JE5oGdFUS04nMGPOOgzj4djn5ynWyQDAENQxV+wJ1WyPcW/dCWButDBuAVvAYMCArFzAGBBFyYXrFFGjw0g2oPWoPcoI2iOO3nrHJ5wlvakNQ59hnwypWIQBmPXjOMbih43eO2ZX0CJ2goRFg1lWeWZyTACmIpNr7LPExH/XsCySksQkOQtOWxYT0W5Mu9OYUlYDwtLqZSJ0DI7R50QUAUgEU5JxTN0wDkMahpx0asioas6YRT2zc8xM3iPR5Ps5jimJFCnpH/9oCjlrLlRcKtsPQIdnV8Mp9qEED9YhVKGE35kWwEjOdgiqSTWd4+qtpIeIqFhZeHzJf3IuOEZi/DiZPlWBJqIlhAIQAFWhWCmWTFkrBU3GTIQZixrS9N+ikfm3DlV1zq3X64uLi77vReTx8fHx8XEcx8ViAf9jGklleO8vLq9uX7y8vLrePt7HcbDxo/mjqqaYhmE4nk59381ms0LsndqFUO5XQsQq1JeXV4VN6TceEFJKXddtNg/H46Hwe4rsWlWQyETSOJpKijknTUmOx+7YvwMkVfvw4cPxeFSRf+txT/oV5GmNVC07XlRiKq7dZChMPK/a1Xw+b2eVD6CWYoqxeOIkORMvCkWxrqsqhHYeBMWcGiuMtTlEj8lOm+Oyj4cMg0KhYIExaqG4TRhjiQvBktAyGUUDPreC/OkwgyzWDfEhZuy6U5+EwnJ9s1rM6noGQDHlmJIRhbpdLOrZYkXshiGK7og6scnTL4t2Y98f9paSR6wd144IisZPcoxDdxq7Y2hqJNQ8qqCmqHFMcYhx0BjZgIE05bE7qmqgGTN57w0wxjT2o6qYZktRPVdV5RgDY6CP3uiqNoy5H2JVoXeA5AiRuLidFxjSM9nYnw7bx03rTeOhdqd+GE4HSaOkyOzPoeh8JorpGIe+72IcQanEXDjniNBM+v509+Hd/ft3sTuxanBcPHO9d+0sNHXN5HLMYz/GIZkV7KTw+IE9VhVXnhBJlFJGrtxTKlmD9iWlFoaQTjboQHgE2WnMKY45GYAOg8RRUollRsfIZARmRFYUByUEQwv/r2z3EAlKOJKBmZhmyTFKThnJOVdVgYieglyectwKdEIIqiApS8wYxaJyNImqQ4KUWz6FnD2Zz4MNe3/akeTzddE4pjgmT4pmmrPljCBDiof+uD3sN4ddN5wItanZO28KSNjOmuur9evXt69f31xfX8xmbd3OqQrgZ2G2Yq5ytmiCamhmOauI96ElUADXtFly13coUdJIKN5BIAxIHnBWtevFqlms54vLer6uZovQVCGggaQY0xhjijmlFKUf4uHY39zc+KqeTgViYh6ZPTICESCL4Tj64+Hh4a69uJiv18weCatQITogx957R2AavFOFfkxEHPwUFE0GWlYVClTNSYRCy448N8aNUa0qzIG4Mmjt/8/en/XKsmTpgdgabHD3iNjDme5UlZU1cG42SbFbAtQPGoAGBAiCoCcBeul/0E96018Q9AcENfQg6EX9B7ohEOgW0BRFsprFqiKLWZVZWTfvdKY9xODuZrYGPVjEPudmDSxSWdBL2j04+569I2K7m9uwbK1vwKBmKkLICBBDmMZxt91e7XbzPD8+DsSEiDFGOHv/QDdSdAdpomrdvvBp+gdRJ3AGInSGFnBlfMw28/ytt2i4Vb72eAO0dcxOyYkNWSA0ZRHQVrEdop1CXAKeyPcEB7QT4IooiE5ESHgkGANME6uGcYocsNS5FV1FWxNVKWtprUn3kWuNGJHJ3MDhUoc2IuAYiKI2dHAkiuGDd5Jftgu/lDR+7iz+8f8jururtFrK6bQu25oTMfMwDDEnMZjXtqzSo6vuNMkEjMAMxIiI5mh6DoOa2Jlz15Of7uLGBKoOSOMQ8hBiIDE4rrZW6XKLcK7dIJzlUT9cnrmJnIU4emWEnAChnzL65L1wk2IehpSSO6iqqJh3da3zLXfcW39jDy9qa6Y99QrMFEKIIcQUic7C3h/e2DvTBMCt4zzPHknnetlZU1iNHAhIUAGIAOx7CJ/e4U/okH+f9vTefkndf+Dq6urx8VFV7+/v371792Q18PS4//1+3V/wLiIex831ze2LFy/v3r1+fHzo50LEc76q1jrPy+FwmE+zP/cOqu8VPEJijuegEHEax9ubZ69eHol4nmc36L53IqKmKUXG2GnkMQ9NlCg4OAK3pqfjejzJaV1LqbXW4/EwLzMRgDug/YXpp4/vhWIMecjjNCZZnOmchJdOBEEMjA4kMOT86tmrz19+9uLmdjOO9bjUWte11FK76w8SgZk1YQ5X2+1mM+UpNG8NTMGQJk48wCiwvr273vv7ucwKlRNFpnPPiZqpQgFUQuq1OVcF87PSvH80Cp4Knpc7ZYQp4RgA1AwhpCHfvti9erXbjNPmyilQpJjHYXOFMY5Xm2F7FadrobTfH1sVMA8pb7Y7NVgOp3paM4cwjVfTsE1hJHDyHAMTtXWt6zwkhobHZZVmtWJd27yclrKCtIFDV4e32proGgfEtortj8vpcGprjSGAczWq4iItOkawSPDBarxj27qUAhGiIzkHijkOYx7yMI7jbje0enr/7g1au38X1WppbSl13u9bKTzEFGMehpxTjEwEZrqu6/E0Hw4rU7io0nT5iHo67t98983b776TZUngkTnmFFLOQ56mTIDzaTntl+O8FhHmGIiZKDLFgGPiaQpDDkQgbmtNcRif3GCiysvlkR5fQ51b7lYQzAFARdalilray3jUdfXW2J3RyB3BCRFDxK536sjm3BlWBgQQAiHQGfrSqtZqtUmrZs4huPtZ3KUHPp0a+kHQKphaqa2sTZorjDp8qrsmbTfU9WWKzwPdoOyIBqmJI1wCMjcvaylr5REJsUnTVs11qethOd4fH949vj+c9jH41TaLh+5ffn29++yLzz77/NOr6ykGL+sRMGK+4b6Oq0mzZk5mKNpj0L6kuInUssyH1iq71jqfjg/vX3/77Y//+PH9nTYZdjcvX366u3mVY06bTb66ztttHhIRtQ4qMDX1jsucF7ne5DxMl8nPOE243dowNo7ddIrAj+vpzbvv0m67u30W05DyJoSgakyQmMaUrrcbAJjn5eHhYObjkEMgAkBDbdqqqiFxRgbiTH1XyUrDlakCoCm2hk1Ml6LWJzcThWnYvHj+fH9a7u7eq7SyzmVdEuPZfwAohmyGtZZSBf4U5i+8fXNPYKgewKLjlOv15kA0kzR0JB+d70GvPWyJBsWsmKqlU41ri1UCqEQ7THSY/BR4H/wRfQ9+dKjIwBwZpuqR1Mk5BEoc85AAwrouquIOqrau6/F4PBwOp9OptmaqrbWzNoABurd1Pe738/G4S0MI3I2jgYz/HGrPX665iKzLut+fdtuRwxRzDMQpZSRWgyqmohyQ0B2UEOjpuHhhdfTtvO/ZH9bXswMT9BhomobNJjPjWmU/z63JXyZRYXZRxlDt2+oHyCpjtwLoJ6p+qHLwrmnuZ4TK+b0i7SywYXbW7W1iBv2IxuFDY0LGjm1AN1PsApfalUbBANRNXMWki2tJh+0YI5w9cYncmQA+kr34xbdOHM05j+M4DMPxeLy/v3/9+vX9/f2zZ8+6I8Ff0a8mxBhjV3zZXV2HENw/pAO7YExZ1+PxNM+zyhl91jNgioBoZqRqwBw4TNP04sULAHhr75Z5ba0ty7IsS6lliCHFc+MQHDClCAApDcOw2W6vDWituq7Hu7v3p9OhlfLvcTvIzDGGnGKMwuyITEiIDIQG3hQMSWmXNz/49Fd++Cs/eHFzO6ZU7FjrWmsRaQDe08IOEAhzStdX2+12gxFK4zG3pg44BmVBWOv1brx9OFwdTnsxJwbnLtBgZm4qBkLoyAje5brsDHpQg64safpn1okDwVWm24mtBacR6HaA3VWOOUUMbAhAyDlvdtes0zANNEwVUhU4FdHWAiK5dx6nNAWD7TjhEHZD3g7pejOOIz6+eOFIOUYCDwDn4nw11wDS2rq2WiJizGG7GUV0zCdpy3wqZRVMtJSGBkNIQ0wKptbvGhwUTcm/Z+nV0WWISIFCB0ylMEzDbreZpnEchiGl1tb7u3fL8eBua1lEhQLPp6Ue50xZWzMVd+1VX9VW1rWUouqdLQHgZirSpNWyLIfHx+PhIK0x0TDkYRrjMMQUI3Mt9fFwOh3m2hp0XQeiyJwj54jTEMYhDUPgQE1NofBZqhAAAE1DXeK8N1Wv1WpOKY6JJ7fjMgtLCw91epR1dqlg4qYKQOhA3NWgEBHEyZ17xaXXIdWaFzM1ES8FaqPWuIM9EU1UkRAJGL1jZJDAHJv5Gbvmtfmx6anaScMBb9ZU65RTmJ+hvSB9CeUF+i0NzzFlOAvF9PJBq1VSINAqbV3XInV/Orzfv3tz9+bN++/uDw9EsN1mcXVAM95sp93VbtpMHFC0rcvJIUTKwJlKbESVCQOxC4lIa6ZnoytTcV8WJGZG97LODw9v79+9PtzfleMhchyQd3G4CglVo8gYwjgMw3Yijk1d9aJr6yDiU/VNhCfTRGIaNpvx5jqnIRD3EycjYeS1rYfj4+Pjw7S9uQ5DjLE/bmT2nHy77Yn8ZSkhBneIAcnPx26tzcwQGQFU3dCRyZCMWHoBQKypAZijAzWkiAzqndcW3f14POwf7k6Hx3WZITLzpY6oruKtqsqfYX4X/uhf/8TMtAmaDAQvbvA3fsBDBBw8BEA9Eiyue8CImBRysanN+f192M+52chMu1TiOBMcIu2DHtFmldlBEQJiAgumoZZSC7hl5hhjRsjKxYODY2ta1vXx4eHt23f39/dYG7q31lC7/gyQ+3w8vv7mm2GzzZvtNG2Z2ADU28e6wR8IyBcw8NNy96fP1p2jJGLzXO7vHzebYbsZaJMCh5jz2UwVW0+Ud00lNRdwOGe1z5KsiGc9hTMK8qJce5YVMEWCaTNe7SYk8NMKMHdZ6J7o/POAvX5OhZxbp0Q9wfS8Y60BOYSUcyf1uZ+NVd3B1KT1GVfrReSulFLqOccIQODORE+i44H4EsQQAhoYugqAmoKBiXXutjSRqlWk5+dVxEwZsUvdIyFoIARpH8zGfrGtRzDnCIw5xujud3d30zR99913z58/f/nyZe8Nu6j3/sKvgUPYbrfbzTbE8MEyExwcRHoyZj7NSyndf4ARqWsiualdSKIKGEJ49vwZAJxOp3fvdP/4cPf+3eP+cZ1PnhONEEI0M1mXJuamKQ3bze7Vy09/5Qc/DDG9fvfuT778k8fHx1aqqbp1Uae/LLC3pzacEJmRQwjcXXyoB7JmsjQ0jJSeTbd//Qe/+Td++Fsvbm5JwExKW2srakLMBOhujMApbTfTzfVu3IyllaYSOY0JiXJUbgabvLvZvHwc7x4P74ssCATIH6HUnQEJgJG6CxsgETM6aM9JttZadx24CCxenm1keDHiF1dBLJIPybdsgqLWjSFMzTHEvLt9FtwiUWO6WxoiAIQ8ps2QN8MwTVNZK1NIccjXt+w1Bdjl8ZNnzyhPIW+bwvXtbjOMQwhIoMTIqECFAM0YcMjD9fXVq1cvTG0uVtv79+8PpUmcAodwNW55EyKFoqIQ1Bp26qc01wYf0uNnrBkixBDzOKQUOfIwDtNmM43DmDMTicgyr/M8L8s6r8XNUmRyl1I3cVgeH4+Pj8t6qm3DjCK1llVEYko5jyEGRGjSuIK02lrt5G11gBjGzWaz26aUDLwt63F/vH94XJca8FyeigHGSGOiIdOY4zikNESODLXhvPpHQmTqfhR5lEZBrNXmKo2hcABLZV24Foy0eZB6cllNqkg08E7wCZE5BgJwUBAHczQgRFCrZa1S1+UEdR1aC4CJOHIwjh6YkLrQZIdQQZf2dSDvuE1T8eZ4MnzT5G2Bd5L3titMFIaN1xtfXxq8Uv3Ex9+CfA04nOeLm4pqEwH3tta2X5aH4/7d/btv3n7z5v13d/fvT/Me0acpq4m5q3NKDARNZVlLCCc3MCDDoOoaxEQJAFIIrmTNpWtn2lnUC0qT0lNm8+n0/t13h8d7Q8zDmDEMQPE0g97JWmC3HbY72O36vO4ltrMNHgB0UQToCJZOFeDt1fb2+U3OYzchQujraqCQ1X1/Okz7x2HcBU7MnMDJjTBHpiYipg5eSjXVztF3aeDOiN0KWM2aVMMKHI2oKFaxUquLE1EMRIHVvDQBAVGYi+yPp/fv3//syy+/+erLw8NdXU5Pgkpu3lpr0vSyrfRN6mkpCw+n2pqcTotJndiM4ivZPefkETA6YwMtridwIA9Ig/qWdUIbESmkXUwxZ095IV4BjugzWiF3QEbKSANSUsO12FrAjCnkToUPIZl558hN0zRMU5dgR0ZU9C7rD0AOhNjW9c1338Zp2t7c5mEap6vA7H9WUPbv1Ny9lPb4eLq6OtWXt95NcUIMMXDgn9v/HMDOArWdk+WAQH5RSP8g2H/+YtZdXD54fCCQn9lB//Ztxj5q/TvnfAziE4WImSOHfl45J38uR389uyidW6ut1dYubuG9RkbdOoW7u303h0W6aKSioxuYmEn3XdBWpdVWiqxNamulVRVxM0YyY3RgYjRgApG/QlDMkwip2dlttecw5nle1/VPlxF/gU1VuzUjMcYUe+nKwNGto4bArdY2z/M8z7V2TQ7Gi9iSmaHZpa6mzDRNY6u7zWaKMdRal3mWKqo9Jul3yqZCACnGYRjGcdxur549ez6MoxM97h+YSEXc/zzizl94Ox1R4Ga9V/nMsycDbSZLCxS3u83L6xe/+skXn7/4ZAq5ytrlZZCAAsUQ0F1aZaIU826attMQUxCp/ecpIBCjEDQfY3q2e3GaHx4Ob5uviBcGilvnHhFAr9DbxXSQu5va01Q07x44P3cj6B5cEygTM3EOAU11aQYVXQmczqoOEcylySoqpoFwk3LKaRhjygmZgCmmPE7bOETyiiCcNxSHkMbtFTb1mBMAqRoq9G0V3ck9IBhRpxyLmqo7diU/mdc1GA1D2uU4phCIqXoEckfvDHcz+3k2nxFCSnGahmGaUk4ceRjzZppyikzcmhyPp+Px+LjfL0sxdUYcEickctBal3meT8da1laLM7lqDDTk7lQQ3Ky1Kq0aA4KlHK9vrm+fPSu1qOm42Q7DhIRa67KU03FdShO1FDFwYOJAFAPmhMMQUg7AQYHBUNVVmok8BWQKcHI/uAc3dBUxdXUjBOVWWJpTtPWIsqK3LsvcPSWICEKgEAJ0FWlwAHV3EzdRbbbOfnig9cS1RmLME44bn9gRFdEQe/jijNDrkeh9T1EzdXdCJVzNjw4PmB7itkC2vIte76y81/V1O32Nk6Vnfwvj7dMwI3TwJiJSj+v67vHxq9fffvX6m6+/++ru/t08HxzalCPzuQblYKbS3dCIsZcdREENYzMOomKIYCkGMIZK1sDFVMRFtak3a9601bUcD4fH+3ettLzdxU3IYhPnVBu3g6yzEbhU6I7TnYehctFBAdN+yPqQn0bsXigxxdAFY7u0PyIbYJN6Ou73+4ft9irFmHOOIVoAMzbPTaVKUwNCAoNm6lK1nMBaPIucork3VQVyigJcFKtiU2WggalXyYmDA5Uqh+P67dt3P/v665999bM3r799vH9f5pO21bA/OHKHJk1V4TLxfw5LGtLtK1nLKo/FZw1ySmkdpjoMkjGygs9o5lK8iVVCthjDNo8vb6crfsmbH6ScEj5mAy7faVlQVjJjGjBkiCPEASgptqXpUkAhAWaESBRCjA5GDhzj9mrr1t589dN22s/3b9syI1E3l2fCHIKbvnvzRpmH7RWn4YtfncYh6xODH/qI6REn9GpKh8o9ASm+v+Y9neFQTefTcjycllpVzVPnQjEz4ZkqfBYFRvfuJ3XRtD17xwKgmSM+kXUuyJwzkduWpeaYAmNresGZ+CVK/nMyMR10IucQ5Ano07dn79Q+dz4DXc6Ht8vPLqP3HO4QOGg3hOwRDFMX7WfuaohP4dpZdMy9+264NlUxrSpVam1lraV0a2xZay2tqCqYM5N7IsTAAQECo/7lArV/p/aEcemdUErp+uiImC6+1h+/GC4Yil/glbRW3797/e7td7UsgOeEgPUq/uX39hrlMs9rKdKU2ZkukgTuZkoEZucBhEgxhc12u9lMPSQKIbglDrGLDuScVIMnd6Scp5gyMgEAEY45jikRXvS0/6wbfdr9nzrk6UfmLiKltdJqU0kQAUCbmDkhapO2tDwOz7fPPnv26aurl7u88dq0FgKPMQzjYGqB2Zpoq4S4m8bdNMaAT3qJgTgydnZwdc2EL66fNf3icX6ntM76IFbkbL/o5M70pHEMTAQAHcEZ+KxYxRygk5W+r7qo6vNp3e9PQISBl8jk6OJoxGCJkLubL/Gq+lhqqY0QtjmlMOSYCEHNFikCnjcbDpm0gjV3aym/W5ykzEUBwEuHqzkDeHeGNQXTTN1pyg/HeW2tNrt7PJ5KxcisrFJkESdCUuJAIlAWFxEjQzAn+55ApKNbZNxux93VNo9DSqmjlzbjSIh1bfv94fXbd4/7w1pWItwO4ybnIRA5dIX5UmspRWrT1kCcwW6uds+f3bx5805VS5mX5ShtgJFj5Nvb69/4rV9XVWA+HY/juCWm1uoyl+N+XeaGwDGEwClQJOJAxAycMA6BUlydvDprbWUupchHbsmGuBAeiRIjMTiiUSczKrmwI7eVpSTXCE5nvgY4EFDAfrJCgMhKqApam64rrAuvS1qOef/Ap32aTwwE2xu6eoYheRoEUQIpgTFCYCB0J0FTcEEXckNg4JhCYsyMY44VNuTcEIG4gN1b3a+nL48Pw+6L/5TzeSoRUYzAXFtd1uXhePrm3bt/9eMf//hPfvr6zXfH04FQx4FsN+ZEPTJVALOjATZp3fhXRJuYiKeqIao2AzONmdEDaQQhFANRaOZVXRRsXeb79++P+8eynGLeXn3y2RR3vJ/HKqM569qkooujK4KZO1iTJiK9/tZ1di5mbhcLBQfvmgHmMQYOgYhFAYCAuFGYj4+HYdpvpmEI0/h8mgZw7vl/NVczUVQBaVrXsmot60nrPlglBI4ZKJiDAYtzVZ4FFUJIOWUexzSknHJgjgrhMB+/+vbNH/7kJz/60R/85Mc/erx/L7V0Xq4Rgpn23IGdM/0XD43vZRjC9adfxGVdw8TraQqSbtDyIBycEEgAK3qPYjv0zEJoQ9DdgJshxqtNyJl0pYIoAtg6AlQtqLABmphCuz+2+5OeClsMoSvoeY+VHdxCCHkcb26ub25uNrvN+vjeXANSQFRHQkQC0XacTxbC+zdvnr949emnX9B5EfneCcYBvq9+929rBGa2lHJa1nUttbWcUyeQ/Hm8oadq7/n//GmTeIKy9qsAMxCxWmVeagprilxrEzF7Evf/C9ufmYkxM+euA4uMGIkiEvcwqqNgTLu6tj0VOfx8JWeVGIC+0GNgCnzOv3QnCUO4aL40VWmt1VZrq6Wua1lLWdZ1LmWutdS6ttakmSoBmDEhMGOMkRgBWP8q2UkA4O4Xt+f96XTqvdSB4X9FOZjeSinffvvVz372U0Kb56NKs7OUscEZn9UdZdeeFqq1hhAxYLfL7LVO1R5uOBEAMDMNQ85DAnAzIyTmwCGcNwsOnaoNgBwzAIhIrYUY12WpZVGpf3lO9c81sQ6RaqItWEZ1a83FCMHEXH0Mw6fPPvn8xafXm13mWLTb9vI4DCFGFUOz0mWHmHPMYx4CsyOdj1tMCu7mwYxRcsCQtqvc3lw925f383Ffq5zLseLsjuhIHfZw3s3Osmkfgcm7k/3PPWT3XpMxTmgqszRTN8HoNpEP5BEBgKpCaXYqWqomgoHMFUy8gYqYkpmTYcCQgBg9A6IG2ld3adJju6qiHlAJnLrgI6CKdrdCbW1eS7mXpchcmohzoGlMUjS6oVVQIIqJfJchEgK5mIt6+8gKBhFDoJzTNE3TZuQQUgpDzjmnyCSi8zw/7o/3j4fT6YQEA8ccOUcORK4u3rH9ru4qoq0YKFibhrSdhhT4sCx379/GgCkAuY5TZqLnz56fPp+Px9Pd+4SIIq02WZeyzKUVJQjdeKLjVIgRGYB7eEFLM1OL3qxJ16J6ei4G0IAKEgAxni3aHIABByZ3SoBJbSolzXMc50QJY2THYMAKhE6EgOQMAm5koBWXY9g/pP1jeryPpz0vJ0DyWl0NQjAkAycaPHYTSQAgRwJGSUHZ0Byaaiu6HuX0IPv3sj94NeYpDttxe8Uxu0tbjifAJW+UPkpgMKn7PM939/ffvn79k6+++qM/+ZOffvnl/eNDq2XIpJaYURr3nIEjtGaldvJKF4h0dzDF2pSp1VR0LTXkQBjJMhgFg+id1qcutbXDw+Pbb7+Zj/sYOI9XebMbhmtvDvUoy6y1qotr6zpdoh2c0oMYAMeuE/JzUb+ZlaUspyVE0RRTinSWCSWkYOKujgCBnFACOeJN6t5hCAHQnFS8gro6Yrc11VbX1o4IxmlEiuqoTuIsHo2GkNJ2GjbTOA0phIiIa5G7h8c/+eqb3/tXf/CjP/qjL7/8yZs339SyUOcqwtl8+glW+BfsmOGzH/xwrXV8fiptztiuhzWkWUVAEcFcEIwIIhADMHT/aKgDLGpzsBO15rLHemBfAimlVCscZji1snitRqLh/aO/fq+HRuk6ECFY8dZMqkoVaSiBCVWEmJCpSC2tRB66AJS7iXpTraWWeZ73+/Vw0HWBcbLarBfI+0IGH/Ig4ODoH9tefBiI2Ll5nYJnBl5F11LneVnXdTPkD7wauqQ4/FKm/lPe3U/wl0t3n1/Y602iWmqb5yUw5BS7XZKJo8HPuQv9qXZGNp6BvdDliaDDtRExECXijJQBEiK5d5G7rnHXpNd5wB2th8wCzVzhrNnsgSAQhK7qzgAM1tMFrmqqUlprrZZa11LXdVnXdVmWeV3nuiytlNZEpfuIdkq1GIqSmIgRKuoldfQLbB/H3p2c/P79+++++26e55zzzc3N4XCY5/kSp5Gd58D3LuNPX9W/E2hmXdcvv/zpH/7oX49jPh4e1zK7N3cFAHcCwg45X5b1eJyXeV7LGlPq0ScAOHrnZjKjn/llwd1DYCIy1R6EXVKBpO4O2JNMZu5AIm0+zfvD/jTPb9++efv2zbIcAawb2l0szv5SrcOGpBvTibRanMhq86bggI6R4s32+lc+/eKLV59OKaMZqBLgkDMxG5A0Wee5rlXEyIwohJCYoiPF4FFJRNQVQDRAioDIznEzjJtxl+LYms1roYRd1kPNBRS8W38B+KVO3+nrIrXUSiy1nYttH7GTEDBwGFLOU2zaHvbH47y24okAxxASD5FVfS7tuNS1iogxesO2nBaUGlidTMkdCTwRMCMyMYdghEXcoJ/+vLmsAuR+VuxFCGcBcXPRtbXDXB7neV5bU4sh3V7v8jD6EEAErLpXQpzGmMexND0s9XCqp6q16JOuEiLlYZw20zCNMSUzA/AUKDGZ6jwv94+PD4/7da1EvJ2GzRDHwHQ+e3hRT44UIkd2kKYFtboqkzMRuJ0Oh/m4Pz7eey11nndXOyIOFG+ubl6+eOnu+8O+llpqKbVKFVeLIZ0Ns5goEAZwBiVUInOYl9VVOWGvQoPjh0nm6E7WR4f1tBoQUUaMEa8weJiC87Q/jW/fDz4MSsP1NQXzpuiNlZGZAwISgbBb0MbrHN+9y+/ejI8PaTmSFedQ+wkGTKRKu1bdwXaDNBBwT+VRQMiBTEmkHup6d394983+uz95+Pbr+7evS5GUbm6ef/5rU7raZAVeDO+CvKKWnk4IiA6wtvbu4eHLb77+8R//9A//+MdffvXV+/t7kQpoalSbHU+1MLkaIcZEyOpeSumAIIscArM7hCZga8RTC4fMKTIlhAoaEuI20DbSGJvp6XC6e/v+uy9/1sry/NUrQgJwVRGtdT21+weuzRKn2lRVzECaA4uKaDM94ygdiKiLvZ2bih6P8+PDMeeUc25ZuFulOiIz8bKcTut8LPN+Pj7O8/zy1WfPnr3YTGNgYnIAMxWVZupgjIAA0TyqmllDQ4NWxUVRIIS82V5fXd1c3d5eb8YpMqvCaalv3z783u//we/+/r/6vd//l19989WyHkRbCDiMQysnb2Qm6E7dowoRL9afABesyaWFcdpQSpVjamMACXQU0qLaVASaNLPm2A0/QmBiJEcX1BXbEeoRfEBtaIAezJMAH5q/PrT72WeFYqhGh5kONTSYMiYEsNacOurCXdTQW6nuMG22u+vbze4KVM61dnU1dUegOE5ht73eTtsUkom1UrV1KNqH9sH32b8Xef6Z63rPh5i7i6ylzqf5dJp346Aq398M/Oc/w3/+Y/68Zuat6bLWwKiqtYmI+F8uEwNw3me8c7eh24KYqjKROYJZAIxE3QvLn8hHImqmZmf6d5PWpY39Yk/TK2JM0MlxDmbdqqR7TkoTqbXVWtda11KWUtb+p9a11tpq1S4G6njOJ1wKUKZqRvhnoBZ+sa2bD2w2m5RSrbXnKrpabmtn/6C/Ckhva+XN629/9uVPN9tJaqllAbdLIsQQOYTIzK3VeZ5Pp3ld12naePgQZ/dgBs6uGvQUciGiiHTQEmJ31TvXMTuEGbpLsGqp5XQ6ufvbt2/u7t7Xsv4Fdcm/oDHimNP1Znq23YFbGBIRQVSXs41LDsMnz25fPbu5mgbXUuZDXU8iK4FEBidEwEoGKIDqhA7dqosdyUzADUERG6EySQqCiE44ZLzZTs+vrg/LDQelCEQYwMkcTdysGdi5+EUd8AU9iAnxetxcj9MmDQHDx7fs7lqrl0qZEsBAWMDnuqrbQDF6JGFVOK1tWVur4mZA5gJlIRQiNidTAiBCcsIQiELwSOSIzdwAlBDACRTdURXM0C0QDhwY0Q1EpJVWSlmWdS3VDNgBWiMCBHAEMXXEEHAcQ4y8VhGry9whDB8WZSQMMYaUkLkLKVLX2nRvomtZj/NpWVcESDFuh2GTAhOggzmoezNfq+wPp7fv77/65tu1zAG76hs+3t+f9o+Hx4da1uV4YPfldLy6vs7DgETzPJsbETq6qHROgHbA/oXf4Ge+N4eEnCKE6Ib9iHehvZN9kLwBBAhIGSkjB+SuF4pIjMAUA0XmxKr8cBeN01rS6XE43eLmSvJocYQhe0yYAqJTKzAfwsNdePsmvf0mvX83HI6proRqIWATbBXqoqdHvL7Bqxu8vvVpo2HQmIW5ki8uc1lPp9P9u/evv/769TffvH799bu33z3cv9emQ7qe5sNCkG+fQ2DUZTi+H8v4RBxT1dN8evdw9/Wb77785quffvPld2+/Oy0HB4mpJx6JAzqBuJs5gmtzaC6iuMhS3R3HaYgxOGIMBlqqLmKHBJyJEkJGj1OMNIU0hQRLqe/f3b399vXd67fgdn373A20VoEiLgYiWlgbeSbT1hrXYkgOKK1K6/7y3kluBvTxmqxmx1N9OKxjg9QgFu1aBwTdLosM5nA8Hk/H/Wk+rnJcahW9ub7KAQIJ+urexVMjw22K1IZJvaoXrasbiEIVNyCKMQ/T1fXu9mZ3tZlSiNLkdDh9++b9v/k3f/Tb//yf/u7v/d5P/vhHDw93GCDltNlMxEjM2CUPz/SDf8tSFtZlLqql1iIC5kJIgJPqbCf0tZTWilozjjgxDoQJwUykLk2OxPswQAoBaat+XVXm1t6d2pfv+d2eC4yCGXkQi5ogcCYewFCqIhFRCOwNTdRqVUS+ffbyiy9+iEXup9d1mZdlbtXEIUAYp+nq5vazz7744W/81stXnznyvDbtcMaPgo0Lo8fNjAD9ycLDLxiRj5p34JUDWne9mQ/749U01VLPSdEPYitwSa+c8VoA8KcTDXj54ZlvAeAGqlZLWxk7tN1UAbwTVPyswoQfoWj8ow/Ds8+VA6j1y3UUqQBmilJTvmDgun1JN3JXEe3AoNZaLWVd11pLT8s82QJA11zr0YebmhJ0RRnttMsmHcXbFc1aldbM1C9QF+xoBeo0fzrLy3wkMPOLxsR8TDJHxGEYfvCDH6zrmlJ6eHhw9+1221rrkv9P6Bn4CEnzC7keEd0/Prx58914GBC81oJ49uTqzyKnFGNU7f4Dx3lerq+t65xcLuCctPt+dvD84a3V1irzmV96dodRc2gqvdhBqlrWtdRyd3f3+Pj4pFz5/fHzb28hhhe317/26SfW6sPhGi9WT113FYEz589fvrzaRoTldHingWUtPU3tCEAsKmIHxzlkYfYGx1lA1gzITXqetLmpgxNqCOrk5suQ1hc32fHVmPVUXwArkUdyBsczbsDUzi5pRGdsmqq2Und5+sEnn726fp7j2PnZ/V5MZd0/nO7eB9iMm+HFbhqYyrKua12rgdSTmgkuiqu6qjI4M6BbaxWUiMEJjDuPAIiUEYMEUUFmD+yE6qjmrupmYIpm7pqIMEIkOhu6qKFDCqGfpdi1HA+2EFMXitUYUhzzuMmJnEAyW0BjUPpY3hoQmQyxU7JyCiEEBxCV1qTUutaqruOQxhSnEBLzmRmp51XqNC9/8rNv5lofHt6/eH692wyR2Zq+f3f33bdfP97dm1ktq9T6/v273dUu5QEIm+q8zKWsIs3damuttZ5tBexYCOxmECHwNKZhHDjlZjBkc66RelocxT/48zHBhvE6hiEGDoHhHMQEosgciSMS15Xuv8XjHb37CqYt7K5sc+XbrW9uZHeD44ZTRlBejnh48Pt3fncPD3d0PGEVUmNAakql8LLHhzeQB9jsdHcLty/b9qYO4zGmR/dHKffz8e7u7t13r9+//vbdN9/eP7yf12OpRUzcacXH0937N999OWy2w3YcM4+k5eXgckZeNmlv37/58qsvf/r1n3z53c/ePrxe5TiMlPKITExADMxIjGAo1aV5PedM1F1pUXPcbKacU0iRkMFMai1z46qDUyaMEQcbN1eYJVrj4+Hw7Vdff/vl14f7wzCkDvety8yGjm4D6xQ0WIxBCWutuMysBohSm0gTbY5IISMSmMlHS7IaHFa7P1kxC00AhBEjYwi9KK5iAgTpsN4f6+PRDktTg3nZDVEjzqD3BEsInoebzfSbaXpO8ZpytpBkOdq6uguyj3HY3d5e394+e/Z8HMeIVJf18XH/s6+++b1//Qf/4nd/95//s9/+6U9/cjjsRWrIkVBrQEQgphhj66q2T9WQp/nRoagfY2LW5VTUaqtVDDwgw0rhWPD9QfYmy9HrSto4RNo23jbeDmxGj8da4Ej1YdyGq90YcFf15lTk4XR6ewj3Kx0kVM9KiTABMiYgDg6gqg5OTuTUOmtSFdwcfHd1/cnnX5D7Zrc77O8Ph308HVU1pbS7unr56pNPP/ns+aef5u22mbV1cVOVDyCySymkczuCKxgaPoUhl73ifKbou/4ZCGXLst7f74cchxRVdFnWnp4UEQNC6NrB53LSR8Wjpz3p6e8eJljvdTRA0DUAoZmSqJdS+urQ1Nz79WFPe3yM5/COcGlNakMHveiHqxCzKDMT12E0U3A303PsIU1aFamdjlprLXUtHY5bzwlXBUBy5n5z0lRaa9il97osaZMqPQ1T1jMxu5RWq7R6zvOImpobAnon3pi5OwGUwuhuzK21vzpsirsPw/D5558j4m632+/3rbUY49XV1TRNHcn7C4f09qba9vuHcnooJwImAAU7o6hVW1dKZWZVLWU9Hk89M6RdtMEvUSv4k/RfCEG7bHSt87KcTnNZlxijiLidqTitNRJUMweCwKo6L/PpdLy7e//w8FBrAbiMu39b+/i5MOIY8/Ptlb369MXuuiONicgdu75wpHCzuwrYltP9+zJHROsUR+pBDIrquiylFcdVgU/lTvAUOAJyRwCIqoEaoPbaqIG5setVct5Nm/CqyM5JEC0yMDiqqZmKd1cxPKsW9elgKjLE/PLq2SZO1qCsFx0egB6z67rU2QPaOA6kzaWUddaGM0AQdyeF2MyrVEKPRhwCUBAiQrBuJUMAgZg5IsXA0gKFQCkAs0B3AlFXcVMwc1dFxKgB0XuapEqpTVp1VTAwtbWUCl3ws4uVWD6cVFpGa1XaWl2Fwb8nd4XQS80qYipMkRlNtYme5vV0mpd1bVJjIgInV1QwBDVbmy5NS1Optuq707o87B9urja77ZBCINX1eHx897YsKyCbqkqrda1tCSkpgPQ8qqlpK8varUy9GRmpKLj3Ar2xIXAKFJjFXMTNDU3dRVsrpdX2YR0j98n0yiS7BOcAQA4MEBwCELsGNPZK5YiOgMFD0mHScUPTxjbXtL3BccMxgSstRzvt/fAYTqe4rrEJKQKgQ3AEQMViDBZD8Hlvpwc43LU8HUL6xuHLdf1umR8Ox/v7u/vXbx7fvz8+3JdanAEZAnNAZiu4HJfj+zakth01RWNYf/CZtbMCU6n1q9dvfvL116/v3j+uJ2Mfd8OWM6ND9/gDcXBHVzEMZkVk9dasqrSqpquapRQ75uFmJxyiF2+nBeYSiiaCNKVNuNZlHNdIYIfTfCxNQ96+/HxztZ1efB52zyBNFkeMA8aEgbmVwMy7bNRqOXorqlbOhw3DEOPgpGDgQ2CzCYABQA2W1Q4nVdcQ0d0ZMcfAbH3CqTUDZ2q5YNMcx6uXL9eY+VH33t6jvBlTe/5sOw1DihaHgHmDaYKY0rCTddbW3CCltL3ebjZDwKZrq6U+3D9+9c23f/CjP/qnv/0v/uXv//4f/uGPHu/fATgAmWWA7iyG0neaJqrtLCD7wd7Afm4dA4BQllNVrXUVxcCjOzSKe83LPlqR0+y1uokHwmGg6218eTOgw7uHddVTmB6uno2Qr3K8OtZnDyd5+w4Ps0O8HncZxAQMgyKcpV2bFVVNHBVQSiulzMusZpwSIQ3b4Vl4OeR48/LZ/vBwnA/rOoP7kMftdnt782yz3YaUK5m21VRAS6k37nJZyED17KmraoYIl1Py01KICIj0JP/ai4aqasf5NbpaA1NE3B8O67qua1lro0bYIZcXFVr73pH6+3/b2TnV8Zy/aS0wGrhIY1E7HtfTUue5ihqHM3y4lGo+L8vylPFzs1rKOs9uHmO8xDDERCGEwBw4tGk6ByK1lsKyLrUuUqu0Uta6Lksp3dShrmU9zaelVDFTQGI2hxBjiinHHJyMGgGgmam2Jk1qqeeieCll6UFQraXVWmvT2kzUFN0BkAkJAIlajKoqNYUQ1rL+VVSUnvo5pfTJJ59cXV396q/+areYd3dmnqZpmqanhM3T37+oJiL7wwMAABj8nKCfw7quV1feETCttcPh2GE6OefzoPhIXBoAzIyZRToJ8/T4+HA4PgJAlbaZxxwjETGCmXY1OaRArCLtdDo+PDzc3b0/Hff/TtffXRqeLtibJoyvrl/IlV10lnoa0QGcABmxLIe3ZWY4+/eAm6M9qQ1Y11d0A8CmBzwSdZy4ozsYGvg5He8E3qH8TtkoMGw2o0EyNARj9F7adMfuDA39zPVE+vKePuTE0QUPx2W/OT0pXyFSjikwtXU9SlmOdFzrfNgfj4tICwADpUgRqFW143wCVJlSG/Im5UgM6qrSVKxDgVIcQkwxRgoUmCR2L8YzclI6M13d1dwbLAhu5mLaxEprqzQ1YyByIDtnJoEcmQ6n+fFhHwkTIiE5xmrOBDE+sbIAARiQ3U3FTRmNUVVkXurD4+H+8TAvS2sV1VhbtgzMhlBEDms5NauKDgytLev6uH/4mrvEKG4IMjiBEBFExoumAgdg1nbWS3dpIrXsHx7fvX8/7+fBU8IERkZgIJ5goGSNwEZTncsyV2nrSlIJrK7r6TQvy2KXMUbmY1236ykhxqgBMADFM10DnREYGT0YBgNyRAy6HG0fNEQNCUKGECkEc621qFRUieYjYgIKQAAkGBRJwZXRmYlg8AJz8fntocn7Vf7Nfv7t9/c/O5zmKrUUXcQEAIATxIFzjMkgO46EiSAk4Gjoq87H9XBYv/3aLjKSc6k//vq7P/z6O8GKw3QzciCLARnVvYrUWmtrtUmrrQI34ybgqOqlNbW2wloOa1mPp2NtZXn5fLvbMVCpa5vn9v7I5Jtnu+uJdN6NmW1ZS9Fw8+zF7avrm9vtzc3m6maYdilPxIMTs0p8ccg2Zywc2Aetui8LnE7l8HioojHlOE2DAAVtxpFAddeRMaa+FptnBdSkRIRGBIAk6KZ+QTx0/KRsCTGHdK0e3739Ztm/JXnz4ja+fPHJZvN8mK44bcByiDxtRlM1ad3lCkEdmtbl8d3rMu/Laf7229f/+kc//he/+wf/9Ld/5yc//VmVJ4lOs+argzkiQC3F6wrQxXm/v8gCAMDpNH9YxwDCy5vrZnrVRjXiMESmFCr5ldWrFopHTwJmyAAxQJgCTQOBZ5tRmPNNzluOG4ocBk2bvCk3nJHTjWEqKuoNqAH0hAGYGXH3roTa+j65MQeOMYYQOIBZK7Wsy7we17I0qQiQYh6HcTNtOAQxE1VtatLAymevXqR4xittd9u//w/+HjOP05jC2bHzCXMA0PUmAKFXmc9ro7mpGiKkxLvN8OL2mohefDofjsvhtFZR6qHgR9WePyOIOVeY4BLEgF88GhPzZkxDDoFZzU5LXUorpXuFwAeZk3n9H/zDv7fbbfu9bDabv/U3/w64x5iYGc+uAUiXMkPgcHN19atffPHqk0+2N8+HIWkeYttmabmVobThqozzvHu2PDueDqflOC+lNXMwAGSOMY3jtJk2m3EzxNR1DRC6BqaISjeAqNJEpHThvE5jERUTMfWzPxsgIjkAQgghpxw5cOAf/vA3hmF8GmS/qEji6XO6lO12u7WL7k4PRhHxwuX5K2m73e4//of/cAjBHTicLSBMrEPGps3m+bPnKQ+t1XGcPvnk088++/yLLz7d7a6+X888j5YQeBhHVU0xnn7z1//j/+F/9Nmnr1QkpXRzc7PbbIZxSIGRziJ2SMxpJA5ItN/vXzx/dnd/L624dzt0/16O9futD9S//bf/9vX19bkPQ3x++wocCBk6cOOyYmCfLmfnTzG9IKnOYB5DPxvb96Qm0eWc0vH0HXWFCOgA3Yka+hBDR0ImiIQEdIZZ9OnSJXcQ0IH/FMTH4SKO5GcZ9Xp7+yJc5v6Q0w9+7XNiMGgAiuBLk9uXL45rqbWRwxhS5IgURPW0zg46DHHKeUw5ELm4qTQRR8dAIYYcYgyBkah7thGBo9vZ8dtd3dxBO5MW3A3cztRT7a7TTISOPYhRU0dHJgdwU3KIgCHEkAZkUtdf/eEX43im8m4327/7d/9ujCFPw7QZr7ZDCKxiy1If96f9vJyWWVUS8RjCNqVEZABV5VjqKq5OjgTEcPFAMfCIvg00RR5TCClCzBQCB8o5bXcjMZbSXbBcRKXWw+H4+Q/el7mMNCRKgSOSG0gIsBnjbjtd3+woxmPztYnWyioDeqv18+P6G3/zb4+bzXmMbba3f+sfZMSQxxASAwbAYJ2mhMbeZbaCY3AgB7Q+vNCADAGBu8qWglVVd0OiQJQ4BmY6v6PLnCARYgjISOhgDWRd1/XZqXyyP/3g6iadVjlbZAEzxxTTkNM0pBCSQTIYHTJjCExMxlBKPT7uf+uv/61xOt9LSvGTTz/5rfm3QsaUICWIAVNABHPvyetaW2utNqkia62trrAuUuayrq2sYupMfH21/fSzF8+f3W5220DU1lYPS7k/Ivp0s909v7l++TxtJwNUo0+c0ri5ffFy3O44JKIQKAIFp0BuEdbka4IFwcS5KqzFIgZ2F7WUxziMedwgZ1HYDZEvkfJmM/2tv/k3ACgPKcbATHSWBgazs2tNN+jLw3B1++zTzz7//LNPYiBvxzka6Xhzk3c3vz5tv4jDDYUBLEQI2OFffQNEcG2tzWU2bSREHDgNaXu1/eTTl3/tr/3m7bNn/WACyMwhxMQ5hpQAQGqVVrVVM7FuWXxZP1UFAP7O3/m7V7vd0+qA94+PdsFKAPLZi83VXdy63jdAX5YQmDAGBnDpLEcKgWNKGQk7FFiamgNScCBzOyNPLjgAAIdLFuQDeOICPu741LOalXWmsCMAEnH3jL+opFxiChtSutpddaeMZVm//eab4+nERPj9M+/3VsQzYqWjTS7/ARAiM8UQAM+ZcP0ek/OiHPQX4A6e8CZP//bzx3ZfRQfoCFvrNQj88Doz3W13X/zKF9M0AsC6rm/efHc6nXr49XFSAS9fYgg55ZxSSoGI3J4wzabWN3U7iz1314FzxRzh0qVMTMz04RB4lht+ahdnhT/VPiA8ngR3ujPlOcs1jdOz589Tyh864hcRynwfR/I9pEu/rqcc219RHDPP85dffnk8Hs+/As9Du/+TiGOMRGTmxJRiyjmnnMOfY4OA2I0avGNo9vt9WVcHJ8QuQtgj14+G79nQGABFpJQi0j4UjPHfDonZbDY/+MEPNpsNAKjKaT621i5ijT/XzjG6fyQe8PGPwP1cnu7v/hDIw5+NMn56MVy4th8Bcz96D/65nwDnX+vuahZD2u12XUm9NTnsj+taOsAMugqOnWVLEaCPTADs7wVwogucC+Bp2F+irz6O6eP59uFKz/MIvr9+XNSaPkwNxA+9CBcP+vO7sH8wcV8W8pBvbq766a6s65vXr0/z3NUHmamve3aG3ZyncpeB6B6JvYCtdkFnPQlAXK6PEPorua9E/fyESIT9889ngd69ZqpaW3M1QuqkO0DoIsJMfc9hJOqUYTAHcIZOj7Jxml59+ukwDABg61LffK3z8bw2AJ5D4UuP+mUo4PeH8GXA4bkjvbvonR8H4ZNGFzii94/EpyWy34Y2s0XtJHpqUs0+2sj6WkXUV2aHi8jE+XjrCGamouNm+/LzL/I4AUAp9e37u3lZ+vZCPQg/D/2zA03/2sW53b2jCHsl9fxsAANzyjGGs56qX1gYCECBQwwcIzFd8JCIxDElYu4HBjw/3J6m7BKRZ0UCAzADUxNR72OeiYgByR0C8ybHjnlZ1/Lmzbt5Xp4ey1PnfW+NBUCiEENKeRhGJKhlNa3gLQaapjHGTJwAQ9+ov49U6Zu5moqqmEp3E1qWMi/rvCytydPzxcvK9sEx98m57+PhcLm8zWb7a7/2g2k6W0H9VWmb/rL9sv2y/bL9sv2y/bL9sv2Vtv9fDBR/2X7Zftl+2X7Zftl+2X7Z/v/Wwh//m9/tjhJd1M8cOxXrwmQ6J385YIqBGO1St0BiDgEAVcXBmXsmrif28GxYgR/8htzcTQmc6ZzXRaQYOBCdSxrnWhN1QK4jIJG7yxmhoebe5a9CjIRA1mIapqtXHAcAEKnz8a6UxS40JXOnXqa7lHp6vvejf7j7pS7wVOG/ZJN73vuc0D9bMj5li58EP+CchL3kw54k/7H/pP+6p7QZwFNq+vLKXvrxcdi8eP5pzgMAVFnvjt+ucmJiROyJ3rNKH4Cai5qZIRghMvWMcycKqRuAESAiP4F/zngHvXiznY3RLjcJ1CVMzqW9TtvumeSzqAz4+bF/xLI594MDAhDyBRmsZjqO2xfPfiWnCQBE9bicaisODdEJuXdf11qzrlyDxBSYE3NGIAAxa6oVuiMN0iUH3TXnuxFmAOiOgdg9vzu3nDl2BxAzEV1Nq4O4m5+zv0RIHDhySCEionbvu7Pn62VsAxKFzotNcdhNzwInAKi13t/fr+vcpcnw0jvwZ1ZyPk6t+p/6vj9VYj56DX4YU3/q9d+D1fxFzZ++4JNIACIy0TiO19c3MSYAKGV98+b1PJ/6PAUAYoqJOJydZrp4CdKZ7m/mUlS6GnSvLDBypG7H2cEyfr5APKsTd6zMBftLzCn3biwm6t7rNUCMIRBgH59AyNgtU0xrrWbeLT4uvPQu7AvjsLm9/iTGAQDWZf72258djwekfrmABIGBGQMDMzAB4dnRpltdqYEqiJwFcw2g12aIz6/rSN7OEDt3IHOMAQFVzjnyrlN1XjAIiQm6tLC5mSMCByZ8Wj2s3yzQpQiJaOrSdDNtf+WzH0zDBABrWV6/+XZejud5DeQGImruiGeOMly648xmJiQiZDpX5DsUpk/X85jpMKcPS+AHisMH0U2HLsBIXSXZresk9yf4ZHN7WThDCOMwTpvNZrN9KhzD9yu5onJa92tdVaTWuixLkwaITBxjjDGlGJn4UskAM5UmKiLavHcXUQgMAK1JV7yFS9HvbKLbd5pLwf5cEe8vgDNOyz/Us7H77vQX4mXBf/r2U7GcEDmEadzcXj9PMQNAq/Xh7m5dlz7I6Vw5P5c/nuAW4VIEdnhab5/EN8DdifDsTM7k4ComatoRP4hPS+MFAIDmYN75rk4ATB3zcZ7XZ/zZZQ67O+ITBvQ86/u+FNMwbG84JABorT4e7mstF8vXDx/4QXTxqTx0KYn2Qtulg8+r0QWOdK6tPxWC+s+Jnra8jyCkfhmVlwXqUs66AD/Poh14uYKnMXWGmjCFnCc++4tD+C/+j/+H1nSeaxGvHothURP3PiUZIbKHYLtdfvnyKo/cfC0iqzjHcXvz3JH2hwcH3WxziAgq4BABI4dxGIi5mVex1lxr8/UUUTcpMFJpFkN8drW53QxXOQ6EYM5EMQ2GtDRRgjikJvLw+PDw8Hh//7g2wzgNm6ubZy+m4Km8/eTTX/9r/6P/7fb5DwBgPt79/r/8r7/9+g/XIqdl3R9OTSykREjnHdrFTDuLswN6axUzpxCQEJguuFmOiZkCIyeOQ0iMDOIqWouqqBmYajdCwk68NGWiNCQOpK6A0HdAczMXNQF0pk5GOi+yDqjQ0ZFSazsdy2/8+t/5X/8v/7MvPv8hALw/fvtf/c7/9cu735/GTeDQrAEosgOYoc6rPhxqqYVwHSLthu1AKShCFSuLFfCakELYUMg9nmRwkqbzPLcq3m2gPBBTjMgRMKC4zLKaO4eYQ57yZgg5YSJGJzNoJiK1yFqsKXqHMoKaiRohD2HjhmWtyzKf1sNv/PDv/2/+F//5F5/+dQA4zKff+aN//e37Lw3vOUgOEwNqLbXOaz00LWYew7AZbrbTq83mV2PIJo+lvDsu37q3Ke9SzEQG2P1Rm8gKToF3RFvgCQABalnnh4e9GE3jc46TOM9l/3j4k2V9rfqg1tQDQgyUxjzsdttnV7efXj8PxPvTw7wemy5NqlhtKlUFMQ7pijmKyafPf/gP/8Z/erv7FAAeHu7/0T/6r3/84z9UKQAeKSKe1ef1o0AFP4SOfQ34HrjqXLg/K6GcR8PThLbu0dxNwC5om6eZT+fN6C8qAT9pWPfAuos5c+Bpmn7rN//af/Kf/E9fvngFAG/evP4v/8v/24/+ze+nNBAzgI+7+OLTze4mpxy0+eGxiWgaPUTk4GVud98dD49rXau5hgzjJlw/Hza7aRwnpNjE3Z0JHdg0EFHK5K51KXVRqTZupk+++BTQX3/37fwwg0Z0pGDDFHbPJiI/nWYRjHGbUgjZSjm+ef16XUrkEZxb6zNXmC0N9hs//A/+Z//J/+7li18DgG+//dl/8X/+P/3Ov/ztkAdKwchihqsdXu/4eke7DU6DjRESAzu6Ui00z3A8+sNB7o/t/tBWh7CJPIU4BU5syGpei5Ray7qoK3PYbqcXz68j8vF+Od4vx/u1LUKAgSjmmHPMY3T2Utel1nUVZr6+GnNKqCAiy1qcbLgKlEjce6i8LvX+/fx3/8bf/8//s//9X//1vwkA37355v/+//i//MEf/s52Mw0hR8+y2sPjXFrDxBgZI4ODtYaqQY0ROXIah7SbOKYOsDBpRdoiVVCRA2FIziju0kzM3RgphhhSDEPEgOKKIKQamcYUiUibtqqtSCmyrk0VKSZkAnd1kSbXV9e//uu/+Tf/1t/5D//eP/jkk0+7pPHHGD4AOK373/vjf/6z7/54/7j/7rtv/+iP/+ju8R6QNtPmxfOXL569fPn8xXbadpkVcKjz/Hh/v3+4Pzzel7IQ+zCm3c2Vu9/fH+bHpc0VGkRmBNa+ReeYcspDDsQOXeNcOhhR3aq12qFEDkBMHDhGRNROqEfgro7NFAMhnO3qzCzGuLva/c3f/A/+5//j/9WrF58BwMP93X/7//yvfvrjHxs6Bx4yp8Ddr01MECExTjncbIdpTCFQMzvOaxNhQMLucGNqkmK83W2vttN2M7j7/rgejqfjcZbWOKK71drKUubTXKpUCMVoUavNtEokuBrCmChEAAARNWCgxCHGGAlBVZFxSBGJVISZp2EcUgiszz/9tR/+h/+T7fUrAHg83P/j/88/+u71V9M05TyEGJjI3MykaXU3QmK44PE6H+QceHu/jTOQlCikEGMMKRCxu4toWauIujviGSP4FJypij1pjREwISAB4Zl3G1PKOeVhyENKiSkwnSN5Zu4RTK3rsuy34/UPPv/b03h1DmL+2X/337amx7meiq/KJ/GlirjHyDFyCDREyMme3Q6/9sWz7VVSWJbW9qt4mHbPXxmHx/2DgWy2KQZwqegegXKI4zhQCE19rXZcRGqjOo/sV0NkorVaDunl7fbVbnw5xm0AEiHkkMaGvC/SEMOQW2sP9w/3j4/3D8e1uYfNtLt+/vLldfZdfT2xa1v6ndS6vPnux3/8498+nMr+MD8c9qKe80TMaupmAB0bJ6ZiZqYqzTo6GYicLn6nTCF2eWVOFDdpiBRRwcU7XNodVbQU6Rg7FTfVEMK0mzhwlaImht3+3NRFtQH6OfhmRiQHV3cFNVCHVmo9HQo4Lst8nvzL/l/+6J/8/s/+u2fPrschKzQkjwkBXVzmpd0/rKXOxLbJ8Hy7neIYjbCplpMXRNkiJDo6kLVOhMKgzZdlLmsTsdbAlDiGaZNCBiMrVg/lJG4hpSlNu+lqDGP0CGACFVCYAFTaskpVVDMD64FdE8Iwxh061drm5bQ/HZFhKcfzc2nLt2//8Mff/CuBB+Y2hCEig1pr81weqq5gkMK4GW6vdl/cXksKua1v5uW7x/k797adbnLKjOIg5sW0iSlACnyFOClmB0CwVsrh8WTGw/iOeCiOSz0c5q+X5fVa79ZyLEXcYQh5O+2ePXtxPL2o8zMCeP/49vF0f1oPTQqhOQEQEg85XCFFMXWH8uvr+bmcTr/3e7/3z/7Z/1vaDG4pZCZ2Z+sEvEvgcl7CPwpizjbFDk+ntx7EcDcOhI+CmH6MP7tLfhTEgF9wh98D330vfOlf7LzcXIDDJiIhhM1mU9bl7//9/6gHMcty+sMf/f5v//Y/HscphAgAm5v02WF3+2qaNsnU7+9WNdtch2EMMcLpsXzzJ/fvXx+Oh5N5G7Y8XcXrd3mYUoyRY6KYAMgdVEgqpyE/f7EltuPjfp2LNt9dXcF4IMLv3v7sdH9Ci25gLnmk3WmkCOu6mnLkK46MYT0e77/+2dfzcR3SRBRNUU1NhbCGVAPjWk79jg+H/T//5//kv/lvfmfYAA9gBOMIL57Bq5f4xSfxxS1db3WTLbGzoyuXhfZ7v7+3N3ft9R18dw9HAZiAN5B2IUwRYzLE2mRZyzw3dUgJdpv8/OaajR7fHPfv5sM7qycAhRhg2MIwpTxEI13KulSoFUKAmxsYUiIDFV2qAkG8AkqgAJ3DPp/am+/ATY/zod/L8bj/73/3n/zjf/r/utqNmzQOMMni9/eHpTYLCClwCgCorVKTIBYBQwp5uxmfX8U8gIGpai1zWfblVEAwpkAhWyBxK8Wauikj5ZhjjjwlSuTkjBrcIuMYmQClWi1SZ5nndpqLCHLKyGzuatJKff7i5eGwH8bh137thzc3twhEHJ6Gd29N2rvH11+9+enjw8Of/OyP//t//S++efOdOUzj+OrFJ5+/+uxXvvjV25tnQx4jBndoy7K/u7t7++b1t98c9w9mdRjjsxc34HD3bn96WHQWEMwciNgpUAphM+Yh53EgxCat1dqkujsRKfhqrVpragoASBgCh9hluxCcGBiRiQJjCozgKoKIMaTtdvf85fOXL161i9hdXZdvf/bjH//B7zRA4jAOIQXmwABepSL6EHk3xGe7YbvJObO6H5YqoqHz8dBNpZaSIuvttV7v/GpLiPNpOR1O+8fDWiowqemylvk4H/aHpbQGYVE8VV2KtLVG9JspbgdOmQIjghMFCgN3QQCA1oQCj+MYAvejdcl5SJyiDTl80Lwp61ff/PSnX/7o+vpmM21yziGwuYm20hZTIcCzqsI5iHlC+J+zRD0nyhzSEFNOMSdkcvNWZT6ttVZVA+ScUugQZgARFRXtcmiITBACE/M528YppZynaRw20zQNeQgcQwhn+klgADDTUubj8Q5cxdrTMAsVJ2GAQYFMijRtzQQAKcQ4pjTFYeQp++56uL7e3V7nEDer1Hf7ZXUOkY3j7urWQJgMoRF3XzQ0pKqOoOZY1A6lNdEpDjGFOgRikujE4chxBJzA2TTqCu6mbdFw32A1goOYWV1I4Xq6fp6cG8SYM9EYgm3zi+32GfMHSwgzaOJrqaU1RAyRU46BuAkCOIdubKfa5aoACJmIMTAgiJn0TB6AXYTfXJyBnDFS4BDHENAJgUyt1rMuoqijeUppd32NiKfltJRlKcVciQNgAItIjk6MvYRBZoqm6KImBhiBN0Oe8o4vZmNt1fc/O7z+oxN9znBjIWEeOGMmwtaECidwC8Zx2QzxdjNthk3oYbxOBDHxM7BY1zofl/3DqTWLMTPzZjPV0I7HZa61VI3Am7ALkRZZa3NqCV0BgiO7sBjUUtq6LuUYEtzeXOU0QIxd/RHV0M1NGAQUDSmEOE45pEgZd1dXgS+OqbCqftnKH4mCuCppDnEcdiF4NGPGiDEgE6ygD+TvQEmWb2S5B62AqNpqM4TqtooezJ3CDolVtOm+tEXBA08B8zRtCMDhqHbn2lKAV8+3qsNhfrbfv394/7W004A4Bh0YXeX+8K7W8u7x/d3+7u7wYCbX03S93VxdXYU0qpKYgwWwDwr3tbZ379797KuftXIC9xxzYHZgADD6wNb5KMi4kAbORhZITxQu78VKwidyXk+A65nQYGCXXCt9FKKcA52nMf+BXmNwSQWf63+dMNVPMIgUQ/rs01+ppT69cRrj1XYYN0MMCYCmKY0xj5x2Y3YCZKfA1y+utrshRT49FGrbiHcP+c6g7p4PaQho3k51v97HIT7/9EVIw3Jsy9zKDDfP4s3N1bBhDpInYKKr3XR7nQIltlf1RWFmaTIfVxWhgCHSdnfDlEGnJrK22U0ZcmYch5jykMIAQK2KyiK6Z4wf4kRHhaAASBAhocvoMDnfhPT59eazl3SzlTELYyNHgFBXfBx1zBqYiITIHlZfAdw5aEyQ0zjREJWxSpvnxd2nYQgcSEmKkMfMA02torZqIYbt9S6N0dHdKgedWHY7ipHywKGXhDFuCOEigkMUEQMCj1jh9vHZ7iaGcLkXq3U9LQ1QW2oTCQo5N+cuZIbBIhK5GolaUwUIpsDMS0bk0Jc5dHARWZs1BDGM6ExqJs2kuSgjolW14MphCGkMHIkDEnppxcWsWataq7YqrVZRFFdANndRlSbrWpZ1nefldDot88whxQhPXhnnhhgojXmL1zS/OL569UnTtpZChFrrfDqe5uM0bYZx4hTdgSPnIcec1lpFdDnsZbGyL4wUhbdh4g0H4MgcQ6CY4jgMu03oKX+R43yce8LWjQIj4eAxdBe67g3cK6MIgAEImAHhXC40EwJAhGmcXjz/5OWrT1598upXfuUHeThXypjxaqKbXVgsGAQOAajXekQMEL0ZrOKPc21ukwRiRooxZw4YmYZAXqubE3j3dqmrdSUXZorMp1UWpaUpYyEYyFLMLSJFcV5rCq1yADcMaCFwSpsxXI085RhSZg6E6Oa1KXEetruYMxGgG7oyeYq43Yx8oUn2smRgzimN4zAOUwzsCCI1FBKprk4Onbrl5GcCFpzhFMznuhAzpxhjTNyHjoMiEDEAqyq4CikRxz4D1HvxD8CRKDDFGGMIyEwhEIeYck45p5xiiiEyR+YQzq6jjIDuCm46jCkPhB/gvMF4MOzataLNIVgaMxONmzztxulmmjZxE+1mE6dxnFIcBhg0NAEWUDAniNPoCG7NtYAzuoEjMxEHNZvXclrqspoDWUrKsQAyEiS2EFbiRwMurWIbrYHo0spRw8FSxYjoYNDFYjhOGIaAkQMLSlWp6O1JBBXAzNe1dB9HVQkxhBiGHAm5Z7MoICIFJ4CAZ3uaSETdusDA1ayqNPWmXps0PcseQuIw5Jhy4swQwEHEiBtSA6hIxkA55yENiGgGZtAaVGkmboBmgOjk5MjOTEyMBIRoiIDiyM5Anih9VPrzOuvp3u5g1hNME9H1dBPzkFODBiHxJnbb4JQp5ynFIcSBCJ0m8OA6gcTkGRY6SStL0QYcecgpclA0IEzZYkoDJzOQ1eqqXQiPmNHZFMTctGemGwKqqMUIFJABu2gGCQAykpmtq8SIm92UIzQYPhZrMVuX9avj8ScqARWZmg6bHGPM0zRs3JUcXV21lXqYy9tIVNvBDXK8dYoAYNYIzayKFHUnHwCruhWRpewNIMY2xF2KISI0KaLHtRwpxGl6SXlnkKR6SQ8KMuWQA4CWZXncH+ppOd0fHh+O+4fjAcHRfIg5URrjWBC8WpX2sSq0ma5lOZ1OrRzBTWJlCgAEhE4fm3U9ke3dXbsGIoIjYM+OIiJ0hMPHQcyZSdvF0c45XIAznuHCPv0IiAQAfsaduPcq1Bnr5JcgpofFZuaAhPF0Oj2JRCFiDJQzjznEFBEoR/ZqcpKWOUw8bkIa83aXN9thyBGUps0yTUMtA3DcXY9piF5hPZ3m01FVAIy7Nb2aNkP3zWa8fp6R5nl2lRZYynJS1EgxjETRzCHksZW2lurexc9cVXSt67zUo5DFSMSI/cSMHpGiEqEr04BPvARCiokTMFMgZoCBcKKw4bTluGXeMA/h7M+BQIHPlXZEjjmOG3g8+aFadYLElDgGpAgWUFLYhBGAUkwmMC9VFvHq7IQh8hBTgDCkzW6DkUoppoDOiXmaUgjkoOCGjCGGNERAWKuoOVkgZDCO4JuYppz4o0XZXEShNEOoiMQQIDg7ejU1R4UO2/Ge7u0in63WtSAzZqAnNvUZ16OOqOeNSNzFXd3RDF1UHRWZYo4hhxAZLoYD1bSZ6geaa4cE2sXPrdtfHE/Hh4eHx8f9MEzjhN077CmMwbMTVGai6+vbFy9ezGV+fHiQfqw0rWVdlzmnDF3PQg2q1qVaVW+AgugIiyJ6aMDnc2DIKaUQKEZOMRF3MAtcJgEwISGGSAEJMHbpxnNVxLtmD4A7OWC/KUMEIs4x5jzcXt9+8ukXz1+8ur6+HqcNXQ6WgWA30e2OYwtVgwEjIlNPkUp3N1Gzpbq6ikpOKQ0xxsSBUsQhMgQCrWAamN29tgaIlDikYXsVMWmblUETZ+XUPFCrBKZiMcQ11IVRVUPAlOM45ttd+vRZvJ56h3dUI4oBUKY8UYhI0KVSGD1GmvIHnZhz4I/ASJFDjjGm4ABMoCboptYlKPmMc3VwAoOLc4H3xdCYz97mXQAFGANDjCYC0uysOtul2jrUxciQehISkRi5290TBwoxhpjCWTGOuwxXd38EepJICCGklOPH6pAAgVIGVbHWwIU0DLTLuyGllMNmt7n55Ha3SZl0w5aCgwIqsvMYorgt0gB5zCPH6BZNg0g17yr5HCOfTsv+fr8/rgI55ZGNQaFoCzHkMSHHRvjQ2rysk9fbQN707nE5Kkna8cBDZiRYTdWUQSJ73gzOPreD1b35Ybu/q3JW7BWR/eP+8eG+igDxOA4p5RgCABKyqpuKo3OgGGPOiTkgsJrXVg1hSNER11qLKCqIF9FVqpg4Y9pt4zBuhjAQkDRxb0R63h7MKDAhaKvMIYXgw6gGsGKptZsZIbpHBwM3i5Fj4kBMgOgESu5iIqDwFJER0ThlBHj7XX18p1db4i/Cr94OL663SjWgbAcYR0lDNbDjyVUDYwohIMOy2t2b2YSvpyl4tkLlaIuXHO3qOhN4BOSc85AxBkE/LsvhcX+sizGEnDhEYhYRZIxDjHGISRDEXEorgMGRncAIOhSNQ5BW98dTiJymGAjURV2fNn6Ruj98d3f3E2+AzjFEsFe77SfjNE7p1sHWclx1Wdu66Nz4XQ6ZLeR8O41fAKal3Js/xNCcgnrW0lpdxGqjUN1LE0BwnJm8sjkFcV8F96eVsMZwlXIAoxiGzXTticcBQ4C1PixHPc7lsCzH07y2Iq4EeFrWZSgkNGJKEVGXtT3W8ujeLs8FYwx5iAgJzGKITAx9T+lBzJMYBQDgBUbpeIFS00WpA3rS5Cl86Wof4GBd9c0R8HzeeQK/PYGaP0YUngehe8cBnDE23rGJvZYMpuZASIlDRKLLBuOIRuiMHsmRAFXnu9bmssxp8zxvX44xkrS6zo4WyrKuy7G2FQkpBuKQ85A3edxkj82wIQGADolwAK2eEuYBr65TGq4Oj/ru7dvHh9PdPJNvxmETImqc4wCb7SYMqdy1Mq91ObqQllRmOZ7261rROCCp6GptPRpqQs1EAdMu0IbwnL0gpmFK4xZigMAawYeAY6LEJEWXg0dXa84JKDhgM0MMNG1DyLS7phcrHmZ4XGyuVtUqmMAsBaR4IN6E6Aja6jJL26/l0GRVa24GzDxOOU1D3kQxOx5qXRqCE4YEmRzXdVEwywjoyRkArVmrpiKuCoam4k0ZPnKcRSTmcw4XoakBeogxEUcwUO24Z0QM5B3E7mbuWsvS9XBSCEwcQ8zhrFR6wekjBCN3d2CHQOwI6mYC0sRTTCEyWl1XVRMRE3AgDpQSs6AB9TgAzuwFL6UcDof379/vrm6vrq4BKcYUQrzUIc6aO/0cPY6b25vbx8Pj8XhU0ZyHmJKLLsejl8YU0L3N5XS/P9w9Pt491mVl8xw4FmR0LSJi4sKWKAVG07ZKW07z3piMuYGvUgXcGSEyZEYOTBcQLAIAqpuIqImf5VSaqYAZhZBzvr66efXy1fPnL29unuc8ifmy1qesZ2C4muD5FkOlU4G1GSCNOTChNjUVQwAwVS8OTdrGPA9TCoxMiTAFD0wZN+CWAhNTs6WV5m3kNIzTJgel9ciEKeeYkgPUsriKq44plhwSWxNhDtMQbrb55U36tU/j7UQd5OlGiJFCEogn8SpFpSFCTjHGGAiGcAHwA7i7qZmIuyI4nv1GjHo92AHOJjtOHSTfQx7ohiRnZJ5ZRyJjJ7AAESHFyO7kRiru0MxcxEydyPta5O7nc5Q7mPXkTj96MZ5V6REvAwi6kFw3oKZz6iF0VMZHQYyTAwAmYqTMgQNdbTc5RXDII29yvJ7GbQ4DCsti2lqBZt5Wc9XAwGap1YjITA3DoRURdXZicMey6nwsdW5pHCKQNSumDpIBhg0hY3WzJscqs2kL4M0fVljNATQGwdQCkkd0BYEGUGOoFgCgFVsf1v1jOYqdT5ZmtpZSa6UY4pDGMcUYCNEMwLBDkgA9EAXqbAWE3vsOhBQoGAAYqFgTqM1b89bcQTOrOSEGYkaDLiq/rmsppbWGgMwYAhIagsI5WddJVuDWpUmdgBCgwwBTDERkBkzGGMkbWQsUnuARIdDudrO7TY/vrBVdXNtBs8Yr3lBOOcJmxDxqSK201qwuK4gxpjRthvVUH756X0sNn0R3ldVAIcUQA4Fa98xMkXebBJGPtTiKoyFBiBxziDlSoNaquVKknCmmjB4c3eCcoBHpbnPKhF1pMKwFEMxV3c31CeLeR22trdQFmiQeY7zNw21KmxynnDdVapN9adUc0KGKAULCIfN1iLcAhGUPbohGTDFuTcVbc61V1uKuxkBMLlXWGRw9Sg3zrMtBA5kMNXh068haciA111rmuj+t63GR0yrL0sQUmEKgwBwpRoyZogFUBNdV2/Lx7XR9MA4EBhchZYSz4qyfMfdPwN5LEONu6ND5I2euAp0h+hflKujZ7su3CZ/wwBcwv19YP/T0IU+Af0Q8cxTwTMBDR8Tzobgr5Z5PNh8aAhB6IAjn1Ho3BYImXoqGk5iYwykEzCPP+/p4/zjPc2vCAOuJYuRhyJtx4OmZuSAzCGiVJ0YGIvSV1dX398c33+5P95x49+mnL7dXAwRF5jSgqTOre5NarQGIuRk5DinnPCJjg6XWuhZxqZEiUWIOTOOTQgQR5ok3OxgTbSKNAa83fHMdxgFNZVkc3ddilJSCIRkSMjIhpkwhYh5pmmCzwlywCK5VS5PStDR14IguGJbibRGuJagCABEIQQgwTiGOAdG1SV1rWVrsXV7RCdri0qt56BIdCU3RBK26iru4iaqoVftoiEH3eUYEd2xqgBYScuAgfDZwOyOqkB3ZHRQdTbVKZQkhOIYYIsbEqZkKUh8B0KEI6I7OAARk7tAZjWemFQKQOTa12swaMBAAM3fB4r6XOaEhormXUo7H4/39/fXNPXMY8qQbcbdu0HMex8whRMKwmba3N88ej4fHx8PJZ+KsAvNxkVM9upNjAGzzerjbr8dVm48h7TabKcVMatIcxV3NFUwQxN1NpJk2UyO0GJXAOrCcohOqg7mROV8ie0Qk9xCAHNw8IEQiiImAhnG8uXr27PmLT159dn19k/JgBq2Uj/3siGCKsB1AEdRgreLOhDHFwHEAbUVFO4mjKzojDjluxsEB2cXqqmQphZ64QDDAaucRoGu10qAZIPFmGjeQCWFdgrYVTAjANNTRTbVrYDJRjLQZ8WoD1sDEpAGgUYTmLq6qqro6oSl6IAD6aNM/hwfQqwbwfY6lAzyJ1AJAz3YiOSEBdD+Qro/XhzXxWXORiAMFYCKKAGyGRKto64sSIVF8wn0TuF2ilB7KQMciPv152tP7RZgZIjzFMT+3jgXxAkRpYsI8OoVI282AiPNxEXE5HSnHm6vdGHE+WmsqTee13R9OhrC73iV2e3zwENPuysRO96f9ujgTBQox1LVpwYhpm0fmsC5FQCg4xW6xYrWs0ioCGHBbHYQ0bsDRkFSqiISUNpvJDdcqjqemQomHrWOktbaTVf14vwQPMWyvrvKYsSMZtD8TRbC+3XTW9rqoewUPAGQAxKDNqsh8WvfLeqq+FJVi3tDda/DWrDZjFFSbl/l4OO33h1IqII85x0A5hxSCma1LWdfaStXW0C0QUwxESOwp0TDFYYg5R0Rq4iqg7MoiLNMwPj2bkMPzz3af/sbNNLVyX31ZyTBImHyY8thrNdZklbWsTedBDno6ao68/eSGHsvhy/v98cSNONuylBjp1Se7lHg+zuva3AUJQhSIzmDRaQdTtAQBKcU4JjUrZXEBDM4h78YQOHRrmFp1lVJWNfEINMYhj3ncDJRCE4Hg1aqhdvOcpzHGdBPDM6RlO7149fIfPLv9YrcZc4xO1GQ9HO5rWbbjVc7bEK8oTIijUhapYEXlvfud2RICp3TFSBVOtjz4clAVDDvESMhNbSknWbksWReBBVICPDXwxQlanU+nY6n7GNR8Wdt91ap9JUcEYHBNIT+7un5+fTukkTGiaWeDgdv3yUD29AfRepXXEUDNL8yj/oae7yREB1QDc6cuYvAUQQA4dZ3+vuI/dVmvGV2wNU/5/KfUy8XdFfwc6JzFALpjkV3eiWBucK5mYS//f0zfRkJCYPbIzmghRh5z2MS0iwb68N1clkV1BdKQQyv28L4sp2qqxL7Ox1YnTPb8avv5Fy840nJq+/vlsH88La0UrhVr8fnY5sPy5uvDlz+5/+Zn98uRr6/r9ct0M/Hmeho2IUZsJhxaSEYUIHGkgE6tpMBpO+2A4FSO+8Phzh+lec4QAxNGDgNcFjskz6PtbuBmy8926fYqXo08Rk/kjm0uWsUQzdGAnYOHSEP2xE6kiOhOgWDKkAIZsLbQVlwXOIk2EahQvfnq0vyKPCYUosZQ2IgwZwTQdanzoazH0hYFwqhaURChFVV3cCSwBRrH4AYBiQKxgbqViuvi68n8w7jorHZAQHdoYgCaohMTMzO4mLqZETmcxWuZyAHU1bVJqdqrBBAixkh6BpYrggEZITBCzxp0pVwDQxM0Aa3uCKLQBNZq2jxhIERwckDtwwf73mcqstZ6Op0e94/7/X4zbeu2XrgnDhdqbIiUhxSIDfz6+tnzeTkcC9GDFj0e6iIztkpVollmQvE614BxO+5urp9/8smrKUVZD6fjQ5fDN3NmcBdRFa3uFhCQGNmEiBR6HqwZ1FIVHMCJgOlcSSSiECl0R/EIOU8xZg55e3X76tUXN7cvNtsr5tBak1ZN+9HjMlnAI/nAXhPM1bSVahxjSnmYpswgvJxaE0UyAAObpuH6enu12UqzdT4dDwuh3l7vOIZAFNiYjcDNZa7z3ftyLFDEhiFtxpwDJaYlhloYrKZgicIIHNEB8bDaV3f1VGSt2pQjIiCoNlG1JgJJIQG4gTbxVSCITUNO8qQ0fVliLmFEP80/ab7jRfK5D8JOcD1zX556A/HJDwe7FQ7HGCMBxwjMkZBjDK1VRI8xxBiZyc0RiVlMFcE7rd3cyQ39nJA+F9vPq50/BTGdaNnPRfSRMAAABCcDxjhQCAxIzB6Tu1kMntyTWXKfOOTAhZKg9tlG2ELATd7lyKIzOycLahqUsIJAa6ArgIqzc+ROYu7lkw6XIScQ1ypFRSJHgdBMCSjmGAHNhdFAzVWJHQDQqprVtSCFxBkAV6OiaB91a0oxj8MwDmlIBnbW/zBzU3BFdCIgAnOvRWprJgzIyBRiEPWqsq51Xeq8yFrNxUGRDCrrstQhrGSOquuyrsu6LktrEkKCFBEgEOUczXStK2HHUlEM6f9L1581yZEsWZogbyKii5n5AiC2eyOXKmqqIZp5Gur//xtmiPphqjsnM29m3iUCgC+2qKqI8DIP6kAgMmvsBYQIwODuJiLKwnzOd4AIiQLAwSTjMJVhkmFgCKIVugegE0HKMuTytYhBxnySw3dZMLWS2gtNw5Aw5ShHGcLi6emydaWM7sk3sZtuzzfP6McEFXzjdvPruZVDpCTDTMNISbB38XCSSIkkh7G5dUw+nYpA6mbByIJu4eQQEWwozoUZQZtbqPl+4WyuAJIHCso0pCIl7e2WvpmFWfyWzkVUxvHHafqj90/D+Hi6//vD6SemRb3Wti7r1nsg5iEfpuEO6OCYNaJZFbygbW5Xt+vq15SypAPTMIy7nPSpmyMGIhJQt35bLtvNdc3YYLBGItC30CBBhs4YCKBm3XSrqq7MwIiCQsyS4n4+fff4/buHD3mcA2mP0QB3/E9+5t/3TgCACALecnIwvv2DX3AggbBPgQIR8DfxLXwd5n+58Xzt4nwRIn5z1MBuOQL4cq0KgDfi+huNfS9bdsHSlzEUBkA4Av0n+MyXs+xLCgAFCFEZy3g/ju9y672e63bt6+3WtSOhGm6baXcAQwrtQBLlyvM9IKdcBreUs3FKlCwVRPFW18tZXz+/fvzb+de/Lh9/2dYVLfi2nZvm0riCb5det7pcaq+OkHLK81yERVsIpXEakDArYLJtW1rz492Q8+hKZfqqgwfEILQhw+MD/fA+fXg3HCcRDHJHE1D13q22Xt3MiSFlxMkhA6dgRkCLANBAJfTEHUmBnYS5hxv6tpNSGIaReqZu2DvUCkhURjB36uqolqA7EMDAUciQUBmbIyjY5pt3Eo9dGgVMThGEjt5B+2+fDgIw0ddca7cwCFUXJCEJBNewsIg94xYJSd7WqCMagTNCYQmglbghO4Tt68wxPMJxjyh6C7ki2ns6O//GESzQgrujWQAEYzCiA7q7uiPusi03997fQnzXdam1qup/in01s9v1er1cD29pSsScpvHQRlttreut39ZYF66dIDCVLCnnIZd5Oj48PLx///5DYry9aqvXlLgoAyAxCiOAEzqBpySSRIoY0apREY2pepiquRq4ETjvRYyziKQiSXJOh6Hcn+7H6cBpnA53D4/fj/OROZl5gH5VAf9us4QjRhLKCZkg1Hc21VCGkoIpWm8aGETIeJjnLImJJVGUXNcc3jWwWXTVxJ7Fh4TTwID0fDPt3hVKjsx8GFJCnIVqRfBaxEexWcpAThQfL/rrxbu1ZbO1eDCCRVdvihqmCErcAz3QLJopWQDg2PVL9MF+LL8hh95auv4GgNtXEn1pz+AeyEBvOQv4xUKPb/iZPbMV3/hNuGuUiTBBEBO3JBEuiUREhCEAibry3syniLdzzN9WPn0Bf8Hv7At7LMbbHP6/ejMFMpIgF0QmgAjTertR4ERySMNpKLMk8QADosyJKEkqPo73LDgfxyIEs4aDB7m3h9EY+Favt7Xf1tWDpuGAKfWmKDaNiYtwIh5EMaxr7w0tmAtR6mzENAw5EUIncEeHqNhbc3ftWw/zhtYSdQSHbRu6jRFv252ZD4f5cJxZ2B0cyXfsnbqruitQABKQuEPVuK2+rd0dWThnykUcvau5mfbeN4sO4MSAjfpyuSUkNseIWptqhwBG2g3Tpg4BpRTE6NoiTAQjKIkgsEVUtVtvIECjpCPnEUDDO6mHtRYeQylZ0hc0EARFTw1mO8CAQ/GpPKbjkEuCMuLd9bL+2//x5/P1fP9uHA+jcIFNdN3AYWtmFOOdTJEdAonePZykeG1rUyzTNI5D00poUkBdN90UohwGhuiXph4UhBgpMyGWOaXCQNZMl22tm2qQm2lvbmCMDupkXHCYZ+12OfvWlqa99W9myTLe3/3jw8PfbmcUOaRyAhmX7bqtt+u61NZITmMeDvNjSQfzvGmv+hLhkE/i5tZ62+r2CYnmg0zT+2k+MN9t/QUCHXlHoXXrbX1p24KKgiRFpIwuKQgS8VwQjtNaYNN1qdG6hm0pgJGchbmcDsP37z788Ye/vzs+OECrtWrd6vaFQPV1N73pTgjx7fG/k9WIAfkLC/Ct9NhFLuHm8fb3mBiQ9qyZ/eyI2DW8bypN/DLi3G9H+AZUYAD4AiMERKBdELwfN/7F2v1F7EtBX+okJOC3kWnQW+rKN6rLHfBnTu57tiMI8TQOj99PHhqtm/XW6ra49jB1dYwg5Df9jna/vZ4/5w3wejweEt0nktNxZpRa2zD12p/7C3z65enzry/XV9sWWjYsq16u1+cnXF4qGK219u6hxJSHQvmUh4dDztLQzHzrVTIMJzpJuVxKVnr/w8MwDrXV+QF/M8B5RG3scDfBh4f04V0+HHNiyswFGZrW83V9vl7W67o4GLIAdIwJo4BlRAZVX299u8G29OgsxClRKikP0MPJDNCHQEoSga2G9TAlAEJ2tbhBrEzblHuz1p0F5hmAYNx42WBr3rq1Zu5gHoiUc0okhPI2XaCvRzcgYmJOAo64897A0ZoThhRBJIV9auv7bBgoeJd+BCJDSTgVuZuLuy8r1f5mcvNdKmXh5uiBEQEYtEuAeciShN0tAAIFJAeaRnc3AUzMDmhh5g64L+mdpudm1lpvral2D4vfP2LqVv/873/+y6d/++GnHw38+fXlcrlBYMmFSuTa6xXCvCDOku+mwzydyuGYxiOXaZjmVMStbm2pfUHUklk47zBGd+tghDSOpQxlHIoTLV03i4qwdiPoS2gFNwfYUWEQxABYchnvDqf39+9+/PDD8XBCzsSJKLthrdXCg4CSEADumtmvS6x7t5Aiw0DjmCzcTcM0Cx+mNAh1bVUNmIdpzKlojw3aNKX5MHL60Fvtva+3ar0x2Jjw/jSe7qYypS26QW1P1TYNDSHKY4aC2hE8J/aEKtgSaxafg8bRlhVua32lbskQYlNonSxQwyu5oUAIgHm4ddtg3er2tYhBREFK9IZJBd/BX/F2TBCCv+HnfnNOIuGeN8Zvrz2wr7a600IDSCQBIbMQhjsgIisHGMvOqOUIQCJmVqIwA9OdoocB4I4eX9BZABG7qPxtbh78NpQNsz1R9Zt1JpEo3jriEQ7QIzZl5HlKp2E8jmNJEtYNAoAlp8wDEyJYgDm6OghnYkKP7HIagxEyevbIQRooeTCk8MbEx2HYBz0uUPecKg0KEkiEovvYUoAJMBiMw5FirwpDMCKia0SLyOjOvYvqHj0FAEBM0zwdDrMD74nebrvDKCAQiYABmRxJAXpwM1irm4Uk6+7VDDncNeKtG+uGAcRBENSaLreNFBCgbt0Mcs4QQIgiO32y5FyQYBiqR0jyCEws7lFVMRQCIAEWgBzOhkYYCL7/aH1v53x9OXiL1qkOcx6kcJYTDCRYNztrf/nb9uk/rpfLFbvHI03HgYDKkCh7i7OJHd+jlaTWSWiYchp825rbToGkAAxEdTPXQGehac4GsdXVu2KYMB+nSZIMY8lCCH2XKWBAQkYhKGDqhBjhFl1DGTMyckqcBAi/HcCIDPd3//B4/9H7C6J1XS7L8+V8Xm6Xrd4I/DBOORVA8UAz1bZsy+eITmNNSNE37WaGEF7bFZicm6p26xBAYOhGyBlpTIkH5twonIAb+7kxe0diQECIJNxDhEsWSFAyOZJM5VDKfH+a3j3cT+MBmXuva1/XtlzbsrS1aY3/JFgg2oMbv6prKYKIYc8B34Vxu5EDAZHkLcYP9l47vdUbbzVOvO1jgN9BZr4UGl86KvsPlPav4Jv/9+Um9VZUvf2hfeKMtM+oEPA/X172h2WSYUzDnIeS2QCFtHnb1LpxhvGY5rtyeUq3aFq193CE+OoIcujd10sHaL1ul2kdiokMAJgLIBGxX15vavrydL5clrppVzCP2vTleRH0pM07rq2rIkMuOQ4TkXMpaRiyWng4sBeRQ5kCMA9nVhinYZwz6ZanHf8IAMAE8wCPR/j+Hf3wnTy+z4fjmPKYJRdIsdVN4OZGaxfFVhFRMg85ZRmFB+KMpoq0hbXt2ttmLayMcppyHjmhiyNyN4gyIADW1a0F+J4u7qo4kdcBDFgNagdkGiYE4lPl6+KXa78ttlbf1K26ugeHsTOHmtkG3n/DIRLhWNJYaAsMextKmhoz0SDIIuEKod58V/ntzDHerWohqEI2JIygMdFasZmig1AKhjAN2DGcsQ8NeE9GFmZC0257uUOMSbDvJFlFFgDa7/YRAeBvanQiBNgDZu0tUP53a2xdt3/5lz/983/8n5t2KenT09P5fG5ri6bZvTDNY4Fwqj0BM0iWcne652Fau6118XMHr2prkuA5Y4BQ3hEV5pgpM8cwpDLIUBIQZeHm0SI20ZHs2uFq1nYVEREwDsN4Ot3dnR7vjo+P9+/vTh+maQaH3tvtfKl1U1VMXI4HEvYA89+ele6w9miGU0onzrWBUF82x/AkNA0ZS1LVW60WIJTAsPYGpvOIw1CSTDWl27J29WoVzSJ4cqE8l3F6IK1xe3k1tzAPZJoHEUrWMEyEnMAAC2PL0nPDknSrWjuvzQd2wmgem0FVbI4VIDCY9g4L7HZa09++GUJIwinJrnwG8Le5+deDBXDX0RC9iem+6lW+SlJ21pqZqe5SSBIxJif6ekYSM++raQ+qRkRhVlVltt69hevvlszbeRbuDqq6Y6/dnYgAOALjjfT2u4afKCETUDiZWwtsIZWnlE403uVxnqacpesGxoBDymUahpQI0ZZ1eXl6aaqlzGOexjyUkhAgIYyMD/MMzGuzp/N6a51kGIo8lGkoKdBXsN46qEukBCKQMZjAA8y8KxC/AXRJmMYMhKI9mtmmQVwGKV3VHfs3i4yIhnGY5oMGm+8NqE1tU8MkmQSQIQg0QB2CMpAHiYcbhYe32oGcMZBonsYhkzYMJXBi4AjaNmvrbX9qZeH5MDGhtlpKPp5O8/HEMgBGLpODcPddlV21XutavRo7ZXYmdfS1U2Pv+Mb0duu9ae9fv5lwr22r7TZmohHmPIzO5vr0ev74cjn/uqzXLVTX5ZpHKxOVeXh3SC6r8t8U+/1POa3p+SkQwck40WmYt7V/+nitq0ninCOphnhOPEzpOBeLqGven6+JZTocS86AAKFhDsCD5AxIUDALjNh6u95u4dZ7W9ZlWxuhAGIehpyzfGOBEyl3pz8+PHxabv+2bn99Of9z0/z04q1qpu1QkIdAx2VjxOrudX3dXn6J6BLNOPe2MeJ4+IHImm/Pt7/Wl97NVE2CRymZQgIz5+Hhp8At4rW2y/laL+uyrNobW8dB+P6UU0IzJ0xzyZQhUeR0GKafpvnuMHPJsLXtup1br1td17pc6vXp9vxuvXwVj++3k31zxu42AnAziF3wi8QYHhag6t0MEUtJw5CGMYf79bL03t8k/f5VWecQALTHHOObbjPeBksIsNPUMXxXD+8TJHfEsL3ACSQHCiSkPXzC0eGNpw47OR6+9G2/CvaAiOa53D9O7z7M45C8RVvjellXVaM6PwhzjAfJRZgpAM3Acdcom3mQwy7f1c0vn1aginIZp/Lw/jCNI2LWjT5fW++trl3fJI/KQmr66eO2XSxbpyADcKdQL2Lt2Ld1fX09D2NKY8ljLmOSYRS6D9mIP6nVMHfXoApcv9ZmOeH3H8Qr/N0f5Q9/4NN9Gg9zyY9MAzZQubEuZBvDIU/9eg3HYbp7GO5O5TiVOQ0jIvS6La+fXv6SPn/+5fVy3kz7TJxGSSV3J+eubuNkEAhgyoHOjMEYZiFi3QMZgMgBkSkXAkpdZd3i5aWfz/313C9gV7Wlerv21TpiVY9avV37nmAAAMx4mMtxzrGp9wgK2O+eiuGZRJJkC+i9mZsheQDSnvqCOw8sdMVoQjxmHhJeW3PDUjIRW6iHhgG4BQQhM1OWHZVlar1HKKVg5JzYdoKtGygSARvC26CYmZKklLLITijxLyi037VilnX9P//n//X//p//r8t2Oz3cbW3bbku93LjrEfkkdPfuHo6H8+frtrTrYiD9GOBaf/30+brehOFQ6PEoD6ch0YCB4azdat3MgkthDmJkcghjwLmkGckQ1L1pubT2vLZVewdH4TQMx/uHDz/+4XT6kPOhpCk8rdemdb2dX54+/rKtV0IY7+6y/EzjoTdt/bcBmTmsDarSYx5OZS4yTGX95fOVCYQopzQmUXNAuS7t8lpNVdBpFjCWICGhnAgTUXII6zUQnYqlAx8eTgdc4Zx+ra32CqDM5TgNKfri3pF3GgchQiNYiI0ZCdmgKArnzKjW+mJ0abIqd48AS9iEQlgSEwEQ/L7bl1POWVhot2fvLeQ3b+UuhoGvCQBfKhnax0nWu5ntuzoiLELdmYBZCJlQcI9zMTVTJEciBGZiYQ5JSUyZO0I31Z0+sRvV422Ybh7m2lo1d0QQTgCYkhAj7OIf/X0nJpXEEILIAAmDCZPIxClBImBmRgLXDqFBFCRuaih7NWyq2lXYOyrayhAIwSySBoYsORPptjoEYuIhp5lLQUYKCXMAAjRiAkIjD/eugKqMQNg7oxEEDmlvdcKXdAsMJLBw87ex5dciDoklSSrg5BqmrXWvzXsPCxRAQvSAplob1IpqAG/dMQA0U3fdx1C4w3WCOYKRhIIioCu4Wniguw8wTliS5IxDKamQoy7b1cN6b2qxazm31tdWV6sqXUaUARxa3cK2DhvBYrahaQ8I7V312yIm+ta1KRVImVKwr/Z0PrdP5+tfe3vt4TrMVI6UZgjZnEMGDKkNzhAdaQREjw4BAC4pT2MW4surta1pA3BAJkk0jUmmlIiiGxmxYQQk4Yly4cHDHcjBEPakBkyQMg95KJpUFDdrYNFqAzBCI+K+p4B8W1wjikgp4zje1/58vb5cFn96za5xKDUDbOsGXkEqcmak3m/aViFP1FLicAZMQaJQ1365rufz7VxbC+BEeZbxkO04pymf5umEbK3/Slve/Lro1qtfa2trWwgBc85kHr7PtZGDqaR8nO/v7t4NY3gs5+Xlur5sdd1aVdO11bo2rRr+nxsZe4N1n/68HdzhKeVhLPvZva6dCJOk0+kwTQMLtFp3PcFX5NTvXt8ICH9ryfz2zzqA70zpwLfDhilwFxEHABHscs19Q/A3DZ34Il/Gb/8ZQAxAJwkpKAMrB4Vzh0BfLs1c8xB1adZ9f19i4oTIgEiBtvvTQkkbaAcLM7nWbQ3XdewYo6vU6tqbW71cdVvCNIQDIZab2hbF32TvGGEdrHlEb51yTcf74X5mHhMVt+jn10W9UbaSgLMGumlV/22/iOD9SfQ9fnhPD484zZBGSpLDs3UNAE4wHJhk9CFfqNeWHUf1g8M9YCGEJDVxnj0etQF3zOZukoNTlIkEqAGq4zAGAiCDNgANAhfiUGBBNUAK5AAKZJdkSKaGU8ICMAlNwrPgWejKdsW+bW6uaGAGbIa/3ZKpJBlL0sBQ6y0ULALcyNRQRJgTMwG5o2Kog8Gb0AYjYH+C6xacAD0wfKd+QDAjZwk0i+6BEEEcJVPORAjh3tRaRGdUYEzCFrDtl2XlHWyO0N0hAEmYd9P277bFf17VCEBigLe1Al+3bduut/pyHtzv5nnK88PhGN3qza6LndfecDleLyx4fvl8224l84hjkdNhSokQASPE1FKCcBUGIt9LdIDAL9FCRdgCEiI6QMKRWCF218wEPBpJc2/bhlrj7NZ1u9Xr6/b62bXmnKSwX27u/MWu9e3zpaQ0ZJbDkI7jMAypqnWD7tbNj7Oghb3etmW7XrdwnSdh5ERRBDlJUO6QS53ywL1VCp+PRy4zlXHK6bDFeJgcFgXogZRSHgisOyNhICOKUCgaUfaUVRIZwuZ+VQ2rn67+cotri+6GxIjRwYRwzCQsSEgsX78bIkop5ZxF5Iu45SvrgQgpCBAC34z5CPQGbjBV0z2Lo67rqu5MRCkxp1II/C1SjYjDBcIAFGC/mQXjPj2VCFciDI/eww0c9syyL878MOtdrdZVVZFIWAEiIjEjgllvnhW+OZPlOA8UwRbJMQuKoShikAasTUtTYc47TaBZr023Tsy75X7gPEjJkq231/NLhI+HKZjXjt0Btg5ug+QxZUgkwslJlFLiTJBTXkmr9WrWuzZtra5AllEcsC6bVguPsQjBBKMwBAZmxG6xXJcaGgScGb9xWwWQB3pg73q5LOfrctu6NgUKFkqFA6HWXjerW7gSYs6SciIkMKLWcauLWidRcHZN6FlIEGl3twaQWW+19d5ZQmR+93gcxqSxLddzXVe1DoCEiWnqDV5v6+bVi8oQwz2m5K5tu1l9Mb0C1AVj972TYqj9ZucLg1gCNyp3Y8kjND4v6+c/P73+eb3+UhPI9x/uH/5w/O7vDvPMy9pXPeNqKbdhcmz28uvnpxe9LF6mhDCnBCVLkUF+Or2O+unjxWwTxDFjOSJkaNXXa68X7xskQQTwm7kpMwlKxIAOvXZbHSNSxgMNyJhnvrblordujiLqXtdtWa63pbbWv3aWI1prH01fSplSeng51+vl1jcPt4bLNVRb5CxpmnKZhnRCCMq5ZHq8m4ZpXlu+bnq5XdZ669rWVZdbX7Zl0x5BmYaHk/39dH8YDsP8YwB1S0TTPKzgC/qN7HIz7X17vtwA9nhKVGUmGVP+4PL4vjJXAFO/bf12WS8v55feW2LxptxEeqL4bY3tGjgzA7e3mTIRIu55Kz/++AMx/vWvv7hfkGieDj/+8F0Z8nW51LoZmIdh7K5swrf+C4TDvr52pCXgvtgg3uzSO9NlT5gDwHBwQshCCNAV1AEQDfHtL72Ns+ALUA8p7cbt+HasZGa39Xa+XKfTGEjmwIM8PEyIO1ulPv9yu53X20vVHgCYBymHnEYmAbO2Xm+mu39S2BOQxnRz6J9/uWmtVlOYIGJEqOpa7XIFRxoOlOUNimMUTJEyMGBncO3Lqgac5mk8zh9+no7vRre2Xs9/+tOTQz9+aIe7NAxdFbZb3xbzL90LIhwGng40H2mYgkTNm9ZNm/dr83oTr1ggTwOz3V7t48X6sqVLPS4xz5GzDkObcisJ3/14PN3Dw3tZr6t7ECkLM8eE5MEpEyKmgayHdgsNhohOKKLdzdXBEQ0hKDpoQycBOg0wMJ0GWo58u8H15terLItumy9Lu5xhzsD0jegysJDgkMT7eVsdbJei9NaQMUl2JgFuTgbQibqTvLnsgBHD/batQO3aajXfNeLdXTjGkihhA1MMVWPBcZSUxSOaelVYPZr2YMiSKSfOom5uykQlpyDasygRaGfy7Tizr2JQ/Oa6DwDTPP+P/8f/vQ12mMe21dfP1/Ona3u5IDOXw0Al8ahhJrcV8GXbLq2WX2LIWG/XxHA/HR5Oh+M4FGG3BghDSTiWcRQAZ4YA165dVZubeauVWTIMEdDW7s1G5EESMBp4bWpPl5fbn1/l1+4YAIwAbqBrAp8yHqZymifIcns99+p8ukuSvtp9k8jj3YlvR8HI7PcP83QoS7enc7vWJrf1eDea6/Pry6fPr1vToaQyDPNhnIYyj6VME5VJZVAD3Q7WO5hKlnEsLMhCw5hOd1NAOFDTsOCARDwgMkhgIikCYbCRDFgmTLVF4K1bfanrir88bZdb86gp+eHAkrApGCA7C6QixN8ASBFRJKWU3gzbzF/oDMFEQBxIbywgfOvqMoCZbdu2LMv1er1er5fzWVU55/lweHh4P5YhiQw5j0MSSVZSb7xuburmjuGEIMQpFQBoQOHuvUZ0sKCdcCGEBO7WzbZW12Xp2nfXE4CFZxECN++b5va7Tsz9cQRzbFYCD5SzE3RYN31eWvNNhpw5TxlY0Nxbr1sPDyQyYRCGxJJJW1Sv12Ya5J7K6tQDyWIQfjgOSXBzM7MwcwBJWSSNBDPYFnqt7fWygDrt4zvz1uzl6batjZnamIXNNAsiBYWCA3li4BCGJF91VxARvdu69dbjttbzdbktW23We3gYkiUziKhV22a9OYbktEMMiAiU2Pb3V9udqGGIToYNMIT39FByQFU11dvNxgEDRgCs7dZ0NWicMe9Zltpq09pvNbrMxAUlO6K2rdZb2CreKMwpHBHdQdV/p+13oMq0JezZm2yrX5b6+XK5bhtmmscyf8in78a7DyOS3V6fb9c1JxonyiVZj9tlqYsOmecDlqKMuywHrYsreidT0Q1iokxMHOadFEQpXHIINVw+L036sFNHQ02de8JmvqlxA7cyD7ncZcl6VdcKQN1tt23Z7x0KEAZ+jbgFojota12Wq3UAsLVu2nUlL5lnakEGIAKFZEyZYWcrUVjoZb1cbxe36hoUWdAJoKpWXUlui27VW9pzjnqoSeJpHNgUECKzLUusVXvXCFWLrQEAq6ZDOwE0QjXvqn0PNK7qrZkReLVewRrF778h+IrIJX9DAgGYGgQOw1CK3E4zUbjjNB5Op9kjWm/rtrn7t9am/TwBoC+K213VQvCFMfrFrRoEgYQIERCMkQSHLIdxRITbra3NVwO3XeOOiPxlbIQICPT2dvH7e7K7r0s9v97GcWoVHGKYh/G+pESm2pqen5bbedXVXYMI8ijHh3G8K3kQbdvLZ60LMmWKgUpx6I36bdPLi64Xta4InJMEQF19q7ZVgISSgDgAURhEYCx0OmRGXreoFXp9m9gBhrtab+a11uVyu3KCd+NxPk0lJbu2rdZ13b7uF9W4XP3lBc7nmI84HZgQ3JuqtbZAXyhakpAxF4N0jLj55Vl9ua16GW41pz5N9W5e70863/M0jIl8HWhZGiDkTCREuTjYzv1SCeNQCicn90ASZGUy94j9kIgA37vFgCiJU5JppMOM2xG3FW83WFbYVrtc8LXE4x2mL+25sNjWrpsNw0iFq7ROCoZ78BurFYREJMQKbO4aoAjGmPYMFRQUrqIGVsW8RIZEjkwhbEkYA8xAAQMAM6SBS6FuoIjhoG5b7Y49MrMDIjMLaMOIzIhM0UkhYs8njjfQyDeL+XevlNPDh/cPL++j91u9La/L9enaXlcSuZT6KhvALSK2roGBEoiufTWkTJFzOk3lMOR9GrJngEc4BgIGEUoWJMrFTV1bb91a0wDwHSXYe5iXlBFpL9Ha2prVBpsB2c4pCEPwBHaay3G+f3cY7w5Th7TemmMTopTy10uyCD2eJrmNAJ7IpgFT5ncPYzN4uq6vCz32br2dr5dlvZYsx8P4eDc93M3zPA7TUI4TD5NzCUcoKVQjLBgpJyJggiHz6X42j9a1NusaDkicgDE4gNCAtcN6xc8XuGxwq/DmnnRsXarPnPLIPBaZ5sKM3RIhjWkcShoKJsnf4FV2kYrQN6/9XBMWDLSw+BpGTQgI7t5au1wul8vldr1ertfL+Vxr9Yjj6S5JmabJVd2016q9q6r21trWe22tiSQPDCDmIpJEwpN2SWQdwZBo5/S+iW1Mtbda1947M4crEWCYK4Obt60PvxlHAEDe3c3eVZc2AL0vcwHui1q/3W5b9UCmUeYPc5kykcB11e22dLUkgO5owSGIQyKbSsRm63Kp1DRNIDkzT9Pw3fs7Efj15el822qrWWSCMeeUsoSgEuTbWldtrbNkIOOI21o//fq0bO14mgMDXuy2cAJCA2tehnL//jSN0gwy+dd9Yx7LWl9er8vSblvbam3N1FCdVBXAenfwaM2sRygwAmIjQXIiAFRHc/bweOvLI5C79bYoEJbCKQtnYGBy621b6/Wi52fSJuZXyfDwYby7O55O96b46dcXs5Xkwh65jCmTe+u9rZfN1zSmO+EBTM1MTd33Lt1vnRgESl64lX7h6+Z97bdrb+Dzu+nHhw8fjsf7qdwfU050uV7/+tdPl0u9v39wGqnkWvvaXYr9+PN094ipbB7b5aVdXq8vH2W5sFveM4mQcb4bknBBOCTwIRRDRNalffz1xdzvHw+liHkTpkM6APj55Wy9pY3TO7r74TGXcqtrd++Ibt57V/eUOJfydfMTRiLlqFtdL8vlurxs7bNQeFitio4iaUIqDt28W8ucDzIB0PNLxetmTNdtPV8+LrcbOGZOp/HdaY6l1ctye728aN+u61O55uYGwevy2a2nPAjTOKdUDneHtC3j62ve2jWwta6y6T7EA2zECqi9a+sQMDAdcwrVW+u1bnZb/Fbdvh0n4Zci5ssYaed5mEJruq41Jb6/O9ydRmZBFAA4n6+fPz+9vl4IiVgAyXce3Ru34Yvf6cuPbC9fPMD3FEgKQGCiCHdTJpxLerw7vH94RMSn5+vTy9IvmzYn5i9MjIBwfBsxB+yd8d84mHsRE9uql5eN41LG5hCH+7EMOB0GBw9q3Xpv6t0hgAXLQU7vp7sPh+lY+rYSb8tZICbCibnUbbk9vS5nqDfWjsSUEqVBTMHX2tV6d9ddm4/jyYdM0wSPp/ThfqZIz69tIW05cyKhtF71r//8lCeWEkg9D206DtNwN8h9SsNGr9u2rOvla4TCtvm//Mv6p3/xROYqf/j7+Xg/ErlwM7lBX9gaq6TgeRi+fzf13tbr5XU9Xy+2VSpJtRlqT0CzZMqUaMCBiBpgpIE5w0DZw8yato7ayZTMwxHCESMSgiCgACEyWXhr1rp99asRuYgPI44a/eCnU9SGrdHtyi93+v13lPPbR9O7PX2+vTwv338/TyktKXXRVTEcXMN9Rx0GMyOzhiu6C0RGGlgGSbmQJEXq7r5FmrhEAodojmYE3c0sqYYpuGTe6xhGQqXeYrs0vfZWq5EnpkyUKDkZUwiTEMFQ1MCcEn+ZRADsKq74Al/9Ws14gLqu27a+nl8+fjp/frm+XO3aHf3f9PX1tR4PT0NiYE/s7x+GInQ3lSw0DbnkNA8pM4R29TcoWrVmHk07C8/HwziWccwsBG6t923d1rXWrfXe3ToCMHpE1K2uW9tqaxYABCyUUoTVulF4GmQQOR2OD8e7aRw241K9M6eSJX+r7aPHu5LXvG5NWME3ofR4lGWTTy92WdbX22a9XpYVUD+8O/70w92P393f3x1zkTRNPI+UCzhDdwoHhEjJBYORMCg0C93dz13h86eXrba194PJwATIAKYa29afX7e//uX8119efv14ud5qdCB0STAM/N37h+OYj0NJiR12lbUSUpachBNZkfxb1iwivTHz+GsRs3OqdsF3aBh4eDiCMCGAma3b+vr6ej6fe+vau7vXWl/P59uyTvNhHMehlAg/R/SuW11VlRjVdF1WIj4c17t7BUjzzMxJUkHJ0Xu8CWbSW6blHhFh5l2tN3AhAGUidyMMM69rG7dvNQvy/v7Qa18AksVYaEQ2pGVtCKHae2+mmSALAaMzemIgommQnADBElESBGY+zSmn51vtqq4VETkXZgqMAGAhSaxGgNBD1VQChYVFplLmMoa5gwSoQRcU5sRCkiZKgxNtFms3b6qbjt1lzCOyxqLtN+eIe9Tal2W73upSe1c1Q0AmAibxHTSr7s3BQIAy4chQKFJYqEOr2Dtb7CwbRAFgw4DoCCCACYERgG3IYAiE7r1uy5VRJLUh5ftjeXyc7+9nrd5udB1sGozMc7JEwAFuAApkJCJZMoq4W9fee+vNvi0tEYGFEHGrWrdYr5uuWsbhYTz88N3jqQy+bMuypeK3pa7bVrU7RRA1Z0Msh2PJ8fjdcDyZudZqEGDWW1tro/AhQLo6F1kuxsKJ83FMyZO2QCB2PsvSWgP14A6ownmaioOdwWttl8tZisz9xExZSu61tmatI4YUklzy9Puqn1h4zPkhpQsiQzSAFqG9A3gCTBFvVsam1Z0HSJvCpV0cKxastvX+ar6FSxJIeUw5SxlYCsAeCg5tu4F/ZCTwKrtNHAjIiAEipTRkaQDBKQPYcfbWoLbIKZtabd0guqM5AQhRFlbfZwnkRh7/+YYJeyHj7ohBX26kvfu2bocpnw5jShQAter5ul5v12VZW+s5JSaC+H1XJPbWwxcezNccmIj4Uk3vDQCAQIzEdBjyaR7u5oLI3l2b35beo4dHAGDsSMevR5ZF+G+/++3rhzCwHm1TCAyEheD5I23LGgHb0npr7rpPp4AA2dMAw8zjgZk5DSQLuTEAGnhVXxZYb6QNIhCJgUgdunpt1rrtyQfmgEil0PHAj/f8/o4fDgxKugYFumTKnDIC+OvTLZ4hZSxTjEcDh/UMAjgd0R1F8JsEBWgt/va3+P/+Uwzi4BZg3/c+HRtTE7oi16SWgsV8JPxwTK6oyzKmqn4JNBErHAkRLdlG6okgifDABdCBjDAk7QbPZFA3hY7xmw0t3MACAMmRgTIFkiRJ6lxta956aDiACUUaIBUYJzDFrjRPkrPeP7DIl0/L/Hptl7O+u4808pBLS76t3SyIdpBHIGMu4uRskQrmu1QOUgbMk/AwBJN5hAWNLAEZhRxi694ULLoCZaYG1BiT4Eg4YEoETmPFHtC3qYcLyZjzcR4Tk/ctcxymLMym4XsDIY/jeLy7f0iSw38TjH/7MuuXy8vT06/b6+X68tKXNZq5xub+2deltstCpykdj/kwpsM0DIkLkzAx0lDyYSxjFuFgBAAJADNXtdaVLDgpogGYJGAG2AcPFqouHoQEiFlSV8da95THPWmKkIqQB4ARBRZJwhKBtVtEXRVrdSVm6xC/xUEw4ThwTGnHFnvvLHCa0sOpTHM+r/bp+VbX5eW6zBnfvT/89NPD+8fTNM2BiCXt2mkCAzAKB4wQAsFAgDAwF8TjnLeqr89k3ba1rUWoMDhsa7vc6sutfn5e/vbr68vrdVm3cC9JSpZhkOMhP9xNd4fxMGQm7h7uDmAEyCwEQNGH8g2HDEFYvgpi4KtfAb7kVe+MoC//HQLce699W7e6VnPfezYAuNzWdWuH46/M4u7DMKhqrfW23Mw8D0nNLpcrAB6Op4fzbV37/d3DOI2I0TQ0qBs4gL3BzQHgLWgSwtED0MMs1CzAEV27bnWnrvxWxHx4PG5LBeu+VPMNqEzTcHcaTscCK5SMhG7ea7dt6250GIcyjnd3c8kcrm57hwPKiU+95Zdzutw+L5uFlkHc6l9/XZJgntLxMA1FVLVpPd+aespeuAwEdDfPQ8oerVtdddWZfvpprEppKDLklES1XV9ft7ZYQNusfXwp5yDefvrD1b5kJwFE79a6q4PvUViAwkJMKOzGvYWZIhIyJOIxyWHOicndWquxrtFbcgcWloKUwsjDtBhhDMWYa0QnhjwRQMEwIYhWI8U4lGOZJ5kGTGzhbkXoOKZ6yEtvgUoBCbNQsiym5GoGjYVZJOfcNV3dvr0lIwPNZmO7xdJXur0sA+af3334/nR3LEO7bn/511/A9ac/PoCYTHKc8PCOytGQtlzkh/FUBhiPhslRU8p8PCUiJbimvL28rnVjinlZ6fm5AdO7d9NxyvdTmFprNgx5GPNam0NHVilpHMpxzO3S0zOtZs921RvyuQwxErFg6peL6lZGzuMIA6RjIflaxFDAlMv3H979vfnh5ekvtX4O28I7hBBi2S+QKbFE2K31eq0deqzrxbGXmYCVuOWhmzVI3RhTOpQypuFuno8RkRjIIrYrJTmOEyes0dbWtmbb5tqgr1YrMQ1jLvMkwzCY0utFMYZt9YvUNA4O3G13bnsSljQQ9q290KT4Bl5565FExJfk2x3au6Nh0N22dVUd5uk+F7pdrnW9nV8vy/WKAIn3VkpHlIgvuQHxVrdAYIAHwldOHQYQBhPyfj9xB/AkPA7pMJUpC3hHjHlIbRouQ+3dqlpoBAMGIxAQRLgD7IZaoMBvShlCyimVXMqQSkkAGOqf/vyMGMgUDt4NCCBThGtoM+y2dk21WqtbXeu2btGpa1+732718mJ9JQBgZgjpDXTt29qvt9q7A1EuOBzkdEfv39EP38kPj+l+5OLdeh+o0oByyjwzJdyqrp/tdlFXHEd8UIqm14+X6YQffjymye/uD+/en1J6A8Wo0str+ve/ALu1dVlW+IdL/vkf+OHOEt6SaOosEdQaJXosubyHuzJcFrhua+sVoAvhmHOhILVuTJRICg8cYLVdsRmzlMxDnkPaotL6atTcfKfHr1q7e6BTAkFJQzrMQxCvm+Ktt/O2rT16F4RxoJwoJ4JCooToajhOTPyle+HRm60rLEsXKjlNQ0aIs3XdjdQeLsLjURJikOSJ7u7LNEsuSIU8JyMAU3YWJw6QQLYg5ejoKlsPbwHNpYXsJ9ngUoAQvKFIPvERW8lcDvP88HA/jhlBRWIYmIkC9iSye0mDW5hjN4g3Bmp8g6xHAGi1/u1v//bn//gnau6LJvApySaoCtXDValhznhwSUyHMQ/CbkaEJadpGqZpnEoSBgYkIFPovQNU9bCIbdF1vUY4MORCOUtOmSmXUYYJeFekQqxba+YWCCKq7hCS0jQNTNh6gojEAiQvl+W6bOHeHG5BcGpxPfVtif90t2QueQwz34yyTofh3f38Q4X+y+2vv5xfnl4uL1v5/nD3ePf+p3fH44kkW/dABFWw/XHtgQ5I8RYtoeAOGow0Dfk4yZi5bbbetlchjbFV++Wvl19/ffr16eW6LOpK6McBj8PwcDqdDuM8pqEwf+E4EPEgAzMT7ohdBLeIlsbyFaGIiCntmpg3s/TulidmhjBzD3xjRSAhcbwVEntjESCAiIdxHGoNwOW2/PUvf922ej6fh2HYB0/Lsph7KqVpf3p+MY/D8Xh/evjbw8fHx3eP797Nh4kTR3htJhQpqbB+NbuhRyIGFtqr0T0gA/chc+tdv62ZBbRDKGIEWG01i89DOR6H7z7cT1sbx3SYU85JBFOKNywBQmKexjHn1Ls+PV8CoozTMNg+jDHv3X1KgWDLtuXMp4epJF7W2MK7d0LKiZOAandDIaaUAbFpOOjhUMZ5dp6oFEgSRLWuVJ7leunLpm3ddOm1pcT9C/QPANyhqfce7gTIRB6O6I5v0ElApkgJiAiQAQtDwkDXUANtgsaJWApyAkkADA4hGCWYIycgeoPxMGVACDNhnoZhmoZ5Tllku9mzXdZbDbO6rBg6F2bhzgaIDBmAOVAdzJ3QhEREWAQZhz6UXL6KyIgwz1xOhI4IpFMeYhhyERTv0au3FgiozuNQPvzwXgrcPczDOBCycMlyYHGgiwdHCCOlMo6DjkOa5nOartdrmAaQ19avZ8rcbUDyiDDzjhinuywVn5431TYIBjJKTxMc301BsC4aKZpv2MHCQZWscxgKR8YoQOm3+bi5LfW89RvL4TA9vHv8o/vrusS6nr1BBKG7W6sVFMGshdPWq21w21YIdxDJgImIObA5brfmGloGHsrx7vA+HJfrU9+uXRUyzHkMjt4vW121oxmao4ZXCwmMEJEyjzMABbRacdtuFjChO3vX1aMn4ZwIqEQoZQaO/zLr33dQfP3lLRMPgQiIAsHCTNvSt5vWFUEPUylJeu+ubuYIQcT79vwC3317W0eHPcCagJiFSZgRwnpjpFJ4HnNJTBDWq6NicMl4mPPbZbuHWph77FFuGHtvOQj+iycKmViI9uMPAlShVTPr+9wJkThJHkpgxLYFROvbuqBH61VVQTvWa1u3dqt927TujkgK4iAGs9CmagoEqVAe8HCU+4fy7pG/+46/e+THE03MvlKEJwJmmGbMRwSBC8QrdGu2LRyd5xnRfLle+FNfLuv8CPno8I6/LrIIbJ2uG/z6awg1C98qty4/fh+nsR8YRmNgzBCJrOQ+FDgVX5tfF61N1RyAGSmco6EHGRVIAw8FKUQSeAN6O9SF0lTGwcmATUzNRRU4UK25uWJdI4DLSCkJcgoStXCItuleU8bbzTcYQDLkAVKB37R9AGrRGiy3VpIOpQxDDGX1ACmcB06F8iyUxJMbNRkwn0TGxIkwMQg7BGpgBBNxBLmH2d4GhkBWSh2jg3RkCCGghFyAIBJCoTwfPxz5/XG+vz89PDzcj+MAYEjOEvuTbijT6fgIwJfL9fnl+vn51d3//3Ri9HZ7vp4/ZeOkPCYeppLBa/dmRgRBqBFb02XTcYhEEAH8RbGRhHcfMBOTo/EbeTIILAJQmsa69WaGC6Qk4xBZhBBT4rEkZgpQSTyMJQIlZVVv1kvJ7x7vxpzV+o5ido+uutZq2pt72/koL5/r+dW/XpIRkYVSTo5Wu7dq6AX9eCg/0mOL/PR8W2u7LvW6DZuDE9OQSTJEN3Pc3yccbL+5cJiCI3jb+W1AkgaeEh6ncjG43XRrNznXrbZff3l5erq8nFcPn+fxMMl9prsp383zYSzTwMLoHg7oECxUSk45C2OEm6p1d9tJUr/hFXLKOWfEb5IUiWhflWgOO5JzD07CiOhdW+u71mUvZIgIcae/1G3dzuczM5dSdhNT693c19bX1l7OV1Vba1uu6+vz66dPn+4fH093d/PpyMytVSG6XW+HeTocJkJYl6W1Fua7J5nIwmNPMbXee2uqv3OMyi9/+8U8qrpb9/VG0k7zPM/Hv//5x+aBaGOGuwMLoQxxvmxPn8/ruqAr07u7uztJ3j6+tq0PeRpTOk6jgAnZZo6FGmCzlMdyf5gLQb9eu2lK6XAcv/twDwS/fHrelu6WEUnEBTEhyzwf7n8uxw88Hk1ks7bW+rDc1uW6Xa+38/Pr06ferpSNxgcg+XKQRe/QFRxlDw51Vd9h2BDMmBnSVJIUDNrnbdtWXbuHEeI0pDIMh8MBkLatqTnGjh8UYUwCJAzIsFtRIrT7NB1+/OHnaZxqXc+X5//4859bvZayexGDCEV4Eu5sRh2Am6a+ca1I4Jh8YCQhgGDmw/F4OB5Z3h40xDgehvvHwyBHbEXvyc/QLu3z+dzznEHeffgwDPL4/fH4UMr0QxkpFx5KGcqUaECX1rfLmtdtAQ1J6TjOLG4Ph+W71/eXl/Ntu1zjdrVlgevZby/qCtYUyYbJ5lM6PUyt9b/98nJbl+MdPT4ODHoY5g8/PNzdPyyX6hZlEIu6LddWt0EckVpY7+7s0dv+IAaArsvT6z99ev7zOFwQhx9++Idx5KfP+fXpr1ivtTXt6/W2bB55gDJAYmq4KJMyoLJ1QkwACSQTX7veLpcz4u0wy4d33//4+N8wZLn8f5altg3WVIAnSvWybt0W5mlMCTPdKF6vujUtW0nZRDZOAFJDY1kWqjfDG2XofWWEYZyIs0bU1sOS62+F8hc89xue6A1mCQHhAcHCh8M4DrIuV7e2XC+9VkE/jYVOxSyW27rc1mXZ3L0IZ2HZtWzxVga9YVjNuxsS5SIppyyC4NqIEcYhj5mZsPfm3QEwgiL4dByGeVCP29pfX263tavSDpbx/XwL2I1K35DU42tXyfQtWHAaRoOsvZureyThw+MRhellCahtrZfnvi4JggFyIF2u9XpuzdTckYAyhDuK5xHMoYWmACm5ZDoc/P2D/PDd8P4x3x3SYYIxGxpvMVgAECXxY8KBPdCD+sR9Je+YIiSM+xbX19uyXv78pxjv8P3PfD9U7V/4PRgsQQAW8Ho1+1O/3uD5iX76iX/8QT48yP1M9we6z6kUZrIEPdOWuc5j0wRqRU2q5eaimBWL5ymG2cY5ZT7QI9jSluetXlpdC/lxyGlIMSRtvWsdHIfAtcF1ietit6tuWyDy4Qh5LDLnJD6PcL1trSo4ukFzAzQAClDkILZv0y0CQA2WZR1LGksehnx3N5e5YeZySIeHoRwzD6jcF+vBbmKdGFkYOJTJAs0BAhMHRgdV0O4GoDkRJZDM6BSaxGlAzAhMZu4IMU7lD++/+/nDf/vjD//w/uG7w3QSlt67mXooRBBRSmUaD7UqwK+3tQPgF1zXfyERgBMYRcOQRHSYioxiU2y1L7U6RBEGxJdbq90t8G4uY2YWDNizfBwAJOUkiQyMOoAyp0wCxCy5tqDX5fVWb8t2vqqQMgYTlJKO8zAMkiQAPSfhQ3LD1nVZl3kef/7hu7vTwbR3065+W+rL+QLbRoSuTVuz5bL88sv63Sfv/csaI0oj5YncTFWjh4X1Usbp57tHGQ63ZbleXz7+0j8+Xf79r+f33y3z4W4QooAwxzcFnb7FiaDjZhER3sHNzPfM7Uxyfzerya8fl9fLeW2XZtXCgPDw7n6e5nf3D3dzPnDPUb3V3upNnQiJGEVIhAH2Li6IuOnWe9sWa0tJ62DOX+qxvYjZubpfibxBhP5G3vzacYadPtTqtq7Lum1bhS+eg977OA47ROar18lURWQYBgtYeif3Mk7UOgQuy3K7XD59+pj//B/T4Xj38JCH4mrMOOV8mMfj4YgY18uFII6HwziOLMxvkGDJScKt9R0P/c046en1FXBHPgYlIiELGxN9ON4DcdfKZNMowpRmArndlnW7LbfbZRyyfrhHQICuVpf1Zo2wVzCdEyVBlYCIkrAISgSYWeuulsswDsM8TwBeEiduvuPXzcMDHRlpzDJORY6zpSJuSW26f6y1tvV2fX2W+a5u15Ts8PgTp/LlSAZTNGMUSRIM6OCtGqAnkWHI8zzkUgiSdr9dbtpqq92sEcWQ0zCkw2G4O01EvBXWrgDAhJKIGZkCmYAkdnO5uaU43Z9++OmPOQ+//PKX+vzpsqytLkCFRJJAzlTGTBk9JYNomqyxK7UaSJ0IA2I3nCCipCTfWOAIMXGahuFYShqKslTTy7lBYCnToUxIVgY+3Y3zqczHlDJHKABrz6rQt7Zu22Vt69baaiU7P+R5JpE08ujYqFCZo4zKT3qxfnup69Xq1iX5PeJ0KMIpiRE47J51DwooqRyO70PlnG5125Csdk3UPWnJaUBZyTdqzVbU/q2PPyDUau2fESckJxZ3MSMEIgiH3rSvty7dZ+OSGaKpytoZewbFbCyRECBAeofrskYYxHJ/8MJToiHRaCa3td22bryy1No6E5a5ZMqGBuBqrbW+NkhbEEfKrrS10E0jlDucMaFCk5QSOdKMIRgIsdO7/1eiGNiJpRgRQJhZypByEaKodfVevStjjImDJJdijgmCI9AtIoYhl5REiOntfNvFeABgblUBifIgOUva031ImGAseeeqqFnssDskYhhKGlgCsAyyQ/Bui1WN8D1JyQnov3z9sSdJqTnL3khCZMbAAIsgDwzg2DnhSQIcUXv3dath4r20yutqy9rVHDBSAUDTruFBbgDAyeeEY0mnme5P8eEhff9+eDiVaUiJAWBbG16u8PIayxrDaKe7hgEElrBnrjlxzoTMZqC9t3VbX/t1UX6F6vLHH26tfRPRBU77SlO4XREJhAUiueVtxac5Hu7su2bv7uRukiGFJBYkZ3IBt9wtrSqLUmVzUBd1MkRDScNYwELruYWpNUGQMgxCwKiNWI3VORyF1LE2AHdt2pbaM5chlcIppTHFkGPbuFdQ3YP2AhHRITHINwYFZj6djo8P0/3dcH93evfuXrIc7ubNqpHTgMNd4ZEie42g6j20OUUnB5Y3r2OYaUBEDmIw2AOzg5nyKInRFczYO5MyG6BHGISCdTNW4xpjlaOVE41jzjy6hnVX7fv6ZBYCcVNV633Hjv0vNwhEhDW16imcCVLCguQQDISAFphSMvVlM3c/bG3KNAgyQBbMCVNCyVzGkiWjhSkRhzkHI7Gw5LJfWVOX3Ne1alu11966NrWmpVBOwYKEgiiIwsQpZeFkBq25WXQLdXcIFi4lhXMyFIQW0ZarXc9hv60xwCAGYkLCADdT6zV7mwrGfbn84X67vH95elmr/ukvr8P0C/P44yMkCIZgDASL0PgylPlC2HaEPaiYQJWAcymcsVm9LLqsN0cdD1OZ5lyOx/nu7u7hbpKZbqzXevW+9db3J7ogKYmkDBo8II8pBXJAmPVWV2rb19EYEkmWlFJruj+AmFlSAmIAZNY3ka/vDnowj9b7um2322253XYQxH6yHw6Hw/EoIinnnDMA9NYiYsev7TUQC78BtdQtzFpfWrXWwl1KsqYBnplLydM0Qfj1eklM7x/fHQ4zMe83RREZSkGI2pZpfmfffC7yWqsg5+SnUu4P9zMn9/DQuzmnPCwrAoQMOZWcJfEwhveXT3g5L+fX59fnnIsUaY3ry8ti1aDXhDEMyEUArSCAuHjbrhdVva6rBgzEwMkChfkwjQTYG9Rqy2q9q5k71OvLxw7GUXE6eRool0yDTPN0upvvHud33/Vek8B3P/9jLuOXDYNuCC4JswgIegRJZoZ0PB7v7o4P7+9Y0nKtr6/X6+XaulZVCB+SpJxyyaWklKkkmYb5izQ7iOktLgQAmNWit+7uSJwzT/MUSJf1fF6fabD7u/mnH94dD4WgEgdx5oHzgQ3wejU3Q+htq4GdwvtgKTkEQUC4fcuJgUBSTsrjgAlt827o48DH093f/eHvDuO0LE8IOoyFSXqjuvm26XK73S71dl5vl9pada5m67at08h/+PHu4WEcJwq0tZpjmsah5CjpWlKgb+CNMMqA9/d8f8/HGXORn344rOswH/B0GE7j8VQe7+fvo0vcnlkvQFsiE849MLgocoe49dvLUlNz+goi4/F0+O+Hm9d+ua1/vVxePj99/OWXPy/nF7ZOqCTu6L1r7VY3K4lLNrN0vUh07+TjEBMjE5hB66RG4d5b17piu+aMU04pSbVlqdvi55wgIx7Gw8AnJtq287ZUbdW0NtW19oDgFiGraVXQrn55AkfHrKlIr4eST5JOpkrIRPk3H/++cQERCSiQCALdXYTmeZwPBdF6r9E7mCdJQknZApgIHAOLcJRBEAJyziK0j8UhwMzVegQSkbu0nWORiMkJHMGTBDMlDgIwfzO5MgMxUgIXR3EmTllSOqac7ddbX9qbTC++0tC+cSdFVO1bb4NZAgBgAGhNzc0NIgSAesPz68aZI3ouWObZ3S6v23o16FpX62oWrh2QQzgCtddmzbYGkqgUujvk7x/o/b08nvj+mI5jGYchlwToXW1p+h8f17/9zZZlO51sOCJOLmRKiqJ5HCYmC2q6eWvoPZFnoW7946/Lr7+89q9FTMSuymY0ERyGMo1DzlN4ej3jbWlq12navv+Ofv5J/vs/HD4MPPBKaYntCmgihVzAELpH28xW1WqxQBycDlwmwipYHXuQCyOn4ISAFExUd257IEUSKpnGkXsH095qc80EOGYach5Has3aCq26djdziKjk0SARfI0wL0P5+Y8/nf/HP767O7x7OD48nlKRam31ddG1Y/NkDduqXVvt2qoZKDSKxCDYeceddg2ElIkTAQcxFuKxyONxKIK1aqtRA93cu2mPcDZFrX7ul3+hfzrry/P66cfHn78//t3d+L7QTC6mpmru5hCIuCzrr58/nc8XMy/0NVX4dwpf19guul2gCEFC925gbgHq4i5EwtThjaaWJQaKBJbJ55GPxzxOaZ7TNA9ZSqirMic008C9MUIixLncPybHvG71/PnT5fX5dr3Udb1etsvZdrseJxFJIlkkMZfa6Z//9Mkg1CzQmKJkPox5GpMAQGQdh7X189qSVfz64AdDX9EWgrwHl4W7tWbLLeR5luF/++E0wN9h8D/928c//fvzp6d6veD/9nP94fH0cEjTgEIBbt52yXwwE4tIYiYBToASBubeLSskSKlMWdKQCx8fv0vDfcTIPDgOzbzQxsylZIq+WqvVWrNuoYEp1+nU7xwwD/lNsoDN1fU3tsoOIGXmiLY3Y0SkDAOSIEs3I2bYMwFhzyry3m3b6uVyvV7OzCIiIqmUfDgep8PheDoy87Is5/NZzeq2bdsWiM1B3SFCGBNJHlnoQACmRkQps4cvbau9LR4ISMJmuq1LFl6XZRiGXXqopswyjqMQutWc72qrvxUxPAxCXHIahpKnwg79tqmuCepIyRkdWWQkyZCEkpUxD0UWAtV6OT8fjsPpkJLgk92utVtvgDGWRBgOyghTQsKwXlvrZmqArfet1tuyZUEMTwyUwDVwFxB2C9sAn518KJjEWe6JE5cMXCKgTwrzwVwz8+Hxe075a52MIeiCjuKeEEoZ8vE4j9PxdDfNYxml9bZeN+2t1aq9Q4Qwl5LHsZQikgjREV2EMPbVG0QcEAYQe/hQV2vV3VGSa1vXi0Xc1mfH9fiQHx6mH356N4+p1Qti5HEaD+P0MLYef/vLmfjc+7Yt1WMjF53Vi3+5zcO39B7wiGasOpKPTLlYnmAwOY7l/v2UpawVtJs79oqXa62bblu/XtbX5+v1vGy3aqFpdOKmuqUEzbD27ktu3Z5fFs75pz/cHw5pKnKa8nHi5VzbFinh/WM6nso0TxaUee49UqLEQlG8jrcWfdPrk7cOacA0yHCcIrli6U5dLS2mTsXiG3YXEwyCcyRbt+tteX5++dvz66d6uw1EQ6KUMHMiZjUzde1BAG7u6qZWoRNiaok5pTyBsGdQDbC0XOvHj79Mw7puPSCxZHHnlFkoRSHjerXA7dKu27YwdszBTIFULTA8euwCwe59WV3dKJt06nUb81YGbUoAnf5rCwPe8o/2ri0JDoPcnYbDnMKbtqBw2eMeCRlpf6yAh1CMmTMPCMDMiECxc6fJKTpgADCRA0ikgEDaG3ZOCEzMTMK7CBiRWCShgIMhoiTihEyQE+dcIuR81a171R7+v9D0wM6Jqe261FQayTDOiQhNG3pI7KBxcYx13aC6ZJCcA9iUbpft+qzoYOpAkQp6BBBQcoswCzcQpCnJ41367jF9/yjv7/PDXZmHIlgiUl2jazSFl1f//FQ/PrVlrR39ojGa09ZrhdrYlAgkkHeVDwnlgYwx1JdNt1v3b1D908Cnke/v8+E4jkMZpoFkWCvdtt6a3tYuon/5BT4+062XP/6YH4845SwxCkWhRMzCkbF1d3U1N9KOpFibb2tE83r2voA1J+oqiTMT4i4+RPHuYlEKmqE7bdXNPay7NjdkRqJIBCjIGQXRmNw8whMIdBwzfw1/nafp//Y//sdc4uF4OB7KMImTLnq71MvL+npt19XW6GreTdUNokPsFipSRIRQjGAMYRoEc5KUhYQBsSQ+YkGLui1RDTXIA0JDvfc93tMN9NqrXTb1ersuy6k9jrdZHhIOrqBqXXu3rqZ12y7LrfYeiL+v8r9dY9AW7TeAEZhICBgCwj32uUYIBhJkoUHwNPDdLIchnQ7lOJfDYTjM83w4zPMsUkzNVVWzme4qTyJCFpRCMlAatrV+FiusgnZxvWrv3dUQMLB3Ek/ikpwpao+X822pzSKIYyjw/uEw/fz9fDgURvCotQcs67qSK34Zi7v5tizb5WaO2wa3yma4mY66Hu08TnEc5z+8v6//jYjHpn9Zqv3t4wr+fL7oh/vx4ZDngYbMFGKqEE78hvYHZmSJoKp+q/2y0m11h+AsInMpeRjuOZ/Mkjsua4tW83ATqZkDEm1MFrE2va16q4a0jsu2NA9Kp6lIOO/6O/pPBsWI2OFkAFCYOedMkpGlq0rKyBXQzGKrbVuW8+v59fVyvd7WZStD2QFXKQGRpJRyygGx+5Jqrdu2IWIg9IBAYqaS0lTyICkRYYRpF+ZxmiziJfR87ddWWzMDcPcII8Lau4bXbau1bXUl4nmeizCGns/n33Vi3v/wvTBNJRcCU1u2za3mZnb7FN7IhdLEyOG8LX29bdtaPWwaS7guy60U+uHnD8x5Gl9fPp+vT6+gPWdGhO5KjCWPTBxhTV0Sqdr1dtVQdxsThVV0Q5LdiIER1kyhA2jKUFoeTcATYeHELrkFVpTuEZEiJygjEH+tLpkzA0Ht0ZXF7h/v/+G///f3Hz6Uaex9+/jpb9fX8/PnTy+fntfL2XpLTOOYD/M4TaVkZgLX3sLszQ4SgMi8g0ddu3WtrdXWKwCw+3p5/su//ZOBr+vnYfQP39+9/3B6fHck8P5CxPTw3cPDh8fDu9PlXH/92Lb6vNyut8vZfUPL7a65D8JITGHxbZJthFtbsC+zDHdjMpKWaRs4J6Bh3bbt6eWlbxowIsbHp9fbbXOD3rVtikjTPEqCNEYeNA/DYfaHx5SEatXXp+Vf//VTyuPp9N3D/el4dyw/drfm2npVdxcSYmEuQPLjdxRO7rze4vmjPv/an3/92/W19aop2d37ePiOH96d8oE257VavdUIOgSOQV+LGLN+vTy1dT3dfQ+e/uL/vm1rXS/btjgVjJIlT0OZTmNgXG63ulU3BcMhsRNhd3fVqpin+/FOmLf8Ydn6dY2X1/Z/rP+S8ywpEabj4bt7kelwZIRYL/Xy/Ot/fFz7uQ9b5D5MUNIw5DuS3MO7da8pvAGBgXugGkXzZlZ5qUkncw9xXwErwDcOhcA3l48HoEmioZTjcXx3GoeC2pdmfhiGLAKO4QgMZr3VamYIRESSGYHcfS+LAUNECENony0GQRASELy5GwGZUIRodzMEMiFxymV0iOu2kMFRckkE3pGopKKHNM163bya+t7e2Wuxbwpls7gt/eW1eqzA4/z+fjokaRLREwUzU8rr1m4fn+paBxcWKOvQVri8+u2sBCoJhonylNLWLYALeMUwTpDfH4bv36c/fC/v7nke8XAsd6dDSoNWuZ3906fbcuse+nzW22VrbWvWO1ljWMLata9nuTzlvmbkFMKWGFMSJh6AFLhG3HKm38avIvT4fvzpD+X9h7v5eGAWB2ytX6/9fF5v13Vdm4eXP+u//rn9838sP/9x/Ie/G376Pr27G04zT5IKI7OTU8I2oBOawYbg1Nf2AmatXm+9beAKIoLmNg6lCBNjRkLYBc1ojM5seeu3rSOoWW8bqO29VncHDKFA5j1IkxIyRzqMmb8UMcfD8X//f/7v/+Mff57HzKRbv563p4/nX7fLLZo13W7r7dbWZuodyEScAIGBMiLvTvgEY85zKXMZD8MwDRMT927azW5xudXLs2+qUlgYEntwXW7Vw/NUaBYfEam93j7bAn6Ra+4TXRKOGKxqtdXaa21VTQOBRfI4In5NKf1dJyYirJpuAHnniUkm6t0huqtFBIcx4ZzpNMi7U/7hcbw/TfNhHMZxnuf7h8f5cBqGGZnN3mYb+4xjN8iwJMmZOAHyJgDbRHpgMEFA4rWqYzKP2ls36xFW13U7X67b55fbbesOIInmkYLw7/8xz3f3U06mff382mL1cAT7+u10teen2/mXW4O8dryt0lUYfR7a+225P/J8kJyHf/zhw93x8Ycffv7L0+3T0+ufn65/fjofyvDjw/0Pj6cfvjsep4llTKKcgAWCIJhRpPe41vZ89o/n9nrz1jsCBx07lNtK3Duh9t6W5Tbgkk9bmawUYQlKFEIN/Nr603mr3dIrv15X69reHe+mVAiHoeTxN4v1ztFurbXW9hw3QhJJO2Som+eyptrMo7V+vS3PT5//+tdffv3l4+26uMdIwiTuXmuj201Vr9eruV0ul9vttq6LmbFIRGytE9PhOB/GcjdPmTl6996d/DCW7z/ck8jnufz6WeKjW18tMJXhMI/TPMxjMdPaW9N+WzckZGGIRGFuv89Oev/4yExDSaD9drl2d3RtoNt2ToQoBwjVtnnvFhptCa0YnhO7h1sNsyRUSpqm3LcCrVgF4TD0iCCMnIWQtq0C6FCYM1sQRizXWycQ8swgaVcSGUQw7s3hjm2j9UIlIQlQAh5crBs0CzMD2qUavy0yBBISQQlt3tXM0GnIcymTmV+vy9Pnp08fP70+P2+3G7hmoXHI8zzMYxlyShxEQBiIe6wTvGXodG3FuAABAABJREFUIX2heHhYEOI0jMwspYhIq68GPgw0HOaHx9Pp/ljG7G4yjLmU0+OH4/0D51S1v7y287kCoDDV7r1p3WprTTgR4h4E+/WDIYRBYJKYOGYJGLETZorArcOn6+afn5/qgkgHRHl+WmvToYwiAgVljHFILK6xccLpGMOg6t43q9tOTNg9a2rWtUnGMuRCWS3ViGAqhBkxITGzqMFyi0vdnj+t//6n83/889Pr04aBx1NSKMNc3JNqvF5u12uNVXXdssKA/DVWxa2tt099fRnf/4T0eJxP8zQMA1gzjDALbYHGU54pkSmBSY9K7JQRA7Fz5uk4PT4cHj8cH4ukluqF1k+2fLrVv50/G7zO4/E0zYfDMOZcEkJ4Bautnp8vS32Fk+YjjEM+TGWeT4H5vK5b87pQOHEhD3IA3zkxFi6eKDCCwQI0QL89lwkIAsN2kZAcpnI6zMfjdDclIlvNKPxLmECYubmrau/dI4S/LKgIDw03DCdExLd8AI/dCgC8TxfcEVGEhZkFASJMmTCXwmkEma5bf71eiP1wnBNzRCfGXIatB8sNkOINQ7MfXb+7JUeAqm+bsvRp690NuKRxgGDQFhjBisnyGMg85EKYt2vU1d2dc0iKnDENBIiUwAwRWYDzXZ4k/fhYfniffnzHpxOnhGkoQsU7bzdbLrpcbblamPXVyC1ndVHOurZ4vfh28fUM6ytrI5GQGfKhpFEYITSkAi6h2rOUr0IfZppP6f5dun83liG3bnVtl1u7nOv5dV1uve1Xkyucl+3lUp+vrUJ0Fs+Dl9yQhggJhdZ7I+3g4UTGAWG1rb22WtdqaoiBHrWyMKecmJhYCCHM0QGACJz2D4t2S6q25qAeEW5BiELBRLR/NA5MXjLmbzoxwzD8/c//oO/f5QTbdv7l03+8LJ+WupyX83W5XJbb6/W2blU91CMcOVgYE1Jh5AQkkjMdx2lKZeAyYZlhCKV+W/tirUZdza6ASKnQWHDM4NncqmmkASiDC5qFbm2zdbU15wV4yIyEyT26Wuvampo5CRFj/C8xSl+XnAYqcGBmHrKMKflAtfaFVndLjIggmU8DHwudBno4yHTIlPKQy5DHnAoxoRAlwkgA6AFuDkBMSSSxcCB2VdoTOcJqa2tre6pREFqgA6LIMA4BELQuTR2hm3aHUco4H+/fvX/34bvHD98Vhla3rbu6EbR5Hr8mnanF+Wa/PvfFt825d48AATMLIQnIBjodIA/p3f0k06nMt9r0tvbbqsu6tXq5rX5tdn/Kc/GxxJQj7ckJHup+Wdqnl+Xl1V5uvFVQiFyG4/27kk/Eg1qsy3Vbz9vycpc2GFFAmMkiLKybNdVu5gQa0dcKboUBrMLj8W6SshcoX4oYd29Nt61t24bEu5IBiTgxRBoGG8ex1tpqb205n8+fPj29vLwu67pbGt1DzSKCaM8dtHqt67a8vl62bfNwZpZEe24XIiSiseTjPCbEFnsDUQV0FGfBRSjRToNwCxLkMo7DNHIia+4ACt7DKdARgIkBSL4xVQHIu/mOGCVzrevl9dq6MkSHuOkmWnKeINp6vgXEMBBBU2xKe4uahBMR3K6Xbavbukb0obCTuDYN36UDwgzhvW8RepjnlEeWoTZ7fbksvY4DcRGJAAftPULHKSN6QBe3ftsIz9wRmsfaKqVL84YcZcScumJfJ/c3CxwiiEhiUUW3qBov5+2vf/v0+fXy/Pr59fz5+vp5Xa5aO3hMJZechqmMQypZEgOhM0LOezw5A1AEIjCRQEBXh0AIF5kPp8MwDlKyu21tNfCH8ZhmGacUKLU7opT58Xg4ne5/JMmfPj3/679++pd/+fj50zLOh8cP+fmTR7Rt25ZbEk4hUutW628UQmF6OA7dhgEhmRERi1u2au1Wr09n+/S8bNcCMKY0tOqlTB8+fChF1u2cxe/uB9P6y6+/bLVy0lrbui1uyDQxDn/8ux/Gmcu0nK/96a+ZrAy5MAd4LYXv79M0jyIZHFu129I+fl7+49/O/9f/fPrTPz3/x7+8XJ43BH73YZTp3XyH43NrT7f/608fzy/LAfiQ8TDHyML4tYjpff1V60eB/343DT9+/2PXj+C/PklrS4oOW21plVP3xJlwEqZIgrnmpJklw+FUPnx/+sfH+f3dVAS80e0a19kz9JdPr7fn9Xq9rdt8ILwjoK1dNWpd+3bbam3RkRqSAjrkLA8Ph4Bh1bDWbhdz8+koSLE34cOJgIVozNPd9ODu59v/j6//apYky7I0sc0OUVUj914nEZlRWVVZPdPADCB4geD/vwIyIsDTzHR3sSRBnFxmRMkhe288mLtHZE3L6IOLP5lcE1M9es7aa32rfMsiwZdtLYGjNmPBw258e3+4P+7HQRjMrVMUAEWw3ps2b9VK672r+k2EEUDq7qa9tYIO8QvdAREQBMDsa2LoyyRYhFIaQ5CbQc+0Rwn3h0nS7tLTejl/eLwy9ncPe9lFQGKSFEeR3rqV1hwQb93W9iX79Fsx5tZ04+a11uvpGiJP0wTOl/NW2wJJQ4a7tznKIH6oK52el62UPOnuAfLERFg30ObI6B2pc07x+DbdjXK/p7sJp4FSipISkNTFtmU7P63ragF5l7EXULbDBJixBaIMy0m3i/cS6pa2mbSrhG035t1xnO4BsPTStzO5Yk+QZEL8qsIySCYeiRJ105fT+eVlvZzKujVtBoBRyIUdAyhcL+35pT2+6t0V9y2KptUteKdmXkxXw+6IliKMwcGt1ratdds6mEsQBzanG+sDbpRlYkZyIucvgjAxEcPWeuvay43mhcTIQix2W7FVQbtp74BGbN+kfiYZ894Qwfqlnp4eX/7y08///vlPHy8fL+t8WdfLpWyl926IFCSkyJlxYB4ixsgcYoxxCBM794tdtBfetlUfn07bWpiIBFPg3RjSgac9HXbuPebM69KqgRpSQ+xMLQ6YBxqnOE1pl+KOQ3BAVeut11p77926ugPfwH+3DbP9tp8LHRkoAESRFDhH2U9DTEPvfjldyrYBdHBDxn3k6MrWGJuQCbOgWPdSWtEmSVJOHBOhAJAZEkngRMTuXnorbbss68vl+svj619//PD8cikd3IkpsLCI7/e73//+u2Eaau3PL+dp9/Hx+TSv7e7++H//n/+H/+n/+sf//D/84c1xaNtcNmGRw35Yr8P9+7cxhtt3UaNri59Xft3WZp6pD6JRGiNvrWHpFm3FTtvMgTHEffK3h8mV5mJl25bl+pcPrx+ecBzkfp8Og+wSB0Zzvy7r48vr5+fz56d5XY0om3M1fXj/3f/8/7if9oeUp/Nl/vT08+XlQ4LT8R528bifIkeet76u2zIvpVQkvLubxmbLdXZtL6+vrhWs48PuzSGy/Ortc/NS67pty7oRc6m1WXc3JBSklNJ+nMpWzq/n5TI/fnp8enzeSmGiOA1uVlqttbKElMdp2nOgy+V127bT+bxtVUIYR+EQBX0rRYgCSxIZUxJCb6tVNWu92PX0BCjnc5kv13UtW9GGjkG7Wutq3mupzc2IKIqwyJDikLPwMI30mxpdGYnNrW+lrpuW5gYUU9P+6bqdNhw3jpzQ2phoH5JLr1ctqA4MiEJEALctYK1raw2hAaqjatfSFdVTSISg2ol9SDyMKYY8L+3sqr0BRHDQrr2ZmgIYIzB/Kd7cllIUcyfpjqUaYF+LEvN09BgL6paT9S8ROCJKIeScFfuq/XxZL+V5bs6C8/Ja6xV0QzdByimMecw5phxDZCYnMHALjClySklCZA43aK8bavdauwZDGNOQD/fHYRgocO9lXl+dfTjswiAYnNiATSSlvJumO+TpdFr/9Z8//tf/8vMvP17nGcY8jvt0nc+1aOvae78xum+H9W+bGEYaQpxCzjhI51a1q6IbYjdYnT0ktwaASoTDNKU8SAiOptab9m5kfqsFFGZW87V4q5rEponv7vK4c4nLti2nx9SuYxJEgN7naWL9IalySubu21JP5+3pdXs9rVvpTb11qN1M+1a4qTogBwmQmEPkOHCaMo+pp/Drrh/QAKv6dS3PAhMT7qbd24e3kbmsoaxWltUQ13Xrhq4skjmwAyEsInJIxzfD2zfjw44n31TNgspeBh9wrfVDviytlLYum81XQHeQs2HpqorKsTKhhBy/OkbIsZv1ar26mxAMQgmpdpqdiFAoSAwiksBT1602bX8rXbo7IeWUd6PcHXfH47SbYgqEqu4SJJmrm7duqta/CmxfMpCIgPCFq4tIeHPG4Df65N/4ogAQkJGEmZm7dgBAgBB4NyXJuSwBmW/tTTGEnDMqGkhtvqxtLbX17gCEdMso/QclBhGYPYiLmFm9nq4A2CuQ4/Xca1ULfXcX7t9M+92BfTo/9bJdlrnkQw/ZwgTuYMXMLJCnJNOYjkN+2Oe7SXYD5UDMBMitc+vW1rLN63Iq7jDsAgbfTC35kYUhbujNuW2uHXtLrcZSyd1ciiOLZGa8xb7NiVBSHGLKv5HHoZkvzeRatNXHp/l82sraVZ0JgiD6TQpRIGRGYUZmY27EhYOzqxMoOKhBBO/k6urBgG8nvICi4qqIBBQkZIkDSwTCrh2+FoYgAhMiIQlyAKm8bAWKmwIghCApkcgN4m7ubmhAhuC/tZQg4E1YcUc3rhWWtZ9P8+l8uZZlKW1ZdKtmCswUWAKFLJQFA5o4ijF1UcVadTmXuqjbUrZ+vsxMcH837McQBpaMGCAAQAfvTB5Bsa6tNHdw6IbVc0BMFDAOeRiGAUPAGwnabiiwtm7LWkv9ugL/Hy8EEKRAEAgZAVzdjRE5sA05MqI3JgjMY8QoHVwRVMhjYCHqvfXVjXr0FHMgYSJBZHYmkiDJHWttW9PLWp4vy6eX86eXy/NlmatJGoUEVQlUEKYk798e37x7w8Tn87zfjY9Pp3lr9/d3/7f/6T//8Y8/vHtzzGJzWxQ9B+QhJN7v97tvSowDdRqKx7muqi0kQ3AmB/fS1LdGoSk1EQ+OYgW7ZdLjEKZpaF3XNa/z+Xo9vZ6XVmROPEWJwgiwlfJ8Wp5elk+Pl2VpjOxA3R1Zzq+n/eFkam292voa9HK/62/2YZcpR8LApdltEKkGgJRzHgbMgrVstdR1K+fzkoXG6Fl7+rq8mNm6bpd5vsyzSJh2W2mtac/uxBiEU4wCVOb18no5v5zny2xqIYZxyGbaT6fa1M2+yoHQv/QEWDcIHFCCISICMQsxIwXmGOMQOfC+RSoLsTuh11aXdbvO27K1raoxslrtXWpFtNaauiNzSJFZQMgImmv1vx0n0baVVp7Pp3lZtfdAnIdc1vKXT09lvuYwv9lNf3g7vj1O7+7ZzS8nv3wJ7tyMjXiLpvdet7J47WTG6L3X0/mqTr1pTpHJUwyRMZIJdMZGqMIYRRip1lqqATqg9VooyDhOCvRyWfu27l12gINrtB7OZzOg9dxEFi1zjPrVpUyIeYi7/QSDtK6ff/r8/PICf/oxZ7rbx/0kU5IcJYuMOU/TlHISJiR36GANzGLAnMM0DcO4S2kUye5Ui25br6UBYsopj0OedhLE0bttPDJFnw5THMRJDZtBjXk4HN8xT8va//SnT//f/89/+9d/+WU+E8KIHCl1yhG9ASIipZREGGf8zYEfwBGbSB8y3FPHy+N5ayo7kpEk08MD2T9Km4coY4i7EI7d8HK+zNfX8+UZvOweJaUAEIbhuN+L49pc12UFN+TGIXB0oNpNt83Xiyxqterlcpn2CqTNrsPAvdrL43qZtSgByrvvH5h3jMPz5/O2rsc7mY58eMjf//Bm3PPx4X2ddQcJ6nZdPsWQ8VdwH8Up29U+vP7VIMzLuTW42/9wt3sPyMtSnp5e5uvlfLngdR2GYxqypNiMr5eKPebxfqSjb/paXp5eTwD2cJymJFOKvztMVztIgs/XrfU6z8/WIU0gGVPSxLVjox5iuJOcKbp1Ob9ct2qXl6VVHYcpBh5GBF+8GAcNcuA4UGIne122eZ3Py7rVZt8efjc1DYHvjw93h/xwP46DuHdVTBJE2CGYtlJq783Nb7b/L8v5F6KMM6EgAyUCYERTba19gWbexk2E7k5EKXEIIkK3JASCSQgxpZiEE4fu48jv3u5jgPuH/eG4R+vXuX9+vH74dLlel9YbMSGCuqPdNi6/9togeoiaRxt3xtzPr9fLqTwP5yCBIKJHhRAlox1CGkWQllb6tiwbSgcyxWbg61WpYhQ57vIf3u/u9zkFziEMKQcODrKW9vw6z8vs5eKtQeWc8TBuSE5VHRHjSBbsCrqhWXLl2qQ17g7Exrlj2FqB6ytdl9o2h+rYhWOIQ/g2gunm51k/fN6enlwrLtdi3QPFIVIQRzftTVVRW4zh+GZ4/7vx/XfT4SGGESljGFJEhNI0SROwDbV6hV6McwjDfp8nL2trpdRSOMgwHaf9ECOBtWVerBZxQLNbdhaZAmFMKSThQCHUtXQkHKcU0q1kWks1vlnDO7oD8q+5MXfv3XpXBAdJabofhvtAE7ZgFXox7WguRiwhSs5xCDERk2or1qySgRftrSzt8rrOl7qu5oYx03fvdj/84fjmYQTotbW51e2lzq3VTbfN1xkus5diaoZqYgBTvY/dJ48iOUcPiMSMwiSM0mo9XdBmV7+1SX6RYm5V6fjlHsNAEhgYwbRtm4JZrRokMtE05iRDTjKNY6AG26u7uhmBp0AkXtvaizdvBtP+eGAhREJkAL6ZxnrTpZbzvDxf1k+v158fXx8v105xuj++ef99JCrnp75dQNsY8c1h+LvvHvb7fa397Zu782XpCuM0ff/9d8fDxK5lmet83a6nbV1VjUWEf20YJuaY9ilPYVsRamQXJidRFy3m0GLaYqSUiUDrZVuvTVePNB7v76f93TgO23L5y5//5eXzx21b122zzjnwGHEaeNy/Px7vcnp5fLqc57n2nohNy88//nlb5v1+ytTf0NPhnf3w++O7+3TIwuBMOKSw343z6i+zmyFiGHO8P4zayul0baWXoufTNUsJx2tW5S/Pi53n5fl0vl6vIYRxP+7KWlrJ2lOQm0/bSjs/v74+Pq/X1boRUU7xeLc312bN560rLlt9fr1KYLXuxBIHEp/2+5CkWHfrSMQiiIRIIrw77HI8otblcrJWAtLLea19mTedN9uaM7qp1VIIFMBvfekhRrwVXKNdy9rL+nQ6tV9J/SDrfF3KNp8vW61RooRAktfWf3xcnz5d2C/vDmMvdznYuzdhGvhw3BWV15dWa1f1W1klMYaAMbK6olESNoS4xa1pKRURdmMILARurbTee2mIXQSiECFsXXvvAARo2iuQJ+HquG21KE5DZu1BC/cay9y7Wu8V4LJd5+M77d9gRBgC5xzBWNJanF+Xtm3XaaAx3ckhjUPeDWkIcUxpGIcQBdAAFYBv2v2N/O0ODg7kwghIYOhOjEQSpsM+DSOHCORqDUEoJoomCSmYk4uIhBDyFGK+Xttf/u3zf/lf//Sv//WXTx8uQ3o7TBNLMHBOIXhMkWPMIYSv/RW/Xqq+nO36AqsHbPTyEZamQ/XBeUxhNwX6XtqaXEFVu5Z10/P1dL1cSqnoHcHcZT/tdtPh7piAZ4UWIptaTBSSkygyEAGJoTTAgmacnKL7bdq7QV31eqlbQUg5T2HcTSFm65YzbKvsj/L9D4f3vzu+eXe3O6acjn2x0GW5nDa7KPGv+zHA5nIq+rQ8mjKCpRCm/D6IqReky9a3Ztu6LaB9QEciB249zGvoxnP0oW1qvSz14/OJmEPklHZjiEeevodWyTfT66YCCoC9R7YQQxApzUgsTnEfhx1O2KEvy3y+rPNlrQ1zROaYQkYImmtvLfAgMUsOhrXU2bExO//mBXN7x4QYHh7u3r/d3x8zU19Op9pU8GZ1gBsR6RbJp9vEBhAIvwKibi15Dt8yqb8hxNykhRtrCpFCkBCECN0NwABBgrBwNwXvIYa7u2zwLkW6ezjkMbfSSr9+fnr9/HTaarmBiL7tjf5DASQhhOApeooA4FvtrWkpW0ppGo4xjAQD+6Att8pIbq6991oaL6ZmWAEJvPrAfDek7w7j+/vxOGVwQBDwUKqUBpfZTqdatiJe2TsBupE1JTJEJEYUxH57T5BjBIxIt1rvTgBMgOZtab3AtvZWgZQIUcRA+rfJhTuU6svSwVwbtlUJkKOAMKEjgjOYG7qnSPdHfnsXDhPkYAyNMQ4ppBAgRA3cBK2QV2KvIWDKIQ8DAeatl3VdZxThNKSQIpJ3bbVrr10Q8EsXhSMAAwdmYQyiFhjBkWnMwoJd9faX0I0hjq5/0zgCXfV0Oa/ricTO27ypdicHIQiCEsVtFHLpjiLCMdw6qkDdqrs5oLpr71q2vtQ6l3a9NiJMUx4mOt6Fw/4mf9r6Ul/P2/VSymqtYy2wrFqrA5AgJhZPKdAwDON+v9sd9y4OyEwsFAKnWqq5Vm1b3f67uF4AIIIgEm8tV+hfwK9tidKnMaccbof+GypCbQVuZqhqAApeb8Jy7ZUDmio6At1aTf2r/WV7eX15fD2/npfrWgxwGMeUadodf/f7HxLT8iLlmrSuD8fdNA0pCiIQ4TiEGPd5mELMRLQty6ZV29LXdb6sL88vpbWQMu6X3r/F+L88wARG7mreuiMCgffWmxdOW0g8WOym5/NyupSygQloXdCnIe0DDXe7qV2HVkpTUEJAikmGIVEcDdt4akNRJZiQDvvdtDvk6ZCTCMMQ8JjzmwP8/v3+uAvit1grEUKKcRj6OBiQMyIjREHn0FvesGnV0nSe225ZzL58l9776Xx+fnkttYzjWHvvql1VXW9u7FbLcr2eXl7PL6/bunXthMZMecwi7Ags19fTsm6l6VmEJFgzIJEo8e7+Ieaw1mtvG3aLxMLkblsprefjccoyDUPSsmkpl9UcuZmX2mptid06tg3IBIkA0VEJXPgLm6ZrW9Z13Va136STHl9fumkzkxhSziJRO16u/dOn5a8/nlrBn/Ll5fl6mVeM/J/+8d3Dd9+lqW3rh3WpbrouejnZMKX9Lk9jqmuBblFkUqNpd17KOjdwZApMbK1tZWutr03dLAQRQXQEu4EvnNDdFJ0CgpppKWaYCaZAGbwDRpTNvGx1ruX1+no+nb91J91gA8TkyJzGPN0Nhw0FhwzTtDtMu+N+PIw5cYzCEoRA1SuhihAgNSB330rvNq9tS+t1iGOQjCjoEgRjkpyzxGhgptV1c6wcmnmbt6s3pwDjtDtM75jH67n/6V8//i//7//1n//LX54+XMjiftqPux0HNm8SRDDvx2G/n5jZTJEAvzXCAvTqT5+2n39c6aGi8ucPutQer/1QQkh5d8xygD74tpWXl/Wnn38+n8wUCGS/P0bhwDTkcT+9uzscH+4zhitwG3bs3hAVSYFMOKTEu3uIQQlmZmGZxpHu7oOwlbm6W4yRQ5T9SDGBCbO3TVIaeuP7h+E//1++/8Mf7w7HJIGHKKVab7p2u3QNavpVvWgKz1f4+VHXdREOd7shhpFpcNsu19O8XYB7HDltg3eSFBRgXtp11vMlcgfZns7hvCPC7vNiOU9duwGSxERyAD+q7pYFyfYpEvK1oVpINEZsQC+R/e4w7o678DBet+3Pf5ovl7msc22utSDofsoxjb572+vqpQqUQyKOsCnEiMzhbheEv8n9iIAxxPv7u+++e3i4H60tZb4uy4odmiCxdq3bVrQbQEAiMAc3dEIEvIEHtKuqmSJgYAH3W8valyLZG5oe/DdHc7s1Qt40dAM/X+dkHnb379/u3r7bR+HdGK3rUrbn0/zx8fH59dIVWQiJwOE2nP1S9obfvgkKciQSIkBKgRAByFgwDTQNQwq/i0Nqy3x5aWmAdXZVV4NttbK5GqVIx528PeR//N3xu/vdNGbi6Iq94XWzeVleL9u6FdAaWIeRGaBusDXrj0jEQNQcrpdy7aX2YkgugSglEgIvfUUH7hGr6JVQjNXNQUEVVL1UvRh8PY05oBMhEhM6dHZrXtqNiMpMAEjOhugSfZxwGiz4itVwMylhQhpDAnaLbAOBBobMXtlaFEwpEKFWrpvHURFcMhh1Va9dO0B12HqHW97bEZoJYzRHgF6NwG8UWkHzblpab+rqCChEjt+gZ1+uUsvPn356OX3kAZeyfHj5+DyfqnYSHmgI07CPYwVeqnVVBC+9t61i6zeePaIiO2D3CGmfgaJ7Ffa7O9nvgajVsp1f6uPn7eOn5flxO19qWVUV1aGbIwpzoGEMaTdND/cP7968e/f23Zvd8Qh86w5DBgqSylarlqWu5yua2a/d1b9tfEcKSUIUJETmkDMaXudSSmcCJiPowO4bp0AxZpLQHUvTUlYBAwdwtdZ0i1bVujMBIJgpgBLSspw/fPjx09Npa+7m371/y/AWDMZx9+bd2xSk3MW63re6DkOKOZ2v6/XD03VZlmUZpuGH3aigv/z8eV1WQQ8MkeFybv/+0/Pr6YLEM333n/5f5QgAAGa6radtPXt3U1k2awxRjVxVLZhBDBRFUtJOn854uWhTUzi/ru3p5eXp8SiMfV0FmVGcIac87fLhOEjga4GllLl2I75/uH+4v//D3//Dm7fv07CXGNxNdM3tdRe3mA0FCAGBulHvhoA5xjfHMKy99t7KfK0dCVlkmFINhlpqrdv6a2lib/355eXp+ZmZc863Vmv/eqjqrV3Pl5fXp9PL8+V8qmZqSmCWRZj2+91ut8/DaVl/PF9Ol+uKDHkIN4v3MIzvv3u3249bvW7LZZ1nVEtRVNvz85NrSynEu+O4O1oa5vOJZJEYiEDb1soWQ3fpfW2sMaYIhG7NwDAgI98qxckMVP+mO2neNqBbsEdI2ABK68tal6Vfr31Z/HLpZesKLmNaXf74dwEaLEVrsxDIAdXBCWIORByYvZsgi/kxJEl5iRUddmOK4q619VLKqgYpZQkR3MycGcXRDBSAAUGtbqsaBHSJPCbKAQOCI8QQQ4e1dm1NW7fe/W+MikCEjkHyOB3ujqWK+Bg05yHnvBvH3ZADye00gYhMnRBY3M2VsXfvauq1u3Ut1loMNUhkEHBC8FKSoROZ2dbqxakKAbADGjIhC4Jok/nc/vxvj//lf/vzv/xvf/n08xNCGPOQogRBAGOCMSf0MA45xuQO5s7CIci3TYyqz2d/fdLBOrtfzlYadKc4iK4JpyihIjeFTqErLiCym45CIzqggSq0SlW8FqhbEBgRDoSl2dmhBVJEdVAgpWhx34esQ05pSMIE3stmW/HaGDAwRWYidmSddsi/m949ZAA/HNP77w7jEFrtrfS+hV58Wdul9tl9xF9DyWo+r+06l94QAqjlWvVsW6uX59entb5i6K1r7QaGpVXsvhVvFQmTo19q0bZVhowhxHEcckohxBBTQoE9waGWIYRuNUYEB6im3XtjQCwlGvXazLwzK7F2q6qdwQXMrHTd1IsDOtJNkGO3TM4M3eBWM8FA/0EngxvGRh2RwKk1q7WjkDugdvOOgMSMwG7ofoNx3hYIMzO/hatNEVBvHdVENyIRAOiNkfllE8M3ByggEKMIhxgA/HpdqtrdME6HcdrtQwhm/XK6Xubt5XQ9Xee1bCgR6ctf/sWOAwh/67kRRCESIiKBQaILMYcUUoopx/00ScjqWhfX2tpqMfI4iYODQehpJ/xm8rfH4c1x3E8ZQGqBuum66XXu89zntZrrGD0JfmmxJDUm4KyAzfpcy3mdN+gysoTUISFkgaQbLIG0KRN7IwVCRjdGcmJQbN2X5su3agtwt96hO0cnRhVSdXBQhQ5ufKuxQxHIA+52sJ98TJbJIiirQm0uHRCZSUISoiRBoLGWQB4DIYI1ahlCNOsaCBH81igNyAZctVsHQgRHV2wIqoburTshshAZeL+BmYEc3NEB0MHNvbvrr44lVT2tp19efi6v87xdX15PL+vTRpsnZ2AW5iE3Etj6tpa+ba0U2Co0QyVAIAYORqJEhMwSKEZPYtMgOYJZnxd/fFk/fl4+flxensr12mtxd3QEJBShGAGShJCHcdofDoe7u/3xOO33QN671tJa7bXO67Ity1JKMVOA8B+fkC+bGBChEIiFYgj73Y6cVAHMU+AU+FaM1FTdzQiYKCk0ta6NgSTcDBWUcroJkmAOYN/KjgHUXREsMHIMQwzkvi1bFN9lHnJecbcQVO1r0+fz3HV+fHo9XS7rOh/u9ulwhyj/+uefXl9OjJgCjznM1/nff3x+vVxF+PDDpX2ttjDTbZu35dqqtW7FgQhC7wQO3oM5LAWlhFBV8brptVhXrb1tWliWeV7HnAZhohBjJlaWgBRJMgZhhZjhcKfjTo/76f279//wj3988+59zBMJq6q1FdcT9peiz21dEyKCq1upuhYzxxSEgFvHW0WEGdxI8yEyK6M63G7X2yam98vlcj6fpmkHAEREzExfjtG91fPp9eX56Xx+LWWVlGKMTJBzYsIUw7TbI8svvzwRXRxMu5XaODATD0N+uDs8vLkz212vw9PnT20rOUZ0X9fVzDhK7/b2/o4RS/eq7ujMmAIi8HEKuynnmFNOMSVH2Oqq3oGAg+ScLUUx348T/9bYq46CnHNgoe5aalvXXmoloMSxMXS1p0vXv55X9Z8e53/6u9MhxXouAeGYUxxT3sc4ijM7YojJyc3UQIlhvxve3N8zMXp3La0CQMMCwjwej4CyXM6qPcbAQrZ2NYjMrnp6enGm4xjjbtqPIQZ0cAQKKUUj1jWwjCkNMfFv6sURgICMQ0zj3d0bNYtiEUuMSTgkSSkkAuAbdSIIRwFs2tdaO5AB3ux5cAMrNkUANQ2o2IoCx7Atw2533CeEui2PhiVhTnkY9vswTCTRWnh9rD/+6fn/97/8l3/7l5+eP18E4vHumIeJqPc6k7Ag7qeJwSOz33BC4CmmnOKvRkVDa6FuMi/GALU5uDAEsdG3sS0AQ3VqyGHa8/e/37kfHg4/lJV/+tPHl5dzLY3hOuUyz8tW3uadVI1Ljee5cJjfvRfZabel9Lo1ZeJ8nHY75OBlgcdPZTsj9RE1YgsOWC4rBUxRhji+++F+SDkIswBQn89zfVm1A7ehFTqX8lq2GfEY2L/6Fdys1xlsOYzDkCBwn5fTh/Ppenmal8+tzUBgDmZGyKVugRNDGijnfTJH16LWq+MYhofp3dv9w/Gw203DOA5E0MGnkAIJuNbevjQBmbxeqhssl5XBWtGlbfd4rlC7LhIg4qjRV+8YWoOTt2VdzGuX1pEFDLTDvND5DJezrVfVr1C121cqpX5+fELvphWtX6+1NY/igGjmRJyn7M6tauu3Rg0nAnOrrZnezqxfC+7db6IwETPLTa++cVFv5bJq3tWIKcYQUwwxaG/zsm69pd047acYSBJvS1m27fn1/HK6NjUnBAIEd3d0v8kvX4ZWvyatgAAYUIBDCClGDrs8HJFD18rMcbCUUH3XOm7XV616vJdpl6uSGE+0O2a5P5T7Q0gxqnIrvs7b6bJer21dujrFGPdTOkwecKvbVltrYGk3HN/dqcHPPz8/n5bT9UwDvXnzLh12W70p1ntodH3Oy+u2XDerroXRpXeEoHEPFuoCxbx+M8Kbey9bKxZDDywYqDtZJzRyQHMFBAbME+0m3k942OHdPu52KefAaMt8ra2TiESOAzELRcgsA0okZwYE04ZNIJBr69bBOziRk0SOna2ZupkTg6Op99uKYTdLN1pAZiByEggcOHBHvcFve+u13BL4X83d6MrttTz99fO/vl6fqmm10sOq1K03ZJPQhSgC1G7tstV15eJYwdUQMUREcAQwdOu9N0cwIUzCBFSqrlv98Hz+5Wl+fq2Xa9+Ka/8ybmRGQnA0RIuBUop5yMM4xTyGmNVUdZ2v2+l0Or2+ni+XeV1KbQqexvHLwnlzxfy6iUEmCExRZMrDm7u7LHFKGbRPOQ45DDk44VK1tra0UqNHlgnY0SVgGpLEDJRj3I1jFkJ3uwmXN3ZbzsN3797lYexdW+va2vV0+vTxU0757rgPTGvtz6flLz99LLXsjwcAPl2W18v1dHre73ceD4jyX//lr4+fn02VEWKQ2tvz+apuh2lYFb8NLcyslrKu61atKhgQABICgYpoALClIW6RBQHVqrrPDdYCa3PiZr6ZAY1j4Jh3B+2997Y1mzcdOOVx+m66Pz58TyS7KR+Ox/v7N7vDMeYcUkQmUy3z3eUlff5wLnPN4IEQWLpZKU27A2AQOe4TeN6W67LVpZqasXCMmF1i/PWQbGbrui7rMgwDfKnbvNGDCRFbra8vLy9PT8v1At73u7vdYRdDSEkYENymaXDH/W7c73Ypee1t000dUpRhSLvd8PZhH8Pxeo59u8xoYx5Udavb6Xo9Xa+Pj69//Ps/TENe5uWybqU2YXg4TsLTuzf7u7v9bneMaUDibn3ZllLX1hsLT7uJiNbj3Q/ff5/iN8gtSE4TEwiaWW+mTa2ZOUJMIeWwVe1qW/OnU636el3bsrbfP+zfDnncZYlMQsCsjlobI0WMFJjAQVWxIfGQIhH1ag7MQ0by0lpTYOauXls3tRSIkATMiGIMrq5tc+Q8jEOOzGCg6tbNb0lENBekMecx/5pQMLNSSms97eI0pcNBS93KcibTW1I6SoxB3JoIpSHlMaVRAOo8PwNcbooZISMDChAh3w6yeKvzbL1ru5raFmgMoqorBCUZWGLgAS1tF59Py/Pn5U///OHP//zj48/PCDJM036a0pBbV7WvfQW3BnRw7erqgAbuv6VeIpBQZE7I5O4dOiEMeQo8blcErOLKg7PwMOU3GBEPu2E8oxpq1aqmxI5cuy2vp9ewJRQvKvOMHGC3OJhtW9NmCCkPeZgmyVxrv27tdN36Fg85xjA4sSuoowANIe/H6W43TUMWJnNdVmuVtIe6aZ/LutnJ6gXqItij2LffRfsyv67Xp4HunGzr/Tovnz59uF5eTFdElSDEhOTMHgizYCAmIifsAM2QTMgkDrv7+zdvdschcUS3tjmAqI7Id3koLVW91Fa0eu+0rE0VazF211o7rjwwBkUoIRoLquKt2bn3Wlu7zp2a70nQ0BvWBq9P+vjar9c+f/8txf9lXW6tvTyftdS2lSRUNhMMTMyM8IVcFcywkyOCMAA5ovcbztZdWIjoWxsAAX5ps0YEQGYBwC/UO8IbVZOBmGMIzMzmhiTMIcWYAhOatrosy/lyeTldzvNauxogggMYffnPDULm/4f0E6A7mCGABMpD3u/vgMKyXigAhw0ZetFatroWhz5MHCS7pwRy5GkXYEyeImq1y9rXS7/O5XJdb6sqswgKI2pX1b4sXV15dEzWRNfiz/P6Oq/N6hhyGoe825Eak0wDozLzwIwKbTv3vpk16p3YgcERyTvYb/E97mCdzAN6EGbFZtQNzRDMbw7akOG4kzf38eE+3N3F4zFN+0RRAH3dNtu6cwg5TpCJJTkjI7MGUhYE95upAw2aW+td3dGBQRlVyJkBAIUIbnEjw1uKB8DR3cFvA0RGEHFBcHS76WIGYLeB4deXpetSlufz40+f/vR8/YyJKSIHQDEQR3TnRoRJqHdYQK132xwqghIhgbqrewdEN7VeTKs6i2BMYUhpbF5doJM16B3VEFFYJAqzBI7MQWjIcjzudtNgZufz1eFTiKmrrutyej2/PD9//vz5cr007RLi7rD/NYr4f7iI6BayjSIphCkldiP3MYUhhzxEJwylX9dyuZh6t1vrbpSYYhpSzAPJJDIQo7uiIwAjERI7YEr5zZuHPORtXZdlXRdbmZjREVpv12V9fr18/Pz6y6eXeV2G84IkW7F5265zWTvGv3xS9X/9y4fnzy/9K0XXCY0pD2lkAQnf6sUd0FGQJARz8tq9qZs6okU074rYt9q2rSLiVvvWbetQlNQNgQAIgQGFJCRJFrS3IgzEQTiO4xDTiBxCiEPOaRjSMMYoUQjBWimX6/L58/OHn3/8619+3K6vh8h3u/TwMIngUrQ3R8BpoBRC5CgeTXUp2rsyGEYPQUL81Qj/tSnt1yn27fpSQF3KusytlZQCy+543O2P+yEPN50+xzgO2Q3HIacQWi+q2lpjYRHJOeQoOcqQxGvKMdiQjncHVau9b1s9vV7mpQLKcb9jtOYYx/yG7t+8OY45vLubjofdOB05JEPqqlvdtm2elyuAT9NOQlDH79+/i7/dxLy5e9vbui7PpS+VQJ0xcBjDeIjDSea1UuuC7IiXpcvrsp/kbheOf3d8fz+4qVldV6gFQZtIgFHyOOSUzMyXpZR6nWdV895ToMNxjDl28+tc1mXZirZqhGRKBCzIJBADgkNt1p2Myd2rqjVX661ZrdiqWmvivktpN2T+SuxtrZ9Ol+s8H9/+buBhXdvpNfSq1rpOGUE4CAe0rhJw3OX9/Zvd4ehe+Vno1lUlLUdhERfym0XF6DZlDim3putW61ovtKaBJXHaTcPhLuS91jS/1I8/vzx+fH36fP70y/N2naPwMIzjOOUUAwsiNbVurr0D+q3oD80AHUERtNb2K+yOKOe43+f9XdBeX04FkHb7cYj5/Hy6zsuBfAopxinGMchQa5iX8+m8NJtDst0u7cf85mFPJOfz9brMcRgMMcbBsc9nO33uT58xp/GP//Tdm7u7IaXWyuPj4+m1lAbDIA/vpkH25Qx9IzfMw3B/fxiToNU6l83U1N0o0H5M09q2X15/ebpcL9Lmoa2JepBvno7e6+vzp6ePP2FtW9515cs8f/78sdR1iDzt0vEwxczuJUW+mw45ZHSpza9rUbUkKBQyjtNwOB6Oh2GMvsF2OZ82Mw8hDG6/mw7g+stpuaytbLBuvtamTsIi7KpKwY8XzIMLd0nadXOj5AlctPBa9XzZgsN+EHLpla5L+/TL9ulpLaVe/qDaf+0cQUJVu6zbfL6+fH497IZ3b47DbgjBYwCJEcBa671pV0dEFmFEdwVzQiTAHKMIm/nNxwUOajcUqSNiCDFGQFQAI8YbG+ZWNcmEN7zv4Xg/7af377/bHybtfV7Wl6fX56fT6bzMS63N1AwNneBGjgRzuNlh/sNczFzVam3ADSgBQGBhiaYJpAFd1v56uszb0gg0JpcAuykd4jhxHAmCVTfsVbdrmedyOpV1a+4mAtMgUYiobcv28lx6L+4tjX6XSbn98vjp6aX9/POp1vX4QMMhAySzyKETQbfCLjJwvuOsoXfdltaKm1OMhMDoAUq0KvC1NhEBhDEGSMIiosqoCOiK7mYIxmxjxndv0+++z+/fD2/ejvv7MQ7BiLYG69K22qtXSVpMHDkyZFbxQtwiEYECNsDivpptptXU0NzNCUxIc1R3EAFhuvXGikQAcYVW+7qV3qpbA2g3gxMCMCIyuXBvyL/xXPfeX15fPz9+fjk9XsqTYBAJAYMIcyA0UNgYbRgGNFkTd6CtNF2BgAjAmmsFC377wF69LD2jkOUx3719e7ezdl7rUttWtKsTE0Mcx0OKg7AwOnm9O47ff//+7u5wuVwul3+pzVTdAXrvy7pcLueXl5etbCx8vLtLY8ab3cq/GGO+3WUISEjIzMToULetIyTGJDIOcRzTtBs4xiPwZa4f+dn7GoJJiMMwDeMkIRKxEyqY1iLsIY2MBMSODEAS+HiIMcirNa1oKRyOR5bkwIb8fLr8+OPHDx8+v75el207zwugAEUgDmmvQH/96el6XT7+8nQ5X1VNXc01DPHw5hh3w3Dc5d1E/DfppGn3gGy1tsuyzFvb/GbmxNuQ1Vy7m3W4rn1etRkjcWYZcjzsp904pJBFgjsQoezGJJgDjUOacko5skQJUaIwI3n3XpRsPW8fP37405/+9L//7//13//04y+Pzw7+/uHwP/7Dm//n/rtxGK6rr1VbU1W9GyFmYkYRAoSu1nplp0OOIUb8utdk5iEP07hLKYsIfGmz7LU19V62VXvLKf7w++8dPAwp5TwMOYYgDNM05ZRr6TEGADufTufr3NGn/RACxyiEZr0Va7VsiDBOw7v3bwHJHFuz61wvy/avf/7rYbf77t3DtJ/eDbsYw35I+zHeDSHHCBwNWYGdkADWdX5+eaytpJhjShLSu7dvY/h1gikpRvBq2ntrEIUZgTmPsj/m/TnNy1YbWr95+mxZ9XKp69ZIIGU0NSIXRHSw1sygSZNonoglpARqdCnXshZtracwTCAx5nHqhqUu1ustKqfdzburMlmKxCyhx6q0GbmDqXey3m2rfV1t29TUEIHRCf1bcVrr/enl5dPnx93d25RNe7tNAV2hd1c1d0NEIkVCAzUAlgEwhriL8WphBffdGGNKEKOj2G2MaHhbK2tpjqBWHQ1Yht00HA/DdDAP59f29On68a8vT59ez6d5uxahsB/jMI05p8AsQkIhmNfWmxo4wQ08ZjfPu2qvpbRvxqsvJlC0phtCn/YhcsopWfPT5wumbXrYMYyB9hImkQEA1nUxqCkCTSFLmoaYxB1U2EjC4TBCGNYCyxrn67ksCDomGaf8NscdGve6ae3gnFIdckpDyCKkaCzYQww5YSIja2pq2kG7a0czBLLTa/npp9PzetY77gGag/7mbdl7P7+enx9PmXcMSQIFdoTKpNMwHg+7490gEXrrMfBuF8eUhdKytHndWi3QwdlDGMyhNWusDA1aq1txU9IeRN7mQb3P87DgXLT22suGDpImDkLI7uBtgyg85sjZi1btQJpRo1lUbQCrWndQ89Z76W0D6+B2CxP9h5MlOLTWrbXiKMjhfZ6mXU5dghJZ76W31lo3I0JmAiZwRxfKKQJgDMLM5kCASGzqVg2+lDSyMIsQoAAooAMYCxN/qT5RBZaw3w+7/ZhSdO/LvJxOl+fn08vL9Xzelq2ruX8ZJZk7miOYIfFtivXrN0FEFpLAMSCTmfXWWtlMrZYFvAdjBe16rb26OqBMPgwh30/TToj6aqWVZtuqy7VcZ79ea+t6ixwGwSCu1ltty7J163kATkSBltZ//Hl5fCrzdQ3BOUUKoSrqZk4d3KkpOiOxdnMxiN6gFXUAge7L6mwQfEg0foPdEWFMEhP4jRd4+83QAdS8C2vKsNvz3X083Mc8EgcAspvL9jLb82s9X20tgJJ2x/7uzWDvxe5Uh+ZZDVzIwMxcb2gMhwagDobkIgDuwuCAhIbYEZ0ZY3RiQuBWhRasBU0JDAgamMEXHgwaEX8rhQAAgFLKLz99/OXHD6UUYDet2tWbAcWYBkECUxFLGVBxjLISt3UrV2NEQUZyZuziCO7gvWqZmxidXur5vh0elDId9uP790dvMsa6XZ0g7sZdChmBEJwxPtzvD4cJCR6fn+dLWbbqhhITAjZtZVtKbWo3rjl9c3z99y8iJEESA9xKS8y7nGKOech5iCEGiUEoqVKKqXk3b6pkzm5sCoC3kXvrrSJUqRqyp+lAgqquvVsr23yt86zbRoZJIu5iU1i3fr6utXRCnsY9Saja1BElArKbr1t9PZ1Op8vldClbBQQgJ8Ehp/393f27N/v7/bCbSL6xiFBBkHMeKMSq1t2NyQApBo7CQYgYu2HrsBbfijkhM0XBJMgEN1BC19u4j4mIBVkIEUyrVgct2ANqghBMxXvolc8v55///O///s//8i//7b/++afPr4tKjBzi99sGvkbGJFZZW1FXIRdyucl8TC7k7kiIBqj+65yPiIZhnKYp50GCuHtrbds2AkK1ZZ5bKzHw/t0DMXVTJIoiwnRrk3FTQtyN424cCcFUSVAIU5QUhRlVe93KsqyqFlJMOROHcZxiHjCE0uaX83Wr7fhwt48xxDgOab/L92O+nzKYvZyXpXZFJglDjhx4nKbRc0w5SECSFOPfEHurbdVKdwXGlCJIUOc+6t19WpdhXupWrFyqqgKSO7cC26zztWx7GQYfM47Z0L542azWMi8ElIYx5ckxXpZeet1WrdUprNOURPI4QN0KKAJE7dBqa61pb1EAKYTIISbp2FYyc3JEQ+1YNr9caqnGIo5e6lq2+VtsrLX26fPnf//Tn6rhbn/fFVrZgjBZVLVSam3FNAq7QztfXpoRUo4xuBFTYo6EnnKcplGGHUpsXdUcHM3ADWLrYYhdO7INUz6+vRv3Ow7p9FI+/fj88afT6WVtK0YeD1OIMrqBhEDChMCMwzAi8VZ7ba121aaG5mRm2lovpZVSVL/O+MGb9st8Xde2H+Pvvn+Y0s4LnV6vr59OadLQHyY+RNojTkqJo8Wh73YZNu2s0qIv9np5JZFxf3d8++793/2Oojy/vv7yy4fnT38CG//4x79//3aa9sVNtwWsD7vh90Oq7jOjaoPSq/CYhoCNQNv1dCKUIFF4EgrmOl+uL6/Xx+cPn56ePnz8oKJ36T4cgtXbRPjLI6Pdzq/b6UUf9v72IX//3dumo/aXWte3b+8PxykOrlDnxYy8U6MEu2lAifB4Xa5tWVehcH+gpOljfdK8uxs8C0gc0Lv1htr3MXke1+mulbqtz0gqTMJwmHgcEwVMAc3ALB6mEUdctJbabXY2SWGc1rq1VtZZsVRv7KskffPOOMvlKvv9r3BIRCBAJmImdgkcxnGadrv9YT8MhrCt67nVWuvauzLFr4VFCOASJOZ4G7TeokaETMQKCmDuigBENzceOzogAppgzIRMiCzq5A1Z4jgeUw7Lcu3XbV7Wl9P6/Dy/vq7X67Zt3RCICNDxFgp1d3dy++Lb+/rwI5KkIe8O42FEkrLqssxojw543i5xpLC7D1nyEFttp+uqNRx3R9FhYIxY1+26XtdtsXX1de2lOBGkiEzO6O7WFdXVwIh9yHT/JuQdOunppf71z+vpUo47HfcCEqpx35rVpZStrw6LoCFGo+AcQUEVVcnBUatuTzpM9PBmd7c7fGHwABBj3qWQsXazWlzZlfSGAfcmDNMxHN+G8T7IgJvV8wIFuxPNi72e+qfP5fm5X66mJmk4vXs/Lv+0236I/R3YkZtRYiRQ6NSdHJlDIARtRugslBK7opq31nvX3rWbIOXIU0xDSEFy7JVaY63o7cZ6sa+6BdLf1ouv8/bv/+0vf/6Xn++/D4fhrsGitfde2VlSzCkgdhYI0bHCkGOgUFe9vtbAJl/IiIjo5q5mvfZeW9sU7fO2bddluX8/pin98O7dMd5f39Tr62YdhjgwcquKxDnv97sjk18vl18+fL5eCnPMeT/GIaXo7no43Gs3NEJKKYYYb9ny273+hRdzO8YgOjIgO0p3XEoPonlkCJFyxiBqoFUVainV1FS9VF9Wm+fOVEMkic4R1fuy1tpcXYbd3Xe/zwlDre3y+vr86cNyetWyIqKk0SmaUin9dFlr07vj/fFw362VVudt3Vpvhtd1e3w5v54unz8/ny9zbx3cWWgY0v5+9/b7d7//h79/8/Z+GmQ87Ji/3GNqPm/tWnsYdyHyNGyJ1MyYKWVBYjU0CAqhqNVG2p1FmUEQzdtaZtUaODIKADJT69izWE5qfdtmNAXrQjIMUxqHmBOH4ADPT6+fPvz88vKiiLvjcbyLMafjIe13MUrJZMcBg3vQNoQwcA4IW2/We0DbJWKOTNCarVu3r+8XJhrGYbfbTdMYY3T3bSuX86WuBdUu51MtKxMeD7sQw7zNrSu4tlJ7b71VieLOd3fH796/fX45dzVH2w1pzJIji6CZXub5cp1rNRIoTcXxZnEHZkXYWktdUQRZau8699YWa2OW+7Ku/9s//9un51NHjjnd7XeH/W6/m/bTbppGALxel3Vbvx34AUCWMvdenZE5MAsSuZkITLtw/zDWCogCdJ2vRQ3N8Trbp6fypx9PAP39++QUiCwCohsDg7ur99qJG2DoirVD7aiOVe0yb910yIHcUiCZAoCUqq1X84psHJiZbvcNqpt6Vy2lU+duqEpdwZwiiUGry1rm5dsPo6qX6/zx82N32u1emZMDIHqMAqC11nVZttTHEcihlMVB8rC3YSRHkSHEERzNUM0jUUwxDQxf+wfMXNVVrWlvVmIK4+GYhwEMvZb1tC2n1RoIRWEUSSRNVR3sBiYXohgEmc3s9v5qwLXXpqrmX5Gwv0asDbyalt7V+y6naRgyp+fn+vJ4OT3OUyNd3TZcrWO2MEURD2kLiaOgdl2er2UutS9xTCmMgWg3TDyMtYZp8HFchfT9+4c3D0JY3Tu6kMQYMiAArNY33RZtBt7RgRWtwrpZVyFUt2YV5uv2/PT6+PT6y+PL8+W0bEs8BJnbMEODra/Vf73JkIDAsKs2bd1XwBoCIoacYgjstziCKQABGDOmFFxDzjnGeatq0DtclipPNWIxsoij3PIKpkoAEX0fwvvdfe16qXXR3qAG6dMIux2jCDhsVWmjfYvRQpfceln7Qt0CeWA+7MZNFPxacUMDEN8dnTJywmlPJL85WN6G24yElGLIQ0w5xpxSNjetlZDgdhbPkUXCzXh+W+GJWbvVqmYmEohRhIggNro5FYlZGAmhu4M7MTIzCREiILsLyxDDlGIW9q6ltHndymVeX1/X19O2bWrmyET4N/Dfb7GEv5knIWFIcdrdvbsH5JfP57L063JpXc/bEqrwGIcxmrabPTUGGUMaKLB2ret8WS6nbZlhK1ArugExBgFhYAIzU/WqvfeO6DHiOCKKv1z758/t8XOrzd7dyThEomweiMC81a1tJysvqs0xtDD5/j64Qvd+O9QioYGRgAQU+fXNj4QhBcmsK6m6mrorMBJ7Hmh/CO9+GN//Ybz/fhjvhJM1AC29dn99bY+P9ZdftqfHdj17bYS8PH3I9TJfXsb57/P374f7++EwpSElwQQc0Df3zXXtZq4geMuXMYAZkWIH6Gq9dkPBCMxBIhOLYNHmpIpfBDpwN3B1bd7br6RLd+wbeAmZpkFsNdjqUntrqpaBEktCic5szp4jJxY0go7gCMJIgkoO4G52A38Y9AaXUydY3HFd2sO7/TCkTElGGYHQfcqJCXsjdXYIDv3p6fP5XH/55XlZNcZxHE0NhyF/4RHLLYpK/Nuf4b93qbs6ArE6LaWH0I/AGAeOo4JfL9fWFDj0Dg5MHIr262qv56IGMWJMPWY3g8tSlq2t1Xeb7o5vzPl0urw8Pj59/NyulwAWQkQPHXGudl3bdS6AtB/HnBIJdtPzMl+3stRWzIEIiUMa9hhCEBGRgNOUj2+Ob79/+/7v/u54t4vi0+HXFIy7t95q660bBwhMQRjMSDwGApKq1FRqtVJa792tg6Gr9qZm1Co1kRyHW1meGQEAOhOodSLrYA16Y6JW1lSGNI4kQR1Or6fL9dJ6HXJiyZKGlON+wrsdkm/eS0QxhoKVtGsNFWLvHV0jQWSKMSBC07+hKiNSCCGllHNOKZFQ7/16ua5E2Pv1em6tEkJKIaXQTW5RsG5uqrXWdZ455HHIb9+++bvrNo6jeh+n8P7d3X4/ANh1mZ+eX8+Xq/ZOElozQO/q3ayZdldDV/DS9bKsyzoD6C4LatsP6Xq+/vnnDz99fHSRNOTjfnr/5g3HsD8e0zTVUp/PJwzPrf36jeQ8XxA9xCAU/NZE2DtYjxEfHqYx74+HMozPj4+X86WURV/OvdbLVsrn0/RP25vfvRuO2faCO+IcQxgih9vOri7Flq3N89q7xhAIdSt1K+uZYIh4nHg3De4+r30pVb1HlhxDjIlAarNaei29WK/dOAQKgUBiSMIYQ7DS22Url82+VnK7Q1O7zkvXT8/PZ+GQ87A/TCkJofZeLhfNEkMYbmEWt61up0A+xCRxvLGCz/Nla/MB5Rji8e6QphFIANEcb02xtellPTtqGAcigtapAXUQEh6jOStYa60B1GKtKiMESTfJ0LrVuqpBigO6rddt22rrzb2HGFMaftsyWs2MZErTOIy90rlsn345f/rlfH4uCGF5LafPl8Wucmjv/n4fciJhB691e3l8+fjfnrdLGUbZPUwiIU27u4c191FLHtObf/gDCs952pCXQBdmJ9yDs0JyiwBTr1tt5227bvMCTRMxKG9V5qWez8vpeX38+Pr6fLqez5dludaihHmX0fB6Lo03X+fyfvX+tQdK+P64Ox4DSDvNn8tPnx10mSuTLGtTcIfSvbSmOTEaszMbJ+GHu71DG7et2oJ4qR0uSw7Kk4xZBmIJwiyR0LR3YX5/uPcQzqAL63L6iNTSNOXBzaFUvZS5tDV/xnEd6xSv1T8+zbrVu7RNOR6nvBthWZbaS/MqAHGQMbkxjAdg+cZsAXBHNGZjwZQ5DkwBAcHBkSimqJbMKjpO4y7GdDsUd9VWW6l13eq6FTAYMgYRYSRhgmBGSLcUNKqatu7gDMThJjiTGYmkaXqYpokIAIoEFwAgbg1Op3o+12ZIzE7g7maOAMR4qy51/BpU8l+/iiHHcXrzw++YpXVq7VSWtqx12dRWW+pzGiRnzImPh+nhsH9/P+wT6Las1+v5eXt9LZdFS3VwZsIUWW6/CpGqba2vWzGzFJAR3duy9J9+Lj//tC2LxcBTGnd5aDgQ5jyKk3nDdvGttPWqTiV3iNFunwYsaRfyGNIQJTSHufTLr71pgEBMMSYSZFu9GhgRphz2h/j+u+kf/9Pxdz/sHt7ncSTEptZKLfO6vZ7q58f104ft+VHXlWqB3svr43J6On34cfz0y+GP//jwxz9Ov//dXh6yDC68WL02PTc9b9WsFHZgRHInIsIgguZu1kvrhkVCDtCRRN26qZq6d0RPkXvzVlVbW2fLc/l2sowx/+67v39+ftxnI1/dTavPc2+bbrGlEOMoEhygIloUzEHGmHqkEJJIDBIQGQC/5PitW+sIHgB6oedPfZvn5091N6VxiGOSGHw38pujDAMT0XWxT4/1w6fTLx/OL6dt3UCVga/Cpxg+hhAkcMgx55yHNI5pf9iHHL7ujf8j8s7ce9OuCkDmsJWWQjAIJCOHfVmXH39+na9zGsY0THmcKMRtbedS4bwstSbBnOMwdkCct3Jd6nkppeOb99dS7eeffjm9vOi6iWOUKBS0+1zXx9M6l64gIcRauzDnlCVQsCRu1rszhpSOb97cvf0+pWG/38UUiS1GHqY8HXf7tw/DGJnatB+/bWIQnEHdyrou3iG7E3hvTbupOQo4j6q0Ltuybt43gOaOvUEpBgBMlFIiJGZiYka13htghQ5Cgs7ojODu67bWrmt3lNiMzktTx5TSGxEHFEnDwIedPkzNWllmIw5aQVs1q69njSk7BiJKTEg8JEECNRxT+E0VzG2YLCmlPOScEiIsy6K9Qe/bddauguDWzYkIQiB0ZiZEMPB1W0UthN3Dw71I3rZNtYaEx/tRAtVaX06nn3/5dF3WICIxm7oplNq3si1lqVolCgqd5+uyrY8vnwntu7f3QjgNw+UyP56uz/PCQ47o1RRFDg93924UYl23v374aS5USvl1E1Nau+UpAKHdKnx6N7WAGMa4G1JOmdCHLKfzej7X+dy1tl9erpu3jcLTud1FezfK747p4RAn6STOQQBw3coyr8t8Ne3jToRhq9a6dlUmYQkpByR30rwxkgWmGzkATKy01rzUvqmLU0SJjEyUo9RqtbTrZb2c1nUu35SYG+KdhcG91m1tS291Gjnupl2OY3JEbV1vszY3tVbKemZwsl0IQcJo7lurpbV1q6mUnd7qrNmRzBFAiAan3m1VcymABNKJvjQQI4VgKLfMNLEiNUBAohBEmMFd1bQ3cwK4BZB/FfZv+tNv53xOiCHEvCdKl6v2RVtH4jTkQ2BYF315vL4WHQo//E7HHeeYdBj6fjePC5Ai6TSN+ynG4NDrclm7brUCOx3GMYSW0jnIeYxrFGECU1yKNjcEjjLmXYgUz8Xm+TLP63ztrxc/nezlVV8fr48fnq+nSytbs94QOAsQUyCDc1iUDmX53WK/bmLkeDzc3+8ksXtf14YIEmOUDCDrbNdraX1DMt+HtoNesTfQm/ctQiJD6+qmqyxt5i2MrtDaMIacZAgcA7CZAKWY7yb5vvfZ+6m+tr40r7UVM982vZZ1U8iVy1V1l6/aLudNWw8dA1GYIjMbcnNEQ3QHAmEfRszDf8he3GgVBoQkDmillmUTcGDqpgC3whBAZiYiRDB0BuzkvffeG9yMNQSA/sU/kRgcgNANTMHMTbuZIzIRAbETqLqqf80TKDNwCtXCtrXLpV+udVm7ESIRghv4rYL9Sx4BAQAM/sbe8/VkWXtXYmGJFKJ6a2pq0NW6bWZhGMZpGt/d7R924xgRetmWdbls66ylQutgDsIgjLf8Ze9aVVu/bWIagQsF7Vg2mAteXnU5mylIYuEoGM0CdIJqzrcqEzPQpr1XdYJ11CBuHRDQASTQtBdEn89tWX998av71rR0DwgSKCbERCnz4W54993h/e/2b/9w2L/L6RAogKu0DeZSTrOe535ddW3egThEcWjWlrWVn7blXNerXU94nePpSucf+P4+jmkIQGiswOqgeu2toBsjsECIdOP5gLoqgEFp7qg3yCkxcABTAzcwRHVwRTf6En368rvknP/uh3+8Xs9qr81fEFWhc916tfW1hihhBxRvMSRDx8A0xOhTzGmKaUgxskQkNgBVM+vWm6t5V1dVbctZy9K3bNPY2i4c94IBBXwIFIOg2Qs3MGu19q4hDuyhK3W13hcuLFGC3lgk3V1Dit8ABP+dy920q3Z1NeOu2tXUQBVbx63CvPTLXJsLhHFK2cm2jdrW1l7HlXc5TOodSITNkSWmTMh8uVzxWk6v523ZIpJwdAA1aAa12VbbWpqiN3UzUNfOhsId3YPImHciPO4Rwzged7vDYb+PKSAqErCgJAlTBOy1dfsbJ4mhb9gXq24gTuruTa2paq/IJCmrQSmlt4qohAaOXbWWam638ULKSTU4ITMLh5zCNA45RmZkBAIwg9bUgBRTrXBZt9N5XUpTNQRghICW0AdukZr1VtE5kBqYmXa9zBa6xTSKxNv6A+CIKLfw5G/eLwhOt9QuMRO5ey2l1QK9995YOAqHKCGIesTetDkhphRba/OyOJaUPOXd+/dvg7BZZbY0ha2uHz99vlyuL6fzvGxDzuOulqYGfVnXZdt674DAgRFx2wqAX65zTiwxUYjzVl/O83lZ561EYWc088uynuflvCx3tV7X7fPLK+Ch6W9qB5zIEKuCN922rdeqaoQQODIDBeADC+3u79Ja+nUu59P69Hx5/Fw/ntbLPz//6S/xKPCH+1z/4ajfx+LXew5v7o6OvNTXWpd1PhE02Y1jihK5qbRuQdCZgSkEHhD2pQsXMGemEMjtBhi2rfdqFJhv5ztEJMdW6uPT+fPL6/P5+vu1fXuEiHm3mx4e7nMaWu0vz6+9r9rmyPH9u4fjFLGvTNoaonckUK/bfNJWy7qN436/P+RhbwBNl9ba9bpKOK/NkaO6bBXMmbjU1k6nF4B2PIz7Ie9jBBRHcHK9TYMd3QmQiCSGEJhTyiEGc9cbcty01uKKIeAwxKBspm79NwgPQELOt17asXR+eb1gh+lwPw0Py+Eeca21rp8vr6vf4ei1ZaaQp/Eh3KX9XiZWqMv23dvj7pApCgUpy7xtZMgOHXBmOEdaptSOA+TACLSudtmu27Ygxmma3r1/6/3+keOPy89//nD693/79OcfT4/PtRTXTXVrqBoYmYUYwLGct7pt8Gw8eXqwyx+W/hUSJcL74/H+4QEJiIERRTgOSSSAyuvz8uGvbb5u48j+1u4G32WLybr20+Vyvl4aLEqVAzna1ovNF5rnq1CMtJvS/eG42+UYKLmAaJT0+/3vq+Ln18fPpbyelxk6wdi6L7VidbJzpoJJKoO73ugI5jAvVaFtRVynxJlNrSpIY+Lwm9r3L1ZvM7WOAN36VrbX15P1VkcJbA7FrasSIW6r1lIA9UaT7aZdOyKMYyYSRkKEW08nsSOCuxkiAREZuJqqNgUgcAHirgC+LfNZ2HMOMUrIu+vqry+nx8/LvLSufuP1O3xBAN/+dXdC9Nvnu/2aSjYty+X18dOP/8bjtG+FmSNyI7YQGrEyw35K33338P37u3eHaUTv8+V6vbZlLat2QwlhokiEUW7dJti6Xpaytd4Uu5ppF0JhpxWV0lq7lxqgRSERNEdtSODmOqt2sZvOLEFDsK7QKi5XjwLeGBHL3ILQ4TA6yHyB5fxNhIWudrosL+dtn2wIshtxHMPhPr/9/vjdD2/3b3dxLz3h7MbdQX0p9nQuL+d6KaZIYZcOSWLYqeI8b9fzMj8uL8+tr5fzS/v50/Vff/z8h396+7vfH9+/2b05pPvhLknmKNZ4216tFWYPCAZAhIYCRCQMIKWTIwChMOZBjKkS1lV1uwXSnBH2A+2HxF9TMCkN//CP/1RK+fz53+dFBVV7veA612U5bS6GU+8kKXTo1jsi+JBS3Mfd/m63O0y7KeWBQwKkrtp7M2u99r62bSnrspay9r6uS6lbqXPRNbL6IEFcNJl2zJwe7gLQ9K6Q09C6LFuvRU0bAFAQFka6bSzgtvx+e0AQfqP1fdnwq2nvrXYhIkTC2to8bwTUWw9pGAxYhGKI01ChLS9wKoV73QU2PFAEbjaENOyGYxw45G40X5dtbdotx2FMEVXrOvemEIKRcMrYYF1L1zWFLW5BNuYcIAVKadzdHfOY024cdvvpbshTjImZb05t967empfr+nI9nc7z/lutDbhCv1I/B1Px5I7NbHVem6+rAtWhrYjctSNACEKKt/qRVquZWYTQe2u9h25MzPHuuL+/v3t4836YdogI7qrautamtWnpvp3OL58vj0+X62Up62La0T2x2AQZWyPoTBoEgDugk3XQuTQxHDFkCiJkQGvpSCDM6bfvF3Cw24FJQc26A6iZuiohhhB4GocUx90hJqEiy7LU5apqwzC62rIs12VzPD88vPunPz68eTgydiIF8pezAXirvWx12wogr7Uua+HWzpfrsi6IKEFUzdHdjJmmYby/O/z93//j/X53fXk9z8tWa9cuZm6AhF31fJ6fnl5zns6Xy2XZDoe/gdyKuquCu1u3Wk2rgRkimil7J6YcOBzkcAgOuLV+vW4fPrB5/eXD/Pl1fdLtLlA0+IfvDt35Vn4ecySSYUkpchQTssOepp0UDUv1fi0Kpu61W2u9NTVjouDQOVAaBYG7+awdZmrFS1OkSugx8BBpYbgsy/NlnptWAP+6uRShw354+/a4Gw/LvM3Xs/aNYBuCvrkf7w+7uibrFaG7W0AkNFdrddMOZoBIKUXmjExuS2t+er3CuTblrdJ1hW4oEt173ZZArtcGdza8SxSC5MhRzL5YZ0yBkVOIKCTCIQRE+pKiNejd1AoAInqIJEC9UdnU7DcPP4FkgOBb77VCqcQACW3I4f7NwT00eC1rKUtra8Vag5lASClgHIJ53S7r+TKGyAzqtW7n0t3pEvOYE6ehj9myaCJPiKze6nZ92T7+OK+VD3dvd9Mh552rA71eFv/Lj+f/9m9PP304vZ68d2CDBJCZBRlvAmgHrV03bWC0QQfYrtW+bi5F5OF+//13D0TOzIIhxBDHgER1hbqgVl7PAN3n2E/nNeTz5tDVns+v83JRKBxtlCgculAxfVzWk1kOeCiDOxv6YUoivbdGJIcwvB3v3u2+22qbl0tpJXJQw9rAi0Etm/cgyFnGQx4Pw/3dRASXZVm2tVYjkBCTed90A1ESUqW/ySd9Id+6mvfea6trKUFISDq7w4bYGQEQuiqoIhkSMKC7E1NAiiEhsuqt+VXRgAWRboVd4AikwIxq4G5gSLdmVDVFM2tmpWsvjetM51N7fi6n11brzT4M3yT9r+CZ/7MLwVutp+dTrzQMD3nIaowhpL6qNncdBklREmOGjq1eX0/rZbba3ACZchDmmIRTxMBEgMumHXBt67zV1lTIQbg0lBhGHAfpuzhvGZsTMp6v3a2FQCjeN2tsDawVAEMhFiJTXy7e2BOiMLpZq+3yuvVeX5779Wq/HsYIIREPFBPuRz6Mcb8L054P93Q44rAnHNkCrNZ6bX2r82V9ncu5tM2sC9JIycM0JkRKK0p2q7VcrKqdLluhtmg5l/rp8fruzeG7N4cf3u3vR4qQ0MYKxREE1N1AnRGACFjIAzircetA5AAYAlEQcXEI4E3MQeFWsZIzfWN4iMjx7uHNm+/KejFd2VqT9TCsAL6q1rnPrwVQaUSq3jfTagiYYthP09398XA8jNMU0ghItbXeWuu1llrntsgKzg7kAL2BdlhdBVWwMZS60X5HHJKEfDwKJ6gqBkNT3qrV0nstqgqMN8vwTX7+P7/HvmgACL1VC2HMaRzHnJMIgRug5yEjoyFgJBXr4JakBbmuS+mNY6QQOKYAgpI4JOLQazufr3XTFFMIkYhVfevezGNkZ3Si5npZ57UUYQ5RYg0D7g77N/m4y/tjHnfjsJ/yfj8dcxyE000xdTD3tq7Xl8s8L6fT5WnKe/06snSzUuq2LJGJ0ZW4K6zN54pzUcAO0ITMtPuXIhFU/eLqx1uFmntvrZXSyU0DADAHSWMcD8Sk6lqKQXNQs1ZrWavNa13WUmuvrfda0NWZsrh3c6XeU1cEJiROGQFb2Vrr3pqRGDACQFcgA0J0+K0MA3zrFTez3m8ne3Rn5sCMbp0AWbo5qZOEEJLwRqBRpNa6LdvLy6kakgiwDWMQBAToZsIUWJj4ljg3s9b6vK6Ifjlf1nk1tVvJnIggoJAcdvuHu7vj/phzOvmrug/DcHCLwyASELy1fr3Oj08vxOG6LstWf6uPAYDUZoDYbyEcI8KAeOsa7Sqa3GKSKBRSyENCGlufjvvkBmbP61/PtVQT5gjDPh3u98c3d/vjIUQh4uNhb9q1XaPU778/DGO+LNhft9ZLNa0Dam/n17kWJUnMyIJDoGEfc4p5FzXSp1UvbX29XmXhwxjv9sP+uEtJquliXbPgEOCr1i9Mx8Pw3dvD4fDmfL5+foxlXbL0Kfn9Lt8f90scWqnQNgHNEYm1Q1cz1T5fz9fLNefx7du3424CCq1t59N8OT+/nvvrRV+v2A1T5iHxJDyl0F8LV3y4v5eU827ISysr9tV7VesWmIckQRD5ZokwVb+lvLtqLxUAJICwMEcA2Fb41eF/WwazKq1PLy5t2k8Tgz1fPmfE7/ZvcgjUx24WsUdXag1LdxBiIsG8C+//MDx9XJ7++jKfVnV1ROCUhrt7+C5P9989TNMEAFfp1VdYS3t9ef7Lj9f/9b89Ou/+8/989/Ztqk22pXz8vP3lp/O//uXpp0+X6iwDQjVSihgiMpG7qVo3uEHLERxAwCp4h29E+Bjo/dtxLvcxhhiTUGYJFFAdtlVN6a9/ftmWQqil1KfT84YXPn92gLLV1opZG7Ls8ph4x/txKfDyutnW94N0UeKFBHeZEdVt8+boPpL83cPfd49/Wf916VdEJCBQ6QYruloduu1pfLjbPfz+zf33x7Vsp3+5XM9zLRqI4ygmVLV1Qko0r2jfeCQ3WOit98W0tlZbdwRkdLjVoW7EKimxoKsC4Nd0NBJhHgZ3JGRV0/rlBOSIwHQDatx4pywUEgOCmTNLjMmBa2uIFKKQ2FbXpbZl84+f1qfHbV3AQZgB4Fce5O3tcotZu/s3stW3tw4x52mIw9g7q0pMh5THYbfVPnc91bpsW2Xy7Xo96ZYGx1o+fZq3rUmgnGXMaRzClIYhpiFhkpBiWorl3QgfTs/z01LqkICMoeGO0rv7Q6Aq+ozgJnRa8OcPm4jtjzDsRAbr5vMMWok0sFEWqE3LpVRUzEEmCAlU+09/XZalzOt2+Qf7psKGxA8/HL77p/0R+e0Qf3c/jglqX9DmdXbMbdw/YAjLppdlO72c5utSS62ujawFcANEp8ECUxwlxkiQyozscluXeusf//L09OPrv8X05v7wj3//9nffT2/e4G4MgaaUhL0atNKKuIkQUSCM7mKOvd9GyW4OgVniyCyBew+th9ZWb+yS7NfNACICSki73UPrs17nJOOb+/s0hJd5Xnrdnhs2He4zKvVrbUvvRRFiuBFHxmGapphGByy1lFtDQjcTYGkUWDoD5RAZLIP2rZXPL3qdl8OrvX0Tjw9pPB7HIUK0rXG3NGC842TmdVtrLU21tlZugj25MBMS+I2Xfquw/k3JKOGQYxLppdn/n7H/epJjS9Y9MRdLRURmloDa2Lu7j+h7RhhJM77QaMYX8s/nK21s5vLO8N6jurcAUFUpQizl7nyIArD7cmaMacALDJWVkSGWL/fv+31Bjofju3dv3717mIaRAGqtqpEqNFAMtvalOQj3Q8LjktfbuuFtBuY4HQbgKljm9Xr9vC61NvAuji4wu9JqyXltAkTBe1Ct2ueyviyXeV0AIaRwxIN/nE5v7+8/vOM0GnJtzbYZgHoT78WxZ2Zmcs6J9qenT799/uvz9fPd4fFb0GAXuC36chXDljrudqTcoVQrRZhQvJCDvYgh5lcaEFGM0cycc4ygrVRQj7IxXhkRSThOTUKIIjrPSylFVUtpy7Jdr7eeM6Mxk3PcG5gJYEM278k5kK6tGjP6wMn7FP0NcmvQO0JVRSUmRed3H+Tv7n0kSt5H51Clt9qZiJGRYnRpSKpyu/St1n4+pxinafQ+Hg8H7eKcm9VyyfM8b6Lj4dBkE80qm2lTQxAZYjoMUwo+Z3aO1GRZFul9uVzzvHRVZAoxphg9u+h9Gg6n6WRitVQxSOP448ePuVYDqL1ty9pznXE2tVJraa3sXPW/sVjvbX8DNnBARIRGaq33qgrM5Bw4ZkZi6MwYo9O347o+dsGmNl+2E9t0YB8dOmfoulHtjUnNkNiHGEKwncoKYGTKqALSem+q21ZzFiD0geNoQW1tnbzzYxhPEMcNztuyFTSMgZpZN+iGVaEDgmfy3yOGneOH++nNw+Q9tcqPD1MOLQYiVCZwjn0gFas5m2pwjt1OWQVz2Lvm3HoX6aZChB60q1Atuty266VfblgFfcAhcguhhpodBefXtYSBU+QhkZRetYN2MCNgJseOgbDvTcXW2v4butTW9oIFvTnnEWAXI31vxpCSLxQqcDRBIEYCnyA5PNw5Vpq/SN16RIoIfd5un8+1oxG6ZMiZQ/eDVm2ldecIQFs9I3YZkoPhbjiMiea5t1oLeilcF9SagrsDf2Q+5IJ/+eXl6cv5f/qf//K//Ounz9e1GLghxMS4dahE6sBQTfcoNgNg2BN6jMgIDH+HjkCE4C043TH7xMY72RAIwE534YefDkit1wZU1cq8bLrmfZdnqq2BI+yVUyAXgBM0Rx2dx+i7e1kbu/WQyDubCICwV2MIbw9vt07nl+dauog2EWvmiQ+TD6zcWxz9EPzgXQyuGzpsBIXAwFTMgYEZmYRSsBb/rYgBfM0ZISI1FTMkGqfhcBqjFzTDRsyQBucIW+1mSuyIGAGNANXUcJfDsGM0YwdIu4RFHTlEMiVyEFKknc3LjBxUwUCBmJ1DxtrLmtfzuX/+Uq7XkosCMbEp9u/u1q/bx9cr7VXM9/sFhuI4DMeRIIYUQ4rpEEePCta1lwLrwj2LtLpct+e5Winnl6oGh1Nwzo2DO01xGsYhxOgpOhdCDBGMqHZ7viy9V1OpYsAGJgzVYUXogMCOxOC6iFqrWCfTJGaAZSPr6AmYMXhkh0xoBuj2AVvvXS6XvK61q3T53h730b/9w+PH67ux9juAIZFHMTU1s95bruuctelS+7zJZZM5S28iJsAmAQ3UoAvn/SHlko4P5EdP4FARxCT3MrfrmltZvgzr9bn+9ofjD39Mb9+6h8nuIh8pRDTrpXd1Dr1T7wjRM7IBmZGoNekG6nYQvycCYkKmhgQu6jeCj6m2WqUJU/A8mgYTx+iTC1MQqJZvvZVeaxeF+lJ17QyYIh+ndDyM0zilOBK51kV3BHtXFZVvr903SEzkgEQaNzBSzjJWOFU4UGcRuc1lKyDamFNK+FVd8fq4NVFT3WeW8L/9IsTofXAem6EQk3POMROittZKzbUXwW4OlWXTTYwocbI0bFMh2Hp/2bK/zs1w3Gov9fOn55olpePd0R1GU7LeReT1udlFSm9bXTfZGjeNioyYgCZyI/NAFNCoG9hrzBUC4msiEyqI9q1sL9fn58un8/xlq3PX+m1jqQa16po7cindeF/slJpY72rUe+8Er50YUzUAU0UEZgZTQgDTXsWko0rvLefttm4vax4OxxCiiC3zWmoVkd56La3U1mpDUP6eDayAQmh7lGzuTZWIg3PeR0fIq9PWtQloA3DmCck5RARTM/3WpiWicRwO0+Sc388HASFjCC6lpPbKvj/fZresIjqlFFxgj8wcwuqIHXNijoEIRHvRuvaWa7PWbIrp8Xg6DUPJec+dc4jMbgyxpaGrguOQkvfeATt2Yxq98+uyhuCnaUrj8P79h9ramvP1envCL9u6Czzm2rqY7RXh742WrrQGCtDVMfsQHRMAmZpa2+PqRFAFy9q3OZPnMEag8PHjKY7hcB+uLzdayuMQEWFZqnHuAiLFMa8LrzlnMen2vBSf+zprK+2QSISkVVUIKSjI5ZbXhscQLevy6+04yrv39+h8jI4ZSm0GpM51di+bnJfehYgYqf8OewHB89vH0/Nden6+aM8//vDQy9DWc62ybmXYqhi2Vq+3K0hVHUZIcdhNZgMYltr2YdAyb+SMEMd0sHvfulPqHGlr2ExU9Val1LqSxoGvL+eTxgB9dL3CkqEyghEpcFORzogECr1LKWUrtXbZ7zpVVRUVY4rStZRSSvndnE+Rcxr64d0R1lPbqmP78Y9v3xzinTtcv8zPn8/LOr/94TiQW56v23V9uZamPUw4nOz42NUkDiG8nd483InUXz/9tbdmtUKrzjpKXS+Xui7i7hhPQzj+8afD258GocFieLmt//bXf/7P//nf/tN/+ufffn1ubId3E3knHdGRbCqr1mbcFUFs13MgEoPzjpP61N3vdCSqsm3z05cv8wKqnFIYxjTdJR8DAHBsf/zz6eFD3Na+rXndLqWU3gwJfWKjJqJdLOfqoHhCF/14DI2dd0kAL2XTc3bWQNs4REZb1rWRHY6n98fH54f3uefn85dtzdjd4930j396Mx78dcvatUufn6/K0i0nVx5OkoupifkOjkcOou62BekD2Ld8rl2D7YgdmO7RdG/fPb5/dyLIpkutRCRjCqC6LCJNyaFDx+RENeeioujYec/MiMbOzHrvO4+WCZ0gkGFAHyITeVEotZfeFRl3Djppb1pqm7c6LyXn1rq4yMRkQAj6NQT7tRNjZmaKpr9HqQIAOoqHeHw8pDDFYfJJeajDoZNH1VCrpdXla8kvW5nLly1raaVIjG6MfDeGuyFOKcWYnIuA0IW0KBE9nhLiodVj4PbXz0tuPYUOcru9zCr901N+mmEWaIoK3A2WtXaTUtkFx8zsEUCAhR2NIQzxqB1u81ZKaXOXLqrAnsk0hO/oPh/Dhz/98FP5A73c7Hz9cr5ybynwcEyRD1L9l5/nwqwhFHOCo7CtuXVRx0hshqIqRXtvaA1UDII5T8QEHWEzEkfeGbR1ruslX6+f/vrl/O55+OEP6Q8f0o/37uNER0Y0RBMECUGnFGMkdgkpILOBim69K4g6lBjQOfboiBjI/GBIXxfL3pfrbT5fa23SsBXaVqtSFNrogjPEpfVbWS4rdK1btUaHNDzcD28ej/d3d8NwQvS5lGXdbrdbLUXBamnbuq3rmvO2ldykI2Jw3vvgfYoxHMbD/f3x/s0jO3i+PZ8vL1+ersvawCJzSsMYgiPcu97YRUsugJCGqJL+t2W9r0npkT0be/Alt9ttjsGtnsq6bXkrrSmjPyYM3lTMCBHT4N799G47Tdfn82XO8y+/xt++jGnoRZ6+nNnc+zfMNA4hwxAQjJmi900kL8utrPN2bZjjvfP+OAxpGIZpmsZjyn3RsyJzDOPx8HgaxsNwTHwwcGAEBst6/fTlL59f/vVl+ZRlAVb2BN8NPQYATeS6lq1bSuAcAZEaiImJtMZk9Jrwum8bXis+fVUSAJgZNMu57nmsxMT+39h7Im8GtfTae2td1Zg5hDhMEzPv+4+9AiE0BDTlWizX4r0Ce3LsnTMlo9BBqqBD8AZMFHYjuDRp3wsy59zhdLp/eCDinba4H57zzN4xwOFwbKV9+fyl5lxyvj+d3t7dpfEwpFBqOx1OtUtI8d37N6NDa1lyzstyuS1E4eHNe318+PV0zOu6qQTEN8dTijEBXK+n0moHBWI16F0JiZm79KcvT6e70z/++e8fHx+QOOf8fD7/9tsnx/zl6Wldl9bantLukaJzv6+enYiBmjYBBWEjABMTBSTm3bNAzgR6ly4CrVfRkDSG4c19Ir5b7lx7WZISgW1bVdhMhdAF71oPTXo31A7nWw0OrSKhDgG7YK7dAGL0Zoq32ppuK3UhAkVop6oGlGKYhhRCyE233m3O0vLlujVRR4ykjuD3XdjgwbNoX1Rq8skoZh2IQi5SSgsxekeG1npftk1h3w8DBPbes4tmpmJmpqLEGJMDDOumRZoSWzEpLZfSt0xSBpbDEuZ5GSIEhMHZDNlBCc6hcTNVUAQ0NW1aa91rW30lQu0rC+wSmb0NI739rogxgAbYd3pUkz4y3z9OD4cIi/RepCsZj2EI5NbLsmzll18vgvr44cCc6MGl6I8n52z84cO7Vsrtcr6VrEXqvG2XGVqB3rX1y1zBGjKBDzBM1ejl5fLr85d//fmvf33+fK1ZI46HgR0BYW/gIpVrL7XWIs6MQHcNgKGR5zCxP6o7gB/cN8Q1AjEMKGPfeusGYojivamIqBja3X0aD/52beczlLpKa2VTBERFYIKGorqtHXqJDkEtjJ4ZSUHFzHDt9jRX7/PhtB0EttzR02B29P5xurvMxy/PX2qpQcGBpghpohUprz0vm7TasRpXleadAZqACQk7Sz6quNJgV5R/u2Fs523uC9YegETofBgSE7revFllMmnde0/ItOMBfBDRLiJkIUTv/FeunYmUZQUDYfZEDhW7Wd1jWQxKlXnJa26ilgzCuumOqEcGAAMxFMMd//ua7fv/5wsJOFI48DTFEDyRcmguCjnp3VCAGBBABPMG9abUdQh4GPg0uGP0g/OeHNrujIDcpbXGZIcBnbW7EY8T22eobd90tpeXWrt8ueB5gw2sCrAjFehN1LQ3SwOOJ8fRkDqyIhNHN4xOOy0lWwVTUANipB0YqN9bMUQUQhqGEWsvpdQrOfan4zEdBqSU1/7lZV1EcBxwiDQOKXETtbYadgUlInwVB0DLph2MiBiYhRBfM86JkBiAVbU1WhbDpyKkLdd2C+5dhAMMDhyiqoBCpOZImIicR/aKZh3EtLfcoatZYI0M6NEZuvi9IDNTaUV7Y4TgwpAOrR0lr2gSiDwh8lBRNReT5kH94KfDdP9wPB1iCs6z60rStTcxBWafgk9eGckMDIycL60y8zROwzimGMdhnKbpcDycjofW8y2vTbA0LaWbIiGogvQQowvBO+e8w+A8EIbgYoz8v9+McciemBgIam3X6yzaia2WLNKBkJJXJQ9EzjtPxIDsxinF6A10RsrXNed8Wct6y18+XQJG5mOKhzFGJgyEBETIaNZra6WC9ZA4HJOb4jCOMY4xRO+CgOaaEcnEyDyLDzT6IXkXCJ1K71Kvt5fz7Tm3RaAa6t9ilSB4Cp66gYp26Tv20sBEpauWgqCEhmYqIrB7C4n0tSW42z5MVEVEusg+i3+d/7IZilgXbV0QcUjxcDy44Iji68yZ8fVSNShFUbErAMHeazW1fdwcDDTLXps4xuAIAXoT6fJN1k9EKaXxcCBkRMLX/C4FBjVAAHaevTfAUprqTbsSoAp0GZrIkNKb+/vpMNwfJ2yt3G55mbd1zcsWo7HZIcUPbx6ly3lbhzgMzh+GMbx//+Z0l/dYFMTaZd4yAqaUmNFUY4wP9w/v3r1D4mVda++lFEQcxvHLl8/LsoiomkXCsPO1vhUxAGR7t7pr2w3QtQGY9zFGn4boCKRXA3Muqkleat5qio2dPySfaGpAVBpibyWbEpp6Ypt8HAgIlsqloloZAh1TCsyqAF3JFAUCC4gcYp9XydfcPJ7uRsfcekNy05De3J/mRZ6uy/m2lKfLtkjJWkUcoyPySN/aSqaSt7nkK0AxLfNtI3TjeBinqXWoTY6nmLzL+XgzWXPOtbcmtWqtMk1TGlII0TunBrVWRHPs1JHzwXngRlBFDHPVZc3YiwRYq+TceuueKTly2BwWCsiG1lUBvUMRzLXmbSuliAF7jwS9CyB45x2xdK2tiexy6+8QDxPIW63PF9jUkWMfg/eicn56vlzWw+HAp7vjYSSA7bo8PZ1/+ddPfog/fHh8mB4ejt45oN4cpPvHIc8uhfvNZi2wvKy/ENw/6HRymMJfPi2Xc2vWi50XtWsvL9tl0wIeD++HPz/+XS21bHOtWUF7s3bk2UG5bm1pBugQCA0I0AElSCcfH9Ddc5gC8tcxH6W74Y8f7i4RSpXugoZI0YfeZV5nhXY47BnPrbdSiiyrzJeuouNMPig6AQdra5WLJwoOvFd2XeoGnYNPrHFu/beb4C+X+0MZQhjBQ5494V1Ip3gMEFCJDFotX85PUXjpvWfBBT1w1w2dZumKSB49gyN1jJ7MQI6TTIPQ112y2W5N2hduM7W15Ken8zSkw3h/nKYuQ6vLts7Su3ejdwCA3vmUogiIgYoNw5RCdN47R4xQ6wYIrdfgPRED0KJt3eZ5ba3juvXbvOXaDCymuPX65mF88+hiHIZBxrGEAbipQjdRpd2B8JpZDbD3Ke2rWAEMfmezRjMW8EJJfFSG7lhNpZa67m7IueVL326U17AtbXTwwwHf3/uHKUzeMZBUld4UDRS20l7Os/Z6DJ1dq9oQuqjWpstWUK1mKR1eFroWKNb3qFevVKpKtV4bAAxH5oCUOrBox2q85aqNuxo5cpRMBbcmvWxlKzl/S37WLut5XS9bUMRhSO8ex+DevnvryJ9flsvl8vzLcl5y97fpzd2P/+HH0+mUgl/ydc4Xkcqe2RCq9mqtSV61dQFqPqEncIJoaEDdozu4RMPd412YnHCut+0vL9f8GUM5uo/RP1IMDA3Meq+lYkYajBIxAjvypPuZrpLzGrgeJgwO0O21ybeRJTqHIRAR+zC6+HYc4Xy1dX2Rlgntzd0RJm7bGUSi52mcDg+PaTiBQ5PapXcFNXDOH4+nGMLp7oSIt9vtdpvnZV23bS2FvX+8vz+d7o6H1wAd75yPnPParQISu8Nyy62BKXvvYgzDGIchpRh98M55QOzSkMA5t2eo/K+VMADBIIoKNKQi3G/96fxs0JEtDu5wOkQfOnSHMgyHOHiDbghIjokcvT0eDtt1vb3MT5/PL8vy2/PsoR7H23E8nMYpegOGPXcVxEy6Ax5jimNKHw7hOHIYiAOaA0A1BEBCl7f+9Okv0b18fJ/fv21v33yMyTU0JFHoCn2HKGtXtW+cSGCicXR3h6A7ExUUrCGyoTWV3jqpirAnBrPWm5m9QhZoRzXBa4aCQW3auvQd76z7XkzAwPY8LgVmCgAKpib2yhYC7xjVAVrtcplbSxxj8GGIIQXnEIyYpsPkB4prBdPkKTAEJjNrr0jV76p/Yud9YOcJGQFFpfXWVXJtO0SCiNMw1lLzttXysq7bl/gyjckROe/epNM0pRhcXeat1W2ZexMgJsO6buTCTz98GKfp8/kiYtYFm7w7PbpH13c5vqOttZfrLddKBM5RjG8eHu6HIZlq631Zl8vlAgB///d/99NPP/7lL3/5/Pnz9XrLeQPV/7oTY68pr4hIBqCqooZExM654FxgtP2rJgJVMEFUIE8O9v9k5Bl6J1M0QVVQMwEiSgNiNznDuhlk0REOoyOPPeeupq9fqBIKU9fe5iuAQ++DC0VAiJ10b2aIYGBbkWVt89xUICaXfHDhb9pKvbfL9fk6v5BDH2hZVlAdh6OhL0W2rbRSUnCn0wFUn1vLuZosrfXeW++t1jSMwzgMxE5Nv+YKEyKDYe97xrf1ZrmK1ipNx8v86cslenuYiAC8wxjQyEh130gziCjs76+qgEREu+LVbKdFwD6n3iGev9vxo3beFn35fO5zDiEw1/OFe8DLbRPDtx8+OGaDdV6Xbd22rYJhdPGQDsmNdW4Z67rmIbGLHDoieKsoIEtf+zr34k53yXu7rU9/+e12Xq6ruOpghXrrVwt2eDiMx3GKkzS8PM9UjBybQt8ATF5+VWEhJCPCiBSAPdFIkAwH8kfnJ0dfixgmf/Bv3kw/jizdOjphBiIqrQlHgXpwKFa74xqxjmQlYKu1NEYF7SSKaIbOgNRI2YyroXVRguA4OI0CuIr+el7XXB8Ogyqyu1GKdzG8PR4fjsdaim6Ss3x5usUCEPf1nLpQWzIiNjD2YXTkGcEZIYKyiZAU0oz2HXH92n3BV8BdKfX55ZxCGKI3GYjB1JkEJud8QITaymveJwI7R4RIpAB7xJERihKgM9AmsCvAl6Vc5u1yK1vRLfd1rbULIITWFQ1AYphiRHaYJj7exQ6U847HU/tf7cTYa/n1e1Y3IvrgnGcRraV6UhVoorXV83ldbzkvvc5Wb65vZore8ZRwCkRqvfRei4KK9WbUu93W+vlltp4fBklR1emaW+2Sm4BCKXYlqwrnFbYOSsoBXAATWzdr1ZB2AYEZQG9dRcCgd6p1kcK5VjONnhiVSYfADMdpPPJXlHKv7fr56fLl6e40pNFxmlIKcEw1y3XL1+uab7XcakEgiropH1ziQaMoSJOCaGRAiNithc6lllpB1NjAAzFQIDX0yIDOUzocEjGu21ZzLdsaCs5vfH4kA0fMIES709j2mXEXcUCISAquqysF81I9V2KHA3hySN+FikQYo5sm7xwbuqOEu7vx7m5alvM2n60vATK0S10riSVv4xTGu0QhZnHGPqRkmLwPIuC9G8fh/v6OiOZ5WdZ13XLOJdfG3t3f3R+Ph2mcvA/7sAJRcx7Z0ZCmwzQvc85ZwdD7kFIYp5RSjME75513IjKvc23lf6f7R4xhcuHkpIN1rdKhQKkFWePEKbpwSGEMgqogps0Uv9IAOgGm5ByPwXtizq2F20Zx6RXmvF3m5eFUUojKFJgc7xIkS2SKogOlIfohQHCGZGKihgJE7Bz1Ws8vX1r5tFyv1+ullnx//0jMta9InR2yEsluJ/p+aISQAh0Gh8Bq3EyBHEUHVRihihTpJqTOI0BrTV+j+ogdEe1tMFQgES1NWuu99y7S1MTM9sRz3dXA5MBa1z3+XZXBFE1hb3sDm0Hr2NWPbgxhcBwQnCgiUAjJoWNg7c3tBDMEVWgK/m+fDfiq9GfvAjOrKRSyVmpX3TWARCGmkIbWurReu4psy7oG58bk/RBgtza01motWzE19lS2+tyf2Qf2wbPz5FrJ56dz36p/607HMMToYnBDXEqpss/YJMZwd3c6Ho8AVkrpqqWUWisiDsMwDMPpdMo5S+uO0DOfjsdvEEIAcNp3a7hzyOQYbX+GIyApoCEZmgGJWKkVEaKPKaTDOBDh1lrJUnKl1ofAyZP3fozxMKTDGKaD162UJrdFAYDQdQ3dYK1YsnVFBEC13qR23Up/flEBU+ZbKYqVmaMft6zn63XdulHg4H1sAHaYXArIXMcYv1kTS6u/fv7t8/np/YcfxpAu15ybLLkjNTBwvHjU+7vpeH/yIeZaa3tZ1rWUTbWVsgBojOHu/pSGiSjEGLvsoW/Qiy63sq4iAigGhqXJvCxda0gkfbMPpylCDNFMqxj0rmytg7SiBfa8dsf8OggAAwBRVTFCIWJTCCHE+D3UygylpO1Gnz5drl+eEOByPjjKHx6OVPDueP/Tx3+QXv/zf/kfn5+/gCn58OMffnp4fHx8eKsN//0/f7qsL0vZ3r5/8/HHj0jcail5A0pt7U/bRTT9/Z//jplzk9/Oz//81zkb3/94707ODU2DSrhWLuyzWK/0YkHGu8m7KBl7a3wAuAAokEM/URjQBSYPhQsiDUN0I3/rxBBgovgQj28OHggBwQxEofV+lzax7rzUXlNfDri+ievtbjtft3nbSt1KXVpeAHoKu0J8ALZqc5MiZp4MuQcfwHut/bqWNec111wE0Z3o7ngcPzycXn56DwRPv1zXbd0+1bTp/Q8uJFKzXnuuYo1QhyEMIaQUGRyoSStStrmsc70t9g1IsuMLiYnICM2g9f7yctGmZc33d9N08NMUpzAOQxrSICr9+qW2tUkGAzNUxTVX6bnWBmbBuZ2431V67620bavLWi5zmde2FqlFe0cxBDLrelsLETiWw8jobRjDu/cxpPb0vMyzSrU9Cvu7gte+NooVdzXW97k48TROkcf1qmtfvUdmALRtrV8+rcu1tiytQM0U0B5HuRstMmqTa86gDXETdd1cbrBs/by156V4Un7kqrpp/XJra+5btU0QAJBAxEoXRfAJ2AF5bYC5SW82js55IqJebF5EQMKA2urydK4rAoAjC16GCGPi+8M0Tu//9Ic/pzjsx9Jqefr55y+//vsw/jDd38XkEeE5v8zP6+cvz7fbRqYDOxDFKtt5QYfmhLw/HR661VI2E4g+JAZn1fPmmLST9xYCxUAMJI2kuB7ZKta8tFLX27W3xXNP4BwooSAyIjnnHULw0XlPbAq9t2zC5Jy0Xoqsq9xu1VMLER0RxWAQvgmWmGgc4uk0Os/OITEivgP7+1zW+fqyzV/K/Etbf9ZcsJnHyg6Y1AiiS364O9698/HYVRAohhBTSkNCxPv7WlurvXdRFSPmGKPzjl8DKMnMzKQdDsfT4fHx3fVx2ZaSixDxOIzDkNIQvWMAVVURWddFdMcEdIP/9UYMOzrcj8d3U2mtLdpugkJxHNPgx4dwfJweHo/kcd2Wbm2+XUpxMQZiUjMFNEBEDoM/uSNFxzGq0e15bdau63LLW4qpM0vwE3Hg4EMM6EmhUrPSGgtBVSZVMyUExy6mwfVaa798+fzy13//l8O//OdPf//zxx9+evP2LTlgr8Pgqnnujol/p1YARAhsKZBziTmQY2MGhLDW7epkq73V3Ey9IuKr7NEUCVk8M+/NGDHsXdvXEkbVxEAAwEx3NbC9hs3XCrVWaU0dg4GZSGsGEtwOt0LnY0qn6AMCdkGxnanrHQcLYAimokZNrDUtYu57IwbMQES7KJEiUkoJCAHR0ATMuoEBILHzKSYGAoDgY6v18vK8rmstvmafVx89OyJUI/SK2psuyzxvm6jFYegK1zUvy7atOfk4X5Z3b9/ev3k4PdyHaSLseSvbsnpPKUXvPRJt21ZKMURpwswicrlcRCTnvOt5fTg8nE7v3r/z4Xcp1qZmCAomaKhKyM57REICAxARBW3Sm0jvwkyRXPBxCIN3Libz5C13kX2f15mEQFprOaPvmFu/re3LSy6lXG6NyI0Jtzm3WgGACByZ9LYUmwtcl5abbqh8xmY5MB/HEYy30gwYOYJAaRVRicmHPR/Yf3tci8ht3W7L+qDC5CkEbFq7LrmoVJGtl5vZ/XR3HMfx/uFRRM6llJKZrVZU7SEGgz626v0gMiJq77Ys27bVWlU7EiAj0R4f4kMDPs/l88s8Bm4jqYIainTpYs1ADEAInfc+ACFL6yoircnuVAIFwn2+BMzMvxPDglGXoBZ9Aj9C63XT8vl6Q8QjDcOEzVtHWbFvJEw8peHh+PD48JjGVPL26a+38zLzRAYO0LHDlCBFI1FFcM47TmapqzTDom1ucyO6T4d45310jUqztUIO1MAbhuLAwkFiUBvccXMPH5I1sAze0Xjn4sjEJCZrzWiEMbnEv6fckqFDit4zswGqYu8WnCYKCopszbUBTnex1EPeSpkf81K2tazrumy32bSGRD6w90Ggr9XXnsUZqffmTMHUmkiuXVvJLVepgCZob5Mb2R3jFP0gclmXptZbNzfwAMiEGMgxgmfqPjrngJ15RBQUcR0dK8A+0P5+LK9GZUIkQ1WxnIuJtVyv1/F0SqfT4eF0OIo3RERWCAb9Ky8XVa20tm1lWdZW+15uEJuqtt5radtacmlb1dykVOtiZm6XCe4i39tihH3bOAzEjolCCjQl1saqXJv8nsz7Ok1SADKwvwGRqVie5fZS50sDtenogiNRXa/t9izzRaRpbybSfYQxwBhwb5yUrL01NexCVWmrMK99rrJ0SQHPq4WmSy1zsRQi33kEJ2Kl1da6c2ZoFI12B5gZoTEjExChAYhAWaF1kw4qUrKocHRxDGGc+P40vH17fPfmw7u3//Df/bf/p2k8vN4uKjUvZbtJvwMYkak3eXm+vfx6O3+51mt3zRGSIyS03mstBQyZKXAkoFZFYKcOQhgQhEBRGzqCIfm7u2NwvlXcbnLrdVvLsrS61bZugftxpIeDuxtw9MhABMyOHSE5B4QdusrWkU3YumulzddtPpfbtQenw0DeMQDEHvSreJyIhiEcDwN7cp69D8EH75KIbtu83r4sl8N6duVa69K1XLto2Sqo+Cmm8e50/2Y6PCABsYs+eO/JERiKioqK7Whogq8gRLO9B4T7pFRUVI/lUKdhy7m1KsxuGMb4ul4hgPbec95Uxa2OiP53gL3IGEaX7iKJA249N23q2LsYx+M0nqYwRSBl4VZrKbU1VEmvT0IiQ9ob/i7ygcZ9e/gyXbfnrVFf2zbXpCGQcjSLzGnwgtxq69rzkkU6GZkDtddQEMRBQ3eu3935tobndtu2l99++9cua+6XYRwUqkKH3+H7/uZwEAiBELyjYQouOEDzDuoaUfq8ttZEVfDrELe2rgBOjJjNTBS62L4KSO/yur0gw68NXjNEQjRFbc1q69K7qRISmPZeyRSCcxRi9EMaYkjsnII0AVAABurgcW/5oJhpl2at1raW5pro78ZJznnn/R6Y6LwHQu+9mABh6yyivXd2zscYQgw+TNNxXZbr9bbmW6utZM7BD9EH5xwxIalCqXVZt/PtJmpj64Y053qd1/PL2QFL11xlqfW65WFelpx/+eWXLW/H0+S9L6U4xxWViMi53jsiquqyLLXWbdtUNY0pxni6O02H6W86MQRkork0xBaCDwFDDMwOwQCstqLSW9sjihCQd4kSAh3Gw+HhrtT6swsvv32qlxdra/S+1H5dLSzhno63rE8v28+/zZ+ezo7009PlNDgUQVDHRGxIiigKdCs8d7nM5edlVlRwNgS+G7ZxGNxwiHHsEPuan89XsD5N9yEl3aHQ32h3QAa+drxc1xjRh2gAvepa1pLbvOjNa9c63Z3evnn3/t37IXjdtsu51Lr1DuxZTXIpBsjcWq3Saqn29DRfZwAbQ/AK2rU75mEYH8b7IVIIuDb49cttjha9EfbWW6295g4YQxpDjBi867Zum6zbtq5bziXX3hUMvPMheCIi/X3AMKihqE/T6e//KfWmW1lNmxJca0ZPuF3yr/8fY20TRH+HACGNh8fjMCVhndft/GWrxn/8u48ff/xDihNJe/shWo3rmdjS4/37x3cHpGHLC3BIx+Hh/aSBH3+YDm8HTX5p+uV8k66A6LwbJzYA9AK+Og/Hd+4P//QwTeX6aQGwuzcxDl4U1rXUqrC33QMBfesqWdda2ibamQiZUEl1z4gHJiL0IYTJT6qyB4Q16F17E6m15GVtvQC0fVYiItKbdGndlrWfb9ttzXnNvRSQLtrWui1yW8q6thpigBD6DOVm18s6X9fAjOa+/IIp8/2Du7vzx1MIDq0aVXVa0DqKc4HoxDCkihMOA3zLT0EkJEJ+NR+89muh937rSyl5Xvz5PD8fxtNpfrh/GKcYHMdw8p7UpORSNNemubRlq7d5XZZcWoVd+AdoBrIz4vfYPPvKj9nZiACitpXee73M5hm8Y+8DIQ8OcPJmitBzFVU1BAQwJNhbqQB7ZAt+61zm/tf/8vwv/+mzKI5jTCkAeSnSskpx2kxaN+mMEh0cAgbCbYNbh1ysVGjdSscsWCrkqqJAnkTxvCiCbFXYh49vHu9Od8dx6r09PT8v66ZqWfUmbetNmoLoYSATBEIzk69Ln3bLV2Wyw8RjTMf48HD3+O7dm/cfP/z0hz9+/PjHD+//9OPHPxyOp9efIIqDj4FNW9s2UtiW/vTX2/Mvy/pUdbOAiAwQgRJAAHCmCGDWqgiqivXWSltJ1SFQakEL1MZmp+P4p58+TPG0LvLFLrdffp4vl+1atGl0eDj4jz/4P3wMH964+4kjetLogiNGwd6tS18VAckpcK243OrLl9v1PG+LpkjT5J13TdnnIPqtiMGUYhsTMZBzewXDPKQQjoc3/f7N9nA6f05fbCvbOudlXmrWxY31IYU7f5wO9/ePb/ZQQ+/cq7DUXkcjBghITLtywL4WMWYGuivtpYt07xpRGAbZWwneOQNrvRpYDNGxExVmfjW+AdI+eEf4/wmDRGPggUeOSC1fb600VGra0TEzdxUAATZktG619d678z6l5D0BgprUqoZoQOMh/vEfPtyfjr/95UtbWrZ8qzPHY6TYrCvFkJKBm+vciq7rVtcVW8cdUABI5FpJKuOQjv/hH3/4ux8/Pj8tl/Nym+fz9eeqt2EcQgrG0nrRr6/ft5jUoInWXhTxwG4anPc8xuB0HL19Odt1Ka2rKbJztetqrbbeBQybiLZupUkX3S3YKmrwqtDfrUzMxASEpma9W2t7LK7txWNvHU1UkmM3DtM0pRAZ2bqpiAGiVtFcXTcT0a7SRVXNeql1mddwV74hPJh5mMZDPSGwZwdEBq9AFJ+Sai+lWRd27LwPIR4Px3dv3t2ut98+fX55Oc9b3jLWZKWZI/HsvHcqfV63LefcjRyb84akqNVsKc16ZX/Lop8vF3LcEXLN1+UaAn/48B4RyGGt2XvnvXMhdHlt+PXeSynruiLi8XQax9EHB0S/t1o6ZlbAHYSxR8Tt4CLd53AmYr1rBzDvmd3OTlJTRcAUk/NhPJzW61LOty4FqJJDNBKwNeP5Jp+e1l++XD89zYTaQU+D98aeKQZGkiYVSL33pj4dAwSZW2sqxhhimI7peBjiYSrCX57rbV63NRPrnitjxEb+28HEOPzhpz+X7RIHj8jBa85t22otvZVaWs2ls3ePL+chjvfHuzGNd3d3CNq1IBo755wnCqZOAWoVkLxlmed121g5ISERhxinw4EI7h6OITJpYWvV2q3I1rqJlSq1tpY7MU+mfkBwDsjUsPW+Ltu6rdIFgbz3IfCQPBEC9N+3LkRsyb2BvX2fYuTcudXWV8GKXWWBtUr1wYd30+juCHBwzg0eeC8NyNHgPL17/8Pj2zfkSaW5oD4agITg33/48PDmAFRLX8H5OKWTHCzQeIxp9BpEnBurN5MY2JMnc2qKXo0aMIbJ338YGD07MNOH98l5XudetFFg2G8q/d69UNVac84rk2NidoRGoAB7ZB4zIDA4YnLsDBHZEYOhAWKXXqfce1WtO+lCu8AeJl71BXLfaNFetlyLenawSzHRNuRVoChE5CmMd8M0TUOtmQEMoVSBLK0zER0OcUworWjuWlS7WQd2YYiRIpa+8RDxd+cGX5G9sGMX9naCqnTV1iDXvG55Xrbbkue1HI/jYYzTEFIKhNC6iRGRdz6GKL4pZGmll1xb67LvlIz21i4QM+3ks9flAGBnhUtrHUEZzTOlKCn46H30NESviiJWd1imGeL+jsBfZ/PfDqR3uV3W+Vqm4yHEgTBJp7Jpy+QoBE/aUcEQBUx7sw2hNqsVSoXcsDTN3XKD2qF3QEBv0BRLVTORrscjxhAfTuOb+4NZ87RdbpqzuiYghJWWrYmKc6ZotWkpzW3EnhwT+qBC4xDevzt8ePv2w5s/vn/749t3P7z58PHDx5/evH3/cPd4OhxD9F8XfhpSHFJ0r6TkXte6Xes211oUFH1Al5AniAfwSTg0Iqem29q6dpHWe++1kil5dGzD5CCC1cYeneNhHKYhsYTL0225zTWvSDKM8fQmvvs4vP8hPj66cQrM3tADRSMQU1XpVgyU2fdO801enuovv8zXc+lNh+TYw9bMR9WoH9vvnSNR6oAMROzYEwUER+S9j8HHEJxpnc+/0vnSqQhXFx7H08e7h5/uHj6Mh1Mchhi8e43OgS5iuisL4dX8u9vbGPd1Iucyz3PO+dUmKb3WXmpl8sfDKURPhFvJX56+5JyDc72323K7Xi/ny1m0pzHS7wwW//WL0Hnn44Dgy72gbH3VKjsyS0QNUXf8knMeBEX3fCVzBkwMhLJXX2Q+unGIgbm3ul43UhDXOveGrRg2C0CAwAAszbalZcqsnZICGRASErROJqNPj28O/DgOcQiexbZ522q7WS6CAzkSk/2+/q96TPr6r4ZoTOAZg0NPDHeJCZ3nGPN1LjmrKvYurWnt4swAoXcrXXeivqrt8yNEYgYmQkBH9jsIgna1rqKqAOoYzLP3vINLiTAEF4IDUjGzXYcK0KV1zOy6iGjv0quK2J47vS1T+Z41RsTjeNjqoXfVLuu6dRVTI0dDSkjoQzPRZVkIKA3D4XA63d2rArNXQzHqYlBkK2qijigmD2Cltq5m7Dl48AGIScil5tLYSy8Ksmz9NtcuRaqiOIbHh7sYYowRAGqtpWRi8iGI2rptrXViElUiijE+Pj6mYai96N+eFxecBwcaXilZSLR/B2aNEVJwjqh3QICQ3GtIq/XWypbX2/VmRIDs4oBuIDWOOp3wLt0bHwoOy3b+9cv868s1q8bA2ZA7csNAJMBqeluKiKSI93eHP/3pcToMDbgK5AYxpR/f3w+Dy9L+/ecv/8t/+fzpty/We0yeHIPz4AOE+G3Hf3e6/7/9X/8ff/67P635dr4+f/7y+Xo5x4G2Tde15a2VbLdcvjydA3rdWvTh7v7xdHdn2M3UBEVBOoEBEZhJq31bWyvSm4pmcMQc0jDEMaYU7+8PPlBvG2hn05bL9XqeZ1kWy7n3Jt61Y69DLSGRqs5buc3b5XrL2+aYU0rTGA/Hw+FwAFDT6tx3JUPr/flyfV7ODz/4+CZFr2geyqnPmp9mxeYewvhwON7dj+MUPEPN5fKy9Tr4x8P98YcffnTRv/vwdjolwbzV67Kty5q3DSKd0nAcxsMmZwEgz3GIR7PukZGli0D3TO8e7xkpuITmusOmrdqs2ASqMbjRTQ8B6MiM9x+iqTSZecXpEMFrqXVZs3wN5lSVkpd1ubJPjh13IiRUQCNERGZsjMzEDAimggiOmV75TooGjhldAjMTAW0gTWsVNXN0i/HmhmfNVQy8H4Zw/xBTZDKYphGnUxjSjym5gJ3LL09+XW5ZcufqQjdQU/IQE2PD2kl6CC1jvVkCGk6H6Po2rD75b90LA1BA/UrURtMd+rdPhfZAuC6Sa11zntd1eAlDDEMKY0rjEGOKOyZnGA+HQzvd1/vHcrnOz8/ny+U6z0vrfXdwE+2OKPuOC7evmmJQBDBANOhgtXY0YCQkjt6p4u6dqrWZiu6tYyLH6JiQ/sYuDijDwf30p/en051UzEtd59IbDmNyLCqwq/5La0+XPrOoahdsQqVhFSsNcu+tGxgB4Co7CUMJzTNysDmXJW9TI+/MJ+MM262VCikGxNBL7VA7tKp1Kw26dSrjFA5p8GkkG988vP2n//DTf/vn//BP//R//OHj36XpIY7HkJJ3TCiKDYB3zqIjntJwHKbBJYcOxEwUCNAhBGSP6eDixDhaOGkcS4jEjGvp5+sll+rZIe6meTIA8m6cRlTJy1JMfnt+Nkp/9+Pb6XAQq37Qn/9dy7ZNY3h4lx5/Otx/HKZHHxJbB0HqCLjHEVrrWvfZXt7w/FJ//aX827+Vy1UQMSVYWh1eADgXXv+b/7Pcfy1iYow6jkSMiGCkSiLae63N2GGMhzi+d9NP7jD7le4mvn/7Dw8f/vz2h//meHrnvAMDkdc2i9rufjFEUNHaWu+iBswcY1LVdV0/f/78L//yL09PX3Lemai75NQeHh7//Oc/v3/3PgT//PLyH//jf/z1119bLeu6XK6XWis7eni8/9Pf/ZFeb1f8eql+LbwJkZjZe45+TPzR3/z88vOl95rnLUfnh0QOFQyJh2kwg9yqqu61eIzeeRYwARPQPRXbRXjz4XA4xpobKhn1ihmlh8a5TUxkgtIpL7KBBmJvjh0Co4KpshJZ3ZM9jEliwrv7MUzOkADRSAS+Q+Fety37QRmoGSDEGFKMjM46CgAiphiY3TBNh2P57dPty/N6vuRlKTm3bkIMhMTsUEQUapW2RxMAOu+Yce+QOgJHSARAe+NM9zoYQb1DT14Po7S+y5KIFEC6St8l0WIqyoze1p1H3FtXada7Seu91Jpr2eyrQYGYx2nKbZrndVmWy/nSegsxHo7TwR1TiikpAZacs9tCCDFGZjawLqKAPgwillvPW16XFUCGIcQQXPA+hhiDTxFDRHbJjycXgWJeM5nVXOZSci2KNozh8fH4hx8//P3f/93DmwdEy3l9eXkqtbgQVGxZNyQ6Ho8hBMd8PB7fffjgHH8+Pwn8zjYG8Iq95316ZLaz/UC7SSe3X4ZGDgjJRXZM2kWhNytbXXkLQFR7RrbD3TiQu3/Eu/spjA9bTedneX6pz5d1rWU4DqfTMJ3i4AMWdkbkSZXQJ+dpnO6Od6fD3XGcfOvoBYLQMI139/chsuYVkHZvYAz+cBwPp8N4Ohgyh9/FDjj/+PAOtV7XMxKtedvyspWbaCMGFxwaIFHetsvLGYqMw+iGSH6XTakoiqAImRpgly4911y6c35kpxyU2AidIx/jNA2n6cCBanW9Ne3SEdfu5+KWGkrT3jsJtVuNfY1ZTGVd5vm2lJylNQLFfba5F9SgKcUYwnfbGBl6gVghzjhUHtVR5J76gECAAPENhjvig4fADcBMimsmWrQihBjHNMVpTD5g72We55en+fy89hJ0NDM0JCQk3vO3ickDEQKDgikhu+S9d95TMiVQERAGNhRA4Iju5P2e5UgWDqiC6cQnSNMpdWzili7fA7pU+nK73V4uPlXnAu9Lqe77TNzxG0jEzgGiihBRcMF7x94D0r55IGJEAzIENhQSIsbk6C762xCfUixGwBHdOAwPd8eUHNxPabo7HIbgUdIQxMPh7vB8Pc95rrYASUgcnSdgUEB1ZtiNi8DWmgnJ2tAL1U6i+LstGX57rO2gT9NXHtbXna6BgZpIab2vq4uOQ/BDiOOYpmk4HKfDcUwx+JBGFwydGqgCkSNy65p7a2KvNKHXa+FrDbNbvMHU0ABMwEChdSWU2jszABATeIfqmcGJwJ5xg3uVSH/TiWGH0ymeHg+n+7sp3a9dVZbeVtWeRmKGnFmF1RTYKkNXKAVq3VEW2BVqt9q16z7QRdXX2Zd3zN4Dh7XI87wCa0og0JrXjXpBSMzMnEZn3qogV2LyzvHxfnh4PP3w/v3p8Mbz6e3jhz//4x///A//8A9//qeHhw+AwQxFam9bzlfxLoV3+2jczKRpL9KKAFRR2HIDMj+wgTnEeHDjkeMJ3YQuNSJgRAfC2rF1qUbEjomREACZGSKhehap8vJ0IQ3v7t4cp+mHj0fCR7TrOvcU6f4RD/cUDwzRiafXLERSgG47iKl364YItys8fSm//VZ//lXOV0NGH+zztbgoRtUft1z162JpvWvvtstKRVREelMFBHQhBucTuilOH44PDd299/Hth394ePvT8e6jC0Pv1fbJkIKaqepe/iKRiNZaa22tyx45pKrzvFwul6enp99++7QsS86ltSYiZtB7f/Pm8XAYiQ+Ixo6JsPe6bes8z7XWmEJrzVQB/yuS4vcXERE5JufYuZNDxbrUutTSyrb5oXlyDIqISM4DoEcSFRLA1znLKyz49ShQncPDKaUh5FylGQtq761ptm0uC6NvAgiBaXBqLIgVQYB413mSIpfZ5uvKQbZt6VLZQSSngArQX/HWyETMzN88ll/zhoLjfU8SfGByoAIE3nEIPBHHEFq1dZOn81p6FzWkV539V3XdflJ2AT7w68MNHZMjCG5no6LtOC1EBENQZvPBeT5J69o7EXaR1jqBIoJ2k6atNiJJSIa0ldpqM2nWO1pXaa21va79dlJCiM4F1TnncrstouJD8C7EkIY0iEgPLcYkXfdbrLRSazUEH4J3sdW+ldu85fP1ptLHlqZxHICSAzSErxQVRY8UnE/stJdSuzZRQAqDPxyHu7vj6XQ8HqbjNLFDRju/WN62Ps8ipmAhRJWO5hxz8D76SJ6dD7xjiL8VMYh+fz4CGjGAGqiYGIkBgkkHBnZIjOR29b2p9YqFFLGiGd7mhUzf/zA+Hu8eH2gYR6OH5Vk/P33+5beXeV1dgA8fpw8fTnenMbmAlaVAb11VDw/TOBzevf0YfCj58vNv18t1FpU0pmObCFsIfqt6u5ZWOjFNp+Hx3f37H94f7qelFJe+W6xbq58+//r0+WdjEzNi7mrPT5d1mYdhGNzgIyViAtvWtW2N3IwxGMFOmSMMRIEwAJhqlV6hNef86e7OpwNwrILrkkUlGHs1UsOOJq73vm59yb10VA4+MbgBW+mt33Kbt+ZoVW15nXvPYOo97R5btT3gtTNzGoZhGL+tMT7w4w/pEYiGuaEJiGByvvMxngZ07NwE6Otql/P1Nl9W6v3eIyFfltnOLm/oAoM1FOlbmZ+3X//tdvl1PQxeTedlGVYKEySPKNJza1lVGc0TEaGKQSndzOLg1CDXtfRMEbz34NBRCuPYPBSptZalbkw4PYTj4zH4VHv5fP2Z/ffucu9ye76+fHpKw+RDQMdAhEBM5D0TMzIwO+cjAJoIIUMAREcpGWop2XrzzIxm2sHEwEDRCMnTKdHbo7u2wRa3FacQRUZPp4/3w7v74Xg3DJE9tGkcw3B4+/jTlzlftmXLL01vhpsPHYxKMW2hNlmyrqVuZW24jV/EoZR6kcfNvnaVXrOTXiOiX/cC+75zH7wDEhHuOQNq2lrXJrVI4TrPm/eXNKbjcTqdTnf3J0OY56X1djodpmk6nu5ul9vLy8uyrV+NCrbD0b++jHb5jMpX8AQSYjcrTUhe8YmOzEUHyanKLjU0QHC7p+r7e4Xo3/90//72QBhLCWCOEQmvhoVZkDREUEMDdJHj6HqT5XNdSm9Ve1e1PQ4MxF61N2QUPR8GN41hGqP3lLv+9rI+L+sw4XRHzfUy9I20ojjm4Q0PwD17EE/mj8e7Dz9++OkPf/z7f/int28+Hsa7w+HueP9wPB2GcWyifT3Xda75Vrfrtl7G0+lwOPmQ9mvs8jx//u3cVfzgqmjvgITDwcXITBgjDSf38D5y0ty23rsKeOPHcYzmb5esIm7w3ns0xA51Vo+QLJWWz8+3fm1J8KePb949TsMPB8jD7bIy63FqgbMabt0EPZMjBEMBaKa9a69VelVpdn7Wz5/bb5/l0xM/X0wADDu6jtzR2cOHnL/2yEX0dl1uL1fnPCL1/kr3BkTvA2hk6qqQxjdvPw7vfrQY4uH4mNKIxGZtl7rI18pyd7vshjoAQGKzLmK9N4NNRUopADhNh/v7yuy833bjDJjFGFqrtWbm4/v378Zx/A9//sfr+fz88vzp8+fbfGu9xhSd96/akW8X1/foC0RkRN4/AhKNh+Hhh/v1uuZ5W8s6leQcIzhAayJAhMyeHTsgAlGxZuQ8vH56NVNkZCIfwA9OukoVLabZtl6elouHAMbOpfvT26pVuat27UrMIXpW0NLmS5f+hB5rK1VFTI0Q2AF9KzkQyYsG575DO4kweZqSG8cwjXEckmPqrQMooXOOQ3AIsN4N53mjL2Bk7BwReGYFa7211vYUAlXZzw7Ca2+UGbyjEJgIxHZ3P3nniADRADQEN92fTGy+3rT3nBuCDZN3TCramm5bRiIKHplFWu9VWjXtDtEMBViNvp2hfe9qBjnXvJVdh3SYjvd394fxGDxnLTuEAgy1W7Ys2udlZsfT8ZDisK755XrNra55UxWKjppY6R1KruJDjcmz8wi+Fllu67osJW+9NSYap+H0cDwd0zQ6Ii15lTaeDncOj9fzMF8uz+cXMXi4vx+iB2k9K6ErPq/zGsYUfBiGgel3wt5SRU1VmqGxIwRAFZTOqgSggo7Re+c8B+/JkZqBaG+y1Fy1m0It1SM1xa3jZeal9I7ll0/53/76+dPTs6Gd7oYffjh+/HiapuTR9w17tpq7GjqmmEaXQi7y2/P8/PxyuV68w4/+QcRdrxdVnFd5ebqB4TCm6TROxyEOwXkiMSSBr3mWW97++V//81/+7X/2KdReny9Pnz8/PT9fUfXxbro7TJ6RTS3X1nsD6KWvlzm3lvNmCsEn7wfHAQlNG4IkwsMEE5h3xIGpaYFmoixordYtA/siWpqWZrWDIJNP3gGpYgnkmrSurUvrrfZSGoKk6JhNtSlIzpmcQ+QYAr6qH74C4jzdvfX36tJYKHSgrixCSCExkXMenXbtOefLtX/69eqF/NvH6AIJ4a41MajLOpPO5/n5r8vLL+v8nN1jqrVs21prnA6Y0LOQZatLq0UhuUDBHQkpKIAYdtsnCEWk0/48IqLXggLcBh20awPAMHBKOE6udS0+DJNnfr35VWS73eaXFyndpwSODQmB2HEaAjMrCBGxCwzEqsxOaxe1zgwIW96sFyFmNDBFMyBFA2RHwVLvp8G9vUvC/HSWLpJzK7mjoAd2RgQE6IIf3hxCCqfDqHMpub6rMnddDAuymCmQFewolWH1LjroDqIzSTglHOj3UVCvJgUiIvsq+1P4ylp6hS8Q7PtgMQNQUe1aa0e0NZeca2uK5MjhPM+ttxASswveT9MkIsy05U2k074KvdZKtv9B+E51Qtj3PPtfBd2LHg7exxRxHzPXWmrrpjtd6/e7sWEc4pC0k7RdTd3NBFAB0TEME/qBKWgYeDxwXuy6EW5NexPo+7aOmAiBCJ3jyH4c/N0xTGNIyRvAlnOVmjdpDO4+UIKgBI3I/DQMbx4Pg5+wJAeHId7dP7z74aeffvjpjx//8PePd2/GFIL3wMFAe962dS6Xl+X8dDl/vp6frtfnNz/89PYPfx6Pd/vCP6/lfC0QOLQg+0fjgMRIqmalNpetdUIBE4VupmKNqBIWlEVbFxbGRD46AJSuBOAIvbqBvAfo29xW5x45Jnlz4oQMoEPS6DpYb9KBiAEJAbWrZum519qK1s3Kol+e5NOTPJ1hzpw7dgRDBUATkypzhq918k70sdald1C11rpqV+1IGILvPXQtiCzKLpxCSjEEF4IB9rJ16XXnAdvXEhfAcNdesIrknLdSammqWmpRtd0oOh0mAIgxllJ2F5OZpiGG4FS7SCNOb9483N0dl/vTw+PD45vHy+1yu127dB/4fwNPtNczr2MtI0MCH9x0NyKbWAOz3aZjhMAgpmBAsCvl9oL7ldVP+uqoMtxBbbvChcRrY+ukAtaLbq2UJqAOFIDYc0K3S5YBERkcmhhwa63Pm7GoqRIAIQID2e5J2p2HgPhfdWKIwDuKnoMj78g5R4iIqmYiBiBgJr07h4fJv3kYAa2U16qrdFm3tgsFmZHImYEpMpKB6VcN4R7LhoBsaIbB+9d4EgTveTpOqFhbz+tSWgcU5wG9U0Ux66o7eBdNe++l1ZYzAlCMXylE7vfnBZH27m8I8Xg8xRiPh1P0Ubss2/ZyOT99/vLbp0/bujpm7533nEsJwZ9OxxiTmSGBmSAjs3MhIHOuvTQhQucoJu+cQ/OtyLwLhUxi8Hf3p4c3dw9v7ryHbT0vy+18djHw8ZAc4RjCNMQxRUW8uzuOwwCvyYPldr10tTiOfgxy//05BgDuepu79JKzgcQUPBMDOAAHhkBBmJBScD76EAI5NHCt9jWXsmWtnRGH6IvCv7xcpRkbISdwxy+X8p/+y89Pl+twjG/eTz98OL19M3l22kBLJ4Y0eABm4lzrb//6z88v89PLbVmW3uubhzFNaRhTXvL5vH36Ml9vxTl/P6XDaXSRt7rIujXNatu3uOR1Wf7H/+l/+B/+X/9PF0NXndc552JV3z0+vH/88PbxJHWrec21C4HzKef++eX69HK+3WYRS2kMITl2xMSkQ3BvTiM7utzOXXsaj6rW8qxdBQ3ASusdXAfqgAIA7Mkn5s7EqorMEWDwg/U+ny/LDVUqAk4HTyS1WBe5zrfcRBSGITHiVuo34RU7mO75Tt3glRg6qpIALp0yoHVw0ENvYV3d5dq+PF2DpDfxeHcMKdyFo5euDO36+Xz+VK6ftt/+7TZ/rnkti78t81jLav3obQiWgiQsLl/mi9aXsk51eJvuhikSE0Bb+yK1GVRiQ0NTMAUxaVDUmxvNq+tZVbTDVqkhZkxwfOvu3iYXvi78Ii2vdbmiYRcB5w3J1Jz3SEgsrZVdvBGIJmbHnHHBdfHbDZhEMoH0XSBgRoT02psOjKytD9G9w2QGZS7ntc0XedLtRKuXo9ZxGBN4JkZPOiK4QPfhIHRUNFFVaAKipqDWel9rKX0tdjWrEQh6Oyy3h/s/ehe/rzDfHwEMZAavTRPcF3MixB2Pu1sPkMi97qZQDbQ3XddMxD4EcnS73dZtrbURuWk6xTg8PDxM0/jl6cu2LTvkygwBbIeHGhghsvOvqSxmaiZqogpmuCuKyCC4YYze+db6si6l1VJyb5jzd3GfqdUCtShhU1nWrWxlEZ3JFLrjyOPR/ADDA6QJQ+T1AjUTiVu8y2vttZmZc+w8+kBDjHdpnMY0jc4HBLKu4kKoFarWkCAMHCYMCdF8dKeHh7d//OOPD4e3qR1H//bw8PH08OH05u14OPmUHCr3Reqq0mvetvNtu13y/PL05dO//fUvP//y86+//vqP/+3/4b/7v/zfH98DAKhBUVsa0NoTEjlmZFPSDnXVVqpIuZ4hNzfd+TQ6h9Garwvezvl2zetcepcyt+FQ7x8nnxyoqFhTS+z/8PHDNIRx4DFBy9duObpGI6FR8BgcMAIZmFiTZiZqtfetlqW3rp3zStdn/PyEn57hsqKyi5NLnjiQS6hQtnLxY/i242fmYRzzWvNWS2u1lt6baCPS2tAVdjkgOTFC9r6Zd83zQiAmvUsv3Vo3UTNAJkIEUaWvhuo9U3CPTMRvVzTCdJjSkO4e7lQEvpKdiWAPClvWW5M2pIHJOc9396fDcXxc75+en27zrdQM8NX59DeQoq+Ea+kdGwLsLhufeKQEqNYF0Xrr5Bj28FUTVQFjxw7ZEe1AeTQDJkYCADTYfXxfi3oGDEaIyGQZqrRtWXtVIIwxHIYhxsDoRK22KgDsAzIKFDEFIiTc/f0KXzcir8cPBPC7xiUgomPa92Y7xBB4L0GsS20irfcm0gSmxP/0xzc/vj2db3nZaulyWcqyNAAxa0wQU2TC3k26dZEiYopg7J0xeec8kgPjGEKKLgZ2TMTsvAcjCl4L1Z6taqgKEJACEtEO0mQygCZSStvWyux2HDNqRfrOIQNEZAohHA8Hxw4RnXNDjCr68vT88vz073/5yy8///zrb7/WWqdxOh6n4+kQgx+GOI4DkaulMqHzdDyO7Nzx7t6MLpe55Lp3tfxGjhnVtSzzbQHV6ZAeH+7+8c9///HH93d3h9ty/n//z78+P1/Ktqr0IfppHDzRm/v78XBAx4fD5Bml1m3Zni/z8+fL+Z//hUP84Q8f7w/v5Tu7C1ztrbeeS9kjHbxjTxSZ9q9jH9d5puAoOgLC2kW6iUDr2nL3jNMQ1WDZ9HzOy01yvQmeb2v57ekZPfz05t1PPz2+fTwdx6DdWhNGACbngiqV2pdlfT4/n29zVeGIfojDcUBmEahN1jW/vFy33Mfj8fRwuH97mI4eQHuvyJ1o918AALRen54//fWXf/chKlJunYCmOKZhGqdhSDFLFkL20RCNQlNZc72t5bY0Ea2dQzDvvWNybG4H5oSAiK3Xtt567bd50W6xCbnS0YNLPh04phA4IqRhaL321kUEkJzj03iw1rTWVtZSHZo6dnvLUkVzkSbIPnRRNJ2X9duJQTRy6gLEwEQGph3EWACkm6gymqgoYnQepjFyj6pwW0pdzqnGg6VIOt+2lrfb595mmuJdIE+kIr3WWktrOWpFUufAO/LQ6jKvNsJdP00cODgR2Latl4JqtI+UkXdfjkADRj8wKJCiaWcv5A24AwOj/T4pXVVz3uZ57uC8KrlXpUuIKY4DGeQlt1JMJTBBiI65GdjiaA3oGNn2djMjMSLvLqYQUmI03UWIgXRkG1hn6GuRBfs1yoF7gKp9wBB8cBTQEXkBTx7dAM4b8k5SUNtLDDuNIlYbbIodAaS3sq6P939wLn27YXaRATMjeGCWLrU0UX3tjdjrArDvhfGrLtcA9iaOqZbacNlcuLKjJW/buq3rhkgicDgAT0xEjtkzmwKA7tt72OugPRfXOdw9yaLSX52UoEamhAZqXXtXdWDIxMzIhHvS0+/Qw6pQs25LI1ql2bYtJWfpFQBr7ojsJ0mTHe84DKidiGCavD5QcJwD1ezAIAYOgXzEcQh345RCIGcK0rR37WpiBqjkyU1pun+YUhqHeBrSu8f7dx9/fP8wPQwyjfHt4c1Pw/FNHEZEan1reS7rl205r/Pt+nI+//YyX17yev3y/OW//NvPf/nl119++03jacv5dyuMA8fAzsADsCpLh16sLNqKaBdt6kI3MzSniG2V9aq3l5LXDkps1lW7a73WToYqvUku0r14H4aIZtZ7W9ZMWAyVA6MJutf1TxQUVfYFW0trtTbp1XrHecEvL/bpWZ9vNmdoKujIDxwnnyanyLTmOCb6PragOA5h2Jacc83Luta6dWkIQmTMROSQWMEjO3aBiRiFQNC6qNZufW+U7SQkAFEBQCLcZS5fNb+wN36RcE9lB0Qk4+/S75043LdS12zMnOLgnH9F4zEBGjM5z92YHe/wpP9aGYOAtJcDBmiIiARMCORGSFI6VFCTvbP4NbFUzYDYs2cmMiPp+57hlTVgoPrKJFBFNVRgw/2XEKqBbFJq7U3N2TGMfghoqF20m6AxE3oCI9jVhQRA9FpeIe0k7q+GZ/zWTt4Pxu2Rmc4Tua4GKr31Jl27lNZz6713AEgxvP3wAEAv1/x8XV9um+FSqooZbqbaX22CDhH2sOu91IPW0BEHRtr9VHuJaUa8E6HYFA2wqa2lZm1mfRw0JkTch3W4A/db01xlzZ0Z02jJEbFj574FdJnZ/lGnaRrHyYcAZq2UZZ5vl8vT5y+ffv31l19++fXXX1trp9NJpLHjENw0TTFGRDaxN28exKTVDkQhpHWrpZR5XpnIefQdGRGEepGylmGIjw/3P/344acfP/zw8d3xOIYzHA+HWjYA7L2VUrx71USmGMg5x8iMPnppFbSvy+233z4h+5DCMs9/U8Q4JgQW8a2BiIIBezAmJGCHIXDwRNBJwSOLWJ7XNXcVcujAQXQcQzLjNHq4zc/L+dOX223ZSqtG/f3H+x9/evzTH9/dHyKj5Va0qQN2zjmO29rPL7fz9aYqx1N4d/BxiNElR9yanssKBobUpCvoMKaHN/cff3wbB1zyS9PugovBfzsxSOAjxdH5kJBjMvQ+HMbp9HinJEu55e0mTV06oPCapTRA4hSSHbyIOSLvQxqDd+xQ7o7j48P94/3RBVdae7rertdlva3SLfiNOYEL4/Hh/d3D8f4uDIk8G9i6rs/PT9u2pZSCdymGjuY8sgOiXdui2FU69G6ioKKltNak1ny+XPcLCwBUreRccwEX2RGr7lJcBdUGoIjAgWOcTlMc398H2dgW++2Xp1/+4+dUw3//x398/3BwINrIIB6Pw9v7971v5+UzsWvN5qVeYs65qmFK6eHhvm+u1GcV0Y6oPrBrCmW91NwjOx/3hZWBwQjMjABj8AFCRwFTjsDRyGGTsq1L3vbmCgBAV71t+bysE4ak6h0jOkNi5wzIFOtW6zKb9k6kqRG5JqJkMCMG9jEwEio6RI+O2QE7DnUcO6mWeZGajdRaTwSjh9KbdCiZ15VWB2TdR08pdAtC2EoxIwyRUuIYEAByRTXkQN4F74gj0MmIjEhN2yE/PP7kffy+sxRVNeccB2bEmmspvUtHALSvOuSvHWlCFBUzQEQCAzIAU5VcC1yNHao2NWVmVdvWpbeet4yI0jszIwERM3tmdo4BsbWqZghoYGJmJgZddIfKANu+QxXIBa9zjoGIugg7FxKhBe+/B6ep2La023lDbNp6L5uWro1NUHLuHSYvKgg91huen3tegIFPJz9GbgdXZkPFlFwISFFD5DE5AFm2ba0l11qb1GLWiI1P4/AQ3v3p7R9++OkfHh7/ME4/jOk4RUqMXsn7yR8O7Ejzom1r23ldn+b5t6enz7/8+tuvP3/65efP15dLKev5evvl0/Xz8/Xldv14WVr/5rbANKXD3Xg8Td4F6daLtixllbp2EPDOBwcoZoXbTKXL7amsV22bMvE0RHJWpBBqz61oB9Neel6Kdvjty3x3HH74kB7u/Zg0BnWMSIzmhBGAvJFTQ1NRadLrLinBWNHWRs+L/vLSvpz7tejWrLXOoXkaOXIYnDlWPwyHRO6rXoEpDtEn36EvZT7fLus2t9bUZM+RRmREVKO9KEBARCU0ArO9nLJdMAX7gqz6tbmioK9X41fkHQDtfv5vKhb7+mN7ChcCmCkYIhIy7nUKoiGqSG0NwHzwKQbnHH1lxXwrZQiRPfnIjpmZHb3mCyOA944NunYDRbIdFAhmikYMLnAIDgBVyV7nt7jDQRQARMxA7HuuIpBipJCYA3WwzrpeZgTUYBq05FalNuxKqgRIhsQOQb8PaAEdv5oQERDIEQJ5/l3QICI6H2Ia03BE9r312mqtpXUBsH0mLYC9luT94+k4Ho6Pj3J3nv0vTwDEnmKilyvMcy5FVBUJkShFRgMVBbNaBLQjGQRTa7XqstoY3eGE3vOryrtrye02595Kzv4w6f0Dx8DIigCtttqtFM3FtmJEzW8bEEyBQ/juTBSRdVlzKeMwhBBDjKWUp3VZ13VZly1v8jVzex8FAqBzLqXhdDqN48TsUhhU7e7+Ydv25Md8uS77G4QQAR0gKqL1Jl2B9Hg3/eM//t3f/cMfHx6OITjn+XiY/vTHP93dndBsGlLwXrquOa/bWvbhafLjEI9pINrB42JqCrLlreQi+rsixkwBjJlVtdaqoo7APLnAIXEcXIhI1ggVgQFAtYOJd84zq3OOyAhBIQ5hPI7TqQ65514ViZ07HuLj3Xh/HIfgCAw8kewWOnbMzoFzIQ5D4OCSDUdKY4hu6BVvT1uuHQG7AhK5gD5yCHv4jKkaKDrynsO3IoaIYnLDFJ1L7Ed2McQ4Dcknv+RbrWqlMAZ2QcFtbWmGh8OBOaxLL6XVWhHAEQVHgSA4ItzH01a6XNftsmbRVzIUq5CKmpgpgoAJA7J34pnRQDsAStNsUsuWy9JaVu0qUquiqXQ0YwMzhVKbmZW8bVuRrzAiMzPR3qRsvXerKurMBwdI1tD6HsRDIUQXj+54lA1vuJ5pvubr5WancRLN46ARHNKQhnQcY+8xw6Ioucu81WEL0o28H0/Tm3HUzS2X3FF71bI2JmyCUkgrdQfMqqIoCAwE7L1j9KxO0KypKXnnmRBAunSp2tv3mWVXvW71ec4V11E1MBE6I6pGEGcCvF3nus5owkS1CxJ36YJqDsizj9ETB6BAbOSAuCETu5oLq7ZtU6nAUruCKmqX1kzqFmANsHlw0KV77VU1AqHUagbUq7PmKCIQ1AIdjBtpIIiEgTEgeENUAocYffoeMbw7+BD3LF9HBIbMK7QO3zsu8Aqne6XUfevCvD7bEVFBSysksL+xc84MVGwnO7FjxxwcIZrb08Sc996bWc5b22NadRdRESID7QpgAxMDVNOuupXSVZ13r7RSR2z8e8yliuYlb7fFO49mKAIKvak22Ol4sWDLWG+oitsZeoMxEQ8MAbrXgopKQ/IhESUhD0wgXTlQZO8Sd4FegSWMdPjh3cOf3v3wp3d/+uHDf3h488dp+uA5gKwgq0Jutmh+tpXavNTlUpbnef7ycvv886ff/vnf/vrzz58+fTpfr3MtdVnL5dauS1lyW6t8u18QEZmQUAV7t1akFWlZehFTJUTng3foULGxrFizzs91uwkopej85JhBtUmXtlYpQIi99vXWahaTul0raStbSBHSgMOIPiJ77whLZ0/oDBBVVFvT3FUV2flqcK16LnKufTbRgDQYmAADe3XBXEJ0pOR8dN8010jI3rvoyREwKKqACqiaCiAJIAq8Mku+Vh1o9KqUgl3Ru9ckX8VUrwsSKCh8Ffx+vTLtNcrt65X77cdeH6rfr+puHWw34cE3AY8PYRjSOA4xRve32cL7+xEj7aJyJmICM+1KjIhOAbSLqQoIGRDQrkFhx847dqS6t2+ACNkzEyggGCgYiiHsKkLcpz4EBqwA/1/2/uTX9mXPE4O+TUT8mtXtvU9777vvviZ7Kqsqs1yFVTKywRMGMECeWGKCJUYIsBgg8VcYGIEsWVhC8gAkpkwtFRiKajLLlVUJTjKzMt9tT7ebtdaviYhvwyDW3ufcrEq7BggV0gude9695+2z1vqt3y8ivvH9dIgjkBApU2LoUZPXWoWrozuakiNBiK03qY0n3+otJGqtKUZyMFbCT/EkaA0P5hCRozqiNfc7qY1rhqgOZoaIfd9fHQ77Q0j9tggAYb9N4xiHITz00+mYS66OHmPYblIgEtFaVYpgeyJAG8VNKooYIQUmBqhuqlaqTGutRRA4JC9iHOjSaPXaqFSIRCEiuEgRIeg6/MjrBalyd3c3r8f4Ig7D2Hg3TZDflqOu67bb7c3NjYhsxnG73XZd17TWKUZEjilud1szGIY+hHOuoqo553XNTYrgQArgIgQYU9jvty9fP3/58nnXc9eFlALgcH19TUzrvDATIjUPiVLlPJ8VdKgdwmZMCRAQnZmGvjMKgQJ+BGAAAEJ5TAAgQlV31xDcCbshbfZh3HGKpkUBvFXLIWHPMYXIxO6oonnNphC7+OJV2hye/+jHh4f75Xicz9N5v+s7IlKPyCnFodvltT7cTzmro3dD+uxHr1+4GYnSInAyEMDavqNScJ7WJWvqOySkALmsd7fvKWDRHAJB36F3TzIYJBrGfrMdkfoYx37Yxq4LEcTyu7tjBNv1Y9+NFXgVmHJ14levXrn47e359sPD7bKWUvsEyIkJTcrD/V0uK3fdInaai2Do97sYUwBqYo8QKefp4V6BMKbYD72ISFm0rqVWKUWl5mWZp2NeZqnFTFUaNQ0BIpKZQynV3GpzQPpkugQmE3u4XwykeuGONts+BNK15bxWjBLZKSABYozjbrx+efjspy/uv3346sO3tw/vXz/bP9/eHMIBqFtFqhYLrgCzSCp1W40odOPmEGMPBEs803qSuSz5/taWNSE6SCQYtObVawBjJ3Qcw7DdbFLsNeusa9Fi1ZiZIDigVUAjasKaNmHUH2Z5f8oZ11kgEiKSI4VZHhZBxLycveYIEJhCMWR0NyPwwBiUVxkjd12KIZJrFVwU1DFPyOYk4qCVrKitq5VF1rk44pl9E7x0VFCzBC4xlNxIc0TE4EZuUZEIRKy6lpVyCDm2hjFfQHowMNvtwD9mJzVKLzEyY2DWaCGEEAxCaEfb1oC5tGIAiJzgIpW8kC0b2xgvLqpEGGIkanZhTBQ4cAoUmYg8Rm7h6oFDFXHTFgFS1RwZACjEQECODk6mgAamDl5bLYMOANVc/amYugxVXc5TPk/dfpNih5QW1ZwXLdIlBmfJMT/wKRMRkISOMQUOxAaAATUauoeIqee4J0fLkwLg1WE3jN2wG5iDZOhwuOmeP7u6fvnZ9dXz6z5tokMUYZVS7tdydy53IhJ8rItMd8fpeL+c74+nh/enh2/evf+TX3zz9vYh57qudZ2lZBMFu1CSPkaOmLkUnc+5nh0qahY3b42ByMiRuYucOEYPAJjBJtXZLDsieHRTRYZmfVoXRYIUo1WGmX0Frbau5YPg+X1FhjTw9jpsruJ4SGlDwTgacXIEF1OpWgoAcoSuit+V9aiak+DOh02MmekBEDj2HBJxQgzADsQf70yz1OUYuqEbt6OoxBTqJUH2Y1X8z4cV/UAb9M+55vsn/3yiHvqvGE8ao7/4ao9HlBjjMAy73X4YhpTShYb6F94XEZkoMBCiNbdVI0IDsCi1WtVCwCn0IQQGTikQMyA6mIGaAxGlLjJT1QoKjA4E0LL9mjMrgjsUK9U9k8Dgu7Ttuo4GsqDYOwdiBwWoVgAhhIhEqC2PodkmOCMQMyMykfkT1frxYAmurmIiJjGmYdykrm/JZ/O8rrViCEiAxBQiYJOc7iBs5iIcab/OV/vh2WFzPC6n4zRPy5pLn8Krm23fxSo2r/l4mnKpQK02gsAXgg4BBSAGZzB3qWZFTA0hJUq9eqiCYEDuIQg6BoKhS8zBXRnFNau6WnlCk0spb75/c5zuQoiElEqRWhGw67rtdmeqVSTGeH19bWYxhJhiP6SmSSmllKLTvCzLKqrMIabYTvxqWmtFZHcwIEYEsz7GzWbY77fb7bjZ9DFR16Wu6wA9xOgO67IK42G3Cyl2qQ88r+tatBCDDJ2ZtUWzG7rrmyvkdNju+274tFwOqoIIjfaFiH7xEjRio2DIBgTAaO65WYoiIZNTY5uTO1YAUWMoHMLhkK6uxs9eP59nuX84ImggWuccHMCg6yJRaOgoRQZnRWTHkNDICLIagHiLDS9VTud1XioQhcRIrlrmWTCguWPfgTECfzLRMASKqbGlm8uAmpnWnNfVA1McQtqYs7oaOHMYxg0artnP55UIVRSsomPgSOilVl+RAasjUogc+nHbpcQADG1WIkKWKuYmlVSSmbmsaNnrKuuyrEte1rxOUkujpBXRhq0CEaKhuYHZJx3gp7WDicBgmnKV6mxRiVC6GEgRBEoV4RV8RSs0AjNxxHHfvfzyeWS+/fohL/KQF6aZh+rMaGu1abZcTZfzKbsZ2tCl6sApDinsO73xA61U2VR0nQshuBJ6RFJ0MDEvCgDapxhC18ViTgGADdUJA0F0Q7KARmAfFzJzWKqeVvFYiyEjNqYIcz3NBRDNKpomxMBELEiI6EYIzMgUCbwLgykGAcDiMIuLwQoeHKI7kFX0al6K1Sw1Z3WcA0zBp47IRClQCLFwW6CYiQux5GARmTBfzmMIHEoMIaTIHIi4CQxB8uyftC6bGYyIkQO6y6MEFswMgQAuaQQtRwKAHrkw4GZgeDERx5as6g6EYMHY2iFYAYFVTVmYmEDNzamKIUitdZ7XeclLKWKGxO6kgNYIxo1aeeFfO4CjSDVwhyrFnYjZPiH1u7mUqlIYxxTZNTATc4ZAITEzu5FkLAYtrIAJwaHRbwCcA0aOu91mez1unzGizw8asLu+uj5cH3Y3+xCD5BqUD3w1pBQHYnTQtS7HOYNVOZ/f3U1v352+W+YZS6hzPR+P63JWWed1uZvXN7cP3727O04LBhCyglab6Q0ik9IPGRgGKlq1OgmxQ4qh7zsiNjcDcAJzIGA28Gw6W521LMrBJaBoQAcgg6ZO9pYZTOCBmugIYF2hVjOmUDyDzaa9UsrOvXNyvrDVWwwxETEbqEAGlECeEM0ZgXoAZgIeNtx1SKhapEy5TNk/iSBi5q7rNpuNiHDgcR1boOClmHjaVf/y8c8XMT8oLP5yMdG/5Kt9WsS0U3tjS/CjTXAbqnqe5ofTaRygjx4CExC4MxAgEofYJUevq6oqVkUMXR9jMwJpIULuxEAMRIAEaM3jgIHQDcEE8CJiklrnZZnXss7ixjH0hDiVMxsjGEaMHNBJCjg5BEJmJnIjA7k0pVoLHNHczFVd7RMOGQA4uJisZVWk1BEzdX1Xq9C0WFFtrnwCU7VVTAFCGgbqxs0xl5VZI1sfeUhxTHzuwzQtfaTnh34zJjFaSr8Zw7Jm1SpVV/FGYDZ9dPK9ZESqgzUZgQFW8yIGQGgQAIgdwQk9EmBkc0QRNHWppvLUQVPV0+l0PN0v84t13Ii0PCcjoseqdBdCaHmx7eYjWbuztZbTab67f7i7vV+XzIHnZZmmKeelJcxK1WbY2XqjHkITN5lZlUIczLhNM3c0s5xzBj+fzzCORKHrhq7rrBgANEdpVzdzIur6nrgLHC8duMcR3NWtpW5CDNGdCNVNq9RSaF3ZewaMBr4UUzUzNvM5F0RgDuCs1FWQ8/mMYOPYX+2fff7ZZzGO5yUfT8e723cf7h6mcxiHbretDrTm7Eixi6XYuw/vl5zTGPot99sQE1ev1cq85ONpuT/OuWhMxAkd3EDMuSXvXHztfxBp56biXolNoZb1HgwCOSNEjpvhsNu96rvNvBSi2nfsTqLgDoqEiWMfAQuhEWpMXepDCJEbfEeBuDcMnLrIFBEiY2IIjMgKYM0yMS8nM0fzxKpUjEVJjMRQgaE5vC3NhAqIMCABc2v2iou26JzHVQMQwQ1yllokjKyC87lagn3q3GydFpFpme9r7VJ34BDFCnf4/PNnh93+2bPp/P58+vBwO5+8DhP3TFltmuS4SpE6pfv07v7Dfrvd7XbDdow9diM/532qcda8SK1VpIhVY4ZhHDip4CparKjUaioOaiBAlvoAgfrYB4gmqi7QuqH+yQkGPbuTqIC0fR2QCAWpNJCFAGLzVUQEerTOQgpMQySQyKpnzqouji3eltwZIIITXbocIm5FrFYxWBY4sz8E0JqNYoixr4GY1dAJQ0SKjCcm5uCtf4xMHEsMzIWJA0QGDOSBavlE0eOuKrnkskomT4FLqdM0r6UAhyZBv+wzzVsL4BK76O5gZobYfNWYIxGim4G7u4DD5ZFGQEBqUk9CZgohAIKrVdFmRGZo7Q0cCJC8VUoIROhu1k7trQ/Eouo5ZwDuOs7F/KlYvrwRhcAcqKoR22abwEKMTAGQzNEcGIDRyRRyluahDIqEYRw2L169fPnZzbPPxi4mOWLHu2fPPttfP++vDki+Lg8yzzhbWU7H0xubZXM4BN7acjsf1w8fvvvu7be/ePvV/cODZJUiWTIH32wJAy5isxaMsd9A2riBxVHXGeqZwEWs/EA5Qo7BODmg9X3abYb9Ztxstub48DCfp2XNC5hsY49IVkBXzXNZZ+FEyCZKTIy9cZt8TghoiJhiYuxCIsZGheWIFKG4lqk+5IrRuQOKjk3Nz9j1YbcbY6S1FDfnyP2QUpdVzVyQaRgwMY+Jg4PWnB+W45uH081RyoUPR0TM3Pf94XAIIYzjWEp5NGv+/04R8yg/+i/9kf/SV3ua3E/b3lMR86k8KZf6/dv3v/j62+v9s+247fsuhRQ5ROJAyMip74GpiOZS5ymbUt8PMfUhBEJ3UEDnQEyoriqmpnaxviQXeMziUDDLa729v3s4HZe1unGfNil2KYYuxc3YD/3QBSYiAbJmZhcZY0AzIFLTRikWE208IhdVsU+q/gbeqmqZzrDm2C3D0G+6ftiNY5bi8ZxlynlZqoX82bJcSxkRHRkc3cytEtQYoO+49ElU3DWyAxughS5uutiPg0jWdV6X5bTIslpREa2NmqItkcENGbo+UNFa8gzAQJYCgnfsyZvHs6IaGCE4A7Gbi7jIJynWbqaiqqotUttUSy0iYu5E1PfNfkncDRDdTbU2wnOt9eHh4fvvvv/2m2/P5ymEUESO5+nh4ahVCBt/3NyVCSODJXf3UuT+/r7v42bXi46OVkWlVqlaq5SS37rn3fbqcNiMm+cvXi15VitgUIqYtFgQM0V3K7nWLJ8CFyFGVnOppmoqAKAIJooiuq7iMKcaObKoz9Nai4EzOF68B0IE41pJqplilxJ3283+2bPXP9psr3PV2/sPQnS8f69aszhXIQoQY0pdv9thljicspXHkyS5g6qLqmgVrUWkqgUkYgoBm/MQBySKqQvgolaeHjI3XddlWc6RApKKuKsFgD7Fod+kNITQI0b0gq4EKiKn00kN11oMFMgRVZtIzgMgGyA6A1hgjDEqsLqDGxN2AYeOAqOYGgATikhZzyJKyOiY2JTMNZusYELgrTVU1USBUS828M3N2rxWqfLR5bZJIdQqEoYUUheAoZZC5oaJnMhJRc6nk2G32V9Z74tMahYo0YYPYR+6kHWZP6xvp/cdxM0GkfLk07ku00QMYfZhsvkhn7bruPVN3MY0wHYInms+yzyd1qWgcddxShGCVauKxdxE8ppnDJalCFSIQhgBoWY5H+dpOp7LlK/Wp0OMg1eQ7ECWTQ2xQRwE7g2/R8R2ykJHayS7VsM5BsIh8bKEc0QiNAUAhNbJcGd49OpGNAc1n4osSxXzYCVaiVbWpcMQU4q1RELK4goQIiGjR2LmRIGZKVCgkDgyMSAwQQztZ3Bz9aCPhOsQwn5/uLl+VvOCYH2M0lUAXkttYGtzt3D3C2wEzZSu7Rlm9hgTwyHEwNhWtybYNLNHluIj8EOEiMRM7q6gBBa5j+DAF1MuQAIEaGFLiMgIflnsLzsPoYm1Iqbvt9tx90SLQbgE1sQ0pG4ANyLrU0IyCoDsRIqArIEwBA4cKSQkhoAUqOvD5vpw8/mPXr94fXPzYtPHzq8w0fZw/XLYX8dhU3U9iky25HWZjvcPp9uKZS0Z/GF5oIfb6e37N2/evv3m/ZuH00mqmpmTd2OoIfUbhp46ClvtU0mUzNE4aepgRQpYkCWl8HTmN7eiS3FPUULvw4H7TQgdlmIVyqpLltkRpYJAsGJW1cXM3ESDZgGOxJhaZoBAOyYJanDmGDccApWW7BcB2AVEpEoRI+MVnVzNESFE2u56whQirOsMDv3QI2JLlhFTYuv60DFEV5+lLDkfJz2Jr+WjUcxjJ8bMQgjDMIhIa5P/yxYd/78YFylRc29rbIlGi/n0c4rIh7u7b9+8WZayHXdD13WxiyEmDimEZnSrpnNe53mdzyWEtNS6z3kcY4yE6MQYQ3RUUTNohgNNSOxA3hRUInVe5ruHh/d37+/PD6WqO3dhChyZsEtpv272ux3AIaUEaEhorupISA2xUhO/xEQ6uJuJeRWTXPKnXSs0b7YlWqXURaRH2LuzISAxB6Aq5phLXebzspxEFlXOpUzT8nC8r7LG1BNT10f3ARFdS5EK2YJTjF0/9ORRgyVWQHCvda4mVWsxreAdwSWzqYvsIlJKFkmEYIkIMHgzoy251mp2afWak4FqXtenjjISxhRjCgBgpg5gqnIp2tTBEZGZ3LnRnpsXDiKEwO4xtWyBGFsWQa3lfD6fz6eccyna/CQQnRFiAALoYry9vfvu28Fcr/NepDZeRa2CiDGmJpdQFUKMKW5wy5FzntFNRbUqGLTWmTtJ1XZ5T/cljNuuVpt0rUWWdQGX1FGMnQguq53mEzJ241BF7z4c16mYQAhxs+lj6gGtFD8d18Dh+bPr7eH59cvXV6+/GJ//tB93QdXHgw+b493b+eFDXVcFcg7jpu+Hcbvfj+7U9dN8ynWuuqrmmmtZq4pywNhRiGQOMWLqaOxD3zEQpD5sdnuOWMtU69lcnibM6XS8u7vrFVI/IgTCdrqlEJgJS85W3URAxco6T8uyiBhhiKWsIrmWbLYy0Lj1EMQpBCvMHgKmyOJUluIOqWPC1KfIDJoFAVJKiOBaaskITBwDB0Zfl3k+n9ERiM1VqpVcizobRFZ93PFKLcuy5E88PFRlXs5Z534zhBTjyGLldL/WWgrWjuM49k719mGSE46nzaBLzus6l+VYIg7PDq+6m26vu2L1+9u3WPzzzVXX2Yrrucx3qpHi2PHR63ff/iIEfLE8u3512L7YQxdAlrXcv3n33XQqQ9putj1gCNWqzxAljCSKp+k2a1BXVTcCpm4t83RXv/qz7x5OHyDKj67vn5RWDpZxyQgBlEiRARxUwKRpJVsc0eVsZxfqKwCAGxBCaqlK2I5PjN5YtojujBiJmJCx6TI8q63VHMFz8Bx1iWMXUxeHLtUhAcKyippzJGSygMQhceDAxBRCTCExsoIhYkByAiVNu5el1HYtfd//7Gc/n86naTqCypA6d5+XJYuooyM80mLaQtH22HZPG0v80QfoYqR16dE8BuY2vsITOdgfI2kAoOE4l8LQ2zfQGBLw8bemUn1KrWrloJnXIgAUY/fFFz/uuotcHBFD4JT6ftiPw7ZjAzckxSCQKifoErmE9SGghD6lzbY/XG024xBDvxn2h+2zw+H66rDfbIe+j4xk0QhD7Hp3KctpOt69/ebP7958O909LPO5aFH0052uog8P6939+fbh+HCeZjFMfUhIRBRi14duxH4H4xWo27CR04POs4rabqubHhamJcVugnEzPBVkqnKaH04rXO8BN1W7PIHfn47zef1we8orEAISLKuAR8xs5iECK0jjT3KBQB6qkaqBARAUYSgOgQgGwhhtzeYCAYFcXdzEUQDADaXCNLspxERaW2C4TvMJCfe7Xdd3Yx/7jopmZO1GYBebdC31fDfnE/QE247CE7EXkZnBHfo+hND3/aNg/1+h0Z695p3fWkchhI/WbI9DTI7T8e2tTNO7Pn1IkUPLvePYxdh1sR86ZjK183l++/a+Vtt9dzgctteHcb8bd7thsxmGTRdivORuGDqSOQIBoBmYWp3W87v379/dvX/38G4qpTWs5jw1hDUQ3aXusN+XFy8Pu0NMPVKoItUIicys5KJVmoaLiNxNpIiWKmVaz/IEJbu7Crn1HIvqaZ7W+VTW2THOK1SjvotMPat2ZHW6X+87OVyJx9P5/ObD/bfffqNaXr56sd1uuz4yB8S4zOfT+c69pq5uxt1ul1IgYowR+56KwLyK6yp50jKEYYRIXeA+UGYoXnVdHLCQs3XE7AxldXDRXE0VLwcnRVdmnc6nJ1kyB97tdworR24txks9aK1BI1WKSH06VqmpmQJwSnHcjCl1u+326urq4eG05vX7779//+HDNJ/nyUAA4HFHBsgA63xe5yXnVaQsecn5pdRaSwkpitQY4+FwcB2ZvE8phMemeEgAACbtQzHHLjF7EEWtJiKfNhLD3/jdf6NWnc55mdZWxMQubIfu6rAJEXNdACH2vag9O5zyUkw8hLjbDjH1DiEXOx/nFOPLVy+ev3hx/eLF1c2L/dWL1PXmdqj55tmr+XR/fviQ51nEkLnvx34Y+mFAgPJZXvOyLOc1z6WstRZpjslZp3O9fyi1Wt/zOKb9NqWOHTx2cbvfI/k8P3z+6mddN7QrGYbtz3/+19Wh2+xSPzTKCrl3sdtvDmO/S3FkYFMreZ3Op2laprmoY0idmS7nc11n1LXv6Op66PvOgTimvt903dj1vThPc3GHoQubPm43HSPMORtA1yWRev3soeQMQMQxhrgu+ebFu2Wem68DIBfx87xWcwqBiZ8SE6rIMs+/8Zt/ZbPZtGvpw/bLq7/m4H3cpi5xR1XLeTxC8S2PKSROPBe5vT87puurF10/yFjzUM5xiTS8fPa6o265mT4c7r7p33rR16+u+xHnejovy/2xRoovnx3I7OHtO3B79uLq6sXh8OJAXZxzuRkfdvBmnuvYb8exHwfm5OoZo8WRu01IQ+RIj1ayRBK5bE6hdPnN+XAf+vLz178zpF27lu1u/zu/+7eIcEgphkDB3UDFrUKLUHxk4iPAExsYAMANsCHg6OaGAExMgE/SCmqW5oTUusruLfgPETumLnIfuAvUpdB1oUsRAHIWNadAQOiEyBQoMBO07kgIhKRurQRxcEN5/urL5m0PAOO4+Y3f+K3NuJnns6t2MSJAkebt74+aVHg04PjBsn/Zity9BcrgRZDq7gYXtWhbK9vPN6s8wIsepMFADo8q08eN5AfyCQCAT8hVl4aWqxgAMfFPvvzJ0zO22W5/+7d/Z7PbPXv+cuhHEyNwYoGgHmuI0CU2Ccs9u3Cf4mbTHw7bcRxiGDbDbre9HsdN3z9qa81NDAAwACC4WenHYTyUfSHq+921IzmhIa5Su+08XC27ZS1VzVtMYMuqSTFx6rzf+nhwQJ+Pej7ZdFRRS6ODQ54wL1LW9Td/47e228szthl2v/0rf5O4v9p32+1u6DoAykudp/X8elGRGGhgHjF1HqlyLTjNslSpJmmA/fO+36JHMRQxcQN01gLrWZnS/moXQii5qgkFbL4ebqpeHYCIpcJ5cjWIkfo+bHYBSdd1RsLNdjMOfYoRyasWYIkdgblMvt6X482qkyTEv/Jf+1ub7f7pPhIRMDcR3IWC9K9kEeMXX+DGdb+MT39sO+x++1f+hogn5siRLmQWYuYUYkyx61KMjIjLnN9d35ciXT9uNv1hN+63426/2W6GfkwhBr98Dxen/kaNN3fVOk3Tobt9drj/fDkWq5fQD20cEieAyGE7js9vnu13+64bibnleiOiuddaTdTM8KmI0SpaReXLV7/ep8v+EmJ//eonCEgcq8hpPotZSMkx7DUgxS4lM1imlVGuN7i7OXS75wHi1Ut8ocE4usuLV8/3uy2H6ErrqvM8z+cPqjWlbug3u+0uRXY9m6xFZFrqw3Fl4mc3h5vD4Wp3bYh8eHV1Pjcx9DKt6D4MXZcSMhOig7mpSQW3plhvOa6E9uKLX42P19Kl/rPXP97t9rvtLsWEiGYmtUitKrXWuq5ZVOCyJrm5qZTUpaurq5Q6N19e5S9+NJ2naVmXN9+/vbp6+dPv302nnLM+WgMjghFYYEgx7Labm5urZ89vXry8ubrab7dDTOliV6jW+E2BuXmmZBUxNRM3dREVWYtWA3NWhVLqF1/89OkwBgD457/4o4a3mZo2Dhw2JL6Ri7XR5d1dRE2t2RpyoEasMwcVRaSUYkwpxtYsjI0p3JTCpqJSTbWt8hezJG620vbYTW+WXc3E6GLZLmJm0IwjAz+ecgmZAyCYSkr91f55s/HIeXn77utlORMHbO4HTelFFJrID7kt6tb4QqqXT9RCq1VbJA0hhniZjW1xbR/YL/YEwIRMyESA0M7WzXlM5ALUNaNWU6u1mmrTwjaXSTWzJ4P6x3vQeN3juHn56rMGRhZZbpdvspyp0SyobUUCBnyhxqK510YTjpGI3c3MVRSRU0yEpKq1SJ4LuKcUicBcVVXUETDFAOBSKoDHGEMMIQUkVLNaZV2LmVOzwbocrgzQm+UcEX26eSIQGGu1vBY1QbLNsH9x9UUXRwBY1vnb7746n09t53665AulCS5un/8yi/Snhzx8/P1ym+HxlfwpGQAvvy4+upezYyOsXGYZAj61NB7HR7kpgKP3w3h9/SKmDgBE5Dyd87o2sLw9kc2e61/w+Z9Mw9qr/XAf+osijn/RLoWf6Ej+ZTexH0pk239eyivEvuv2h0OMrZ5b3757s65LjJGI4bIhOWBLCAVCBEcVBG8xvBQCM7flgZlDY3HiE9vUP+qfHFxFaskXBpX7hb/Q6AamqhcE7emLQrxouogAGTgAoJu4KrQXQHYAcMUW7zuO48uXr9p8WfL87bs/n9YpBOJmsANoZqqmjRpNQICMhI7oaAZmbY9zYuBIxO0DXspMBHQHkwaaM7YN82M8ULtdTz02UAV3aE5uxAgIptqglset/cK9vhClFExMirk6AWw2++cvfvR0Hvv4Dv+qFS9/yXh6mP/CU73k+dt3X52nEz0ueAgf51qrXRsB3tRKFTcnImIOl4eNuZnkPs1x/0joxOYqAG6qtbZ4bm2R8vB0Frg8XxiYYmiM/eap/XGY++N6BI/Hisvou/Fm9zLFHgBUynK6k7pig1ea4w5dJszjkQRMDcEDQwwhdp0D5ZadWLK7pxTD5XANDUlWqQ5Glyr+0UnHLwFYIoaAMTZntQgAVS9clpbyCQ78BC5fxuWw9LhuNDKVd/24v37Z1jFVmddJVT4Ssf3xINU6w27uP3j83I2Imoq+8fv08jGslDLPSy5F5Sl/4uOi1XZiblbEzSwwMDMTPd6Fx1v1pOn0xwMfPN6axgK+zE/zruuvrm5iTJc3+/+TafLL8cvxy/HL8cvxy/HL8cvxg0H/1T/yy/HL8cvxy/HL8cvxy/HL8a/eCL/3e78HH42mL63vT3vSeAFmHtvGn8i0nro+xBRjahBSazN9kmt6aWUzhxgjIl76YXLpPeHHfz628X/YQvdHLcala4eI/dBfX11tNpsuxdYQW/P69t3383wm/pioDk8NYniE3fkCLTXvdnjULl5YCq0L3XhMl5BiB/BLeAeiGzyq51tL9GJVjYgNeAJAa+z1WmutDWp9vKwn/LjFsD7hyo6IQz9eXd2klABgWZfvvvvufD7Boy8rIRJf/rf1usHBm/W8QwhhHLoQ4uNHQXdrPda1VBFtwYGBGQDlUQjjPyRy+ONtfXo4nv6NERM3EZCrebtzdGkHX6xoHcDUGyy53W6/+NEXwzACwJqXN2++P09nAEDiGJqZN7ibSFVtppmPjV/CJwDk8uePDyZejOqe4CEAwAuPnmOIMcaI6CJFpYpW1dbxbe5HrmqIHGPXpb7veyQsNetFEdZIbQ3TVHh8Jhq/bBw2h8N1g2CWZfn2629O53NDxi40/Cf46nEefUq3/fgQt9/+cuDMvUnVEBEjUWLsAgXE9jda8J2aiXl2aELtJ9j0co2mKiai5o7YEq0vE7Dd7s1289nrz4bhAie3VvA0TaXk5tz9cSkAMxVEirELITLHi6XmI05+iVx/eozwEWu5gHWX6fYIGXubMpeYnstfs9YUv+A3bcK6iypc7KhCeMxJuIRwS62lcgi7/a7v+ycwa5nn7776xfl05sCAqE1IjoiITMQI4PYIMF9yhYgoxJBSh0Qt3/siAiJkwkYwhMaOIgQHfdKP+eUiicgBrC11j4E7AC180RGxMVE/nVBEdIkZgsuNaU38YRxfvHjVdR0AqOlaF3OPHAPHpyBlc1O1qrVKLZKrZLVq3lAxNHNT80/gFreWkuHtYyNBCJxiAsBaaxPrElGMF2kRc2gMBdFiJo9084aAa9NetSWLkIkCYSBid3IDBGQODbRNgce+Z+LL3P/w7VKmFBuMcnkq2jdgBto2AxFr/kkXCJgCMQK6NfVeMyK4rE6fLOwfVedPgr62GDlA03Rc9ICBKFBb+NsmdYGe4LImN8TiaR2/zCaRLg3PDi+62AHAPM9ff/3VeTqllJioEQkeE6kUASLzkOJ+HJloLXXJZV5zETUAZupSYL4wCqpcUM62AxJSDDR03WYzAMA0L0sutYq5E16AWwAXVUQPgUKDKKGtQCwQFaJ5AGB3dKsqk2luqw0imZtp3W43X375o3EcAaDWejodc84Nv3lcf/xxBcYnGLo9UZ+ChO0mmVoppbYFHOzjbXgKj4PLK1wIIgD4tLhfagd4Wk8et4CPf6vdzsdpcln/idsNxO12/+rV6/6RFhP+/X//f9a8twBAVdEdqWVztDcGRArhCdnF9n7tZrSwQzMbhvH58xd931ep67KeTqdSymUWN5stjtvt7vr6WYxhmo7n8+l8OpZSLmvEhTXicEnlunyzjhflNREyM4cYYscxhRR+/vOf/Vv/5r/5V//Kb332+sXQdQDw7t33/4f/0//+v/jjfzz0IbWULiIEVHURR+S+H8dhs93uh36bwsgYGp4qWgm56/rIHSBLrefpuOZZdTUrDkIMIaQYYwi9FjudZ60SYgiRQ4xMBEAxdMOwSakn4mWZPtx+//727YcPt8uyNqNYR2PEGGJKXd9vuq6LIQJAlQJoIYSf//zX/+1/67/98uVrAPjuu+/+d//xf/SP/tHvIyMHioFTF/shdqmLlAgDKKmq6qoqKnB1OPzaz758dnPlQBxCSCSynu/v3r+7/erN3d3D2aymwIfNDpAflrKuxaSRxIu6XgICERrWa2Cg7ftvtFLfRn41ho55EZ+LHtcs4KnrYwopYEJiAlWdVpmWPM3T7/zO7/6P/0f/01/71V8HgDdvv/9P/o//8T/+J//IDLp+e339crfb9gNXXR8ePkzTuWZVURNAgBgCMrprM49XAXdydzOlgN3QdUMchxA7DoEQ2DSEuNluXlxd3zx/eRPYHh7eHB/ePzzcTtN5XYqaM1NVmaclhM3zmx+//uzLL3/ys5D47YdvptO9iZpWsFzLvMzHUhYxadZiQ795fvXZb/76b/8bf/u/+fz5CwD49utv/sP/zf/293/v97uuj4Fb5hwFpsgQGYmZWjlz4do8zusL5m7g1oxhnpaMy9THtiBXobxiwPBsGF5v0xf7tOvYzMGBALTotJTbrN8JlK7bXO37vmNCZiQmUV2W5XRa7u/nXHJgDWyM0j6FquY1/7W/9tv/w3/v3/vZz3/WKphay5s33//hP/0nb77/TmQ105brG9hV13k6xtg9e/b51dXLzeY6hL4B4aYC4LFZrkoVlWIiaErs0CxkkCl0XbcdN4S0rLmUIqIceLPdppQAvC0U8zLP8yxVEDGEkGJQ1dP5rGIxdZvN9ur62TB06JrzfHq4u7v98O7du8PV1b/2N//Wlz/9ybgZ25f87Ve/+I/+l//BP/69399cbSHEadUi7sghxO2YBnK2kghSjOpwzKKAceyurq8/+/zzGPuH+/PxeDoejyIlJh6Hbn+1SYlcKhF0MbnBNK1lraIiqmqKRH0/qOO8rCKKCIE5ErvbXFZxDyGAu+bSvi5AAMKu63a7Xd/3T+x0UctFfv03fuu/9+/8u1/8+McAsNblT9/9SZbyfPviarzZ9NtIBABF6nGZP5zu3j28eX//7bu7r8/LbZVSSy0r5kWWOata052jk1YvWfNSlnlR15hwv9+8evkZIX94e3s6ntacU9+9eP7q1evPf/SjL3e7vZuvdTpPb+f1ocq85pwXncu65jMlP1z3XR8BMPIw9Nd9d0hxD5bKAozdfrMfukgML64Pv/HlT/fjCABvPnz7n/yf/8M/+fYPX798sd9vQ6ChKR67jqArWU/H9eF8Op2O1WrqOUWOFMbYH8ZdgFAWyYusq5ZiUqFNHSYMKSJgOyK25A43I4eACIwe0Ny8Vsl5LStE6A99f+jHwzBu+r7vRO3+/rjMubEDiQnMSq4OEGOMMXGMVerpePrJ65/9d/72v/P58x8DwNdf/+J/9b/+D/7JP/3PX79+Pgx9zgXduxhU/P5hIYDnu+HXPn/1N3/jV7Zp+Or793/89Zv/1y+++/7+VME2m/7zV9fbbawm87Le3i/nc86rVDFzH7r44rD52Y9f/9Xf+DVA/IP/4k/+9Kvv39/e56qx67bjeL3fAPjxdELWm5thv+mGmBLHCLHC5ujPJ3+W9Vpt4xDK8u58/0/r/J1rRUfiPpe8TG//6u/8lf/F//x/8pu/+WsAcDw+/L2//3e/++6bECIzE5K51VoB4Mnsx82bT/SFFkntNAnMlLpunufvv//+7u7DtJyrlqey0lu6nPtFuX45eVQAiCEyNz6NVpFWRquqSJXG9BF3BVM302ZX086H7qauxDQM3TB0fd/97u/+zf/+v/s/+MmPf3opYv6z/+z/Av9SgwAB/YkS5R8DNAAA8PWrHzeLyfP5fHt765B/+Ne7cTy8eP4yRD6fH47H+2W5/8vfC5+UFp/8CYVuPFw93+x2/abnlE7zrJ+ccqZl+qM/+sN/8Pv/93GM/RBSF5gZDMzAjDjEcdgO/WYYNuNw2I83KfbuLlJzXt0hxT5wQgwidZ7Pa55FFrUCIMwQY5e6LsZBqz48nHIuRM6BU0ocAgLF0I/jrks9Ek/T6c3br968/fbN23fLssYQiAjJiSBQSKkb+m3X9V3XIYJocVBkNNO//V//b1yuZTr/wR/8wd/5v/4d5gsHOvVhs+37rk/cR4qNX8vsgTnG3uuL6WazTUgcPEZ0VlllOa7T3fH27bt3d6f5jAb7cXTgh6WUqkw0T+c3b94seY4pdl3XDR0i1LJWKSqo7fyFgAD7SJ9vqCeaBE/F7nMWgK5LXRe7wBGJyKvYea4P5/nu4YQE5/P56Vr+8P/5B/+3v/t3zKkfd8+ff3a42m82UTzf3707nY7rXOtapRghdilxIAerVddJanU3dHd1CYl2h3G7H/aHrusjIbiTVA5hfzh8fn3z/MXtFbHc3X7zcP/24eHD+Xxe5ixiRJhFTscz0nh9+OLzz3/2qx/e9WN6f/f1dH6wqi4VvZQyzee7XGZrNHfxsd+9evbl0I3/2t/419u1nM/n3/+93/9P/85/OsaxSyE4ECMGphQgBW6MNST4VJjkF1KvOzwR162pjbCV7I9FjEOuNM3UYXw9jj879PlZ92yTFAkA2bys9f60vF31z43WYdw/vx6GgQnao6Ai67re309v3h2neWbIgWtkIXQAFKnzvCDBeZqePpqZzvP5u+++/vN/9s9qXcwNKBAjk4hM5+Nd6vppWuep7Pc5xEFE3JwJCDE4gBrUWiXPUgqaMAMSKjJyDKnv+7zJBHie55yLmoWY1lxT6ty1lDxP83k6n8/nWisiphiHoReR29s7ER3GzeFwLYrDMKDXZT7dfnjz7vvvvv3m2+cvX/76r/+6fOKrNJ9Of/h7//Dv/oPf3yfwmB4mmcEKIEPYdWkgY1n7gNtxMKC7ZRWgfjs+f/nyJz/9WZeGDx/u7++Px+Op1syM223/8tXVMES3woRD1yFwXlWqqlqpdVkXMSEKpdppmmoVRIgh9DE52HldxD3FhO6ai0sFBCQAxm4YDvv90A+XPiJBrTIvGRzm+XJfiuTv7786rWcpxQ0DJ0ydqJzzejed39y///M3f/bN2z/57v2fnJcPAJKXerqr52OZp+wGfRcRSKqVVfMi65znaTaQfqCr6/3nr38ETt9//eb+9mHNa+r7Fy9f/fjLn93Pp5cvX6WUipxvH35xnN7leprn+Xyuc17WeuJOr09DNyYwimG7GV9s+heb4TnDznLXxa1BnPIyrw9rPf/0s88ARgCY8/RHX/3TP/hn/48v1x/d3Oxjws3YXx32Qzegp3mqH96dP9w+PBwfRGs3xj6FFOKuH57t9hFinsp8rKeTLHPLm0N4NAN0cKnV3IkDIKIZGZA7MkLPDu65SM5LmSF6f9MP18PmZtzsx3Ez1Kof3t+fTnPO4gocGN1NFMCJAwWmEEqtp/Mxl/W/9Tfmdl9Op9M//Id//+//vf/8xWf9drNZl0wAQxel2u3txAifX2/zz778DNercff1L9780R//4u/94R//2cN9BtiN8edfvjgcOjE5ndc3b0/3d2v5ZP/8/DAef/WnWytq8Pf/3j/6J//vP3u/XN53iMNnz6+J4MPdHZC8eD5c74fdMPScEoQChzv88Rm/WOxHaldmcT2/eXj/p+v5z11WdAi8KesM8OdF6XS6PGPruv7iF3/+x3/8RzHGmFKXkqqdTid33263XXfRK+Vc3C2lyIyP8kqPMW6329Pp/Cd/8idv3n57mh6qZA7sDvo4zMC8dQe1ipScHSCEwJc2mOScq4iZSa2l5pK9ZIDyl1cErQjoYbOhcdOHGKf/7vnpzwNzBAAgSjGNm9HMptOplAzgiPzERm7dXwC/dHe9FQeX+xBDHIaw2XYAXYhQ6jxN2pAWc0ck5hgjqK1eEbyGiFyTijzWK0+LPtIluJ0cAKBp9xEIDXy73//kZz959dnr3WH3W7/5mz/72U+eP3sWQxN0ASEP3WYzHLoOu9RU+6jqRJzSkFLfpR6c8rKA0W7Yc0BwNENwKzmvy+KOjwZjyMymEZCJkLgVEoGww6DDYACwrrNocbegAZBFVLQyBQBalmmazlI1hgg9pZhiDBwQ0U0VkR4zJpBDa11azsuSz/qY0UNIfT9sxx0xtzutmSRSBQRSjNj1Yb8bbq6fv3j+4rPPXn3+6tWPXr+6PhxS1wRi5KZ5mR+OD9+8eff19x/+7NsPD8eJVNX9hXnsuv3h6v72/e/9/X/w4f3bzXa8vrn6/PWrPtJyvp/naS5axMTdHRlpIL/iGgBGDzujA7oDJoJExBwAUQCK+rDRfjgx4X6zffLwIKQUu6EfASn1EbCqLhd/2HEkwIjrirmSIlLfpRiZGKUaY65FzcBBzUM/hpvnm6ub7fXNLqVYS81ZS3YmSkldTh/en83WefqwrhMjjH0XkKuYmRNVHXTNdvvh+5zXZb3b7UfgBVxNHBwCurszp74DZHA3FYg8uLvoJ66dRKnrh7TZjEMfY3BAciXEQBhCCCHESMxAYACm2iShj+gXuoPBo6a6PW0Xf2JoPc4kQBwShE1KYwqbGLZ9sr4HDKS6plwctr094yEPm81hl/rYGj0E7CkNXRdDbxD7UyflTJBTkMAOgFUqMw1DT/yUygtEyAwhYExMNLojcUR0gAJuXVdTSk0JqCZWcik1Bt5td4mDrcWhAjiiFRcBCA0nJY4cY+xiSq0HbqZIEENKKTKRu4pUEWk5tDE2bBFiCsPYi2g/z6K2223GzRACI15wHETkELq+6/uOA9MnPe4QwtXh8DLS9upgnChUznUqKm7ZXFRJvCAGjhz4EgLI0QFLKe5QpTDDfr8V6WspMXRdGsehB5LAlFLsuqFP2xh7IlrX9cPth4eHh/PpXOXMTauPGALHLjnBwOgOKaUACL2iGzIRgzOFGPu+jzFeJDoExFXdOX60VxEtp/nt+4f3mIEsjv3OkaY8n+bpfpnup+OH+3e3D++m+WQmu7GPFs/13hbFSjHEXb8FxElncQ8YU0TcALGO27DZ9O5VipsJEaQUCH2aHu5uv7+/u9rt43b3vB+5aDDiUAPGAGxJovOGk/Z9oBDAAnMMAWLwPvK22w5Xz3bjzdX+al6P7//sF/cPIvWyHYUYrm6un59fXt1c7w5jiDAOsRsTR9Ii6rVqdtUAiTH23iWPCTlQBARDgWDOLmIiAMrEHGMA8AaHuQMG5hCJmQBIzUpFBOaOmJA6i0NvowfFjgIFUJYMlUzEQaLXWGaRIowaIw+pR4S85lWLuIqrmqB/5IwS8zgOHIEpInKMPQM2Z+HNDhPhZjvGoRcKFsK43V1dHfaH7b7kwj4eurSLcZuSJ6C4ZjJL81TWYgY2pDhuN13XI0YX00JooQPM4EzcD91mM4YQRF2hhhAAO6KBKJk7EKcYxzAmujZ/ppU7crJfzcMockb3hJu8zvd34erwGYeuXYu7l1zmeQmhDOZd6tz9fD6rarMrbEVMKYUIERMiiVY1dTNqmEiMLSIuhhQCpxTdvZRaSqkgjoAcLqpe91KLqcEjQiVViDjUamY1BGRCKGBSDVw/kkqGIaUUiKnWep4yAMQIzA3U/NSpH0IjYQDzMPSH6yt3a2kNpsrEKSUiqqqm4mDoTtSMScmMRC70Fw6oVlVLiCFGTIlFwlMRA5fEGhDJAC6WiXwYOtXU7J4bjPa0tAISPEbTtGxTYDCHECMHHobh2fPnL16+2B/23dA9ORNgU0Q3+IWYPLSYMMYQeYjcMUZV16rZ1vP5qCpMVKssy5xzrlXUzNSJOcUOEKWIaivasBUcMWYiV1URySWr1XbXm008MYOhmuV1neezVGFkDBw5hhBSYnfLuqiqWW3JqQmYA6rqss5rnp6Kwr7vfvbl53e/+atEQUSXeQGAbuhiDOTQJ95t4/Ob688/+/Hnrz//7PNXz6+vdptNl+IngHsYU9qMw267ef7s+bMX57d3x/PxtMxTyWs/dM9evNwN/PWfXqHlw2H/4sWzH332cky8nLppPp/XuhQRVTMk5OCadAaz3mPkuBkiIpFWMgcgIzJmcZLRQuBS1r7v+ZMIe+bAHBwR0M1yFQriEah5fUpnKuBaESnGGGPgQISakoNXVWvS1nETr677m2fjbjcQ0ewu4syGoKbLulZfRWWp5WxWAxHHQE4EmktFx8ixUs11PZ1uYzKRYdwRE9bi6AghIAC3DCpydyfEQM3R8uOJCREvfjIhxBgTAjF6CByZU2Tmlq4q6GhO6IjAxI8aUfSLivdC+AFoBjkffewIKcQQMEbmgMQGZOjIwIwOSAyBwRk5cCMBxfQoRERTdyJiax+NPBF6HzkEA0dmNLMUf2CoiujN6xjAGrsIsdm9G0IAZ3dqZxVVJZJaC2EKRCkEYdEKZqYiKuLozXWgmffEGJhJTUVEVRGx62JKXQjBofWQRdWe6G7u5tAqFSfCiJxSSo/BcuYXRTYixpguQYOfaBKYebPd7vbboRsKcuowOpADOzITAxiaMmfHYOhAzCGExHxxLDWrxD4MG3eYp2Xo02bYjmNnUClQ16Xd7vDs+tUwbB2wlHy4eXY8Ho/398eH+9PxOE3TsswGwCkAU8eESH1KCYjECZwiAaMRPPo4o7d0GeLAFonCJwpZd62yLOX+iMNwHsZjn5bx/nQ8zcss5cPx3bvbd/cPD7UUZmAgVJOsJpZC6Pt+GHoHyEshbDs/haGLCTa7kFJQqXmVlpcXY0QCt1rqeV4/zMuQJURyoBoi9hwx9BxIlIADsoZAgGwWmFKXQooYg3cd7Me436RxhFXyWu7mtapdzCEDh/3+cHV13fdDCClGJ2ZRUVcXFBdEiyGMHbtiwBAhRGIitsYuAtNGOjIkJAIGIDOpRUWqO5CSOXY99s01r5qDV4JmBEKBIgdgs2gAoMUyVBNX8TxLmXU91ZoLEXZdiB6IoKx1rbm6OgKnlqr9UT2eUgqhGaybCyChKYFDCqmLFLvOEO/nBZGzG6Y4bIedbDTisE/Drkt9AIVQPKXY9+4eKbiYjUMcN9uYelHPuZasbh5DRFAnDoFiDF1Km3EQC8wIENzJAYAcg3P0GIE4qCVy8rT17RcpjWJnN43ehXCu4pvNK+b0NGXcXVVFhYiflNKXiC4AeMoteizj2s+bWlRrzTCAy8oFAC2CFgHxkctIiCGEGBMixhjbK7eBgM0KtVHQHNwVtDabEzADcIiRu67r+8SBa61VtKpwK4my5pw/jbUK7o1tiiHGbuwRcJ5nESmlEODFgVEurswOaAbM2EqfdV2bqYuZPhwfRMswDGYKoBwuNJdGfmzhb7msZqZWiGAYekSSaiKqIqqG2MTtjgAYCRDNuJmaAUMgEq3ff/89hbC/Phh4Va2q3ePJ0txqXWrJfepcUtFHv1Pl1VyKEDoCuoWq+vbNd8wUYwCAi+5eVU1rFXdohDWppuLmYGqiLaOcUgp9HwB8WRd3lSBE5I/EXlPLJddSRMS0RcFhs28xInXJa1FVpJgiEDVKshWpS17Wsj49QPvd5l//G7/9+fVAFKroNE2qFkMEBBWJEXeb7vnN9eef/ejm6mYY+kBkmufjseap1lKqOVKMfYwhBXx52Byun92dyzffvnnz/Xd3b06wrrh2yfPNYQj07Pr6+mq/H2IMDOO4IWIIJaylJfUAkgsWDaqibiHAbug5cFlQShVVBBy6Djiaurs8HLvWd3rcKtscsKpqoCFiqBCKu7WIzidy7IW+hZdQ+Ef6l6uDElmKuN13m20E1FLrmnPODW9SqRYCp4AAAlbJLVAABEVwlZqlFnHDSKHvOcTUdZiipwDgutbshgRd4NC8gFXF3c2Q8HGefEJmh4vDg7sbEKUYu83YjX3qewOYc1nzxasJAQNRCpGZ1c0eTTLgkSumqsWklJLzamqE7NhViIHQCE28rLJSEQgehETXta7F5tUfdJXKYRgoJm5Ty6xUXZZyPC3H45LXHAhipBAgMDVi76OdxKd+Es2oouactSJA4AhMCKhSbc1V1PNaSpFhaOuaikgVSdzIsrpM87TOi2VlikwGBGp2sQ72WmstYiYcUkpd3/chhmanJKIXBN1MGipuEojczbQi8WUdQIBGXJPaOlshhBDSBaV/HETU9V3qOweoKlm1uBlZINyNXcckVUytFC9eXbHrQgpdl/oYE5I7CCKM48AUA4W+67ab3TDEpcxIELt+2Oyunj/v+806534YX756TQg15/Px4f3bN9999+1XX311nM7I5IFjDIHDJvUJkKuROyYyhOIiaqKqWpvrRgfJ1UiV3J+C0/By5DPl47F+9Yt351rh7fu7tUjoh/vT6d3798fT1PcUIJZF5/O6LsXdtrtus+3TgFIfPamtOFjfhWEM48iAvkx5XksVAcQQQogUEoboYufz8u7dfYmJc1nMnTmNMQxdX20tdXUw5gRAhhSo23RD1wWk4nAGOon7lOm8vM31vRr4Y0eZmXeb3XbYgqEUDUxlrfM0OULkZEqxC9t90B4tg9RmUcbEbEBmlhWqtmRMJGYALLmK1lLq5ZEBA4L9bvtsu39+uNqlodTy/f3taZ5VlRBTIAqEpKJSFrG1EJNUm895Oq3Taa6lhoBag6siYZGirk7IkVOKMUb65DCGRO6QczExUyQM1jkTuTkiIdFSyzfv3j4cT6o0yUpD2OGGh9hvw24bA/laq0jVVo6nDhnFYBjTMOwodOtaTvN5KYuoIAESORiAggsjp8hsTgEdoUoJJJyIomBYHBf1VTSrkDul9ILDTmAxLVRdZUydhvQcMT5dS0wxhLDmtZRSSmlbz5PzMj5qex6Z7BdHtx9UOWq11kfTLEPAUmsppeQC0Li+yBw/7gOfLD6X0qdJbZrehlnJ7IfeMW0umBkxkgMi1Frnszwcj0+O8AAQzIyYEJEDhy4FDpvdzrS5D4uqNjr3x+0Isb07XPjG1FxBc85wibgDc3sSmbh7K3qYgqnXWkSEGVtuSwOMmoyicfnNwNGRPDDHlCiQozu2BE+7P953t+N5mpd1PU/Tsixj4Aty4d4yl0zAmByQCWOMAGyKVc3NiCmlhKA5z+6WYmTm5otlJlJrzkXVEMgBVdxakqmaaPOMtxhpHDtmqlIB0A2aDx4iMouq5bw2mKzJnRqIgO3S1ERM1WNEphA5RQ5IDkBqLo3ACQAA49D/xs+/fL1PRKGqLsuqqkzBVHPJANp3cb/dPL/ej310Vyl5zct0fri/fXc6naalVkPibr/bfv7y6vnLly9vdofrEEMyKe+//bPj/a2o5VodIKYOkUvVh9OECCq1lLqWWqq2hGYHU9FSoH0hEQTmzEw5lxYeRqwCAaO5ea4i5vYDI1kgBmR0ffLXVzVBbRv5pXRpj4qIEiED48VSjcwBAWOirgv9EEPkWmRZ6rLkZZZSDBwDlb6LiTtmB2qefGAXB19wbfkGiMAhQIrMzbAXHBAIwS7891ZGX3RK4AR8sQz+9FrwUa6H2KYppZSGYRy2GwEQP+VaVc3U+5RSiCkFJHTVJnV5mkZN6IKtjiuiVY3ViZxNybP7g/j32SaoYtkJUWopci5yV+BYqzryQxTVQIEA1bUUmZd8npacV9US2Z9cgR81cX/RUBUutVRrjTiAAyMigYuIlLVo8FoV/EJ4LKUSQK11dYdSyrrM87zkpUCFGFgiIbuhm6mKueZcGn4aY4gxhMBPq2FztoTHMkVV3CVncndRYYAL089UHZvQr1U/l3Xvh6ZqgAghYIpEkdWgqGOTCBEzxZRS6lVN1mKixJBCl1IfU5dSBLTI6AhdiiH0CCGFECiAOagSc0z99nD9/PVn47g93Z9qKZEpBe6f3djzm2dXh6v9ru/6N+/fHedlKbmUalqdAobYeAAYSEGrqLuaVK3V1KhVamY1F631CbJ0d9VadS5mx3V+OL+f5/L+wykXi904LeV8fqhrTQSl2HlZTg/zdM4tEFi1LrPUYmUttUjVSogxhZQiIUqt61zWKUsxQuq6rh8CJ0s9GZQln+isHLmlGQ99ioEpcDBHBzUnTAjsTIFjoICutZwnNyZdamcu9w8fTsv7/Tj60ynZ0RW1eBGxqloJQHKZgWAYhsAdEaXERqxoZoItnxmwKrpgEapCzVjSVN2tlHYm1xaCrGpq1fp+E9Pz3eH57mpelg8PJylSVYkwxMDebEmh1FJNAVHF81IlqxV1cadLpRAid6kHAveL98gjSvC0oYYQWmsPVU1BCDAwXxgW6EvJ3334kCgAx1nEgndjDH0YOu4jEZg8nqyBkIgDMiF1/dCP+5CGrDaXUk2s7f+MQNClENkjWZ+oKhs16ZW6Awf2iMQKXsyqSK7VQEOkMYQts5pW4FU08po57pAeIX6ilFJKKedca12W5SLyjDGl1IqYRy3eR9imnTf0I7yObl5rlVrcDRFVpNRaSwFAb/G1Iq0K+fR12nu1lbZ559LHBerjz34032v6XEZmEjUpjazz8QVDQ6wf66KQ+uHqCkB9Op1KrQ5AzO0Y2eChhoR9onxrgkl0d6m6wHK5fnvcD9xCjJtx03ejqU/TeVnmolU6IaRm2dnc5N1dQS+iOvS+j1fPDuPYO3rRMs/LNOdlKudpOp6O9/f3H25vH54/Owx9vBQx4IZuqALChuAYGqoQAUBVq5QAHMIQQ2ACN28J1UxBTNY8t2O9adNqIaEhIzFA5B5JTUtezMqy1iZ1Jg5mP3SfBEopWQgIBI6mF5lb+3BuAI5Mse8247jbbrYxBnURF+bEGJ5alynEFzfXh+RIaA5VBMADsYqe56nWDGboXqa7cro1syq2Sr27u/v6q6/evf9wf1rPc1mKPb+5+t2/8iscaH/z7Pqw47A5nqbjrH/8i7cU780h56qqx+mOEJFZ1XJZa1UHv2Af4Piogmsek74Uuz8DwIW2BE0POzkiIK45P5yX/Ek+FyKGQDGSKgMhMTWRtIPXKirmhm6ubiaWMzr40BMRxRQdwMGQbBhDP3YxBHdf1zpP+Tzl+VzXVRBgO3R9pBi4SyTspuoGWq1pRQkjI4qJqTWf6XYhYMRMQ9dru+MILWi6ZZG1JYyYiPkpQQABCYjpYlX7iA0hUOCuQ8SwZlpWVQegrh/7vmdyAyNCUGlyu6fpR4iRGCkQxoogDgJAoOr6YCRKDxWjuq0ZzLxmFSlmBXBF9kXrO7m7f4jIRAjk7l6qVhHwElhCcGZowm14VEt92od55KIRIgOQuwAIIgOpm6jWnEtQNIMQ4mbcdF2PDqWUWnJdZl1znZe8TrkWJUdGVwVSguCmOa/uXnMlomHc9H0XQiNjSilFVZqi+6lURXQ1rVrBXVTcvZZcSo4pAmIpudQiKg30uiir/WOlbAAC7oH7zYgGSYxLJUdVz1VDhG0/BiJNxURAPaQY+y52KXaRUTd9VDFGCBSw74kwr0VKFp2ZNyn1u6tnr3/8k8Ph6uH97Ye333//1ddg8vrF891mGF6/vr66ev7ys2++/faP/uRPv/366/nuVkuB7ca2G9rsKLRjkqqISoGaqVQoBkjqIGbTNC/L8nTAVdNpPh2nW8AeHc9Hmac6L7aukj9oWV2LE0CdbZnW2/d3p9NciodAzOdlmquYFKurl2rVJHWRAhFxXSXPspzKei5SbOjDZtOPu4RBU8/gUIusa8ZKUjUEZmynCXMn8uQOIAE5phACs4uWWmupgLen8ztHKJLP03x7PD7bvXzy11CRh7vT7fuHIUUOBGjuVa2GRCCh74gwkDugO6lRQUeAoMpioBVLCSLQNC5VzbRRrNwbe6uLpFKyReRt7J6N29f763uMwalmLSoUIFbHECiCu9cquVZHdEVUDMhdiIGYe0qbNO7HYTsMY4+IdS3zMp+m45o/5tlduOd9v92OgDSdVynSCHMhkLka6FLX6Shu5oGUSZCc0SR75WAQA1uKawJmQaxtsw4hpG4Yhl3qNwKUDZTYYyDmmLjv436bhi50AZusv4LiBYukmDpPiR1R3cyq5HVdyWdzA68AAQAASURBVGLoUggDheTBgCc1p+XeQ3qyhUPCJqyf57nWOk1TjLHv+3EcG2eLiGqVdtiAx/BRN29So1ZDtmnYtNZSa9vkmiLJAZ0JmVnCoxWwPa09RBRjbAzfphVoH4mZvPERwdupVlVR0Oyi/gsxIuESCv/wMBbAHQlDF7qxG7fDMIzCVNc8DAOYD8MAAMuyPHVv0B919uaPOxUBOBiom5pelsqPcnBHwNanMvTWNWkJ4IQEfuE8PpV+AGBgaODgMYZh7CiwWgqBidk8c+Aq9Xg+ff/uzYtn169vrpvEGgDcQO2SVoUIDIZ4uQFPEjAAJwxdGtCJOTIxEZPkWktLFWu/6GO4TcvvITVFUqmgLmKK7qmhfrFrV4zojh5bUQ5o6lXFAahJ74ncjTiA06Vpl1KM7AIXDtCnuUFgBll9QUcACAyEmAJ6AMaYs0kpy7zcnY7rsor6UvS05Lv7+++/f/P+w939aTnPeV7ruuYvXl1/fjzmde62B6JOHR7O65vbo2Ozkue21jQ+gorl0gAvJCKgiw00AKCju6OZiORSzBxDw4Hw8TEFIBSRnOWTBHsgwphC6qJa0+CgVstQAiG4J+I0JA0xAtQibVcLBACg2EgbHgKNQz8MPQJK1ZxFBCIP49BH0kh42KbdptsNPaHPpeaiKibFHg0vwM21iogCEwHkFVLAoQuBOQYidDUTFbPqfoEhTax1S35AIXtsJPjld18L+TwLsTIBYV7XWkrJxR3XLps7QAvYNgRvCQ4O3pqOCJBC3GxT2l6p2rGus1gxUlBDmhGyE5qhIqiaFFNtca5IhiAl11qwABFhY1W4A7qlqIQWA1wOiE8K73/BaOZBkTkKK4ARCzEYKrSTiLoZPEZrXDo51mzeS641F6lq6oTk7moYvEuROMjjChUvYSSxNUpFRLR+2prGR8OZ5h0DLQ/HoEotJceSiLHBmu6XoueJ9vWD+wKGBKlP5Dh2aV5yKSBmtVSJEXoIzBSDIqhXQGjHO46cELsUilfVCigYEhCqZrAKoDHyuDvsb57vb55fX10nZrQ63d+u00nrkhclDAi+2W6urq6udvup7yvSIgLrKkwlRkRkJNVac651JRVyZUBwUNFq2mwqnm6PmS55Ok9HQnGB2w/LPKkalazLsrpSCmOk4BVMIa9aiiExAJWsdZWyVi2mBRycIjCxgWapMpd1ynmpmsWKezBGDIEhuCMUUcqVAlNgFXXzwgWdmd3RVcEMmyDVHdVctarUXLK5cZocLeu65ixaHCs8ggKqNh2nhw+n2vchsIMRGwVAwLoamQAYAiKwOVAEdFQ3LVUEVdGV1MDMxKpWULnsOO7ADXhCNKnoKLlqkUDchcQY3KAU8aoAohi7ECA0Yy7U6lodBUCg9VpbjzZ1fTcO/dgDIgGVUiRbWX+QlgwAIdC4GYjY1BeHWsTdOF4OI8BYwKpWMcMUus0YAkGVAJgIIlOlth0gAAEgMscu9cPQ9xuOQwVYPQmPHlYkTzFsN+P1vr/Z9R3jlGXKRbK6efPpMSUtnrUWK0YODmbFVc1W955wA8SAyN3CXcctUfqxiGmUuhBCznme567rrq6uhmFAvBBWGszk7qVWByvl0ne/1DEiLU6yHeda0x68tSAUiFvfXVUB0dsKgujmnwJS7aVUtZUT/qg2aIvVBewWaAoA4hZ6ADHVGMOnDfKADCHSZtsfbrbPXhy61J9chyHdHA6+219fXddavv7mm+PpvrmyuaMZXrTgbhdjp3bEBHMDaOy+Js4lIEeEBlKsqiZSAAAcSikI2HU9IpWij1fScgCh6XfystY+jZG7oe/7tNlux02J/RhSOM3TV99+e3M4/PqXX8J2CwAOlypKvRgQEwO5uaoLERJDjAERpVaG0MU+xS6EBAhmqlAfAfgLRsAt3wGZiMAR3Bg4pKBaSl5LLrUoAA7DZhxHb0h+KWaWIqM7mojWokUFAqeQUuwCB16bsAxdQZzMEc1FRWs1qR+NBHNdv/vwi7v3f05ABEhOkXhIMYXEHF3Rcp6PD998993dw1SMj1P57t3t8Tyb6pr1vFpV5NhzTKK6zOvpdK54ezfbd99/d3c8TmuNKRJgm6Fql5ZHQ8qZucWpPxVy3lyzGl+LKcSoom4tlv5Cg20nfVAne0yhaV8nUupSPwzutYqawFyzW+0jX+03h81wtdkT4Hxe1rxWEXU3gFIVpFjJVgvFNI79MPSqWERzNsLuxbNnQxwIcGTabzixq9TpfJ5nLedSFUVcFUxdS615retaRACpcqgSEGAcx5QithpGVarksjLjbjsi4nJevaGqn1Rk7tb0gSkSuhn4XKrNK92fhg8fYgjoXmtZT0tVXZcJCN2NAEKMqYvDMMQYAb1JrAPx0HXP9jc/fvk5Mn979/7d/d398ZRzIayAooSIxMh40QOiGiA6kzEiuDayC2KLC6NHf6jmoIUIDubWyk9roNqnC3JrasQY+hg70+pgISoHcIUQKQQmYFMsWedpdfVlWU0lBubAldEJmsXfxcLOPRBtNxsOcSpZG6iI2MKNmy+WXSjN7uBVREXwgvs0qRS2A5u5idYqpdTKimriZkQYmD2E5kT3Q0DJEY3QEkNE2nWhpFBXXGr1YsJU00Ku4F6l5LySVhp7NSUADsSBPdc5L1AxdNh1MQanQERp2G6unr/Y3zznNHBMh8O+I9t0cPfuze2b77//9s00LUUdQlpz7gK9OOz7Z1fnAJNWqWs+o5XScxKTZZ2q5o4xEPdDcgiTm7txipzS0/WYWy7LPE9opJnuP8gyKyI7GDlyDGOXmKJWNbd93oY+eMs7VLNiZOBSvAiRx54De6nrWqCcS51Fq4C6laqBJZdayE3RUdTNkULXAaITKKxLLhUCwwU3BUZwRRA0AFcpqlqrEWOHRAlTCADi6l3nRB+LmHVaz/dTSdq8u/ox9n3qQgTDPGupxfTSGNhuByZeF8lrKcXBKMUIoApFvIqCKwDQBYZAdw9EGDia+vsPt7t+vDlcV8NAMWCUel5lzcV76/Zpk0IYhoEoTMcsS61FrLojmEOtQiGAEiosywrmIKDFy6o1fywv3azWqqZdn/q+bx6ZTQ7CjKkL/RCHPnJIpZRVM0Xa7npirIt2AYcuMIWzVhU1bd0N5BD6oR/GIaWOuC9GBaqEaw+KsATm7Tg+Oxw+f77viO7OZ3g4npZF1WOX2OMy6WLLffHMc9gRcwpMZlX1TqtB6Jg2hpFCigPHHujTjnJzb4sREed5NrMXL16klBq61OKQGsw0zXOMvK6LyOX4UUvJ67quq4p2XUKweZ6ba2Gb3URMiATYnNjUDQ2QSFVyLmaK2DDiUkqpReQiHILmWEfe/FpBH8sMwKYRJuYw9KGJwD8WMQ6OBKGj1DfgKE/zseR56LvD7vArP/2VKgXdvvlOp2mqVRsBze1xOWrfCQAYAriRuwM6MjUJIbqbu+a8iIqqNRM8ZrpITcHcsVUwYgIAFIicrKqIzNPEjODabxKnmFLYbBlDymV9f/teXJ9dXeXyUV2OCEBOwTlAQy0c3Ewumy8jESMQAgdKgbtAwdxES9N8misRMBEzxcDMEQFFTGuVXIAgbfrU9QSEzq4rc+y6ru8Hd2uqPwCKgdmdFXKVxV3NAA0BQgjOFGK2WlRrqUupUT2UknPNtajKR8J1lfrh/v2bd18zcKTQUxpiB13v3RDT4IallvOa394vHx5W4+HhVL95ez7Pc9d14FyNUjfcXF9//vJ6GEZ1X+a5YjiddZnP4JoipRSIud1MQnJo3oLGFODiU3y5txfcBFu2GhqTMWtQVSlVsohWrW7uwMyqWkv91MOjEV9MDQHQ0VQZsUv9zW7zxWcvXl5fXW22BDCf52VZ1lpyrWuVNZc5xTWnXOuwSa9uDtvDgAxqlnZjl3afvfjRYbNPiD37JrlJPj48vFvrfUWbVQXUEYkYmEEYkBHYQcxFxcwChXlbiAIRqWkuudYsVSgFwtadI3rs33267YcUUp+6rosxqKmYVzX3bKYphhjYzS+E8kYLB4SmEm4qK0RmascBpkAc4zBsb26QQ1xm4iOhp+BdImISAL80WdCBzM2METwQMSK4gzULA7iomy+wEcDF09nNm28vKhOY/wV1Elz+TyJqZqzuUL11XYKFxODBHWuVeZ5USi4TAgQeKFDqe3R3M68ACK5urp48ceAYV6nw6OoRQiBi1VxrBWwUY2ZiN1cRJG+kB3xs3T5uGaYqIhUe3VEfq66L6yb8cBA4uaEpokfXnmAbOWFk5tTFgRFdi2jOeV7nENNGK1orxEHcq1uRYujkDtiPXaAUAIH7fjxcD7sr5GgGEWHoIz87WDm//Wa9vX337sPtmpW7gZjIbOwYhogletHVzKSgO7C5qRUxdIgcu37b7wxoXSZCH+NmM45PlgRuXosuc7W1aOG8mFQI7EyIHGLkGADQVY0CDJvICYiiKZTFytxI4gWrcIQxRk6c2UW8uBk4MSO7Gmiu83mGaDwyI6spssS1EiAzuXutFdAaeZE4cGvNAtjFP5rBwA3VvWYP7hiJnJo52dPiYWY113UurkxAMYbAMcWOmbVKLbIsouYhUpuJRCRiOde8KgIiCgJQdE6otdHaqMlXVLWUQkCqvnq9PZ679H4ct4hpWcWd1bCqiyvWWkTZGzBsVq0utSxFqgGREwgar1YWQVqrZQSP3Iloi7l/6vmZWaml1GbKZkTQvJQRMQQOkZABGUIfMFJwpkibTQIENk4MMQV0VNGca16LVEfuuy7t9tvdftsNA4U+11SRocvUIcq7VhS6OAiELmy6YUqFnNQsEBPQsuRzrueikuZxEGRDNPel5Hu3pQsDcnDsABMzPlWWT8syPh5ZW13YKLa55HVdc845r+YOZtM0MaOphMDbzWa/34/DQAC7cSi7jVtcFpbWfgaE5kbP3FR2at56zwxEzCJ1WRaRSsSizWhBq6qIWQWEFtFMdDHWazRUcHRCCMQxBETQJC0e4GMRo6bq6qBV8vF0W5b81Z9/JUt9fnjx2atXv/vX/zoTRfYY4Be/+OrhdKYWBNvIHmLuSOAIRACOfPGmZGrdMgRHR3NZlrMDqpqrN3VfC8FtMq5G2zMwCsgpgIO5i8rpeCprns+nftt1mz71A8fBpH64fX93Pt4+PLx6/jzn/FTBEEOK2PehH6IbEzEQmKuJEmIMKXJIoU+xY4zoaGZVyrLM8zotealaOGIgZqLQUKYiy3k+n87z8RRSvH79fLPZ9GkMmNA5xhRj5BDcrTH1iKFPfQceMywkC7E1bM8aeYZDDFVLqYtBpiDMoVZZl7mWYvLxxK+q0zQ93D9ECkPXd2NgCoF6hK4Kitpa7Sx4X/uzx6E/kM6QzlDQQ4euzHJzvf9rv/1bP3r9LJGGGKusvjAY9wFv9v18vQkxAZE2YERb8w+erNVb+0VUL1vHpY0PjJeiRN3cbMnFbSlFpmVVtUispqUs6zw/nWBUdT7P0/Fselni9rvtl69f/PyLz3/9pz9+dX1IBFry+XielyVrXUue1nUttVYrVYvW2IX91bYbIiACBcJ+v7354rMvDuOWTdgrQV6m83tweVjeYziKl6yAFLrEjBTbI4mZ6lqsimnRdc4Pd+daKnNzq8zuFgIjsFZDBqbmhxE+BS9CCPvD/tmLZ/vNJjCLSFHtrCpgYuYQiNAcKHVqRgxEFENocQ2NTNelGFOg1ll1NKCpyod1FrFv3757/+FWyton3m2Grkvq0HjNAI+pBWDYuIT41N63i3KCL0bXrQvaQpcdkAiZSFWXNO82Q3hU8z2Kg1Qv6fTuYFWKggUGYA2JABgZq+m0nGoFkTVySDHEuOl3o3QjENl0qms1EQQXrlaFObgamDX+InMgZnMXVSIg4C52YLDAVEzNVK26qQNc6Jpu4I+W81rNue1brYHzWM18ai4FBE1961ZWN5B1Zq3XQwxhGIY+pA5DWHL9sK7rMs/z2g3OrgwqJYvCVMqsgshmukwT+HB99ZK6rogpxzDuwrAxhXVZczlinUCzSCllmebj3f2H87RiSCl1+64nzWYVSfuO2cgN0ZRqNbMI6CFxTGmzO9y8UPfju6oM22FzfXUVHv2u3NEK5TMUy24BkfueY6DQdAKA5iq1rrkWqRxsTHEYNwixZpju5g9zzepWhZiGFOKmh4gmXhUJLRk4FptEix7vjtnLnnddDIguKmvO4N51CQlqFXclxhg4RsIIhIzICMQh9F0wtfO8lJzzIqVYN6A45gXKerHwbw+sKjSWYYxx3PSbcUgdg0MpuiyyzgJATAROzYm/SgN+BcCoYmDuxxg4opk043M1AK9V5zybgQEWDm6k7z4cp5UpZeEqCJQ4KpAAkbqLKAPWInUp67yu55yruAOGkIZOs59vp+lkaz1zwO1uh0Rdl4Z+oE/mS61lWerx+HAxmbXaziQpBWKsNSMbQIxd3PV9jEwMagKJQ0AKpAJFZV6X6TwvlTbbfhy7m5urm5urMQ3gg8nOeRfGEHOgeVG9PT5MUSSt+Xq/HbabPgwBo4IFRgAvtSyLrkXcJ6kT4WxWRE6a39YyII/APcXeIbqam8DjKbnRTVrh0nVdSl2KCRDVTdTETN2QKKZUpZzPJwTvU9pvNj96/dmz58+2m90yn+t83vdB8vn2js6n07KSU0DiGBjAa5WSlyoGADGGGGPgWKTM07zWDNjSv82RnKg1RLBlmLfuR1ubGiGEkDhE5hQTIopo4PjDTkw7/bipSMnrdJ7u7u5YaXjZP3/24rPXn41DPy8PLUoDv/t+ntciAmCPv54KoqbW8EYpuag4mlUdOKAiYGjVVEwA0HCDZg4B6MTATGkIm/1ISPNU6iogICrragKatXZifU/AlqVaKbnW4/HYkLmPdQxhCBxjAI+IDARgCmCAzdeLUoophMZTgYvWFcxBBBy4GdMRASMhMoiiu1Upy2qiXo0x9Kn3YOjUqM5mhpdDIgJgYO4BB3ImecC8ogmiAoheSC+EzQPMS0HmYGrgmgKn+PHGoCMZBeeIseOui30MHWA0Z3cSh+JUsYO0J4U4bDvjYdyYatfFyM4jvX55/fnrm2fXu3We1CyXQpzGlF5fb3/zJ6+ebZA4OpK23HVtoTzWJKCNNO7mRWqLhiGEQBQIWnyOmiu4uy9ZHo7L3Wm6ewjLml1hzTm34+3jcczU5vOSpzwOw367O1wdvnj98te+/PFPP3/1xfObXRcsL3mhAbz00QnFZK25VBU1EVdQCpi6yIGAAlFk7reb/YvdsOkCKTSsJFReIo+BB8YxkDtWZycyZEoUOHaxK1wTyVpqrsXFl2nRWjgyIZgrERKgFJltDoGIQqALY/vjZsm02Y2Hq/1uGGMITVmoTAZAbnZZGi6ZVEQQmbsUEVBUzBoXj/uUiMnNc7VpleM0f/v2bV7rm3fvzqdjCnjYDc9fPN+M/TIvJZcLXNxmmBsgBWZC8Itptj8+fo+lDkI7BgASXexkotQKrjHwp5O/AcJmYqaXKslMVQAN6P9D15/+yJFlWZ7gXd4iiy62kHS6h0dERq5V3ZVZPd3oAQYzf/8MMN8G3bV2ZVZmRHi4O0lbdJHlvXeX+SBKOiN7RmFwgA4DjWIqKu8u5/yOp54QAgU3r1W2+2QFT62llDKFIVJIUqpILV6raKlk67RfskETMTVX+5JS8lkGIwFDjIFx67fcTF3FzeArVdznf9+m8f/XQ5f/3y8nU6trdXMpFc26nLsuDTmHFA0J1DJDZqyRcqAuYA4YAyuCAjU1UmGwDnCk3AeMzKWROgNn4KxOrYktxcoMspZSiDl3Xd/389qmaV7nNQwtmwBazJEDGRI0tGq6iroHIiUyIANCCuzK4OwemQP/8r64QSuwTm4iTND1HBMyWSCOKbmjNGmtTdNc1gJuXZdT5JhiDd4WQgI1lSpKgZ0TJ0+RGXBlE4lmjQ0cpIkt7pmH5skAGW+yza1d4Q1wiqZgm1vHwdUF1MSYnZzNvCxSSjNXINPmzdqyal3hK7ISbMlKkTnnOAy571MMuKEbWtsCYczUVKS1ugkHt20+ODiagd32+RtyTDckPZhBa7qBLDQgB/fSlvUUKHLYC5JTIjIIiOxqJiKA4cZS23wKJgZADogJVOuyQDMHBSJ3AUf3BvAFvnbz1ABAKcUdpFlrvhlfANHMa6tOFgImjJFDoJsgvTUlwLoZqxk5kIOjW2TL0VNwQq/SVK1KNNrn3W7QpPACy9q0Xuf6BBM4UcyENOYuB+pSMNOmrbYmzZzmVp7IqbW51U91/oEpc7zDsIt8ADNtq7YEv7jGXFXdLcYwDL2qcAjEuPlKKVDwwMxA2GoAU0I47vZvHx9//d23b9+9Hbq+lsMY8fVhP50//iHAp+eXy7yaIXCIKZpbLa3VtqwVAaDvCInhM2Ot6VaXpJggAlJDb9bqZgfa8g2AAHBzzfim/Q8hxBC3vgj/bKgEYWsz3cDVUREMtXngeHf3eDzeA2DXdX/z13+bckYmDvGf/umfp3lG2hYN4Jt7GPCm0LvFAeItmguRNrP0FhqU+hRTiLGs7fn5pRRBJGKMOUQKMeNu3z+8u2cKp9O8ztWKbVIMdZ/XVmQqBVPuuEuBGdx9023e3hdwu5keCDnGTETqYm434G5EjhAzhk1R7A6EDCF3fTOjWQGsz2PODKAIRg4cwfoeStN5ReKEIWHsU4dEhEFMRRTKEjhs6utNC8LII3dMHmEBUGdWxNoUXLUJmAUiJEczRGWkLqeAtDX327Uw8zHvZfe27/q+7/tuZIqioOYpEiErIaVwuMtxsBSItN7v+55LH2k/xLv9491xn0mW6XWZ5xBjN3bjju+P4/0Q7+PfTtN7xC1BjPwzKk3cmrRSm0gzdVVtrbam2wkWCAnBwc1czLchQRWfi7ye5w9Pz0+v1/O0Pr+c3VoI/KVPVrX1UnS1u4fdX//ut3//9//D3/7lX/zm/btDim0618u5TOdlnqU2Rh76PuVI5GpWm6gZMQG6gSIiUQJkd0Roevp5AuBtj0pe1tVkZWxd8sMujJhXoUvRZpjiABlNVZKsWdZSpnVd21zWVYqFGNLmQXWypnOpV2kceBxH3mfX22DjSxHT9Wkcu77LKSUKKfV9fzxSoDpf12Wep7k1cUQAJ/dA1OVEiLKNTN2JKafEgd3cvIqW+fLy+vS6ruvr6QSgeT/s9/tf/fY3u7H/8Kcfzq+vtZrp54yYrcJ1cwAzR3BCuGUc4mdTIrgZmCpxSjn3w9j1XV2X6+Vkpl9vx7ZVr5u4CW4CNmBAVVcgyENkJI4CuBpsOue1qZSamBPFLnAOuY+92UXX2uZzKcsUu9MozRk36hKHVmvzm/BXpSyChLAt3YAJbLO/b6Ifta/S3z5vJW7Plc+pDfYlP+6XKzFAUawNZmigtrn8wdHV21pdjVNIBMchR4axjynF4xD2fTwedtUxnifQSa7XHOj9w/3Dcb8LSQ0XA1MSIVE2YANtTcu8LtfXMq+78fir76Dvj13383/7p9/P50tamzEm5H63gyFTiKTcpjI/n9uyRuQG0IrMuEzhzO4wryhtpelrd5Kb11WXSUwpZxx2EKKpNQ+xG3aIYb4W1fXyOk2XCdx3+2EcBw6oJuKzYVWTtSg61hWGFvf9fmTKGCsu7k1lrU1KFU4RnDcGAQYkoC0IUVWIYsppG+lvWiUAU2mttnUWF4ghqdm0TO6W+wjo03kpUqtJXfyXIsaRkAJzjrHrYt/FrgtIIOJuDL49U0y11WrLKiFGZE59jKkHM4CqTZa11tnX4rKaNXUDouCOSAHQWhNAcIoUO0ZCCAKhORhFJOPkFFRNRTahBsWU8tDMlZIDAjJyNGJxwBTCuD+mnin5sq7Leprnk6l8eSaPu3EcojmuS11mMSPmAERNbK0NyYAAQaVJWdtqcpmupRYDH3KIwDmnPKbD/W73UnmWLgr7XOfXs5lb5+5GR8eH8XAPYVfgk3MNdnUvFwFaa5jmnPjNYUTsc4bruihq8wZG3pY6/whtbuta16c6/4kwc7yjuA/do1uty7ktZJ/5PdskBsC3R1/fd4DIgd2NI2fOm+gEmV11vxtz4Dd3d9++e/eb7797+/jYd5nAfvP+4fz87sOPv0fX3//486fTtTUFcGQkw23lp60BoW+ycARCDMQdB4ohpbz93LKuV5h1lQriW9eCQAgb45OZAgfeBsCBdUs6/YqiDjdWOBIBMRABR87jcNj1uzdv3h12B2nSmuz3x++++/5yva6lXi9XtXYjnqjpLWLSkZ0YmGgj7gamlEJOIUdKMaQYc879MAaO7nA5X8+v2BByChSCgnHEYYyH4/jw5kAcOPI6NyvQqi5rXWsTaaouTTlYBCKkDQH45Uo2twFRDBQjp8+s4ZtwZ9sQhUAhEBPBNikgRCeiQJDAMyJEHnMMgA1B0IydoEerVroKSDkOOfZDHpmZKa2tVFmlCW8TCjVwBHMOPIRMARlOmwtiS7DEzVmyDW1o27giEjsBO8av9AqBw2E8wvFN1w0p5xizO8A2JE0JBG8cjbpqaa7QUf3usaP7+zFx14Wuy8S0LlcRKaXmvh/L3s1zoL7r+u/etDp8zgOnzV7s5k1VpFVp0pqKiYqp1Kq1NhVFMHDfpmdbjy3mYtDUr3N5fjM+n6fTZfnp4+u/ZHpzf4jhVpBtU6V9t/vdr3/9D//23/4v//7v//I3vzr2nZX5eT1NbZnn67IsDth1cdjtdmPPhGa6lmImzGy+ATqdOLijSJNWpTYxC0xIaIilFJVCpEOHpgm4vyw+rZMrRIwhJgiuQSK1xDHHtLRwLQTofd/3Q9flhISqdcMeUODdsBv7fU4dfzW6dHdtrZaV3M08DdzHuNvvQ+SrtbYu2qSVikzbZxgCQ9puPXRCExMRcKeG5rCsZZ6my3Upa6u1rnVNkRE85bQ/3u2G7unnH02btKpqgLytiQFRNs+YGSIEQmcyRAAw19vYQ11VQ+IObmHNrdWNn/t14NlWANyIvbdkZgZkQ0J0ysSAxA2obLRhRzOXJutaZ1w6DiYmS/NFaG5h1ihAr3PVxN0QwU1Ua63Lsqp7a02btNoQgGl1B3f9PA29bZ43gxXAZ0+/G3wF6vB/ndf21QsRQnSOzQzNNwtIQCZAE1OUjVh/3A3j0DVpMYX7u/3dcXc8Hqvz4bLoWqyV+xR+9+bh4e5eY3dRQzFZy3KdrpdLRixe19OlXq91nkEs5yE8pGG8T3mnFp5//mDTFWpxIuQYck8h6HrToG6kBVetRbjaYhwRoDSVNtfz6Xz5Yv90BxM3BTe6paB85qCqAQGogAmoWCuiooFDXWvKREHTAMMhlUvXzhWBSTkK7yzFkB93ncRSyvS86jWcPGrsui5noq0bNHciJkCsrZl7R2kbPOCGSnIU0VZdmmoDaU3ValViJAqIXsW1qoKb/vlbYwB2wzuaiggB0obL2hTzTLhtR2XzSHq8CW4dEdjdpWmrKmJiZiquSPTZJGUm6sigwE4JmcG4NawOFgIGw9CcRc1EnNFAgZj7sevHiGRb2JcjAaKTxxz3x13IJL6KFiQFkK8nMTEEZnT7/AbdPHtobvoZ07Y5h2d1M9moY8SMzt7AybeA7pSTWei6PoaE6l4FrDisipMFCXnX9YD9G/fXYMQ2gVtFvywLYbo/jClQ03JdV3U1UA5I7KCreTApJrPrbFBa/VjLz137xlS0nU3yl0mMma7rPC/XLnchRmY091KWDa//GYpJ4IDoKYVdPzzc3T3e3x/HcUghogXycdcNeBdsPZ1fv3n79vk86/naVAOjI3HgkELUSEy5SylHZgb0LqcUOOWcc8pdBwArgouWVNx8E+chOgUMjDFSCLc4q5RCjAFV+F+L+iEQYkDKHDLFQHHs43ff/up4ePjmm2/HcTcvCyEMuyGE9N2339cm67J2fbpcz9fpep3W0sQ2Nl32ED1u2HvwnOP+uNvvx/0w5JwIOcbYdYOZXa/TOk8xoCfa78fYxQaWMh/vhsOhH3c9ADpA3ztKWOeGp7MjUWQAihwjMyKiI7i5/iJBRcIYui4NOQ0p9SkmREAy3Ug0iIHCBnMnIvsMBAQAUWzCqgmJEDqmyMSEAm4KBpq00DqoIfXdYez2Y95zZI4VC8m1mQsAgWurggCWMmPo0wANCNkdNxjA0Pfo7ta2+gMRNn49Im2iANFfYHfMYb+/I1lD6sJmJ3MPQRkp57isjbWV09PHP/xxmqa7fX68G75/P94fHsehq6I/P51fTpd5mTfSz968ltZaq2WNTggQKSDTl9uVicEtiBuHPpNJlM1Etf2OVVqTVqvKJrRCM1fVKm3j7do+f//Y16a12U9Pp//8OHz322+Gz753JtqN4/fffvc///v/6X/9n//hr/7i+8OY5+vpen65LNdrWc5lqq3G1PVd7g6HPIzaxFpxMt3CGN1Uwc1Ai5q0WkwE3AiJOTpQ09ZaEWmMNvaJgRRjbU1baY263jdFgSGDeiDcjb3Cbm7HmOPjw8O4G2Igc691VVVEIOaUIoeIlLrUfbHzSZPXp9NPf/o5xth1/XA4Nsc8jiHw6+vry6dPnz48rUvhwA5gUnOKDw93fd8DkoiW0lqrZmpuBrgWOV3XpciG3CGibavg7uCkYvM8Xy6XUlTVgcjBXQ3QP8t3kQjj1oZ8htxsE4jNppwgJLEoFqqU0tbSWpMvbfIX9cxme3dUJGNioLT57t2JQIEqEhJFYgaP7qgutS06nc2XVeQ66XlqiwbLR4w0IbF7Qid0c6utTfPUVKTV1qo2AYcVF0AQE0dDRELe3G1MYVMIm3+xsn9GXt0ACf5ZjfxniWtEFIc+DAO0FQFyxICUQyRCvakDMYfUjRuupqUcD/eH4+Ob48N99bBUHYmpT+/68He//tVut3suUs8TtFoul/PHnz+Ne5mv5G15/tnLtSPPTEDUDf3hLt+/effd97/9+MOf/vk//eeXH38oy+xFSUCanF8u63nypVRtlb2JyLw0hboKpADktcnPl+nnTy+1ts/vCxJxDIEgpRDBeeuZpeK5rajcilqDHHPr2jqv2rTMazdQf+SYu4ApYqIVcLEewyC0K3CXuvu3Bwabrq8/Ounr9SUxP+zpkCkRgIkKuXPskXiZZl+LNEk5xkCMcQugaE3MMMYcA4GDqVOkEGm36xCFqfCqJM4Bfjlj3E1cqpYiy1SYtdZAITXxWkQ3AGkIXd+nRA61NWlVpVXTwMApMgCC84YzIgIMrGBNm4qrWBMQdTJQQ3VyDAZYmjcHjIzEhg6oaCaCaIIOgD7uu4c3u90hxUzIaGYbig8QQkoGNhfoWh2Hvu+6rwWkKqZiG8gtdwybBBUN0YlCjCHEAA6ttaIFAWKM49CnkPoQD8wutpYqU0MMsUtpvM/9IYd+CLFjbKYvy+tqO+dvyUMXdtjdRZSwobV0nZdzF2wc3vQ5v5wuIhdTJfacE3KvYRDrFYip8xjBxX0S+djKH0wN7RVh/6WIEZHz5eX5+WPfDTElxE22XMyBQ9hiX7YdGQJE4p44MEUmlzpfXmWd0KWLRAh9zm/fvPvt999fltL0h8s8R0In7LqIDN2Qmbnv+8ABAFojAEWAvh9yjEhkaqSiOdYhMSPwpuwzZozbjDyGQAwAkVNMTOoph5D4i9MKAEIIAQHb2upSffDdeLz/y28ejm8eHt4ghek6a2vInLt8f/dG1dZ5GYfu9fTy9Pz04ePzy+l8nSdzDZHGMYy5C0ym0nX5/vFwOO7HYYghmAIzd11fW71eDVxSBCYehhCH7AFDotyFEJDRgCjnwAigEQ3LmlUNmjtgihzC1uZKldbqLz5+BAqcUhhSHFLoGcnREJngpnxEZ3c0RXU3BXRH9ya6rHWayvVSiMKu1xQCZQION1srbJ+RHpAAO6IuxSElRmYxmTCYOgGrgYpvzIMQcsqDqBMHxC2/FkMI6E4UzKG0Bs3MNbACkjSZ5uUyTV/0PYgYYwgpEJMjOBqAEzuCIyihduy75Mfek/v9iO+O8fu3u4f7Q9f3z+flX356fj5N0/WspimlrhczB3MzMSV3QwBGAtyw1gDgiE4ISLDxnQnBN5yRu3sQkRpI1BzQAN3cVIuwm+EtpH0ARHN4PA59xOO33wxd+nKHHfYHtm//9q//9i//8i/v973rMl8v5/Op1LVondZFmlDqKaXYDdwNYos1cUK/idQ3qqw4iEptZdkY4SEkgwiIm/QCEVIKx8OYk5aGl1lMtTaptXJIKUREDEw58LgfjfA8zzGlx7vHxzcP93eHlFJrdXMsEyMFbqKnyzQMw9cPsi1qnvXLGbsdrzcvzSaXCxiZA8U4DP14uNvvdyl1DlBKXZdlmad5WZZSRE1VNqbRFg1pZq3JutZpmk1irfJZ52i3xZ8ZIBDdeIxm5O5E6lu9eWv4t92N6Y0B/RmUbKr21RD2q2Z5U9KDO9wY3LyRbNzNoKmymRmyO7m7ujgU81hVLtN6usjr2VpLIe+NCFvhKjvzRIgIBlBrNXfTjXuNAK4mgBuuAd3hc5WCt+Zk62ftpqMxNXX9hfBL8OcI5c8ffgaKCMiMwODJKSORg7gDQGAauu7+8b4fOsQWcxj2+7w/coikOPQ9Hw6J9RAhBnIQByWGsc+N9OXnPxja+vZ9l5OXloApxZhCCtx1eRzHlNJ3yG/fvImAv4/hxx/+ME+TXFcVXaallQai4q7kDhbBk3tojZm46wCx+VzlFy0sfKFCO5h6WRoKALipS60gRB7MIKXU9V0t4g4qBmYpJw6BHX2BcpiY5KFL73J+6Ie3+/27Nw+ZaZnyA3so1w9zKvt+7Xglqyi2ET42EJSqioKhqmsKbgggANSaglGMgTFsc7EOU4jUD4GIUxrTAj55CF+9PQ7arBUtiyyxIUhtHKIqkMrNQLC1UQAozZqaNNTm1hgQHYmJE0dKhlrJq6A53Pal2793y512JDNQNRWoFRQxQqDAGJEYyBgMpKqbAVnIcbzrj499zAAEZlaLLGtrTcRlW6CLOtGfaZW2z2ZrxgFjiqELgIhgxJgydl3IfUqRtUETE5XA3Pd57LrMuacwOrTSprJCNQCC0Fm4c74njH2kNzsQhdKuS/lk5aNbZJBAGPmWPgyNG3hTra0h0Ly21jyG1PfR4+A4gA8GfWB0Th7YvAFUk6vUjyaq7WxWvprE2LrO1+mkJlkSErnpWoo7bHEERAzgIoKAOebW91LLOl+fdAUty/nZtY45dn2Xxz0jvX24//79u3meUyCO0cBTimLmAIFvjmhRba11OTBRPwyJWd1VNGbiSBRpbQIcts0xEcYQYwo5RUZ0NUbKOamqu+z2v7j5ACCkmNz89HQy8aE/vH93/Ku/+rf3d29IfC1rmS61xH4Yc+5z7h4f34HZ28eH63z5+cPP/8c//bP/y+9Pl8ncY6Djrn88HhLHVkvO8f7+MOzGwKTmog2cVIPUssyXWuecATHEpKmDuOsBfZmvrU5mY4zJldzQqrlaipwTlyYAmAKEhM2kVZ2XdV5W1V+IihsNPMUxcO+urmJOBoQOBqg3cb8pmhshOpIuaz2fp6fny8cPEyMHBPQdHELKZAC14bTCecVLYUTqVqyNCXMMUdCZImFAAISIjiAMhEw5pJ7GnsE4RyoYCBgMNgWve6lyukxNStgCExxLrZfL9Te/fW7tcx6EW9NS6tVveGpCBLsRHQIY7Hv+i+/u7w/RVIaUhj4OOcacgHmp9ull+fn5KusaA3JIRByJmTZLi5sqmBAwgokIgAnc5C6+cetsK22+EIfdwSlubQYZ3HRhpOhfhJi+EfHg4W7s4vv9u2+G/lbEcODj8W7swre/+v54/6jr5Xo6n07neZq247WsVZqMe+IQgZMDq7uYOtgWoeO2QZLErGorWlY3Q2KEYJGBNkyAxhQJYej7ZdXX08q8AHqTepmvzWHMfYqM5MOQH9/cm0OtogJWbcjj3/zV333zzVtC3LaCSBhzeL1c/vG//8swHr44R5h5f9i/efOYUuy6vtvvj3f7cewJcR2Gut+Zmqn1w27c7Xe7/e5wOB73x+Nhf7xLKTaR6Xp9evr08cOHn3/+8OnTsxgArCJmrq4iTvNST6frx58/7sde1UPMTWxL3UDYtPy08VS/DCjMNjszE8BtpQuuKmmLQmUKiPw5S/vPB7Ebz8fc1EwQ/PMwGMBcm7kZIaJ5AdXICI5giIbIwO6q67qez8vTc23Wj8dOMTSbAup918cuhcCAwcFVRdXAgZCRgYicgIFVN3OimhmSBw/wxSmw3XaqCrAtwtx9syogI9JXe6btiLcVYA2JNnJAFOzMAzq6ARKHcNiP3377fnc/GlRiit0gEK7LMq+qIswUulhl+f2HnzBQS53l7t23j3Pzn3/6p5fTU63rm2++fTgcDmM3JO5S3LbksYtdSkPXDftdl/Nw3C0qr//0T9cPz9ZaF3KgKOjqbqghUD/kneGBOux7udsltZ3SbvfLPbYVldpMtHpt6+rATgTSbL02MBryuOFWHWy6LghOSEwhhsA5eo9Dz/sOO+dfHbvfvjm8f/P45uHhcNx3ibGlX+3wbSw/vD7/5Pazy0cT0wCGLlyXigRbbmlr2wjWa7FSlJjAMVAk9i14eMsyDgEDawgQ4n5euJnEPzv4vTUpi4TYmMmdk3hIiIEACAm2mOhSamsgTRycKQSOZh15ZOeIMeVk0Ra+rgzzUg0sbiwNM0ZM3MXcEZGqVhVtro08BMLIgTlRiDF60OLLvIhIyC4eKtRZAFwADQDrKtdrmae6rlqbqllrVcqWBONfrmVdaik2jtx3XdcHZtoMXDlz1/M4RiQoLmiAgWOO49jt+y5B7IBHgyp+dQ7WzKF4INkHO/YeU+b3jwBWrsvrZf1k0z81ZdSP7hf31amoIZmkHA39p09P6DivraocxmNH8QrjKgO0nryPEdCTKpo6oqOJlnNrtZZLa+sXhoeDq1XR0hoiKAcGd7MKN5i5AbCbtVYRMBLUtlzOJ2irlaXO5+n1k0vpu7Q/7I4P70Lu933+/pu3dV32Q1ZEMa8b9ZyQiFMI5lZrbSK6BUv3mYm2wBPVfqjjbt03NQphozAAABOHwCkGBLDWCIBDcNNxl988Pmy5h7ciZrcbtbUyr2jYpe64P755fLsfD+fnl3WZ5+mqLa7rMg5jl/ux3+Hju3EcSl0Oh2NMQ4xdqXqdT4dx2A+743jIzIU4prjLfY5JQbfqyYzcxF0JIeeQ44BM1MWQOCTeLmdjjxNordqq6eraHAEjY2RUc3dRRTVoTZZ5KcsvWGgARGDGyJgYo+iGGeMNmAyADsGVN8w9gBM6uouaiLWmpTRG17ZJicEcDLAqzMWui15WR/S86L6Y+paVHQKFG0If2Qk2tkgIKaSEXQZt3MW4siEEBEJXd3cQtbW0tay0sUcdS6mny3SdfynIDKzIsrYJMRBtMF8XE3QwihE5EB/GtOvvAD3itoZAQxKjtel1qde5gigib0IHviV53qbxsC0fEDeVC35OsbmJowG3bCx3vBU1FLb4QAfadJXs5srbN9/gZe7uFgONHY/3+xRvlXII4XA4oKXj4RBimk7lep3KWrRKIAe1tjZRA2CmxBQQUEVVmrsCGKJuYTJSqlnVVqU2MOOATuB6GypRsOASAgUKHHQtEGPcnjJrWUTNWuvyRrHPQ58BOMe0lia1lXlZ56WV2nc9MW6llVSppW3n6xcRGSKGGFJOXZf7vuv7rutyjAHcmTmG0OVIFI73j/eP7x7fvB/3+xBxHLrj8ZBzdrf1eBz3+93huNvf7Q4fh58/PL+8Xq/TPM1umrv+m2+++ebb79JW44fY90POeWvO3UylbW44ADDYiLrqvnHliACYIPCm7se4icA+x7UQwf8pOunPqxl3M0EFQjN3EzclRyIg4Y3z74yG5E6bjt/cRVqZ56maUN4DJYVlJdVKkDhwAgqIN1EIbrq1G9zaxKxWmZe1luruHJhvuJovh/lN9KamtxXctkj6P9mVEDy4RJAYEiNDMxMXtQCQAhOyqIF5CJy7HmJHTMhRi5Zlma5rKdXKUmW+lIuukzOG/aHbH/chmrTLy0eflrvHd/D2m93x7u7hPgXKW9AjMZFDII8ph/jut2wE13VVDv/y3/7x9dPzIgJi2qRtgv8Q+j6NGDJ13nXU9ySSU0pfucYQMTAzc22mpiBGAVLe8ul9WxVu5lPTmzUNnNzJjUHRmwbTMeAh85s+vBviN/vuft/1Q+oSJ6Md7NN6N0SJ06IFruqzwybvliIcKTAzo8ot1cbRxSQgB47EBG7mSoZOiGCIROQxUNcRUh6GnHP484iubbSGrigNgNzByH3LU2NmZGhNtq1iCmnMYxf3kQ85jH1OOXU5duZynU+vp08fP/10Pl/KqghGFAFijDsOHQFvdqqNe7QN627uXGKG4FsIGyGngIHWVn0R2IIBmEV0bXVa18u51FUc0VS81dZ+mV26e2tbxBiGwF0XYuaN65ZTSJlCxM+jQ/sCb9yGQRExGFqgbbTTVFcVbxAl7dJRKBk3xnMOmmlh+QM0ALg6zGozsIQQAkHI2Vv59HpyU+aY+2F3fNO4awutS3Yxx4K4Iq6OxdEAA0DcQl228IAvC1hEjJFTopAoBAiREAApAkCIgTfFhQEgIWCKBFbPr0+XT3J6/jSfX+p8cm0pht1+vH98fnh8e//m8Tjkb+6PKdDSpKrWG5tww9SRmbVEYmbuFJhvuyT9rBbQnYgZ4MY095vciJkDEwLceEtE4Cba393vvy76w8P9nYqseb67e3j/zfv7452LTJfzfHldptO6XMHyOl/LOPZdz3EL1x5zzn03Pr55//bdtzF1P/30Awftc8g8RgJFY2AyBgXdQBTuhGBmzOFwOPQ5AaijK4ISit4UapEwUnbB+TIvc9Fi4BhzRvQuh9qklNkrAScRq2uppX7FJEBQ8tsXgjFsJFnQz4/PLUqebpHhaAjIhLlL/dD3QwsYx90wDF2MQLyZIaxWmdd2XcQBQ7fu51KlmQfcGIKBzJEDAmDoQiCOKVAKltg1cB/SGt2MA3IA20D6QA5kBlsqCSGqoTnZV7EDZrbKvMrcxYEguqqZNFkBHLkjjG5MGy0VQVxVkEMywqJWqjc1dePNcM4Uwpb/42iKDIHJgTeXIfg2u97GKJ8xIxvdhMiBwKwJutsWvoA3AambmVvctG3bRmDbp5g1MATiL8k2gXl/2KFyIIe6TtM0zys6RgyoChWkqBqQccDIyOhgtVhdkQRB3FSltLLUtfgWf1wUABhvwjsiBIoQEUDBKFCIqilLzjnnyAylrqWWdZn6HMch7cYMZiHGnJOItrb++OMfp+n1eDw+3D/mlKRJqWUq61TKXNtvf/dXXyZkZlZrrWWNAc3idvZvq30VMWkuNXQ8jOPx4d3ju9/ElKfp6XS+1lJSZCYKIe3H/W53+Pbb759eXv/wL7//4U8//PTjT89PT4jw7v03/7f/+//j17/5DZHNl9e6XiLzYb8bhjGlLCLn82maruu6iCoSukprRVVvGfPqiMA31gFGhkjEdMP40vZM+nyX3aDKvqkN2J0dxDcDK5g5gBFoAExO0SUYEqAAeYCtlnAmzJlzArQqVet6DZiJFo9uLZFaiAwhGt2YYI63CRsBitq61st1Op0uZS2EmFNkwhDDZ7T8baEEX5A2bm6+nY+If+a8JoQefdiWoYgrgJqXJo049YMTXefSXk/D0wly6g9DQAa1WpqWuk7Xp+fXdTp7nUAWkBJC6Ip1i5xP12qwzmsXx4A4dN3Dm7ePb98BYGAMTOAurS5Sl6lG8iF173/72/3Dw/vf/vb//f/8f/3H/+0//PFffj+dz8mZAwOHEGJIiVOHadAYlN1Kw7ZgK/i5GSPCrs+5zyriTREtRT7u+xCo7gdp2gq2qvOlrnOVYiGwKUrDuoJUWV8WPS+jwT3TjqEnT2gEhreKSBFgl+J9zpfSXlvrIKDaTVJLmALlmDCSmSFjzEwELs5EOXQEQcSl1mJABCGGrufdGPwz43Ho49Al/kKGJYw5dH3q+pRyQtqwYQiO5hqIOAVEaE0YY9fvj+PxYXh8OLx78/irx7u3x7u7sRuYQm319fL8p59+/1/+63/64w9/eH4+Iei47wL3gQdXLquA4mYNVkdncFDTRuq+eTTAOcfIaTjEMMBU1lmVI4ZIXUJ33EhDreq6NnRQFW2llvoLsfdWJN2CXDFAjMgcmCnGyHwT/dfWWjMmclNptUXmiErRkDwj5GCMtZVJJk3XmG2G+1cZfn86dT4LYpfWbp0VKlExa9JqstCn0OUU0Bepp+kKLm/ePBzvDm/f/Hrx4VknW1X9qtpYryYfVC5qkblH2jMf3BLFHYXuCy0iBNrth7v7fYopxBRCoM/zj43UsoGmmiQC7ENHYq9PH89Pzz/+6Y/Xy4ldCBzRU077/Yfvvv32b+BvDsf9cegI/Twvc2sJXRzMP+dEEIQYDdyZIBAyO4Ib3cBk5vDLYbTB35mREZlowydmgO28Mnff7wfmXwrlsD/uXXXs8v3d48PdYxfz9XQyaXWZl/l8Or+sMY1jP4zjfrePKcYYmVFN+358SKnrRnD48advl/msrUQEsBYpEUPkBAYiIOJm5A7r2gCIOYU+EIG5rq26GxsShmHIgUMX81paW6dlEm0SeMvbDCEOvJZTnZoqRzYxqaJVvvYrIBqC3r5QCZ0IHTYu7aZOAUd10BssyxAI+j69eZOG/q5P3a/e3/c9VT0XnUWk1rKWeV3X2qoCTet6XaelXqsiMprbWpd1nd2bma5yTSFtkOyqdZF1aWVtBUzZWRaoYvMyl1JUzRQdXEERTdoW+vuV93WTcJoTIG0drxrpNkcxR91Iu5t0xVSRmNlVbFl1XlaRBm5IwMwxhpxiSjnGgGA3kN3m7YJtLQ2f5y4Ot/sIcROGIDnRLW+ZbhlQAEC3JlkBNrujq5puGUu6qRu+YqsQ9TlBq6BN61JrMbMUs5m1eZKqrZohIQbCsAl3Wq1SKwcHVJVWSq2l1tJM1UU27dE2pMHQYkicEmIwb6CARBwgppRyyilEJvIbSxEt5mCmDU0YU2TIiVIOtc7/9I9/Yg7fvv/VbtyB2bKuT+dTA+93+80Y9eVyVE3FtrCP25t1g63css4RMMSU+3HYPwDS+vzzfD3P7ClSjmkYRgqhH3e7fZf6HVEYxv3Dw5sPH37+6U9/enh8/O6777771Xeq9Rx5vlzo4L/59a8fHh5jSq22l9Pr5Xye56m2CuitrNP1db5ep3lprX2edtzE7rdWJgTEGx/u/w9yBTfzI9xktGqigBQoQcjgiTyiMRhspiU0AEM3J4AcsUuYgs2rluWCtnIq3gdyDhiJgiO5myNs6i5zVDNpupZ6uSzn83S5TGUtjKB97vr4i17PPzeP+Mvo0M1u2Zt/fiUEkAkHphCDcjCRqbXrLLOaqaHZ6zJFN9h/mN2G8z7mhLcHBwUiqWWaplYm0EqgUaHAvBQJIYjjXARCN51OZZ6ZOOX+M3jQ1aQ2rbVZWXOAbp93h93j28fU59PlPJVyKYsR9BQzB04xhpCIOCXsR2JgqxEsuUSQLxFd2zwMQLe2R8VNAA1zSuPYi8r1XK/XVRcRETAEw1ZsnSVcW0TXqWWBfe7eUtzFEMC3ShdWqg2pNWyVQhqH3Z3AHdBYltiaNhGziKAhuAMjUcSQqB8DIWpzMAoYtUFZqlQBw23urS1EypGzRyTEnFLO8cskhpj6IY2Hfn/oQwxNmqNvKbCUMGXqugCIQB4o9EN/3D+8v//NN/ffPdy/e/vmm2++eT/2oxnUWqcyHfYPgftxuPvDH/748noSBfeAwAB4mw/rTd5lbgzNvW57WDEDRO4oJA4jU3L1m1LSkcwBEDlSyiF1QUWlittN9fb1bbb9sbUtPAgdkDeGciREd9CNh+S+8U22OPfWAgXAFkJTrIEr0mcHqKv3Et5PePxpyVkLtohg+7QELA3qpnxOIQ5dSjFqK1tlGSh2Qx52Q98dTDtmQbwCXtwmk5PJK7gS7TgcON4hD2jEceTQf5nEImLOoe9jCIEDb/DM7SP1mfiN7s7s5BgJpNT58no9v7Ra9TYVVTOLYmY4DsP19Non6kLEPqkpMIq7uImKmm3NMUV2RGd0RkAy3Po/NAf0rS3BjeVNxOaozcwANrEmb2eOm6u7c/yzJ0AYxh4Bw35/f3yzH/bW7Onpj62tXRfX9frx08+M3PXd/nAQfeQwEEQzhla3C368f/i//i//6zRdX54+vjx9eH7+tC5XInBQ87a2qkLSWIFNtdUVAGNKKSbi4CJS1RRS7vq+2+12TEGaSLmCzS7FVIE5xNT3HQeKXKZJaq2GaM29mcvXo37D0ChUCisyEiqhI7MDqLo5IG3ySTFQ3Ex8xoRpGMe37x4f7t7fH+/ud91azv/8x/88P7+s6zTN8zxPtYobOobalrmEy5LG0VIeqtSX09P58jR02VynMvf9uF/zWuIV7eV8/vj09PPLJ0YnRrhwFZuvZZmLVHEDVXUzc2itaVH/ithLgBlzB130GHzbEkAkBjOwLTF7K8O2GbsiAqNVset1upyvrRUAY6IQQ5dS3/XjuMtdh1BMBB0dUB023wZz4BARsGkztc+zFkBzZti8I+BASFueBcAGCvQt4XrLqtgkycQEGNTtz+AqAOxq2mSdagmmFmLs+06Yn6dpLa2IIt88/iICKnUttbaI5GBlqctS1yq1ijZxVXdA9GqtOXUYhpiGsAuMKuVW1+MGUE05pY65kii6gZJjAAuuJILayKXv8M2bw/l6+cPvn5a1EmK7e+xTKrVerycI4fh43w3566ofHM1JFU3BfJNEAxqYuhps2EkzdCeiKGqX83R6ec7BuhSGvlPVZr4W6YcDhfDw+O7h4R0F/vTpw3/63/4/UlsrZbpMx7vD/f3bdV6Grv93//AP37x/v3lfp+u8rMsWJS2tXM4vHz/88OOPP9Qf/rTWuql9N2GTKqoTceKYHRR4CzHDf6Xs3ZzTfsuyDggOLmbCHLucCTqVBB4IgAADbUgaB0UXBcAUoe9o6MK0lGU+aQl5T2A58pDC6BjVwF2NcGMfA0Cr5bqUy+V6Pp2v52meitTiLg56kDGnhODb1sTdiZmJNpCviCAoYgrhFj/w5RZDwIQ8xJhyZxiZtOn84WJTKT9P4G5lmdO6XBH3zyeOiWOMiR4e7v7iL359d3d4fX2Zp6gSATBGQvBSpJQWmNRgWqU0iN3vj4/v/vrfvD48vnEAM7VWpZZSi0oFqZSwRtHo2MXjcf/Xf/dX5kIRnz98SIDRCR2lyvU6ASAPHZEPVYXAAvYMX4o3NZ2u52U5R+484jpVqRIJOfDusCMGh0lMlkK1IDODwbo0OM1CMkbaCdyl/tu79MhxyNERS1OdF6jNTX1dE8C+z2HMe+qP8bJ/fcrTYrWuIkwIzEY1u+c+ROacQgxsjNJICq5Lu56XVoWQCQHJTEIkiwR9Yk6cOEaO9PmAYcbxkO/eDsfD6IjnS2sbs6cLeYhdH3IOgBgzM6W+6/a7w7fvfvNm9w0AWXWGiBTbWs3CfnjTfX98uP/2V9/91X+6+9//2z/+4z//4YfLeUKv5MROYLiKNYFVHZP2rkhKJICiZkAY+sgZLVVM2MXEYfNdbP48S13Yqvy5C5fXGVzcNxnhF7zCDWG0rCVPHLPF4CneItWJ0GG7WwOzb4UBICpYNQFHJGqMM9ICJOqgGH1I/Ia739T0+ElGLi1Nf+yMH4ZsCK/NVyHMNKT+br93tafLSVp7uLvr+nQ87GPMtWlpxbwRFsazwlnrs9cSIGN8yP3bEO8dwU1CHELqv+otHUAB1IHcUcy+yOXx5o/bckvM1FqrdZnrOqXIv/3tr5voy+k8L6uZxUCHPne5K8u8XMJuv8+BhxSAoJlV1eqqn7NjYwxAqFsUC5FtNafTlsbq6BxC1+eUMnOsRU6vl7VVAADekOTuYGYq2qTVL3w4gE2tgciB1O18PoGdnz5+aLL2Q7cs08dPz0RhPLwc7s9va9253ZJ4Hd3NxLq+u3vzxuHd+f7+0/HQdd08X2Nkc1nKdL5cq52bFHI3Fzdnpr7bj8PYdR0AjOOCgONuE0HuCXlZysvrqc93p/NFZI2Rj3c7YpjmqSziitoACfwLMfjL2+Ja27yU07QEg7KZPogYkERdzFXNQREN0G55lcoxDLtd2o/dX/7u+1+9/3bX5ZeXDy/nHz++fJiW+fV8uk5LqYCQGFDVSqFpDvPKFFOTdpnOr6eXVjOgT3Vx8FYXWZdVcL1e12VeawkMBMy4kVHbhnBOMW6cHVHbEheHvtsypbciJkHIEOIWJ4EMW+C0mW1bX96qBHMEIGTmGHmpcpmW83WS2gicOYQYYow5xb7rupRZC5o5sCMBGiLelj4bu3BLI98QxmafF6i37/Eb6P0XdchWst/AY7ddfjBDN8Gv7TxmrS6yXMs6aesDM+a+S2FVaapzKWspFExaqXVe54C2eXZcRNXavJZlLmtppbRWqorCZxhDSmWvwF23CyHG2OraVLZ0xS2Bg/FGSk+EyGHo0mHI+xwSaYTWB4t9+u6b+3GM//RP+TpNLy8vUm0/DE7goCFFilsQ7OdqjKkfut2+zzn2Q+673OeUUzJtXQ61CwQpZWYU0KLSSmmX8+V0Og3JrAug4o6KwSlTkD7kYeiHYdgdD8e7uzLPH3/66eXpZVnKmzePzLQsZRz3/e6wv3vYihjklLpOzUxEpfRDBmi1zNfzq8v6ee+NbqiCfcdDpi6CA0iCfU9D/lrUvz2zCIG26CFwRlAH2uSzMTIjC4KZEd7S6XFzyAG6OpIzQYyYEgV2W0pt64xhHvKyaB2Bkzmiu9vWdIG3ZvNSLtf5cpmu12We17I2aQ2gtRRs04Rtv+7PyDv8fJuZGcJNbfBn0pltuk8xUohIwAQdLZLykBa0Ru7uoQtMuJZ5qWValJj3xx6YfmUWmTdrmSm4IRuryTKtqi0wErFjZEQw0bKsl9fl/EQc3aWtq7QiIm4aQJEQmmsFWRBN7/bDd9++vV5+vetCma/QrKeuLE1V51JKWx0UW+lMNWAX+etPDKAzezdQK3gFqEWma8ldNnEOhOQUMKUgySyINZNmZVWaNGcg457TXTceOQZyRNqyNkWq1qbLHIHMEWOslEIcjnm9j+WZ5ypgBk0cqjrgRtEKgSB9jqUyuGmvEEPgjVKnTaXqFv1GzOj454RrTEMY7tL+vkMmzFJEmENKsRtzzhwCOjiFEDh2OY274f54f+jvlnlRsbpWQJ6nVdWZY8zp4e5dCKmVJorzauhPKmaiIObNISC6gTZH4eAhGgXbprlMnIcuD8mDhkRdl2MKSOhuqtVUjD1y2CeOfQopdFOqte7uRg5ff2AMAFqTUuq6UE7cd2ZBBZyZNsw3oILb7VgGMDAAbUAFtQAtgNXJLZClBEPkPYY7jQ/FDP2pyRghjwliBhKujpFTopw51bVGZuz7/X5IKRJjKbWU13OB+Xpp68XaZO0s7erKqbsP/bvQPVAcTSc0C5G3ndFX17JRl8w3+jqgfg6IRUTyGwR3S0BqrapKiOHu/r4pnBeB6iHS0MXDvuu6UOZ5DrAbh9ylETpW21wYayFR3X4uEbkbbVZ2QvgKwoOIECh33f7ukLueKF6u8/V0sdaQ0AFv0tbNFitNpflXZ39YFwGw1eVynj7+/AzOpqZm+ul5XpfTyyWmrvt43t9fvpvroVoM280raqaqRFRrzTkd748hUkhxXZeYkpms6/zx6Unsj6InUSGy7TB9fLg/HO8P+0POHRH3XX+8O47jmHMGh9bq5Tq9vp6ul2urK5L3Q3x5ff4P//E/lPlDW5pWo7gp2ujr+bioXK6vn15+Vmw5ZzNFcCa+5dRXuU6TuuYuhkAbgsmdu7izhu8evtmN3dvHh+Owi0wPd2/Tn344X+vTy+U6Va0hYSA0MJMK88TznLvhoKbrWualRGQilKrK6sV8EcMFljUi5BQxUEqp7zsXjzS3Togjbgnm7tK2iPP29u0viutNE57IAyhveQ1fosj88+YQf0k8CBxSijBfz3N5va61CSKEGFKMgTkSpxhSCljZgR3IHQCDG96Ek6pbCU5b2J67gZn5dnABMm5x6vilrvnSndhmKnZwJAwcDMlYbu0JAACotvPltV6f52V2g77rHZwB1HFp7VrWeZ2YaLo+T+fMVkIIiEZMIrWUdZmXZVnWVdalLuvaqrh7rW2e55Tim+Zp3L8lzl0ua9AWwBTATWUzCm3W3BR4HPu7/fD2OL459rvkIUgbYDz2v/727WO9+/nnD+748jxdzvNu2I3HYXjI/WGAoE3rF1V/CPz4uPv2u7uYuO/H3X4/7sf9bjBrJn2MQyvEHLpQoJ2W6WWa2+V8mi/nuIOGcXFwitwfHdkpAAWgCBTcKeXx3fvvp+v8n/7Dfzy9vgxj13VdTqG19qeffuLcx5hqra/Pn9Z1QkfatE0mXQ53h2F92A2hmKwIxhgQQM1SDvtRU6oOlgbDB35zx+mzA/b2+dm0XUjiaAa0zfoxBgyESKTIQghICYnNyH2jgwFtyoBtd8jEjJGslXZ5nT6Cf9jvY0j7wxhyNHAzkFpb02ku0zRfr/O8zKU02RZzaoifFecAnyuUzSlmgDdGr7l9hlT6BgD9pYhBJI7gUapQgBTTcdd9b8fj2rVmzDT2ERmW2j6e5o+nFyOC/u2ibSoLgZ/P5+l6UXEwb8Wq1Os0aauBfRzHh8e7N+/evf/2/cNhrNPr5dMP/TAQgqyriAB4RE+BMnKw5rNelrnW1uYpgbw9DOWc/uXTa1trd/cuJgoBdVpPp7Nr7ZhZpWfqYvzCImLmcewPd7u+78pkl1SltrLq9byeTlOuPC9FVVOM1qFOXgXQCYxBAwhvYtbIHCMh2CYzAqayFqmrtdLErmvRkGrKK+ExH77b0XU2wOtKrg6gqKuuS1sudblI1yeOIYbAGFLHe+zBaevB1nkhMERyI2kOYGLgv2S/AhBQ8jhCf4zdkHePqbZWqyBizpkYTJu5MUFK1PWhG2PuY+rilnn+enqly7XWti7lOs2py++/e59y/Ob9dwaAGD88flqWcj1fTs+f6lpjSLUpXMWj9z12HWJwdTVvgWjcDeO+N6wcOfV9TBEIzaXWpbRVa3GGNHb5EPYPR6mtSX37q7cxx8832e26TKE1rauWpKWTraKOmUPIRGwGTYzALWwZUugIhlatFaVmoEbgffQxYR8w4cZbzYPLQelgNga2MVEe95T6bthp89enVzC9O96FQH0fpcnp9Xxd5tVO59Kerpe51s/UEQk0dN23afwV9nfOUVtzW2KQcCNifqlhNjvG1sHA7bP2uTAgMiJCJkfUTelAgShiyNradVqv07LbDSnlw343sK/XlwkNvtEuJc6hAzSzKrKU0lpzB2mtlEVrMW1MlPuBiQRhYwQyUYxxPw6Pj4953KkjAv6EaCoMARi3JAvcQiFFTLcx+OcihhnNXLSaKNhMmHLuUWyertdpLm1V9/Pl5eX16Xx+vTvuhi4DQClFzZiIKdTaQgyBqRuG493DKBJvQU3Sjw9I/f7w2rSaGRH1XXd3d7ffH/b7Q9cNKeW+68fd2OWOmcDBTFut9duyzNP1cq5tJbJA+Pbu4dPu+SO/Impkp47GXew3Qs5WJJuvpc1LyXMxA3NDd0ZiDjFmV29FzDWlTBA3xJeIGYq1pq1qXcs6X8TmeWYKKfRoBOLsGAj6QCEwpLDr89ANuetSil2Xdru9SN33HROGmsY8ZE6sAK1y013X1eDGGFPaDyOqB+DahGNgDhzYHVqrrbXW1v1X3ncEuEECmHkzQhEjfK3530RYG9SEAhExivt1qZd5FREEYMYQQowxhsDkBLaJXrYN5C25Gm5Je19067e/eksP3LIUtnx0BMDNvvuZDA/bemJLv9pmhoHIzYQ5fDljROR8fV3Pz/M8q2oMCRFVm5jOa5nXubTC7pfT83lIkaDvh60Eaq2u67quZVnWeW7LUqdlrbWZeinlcrnknGIeH0pzRGYmZHDcHjGl1FKKmWzp6szYp7gf891hOO5zH41Ydhn2fTiM+XDY/w//5m+R4n/8j//46en1cr1Cgn0a8hAdTax9cfOGQPd3+f2bPqaQu67rY9dT35m5wZ66EDczXYgaYJ6uL6dzXeaLy5KIc0QiRQQkRk4cM1IQkWWZVVVVNrr2dL3++OOP4NYP3ePj/f54+PT01I37FFMt66cPP67LxMQ5p37oCATchy69e3u3H6wtJ9PCTlupywFyXJkMwGMsvMf7PX8l6v/8FsLN4QJOgEywIeh5q5OJBeiW+GUW3ICU0F2jI6IhqkNTURVGcAITr6U8v55yThCpJ69uzayKrKVN87rOa1lLKWtZ1rKurRQ3CYxuruqqTrypFbYPtSGab8ZPVd/a3P/Ty9zXKvNaA0HMKUfuEz/eDd0artdV3WPkBraqXGu51uLE1ayqTvPcp7Dfj25a5jLPZZrW0ppTyrtuv+vGYcj9sHnWXIqtZ52jwqoO61yaCBFZpNAFoyhFvHprm76zWlkiSmYLKAJNrJpirYssky9X16ocEJzdwi+bMUDC1MVuSP2QGGwYkzYQ9dZsuq6l0bIWaQLKJm7qroBEaASKUmGpbYo+URgg58AUYsodUlhLcaSUc4FympazzBNnDzEn3lF8PxwI45OskzdRF1MrtRJphVI89ppSC0Rhsy5tloKb250DByY2Bbm5c355X4ix24XxLvV3cbfLQJ2oLtNq6iEkAK9FQQ0AQsTUUzfEfsw5pWUp61Ken583Fe18nT98/BhzCpEfHh+63L97814a7nf3l/Pl44ePdV2Z1vvjnagBQvFrYA8MqeuAdilqPwzvHr4d9oN5dTII5ORq4oAcPRIaIxDm3AeKZGSqTcrufuTIX18OAHBkJlZFaWhKpijWHCx1yQw2H5DfjHiEgG6uoggujVolEwwYY4rjYENfIxf31W0ym9yKuJg5OwSkQBSQZinX87nWdtzvd+PQd3Fe1lfReZ4uqqd1na/XUgURN8lIiDkPb7vhnaRRXdEq8KywsNd/BbxGREZiZEIyMHPcpLM3p6IDArhqa1pFq1kTwdNlWdq6FGkiTVTEVAzdRFTFzZgopJSJTU1MU4ytqaiuy9zW2VtzKcQccooUGDa0uJEJobFI55CBFtOb9tAsBKQvEoftv2Kuf3Yh4XDIIriUFRz73Oc8dKmvawW4moiLOJiUp/myO7386XLIjI+IvCyLiKYUA8cmrRRcwcwMkGMKgVNKXc79/f23b998Ny1zlaJqSBg5pNurC2HbKBIYllVwA0AgdLG7G3dr30Orr2Val5kd/uL7X0uTT0+fqk3D4BRj6sbHxzF8vsnc0S2C94F3Ofbmiu4EkGIex707BBoBYXc4dF0KaNpkuS6IPOTORZ4/ftDaWmlrXZd6zTEec7/0Y7UKSimm2PVhNzy8Pf76+8fHN4fc9THH3/3ud9P0pg8I4KW1jHyf91kZlxIAHw73kXbFlUPY9wOqs0NtFZmJOTADgmqsta6rdl+liyMhhRBT4phvGFfY3Ke46Rw37ioR4y33czM02bTUuVQVJdoOb+pyH1NyF2kLaHNV4K0qIcAtS/6mU/Qt7wpvmqmb7AVcXXGrZogBCAEdP3+vo4N/EQITBwAIwZnTl6myqFwu5/n0uiyziKSQELGZ1VaneZqXRURU5fn5qcvxsNuNQ4+I7lrLuixLLWVZ6vU6TXOZV6lVVLWWep1XMZjXutYNqoTuoOqtyDyvl8t1micVJYRAm+BAGaHv0tDHGAzIcvDEBlL2+7t/+Hf/4/H4KALwX//p5fVcatl2rhsE7AuRJDDcDfTuyLkLKRFFCXEJrAAaB5EIboRAzFRcns7PL8+r1jlHvd/z4RAUEnVdTB3HLnU9Es3X0/l18S0bUaW1GmKIzNdpMbdx16/Lcnp9HYcPgXiZp48//7Asc0x5GMejHGJAWStzePvNW615esGynEAq3MRygnBGJQaI1NKgh4HCny1ibjx48O1M4m1TQ8i0yd4RmB3RDdWMbrpfVTOEaIQsFJriNM3rPAfqU5dCDonpcj2F5HEXK93Kl3ld17XVVrUpmLa6Lsu1zIu0Ru4Yo4mLqIhutKUtO9w/Z1RuvyDEW871jV70+dVEXk+np5fnsetGNM6UYjeO0Rlel/XluqzX61zbpbXr0oQ4p4zI2ux6nXZvH/723/6d1vbzjx/++IcfX89zNTi+efvN+29++9vvCOwPv/+XTy/PzSCn8JtfP2bcQZVWdTqtaxVkjh2bZpOoAQO4SNNWpdb1eplOz16mh12emZrU83k5PX9q1+uBkSjMtRUR9i1h+JfLQfaQMGcOEPZ3HQDVauC4LuKLz2uRqqDYVi1zc8MuATm6QKnydLk6wFAaHcY3h8M+pq7fEce11ES878N1XT6Vn59O1x/nkwC93echd990Qx/6uEwfy/Ta5trEmjpagWbgAlqqm7bIYcwDQ/TqGy2962NKISYGBLWtqLIv1xICHx6GOxnHu9T3EQOrWUhkYgTBxIisVlAVCp467McwHPqOO3yd1rVcr5OKdF1a5unp6QOHMOx2iDju9pG7d2++6brdS3+SBh9/forcf/+r37pDE3y5IuhKFg/j47jbMeVh3L95+5CHLNqKzFO5TOW8lrOipT71fUo4wGb53tq91hDthivYKphtiYYwjl2/UQ8gBO6YqDXx6usqG1Zma5w5hBCIwFtVICcNtoJM7sVywNTb8c1ld/8C8dKEy/yHNv0jyg8VnkuDsgLVsl4vFV5Ol+XHP/2MxGNKYTd2MVjjwIhoAlW8uFavTQwNgSJRl9N4H/sHhUQ6IVaAuckVZP6SzLkdJ0wUQwghIqCaOcEtONbcAdQM1FS01LrWOpW6XtuPH1630JdAKGWZzvqCVYeQGFOO23OsI0RmcQ8UUsqiUGoDtQWpuYEpkpMJ3TyIWstSVVcAEB27riz1IvL6elrL6uAUOIQAoLcIakOwLQLnqyJmN0ZRpxiY493d3W7YdTG3tY3ZLsc0L6uqpxjuD8xURGaRPVFSVTc1C+YmIqWhaQMAwogUABkp5jyEGHf7vUhrWmWLZTPYDDL82XwiUlVt878E5hRDYu5iIrC+604nOL+c5nXKMb57c/8Xv3k/HmPeRYyxKX773X3Ov4DIhn64Ox7fPj7uD6O5ozu5pxDHcQ+Ih/0OiMbdIcXE6K3Ua7q0psy5LOuffvjhw4eP8zIDwbgfCGiX+8dx5ywMIXZjHAYcd4eHw35/3/dDyhEIH+8fx6EfAgJ6EyGDQWNcFYNGxrHvkHRtBQm6wIjgXWqBgIk2Mz6iureAEUqfwtcoZSRCZuKAW/0Pt5Tsm1/2lq7JG8pBXUuV61LmZV3XKmaRAAFiCFsyELqpNFABs234Dps4mLd9KMIm/vaNNXZzXONnPOANGYG0/cRNpo+AcIux3OqYG89mQ4R/uRB33zi767quy7xdzDRdT6eXy/m8zvNm7Xl9PaWU7u/uU0o5J9XWWi2lbJOYaV7muazVRcxMtx5ANu377VhzM29Vrtf59Ho9vZ6m6+SmG2HI3VpZlyWWulZJOXkgiglDRDcNRIe7BzX67a+/u17OKs3YEQiAA6XA6YtImQnGDHcj5I5CAMOKqOQrgIdQnQFsS3IwL7OtH72Vfa5Dgvsd7AaqHjxnSgNy546ttXWd1+uplVJrba1dzqcQwu5wxzFz4K4bAGCdLi+ffm6lXq+Xl+dPqjLu9m5GCCmgtUsXLe8GygfUhUDq1FQFb6PGAuCKG/ym+p8Hp20v+2zD2ES+AEy4zZIjsyvJZrlWczMUxVYVvEXA0GceOg8ZcMsO05jicbeLhKVOa12XWq2Ez7O0tdRmuhm4rJW1rnNZF22y3S4isiGPOdzSMAC2eerNob3dTDdSq/2ZIM7dq0hTcUIMjEwUCVNgcyAU97XptLRrqUuVzevUWluWZZonwIdv3r8LxG5+Ol9D+LmP3a9//eu/+bu/+du/+8uyTNfr5Q9/+OPPHz+GQN99e9xlvDseGRi1Wa3NtBS0GlsXpOPIaCraaitlXq+1TohyGDKq//w0vT6dTi8nrvX+OCLCqSxrXROZafuiNoNtW4YACBQwD9wkwGyt2kZwXlbRZi4gRVszwtvzBACaqqyFVJ7QBoaxHxwpxi6m1Pe9N+oyFS2AJtZKrWLYogNu+6wgeQQk2aYQ0qqpSAlNggYi01ZiCDRQQNVi5BgTE6YQOARGRgAj/zPbCDF2Y+rHyBGc7GZEiuSECOxMTgkJRYkjA5mjIjuF7Y8kTZZlLst0nc6vr0/M8fD01HdDTsMwDnGXiXKrvhsvu93R3e/uHlUtx58DdUxh1x++e/uXDw9vQ+hC6GIK5KAggdaQdsF7r7jq1ZsZbsKnrY/eHmJe61rq14xrYg5IGGNk5i3+SZo1RhUUNb8WQDBVRDJXc0YgckcRNSvQymxtZlToe+733o/XlJ5Ufyrl1M7/h8z/mPQDhatpbgIIUkWvxc/Xtcxz3/c50m6Ix/3ABDEFIDRAu41RQcWAMQTsOt56CapgruQL28w+k5d/PYm5RT/R56f91tneyF+3E0HdVFuTZS3n63S9rOSwH8cUE3hrrZ7O4hIfjj0RuZmbECgBiQkAMkeMDEjautJ10FYB4c2YaxiIgIDQ1cTU67JMp/Na5CTtOs9mcmvSEQFpm8DSZ8zZ16/Q90EdYtd3fX77zdvj/piR2cy+f7AmVWSDaUXuh90uRUJ3cIwxGvOWWWhm0kRMCTHwhrdXxLqWksE5YEohOLfWSlmL1NaauwcO0uQ6X1uT7UBn5pSid11AX5gAtMuZkD98/Hg6PR+Phy6Ff/j7v1ttrlCamzr/5i++6fKNDJtS+Obd8foX737z218dj8dN84IOjMSREVDUgEKKPWF0pbLUHMfpuqxruZyvl8tsbk1bP3bfwDekPsTM+0McoUtdfzxivyucKGczatVyR4EDU0ghj2MOAZuKNw8FGBU9uEsMGr2aiKtYrQSeCGJiZCIiIiZEc1C0aN2YEv9y9m+q+c9f6Igb4RJv7+Ut+eh2CrXaXq/L62map7mVouYBmJFyjOM4jsOwyfDcDNxciRx5W0Ft8hqO7qAiZuagfos2Q2ZCwK24cXBADiECoolulai5I5q746ZiU7XPMpkvn31iSl3mGGpdr5dXabNKe319/fDjD6enp2VawEDMX88TIO92B0C8O+7cTaSJyLKumyqmlOZGBEjMzhYDB6JAt+R2U9tEoy/P56enl5fX12ma0TUH1kBrbZfLbFq6TMhG4bBLPUcOkQFRVOpaGP2bN3fX779RWa+lBkpkXY6HLu3pi+AaIUfIEXJwJNEtVHmT228PAtoGWJWtJDvdJQ1vdUzxvqcYgCFIzJh2gHmeVpO5LHMrayvL9Xp5fnq+Xmfm8O79r2LuQyCmNgxZ6/LyYf706el0vpZScpdT6qXJ9XxiaKgX63noOaXA6UCx1npapwJ2iwzcitQtg/jwdv06AtIJNoq0bkA/d0NARGDiwCklDFtCjUklNQaIrcG01KbqRXrH4/4Qh3G33y+Xul4rhPRwd9fl8HoCjGiAtck8r8sy17Xe7Hhmpq2UtZXSapHWEIjAW8sizd2IKDJvpfVWnt684jFsI+XtTv6apkpEqYvdbhiO+243piFhYkFSR0YaQkp9Ch6kqEqratbq9XJ57fi4dM0kdbHP3bgfd2O/G7u+H//+3/zVP/xP/+Nf/c3vXk+vP/34w6fnl3/+/Y/X65QYtLT/y7//+4f7vQxgovUyrde1XGztAxz7vo8A3lqd12mts0WJPTOn9Vzml8vp5+fr65QJbE+AOC1tKeuYTLTaLw9mN/XWtLSGzhicE1IFaN5UWxNRV3VQMMMNSEaRMBFG2jx4RfSyLuc1zq1WVSTMKe6Hrq2ibW7rxC67RG/2nTrtUmS1Mp0g5Hd3913uABzEP3pb12paiTGXxAHB1QMsWhIbGMQQmDjwLdE2MAOZkoWv7K+IEBiQrLUiKg4EgKBASCEQBoqUOUQ1QYSmdSnTUuYeW8pxGIe6lLIsr09PL6+frqfXkLvL+TQdHx8fIVBEosBGGGJMx/sHNw0x1brW6q5x7I7v3/zqr3/77969/daN57k8PT1Py+zgXT+8vXt4GN901D9fP5ymT+t1xuTUccwUQ2BAXeX8tJ55kfY1ET4SsikImarU4pcLtRa32OZ1WZA8REKiUjSSuTIxB+O22rLU60xtzYGpH0PeA+Is9YPIf6tXWl7/K9YfuvQyJmVgc1Lyxdq8Vm1t16e74/h417992D083Kec4p9+Ag4Ijm7IAsFBNBCNOe4y5liRCwKDVpAZ5MpQAuov+IIbGMI/93++5dsjQkBCulmszdTFCNBU13VZlrnWlkPKOQ99AheT9bLMpm3oo7o5KFhzrepSS1VHNOCQAvMwdC77RLZOYFK3nxpCZCJVJSQwD0TrsmqTSaW2xkwZt4EswJf6ajv0/kwRB8FtU+huidRbfw+ROWRmQAM0dZFmSgBW6xq4xLRNymirwc3Mm4srMTFvHCxX0yoFyKMz3+g5ZmIqIrWqagMsZT1dTq21GGKIgTm0Gk2ba3VpIWzE/WBm0zTVuh7udu9//Sb0b16Xl7mtarTf91/U48w4Dvm4H/Zjtxvydv5vwqVNTJKcDci2wBqNADHnUYVFoNRlmRexhgQhhlKk4zTu73Zdn5EOu93D+288DR+nOlcFV/fYd7sedV1VVR6PY+qigWkzmETnItNatBhLsmpd51odFd3Iu+2s+1zDbBvTXHO83+3jL9YRRGRCxq9eG6vMcZM5wudy1BG8iV6m5TQta6miuiXeuTsjdl3u+hwYEAy2vwTDjQEDfqtPdEtgEfctGcn1BiACN1AzNwf0EELXQQjh9sNvEhvaSnoAMEUAgy0W/fNtRkRdNywpi+iyzOB1XaYPf/rThz/96XI61aWYeWt+vaxqfLy75q4HdyLfDO7zvJR1laauN8/Rxllj2n571lpd5hnBz+fz68vp+fn19fU8XedaCpgzeiCMIQBi7DLG5CFBypj7kDh0PXJqYuV0Xta1z/Hxfn867dJac7/r834Y7sduTxQ+Hy9e17rOizZDQrnNFbaajxFv6afuVkvD2rJDDiEjSVFp3GhRWzGsZFlQ3ev2Hoq0ebo+ffy5FDncPQ77u244EEKrF9N6fn2pZfr5pw/X64wI+92+jLvEJIHQVivPMnMOYdiPhMExr5UuV5UmnyF4CAgqrazl8VT+dY71di8yA8HG9fz8/wlpM7ZQKdAKmRERlWrzKkspQr644zi4KFPIMRaoAM7MOefdbu8BkIOo1ya1NlVxVTMzldaKqaQUEWw2U9UqtdTyOXYUt9bITJkJgG8bevyMMEL8V60YM+92d3cPb+/uH/pxwMjVZV3L3MyQYowpkClMHCrxli8Fpq4NVNGNb4s0IILA2CU+jPlu3x/GzHz43e9++/p6Pl3m0/Prf//vv4/Eb+4fCQiQukytMjk2FRc15dbUVNZ1uVzOoi3nSJSsqq718nI+v17m0iyFq5q5n4tMSytqlyL6edRv5usi89QYmdkBgeM2OQUH1y3kyHzzvcAWQpE4doECi1VBr2orQRVR0+0TzQQpBmjUmoK06LJj9yGKBwaUpc7XmbjcDbtjl9/lUQbdUpmaNHfz5tuQC5ACUkpEiJEpJWIGNW9N3A3JzNs2Vv/y1mwiOmlqZqoIuPFayeG2vCQC2jIsVOd1OZ9PSY9mYbNqirTr9XS5vK7rnIlaa6oKt6xlCsQ5pa7vhl1f16XUZVkWcBiH/Xfvv/vtr3/36/e/fXh404q9+Pnsl+uspSy2xiF1uR/u81sQaGsrqyzr5IvkAXOiiKFMPp91HVW/xnc5uENrQuREGxBVVRGZ3VzFmJEzE2Nr6q6EGEOIwCZ4aU1EUwaKHDriPoirLKe6/ve6QoIP41C/u9vdZUjmzBiHnPfj/ghezZqPXbcbeyKoTeaqi8bqo4MjJSDDoBwgRRxS6BMxV4fFjVwWrVeXmWAllK8nMduCtjX5nBu/dQVAW1t48xMFY4vMRLfPIxGEyF2XhqEH0LL6skxFVd0RMQWOAcGaqUsr4hv0hShQjDwMHXtjaGXx2qopuBkihMCEwEBEgRCabbpd2zh3N5H/Nou9sef5X3ksw+Wy1Fam5cQpSIuXQxm7lJgYlBGRIgCKiBmCrTnZ8ZD3uzDuhpxzCAFxGwZt9iz0hFueOyKIVa/ayjZSgE2uLK2pqkirtazrPM9nEZEYuQVmqiHUuqxLmmPuutwPOeV0/3D//PLxjz/88XQd3n33pss7Ws+qXltrtf3S8m+4jiLX14s33SzIuGWMMYKDOZTq01RbI8Q+hT7njkJOnRkwcgD3nFLOHXoG7nZvdylQJnjzcPe73/1OKem//KxPJ2015v7+7k3OMcU7BH+83w/jgCmYWj2v0+v59flpKVPPSiRJBa01L2ZCutkrblkAgGBqKk1q/ebhTQrxSwkTAmuIxOGrggA3v6mBq4iDfx62oahfl/U6r1XUHAHJHbcjI8aQU4qsDOAUAWDzRgG4iJRSWmmiZroVJcCB1by0Nq91WWqpIk0BPDEOfX64OwzjkHImQlNxAGamwLBFXbKDGzlziF9MsESh78Y57dSoNu0irNP1w5/++PMPP86XWZqoei12nVRczpMM56JNCWVZpnme5+vc1oYGgQJ+vq1NkRHQrbU6TddPn55Sjh9+/Onpw9Pp5TRNcxNxNzN1UwQf+m64uz/cHR/f3N/f7/tjn/ocI4b+wN3Y1J+ePszLjGBd4sOuj7nr94/d4U033u/6/Rfre2vy9HT58U+nGBISb+Ud3bTP+HnldwMsiKgDrmtYDNxUcYVg2HOYcxxL7vuUOcbeVa+X87Ks5/PFzN68ezt2AV2kaVlKq9P5eSnL5fz60mrJgRrqcs4BtesHk3V6fp1ZyUzrfX/YieNc+XzFaWpSmwMhAiGIyjKv789V5EuZArAFJqfcdT26qbk2dVdzV3MxV7N59WUBa+wWkKEUnZc6L0sxmUqtKkxUS2HGlAISTPOUIu32h5CjpbTWdtMVAQAYmKhUaYWJ7x7uzOzp6fl6vbZaS1mbNLuFVntrjQhDiO6upqJNVRm259gtSuGLOTGEfP/w/v37vzw+PMSuq251Op9ffnqdqwBAZDKMgXOOnYo7EvF+yIeu26WYEb1pg3VZ5qUstZVlpdeXjx9//mHoqduNf/PXf5FSDDH9l//8X//4z//8v/+H/zJ03XW6fv/rb+/u9l13VOmXdQaQnIJZm6fpcjmfTs85hjf376PC08fzfL6cT+fzsjYmY/5UaxP9VHUqQEU/XK19fl9UbDqX86cFhPr+plgnUiQgIiRyFPPNYYrEIaaYcsxdDCmsVtW9mtqG9GcM5ODivqW+Q0BMAL3KDiSmvAAvRVdp5/VKTjGlfDg+5j7s75Bw13pBWUu7ntdWGwLkmI93436fmPzzjttLaU2V0JEUsK3L+rW41zemZ3NpUJshAQ0RIt8ez4AAyISbw2JZ1o9Pn2AZOr6rpS3rMq/TKnPTItY68BhCCpFgSydVIhx3/W4Z4ie4tvnp5brOJSZ4c/fm3/7d3/3l3/zF2zf3OcfqdU24G8L1pM+X5/OrtHU6Puz3x/HtbsNc2enpMsvc7bzPnjCti7QZvTL84sR0kWamtawhdP2u64fYZ2IGsAaAOcWYQtclIEAqMVJM1PcpUeAQXq8lgXY75pSac/Ow1lDrWuY/BAoPD/yrh2/++tuHHuTlpx/M9eHd24c3jw93d+x0errM89xafTlNP366fnhtH1/D3B4UGGlCbsQ1Ze0i9jkmJvTWdDJBldnrFeoE1hB/WVn6LbG2VaDNYgwAoA4A5Gg3wQIyc0rJ1VKKIXCIITAMXdf1uR8yohHZuvaBlQJvkd1Dl0RFWjMVx82rpm5CCCkydgk0gzSpRaRWBGYihJhiDpFCopDYXVprFUtpfuu7bwA+IgghxJRC/LNoi4COoN5WcUc0ZNhcLKqmTsjxhvvc7AlIBiQYNCbeihg3b1bBb8pKcHMTR3BQM2rbr8Z9c3nrVm+b1Vov5/M8X5ZlAgTCARHcUFVaa+tCE1Lf5YPsROo49t2Qp+nS2rrMddy7N7CqtdRafslOCsT7bjjkoccYjRBhm4ohECKLQa0yXevz03UtRrT2fTsckTm0LRWBOIawH/c5d44BKGGMHrChaU75sHdKqXvlEE2cue/7w27oVZKIAARVCrAFk5lz0hBNIzPlGA+BAkiRWbXhJkpwRyJiRoRNu66pjX3/dYG5zVrMDTdz2eZBta2I3sZmtwI1EKvDvNTrXJqog2+52RutNTCBWy0FXbcAJFExN5G6LOVyWa7Tui6rm283Kgd2gKa2FLlMa6liaoSQGNd+NdFxXlPXIYK2hoS573OXU8oct4BJMFVT/dLTxxDv7t54XfvdXYg9uLS1nl5eTy+vTd0ETJEpjfvH/d3d4eG7br8zr3W9XOcyT3MtRcXQmXHDYjr6xikCVV2W5fX19OHDzxz46ePH8+t5npdaq9+0oLIxLsfD/vu/+N27b7893B13uz5lTjEEhq4f0nCQpoBExH3O4LYbem6+2+/yuOOuSzF+GY+L2Om0fPp0jbHb7JQOwDed0laxfa4Q0LZFoLmqgqiqN2QLHSQJvXvf/yqlPgbTilJXWSfSlcGjTtyiGlkzK0VqabXU0twsoiVQllnmU4scU3JHFSilnJ+fGY1zcEAKCTg1mUsx2BQuCKIm1VT+dYw1fqH6uqGYo2/TUkSIEZvBstiyICi5u0FdyzrP87LMooLraq2EwCgOZhvNrtR1rakbOqLQ1JrI5xiBW+unUl01pnQ8HpjI3RH9cjYHE2m1VpGG4NLqdj4AmJqIiKkyY2D+ws375SoAkmGn2BkFJVXwxdbTvFwmRGPH6AyGBw6Ucw+RAx+67j7m0cDn9fzxEwQ6n17ndWkuS1s/fvr4xz/uOcD7794/vHkb//I3UhuoXl5ez6/n//zf/rHYqlgofv/N27ddN9Q6qFR3Waar1Laep+n51Jjm1EXx5eNreTrLebG1eZfVcK5am1TBIqgCc/nKb+G3WHE0ZKSc0v+Xrj9rkiPJsjTBu/AiIqpqCwzwNdbcuiq7h/pp5v+/zdDQUFNV11R1ZmVlRmaEh7sDsFVVZWHmu8wDqwHwyBo8OMHdDQYTFRHmy/ee850YoEeMq2szYyETV3FAIEaOnd53gf9dOqSAxJxTTCn0HZ+ZMUWUmAIPAfeR0hjQeC2tSat1A7H5JSLAeM3XOZbdNEBsQc6lEGDZGIH2h7Q7jLtDJDJXK0VFVWuDigBKqMRavzxYAkCnFlWQAqpIgcAZgP1iKOiXjO5o5rW1eZ4nX8Kw16ZbXTY5KxfKlj2O4ziOQ78id2HmFBloGFKsZXt+eliX2ZoRDYfD9O7t3bu7t7txRCILMGS6vhq3ZXc6pvO5rssZ0NCMEww+7sIh4bBIabPYuq1Wy1bWY2nbl/Hil5wyUek9iZhoGEMIaNoBn0QcEBnAQwgphRCIA4ZA3IgiBoTxCjkFL1OtuZUgqgTb9YH/9q+//9vffPM3339Fdfu3gOs2v3lz9/VXX/3mV98Q4M/54aefPvz48/z+4eXxtD6c6XndNzxQzolS1Re3EyKG4HSJRlkbzSKgcra2gKxoTa34L5x9fWBkAAqvnG/EixzN4QLLJiaOHGNMKcQYXIEIVFtrzAxAEFMYUpymadpNu/00DnlempsiWj9vAih4x6V6YMwxagwrormDGQaKPW4wRAoROQJAY26IS1Mx/dR0vdhNsBvkftmJud7v10C1LtNu/M13X797c4vawHp7kEKMyGQODojIMY7DGMYB48AhhUAJzFwMyA0AEUxbc1FVB2QMPS7z037mQOCo4FtpT0/P5/OzShuGtN/tU0iiqmoizaR5LUuksu0oYMy03w+BvJXy8niKMdYqtmldlrYtbtq/eQrxuzdv4etvh3GKKfW6i9ARGeKwVLt/no92rHVZl4a4mnrvdS3LqtIChxzDMI3juFOjZjbPpWkR3ZrJm6/eDnknraB7784SjcQj4Lqspw8fXtQk5oyIUltZt2U5q9YQbJ/DdJiYEc1RFXqGvJsJOmsf9kM3Lbt/WSmLSK0V2PqDdWHiONin4TmRuRM4MTnAurZlLaKKYIyQAo7jkMcBEcpW1uMTmu73IxKvpa3b1tbl5bi8f1wfXs7Hl2cCf3N1mIaECBxCyoMBLU3UgC9aHNvWct/k+elISGbaSg2Rr26uD4f9/rDL45BzBLO6Lk67g17uS0zp66+/3+f87pvvD1P09VmqlyqlNnM0IzWepsO3v/vu61/9+je//f04xPPTh8ePP5SXx2Wr3ho4XA5+dol7cmlgJuan0+LwAME58Pl4KsuqF9yBualIjz7PV29uf/93f/fb3//N1fVNyknNEJ0IY+Qcg0lFJG01BX55enx4eHCv45DiwMZmrp/WW1Wbz/XlueSB+aLQ6LXyp5qgP+cI4Jc9BbWfWc3VtqO0hoi7/Xi1/910vZd6nrXI8kz1eJsNXWj50OTZjcw5QDSImMeQ4i4zy5x0ZVKqZy3Z/S3HYTxc2+Lb+Xwmm26vwjDsrycph7aupNrjIhjByCiHIX4JvMLLo+WI3iNPrZN/WivSjMjEuSxWKyOCmta6Let5nY9t28gBCVrbGhMRExATBybVtm3bPIcgUgCqKpj3UM9WqrRiKoQw5HDYT0POxJgTM0F3Z23rMuZoKbVWgwc3c7pQIc0Muw2dmZDoS+JArfLxffvTH9uy+Dipg51e9OODnY9ESBQypcEweriO3AJyCvuUd5SHTbcPjz+oNMaH83nZViNcVX/4+R5jdHKOfHW9f3M9/ce//V1Akqb/8A//9OcPf3qaHxrMHurtu6uv3tyFEFXkfDxJU1TUtdWnZZnn+tNzbOrPq3w4pblN1Td0BCMwFk/GyUJVAf08fmWm/RSur/PVIU/7cRizO8YQKLJh6X0qMLAe691J1wERQVuR2tABiQExBJ520zAOBqAAOQ8QAGSLOY27pBHCkGu92GhBRLc6wwu6syMf9tdTSENeIoeBAmOtCgDDEMZd4swI1rwVUalGjoToYMTKrqr+BUWdENmdtZhVYg6BI1NEYL9ASRy6VltN1RU61sVA0U2LzJVm2uuQ4lSHq+lmv9vnGAHUQUIMxCFaIMTnh+cf/u2H8+klBH737htmY+xhXd2r72ngN2+vODoxPD4+npbT6fT8+PHnmMLN3dUUprurt8A4r8syL21p67os87x9s/jrOubuDp20CeYmKuApD2EaI4CrWmsmDcrWkDANHFOiQAq6NtmkOgsRcHDk4HRtcADIKdo0Ln/127v/x//9f/9f/+633727bvNxyPx0/wGBcgg5kpu7yzyvf/758Y8/3T/M26I7Tdec98M0RSG1ES26I4LW1mzdHGahs4qZnc02t02l1LZ9KmKoMykodG1mH9MCI2HHRKG5dfGtuyNhiCGlnOJWVEopz89P6xJzZmYIjPvd7s3t9e3tze6wTzmudSWm4N7Jv6+6O3cXAAuMMYYQGC5TgpxzjjGiEyIBUSKaYqwIvKzgBuZITpcIpb7v0ZccMgAIKQ5mPo67/W66ubq6vbrysnpr1pMhUkAmtUtTDZmRzFC8bwKdOkeG5NgbfCKOXd+JAurmLq+HciQkBmQDKFWWZZlPZzPpaMPAAYEctEmpdSvnF3IrZZ7243g1Hg67Mcf5vJXz0g67aRxSgBDwaprC65ksMN/sduXqkNLAISAiITC6OhZjE9s2qxUQM5JKq/M8VxEA2LaCCNMwpBSbSFBV01J1Kdu8nE/L8zyfYo5Xh+vlLGCUU0opq2EVNdNtW99/+DAv55gSAqqqiqhWBMuJ2IY6poiADvzplGXeQyCQHIh6x+gX9gRwEWnSyB2ROrO37zcX7SW9Al0AAF1Nl7UsSxERAGOAFGiaxpyzq67z/Pj0YrWuy2gOz6d5WVcv5TyXD8/b/cv5+eWF0Mtad0NCdA4xjyPHjMxE5B0bQt7ElmXVJqqu0qS1lMK61W2rIjY13WIQafPLy16Hmyb58sxhHAKNLGSzlLbM57IBcxxSa+aGzJz34/Xbm6u312GXnQmG5DlaZE9MHFEdld3AzTvLoMdKmZm0utUgIjGF3W6KTPNpVSlmaqaOjkxxTGFMGNkIm7tJnwQrEWYl9xgZdvuJYZdCAPPD/tD0JFraelIsa3lj9mkhA1VXMVNn+iwN+nTnvoDNdjGKE15iQboRPrFPI+8nHpIztmWby3yyMgfbrrKjWpAZbAFHxkg0ctxpGjBM7DnoSNsTyGZWvS1aN+aYd1eGWh5ftuW8no8DeIo8TcM0Jq/VzKnrZglBMPFfoG7h0qx1dHMwQ7celg1u0kJT2DbZqhGxmm5lXtfTts5eSkYOgR24V0MXcQMB9Pp7q1VtM1V36lBw6CcaI4Qhp904DjmOY0a6YgKRum4bEaiISANEVWGibkWwblwS8Y6v/qxpf70KEXp+xvcfrIiNEwEO23J73uKqyBRRJ2wEpADKrEiEYXAMVcjEWju2raawoTXT5lBr+/njY4j87t2+lHOrS9jv3r1965A3IQyp/edlXZ+Oz0/Pjw+1rhxwOkz9MZhfjr40uT/rT8f16XlVi81yA5jluqJD2IxAPIKJeXTcIxXHG4dP+B4iGAfe78JuF8cppiGYkTmIu6ibujtY8wrN3ZlDjBQCAVgppdXKgWOKTiSGzbECF+CAIcaAqEqk6AYOhBiYHANTQGD3JlrqhkhMIaMH3g8hCEEDSjF2J6lDLygxBHSA1lrZhNFTSClHCmSuar8UXQF2Ky9DoBQp8ivRxLB7fTusHxHcAQzRkAxQzVu1RbDwiHEYk1zth+thGIhZTUQbYA6BA3JgrqWeXk6Pj/cxxcPhSrWpiopqUyNorbrbkBNcX7khMbX39fj0dP/hw8XHdh2mkLc4LOdTK1trrdWtlqXV1f7yci4oLZVeV0OvF4nNvJUqy9rAESiKhKZSxV21SO10NlElRqJ9CLdBUgC9nsI3d3d//Ztf//Vf/e72ZqzzodX1cL1vWx0TDkOsWwUAUV/WdlrreWsFhQeNUWNSYgsBmFABO2dPW3MqRmfRZnICqO6t1rW2X4z5mCiEizjykkZGhJ14gl1QatqNQEwxx91uktoIi1RR1SYeQogh5Byv9uPN9eH6+jBOY4oU1syiEQkd3FW1gim4uVYyITdGDEQYOMeQY4whBCK3js50RowxJI2Buy/XwQyY3EFVe77Nl5k2ABDcCTmO434cd0TRndgDIDkwAkcI3TOurmIi2KwsWRMH5UjcvSqsF0OKWVPtyo2L20XNpIEZdq5niICmBrU1VW2ttboGRlUlJg6JTGCT4rZti9at1oX45s3XNzc3h/1u1NK81Qj4zd3bcR9WXe++/tWQh08vfwo4BCIGRifqnRiopT4+z++flo8v21J8mHYY4svL03w6rQ+PooKIMUbZ75AopLxu1RxFvYmcTi/vP/z0M+jT4/3d7bvbm69ur7+6ut0dDmNtRXUrbdvq8nJ8en55JmJwF1UwJfQU2MZhYCwlR+KEr6lXfbQGrzw+vwxdv1yWe6NP1QAcyTsit+tGiRCQupe5C7XNtbV2nrdlWVUruhBQZJ6mMecktZwXeXp62eblHnDdyoenl1rbLgZw37bmtQG4ms/rqiJE4FRt3oY83F0fQopViiKGHMFtXbZlK6WKioBpirGaV3PguDVXs2WeHx/u35b4q1L3AAAgLsfy8OH0p8bnjNCOT8vyEvfTld7O57k2w5DiHoWXx+Xnlx+fQ+BE3mLjq5hpx2ouZsWtijZ1cTU3N4iAiK6ecry7vX337k1OeT6d/vUPf7zfahNVVQoYhpD2qWH745//9el0THkkJncnMCI47Iav3t3dXF9djYecpyEPrbbrm5vjtt0/3a9y73Ea9lfymmJNiDnxmMM0UAjU9U3wSuvuX/CpiKFuYUQkcLc+sNrtb96+++3vDm+/DtSW48enjx9fHh+s1cxAsYs3+8PsgAK0AgfMVziMlG5QV5jZ1ifdZpBV5icm3t3eQkQ9f9Q2nx8ftbU8TTGGcchWqrTmYNy7ugRfplgDXExvDESOZt4rGO5QcCQwlKallHUDZlWz0tZa1loWrJI5xhDyOGFKSmAGpobgzB0FZiplqcXQp3FkJGbmEFAoMh+uDvv9rkOhdtOABE3bMs+mynyhcnbEPXZkkKq0JrU26p3dC7H6c0/JbJjX4elI1SmdE+Kt+2Qkcbz457rOB92Z3BjUgKqBNzCbkvIVMvEQMIamdp639bRd73IMmpPVbV6362l3c/f19f8+3ty+ub29Tu9//APqArXWeS7rPOxGjmnYDTlEe5zbnx78357g6WgOzRGd2OgryLcRGqEboJi5FYLCsKH/Fnz45LRCSMmHAYYJ04AYANQxYkxhnNwNQLEtCmqmHgKlGCKzqyzzWkpJOQ4crem52v25jrP6VSDORAReFpHzVk5bXdV8IMOQUhpjPCMVcHFfpfp8zG6DmZVBMzSGIrrUuqxzCGAqYMN+n8lMa62lEloK8fp6z9FfjtV6Ut3rSkZkMVK+HgkyMht40SpNtE/I3FNMeT8hY6tAZJyMokCoSqX5othySomnQa+HtEeOYl6ahFaTGCeIzCHGEAIglFKbyLqs27aVbavbFogAYVkWd8tDDhyvr66l6cvLCwGVtai05ynvYeBJE7jJhl7GHSPRulWHz7ZkxO7bASICR1UoRc+nCoDTlJCg72un01nV1IdANiUAC+5WahPVZsBziwpx2GG+AsEIbZ/qVY5XQ55SRIQ45ne/+vZwc/DaUEuwrRXhzh5JOY/jFCJhwrhyeEA4g65oq6uJIjqRIokTV8WlthXtnEgcrdVSS/miQ4bMFENA6m8hIhMFBiK/5NoAGIkIEDCGPA5XNwdGSmEtW3XTyDAMYRrCFMP1brg+7A67KQ+ZmcIwRgPmiiJra61VBzIV1xLcEzO6MQEFzimlwG6q7l334YBGxICBKTEXInslC5ubtKYqeNn5vujEbEsRFxVrRY7PJxKPqtiPusTMZOCtiViTrvoD3h000m2KVzEYAquD9G60WtMK6DEEABLpBXED04sjxwyQ1EBadVfseHgRdCVwJEC11mpZ13U+S93ABpN9jDyMeRzyEghUQCWFMAwDKOScv5yOM1Po9BXqGlBAABE5nU6Pjy8Pz6tivLnbjTGWWjrNvpSVOXR9D/MC9JTzChiYA3EwlXk+n+fz+Xg83p3b97gbr68Ou6vrfZWyLMuyHs/n47IuyzL3MZGaolsg8JxyYFVt0lozAkFTlY5Zt+7C6LhbBGiticiXDxl1lvtFNQqfnBmEBEifDABm1pqtWznPy7KsJkJgBBRD2O12Q85t2+qyrOf5fDzX0s7z+vHlpGrbODDhWtuyybpVdTeRmuIwZCDYtDWFwzgyURNFgEjdaFe3rdbWEDzHGGMAh9r0PJe12Lxt59Pp+PQYDu9ELt0Lc93s5Vg/6HkLDu18ZtDrd2+m/fjxw4dl3SDFuGMYWsFTKy8ovBsyJY3XmcYDKXg1raalaY1BmjoE8SCm6qZ+e3v31Tdfff3ubaTwgBhCMFMRMfQ0pvFmf3h7l/dXxjqX06bbpfXtiqhq4zB4jJ6Yh5RDCMM0Hq6vp/PRz+dSNzOvdXXX1/sCkTFFSqEfRtFfs20vQtkvaoQuSWNEcDQwjiFP+8PN3eH2Lue8HD+ejufl6STbTCGmYULYAFr/bt165VDJN4ISeM/jCB7FZtMF2uzafDtaHgBukSMQm+h6PLmoq5s5oXehizsQgCPQX5xfLnUMoCN2uZUZuhJY6HklBtqsbGVblFkcXK2qiKqgilFA4pRzyIOgiWhzIbwEPZpZEynbBgQWYycChBCHYRhzvL2+vjrsUwxMyDEMkA9Xe2ZspVwe9/4hXE69riL9/Nfzc//dRQCZp6p5bQE3asaISDT20ARwcWvazM2xD5ndDQ1MurbMFHeZphQ5poCBPDNMY3xzNdxdT1e7gZBdCTkNafc250DCNn98uz8fPx72Q47RzRCRiQMyFtk+Pi8/PujHM5w2QDKgAhg4DsxT6HPRbm81Q2gI1eGt+yvcHtxBm8umbRWwqigOATEEDAzKQBE5IQcg76MfwIDsCGjUW/hGXh1X8dOmS5HWRFrdFLSUc9Fjg1mpOCGE5thbXD3MxMDUxMqqvUVnzpZS4ghEhlrEm8mQbTBQBwMX02aOampMHBgQ6ZMStr8CIWAeOGJijE4o6t64NUcDNyOAnOJuHJkA3RNFClp9Pm73p/VU/AxB0jBOcT/aVabJAbdSxU0ROQ0hphhyzvnm5ur6cPjIXWvfRYOi0qRVANAmSB3bwhiAEaW0bdm2dTGtbZug0jBRY8rR62ApB468NR4mos+4u0/aToCemyg+z2pWW7MQENDVXM1UTcRa01qtsDqYqPUULjAkxxwxukupKIuW53JOy/FxPb+hOIXEu6v9OCVoYtvSTs85lsPu6s31evfm9qVKnc8qZj5D2xyD1wZSwPpnGdQDOrkbQHFtYAsFJcD+eXzpGut8deYAQG6OhMQMr4067Ei5fgzjwEh0g5EjYVjCJnULBOMQdmO8GtP1fpjGlFJgZmTimDj2PpWriIoZoolIWQUcY0K1V2wrmKmoIlBgJuR+jup4lK74fF1J8YIRdv/3q1g4Pj6JaWnrls5e2tM0JEZAEkAzcARVKbX1WoTMycPt3TLFN1M+SEjEQaSKiruL6roVRMNhIGTtTeDW3BR6eWcCQKqubWOyFFAZIjuhgTUz2db1/PJ8fHk8H0/oOo2Z6bI39GkqgLa6vZxPi29zmyEfmsinjb9P9Hq/AtwN3BCb+lbqeZmfX549jIfbd+N+fw235naeT6K1N9hFbdm2KhJjjGnc7XZX1zd5GBCptTarEh2HfP/1V98ernY3t4f3H8/H0/PT88PT42OT6j2MWsXdyc1AEwGhE4KptmpuxbVKq6oXgBJfULw9IrFs66avYwsiSsOg4+Bd1fvaju9yYHACU3dDAFXbqpzm5XSel2VFVCZAghjDfr8f81iPj+vx6NumWz3P63ktqm5Aq4GJzUs9rdtxKao2BjzspjyOIUSXKuprVWAzIHQ/r9WkldJcLRKMQ35zczOMgwM6hlJlOW9PL8dtma1t9rrrAwCgKq0Fj2CGiqLlZpi+/vpbqqpudHrWSDzGcABMnWyilTUSDuNIPoKANzdxFzGtZmqA7uRA6ASKd4eb73/168MwzsdzKW0rpbTaVDiH8TDdffPu69/9erq6VQiIgSigm3szrSY1RVIo63YKiIHDbncIOU1Xh6vl5roUDaEahfi5fdF7roGQCZleozH7Anf5gj5j6oudXY4X3s2EYdjfDoc75GGb58cf/un88qwYYxjwcG1DVF1MNur+0W70UnEpUM6YhwBXFNCJDRmBwBvq4vXUlpObmYEptHn12trWHFFbu1imHRyhf2JfHl8uk7BX1E3PdAVXMGXEvoxp07Ju61xiSEQMpNSTUwGV2DhAiJxiX/eMrNOeiOnip1Zxc5WGyAAQUxqn4Wo/vnlzs5sSXtwATgg5J3BvzJ1cfnG+XJY5k9akdavCpWr0i6z99REDDM7JmSEwBUY0hOq+uc5oBaR5BXcmZgRyBwM3c1MXBQYshSVnSLsIV9lvUv7d91//h7/99e+/++rt9W3MtynsEYOq1O2U2P7qt7/6zTc3rZwp+O6wi8MY0xCQ29Lq4+n444fT+3uYNxL3AL0IZ3AnTBACEqGD9hasJfBkPpp/Ooqp+PLsL++lzCuF2sxTHm6u3xCwnlc5CzQIwGPIrArVvFjwwCHuhr0LlnWTKt6gZFBFby2sR+S6ma21vWx6tjyHvQIwpa2U59PpdH4Rb5fQDgdzw4Zx5YF5N+bMiYITmsToqJk5AIMiCIEGVEVgbb4tJSqAAuPnapkIUw7jGJgQ3Q0cHSgns2zm6BgIh5yv9/vANI0DKAPqcb1fn9/P83mxZ8qUhzzl/eRXrGNrUspJAaZSQ0gx5CGP0zh+/93X73/13ceP75dlSTGGPgZ3cxNECIQcOcfgjlst5+PL48eHp/uHdT2lAJFtijiGgJiu9wmHSAGzBUqHN18dYnrFK1xksJdgASI2o221spXjcUmJ9ocBgXMePHlOiSm6k3TqpFOKAybOHNMQhlTEXjY6l/r09PLzn+Pjv/7Tm/1E3+L3V28OiEaBABGVIaTdePXtu522dCp1BT39eT2/zF5cASSyqkNrPVvFgYESXhwWSr4CrAxuSGjkTp/G3o7QVYEUIwD2TrO/qhTM+1TQDTwwU+SY0hBz5GQKAL6BMNiYw37MN1fj9WGMgS5E3V4MIZUmW6ki4oZI6O61VlBlcwLs5UipFQHEhIkp58AIZIDWrE8CVV2RAjERoztR4IuS6heNGAgZkdxFFBG4KYsFon7CVDczNxGSCqJoyobkGEVYCtRV1iNQaKWqGTKbe2vVTQickVoVaapNvEdOI1Cjnk5ctkXKCloJFEHdWqtrre10Ph9fnubzqZYtB44hxBj6VIwJQyBiULC1lgXby3oarxfRL/bLzyXzJzY5AmIIIQUmsNrKvJwUwc2QcBqz62CqgKCm0KqImKk7pRRVxcE5MBFtpRLNy7Ks67xu5/PMT0/39w8fnp8fTy8vpWwitZSiKojOABGdwFPknC4yJqbgoG7cy/huYENEd1d3wr8UKyER0qvgoBcmPUcE8VWDgYQopstWz/O6rmtrNUSKxMyUUtpNuxjjy7IcX17KvK7rejovc2nqgCEAMYA7kjlU0dYEFXMScyDmFKMjvszr0loIAQGgdaeMoPuQCBFDoBQZgERxrXVby7Juy7JaWda16Ge7hRk2gcIeTWHb1hFjHsaUMI851IgD0Rh4JIx40bygOjHFyEQgiNb7BA4uDm5IjowY2JmNrvIu5FyrPD8fHx9fzvO6VWnmYwjD1X5/d3P19ma6uq6KAETIaGZGKiBVEaB6WSoBYBp24hpCzNN+3B3G3SlLs2qfkjc/7ZcX9/7re3TZf74wZPw7pGQ/vDHFASjW0upyPD/8tB6feDjQ7pbGPYQsFAyIQLq8rEsSESGwB7QA1cVdikvr6gGQAm2xbXZAcHAkbU2b1KYXl9TFz//Fr3/finn9cd3A7dXZAuSADmTqrZRaVlBnjhQ+M7LEvZmJWuh/i5lZjxF1c6vSSivSKhKoNEI3s8hhGsfDfr/bjTkHqVW7UBswhuDJ0F1FPumMvIMT3VW1v4md6fAXn/brpaETWq9swcV9c1nBV7TqapeBbP+k4MJaMQVVEPJSbNtsiyn426vx5mr4v/0v3/3+d9/c7MfEMcddDAOYqmx1eUavV/ucbgbAG0AzxJRHglCP68Mffnz/T//2/NOH5eWcmoeO6wPraCkydDUA7nQA7G0TwAgY/fObbwp1ofUFtSqQFZGUnOtKxOtLqZuYAFTvQkRQt2q6KcYQIASMBZp7xyxwCjwyZNtS02buVbZS52qzBXHzuayn8/HlZZ1ncGUCArgkvypqq9BqlBYlOjFihDgq2OCJKrbZSjNrhBoAyRpsc9UG2tzlM8WHiIacxikDMDiaewACigChi5IjcQphSImJGFDVtUnxutjWeI3ZhiHvd9MhHXZ+8JLmeall3Wo1t/3+ME1TLQO4TuNwfXW4vrpixBRTIGLGwNCt4HrJ7l1rbY8Pjx/f//jx5x+fn+6brWNK44C7IUwxIefDPpkFRzCgOA1XNwMH+uIR+/TPHkTY5Y9q3nJmd0xDiCnFwNOYhyEiUYdL9/YQM4fEkRz9DLqBHbU91uXh5Vk+/Pzjx6/fXL3ZjWOIiQjdtWqrbaveJDFf78Zv3908zs8/3L9HbW2trt2NCCYGppctgyNRJEIwQd/ANnRFwH7s+vJ1UXBFcEZCAsXPuj6Ebi3us4IL1peZA0XzNOZcN28hkh92w81hurmadtOACE1bqYUsqImatk5TMXNDMJPaaqlg1nrAr5ubt1ahU7lDDwWmLp82IzEVd0UMzBAYmNCcQqA+vfnlqx++f3tTank+Ws75d99+c3d7ldmJXC80cjc1bc1MwcAVDcK4v7mdQrK1nasaqjlwjOOOAFyl1RWlILg1N9VLpAD3hU6ltVJK3da6nqVVN3FL1sq6wMvL8eV4Op7P2zq7W4x5GoYhZ3AzbYgeGGNkDNTAm8iplHOp+sn65OAGZt5ZzNb5+ughhNub663Zeav3x+X+/r093Pcz2TTkHHBd5tpUtAH4MAwhBCIUlfP5VKWmFHPOy7zUWhF93ZZ//bd/Ht7nj/cfji/Py7qUddu2Usq2bZuqIkFiyinmGHfjcNhN+/04RgrYUFsnDbhd9Cy9iOn0x91u+sQjcffW5MIyZiYKQAwXtr66mZsjEYUAYuta53ltrZopABNxinHIaRoGJn6Z5/vnF93qed6O56U04xCGGKchYfetmJ23YmrEjEg9GXs/jWuV+6cXMdtNY0DQsrZSSpXI4eZ6R1HC8SwiY0oA5E1RJTKBw/Px/PRyktcOmfkl6YII1Ww5L8fC62k1CrWKmCEzRabIlBgd+64GAM1V1Bm6V5wRESl4zx8EQghslJxd8eHxZXs+//jDn3/66efH47w2NcWB83C4Hg57Y65ggoToRA7kYGAGSmCmJmbuBjy2tZpQHEIaY54ohFfZxV9smH2K1CsMhwtaAD5FMH9uz3g3FndHPSCCmZZtFbU6v7R11rYhgjNrmtzcDN3ZTbqTCZiQOKQ87vdpzKBrK6ucn9p6BhVwAFNsBdvSXQbGQZu4idV2GT36Z5QwAXSV2Kc6prPdiBzJDV3AFcCBHaGLEBHIAERFpBGGfuEmPYrRamullHVd3Z0QRWXbCrPm3MhsXdfOXAlMpk3RRSQw5MBDihTIoZca1nHUREzE8JoU3CGiItJaM4AeoZIj52FgDgivbaPXqzGCGnCNiMGdtJmJW1Vp7opAgIFjAGToAjMwg+qvkylzXWs9zpWRr8dfff32N7+6+9/+/tdv39wW0W0tu31KMda2te1Yzg/oEmHiKaUUQsoYUggZKjz/+PCP/8//9D/+X//p8af7VlsgNkADcQBiMIBNvVlrFGLPPANkJAR2Cj308rWmJJeoWxILBlYbVCjl+EBIqmoKbtiKyCamyiFo8/llC4FEhIxSHAlCJp1yvN2n2zHso+1YLQY1gzZv23KuspS2lVN5ed6en31bEzF1/YG5gKMbgZGKrwu7TzJGol28auBVvM52nusm0lZ0C4TsDbZza8FUpX2WXgARDnkYx0Ed7dI8Y6KIFBEDIQcndnA1aermbtBcPPp0GydET3HI003cH3i/tytb2VVa22xtUtZW1rrOS+TlfCrbSojXh+tAnGIiohRDSpwj935m3UqZ2/Px+Ocffv7XP/zrTz/+2/H0EHcyXg37q3DYx3EYkGQfh2ZJVQwoQ5z28dM4CRE4IAAwA6C1VlpDaa7aVYlq6vvDcHWzOxx2+904ZCIU8GbmtbZ1lRjiGKNbretTqd7Wk7UZXE11nk/Hl6f5+HK1H8KUAEzLUo7n88NzmxsIe9ObfXp7Pe1iIIGyNGvKDkxoTVwboiAnDoFDREBwQdvcNhN3g8AhcvwkvTD36lpBY0eP8aW2h1e1NX5au8kM+uJgwuABOXIe4hjw9uZwd7W73g9jju62bRuFEEIQldaKiOnlmCCmUktppSGCmhOjupsrOlCfnyAgmnt1Q3UVJzFXRGP2GCCGTuzsiGIxUf8CCQ8QpiEzQWtjznk3TvtxGhgYTS7aawBzT3rx9TkpBsojuKzrcWsmikgx5JE4qrS6LWU9KQJ2bI65qLo7M5mZtNLjcOq2trJ22nSMtMwnKtv5+LLOi9SC7hyoVw+RubPgCDwGzjFEJjer0pZlW9fPnJiuhG5N+LJ0w6txDPdjvr3evZ2vN9Hj02neWqCwG4fr60MYYySbl+28NVU3i6qKKKWAiIo1MwV0MxGprZXT+fmHH/4YAh+Px2WdaymttVZbrbWU7aKdzikMaRzzYbe7PhwO+3FMFFDQRF+LGINLv8jcXVVTHMfx00PW/z4R4cQABJdYou7C7k0mIMC+7ixLOS/ba0cKu8RnGHKKEd3KVo/nZVvL+by9nNamPuaMzGHdiKmJmDsRxkAxxsgB3QksB1JD01Zq6+apsi5lK6Vq4NgQVpXTuh7GdD2OOSckMgVVLU3OS5nXql9EpZsBOJEzGchm27YdH0458LZuahaZOaeYMyVWU7/4zb0DPjmEyBelEzraJT2DwBgcXX1Z1ueH5Xz/cv/x8fm4rFWroZhPSDyMPA5C4CYOAaGHA/mr+gM7cV+1uWxzXc91Eafzus1rXbZam+i/E2BceKmv98kBuqr+0pX5VOm8/qbbGi+8ZUAz1W2p22LawJoLQl2hrECR40RZ3M21mhkShRRzHsZpxzHWbZH1qGU2KZ1A08t2NCGiEINr1lpNwPvI57VK/mUB9peX89nVjwg9hsIQTB0ciRx6nSeCAo5oINIuWZUAG1FcIpgRs5nUUmK6zK/VmkiVVtyo1eSqrdVIQOBM6ODmpmZ2MaIjANJFFQ1mamqqigjSqgI0aWaGFDm8Dot/kegOBlBANxcCdUcBUzRDYIAIyNhLJCQHhL58ggIoYvc/WVUQHNJuf/P2u+/f/fo3d3dvb4cxLsey1DUvxypa27Jtx2V+BFTEPdIOeWJjMijH7eHh4x//yz/+8//x3/78j39YjzNAr1CIwBggIIh38jWqizvTJYHvEghff2lNVAGtiI4O5BLEtC0VevAIoDtqM7cu92c3bOUieEegiBRTOES72U/Xu7wbY4gRQwhMqWFmZRBxW7Z2fn6pLy+4rqxCxIS92AZEiIiRMRIE16ACreUQdxwb4go+a2tVUTxod54RGEpRrSYqvzTBIBFRYLhsjYzITIGIgZicUBGaSRVQYAruINYUIA4UE9EYhhgyheQhNjKmHGiILDkSE2hb55OU9eX56eP79/P5PAwDE8cU0UFba3VjEDUp2+l0fjkenz98vP/hTz/9+Ycfn58/im/X1+PVXRp3mBJEghRojHHz1KqLqQFw/CyEJ6JhjGngYYghBES3nv9gZuoiuq4eIu8NiF4j78wBIYRgomBFFc1EtUjTWlXbbNrAwYDNXFqry1KOR64xuEqZl+fj08eH7VTIGIlj5Ksh3UzTLo2PvjRpTdyopzVZZOdMecghJnBUUbDiUsRIL1r4X7z8apepTZ/1gHcmGXYPf6cv9AlRhxY7oGpTcCBkxpjCkNMw5pwyM5lrbYLrFmJAuLC/L51UadqaSuufIXEAQnUwcyZEphRjChwCIbmBq5uYioFCn3n1BFrviBjygA39l9cStipiQHHAkOei4VymiOTeRMyN+hnu1aNtRMZkIufTqTmuTR1izuNggBhq29bT87YcI2IkDBx7R8HMmdFM67bWstZtq2WrrfQusVtLKcSUW6kImlPwQKQhp5QiA3jbSiuFAYcQdiFOyK2Z1Lod57Ks9rrPmHtttZQSzKgzPYnABN0TwWFMb98cFqkPp3nW1lrzSEPi3RAjK6FvpW61FkRRDUGIAhJVact2LmU1E1Na1uPTYzKtzLyVy6/Wmumlw9TjyMNhF+6uD7vx+np/e3O1241DJHYBa6ZipuZfJPOqmirGMAwD82sR466tWROIqTsSLyM5U0Qn7MnRgOiicl7WeVnVHIkQgQMP4zhMIzF5U1Aomz4cl+fjcpo36CC7Jg/zDADoIGqulmOYchpSIkRQI9eB4GZKicHcSpOltrVpbWa1HGsJLxiYdzm92U131/u724Mhz934INb0y3Q+dGGXQBZZMShr0cf3D4lpOS8abeCU8pjyRIlEW/943MyBAodxyCEwuqO6V1cDBe8sGCtWF5kfTh9++Li8zKauFCAkRd20bOrOwTk0M1FBAnIyBwRDVwVXJCUCUwNzrecyP5weg6/3718+fPh4f/80l5XjAPDZlWzuaiZdXup9FHKR+xl+Ev05vYKZHPxyYuh6LY7IAbSToDo/0kAE60ZDCld3MIz1SeoqZhbcc8q7aRrHEQC3uuo2uzaEV503OAIjInFIwwBubV0Bhfs73n+E3nwhQLvMZz7PxV9L6I70pxDRyV1BhQQQHIkAoTPqkATAXUykqjbVZiLgHpjdlTmAu9SaYhxy4BDWldZVRaoKrBwCs5QaCKw1126Wpkstz59jBPrvVJqIdJJ9a0kBtm019RTIzJFePaFfKJXNrNS61pJSZMSAGCkwAQPET+4/uHwmat4cDUh7LQMIQjkd7r7/m3d/87uvvvv69mYsXlrZKlOTdX7/B1RCay5bbWcKqL6YXwGqiwWXp5+e/+n/+Ic//Kf/+qf/9j/OHx8jQEq5NxwSACGYuzpUcjG40JBdHRWMVMWsziZfdJRdmtQqANwVRhdLstsrTKo3v7rwvzeYQm/FgzsBjInf7oa3b/a73chDljTVyADqoR6mdF3Ls4ibtmXVdR0cEnV5J5JDBArkHOOQQs5hzJEiO0j3HySKQ4ijcmie3FeiCqAdNaRo5rVY29T107WAdnZrJGJEJyZivpxHXEzFrahsSk6cIgA0MQHtoRccFGME75OKBUpksH2OY7rucOzl+HI+n35+//5f/se/nE7zOB6G/dD3zvPx9Pz0MGRSa8v8cv/w4Yc///DTT+8//nT/9HQsdZ5u0t23+7ff7tPogMWNETQPYcQEJFaxVmnaPrWVQqDD1fjmzRhTChyIQMTWrZZNWlVTc0ARK1tb1pWjuVNASxGHYUgctIm4KbSqm2oQsY7IMwjIOY1TStG2uj69OFqwZm2dn58ff/p4Oi1klPK4u74emN5e3b67ne+fT1s7Fy3s5siRmTOHMQ37iXioxbCqWZVWkVibdVW8f/GMmZs2qVidzN0+RQ30GDVmJuaeHF1aRUF30KoqTb0vJdhj9hRQgdzdDbCKO4QYGCkwMXrTpq2aCgKkFGOMMWdwV9jMMXBMOe+mMUUOYObaSWDNrHX7i0OnalwCCrjHFXZL/hfuJEUycmA2hKZamvTziXgPzHF0DK90CTVU8Nrq0uYi3sxDGHaKRDGnalq1lbotVSSg55QRoNSqqtTTW8rWyiq1NGmi2sSqahPllKdp343BjL2AlcDEiK22l7o8PT23UtkhIwaz+byezs9P7x9vr1/01f7aOzGqQszYGR6vsXaMMKZwd71favvw+HKel3nZag0INqSY4x7dX47zupVWQdQ0dp8XlVbWddnKZmbmupXtvJyQgYlKqSqCbmhirbZaSymtCZjJkELgaRqv9vur/W4YUyREI1c0QlXsDZtLuWpmZvSq4rmcX/AiHe3wMe8lZB+YkfV70U+jbrZuZd2qARARE+UYd/v9MAyt1LourTZw4JAoimEVEa5NzFUAEQMyIaYQUgzTkFJkU2nVJSAi7CIljOo4IyyF+i7jprXppoCIpUqrCoj7wy4kBnBCj19qFwAAiDEGyAEyY9ylg2zb48dHBKu+0T4DkCMbEDi5k18SYtB77rphd3KAmIuregNXBxSyTeS4PT68/Pz+YVvL4XDtKQlycVjFNjMhNMJqguJIRkDojm7gPTm7m7UNwdT8uJ3j870s8Md/+fBw/3gqJ2DcH9Jf9DLAP2UM/88IMa/aeQIAQgNA9S4IZqYQQuSgPccSCYB6VhW7Jsa821sMcv7oK7prdxQBgLbqrm2bpayv3pzeVOo9KyM0JLJwUcRi1/3/O+3Ilw/Yp1/Wxb2Xng11435HdvYrVFURQRJ3V23uEpiYIwMzkbSymlIPCnUHH5iACQDEtLa6mTkhBWJpLSXubA03c4S/+GE+NbE72bezes21o3w7Wuki2fnLWwLggKJkymKRnAmDAyMGhNB7Vm6GFz4koDlYRlAHU0cO07jb3339m9/97du/+pvdzfWQiWghXibetm17eZjbuZA219p04wAKDU2To9pSntpP/+Onf/5//5c//+M/nz/ce6k85BQ44KWIYYeuWUA0AhTvoKOOtnR1b67N1H95OV2ldHlw0BFNXd0uA3oz6y0Qd1QDEQfqdwwZMXIcx2EYBwxBkDbgYmRu1UgwKFCpsm1VagM1vky1AAECoiMxQwhhzGkc0pATMquqoxJZSBynXVUn9QhY3CuiMhkhAKpKNp9C4tcb5AZSrW2CzhguxG0KhJf6vmsvHMECUQ7MACxQVZuZq0KTSAHZCcBEZZP59OSg425HIYhq2dbHx4eP798/PHwU8eurm3HMZSva6nx6enn2MoBz29px8fvFH87t4eX8sCwbM+0Pw5t3++u7KRmgV8DAbGOOLWYIhps5tT7F/rQmx8gpIwcOzDFwSsCRc5JaTaqKKgCKWK1SKzIRkAdkDJAC78ahmSKCaBNRVSDCENicFPBlKe8fTmg878471ASNdFvm83I+b+uKCqoSYiDj2934zZvrp+OBsajNqr0JgYF7BpGZVqmtlVW1mak6XvLhTf7iGXNzVSVHdDdEUAUAfQ0v69fctT8XJ2wPg3YEwKZ2XtYQCIGGFMGNCCW6A4QYiDgEikxC6EzO6fIgIztQbXWrgu5TTHmY8jBERtcG5g5kDqJQxWrTZs5RHdFF+imw4///YhkLNAzWqtQN1RENyS04MAJFcG/FXEGQ+noq5rXKadsej+fSlEPaDRY4T+OIaJGRA5nZ+XwEbbshM0KrRVpVFWlFXqHj5q7Om9h5rWuzOO1jGnfjwMziptJADE3dbF6WPz7dPzx8rKfzNcdoDqUej8f3Hz/8+U9/Puy/qqV9Xgcd6JJKdBGXmBt0+0Pgm/2uiN+/OZ3m7eW0LNtWa2PCw7QngA/3j0fQ1szFwAGZAbHWsq1rLVUBFKCpNG1mgo51mwn8aj8h8PlcpYlpk9bQwR0ixyGPu2mchiFwJzy7mTVp0lp/qvpveqQZuo7b5z4sEo3jCEtSt9ZKd413HpSrdr0CEjESOJQqW1Vz4BAi85DT9fV1ysPLy3F+OS7rmnL8bn+13xf198fz2dwNIOccQ/dKIAKkGHZjIoBtW1oBNxsCJ/Bd5jyMcxU1BQMhESPH6IQAQICiWpo4UopxNwSdErbxsMufIISElHgYeJdwR5FurvlUHh5+/lHKNu2HccitGRaVWEm433QT6bUdoNZidAmqdlBXdyEwB1LWrS6n89PL6eG4qMHubQSEDX0WnUUntere3KAZWEMK1HXxFwem2sXl4gjQUNVPTezp/fxf//M/Pz8dh0O+vr2a9nv8Aq6CiMQYuH9qCJeMEQTsnLeLSuM166OPSS5siU5JT4mbo3SfPBI6ImJkHBOPY2qkM1G3EZpbrQLnpYmay7acpYmbIxBcTEWGKiYFjQKTo/Wf1L/Y6XuVdekL22ve5y/Kmt6R6Wpd660jNXEHAjXTPhZCjuQmrRDDOA3jkMaUVez4fFqWE7gzc0wJXEwrgLa2lrKs29KJgyEEF20tX46DXegM6OA9rIQQ7bJy9jOdh0AhINFr27m3YF4BEfhL4A07DI47gEE8kjEAoV2+hh3JARwJwBjcXA3dBkZz21R5GA9fff3V7/7qr//273a/+c1sBozT9GY3QRraMj96/ePLVq2ptFalgZiahuaHQuvT9sf/7x9++Ic//fwvP25PxwzO45CYIlFCCoBkAP2DBwACYmAnuEho0cBRQOEXtG5EjMyRmYDgApwlos7JVFVbl+LuKWdiMnFR3VoJASNjYGbCwKREFXAzX6qSFyXaHLYCdaOHBT6+LMfzgm6BGTuIDMDRqcfTMOcUd8MwDkPKCQArmCOGyOM4XN3cqCOaD0zi4ESYMzAbkqi2sn53dZ3D58DUtkk5Vy8MESB4TAHII7s7moG6M2Ea4sRpP4ZmPmuoXlurzYtIiRp5HyJlcN6W488//5tC/eq7b3f7G8ekJmUrdStuFgIOI+WMdWtS5uX8cBrXqoZj02HhuFxnnjHfv0eeaXfY3b65ubm92h+GuDSURthCxGmIPkwhYxpoqHy4mn7RHVeptVEjTxhCj6zKvgdVr1tblq0bT0VM1FVB1Jr5ZkuOYT9NhlC0bqJNxHtSVWAVqNr++d9+fniuX785vjuMbyffBUtW0RWccx6tqbmvyyrAh8y/utt7++puCqfl5Xg+P5+Wau6GUrXpSQTWZatlNZEuZDc3kSYiX+IJPvELLocJA3Xp/tdPqob+Qvawhe41R0BHcuJS24f7p3leyq3sxpHRYwxDDsg0AoVAMQTruUsxcogcA4dYqjy/HJ9P83xac053aRymXYiMrlVN1J2CITTz2mzdSjOnFAOAqqAhErv3rpJ9uY6FtVapZVsXTCES5EQYEBiQ3NUUVA2qmaqrWqlt3rbjPN8/n9zx+vp2zBMjhn7IJcx5CCk3s7ptpi2gdb9+H471gg+ZwNEgqLa5Cvk2rNuw0/0hxZxRBbqSRsXNBeC01uOy+VL2A0QiIiylnl7mx4/Hl6dZ2md30qduxqda0sHAgQGRKXK6nsa311cPL+f3988A4K6R+fb6kGL44f3Hp9N88VMhgJIB1FparabKzBwjIJipa6PAQ6LDkH/17TtGeP8B3Np5Xt09EhNAqXXbNhVxV1C/BMdcfomJmIj3z/TyX1prnzNHEJGJiKg1MYcuO4BO7e1yH3/dgdRaU1VHICYKTDnF/W6XQjy9HJ8+3r+cZhXdHzLHeJwXByvbxszTMOzGYQzcw9D71tKkiQi4r+tmgTMDeYQY2W1kukqs3AkRoIDqJqKtWSl1XlZCAJWAzvgLqFqM6e2bb3VrEYbqZbFWix/Pm5SVY548j/l63N3SlCkwqUKvMPRSZQDABRDYieg9uwIAERWwlNO6WmkQUhwPVwaucF+aVvWmXpuUTZwMGZiRO8LNvIeQqhl614GAg1apteLj8eX+4fF0nN/kG//s1/n85gfCV2EGutGX8tKLq6ffHvg8xAAAdzRTKQuit1KlbObur9UOg6AVr7O1TVUM0AHVoFQRW0vZAERr818qdMxBTbVtshkE1tbc9ZdGqss//6cb/+fvY26fixgzM7VOJ8Ces9d3USQ0V0ba7cbbm6vrw0GqdFd2KdVNwElkm88vSFS3RaSqNFUQEWbq2XgxBubL00E9OOkvfV0G4IQQAjEjYD+EINCl9XTxhP/yF8dwePvm9u03aRw5BDKk3nEhcFZHcDRFsIvXHIlpyMEBt2p4uN7/9vdvf/ubm7s73u3ndTUiHg7DLu12llOuc4Fmx9rOTeZ5U6mZSHFRf9p+fvnjf/nnj//6fn1aXDQMIQZmMZQLjds6+dRN+2UgdnI3Al5YMdIQFOWLbJbLY4fMHGNOMTlCbbW2aqZEGGPoXq3+UvT2ZyBKMVzgpwCnZbtn2AUsTR3m4rgAVRHfytOpPpzWed0ms/ALaJgDOhEEphxCTjGnGEJwdzUEpBTCOAxX+705rvOMKm7GIcRxCjljjA5oUr958ybH+PpoWd3adi4eyYNb0JiDuw1RCQJ7yMApxInSQCEjmgt7A63SildxwmYR8kg0mIP4usljg3XzFMDBxqqltMWgjhOGyMPOUpLRIEejuBpIMwGvQrOmliNNxzTsU51xHHc575gHhAigCHjxjDUxrK4NRdgs/OLY3xM5xA1VkZDRgSMxU4xkxrRBX9Fb01okMQw5DDEMMeTAIUYBq9pMrTVx55BTTJQzN6GH4/Z0fnl69g/7eDfKTbZ90Ksp317fTnmU0FpTaaJgI4e7/UDv3twM8ThP9y/PAR9Pa3GO4i51g6pQtqAthMAUCZBMF/C/BCy9li8I0CcXn2Ks4cvjjV8So/roFomAyACb6FLXdSut+X4axyFN04CEozoAhRB5nCIxAjWRno5BIWm141KeT2vZKoSIMYWUmbqCmN1cgJr6VmUrrYmKQ9d6ikgfoMJlSfrFChDu7x+sbXU9hqvdkOgwJUETk9qaNXWxVrQssm1lXst5WZ7P5+Oyns/bMO1vrm52Qz7shnFIiA5I43SYDjUeX7ayLVtBEEYgopBjIObX0kIViuNynOtxaU3iuo2t3cUYxgmkqTQT0YpgwCnl8Yrjaa5SieKQwjRRjOq4rr6t+kll6Rf3jvV+RggBEFERwEMvId0T0c1+f3d9fX14ltoCU0p8d3sz7aY3P314epmlnXVrUlUd1K2KuEogTsOQ8hBDYHCXmlK+e3P47uu3f/83vyf0f/rnYCaPx6VUmYaBCR+fnn58//P33321n/IuUY+GUZNuQekafewzF0SsXqS5fzbEuntTaSLWLVd9qQq9yRQdXFTFezSBuHUVZo8ppxjiNIyBeD4d7+/vPz69oMNut0sxvruZmOzh2RHpahrvDrs3h4GZ1q2+nOePjy+1thgYidbWtlojQsAtzhsAkMNVJMqkDtW9iK3NzJVcS9k+frxfzkMk3mqd52Vdt0/08XHY/fVv/v7NdLcd20/lx5fHHz5+PG0F0XNrgfHw7va3b7//VdhPzAy1dcCIau+69pnPZcF3gD5lUnBvdizPT76anWOadvvd3duvRBrBD9IMDVyhzLK8VGcPIeRMFCISgalWa2LNrU9qAaBpIwSIBJTGaXKj/f6Qhx0A6yewYDc8EwZGJqROZUPo9Auwbkf017HSp0LigjYp2/by+DMRm5pIlda819pobqWtT62cSm1l29QRIZih1Aq1Ib4SqD/VRnhZVMy0rqu2gohm2mOJ+iTptSPcpyjAhIGI6Qvi3evI6bJUqamrw6WuBjdCdPceJT0Mg4O3iiHwfjfdvX3z9bt3rp5iGIf88vxStgII67p8+PgzIok0V0EAJmSGIaerw+Ht3d3hsB9y6nEtgS5lib/2IfrAiBA66JF7N9v8gqgzNRFTdb9o/j6vYrvx9j/8Td3OneoD/bVBBVBH6XFlTbWJOWJKeRjH/W6ilJsTTYf87tvh2+8a47YtTZUpCZBCcMdhuPn2u99HjOtpLR8enx/ndl4mh5d5++OHp/LxuH48tVONhgkYq1lRVzXv/HxOFAhR+uT484DPyXu5aAgFAbA0eF3HzKxUEbHdLl0drq4OBzN/Pj2dF1WtOfP+MIJDqU1FwSkQ5ZRyjinnwOwOrW4/3z8fX1DK3S7HUuomtgAZUEZYluXxvLWtMnrqNeNFfk5+afvwa3ZsYEK7JKFzjCmnlHMyxxxjZQawyLiPPE7juN/HmBjh+t1Xn4oYN6tb2ebVIxqZknAirVXzMIYph+nQwxVCRoWtrmWd23qysrqIKZkdTO98vIE0Oi44lHQt6KvGh9WbybiIVj9ybrfvUhwoHbacLV/HaYiHa8yjAUvjdbVTUwEaw0i7652tGuPONa0nWgLtJCGFGAa17fR0etKnJptqcWqVz19kJ4EZSN8ai0nVJREFCIFTjKpW6iZiwYzQVpIxjPvrw9urw2Ec0e28nLfSTE3Vaq3uFDjkyLvdUGU4lfiy8GmuH+7XHR9vc/vqin/z9Zs3b78+XF21Urd1W5bNVEOgfeZ8vX+zG4rc3L8ccgwfn49rs615dWtoMQCFMI5DZAbAI8J8PH7O4+7vvBmYo0OH3vXn8TJE7g7yS1rzq78YrKendN94n1hspZ7P99OY797cAPE4Do4MxCnlPI3SmhOfTvNpWcU8JDvN68NxfjmvbjYAOQbkAOBIntLgJEV0lXpet6UUBXRC1Z43IARAzJ8QUr8oYj7eP7hWLTO5Pjw+mlszbSpFWmsq4rXoutR1LfO6zstynJd5q9umgJGAch7GcQzMy7qaA8eUhonjoI7rsorUFEKMMecQU4gcYwzMHc8IyYiOZ2hViXoqKA8DNrZaWkiIpGZEfHPzptViP/8YI+Ypxd0wTGPMQ+CMGL9YlDvpLnQjSz8sW29WqPWCOkV+c3P1vdi8bGUrd9f7q/102O+4xB6QGgN78hhjUz3OZ9cWA+dhvLq+HoYhMu5yvNmPb24Ob99c/+rbr377/bdu7Xw63j8+pXifU7y9vR5TWtb15w8f/vVPf2K0b++ud2P2S59erC9oX8LuVBq9bjqvD1mffSMyMQEiISNRx/h6bwZ2h9OF/eVIFJhjDDmFISc0f3p+uX98WrcWmcq2RfR9DnS1Y0J3uB7iPvN+iAY+L7ps5Xhemsj1bseIrYmbXRrd6xaYx041DlTVaq0q4ioElhgZrCxLcE/7XSCE7gN/3ceZeMqHNa2bvZRVTy/zutY47hhsrb4VH9PN26tvx9vrEKJt1aXbwVQujatexLi7ec90I1MwF30vP/3MDw5xnPZ3b9/+9je/K2X7h//2LwSBXGWT5/vjOOxu7m5vptvr65thGIlQTUvdqtSqDRBSygBQpSJACnnPG62xlra/3cchqwJA+NLVQwh8EdZ6723QlwXLaz39SdHyelfNpJalXZQ07gDW86URTGUzrWZexcCECF+/7PXUQZ14CK+hkp3AS/37eu32SO9dTriIWAEd7FM/Bv//dmI+1zHdDu49wtbdDPzCr+MQeoAUEw1DPux2h8OBEU0lhjBN4zLPVZq6IWHgEONhLNX8qVXNMU7j+ObNze3t9TBkolej96cS6qLkvlSrZgpg3INXGqr4RSh6+b/2yzDeXsQMN//rb2zcgBgcOyAH8VLrOIA7iVlrBkTDMA7TOE17DLGoKUYcJtztNKBcdAOu1rulFHO+urkr66oYzkt9eZyh1Our65jjOa5x0vz1SG8pUETvbVpxUTQjwICcOBBg1151Ebi9Dvb6C96kJN92t9ccPqUnQef2c6CUQk6xZyZfOiWM45gQ0RGEEN0i85DjkFPKmZnVvLZyXraTVnQcItetKDKO+xCzEMxVT8vW1i1FSmgRPFy8XpdS8nNx20d7AMxMIaYYU4wxsJoTGIEheiQYAu4i7VLIQ0rMu3EIryMYuOCGAI0MAJyxWsNWlVKKnGEKaQdDEC6tznOZt01bZdPkZDpivTbbLUkoHVWfij/HvSGip7UhGEgDa7Y4t2FHw4RxV+MAMYcpY5gUgiq0BrXK1tyYEyCGHDmiiK5zPb20iBwYpoGYmBzaUuZ53pZVtGCQbSz2BZTE1E370ePSrui3VES6HvYTQkabuVqkcJh27968cdVa23nd3MD1UgytsDHCborIA4SsOGw1rLKdRJa41uLTOP61U0gDOmkzgK2nm+XA05QRs7qPiVzbPqe5yFq1iatozx0b8xBDcPCHp7Qu8y4n/mLv7/iai2unryrul2ys1/7op4F7f01fU0BQ1ZuaGopYLbWp57Hu96qAXWOOyBQiGojjUuXpNG9FOdXTsn18Op3Pc4i8kz4/CCEgYzBVrc20NG2bWJVLUEsnRTiAupVWCcE/HxFfX//3949uglbXrdTqwzA290vYmLk7qLmItKrSqjSpTaqYKAAwUowh5zy6w/39UzO7e/sWKADHpvh0Wrd1jmGIOecEecBhoHHM4zR249HodLiZY63TYZfGgVPimBgJpwmvrsm1iIyA33/19VVO4f7nAeqwz3FKh6vd9fXN9dXNbtozh9fdhVLK4zBwSiHEzjx1cBVtraEDxxDj8HZ3PUz7cRjquu4y3V4fhpy2Jr0+iDEMKb57967U9oc/bqoyTtPt7e03X73bTyO5Hqbx26/uvnr75u2b65urw2E3Luty2B8Oh0OKPI75u+++Tsx//NOffv7wAVy35Rj+/u9ifMPoYCbS+sb0qdKibjsL4VNN01+P3mIKHDhEYiYkAEeiHseDFAk9EhGzmIkbInLgnGIeYk5hXcqHx+f75+OQ0hhDWVc2mYZ8O+Wbq72b6baSlrrRudQ/vn/68Hg8nhdGHFJLGEwM3JzA3WrrqffRER2oqbyc5rlWIorMQ4wxECPkgNf7Ud3WdR5S/PTCSJPnx+f3P/388PPT+/fvT+cTMr399k5F/vyvf358etEKmabrfJtzVi6g9ilc+XN92hWnXWYSvdNnsud//M//HRCvDvtfff/d3//H/7gu23/6//y3H+KPXqWct5//9GHM+9/9+u/+7vf/4fvvf3V1dTBzcxVpTWtp1d1CCAAgl+ISpEj5/aZqlOi0rD/8+D6G/AsIYR95uDl07zS+CmD8VeD/iRljPQ4ELmWNvhJlCMADX8TBiHoZiTqhe2aP1GnMnVn7Snfri2ffYl45Na82Ae/nfLp8Sbfjm79Kj/11VPRpo7r8TGb+RSPz07rMTOgMl2/bGQ52sccAxBhDYAQLMd3c3Izj+Pbt23Vd53URtRDCMA77/dXpdIZ//O8vz6dxGA776c3t7c3NVWRyU0B6tXB18pGadkSWi1irzUEQU68mRFyaEKIHu9Q73kk9n88vcZeu/7dv+HtxZLwkjkCfWAUOTIlocAhmgEwxRo6RQy5VX46n83le183JxgScKDRgAGutVlgJAsVhzM5xqfJyWp5fzld5+Pa3v/vm7k7W2YtAAxcAQ1PrfhsTvcQ0dc2suzXrgQkmKqqiPc9Szb3VUrf53d//VdqNn551ZqTgiGZWtu0kqlvdmjRzIyADYwopJ2Z21UDAiThyiEzMaEAcDHDb5OeHp4AI7vv91dfvbqfd3rRsW1lKWc9zHkKKlAMkAnOnT0UHWg/uEKlmTB06mlOKMQRiBFUxKS6le4gwOJCYblZNObjUT7sMEQ0h7YeJYwRGBxOUas0bOAIESB650bxtp2V5WtfVGiAMlAmT+b5t1zrTQ3n/EgrwM8SVRhziiMEcGkSFoOJVvOXgnCkMECakUD2BoBq4aKveBFQFnEyLq1mRWk5LaTXsYzCIA++B8coCOarr4uePslXhrPONfWKpunU5Io3jmNMQU4iJYmIAL6V405TR3REoMBI6GYB5COH29hbcn44nmpeuwSZKbu10nFspMXocQki34/46pJ1tmy66ij3Mp4fzulQV7Yo7JHe0jpOinDAQmQvtEn715u5qV5qJoXdkgSMiBGJCAvSfPz6Ust5dX4XwyrvrkIOeWORweThfzxD9gESvJlgmNnBCBLuMuat4UwAgp0hMQEEUmjh0MT2Sqm9bndf16Xj++Pjy/v552RrFfF7Lz/cv27aOQzrs991FNIxDZqwiFTeorlDU6bLVBWYOHSzQpJVtA/CQwl9APMO8VnAl6BqEl8CLuNvFD3MRCqqLinVD/CvvHgg5cCIKIrauy5///JO4p3GKOcU0csxb1dN5Y7awSYwtpppTGscyTSWPmQOtbVVRMJfa6lbqVlpuCYkwOHOtossCeTpwoGl3dXVItsUcOVKKcUhpGscxD59USEQUY4o5I/WgVFNTaSKtWWuIgIEiYx5SzjkStFoC6pBzYOqrKBHtp/Fqv/ur3/261Ho+PYNbiLyfhu++unt3c92LmG++ent3e3112A0pAkIg2u+nw36fQhD1w24ccrp62b+8vHz4+GHM+PvffPP2Zh/IwayWampwoXtR3z6/UIB8vjW93ucQOEbmgIhudjliQ3/IoJN8m6qIAHjgy9EtBi7oXYo0JJ5ySoxM6KbklGM2x3nzUupS5HnZ3j8eH45zKS0FyqWKq4uRO4RLMeGI4rCpg8i81dNatta6wIGZAjOqgVkHNPa8h09PmbT68Pjhxx//7f7988f7n9cyU/Dhami1rLo9Hh/ff3h/8+c/r6UMQ0ZVBOfAnfLXCzv8lCAF6ODA5mBIvs3zspyrbIdxSkPo8mlCChQCBTDdzus6b2QcKQdKAaMTOFjiZDaM3AC8a8BNTU1MzaLjzkV1qWUpTcVbFf/L0h9eqwFE+oX45cuvu0xzPn0F+KudyYHgy0PRK1PHEfASVdE3s45EubD24VUd1B3U0M0eap3e1//s53aLfzHTcoC/7F18eSVdSfZLcxwCdkMPMxNRa2omZkDUiVahu7NTijGyT+NUxrwMTTSEOO32b97c7V5efv7p51bbkIZxHHa7cRgyuPbHGAGgz8e+mL73W9ydgGYqgnrRaAERd8Mx/s+uxshKXpdxBgqITJdnhmLIIY8xXw/5OsQdUaRAxOQAatiOs7S1FQfr0XnFHaC5AVWti7AVQE2B9601c8AQQoppP4xvD/vvbs32YI4GoOgKpqag5uZqPZwJwXsisEs33PkrAUdF1MwAXKvoutz99a/DdAmyZabDVb59M15dpWnkFByqIgmyReaYwjBFROqm3phCipzHOKTU8/zcPEkYp1zbdi4FVJiIUm6tSquitUoVU1Gt4gW5EiWE3htG+CTea63V7odOlFPMKaUUQyCCzvI3RTDuRp2ATA7Wtc8oZf5sUAAMxEPI07DnFMG9aD3LYm5owYW0QVE5HteXdTlJMYIpdR5FqJXXWayePQnnFdOZGQbaUWCHat47Hn35NCDmFMZdzLtEGAhRzboPQ1CBQ6SQaKooZi8ixUykwXI+DwFGjTWjWw7BhxjGmM8sDRy8uX9qs4IBiBgA5JzHcSDGECnn0DsxZhBCRER3DwSJnDvC3rSKuPnWpFTditRqJiSC2yamum0rphoHmtKg9dAoF110m4/L0+NpfT4v81byK0DJrVdjyBgiAzhQZvTxMGZ1AuQOjaROY1cHACQcAt0/Pb57c52+6PYBAHTAgupr5FMT8B6k5mhuzMyEhOzU7Qt9oIQIF2YoOZITGnBpXpqqgZrXKl1dvjVZqy5V5tLOa7Pi53U7rbWUKmbnZVtLqaJIxDGQAxCrQTNQ875HhhBijJcixuTCrmO0X+p7AlIAIHREZufsxKjGAPRqwXC3pqoOyGwEguAC4kbEKSUAPL4c7z9++MMf/sWRrt/c3b19O+0O0/4KkWsVQqul4OucvrsYQoopBgNbymaAa1yw2HXYJQHa7VV0Xsq6nRGpAU+HG3ZJHHLOxN1pIeSWmFP4zIRHxB7rbT3vSlWk1dZUGoIx86VjZsLEV2P0gQI4EfXaYlsLANzdXv/qm6///u/+qpTy/HSv2o5LRdN3N9e///7bHHDMcb+bppxIVYoCIpjvx/Gwn3IKpVbXNqbdb3713eNu/PMPfzyd53UrW62J3FW2dZOm/jp4RsS+YGxl3X2ZMkoUuMPnLmnpiPh5zbfurUVnUofapNYKpiGEFGIKMRClwDdjLru8z+Gwz4dpB2bH43HdttyKA66bzGt7mtfneX2ey1q1iopZWNZSGd0DYfYQI+ecmYMArVtdtraUbalqjuSgDgJEjuiwbnL/dGwix+O8bZ8hhLVtH+//+Kcf//vT/fnl5dRsy0Ow0JoUwfXpvP1f//h/Phw/pv2YhzQypxhSDBxSCP0j6kwQBkAzV1O1YqZE9P7Hn3/86V/Py3Oe4OX08H/943+dT+vT87M5xBiIOaUAJsfj059/+OPx5SnnxMzM3N37aJc8+lcBq5k7oBvCXNYPD48f7p8/vH9iTJ/ow9Dnt69yjFdfUu8poFuPxIFP7VnAC8L3daZzgZV9/mYAAMhE0C3K0IdFn3o6r9+j40Y+1SX+qfi4bD/9GI2X9sxn28EnCVwfav+lN/EyHL8kkvY64nUq7u6OiClG4lZKFW3uzhxCiERBzVtf9PqfYODIdjm5xZSHYWzTNI7d4pJSCEyIav7qSXLoXqm+fSIyknJgDoTsoL2aqVXMMHBOKechpxjpNYvKXz9hANjW+Y//+g8//fh/IiegAOiIjMjTcH179e3tzXfXN2G3G3LKCNHcmrRt3l7u7x/+/Me6na+vp5Sz27FUbGdVIcVYAm7Z25x03S3n8xD57u0tQRvGsOXy0R6aFAAL3qHa7AmUXi/mVZOE0Kd+fXJIva8VXieUiIhq0Nrt2+/CLvU7knP49purdXsz7fZDTsx0ntdTQUGKKQ1j3h+mWtp5PqrbNO13+3HcpZQiI4OjmxnFOzkg68NDLZsa+Vznn376U84Dsi/bQgQ5BwNtptW8InUGDSCiKXgjpJAKEnIXxhDFEGIITGgmJkLoiSmmlFKMHBiRwUBqLXVbjq6fsBcAChHT9XQzDjtXW1uleixSEUiE51WgyePpfK5bZU8hTXkKRmtp2/P2/OGICO++S+MePBhwMp2gZOTmKm2tZWla3RuBpRjGq6vdtM+mJMXKWkrx4oIB8343DtM+v4Hj7PKzaBlGjtFN5m21gkMpqBLjgFe7XQVHzPO2NJjHQ/qlO0nNPKUYU2it9dxHRAe81LfM7KCEkAhiToZ4WpY//fxza/L+4fHpeJ5r2ZqrhtpABJlB1RB8HHwg1BoqUbD9rOPprI/H+ePjy91hfzuO3F9REVdp6KrsnfeMkBgDBeLUTxfMTMTuLk3cAYmk7X/99d3t25uu/+vVZV+JTLV1wYVINXXEkGI/wGh/aomRAjr0/FRn4hhDStykbSoG/YUuTbbaatNa63k2szQMgwEABYwZ8+iCRbwYKLEALaWd5vU0r/O6lTpGJlETsdqkijRRNcMQOYY8ZiSw1bhdDFW9q/nlwTL0josjOZIBmZO7EwC/MqW8n2/ZEVDBzZHdA1AIHAKb6fF4fri/f/j4AZAfPt6P4zjtppub22l3iOnZWjURvEBbHAC4hBBDigkJqpgBtK0lysf9yz6NmZKDFtFzqa22ZnjY3UyRECD0lCltoBLcpshj/OTkBUTs8huxTphwIg5sCE5oF7eYtlbWwIEROFBAdMBNZNu2rWwE8Obm6ruv337z9lak/f7X363btvzxJ9UWGQ/TcL0fxxyZqNP6TS4n6CHn/TTtp6G2xuhjjne31/sxH58+MuIlTqufcqzL/lz1Eifm7tIDOH7ZieHXCtLNvE9hu1LBLx343ggspW6l1FoRLCCnFHrfdzfkr95csZY8DNM47MapbuV8Oq2tNW3V/Lza81w+vpznrapjU69iDRzBIxMjBMaili1OFBhcWltLO86rqKZAmZCQxKCIuQObi8oq81br+XT+kqRsZqWdl/J8Ws7nbd5kQ8vVm5JA9Nrqh/ufNt3iPuUx7lLMKUSOIaYYIvOrExBR1bbSai2trabKQKfn8/H4qCqGct5O//anP5xeluP5aG4hcMyYB3aoT88fHKV3FAiRQ0iBA4WAHD41ewAdOlLQDO20LD9/fHw+rXWDuzdf2Re2ICTAnpOOBJdjyRclyWsf/bVV4/S6q32pToHX8U3/Excv9uXfERy60OYvhSyvT8enSgDgYgTrD+Jr4fO5RvkLQcxfSGIc4ELOtdefAvojBxdKPEFfF8vWTJSIY0wp5xgvh07r9MWu16F+IujVT/fW5JxzSjmmSMxwcWz2yGy4TLu7Ewo6vg2ZiJDciXrCmAMjDjGOOQ0ppvBagP7yOt1U11nmI4UBKDg6IAFycGrpSmsBNTRAQ28mXtflfHp4fPnw8/r4M0JNVz6QNplrMS/WClQhJhoGkhLamsu2WS3TEONXt2EA53qutbTVXKNTQA4YkFDJnbA3xPrP2LMuAJmA+7kQeipa78UikgOIyujOn0YwOI3xsEt54hARCah6iJATDkMYp7QbY2SYxtCajmMYpzCNMSRGv5ytwUivssi4rhlAiQDI1noSW0NkRz0ccmPV+dzMHCJSIHIGCESBkJgcrUkBhOTZUkYgxsAciMhEzCRygDykYcg5Rw4MQCZWt7qc0nIyew3lBWSMCVPCYcCJGIMLGK9QzC14kAbW3JFjTCHhMORdPtjmL/PLdmquJY007fL+KhiS2aB68DagCVkJPgcvZGDNyiq1GAInTogszdFR1TepZkASgw1BUrCaOO73w+1ujDE1p8hdY+3gGDBkHqcMbR8o8KaY49CVZwAA7iIq4v2A3Fp1cCJDhFoFHQN7CBhCCIyBAAM3t+OyLKWWUh+fXk6nbamtCbiZmIlgSojITJhiQy6GjZ1Yo5T4pH48rT99fLgZM9+9mQhaayLN3JnQVAECISGzsgNgYI4hxBQCMxC6uxC7ATFfTcM3dzdXt587Mb3DGpgv27uZmqoIEjFmYmpNwQ0NiDuSGdXBCB2I2LtITpARDckA0Tp+RWSrNZClREDEIYYh8zhgztAUyFE07XbNvc7neSsv5+XlNN/sJiY0NXfo/dZ+ELvQo+kzLIKI3EwvgYxfFDHShBCQXM2bmBOS++VsiuCEfkGvXSR/gEYMkTll5oCi7XR+OZ6e2raq+f3PPx7205vbm3d3b9++fbvOx+X0IrUycWdOIWKIMcaQ0mAOtpXaxB1ak2Xd5nmZhj0xKlI1eDnPpej1cOVTcmno2FpxJJSa0A+J9zmG1748IsaQUsooxuwJL2NMtaba86VVpIhII44hhBghBnPcalvLVkpB8jc3V3e3V0MACPGvf/ertdQfPzy0Wtb1XOsWwz7nqCKdWtgt+IAYY9iNw83VlainyNMQv//q7nrKj+9/cvcUUr8VxBijI3DXUHakRx/wM9GXmpjLS+PamiJJ9AgcO6q3P/8q1cy88uk8L+ta65YYGHOOMQ9DSnkK8dfffn0zZh4yIVkTaG2IvBHNpT7P5f64PJyWp/OmjtNudMJ2QUx7JCRCRiBsIcooTsS9hjivW4787mo/pDAXEbFVizANTA5e1OZtPZ+W83pJYAAACjjsc95nfFyq67kUCbC2hghxyKZkYAoyjWPeB44OqNo5OIxOeGlvmy9beT4e5/MsdfOq5CSbWrOYIgUqtn542l6e5vN2VpAYOQ6URjRcPz7+6en8wU27IgEAuwQpcGTqWZwYQnDowfGi2pa1Pp1Wg3i1fyvaPjn6+jv1yeljXT17KVjcXw/hdHnrurjnNYL8MhK6lBr0OhkE6JZa6CyUCxFMLyKgX6Qd+aXGuKjtsI+cCBDQ+oW8ZqN8Wbv0v4tQ6QuJzaskvOPkDACJ8RKMiG7e7cmIGEOIgYicCGKMeRiGYcg5cdeW+2Xy1dtHbi6irTZV6/3ErgcNPQS750o6uDq4UY9760JCh56cygDsCE7BGQkwADNPUx6HmAOlQCmEC7HziyImh/Tt1dvh7a8wDkihd4ccIaVptz9cTcNVGgaOoC6llHI6P398/PMPp8cPtD3nAZKGqJupshqZWfVldkR2zdpoPcG2ruenZ3R5ezOlERRKXVapi0hTBwZiJ0Q0dEOHV59hf+XBUcy19+NeQz0ZmZgQGbxLtML3f1NeHwaX1sq2GSAFVvd12cAtMSbChBAAOMav3txIE44UEKJbuODzDN2BbcokU6rX+5x6W8vJnAlChMDxep/WE30oSy3KPAxpGNgHxhwxEAAZuMv/j70/65VkSdIEMdlUbXH3s8Ryb96bW2UtaAKsZnMaINAgwCEBAnzkn+Av4zPfyKcBwfcBMTNggz3sZrO7a5msyrxbxFnc3cxUVUT4IGZ+/ETcm1VTAwIcIA2BiBN+3M3N1HQR/eST79PixRgZ1FFjikoA1LSAty53Xcp5yClJZiJwULW61Om5zadLRQ8hdalP2OsMzbyTNGBilh3U5lF6iSR+f3dH5JRBmDMNT+f5+NiWyW9uxrs345s3++EgzbWVrk63rXTaGuEyJtK+dvRwLMvjx5lSe/c+7TMPPHbU9SlLTUvRpRSduagd/VxP7TDudl/lr97d5q57PmstzsUZ+0Qjg3gFqCYGnbspiA7oL352Tduy+Ol0DNkVADCrALjMFQBb1WHs94ch1FYVYWp10aWWOk3l+DxPU10WrRXMiiMmRsLM3CUmhonw0ShR6vJodUImOJ/n3/79NwNjz6R9XsrcyuIAzNwMQv+fgMVW1XE33TDObVdDiAhdkrc3h8Nhf+HEIGFO0udAPRHZTBHcCKgTYWbXZurhxxvzFyMholIgHoTEIuIOTkoEnMUZ51rmUsYOmbHrsiANTfOy4PMRakqZxpQp9yjyw7IE4feHx+ebYSCEJMIs4zDsqqbnE5o6uLrWVhG8lmrNhNjRS5nLUq51FiToPQZuigqGHGKdbu5kRqt/im9QNwA6CTGJMLm1WqbpfCzzJOjm+vz44enjB2u/7HO+v7t7frgt87nWgkzI6OaIyLImuOO/63xvVmtdSi21cJhYqi5lwWbT8bijXRbJaTVBTIRjTjdjtx8y0wvcZ2aRCIw6HgRAMTVqDVtDVVgFSPRFlWFp+uHx9PD4XGpJIofduB97dGWmd/d3X75/e9iN52k6Ph+fn5/s3T0SOpgGLQjcQt/QKSR6d6XkxJ3Qvk9s/d1+X1ojZNNgbcZF+hYtrBi+edjIvML6I+GrbogaWnkEDABmLVwvltqeJ/3h4TjP1R2QOKU0DMM47vIwjCn//Dd/tpzPIFKXcvz4Ac207hEBz8upQNXjXFszsDDhAXfzptbMC6EwCQETGho3ZUY3a6ZzaZEzTYQZMWp3mTHEuMhDBh8vdFcAULXj6fz4fHw+TcdpOU5LQ38+zTkjSSKBiBxIiJMoFgcLLX0QULBlWaZ5nstyPJ0/Pj1O5xm1kaJ4goqIJJI4k5PNSz0vc2lFw4glUT+kridibXqap7nMy1ILIHZdn1JCTu5eSkGArusQ0VRbqWWel7mdi3La7cabz7jwK6d2AzbwGhJY73tNE62VRLC+DXwDay4BjAO4QaRVaGPtAqxJqBeGqgM4rHwQ3PJN6Jc3XP5GALsijWweYuH1+AIaXQ6HtcgKKfQaDFFX1s0KnCiYErgw567LfZ9SZmHGUJWIIm7EiHvXmLOFMm8Y4EZoZZvlr/tWMuUW4GTEawQA6ELUp+TA49AJk2Zl5n4YsgijCzqj06feKcDMh2EH+wNKDySwSsQ5SZczJVS0YsukOs/zfDo/HD9+e/r4+3r+2EnrhcnOoMJgmaFPWMTVqiqlFB68rZaC0IZM9zd9HnApulROnpQwIllyQEDDeJghLxQsJXLwuuJTlySkIwY6zOZurYG+kGFZaH/T39wPSBkQqhlAAtiBeZdz7rquS0i028tGWqIuCzMGCIPg2mQZZT/wfkxzKYjmQVhrrbZKgH3qngUeP2YAy8NuHHe7DEOPwwgpITGCWlkqGmXuhyHnkaRDEgJ0q8VqoSCfoTNogNLeSp1ObTrqMsGGwjLxkMaeBl+g1IqJs0iHOYMotOpa3ZAwdZwEJQEgqjIoajVEvL3Zvbk/HMZd7kStKXRVx+qp1EaIQ3YblptxPB+X5zLXSaEwayIXVgFFbKqTVLOKQsK1aDlZxwNLP/QjiTA3hVBl6gAHVZqP59PR5wWXwkuReiuul00yMBOv+aN4whCzeK0a0j7I2PXC7IRkZrUZgJXWltbmpnMN1w0wj8SpsAgAmTZrJwByJYReBFNqwrBM7ZvvP4xC7/Yj3+2xVvdtvVirbgIJDt6ibzWGajEBOCIyACaRwzgchuGyVhJQEskpA7CZg4U/LTi4qRM4KKIBOREwAwOAgpt72BesWpRdJ8ytFUBAJnWflmVaBA6JA6tmppQ4Z86ZcwUnQRNDyT1Jbq7Pp/nj4/F+3CWR/a5Hkdx1fVdTElxQ3Zq20hAjNWYuxE62qGl7qX4FAAk+pLdgo0kYvDdzW4XP2QFMLUykmYAQMVTVCGqZZ7C6TAR2GPuplLqcnp8+PD99POwPN/vx9vb22++/qdbAiSwcktHQ1UEdzKBqMzBABAJDV7famhrUZbGysBuBmVYEH/f73T4xJzTvu+Gwa+dD3Y8vfkNmNk3T+XwCFmLmSMgECdudCJmSsbS6KmiW2tTt8TT99vff/f67H1pth2EYupSZWlmcKQsfdsP97Y2pPT4+f//Dh6+/+mLc9eEiHcs+urmjVXe1nGTocp+Y0LTMVksSQkxmXquxO5gu87KUolGeEBJzgIAGZrW2l1IR99pqLcVCvN5MWZkEAQyCEkjTYn//7dPff/s0FyfuOHfdeNjvb/b7Qx4P483d8OZLd1Cz08NHkb8WhDHzzWF3O6sMT8eqixP3WpuBudUWs6CaqaE5cOIkPHZpyClsN4Xg6TSXqs/nhRwEfMyy3w3EXKqa+454zCmh7/cvSpfztPz1X/323/+7vz4+6fFYz8fSzD8+PA+DqDMglMXKrKDsTktRRO+TCBJxatrO0/Lx8enx6en5fD6XCR3GnHPuOxyg4AKTZJaOUi9OLF1zBHVVYBLsx+72dn+4vVW3h48PZ8LUOOV0uLvrhl4Bl1KOz89gNo5D4kQArdTz83np62hE3I9DvnZQ2NQ9TM3QLOTaQxZzLUiKhX/LJTlAuHcEUrEq48X6ttVnejhirZHKKp1yKc3C8JdFQABGcAOgCDo86r/MzW0Nq9bvsbXUE2gj0ay14HBlNwQQsf5KBWTkcOlDdlYjcCIycFvmqcwzOuQkXd9HHS8ihuYsIjkhIRs4ExBqOGWYVvcGl6rNUso8I7pbAwKiDbJwA1NwRyZ0BLBOkMdRhA77IYsAGCEwC7i1WskbRMn1p1xrR46ITaOkgta0jppNZXk6wQ+EU6swTdPp+OF0/FDrk0gd96kfyKA0VU48cEYWdX86g85uburI4DlzJ0PfyWGf+46tQ/cxalIvtG4DsPXpIQD4Rb7d3azBVhm+iVWuZeLu3lRv39xfVG77If3qN+/T7utSrFZrmx8mIPDKEoPQ/GPEzJJFchCeXdeUqFpZWpl1OVcDT5mRoKken4/ffvPdcl6ydOx+c7Mzgd3N7W6/vxnxcMDdPYw76bqBkbSYVfNiQtxnSdmFDRSgFp9mm5uhE7ILGQBos1p0Oup89DY7vAQxh7w/y26e2lyXRlYl7bpOGMmBAEOBMpuIEyuoeytmrQnDbpS7293tYddTJ0qA4ik7cks0zwDOfe5wvPnibdFG9uHjgN2O73u88wLL4nX209GPj16MxQcU0dLKhFC75vWHH+ZmfjwrGI+pU8iKQyv28N3y3Q/nabG51Lno/Witbmk+pnHMhwPtD0NO3bJUMyAmbcYE6657KeczuifoMiZWcBEex5ElzwuWpZh4FBpJoqFPKVNrbZrC583cFbFjEPCTJJwQPjw894xfv70ZBPYJhCn44LEXVm1RjUQE4I7k7q6Ga2Gxr6KcLGnIuc9CeAnIUDiJZADSNSYAM1C16TgTi5sxM5EwZiI2gNbqUmsptdUGYJ1wlqSq5wLhItmans7nqSeHAxCVpk2hNQAUyZ3kpoup6lJqbcaS0XSa6uPj+WF36rvMwh0KJ8lrtSuYqlevDARuarCy+5XCB/Vq8Etido9KBIyUT/OgTzYzw6AqujMCOKMExo9JWAisLtXacj5qmYQhCRSdT6eHDx++AW9Z5LDfD30/nRMxIqJgNCoyIrox4pgEkhDhOHS7LmchREXwjmDfCe/6RCIMTg6SFWWardW2LK2UttRS2ovKrZlN0+l4eiZJzBI+Y5dqWCIUJiJgIVTQ6ApmrbWpagPa7w93Nzdjlxmg1apKlLDr0hdv7wkopa5UP53nsT+ZFXdDZARAjSFMtVZG7IQzk6BrK26ty5kN3KGWSoZo4TlQwnjATN1hTSqZtlKveSS11FoKMiO6ApiBYsPL9h+5VH14PD09nx0od33X9UO/OxwOu/2eU5Z+GPa3QLxMkzuU4zO52ph383m3GKTuaSmNhI/z03GaT1MNl1FEXX3m1npaRhiEx16SAKM/9Gkp9bxUdB+EAtZHxGqmBgmBkIRFrlJjtdYfvvv43Tcf3LpWwNS0aVmKCDJnENXZWlFd1IoDcEpy2N/uxl2X+2VZzunMlAhYSMa+Z6Kx6zL1or2B1VJWjCH4HBZ6v+puSeTu5uaL9+/evHvjAGPfH5+PrVbJ6ebujnOem55OZ61qrXW5S5wJXEjQsOsMSBAzUieXhOW6XG6qKu4UFUP4wqJdy5tfvX1NDMELpAIee7k1zFkLgzBYultd1/YU1iDkcmzBDTo4OASQvAIznyjtfXIlnwssABBFSQNu2q9maIhhO45heWatCUvOqUs5cQrz8NCXoFW+PNiNF1y1mVW3huBMIOSMRt4Y2MmJkRlpw5PAGcGRkADBGVxgdBHeDV0WDvYMoGvTAm0TjFC7RpMBInNsXsEgKtu3ptBmzSvoguh9azBN8/H4cZmf0OecPGcUQTOHZsTZgVr1Vq1VVwtaJAl5YuokRW42CSAJgqyVY7CSeA1hdTVDirnlsiNBix1CeA8ghD/wVWHWbhwvTikktHvT3+Junlstq/1bbLiRCDf1DgMX4j7lTCzbJBJBzKq708CKIWLKgoxN7fHhEaA+/fDsjeZEwzAU1WJ2aqUz3lHKue/6HKmA/lYkOUFjAqKM1lsb67PX06kspc4LgDoiCzEAaNOy6PRcz091Obut6SQETMiZuKF7sK2aGzsCMQgTSNh5OrEiI7Wq5+NpniylLie5Odzuhz0CQotxgm7VWrVatKk3XSZzY0JBIytUznh+hGUpy1SXsx7Py3w0IKFhRBCti7aI9KUpqHn0WqDknCGNIrTfvX/TdkVpaVZqub/7Kkm3jRTq+zSO0vcppUTM2qxVa2bucXtgaqUUIchEHiTGUF5HdgMzQCQWTBlzx13PuSNzq7URkTWoWgGEkKdlUS9NdTnPD5k/Pj2/2Xf9oRdhX6lo2lolMCGgVcjBAdBMDchsxQIdgA0BQBCv3ewAAi3Gl/yyIzi5Qi2G2BxAGJkN3Mypuc/V5qK1VjTLTL3wwMlMjXQOBXTTpWipEfSRqi+m01ynuZbSSmnLXOe5lKW6Qd8PbOYO81yejtM49H3XczZCYmERISJvzZq7EhAJM27gc9qIjJdbkS5lcHMDAmTicAhqrak3szW3huiE5GhRmkEkiTgRordWlvn4OJ+eVCuAOtpUnr759rfa6v3Nm90w3t/eaJtbLQDQsTALY5wrTDpyl5iJ+n443O6GXdcLMMG477SHdujBgVkUfWpeJ4XHqc7T83n+/oeHv/3mu+6Ln5W6eiep6nk6PT0/sCSk1fzd3cOcPaUEOXicggyo5uCMmnMeD/d3uHt3X9/shrHLYFpdXRXNBPHrL97txwNS143D6bSg/cCwMCOljonJzQ2K4XSevakAZmZBNG0O3g9DM3SEWgupoVXTCq7giugUGiJuplpLqbVcVLzcrMxznZc89CAC7mpNzQAxsRAzgKvqUibV0uUkwn2Xx6G/uTnsxjG8h4NdUZa5mfY3t0xQzznNp6EUTDybu+Ty998+n89LLaWWCLwByR04FGJKUaGe4bbjLmFGPx2GhxPMpS2ldcKTQmUmkud5UYVOElibz0tZ2qUIztSWaW7LMnSDZPHSEpMQZmbsWUGXWkFtPs65k+EwvLm7+/nPvtqPe3U7n85oLpQP/W6pxUkjKrUCdYK5qIFaCB00rZMu56XORWtFlS6l92+/+NXPf/Hui7eE9Pb2zel0qrUAYMp9M386TUa+UFGorBmcWmsO2HcDjcyc3KU1Tp9ylda4JMqbY4EBWBVW0PzC4XW4cM7h4ia9rTMbRBJaL2DgEEpzFOyZNfMYVpGIm1ivrfx83Lq3aZSqgRMhwMpmu8xSvi6y8VbX4L/AyyUigBAwuVtdXTe9oBcAFZbEYe/kOUmfcyfCiKbWqkkKHGYNyuLs4GEMrW7VrTFZJzh0vOtlHHjoCBiJkYMQEiLma1juBCgsGHpIq5MJrFrpHixgMgekTS3G3LcNmbm3OtdyBsxIsiFkETxyg1KhgGUzKstST0+uS2bPiRxAFYDIWmqY5gV/+Dh/fKrHJ0MW3kmfOCXuM4w9ZXZ01VUB+CVRGOD0BnchUfCV1wPcCcMiCgBAV8GfFa1xAOaLEmk8Np+pLlKsJ8qryDI6rIUWwWTymL5QUkLApmtrxFKKSFmyEKFt9WoOGdAQ706zNnz67qmVliQtqN88fP/4BKdD1nY7co8nnE6nYeSf/2Z39z7ffTl0Y1Lr63yYn+8ff1cePzydS6vL7F4ygggyAmqzMtfz03L6OE5P9qJya9oWAB363HVsFpE2KTBLEmZkdAQN3Mp4LsvHD+148pwPtzf7w+59l/rwfgkJ72WZ5rnOc61L02bzvDw9nx8fp/lcVf2b3z0dn9uylHlaplOp6kx5t++GtEs5m4oKs1Ui7Hc9s6iStqp1wdRTv7u/vz3cfaUgIH0DbK0eDjf7w+HymHMnuRMiYEaRrhZd5tOyVK3mgIRMiK5uqq4WelemWpc6n+t8WurciEWy9IN0PXc9JUFwcANXbs3P87E2dbf53M7TVGopanNtx2k+zfPtKFlQozys1VaIjFDCoQYC4W3N3XmtfwZyJG0OoKYK9koRvjVttREnUzePkkkBdAAx89pq8daaS2rE0hCm2po2t9Yxdp3sUhpZmtICucX866YOoW9ujmpUqj49nz9+fHr4+PT4fJqnshQ1BUbqdwdx41bU4Hian/rzYbfLuyGHtpOwMHsFNyOHzCIiYF5rNaWcck75VRAjFDn+GPfuDgQuBAxsiA4NwKNWJQsJEZgTQCbqkuTEoI5ogMZC7qAAZvXp6WOX+rvDfdd1+91+nk/TGdB91w+dZCECh6YtEY1D32dGxK7rxjGlTAhq2kgbmXJY2LeilbEaNJ8eT/PpOC3zh8fnh9PpNM+6zcoREazCuLpa2pkZE0VKCcFFnAQAQx/MHF04H25GGbzzcpOxY3ZrZqbgaMYIb2/2u+HGaERm8zpPC8FZGMQ8SSIAN6hKbt6lLIhD7hKzm7lr14kYMYJpLXVBa44GYMQrGdIM3EBh1aa9WifDkdsAmQLnv+QMVh1DQsIIhnISB+wSE1EznZcZzkKcmDtAPB+fp/NZa1XHRqKcKVnKaRj6lFNtOi/L0oqaMhMjmqNHTQ2AqtempdZSJbEQQCeUiGb1plrVGqARIvFpqU0hc0XTOs1TKRdUKYm8vbv72bt3WfZlAdTWDfn9/d3N3QGUdLYyti6nu7f3t+8ON/f7+/u7L+/f5pSneabO+e7toduV+9q0OlTz2lotUzsd9dwtfceS4c2bPUvKUOehdSxOvB+Hd2/e/PKrn//657883B4QceyGaZpqq6qOTnNpbJ2oJEvLPDu4mikSMfZ9SjmJJDOeZ+tyoisuyTWeYWt6aItswCIEQeTrWAcRHC+Vy5EL2NJPVxHFajqPFpBSMCvMgShQly1UQlgZWeFAvX2RwUoS31i2l6sKDi9EZ7s+3B3cEIzBHBRRGR3EzA0RJHGXODGlxH2Xhk4kEaNbq9YqinAQoeLG0UicgBgkJRJUgyZkfeabfX8z9vuBw5eNiJhD6xGZkDmwcMMI0OnCo9SwQlhT/wYIZE6YPmPAx51o01phLfiJ3JqHMYR7Ba9g4k6tKujEoImFOZod0MkddYGnx+Xv/+6HD49L1dyPY9ln77su8dBjl4zAtFVtzdT0JT2ETMzCRAyISKGiEeW41pqubCdEWjlGhiuksslduJm2S69yQEN0EWYhYKJ1p41hzgcIsOobI4JsKkerjpCDOxAR5xRL28YzRqbUHMeb/ccPx9Npfno4zlObl3KaTh1opm6f03Fo2HVlouSm55MvZ1ZiGJwl7Ya0+zkkmhpZN9TTs9WJRRkUrUGtQIKtWToZ5QtlycHNHRAkJYeksZggA4iCqGII/xVtao7Mp7k8PNTzojlJEn94rOezn8+nZZlba7WWpSzLshZYavVWrTQtFZoCNjhPjcWButRnQN0h7YfdYX+4vbtLOS9qsTvnJON+SCm70fn4/N13v5dMnIfxcLcb7nK/g9Q7kWoTlr7vL0OUQ23L3d1TIlNzN22qLQTTJSUUsVDcNnc1t+auUJa6yhhYJXCpIAKtOQESYsiuuXupZZpnbW2e27Joba2Z1dbO83Kel9oGSxK4bRDMCI2RgVc1IjBXA49iQSJwModmIfBm19oq7t5aK6Uyg5m3eqmORQByt1pNWyulIRGyGFFxN3DG1nHqu7Tv+4G5tnb2Nmsrra1ZbMRwoq5q01Qen44PD09PT8fT6bwstTVH4CRJOCeM9LhNSz2e5tM0d8vIgzHzMAy7eZlbbdqiUFpYgFxbI6IsKYlcz8kCVgFA0BFArRJiz4RJmMlBW61gyoSJORwxylwZMYsMXb/f7cB1POzUijlUa6jNEFvVUiuAp5SGYRz7ndaKALtxv+/HxILuS50Rve9YQruGHQWctNRal7meTmWZay0OCNINe8Duxs2/+/h8enqM+hEzwKv5jJiGfjjs9sDsAKqmrdVWwd201mJujYSFBQjBHR0UiHj35u6tAVF77nxiVGsNthpZAdj1uR9H6u4c2cszFLMK5grSnMiB3QmQU+puDgc33e12OQmYgrVEwAyJHbyV5QxaSYiEJAk4mZpC1E8rIgF+wrpEIELJJB2CMriIICJTImZiyjnlxFlIjcwxMbVWv//++6Z6c3M3z22eKiJO0/F8Oh2Pxzov4I20is5Pp+npeH54fP72h48/fHxWrUwbIbdt5A5Cd5qaf/d0nqve7noHWEoLV0ZzaObzUszUkYpaVQBE0GrLfJqLbpPyfjf+5f/kn4nP56N9+PCMWneH4S/+5E/evn9TZrXqWHG327/76u3t25th16fE2Lwui81FHN7f3vNbISC1WstRdTGwsujxaOdzXeokGe/e7Ino+aF0Pvzwtz+cEX/2/v2vf/nLP//Nb37+i68BvNYKah2nZmrq1nxMOvB40x+W/XQ8n5+Oz3NZvPOUaBy7nDOyaEMR6/uBXsjjYcsTnFoy3AqF1lDBt1yOOVzYLQAAtqWZLm8FW1NJsEqJrGDOiqNcyBWrRwFcp0+IAn7y2HMAooO7gkJ4+CFtsr1rNgrMWoROL4v/mhNTA2tkjdGYPREQoAsDAic5danPqe/Sbsh9n0iAUd1mV2HsEnEUp5IDMVJmADJjZu6zeW2ZnXt5c7+/242JgTlcNGitT49kk2AUegIgkSPaSgQ2MAwZAou4nUgACVOAt5sP28tquRKFATW4SRgVTBrqDmq2GnYmCS8FhOAkOaKjOZRaPn58+Ou//psfPs67w9sbbc9Zh7y/v73tEpsuTRdrNejJ4UMPAElEJIlvsRUG68VVVy02d8cVRSHc+JcvF27qrjJNVwJxxNgn2SfMBBxYHToQQJhfMZG7aVsrw4AQZA2XY9zGkmZgDRoBIMe010lz7Lqi9u0Pj3//u+/Pky/VmikKqPtS2+NpZhxudjf7fmnPv3/464f6scjuYOOvxi+++uLP/nT86svuZ784fvh+eXxq55Mtk82TzmddznU68dMHlT3ffImSL5MYEgOKg5iLGRBmSSMCz6VO83I8n87n87zMtbWoS5yqLaWVcvr2u+dvvn1GwnmeyjI3rabNtzoUACYg4iQ5cwc0LyQsXb+/vb9/82a32yfOXUpjksSMRCl1ebfnrkdMnFPXJSIyhW+/+ca0aZ1YkuR+PBxyd1AkR3Dori2dYaPEaWvK1ZTBdS2JMRfEnHjoRaSJEDIZoKm5uoNXNU5Ci53PyzwtS5V5kK7noU/jkNMAROTojqi6Jm6Ktmbqbmq2lDKXUqta5wyIgM28mrMF/18Q0TEqRdzQmQiIIXhaAcBeKPXb2C+lzvPCZOZeaw23VkTBhIhkaks4eLk7MYhgSiwMbETY9/1uN/ZMSym5FkksWUCRCZgTEqtjW+rzeXp4enp4fDqdjvNcdC3qNUNojZA4EQJQaRrl1nnX58OYcrq7va1r1fCZHF3dUFdCIWGo4VyvlIKuhJFXAzAgQmYWSTkLgrda3BQhHDo6BFq4cu5v9vv9OHZdNm2pS9IlU/Pm4tbcWy11WVRbl7ubw00t83Q+1VKsmdZG4eza1KEFxdHMOoO8VyedluV8PJ0fH+fp3GoFYO76ht14a+5wmsrjcVZdlmUptZrpZQeDGFcuKGIOABpbFjd1cHNtBhQgSyTXkAl7St3Q7YHQlomLq9YocPJVOIQQRJgld47cbGmV1cDUHIo2IEpAYihIIpJNW6QDQxompsm6LNXMS0VQIURft6BxGUbuyGYoubuUyAIis0hKYYYQ2YCNsImEKMx9l292w0N/nKdzrUrGx6PWujwfz/f38+3dcjidRbiVaZqX82k6T8s8z1ZmatM8T9P5pLVordFTt93+inQzElNM7nguzVYWJ0xLbWqExOxuWhuY+4p2A6hha1pLm+uLMWfO+edf/azNj89P7Wb32AuP++EXP/vq7fv7ZW7o1FG32+/v3t6OhzFlbqU8fXycnk/T05GYunE3DrvEYlaXyWvFajWDJJT9iAoqiQ6HjpBvcrMJPvz6wzLNf/qbX/zm179+//b92A/n81mroq0u8mZqtXmzhEA59YJJ0L1GY+csw9B1uaOUagWS2nfd9URmBldbmggFLhmkNUbBjdN7yTm8bLOvP7jmc14imw1xWVekNczB9Xvj+2Oh9NCKc6TNLClSkxf68HqizXYQcCvYvjoQgdCFILGTq6APiYTIkyASSh673Hd5HNphl/suGXknhlARauLcJWB0t01iJK9CPISIBIVUCDjRfuz3u+xaABoCRXURBRsB1uDdXAEQnDAsxQANQRFXo/GIDxiAQmEtMX1yK1GOCReija9BzIXDpLaiYmsUFUkWs5WdDGhIhGjuDUFFUASDHBjcAXc09daa1tp0DWMAADdtFjO+7ifr90akuUHcEd8AwAv7TVXbEnusy0fJiZ0l1GXW2NgQHN3QaO0la04yFOEJESMsjj25mq4kIXByMFRwLzYvrZzm+eHp/PB4LpUM0MnNoarOZXk+nUbZvdllQTg9lePTI317xmHB/eGNnne/oNv7m32P3bu3el70POs8tfNU53Nbzm0+L8+P48P3+y9/nvoxbqQ1+/g4f/vtEVHNRCswdf3gDnie5uP5fDodz+epLEtTRUSR3I17EmrzUmp1mJlJzR0TJ04ZmKPulIhT4pRz34+7eZqQmRjv377/2Vdff/XV13d39zl37OBlsrrUpl0/vvnii35/g5zDuB4AtHmd59vb2zKnvh9T6lgyMYfNFYXM5qvxghGGmnqAG1GeiW4AzhQ6MUwIVa2ZIYUSJjFL12Orfj5PtTZAAzcwYcAsotmarhZNoeu/9g5c+WVzKdNSSzNzICQHauqlWWYKGkjMvtFTLKoDoputMkwaWMzVJGallHlemBQcL1qX13cKAKsLrwNwkt4BkmAo46fcdYJQTYEACDgxEgohiSCJGczLcp6mZVnUGgt3ffLGpm4W0lZODFkSu2tZ5lpO07Sb5t2yJCZGjj0BO1AEYrWpeSlFtUHorV1XJyEaIazjgAmZk0jOqe+izCaZNmtVmMZhSJJtT6kfDvf3480eCVttUXih1swauoKaqtf5XJZ5P+7v39yb6XfffDMdz77UI4tgUDqamjqqgQPQ4bbJcN/3cjrNz8+np8enZZpMlZC5KOedVgVmNayq8zRPofW3LJfF0jxShY0xiB3uDkxktFrABBarqg6Ga2zSIQ/gpLXVeallal5orX1AR3cnQ0FNjWaQ7AYKXI2sqi+KWCl1kjrJ0jTyHAuD18RCDu7asFQ91hnAhsQpdwoELqzslJgFhQGQzUiWfrgh2nygiLouW9cJ07q6OdQaO7+YhnHsui/e3D8/nX7/d988PR5z35Gwmvfj8PR8fns6v3tzP+RkdVEzAm61/v6bbx8+fLRyYrC+y6PA7ZAfh3yalhDfC7loRJDIV4VEAFIxeJ6Lu81LdYckLE7zohEeJ6IuMREq4IRQprlelY8Q0dj3797cv73r37/98v3btyz47v5+P+z2PWbJ+2Hf9R1nJnQrdXo+P3z34eHjx9PplLu874eEolRda13maTofz0/NMOW7lMY+d5JIABkl7wb8ObOSu//yFz97/+WblLrT8/T4+DhNk2ortdWApOfJVJmj1J+YdRylHzh3XZeTcMq564ZxqeB+zDlfBK9W6q1jIC0x9sHDnc8BNqNY9/AdoYuYyWZNBBszdxO7u7y8BUAYmV1y9xaF9xdey9VpPGi9wcnBzT3bPPbtkVpFjIohQAJD9wab4Nz6RUyYMo+dDBlbaYyWJPeJEDIiO3VDtwx9appv9n3fpQYtCSQyYeszDh2peJgECSELMiMH0dP9REbgjpQEhaG2Zm2xSKMG1zFWAFNDMG0AoT2RZWMaIxFhcgQmBkQ3JxJKXU6JWK6dbN28FdfiIda2zdQAgC8UYgzKUiT2UA0QLCw60RtLGjO/ebf79a/e3923fve268e+w5zE1LUCYQ7z0NbW9SAuEhDNtCxKTCxCgJEwCk8uJgwRnEu7x+urtEJMXq/jYnQna1RL1AgGn0mtRSHslpt089DxcAQiEgD0tlbdWtSsgZkrgAIpEUji4/P548fvHx+eT6eyVICV69lcrdQ2zfMJnqY02q0V4oeTHJc8tWoCaTd/6T/kd39dqe/vxu72Jt91aBSOV621SO3ocm7nJ859d3Mb9zLP9a/+6rv/8O//O8TOjU2RMOW+d8CpTKXW1qpWNVUkykkOt3l/GCWlnFHV+n4chr7vh67PQ5/7LnU5MTMgM3NOXdf1fbf74YcP8q+ltfqbX//mV3/yq5/97Ov97oCI09Pzd3//8fT0uFK0EYRF3bQ6otdazqdlmab9OOLY7feHJFmbui+xQiIAi3DXAXJ0EyFmTojsDlHly8ySmKkF2w1MwbGpz/MC5P2Q+q7r+g4RU1I3nycBU9p2Lh7yOrVN8xS6YcThG+AiaOKt1NZsWto016pmjoaIBrU5kWl2A3SgsIS9ZKybafDwtkImNVN1u3jBmHkpdZ4WIl2144k2gX6PxTHkfRFxKdW0eSVnRImVgZ3IwNWtalVrREgkwiQpIYmaz8u8lBkQhrEbeDRwK7WVOi/NDISly2nsO1SdbGmmSyvTPJ/P5+R+XNp0nrRUV0NxUGumpdbpPNdWwH06T9fZMQn0MQxeYkuxet+AExIzO4Khbdrnq5H9OPYiNE/n8/morRKAxK7Kw+bSQGuZz60uu/1uN/Z914mwqZbWiq1zt7mrq2G4maSUhpQ60+daazO1VSsMwyTDzVi4yzmnNJ/NtLnrKhN2mcsCnCcCDIEbdkYEWjdmTOCg3mLD0gxqMdcZypNZs3LGtqAuoFvtA6IjmTMKkfUoCbRomctcrTQzY04Juy4xkYAgioCqIRsyMBNAIjSoizqAY+6pEyR0IiUyZCAmEkA0NRN1pmv5C0R0M2s1uIGttXleAL3vOiL0xDnx/e3h7e1hEPhYp2KlAZbmp2luzctS6zzvho6tsXDud3VZPn58+Pa778tyzoT3+0FbO/TpfterWqnNVujpxamIVuVTNIfSVFXnqgjAska8QTqlqLgnBAde2fIvN0JE4zDc39136bY2uL+7B2+7fZZOEDCnPPaZhGorbWlmfn5+fnp4OD491tYSM7ozBoRORmxNnx+fp6VJstwv3dDlLrVESVKirpP01Vdfdl331dfvd7vBXOcpBI0bIrhBrS2EZ9w1JRYQAiKi3a4n4pQSAdSlqRNmv5geXR/bdufldyvscVUYFH+Th4TIZ9osr88GK2shUiB4dZILnvL5dVwjOi//u66BWl9ZQ6UXSOL6LESUhPpOhl6KgxD0CYdOmCMFkLqcsnCXeT/kYUhFY9otWguBZQl2uvNa5eRELkIAUJuTgzUNYlpkjlYhPwBEYMQgtK6qoQgQyW9CYWJmBzdkEAHYLB3diRJKJ5Lp81Z1BGN0gpUbvbKTIipcQRkyiyL2SDw5oBm7IyExI+jQ0Rfvbw4HSP1dyoMkToJV4TS1xA7GDpkYkBVc1TQixchXgQFD4KTxtZE8ik6E6yaReQtiVs6vEhKoXNXxO5hqrW0mlOgT5tq0mkdOEs3AwYE0kBlwBGd0BFMISg24um5Rsho1JJNGT6fzh48fHx6e56WpASVERDIEAzVo6qrNWmulVZDWhmZ3ins1bid+/Pbhm//078HK+O7N7u5+v7vP3Z5TR0Of6aKrbfPxwd0prekkMzif/XgMNUBAJxZCQxKWbpBuuOheM5Ewj7vh7uamG7r7+xuW1HfjMA79MI5DPw5936WcJL4t8ACRnDgPXf/tt9/Vsnz5xRfv3ry92e9z14NDlclhhYoBwM2slc21Spd5fn44TcejEKSUc0oI0EoFXJnjAJBSlpT4wtMycF/L90P4h4VzkpIqALitcJI2L0sD9pwZ0AmdGFPCYeD9vhNGACCCKJ9FxAgp1ge4ZQGIgjgFzew0l+fzcpzKeaz96r5aEVFNzL2quiG0ZubmZGCqGhfqq6BlCzDmkykk1kHm1T4IobkjMwFizoLokkSEibCZs3BizjknTg5Y1Jq2pSoQpiyAIigDU+56QGqqpdVmjRMP1HGXENFqbaXmqdRmBJyz9EMCZa0J3YGxWZvneVF9nuv5NGurMX44KifVy1Km+Wyq50+CmIhfHEHda1NvXkmrNnXrksgq+otufjydUqrjDpP1prpM8+PTx+l8tLYIQEoMAk1dqxTSTN7m43wecodMfnuz83qrpWqprVZ0TyJA5EjAmXP39t37L99/yYTHp8fEOA7ZMiVhcmoKnRCjZk53hwHaXstzqwJuWdJl8CMiM4lIzhmJRbRp5CQ3hTFcHxu6A+HS4PH5aa5Hxyzkg1TyomXRGjbjQEiGZMZAxhM6s+uibW7lDFoJqes7ST33exlG0DaUIqnrs3QpZUmMZAC5qZTFwbqciClixJjAGjp6c4emda7TTZtt01cws2VZ5mmSqoBobkupp/NEhHAYhbEmZsk3N/t3b2/fvzmcnh+ej1OrbpRqqU8Pj3Wp5/M09nkUGMd+f/BpmqfpfJ6mpbSz2TIXJthl/uJ2bE2fJjDHZs5RLEuIDmqAoQwUaNs6cSqUJoTMEtNgFN009arWVBNjTnjB+5l5GEe022F4g5Bvb++1FYTFvZkreFuWYzvpMs3aFIiOz6fT8bmUJaduHIZh6HdjsPB0Fjifj/Ncvvv+4zI/IOV+7Pf78XAYu64jFJE89OMwdt2QOXGdl2aNmLu+k5RarU211MJJDIiFAbE0zYn2u32WZGrn0+nhhx/U4GZejNLpOO8Oy/WACSqJuWHYoq35gTVuI4fVLdoD3b/UK0Uh8hpMwCbmEoGKmeHKpYBw+VxLtmOnfkUBXknEuIYsvkrbOUSJJAat5DJJodna7Zt6bX6NkMUEysxdJ2OXsycmHYfUd11KHZA0pZwSITLi0Odd33GDaSnz6Xwi0HZDK74OCI5obmDgpgBIBtjM59JUfV6WNqYuCQmZraAorz4vJLwml8GBSUSSSGIWR9iyX2E7Fyr94pT4atRv90KhHUYoDhQBIK55IETfajLd1azUahqItLm7mEcEY1W92WFI+103jPvcH1I/LrU9Pj6ezgujdwnHft/1AGCqy7JMZnWNAsAYRaTjSPRfkLMgO9I6NYV1V9Aq3X1lt9Q07MaLEJm5zbqc9UzBdQBQbaUVU0MnMPJwnGA1WvMEWg3cOVxh6RL0ACMjgFFFdkn0cD7/8PHh8fFYqjoRECAAGiCRQ1hKdEzSlmKAQ9oPh113GJv708MTTE+P//H/uXz7VzyM3e3dzdsv9vdf7O6+GG/edPubftilbrC5PH54cIA3ecycAIA53Rzevfvi513f59QJp67rut3YD0M/djl1OfzhhMG9lVrKPM3Hvu++/Pqru7v7nAdJGTGsYInJGdc0moOvBqhqzPjuzb1qO+x3jLCcT60UBG6l5NzvD7fM3PUkCNtRAAEAAElEQVR9q3U6PtWmbopo8zSdHh5Px3NtVTBDq95qs8jbq1szN+/HvNsxJABw81JbKy2NPTPFOBJJuYPctXCUKRVMyQxMgQDREcy0Le4I7jn53f2+7VU19DVUBFMWYm5qpmoAFh5Cug5UR2zqx7k8HE8/PB77LLdj36fk0AhBLavaspTihrqAg0tnQOpqunHLQsDutd/Qmrnr+pRSzv0wdGYw4WTmOUvM/pIYAHTopimpORFLTnnscpfV7DzNWhbVlnI+9D2iJJKeZeiygpfWmjsydX0CQ4oMcQJLnJLUambOFN52BoeR3fuhJ6alLHWZH0/LaS6qxsQcmh1pNY9a5qUs83Q6XdfBiDsaBo/Vm6maE4GBA6JqYyai1bOOzIG1WVvqQqdjc3t+fGx1yoxZMCUhJFeyzltzTllAyWpioCHd3Ixotc3FatWm4S8IxMBMaZB+vH9zv9/1CLYfs9ZhHIkQ+iTotBRLecjiCXXfsY1pGbOWjOAp8XVufEWS1oyxu7uuKWnC4PK6m0EzULXnuX3/tJyXRiBdIu1ZSFvRFtRVRGYCYndGIDeFdX8DIJlSZhLuB+xGyL1LAgTO2YminCNgN0Jg1ZxQ3YxQwZubalXX0BIEd3OrdTkvp5vyvm2eIys15fInMvyhcxVMHwMGTElubvZff/VFLcvvfv8dHKcl/K1qnexYazt36dBJrbUpnKc50iiApOCnuSaGsZN93x2G0synomrqQc0AR0AmRiLbdvCBNDaAVpsQDUKSKIXGmXkQ6cNP+xqJcfdSbFoUSIXdQQy0La2UqdS51qqmtZZlWrQZIs3z8vh0VFXiTh2Xoue5ZEUzPU/1eK6nSZ+ey9NjUcNh6A+H3bLUvu8BMOdufzBn4k5SkqXMpSylVATIjtZsaVYVFMgcqws41KrmniuCQS3t+Xl++Hhcajsv5pxPi+3v5tebGH/Nst2q4tabhWuw41IE/COQzgbqbCmolzdFqmiVcPYNmbkE6/F3jNhNDmLFMhC2fEKcZC3sJfLWvDRrza4vDxCEqe/ybuyMBybt+pxzTrkDFFbsujwOPYDvhn43dtIIAGtRsBW8JiQMzdOV34OrHTJSQC3uQT5EEUmEK4VDRHiVE4plyURh1VEPEQSOMp9IZ4ZsHBMhsaPIKgH16ghYBxEjERxDaIsSHR1WTqyaqWlAtWaqigCuZtCiimfohJN0PaQeUi8kvCyDG1irFjYMTMRuxojoXpE0GpyQM3fEaQvfI1PkAEAIFHohG1E0sHtmBjdN1H3CuwqVppXh5Opq0eLbcwcEJ/DIJPjK/qGVkoToaAjgwEAIyKGz5dCKHR/n09PULgSM7Z/m0ICAxBFbrY1Z+tT1+ebmXq3htMzTs37/+9MHb040DE9v3oxv3g9vf7a7f7+7fbs73O52N8sy/93f/TZ14/7uTe4HAOi6/he//HXXD9GvRFKXcx77vh+GcehyTpIiaHWzZV5Ox+eHhx9yTl9/8bO7+zciHRDbpZbPFUPv3N1dIYp0lgJm+3EAsD4LubUya62IYtpy7pg5CTOzqRZVVXVXArO6kLfEmEi6JOCurfka2SrEwp/SZTyHHWlZateZS2yIgcIkrBNVR3RVCykMMxCmJLLaY5KrKTOKJBjzauK3zA4B14GpqwY+aBhU83Wco5pNS308TR+eTrs+Z2YENHehKLe22pprIyuERMCbxTS4BUuG1sXwCr4lwizS55y63HVdP/ShnaeqKTECmKM7MYubs5CZETGJSJeYaKmlFG+lIHoeUpKESIkkSyLiUpubzqU0VSIUIFgVcxgyM6fcuTYjxMSMQIwDg6ckjjgtZW7tfJ5LM2QkFlo3PMnMxr4v82y1ILwS5JJqxmv2BYMM5jFOWi1awZ0AkLyTtB8G6bKBn6fz8XwyN9Am7Jm4T9h1mEV4xYwZKEHqdr3cHkYFPz0PaBV2HQMmjDrNxcCRhbsx7w67cWQqYO3+Jo/9naMKcy+CQGVxc0Ym8IWw7MTqmL317paYLnsyM6vh50yCxK21WtpSm7kzS5Af3L02XVqba3uclg/P01Jal5IZk2dhciOHDAQsjCkxJ+LMkpMkZDKoiMBExMIkJAIiytwANFqKQQkrmEMFRABTtEot7I5qa0XnpsVMHRTB3FWtlTKfp+f7+b1a3ToZdcOghz1zjmGcTHtr4CaOxBlQDBDMun749W/+tB/GlNI3333/NLWlmgOrQysTtCLeu+k0TfNS6jInpq7vTHWeHEwdiQl2Q1fV1UqpzsG9dGeEocuIGHXJYOoOzKTgx7kgqDsQY98lYrLSzLw2q81UvdnLmClVv/n++P233+c8J+kAUVsp8/M0PZ+Oz0uZ1+FT13pabRazKLDi86Lw8PA8C+em9Xh8fnp6fJ6wWp5qKUWbF4PkNHdLTAjL90/n/N2H/e++zTkRI4DHWMq5Q8BSSmsRRSMru0MrDOjTcgaDVsv5dHp8bvMy/3CsjqLA9++mdon6PeY42DI/QbANZswWajgCrbYBL6v6ihzj5TQbM5MAAImvfn2JXaKSZfVipI04zBha1FHYBgBrKLMVq4CDbtHOqsbm5tp8E+a6jmGAmYe+P+x30AGhojCxcEoAAgTD0L+5P4xDd9iP49D12ifJCJxFhAQ9nNXX+t9ILTqFMDDn3B12O1Xruy4lZiYWYiRkuYASqwQKgJoDOBlHdU+IYsZKDxu/MuRHHbf6bHxRH0YARCfcpHk2KRYHVIuKiEaEQuG7BO5OxO5WWw2SoGpDBCJOjESq9dm9mTvn8f27u1oOp+dnrQu6mpowpSx9t0MyACN02kTbcDWZiV3TWmgd0JquNmAaAH44kropoV2nkxAxUcqUw9fGwBhZUiIEQiZYCViK1cAcgYAFZIVDyZFWCrIZoCUEogTmVkt90lqOPj03a2FHGzARqMNS9Vy0KDSDYtq5hi8iak2ufdyYNp0Xm+f60eYffvdhGHB/Izc3w83deHO/P9wttf7d3//+/otffP2nf76/vQOA3W78y3/+l8t8RsLYEq2Uj1C/CbAs8gXOHeGQ6DD0TNhRanNp1DygzDXtamgefT1KJFV1npe2lBwwlBtoBWcANzA0z0kgSfS0EDMGNwgUhOju5nCzg6CmIkJrNVLhcVhc5tWYXZYyzSV3lVg4pFnAESGlkCpU0yCfIqFzz33X78acMpq1ZZnUDUi7JOM4uOnjo89LU9WtihGjToWJhMHNops3gKXacSoPx/Nh7A/DIMyqLQtHQF7mRVthb8KSMVGWQOQ2LDjSqpuH29bHcqK+S6nLuUsiYu5dl6whkZs5gRo4kaMwpc7DUgERmMz1PBU3c3VhYonKnEas5lDcrEFr9TjNS2uxr3JXB0QhYk45dURma50nuSeWsGusqnMpc621NQAM7BJFiCWlREj25k1O6SnLbre7KMIDgIRwYXg+EgGE2iWtJiDeFAFCnyqcQZpWs2VZqpsKIyZuZJYYQIgphx8BijnNVlubTRdkFPaUAAgy824Y0O101KWUag20EaJbOz59MK2tzQDthfDo5G5uGtr86EtivdllgEFdh14uaQsHaGpLNecG5K1qKRqMbgYQR2Zwh2pYFIuCOhJz6jAJs7AzGTHEoyJAJmcyjs2MIzQGBHYUREZHK17cq1dmx2LSdD7NH1tbhIUYkWxjWgajZwUqqi5Nq4MCKJG7q5rWOk/tuOjJXC+djNZtKQERMhJwwozuUBWBzMxbAXciuL07IFhdziLI3z08HecWOupareFCpoUIbKmtLTM4CIihMzk4xCQrCImCnN1CShYJgIBMHbHWVmpFM0RgEYKw3TY0I/BEwExL1aW0ZamlFK3LUsoFumzqT8f6/ceJ2UQSUmyWTssynU9zqcVW7bJgKjg4EXbMuUGeK9ixnGcPGevztMwzOO3SQMM+SbWcRPrOeWggwQBZik11ORcLT1diNDciSuJEQfcmM3RAcnEHMzC3Ule1tqLisgOTpgrAnIeUr0usXbXWutSFYxUwg3DseKmQBUQi3jwAQgZiC2IAou5xs3GM/USERKsGyMaqsbWsZp2GVumeAOa2gjX3jcAWlQy+GaPHnL+yIgDRLyYXnxyIKMJdFuSMYM4EKMQCToAwDvn9u5sy15vD0HXJDMJ1QIi6LESr45F5yPlhCLPFDXWJ396M5n4Yuz6LMEYyhUSEhZh4qyyHNZMGaBRXjauVg20wFcZgCtjhEyZcHETA7EBmgFHpE9spD0cjRQd3dCQiV0AQIncwNPemtYWau4ikLgNQbc3hTLWm4Wa3v+uENXkDE2iMTshCLCHFsrrmAEShNigCMgIxuQO5W/AeHBwuFt8kjAEnGYDTC9s6nnAiysSIDKtuUyA5yKvYDDp4A1cwAGDkxB0jgwJgLPqmoGbuKogkmZsa1NkrTU/19DSXudZqGF4G7s29uCXgebTSaWllKaBoKK07E4N6maDM0IovZzsdS5kX9MqkfaZhyOPY7Q7D7jDX9rtvvtc/+5/V+Rz3klJ69/aN6425OwY/yNfur2qmEf3jRXJaOA9D8MKsFA+UL5hUwWFyR8TVyQNWulVi3g09ISSKck/ceGYY1vXMjOCttWsqGxN1nSAyECh41QoIYS1K7uhgjhyF+AAAoGrn83w6Wc5TlOgTYUzYzMHjxrK01kpZjAhSwtaamrCtNQDNmqsxQ0qZkJaFarPTeao1xi8irPArgnls7LRVsxmAT8vHp9PN0L877BNjLQuDLcuO0afz1Ooi3lJKDiwQWgQRZrg7uCpaM32p5HV3raXVhZhUCFrcpUJ4bKmBNUBEdGSPoemw6W+qL6WoKiiykJkyomlLTD6OLQmC11qP89zUwkDAzZDQjTkjia8yAWatNDNnZAzXDPNSW6lNmwIjgDiCuTVTqgXMs0jf5SW9UoQHALkUHwr6kNFjd0UaKJQGEMSMhFUrLJYChm1NtVkDa9SU1JNRD9RBYokMQi3Pc5lqSX3izHU5tnZqS/Ekww4RYLLp4Xh8fFxYhrcF+y4v87O2CVHdNWZjJjbzViyl7u7+LifxNhHp/pClA+d2c8hyicgcm1NRtIpAUCs2k4bkRE7JiVo8BUBjFpZd7vJ4cAAKEXSP9A5DbH5RzVvVqhXdgcA5YeqIBJys1XKaJzNM3Zi7vuuk1POHj78t85E5AaF5c1SIED+wcJbYjZkboBFByG+6W/PqoIB2eS5upnWp82SpIQkgAzGwRMGGm7V69uZr2Szi2Msvf/FlTlybhhmHeQWv5q5zUUBCqE21FDUrbUFAiUzW4q2p1mZ1qct5mRYHE4QuMbks4M3hPJfaGrsnIaHMZqRlKXoupS1Lmc+JSQ2r+VK0llIcpumkuqkPO1blqRJWJQpPINOGBj0P0nd2JZgCAEjbtpaJnKgatgoQEQMMnPMgnkfd36oDcFAyeYUB4n1r8SmCBiCCrhCsT4AtwxIUH0B0FoySVwIS7/Ku24Op1dZYZBx3X375dc7d5bmUMk3no6lySlELFGvrZoUD67YnNnRbEBMBCm7RiTnoRnHFbWINmYM1C3JdjBQTDMZ7EJiYxCkCUFcF8DVq8o15CA4ahL6AhxjMFBmJX8jKF4weQ6gXYiERIMa1GtjGnn/2/rbWmsKzw2EwHgchoj6nzKsqsDkG+wNXZMXcYejgy7cjIuwPOefkbqsDOK5kgajL3wg/CEBAjmsMphZJjsid4CqyAkhOphoGHVcVPQjCnpJFJF5VY9GMoBF9decubQ0ZAdBY3L2WpbVWaw1tySTMNhJRKaUqNnrm7mE5P3S5I4CejcmZgLGRMxlhFDObmgbTYh3vzCwprdM3RN0pAYAiAoAQ0BpVuWsDLWDtEpYhgLAn8VWq12lN7uJqbEBEW75R1c28qTmgEKSgTBm4eottAQKbganV2uapHB9Pzw+nUpqphbWW++pjR83P4zJ3daGZvPhS50LuZ0Fbnh91nsma1XmejrWWpurkNBE9kycuzEXyeSnHj4/LeLBlvoyXtixWikY8HSuhqZu6tXBQWJ+I46oi4StVC1ajvgjCI1qH4GmHrCAiilPizjKbdeC6Sm+G+bJSRIRMoQYXq9o2qhwJVvI1EDICBcWfCQFIzd1oJUvhJYg5HY9lgeNxAnAOY9MGIjKMY0qChGaqVua5qYHqkntX6PueiaC1Vltdam06jyP2mYUNoD0fn0/HYkqJZehzEnYArVqWMs9lqWsvf3L48HS8Hbrj3V5A5/nkLT/veyv5fJ60FYGaU3bDbM5ZkSU8WJqaaSNrZXnh9mlrz89PDx9/6Md9Lr3kjITYzFWtmbtFoOGgbq6b+rS7A7KpLaW1qt4M3E7BRG81C5ebw9BlQqjazqWoWiIOlxEigkQUvoU55ZTcrJZiqikwSaTV1dLUTAFAlakhgDWtU2sh8lGXqdRFW30RvQGQf/Wf/68ZITMmWqFdh0i4QpwQAYklpLEZSRAAXFeOtzMiC3ad9EM/9DlLEiJ3KrWd5oWT3L+5kyxlnpZlbqWkxDe3BwC8e3p+fDg/Ps2I+c2b9ynJPD2ZLrSm88zdCdHMtVnO3f2buy4n18IIuctq+nQ6f/GrPx92u7iT1HXvvv6VI7OkkFtWd419sQi+CIdFJONRfISAa9LQ1EPuENxdowM0s5AyBDdmTB0Tg6GWupynsxp03Zi6PmepddodurKcmQQQ1FusawQhayDMCcPIGlaDYlqrNczUtLVf/fyf9d2qr0CSupsv3D3K7gEJUFCEEMnATdUWB8PQbUdEgBvX/s0z7L68+/AwTXOtxZqqhaE6IIKaLUV19aWLTuO1rRD3aS4fj+dpqe7GgDlTCLSqw6m2pibgwtR1qbk/nZa5qjuEwhkzApAB1mat1lrmf/Gf/cv9fpXrTim/++KrSOnjSm7dJMZeyAMX7siqrbBxPVZYYZOYR9jA3jVYQAQA3bbvEAkfW5UELpwi2Ei1F0rJxpnYVvQY3kEgZQaHpirMwzh8+cUXXbeqdva7/Z/8s3/u7illYnlR4QX0la603QVdLtLwQlEFiHDHtvu61BPFz7SxobbLxUvzbKv1ag2LiCEbGxfOJIgYPTVKQNdfxrfQWpT767/4y2HcXZ2NpRt29++ZCb0gAHACWnc57rYzvWlNVbcSrHUfHdgSbS9F8BSlNHH17mBurkaEKWdiUjMHZOag6K4R23p36NeebtdMny0q3AT80Eny/k7yEA698QlO/e7tnxAhoKh5U3V32nI64TYEG0MF1+ptcvfWInzR1lTNEtM4DEhYS63q1ZlS1/dDl7ucJHE81qhaJyYCBDNVNdW2BTGxzJJIQkR3Q6RgyOmm/hM6T0AE7qZqVmT8CnkNlJm7m/ErIiRMa3XZysEyuApi1K35WnJCxATCkBAwtMEUqrlByGmzqPoAy/Sz/T//S3q7/17NPEQC4jA387tu+PXbL77c397klAnVa0qw3ydGa9PZSg0v3racW21tFSGMUewA0ACXUg9fTj/79V90/XDpYYEx4qVgzFc71PD4A/LL2PSVxgVx0RgBd1iWB5lxRfkuCZ9tLK9dRdUauIdxBQXaisiyVQ9LIjVatasBt54AV48thBdhLV5zlHxxfj8cDv/yX/4viPu7u3EYhugJrp6SjLtdToLk07Q8fDyeT4s2zVlu7sfdrsuZggjctC615MRv7g99J6225+f52+8jiMEkaRxyEkGA2nSa6zy3Zaql1KW2LPzusP/q/uZXX77d97LM09DJF2/v+yTLUlSrgIpI3+9S13PqkNgdzLwFkdnt9utfyzaPdd3wi1/9uZp1/Zj6TLGyeOSFFBDCGYSEg7Fv5qpROsXuXusqkOIRvmszbYn5sN91ORFBUyutqZsEZomERJEn4ySSJCdx82WazUyCekmk6nM4TDZ1dA4+UfDGSgNzFm61nk7PP//ln/ebFhEA4L/7b/8NhLvtFnO+7Ag2/DnSl9cTv18YjCsaQMR02S75CrwbEookpNVKxNcadAGA1rQ1bc0Q1wFv1sDt6iJ8i90BEVNK6x4VgAjdoZnmbrh98z7lDgBarafnx7rMgU37ym2Ey7VfbWxffE8uDXGFvm8z8zqPXvbXsEpToF8i01ASJURza1qiNuN10121HK4by8sAh6vG7Lrx/vaLlDoAMG1tfrZWALe9+gsLA2I/v53qZSluLTSiaoiiX137tjjY9QMF2Hx8ADwYaSGAgeuygRjb6sDAY5UlirTdSnrZhv9Lg7u76f5w+PoXvxiGMa7qeDyWWtZN9ZYzuULQXx2Xa7vuBy+dEq8+iK8e36WQ+BL6bJ+Az77up778JXqIvsrMKaVhGCLpXebpw3e/m84nQvzsJLh9pb+ETD/xZf5jP25TMv6Bq4Or0G2b9i/h3+vzbvnY66/tx93d2y/zNpe5m7XaymytbuHE9X1d2vLVaXyNV16/6/KxFwxpSwyt+g3xhNb7w1ftch1fbm3iL48dX/2FyCK5I07buAbT0qaP1mbYJp/X9/1pU1z62Eus5OvVxoIXfX7V+ucod12/Da9OcGmQyzfipZevM6Gv3I+r6WedE9YIy8EdOVO+QUoAYNZKe1IrVxLefv0DbpqIL49mPd1FzWg97dZeK3Nrmerzw3mZy3YlLx3WwQW5TymzCMWVGyKsRV2XTISvu+Vom/jwpd+Ze1PtxsPtl79IEcfEluJiCecv33eZZmFrVN/QGtjC/+tOEe/eug2+6j8vSZKrye6lu6xPyy894+ptVzwReHm6W0IWCZEkvu18Pv/2t3/7fDyuqOQ2kUXIFawGM2tV1dYdOAuvlTGBJYWbIkESIUI3b2q1Rsgd2dhwx4rV022DJsw8aLA5SZ+FicIaLyehQDcuwlQU30eXuHCdI8Cl78fbN5wyAJQyf/jh23meaOvaL89g2zZED/aXBxfjfpvkfYPxtq9BBGGOvLlv/sEvKx9uTyL20EhBtFiniMt6ZFcjLya6GCbr8ER3V21dP9zff3EByPHTAf/H44/HH48/Hn88/nj88fjj8T+G4w8pcf3x+OPxx+OPxx+PPx5/PP54/P/tIU/nV/y4z45/BE5zQe5/DOP7Bz76B9+1sRx+8muFsMsYWjFN7WmaS1O8Bgn/ScdPXtQ/CbTyf/BjDubeJbkZuxS2tA7FQLd0zyVTAwD+yknw0+zDBdr1q9TZJzdwQelgRb/hGlFdEW+M2uDrR4uAQC+IcDChtxvcsou+PZcxYTD7l6V8+/2H8zTTpV4RIaLnq4u/PDHcIHC4yjm8pBI+y0FsadDtLRvM/UmG4h9zfJqDcHA377v05nbMSQCgFP34YZqnhvS61T9NVr0ktq5eutQnXX3TlpO9Qs9fQ+Ivvd9/oid9+tp2ok8TWu7Q9XJ336fEAFCbPp+XUvWSlIGXny7p1Mun8YL6BsocbAwkAkDzFzw3YOw1pRSZtTXFsyL8L01yyYk5QBi+uCIAEQPSqhJHax8x96abXJe7O/SZ7nZdEgKApvp8nkvT6ynociOfzQevc1nw0nmuUhUX1tX1ya5a+0fSbC9pDdgYXT9y4Kcfcfcssh+7sKSurT09H5dS8NVlv3SR6xzbq3t5febPfvRP3vRjs+t1gumTs3+W4f2xw91zzjf7fUoCAFX9ebalGX66OgDidZLX8TIvXWfewQGAEWh1wny5iuspESCKJHDrLC+n9a0SMNRDzF5SE+4r7xOu8o+XHKavczLd73KOPtb0eF5KbZd2wU9npOvjat76qcb67IN/eLbyT/6FH30MP/6SO+TE+2HtY/Oiv/t+Os1t9f3dmHiv2uIqzeqXQXphL10uGK+ZKI6hsAloTIDEjtHSFs6222K2rWmRZbroNq/S2r4lS19Pmiu3Qd12vXz1bhi6VUlZ/t1vl5dGfGWk7AC2zUQ/cuD2B7bsFyCG9MOFQPvjT2NrIdg++0o77LprXI3azxLzYOaHHf/qi37sEQCepuW//v/8d79/eL7SwvIVavpHr2Uvq/IfuObPThcuBf/kvJya1aZf3R/+1T/79dubEQCKwzczPBWv6s1c1ZtB1IHaKwbp6m+ECEGvi6khLMR0I1y+3BgYITCRCBABExAYBSkXEAgt6kPACZ1d2SsCILITAyVEz64EboAG2By3auHVmcM8BP3wfuC/uOdDRgD49oeP/6f/8//1//0f/6brskhUsBOiRCFqiIBgkCERN4VgXq2bNiHcoFNG0elGE1o7IBGEQEfkqd3Jwlo8DMEufehiWPLSHNHTHDbLtFcZcwczLbX8yddv/nf/y//pz97dAMDHD9P/7b/4D3/zVx9FiBjd16l3dRTcjuuEtG/UWkIK3at4VKvWxTo3AAHy5j8M8DKOg2Rk5gAX0cFt5iUAcF+lwBwAgIC2xmJ6mc8RwACbw69+ffe/+t/8yfsvRgB4Pi//9b/97e8+HJkEiUNJVwgZAd3UrWjVVWWdEICJiUiYhUnVlnkBxJQHQy7Vmmn0PwYnMkFDMLBwREoGuDRvioBkuJpZMAGCq2qod2ArUKcE2A0Dpa5hQpaUhQkBbWn2NNWpqpmHueEvv9j95//8Z+9vBwB4npb/5j/8zTcPT/LadvjSkuuL1/HJ1Vui++Hqg4sU8gYYNOS1h0Z8edlTmLmuLnTkEe2GM40FsVzDKSXmaX/ZH7xe89zVval9cXfzL/7iV/eHEQAen47/5X/z//jt779JURSKSLCy8S7kM9icz3G7mVVY++XEL6HGqgN+4Tpc3fZLT7ss4lcsofX8WyRn1z3t6tjo0hTudV/97It/9Z/9z9+8uQOA59n+7399+t1Dk7VE6Gpp3yZmBEAwWp0HKDELIXIUJCmTD4JjgkEoMYCDraXA3nQdGIgowiIsSBKugetM6A1saXpe9LS009yWolWtKqiRGiiAugcDXi+j1d3BW7O5tl++G/+3f/nlF7c9ABzPy7/+t3/7zfePEOTIoAsTv1Qevu5RL/0tWtIvs81ln/E6oETAn1h31na+nspfzeqwPZcfX6zVoal+cXfzL/7il3f7EQB+98P8f/y//Kf/9j89DiOHbY7Qqp8UNY/RFYLyrs1MWxTDR4liiP+iOYbjI5MKAzi3Kq1KqY609CNIHpwRvWCt3hYzbUbNXSOkbFGbItyJZJLMKUtKiGiqIWYYq1X0bHdsBkvV01L++Z/e/h/+93/2m5/v4wblh6eLNgkQXTdBBDE/Ismwvv/y5xKXbcP+evr+qeM6BL4WRMXriQbx5eF9FsQ0dQdour5eWvv9w9Nff/sxCcsmWL7++exCfnInAQAA9hPBs9unfWd7/RLL/eSd/oGjmS61ufvSVsVedXhu8KFAaV7Vm3pTqA1UQ3kGLmMhXGVwg0UuQYw66Eaxh203gACEIAwiEDWMDEDgHL58hIYQbsKMzm5ilcCJkjE4CyH07gJugApQHJq7mav5Ki7g2ByqIxC07abP0/zv/+Pf/Ff/+t8OQ5eTBFcOMQELAoXO20XMFJGjbBqDcrZKTxGuRUsMtK0pFOMeiYDJiS5BDBtw+Pkg8mWbsAYxn+9+/PMgZu1vqm0uC6DPyypCOM/tb/764f/1b75dKw4g+uilnno75yWIsY0oR0jEoT8ZwywqF/0qGF0FwCJk3+aR1ebH9KIKAwDxT9TervENrIJzoTZJV3JiEe8ZYDUgxGVZ+1ht9t3j/LffnojEAE0dEYVIEBnN3GZtzd0B0MM4XdJmCtBUz6ezO+S+AUlpVlWbOYAzApNlMnTVuhBi6kdHPhWtDRTIgByQibrECF7rYq2iNtKF67kj7McdpqFgRk6pS8xIBIvaw7mcFq2ttarWFNGXotu9tO8fj3/3/UfZKJZwQWJi331xMADf+LZwedsW9W0dbuuNQcuM8AZipxrwJIK7t7XcKGThtiDGo/C5rWWN8XjcX6DR66tb5aPUzUr7On6xlPJ333z7H//mbzOLhLAvQLhaXvexCMtW3ZgYHlfR28q83MKqS5/50V56+RtfCpZegu9LFBNmT9vU83IrW2EfmVmphYhKXcdLaf7NU/ubDyXFloletpSBZQYbOYIYIUqJuuSJmRjd3VoT8lFwn2GXKIelN65c4o0CCoSoQM1BCBic1tpTULdieqrtaarPU30+1/OitVpRaMbNQAGaeRTJR8VWhKPuXlo7L80B5rr1sdq++/D8299/xNgccbiYMl6CmM/a9g8HMdcOpmsQg1cByvVMZQCfBjGfb+x/EnFQ86qKiHVbX85T+7d/9fxf/psPuz31mQkTIzE6uEXBTcw1Hmo1TVtbdabCNCP6kgCFD6cLVQIAT9p2db6dTwD42N8sMgoKuBY4VS9FQRuAspvF3hzQEIkpM2dKHUsiEQBwbe7GK1ndV3sVJzWeiz1Pi9V6PP/qcoPCuHZuRET018Ar+qu2fHW8dMGt5RGRGRExAICfXLtfDZ5Q7L56nC/xxxXGA6+6CGy41JVgLyBCYspCiYk/DWI+w07g6sxXR0RTPxXEGP1IOAWwqXp8dlzvm//AgQhukK4EfHy14LnIxhMDAgIzWAvRKIdot23i2p60eYgTOpqjM6wipqs4pxOBMG4wjCMQgyEDQsiOIllECI5rhbKTODBYiMoCU5jUA63ydK64OYQHBkCOWV4eDCH2fb8bh77P4U2BxEgClAAoABgkEg5UhoEIiGHl2QdOc8FvCF42xrgCMbgGc4QAYegKjEDB94dVgn7b+l1bH0e7rVOMrQDmy/PypgjsuUuX6QYRU+K+k5SJ5SWMvxo1LzPQmvhbFwNCjNgMiMABjWKMrMF6FPHQy2chIhk0cEczuhSFwAbDOSFsteEAACGLSKFMGTt4gi3CcgBWSPllqBFzv9sNB7cwvbJqseoSpXAs4WTmVZuHmB2KSHZOSqiGDcXc0JQIWciI6lLNPAazOYHZUpSZEglJIm8AqgpRSkFM3GUCV1PXBmBMPvTSCaWenKDF2U2BmIAT427IzO08eXFTpGu1biIc+7wfe+YQC1oX4HggtnlGxz7eVW2DKLeWR1B3RHUyRDBHbwH+0Wrvu0XO4EShPBfNuy7mCBTVcegAhGBkohbl12ba9CWPse34LsN2+3OZDVCYU5IUQQwEErPiLpe/iS5ITKyqhPwCB4b4YjgVvATEl3nvCota+3qoQm+lMRdw5lLPDACxOV5BfqQL0O+BhgCZWU4y9N3VeIEuUZ8pM3AAGBfwaHXGjCAmUFlMQl3GLESE7m7ICBbVUQXBPGYpEMYkJExCq4xklOQAoFuUnntk5Jfq5+Ln5pPC4tAALUDHVV4Z0JwN1VB8tSrztewUzbFLV958hDmnvs+hELDaYjAhbqvFq6Dk5UmtIOnVIrD2mquVbsPRPwERtp8+W0f8x4OYV596+YU5KeUkl0wLM+3H/u4wDIMzgxuQKYGBK4Ght1IKuOeUMWEjrExtq1EFREASkoG7lDN3ychnKwDeQXqv8KfzSbT9lu179hNRsdq3U6czQnLOjYaGYt5wM4vVGosWODRri7lhVGOJAFits1kBKw6MOFDjZCV5uUYm5GJXFhv6T5bjf1QQszUebvC9/eSH1u+6NLZf7ZK33366zPzU8ZIq2K4nxLTiz+UafyKI+ZF/YEMy8Ce+Gj/593I2+vEbfpWe+IMHb+oo1591NTdFd0aOOMMAlMB9jdwZt7JVeAFCoy+HZ2xEOgCAaxATe811yd/GFUZ9nq/YBmx/g5kCNDQHpnBWdUO7BJ2XGRQIw55l6+PXeoqIKIlzlpwlpcRITEzMQOywVgMyUWIiRkICIkN2XBV2MPaZKxITKw5eErGbhOkqDLY1B4WabNyQO4Y0vjsaxTwRg/kKZn8JOC5NCEiuEOj25V6AOaQPKOL1rY/B5xuoS74eXia1VVcDAZD84m20nmh1Yr0EMRti4MAIiOi+vt9WeDW2oet3I72wB3jF5wDCoyD0v8CvVNQhQkdJ2QW9aVOwVm21iUMiIiY2a2ZAwEQsElYmMYsRs7mrNXSULODU1FqITDgikYO5xX7AiSBnBkSrGgAqkydBAjRBVPCm6A2hIiAjOzGFhD5YqOgTwT5jRySGs8PiKqCXiSzKTYcur4FNYANXQYxtUIm5GUUhp0V3iU7kQCvGAmsyxczAQOMNuA4z9FWmkijEzmJVBjPccjoQgo4Eawc0RARQBXV1+2wuWEGaV1PQGoxucNoliLlOh30axFxcGuKsK6bncAllrhGXzzZd8Z7PvcG3zW00C11Ad7oOYrarNjNifG3KC8LUJUoEjGGDsc5zr5GYNZGXhJKgCFAkUgXJiddpmdQxuFJEkIX6zJlXYNYB1EkdmpuCV/eiUJrP1acGS4PqaEhOsKlHEQG5A4YvUCQGo7P6Kq+gDmv6e2sKEU4pBNnXIGZ1FoGX/ubbm+EyjcIa3X7S6GvICAgAhKvA1EvLfzaT/ANBzNrZf2SxITQHvPYbQ0QmYHRwNbVWHFQJlCLMDsXe0IMiIvDESMzxhYjAwolTx52IYGIFFQN0GxDusP46TZlaw25GfgYDmO/g1OPimBeER+4ckcERQdAcQlzY3BuCASgSpEQppSEDEqmyOTskACbMrdI0w9tbSfLSPrJFhQ7gr0PB6O6vm/bqQHgNjq1PDn86BviRB/D5An/9YK6N9z4feP+IYzvV5x+9yhm/ulpfI4Kfikr+8Pf8+Pv/QSTGncDpSoEU3K01aw20ESAnMCcEryvVCWBFF2JZXyOOVb9/vQkEdAQKR50VtoBt67SuLoDhbPny6GNEuSO6Wa0LehEXIgDpHVnXCVcdUJEdN0AbIJx7tmnOYItvEQHCT50xFOszYWJA8habK0QhTGyZgVkduQE2ICXwLUh50cC7CNsjwvZSCFI5WkThgtAxJHaRkPImNarqzag5aCA0EVLAJnizmgCFTM46GQWCQXwVK3uAZHFcAJjrnvzp/ukatAcPKoytu7dLigEiaxM5oW3HfA3sR84rkDH3MFJ83e1ikx93Q+ZGW+okHHXccbvsy+V5a9VVczeyADguC1qtEfIjAKMDmREgYt8loUQIjCGj70ZABGrVDYT7ROLmFdFUCUCIwb2JEKjrQg77rmuJaLKlmrsLaaLGiCjeqlcwL/NSnyBBYuMeGdGJkATctFVm2KUMHfQGR7XjsiRdXiWyhZJQIg5uUcSysEb3oQK4/eweeuzmtiIQTA5oAGZgtmE2oXFpoVm6tq5589VyHIkiZYmICMEdQiIiWfdya+fYpNbQzOLvq36CL8/EX81CL1PXT8/AlwcfXhN4vcjBj888n4cplwaE13Psq/k2BgwR+gv2+PKeGINAhuZma1xxeS6MIVwXgfimzQlBANsiQSQCRpRV4s4oOiGDAElkm5mYABhEPLFlwU6wYwyWRmg7WwNzrOZTs6XB0nSpvjSvToaOnMjNwQyRVkIZuEFAag4e8oOh54YAzVwYX7fJy58NdovXYy59aduIKLZA5GpdfFkwL5++Aldf5mC4fujbTy8LxDZxXJ5vWDN8Midsbw7t5iuzDjNbynI+n5bS3Fudm6syGBMwCa9iMz7NM4BLzpxYWBDBzIkw5ywsZNi0Na3NtCwlaXUvGZ5u6UMHOiIT6MlIvHwN5zdQz27fmf/Q7OQpOaDb1CoASMqIAF6EdNfROOT9btgNPA7SdYnTjhICkyO5prr46Tz/5pc33cbqhQsSc33Lnzbhp015FV3+A1jJP/34B1Mw/pOxQTxI/In/Xr8NttftJ377oye/fOr6PT81y/wj28c/uQYEEILEIACAIAIGXtwBLEYMBmZxib4dDAzXRRCvL/NCoAPYhgqs2XuDWLbRPdL8BkBbjORupq2iLeiKzNgZRN51hXy2kAFXTcvLd7o7gV9X7xMCEySCxNAJ9UI9A4JNjuoAyELWEWaBxI7kDbgCFWSNQB1i/4UbOQFX9urrIAYQEDS+Sxhy8l6MGQCgGiwVFg2/B/BIqxEQgjmYgepGkF3ZsXEDlOjVDuYPPuVPkJhPel2gPmgOl63t6wf+4yfdPhuwwfZF/9A2YQuCLl8URQN+jQS4WStLK1MWFpIhETtXa+SWGZjM3MkVyZhpSMQIZi0qPUA1oSJpjSAbGhNSpopcF0X3FI8pCYJnaNmpo6yEkIAdTJ3JMygDAiqhIrSiSzk/e4JhyJw6YhFMGEUC1oggITEhsCtbxSbY6NX2IwYRbRmG68ZFfEmUIHtstt0cV7ktQgiXInRFcAspXgAHIzMDD6+t2CUYboHlSg5wX0FIh+A2AW+hDSAycTAFkQj/oWntf8jxavv3ByD0f+qB217oom+JV9uJACKMiF5Vh4SnFTBuu48VvABAIAS+iOXGz+gYLD0ERkyMAiQkF11dIhD2LNgJ9EKJEQHMoBmoWmmwVJuqTlXn6otabV5bpIkw8lDrkwq1UMcwzIh9G6zbh5gOqRkl/jTo20DhNdJftyZr+6yfv2QI8OVXL3+uDocXxOVqDvlkIvmx2YGuPnP9cf/xOMZgs1jb3h5uTsa+haSrHF8YggC4qVnVBuDoTE6bp7ptBQUexPVmrgpk0mnbt7K35+QfmDXnvB/Su/6wd/+zo75t5ZGRkL/3Vhx7JHGwzMw8DEPXcZ9018PdPh123X632w390EnX59wnSsmEHdEVarVprl+/2+2GdLkbeT2ffhr9vRp1n0frr8t947eIGDKCl+b6tEWvebwbfvuj7/wcQLv67/ogrl4CBAvM/XLZ/lmHWL81subXVx/XEAv/VT+6/t7roO3169fngU/e/1Nr4OUEuK5PLyXNRNhl3gUsDc7EzYBAUdecCdPmFwjQ1FUB0ZnQPSxhwQHMyTfwJbogXjn8XJVP+1pOjVsDrCPCwCrUgqDQcjTpOmf7mndZL36l6wME80Bf1eoEbJjRMvkgMHQ4JtyJuzlWmM3jdpgtEeTkTOBYFXA2KS41uEGbvey2w90YjbRtC9dpERGdyIGdCTr2jgHRm2kCYDLxVM0cXAiG5MKg7qXCUqw21OsO7ihIxNQRXlPw1g1PYE+2AiTwI733Qi+z17993Y23/oPbwrPNRtdIzMUbc/2Mb9gablzz+A+uCd0tiokuZr5W0JhflauBu9VyLudHttLlbshdn30xc/NeDAGqFjPLCEypQ0W05rXUUqYFzILfxOAODcqJPPc5G+Ps5upJlNy7gchFyAVVrBgwIIhQA0eE7ICupg2tEDbzcppPreBufyOdCtlaWIAIDExgpmgA3hgtM6Sr1Ji7aa21FJTV/Rdw68uRcEeClRoZjbBNIG5gBoZbppJWE25EcLo8WYSV7udrmtdUTVW1mYXUdVOt1rS5A8VT3Nz3UkpDP7CkS99dQfmf3gReMky+RqzXnW89Ai7CLSfh9Kr/rYjsFd78Ocryh+fbV4eZbfsG2Hi1L3mWq783YGr9FV0iFbpk/30VV1jPti3evjW1ESNlpszUB8ERyYGar1NYIuyF+wSdACOYewOvCnOx82Ln6lNrU9VFrTQwdVVHMHYD9NgQEUBIq282wxRRrZkBrCaM6GCCmV/d5pYOXoO3CxgT8Ok627+4nbz0zpcI5idCky0v99magp++89Wvr6GZWEH85SQvWRV3ulpcAAARhaXvumEkEbQGrqo6AzgCNdV5mmqrziGtC82ClAvurkTuxixIgEiIKUlKnO5r+hpPb89zPX0o3PDN/v39F+9/8/M3Wv/Zv/u4ezx+7DJnfpQ8cD8ij5L6oe/HYRj6u9vhy3fD27vu/iaNQ8rcibCQheG9E1ciQyOvBtCU9n3a77rL7cg/Xu3uurP+//r4JyMxCIafX+OPZIc+x1Q+P93nr1+//9KDLr11nU/+8JV/ci74iSbF1USQCRwRGVwYLMqQgvRAAA4WbpXoRJfFFVdgR/F1pGZbugRg6+Lr8k+X5A+s/BFwBGd3chMDUg3DkUAkbb1JQ8d184QIsAIbCM6vt2OMEPZ0CT2z9gJ9AjecDSqAAgJSmBACAjEQOqO6KZmhY/MLvhyy8HDBYHCjCqyJbgRcIzwP8rIgEIYZOYpAdasGai4EYwJmUPcFAFswUsm2mGhNKbpn8p8eIy89JKyy8B83SnwtZXl52IDBh3lRml/LJDzIHGbrHB6/i2/dlrnLJ1awYUXXtlViS0ldnJYAAMDMaqvLMjO6IHASYnQhN2ACMEMzcmeJoqowCWqtlVJmBsAszOwIGtu2VowAAJksdr0E4I6oRlrIEU2JUgYhwibg4KTVTaEVsIauiICckcgxmROoEWoSRyJ1crDSDN2rmjoiC4tcqJTu0FRb1XCPvl6w12Thlr67bBUiiLlU40BcdKTKtu1L/Bv1uhSROhIASFQgqZo4ODS1VrVRLRWCvmNmtVqttdXaRNA95Q6RzHw1E1+hwy0eerWv+4eOjRgFLxsOBFtN0fB6ivofcHySyo/wHtYAj/7xIqkrdeQliAEK4GZNcEd5QSQtgdfMMnZMg1CfKAkxoRosGtxrFILMmAUSOW61DE19aT5VOxebVZdm1Vw9Cusif4yC4A6KYCFa4pfnTOteYS2SN/fV2K6TT/JvW5tc9oaX27yEcT8OuqwN9smLV5vJH1+DruWorj/7+bvt6lu291xvnD49MxMJizAlBgvzYUrhvOgx3zKuFhQxtZgFRLEVPJupRlKQndFBmo7LuW9nROOeb27S7Ze7N3/+5Zt5eve3SE8lcWf7VN+/fd7fjpx2Xbfb7/qhzznd3PRfvh/v77rDTlLi6F4EigiE7IANwbGt7G0eE1K+ag650N9+tBFfN7l/+g5/QRqu0ZQAsv97RPr/Pd/zUx+9wDAvANJPnGz7lqtV3l9+/uStP3qGV7uoq4/iyyv/YECzhua+oSGXX5j73OxcTTDmX3MHQ0JyjkmW4m2hHBNPAbfZ5hKC47aTi05s6P4y2Hyz/4h0OgWk4GTAGAX6joysGJafzSAqgm0NZdx95d/RatsRcxAoeRK6rAUIEZQ4g5E3ckMQInZkZAQjB1aQGEnsQG6IhuiJGhKDIbk3QIV1bgha3YrErK+F/o0TIYAzRQoVIOwy3QhhyDgSmrualmYIkboCc0SCRqBEAGCAtvGTCY1R0xWBdL3vbeF71fM3SAReolp/XXh3OcPLpy4dBYjAaXPFuXxJKHW9cD8dCS6/Qtsm0xcqlLk6EscscFW5rrqe7TIkzKE0n5uLQTIoZoKCklG1mrlBNSRikQ4lNYBivjQvDRowEDt3wAkw1IhwbnaeT4AokpIwsoSrIpSp1XNCZek4dZhHkcxMVb2WRWtVq6qtNXXuxtv3nJIMB6OuVRPXYURmnk2r+qKg5qrgSiYj5hFwzYu7gzpUAwifyZc1d30kMcXjWudKsG2sYyhFbGfmCBqu0XApadp8LbdUZpReEyEmIhZJKSFga9pqq0txNxSqrZ5Ox9NR69LqXCawVgqxOLA6Oqz0aABT01pba+0CtOEqcHTpNy/pCX81A68jO/qgfbLIXc0/F6jwpWt+wr95PVP91Azs29bRycDXtexlx3i9dF9eC+kdQkJfqwhXrH6D9VcEOnY+lIQ7kSHRQDQk7BJmRiRoKy/JEVF4UzMCQ/D/L3N/1iVJcpwLgrKoqpn5EkuuVYUqECBIkHfrvt1z+qH7/z/2mZmeM3cjCYJAoSorl9h8MTNdRGQeVM3dI7NAcnpunzOGQFSkr2amqqIin3zyiQGqQlHMArFALBpFc21wieQcExigIBFW1bViqipNfwJq2fhSB8pmZopm5hidYOfPyWSrix9Od/ozXZCFVFgp0ohwaTSW8GbhAJ/v2fOd93Mk5s8SNuyz19ctT5/vVqcZVZUknyExNcVZShZRyaZSBGobazUACr4PgZnATLOAKjMxOXbs2Dnn1GRKqZQEJiJZ8zTNj+n4E7jDcHO1erNdff1m+OWrr797uXp6SitLOK+t+3Yb3vztX8C33/ah6/vQdYEIVZUc9AP5QEK1c62AKYIRIJoSAqIgJuMjMzE6pu4yUHE/f4/+/GHPPPQ//7L/K7O/0GzQv/7lf+5k/vmT/NLf/Wdef0qtffGaP+cG4cULLmBAAFCDqdgxmatssVZSQ1CZKMtnqoJpyxERLGIWAGrNlT19KC6wZPVxcFk/zcHB1rccFlCGan5ahaSQAXCmRo4Ebawbg4qdmiEogJGhd4wIKMqAAGfiVfU3DFABpbY9k/YsI1bpvPrTJB8N0JBREQsROaNsJEBGWsF6vCg4YzBCIQJPVpl5hMDYfDRDMFVCcISOa2Nl4Oq5oZmBKIBRpTIsGdA6moqmn8GwdXCWLePLcOtkKS4xlecvALt8l/2ZELxmOprbodriYlviV1RmI14y2S2HsfiweCYIYgMclsu6OBDREXt2jhgRVUQM6m7NzIZoBtQauJJUvVMzAHTOeXaOmYgrG8oArFgpYqYIUJmBgCAIIqXEI0CGkBmNgkckRTaoknqmRsVIMxKRC8H7LviOnUPLgaFnY1d5uKACtuTyrdFZztckCqJAejHbL666MqGxMTDaSGGrvz97Ba2zM5w4A6c2dm37bjBEKx3i4DwDMDOaMho6InZdH8TEM3gCj5pTAjSTXIoosAIZcku4IohKLlKeQzHN9WwA3fNg/F9QpLafeey/02GLqBEY0PnGXiCBP2fpqKGwVdaBa/kYLkjMonOKTOgd994N3vVMASEwugW/IVRCpZrXqyQ2hWwGAMVAmlEiIEVCNqoINQI5JG5eoVHtua219bJoaXy46rYu4XclfmsWyAK9+/ll/LO3p9l+xEo6PMdwX+5U1RfFL96+ONsXj/9fMppmVjFV0YyoIAhmJ4ONiOxcJWibiuYCZk2GSNVAxEA05TiXkk2YlUgZ9cAUw8DD66urb17C16/XL6/eBEJLH2WKMiGs1717++baf/3CAAVEy8xIq6uBAyuKIAguzSPNEKHm+djUozArE5ai+8POcff6atP5RbF3qTCq1/Y5W+WZwf0zzJUvn13Quc8N9H8vz4ao1YJ9BvY18J2+4MT8q46Tb3C6G//c9X7x1tOfdXe/ePjPYjntNUvMbafvEoOx4FMEBr1As2Epuzgd1DKwFUQ4oUELewlP/yBc4JtFdslOGmkVzAXE6gEoA1TJQs3R5hEByDxulQwFFjIvYhPHBUOrAgMUmBBASwHRs3+MoICClNETOBLDggbICKZVglcFFZC4ShsZqjIaEptDcSwBUSpM06BNVoOMVCX6GNRhYTRPRtg2egLjpmZdYyMzw1JlhZcAUFSLQiwWBbKxEaE1bSUEI1BDU4Bil8lla8wSxQaLL7EX4lIbBABAzal9bqfqiqg5sGexsiGaUtUxXEJlg1oGpaSl+ilmiArM6B10HYbeIWJORaSG77RgvaoGVkwURIspIjpd8oSna2HCbd/dDH3fe0doUkrJCEDer4aBiXLMoIo1kaTiTIDAeyZHnlxHiKhIZmCIVBBZuRS1HI2h45Ujdpli1CyzWqKOiDvHBZDNxDOtek8QVGWeiLSMklOaAa3nYei8ee88rZ0SFXYSQBNRIsiqc0lxjjI7UzmtsCotz3ZG1FUBF73aGqbiaaeBlr1kQqySiFVbsRapAajWouWagqt4Z/VqRE1UChgwErPrvK8KYITIxKuh78LKu24dOK66eTvM0zROcZrSNGeRpMBaxZgIkVjNslTt3yVurn4koqtiyXCeR4rn5d9IUQsAe5mZgJMDd2EAnhmdhgrYZ4/8M8dFyF/V+hsKr3RyCheI8MJkIgAheKwJIPbsmAEXDm/dcMwAAZzjrvN94ME7R0jSqjXFDMRqUSSCgZmKRVBVqHItiiiAQMBMXXCA6LUGXAB1xiNCFW9gc2SOAFUkYyliUuGYZT0iqEHVtUgZYtGOL8VfljtxzsQvl1kdX61bLwKAYEvcN9ipoX7LR1ibh3Wsl22mhZyXg3aZP36+i5w1IXAZlvO5wfldAHASIjpNEFUdx/G4P/hOgyPngnOevRlqnYp48vS1BVEAqKpZSg0eREuxpFJUpCfyXbda5+1Vv73pV9/crr56RW9f90NvT7v5pw9PDw+HeXIb2Xjbskme7h939w/393cfN5vVv/13v715dVtUCqABG9VUHlc3l8wIwAF0nvp+eNiN//j7nxB5/bffdX5VL8f9HN7w3+F47g/9/+mxpJB+hkXzr3xv/XOBBfD0+GcT7mc/QU88+SZj8YymlQEToDckUG6JHzVbKhTr99WoZjFnS3KhGerauqhq9jSlNwBYZJeWYB0BQKnhOHUVcPNtLeVsMZoZuAFNiQEFEKDmhhiMTECy5JRLAsQiHYLO4+w7r9sA/gTGkAEpsaDLZihoRlyJ/q22oTY+aM63GCECoxCaM2lcS1JDA2MRLuAQqCAZEoEyqkfxYGSggABICihgLIIAokvtCEizPwgGopAFYsGkKIuOA7WdQsnMQOPPDN4JNrtEjOHC2lz8+/Np0GzdafosSSjEWqC+AIxLxa+2YpiqzmbKoMHx9W03rJgIcxYpWUSJiAmZKvqNhoAeVa2IlGqXqy7Ks9NRS1HnUSwYYRERVQToh74PRMplniTnmmIpVUJMGpVHkHNJgFBMDQ2A1FRykZxyyprD4BgcSxwtR9RMWBgVLaf5IDAXQ3KOYEBiE7E8a5rKdJiOBwkhD66jqulCGQSRRMTEQAlFISWdpng4xCtWKaeraUzbKhi0hGTVuYETU6htHtU/VAKoN00ZuaJZ53QeLEmCOpZ2CZWefFkzRVNmAgAmQudUnUkmtkDgO7dyqxi4Y/IIZOqK1v4PUbT6yKflfzky2MhfnylhweLSnFfuuVHM/28R+8JhM6h+w790GIBWXKoJoAFCxQyfvRkRPGPPFBzWH2asDDnHgGCq1c9BdhS8C548AaHZKZlXnTMDROSG9lgWUF3q0BYA1TEGQCIOCnXRnLAjaPpT0M4BURyqkFb1Pqi9wMwAxGrKUhJDKDCEswD0zx7n5xZXt9rheheq6PPpjjUrDlr9gCrlycwIWFkBpylmzzMN7S5cJBWt8Y/PyPql8tXFKMHPWyLVknLO2TkER635i2rjUS7Ru5pqERCxKgElVp2YhlGYMOm6g9ut//b19lc37jfDizehAGokHnww1fnu0/TxwzTFxEwvtvBiC4FE0jTtD/vH3f6RnQBm76EU0+qatYrThpsyIgM4QAXbH+yHH+f/9F8/9Z377V98dXvVLsc9Sw/9s0uhbXjPltW58uILJOa0zZ8Qh8/G/f+821T1HT4rGa1PgBlcsCbxtH2dvvBkp5pkOxAtwcVydpcf+s8jT19eyuV9wGc60j/zEct/F+rD6UBERvbgzQKCY0Q8q9SfyuKq4ElDnKmZ25ZzAqjLu9R+XJVI0+RsF7Y814JHNF7ea4oKDOAIBUFVJGdQsZIQBZ0hglcLkjuTAGqaYxzL8TAdDqCq60FVdru9XW3Kyyvow+lqGj6CJEgJUBW55soJ4UIyyhQUsQDXUUYwMuFKc0FEqoAKETgDRnQFHULlOiiqtCVgWHNFxSr7UQ3ICG0Bb2rG2gyKQDYsi39UgxUCJVNGU7D8ZdqoBaF43mCaU0iADQJEINBaFn6KlBpIY2Bg5TRD9PT6Wp1UkZ0FMmk9SpbOZ4hKmDfr4RffXQ/rsH+aHx+OqZQYi/feOyIAYERAz9R1nhkFdY7ytMsiqootoAUAAEn56e7jp3fvhr4j5iLFAJBxGFakBQH2949xmmtEaczQivCBtJa/MgCW2jILrG7GIiXF5JyXOAfHmieWubPSOQpEpeSnp/2URJGd82PfM7GppmkeD4fD/rDf7Zx3DjRuNoBIzM45QrbqgSkUkVLKNI773f64cScnRlVLlpxLLc1qt7yFBsvucLJIF+wBRmASZnJEyFb7WcLnht+glioxOWJEA+2sMvAQHS1U84YQl+m4KxOyqSMMwbvg/KbvPa2Ci0XEKBY7xBKLFrUsSqa4ROGn9Q9NPf0sh1gZOTVQgrMT84XFxuUVX1wGXNil0yvPK/Tn/n72wfUTEMxssaKNM0T1vtli+pfvJ8SV5zmAI3UMDs0ReoLgsfPkyKoMESEuvdLMRErl+plhk8YjwKZfqmoI2rwNATAlxeq0OwJEEAI1Um2jX88FFQiMTANgx+TYQZPPb1wRNZWiRU3NiqoIdJ6K+s3K8YUTY4sb/BnkgWCmqqWYKhG11UqI5A0ADbVZkZrvVpGCVhCwylYjQv12MVBDVTJAtBqcWqujqHg7opkqqmItTgNSJCEUQxMDQzrviMtYG0BVw/h8GyLEEHzXBUZnInEepcRqiM9VImogqllyziaChMRMzoOqFNj0/pu3/W9+dfvv/uab3/zi9purTj59/Mf//f/x+OHu9fWNKcS7+/nxrhi6mxfDr7/r/+JrWznBDKyrbfd1//rmdru+6kOPWLjU67yo1SVEVztpAe6e5u//+Pj//i/v/+//x6fXr9fT/yqnC/lZTsy/zvf8uc15AcnPo/zcMcLnL/yz3/R8QX9+VHhLP6/xqC9uQP/F19glcGpL/Qk1SBMqoPcsTn3moHxxlXhGXM6vaWPe/mwTiL44+YvLbi5YC8VE7dKbBCbwjANQzxDYEFEM1bAo1J4tCFBrQJrNWTp4ENSK6RobAeHJPW/8XYcn4otV7XtRhKbVrwRGAKSKkrhkK4lNSBJqQkskAiW7PHnNHlRLjId93u/j0xOo+rxRk/nxKWI2yZfXfS5cRVQgAVQkAuJWklk3fBJgMy41LjRCA1JDrUAysJ1i6kJVmwK4sm2WQoQmDNMSmmIGqMhirMa6qFnUiqrab/XUzafedwJw0GBnQzTD4P75YOzZzFhmK7XQ6Ofc18qurdZ+6TsDTfe4VseY1el9LrVVA1Hn9WplL2/p1esVOff4MI5znFNJWcRIBK1phRmiC31YDQE9Ho5lfyiiqorPFAkMcpIUMxORU9XaXIBSzuM0m9k4zWmONQGGvDQPgsrpAC0CiAKmsORCrG0cRWSa5swIJXpLjlQJpYia5phSEgFKKDkLExNaSbmUbCo1oRlzwTkDIrASaWueAIZmIlJKTilKyY0pc74cWzozLLVzSwbIFtD9Z0ajgjUAYIaGSFrH4JKPfU70NDkUYl/dC8HKUSfC2oaMiNDIFMXQjIk8ARM78p4xOMpiCjwX9VOeUklFYxYmCO6ZGpFd/HwWAsLZoj57/eUUvPjvvyJQvPywqml38eSfS6kbmKld5qsRUWvy7eLFRNA7WgVjMEYgUkfQOeocDoEcA6hZS6mgmalAlSGsRosW/wbrzABU0Ar7wQlWqy5mc/PM1SaRhABUcSGsCTwAQnSMgZFdFRg6KUCqChSEoioKrChEXkEMevdzSEy9Pj0pU0LdkbQkVQV2BlBEiNgxw4l63riDgCaMwgydw85D58xMI6SiNWXMTa+iYWMCAI3i0+iR1SypNT0jBrmEYS4H/TMQ4Rnax4TMVEHEklPJKcZRJdHS3aURsBdOHSLgSUWaLATuQ3jzevVXf3nz17+5/ZvfvP72m9uX11fHq379h+/t4YmIAdENntadDD2uV8M3Xw1vX2lgQ9tsV8M6EMF60/vOmSmTtkiuGvRqEhEQNCbZHdMPPzz91//04T/9109//GH2YVXOICy4Ja9/cb0XcMSXNNVLpwQvtm2ojoudPBhUUzCkE0rbpO/tYseHZePH03ctLIEL89QyH88kYZZg6vTljRRK2qr+Tw8CVM/FsGZLjKzJ/AMTICATFcWkUpYg4lmztJ9JDz2/M1ZVOJrT2wSUlnv4GbLzhedTGRaiJpdgDIIFgIFsTbBy2LtK6uViMBVMBYooWNXUqlgr1LbADPXsG9bIiB4AsDZvE1AlU0+1hbSRKQAU0SRqYEzkCBkAzURU44glsmZnmXUmmUo8xjlZmi0fVZKClDTH/S7uD+VwIEIMwKAY95D6i66erfKTQKnVUja2ngFq6/PISE6IMhACysV8RDQxAuHa26m+yYB0gVQMSBEKeCZDts4bgqlIEchGGVwBJ8gAtDA7AVXxhIXUeBda1EIEATEQBk+g6J2uO+JnQMw59X/mQp+u1ODswbT5rM8H3uAk+bsk+gHBCJkYuYWbFWtc9jBFK1jyqsOvX4av3nTbNe/ncv+w+/RpnwqIQBJxqAkTt1RHeEFu2HT9qkcu9NNRimhNkZ3WC7EfNmF944eOHbdpR0SEsyAYUL/p/Aqwkp5gIXs1EglZa6FuuKD2hgbWWUO7qvItFp3iZEXVIrkQfK+EczFRzAWUoQved2yAwMFvrgCd6wb1wYArbgdQZ445ViAUFfC+26y79Zr4zEUkavMXT4ImVUMIqIZ1F2PUhqDW61XgRQ1QFWsZKdFzvLl6SAqmKuqInHNEYGqE4Jg8k6uKJsx1BTFYVfxrVHdAAmbHioTsk1g35TmVXGyOeZzm7RBOEX9NgamaYq3xvLQ4FxhMvZgvDJNdmvKL4O20FM9PNiynPXF+4T+LxDTI+jkELiJVG0zlGTxOiJ3DlTv1FjBH1hH0jL1Dxy04sQrBginWJEul8AIh13x5M+TWSo5Pifjq3S4YoTXfhKqNQbPKckIvxghYi8Ic1ex1c3Gg+Ux2agmCQASChuUzeRU7dSWoyd8TtoegKqXkbKqIZoaSirFaCGhGWOWiBVXBhNE6xs65Vec7hwwaU5rTKFkVvXJoTZQBodYsmiGYmokVNPQItcgSyMzIaql923IuCa6LDWpptbNzX2+R8845NoOc4jzOpSTTGVEBnSNPzEyOkdWslMQeuz4wEAqA5aLTZh1+/atXv/nNm9/85u3XX622vSnKhMLXm1/9+38zP+wyYuj4+hcvd9v+3fsP6vzw8uXq+uZYhJhfv3nV9Q6XyoRpmr0DJmzF9kaMzrNXwDnlh7vd3/3TT3/39x//7r/c//HHFKNjtyK8UOzFPyNEfdmx6s969c94wCehoxqPGp7rYOrPKWHX/m8NgmzLafGEPj/+bBj8xROtRl8/A3wMTQG1FlTWXqetXAVbXhUNCkDNL53OqpkAPTPGWzHDZ9FJXYJ2AYkoLFSH+s4LBZEW9NU/TUFNW7O2y0sngAAygK7QBrQOrKKf2QCAGaGAWaP1VowDqulkMAUtWG0CgNV6DVUpoMVU0KRuklqZvagmJkUMgJxTYkJQtZQlH58kH00ms6zJ2/4hp5LnaGn2OrMmA8lpjodDOh7yeCSi7BEANB6sXD0TiGwbuxEaVWZw7UADhERIbMQAbMBS3bLq8iAWaiGAGaNVmQAj1KVZkwNgANJm9xRo6YFT+RBCAizkKv/4PI6LasNpnhApgFV2cMfWMYaAaBgYh/BsidRMsak05KKNbA1XqGW9T3P5Ms3dfi7Guirx1pBnaXyz8KNaCgVVQBJpZisr4uver5ymcdo9pd3TOB4jkAPAWkdjZNyMn63Wbr1xgKYVIG/FZc/qQmuj65yzSKndNi99bBQz07pDFBEk6rqOK3fbtOSsoEgtzVQvAgFrmleq/kmKrkyq2aCUmJ0L0A8GvmRNgojQB++ZGUnSTGSenQJXyAZIAZqCG6MRqjKYldqJtwtd3/Wf921+1lihqY4te+9zJObZZGigF1ol0Vdi0mfGpYoZKKopkhkiI6qyI4/Ye993vvPO15KtShxXJdQKjKkjrWEKEboQxADAE+RiHo2Ue/esc5pWPiU9dyesbZwXfshzJwY///NfCyA2DW9c5Nqqq/IvoDjN2kPDDi8eO38tIfSOJDRBXEJwjFVv11MrKlFoLnsVSjAibrALNJXJkz9mrUBBL7aKEwvw9Lt1eWg5PmQAp8oAYDVVXNk8y6eagkol0WCTGocmrgRL5ef5sIX4v+wOLe5WLaWkZKZEYIZaMpiBSk37kBmZkgmBOoSOcPC86Xxg1BxVssVJsih3AEjksaJNiFVh2ERBVQRZkQkdgSMrYAmaFTej5wHys6EFhVbRcLoMM2myT4i1RtqEqra0c0yBq08OTKBADtGCcw6Ii3XBrbfdm7ebX/3m7VdvX7qwHmeiMgMi92XVdS+++6bc3h6nCR1uXqzFYf/t10XMb9au6zwX58PN9TZ0rkjJKc1xBtSqXICglaBjYsfDfDjOH+8ef/jp8fc/3P34w/7hcT6OMk2SY74k3S5qPl/iDW2CXrgyX2IzJ9cdW4hWbbHVrZ/QdPGFKgrSWrssVmap18Dln6fPv1y9SxR1EUzRUmtBl4835kWjxbTvqO5UjW2r7KQhGiMzIpNRDS4Xd7UyvdxyT6wax9OZAAC01iqXug61VVaFFmrLugVVMYMmrXsRGi2MQ2yf3zC0i+VPYD3kYtIbdGIsAlpKyQoYuPfIpUW/CEaEjoCcVc10EVQiKJVoJoJFrBSUDJIRVCSleaocl5YwMUhiQKTOC3OsMt7F8nQs8YBlRM0wmnz4MfIwzpG0sDcjRSs5pzhPOU05jgpAqIiY5tHKeZLhybY9O6jpo9bO1U2Sqg0gLmkfRczksDHPaCG/wOIoczV1WC0bgpgmRUItQAIoRAYIi2DTaQjx5G4uuxsiEkig0rH2jrrWhQ4MoT9rqkGNiNSKCmjr/wdLa/N6oURICAyIgJWdatBEChdLbHCpskZItTMJIIiWkrOIVeqxmapGkqPT1Dtcsw/i4u749Jjf72Q8RFNgrFkYa2xQJu9os+lvX16vN/7Dx6fHh8OckuqCAJ0RRLE8x8NDirOaOueR0MwIMYQO0HKKpQhUIYicQ9+9evky9L2qpRgP+31KaVnvxszeBUDIOUltTyQiMQaUG09m+RhHIgqbbeFun7Eg+xA6xt4jgx7zMY+jGBXBYmRGxI4QzZDAiIEQEyOAaRFHruvXA3le1r6pSZGcS4XmTmtpud8LmGQAJwl2qw9b3b2rt2xmVW68TpGzUnNL/pllqfXuWlvBMwWkte+u1quhD7XuvAbEKsW0ICqCIqKopFLEADwDiAMVKwiqkDMUXzOmi5FRMwFzbYacd+k6hZ9Lzl9iM5fT3KoZWcC8Z27ZpZ1vf1eB3/quL7tULvxhrDrU1mz9Z+mkegOZzk0TCbHzZOZAkcCQ0BM4Jk/I1e6Z1bQfVLFJRKxdck6nd0I7al6n7UcMp+tqD58dizpoNfIgg9qzs9prARAwqcoGVpEVNRXT1kyr5REAUc1UoPaab9cOaEoVILPTBZI1xcJcclITrm6WZERDLWhsxRisJ/CEnthXngDRlXdMkJLFXGCaNRfoahU6A4oUI2bvPBBKNitZszpFT65nQgeiMKFkUxDSmh5vYfiS6KiBUhNrsMu1r6rzPB3HUYGCI+ddR548UtVNQCarkLcSous9kiEYq/XOvnm7/Q//49tf/PJFtx0OB/vP//VJY/ruDX73i1UI6+HW880qXA8+qwFSR5zLi9/8ZY4RnQPTq+0m9EPfOxU47uc4zwriPBqwYWU+MmN33MUffrj7x9//+Hd//4e7+xF4pdrf3LwYy/Tu7senR19yOk3P1nbgvIA+m+QXXv/POHq07MwGrfa2VeACoCwghlaFk2fA3MUXnJbZv3Tg5383BtK//DZsKYN2HbWi7pwMFyliUg9QWIqVq/vS2L8NiQGoWpYXdYR18VAzIljV0qyBMXZ5DvXKazrZaqsWaDAU4/OeI6acJ55jVcdQEykpzpMChm4gdoQkYjkVBSAKnh07RlKBFK2MWqKIFUFRX8xyznGWksAk5Wk67HMaCYQZvWPvPXFg7811wqSVKaKY41TiCGnKkiCVEilBmGMmNOwpsYnmXHKMaZ7jlFLtP4mIOecscjlbCACwlQAvlcCVXVC9kwbftZrlGoBWAIYIiFsdAlGbW9WDOSMf9T6TgQk0zpNoFYMjvcDePz8Ww1w/iAE8mSflVrMulYH/GXvcTNWKKqiexusU92LbEmtKexlwA6NzFeYZ3IUqxMIYAjrviMGQREhEtWgpJefCmFdB1wQD46Yzzen4pHfT/Hi0nAQRHAiDmooamDrswrDqttfD1dWKHRz28enxmJNCq96+qIBTzTnGeZymUVVDCLWkGBG1FENLcS5SKu4iRYhAcipMpeR5mqfpmFNm5ko2JKLiEgCknES0OWClKMgxQSpzmXfeMTlWbzlaBjaV7FlSB1AkJc1JgaVAzCqKrXu4ASOQI2ZHjs1MsggaWEqxXKIFIlpEnLQ4/GTFcQHEtNkpNVs0zk7YAy55iOpC177nTclt2R1rLZLKkkVEMNQMGadEKMEZMy27vZpJySoCUIgwBM/IXJ3IoiQSQBFFTMxy0kJ6ZikCVP2SRSriwmjapTlubnF1IJaHv5jonwNK1SFoqgNqAIsRPNk6o0okXT6u+it26mrZvBf60olpsNkFPIYAVYG33pgabzEhNR3pelWKVmMNqAnjEyJ4SttCDQVxCa0vdqT67c8qLi+8tbYEQQ1UAARQDKTqzLTfjcP4jJtweuT5pndKiJ+4jmimqpJjjnOKk6igGSGKCKExqEcz00Cwctx77h17AibovFt5ZgTnXe78dtVjEewGdB4BcskpJiUy6oHJJJsUyIKKDs0jIdeZXBQROCAyPoNRl0s43aXPZgVCbcVOTOydq8mlzjMzAIGalWKSEcSkSCzM2nV0fdV/dbP95bcvvv321eZqsxvxw7vp3e8y5nJLPl1TmUEVrGcjNDYpVlShG159952WPFxvQxe6VceO5jmNh/TwsBcpw9qHziE6AyoFUjGJ8e7j7vf/9PEff//+j9/fTVO5ue7ZMzGb6RynOU5yicTYs9j0YuafyteXkbx8zWkSVamRxlUEXUTImnbIkpQlJG7sLThBiICVz19n8jJj2oJ8Rqz70ok6TeV/mXOJiMwO0QykkfxARUENhQBNNWsuEnPJVXeC8PSVcK4fqWdwCqDP8xvhRPk5Tf7FqT+jL7B4O438BqgLcakl4dxFBANabNyVp90kErWAasnzNB7VtOu6EDrnfM7y9LRPsRD5vuuuNmsXMNm8z+On+TimhKLeaEMOkhwP+znORfI0H/e7+xxHAu06t9msr7ZXV1e3Q782joWp0ofVqJQYUywxQoqm2RiK+ZwVySQRkKaSk5RSJOecs6hZsoyIRWSWZzv/zyExtTa8aZNiFZdbGPgLJNN+vngAAPBUjdUkzBEVKRtVP0GVzKDWY2FTZ0E4tYpsY6enqYaIp4a1YgBFs6qplFzGVPSibZGZgBUAU6ClWrqxDwGrmohVUThCBy2mtNozvKnA1qcrCcn74DF02A+8WofQOcecSz7ux8P+cDxMwezNerjuMZAhyDzFY4nH3MfMBuTYOhRnUS3norM66zabq6vr29Ww6uKc9k9x9xBLrtVeqqclCSBmUypTFgVCZvZdpTUYWFJTk6xmgMzOEYWBO++L4TinlFJMWYEpkPMeAKQUU01i9bboAmm44CzPu8MTxgPrtFkP3jN6cjGnIgVtGuHx0TxZLgro2XlB0JKyqoACYlM/N0L0jjsRS3nMOdth/+L1IWU5jYvaqRpJ2sKr/dEa3im6hN4X29Vp9rUEg1b2uSHWZkSmVIG/RjITWFgzAGhqaY7TPk47X6Zp3qzXfU9MqiJaVIqImGkIbr3ZeHYmBVRVFLT0KgGhoJqVUTNJuZC2WsABPcU4JzhaYakPRUQAwz9DxYXFezvNcAADwBPybVXv20xFTpCzqNTMBVqV1l0kiomY2TGRY6Iq9npqzn1anqhqiEB82Tnt5B8oNLZg3ffrWCwajdw8pNYAG09i2KeoYMGzL6+0XubnEfdicGsTcgMDsUYJRKn4iwKVArlYSmZgPljrIFuhmSZK3po9nvyVlnCUlrKuDylIyWk6zuNxnkYRsSLMCGaewbMNDs2oY9x0ft2HVfDOEZo6wi4wAzjqXUfdeogGFkIuNh7jYX8c45hFQRN6V8xMlVSpGFnV60tJymgxO+fXW+46BofUyoVbNqLWNi40XbrYU4l4vd5sr677FXjPZM67MPQ9MVsxyXNKxUpBS3E+Pu0egtdvvt5++3r1P/3Hr169enGc7b/93e73v8+PPxo8uDdXw5WFNfasvhSIJauUwy6VWJCgZ37z9usQPHbOAoPH4zh/ePf4dD8eDrnr/LDqu9A7dqYUJ9s9jJ9+evjx3acfvn9//3gc+s1m7a/W2ynR+/vd4+Muihm5S8fsWXXSZe7/S0yxvaZKdcHFDKrbvFVWlDYdUVBGrRrgDdMCbJAELEYf6jZjl4T2P39czmH6uQfPxzOY5Fn2tu4kUPneBjUg1YrCNKkWPSlfnTC55WNbcHCZYloePy2nZh8NT4kOvLBDjdLaXn9GifBZmwwtJe0f5oc7EkURME05juNRpfSB+9D1fV+KxvunaYoIrF0f8hUH3Jfjp+PD9w+fdscjFO3JvehWJLDfH8YYk6R5nsZxV/JEaEMfbuK1qjj2aISYjEi0igJzlpxiSqlIFFBDymomYkCQgRQtSck1Z2VsRAamyIgopJncBTGpOZvVZ8Pz4C2V3lVwYqEyYRO4OcHgi2rnaTQvYs7LHt01T2kXSUA83fsv5g3AacBOWXVS4GKgAggKaCKWk035mUNmWkSySE10KACoIXGdMCqSi4hIAUPmQORxEf7HE+oEQETeuxBc1wfvvXM8rMPNzWq16pgo57xf0WZtxz10Km/XbhOAUKZ5ur+Ph0lGKVkBiB1Bb+I0qc2mahKcW794tbl9uSHCeS7HvYyjWs3E1fT46erJ+dW2v35NYI7Jh9C4maZmJqqdFEQjYuecc46JmNlU2eWuk1DdFOcAQEpp6rZLzGNVcBNA5uNMCJ4CdP166NZbCsPGCRVQZHIuKhdVwY48UtejUfHi1KrHSWA1Vgw+BN+JqLne5pSKqg+XBstgaTHVWJdwkTU3NWkFiEuEinre2utMqZluU6UGUFgt36tdDAlqdQYzoEdCgNrmfR7HaKYpz4fDOAzMVEoSK4uOG/ZdKCkHHwBMzUopBOoJTbWkElOZ5tSnZzl+04rEAJ1V7s+4y4XVWfb6k7VDeGaZLiCL6tyL1AIZsyXRoFVpD6CqglRnjwwMmehEVlREVMTa2bxW+5u14KGZSUQVSbmknD/n03xm3a0qXtdMf+tEcHZinr+2bRrPo9WTu/fZb7v8W5dwsvIOAQosCYOsdpx1mmWezTFeO3BO5dxntXLV9PNNsIovlNofpHqxKiIppXmcx+M8jiJFSw7eBe86h5shbIaQUgRJ8xyhkHbBOQJTQhip8vhNTLOaAkI2FAggg8PSuSQKhFlbbwqZC2SNgpZLjvMhxwedS+cHsx63fT8wcp231aOX2umWa7GHmMl530ZkZu+dDxC8Z+w9e8eEpkVSmY9xfJT5CJJM4kDy+nb4N79+9e//7dt//2/foO/+0397+Hgfnx5p3tN2hqstvV6tXmyG4IIZZpGSdY65xOI89c4P63XoXAabJM8xPj3t7+4epmNm6vu+77oe0c2TTlN+eoxP9+Pj3XjYZwUO3eC8evbrYZVyPOz3+/1ejMh3l0RFtyAf59/P5//FVnQBHraFsSykuhMzmkPzVOs8qbHFiMQkxpKKiNa0vWd0yKSAF/KAJ4fh8jecz8G+PJPTEnr2UtVzbUHdN0WR0KxGwtK0pURBQK3ynmqWFxBE6vIms9aA8Zxus5oR1vaxl9P79HVWE2cNl66BXoNgGuHeURUxa6nlpub8XE5VSx4f7/affnIL4JBzGeejlayzQfAsazB0MoUStRholE5Sgqfp4adPP/3+T3/4+PAgOa84vNleB/KHKc25JBVRMc0ASqhKFErpU1lFAUpqIIaiIIBAXFRSKiWDFDZgjwzAQmaICcgAMrGgGaM1V4OQ2ABUiob1qa9NzQthE6c5ISmGqKcYDuGUizRErX4MLpsLnjKVlRx8nofNFa5cfkQyXLigFYjBUyyLrS7pZ5KiLZ8sRoYuA9KynYhCLhZbyhmg7ltaSsnMxnDOl1exDDNJOaY8pxgBybvB+y6EDsk777xzITjn2TF1fdhcrYeh7zpPaEVy17tXr676wUspkvBqiyV1Jd0G0Q2Y05x1lh3J0zSrRhMBIuKAMIC6LNliNkXAfnBfffPi1evrnOLT03EctWTCUO+WGpwNmeu6m69+9bXd1h57bSnhgvGDnViNSwwA5+cu1mC7A2fEtg2OGYhImQ/z7hPEXa/zyuOw2nBYe+4T+KhYiliOkqNxJCQ3bELoB98BOwUGIiZgQkfkCZlITTYxTanEIte/eOG6cFqAp+hCbMkbLw2eoaEXZ1HTs7WTtpsigUFrDFgpqEzokRwTEzgCRnJEgR0amqjmolWGCDHHeD/HPVHfd0QgJZopMTrnvPfR++Px4JxjZgQQVSbuug4AD1N5POaP+0jrVOQ0l6CyYJcyt5MfcmHjoKFIC7X5bJlP+EQdkLMPdGrYAFW3pCIxsFBTalqn4qMVleQz1gLN6RGpGWOt97jFC0uGPUtJMW83qyJLdmwZlPOaRWx8eKh1883DB3wWkVyW2SzgeX0AP3t8Kf5rAel5VbcMoCmAKao1xNQBW4zp8ZCedmkecRi69RZ7p1JETWoyHU3MRE0uaAMABlpQM5GhEiCYiOac45ymY5qP83yUUjQnWvWbfrtdD6+ur/reP95Pu/3u0+5BcvTOOUZomsVQ82wGJi2DR303XG+ut/2wHYYMFNV2cxp3+3Gc4zj5WDSDiymOx32a7mSWvtsoXCP64D2ykkIl1RfJOSMidR4MpSSVdLoWM5OcpERVZgpDNzjAUg5l3s/jfto/7Z8e4vGgKb24Wv/1X337H/+HX/2v/9tvfvNXr9e34af7w5wOCvmbX7yGgfT3jy8G+8Wbl1+/WeceDUwFRA0pu46G3oXgk0mZyiHH3TjeP+32hzGOcRj6b76+vbm5CSHEVD7dHT5+3L1//5RnXQ397csX1y+vD8fjxw8fJaljb5r2u3F/HIlXoRueOTGX6MulE7P0hbysH8Xz1Lk4sCoPIjEigxKoqZgJqNXETcr5cBjnlFUJyXvfe9851yO5isyepKzhVAz0f+qodEK8uBBadkJFMxMTqZJGYqSAxcwaixSZHYMRldoBC0+pjjZ/cYncmwF8RnB+vjWeECdugrQt0DEAsgZFnHLCbdeoDclOHyeSxkPc7ywEQhazWPIYZytZSEELO3bIjBYYpAiWmGZMbDFFEWFAB5BzzsViiOZBEdE7B94ROsbKP+y70G3XPFwV7mcLalpqtTfUHY8KBmEWMABHvkN0tQkb8AWkilijqYo6mxpKgW4Fz1LjtSzg3OIVajuFxVGpfsfl3TsZ7zN8d/FI+11zShdNSPDyU5b/2KkJwDJSn8EzpyfU0IBblglABLKSKD0b6VNGsCK31VoigJBZEUlmxXkIgddDGIah6/qu6/ouhC50XReCc46Godtcrfuh857NJMXZeby6dt5RTqCe12sG7U0BU3Fz1IgmghMrUal7iIlzFFCcCkMpmomg7/nqZnj99nq7Hf70h4f7u900paLqrBVCX4b7zK5fbzc3HDwz4RKRXNzMVqZS0UlrSVJsS6NaA104Fm2Wt6AZEUlNU4w5hNB5KleDTk4zAaDvVpub3g1zoZhymcY8H0t1U7kL/brbXFHoxLDWexOaR2QCB6YmfhBXiivSbzbIDM+Pc+uNi2GF52WUtGDCZAZSbQ9WaUIiQDZG9I694+BdFQohNDJgJMfORGMupSRJOecspZRSSk7JIOWZCFQyM3Z9YCYDFVXNWVSd94goIgYSxXKx3XE6pixA6Pwz46tN/lZP66X5Yw1DasNDqFJ9lTM2eYlS4Ln3RUVdamGFLTWhbc5X2ieatJQWoSEBGLWsugIIVC2W5qy3VMWCdjQxnlzKPMfrm6tyIeKBbT5UWc42ceqKrpOlLtl6QnLS07DPnZjLNh4L5N0Qs+V6rUltNd/mJBxUU0iNtG5oKlqy5FRyURQjBVAoakVNapMwMxHNot7LBZqnJc1pHpWZmdl5hCpcLqBFS9FSTAsYecbNqr/Zrq83g3c0MpjEadxP05GImHHZXCpaSbbwqsnoar296odhs+lX20LukMok+5Ty/nAcj0c3ZxHilObxcEjzzrKZwuHoh36zXnlGtazViZEiUhBBixpAKbGUeFFsUdVBC4pooWyTKKT5KY2P0/ExjjuNh97p1dXwq+/e/M//8df/03/8y3/3t9+9+WqdID8d55ubUNRt+zU/4gTHN2t88QKHQROUXKxSm31whDj0zjOJ6pTmh/3+6TAej8kENpvV9mp9dT14D/v98fHh+P7T4+PjOMfknV9t+mHwisIdphL3D9PTfvpwt9sdppiKOSB6BrG7Z+gL/oxx//PPLsQ3RCYMHh0aqkguaT6WnEykzpZxHO+fdvNcEJ1zfddthmGzWm+7fuWcR+ZnHNjPgZXPfp/PBJ8jIlUJMZdMy5nWkzOsHFozFZVsOZsYoDNiQCYmRvLedV2PiFlLKSXlAg2JaaqpXFO1ttiGJSRdYqC6LBGaOVgwh2WpWot6FiWYqjKtClj1J5v3fPJjTBVyxpI5BCDMWWYpUykiKogATMV6B86HDlkpiciUcmIg37949XW/ud4dDo8Pj1Jk2w/eB0UH7MkH9s4xO8fMjl3lonukULAVQzRxMEIAYDFSdAZIDI6BazUQEZCdMKqaH8EKM5GoSinUrZBOG8wiwHCRP1oc10o4qCVjbQdtBu7k4KCe8lCLx7vMEzwhiGedp+fzx07FCpeO5gWYeJ5nyxbczOepDPvZttjiSbxIVDWTXpaws+/CetPd3mxevbi+2q67ruu7rh/6EEIIwXlmR+w4eM+OCCtt1okVhFLJ10zog0cgKVogx5iyzaW2pMIq8AeAGjAHLGhFRaKIBX/1cvXqq6vbF5vg6OFh9+Hj3RxnreWVBlBJqadrUQNNVqIB124WFxx7A1j2E1hc+MoUqw0RmhT2WdHSYFGTBlBEZlLRNI9ScvA+hPXKyOI4Hw8owKsrh+idq4nUCDLFo+YMZcYSPCqRkZqoLIsLqU5JM1SpO9IlqNayCKdU78VeJ0sSuL6S2go1QiIzk4IKCMZMntgzh+BC8F3wfRe6rnOEKiJSVIoW0VJSTOPhOI9TySmlLDmpFXIEAPU+k+O+D1fXV33f1UQjUmt4DYAppSnm/XE8HObd4QjO3b58+erFjffudDGmZsUMTdku5upSUdXmMJ3IwMvebafpWy3J5TzXy/ZMixlTRK1y1aZoQiawyLtCk1ZDMzUo9f1gAEbWqqLrJ6q2X5ZKHuf48tWLkxODiJ7ISOsw8uLF4LJ+AQkMm2wpapt0uoiCVZVeOF/dBX9h+Q2nvxeiopmCyWLLoGmEIZxcM4Pig67X1nfahcnQUpFWc9zEAYpoLuodnWyyisTpcNg9MLkQ/DCsui74wKb+sMB1hrzqu6v16uXt1cvr7br3BNYz9o664FQ9ABDTUtm1OJwVMGoUHmUAzzx0XihkIAM8jPP90/54OLosxt6JTFJmNA0evI9ZpnGexyNTASgKogqqYlbMoIiqWk5zyfPJiSGAQBBQSHI6zsf5KEktz2U+zuMT2rxZ0be/ePkf//1f/7t/86u//utvv/76ehh4nqOArfv+b3/7dSzQ+wGfNF6/GMT6TYn56SBzYRyw994PK++c65gJDEqeSrx7epjmvF5db7fb26uN95wlv3//6U9//HR3vxtj8qH76ptX11fbIXRFyuP+iE5evX2Z8uN//i+/+90/vn88RAUQKVLSsxLrP+e3LKHsn3VrsN2OJaMEYKYqJaV5PB5TmrUUkZwlxpRVMmPVl0NHlaVlLYkAsCh+ATzn5bQxFgBoPYBgiUsuApTzUYOiqirY3gvn1y3rAg2klATI6DtPPoSATDlnVZWaSxQBBG48LzM1I1t8lwVHrUEN2PkuwKkgve4ZCCi1MUdto2ULaaDxZppSsJlaKaXqvp8uWhfGrKrNpUylzGYCKMYALri+7zrPzKUUOEqMAoAhXN1cvVgNnjmm9PjwmHLuvGfngT2wq5U+TIyABiSqKZdcLCpKrdkCU63y1diKzytXm1AcaOO+EgKTLZ3fTvsYGCKiKhKjC89njl2ExJe4yenxy2l16a1e9Ms9+w7VSbRFmf10209ncjFV4Jnl+7Jc/+w9Q33+hDTiZyfz2bHQuAEqfLgEpsG7F7ebb75++e0vXt/ebL133nsfvHfOOU9V06CBfK25oEEQwZyTCAATkXPeM5EpFI+JNXWYU1qjvUiGQ5oSFlWHwhp5EnFFnNBmdfvLN19986LvOY5pvzse9xMi9p3zHSOReB2qyPly4WiCWmp3t1ZXc3EnLxpfPr+fdv79zOdZqjsBEZGtiORopr4LnWNvJpJF1DQPUgiEjBwBdZ60s9gVNEQFy6iZlRvxTGo6kirV1MxqhSycltLFKLb1tZyGXaxJrDQ4UTRjAIfosTayQERj4uC570PXu67zPvjOe++c885MUylSpLaFKlnnOU7jGOep7ngA5rzz3hE1roNnGoZ+s9mELoiBqolYUcsp56zjNB3H6Xg8TlMWkXXnr7bD1dXq3GRHLaU0T7OKa02fG+qgS11Eu8fL6rGl3eE5Frx0YhpiccHvaJr1VT4bnRqaFjJjVAAVRDGzypE3Mqu9s2oncWiM5wV9qXKduDgxh3k+HKfLntxNiM1a0vZideHZBlaLaVq1xarxXMyrLU7MMmeXe6AXKcwmYAiND6dgZTlFsIp/IypSBUxNs/dlGMRU2KmCpNJokSKqtWTaUpF8cSWqGqdx2u+JWPrAYIzahUCmCIpVmAOh87zqw9VqtV31Q3AEul0Pmq+YbE6x7XNNh3FZPWYiCmqkthmG7WY99CE4NyukVMYpHo7TYZznVJzaSMpoE0NikuDIuWKWU4nTxJQBs8KpOLBKhLGqzvOc0s2pRZdZdVkOJrOopJElGmkhKJuOrq+vv/vF9m//5pv/5f/2t3/9V7948/a6H5yUIipg3Dv66pUzUmbDDQpd4VSgS8ccpzKZd2uk4F0VTWIEqLWAjBxch7Tdbq6vtqvVKsX88cPdh/d3Hz8+zDG5zm+vupvbfhg4z/Mco2gR1Zjg8TD/8HH37u4YDQ1IS9KSLlM27pLe/YVppxPScFoMl6+kZjpUBIqBiZQ4zeNxPBzTPIlk1WIo3ruv3r7xvkfwRMG5gV0AYCQHhLqwJeDZ8Vn4+zxlsDg9l2wvVRNRVa1lPhVN4Cqh48gQUAAZQ+c0psPuoAqOuXPDZjPEXN59eH84HGtviOC9C957j4QmZmZA2iDnJeLTCyem8e9o8W+aLAWoKNQWadaWcWutC7UpSC2A0KKapRS5kFE3kCJzTAmoEE+ms2pCFsaohNDfDLdhu+kdY5xzUhNk71Y3t69/+d31ixfbbkCEaZyKKXsHxAqQi0xzTLmYQUpyPM7jOMc0ZZMIJLU2CqHSBGq9gDfiyhFDE6etVMMIq/RcvaBarmr1PrSt5/Pdrz6EVos7AD9zXy6rkC4OwqVYqa15WsTv8WzK6+92T+HCNMDiZzw7nep3NXT+i8Mu9uefPxoRa+lFsqBxhqaoJqbKBFdX/duvrn/5F29fvLhumRYzAKx7UoUCEOt0zQrGjpid81UXZZm9xN55wg3CTU5xOo7bcb55lccoc7aYk8RjGQ95H1LsNrJd3V5/81e/evHVaynl8WE3HmYT2KwG4i4MjokM7MX12rszQrZocAHZGby8uP5Lt+/yHjwfWagqHUonSagWDLcydE8cGMiCkFdkMAMtVmbTDOjYex46sm2OLueCULRMiopEXEloiIxMWLMZWrsN4Jmo085DF607sKZcWSs1qJFGzURLjmjmneuC6z15RHTgCIMPQ9+tVn3fBVfdETBVLTGlFI/HMc5TTKnkLMVyKSVlFTEAduSIuy6sNoP3HgEIwDF69v3QIZIWySWP0zzOKaZ0OE6Pu32cZ5XSh/Di9ubl9fZmO6x7x4sstIgcj8en3WMTAjzPn8VnaXd5MTbQiB/PJ3KNLc/26vyImWlND4EhG3sDUCkE5pkQtajWxEot1TAws2KtwA5QG31+gXaa9rGpppLnOeUUz/0szVTFRFq5T4XAsOp8AUA1gWBmJ5jbWvTU6sxrZ45TAkwvPJqm1wVtBi53qWFWVQR9+V5CbY5O9beKc4oopgVIFKRIqdVk1T4bKGLDg06LQTXN8zweidm0MAKYmHQpnwBUIqYq598F7oILjoJzfHtzte6/Kq9FFMxkaTZZDRsRw5JOQlXPvPbBOW9IcYwPD093d4+74zgXBQ7kMTsqJpF8MlLHjtiZU7E4R4RZMQrkKh5YrRUhicg8zzG+PKEXKmXaPezv3rObAIGkJ0W0crXtvv325W//+uv/8B9++dd//fV33764uenJKWAhcqgeBFiNMIkVk5k9Da+2Zcz7436fdtFy1/VDD6uBFQ1M6nUpWbca3n7zlSl01IHh4+P46cPjP/zD9/v9YRi6129evnp7s94EBdvtHt6/+5STXd28SBF+94/v/ts/fLjb5wheGcHEcrIUL72Rz3onPcsdf2G9vjhMK9sE0UBNS8kp51xUwZCIvZnmHJkwOL9erZk6RAfoAVgXuWTAP1sJdXkil04MkLVaFvx86V5eG5xzE23T8s5dr3vM2amK6Gq78cMABPs4Pz09Pj3uiNgFPwx9P/QIyI6hslcEgLRtXBfCSpeExtqStYUWtoQp0Pi7tUuFFDGtwthgF1FIlVu6GAaM6EZwoCRIiVgYAckxE4Vhc7W6ebm62qyco5zY+RRjYXartfODGYkAIzJ3hEDBkQ/sfYx5To+iagalaMoWk+YCqszOIzuAirmYIRABIbABaeUZaSvVWFCwhoXhQpjUk1rWRbR4MTLNtiz0J7gAOho8XtUw0ehMPTIwMVEwRGItJc8HMCDv2Xl2jpoYmS6k3Wfz5PzV1RYt3vh57J6f3+m/fxZ7gWpGTUVVTJvcELS2ExWCZ+o6t91219fD9e36+mZtAKpaSjEzZl5AZAOEUopCQQUfnKvVpXXHKDLPqRQxM160uMFTt+679foGSIFES5nHNB7j8ZBSVLD11dXbX37br1bzmCWXEML11ca7K+8731H9nBc3a+8u17XiGRs7K1P/f3nUYVVqDg8qoIqpFFMhREZjxKq9XvEn0syWPHhFJENE7QIxMIEYKEhUVCBnVcEQMSsDOPKuzZc2j54ZKF0OgCrarFpauaGZmZWKETNBt1p5PwwudI7BkBACg2cjUJWcSxHVIjnnklKKKU7jFFPKOauIGSCiY/YcAJEYmanvu8123XUdUlVXM1AQsZTSOM3747TbH/bH6ThNh+N8GEdTXfXd0K9W6816s2HPl0tGVaZp3O/3fXdyYprK0OW0vaC46pdOTHvNBYvx0okRyWBGAMAM3FUnhtEwOCYEM1DVokWadIZCacAcQrUCi7t4dmJUtZRcXYHLBSMqRUsL9iqWtrBizBCXgnEDlZyLSlEzgCVEQmREZkMQKWZQ45klkXSxWmUJPwwMQMBUrWnxw7L46yusdmWHYlDEsomolSI5pyICZkjI5ICw4mcXSIxNKR/nxI4LoCBG0S7nIjYnKYqKDIilFr4SIYGZEEIX2PseYVXh+FI0S1E1qtQa54lreGyoSggeUIocY94fD5/u7+4e7uc5qqFzDpgKAYAV8mKshGBY1FIu42S5SHViRNQMqkWpNKx5jtN8di5VJc7jfNx5H51Dz7Du++169fVXN7/9m1/8zd/84m//9tuvv7nZrh2ATjGKglkAZZSqpyK1vw8T8IqMHSgT+x5d6DoyBrHaAQfBFNAIKfhV6LWYzDLu48P98cP7h8eHIwBcX9+8eX21uerN8sPD7u7T4/2nnWSSMjzs4u9+9+GPf3o4JjDXAwiAgmSQfOmruMvZf7lKKrhwuTKWxXC2G6CKqOyAqHYBNgRgdt2w6oah826ejp8+vpuP8RhGAt/3jAQpJzNiDo4DhSaZ9M/azmfxcVu7NZhvMX1dsS2YP2HcjewlZgRqkEsZwvDyxYu1w10f0PD6xctZ7Pv37x/vPx0P+3EcEdklJ6VUDVMmIqLawmQp0FzC6rr4LsD5+lTbg5eccQ0AnPNVz1RKUZMFslG1k4Bog1fbkiQaw2rfb9F58B5dheawD2G72dxeXb+8vrlaD4N3HSF//ZWKpFL2x/HTp4/f//EPlZ+mZsjkO9+vr65uX6YiP/704XiYiEhUY6rmGjmEddeT90VETRHpRMwBUzFVkGJNeaVmHUgrnaV6l0TV6CzBorUWq5cTp21yJ2JvAzMWZswyfEt8vQyjiViegID7VY7z/sN7LdrfvOg3N8PmGj1hjdPQoNaXfAYTnHqcwGmqtOw4wtKXwT5/ly5wxGVxSHvKrOQSY6a6rzQqT80YEjP0vdtsutXadz0BiUJBZGyNLsl5R8yVIwEAuWQjENGuC8EFz16LjNOUp3jYH+Y51s1BRBCUGPuuW23Wq3XfrwbvHZnVuKFIBgDnw2q9lmKaD8PQffX21XbIzCtXaV8ERPDqZnWBxNQiW6uaHXThw1yut0sL8OUitUaCbkNfb4aqStGSi4owI6mQGJSEmgIZgTpIwbz3XkByTiqZNAcTIlNA0wLZlFQMSyW3EgXpNhSA2AxNBQ3R6AQTNXBUiwoaVMlRKLlILlKy5Cwl5jhO4yF47l6+oI4HXvedVwWVUsqc03TYg4jGRQinlJqRsCKqVhntyERD369Xq6HrqPbpQwydW63WXRfIMahJyvMY9/vj49P+/vHp4WlfnZipwqBE62EY1tdXN69W17fcr6Zsh5hlieTUdI7TOB5UOud4sY7nzbiNRbU/zZGTz0YML1DJ574P1qQ/1IjLjJANUFRqROAds2NVmzDHVHJtTIvLAjojmA1ehmWTqO1PFiWFZXqYFZUopcHnxNqUtkAVVWtzBnTsRGQe5+M0HcapqJBnDt6HrutDv1oZWK1k7/qOiJdkWRPPrAwdNKjLSlSqetkpbaPa/J8K7GTTOZc5pZhyltrGq8zTXEoxAGbugmd2gFzkrP4hZoesj0kDsCc7aHJRHSdAzGJFuQCyGmSYiiS1rJJyJCArqfIqVSAVSamknEyNnXPed13ngq/UKQRFQCPMJofpePf08OHjh4fHRxFxTOQQCEuVeKVAjfZjqWQoWYDYKVApJpKKmRFzFQ8UkTjLOOuJpWxqJRfJuXPaMa86ePtq/dvffPeXf/nNr//yq9dvrgLz7vF4eKoKHyp1oKwySYnRuYBh8NhxDIIdDi+uOt0oOhVMk0gsfs0+EAISYJVXMoF5LPv78eHT/u7jw/E4rYb+5nb7l3/53TC4u8dPHz9+evfuw/GYHPU58e8/3f340+6ffn9/95iU16GnnCeyRCqkCwkdAD5DYk7g3PKAQmuK/Jn70rI5jGiqaZoRzTu/zC1mh8QUgi9FVCGnkmLOIXdBVcp+dyjFujAMq/XKO2JuInS4rI7nx+JBn78eqXrM9hmmfFo55zBBDQCtgJgVETVjpj542qyC86/evHia4vfvfkjzVLuoV4NcilQTfDqBujk3ZtvFqVUoQKw9T2iqQK2uYgFa1GpLimoIrEKsTUcCAEzx893SiEq3ysMVOs/OsWNkdgTroX/58vbF1XY7rIe+C4477/vQoVmM85jS3ceP3//p+/3uKc4JCJ1zXd9tb168/uoX5Lun/SElaZIfhL4PRK4bhu31lfM+ppxzkZZhRzVVKaXkWGsNdXE02lSwRWz50o+rt+qzrR/gQqEEf+ZHLx6vMdOyl2o2SSqqYNPu6f7H70H0BXPfrWBpXdTm4s8dFzsy1DJ2ulCI/iIrcvmu08PPBpwJV6twcz2sVxy62rkSkCsaxd7zauVevV6/enG9XvfsyLA1RV0UzgUAmbihnNVLMlPTIkWLTeP06dPd/d39w/3j8TjmnHMpOWVC6Puw3W5uXly/eHX7il913bYLgblTGAwNEcmIkdKUveP1un/z9iZeKZpDw6o+jGarnpif3Sz74o/z3/8aL6aB99UPr2RoAtOqV+uInCMmqHw4IMioJsXyjN4Nw0oRjzkXy4GMiMyT1qy+mWLrFVq53646g8gEQoDPpOnbiSiqYBU0AUVVp5msqGaCwiBIAJ5D8L13gZkRTCWnlHPKKVYEoRRJMeWcU8660Epq/Y6UAgZ1X1BZVboFAjp2CKQCJStkLaXMx3m/O97dPdzdP9w9PT3tj9Mc51xEDJB86Ig8+w6dzwpTKiCyntMFX8FKziknJjTjhYVWXfvPa0WXrMw5y1JtCvMZfTl9bH1plRAxE6x8fBVAqtIttZ9lF7xZhRtVyrk853NK1InZvsyKMx//YnI0fmmtBVNT1Vgk5RJTyaWAKiMGH6ToYXd8etrdP+5iyc77MHTDarVar9ebjYHt9nszXa0H55yqMqH3gZmJCMxAlBA77wCgSO0UZkjIjs0wSzatf0MpEnOe53ma4zRX55FFJM5R2gbBNZFnSJuOTsCSABwL7Ar0jlxBFEMSAqnlrQZUDBmhmD6N84f7R0LZBQysIAkUDLwI5qI5Sym5ekvee991vtbCESICI3rmGNOnx927j58+3t/t9scETpAEFBBwEZPWql5ZVIsZIhRwiGBegUXJwFjrykMxKUCC4ULDFQ0J0BHZZjX84u3L7775+tuvv3mxfYWlP+40xwmdIAowINfsnhFgQHbkO0IED4HBWFHJYfCdCM6RUpS8K96p6xkBSauUCc7J4pgPj9PDh+P9x93d3T2Avn5ze3O7dp7HKf70491PP93tnqacjEkO+/T9D48/vt/f38+xEK0Q6NTSSj/L3bhlip9/P8NmLoz4c5wGmNAzpzg93d2LlqvrG+9DE4REMqNcIGeTYlLMpMKJFFN5fHycptj3w428WG3X3rMU01Pn4ueJIwCoeHUrjQCApvOLpuDcWYewXcEpAVzpbGCmKFWbUi3nvN/tfO+9lNVquF4PiugJHdEwDMAeoXZxLqe6onrVTd3STvkUqIX9tcShqFhth1NzMYwheOcYkMygqCISM0vzkyCXogCKBESEBAhLX8Tlislhv6bNNXNtUgmAwA67vt+uVtuh73yt1EOr5GEzM4vz9OHD+9/9w99///33+/2BmUIIw2p18+LVV7/4dPv67fb6ZrtdOeeGrl9vVl3XMbmu7zabDRONc5ymeYxRVJ3zahZjHONs01TU0ADkLNXf5sMpVQ4NJ67Kbs9K4Kw1GD9FbtUlPP/As3+aGaCecT9EyTJPu8ePnz6++9Ej377+2kFL4VjzEBSslXxftpapuowXvBVAVFgavZ0KTT+b8yeacAVYLumIXee++cW15LfX1/2w8rV9MTlAZofee9d1fr0ON7dhc9UH7w2gMh9FRWvFGaP3Hhlr2ijGWEqJOGu2OOa7j3e//8c/vH//4elxfxyPcY4ppZQyI6z6brvd3L68/voXb3/9V79+89WbzWbj+4BMWHXoAFlMi3iP26vOMaeoklWylKKSpKRMEJ6njM/HZ6sbfs7V+8KHaXK4zYkBa7VqaiVnMOi7ruucc+Scdr5zEieRHKdo0jnXOyDvNceC1LsqpEJiMKecpXZdIwVcWu4G56ioZbSCFT069xtCMzZxJh6QVUAimDgC9sYeEQNiB3gNYN77YehD8CI6x3g8HGKKKsUUqhI7c+dc1w9Sd2cDE7EY0z7llBIiqAoRHr2TIs65zWY7DEOa1MBSTNM47ffj0+Pu493Dw26/n8YsguzY+7733nnHvus6Uz2OYwHpp64bhpvrq7MqdFsIDSNb7Fvj3Z+G6NzO6DOg+nOEePlMPAUGy3Jr7ccrmFYDQmRG79AMA2MmZELRJU6pwuRt1VS8xwDAaptwq67W51VjCiiAAJZFpZRxmp/2x93h8HQcpzirFY/Udb0U2z0eH+6ePn64n+fkfOj7fr3drDfr1XqjZrvDXk3Wq955B2YhhM1mE0Ko1+rQOu82Q0eEueRUSi4FEX3fqdo0T6rQdZ0BxpxTLjnLHNNxmkTMeY9IKk1GBxEIo5oVLYOTIl/VaxGDUXGnlIUCE1U6J5wjWzVzYJkEHg8qf3z3DoJFtgia0cCwM3NaGdV4MpWERI6Zm5okVVXkUmR/nD/ujnePT4cpZ+RiVJOojed+Lo4EBkTnPAfwgbm2MjAwQEImQiIRRZdDf03UtnskYj+4bk0u3r64/R//h99+8+ZrndYfftB//LsfXaevvvLXL/yw8d3gQsfEgChGBJ6JiR2zd+zqFleQENHFSX76cJh22Re8WvsrJYfOVKRALLA7pPuPh6ePx/2n+PRweNrv11vabF77zn56/+7Tx6ff/+6H6Ziur26I8eOH3Y8/PvzTH+8e9gn84NmXksRUJZqWy32jHm6xTZXEf7EDtJzkz8a5uGQEMMX88dPdPE3jmFbrdcUbRERVzOC4e3x4eDIt6/XG1BBBStk9Pj4+7buuL6Kb62sMARCZaWkpY8sp6LMNxs6mtRK+RKCU5/QGa4oWlRBWNyEDEFsErMG4qjipMapn9IwECiaESmDYutvUjrWLaa6qRACVvUPEDTBAZAIAdEYGgAbe8TB0qz6s+i4Ej0RglE3NgBCLlHlazTHOKcdcYpGsVbTmSy4PUei4X7lahqpCqM4RO4cAkvOYciRyzN75LnSOCK32Ge5D6AAw55wziKgBOrd/GO66YXj18uWL66vVMKxXq5bFR+qCXw0DIo7jfPQuHDGV4pwTNQatimVioPnEo7OzDtpnYPVy9n8WG7kc0M+Pz/IZ2LxEF0SslDxPaX+cO+dUdcHJF6MMLZV58dlYIY5as4BV/AIJARVAQBWAL0/yZ8+offp51w/BffX1jXd4cz0MK++ZmYkcIJEjx8TMGAL3PYfBB+/ZuermIlGVhYZT0hOAmbx3Nf9SLJeSY0opZSkFERxzcc6pLSGyJyQrprkW0GmRgqWqshESGaGZIGHo2HkeBivZ0pxzzClCmiWNxXv8LFC+MAj1ll64OEuLoPO4PAsz7Hx/VJt6iZmIxhjHw8GQwk3wrlYKLo11mAix5DSNx8PuiVwYx1FFoQvee+8ZEAk0OHTOqdg0z2oQqPcGrERGhURIFYzgzL1gwk0XXqyHwTuHpjmBokdwiA4BqaYaHDvHxFj7tMc0zdM8zUWEEJhdkzANnXMIqEhAWFvlJQQcx3GZVVZKUdOSClM2o3GMUiSlPE/T8Tgd9uP+MD7tj8c4Ry3k3Kof+tVq6PvgvUMOwXvvDTGVohOI4XyBxDyffp/9rT/37HPL8XP1pER0Yj2LSE7JTJyjWlCD1Eqaa2t55wgMHJOjprpv8C8t6NMLnr+siDztjw/7CUBFSoxxPI6Pu8PTfv80Huc0qRVHFLpBBfZP0+Onw6cP93HKwYeu67rd2PV91/dqdpxGNemDZ8dm2oWu1n/VXgeeoA+8GTp2lEtOUqrUm+9OToyF0BliKlKKFsVcJOZExJv1yvvQ7s6iOy0qMcdxGk5IjAEUoGTEQGC1lRMaVK4X1qBaalw15RxHp6PNe81Hy9FUFYICm1Uub9VBbbAVEXlXGQMUvO9CQHZF8ZDKMaaYNZkVa+Qjqu9fiBPM7Lzz3dCtNn3fUysLqCPWWnmXIoKJXHfGCYj9sO42N6suvXj1+td/+e3b21c//n4ay8yEXXDDqlttw7AJ/cp3nh0DoRCj886z9469B9cZuYYNUV0XktXEhxA6RkQtpsnmqTwc80+fDj99f/f44TA/5Xk8zvnAriulxHm+u99/+rSPc5YCadbxEH/8/v33P9zd341zwbB2SASiAEogl11AT4ejdr0VuwU4bUtnrsDy61Sf2qywFZH9Mf30/v7h/m718f7m+ur165ch+Hke5zilGJ8e7n/68cfg3HZ7dSuKACJ5v9t9+vARyc0pD9utOjdst+SdFNMm/i9thzp5uXYqQ2m7l4ikXAJ61a5F32cBJm6kWhEoxVQVEMgcU+82r17c3Az+ePcxlVRKkpK0JM1znvZxSioASORcYDTJoA4Rue5OCKJW2XyuqnBVz6ZmCBFNcb1Zv337+vb6atUH7z0TAZBUqVQRKTnGOE3zcYq7w/jwdHw6HPbjmEoWWXrqVKODyM45Hxw7RNACDsgxmdp4PKSDphjNLDjfhTB0q/VqWK361XrzV3/1Wx+67dXNp0+f4jwbgPc+hK4bVr3z16vV1y9fvHjxYr1Z1XS7GTjmLgQwwK5auEwAZmKqDqwjtr4DJLNkJtKCxCpVip/5MI3m85lxW7a8BTpRBUKyCs+g2QkuaSjMsqOiATGzGwz7kIn9UHxPTOp8Ta6TaQUYVU9V7hdfWn1ZMMPGxXEISKAGVWhdLzymn3PF2tnWutL6SOjc269v16uw3XZ95851Fo0IJaqF2AjZEQffhT5Qu8+mqjlnAHPsiKk2UJZaF1FK7HMfeudc58O3v/i6iJQiuYo8gCGAQ/LOdZ2/vtm+/cWbzfUGGbHWzDvfBc9E4ARMDAQRENnEUixpTnGmOFL01K8CndQH2mCYqi1Jwec34Qtc9vnzthT9Nl+fmEwlxnjY7e/v7oj9sOpwCGqUisY4YcqhGwhsHA+7p93T/iiGURSRuy4EH4LnEHzXhfUwbDqXUnrc3cU4r1YbGtZu2ATXKaEyZNSKyLRx8e6r22un2gdPqGmeVTIvLHIRyamYGZMBlBxzyinGVEpBsKHzw9CHrg+hDz744J3DemmOKaa0ezrknEPwZuqdDyF0XUAiJim5PO0P0zjtdofxOM7zPE9pjjVJgUbknOvWw/Xt1Xqz6XxwzAQQQlit1r73iGgAJZU0Z71smYrW8P7Wzn3pnGQLFwSwoSBfOBiXNvyEyiAiI6pqMUk5HccjmKxXg/OuFf4tmSBGdFUjipeAHwHrcjWtEOmZGXNyfhsUU2GM88nMMf3xh5/evb9HtFLKPM/zHKd5TjmmksSyQSmMWYoKTVkKGDkfAnU+OHY5l1yOx+OoqlmKmYxIACalMHPX98wsImBKZI6xD0SEClWVXQAAnTOwkrKpInsAEgC1miYhYl6vV33XBa/LPTsRAkWLqFyS+044c0UbbYnkq3WhWvdgSFlMU9J5nHaP6fiU5jGnlAVKKz9tOu7U+kgunT3IOaZh6LdX15vNtl9vMzpFJyBJLMsJZKgD1ihKznE/rLfbq+vrm67vAHApuG8bqIioJYD0rMaeXbe+3ty+uV3Ji9evXr55ebXufvIfbl/ar37z7ZtvrtcvyK8JPRKRM3QAjAYLnxcQgBRBEJA1YEEgCA5ubr1d+5uu7xybWRyzRtk9zX96//BP3999/7sPT592kBQhE0vo8O7jbprSbn8E06/evhoP6cO7+z/+4aff/cMfHx4n8usQOpVRUyTHzIyeQHjEKqF+nmeusd8RAVDP4CRc+N8LUGCnBxEJSynTcfr48eGHdx8/vv8pBPfq5S0RbLereT5M03E8Hh/u7x8eH4auH8dxmqb9fj8ej6aiIvMUBZC67pjyq6+/7tdDybmSAGrjtLqpgUEtW1n0IhEAVTUXiSljWeVv1mdmj53qfRER2TEzNfoiKpOtPV9vN7fbgSUyEXvnvNusVjdXWzUbulTzHoq0Xq1f316tN+sKMTsmQCslGRgSO2THDkxLScS4HnrH3oDXm+1Xb17fXG29Z8fkiAywCIhoKbkUzsGtQ1h30SPnKU/ErXfU51AMIDmkqspriEiI3lc2px6Px48fP8zTHJz33ve+u76+evvm9Xq1evvV1/1qtd1ePzzcT+NYRJvUBOJqtfIEaTqOe9YyYzvIETnnmBwQOYLtqmeC/W4XYyyiCDB4T+yQ2KUSRZLUuhmoEnS4UKb+haOlkHSxsgjWOLStcB0JDOhMCV5QdGRi9D50/dCt1k4VU4TpqF0PxLgQS89KQ/rM8W5rFsAheAAEE7QMVsxkqZiH028AhJNwHrSGghfghIgcD+Pjwy4l1/lKMq28K0FUxAKQiLnz3Wq93sxX/XoVOs/OESEYFBEEU9bK42vZmIo3scMeCanzoeQCUEEwMwBkMKjQABJB34ft9dr3XioXa6mHu5w7iMCEhujNmamol6IlCTm+DNRruYSq4iJtfbH0YSkiu/j9ee+e1q4K2mwAFUnzmOPoQTrvrwJtQhMsM8eOum4VSgxgcpRjTEkMa41GpZNnKSxEhCG4oe8IjamKu0dhNkeEylCtqjGW09kE515fXXUAzrNqmT2lFFWySNX/SDlHU8QQCIlQHZo5cuQqL6HvOx86H4L3nqo4CxER+uCc55zKPM/D0DOR9x0zmUGKuQrG7PbH/X6/2+2nMdYGbAaG7ELX+RA4+H69Wm/W680q+JpOqozVnphUNOcyz3mafhaJubzVAJfb6edZpNPg/SxgUmcJGUARTTFNx5FAusBm3vDUz7hqEwMvW+yZUvxzn/rZmv+cCwAAADmXDx8f/vjDB0eoJinlknPJ2SSBZoACLMqoWcScFiaiLgSBzGgARctZXKvuBKaopqUUFUIwIizl1G4za0lqUlvzERM7F7oO0NIUU4wxFSTXDWsXeiXPznddGPpa9g0n2meb7osG/bNrvKgcMTBTazo+talKVSkCqCpcWWCc9XhM82Ga5imlkmpM0voJGgFVYjizCz445z3zZr1W6iis3ZqBgqEpoJiKKYI14S4AJKKqMIqeObDvnA/sfAMAtNInVERKznOK0zTHlE6mjBC74G+vr3751eovfvn69vbmaqA3X68C41/9ze3rr6/cAMZQu8VWvVMGAxDBUlAMVaugmNRyUgJU53CzdgrmWdBUEkxj3n2afvqw++OP9z+9fzjsDjFOlqJjHXxgR4hEQJ6cWI5zfLjbff+HP/3xD+8+ffoUow5bxwxWwJQRPKNn6ITJuUAuXCKOjom0mjNcGjGaLZuM1bhbqjGvKZ7KK0Icx/nTx/s/fv/Dn75/9/79T97BPB+3V73ZtWnM8TjPuxRHkVKKzNP0+HA/Hg4iuloNN7e3H+4e7h+ePj3tvv/pw69+u7++vSklp5hijqUU07o7CBiiMRnj2YkBM8tFY0oWX8W/fgXQnxZWLU5HsuC47/ym65nIci6SpMR1Hzar/ubmetUHJuxXG+Xpq6+/BvZfTXMRc45zkv3xGLr+u2+/ubq6al370IqWlKZSsikQYnBBSz4enhDt5moz9ANQCN16HXo0LHMS1EKoovOccionOTtVAzWWbClZTKCtt/szpRzE2p3ZAGvDHvTUd2HV+Z5k3u1+evfu48ePjExEBPjy5cv4m9989+23b96+vbm9ff3q9TxNMWWRgoi1ffF4PDzc3//u7z+Wmi0OPoTQd31wDhFX6/WLl6+ub26utleO6P7jh93Do4K50K+urvtVt1qvj6nsp/Ewz8c5iegiO4kngY6fM6CnpIW1UpjGiSG0pqZjlZq3QDW4ZKsMQRWtRDPwHler7ub6CsfRPzwAB/O9sEdcLC9Aq+6uc1gBEZthBvQIAcGjIUg2o4bTta6k0OIMwErEPbGsVJZ+iO1SDofp//V//P3v/tv3w0DOESipWC5CJD5I1+vQQwjsOKzW6+vbF+urq2E9dKFzjp1zzbYysWNivoSUEZGRvPPhykNDphYddQYDXIRHjQgKgKQMKGCAQJbFUkHEpnnagKgCzepoyhCLpWK1hUS7OgNTVTHB1i3oHES3nfEZyHZ+GC6wp+bu1NgUpJQ0HZ3lX7y6urm+evtq03c+xmxAbrvtPA6e03TwaKvgSzFkx8NAoUNiM8gSHdN6PazW627VE/P25iVyV822qliexNCEPLInPakcOscvrzYDg6jEGM1RSZpSmuI0TeM8T2mKjLxdb4ZhWHWBV31jJdRoVdVAtMSoSSMQITvqOsfcI2Lo/LBabVJJPhH5UvL+MD49Pd0/PD49Pe33h2mOJQsg+tD5oQtNpLkPIZBj33V9pcN0YRiGYRi892AkRXKK05wP+3k8zrIgMScfv/0sBWCwANFYa/EbCeBijKgqrBBAFbtrOrVgZkCAWAxSljSnchwJS1n7oh2BIRKh1T279mCxZb9Gan3gzKBVEzb0ssGc2FIprWcDVf2kZVxKkafd4e5hXxs4GCKYQxMqQCkjZAqoYskKgPewIvY8aCJN8zGLIFZJdQKuCIhjZjAspRBT3/XEVDswTuO02833D48xzsTsgu+HYb3ZbIeBAMuU5zHe3d2TC199swqbgVznQvDB96H3zExUmc5LaFY1MCC4M3K5VE1W164FnaYAZEthfUM2iciHHvKa/RF4FIjFclbNUnKR2nGzDikSMZN3RA4ZnZEHN/iwCv2m6zcFnGElYC8MsCZbhg6oxejkVSllnWMqVadVpBQpOaecS8mllJTScZwO440sLG1E7bC83vp/99tf/pvfvr3ebq829G/+/V8ED9urDriUoio1IWKkpAAOAVANxRCAGI1RDKTWyQMiOXSdt5jnx8Mei/VufTjM//C7n/7wx7t3d4dYys31cLOl/ZMAlKur8PLV+u2b2816fdzPf/rjh//yn//+H//h+x9//LDbH1XNOS55VEvIjsBbFgBDdg59TTqcxgUA3P3DgwBkMWnhnKLpCcA0Q1MTkUtpI1NDwuP++P7dhx9++OHDhw+Pj/dD77fbbhyPQ88ic45TTFMpSaSI5HmeD4cDYW18G4b1ip8OqYy7cRxF+qvNFGdVyTmnnETErGbaxRRJq9f5uROTcn59013KEqiBKpAqAnlHq7672WyCc5JTnMfjMYOUFOOckhoUxTKl45yR/bDauNArgHccY1ITds4xEtQ2ryoiqcQ4H3NOUowAPLOUdNg/iuT9/V0XhhC27FccPhlCyRFAPKOUPB7HaY455VrHiEAGME7508NhzIJ9b0SlFCnleW6mAvYKZoTomIJ3Xed7cqHzSzJIcy6SS9eFw+GQcvbB31zfXF9diUhRVRUEVBEp6dPH97vHh93u8eHhIaccum4Y+u1mE7w3s812iwghuO1mU8P1KlMFJZUckRGQCApogXN5GzaSADTQrCaYntOU2sDY8qOk1Fy5JZFjtoCfCkawkBCR0FAICJGco9XQvbzeoObV/tEB6tUt9L15D0xWVbBamUIL29i5jsl79sQBwYMyCBoUQPY+iM1JsqjJuQ3MCWdsZ31WHmlHivnHH+7+4e9/6HtiJjASsVwykQ69bjZ0feVWg2OmYRiOx7lfP/XD4EOo1Ftmbg3vqNU9L6EdEpFjdsyOHC7NrmvYVqVTm/NgAKBiAqhnNeW62RkAqgFwK2apVFBU1ZQkxpTG9OLV9ctvX/XrxTFRsZINyIyM+eRGLyLMl1zf6sScc07NPmjF0wxVxbBOY0a43q5vt+vBkQMREHa42g6rVRiCi0fKh70zIeQwDKubG+oGBSyiuUQk6EPo+27oV7mT26wu9PM0gRRyjGiQCwP1jgd/0QNOVXNM05QkxTnO05imOcaYU1ZRAqodH4bVsF6vhn7wwRMzEaFBEak2p+bGxBQRnat0p6rFhqpWsoxjzHkcx/Hhcff4+PDw+LQ/HOaY1IDZhb7z/TCsV/1q6Po+dN6xq/bOsa+JPwNUxGymRXLMcyxzLFMqqejl2sfnPxepvhPc8tkSs9NTl2o/1vIcWvmFqIUkBU1rKITagdISOqAhQ+0o2ZwYwtPXGtTOqwCtmg7OaD4qsCEgLAjqM8UaNZuzHZMqmEciZiQFEBTQaWaNzhxx5TgKkWMKoQ+j5ekwTdMIiMSOvXPee+8VSUqroHDgavRnqipJSyopzXOMMbmuEzKZs+uM3eCIzQ7TnB/uH13Xf/UNrYaVH9Y+dOy4H0LlHZ7oztYMCVTP73NTtgzRF2UotqDNAESIjC4IchaYkk6x5CJZtAKDp8wOkZKxQaFcDIoo0hQfdwclH8UUw24qY9KkILZkqwCoWjyoun0IOBU1kewc1bbkUrvU5ixS1DTnMseYL7qLe0cvrzsT96tvX37z9qbvqeugv7ry3gBEtbRosokiowEU1OqeqtlSec4MraddKVpAVEWypqQl5mMqH98f/vTu493DkcFtBrdaKZHv+6u+969f3b54eb1e9yXlx7unH7//8E+/++GPv3/3tNuLSug6YlQtKsq1B4aqGAKSIJg6vLzxAO7vfvc7McuqrcgFBLUAGCIakBpV5cSFztCCbiScj8e7Dx/f//Sn/e6T5Knbdn3wAJbifJx2Kc2mVV9ESikpp5hmQnLevA/E7LourIYeyTl/HMeGi1cui1WLjQasZmaiILy03TAzNRVQIwHWczGJQYXdGJAQvOMhuPUQeu9LRpC4L3m/3//000/jOGZRMTBwMZX94TDPsZY9I0KM8/5wUJUUZ8cuZYkxxzhPcY7zWHJSBVBFUNOU8zgejrv7RzO33b5xfp0NS5GcI6F2gaSkw2F3HI/zNIsIMQFAURMlBXf96vWv/ua3q6vreRrnaboss1RVVSFDIvCOOs+eqyuD1zfXv/7Vr29vbkqRnFIcp74fur6r86k1t3XsAVrCR7WkOE/rzWbV98FMU4oAxoy51L67Oo3H3dNT1/f9sELifui2V+sxxlRkv3/Sw64YxCLHlJOYkSdkuyC5nAihdjpOlIpFSvVEwqjemZlVHRdTAkLTokRArEiAgLU/AiOSMQGQW/WBb1Y8764f9l5k3r2RzUC8BnZFDLUJObcW5Qgd4Dr4zRDWIXSILIk0I4CRU7+KRocpT3NOqaRcYoGiIgtJuFpvESnlpExa90pLSeYoBkjOUEXMRIwIiFxfAsMQiB0rGaYp5iz73bH6bOfF05Txmrt3enCh/FL7H4CoaZXqqTXaRFTlLsCIjFCRDIGhgpbFRMUUGV2F6JAqmAdSJbai/Po33/7yb7+7ut0CAIKiJCxTlfggcKifmWxaQB04dQK8MOPLqluwODUtOQMgu0AuFMCncWIENFv5vhv8ajMMnlBj8GSdG4Zhe317+/aNX22yVnVPbSwBJkchF3W+64fh7tOnnGIXPIAUi2jmO7fu3am7SErp3fufPv70U67dGKv6qhkRroZNuPZ9F/qu6/shhOC9Y2ZoxqQCnSJLDruavoqaIdA0zSnm/dPx44f7jx/v7u+fnna7w2E/TVPMxQBdCL7vum4Y1sN6s+1XKx8Ce49ECmCiCNbQh2xHjcc519hEi0mxnCUZKvKlV7KkLQCxttmBKnl0URy4ALfYUPMl5wLNxakJJ0IwY9C61aMlgmnlslsTMUNgRVQRMAEFYCJEZmRmAGNCQgMV0FwhQ6Za+QBmStXvr2X1RtWbNVsSMqeLQQLXgx8gBHOszKBirKqWD0cvI1vXeQYAMkmEGKxbb0zop3l6fLiXIkbkQ+j6fhgGNdvvD0U0hNB1Xdd1RFQzJiXKPEUCCt2q326FaJyji2rWEXoBNyd52o+9ADpeX23XVzeh78ysdsRVsKIgYlbLLQ2KaCoa5YKouFjWSoy5bI1sF95eczuJBDFmOU7p6XCcxrFqIEpTHGqjrABqapJ1wpgKIR0Ox/vHex/6vl9xv8Zuq9xlIKuCDAyO2bHLvrKujZCIOQTX9cG51ilnWZetlKlq5FzmX/rO/8V3r26u9dXLfuihtj0uBVUNTJDQB6amVofMVFFpA0CgksvxMEkxH7q+61zPCjLPcU4plaIGTKspHX/8w7t3f7q/e9z5rv/1t9+ys/ef/gkgf/fLr7/5+qu/+IuvHOP7H97//p++/3/+7//t7//rD+/fPcYxexccWNX8qs19wcykqJkIxCLZ0pjdPI2XwaV79/69VBqnGaoCFNAMpkgMwGKugrZYE37aJN+QKE3T8bCL8WgSHcnQ8TD4LjASppJTTrXHunPcdX4Yuq7rVKSopHGcoiiA77qN74i53ppTLXFbqFaRCAUVRCNgQFxqh8xQ68+lXdUmUg1ayjyVXYk2HwOhFDkeD3f3nxAhpbnrhySWBUSpqJWUROQkPZlSHA/7UgoTq0BMJcYcY0wp5Zxq10ZUNc1mCSDtn55++v5dinZ19ZbcOmZLWXKOCBIcqMZxOkzzlGJUNWYys1SUnB82V2+l3Lx5VcCeDsfji2s9d3+1qhcGTETUOeocOTA0MUXv3YuXL1ZDn6WkOcZpIiQXXMppt9819t/JEhKhSslxnEZD8F3oh15NnXM+BOc9e48kQBRLOoyHh8dHF3xRNcQsMsUplVJEiloWnYsqOu7X6MhaJdfZiUFEbYWKzxP8jVuiqtrY0K1HeCOpAQExEpNnduxq/ZeZEVFwGILvhoE3QXshZ0EV0M3bPnek3pS1tFrURrUmBPbc9dz3vF6526HvEWwukirLxICUANUBeWAxFC1adb1MYeleXtMlX8S8tRWOSOvuUmXwSS0lmyeLk607Xq371Tq4vifvFEjNagRWShUUBFGDBQOq4qImJy1FqMAMmomZihaVxiI8WVDE5sQgIKoWizFNYxrHMSdBY6ZasdxE7pBQDVXgOE4nSNlUS5zSvKdMwizOIS2lSM1tIwSoxIDq3OnlDallooCIhqoI6sC0ZDNNWe4fd7vDwUQcQR/cNg6ZynHsOof5eHh8etAYCdQ5hgfC4z6KGYBjRiKDKrPkRCDOaYqjaAECco7Jr4DNhBj9UlMPACnnjx8//vDu3VKw6pmJiXzwfT8MQz+s+67rfKWq0bkhUb3hDDV4qpdep3CZp/l4nB/uH9//9PHdu0/v3n389PHu/uHxcDzGFA3M+RD6VT+su2HwXReGwfc9+aDEVeMSAR2yc10/rNn5/w9nf9osS3JcCYK6mJm7R9zlLfmwJLZikawqVskURUZG+sv8/umeni5W9ZDEQhBIAInc3na3iPDFzFR1Pqi5R9yXYEnLRAK53Htf3HB3MzXVo0fPyVJyLnMpVZr+Fhip2lK1POfDXzJcsHEsPn21Rt73kAJbmQBoRiJRZVfnqBXITLLpFFO5GXoKaez2Y+hmxOr66gEpEvpklhmTBbIAEkGZgJjBUBRrUTAlEAAVWPtVrR+8yVCcL0UoCCWhSMxAjEDGkg2exhONDzLHIbEBCMUc+rCrsYsAxoDsuKIoiIAoqZmalKqiwMFEai6E6KlzmUtdFs3FOAAgceAASLFkRREVIAqe+KQYQ+AYkNByyVJVKrt4kraKSx1smHNdar1IYi5feCbIXz4pQjTaZnd93AuIiJkCYLMTbqAVIvrTImx8aDMtNS9lxmk6jmPs5+7aqNtXCgBIhNwsWE2reQ6OSCikWsWqK6KSz2C3BLh9yjUrbq8uhR//+MX1jd3eppSMSMy0iiteGhmQtLEHM11qVVHV6nVvLVJyMbUQgkgt1cRkWZZS1PVBrYbxpN9+9/jh7ikkev3q+ud/9SowGN2byU9/8vkPfvCm74bHh4cvfvflP/3Tb379y99/8+e7ZTZVICagTW605RyA4OpTBqICUkRLvkQuw2EcDTwaK6igFtMFTYkCYFBMRgwr+9faJkEwY7a+46shXO2iCu738Wrf7fe72IUwhlzICDnyfje8uLn98Q/fXF1fH46n+4fjh/uPp6kIpZi6oRuCj2E2OWmrTsMFFDARD/pKaEyI7kC6Lhlb2RbbrlZDLwiWZTncP3wzHnQ6ac1oUKXOOQNA6nvkuAgUgSIoKqAVzFyN3VTFqtTsZIFarRSrVT3IECAxxxCYQCUjFMCSl1xyWUZ50keknIVrtZKzagFbwIpYcXIPIRGymhIAI6cuIdrDw/2Y58Npenx1u7m/qlmtWfKiKYQQu8CJEbTWpU4FUTWmwLgTVRl6udprFTU7ng5//rpwCCampm2MABFMTWrJeZ5njunF69f7mxtCjCnudrsYo6kREcYw5fz+/iNxVLXTPD88Po7L6KpXKlrVckUMHXGHGF1f288CH0xsSUw7my/CrVOrtJoRGIMPQTCTt1QIOFDqQoypj7FP3dD1aDDNk0mNIVxdDZ/94AddJJ1u9Edv5Kc/F8NydbOkNEuZxWYgMUKOiEBWKRLvuq6P+8hXu3B71fVmWcZpkXnJWRedZyUCw6DaQRUrrDNWVWMFRm76PYZEuDJXtujVpBqQEH04yq96LgWONWIeutufff7qJz/57Pb1i+Fqzykhs5iJSq1SVVTMb5KqVscBmtlJK3PNgJAcjWvqFWegZktiYOvV56U8PR7v7h7evX1/fDrWqgR+PyP7ZF0MxMzAr15fxdgUe0VknI5PTw9MGJhDbEmMWeMCmQEhxxCRqUWHpitiAGBEjBQ5MAKqRIQuElo1KYfT+PXX3yw5m1kXw+3VMOwif4kxYCRlKTBOyWy/GwDpWPJUZVEl5i4NnljHmFLszDAvCwKm1O2Gnaau64f9bq9ap9NRvaIAAIBSysf7+/d39zc31zfXN1fXN13qCDGEEGOKPpeLJACqirr1Lg0AEQgJmThwQMQqdVmmw+Hw/v2Hr7/65quvvv3m67cf3t8/Pp7GcVpKUTMO2A/Dzc2L3fXNsNtRjGKAzNVAStEl+63rUur2+/3VzatXnwHSh4f7aZmfxjFXYQpIgTGo2lKXedXWW3fMJaCpBmTuYbRm1gaw8oHOf3cY29VtEJRMQ5ZdyS+m407nSIaYwZbdLv7g9Uva3dzpcC/xvthoqIFjH0IKGFAtk2rAmkg6kkDaR8ZAC+JUtWpWq0HFBbwFqRn1tEE3zwzXmAwoBsUwAqD5ycoYQgZ8OJ2Wj++f0Do2RMTY23Dd3ZQKBMRXw55fUXE4jTnG1HedAnQhKUCKiThggxosT8thfppyzcdTQTSm/vbFi+vrodvNh9NiZrVeD8NPPv9xvxuGPlqZ8wmq6uF4KFViSv0w7K72HKOqA3KWS52XMuf8F5IY3JTF21nkkg+MhmDsDRY0Ikxd3F/tpN6WXSIypLV1vjkbrTEabNXv8b8hASdKCQMgaWCAVX+LAyABoDpey0whxBA4puDzJ2uOjn5Srz4NzziLMfHrN1f9tQ174qBEaiBVwEMBIORSSICZaq3H41hzAQBCCLF9BqYQIxqUcZxKlVqBOO2HfRV6fBif7vPDQ1aln/3szU9++ubHPxlC4GH370Hp5uazkutvfvXFb3/92//jf//vX/zrnw9347IYYiAmMwV19AgU1GVQyT1ZKMSYUGApgvZMWyXk1YGXyLrIiTESB0KigBQNk7k1IACtHXFnLJgMZR9e7vDFPprJi1cvPvvsszdvXoUUYscPjw8PD/cK+OqHNz968+anP/m8H4aY7pel6Mdaa4m7IfR96ntm8vV/2XhfeZ6A5g0S13tpnWPvVXttv12JmpUiOdeABmU+Pj0d799PDx/zNHqfCDkiMyAJ0CxYBaqCSNU8I2ofEwfGlQWkqlqhVhQxEQRARre6cBQPVBRMiAUAuq7TstSSq0DVUCvUWkSy1hmgAPlsFRISGrtuRYhxGPqYYim5jjqdpsVz0XYxqrXUmgNKRVksY0FjrC6pxkSAHDhgMIsaq1RxObWcF8uLrj70523hByFRt9vFvle3dyPPJMjDYjEty3xcMiEj8VLLXHKR2qR7S1UFwshEkRmJirgoT1MCPCcxnxBJwERKKTMyGClTCNxFhi5Sc1MgCDH0Q0opReIuxX3fmYhmK6VCqZYZ8kyUkMiGnb2OKmpEaBUlU9GgAZF9hI1RGSGgRqtQa5n0ZJJrzff3p8PpYZrnKgpe7JOZlSpLqXOuAhTSTozqnLOKQ8pzLtOpF9kQspY/Y+vUem/VAEBUc9HTWOapN4Muppv97vblbbcfQurMJz9XKwo1BQU1bSYv6/AsrI1oB6JW64pn3aa157TW6oh5yYfH093d/YsX14fDsRZBwK1vQhzYAS4MP/zxm66L235pXjCMgZlqXVtcDTUDBUSKMSGh14/Oldv6+UwsbIyAkoGh4xAJuAtlsQ/T8eHxUEVjjCVfd2MUKogSoPSge8I9Bym1qt6Px7GUAkAcUhqIIiIyxy51qjZNYwjh5YuXtze3KiZqfLVHUHU0bEOFPNvqYupS7FKIIUQmbMoIqlIrOIxP4DyQbSAQ0bVkNWvRJedxHB+fHu/v7797+/arL7/65pt37z98PDyNOYupUeAQY+q7YX+1u74Zrq5CTIqktaq6N157W2p62X1InSJV0bnInGUpWqoRK5EyiarlIkXke0dly2bUqfCGtiEyTq1tuJF5aL78Qz70TirJ6lCX3Xy6lnkIEJJhh7vr9PrlHq+uqe6oMs41CeRA3MfdvhsS96SkGgkDWgQAtf2QlPAxLzQVhUUkd2JkVhAzUEZqdHxbA/nFR6mqRSQXf0qREZhYAMZSjqdp0RJBwNRC0n5K0/I05a4bqPGFnU5XDRBiCMQdB3PxTFVaN4ICQi2WF1smBahTsL7rdvsEWqejVQHNHcHNrk9d1GU6PdwtkZdSHw+HKtbtr65UuUuJWNYEvlRZivsA/k+mxi5jQsPMCIDQSZO03w+ot30iKQuRnOnAK6dwq418u7VkVA2QFINSlNALJ8UIri1DGLhpifo8mU8MBOYQgtO8aE2wLrGKZ0wlAA50c5u4ty55RoJgqKKo7gvqjWwDAvVZYlV2T2B3hSJChCpFbYWvkQGoVhhPy7u39+/fPpxOte/Tmx++/PynL1++TMyh49fjsR4ejl9//fZX//ybX//yX37zqz/cvX8gdd1ca7jEVp15NqAGCkjITCEGAwtQ6HlnO1CIjtPFFF7eXL28HV5cd7sUAwdENozWeE6wxk2wJnhcrSymP0dTJOIYOMaQPI789Xfv3v3DP/y3Ssvf/Pu/+quf/eyHP/ghEsXANdfHw5F4CcMVhs6absOiIs0MjrkZpzfkw88nU6kOv2NT7gcVcN2SbcPPcx7HmZRRlloqiHojcpkXIuqvYgzRkNEwGCBiRCyLnPJEJilyHxPHoAhFqqiBkQpKJdUmHY+AzCHGhKjFKqgQat/3r1+/HLv58WEpU1UFU3TPPmQyYENFP+wBvD/JHLquG/b73W6XUlJvH1zMJ5mZaqllKUqnRY91iVC7QFe77ub6pu8TAiYOXUoImAuEwPtuR0xqqmqIbWRQV4sDABQz8Rk/UxEVqbXWksuSqzU9BBQzv3AgBgQInEKvJjWjSkWkvhvisI/DTilariJ1rRe9s+QdzDYk3/aPaS7jPB8Ms0AfY5cC9UGvE3aJXUcpxtjvemZWEZQieaql5PE0TWMp5enx/vHxvovRR5LVyU9aVQ3NAAkoAQVAAgJgVKFc5kqwoB1UvpNq02z3T/M0P0pdPMXCZkdX1K8Yh/3+tg9q9v7pu8PxMeeSc5mX5fVQSv5/nuPyyu1ZmW/tNHELqSoyLcvh8fD48DjsUuoCsZdVMQQOjikjEDbbqcaQRARzQiVc2m54h2ntuDustnIhLhoOIlqXOk3z6fSLnIuJEQK3BLFh1YTIwP3Q7ffD+lxgFjwZJQwB0WT7hU7lc2YSLrLmqohEoU3eNoo9qxGooqiiRsCrLu5u9tcJdDpQnQ/jbGAKLBAFCCyr1EDEMYUYmQJHfNX1t4QWAxAjhLzo4XCaJ5VScsmPjw+IULKM0/zw8HR9dT2+uB36BPbs1E+p+/wnP+KAKUQkqpplKYECUfusHGLqYmddjAERm6wZIBpVqctSDk+nD+8/vv/w/u3b9x/v7p8Oh8enp8eHx9NpWpYsChhCjLEfur7v0zD0wxCGnRAvuVQ1keq6TikwE8UYUkp9v9tf7Yzg/f3Hcc6neZmrIMUQm9CHrX38Z2XycyRGfR8j/huOvNaeJaLpmtwagApBTUG7UKJNUZceY9d39GofX+7zVY9DDNxfW6LF+qonNIzhZr/fd6FnI0eki8gLCUhXu24py3fv38X5GOtseeoU0WwBGJEmCguGAmFl+J9bYx4NSl5QSVUSGAYO4EYYUA0KONpdFsnz0wj3T6m72w3762EIRLlWqaIqXZ9evHgZU6xFSxWRysT90MeYECFPU56OsoysOQLgMtoYNQWrGcVAFK1gyVRmkeXwXuenO2LKVcZ5gZCIg+yvpIqE2jj+XreVWldpl79w3/UioVwzGARgMEYjtC5yuNlfD6x1b1IQBL2CgXV+wKegoLUwzzR6NXNhPaXZOBtnJQUGhrWf7PKWhICNf87boADhGhvW+UHbkJhtlRFC16OSRQZmZGQTaD55Dgm3kVEg5v1+D4NFjkToRJlaa87L6XQCwN1+H1MnQnPW+w+P7949fPHF1x8+PNYqu/3ti5c3Ny/2w45BqQZ6uLv/7//Hr/75n3/7u9/+6f3bj8tUAw1N3t3MwIjYgS4DaNK7Bi6bTgABUQkYheC5d5IH31aZMoXIQ9/tuuiHqnkZAObTKesOUzUDRkopxGHoe44BAF2pO3Vpf30NBD/4wRtZlp/8+Ec//MGbm5srANBapdRa5f4wCXa52pzLJJLLIqU0T1iMyOw2N41J5eL9FU1XtSBrhvJ2QUVU1ZLLvCwRmTSXUmsVEff/KcQBAYkYMIAhk6EBEyDprIWsRtSOgQIJggIDGmEwJmVWRZWmQLOBQE5aNlMCSClIx0hq5oc6GgjiWim2HmlrByATIaSuH3a7fhhCjNWAKFzOjK2BTFUtSy3zCJIj2ZzTXErXJXec9bZLHucQwu3tTeySSAVEl6NARAZT9akCVrBSqlRRUyBRQBXNKqUUWA0VxLRUNUCXX4p9Aoyl5lzKXCoa9TsKMYbAgthIZL7eWmnoNbw8Q8hUp7wcpnEBTWqdWhdjF2DfUxeNg29EZrSyzIfDYZkzIZVSxtO45LmUamZNz5IYiIDJANyJNxARMYfo4qJI6CiiumAgg2pdlrlOMx6nUsoIVsHdqtpZ5viSW8nq0teaD3ff3N29m6Z5nuZ5nn7y6qbm5eLJ6OoWhLD5X4GLVoIClCLjOB8P03ic9rspxo5D9MYZtSoKyfUlXPaT8MKuD8/5yRYj8fv/7oFzDZ4AsIcb2dd66+wZB+59RTUoRw2VkBBXA0g1W0TnIoYsLSg3FOH8y73FjEBEkUKMHMhxUwM1BBUpteY6HyqUMAfcd/FmT1I6sn0kjWTE+0ghsiAgpWC4Z7jqXYsaYxdf7HdxN3DfAUVTPB7nd/TxdJrALd9F52X5KHJ4fIohXl9f5/H1yxe3V/tVVcGjWODbm5tSMrqIVMnOP2uxce3EIRAYqmqVsiy55FKyzvNyOEwfP95/8/W3b9+9e/fhw+PD4zgv87zknNUghBC7FNyO0Gen+yF2HYagQIrosz0U/AddejiGGCiELFKW8nQ8OQ1YDVfpBAe9GoXsE4VIVfB+nqrRekxCU2ekc/0O27cu/suAQBEtMu0T7zl1E3UZuz7ubq76H/yAXl3XjqzrUhrYYpg1FAFTDPF2P1z33RAJUUsRrUqKicPVvpvHYzk+AEMHVbQmQzWbARiJiV2Qr3yPoaOqtdacizNFiBlNXT95d30Nyysqs0xzBqpWihmYS8gjcWCm4K1N8XdZQH3GIuecmdnkqsQoUpd5zvNIIFe7pIjCgGVenu4gjYkCARqIlFznSUGtZI6MhAokACm4WG4wAxNbJShVqpRSXewD/tLLNv7smi60DdwmAzGE0IWBIKFVsIouyrQmMQ6YOIvCabOwzq+bqSpkhbnaWG2uOAsIkJ/Bm+AereyXbRIAL+vg/+kLCWKEas3UrPkSAalqVSAAQm4GvQx9CAQYKAI4qFnN0IyJIgCChlpwyXI4Th8/PL799v27t+/mpb54/dmPPn/z8tVtl9J4Oh0exvffnP7ll3/+H//wT7/5zR/efne/jKWLQ+BIoABy0YVEWIUE2/Ju6JVILVIFakatz1ysXanKnY2fjkeTSZdTH0lLBhE0n7XbGIUgIj5My8SROaZ06rrYdSmlkFJISVWm8cSIf/vv/wpEXtzeMqGUzMTXuyH9+Icvbm4fDtPHx+nhcHo6naDO2YpIRmDmFCkgm7iMPPljY59XcB1GM3/YPgp+4TVo4NBCZiN1UaWaSym1mpqxF5eMxKQYSNSUTcDqwEYACZWtakUfXXN7wabm5qsDm5F6rbPUInlWmwNXwsKac55EFtUqpgLuQC5NtwMRDD13Zg4UyP0Bun6I/UAhkiqHyBw3gzdEJGZibgpwHKpKlnw8nN4/HVzoNiB1IULVPM1dSp+9eT0Mg6iEEK92+8FNa9DZS0QxGZlUqSJVfF6sLHlxLZmwctedwo0AMWDqYxp6AciTzKIPpxGMeHfDKqhFURWkGUCtQIyqmjkSea5gRO20lPtxicKp8K7irhtCxKFHQmHG2HVmME/j3f3jV3/+6v7+oZRaxbVBDVctaWyJlos4NEWUpn15QaxzVxMAjDHsusRMRaqqgIiZViJAYgoI7CRE9MejVub56f5unI53b7/5ePduPJ2m0zifpsef/rua80XsUjABoyZ1sw6GALhQIlS1pcg8l+lUplPtegnJEI3BTA3YAAFJAQFQPeb5c2+n07OTAP/CF1ZtGyRbSZ8tFeKAAdYRcb8j2jJuKaoViDmmjogBQM1yXuZ5QVMVRrfGeRbq2kNlpsRxl+hqlwJiWaaai1YRKVXqPB6PD3e6nO7Ybofu9YvbGMI4jkHrbRdjivsdxh6UiJmHbr8LPIQQEFRs2O1e/fCH169edvtrDskUHx+PV8O3D/ePJS+Hp6jLfF/K48e7vGRmvr6+liWbSp/eeDi62C8hxuSuAqZD+6oP9iAxR6bIgcE01zyelvu7u4eHx8eH4/3D0/3d44eP9x8/fDwcn3ItHjRElQKmkIbdvut7bnA9c4wUAiBXNWRMfU8cwCxGHoahH7qUEjJW1Xkuy2GclzLnUtVcvhLWg8uZva0ivJiAW3G+9YX4vDOwltbf5/RiE4RD0MA49PH2dndbYyenbuHU73avX9/+5Bf46uqoSyUIXWeCAQsQLoocw03X3+6u9rtkoMdxqqWyURe53/cMcpOShjAwV0YzqICERhxClwiTFJ7Vz/Fnn9XnxVKIZlZLMcGqAkQ/+ulP6+0+Pz2Ohyc6HDiXnjgNV69evrq5uu5DYrBSclnmeZ5AJcQgIvM8TdOUc2Fmn507jWPNmUz7Lt5cvcDAp2U5zfPh/sMJ6fbqtksJ0MqSp9NRVGwnUaKD4VfDfri9vbq9HXZ7ZjYAdPtSkZyrG+I+Q2LOQ2Br7bJ+EwHWY9XAABGZOTIxKEFop9VKFjQwIgzEK8Ucmp9oaxRaFcMqWrRmVTITq4biMWJlxa2DGxeEvRVIvXyZn0DYAs26X4DImNfuKqCuCupSDRhDdBkrJbbgLX/AWmSclpwrmDKHF7evVXEay/E4H47jw+Px4eHx/v5hnk/DbvfXf/P5X//Nz19/diN1/uqP73/3mz/+8h//8LvffPXll28f7key0Pc9NZXasmp/g7YAa759gZpEsamVWor7Xi2L1vyME0PMAAaEZnVeFilS5lNHhlrZjWHNNkohIogqAnLkwCFw5BDJyXNdl7oudpFC8HYGAjDxdDzqPPcxxBBjCIQ0MNmQJFeUFKEm2CUsuRQOkWOkmAyxKGSRpeQqtc1rICKxrXwlMGGnMq8vl3XPy7KwstYqWsSWUktVA0KgKoq5+huoGZiAFQbdd5EppEiEPqGEYNjm3y8qXzMfxPQ5k6JlMcuVKsJCOudlqVrUfb9pkx3zVIgAmBljjF3Xpz5xiLvr69j1QKwAok55+AQudn47gBGEYCa1SJFay2JVQJUMAhJULdOSYqgAqUulZArhatgNXRdDJCQ0ZebQd0jN37XJ3kjNJedlQbAhpRQiMSlYrdUQGYK5Z7BBFp1yOS4FDHc5x7IYByAWpyht+6il0a52db4MUT1N9emUY4l7jUOCwJgCxeAJFnYp5qLTOD7c3X348OHu7i7nqmrsDRhu+D80eiswETAbNqYgGDqfHZuxSJP1riFi7UII4p+KAJnZjzsMBAHAEEG9TUgYAq/SYmwWqmCpWJVktbhs62CdtLJmyWfngIamBkV0mvPhOO6fTin1HHpDFrEoiVOgwI0rTHSRfBnAeg3rCbfFRg9Mf6H+NgNwSrC1jpEPPLh5iqmZiWiVKrnUIloxdh3vIgG3AGwCWkHJLcqfQz0+1WsIimaoWBc5ldFKWU6HPC9aS60lS5mm4/HxUZYpITx06fHhuotJpaJhYO76RLrUmaspM2nfa0olxhRDCDFIWpYljHO1gOgi86PW0kXqwxDQJE+S5+l4GHNepJrIbuhvrgb97OXlbkHAlftDvHL4vLWqKmYoYnnJpeRpGk/j8eHh/sP79x8/3j/cHx4enh4fjo+Hw/F4KFJC4jZNEiMF7rrd1fV16nqXSAUjpMAxAQU1Qo6p34UQTYUIAagqoICZ5SrzUqZ5WXKpYoZIbOR6heASPIabFNH3iBetLUN2GYJ0ZQlstNJPjlgDQxEgSIF3Q3/z4vZGBl6O3UgxphADI1pVy0WgYskgAJMEo13XhSHuUxxSSrETE8RsoO4ETSmG2u36ocTOkNSgoEFK/W5I3S7FASqcnjLMGb73WjMxxGa+YaYy9P2rFz+h8urw8cP9h4/CEZa86/p+f3V783I3DBGJDXqrImWfZ60CoLVUpNgPQ84FnInoTPOUGG3o0/XVFQXiecHAzhJEUiQDpBBCTF0A6/o+dSnEFLou9bvYdQDoNRMxcwhqJj5zX0Xk+4SYLY9BgJV66kC7IgAo26r/5+WvIVAjpZiCmndGiJG4qakDQBv19Pc0A1QEZRNWCSCKtoo/wCdJzPdv+P/FF51BG1L188R1YBARavVEx+cVUU2lqkcRM2SKZjhNcjrmjx+fDk/jkpfTaTwcDrWUl7dXn/3g9c9+9ub2dnd8Gr/75rt/+od//dU//su//OqP3379cRyzCsXQBe7AuNWEsNpVtHIQoLXZW55msHIgcpGSTeplrhxi6AwVTKWC1JyXfHqaEtn1EHsmq0Vdh23L58CInQUVAFgNxAAROHhS0dIdZuIQokGoNSHtutSl1EVmDggBKCDFm4RD2L266subG0MMXQLiqrioLKU+Ho5v37+fl8UgAgZml25ARGQmNK2Mkc/P0cxKXuZ5ZtKA4kDBXLRWCxwQaZ7LkhvcTsyMqpYT6f5qHwMZBQUGC+CT8U1ADNdEUGqtS15q8YEpASlm1SybzlZOtfiIGUJzS/auADvZi5BDDLthuH3xYn91lfqeUmcp5SqiWqtlUbngwTuMqo18SyiMFtAsAMUUQcTzGDSEIEgMaod5lvF0mkcR8aGUQIwGWoWY+qHjQL4nvaEgpg7JpMAvrq/3u10/9GIyLpMCKCPEgDUVsXGaT84LMDjNM8WxAnCIVRxJIKAmKEKEZE44aw4jACBi41hOTyX1ZRftuksvhi6RJybMHFPqap1Pp9PRJ9uZuq6HJhSDrg/ksZ8QGSkERmYgT2J8OttnFBEJmMzVwomJORBSBEJy5Q8Ax6qRiUJkIiJRcApJCDF1Xeyv50oariE9Yn+KOe9efU4hrc9FfcxIjVYOrDbpGyQgq6hLqcdxvH/kwMGAxDDXelX2/a5PQ4qdOxmHpuLSJFJXIYcNEtt4u7AyIs4vXEFWb6WDqGgjJ7m2tkOWIlJrkVprzVlEQWl/fT3c7kOK/isiUxcoBQx8LtHOv9YT8EBoJnl6GI8PH94dH+7n41OZJ1MxlWJStWitBNindAjx7uGRELQKGTBTn3i/6whtybOZxRiHvrvaX7148eKzzz7bTePbDx8Ug2JaSj0dTyq6G7rbm6s3n725vd6bvEATBI0hPD49AmjOc15mMOELEwTnOTIxNhCTzaxmyTnPy1KLqODxOH748PHjx/cf7z7c3d09PDwcn47jlPNccpFSRSRjxBCiH3IxxuACJftdiF07a5AA2ZDFCAw5dt0wEIW8LFVqLcuYM4dsCEW1iomCYvBWgDXndQBAx/B8QbkmwWVlac9YMQbPQDJbU1pzgpi5rhERqIEpSDWkLnb73e765tW1VZiOATForct4/OarGnmsc7FqRGAIQrC/3n/+o7TrU2JAK0VylXmRJVcGBKJoyCGmYR/SblF6qjoGiLvhs5/8NN2+nDSUpxOe3qt48+WiG+qSVesLAAiMAl9d7z7/0W2H8vH6CmN3yFKnebi5SX2vFMYqbBqZ+pT6XR/o2rlwCMgYRK2509RqgMwstc7TKDW7ztD1bt/d3OxfvCw5g/q5HxPQcPuCArdB674DoqVqVpgfD3DKsYux67q+B0JZp/O2TlG78aZn3c7VwL3F6/VHRZEAxEwEC6AiMvj7+NSmohq5GZVTeBt4RT6V750VUSpgAoxUEYlIGVqx0kan2+G+eZvTOrMGW/R4zubBZ8+lwUkIgGYoBqrohkQGKAK1ShUciJFQtdZalnlWhcBdtxtSSIfH0xd/+Obrr95/eH9filxd7Qh1HKehT7/4xc9+/JMfvH5zM03Hf/31H/7pf/zLf////POfvvh6PMw1C2EMIbhEJ2JAUIVqICtpvX1O3IALIkM02O538zx4hsQwc7sMV/hZapmXjqGPMTEhMZD/ucZGImIgNzBhNRLVKmqgWKs/ZyYMIfZdihQYwUqzYaRSjCCE0KUupD4QckgQAsdIfaIUKAQDympzqWMuKdE0HrRWMTQAJCMCZgrMKSWR1CW62nfMZ0M7caYqg5KBmgAZR+NoHBSxiKJAyy+58aqYKUYOzFmxGhUjATI/ONf16boRokWkVClNBIKAjAGCYVRLiAxMqeOibIDURCzMBW2IOKZ4e339wx/98Ob2FjksavfTPM1ZEGq1nOtS6qYWYQBVaimFKSA2fQ5nqkQKaKa1qiiYmRhxFBExzSoFIYMuVRx6ADMpBQHSEolRVRGRY0RCcZs00T7FbuiDCpmK6lRKUSkEBSyDVYHjPC2lCAIAZqlzyVRCcME/5AYf4PbBPXKdN4yqzVMti+yHcNV1L4buZkhdTF03pH6IqecQRaZxmuZ5Zqbdfh9CR0RiSmBh7flCK7gpBG7OIS0LIEJE869gIEM0dM2C1ZuNiIKzv2B9H8YYiDgYBojJLedj6o7jfJjkMGNcEtuOUsHdS+R4cTlr6axoZs5f8CihYBU113qalqGP+3kexjHEaCClLP2+7/qU+i50MXbRC30iQq/H3N+ZNtzXmWotiTEwXJvwdj7kQFRV3EGy6tpsbRLEHol9RFvEDAhoi80AQACBKAaOgQMzPI941og1wIQgVUzn6fTx/duPb99Ox4cyTT5wXbEZL8UQ+37oQiTHzaqgGRGmwH3HaLosk4oSUdel/dX+s+OpAgyn0+k0j3NZip2mfDodA9GrV7c/++nnt7c3r1++6vt0c321v9rd3N4+PDyo6tX11c3NFTOZXkh1qy3zcjyeNvO7UvLhcDidxnEcl6VItcPh9P79+7u7j/cPd09PT8fjKc9LrWbqY0whpJiGbne167rOKWEhpa4bun5wh1dABmQxyNW0mhiCYVUgsKpaq6pUqIZFDVEah6V5vq0hymOxG9xqs8kwe37erIfmOlVIgGyOB6L6VDO02VkCJdBm+N50krCL1CXqOk6JAxLud1CnOo8qUqexLrBIEVAj9o5QGLSLoe9jYEIybcJm5HZLigjMiCnsrnh3VUI3cZwCaeyl30valUXFuCEE37uKjYvKRNbsM6CqjksuKFPVWSEbFaCEuLinXjU0S8z7odt1sXebHbQUYhqGgIQ525LLPCFgHAaqdZK6SPEolbpoIVJSUJ3nWcWQkSlSCIFjpcgcOSRAzDnPpWY14xpKjKXmUikwAORca6kiAp8+GVv/tz7T599TAAUUs6oOE0OTEPdZCwVfRmaO2Dklxf8giqGDAqJQFdTQgJCAAAmUVkgWP6V4//+Dx7Qq28DlnL1Rb0imIGK1ilQkRjUAqGZihmAoYssyzePh47vHL798/+7t/eHpCGpSdb+LN1e7169vf/zDN0OXvvv6qy+//Paf/scXv/rHP/zrr7+5//DkshohEhH5PHkT1UEyDA63GDBsqeGGNlGjFDARiJVQmOjyqgMhiIJUrUVc8R+BiRhDRylFBmxqfX6ZyK7vwQGRwKiRuVt3xhCti2E3DFdX+9vr64QkpwlriWioonkOga9vbmJMUgEQKVLcp+7FDffJuyqKvIieloXZ8jJ1KWbRKqZqiBxj7Lput9sh0pyXz15fpxguHo2ZSsmgrKiqGNKwZ2arYqZgyBS6GGOIGEIgYBKGWrUUqUU5A2VERWdIt4fsw9amFawgCpGhF/zETBBDT7gDvQIz0SDGWckAmBSbYYNVUUROXXr9+vXPfvHzq+urackfn47Tw+FxHI2oiuZZxmk5JzGquZR5WdCECUotogIqhBg5MqIgK7t0sJokNlW0gLXTveuQuPapqkqt7hLUdIAIkEMjPKoCK6SgkStjBismk9Y5z6eawzL182jA05KLVGAiJPXsxzsnRui6FNrkiVzw8VPpcbWSBQHfvLj+/LPbV9fDVd/1abi6fvXmRz8iDvd390su8zxX0b7vY9ddX90Q8zRPptIxuigEukQoIDc1OmAC9uXsitJEyBQQQFRLMTRk5w9UdB8lz03XPgxJICJO3O131y9epGEPFJGP9O6pWldhVxAXyAv0mzqntfTBpaEdv/cTH1r/RiUXnTPnqoZgoMtyssc8joeYYupi7LrYx9ClkGJzUAoUOFAg5s2IYKulPIn2cfm1am9iHKZeFqqKSKnFjaAuWX5MFDgwc+DIRAFo6LtN5bYp4ocYQgzcTMDXxphtrXR23FkCIan7vxQptfqom6AJAiIWRaWsBjEEblaywIZVbJoVTEUYFEE1aDnVYwXyovjwdDqcxsNpmeZcag1M9w8fzfTzz3/y4x9//ubNawR48/GHh8NhnmczjV2MTIya63n8tdTy8eP9119/U0pZljxN09PT07t37x4eHo7H47JkqZZzmed5WRZnypVaTAzAoxl3w7C/2Q/73XA1ELNbbxqwKqoiACMHYkYMUmQpy5JrMSSxYkjEptIcGLyjR017eOWpXJxxYo0O48upzYxcwjBbk9Ks/VOilKBKiBX5RLEaIEJADGgBhbggA1AKHJm6oeOho0AiMlYG7siGtJQFFVJKEFm0M8aYOiQSMbzaxz7F4JvH1IAC9UPHKaho7GKIiSHw7gqurmV3JUumGJT7p0OG8eEw5eO4AECX0jQhXFTJ3pKgdfLXwFTBRO7uTh/ffiXLuEzL6XC6f3jKtYy1CMJpyksRE2OiXQpD4j5SDMQIfd/fXL1gCkte5mme5gmRht1OpD4+PU3zrCrM3HczGszzNE/TPM9VlahDjkQcYgypS33q+x6ZqzMNQk+KVXXJhaaZA4cQisg0LTmXs/9ro0g2Jbltd66JxfrsGlIDguruqKoKpkCOAhCAKSAYiLUGYKOugYqhKlSz6oqaDtFBG0ViMzn/Kr/H2y9vHQM7r7SNqWdtGeHFMmsB0UzQDAwU0IjJsdxarRaTaoC1FEOuKdLV7raKPdwfvvrq3a9/+eX93TGGFEJ8+fKl1Dqejrsh/M1f/+KHP3iBiF/96c//r//tf/v1r794+/X49LFI5n3/Aq0CCrq+uAoggVWfFEeMRuzHhhogiBPyXSAawVzvKhAFDiKWYrxMmEOtbhVqiMQhIRgwx4CGUTFQDDHw1ptHxBjCyvGlNlnR/g2YKAUe+nS1313th6vdjg3L6aTLArVYWWQJKfL1zRVzyFMWNWRLAfZDDH0sRRUQY0oKFHFeuqGLp0RaFBEMOMTYd+6uFs2sqLm0t1+JiMzTeDwcQuTAQKBgFRQNgoCZWZNroeCCQW4RqGpLWWqVYpABK7KRe+SCM3uqU9Ub88pwvXAiZOYQgQkIOkACCAIhGhlAIEWUqlVEalVvynKM1XTK+TTNx2mec15KBeQqsuSaL0hkBqCNgtP0x9BPHT+WkMDAUNuAsUuPkwUOEdvIg+uPehKjtVY/cdyAwid7TUzRBCvRYkpSasFSy6wyq5gIqWQ1QBZVMaNAhGG7raCK7qSiiKgrPa1xez9R7EWDLvDrm/6zm2GXAiO5bRpgKGJPh+Pj0yHnEmO8ubm5vr25vbk1s4fHRylzzxRMMS+g4v3tteOBROjHr4mAgZABWUCfXUIA138kcwkAbsRMRDJzc5hAqYvDvttf7YZBmR7H5eNhupvqU6YJ0oI2I2aIeikx7o5GpqCbVlXL1jyRqdXGpY5zydUMgNmt1LUsWWpdlkIzUwjIhOy5BjTHJL5AY+hi0MBlZFyPR3XNnGDrxQOYqgJiG7fkwIGJODBHn+xGCoQM1KWzoR20rir7IbNGRrtIYlZQzdgHjEOMLm66nrFNsBgQDYRzZXSknMQM1CoaGDpO3ew5RZcqUy5iqkiBeTxNp3E6jUspYgiBaRwP/dB/8+23b968efPDz66vron56no/zwuYpC7lZfr48d3xdNx808Zp/v3vf//rX/+m1rosyziOT09PHz9+OByOi/Mzq2pTmVIwNTQzYwoxxi51KQ39sN/t992wi7FDIiRFZPe1Zg6qUBYBVGLIornUXEWAEFShECuswBUCoCp4AwkbML4lhxsl1H0B1EVp/8LLmr+4ISqwKdfcaY2IBbmSAgly7GK8GVIK7LYTzSyXAcFqWeYRjk+gDHQ66bwsuTLxVRx41wmgMQFHJFQF6/osDHPNNJuxShbBKlqrVKk80ZwrgM4PT3eH032Ro6IIwFjG/KCGU5aqBs2P0JGFi72/riuPoCIipU6n4+PHb+fTwdRKLtM0i8pUSzU9zTVXVTVGnAN3AR3SD0zdlA+LEnDOS845l4IAcZpF5HQ65VIAgYlTrqCa85KXZXGXFARAAXMnphyX2E1LiIEoxNj3iTiwExhVBQQI0UTbFN5ffkDbg/qUYW0A6pKK0I5iJ8the+ZA7m9lgOpMXAUw7zYIkNNmWs9qs12G1nW6ZGiCYxn4/d//SSNp/VCfXMkFSRlRPeCYd3cq1Oqtc8VFxBZCfaK8LOXu7vHLL99+8fuvj6f5zWevX79+cfviKhCejnG/77qYxuP83bfvfvmr3/zD//5PX/zuq2VklD7Fm8ShDXz46gYFqNAojohE2sQBDA2IsDE5bMNjXEIQV6HP50jMvCzeVum6oe86UDEpqFVMcsHUxcQphoCIqoIIMURitw72gU2OzF2KQ9fvhm6/6/e7fj/0MQYEk1JyojKGMk0WifuUInfDAABa1UoVqyoFpaAQSHXrLCYKhAiS8zSOh3GuQDzs9l2Xht3AHIqUcRzvHx560k3ltpZ6d3f39rt33dClyISKoGSVTMGNJxAMgcWq+2MTMgOo1llqrYtCdedfxGDGZIQE6JJx2uiXyMCmhmCtmDIBMggUCBk5ATXWJJGaVdRCJIFBwcTg8XQ6ffFHRSxFZtFJEJC9ceBH07b4EIE3zWhEDgHRGDEQBQqg3qUyMat+rqGRASmEtb1jrVRA9IYF+TRNWEttRUMQUYAMdlyWrBo5q2k2VSYzMKKyoqFIyBgQGbCJtpEpERoYWAUDWXvD6hywy7YFURf4uouvruPNLpBhXmRe8uPTodo3U87ffvX1h48faq23N9e/+MUvPnvzejcMy7JEpmU8dGQ2n6bjsZaFYgdEqqqGAIGIzeXFRBS0Irr5gO9LAI4YiZkQOQQLAWOKMTF7Fs6IgUMKw45iLAYf7h7/9ct3f3z3+N1jfppqUVoozqgVw6V81wVTYe2Jt/jiMlEgAqcxP6UyzlUh3Ny+uN73plKrFJGqWrPJvLislvgwl3/wdgicdSDWkcBzBPMhTgIKTCFyDDHGwD4kGkNMXUoxdl2IoVU4jjyJgBkpxBgvJxTa79hYNu7OtF6Yrr03AqTo9JDd0Pc5xpoZCckV50xFDasaqZAqGVCzjAUVIoqRfZZUDKqqioBpfiqHcULnVKpKNQAkJlNUKR8+fvyXf/3X1KXdfvjJTz4nZmKqdTHVvo8q9f7uXsxKKX4th6fDf/tv//C//q//b2e6FSdN1AIAIUQAMhMAc9Nq0aqmiBBC3O+H/f56GK5i6pGDGZYsxBBiGna7m5tbDmFa8jhOT4dDEQmxM6KiJkZGnrF5pKXNLlDUQNUz0Qb+eYqo2+ZrbAiXW7RLBQ8AAFt1CsRNOlgFpLLmHrVHQqvZokG9GviHr2+6nsb8eFqWabZSNddcFp2gLCPW6akDk+NouaDysL9m3nX9jcZUATzLDjEEjPmocBr94ZTi2i211FJKFamqVmtexuN4Op6Oh2VZXIpXRL30DakLwwBt+POcx3hQc00qX1AiteQ8zfPxNM7jCAAiWtogdZOrYmYO5PInQFjQRz2pFD0+HlSgSlURv906Z1WtImCAhCg61cXU34wsdgBoRqpYREALi7DUOdfUpWHYp54cmHF8ZaWVIBaNsbpQxUV68DwHWKMBMq/dEHBVXjUQVVMjAIY2/+gqEAYAaoYgoCieJqnPSSryxun3RdEG1+CMojTpy/NnarSHbbLpk89qdo5Z25fNGnMOjJGQ0bzJuSVP7hmnZqXm8XR4fHj88P7xeJyl6jTOpWjqApJw1Kvb7rOXt0P/s7Lkt28//PGLP//zP/7mj3/48u7dBxkxQUQOZFWtmmZrACVi66gCoCFGQPL7qWhIECgyAphTOszcfUW01pqL5Cpiz3ZMKCJM5ucccSAD0wRSQbOB1WIFBYGY0FxoTgX9N3HoOxeJ73Z9P/T9MHS7oetSTCkgmEitJtVqgVpQkIFjtBgKEZhVJlGsCiBlGo9U5imXaoipK4ZjqQ+Pj0/Hw3GcpkWQE3AFKgoLYs61nI6nu/vD9TDUtRoz02XJ0zwDgWkkMmfnUvPpAQRURaiA4kgFMiOolYJSqRgIgICCIZky2ioUDRfBiLStUURAcR6UQmjkAUIfTTKoimYkygYILniqOi9Sy1hUVEGRIHTI3BjEq/vcOYlhb9zhps7PiAxIhgpiWzUMPj3SKKEE6HN4zqEwNG+iI5gCm5lLxIKK61V4LSBuTOrbAAko+IfQRs0408TN7QNEEIjtnL1soKuoVlc7Xuf4XbyyCzxE7IK56ck8jQY6jsdxnj5+eH86nRBht9u9eHFze3ONAFLz0LufIla05XhAM04dBtZG8EitW0JtFk4QFBGQmsaQ+weH0JS5Y3QvXG5UFGJmAxbA07Lc3d1/+fbDb//07uv76aCpWECmikFQFfh519k+jWfbUwNwbK+InqZy9zC+uJl+8AaYu9iRmiyl5FKo1lyrVjXR1atQzKzJsuPaBsemAtXqtXUUjJljCF1K+10/9MaAAdkp1WxIRqxI6o5HPg+i7mMJqoYQ/xL94pMXURsw8wBJRAwUY0pdl1LiEJiZABFBzOX7ZdMM8sEMAPRSjkwJMXBTuDCjalrFaqnjvLSRDCc2EYM1iPBwOn31zTdd3+2v9qdxHIZBSr6/+2gqtzdX8zx98+231WArYJZl+eqrr3//+993XWLmZhJCmFrO6rp/HAOHAIgaInd9N/S7YXfTdXsOHVJU8Iik0MYCCSCoUi42LzLNJYuwIIZg7QGdyS6tAoY2e7RC+a6zBdsPQXuYWyXdIJe/wInB82jG1l8kKQHsBqVyUYuDxYHUsTQzWvIyTbVWEymgZYxaxhhNy2mEooH7vSU55p6LRMhip9OsYiklJnTz41pLqVaKiXiLvfhca8m11pzrLFL8+HG8SWolwtRJAovMfmx/z+fJRGRZtJKjVP62tapWt9Y2MCYDVgFAYGZqRhDk69BtYgGoCtQqpbqIg4UQzKwUV6UyBCBDM1URF/xsevWA0ATFFcwMUc2qKouZGRDGyF2fmBldbrlBIHXNas6v1QGuGQj4rJU9I+Gfkbet2WTrV7aV4H2NVXat9VAauNmMCrc3aQPHevEbYE1W/DerAvqIxXmVwfN/b8nJ5bc8TlPrjoH62dB61iCCIqiq01Tu78YP7x7ffnd3PM7upxZT2u27N29uPntze3MzxIg5z+/ffvz1P//rb371+9/+5g8f392xGVNcFe6zgQEKghlwux+OVcGW8XpDAYkwxECIJtZak56SiilYKSpV5Pk0X3AfOTWthiSAgGjMTClGllKmk0ynHENkYgJmVEZlCgHTbtjH4cXV7upq3/cdMzOhSpnG+XSsqgomy7IcjodcFgQIxBFjFCdboiIas6HlUpf7+yr1MC2zaAVexMZaHo6n9/cPh3HJwgYylYkPuS0AhJzL6bT84KVs9D5E5NB4BzGGZsakqmCIKOjPDXM1n2YFNBCPI1EhmG8YIwBnSwM56QrBbXQMQcEUrZEP1iWIAFgN0EjETex9jXjltUYiUkEAxpgIAWSlkjdxJdUqeqEOiUgcOSX3WEWOTIQMCGpQ68qPN1tPPe/lBQCn6q0T4mhm4twFMwFVx9Kr+IYgAFIghOj2G4ENwGoFFQV1EncrHLBtLFWVKogF1JQI3fj8vGFQVKuI6DN9BXQavYiKoKpUmyYt+QgG87Lk8QiiXdd3KSLYPJ0Oh+Pifpmx45iUOi6kpYQUg8/1MBM7+7KpbhMzcGNkryAGI5ML6YXAMUbfr+YjEoCBacnl7uHw/sPdr37zuz98/e7tsRwkaAwYEM3P6QDA+L0kxqfwWy3YOO/twQGpAs25fPPdPWLY71/EOLx5fd0PQ5ClExfOqKVKLrIsUoqUKlWlgjgwU1W1mKNs4g7wS15ydveDEGPf99f7/eubG726sp1IKstKVWMXIA/BcRgzWCeoRET2L667l1ehixeP5txPP8fg9WsrBoSrOGjgEImJuVXbXF1qtPlMErqPJyOigigCowaCFIADm3EgzERz9iTJtEGNQEjUVDAQkWqV+/v7P/6RRPWPf/xy6Dut5fH+XqTsdz0gnMaJ+11ZkxjzsVhVRPIpGH8REwEwEcUuxrgfuqur/uqqe3F7/fr1627Yq9GcbZxKFaQQRWCc51KqmI7TXOqDGEy55FIFAoaoSE3hBTEgrs+fXDi+ybITePrXTrmmdtEInu2wISQgBAKQ79km+gJujxLALa1SBcllDpKvsFII1arNND52dUmnKo+ncv84HU8556JSEWSIsOxiAivjDFUDa1fx0YjvDgvgkvV0XGrRwOx5huuYeRwSsZbWiHh32kARKjKkgDFyiJHZR/6wqGjOFchlBuUChfVHU2vNcwZTd4EwFQPk2MUk4sw8U1TlZsCxcszW1ec1STvtmAgYVAzAdQAZEBt1XWuTcaZz74HY5ZmRNHAgoug+Ysxu30KExMSBYgxErG2vqBsOiNTt7F/rAalcAc0Qz5Cs6npWQEs/XUWhHQYNKvF/apPgNgIEchULQjNFkJb6g/k0DoH3rC+ToZWRe769LSjp+t0zo86HeEytmvmFnKEYb+4gcRtCETNbVRfNrUlBVZdFj8dlWXQYrgj7ZamI0O/oBz948dd//dMXL3cq+e13b3/5j//yr7/5w5+++Pbuw1OeJdAQDAkM1AwqojpKDkBm66NEBGqj6L4pDADRJ0cDGdSaVRS8Wa7NT1w9R31OWAiiLXk2M8cSCBkAqmrNy3J8qMtRtRJiDJhiiIn6FIa+I7i1qz2TxcCBUKTmpeS8LMs0TqdSCoLlkk/jSVRSiiEERG5tKECna5MpmJiUXPJpqVORRWCuOkk9LeW0lKWCGilgyQIm3gUnZnGsDsO5JYjginJ+gLskniEZ+DgRuPiwy6uvwmJqBqbs5VFjRhm0PwvNb12N0Fy/0JN5T2JWQoTT1QBAxMEaABBd7eVamencEWxQK7slxBq5dKUYXLzw4gWNcaJWRUvWpusvbUW7M6duwxCIyH4KKZizcalVAmQq5DaaTjMKSABO/2RiA5M27tW6DbjBmm06xtE9M1QnrLcq0lp6KZvv1MU2K7XmUmpVQuz6FEOAQB7mGaFPMXW0211f7fdEUEqZl7mK9H0fYx9jF3ugOIhqCA5PMTvNnYMH+xiYmF39rV0ZICLqysQj/wGz6lripaBZDDROy/sPH7779ruvv/ru3fv7kwWhATH7uWNq1Ah5z17nXtLz9v8WYohI1J5OS/x4+PM3H0OIQHB93RsUVS9ua6k1Z8mL5CylapGaNRcpRYr3YkSkllJymfM8z8s8z1WqAcQYh364vtofb25ur66Gvk/RE4uWsMXAxC2JQWh5pojkWl/9+LPXP/9BD815oHW0mq+qBwFdIe+La/O4SIFCohCd+N4yaWxBqcWllfmIxoqg1QBEaq7oEtjsTE8mUmJg20rOxofFFoNFbVqWu/sHQHq4e+xS1FqOT08ipe+7kAISfz5O54LMQFeFSnYKNxEzp5SGfogxIcau62+udje3uxc3+5evbt989hmH7jAu9jgfx0OuQggqVsRy1SIiJpBVFIvHdgpApFtP7/mKaHHgkgYDjdKytQLXU2ZdJt6PXsnanywi2rRZAQlBIC41W1EsdSAMqqA2Mx0fHqaUJqHjXJ+Oy2nMpRQVIdAaUMUCmOQKogTGBWIx4MOitmSZx1qLMpHrOTSbV3fDaU0uAzMiCiFSIEYIREAROSAzMjYEAbGaWq3eNrrc++C9MVGR5krktSUAhdirwup633xOTZVbhNGVbrJxIpww7R5S1Aix7W4JmMc/XUOn3z8OzGigpKRiBEjorqhI6LMp1hzmNWyJvctDqqiLZF68zqo+6ipx58dvoLh+ImpE3YbImftbYSMDI/iONE9xbKXwt35KI8RcnAaNK/IswqxRqH0u29pg2w+t3zp/QPjkfPHz7ZzWrGQKBkQ1LMVKkXlWNWIOIUKtarPFEF7evnh1+7IL3XxY3r779ve//eL//Idf/uF3f777cCiL9mkXKJIiNuKLeYbloqSrasnaq8Y18VstwAkJ3UZJLyh61qqCRqd5Lt8TSimEaOQtO3C6ahWZypjH++nx7fHpw+Pjfc0lJR66tLvqbq72L1/eVii73a4beo5pyXmapmkax+l0ODw9PHyc5hkAVCTnhRn3uz0yLUsuRbYyj5reDzmcVRSWaovYUnUWLYZGAVwZBLxV72UOMpMBpq7b7XcXnETwJFqk9TIQwZUjpIFv25Jrz9GXGDRGOWwwLxhSEwLxfSjOO3HynsP6l8zLiyXVRNAaBuS/RrG1z/2LGwHBVnD5vFPP7+ZlECGpohYFh0lL0VJMqm8CQGrplFn1g5sYmInBYO0zm7mWHkBzcvdQ4CUOM7ZStTlkGRowIrolA7ZWjZoKep63sjVc58VH5Tb6GbSIrJeKvSKn0/g0Tks1jt2rV9dDn4qhGRBAFblaChDv99f9sCNmBUt91xFf7fcp9UwRkQFfwdoqauTXdpS2hBLWeWNtYoRSRaqreTuJF9GkLNM4j+PpNIpICmFZyvuPd2/f3U/HkQ13TBW11NlUSZMZsQjq2TF1RZDPkqpbxFh/AqCpAGMFOkzLn775bi7LYTq+uN0FVlVZljnn3NQns5YiolpqyXVZas55KbVhMCXnUupScynFHd0BgJljTEPXXe37XdfFGCMFYnIJli51q4FPK+ddFbRUGZflp2X+6//6tzdtpaqnSYGwiVmcw9/FUYyogOpktZg4JOd6qxStRQwUQR2RRrM1/WEiMqgqpeo8T0DWdV3g6MEaDRgIybQpdAJsJEPv/zMgsBouS0WYpmnSWudpNpOiEKqGGPNZkQAMPIlXd5Rg4r7vdrv9fr/f7/ap6yl0fTdcX++v9sN+1+32O+TdUuDpIHf30/uPp9O0KIKYibVRTEAGBsAASNDEJrYt3zB/D66XO1fVGu7SNoUiojNk1tDdHGHW6qCxRy9QWLgMBkwEhsUsG50ylEU7xkGgKB0tfyxPB4rFaCkw5VqqVkUwBqNc1EwZFRRN0UQszzAVRSxmUkGqmrmDmEeh9pnUUwHHIZlT6nb7XUodAXAIXUqBCVBFci6zggVmJDYENasO5mxlsjU7U2YGasoLqopEnLqIDn2oqFQRFFWp5jbjJp4e0WoSZAAKRl4Fr22c801jQEQgXdcsrgT3gIjuUKVt+zgfzjMhlGrTOBMyAoW4zvqVuuRSq6hcpApwxkTWJbBiHmCgq4G4tRDgbAZHYhCRnRsDrQ1FaEjAzVUPvCUmvhcMW9VtAISosMIwng6vuVuDgrQlSU3b/BIXt+ZBtGLT5xyHkIiJV3yoiRYpAnhlKAZzluNhLqUOuz2izR8+TMtpmpYUbj67fbmLw9d/+O7rr776zW/+5asv//zxw8PpOAeM3Lmylwtp6aonHjzFNyA785qRmMwp9I0OQT5yrdXxOcRGMfKy2qmg4P+7TMmCihiAgVTAdemSSZV8yuNhmg9Pp8cP9+/ncQyB+i5ej8OSbzFYtxs+Pt4D8uk0I+K8zMs85zKP4/j09Dgvi98XE2EiU1SDcZ7yUtxlS9Sa6w1HDBEpAAcxXIrmaouAohfQIXiiA4BurfgsCX3+svNLVbGhu7TieZ+gcPb8fZ61P9qX1GOQN0KtiQt5cLImZHz5S3EzDgDw7bq923kBGrQ+6uUvf84yN4VaaymFMYAhiMsFF59+c9rgVoqgL2UFISLXojc11VrFuVvgUrZe4bVxJlpXvRcEK5/T4dmmqIKuJ+nSk376+ChLIGZCc37aWmOs99M+6b+q6rwsx3F6PE1TlpT6q+urRQyQYghV6niaqhhxEFFZsgGoAROZ98urEAHHiIji19nGgLKYOgxuIqIiLuxWpZZacim1Fi8ADcAsAEjNeRrncTyeTrVq4ChVjqfTPJehSyF1i+FU4ZAll+y+wVaqlQLP2snq083n6rk988v1AwYIZLnmj4+PVUqp+eaqjwHVNOdlyaXWxfEYcYERt4KQUkopUm39UpXmFaHmrCknavPI4XDkGAITBY4phb7r98PQpc5VtEMILqpNRABWqpymef/qduORPN8udl6l64Wsq7VdG3Lo+l2/u0p9TyGJlNV/BBppAdr0pJmtZlBoBqVWNTHDEFxTBhvYuXZcGqvdXUYAEICFLSgiEOIyz2CNSgGmIUaKTByeDodtOinF+Oaz1z/90edX19fDMIQQ+mHY76/6vg8hAHE1RI5KtIjJKY+L3j8uS9aHx+nhabw/5GkpLh8J2Ib4iWkNrUzEwIwN0fy0qLULgsLz4LTClB4ZLk6R7Z5vpT08e8dnj8bMilkRK1VzVkYY2ETwJPBQ9IQ1C9YKRVUUVAFdDwy886veVndVKIFi4AlCA8CM2AtKgKbHsdaYQEQppqHvrq53MSUQIPK0AFSrGiERmg9ANNrfX0CV/EUr4cttWDAGMwASVRQFEUNBFEDSWswUyMga99lzjhUa0pZCPE9irBX4rnBsfki7wh4iGoGoVhQz8wIIqE08AJEZimjORURaEaQi1afuvge1/hsv73Q0UAXBy0ZccwpygZyW8qip6XqUe5NIGv/AFD2JobMR7CdIzHpX12vH9ffDGoQ/SWXae3xyKbhatq1/zhXQgZABSU1zqcfTJDLv9276ZkSWIjPiMi3zcfzjH/7wh9998bvffXH38aOKAWLgQNyKYdtSrxXt8dksJG4DmIjefPbZZkLykeGmKKECW63oBvRb9maXKBgAQEBAE1lqNTMyMLNaxLQQFJMMDBwpJIaCRSoUDRn73C+ST/P47u7j42FaZ02NiWMXECEOe+4GcHVCWydERZgTR6yl1lpyFQVBMWJEiyHFyB1gMDAgJTFRzApk1ABqNC/0RcQL4iIyjuOn+3/FCtrXDcCaoqyq4DoRsI3PrPgvEtFFPUQeX6DZXhqRrwvyH3WgRdcYuvUgzS5Azm19rxnVKjAAaxK1/tk2nHkxVGuac8lLZjBjapxxraCCYNR6rYArxuY2UohgTEIgWkWbhXoVRbCOqc2rgBFswCd6A4qh2Tg6+xk3U0cAdCf0Js3vM94cmZm9T9fQ8GfQhOjlGjOAKnIap3cfH9/fHX/+OSB3kYBD6HdDLmWc6jgeH48TAKbUhRgoEGfJc0Fi0E3cxcQc5NFaJZeSpaztodbNr0WkmhSttUoVT3qqipqigYq4NW3OVcTAvO+A+2F48+YFh3gY84fDPD1Oc1WRKgplXuqSv5fsXsAw4CDCGma2J4iGZAaQqz2dTkXqh48hEJoLo4nUmqvmWheRbFrMpBVpfiddF8aTBHbg3oxhOxEMYKk1qzBi10GgiCFACIow5VxZd5GZSRFdY7hUZ0CeZaG3t1qFMbd8dNsUtq1uA+AQrq6u5xcvDw8v5mlUraJOFzIQcT6iI6Es1GbuPXM3NAURNRPa8h2n66lJy0MVYBXtNPOWU1jCMk9EpLURFACRmzmG/NV3/25ZmjHnbrf7u7/7z6aw313Fvmd2qbooaqfT6el4OhyOSznwI4NaWYqImqJYEGO1IBiMkkcrQEOmwAE5oiv30PZ3T2LUt/MGttJqtPkcTj13hHWV9gFoLn9mz0dF7Mwj8f/0Bo9qy15LLXMtk+qp6iyaEKFaTVAGKmh5KaVI82MHAkNSIFUf4oY2N9M2NTrORQAAzBhaXHAuLa/deDRUZk6x6/s0DJGJpG6KRG2/MxIBec5kupLPL1+N3kNQGyvCDZdVgxmqglr1hIkJEBkBs4iBNCUoXKEYImeJiCJqSy6YCQBFhIjEk6PttMQViKSAiNIiu8M5AAC8qSSl1Pc9cyilzLNWPweJTMEbtPS9B+ptIp+PBsSW2PpuXWOAp+iunsWAAFBFvKTGtdirIqYIjC2+nfsnDqzAilp6YnZeIBefBBBQvXN1puiciTLrLsQN9r98Nr43oRF8GKxDQ7DoZ02pyzQfS5kQAkBloqv97mZIsugfvvjy47t3f/zij+/fvZvGEwIF3nJUO8fE82/x/yM5a5ejG8A4m6yhRMxuzurZtmuPN08xXdkWBs2WsmFH7RVSCNp+u7HvtxVkMCBS5i51u70iuFNg7DqKSZGK2LTkUlDE0IACxRB6ghADp+QMLhRjUa2SpQIABwrIlaoQI2QwxJAwDtRfcbcLqUdiyEZirMbVShUwYAbfK2ctODMRL1ovxIjWl6PojbK+Bf01f/fXhpFc7rot/7hoFHlju6UYW+q7nWPb59lW1ZpUfT+Ft7/0xWcl1+WPepQXETRrhFwzAq8Qzcl+1jw1VpsOIqA2Al1NfAbbdW/VsBUKawtyQw/w+dpGXJlheN4NALaODLi4Cax1e/vFK7YJZIikn2hKIoLU+nQ4fbx7fP/hgYkMIaS0K3XJ+d2Hj3f3D6dxMoOh37kNMLnD80b4ceuMNniqtdYlN/pIwytEvKUvAiomPnoOzSZATEGhZQdmIqCGJsjMqYsUTDAwRQMxIzBfaqpiWopJ+YSutN657Yv6/OuwtmPMAFRhyVCqMaLzgFbSZKm6iCyqC1hFkCZRB+BQGsDZ3tRXcAta0DoRZkZGxIyBOARk1gYQQqtDY3SwzWW3KMsnleV5nnuLiRd/p7YM/aoMibthd33z4sXrz0pepJYqplYb22u9G6tWkEM7XlAEMz+DTHS9XbaJCbckxgk2/svcnzdUkpIRUTyJUQHCwCwq87w8PT1tSEyM8fVnn/3oRz9JXY8cRJuAzZTzca5PY348TlNeANCq+pFvikCRw8Bp4BSpRRkv9AiYgRlW1/GtdFwPhWc46mU5BLAy5C7/RLszioguDOmNtC2/+XRt2bkq8HFrk6omFa0iLgasgBWIjUQVwVTAFN19a92YLVX0ShZXhAWREbfmTiO9u+MUcYiBiFb6gRKRT/UxAmGTxa9atDbtUyZqLV1rH/rTOGbmlrNka4xqn2tbZojoo69IBpUUkbBZKHvp7vMVLmPiNb5ji/4PREQRsTPcDs0xnog3kT0ENvc4tPYweRXLJj5PHVTv6vin8r71/zUkxoOB8yU3EbY1joKj9auWNGzimA2yWJ+Nf99vJIC3XczOP7j+su9/pG016rnD2j4WAKC1SuH7PlB4/p8hAJtizjZPZRyP03TIeVQpZhSZd/1u1nk6LPcfHr/9+tt33373/u278XRkIl5BHfseSLl+2vUcZuYYKKQQAiBWETRt2rFEqs6gEtdrXaO1o2+XT+JTzZsw9G5qby76YmY1l1IWqdMy22RT7IarW+j3VwQQmFIKQ9eFuENOHPu+28XUEbKDYQCOCbCLZIFJLc0ECFylLQKosgjXakgh9aHbh+E6xCFwNMNazPV5a9UlV1VhMkAB1wI4Q3wll/opygaA2BiOvmK80LxodrQkY0s7NlRm/U9ARELYOt3niIzoB/62TbcKzN/Tf6nLKkCrIs7b4HI/NFC0sdTND+ImrbH+8HoV6IIb0GbFmQhDY0UrqPjkvX8HiWzdJk1hn9bqcd1laLCGB49vJuchQfOkoSGN3kxABdqwmdZXUhOTM4nBbJXLd0K+KFI4o3+EKYZAVHK++3j3xRd49+EtEoUUh2GY8vLdt+/uHh5P42wAwzB0Ma2wESFSg3xEqqqIiYLr1zaxgJYFunMnOEVBneXXelrmklFNt32tPBRQjapQmaFameyROZQsp6Uuxbyb7FQCXF1VvxcdtoLnvFu1YQkACE0sBN3tnpSgcRhB1ErVorqoZvPZcB/v2eo83DqerchrBK3mAWjOTIwp7YZh1/cpdUyoVZRhSN0wDEPfd12HiK5/t5RFFUIM2zJEcBiGnh+123e3sxrVtZgBQ0r7m5s38jmYTfM0zblmUd+W7bp90TR4n5CYQggdNt1wNS/XG5JZG23L9YjXQI/enhIQf5yADVPUgoZIUUzFquh5cgQAisCU61SmpchxnMZpmZZ5XmqRutS6lCyqPj+FoU+BEJk4UkgYInAwJvDV3QqWc6649lgEbeMh4orantOXi4T/WW1z+S2zLVEzgOb/aACIdI7SjeN5ieUqmQTQELB2nInNEIkYMUklwkgUYhBkA0diAKuTbtHQVjKkpwTEzMktL5gJ3RHVdTtjSgmJRJtRLACgolUtmpvaA6qCGIrzFdpV2MUnfZ7GqOo0T9M09Sl4MFRVqT7MXVQUzRgRGM1QnSxDbAS0zTa3AYstcdQWm7AdnC0IiwkAgCFSCHHNX8BroYBe6gdbz492z9tEVTVlQGSOYS2fapVc6uWZvBKd/Vy1dblsQWBdLXY+sqnlWc4HIbAVXrFGp2nqHx6kmzGTSss7yYV9dQ1xz7pDZ8ze0EzRyeft53RVOvUfbnh1PY/0rHO4jZbgo1CqXIqMp+Xx8XB3/+Hx6VFkToF3fTd0SYf+3fTuyz9++aff//nj+4/jeETRGMO6cBHQNRxWRPqiHPIzdRsT5RTdM1zBwDYFFFzbGyIq3kA6B6ONtgXWtJkupt/bOCI1kXIGB3+NEVhCimkwsJh2YNqkPRkTc0oRqTcIhuwW89YERKqZVqvt+Yla08r0Ze9QAiKKqSmgumOgty+JfUCZyVSNUclQlAyrs9v95Qe8c6bpU+fndsewLXHd0vcN0d2IwH/xT6178FPUxFODS8zOzmf/xc8ArL9n7YJffOvfetnaTn72ec5ZQEOG/Dj0wkKdHLJ+mpb0txMEwLV0YTVF3I6XTfdgzet8U57JYu0vaow0j9EuPtPKE8dnWq0AsC62tT+1VUKXF+IghNRyPD598015vI8cOMTYdd1Sy4cPd0+H47QUA+z7PnJEP/7a+UuGplWqqjptYd3R61PGxksD8hE+9Z25XZM7ljTCtf8NFRCQzAgEy6yjTkhkCtUn0A1AFV0v/DnU1w5b05XFupaVDTNZM5r1MwF5fda0o1SL/715WUAlz2BaFni+aQ2NA2spmdMGnbTo0qMp9anrU5diDEQESAaMlGJMKYXgIhngdb+Uuiw5509aY5eg4/9kfa7zD0Qhdlc3L0rOh8Ohlnp4snlS07pF2IuMaEvl2acjzdbtsyENoAjmEDFgw+9wyxHMVIEcjCNoqFEgLQpgl1MwpdQPd49fffseiHOV4ziP8zIvbh/tHH0EZABGYqbITuuiAG0yfzWt3z5+uwY/+3FDxBrV4bxX1gtdqwAPFLDiMc9CxIYVrD+95W3fu+FqWxxpOYERYgghJjRGBULEQBBb9sUA1O6jAfigibrE5jONECZkDilFDpE5AJKZEQGHEGOMKSEiVsTGLTUHBUUVDCj4csJ28l0uo3PUfZYRm2nOOecc2RFcNbNainuhYBuxB2zZQMtZn+0E34vOCAUnBpD3bbwzg+SXwEbg6BH56NTZwK2xahBJLydeXORLQWSVk2gj/k7MdhfrLUFv60HbbMzq3QF+FCu4eWNbMtvcpm1e9+f8FbYY3NAxL642RbvtiV+WSedzvOUHW9np2I2PNOllsuNnJcCzbub3XmgGolZzzaNMpzKO05Jns5IS9Wm/7/vXL2+tyvu3j+++fffVl19/8/W34/GoIu5U8YlA8woyeQCm82FM65Px1mVgAySvR/Ech9brQ1hPwPV6cL0nus5+nV9hGicwMPctjgxgtRStxSd4u+667wZrU+u+b307MVEoFW0s86LNWm+VAHJ14YBIribmEA0CmAGZES5VD6cl18phSV2+Kjb0xdVUwaWXi3qeTi7WV8tSci1FRJg5xhhjDKEwnfMYg7MgBpMf4n6TnBP5LCScn+GKlzj/F9HbU7hFpi2zabtszYcAAe38hMzM+6mfvDmsWI5vpi1VaktzfbpbatSuxRFAkSZl0KKmIYKa3xFZ1f0VvCwwJQPAplcgCNC0jNY/f1Eytl1y1nLyhAcacLBGojVRIyI0tFXGA9ZsaYtd25V6SnVuT7R9DgYqKnWZpwddppFDoBhiSrGaLdMCZoEZkAjJDMRUxa+XmBEQxNtInlf4gYrs0/rWZHcQDLfhO2zi1b4ZAkKjLraMpz2/4JQ7MaxLXU8rN1TwVE3WNv/2WFVN1KppWFkNfh+eyWCvN9VRHzMTdXVlWVRn08XLLR/rIXckxZZitgahpw3r727wH7bJ4ehVc4quik+GIOLeOX2MKcQmX1aLmYnUZc5Px+OHjw83n92WcknsbUXuBRqzhg9sH6LRKQ2hdS2AQ7e/efGjn/wsBMZvVE3rspgIAlLjMHh3yXeda8c5AWLNfr1mBaAGPTGBGSNtN7SpILUVFpiREENyrswMBhNc8kjGef7dH/70j7/8l24YMCRxqIoiBiYOSL5XwcchGd2DAdfcRXU9nJ1YBi1P0QYCWJNegvVDrZvMN6UPpgA4MXa7t/7XZSqDTQSv7Q6z9cRq4WXb+7rSuteMwTdiCKFH0mCMjV9PiQ0RQV1fcF3b6rIgCiD+b07hAAAiZHKVl8DEBiQquJYMawaGiNx0ttayGoz8BABiNDQyu8ClEJrtjEsLbnvf1p64iChTi8hVPINpIIsvFFGQaiprdrvV8Z6AqTMb/ei5QGDbbQ8BEFFFVwDZg9f64Fpuis7hNf8itbcwNWfkqgr5VDxgLmVecl7KmUTWzhefdHLquktxmIceX70ECoJmJmTO8ARwX0clA/Pm5MpzAO//qq3iHbBux205KDn44Ojlmv+05Gg71lwBzlqTYVuEtG4wJxbBRUzeboifXONUnu6W6ViKCrHevti/4uuh66+G4cX1/psvv/7tr3/7j//nr7/9+t08LYECcaALMoF3FVd+pGuaNMVCN7htv93QeVsuJYXCLrO3lTtEhCGYrvRtfzevJRu8bqq+Ti6QmLwUMFUTQjBhQBOpJgLgVCymdZqYWvHbYBtAdGwfpCGugFudKmZWEAgwuHQ2rhW9mpoWUSfbVymiiHiUXDnEGGIIEZFVQcX86CpWc85LnkspZuac838L2fiEIb9lH+eT+wIjOR+025JS2Ir8529s6gLR67udCQxrouPP7/tIz/artckk0Pe/a2aX1AozLaWUXJg89vrKsw1yrLWaCa4AuLbpbyJmAGwmO6qwNqLhAtb+5NZdQOTb5ElyRAABAABJREFUcIJ/iDUYXETh9kHFxYrtXLhsWMxfelnjKNacCSrUQClxDVKrKICIgHnZRG4OLboOdgGgIKLTQs0Ut2jf5l8ADECcz6+k0GycnMHs1P91Mmu9iX7AoM9gOXgDLS9dceqWPPyl2mXdqaK6son8N7ZgCQDQYiQAAKg13VyzYrqYLWYZTRuzyLFxWlGv7becSxBoEBi3MziGkKL/FRudAVsoCSEwMyKZWi7ZspaSc87zvBxO0+E0zkuxv3RRcF4Waw246mS5bKZrSfltYUSO3f7mxbJMDw8f42n0nJqclEVG1EzNEAVR3CgCQXHta6ztGnKAbOOBr+VYy9loDb6NJuHQvNr3ljDUqo+H6ePjaSfQ9YAcKVCkSDESOy5oW+Bit8xF5yRvN3urbr//xFsGuX37Eqtpb4AAK4DvS9lPJLC1zG4x5S8gX1t8+PRLLZYigKGf1AHJLCAjUWj5AgC6FH1L081MVI3MVBHIFD0ab0lMS1lW4HZV73PSq7pFAhGZEaztCb85zr5rikDfR5BWysv3kZhpmgnUVGiT195+vYGHB1k5bxvwub4VXtbnax0IqlaleDsLkTgQkimpd8PbWdPWmUvag24ry2zVErtwqFpvvMcGl6T8HhKz7UtXA/Vtf06+1x8xP8idYGNgpIoqnlm36ZD1HR2KsHWqZG02+gexBsitbCDQlVC2Cnn4T7Y2jOr2FLYbiIi0kt++t7T9PXwSNteaDSX22IfIcei6btcNrLhM87u37//0hz999eVX05hNgEIILgLvl7vmMS7W1dCVTfmSGBHcgBeJzAV8IiOSuMGBT11u+bC/jxtnbkEVt/6Swbaa11cQEac/ApqQec1jtIoUqXtetCTGNSoosBmCi9K3oRtfsSoiutJJ1ExMq6sAExEDA5lhrlLEOKTkLsMK8zjmaVaDGGPf71LqmIIZ1lKLVJ9GXZa51OpJjC/yUvKzQX5nD5xbMwir03fDQ9Y8kejMm9mgtpZCqgBA2Hys15zef0qgXFRSuCVDWyq5/R3WzOYvLprtJ22tuj6JY2aWc56myaxKZGylsTZkX1XVTdw8v1EAMKk+CYDuLHaGE8+dr8vf4VdNTvz0ZGfDYqyVwmCqbrlq52vUlfkBraHbtMWw/ZiuxKt1U6u5qEgushSDyGzBIKDD+2AIDK2AxFa8tRLBQ/L2iRGcbULnYgvVfRLIGshMPkdlF5FUjWxdCyui70cuOpDNgMjB46E1GUKEtVp61hDw92tp+jo4AP6xL08nD/O0NiEUtCIUhMygRu4p0Bp0LdFeRVbQJc0FV95fEz5jpBA4hhRD0/xzD0l0/lkgChE5IJGYSXGV1GkcT8uSq1op7hZ29k4CMNo4RHjxvKBtInM39Ka1jq5mgmhtvA8ZQ6LYcUzIGU0RDRmAFBnchlBREMRUjBrz1M4ZAyMCAHsQvvwAzlNvlp0O8gOYWTWpVWotboqEeK74kTh2+25/O1ztu65HDkhMFJCYuJFP1wyCmt6YPzVs1ZVXAZenC7atQOqyorpNpeKa3Bts0E1bGQoAqhcxYd0CAGDY1ETbd9eC6ZMkxquWdlZjAyLQrU+C81dxs9ZqT5N0/Qith+eT7O5HomqrXmorzsxATTzz8SNVwVBl7VSgjwptR6fDaaYGuHZhWuMMt/sACrKCLtvBL6JuxllLyl3q+r5LKQQmDA3SQFW10mS+ZYuDK+iLBBt85VO+5GUdgFhBVUNo8CQDtZMfNuYiuhytrCHeVg2ndvd8DkfE7xn6RKoBoLP6n2Gw6wmLsMJDjtb5ujoPHbVnaegCjNgiIIkiuqiQrYxDL4kbdrT2Wi97BiYr8w+QmsiKnim6uK49dSVBU1rFni/nDUXE584u+59bPDfTWgVQh6uwu0qpDyFFjiFwChbu3j786h9//f/9h3/+5qu302kmZAy0TY55aDNTc7JmSKYgpmQogO4Gh25dQ8QcMLAFd3lLiKiibTKvPYB2zjSN1Uafwy0d/Z6jRXuFvu+9Z05oITQo2BPHWhvj7vIPELqaTcuJXW/cXItNrFY1M+Z1JlZc4aLFpGAISFVNDZgjUWi9PHcAF1MzpGBIMSAgFqvVpKqIuhakrwPzsboth/g3XgawNRHOecM2l4StZCdPbqgJ2XrC3+7os7fzRBnbxV/mtpclyGUWvN06OuuwfO9T+hH2aQVjpZSlLMxtCK+BDp6Uq/mRbq351fjU4FgoPaspPU/aEiYAwAukGGEtb2Btt6yfvn13+x3t6rf6CRDN0JAc8gREMIAzCHTxUlUzKVVzNUII2CbOnLVWFURBxNsN4J3HLRz5UPDWUfMV2Epcj6IEAOTpi3oSA5vqU8MVWnBuaUcDBhs12bb1gds//Nz09u1fgphcbvnZUJJuYq7rPxR0xX+UoALKSk3aCIlbyd7SIbtAgNAfFaGzFANxDCFyiiGQt1HX8dOWvBJaE0cWkbqUac7LssxVhCgqshEgfs8Hypqnkl1+yV9ibV5AsXXV0LQpm5RSllKyOsS76k9bKxZQ23oSQCFSZsPzvX+2U7x7tPEB/Cvo4yPMHNhjl6qyOIPFPyXud0MTlwZAopD61O9Tt49dh8RNz2CVQDrHP/9Ki+cbLaGZo233BlfGc3MiW3966/lA2wYIm0wgbDv8MiO5KB7sfO+flRPfG1DCDbbZ7hI5HrOd6IDbQvk+gw8JqNXsQNS0bS7wwjMrck3bWnUHzqhFQ264ezvn1sbiSglxQBr1InlqHfB6ye0zs1prKVUS29pYQl7nIbwaUHUfJVF3Q21/kFbZrXW1rNe9lpC29vPXaoo8H4bz9SJ4xr0iWtAytJbMgYKCKoqiOxBhK2nBXFVbnjMEGo5zftjnu47r9dqZLrT+qJ1BFoUm1wuX8Q3bzEXVNtxhz0trf6aIQZ8TXLZ+AjZ1dXTlbufDbR9iPZw+jWOIPoeHMTJahA4Cc+xjTJFDqhkOd/O3X7/79S9//7vf/vHp4QgKxE3QHwDQB9n87Tm0SXgyUwFDaLQkx2iQmCkEaOpfJiLYCM8IeNZaO9+4My7wafn9/Vd49fKlmapkMyEwBDVQ1SoVa8VSwbSdigjAxDFQaONrnoshIYiI1lJlm3k0ABORUuu8lLoO76TUcUxNBJ59asi3Fhli8T9MQfzDE0ggB/7YlAJbhRhjkzAiQo5d111mEo09hOtMkCfOBg7YrFkCWvNfPeMo/sJG+V93CZ5Zut7DxzXPJeZ1e6+p0oZ5bHyyC7G7NSfYcJpWyrVdxRyC2zKcV56LiYhQ5fOfoqZGiNu2+TQcIjqe7Ze23RzP6F2mnVS38ATNBoK3a4E1P/Xm2XYhbWH5H7xIeABMQWzFJUTdcFS2XrIfigBai9aqGRRNDExUAyMiVvOJHVBDa9IWa3lnDV1eWQsG6P1RF6PxWq0NYSps67TpIdkFSozmm6WlcSsxWqBxMxougtS2H4JtHKbtZrd3P9cz5yr8+TazJjmpAIyIzqh3TIG343T76ZZiNhU/9ZYyEiKGwMwhekUT/FRnXmcvPMdpQiZmlmvR2hSBl7wYGMfYpSF2gwiqLOuHhW3Zq4kbgX8SqwEAychA6UyS9CBfa6n5NJ6eTseHMh+kjCaTSVECqYBqKKgMjOaMICBktABbXnDG/KAldOCabGs3ybb16WmKy5+oJZ/KUrEll88+exHjxVxCiCF0xAkpunAWtsTV+Xq6NSRsZSDBWrH4OrrcVpft5otlsGaZbd0bOt2Ptv1wfqa0vf/FNsQtXgNsGcj2gucvh2TaW7rSEa39bEBtyroXuQlcpNFbZoNwWZ64nUZj6q8xoLV0AVB1dZ5RZh/jYFzjqDNr1Mx5YaYbo8XATM3cKFIv9r5fcoxhPwzD0DMRANRS64pw++hvFReD2EBQdRiWDTzjRF8EG3NZTM3TM+TNv7C1AVZsxtNfv6+I6/7cqlpoTQw1IxEFEMOtEW+6zPM0T8uyXJ6suvkjMG9LxfMWaxCmwxLAK1GkPRg/K82R5UazxnYHXGRHFVSaMKdvTO8mNRwOyHCdnVvXFbZetJ+WTAANYnKJv63z0D7VJaYEQAQMwATMzLxzRQ5EwEAhcIxwdyx//OKrX/7z737/r1++f3tvil3qve/VtoCflgbM5GoO3otRQ2ti8O2UDCGs4zwmIrJIFUFuuwLNFXL8xqufU7iWeQguNruBdK1tcLlTAjGDETOCCVgFVTNBUAwMIIZkqq2QBZ+iaBmcjz5Ya5ZDI+ptImxmvs2rWRExQzYEkkgSMYChC3v6SdTMF9HHrlANxAANtK1gCgZJVINF7/p7WGH3vzif5tVFTmulVjiBIpypuACbipQ/WkdfXB4A10FiBERSAifLNuGppjUCiMF1e/UCtPTl5ZASgOi2Uqy56TaiI651QKv//XhuI9ZtB8IagqpK1VqVoK5FqhkhBmRuzwFMV9plW1Ww8s3aAyBVJwT4el5xu7YD/MXEwXuI23ebGubagENvWquZoUg76dewaHpRLwKIai611HK5+WupALIsCxNJEAkswqVQYEBEgTYUrYYKpEAKoFBbztBEN7axSvTNLIoGjEjERuLhaEtiaD2EzgwMbMmNH8+kYM1SzGeBG9nOi7oGfZWa53nJ+dm1+Dw8V1qTGISz2viW1fhZJ0RghkbI7NQ93XLXT3E+X2nWStx2DbjCLV4hb5GyHVkG4KprVquB29aVkpfF8U/iQKEzYBWsxfJSc66X1+KeVggQlC6DXDtkYeskYzsHVERyWcZ5fDod7ufTg5QRLQcSIiFy7Ts1A1MQt5dBxDalYLTyYVtkX8f2AdckxlGBlig4ruN7x7c7MYcYOkTsq1xdD94RBgDviYmhKFBTYlmfhbaEDBo4pNgceGhbwrC2Fjd6tifRhOvnWVvAn44QIjQmM+B5EbTEZY1BcG4xtL+2hQJQal1ydrbfdvNzrTmXwLSVXo5umrUkBmCt951pzPxJEmNmJgpWAQztDBISbkTjVTYCsO0FMFdkQGijYNwaE+5LoD5p7033qrKxYjyJMTMX7rqcb1jvDxMxANYqrvRoqkDgUocbi1HaNTaghwgjBZ8ioxX20qai3Epta8pDZiu7xQwIkZmDCyKbqlwcAdaAsw2YIwCSS2Tdm6eyLHma5mXJl/TKUsqSM/uu3ug5vlr8GPYJFgQlrOKD1Oa0cjYja2ae2AZh0Bm5VaRq1TWMt+Db3rdVath6OCvXBwygma4oruiUo75rEtAUmFxKS7Q94vXlokh+wBIyBPNhbQXMWcZT+fqru1/96ve/+uXvvvrz24f7A5mCgjMfEIGYAkMrICkABQOoYiIgAoZA4s/MELD1i93p2MQLSmIKgQnJGu0HVc29cEEEALhJZoMI1CI++FyKmwc+Ay/D8TgRQQhEzQdHTLfJF0PX3LVt25mZKlRqXMh2LJoZMod1Jsi1O4lIAVjER16ZODiOg6Rq0gTK3NkdrSmpMXEgIwShQEDExCFAoMActzYGWOM0G5yrZFWd52UcJyIUie3rqC6LYrZxpxVx25ztxPCY7aNNAH4p3JRunHfmfjZmGCglISJVT5NXEZIVv9m0Ai8LOAAzdfXVgLyuezFVBbMl59M4TfN8DpFmVaVILcLaCgAxVUaKHEPzKIY276HNZwQIiRhMWy+9fRK/Obat4BZYPStt9KD6SWusQZpeVKEnSroF4wZKN2jaI2o7l6rKksu0nK9FRed5BoAKp9OkkUIOoRSOoVFSvTGjhqokRmLuIbJ2OIy2T4Ury92AFMiQmpwMu4+SL0Wv9aldh+fc7eGc83cFqLr15RCd/efOVtiynlLyPI1Ph2Otsq4xW3KepllNQ2icjMsR7A1aB1ADQbYQKDCy9/ZXISWAbS3juqnMVKBxH4iAgAyDaXWDeUMAJdJoSoRVW4pDAIQiUuqyLEseJxMhghhj3+1CTKC0zHoq4zSX02kaT5OuSbaazfNymibV6gJR6ydfu1secKFJDoGKai3LNE9Pp9PD6XC/TA+gU+IaEkAkAFv11qxxKx0KWTMiX0S43qVtZ0DTsbRtI6/rs2kWMQck9l5YCMocItF2//1allzHOSMHaVQkAj+OW/qrQNbmW3A10YXmhAyN1kBbEoMXOIrfFDqP8sF5H+Gznb42gM6Xt93VDa7YSgV/k5zLaZrGednMLEV1mqbj8ahaYwjuEqhtuKsVTrDWQf7vxOuoMuBKIfJpjQKNDLT+xvVyXbtyo/I3ezU/Ds1wFaPzEdp1USC0MREQky0h85wT1UrJy7JcJmQACMBisFQRW2qpubgfuwCCq1a67w00LSLb9gcRRubIIXJkF8AFUPRMywE2a1Hd3MW6QakE4JkPEnqH2lrG4wQ6T9zaTkUADyTu00FMaCBSp6WO0zIveZsIUtVpWU6nyVRLTA31X/d7KxHXKTFnzqkponnnlwHIsd2LhWNmIqWUupSsJsi4dRLaCjQ/7xmM2/Hiv7FxhhsTr2XSLZduuKl4Yuiuz6KXhaWTu33wwZEPM0NTUSvVnh6Wb7+9/80//+m//7df/+7Xf3j6cLeMMwOYWM5iYBwwxdgRRSTkqBBESVVzNmnmHWClbvEQoPhxpGZG6skWEbGbQqgCIBObQM1VStVazawlMQAqINrOypzzVMsyXRinAYS/+elrIgzReSxqWk3VQAAUrKoVNV2VMFpg4LVr06ZF2q73Y3EN42pmkmudSq6i6EaOHJiZKJhBzUVURRuKaG5J5SORgf14cl3F6Az6Nd/3fzq18uc/fN2lBilf7Ye//89/i4jDroshrEWWgrer1gFsP3GJCVrCYUS8LkRVrQ6TteHtlgFo0ykxI0aHzrxy9r3npBNqak6+nWilu+K62f5SEmOKZrmUcV7+/u/+5mrf7IWHrvubn37OhF2KhCieVqoiktvirA17f2c3f/QByoZz2hYx16r6IvjC+hXn97A3B7cI177rpc36eH1KswXNyyTmOaQgZqXWX/zgh31M/pWbm+v/5X/5f8SOhjh0qeNmQd3gH9zYnoaqqEBioBvxfY0z2yHh0622kmBa+++ScmSXMNOGPm7/DbAe0rJNfjjXwXzKY9X5QKi1Lsv89//lb6+u2nPZ74e/+7/9LYBFt25vdfb58tcQY56VIVrwXK0lMedncVG0n4Ms+uNoWgrcbBGgIRitOiYCaJPzfoFVJJdlWZY8TWAWA3ddN/Q7TgmMRDAvdc5lWfLf/Md/N+xc3BL6Lv3Vz35ooCkFXgVPL1eL32/c1ozn8nlZluM8H6fxWPIoeTIpq5qObf87d6BhI5LYdtXrQb79e0tiLr+7MWiIkKklMSHEmFIIAcD+03/4z7vdftv7//W//C0gDUMfQmzVKmJrmmwMCkLwBvWWxKxLwhMmOj+T9Q48/7RbybR+1wAukpjv/Yxtt7UxFfWTJKZWmZblv/ztz/dDey77Yfi7//C3oNb1KXBYQ5DBtpc3VGdLYs7IaPsUhq4GsPqinFMrgDWJ8ezeP8s2zu7Pq2FhuFrFXixWaxiAnpMY/56a1JqX6T//p/+436/PZdf//X/8eQg8dJEQSnVf9qyihiCru/Wa8PkfaskcEQTiwBwocNPYBIeLsHl7b0FbTcVsFbBvvGBqGfQ6DgFtcz9LYgDA0BCRfbSP2TGMeclPh9N//Y8/v9qvz6Xv/9Nf/Tsw6FKMIXiAX2OpreoS1uiUrS0lgK6S5eUGrZmuE0mcIS+l1FKLqlL4XhLjT5QZ0e1hLiPMeXU1uLbVaZfoXftLzP7DL36+a8K2QACpJTFohmu6QSrGBgtjIrje808/v43wE1k+MxEGVLVSxMACU4wx9TGG1Ej0iGpaSvG+ZAtoF0XdBbnH2v5bMW9z7TdiUKhVpDSGNzcmMq6KaABgtdZlWv7+//7vr65355345+/uYO1ybNtt++3rf16s//XO+tee5dyXr9ZO2oqPcwsDNoj1DLP6O7Rzqj2+FkLxIh6ej0x/hl2KL653MTAATPPyzXfvT+O0pg7nD9aKv2enuX/VPvmJ9UZfxO92Ke2Ya58P4QIZhnaBFz9/Wci1G9nu3Vrd/f/Y+68uWZIkTRATESVGnAa5NGlVTfcM0AMMdgjOzjl4wCte8II/uz8AWDK7wPbMVJPKrMrMm3lZ8HBiRJkIHtTMwiPi3qws0tPddUorK66Hh7sRVTVVkU8++QRG73Qw2nleVy+fP6nKAgB8CJfbbe/cxNqZDjGwjh8cGkbI5eDGH5gXH2tDJ+MH/vQTj/DgKyJSFsXxfGGNAYC2bX/4/vVuv8uqAQft0JzK38Xp17sT3w3ReImTLTJ284Mbuvvn7hsPb+9un7z/7t07ODx7i3n96YunVVUCQN+78/eXzb49TLB/dJSDd0f19IPTP+jTgz64sx0Of97fNaeDHRx1CJ4zZwwjZ3YoUphzP2X0CpnrWfXk6UlRWgBwIVzf7Drn7ogXD+4F77+U6URD7YcB/J8m58FIjt/J/384mPd7TB69/6CHDhYFHDA2AKir2enpk6IoAKDr3bv3l/umH579gz47vJF7s+CRwfHwl9/eHsy+Dz9EcGAZ3tkgd/a0MPOsKl88PS4LCwB9796fn7dte7iOPVq+4O79RwOF03w6+Are4ab3P/+4T+RH3vh4ExEB5jSb1c+ePivLAgB6F95fbZrOTWnneVMdcLZpA/jQ4ab5Pj1ph8/mwU3k1VHGu8FHH5g+dHDDj57CQytUYJC3mVXlJ89OqtICQO/8+fV12/UTrHt4gmFkhxkxoZp35RXgfl+PJsrkkw99MtkuH5pYB2v79K8cHA4ffOaOWAgCdVWerteFtfnrKRtdd7sQDEKJDDGyc6HvXNN0WYFlCOaNUCBmO2sKNUzuyATk3p8zd17Jw8mGiCBZbTUfZCShHnQA3ruTvFcuqpefnFR1MXzi99io/tz+3P7c/tz+3P7c/tz+3P7R24+kKP+5/bn9uf25/bn9uf25/bn902363bt38CNI6D/VlkGnoiiWy6UxBgBS4qaNKaYh/fQQeh/RNpwgtwl5ewD2AxyEGvAACIMxfo5TzP4QO5vi/uOH7yDkRxAuANypmORPiIjWVM/sJH3xo1jrP/k2yQwDsCQXehZWpIAxJY4+Ou+yVMCHv30Atj/4OX3gg9+9YyUciPT89Lk9nUgpVZZlrkA0pcD8uf1TbndB938abQyJ519yMAXg4J/8hymE+EHJK/mQTOU/8fbgcRu0sIe/jT/+GLvNj0SiDlfXuxMffGBctyd2wsMX+R8i0oamJLUQY/DBhxCzPOmYszmqZo5hz2nhIYUAMuQdDuQdGJP28xKfUhQRQFRKGVsQUmJOMYbgEbEoKtKGB5FBxsx3NrosrdGaEBKzc6Ht/K7pfIg5tdwoQOAYg6QhD56F66p6cnpSFPZBR3ygf/65Nf0//A//w/QI/WOZMr/reWXQUAovX778j//xP56cnABA08ZffXW13fRVqQujDA0lnDNLMlcMV4QKMldwJLeNeXJTzk5On87MtTFCN+TiklDOBMuUqTjkDeXSypmom5MRhzyosZjQ4Z0O/0oWEhEAEGYOIR0dV3/xr54tlgVkfnWW4ZaHZeQ+0FcTA+H+fn9IrviD2mDCfSgm/8GPiyhSZhRc6kP3w/U3ve/mxZKS7jbu6uL23bvX+6ZRShMiD+TEXLeIDxd0GTUrhyTMIfUu10PV0xknm+aAYjmQ6zDLRj6qxDm9oLFw1eFZ5vP5p59++vz58+Pj47quf1RT8c/tv3H7gFOQ1fdyvi58aM4/NgUePyOPDYXH79z//N3VjOqOwzERADEXKsqsCGIgEYRcBiYLIYMIkiBBLkie6ycfnPqx7f7PosmorgYAzBI8pzT6fzgw3AHlcIg+tl498FsO3skJqvlDDz85CoLKQ3KiDK6nTOycvErnBx+GFKP8ThJIQmVpTo5qaxUAxBCvNpvzy+uzs4vtdh9DdN63bcscrVaKFCsFqEgRCEhiUsYUM0RMvo+uD33rfe+CB8CyKJUmSOy9a5pdjAG1ns+Xp09fWFt1zu1ub68u3yttXn76ZbU8dWxTEuTOYCoLfXqy+tkXz0+PlkZT0/Q/vLv++1+/+d//6zcX17uiqpa1frIizd329rLvOgYTE7jo/+Ivfv7/+n/+Pz795AVMfTFQXWB8mvCfhTWTH43Dh0W/evVKa12WZcYz/lHa72HE9H2/2+0Q0TmX34wx3dy0V5ftrLa1VVZTVuVHIqVJEWmFudoIZSOGhtrBI8n0zogZ1IHG/43V+BATShrSkVgkiiROkVNKwAkkDunWPFkxQ1IB4Ij4TBQtFhhLJkhK7HzMt3B4j+N55E6hCWASxDvoDoAxLvhPxIg5PGnjml+++eVlc/Fs+XwOC9zS9dvbX//m69vbjTaWiA43HhkrW42LIGel5mxbhBAAwFprjLHW5jz5MUtcTS/y68mIydvDoe5flrKYvpvPMuhuxdh1XV3X+TNFURwKKv6ptjy040r/W5eyD1JEf/qZDg9z7wIO37430/DwDXnA0M0tD2s2cw/o8B+d/483yMfvP24fNGJwUIQSGOmokHFflpiNY0AGJYIooBFy8XQRScg8ZHziB5ffPwkkBpjvjBgCuFfj4kfv68fMylGLST5gxMDkPx5mO8ig5jJyae+W6bzOJk6cS3aLSBKITDC6WACQmNvO3Wx27y+ur6833vu26zabTYqhLoxRhhUBalQIgsJMurDVEgFDtw/93jd713cueCCqqlprBSn1Xbvd3ITglTWro5PWQ1HO9k17fXnx9vUrbWzPdn7EbTAhJIlNqXk5LwHkyel6Xlcpwu12//3bi7/9+of/+a9//f7idr1aPFnbT47RcHN5/q5pOgbrIreuF4Su6x9057C/DPEJAqD76RZ3sgJyEDwYP3F/pO+e4YPdKlOB4Y65C5Jd+LtPTqMDIONp7o3pA9z9wf4CALqu67quT05O5vP5T/FF/iHa77HR7na7d+/eHW4wBFhoLAxaBVqhUkqrUYxHZQ0azMKpmGUQYEgdv+tmAADI83/IsR+I2QCIkphD5MhDeShSDJA4TYka2biZ8uEFhmo4OSMWcQJ9IBsxCUfxOQIW0vouGSGrCCDyY0MED8b8Yz35W5CbR59/7KHe/9BwSdPrH20IwIcn3XTb/883/+nry69+8ezLL2aff8YvUoi+61zXJxZSilN6sKMceHKDeZEhGe/9FCfKxkq2ZnIba5vr/CKbR9mIychNPqz3fr/fxxinzzNz27YhBOZR0ibG9+/fK6WOjo7m8/khlvMn1gTG50CGDAS4t6w82OwB7h6TD7ZppXr096FYUf7UwT/T0ib3DnpXi2pY8mRc3wYr/jAK/AC0+CkYxsf++jEs5wNHAIBJV1QJgIximXmn5Jg4hugjx5T1YJUlXVtTaAJUmD0lGOGB+9eDOCm6/zNwjh+0w6iuUjT5bqOKMgyL7v1d6vHadTgWj5GYsXDoA7sYiVAECDGXxc0nGBJbsnPIU2nrQeqYGZkxIQtLLj2ADECg1MPeR1LGFLasUOvAQLoFAGtrazTkSTsoKhpSgxYAK2RCpcgaS1qj0mVZKUWSooCUwelorLWz2ayualOUMaayLOq6Utba0hoNyvcxBU4OtC6tLq1WkKs2xtvt/vzy9vJm1/uklJ7VZrXQiyppJjevkQyD0TEBYWGLg77FbGDEkFJKY+xMjalbcLfrjZ09VHYbE5oABrPksH9GibRcjwsBcup5llEehhkIAYXHfHkYVW3uR1nxwY5w+DPH9w9NGV2W5Ww2Ozk5Wa1W/1hGzO/aENFau9vtrLUHDwwYTYUho7LkcY4ZjcVSxix6zMpXeSWcRmsqagggYwG8SUE1+1ecUgw+hZhSFiCygJRy9dWUM0/loHwX3Dlko6jHYc4kDtVIh9vRWiY2zPCBAwv0Uc7oPV90/MxH++rHexJ+qxFzgMT8tHbvjG3ov7r65q/f/dcd7ONRWBZVySUiKBrCQmNFwQOf4GDtngyIycmuqqqqqtlsVlVVWZbF2LIdc2jEwNC3QxvCW31fFEVKqa7rsiy11iml/X6fRbq6rivLsmmavu/btt3v923b/gmDMQgA9DipFmBcwe59eFAYmz760cmFD/6dXt6bXTIKWR8KJ94zkoaZfWhGA051vv5xGyJKLn8xuTCD85NCTCkm50PXhc5HFzgmZMDK2uP5fD0v5qW2mviAQPGn2gaNI8yv8yjj42Xmgbn2YN968D7cg+MO58JkxGQJlHvhe2C5E4l+dIps0QgB5g8jCMMDGyZ7W0prY60QGRuNsYyotVFKHSg24uizTviEIAIq1GiUNnktypLxpLVCUEoTKhEcQgAoqBVpJQDCidgriYKYy/UASAi+bdsQ/M1me3l9u93uRZIxaA2UhupSaYG2coFdFBUxGmO0Ug8e1xDi9fXtdrvt+y4lNlojDqV2YEQxBZAVZLoPZSMmYwAIyEjDIww5ljF+jmisPzkq5KchjIdIWgtKYk6j6PM90yobQXivAYCMZZurqlqtVlVVHd6ILsuyLMu8McAf1Wr56T7E73FS51xVVdbaQ6lZo5XVSisa5SIQcaiogwdeH8CYez55nDx6ewCS6/vxBD/m0Cpz5BhCCEFYAJVGJQhZ33hiyQjzwVMBOBSdGcyXoSTvgDEMUKWIIHAaazYd9sp0Xx97vA/dWjz462H76UbMIfz+MTxmuLJHnu6D4xz+KUi6jrvz7sLs7JFZ/4X6F4Wqy3IWk7KVUdooRSCQgZAfuf7Me1BKLRaL+Xy+WCxms1k2YjISM6pVDeGk6RnIMExGYlJKRVHk94+Ojqqqym92XRdjBADv/W6322w2V1dXRNR13W63WywWhxScP71GADLaLA/sjo8NyG97tj/893E0EYAB0t3bQHIoVzN+aHDgB/fvo+ccNqGPcGPh930ufuzvhIiURLyPPkQfQ4gpZMOl79vedZ3bt37buqaPnU8ucAhpVhWfPjn+9OnxJ09Xx8u6sKAJf7wr/2m6kT+9IcJUzWFcJHhiYU939+DZP3w9ffL+mzBttfBovKY1+NAYHp18QJwKLMrHljIEoGGzhvEKJYaUIiOiVioxG62qskg+b/1DOZt8DCYiIFIJcnkyzgxHxgFFyBXmYuRcOooFonZ+37Y6hH2z71wfJHFKvXNaOYlJISpTGWtYxDm3b/Yx+d65q+vb25vbvm0MRtICnECwKOaGgt711EcOwswCozrzQWu7/rtXr7779tvz87O+7wtrFAGnwGO3IqAgJaLMwNBACiAXDxIQxQKcACIBkFZDxWqiLBU7iMoLpFx7PqYYIwKqohTEEFKIMQ4y+NPIDiK6eSHPK/ZEDMgWzLNnz/7yL//ygVepM10gr/Lwz8eIycbs4Z0QgdXK6ukvD87OE4Y2bvp0B5hPNQQGIwY5P2wp61YDgqQYvffee2EhZYAUIo5GzMA8n+CTDFTmkhcw1tkYLxgH+XmeUJXDSNPUfQdIzEcMi0PD5Z4/8hN6/ncYnYMkq8MwwQdxuwyNk9xbg1LiEELj2i44VrqYLY+f4HwRdEHaaK01CIQQmT+Qr6SUypM4xuicQ8T5fD6bzbIFk6GXaaLDGIGadrVsv+fVKn+MiGazmdZ6sViUZZm/aK3Nj1NKablcLpfLuq6dc0R0X0b9T6fF4Jvtleu7JACkbVElga53KTIhWW3KsrR26F4kEuYQIseQJInkyl4hBM8iiihXpgTM7PYMM+ZQi4zuKTNA1k9FTgbRaqUpK8Nn2AfHCiAjcQEglzOn8RgCyLnEJIstysV6bYz9kXv8B2pEKAAhhKZzVzfbXdP1IXofnU+dC/um27f9vumb3jd97KK4BC6yc25Wmu2+671XGo0hrQurFR/WrfiTa0hwN3ow/XzYDgkQHzvUZHPgwzjGh8988PN3bpjLKn3oAgZBbSRE0kqjSneQw93mMtRzB5GUOKY0lEcWUgBJBEGi971zvQ8hRqIk2OnNRmvddPt9u+uCMyJNsydRipGUJU2IxAmcD03ThuC63jVNKykUBo6XhhmqUmmV0UEYahQhEimltVL6gRETY9xutmdnZ69efb/f7wqbVdSFgVNkBFCKGLBnFgEF2gAVoIDIW2IELUzCiEnhYMRkKf/BoiCV/fK8IMeUgvcCqEwhQCFyHKo6DWTEvAqMC7aasPO8eufo/3w+B4DPP//8wWDpiTU5Cgb/U1+vRyTjzpyf3jda2Vydadj+BYdwaEZaiHmEvwbR6tFC59GSzoXmkRgGYu24nEKM0Xnn+p5ZlEpIhpRKCYYSZuPTlWu/5poDGVQcZBsJ8h9lgHnSFEMZv/vgNh9yYh7jJcMDfzBiP334Jv7AgyN/LKQ4rkAfNmIeHEEOlJwVUM1lwXWVypLqarY+mj1fzJ5CYlKsVK4MklNkh06YiJn5eYgxTsGdCUqZqrRMl3GIyeVfH/BmssVTFEXGHRExP0KIqLXOjwoR5QDrer3OJWz+VANJzWbzX/+n//H9m+8ZdTVfnz5/GRJ8//rNvmmLolyvjl588snx8VE9mxVlqY32zt/c3PRdI5JCcF3b3d7evHv/3ns3n81ns/lssSCFve9jiiAMLDCqHstQmRQAEqQoPs6tfX5yMisKCUFiwsxKAMEhjjs4D5yLe4MwcBJIAkmw82Gzb49fvPx3/7f/+/GTpx+7wY9hMD/e8FGe5oN5ToRKYQhpv9+/Pb/6+tvX51e3zrP37Dx3LrWdbzrfds5HjqREGdRlAOmd27d9Cl5BXM/NaqaXM4OoPwzFTDv+P4XI2e/bRnLV5C2OaAgOpaimMfqRhesQi70/Fh/smryqf7DjBBEy0ehHrnm0uUcfcvxsdoqyEDYA5UobmKs6Y0btIY3Z3UORHE7Mucxq9CHEkBiTkFKEIJyCd65vuj7GCEguSBJAot63nes63xptN5sbCFypwhYiqohJxwTex7btg6fee4lxXplnx7P1wmQZC61g3zYh9Pu290mIjLWagZQp6P6NE5AiNUSyWLyPYFVdl4DQpZZFjDbM3Hed74NJVAChsqJVY4QVWkRLqDWAQk6ShHOgIUcLEZAQtZrqacvAJo0sQHKg9Z9i9MHHXIb5zvekXOLQGIsI3nutdYwx0xkfRCf04TbwIBDwT7kdgoG5IYAiUrnyzAglDttv9gxReKzlDhkFGY0Y4VwnazJiMlTywIjhkQHDLNHEpIa6bAOqSQRKKWO0UorU3VCMDLYh3DeioJBNJ8k5TAAPfJTHN3hvaPIRsynzaMQeo6Mf7MIPH/kPaB88V0nmS/vkpvrkpDr+tHq6ro8WyyM1IxJATEQZS8SRHgTwyBxpmqbrupxDO5kdE+nvMIPpwcVkI2YKNuV46vHx8Wq1KssScqHXlIjIGINjQdBs68xms7ZtmfmQyfSn1Lpm//V//S+//uV/RV3O1qcvPv3cM/7mu1e7fVvX86dPn8c++MbVy0VRlqSo77vrqyvX99ooH/rt7c3bN29+9dWvmqZZr4/Wq5PV0bEypne9i32KLqXAnIATJEECUpSr9qKIYjmpF+7ly0VZJtexcxC8SnHw7QbaX7ZaJGf+JeEoHBNEwX3XX9xuPvnLf/VX//Y//NG75UMW6/R0DCgri3S9u7y+ffPu4vW7i/PLjfPc96lpY+ti71Lvow+JkagoTEnFbEhB8tFvt24zV11/GjPCN4JPf+rt8NnEaRM6DBX9zqsQwn/jrjuA0iGxhCQhpZhEU1bWAGbgYbMRwiQpMXMIyYcUI8eYokTOYU/hzE7IPjCgxBhc3wpC57ve933oYoz73UYn0OVcowITOGlOKiX2PghjjBER5rVFqGIyLIwCIcau69rehyQChDnn+0O2sAiklLyPzrm+90jAYpQRRHReBAAVxgTORd85CKhBJS1sVJ84KWSlQGskJQAcGZBz8XNUCDKUF1eUpoBJSpkImuNUAJAjFURKYVQCkZmzQZtXchEgGupH932fsRnn3IN1HqZwUm6HG+dPWbgPg+g/beN8/L2f2qarmkCIB+YYjCVER/bucF3AIIgiwJRhGBkvIWVTJkeTcsXmnGCQIPFQ2z0nzggApGwnk2IBAUzMgImFADAXlFSarCFjjNKKFAxgTA7HDmXih58Ik7DMgKTl3L/pocz+axrTdibw6e61TAj9PU7M2P/wW3v4sOc+Fo0ecZps6glM9GecuvvDI3UYzFvq6t+vf/akdYujoxfrXzybnVRlrRKSCBEDPsyXmy4jT8gQQtd1b968ubq6gjGTNlstSqks4tL3fY70ZZsDRt8uH6Qoigy0rFarzz//fLFYGGOKoggh5DxqGOnDaWwZm8kfezTN/kRa3/Wvv/nm6//yS1PM6uXx9buLBOrs8tqHNK/mqkvLcgYR9XyHWsUYXN91+z2RWq5XiePmdnd2dv7dN99ubrdHx09Wq2a57owtfYoutF23dW4XfQscrZBSpIxmhJiiUWZZztORlDTb2a5vdrFtxDUqugJSAVISKsjTnQNLBA4AMZdrihwSNF1/td0ul8fJh3wvedWaPPV7OOVPaId2xBCEGIOnPM58lFxvVAuA9+lm275+d/n27LrpUhSTUnIubbZ90/mQJAIAKtJG27KsZovFghR1BtixintKzpIYjVPR1cdt9L9kvKQ7VsfhdQ4fvk8IGQ4wrQyCB194vO0f8EUOoj5/lDbuJw/GBeDjo/N47KbXhJRNhGGJZ0Icw9y/gwEkcD8JXw6ywO7PovuLJKHWSmmFiCwcY/Qhti6kEEtNRDnFiZMwgiCiQBQKKaXgY8j2fGazAogCAEFIpMBaYjYIoLXSGlgSQkrJB+8ihA5MCTRHYmM59DoqkGLg2QgioDV6VpdKQYw+MRNS33vvHAAqMgIJEFOK3vXe9w+2f2Zuu3673d3cbDbbrbGFD+IDAlIIEQFjjEnY9cIBKDDhUHI6YvSCJKBIK9YoODIaxWiyhUGEGAMzAzAiKI2KCMSQImstEcYYBwk0Q0prbYzuVQhjvVJEEUgp5u08M4ogYYwxxlwe8pBJAxoP2oNJ82Pt0WND0/Ymk438YxPrUO/kp0zBB5f3wa2FBVjuZZpPagECgCTZYgEYMZjRiJm4ZjmxM+XZfDehBSFLQSAOnpMIs5AgAlE2YtBYZY3SRitNRHkbhsmISUlSYpkI7DCSfycCwP3Q+CMk5s56u+uNAzbMvYX4IMo02XIHXXn3M798xB+610Y2TO7iO4Pmx2ykg6EpmX7elYtmVpWLdZitwBZKIwhlobmPJD1lHMU5t91uLy4uzs7OttvtbDZj5v1+770HgEzrRsSmaZxzzjkRmSKz2QokoqqqlFIhBEQMIWQGmDGGR/W8aRWbuDUppRyRzelvf5IRpRjjZrO9vLoqqtAF6BOgKV1MRBpBgWCM4FxyFCL6vmuDcxKD0dC2gSWGwIRqVs9TFGNKQBUjAAKLEtYxoutT13TJdToBAYBSQsREVT23RrfJXLfc9t7tg9v3vtuCbwoINfJcq5rIACBKZEjADjjmkHfkGCQ4l/Z77tupSvMftcmHfg4MfRbpXdxs9+/Ort6c35xfb3dt6F0KLrre+94H5yKgaKW01lYba6zVWqEiTsSixABWlkqjrFY/Iclq8Gxk8l7H9tDVGN/7Xczt/GDjuHYITsbMH6/9LubFsBrdXduDRkTDwoOQL/cfB4kBFknMISUfEyc2hIDEIszAzAhiFGmi0mijVfAWU2SUGMGkmIARgYU5sggowgGcl8QJk6SUYkoxhkBA0XhOATgiR05ROAJYkRRCAiZAjQhKk44Uo+Tzss75nCS5+DnEEHzwfQxe7m8xiblp+5vb/fnVZrPdlFVtbUGqF1EsjEjGBBH2rlMpGkZFwgQuwDZEr8BRtDpZwwAQfBBhRNTG2CIhYgz5ggUQtVZKEQJpTYVNSJBiSHxnsqTEPoSRUgxICCIxJgBRnlNKXe+0jkCm7V1Iie+Pu55W8N/N3Zy2xpF5QipL5eTtP41Z/PfEmsZT/G5+0sMzfwSJkYH+mUQIETJOy6MsLgDg6JgADAqbAkOi9WiyDM9Fph8OqYAskjPvIKMuIpnAC0xZb5Mw58UYq4zW2mT8RTCn1Y0RQskpfiN8kXGaIeUdkmRE4IDdRohAdJeENmA6HzRiBk/xYU/do9ocmh148P7dMe918niAAwPm4FsH3s8jWs7Dpruw+u46fXVRPqcZNMVTrxZx8HQFHwiKHBJcRKRpmlevXr169er6+lpEMg93t9tlKm42YjI2k12BiaKe1V+6rsNRJyalpJQqiiKnVedPZgG9bLXgqEAw0a2mMNOfJBIDhGwMl0Uqi1iVviyLxWpVzcqinuvq+OjJ4smLcn2ctBZOmEhjYYgQpPeBo9emfPHyk9Vy2XufmAQMqZKUQcCQfNMud9vF7XXV3m5i0wYXYmC02i5Ws/XJ7OkLvVi2yvqUBLkHv/HkXCRxNcZjo4+MWVpTkiJCFGaMyEwICkAJMOO8oKqgQ1GCx5vlT0GU8Z6xcvCtEQjJjxYhKa2ZwfXx+mb7/euz799dvL/c3mz7pgtd50Ln+s6hOKMTEYFRypIuyFgiTMHtYoqh31kKi8qsF7NZVVljEBGGxeTxheVLEcaM3E5LwLCE5O1ofI4+cl+ScxnuVuAhQWgIsUu2OgGRUQQZWAgAkABpDFXnQ/NBnxz4QD+hZU9scNiGveCunx/j95m3MZV4mc44VIgGuju3THSA4efol8mHlsNMiOHpeDnO/3hRvfe8H1iOeZgyVzb3CGdFMQAGREHJ5eJT0ijGmFlZrFcLICyM7iqTgonBxpRVr8CH2HYdc0IRTjHGhIikUxLxPmS8gQiVIq1JE6p8TmEBiZy6ro8KtalYMKbkQtjtexDBGQKAIkVEnFLwnjl650NwnOKDZyRK2jXdxc3+3eXm+uZ2PvdamyQoQkKESIKggIlDTQjaeqUEQgd8C8GBICpChagAEDgNmShKkdKAKCwwxjYISSnIqbo4oOSTTkzeqQdptaF2Q9baybgREnNy3lut+gg3+9bH9GBw9e+5QE/uf9bmZyEGyGK4guNUzNBfhvcfQgEP7I/f5xruNwGIkUPkxDxt7sx856ccGjH5fyj5yRKBlKc3gjCn5AcJcxxjRaQQmRCUQk2ACFqjUgDIWpG1ZMyQ4ZsV9h7s6geRooNeGDx/STkH6r6ZTFmgm+6MmIzbHKIv9442gcrj33IYiO4hMXfwy2GXf0AR5DH6LAAwAEv8gWXzow17b76/tF+9tQ3q+TP1lx1yhJwdNlznwy0kM9L7vr+9vX3z5s35+TkAZFWYSfgurzWTwfFgCk2w8ASxZKslHyQn4k0KNBNmQwc6v/nnJJH3k2/3n08TABYCpW1lqpmuZna+nK3WdT2f6bKczZnABS8sQlTakorKasUp9l2TEGxp1utl9bkRxD7EECExsBABphRd6Jvd5vry9PbicnN+sbvZdG0naApVWFNRUSZj2wSasSDLZHumnZcYQwE+mCQ1mroyRaGG/KQAKUpMoBgVKGUMkikrpH+4slZ4iJgCArN0Llxd79+8v3r15vzN2fXFbbPb913v+q4NTRN8z5wIiVSBSiEm5JBC41MXETSBVWlR2eNVfbxazurKWk1Ij5eFj17H+OuhEXHfoJCHjyvAaMPcWwAOP42IgoPLxVmsD3DC0/8o7Sc+PvSRasTTsogAhxEeuTNfpuX1gwbhb7s8AEQSuMuiIKIx2fF+E8jLdZY5yf/ltQNy+IOTRqxL++RotVqt54tlFIigSBuRGiVlwof3se0c6B2oVmlHzpFziRlAJY4xcgopxZQlYZglhNC1rQ+pAK5rw6xDckzIqEBUDrAH70XYG5WZLinGEJx3fUrRhxB9SDE9mGxJ2EVufdx1cdd5Ia21RAYWElKIIChK2EhkRdqC1zoBdpJ2KToRwZjxdBBRg5QJASKTyrNqLKzDWWSGcAAFBotznNly5x+PxGA63KKQmX0IhVFkdNv78BCI+VA4aRjaRzPv3mYzWsbMHEKMKQkDkjLaKKU0Uc7SQZQHYaPRAP8tSMCPtMOpdnjZIhIiO5+Ism2XNSEFxrA2DlIUgjBJtw3729Rjeffq+971rXMOEQpb2MJaU2iDmoC0QsmBBiINKSUitJYKoxCRsqcgIkNGqTBInoicZFC0Pthwp+sfgKAHfsmoEkWYo1MPfaDRawQAPoSCxy6612t52GD8J/8x11OQ0Zp4cITh9ENfEcBgE6EQjI/4IDp6fwAPq2qKD/7NufvNKxXZPnvKXQsSmfTd8Q/uBXLRNa2995vN5uzs7OzsrG3b58+fZzbufr/nUcY309Rl1EHKPTtpD2TTxBiTMZgcG5rNZlMtpLvOF8nxoymdW0ZlgpGc/cdZzw/Jyx/66x1a9lvEQ/4ojRnaqHuZn1TzelXN1rZcWl1ZZYpKC/mb2zPcXGtT1vPl0fG6rCoEYOayNMwJMdWlPVotbFUwYmTpQ0yRIQ3z27t+v9levHv//W++OXv9dnNx6YNXKBh63zeigARLUTWRVVqJSgGbLnUc2CStzcLaajFHo4Uh+uhDiiFlckUKLLaH+hjUH1+8Z5Tdw/xQIolSlARaF66ut999f/bD28s3ZzcX1/tN07Vt17vOdTu3v06hRUzGlIU9QlAxQHC9TwEQrDXLxWy9Pnp6vDxZ1ScnR7N5pScu+YRuPGxI2bgQGPwXEBxBhntrwZDSfrg+J4T8VRLkAXWAyQWaEA4UQgAgQAElChMAMcnBbByxHMa7+flThS8fbSuP1qXD9w9wlfEuYLzOu0cCM4Q04NxZg3fcFyl3A04oz3R2xOEm7xrBIHqaM4xGisX4lbx53fWxSPZ22IfofYghpBhC9BxSQBCEFL1GqMri6fH6Fz/7bL1eJ1C3TYQOhcvCYlWZRV2IyG7Xb3Z7qLamaYLrQt+Fvgneuxhj3wpLjJFDTIApifdhG/YizZ5lfnS0XBSzcsGJJQmqCMCcoqQEkjgl511M3HZd17V91/e945RCHAqLPQYLkDQqDdqAskJKSCPiAHcRKAIlAAFC4n2IjpEVeUGfaIge5QgbyLiPsCAlkAyFoYxiawDImbQw8qOQpsEeg1x5btAHjZgQWAB94JByruM9I1sfDPOdNfB4lt3d9ri9AQKRyilkfd87F0RAkTLGVkVZFMZoUoQZOBq3WxwIyQhywFefHOIfOe9hm2KTh40FfEzOR8pRH5ZhfvMYWCEZpHth0JvO/c9JRCSmRIjKGkRJMee+tYiIkIgYgbMtAcIozJy87yD0KbEx1hrSJEQ6u4ZZVzlnBN4ZMUMd07uf9y6eOT1IrgEkJJloaNPzN5ka9za6EW+R/OPOVj1QebkzVvLSMtg6MOK8dDgxUO75N3BQW+r+UiT3Vs/HjVPy+9bvd2a7i23LKQjKkEv3IesgGw3OuWzB9H1vjFmtVsvlMlN6J12BQ5MFRlskv84ITWbGZDZMNmKqqrpXquKgSNM0IvnIY77fH06I+UCffbD9t8Z7BFQCzWRRW1QUBXwQ5SJwL70jiZ5RlDE1BD8rCNj33jGANrawtrBVURXKlAzUhRBiipCVrJUiZW1Rz1fL1clsttTa1mV1bvVucxMhifjU7ZMEYAAyc1MLB44pOvY9szCK1EkaZcqi8FqlxF3kgAKG8raYrLAhqEr4B0FiEAA5OxEEgMIAbe8uL7dv3l1+9/rs7dnN1aa73ff7fd91nXeN63e+2wI3WonWTDAHiBKZkxAEZagu7GJm16v66GhxvJqvVsu6rqw1j8ugPboSykvAVLgMR+bKI2gV7vZ2gOEbOJgpku2ccUXErNYjg5M3FEdBZIUT4HugL/+H9eYBneAfv2WMnB++AQTARDQ89fCRC87kBKtVXZiULKci+jK4oAlJGElKoxfzerlazpfzYlZ3LjEJKytGgzVUWj2rQNByZ6UopGTTGe84uOTaGELgVLQ70ppFfN+lmGLkEGIvMSXZx6ArI5wIh5pcKQkApxglBZQEHGPEEJL3fQg+pSQ8qrV+rA3LsILxv6EugDAhlJo0IhIAcxSMLEAYAVMumQGIGRkY6RaD3HAOCsmdvTluPwAASe7mltz9cbycPLXzRjRSKZghJUgp+0cfuBkNo01waM18cAgPQ4aSoQGlsmJN27abza7rXIqpKIr1+mi5mM/KUis1adoggrG2sLYoilyi/IPHf/z6wcV8DDoSkRCi6wMpGAGCQUEZgTMQSYSkUCEqzF42IEiMIdeh0EqVViMBQhDpOTlEFFGcIIDnRKwUAEcfQgohRWYRBGuLlHxdz4uyLm2pqADMDv00qFmJBzhxSpJSyiK/o08FeTOOMU7FxrI1jKMa3mBFZH9rzFG6AxIAEIa5mknKaaxYIQKAQy3uw31aEWmltNJKKSIF9FDMEQBQJMuaTeP+eLxEJKu9Hvo4D2kugF4ph8poTAZZoRAJaURFKFPk7SB2jsy83W5fvXr1/v37oiiyup3Wuuu6vu9zSlGesVPt4kyLyVGhaarnQ+USoVVVZcGYXGlP7lPB8hTN/TOlKT3o59+rDYVaPhID/K3fznH/+37H73Wkx42QjLZGGwKMfe98pHZfVjVZ2pBTCqwujSoSVeK66Pce5WJzA0o9e/r8yenTJycnMfHF9e3Ndvv67KxzoZzVVTmryqos67quZlW9mFVHT5+XVXG0ni1KPH9L2+1NG7zrNqHFEJmNrZdrCKH3bXA9h5QAvMYWcAeoBDikEFzX7SWmsjCTvjurBCWPAUmAj68Y00x4+NfB7GfI7Llh+8/FYXJ+oyJNLOxDvLptvvr29asfzs4uN7fbvnPc+9h2rm266JrgmhQ7Ak8aERNAEuaYhEgtFrPFsl6tV6vlYjGf1ZWdzarZrKyq0lozJJN/BIYZfh4U5sywDX8g+HuAkdCgySMH0RkBYEFJg5aEcIKUFDNylBSBAUGjNlBaKKxSI7oLmNWb6GOJiD+h/fizc+ghHIbT8WDzGwPiw/DcEZGnezvYmwBo2EFHj204XrZVkARYaChxTyPpcPjIAXSU/yU8QJSFEyel4GhVlwUtO7trikVVtW0XesfJE6uqLNbro2I224fU7Rrn0r5nBhAil0S6yOgQ0AUJYMTMFJWqGkALItRG+257c/aqsEW32/V9GwMHwwYAULQCq7EwyihKQ2VKYpEUY4xeOAAnicAx5cwgIjLa5IngE5P6KKKMGUdBAiQAhczArAhqrSprNZUxSdOGwICkx3WTEYAAlLAC0QpAMKUMjIFMZbLujEQYk/EGOAMABwaFHMZq8qy4eztfMuGgMPhBiPoOj50GTw6y9j+2geVtMY67r/e+67rdbu9dKIpCa2O01qgisQ8+bzCIWBQsjFrbrFA8IoFDuzehP/L+By8mtxxr7LxXanzqcYzJIWfkSxBBBvUWQkFJwszRRx+C96A1R4sQBCJiUir74kkwMCMKJVAgkuONve9ynpjTJqUYvF8uWAMYpXIgHydfJ6s5JomROUlMGY3Jt4kHBsZDIOqxT5CRAQDAkecLAjgQkyElHk6VI7ajiGTWv8kxPCQkwESUEkdiRZjnBhLJsHYDESmd9XaUCMlky+PDaxsGC+7tGTIRgvMnjVGnJ/rlC/X8CR2toLDD04I4hKFGgZYMe8QY27a9urq6vLxsmub09PTo6CjLukyWCo503ZxcnSNHEyqT2wTvee+z5F1Zlrn29eFd5I9lmbspiT2blSLyx6g2kH3fbMwOwSoYmN2ZGQdD5VCeCmEiIVBedQ699QemzB/YiKAspSw8CScfY1ASiRiiuLgnkrqY1cVCV5pjaNrdreu+e/cmCjftvm13rmtmswWSud21l1ebpvdVH+oZz2dQJxVBoS5nSs/ns9XRbDE3GpwpWL1JcLORmKKPyXkfi1BXAMIEoBUZC6DAYCDTJEQviSUFdl5IBIUGxV7EcCcs9oc3fjSzSYgSQ9/7tvfbXfP67eVvXr1//fZi2/Sd45TA+5hikBSBI0oiEKVQKU1EKYmAAKmiro5P5kfHy8VyUVdlYU1Z2vmsms2qojBKoUTgDyvTDJd1v9jvwN/DEZa5iyqNqdiCyAAJKAmwQMqOVOKUJISYQoo+Rh+89xBDKdEmr2PP3neOIxmYz4v5bDGb1fOynJVk9AgGizyMGP+Dt/uY028PYOGPEWLuh5F+0sTJ4fv7g0NgrbaFmS+qmBbOh651bde3TRNcLyEoRWU9J22a3nHvY4A+kaBBRYjAAs4nAIxJkqCAAsrSZgoQjdFFUVTzpbUGQLabm83NpdEmMzKy+SqjQjwII0Lm9CVSRmk2ljVrY4tCkMxs5r1PMSTmGFPsfDg9PTH2A5XSYag/OqzaQ9cIG1LLqjhezRfLZR/S9++u/L7nTIjMGwUzIRoFpVaFJWHuusgpKVAjC3ucspl3dIf+Q87KvUNN7keBxn0v++DDOz8yuvrgOMNXJ8PlAelkPLBwSswpxBBSci4Meap8txsLM0f2ISrk3vkYQkoJEFISACrLsrCaSGWI4nADg/t79nRtj3997CKLiAupc1EpoKEMtGTWGmV2PwrlnVmRMaRAJAYOgWPg6FPwwNT3RMQiUWksS4OIxqAiIQTK+VYMiKIItaKUJHqflYJ87zWqQmurLYGCIfmahZETcBKOiUMuFTmp6A1ziFk4JeF7uN9j33HQ/30wlAMrWWJKkWMaoy0ppRBiCMEHzyKImHNzjDFCyCLJB2bHw8Y/XI8goiJbFovloq5qDQMuwsxygJ09HCOUQ3INixCxjDsu1dXsX/7Ci6ueH9vPP6O6FiQaZDUlAchBNhAROefev3///v37ruuMMbkIgFLKez9ZMFrrKTXJOZeBk8f+NxzEmLIObybqHqI+uZ8zveYQyMlywI8rpv6UNoW3JoeSRUKIXdd570OMAGCMKcuqrmZE6Jx33nVtrt8khMoYVRTlrJ5pS+Mx7jbtPwAZOrhIpcK86uZl0mAoIanSAhsBTDFE8ZETaFWezGblYtUTBtdvun67u91tb87evX61OH729OXnX/7CFPV6fWx9FEVKF6CskE5AETABYmHm89lsprROugTPvReBxon0wQVEYKVQk5rNDKfkrEDSBsiWzgPsIwoCK+SaCIRNSooZOCXfJ9+T8I/1w6Eb9oFVJe+PmWaIOWIzlIpF0kTU+/784vrs8vbd+e3b91c/vL2+3rTOxxg5saQYNXFZAAMlMjEURMpYg1S6iICoy3pxdHTy/Hh9PDektSZlyBZmvqjns8ooIshxbJapttBBY5CUfSwBGbRi0YzM+rt7HG5mCJIkgADgGFwUF1NwITgfe+8633V9TgLv2n63azC6FfkVu5Vv3G776vJmEwGWR/XRydNnpy8+e/HZz79Yn6w1AmD2zAWGTEuAfxjK1mivCUBW5bkz0caRmvZAGSNjg6LGuF9Ojh0MJXYPuICI9xbPYWJkLHuiHNwhMQAAY5Xr4bUxpqwrZY211hZaEXHiEELfub5t2t2+abvW+d5714bEgqIZS0CttDFKNAHljAERSEmilySstJACJBZgwMLa1bMvtCmc667efe9bhzEYlCzbn8maPpScotaqMESkNVRGDWIQVV0baxFVYvE+uOCd6zixkP75l188qJsIee0dCpfmuMGg2YcihVFH6/mXn7747PMvtl3Y+7/fuTMffEwpx3okRSKqCrusy3ldxOij70IIQMKAKbEAESlUND5fh4OZZfSzO0cwUiaGCCfwUItQBEhNK58ACIzA9sEMvOdoTjtBZkpOyRrZK52kwEKM3jvnXe+DCGSfWClltBYLOYvVWptRWqO1plwfZNo4ILv7MKZbTbNqWv1/l8k/NBYIiV1MBlArVAiASASKhiVAadKalNaKIKXIKXAIwhFEiFgpAYjed0iJOSGR0vkYgDlOCCNHCUATFcZmeDPEmFhSDKFvXWtAUJsgOPB8JSfrp1xmQMatKKtuD7dJSEor9ajK6MMJB5ALaYUQYwy5GmUIMea8PeYkiZlxoHpkevPAPUKAXIUMoBtMHO+9833fud45l2M0gERkdFGVy9VyvVofr9fzemaVVkohfDQd+sGbUzRnGNay0J99Ytjr0yU9e8pFmViAEwLTyMubIJAcSHr79u3Z2Rkz13Wdq1UjonMuw355Dk1AS2bJTGc8pLbk17myY13XdV1P1N2J25st9fyZGGOGXjKTJts0uZDH7z4fAXIeZkohBO98LmLgvRMBwGxJ26KoCDHE6Jxr2zafUZPSRpe2aKu2quuqLI01fxTD5bCRNsXRSXX6XBVWaa0IkdAjcAwu+Og9iieyS98Rz0RbVAqRYkx73/lmv7u5dW1rjTk+fT4ry6KqWh8YIcRI3hNRCCExCyJqY+1i9eyFT3HXd6LMzcUVqZ0iTcZW9SwJ6tJZZipKJDFa2dKQKoVNrjWDBKRARKUEAhJj6F10gR5mKfxhbdgegUJMve8ur2+//f7967dX7y42Z5fbq5tt2/cpsUgSZpSkMBolrFGhUlgiidKasUhitC5nq/Xq5GR5tJ4tSkmsCctC1bNqPq/rqlCUmf8/ygLEAc4FQRaGBMCMWY1kAEbu/NckwgJBxCfoY+p97Jzreufa3jVd1/Zt23Wd6zvftv1mu4fQL7E/Bfe5uNDuzi+vr1lh76uYWnat+F7Cs+bZ6dFRXZUZxga5W7L+gRsPu5gwIiAZHJM18u3+pGPcIyz8COD16HtjrsCD9U1EEg8cAqtMWdeFNSDMMfl57JpSkYoAbeTILsaUYkJJESCiAQKFYlCAQRKz5+hjcCEkRpVIkQBBCN6T1HVZrevV6fPPfl5ovTk/c9tb8j2PqQwxBQCpyqKuq9VqhaT3e2oVSfa+lNZlsV4sAWCz28t+52KbOJFS+DH+mAyMwCEawIIgSoG1elaXy+X86GiFhbOF0RoBSLMISEocUrSk56VezYtFXYRIzlmtGZSNDL2PKQkzSxLJIT4eJHYGAROZ/HgYe1vGajxD/GKwBxhZmIUOXP97TcNofuaFO28SWXkdEUMIzrmu67KYWPaGnfed61zf9z5UVfXixQtjbFEWLGALntez4+PjuqqiD4hYlnOjDRJwYuc9Ihqjc/0sIq01wgELIfvZj2fV418/gMRATvIcRGuUJqPREBmFWqEiUhqVJqN1jH6724a+Q0lGUVEUVhtSkFIMsWdJQyyKAVEGEQACRJyU6pTSprB1VaeYYko+MSIKh2Z327a9kGWllVal1lYbpS3IgM0gCY2lrUcITxAxMRdlgY84pFNkREQic9s0V9fX19fXNzc3+/2ubVvvfUyDih4SKq3Loqiqaj6fz+bzxXw+n8+MNpxS3/U3N5vdbtd2bSaXNE2z2+22m81ms3HO5fqh2lpjjbH29OTkFz/7+c+/+OLLz784Wq3ysskHNso9S+XB0nLoqhnDT084uXg0C0dHpC2HxDEQZ9biIDI43GOMl5eXP/zww/X19VR13RhDRH3fT7nQeWZOKEueCQ/sJx4ljyfJu+yIhBCy0l020/M8P5z82crJFuJUfel3pvciEmLk2Hu/3+1vb2+3m+2+aVi4Liskcs4FnyWDQWvFIiEEIiyLUmuDOIz9crn89NNPj9ZrpbPC6x9tF9G2OHn22YsvOlIaAJmj69um2fStD10ffJ8Su8hJ2+MU1k+eF8as53OIjkMnwSfX3p6/+zbF/rPdz/7yXy0XNW9i07vO+dD1PK+rQqW0jImbPlhNYhaLJ59+qXQ1X/3w1VfWXp1GAVWYYtH0cWf7EKWq0BhTloUxdohzCuEAdEsSicIsKUTsYuiT5h8NcdzHYHD6ce81EkAafJWM3ALsm/bN2fmr1+9//d37t+ebzTZu9v2+6Zx3nBJCVJA0CWkhjEisQJGqAVBQCxpUZTlfnTx9dvL0uKgNKgIIRutFXa8X80VdlkaTMKeMfGb+yqOLByAQTQCAwswxROe6tg1dH0NIiRFRISkkEIkZgY0cRBJASNyH0HV923Vt23V913Z92/a9C86n1vl965JrN7EJOp7WVJBUc72slurZc5ovW/Hfnr3+7vWrp6cn//qv/urzzz49Wq+INHBiTgOsPyAcf+hsvIeewqC4LiwpxehdcA6VqmcLVDrbbEO6xvBdngYyh2yHDAUcAOGRMZhhYkZQ0+4BdwnVAENe1B2sR4QidyG8/GZK3Lbdzb5Hk/qAQLqwKXnHzCzQtu52326bvvecmBRpQYnROx+6EIhsVSMZBGCMkhz4Xro+BkZSKefM5s3b9y0Al1avTp8XSlmEW467833fOcmcHgFrzOnx/OTo6Oj4NLK8u0AHnELseufcZsFhNq8R4Or2+s3Z+/Pry7ZtQZAl/vf/7t8AnBx0OIw5NwOQJ5JYQCEoTcYqZTQD79v9ft+G2GrNs6oghBiD612fpDKyWtj10pZWMQPSIoQaTOGj7Bq3b/pm37kYQJQgAAlL3vVggitgTKpAREARiRkPyuROAARMIsiJU0JOUxTjXmxdj8OWqxsk731ON81ncc71fZ+ZB9kVTjGFFEUESRkDRVHUda2U6VqXYyVE5L1PMbqusbaoZyVpaJt907RN0zJzWVpttNaDsvtY2kYNKUNjCOPueX4UWJkc8cOGY9cXpSoLpTVZRVaRVjQaMRlhwpRc37V9uzeKwBql1ZT+kwNid9HQ0WoZS0ojECCgoqFQOCs2IhYgBh+6fe9DAsOqpLLUtghG1UVZZYbJGIiLQxksTsPak7wPbdeTDTG+/JEH3jl3cXX1q6/+/vvvf7i8vMzCtQKitAakBKCULquqKouiKGxRWGOfPDn9y1/8RbEsQ4i7ffPDmzcX5xdN0zRt0/Wd9z5x2my279+/77uuKIqqrmeLudI6hHB5eXVzc3t7dR18+PLzz1erVVla+VAGGQ58O8ieJQEcMjkS4c7om8KU1s60RkTLIjEx81BDZIw8TWnVV1dXXdetVqv5fJ5ZLDjSb/N0F5FcRCMjKJMR8yDJiIcaHKKUyuzgKWaEk0qPSDaesmE0hc9ykPRjtv9PbMzQ9/52uzs7u7i93fS+R0BXe0Tq+753vfc+pUhEIgAoSunCFkpRjjCmGJerlTYaQFartS3tH9ETVkrV8/Xy+FlhCiTFHNt2R8YoTUGTd613HpTpQ2j6vg4+RZGYJCaOLDFBjC42N5dSluXzly+KuqoKk1g22yawI0x9Zfu2awobfNBKKUWIpl49OXJxe3kbA0cXRDSZsgCeL1e2rIvSGGuNtggYY6bFgwhMqX6ZkSooCQKD/t07457PM741BM0J0cW0a9t3F1e/efXmmx/OX7+/vbhp9w03re9aH4IHiRqjJhYtBKIwgTAiChoBlUSBLqvZYnV8fPzkZLVeWMOEiYgqa47m86P5fFYUVinkkFXmPnqlIuyd79t+vw9tG/rOt/t2u+nb1vc+xUQAGkgjogDHxCHGEAWAjCalQJGO0fSd7R27np0HH8gnk1gFVj541yfXoEoIpqyLJ3W5enJivvhUFquu391eX19cve2avSJyrv/Fz75cr9fqv00RMQRh9q7bbzY3l1cCeHz6ZL5cFWWljMYpfUUOd7EPH+d3eFju4lYZiclI+b3sscS8b9rb2z2aGCIarb1V0fXCkRBc3zvXpeCVcKmJjGbFHkWlSEkUxbkypUKR6IkTckSIBD4TA3OINCWJzNw5xXoxn8+MWS65WaXdzf4CUkqoUGtdleVquXj27OnRammKctf1QdhLCig9pMb36DBw5BCvrq/enZ2d31zt25ZZXrx4lgPZH7j7cXPLteRFBnICEAROm91ms9un0JUWT9eLsjApBO+d7+u6tC+fnx6t5qVViOKCj0kSaRdg1/ib2+by8vp21/Q++BwmODBiprk02jM5izmNBZHzhWWeyt1C/WEkZkpNyst3pugyc9M0IpJtmjzAWmmjDeUN3GqlNGkqbDGrZ30fmn3XO88c27bdbDfB9d61q+Wqqi0AfP311+/evt1st8xcVWXOECkKu5jPl6vVer0+Olqv10dVVSLi5Jd/8JmZMJgHAh4KsSrVcmHntS0KrRVqQq1IE+pcPV3lLmGR4PrG9Z2qypiobTsc0RFEpRUKivCQloN3jbQmFBQYAjUiHFNCwsIaTLLf37S7fQRDxazCE8lBb+RyNkNjBCSl6GLfdH3XdW03Ntc3Tbvb7f9i//l/9++/BFhOQzvCMEhEIYam3X//+of/6T/9L3//q1/ttruYYmFtPV+sj9dFUXlmbYTYsne3+/1uv7+6uPj05cvVfFUW5W63e3/2/ldf/ert27fOBedc711RFc+ePVusV+dXlxjMbLk8OT199uI5aX17fX1zff3LX/7y9XffX1/dbP7N//m/+7/8m7I6zeGY6fKmzmcQAsizbTSrh6FxKZ3td683t3MFJ9XcshR4sMLkMt+IOKZVv3//PteOLsuyLMtsweTTTdwXZu77PuOrMmYq5ckwmR3T5SGitXa5XM7nc6XUZKBMOM0UkMpGzGHJqt9bJyZ/gRO3vdtsd2eXl9vtFoGQsOsdZB8IBBCjSLfbxpiM1tmaEeEUEwCQUr33LNx7/y+Kwpb2x7a937EJoJDSppwvV2VZImGM7qQ7dc3W7W/6dt/1XUxM2mpdeBd2bXtzdXVzdSUSDGFljVJGRJqmff/unaji+NlLW1T7XeN853tom2Jzs+GYMkOZEQqrZrVlKIv6SJftZnsRYl/Wlkx5+vRUKV3XlSIKIXnv+94Fn0OggiyEqICYhwxB73wukPtjQ3DvrwiAo28+RSUG9UgkIiQE7Lvm9duzr79/+9WrN28v93uHPdsm9E2XusbHEDQmUYyWIzBwIGKFgKSSqAQ6Mpa2Wp+ePnvx9OR4OZ/ZFB1xtIgLa06Xs5PFrDZGZVFU4Jxp88G9mFN0293N29fvv/719t270O5cs22aW9+3wUUJiZIoERLQDAaEYkwhaqNms2qxXKyP19baGHyIMYToE3vmECUIOpYeUoexRZixLPpuZWi1PFVPntsvf0ZPnrH4i7OzvxN69/btf/4v/+Xd+3chhl/8/GfH63VZWGEQ4XtM6Il3fJ/jDweL2G99gjIqkFfbxNzum7N373/z97/yPrz49NPnLz959snL5WoFWgECDnQJEYHHR0YAHEkuA9x2yKm439sTMiMw4CHMMh3yEBpPMe22+9vrW10ESVAaEwrNvgd2BpIEp2NfUawsEIFRGlhir2MpIQIRFJXShElicKkgP1O8LpRPGGIMIUQJETgCS9SqcYIt04IgzWeFW1S60KgAEQprjtar58+efvLyhdb6/Or63eXl2c31pmkCSFLAJMzJe++a9vLy8urqsul7l2ISdI9SrSfaj9JKa60V5ZyHGIPrXNOpyMnF4G6uNttdCt28UC+eHh2tViSMwAhQV8WT0/VqNZ9XVinKKn0uSh/QBby63r/64e2bd2fvzi832ybl9E+ZTn2PiSsjJ+fxNU678MdWvzskZuLVTuExRMyQuzFGkcKsKay0NtoU1hirjFYq85saRSrP4r7vb26u97uNd03T7o9O1imlb779zatXr7bbbfCBMr0WoK6rk5PT09OT4+OT58+fZY2JLONxWOHp0BuetqvHc5eI6lIvZnY+K4pCD7YLAmEOXgkQcorRDxrMUwVpliw5n/crAlQ5m/0ej/0uxYtGimtOkxZCNIQh+vb6cnN9I6qwi6OiniWluuB63zOg1qbtXNf1+7Zrurbr+qZtd/vdvmn2bbPb7ze3W2VT13cfGCIkAAgxXl5df/fqu7/5u7/7+te/VlrN54vFer08Xi+OjrSx6IM2dr5epxiubq5fv/nh+2++6Zrtzf/1v3/+9Klzru27bbO/ur3ebHdN0/SdOz49fvHy5XK9OnnypHfu6Pjo9OTJ6fNnSuuiLIBwt91e397+8m/+JqU4n88ZpCqLERoZhmLY78dJOW3/dw8/y9b7a+fYxTqyiBAAEMjA/0fEIcl8v9+fn59fXFw456qqyieYIjtt2/Z9n6kqk/3xgM972KZAkta6LMv5fF5VFTN3XUdjy9/13mckJsaYmby59nX+mSG3D57iR1peu0MIfd9vd/vLy6uu64+Pj5XWbdPEGJRS2ihjrQIliD6GrutYBBE4sfcOkcqyFBDSVFTl+vpYGVWVlVV/HHEUEQgphZRpK4qIjEIgKm1By1XKyGtKOfxJRguqxWzhuj5GpwC0MUYZpRSz3NxsbHWzOn5SFNVyXhEyALu2ub2+anY7jsPDXFbF0dFSQxIqbbXURSs6FbN5PV/UdVVV1ayqAKHrfN91bdv1nffBeRdDCDFkrQZmTqyMMYXW5mMar7/11vPPgQqKyIAuxL7z7y+uv3199t3r87dnt1c7n7D0EUIUn9gFTj4xMQprDUwSUkJhRYQACVCUodLWy9Xx6enxydFsVloNPogCqIxZVuV6Vi+qKpduOFjJP9xSCPuLi6uvvn79n/7Xm1ffimtT6HxqOXoJjIkpJmThJCpJAaJTgpSsJj0r6+NV0T2fz2coLMwppsiSAJNAYgyCnrljaAA1p3XvZoS6alXTULNTq1VR2WK1Dp9+Ks79/eXF29evf71eIQp/8eXx8ZFWhpQmGkObo3nwh0OEY4QqheD2+/3N1dXZ+/ftft91bdPsne+fPH06X8xtVZJWgOrA/vjDzw0Ad9TizAx+EKtk5r7r97uddgkYCqNiWSAHDU5BT7E3sVcSiEBrtFohR5bAOgpoItAlIRGLiqUsK4iRo+gQxQfwHkLEGFOKMQEAeixaoxURwlIrN+tuV0annvH56fr50+MnJ+vFbNa6/uL6+u35+c1u36UESiWETBB2zu12u+vLq5urG4cQEBgxpgP1+sOWlWmVJspzM4EiArWc1y9ePHv+9KRr94qAORW2/Nlnn5yeHBVaFVYXtqjrcrGoZ7NqXhVKU0ypD6FpXetS77Aut94n58K+6XrnI0iSJIlH9wEJR9E7QRDJios4xAYH2xNFGIBGAbwPtnvZSYiotc6SplMqx2DEKCW5kqIAAHCetYw5bDXQdJIIcwyxbfbbzabr9j7G+Q8/pBTfnZ9fXl/vm32z3+92uxiiIrVcLl82bdM0t7e3fd8XRWltYWxhjU4xTJvTZFdNRtUH7RgirEo7r3lWGltoQ5mNmyfj8JDFFPu2cV1LCEbrrA+Ig7M9ZLbDnVY9jr4B4siHHuWTgbPEOikFSCnxft+8P9tfXphqYUSpIy+k99ttl/zZ5aULcbPd7fZN2/YhRkHsndvutrum2XfNft/stttnz9fO+7vHauDHD+d1Lrx5/eab33zzww8/7Pb7z7/44me/+MVf/st/efrkCSjyIW33jTH22dOnu83tm9evNrcXm835fl23zca7ToBtYZfrRXFZbM/eXFycNbsOgIX56OhIW8sgZV1VVV3OKmPNfD5bH61Pj0/e/PDDt1//ZrPfkqabzc0Xn392cnxSDiErizgQsu4W5LvA29AEIAJFIEGFoBSAIWCFQoiApFTOPOr7/ubm5uzs7Pr6OhNWcuZRzqNumub6+nq/32dmjIz5VDJGVSeLfurAbBjlzOqqqmazmTFmKh6ZjZtsymQkZrJpMpM3g0C5RsHvasRMoGbb9X3vmqa5vLoGgJ/9/OdVVf3Q975ttWZSpLTSViMgM7+7vnbOzeoZADTNPu+vZVUlkabrXr3+wXv3xeef27qebhDgA57oT2ws3HXdrtkbq33yAijCErmy5nT9tC4KEEEiZRQSJkibzW1V1OcXZ7vtpu+6FLxGLIpCa9u37vb65uby6vjJ6fOnJ87Pr65uu6697F0MqWtdSgxKVXW1Xq+Ws6qyVNTLo6eIBPPlarVaHR8fLeYzay0C9j64ru/avmna/X6/3zX7fdM2bdf1wfsYhUgbUxpd4G9Ti4N7U1NGrdshSEwopJUI+BBvts0P765evbn47vX5u/Ptfhei44SBw1D5dWANsKQMh+dsJhFmAiAmsMasjo6ePH1y+uR0uZwrQo4BOGgFs6pczmbzuiqsQYmSeLT8p83z4e4Sndv88Pr8l3978b/9p+2rb62GwlJdaWNIMSgR4sQpuQASWaVkEhsEigJ+m1Ijhai4tApJREJMzAIojMjIAhEloPJgRcB6B971nW+a3u1b/cln62cvqvXR//GTT5fWxv3+7dm7b77+uukaIUia1svjbEcPHl6OIvPAWyL68JAcztXDbOnJnITM7mROwbu2abbbZr9LKXRt8+b79vrq8vz87PmLF598+snp06fL43VR1ZoUAHK6V5ZAxgyqQcJiOMu9cT/o8wNNXhk+QYBCAoIEcsjtE5Fcy907LylYDTyrC4VKOQU7lVpJTjgoYJ1Ag0ZJLB4IlCmVtapAVErAEhZjEgfmBOiUOCVgThJd4pCEI2OQPjAKw9rM5uqT7W7d+XTy5PmXnzw9Ws1B4mZz++bdu7fnFwGIc+KFAJISwK7rt7fbzeX19vqGi1KsFgJO4aGpKdkrx8ycJ2WVIhJXGppVi7/4+Zf/4d/+m88/fb7d3Gxutze3e6X009Pjo/VqPp8t5vV8Pi/LUmtljC6NzeGkfdtttjuza5GdVbrQurSmroq6LhKJoHiXJMlQNxkn64Qgb8NEhMiZ0Y6QORdBYv7wAF7LQ0zmXtpFXtkzk3E2mxVFAWOJmTGOICySxU54EGrCrK+U0SAYqksk592uaX2M79+fAYLzngFi4rbrr65vurbTRCGE1Wo1n82stft9s9ls1kdH66Mjo/WQB4SYeQ9ZCyTjNBNf50EjwsLoqjCFUVZRzovOajpD8rIwx+i6PjhPQFppAoIJqTlI6ZODY45O+4DEZAtqwCoFkAhZxAe33zeXV/uLi3IRSJe729vYuvPbm03fOE6dc9vtrmk754MIKGN8DLv9bt+2e9c1bet2+13XpkdVeTEnfIdwfnHx1Vdff/XV15fnl847Qqrr+uj4eLaY395uNpvt5nZT2GpVz/t9e3t1s7/ZQmKNClgkCQFWRXV6fHJ9dPLGvobE0TnXdn3bCfN8NiM7UHopK/RrY4y2xoToX//ww+3m9pd/+zchhMxgWR8dESlr7Lgo3Sf1Ih7yepVS9Xy+XB0t5utZObOk6C4xkvLUQsS+7/f7fdM0fd/notObzUZEcr2k3W632Wxubm66rnscGZ3Ci4fv5M9orZfL5Wq1KooipXR1dbXb7RDRGJPVe/PZiSiDLrlNcz4bOr+HoRBjbNp2t9/3fe+8d84RDXBt13X7ppnN6gKKPLeUUgCSE5SISBujMq0+hphivsjrm2sCODo6Kq3VI0nopwD1H2vTotw0KiaPuch7zAl3zIU2RltritICgQ8uzeWTl7hcrbu2bfb73eY2BqeUEhbnYtd0F2dnRPDis5f1eqEQmqbreuc6lkQpoda6KHVpVFXa9WpmtUrxWGlVzerFfL5ereq6UopEMMbkfXC977quaZr9rtlv9/vdbr9vurbr+75te2HUSv+OwTW5X6kIQYRj6ny43bVvzm+//u7s1bvr86v9zcY3TXAuJPGelTBqrYuqUoqi76JEH1mACWEQbEBN2hZVtVyv1uvlbFZZq0gSStIolTHLWb2c14UxSiHHR5D5B681Jr/fhZsrvL2y+9uq1JUqStAFGa1QgaAETugJGCNwMoSFViLJhw474P2WtYDRCCLeY8zV51GBEkFUIKgZfUoo0cfI/b5p9vv9bqvP3+EnX9DLT1cvP30awxeFTQjnF+e76G+OVkfG1i+pFEm53BJITtBAUoz02+/qow0BBDgl7327329ut5ubttmLsEjq265td/v9dnt71exut5ubZy+er49Pqtnc2DIv3WORSICRpJpNG7pLrJ5EZ/KneCyBCQDq8bV8YESEY4yu71Lk6J0mSL6vDIkJlnZaWt874aAoJYJICoU5RSLSMWaBQdQagEGrQpVWGUUCIGxyFB5REDmKcGLxkV1gzySoFmW9LFXbBxfSYnX85HhelyoEn4JDSFZRaQowRpAYJGljxiEprJ1XtVQ1WJ0glcaqx88L5f8wZ69ksvisKj59cfrlZ5+9ePr06cnJrDCr+eLZ06SUWS5ni9msrquyLKzVgBRC7PsYPQNKTKlt3e3t9vLy5uLs9vzydnNz7fsOJVmjKtEEoBEliZqQgwHRo2EJVwM3V5gRc2YeMCGPFRk/uNzd1bfLOEf2OzPZNidxyKhohzhSbwEVKUUoo9YewaDrRgCa0GiDpJwPzofy+qaqylm94COJIe30HlAJS5SIAFVVrtar9Wpd13V2uAHEGJ1jPTlrqe/7rutCCGVZLpdLrXW+mAd8BQTUpDQpyjSLnMo1yC5nz52DT8HHGAVRDejLvRzqvB8jQ04agnzLo/WitB5V6oURBAiVUsLRO9fs9rvN7e72loGiqXb6bafsxW67aZs+eBeCDz5EzjEUxRw5BeaEKFqjsVCUyhq4x1ZmRCTAPvjr6+tff/3rv/7r//yrv/37ZrNDrZpdc3tzc3l5eXN7+5uvvnr35u3uZjOrZte/+JchxNe/ed3c9sv6+Mnx86qYa7LAOLezT09exp3bvL2MN63yoJF2t7dXFxflbFbUpYiMJb6T7zoA1EjHx0d/8Zd/8e7Nm7dv3/reLeeLnC40qwfJgdzZ0/M/knzvzBhr7YtnL4wuV7PVejGvjAZhTpEF1AB+DLhFTjgCgBxaCiFcX18bY2KMTdM0TZOz5Ca8BEbfLs+EKdV/quyYAcUnT56cnp4aY3a73ffff395eZlt9JOTk8ySyRIyuaxSthgme2gymH6irTBZVyGE7Wa7ud10XZcSa60EoNnv9yLn5+dd1xWFJUIE4JSc613v8tLpnNNan5ycAMBms4kprtfr+Xz+7v37m5uby8vLwpjlfG6tfcx0+90MGhECkeRdtwf2xhSIlCI0nN7HeFveVmVVlmVd14DSd50AzGbL09NnZVW6vjs7e7e5ve67tmu6tumd8+9/eONdN5sXLz97+bMvP0Gk/b7xzosgElljiqKoqrIqy6oujdEgGYcjlTO8lQIQYCBNFozSpiir+WJxfBx813dts9/vt5vd7e3m+uqGU1L6A17/4WDJuJ8BAIrQKBMHAgiESsWYOt9f3m6+f3f17ZurX7++eX/Tdk46J03j+7b1ITIZXS6Lsiqr2rt+u5Ho9p0PIabCgDZKoVamKOvZYrlYrub1rCTFwAGANYoyel4VR4v5fFZphZKlYVCmekDjsH2A2GEVLmsLT9cBWltoWxSmmJGxiAqBAR1wRC/Qx9T0SqQsC5aw34siiDE65wmARJzzKQQQISCtbULVCDbCTeo4SSkCLD7Gvtu2mys8fwPv3oTT5/2T51gUL/regMxj4Jsb/PU3jkGYpGu9ZFUaIVuY+ZxmM7QFgLoDZ8Y7kwPp1IeDNbrWiAjCHLxvdpubq5uLs831Vde1CrGsCkTp+3Z7c7nfXt1enb1/+/0nLz958elnL15+tj45LeuZ0pYBOMsyZVULgaxsNW6OeWbJgZ0jgyi+4DArKCct8BDgxof8mcHo77q+7/tWA0jo25bA2yiFV9K3XZ+iVygqa3kKS4oIoMhobWxRkEYRVkaX5czaQutBxIQQiECjaAqIuTQQFlobJFQ0K+2yriJjYizq2bxSyE6SLw189uxkNa+FDAMFTiFJTAIMFoWP/JdffrFYr8XaiOB8f7pcmftSEZnJSxnZAGCWxEJIs/niiy++fPnyZfBxc7sVTmVRrVZ1PZvN6soaDcje++vrq+2+2e+avveSBYKtaZrmzZs3r1+/ffPDu82uYVSBufeeJNVGlVpxWYAMNMghsSwlHjOWJJdRiIE5CicAICCFEFEwi/tlLOHu4QE4DCdNTmG2ZrIRk6PQh1pkedfIUSoANRI5CWSQUZkOEmMKMTT7xhizXq5mZckxQWSN1O73if1quawKqwkVgXDq2qbZbfuu9VWV97M8ximlzIqw1gJA5mZ+cL0WEU4cIwNDwlHKlnMSV+KU+s55Hzlxnt05k2bQunpA+ALIpKcBiFE41HsaSrgLCjCzT873rm/2e+dYG6yqpE2XktvtGtCbrtv1fe9diCHyoFsFjBglcvKJU5Y910oXhTmo6XMwzaBt21evvv+7v/vVt7/55vLiAhms0r7rby6vX7/6gSV98+tfn7192292VVmDF2a5eHvuXD8rjws7Q9KCRGTKAvVK+adu+/mtFnVydKKsXi+XlSmqoiiLypSFKY21FoVSjIhYGFNoZUkZotvL69vb27Ozs2fPnp6enuZCaBkLABwrUo0rxGErrP3kxYvVfFUXs0KTAp845LxERFHjN5RSVVUdHx8DwFQBYDKgAUBrnS2MKbA4RfrylMszNqsDZARFKXV8fPzll18+e/ZMa73ZbK6urs7Pz+u6FpHVapWnay4MOZ/P89ezeRRCmORk1O9OQ3HOXV1dvT+/2DfN1cVV17aJ+d3btyGG8/OzlNJ8XldVoYgS82672+122VADBGZer4+UIu9913YxRACwxrDI9fV1YYzV2vwRpIRBOEXf733bayqKymhLZBMq3/e6UWVRlmVZ1RUIuL43xmhlFguzXKxlsSSi2XzetU3ftO2+65qu6dpFPa/KcrmYP3/+tCzKtm1DjIRISlmjjTbGaq2NNkYphahyOFKyprUAc2IEFCBSWggsCFhJnBZ19LO+X+73zdHtcj6vtVGr1UL/7uNCebICJaa29xc32zdnV9++ufju3e2by/3NPoRIoU+9S96nGBMqxcwayZYFalUEJ5DYp8hJC5KQQqWNreez5XK+XM5ntTVKSCIhG5JS6WVdLmfVrCqIADj+Fm2YsSGB1lRWRhZl6CrSxEp3AD6CFxEUq6EEnCssjILSaAFbmsQYQwGSsleQdaJ8HzgGAAYkAWyBLxPchLQJXpLMCCsEw4wpsY+028T9rru+xPO3djYvy/IoBN9sHaB6DZGTF+lXqxQ9c0ooUFXq6Eg/ObWnT/RsSWTho4Ik46x7DHawBNd3u5vdzdX15cXl+dnN5fl+uw3BIzChACfXNz74Zr/dbzftZrPbbPbb/fMXnxw/eTpbrU1Zk7FDOW4ZXfsM0cpkQh3Sew9fPFCR+TCihLkKgaTg+ghgrSL2iUQVWBMVxqhSY0qSQkghec8xQgworCkq5Z3zmeCHCNpUyljUBSqTLThhbynObLSalcrOtQLSpDSiIdSGtEFLMbht9Kh8COj8kfb1XBhS4uRi8EE8YYwYkmit1kdrUxSgTZDUde2qnumP1BrLBTBFWIQAUQRjku2m+c0339elUQrWy+Unn35aFsV8Pkfk29ub8/Pz169fX15d77ZN3/uYola6rquU4vX17c3N9b7dJY7VbDHTuk4lAxApIkXKAFI25rPJEnwIKSbmTHqL0fc9poQpIQKR0iEKS09qDIo8YsLdy06CA1cm7xmTETNZOeNA5zoLJMzeZ3WNzN4DJCSVmbScUozBa6QnR0eaqAA8XSzk5z/z3jXdLnI0Srl23xCQJGTfbOvbq0sFIIhKm0OISESmVFs8aAcPAgcfuq73DoiAMtiShctiTCHEGLzrvI+ccgo6Zh3fYTrfQZJjYddc2JQAFKACwBRjBBYllIsWpBA37X7fNl3b7JGLly/mqyWj9qAdoGchrYuyBCIVdZAUEofIIXKMPqSUhEOSyAwAhbWlLe8bMcPr7c3mb375t3/zN//16vISWOazmS0LDuHq/MI7L5Jur6+Sd4o4xf787E3waXtzI4C+jy4klzigKKOVVqTVyZOnf/l/gOcvX3Z9AwjlrCrKQlmrC2OKwhTWGIOIMIn0spyujy2Z28vr7e1m3zTX1zchxJS4bVunSCutjMpeBeFDhSgAKIry85cvQ0iaTPT9fnsd+iyugERDXUwims/n2dTY7XaTOO+Ui5RziKZKSXBA8c7TMqfrTy1L+hZFcXx8/Nlnn2XN30nxKBtDE9t3Pp8vl8uyLKejxRhz9lM+2k+PKOFIRe+6/uzs7Ntvv726vrm+ubm93cQUd9tNDPHq6kprXZclAnjnhPnm9ubq4vL87Hy32zGnrm3ns7ktbbNvUkpv374FhNVqBSI3Nzcc43I+r6uKRjPup1zY4ybCKfqu2fd9w5yKopzV8+XyyJgixOScdF1ntLLWAGCKyRibUgrBex+rujS2ODl5SqciiX3rU0pIWM3K9ZP1yZOjk+PjuipSWqacF41AhAppqDdClGklOc0EIGuEggglzqLqkPMDRQQ0KEVFUc4X5fHJMrx88uTqZLGcV3WR490P+v9htBGzquFIxUBS2iZG5/hq57754eq7txdvLzfn192+TV3PvY/BBU4iZIqqANKJJYRAxqIy9XypFLmWOSBjYiAApbWdzWer1WK9rBa1tRo0JeJolVqUdlGV86ootSbIyl8AIAeao/jhTRNJWaMKjRoTsot+28N5aC8T3QQAlOMiPTPwUtEJ0oxIAwIHlFRYDYggHJxPMQIjRwYWJA4ETYxnMX27j+/6cOMDCC81nhp6bswapRQpojfNrY5d7G65KEWbIFjGZJQx7CH0zeYyacN9H2NyiL4q3fG6/OKL03/9r9effamXJ6jv7ZT0qLiv0JQ9iIQgSTimdrc7e/399dm7zc31zfXV1fVN27aQeckxZIU3EIghbDa3XdNcXV2/efv+xSefffHzf/HJF188e/lJXRSiMIvJEYjONBHmQacfhm1jgIpkhIGGAZgu75ByLQB3eViEVJamKM1uxxxjCn3SnBRJUZCtZ+tltVgigmv37W6z3966doeREVFpQqWiEMcUXc/BRb6NaD3NRJWkNYfQtptCmmdztypjYUAryLWgCcb4B1lWMzSlNlYpRGZAyjpoQjYx6hB1FJWo9XrX676NRFhVpTaama3ArCgfQZcy6inKSBgSFtju97/66jfv37ytLBkFBOnTl8///X+IVVmsVssQwg8/vP7661999dXX5+cXIaQYmUWM1rNZlhSdPX/+7Mmzp8qYWT0DwLZzMUYCpY0tywqVCjHGlDix8y6LlvngQxhE5rvehxhijACotOm6mARiEjpgxB5iDveQmAzFP2DUPvh1eM3ZekVmTinG6Pu+c67XWhFBWRazWV3VpQAjilV0sl4t6llNuu870hSj3zWbzX6z3WxFEknSBKXVVmP0fbPfRQGlTcZjcuJr3pOmbf4RaAHM3PWuaTqlMHNZQIA5xBC862MMwilDVcIJMSNJyCND7T52ON6vSBJAZkjAHPu2lcgajEKDSJ3315vbTbPvXedjkPlc2ZKjcASIQAk0GAuYzSJJiSEGToISGRILA4oAp6SJFvV8tVg99CyZvfPNft82jVL6s88+e/b06ayujTWCgFoprQXk5GjNMUAKrut31/ttv5lBEgHtO3dz/fa7b6pCLVerWT0riqJez54Uz4+engBHTUAZ0iRCRaS10lorhTlCLSwsiGi1VoLn796/t++01kOVCZG+7wHAGmPYMGutNXxIdFgrtVous53Ytdg2mgUnwjSMtNycBa21Xq/Xd1LEox0zmTKTETN9fTJippYtj6xgdHR09OzZM2tt13VFURwdHRHRarU6PT09Pj5erVZ1XZdlOZhuY/woM7EyDetj2U8/0vJTo7Wy1lqjS2vn87rvetd1Tds0+11RFME7ScloDQIEFENsdrvdZgMAWuurq6uyKrPYwfnZuS1sXVVKqbZtkXm73ebgV5Yq+L0bp5RiiNFzSgrRK+U6wynmARKIwWPfD2Cz1jbrD/sQFvNFNauqsrSF1VZXdpb5arY0dlYURW20NUYXpc4CZbkqS0Y38+6ReZc4Fn8b9WBJZb1OzqpmMLpUShFmQxmAitIm4RxA/Ok3mzlTCBSS7LtwedN+/+76mzc337/fXG3am73bt6F3yXtOMSEqysmNQMzCMUIIpDUZU+DMGk6+gOQJxVhTVdVqsVgv57PKVhYVJpJEEC2peWkXdVkZbRTmG/vxpKS7lp9NrRhEOAJIF9LbJvymTT/0SRP95dIUtToqKCoVkRQgs4AIKQRUAhJS4hglIUREENTSUHof5PuAv+7kfcBWSpFUubCNLMyo4ESEJEnwMXXsG1GaUTOphFq0Db7b7zfxQhkB7F2K3KPaGnNZl/rs7CXLZ0Kf/4uZntvfMuuG8QDMlWM59E2zubw4f/3D5dnbrtntdrtms+m6TkCYOaYUYsweckrMWYDVh86FlESbQlljrGURXVgyBglBJMXUNt3N1bXrekVY1/Xq+KSsqmw//YQBeMi2ZmbX965vJYUUQ9dsoyONKGmxWi1UuTh6+tIWtt3e2qImbTtTSLcD9kohAzsXYwwcQ/S+D7Hn1JGJSmsDwfnNbaPCptu0q8LXBRglLEkgKQQFoFBAWdYzVKUyZBQYFKOV0hUZC2QiUx+g89B52Ae1dUUbVIqCSMQgMVEKmCI+vnERGPKls346i0jX92fn/kahJrAKCw3WWuc8AOAg+tfumyZnSFhrrCUA0FrXdbVYLI6Pj+bLRVkVZVVVZQUCXdOnmBRqa6ytKlTkvA+chNk7n9NOnXc+i9DH4Hzwef1nEVDXN/vOp/2++1hcUh9i8nlRyJtKVojJOhzDrLu3ygtIXo9EBJpmv91utttNXddKq8ViETjuu912ozWgNXq9XD49OlmVs75rQgy9b+dzW5RaYkwpLuez46PV82dPj45OrNHB97vOJRZjbI4oWWuz00xE+fLwkd5dSrxv282+KazJtIYQfNtsu3bfd42kODA2EbTW2btmHKsrZYVGxIH9JYPeKzAzYCQGZN9329vb6JPVpVYFku6dv9pu9t3OeZ9SREBRhhGBwBJCYgxJRAIrIkaWLN5NSpQRQUBOKQGmVFj74vTpiydPcrzs7o5CuLm67tvu6ZOn//bf/jv9H/6DVspqrY3S2pAiUApQ0lBlIl6+fft3/7///fXXX99K75pW+W33w29++f+OV2++/fJf/OLlF188/eSTYl5ra02yBapam6ostdIpl8JgnjSkRnILaK2sKSTJlz/7sixsjGk2m+XrzDMkxGCitnYSLdSDdTFoYGSwa3pNggSoEHO1rEzsAhjDOkRUluVkSUyJaYe/PpjHI0HsLhiakZickTTJwwDA6enpX/3VX4UQ5vP5fD5frVbZfAGAHLTSg1LLXV2Ce+jjT2vZACqK4osvvlguV9vtdrPd3N7eXl9fX11enZ/z5uZaOGXJh89efoKEhLDdbIA5hlCVFSS+urwsrM2igdfXV8bqqixn9UyYU0o3Nzf5yv8QI2aAj5Wq65lCtMYgQttsVd9V1UqbMjPDUkoIQgQpua7jlHzfd7ttXdV1XdVVVVdlVRZlWZSoFCSFUZzjpvECaAutFWT3N5cIEBbOss8ANCD+QGNSK8LwHOYHcLpUHIPYiIIARWUWq2XWt/jxe8Txv0xqM1qHKPvGv73Y/Pq799+9vXp9dntx67aN37Wh7VyISXISnSmEOcbAkgSUcOq6FrW2VleFWayekkTf7Th6pWk2mx2tluvFrLSkiTUm4oiSrJJ5VcyrQqsc5LgTaLsz6D5i1CAg5eTtECSm0lqt8NZ3r3bt3+36mTGf1yeGrFYgivvkI4PJOauAuZeYxcfEUTBm6qtcA3/X+2+iesPVrpypcikcrzZXLrSKGZUYg6QAJQGHFBMnSkAMKqJiVKKMIACyFiliQiav7HmSr3vnLi6fu/RXoo+ffVbPlx+4nTHUnAA4R7lAFAACcnDbm8uLd28u3r6+vToTSdH1yXfBNc6HEEOILIiKhq0qO1raFIooBH97e2XfWBHeN7vlej1fLmfzOYvsd7sfXn3/n//6r28vr2ez2eeff/5/+rf/rp7VmXYlkIaex0k+5V6YKwODCNNfIYRwdnZ2fnamAJhj2+x8CBzik5Pj5XL9/BOaLZbz5dxoY6ytZ3XXrMJ+E30bOfZdm/qrFHtCVoYIDHIBqgaqwChOEFXZdG17gyVCVWKhBEQUilaoEQwBqiTkSYsxZLRYSkaBwoaIkMAlsw3lroN9711AjyWDZTCAyiPEGLu265sT5nuJI4M/IYzMKEwoBJIkxcgCEBENItXFspot10cnJyfL1RIJRaQoy6dPn83qWUrJmJwbkeVRrDG2KExRltWsLKrCaosAqY8IWGirtUGlGcSFkIXYUkqud7kkU+QYswRsSiGlEKLzoXPx1ffvL28b5wLmWk/CD6jxd5F1GiXYJypW9noneJZG3Y7sD4tkeWZgFu/7ptk3zY4IFqvl6fHJfDUX5Ivz82azJSJjdFWWxGAU+eDKSs+hLqoiwzjHx8dPnz799NNP5vNlYtm33Xa7bdoOYCj1t16v1+v1hMR8EEUXkSQcUgQvABJi7Lp2v7/xfSscCcBopbWxSgOiNubx6iHCDElSDNFH731wzIFy6VxIwbt238TIpAJgFxl8CG3bON/FGARAaUukUSmtSGukGHOeh2YVOWU+NgkQkVYKRKKwAlBCtS5O1yfH6+OJ6CAsMbjd9c3b169vb24X8/lyvZ7NZ0YpSVEpqqpaG533AQbkEFzXmda/JbUTrgsdk0oxpe3N9tc+bbew34HrZqUpqxd1VSrSOpEWBICUmIUTS+TEI/Ix6H8pAjEIhESr9TrF6J2fzWYppbZtM05QSAEgk2ZMlntWSmWe+cO1LHPYhnSwu+DLBK7k7x6O6QPz5bElfhhbzFM0gzFT3aVMc2HmnKMEALm2V36fiEIIOf0ta8NkOrmMRUl/DyOm73vmtFgsCmsXi/nx0Xp/erK5Pb04ulgu52VpRfD05GQxnxdFoUgdrY+ePX169fLlbDab1bOyLFRhrbWFLcqqLMtyXs+N0lZrPZ8XtgDADFblMh2/b1BpeMC1VlbrsihSCl27F+4RtRWgjN3CyHBHSCl6Jymm4F3fd51ty7Kq6rquZlVVlVVZ+LIMPsSQQuj7sqpsUWRF7FzLC0WyJARkcaBRGkRGewamWSF8V+sQCUdcBnPitzbmY6kKj+5ySPsXgd6n2333w9ur3/xw/tV3Z6/Pt7f7sOtC70KOMmfVZySlrQURQEFOiogR+hg5pkQJiqqsqtIS1xY4KCWr9Wwxr6pCaxTkBBAJ2CiqrJ3XZVWWig4rJ+PBz482IiRjUOkokBgUaqu01d6oQOgtqbUujnRZYyTxkVNiAch1z3ORWGSAIBJZMDEjBpArkHdBzlDty1ms1qY6yp5a26or19QpLHO+BgDmJJlcJgo4QUqADD4COwgEMANC0A7TeZTzznW3u/j2/OTdRdZkf/DIHLDjhwGRHCznzMna3l6eb68ufNtwcCKJg+PoUnDeOx+CD4xKW0OIkLF50UaAWHC33SKR93633x5dXZw8eXLy5PT09KmP8YdX3//t3/7N//I//s/Ndvf555/PqyoGn33gDyAxd/GjQ8bMvcbMzrndvpEYQvB977wPMSQRvLy63mw2rmvms1IbU8/mpdFaqyvndk273TrXteC8yTkrinpOAAqUFlQhsQux82nbpn7jMbnColECHAhYEygSQ4KEgh5JaU1Wi9ViSEhAa7JWg555VbYet9ve+4CqQ1WAKgEVAMcQ+q4Lfi/8MPsVhIGHYqMoCYVoTO0iIqX1fD57+cknn3z6yXK5BIDNZrvfb51zpGixWFhr5/NFVddlUWYPVoS9d4BQVrasy7qqFCr2SQFZbRWpBJg4Hhox3heZFuOjdyHmupXoA4uADz4E53wcChtjZpY+uAk9LdN59Z9ySvO+kvOZ81qZIffss4YQRcAYI8LO+cTJ+b7rO6XV+nj1yScvjTX1vJpV5XfffCsiPvrOd967mAIqLKu6qMvZcoFKceTTJ6fPnz//7LPPbFHc3m6b/v1utzu/uAwhaq0Xi4VS6sWLF5MCvdwvQZybUlQU1loTo+va9nZzu9/v+n6vFawXC2tsrlaS8pPJImpYMXEaT+EUQ++6rm3adt93nQ+9cBQY6p4bbRioD74Lzb7rU4xakESEhQiHcgTKIikUJK8ii45Js9JJJSVaJDEkJCEWyvAPFcrO7Gw9Wy/rpabBiIkh3Fxevfvh9Tdf/bpz/vTly2pWC0DTte1+rxCX61SWZWYYCGO329+8ff/mb39z9fW34f35scGyLDglF2HXOf/2/ZvNFvb7J/P58Xy2/nSuirLd9dtt2zat9wFkyBJg5uA9M0Ouel0W2hjSyofAwrPFfD6DsiybpsmbaDYXCBURZd0RIiqKoigKTR+qZzkIAyAP3AV4ECea+LyP22TE4MiLujvqgXzzND2mz+RVNWMzmfgyqQ3ByB3OJTVEJM//fCUjkex3S7FOKU2J4oColZrP56vV8sXz519++cVms7m4uMjVTJRS++1OaT2rZz/72c/m87l3Lid+F2VpC2ttYazR2hTWllVltc7+gLVFUZQpxb7vVa4dqtSEaf3ExiIxhhACM2bOnAglZu98ZCnKvqrqsiyy34tEiIoGuiSEGFLKUHBn9ztjbFlWZV0O9sys2lVlVdezuqqrqqyqohjU6UjlPMpMUcnCDHlNEpxAu7wDIgEOmkyjjyzCkpKEkIJPiu6h49M8eXifwghIqF2It7v9t6/P/vqX33z96uzNZXPbxJAoMggnQigKLYl65xDYGK0UaS0oyRhkFtUHF3OKASQuTTGvV0dVgUbBrNZ1pQkjRmFIwlFpVdTFrJrN6rosLBJwFptBGnS8BA92zg8g5IikbYG2DKi9qCSm0vrThW6x0qZaafWvFsvPCzOLLXLoEySRQJIG0TBSigQloUqUGMWz7Bguga6V7suFXhybcm2xEgG0Wna2PXt35eNxIlJIpJWgTgoYRTDlZB8QhuRBGhIkEm0E9JZhay0tVtXiRBVzTti3fRZnmh6Zw3GR0XxFEI3AMXS73fby8vb8rN/dzgqjZvOm3XUpSS6TM+h2QAYgmblpmhBiLmimtDZFu2+bm5tr+7aYLxcnT06ePn/x6Wef7/fN//a//n//+q//+u9++Teltc9OT3IdYsy2s4gcLiB3trIAyyB7P2gBHcKBVJRVEnz99qzZ7XKFZERVNs352fu3P1RPj0qMnS5mWmtbFs1end/sfv3Nux/eXFByXz4tnq1sWenEselbYcl0zb7r9rv/P3f/1SRJkqQJgswsQJEhhwETdlVXT0/vzPbt3d7LPu3z/uw9oruh3Zm96ekukJUoMgM5NKRIAPM9sJqFB8is6qG5l1EKCopwNzdXNRUVYfn4A7vdbrte7+5vduPQa5ZETlm0vEBWkijL5A9qDBXOOAIQKUu/WC1WZ+XJxRl4DDAMcTRpRJPBZCQSzjnFnAbOo+JPHzwewFk4So7AiQwRChm0xpSFm9f1Z589/nf/7u9/97df10292+02m/V6fX93fzcMnYg0dVNVdVmW5+dns2ZmrBmG/ubmdhj7rs/Gol/MC18mipCBkATlcCs1dTDnGDXaqOv7fd/tu267bzfb3Xbf7fthu+vuNrurq/WrVzfjGJypdURNpimHO/gOiTmuBMoD0GJF14Mj1QDf482h98r1U5tCQ4QphZSSc3Y+m12cnan1pidbNbWtPCBYdtaaqi5ny3kIQZByyheXl48ePTq7eIRE/RAFcRjG3X4/DqMGCK9WK6Vi/MqmM6W02W2ub6/C2I9j3w/9OPZjaC1B55ClssZY49AQEimVC4/uAQLMknMKIQzj2KlBRbsb+j7lQIhF4YuiJCoyQDuG/dC3fQ8iM1dYMlMtiJO5CJHRpC4bjbVks9Ky9RBDBEJCyACWyBbVrJrXRePdO+JVSmm32dxcX9+8vUoii7MzX1ch52Hs2q5FQDAmxGgMEZAwtuvt3dXt7n6DWeqinDdlbSCl5ELmPiFz6IfU9jJGw+DREFoRGWPc913fdkfzfiVHc86AaK31Val4j4CI0l7IKDNjGAYR0dbPOI7rzf04DiGEoiguLi5Wq5W3vxia+HCl4QfHu8nuo8LlF5eoj44jJKN+AUcy+LHr9PH0emxRHcup47e6rkspVVX11wdZqz6873u1izTWIqD3zhiazebz+WKxWHZdO46x7/rdfi8is9ns9PT08uKSecrNdt4rO9lMjGkERDogVXpR4xhzhsOzqV+nX3lAPjxYUkohROcoRooxarR533fcda5vY5ylVJdF5XxhjbeW0AAd3l4kc4KYOac40hjGYRiKcehDqEOox74chzEMIdSpDlzXVcUibKw3BkhIva60YJEPlnFdONTXVnfNopt4JM6578N2297frQtv8+UM4C801AgREELK97v2+xdvfv/nn/75m59+fHV338uYkcgbY50x3pK3lFMMow4GVcChQfKORNN1MYXEwjnlDChlXcxnri6w8uQsETIKg2RgsWRmdTOfz5RCLpIPF3h8Iv7SPSKisoSqjqZowWDiQNC44lljHdLM4Lm3HlmU96IWfGaizBKIIxTAjJgQmbhn2WRzj2bni6EobVk67x0YsrYoqlTAsL7rx65lLDIQkgVwbJBRRBhANHFbOIJEFARK5DPZNvNQlHRyahdntmoAzTjGEIIO0ek63+MxoJpfCOeU47jbba6ubt683t5eh27vDTpjcsrveP3C6uUySUFD2O/bvh8mE1cyzvmyrqqyKqui2TZ9t+27fRyH7Xb3zR9+/+K779Y3N48uLmZluZg1R5z7YacSpulIN1Qs7yxmAOC9B6ksy88/f/76zdv7+/V2sxvGHhGM9bvWXt3cLF+6s4WHPC5OH83mc1P4GML13fqHl1d//u61J54Xp6fzwpW1E4FNjCkNuRsyjsM49m0Y+jCOIcYhZIjCIDExJ2ZOIgwALMJTwjMTUWGdIZDMZV2epnK02S2kcJgFBYmBgVkkTIrlGIaxH4f+gwsHAGuM964qiqYqyqLwhXeOrDXe2aYuT1eLL754+jd/89nTJ5fW2r7v1uvNdrfTuDdAsM46r+zDqm4qIgKQsiyYkyCDSIqRgHLKIAiEnLnv+327X283ilAgQAhj1/Xb3W6z2222u/vt7n6z3ey7fTdu9t39ZrfZdrv9aD6lGpmu4gM0Xu9xjLHve20ZOOfOz8/VuvQI+xeFVz4lIhiD3vvVajGOwziOXdve399pEb1aLX7729+URfHo2ZNZ03DKiFgWRV3Xs9m87/sxcQxhdXrRLE+oqJUlkliyanAPG2WNn4wx0uQM9omjH/pvv/3zf/nnb3KOZeVOTlZl7QTN2HdvrrZlUV6cPyrL0jvvjEMk0fefqhgWYQ3o1ljEzDnEOIQxxeQLvyjqsq4RbY4xhsAhFATW2KYorHGSGQC1hjkWWsZoSoOi8qSKUoNkiASM4ZRQrDWVa+b1wtoCwBzdRZlzt2/b7T6MIbJs1usgnBHUXQZEdvt91/dEiEAiOOzbbeil8mdffiYXq5IQco7jmMfoQ7BEpqoff/Hl8uLS17PMJkdhRrLWl2VMcYghhWgMsQinxCKImJghxSQsNEkpDJByZ+JhtDjnWHizWf/+j7+/vrpKKZ2fn//D//APZVnVZfXxPZIHoRbH2eQIwxwBtvd2bwc6+XE2/HiR/mAMH2tupelo4XIsU/Q9j79Fv1IUhc4OcuiiksLUu11RFE+ePPnrixi15uv73ntvrVPr4a7vZfI9YjK2mS1OTnzf93h1JczzxXw+m3vvmbnvuxA0GA5EmPPhdHGK/lECFDOnlInisaxxzpWlP9Ztv/RZPbwXaoIAYAhhpzBk33dtO8aRkPpuV1VNXdZVPaurpizrsijIOUO6RBEhqXc/qNtN34MwGbXlkIm4KZONEKIIOBEWJjJ4cPOhw7Im79gIalCp9pkaK4GgjjIp8m7TXV3d/vTT6/ms/Oyz09msfDgG4EGJLJo7Zill3nX9z2+u/6//8s3v//zzz292mzZFcUiWrC28m5XeW0LgYciEHBOHsc9sERgINLjJOOPRA0UylDKPMWbORK4oTemJEA0rTxmtNVVVrpbL5WLhnD1k3gF8JA39tcMYqmtomlhUWzCbMWTM2RZLR4uqKogZh7sUTQoUo1Z6EQSFEcgcgJ4EkEEyyoiwF9qR62wxGgecHY/WYFk5fzoPReZXBewpMcQsQBARR1V0qd2W7nyRMwggGTSWnLhCXOa6NquFWcy9q411OacYYlmWDy/luJnRNGmjMtLdZn119fbnF/dv37SbO46jcTbG0HV91w1DiCHn/K76EwCOMXZdu15vh0FxU7TOzWbNarU8Pz8tHHZbAEnjMLT7vt1tSmueXJ599vzZF8+fXp6feu+mmBmdW97NMDD9h7VmA3jHpnq3ai7ms//7P/6PVVkaQ//Zmhc//rDf7V3BXUfXd6YqaO5FQvd46PniEhbztt3e3d5dXd1c3957Azf37vHZ7JlvDBm2XRfW9+3NENkaK3nEHLzhWe0KC7qzCznlDMKOmXPmLFkEc84xCUIyIMgozBwxDP3QbrvtDZaeJDvrhJBZcsop5RTjOAz7ttvv+5zfK2IIqSj8Yj47Pz11zvmiKKuyrquycN6bxby5vDz9/PPnjx6d1nURxzHGhIhlWVZVYQypKcZytSxKLyIhBETMzHVdeWcFMjNvNzuRHQB566qyjiHc3N68fPnyu+++DTE+evS4qauYUtd19/eb+83mfrvf7rt917dD6EPa96HrQ0iMoJ4aE+nrg0SId9lJxylA64au6+7u7m5uboqiUBxe9RrvBEoiKYVxHIehD2HUr/R9L8KvX73qupaFfeEuLy8Wi8V8sWDm9WY9DL0lN5vNL5IQYllW3he+8AA4jmMIoR9DSkxkvfd48AtWy7thGHRN+riiBIBxHF+/efXDix+sxfmiJivO4WZz3+/3YRzms+XJySkZUnet4+ZP/bgfbMInMsQxJgrJFGVV1rOyrjKDEfFkGIBTIhHjk0ELzgqQwASF55wj5xRjjCFr4jcgAapkygoBCBMBgSU7m81nswWRf5hsIaLW5Oi858QhJRxGsIaBeZId9oZMUTgiK4BC6GbVHC7m81LGnlMOY4h9n4eRwmisKeezxZMnpmnaEO9eve5DVDVvURSifTTmrOL9zACARCCcUgJhXQkJUYBUl84iinPEGHe73fX11R9+//sXP76IMTx7/vz09PRsdbqcz39lin5YVTwcVB+0ih72hj5+h4f//uA4rusPneselkcP+cLHLr4c8iABQOMOXr165b0/PT2tqk/UZL9yhBDu7+/2+1YbsjEmZj50fMh7Z52rEBeLhTArR7apGxGx1vR9H1M6xmg/uFjMnCmTWFGpjTHv5buKZC3d/sqohMnNkUjnoBTD9IznzJLGHkRr+RDTOIZqSFVZFFVRFM4X1jq1gVQ6qS4KKaUwjkQoDDmmdr831pXeV001mzezeT2fNfWsqqoCPIIIEJEBVEfJA2ECAHLmlFRjn7TjhMZam/f7/tWrt69evn3z5iqfr9IvpPI+uEJEQ8M4vrm5/e7Fq29+ePXi1d22x5BtQkQGI4wozhlnMMcInEAyc45hyNkiAVjnvSXrnbXgBGwAYBZUYwsEdha9I2EmYZBsiarCz5tqPm/quiTzkA3z6eOTECOSsXUjs0Vb1ldo96FNPDrHJZkyY8q5hREhuSAuswO0SJbQAlggD5QZCIFZkkgEGQD3QHswA1AQMMxE0MyKZlnh3EN2vvamcJxjSCxG4LBMHFhKk2c/IhbGWLKIxEhsLVa1n89N04CYDDlxfmg7zofgs2mLQoTAmPOw369vru/evLp987pd3+WxR+EEMo6xH8Z+HEPKkSULMiCr/QWzyDunDzxo1HlqT6SUwtgLcxy6IUT2lh5dnNtH559/9sWTR5eL2cxZgwB0SK9/UMSo9TyAAT64OqMIvhdzCYX3z58+AYC+H5wxhbNv314lZhTsx3h1sy4xomRX1kXhCXK7Xbe77dC3KScU2O6HfReFClOU6OdiQuLMLOisdViVGdEU5Yy11RLjMHY5Z2cdCKScE8esRhM5g4gFFJYYs7G2dMaSEEcC44uCvc8iOWfACIAiQtaSsajivAeHc+ZktXz29DGz7HatsVSW5WIxr+ui8HY2q87OlpeXF/OmttbkSErtaKR2zujWyTlXlZUzJoYQQ9CUbO9dURTCuW33Nzc3YwhFUc2aGZLJMXVdt91u7+/vQoxlVaWcYoxt191vNvfr7Xq733VDN4QuxGHMfUjxsH7q8omfapq/l510fKjUI/X6+vrbb79VC7Kqqo5MAkSIMaUUQwh6Tnd3d9vtdrvd3N/fKYG5bioBubi4OP+3F6vVCVnz5s3r//M//aeffnox9GG1WP3tb3777OnTk8WsqasUxt36fr/bjiFtt/uUWM15YwgAoJvgruu6rlsul2rh+vEcnXPebrabzXo+r7pOXr8ZhrG9vnobx6GpGmMsS0ZSAzyZ3NngOIxFGUM4tSFMUfi6aXxREmFRVM1sbr1LwmjQ5LFLw367STklyViLreaINutbcE4pdd1+HMYQcsrAcAjIRjREAlYIiSMatM7NF/N6NhMyMb8jnCGRLctqvpifBReCUxtZ6zLnJDHHnHP2hS/8vChLQeSmaZYLjoFDn4ZhHEPfj9B1tu9TGKzBetbYs7MWcf327Y8/vXjz9mp9fzerm7/7u787OTlBACSIIXNmREAic1jRJ+diULtTQkKWyXHDGNP3/W63e/Hix+/+/O33P/zQ913btl9+/sXTJ08fPXr0ySn7IeB3HG8fj8CHYAweqC0Pp/uPyYMflDW/xGjBAwH5Ax+aIymHmXWoD8Pwww8/eO9/+9vffvJaPnkYY2az2W63++mnn0KIdd045w+XkBHJWldVVc7Zez+fzw2RVYVUTkTki0IAYBgmlfshFfy4eyRCEDQTb9p673VXJML7/WAMNU2juOmve/QpvabwvvAWUTStTIll1ho42EGGcUgx9N3OeVeWZV01Tb2oqqaq6qIonffmEMihVXqOPMLIWfZ5t99thzCA5KLw8+Xi7Pz8yZMnjx5fXl5cGGNzYkIwlqw13jujAbICzBBjbNt2HIM+mSknQCLj72433/zp29evr4dhnM9Kfn/txweiBARQ8Zsg7rr+mx9/+sO3P768Wm87Bju3RDGMKUeQ7IzkZJNgGLpx7NQhPsUgKQGilLaikooZGY8sEgbOASEzg3AGyAZFBW0ACSE7axbz6mQxm9WF9wZZPsVEfDdodTx/nGNKxrpmLrOTu3L2wvjruO2HwVDwgD6yQc4lk0EvphTTADXO1sbOrKkRKpBS2HJClpx5EOgEW4BOZIicbGafXeHOHp1W82bDI0Mq6sI1BexiyJkzM2kHCR2KITQIBpCQHJnCe0Qbch45i6tsOfP1HIoidLGPfeIk7yt6bq6vt7vdOI4AUBaFI6KUuu325vXLze1Vv13nOFgCEAwpDWPoxzhG9StFPmyZgEU4E9F8Pi+KYoLnJj0ieWedIVYhNnAM2dji0flFUzfL+ezxo8fnZyelt9YQkLFAQEZ4mm0FYMoDfLe9kWkUSsb3Q3qI6OL87P/5//i/Pbq8ePzk6fff/3h9c3d3c7dZ3653Q04j2OL8ybDqB5S0397l2Doj86ZCgDHkfRcjY2ErKk/c3NY4tzFZY4DZ+THlrBebU+z7dru5Q86r+cI7F1NKOYacMyeQTMAGIafUdSMAlJWfL2ZNXdVVDWQZOMaQU2IfOSdmDmNRFH65XNj31XxlUTx78jildHF+1rYdZy4Kv1wtZ7PKe1cUrix9VRWIKJm9c4UvrD2Z2goEIoIClkxm7tuu67rtdmetvby8qJtKWPp9//LnV+2+XSxX5+fnZVEiooAUpT8/Px9j9GXBACGlMabIkgQyYgZkwJwhxJQjIxhLkIlRV9Cpn/3elP4hSP6wr6QJfCKy2Wzm83lZlkVReO8BJMYYY1BZxziOCqKM47jf7zOzs24YKkGp69oYQ0jbzfbFjz/95//8n7/50zdDH05Pz8ZhTGH0X3/uidtxiDFFhpAhZBnGkcgU3guz5gAT0d3dnfdeZ3/FZuD97fhEFARh5nEcuiGOYxfG6IyfzZbz+dL5KTGOQeioAIaD+FEAAI0GFGoclXEiTGTUdoSMQcwo2VQ+biVt7se+R45E5OoZOsqBc2bm1Lbd3e113/eAhsi7okJj1fzX6uMtkrXj4YuqanxRZpaQIr/jkSGQQe+LpgHnyFlNlWCY8oYQsXCToyqgajeAOcXQxGGAfsh+KHwBVWVjsAaLupLC3+33683m22+/ffnq5eb+fjlfNFXFKdVVg4gqbkNDJDL12RhRR48SoBGyvLMZyjmHENTGt23bGEIcQ9d2d3d36/v7X9klHwfYf9vjYd0DD+CZh69RGE8OTjAfFzGKxOhmbb/f397eVlX1l3f8Dw7Fgfq+/+GHH9brzWp1ulqt5vOF9+6I8aQUUooKcHrvJUb9uorDj2eu1nzaRS3L0lqnF6gtTS1u+r53zhpj1UWjKNzRL+cvnqoxxlrnnJ1mBRFCLHxxMPBkZk45MbNwiiGLJM45Jw4hhBDKsizKyjvvjLfWknUgIBki5zAObd/e3lzt221O0TnbzGY312fru/vN+r5r27Oz07quisLbbIQZBIwlY0gEUuK+H7bb3TgG/TRyzgIgkPt+EIGiKKqyWi6Xv36NRMQAwxhu19sfX7758eXV/W4Yk/HOIplJu5NjDNIPGBBi34Uw5Kz3mkGQAbNgYISkAZAkZA2KJfTWeIvOKAzFnBNKIoDCm8WsXszrwjtD+CsVDBzqcv6U/zgS2aq2ixWfnPeLk7vdfsODxECZKWVSkZa1DqkyMDN2gX5BbmnMHKSRXKbRMzsRZhgAdwA7kE4kixg0VVU1s6aq67Is25CcNVAWVHjeQ2DJEzdEECADWAELZEAMCAI6wQzcZmmNS+TRFgYdGQcF+MJ9UDr3Xffnb7756acXXdsh0XI+r33hBELb3t+82W/WcWhForMoIjHmfdvd7fb7bkgAGTiJ5MycGFkMIiKUZVVWlRwy72RqB+eYmceYMhvDgFLWbuGLZjZfLBdFWfbDcHt7m3xd7vsMyAIijDB5SRy3OThBO8LCkIWEfVnasqTDFYlIWRRPHz8uy9L58vz84uWrtz9+/8Ofvwm3N/39dlxs+v3A7ZBi6Pf7nXAqvGkayolDyru23++2hpBjK6nnoY1DzICEgpIdAiBFkZhTiGkMiUTUkN+QAQAB1Y4xgq5yot4D3lJhySEQAKNhhpRlKosR0ZBx1hXeevfBMHPOnqyWMYamLod+yJm9bqrryjp1ZUJEAIaUkiEyBg8CgqwmpeZQU+SYxmHs2tY7l3PGQ7AAafwgoLCkGHW/UzXV+cX5GCOQiTFlkZjymNKY0hhzSBwzpyzq0YiqO1LOP8LHTwoci5iHW15VNTdNc3Jycnl5mVLq+/7+/v709FS7OQrV5MwaEdx1vUoYRGAYxsw5Zzlk6iBk2O3233/3/T//0z///r/8yw/f/0jGxZBOV6vVrD5fFDBsduv7fdf3CTM5V81ZSFsbIYTdbt+2ew1AUHLMycnJcrk8ZhEfr8oaM18uZosFcA4hxhQLVz/64unZycnp6dlquZzN5ohGAARYBAVZ3muiExEQkrWWxfuirJhlolAAAgqDJQPGZIchDdu3r8bNniQXZUWnjI4kQsypH/q7+7uXL3/u+r5q6qZZzr135FDQAE1CQwEWV7iq9LXzJZKJcQjjcOzIikjIHFnEkPHOWAsAnDPnbIhsUXrv66qqq9r5ApS9zxwFIQNn4MzCTAKWrC3U7tkNQ9jf3N3d3azvbkPXSU5du//+u2/DOH711ddNM+PMKSVgJCIWZfIQ6VjESZbyzuNYJMbYte3d7W3XtrPZ7MmTJzGE5WqlPaZfWvjlINc/1hMfsxmOQ/EhBvPJd3tYDD2kznyM7jz877GCORYu+reul33fax1zd3cXQqiq6pd++y9doGYOfPPNN1dX148ePXn+/HlVVU1TE9Gk7Yuh63pt/RRlWZWllvu6BugDaIxpWzXA2zjnnj17VlWltTaEsN3ulDqjB4AYY6uqWi6Xy+UihFgUf03VddiwoLZYTeELUCBdjnqQzJKYM6uUgDnn1La7fhj2+32hMqqyrKu6KMuiKJ0vyBcp5X27Xa/vb2+v+24vkpFou9ncXt/+/OLnH74///yL51999cXXv/mb8/NzEUk590MgQ0XhBSCMYbvd3d9vU0qz2awovXMug4SQq7r8zW++5gzG2JPVrP5kj09vPZExNsZwv9m/fnv3+s3tzf1uTChk1BzYkFqVSgzjJo/ILDkKZxZANZswTjsr3RC72GVANMZZqAosCtM0flb7qrAEwjnnGEi4cK4s/GLWNHVtCYF1pfzEtHssnRUUJPqQtIiIzhX18mTx5Hnz5KXdt7Efx9ynnJkBCU2yRogICsTWmc64Fm0LNJfcZCizFFkKEARKABuBDUtPgoh1VZ6dna1WKxTiwJUtqKg7V2RjE1IGyEATu1UkAxpRx3JEEJulSzFhboVGWwFZApNCriqcr5ZnF2dKZsfDU7nbbf/P//D//k//5/+xWW+tdZfnF6vFsikKZA5D1/f7oWtjCgrAZZYxhn3bjjHKVGoIi2hrzBssvC194awTMAyQBXJMIaecEnMmBOfUiMSwza4fhfYhpl3b396v66vb+tW1rxpA0llDixf1+NSdtj4JIJCZEcA5uzw5LWcz691x0tBtbVVVX37x2clq9ezZs8W83m3v2v26b+MYIWTqAuzjuO1GRFOVvmYZhhhi3Lb7m7c/cfdm3O7H6+361Xq7HYDBGixKUIP6LvDNnu/b2HYjAO4295X3hojwkMuNoJ6twzh2Qyg9WVjMvM3OB4YRw5By37U5BSDRnXPOWZ1Y+P1pDBGLsmjqKsXgDg5bB+fP6ZYAgCBmkIxpHAYWzjmmFJQ3WZXlyWJprSNjvHNlUTjnrLGExITNbP7551/EEKx3zjlhySk66+bzRVGW4xi7ftjtOwFIOQ9jaIex7cd2GGPkyCJASICCQPJu2Tkw/eXBc/WeOklEjgKlo4N713U///zz3d3dcrlcLBbqdXZ4jU0pE1Gh7nxlSQePDVXGpaRclvGH73/4/rvvb66u231blvU4jOv79fX11c1JnfbF9v52s2/3oyTyvllaVxJKHMeu6/b73Xa71XPr+369Xj969OiLL74wh/Dh4ypFxtT1bLFYEbNIypxnVf348vLs9HQxX5aFf39XLu8gKS3yiBBIo3wJjLLQmJVcyJL50IUiQsScctel/S7vW+56CCN4D5wyH9aoEEOMjpnx0NpQ8JIA1FrOWHR1VdRlUQDkzXqzvp/FGI8np1Y8ZAwSWWcRMKWIiM6itbYsFRcrjJmYYJQzsGSTkjGEZIgskRgjaDTYqu/6q7dvb2+v+64F4cJ7ALi7u/O+ePTocV01k0sQCBxEyMd2DE5J3/TwM0w5D8Ow2Wy6rrPWLRaLnHNd10pg+iRv6Xgciw8dcnCoYN5neMjHX//kevDwlcfwL/O+ffCxVX+sYI4cr3zINNC0gd1upybR+/0eEbVw/5Vr+eA48uI3m+3d3b0xrmnqi4sLZTsemcWq/lN5YaxrjbBWP5vZbPb48WN1RVKtkzFmtVop2eUYY6nBqOrWQ0Sr1erzzz9/+vQJAFhrtP/766eqKi4i5QJPzrhGH4zMKSXhPOn2ck4pxhBjjjlzzpFzTpOYz4fQFUNZlXVZVkXd5Jzb/bbdbftuH8bBWEKRkMfQh/123+73XbsdupYMMfPJyWlRFIlZJVgMEMYYQsopq188AjnvLAJR8r6guQUmTlLXhfmFLJjpyRYZhnB1df/m9d16M4yBgRwhCmQAMQQolBk5S8pJOCNnBHVzJzQGjUE2DJgyM8cEZEQ096kuYVbbpjSFJRTmlIHZGmqqajGbNVVdeIfqGgrvxvYHg4QP3ct8MKH++O7U8/mzL7/8bduaopydnNxeX9/e3d7f38ecS4sWLAFmocwQcx6JRoQBsQP0on8mJ+Qty4alAw3AMwZJMnf7rii8mRee3GBMIpPIiDHZABMkQVES3OFvFEFmZI6Q9yLJJhuTjymNwQvXTb1cLuumefi8hHF49dOLP/7LP9/frRHtxfn5arGcN7W3FkFCHIe+12mNgRPnMcWhH0JKGpIpkzYKDYE3WHlXldFbz0CCmAWU0pBj0LLDOutcMNb7MfVD3FX7piqrsiicI+syfStoUWH2oxSXjJuqGLLOVmVp1ESbyHn37PPPzi4vqqae7lrOOTMSE9JyMaurajafpTS+evmia7dXb68yw839VkDGftPuN9t9n5kNIaKMMe/bdn1/5SLkYY/tJm/W8b6HDOgQFgY9Ikjuud9A1/EQ2BgbKDquXVEcO0ECNKYcu3bsuxiDB0fZSbD7dcrkOzFdTEPfpZx0E2qsEeEQht2+e0hXAi2UJwGEQwTdQ1lrEIGZQSYRs6bwsHDmFFNUFBkUObY2M1sNtivLGWdrrJk4R+B8cXp6mnNW52XdB+nkbMHHmGNMbdutN9vbu/vr29v7Tdv2MWQBMEAWCUGzR44GPvKuU/nwsMf+0XHvq0sXAMQY9/v969ev7+/vFdPWoJmLi4svv/xS8/M0YqlpmuVyuVwu5/N527aIU5d3GMbNZjuM4w8//PDm9RsEXC7mRdmURTGO4/3d/ZvXVVf7od3tun7TpyFBohtXVMv5DEW2u03b7jXFZhiGm5ubsix3u91yuVytVnhIAdQrIaTCl6vFat40dVlaa0tfVEVReOeMQ5m24QdTrekzUZgBUEES/fAPBavAA+NzFAIQoAQ2SMFYWcfWYmLp+rzdGQEGRGaDVBbVYnlaVKFoyqqqrXMGUYzWlWpLCkDkHc3KpinLoe/fvPph2fA49g+nOQDWCzzQmb0u+cYYzTpUUxMAIELWAgMFQHJOLCzMEkPiLMwx57Zrr2+u1+s7APFl4azlxO1euUZdWqW6rohMmpJu3pUv+glP5nQyjX7tJY0xtl3X9T08KH9/qdqAQ8FxbCcdR90RUT8WK8f5/VjlwIOC5vD5TLxgtcAyhywhcwiDPA5pPdsjlUoecGJQ3XFi3O/3m81GgxiZ2Xs/DIMGXP/10qTjvUPEoiiLwjPntm1vb29FRKMzVLAtB38avcbNZrPZbLbb7WazefLkyf/6v/6vl5eXRVFokrxCO+M4IuKbN2/+43/8jy9evOi6Tu1tmFkEHj262Gz+YRi6GIO1ZrFYfGAA/cGhI9+QQbJIRnlzxpBFJBAgJqIDEikCnDMnHxOnfKDc5swxjjGOw9BaZ0tfVnVdD3MkGoeOcyAA73xVV9Y4zpPTZk7pzcuXw9AlTsMw/v2//YeyrCwRIGQ1n2awxtZVnTMbsojGOe8Kh4gx8dCGdtdv7vdNX5yelmX17ta8G12IiJBz2m3blz9dv3q1TtE4X2cLkYU5IJMzIECJXEIUVuBBc2GNkGE0CJQFAMEgkjWIxjpblq6qzKyGWWVqT45AYU8CLIviZLk6XZ6UZUVkNHhWUxXkwRb4g+HNBz7/Jx+ZWV3/7m//9mS1+re/+91PP7/45ps//v73v/+nf/qncbOxZVk6i4Zg8s5OOafsXfZ2JDLWGwCTgJgJpGXYZOlRCDGmvFlveAwluVnTLN2pYg8BAawRcWwhGYqCrBt/ERFkBmERyYAcOO9yTuNg97vaF6u6qGVpClc1VdNUusWdLpaFY0jDMPR9ijnHtN1sm7osvLeGFM1FwKLwAtKNfTv0bdsNIaTEWWOmtLYmcASeyBmntDwg0v1bPoTFIqKxROpwYYw11FTlajmf1ZW3phvD29v1vh0nn55p54o4Ja8QIVZVtVqumqZxzlpjyNDfb//hb//+71dnp4ebB5w5hwyEzllDZt7UTx4/+jf/5necExHut9sffvzhxxfQtfscRyIhIiYvOY8hdj3v9zgnxrwvZVdDm82IiN5R7cg6ZJZEUKFUKNaK93Ta+NV8tpgtCu8ZBARYoO32N2lvQ6wwNl7mdoDA15u8GaQV06ccYmTWcoGsNSIQ4vD8s/sY3wNo8QjFkkFIMDHSpqE5rY6IpFamSjsEMsYZY40h52xRFApoOe+MtWVVqtN0nGZaMdYikQinlDJk7RwNY+yHfrPd3tzcv7m6evP27du3129v7vZ9BFOYoizLyiBRjmrSNmFyB7eNj/uzFg7Y/hHSPCIxOocCwDAM2+1W65iiKHa7nXKsdO+4Wq1EZL1ebzYbNUCr63o2mzGzs67ruvv7+zev3+x2u/l8cXFxsVydOufHcei67vbuvt3ifrfZbHf37dgnEePni5WlJ6X3KWV+kD15PA7uXu9xNomoKqrFbLlaLmZ1U3jvjMUjL1UE3w8rndR1D+4pqNP+9L13uBWoWienFMa43cSbq3R9Y9NoJeV+39/dCqJZLmU+R1dYMmVZLZcnMSUqDqUGkhFBAQJAJAGiLMAoKbe7zXZzf33186PzMh+QGGaOcdTqDQBFMpGZSq7pNk2sDt1FaBUqhqyYiRBhTKBpwdYWxrRI7/d1VRaFr6oqxzz0IzMPw5BSOlnVVVWHFAWOieXv9WIEtP5CRIwhpJQyc0gx5Vy4qYmq+MFf03+hg/L50J2cmjtqWvNQtfSwN/SwyH4PWTucJB0cYo4Vng7gN2/etG2r5JLFYqEghxYB4zi2bbvf77fbrVYVegn6YsUX/+LlPDwHrVTquiqK0hgTY9psNsxT+3U2m5VlqTCJXmCMcb1e//nPf/75559vbm6+/vrrv/u7v5vP5yoU1/YcEe33+5zz69evX758+eLFi81mMwzDsW6zlvb73TAMSqP5dSTseAve4W0PgLdJOY3H1RcFxFq21rFolE1KSf+eukwxMOeccoopIRmV5iFiVVUX5xd1VTOj6q7bfn9zd73bbL/77jtAms+XhKauG+sdJo2cV28qj8SIJAw5AwRmkaEfd9t2v2136w6h4fyxeRcgAJHhnPt+uLvbvHp1c/V2PQwZgBAzQJacOKMRowb4ILoh15VNCA0Yw4AAwiBqMU2WjLG+sFVpm9LMaqg8WRTgGDlJZmLmAr2viqIiIA01BBEkLbjzdGaTFkbeeVA/GOEfHFpJP3706GS1Gj///Pnzp6cnK0J8/fp13/cAkjmbg4zPWlfPF01de2dAOITI48BDLzFiTj3zlnPI4jNTCPv93rAUzdxYW/gicB5y3sYIIILICAkwImYgABRCARJBjQAnCyoXcq5081W9OlmdnZ6dX1w+enR2elZV9YcPC6snrMQYt/vtGMeY67osvXPWWAQonJ/XM7JUhJKsG8YU+7Ht+jGm6TcSFpZqb6x1YMQY64wz1jnvESDGkNIkKTXWIBGAcM4phOyo9K6pS4Ow2+/fvHp1dXMvAIhkjVFSsGr/ta6s6/ri/Hw+XxhrDKIAr04WYRyOl3JsAgKDITSE3tqT5eLrr77KOQvnFy9erNfr9d393f095zSblXVVlTXkxCHETtJ6xw1yYzsLQ+0TVJmErJPCCRnIAIWBmQMuJKRcFP60cqezarWYFWXJCkQItDZDb0qBDFCWNKttytSF8X43bsfcxZhSUk0AIRpDzBxTvLtdp/hhlxmVa2AMqx3IIXRFB6h2KKZJbZoxDJFa0muvxiBSnsRdgGSEeYwRAEgDOEFyzinGMI7DMPTD0A/Dbr+/v1/f3t29vbp5c3V1dXV9e3e/3rYJbDVbVa4SQEBSp3ClZyKhtXSkDH5wFfaDDbceqrA4PT19/PixmhdtNhv1INJJ//Xr1y9evHj58mWMcblcHg3QYoxnZ2dnZ6cXF5eKco/jeH9/v16vmfnp06fPnz/7/IuvYox//OMfut1m13br0L9+9fLq+uZu2yYw89XpUyTEJ0VZFMHnnBHJe69UmMVi8eTJk0ePHum2+yFbQlNgmmZeuJKQchbgaACQJt9PIAQBZMUVFIz5UNVy2BQdsCvQBA1AQ5zyuF+3r1503/yhe/1CtvcUx7ANfbfbXF+7s/PFV1+603NnfF3WICayiAGtclFQ02FEgBCNwRjzOITden1//WqzuV3fvYnhMcs0Keecu67dbO5DiMxsrVEHmuOSYzVCwfuyLKqqdG5SlOiZE5FCgjlnzhxi7Lu23e+7rgthLAtP2jBCKqvSWjOOY4yprpvVajXGwMLHdtLx45XjJ4SIgMPQDzGo+oMM1U1dFsWhfDqeya8d+v56klpDtG17HGMP2Y5yoNEckx2POU10yBmQg+p7Cj14gCQBwG63+8Mf/vD27Vtr7cXFxe9+97v5fB5C2G636/V6t9vt9/sQgoIlGnCBB17tQ/vRv+Zwzi0Wi5OTk9lsVteV9wUiqoevFkbF5JM001QEpb8oEfhPf/rTer0Wke+///709LRpGufcOI6bzUZpOsMw3N/fE1Fd15vNJuesUOhsNru4OL+8vDw7O5vNZn9NC0yRtQcPP6J6tgAI6J6LwEx1PjMjGCQCITbkrGX2zHwQ/E/ITIwpxB1MyzYi4mKxeP78+fnZhToLkzHb7ebHn354e/X2+vo6hlT4ahjCZ599sVytjhMms7IsSQRi5NSGENJ2s9vt9u1+n2OyZJer+qFGQe1MCITQWGP7kO83+zdX92/e3t3crvdjGlOKmBLnFIUT5GQkm4QIZNAaawitOaKNmn4qiIiMFp015F1VunllZpVpSiws5xSGnLOklDiPbKmMCTNTjBkyS84iPOnGRaECEQFG4ckxBYB12/QJ5PKIKpVlqfL+5Wo5X8wz5+++/3673XVdG9rOkHHeV3V9enL2xZdfLRcL4RzGcd+2/W430jZ0beSh47BlyMB5DEiDB4KqWZ6eXjx+tDxb3d3JJsY3fYcpCEeOyIQZrSAgWDAWjSX1NfPeF74sC19URTNr5svT07PHjx999vzpl59/9uTJ4/J9dygEMIjOmML7oIE4koHAOFOUviqKyhXLZn5+elpWdTZ4u9l89+MLefWqH2OOCSbURKw1i/nsfDlfLpeL+bJpFr6qrXM5526/64chxgACznsizDmGMI59f3Ky+Pvf/e7sdMU5fffDix9+/PkWRJCcd7X6YhcFAsQQxjGEcbBEqmHKMcYUU+z7/fZA9Nbqk1mm1EBmxpTQQOXds6dPnXNlWdSz2b/8l395e3V9t96MQz+E+XLBQkYEQohtStf32QtjEx1KU5OzdkKEzFQyeAsnDZQ2dyN7B6vSLgu/KLz3nhF0ISnR0eg67wTAlGW5mO9jgfM6j/uhv++GkFPKGp/IjCQphpz57m4dU/xgmNG0/7EgovO2gtPHRNbDhavYnoxFY4131jmr9rYgEuK0BU1qiCCsiktE5Mwhhr7r265t23bf7vc7TSB//ertm7dvr2/v7re73TDGDKao5zVZJJeyPn/qTiSI6KwrS9fUdVVXxhl8Jy8B+EBifXyW9OFZLpfPnj3z3p+dne33e00PHcdRNai6udSvM3Pf9zlnZeDmzDpZ55x3u93t7e1utxORk5OTL7748u/+zb/puu7tmzdDux9T7rvhbru/ud/c3G8YbQYzXyy32y2I7HZTL6mqqouLi+fPn19eXp6fn5+dnXVdh4dshOM5W+u89QYNCkhm1rlYgKcJ/QAkTlgi4+EH35vaPxGfoe0PTmM3bG73r34e3r4SDAQ5xnHkLqaNF6keX3phIkLrAW08ZN0hZ/XrYt3cISIakDjKOI79dnvTthvroK4Lc+wlh/DmzZvvv/9eGyXWWjIPNstq6uq0gqlns6YsC2NszrnruhgTgKScmZOCgKoy6/s+xsgsuuxVVSUMMSQiUqm83twhjCx8RDtAlzRARWCmYDqikKJ6KSXOcugqeu8NGYFPO7s8nKC1O6u9kmEY7u7uXr58eXd3pyiCrs1N0xhjlM19SEz12pE5ti+Xy6XaRh9Fqvj+oY/ler3+9ttvv/vuO+/9Z599dnZ2lnO+ubm5v79XPCPnrN5Ns9lstVppVaFn+K8tYqy1i8Xi7Oz88vJyt9trKpOeof5bH662bReLxXw+13Sn7XZ7e3u72WwUl3rz5s2bN2++/PJLDeIOYYp90RrLOdc0TVEU+/1e/71arb744vPPPvtM2ff6CX9QoH98PIQ4taB577s6AARAi/4DVCFCMjmGwQERzCklDZ6NB1BtspGoqsVicXK6cr5wrrDONfNZ4hhTvL2/u7u9e/HDC+/KsmhECLWpZQgAcsp5UphDzNJ1w2a967suxcCcCWC+KPNHSIxKvUWwG8Kbq/vXb283uzbEhAjWEgMlZhFOkXlkyYnJkAVnDaGZZH/qwqDgtbZTENCgM+gtegvesiVEyTGGnMOY4tDHbhfigJfn+8Vs5qggR5Ii88FpRBimPRRkEp5khoha5MgvVvzHQjylBALe+flscX5+eX5+cXMNXd8TkjW2cEXpy8IV1roQIDIGxlFoRDuiDWh6wIE5JU4CIFAah0Rl0xR1HZn7EEeA5Lx1hgiMIbIWbWGst7a0RWGL0pdVUVVVVc3LetZUTT1vmlk9my0X87OT04vz08vLi8VibuyHBsokUDi7Wi1cUw0hGGubxWwxn6/m80XdzMpqUc1Ws3ndzIr5fLndtP14t93B7a3uJxHJWprPm+dPHz97dHF2enJ2dnF2/riqG1a6wvp+t9/1Xc/ChS+JJKYwdO1+t10tF48uz09PlmPfnSznZyfLfgjOF3XTrBaLuqmLopDM+3a/2+62m40hU1eFMxTHIYURJdEE1k2HHNoUes84M2I2xixmMzJqYYJDP/bD0Lb9/d1tStyPYxkCIqWcuhDe3gsk5pBryzkjgwFAZuDMLJAyZkZBMJYck/UluZJ8acuanA1hHMchxXHsd0OMkYVFnBhwM18uTwCib9H7crfLMcageURJJA/jEMZIxnygTIbDHt4QiZYyD6pn3aKoN4/mtGph8+CPZIacUko5RkVlU2YGFjLkYkaceJP73W7X7g9VTHt9e/v6zdtXr99c39xuttthCIzkvDPGAiAzhxAEQf1PAZgI0NDk6fk+01EPC+/P+3LwMCWixWJRFMXjx491XdG5WPfKIYTr6+vT01NF6ff7va6FADCO49u3bxHx7OxMRG5ubjQsRttMp6enlxfnbdctFvP7uxIMsLHkS+tLcp3kyfD0pxc/FYXvuk57WJpi/fz58y+++OLk5ISIjmyGd4WXAIgycPPBoQ0EcALhtLempm2Cgmok+l67BA5IxoFFNPXgkFCbQMhJ4hD6Xej21gMZMAKUUCJyjMJZAFATPS0Bc2ZthykgRgKYD0VMygzqJE1c1n558vjRk8e+mEgMXd99882f/tN/+k8iTMYUvrBW5WxTrIE15uDbUc3m86LwIjgM/d3tHTMvlvP5fDGbzZyzmVn3ATEmEXHG1nW1WCwWi2VOeRyGlHIYx81m8/r1681mM4Qx56zbg2ONiDrSkTQdyjmXmfuu64c+jGNMiYVh6po+dKP69KGjSGGecRy32+2rV6/+6Z/+6dWrV5qMTUTL5fLzzz8vy1LBEq1vtL9JRKvV6rPPPvvqq6/Oz8+Xy6WWX1pG54Pdy/FR7Lru9vb2hx9++Oabb7Q78/Tp0/1+//Lly+12CwBlWSrON5vN6rpWMvvd3Z12S/+17SQims1mjx49+uqrr/t++Omnn4Zh1LeFQ/R313UhhP1+r3T4sixvb29DCPP5/PLy8smTJ7vd7vXr148ePVoul3/3d3/36NEjxV20D5Vz3mw2L1++bNvWGFPX9cnJ6eXl+dOnT6qqUrLwOI7qFvPLN2LqzuGBEkeozmyTRk6vWQ5AMeozIgRAkuXwpACAWMs5s/OZOceUjrYIk4BcOKWExpJhg1BU5fnlZT/2t7c32+1+e79+8/rNanXGGfBdqIKSTTglDiG0XRjGEEIyBsuijKG/uboqCgnxbx9cjiCCBneklDa77seXb35+cz3mVFTeG1+AdCnJEGIMiccQImdBKw7JMosgMAAioUUDBiRxDikLAmsjFcEAk2Rg4QwRsuQ4jOOuGzb33d317n7RLxfLuiqa8rTwLkvgSQ6ieUYABELADGp/giikU9CnChg8NI5FpOu625ubm9ubm6ur1y9fl0X1+NETBNrvdgpAVkXJMd28eXt3cxtCGEMYY4wx5RxT5qT5AzkrfQlZVs0cjUFnxxTX69vb22t0bnF5WZWuKoqiLMqiKqtZWTdNM6+aWT2f17NZ3TRN3cxL9QiqDy71rnDeeVt4b4w5TgKHeyIoUhV+eb5ga8eYhKDw7mQxf3Lx6GyxnBWlAyMplVV5fn7hqurl6zdVdXQAYiKsquri4vx3f/vbv/n82clyeXH56Omzr4qq2rftZrO9u5+v1+v9bp9SKsqSEGIcu3bvHdVlqbBK33UI8vzp49XqdL5cnZycXJyfTzDnMNze3l5fXb95/SaEsWmalNMuBZS8bKrlrHmYn4CImrEJh1VS1xZEKb2/ODs3QFVZnZ6dLZcn33/35zdvX+esKa0inPoxvA5pt+ftHmdeDCIBiUAWYUFW51VlZYFl47xdODPztp5VswhyfX9/e3O9vrvr+x3zkDnEFGar+vNVtTq5+OJ89vgZ39/ftW07hglviCHklNquvd9sLi8fufdJcnKgBsIBFweAI6kREdUxGyfynIhwCEJaszhjnZWDMUfKSqNhTUUCgGASqPCw7zfr7b5rwziOY0xZZeNIxvqirGt2PiNZVzauqERkHHqZoIYDkRXVQERSyikmye8FwsPHPjEPnyLd9S4Wi4fAvrIgx3E8Pz+fz+dXV1dHQqKuIvr4rdfrvu9DCLe3t1dXVyGEA0iTQVmigCKYWbIgkAVjAU2WNI7jer1OIRhrFIfw3i8Wi+12q40tdWc/nuR7Jy0MkuAwH2nTCAB1yOEBeIGjEaXG42r1gkc5pL47Cx++NxU3SNbZqvaLZW63KKMIE1HhvaXSn5y6siZrUZWPrKS0BwFiRMfOIZCx1lpvyZP0klNOjInfGV6llO7ubt9evSEkMwluaereG4NoyJCztih8WZZ13Tjncuau6+5ubwTg9PT0yZPHVVUVZZVZCFHxDOHJv9k5VxVlsoqcMTOnGIdxIKIhjCkl5QYx85H+jIambbI1utcfNbxHdV1qPJ9ZWMrqL6z6SujTJ0ehF3UYOlJSdCXr+15E2rbdbrf39/fDMGgSDQDknE9PT7XDoqpjOSADdKBMHb2eNUDjqEhSb0btFolIXdfL5fLs7ExLdt2OhBDu7+93u11d179yIb/04Fhr5/PZ6enpbDZPKalHQFEUh6lBjpKoEILSh7uuIyL1NaiqarPZvH37drPZzGaz2WymU0zOWbWBALBcLsuy3O/3AGCtretKa6/9fr/f7xeLxenpqQbP/tqp6qr9rqF0KEuO/4CDQlifWCRUYA7ggb5PRMRatszMYjmacZoHFT3SokrIAFmJyMwHeV2537Xtvr2/ubu7ubOmMEVhrVfbG2tJREJMfR+6ruuHISUmA5xD1+2ur98WJRzVfA8vKcW068L9/eZ+s+9DKKuSiorRjQIw5kwh5hBzn2Kfw5iFIUdKJCRqjqeJuIyCqjQHBDRoDCECCHNIMY9jFso5xa4db++629v9/c1+7Pnlq+vVsj5ZWGtnxBkQQFlw08boYBiN2lr+C/DecVs1TbnDGEJ0vnj+9Hnpy/Ozi/1+l3NiFkMTvJ4yG9WHI3rnAEoWZskhhqpu+nGIIddFWVWN84UgMoghs1ysmromY5qmquuqLqu6bOp6VtdN3TRV09SzpqxrFaDWrih9UVhvDL6Xo6BtyPcrMkNUVeXlxfmjz7+oFvOQhVEs4WJWPzq7XM1mtS0gcb/fO1ecnZ+6pnr29Mmb2+ufX79OKcUULVFVlqcnq88/e/bVV1/M6+b07PzJo0tXlGVROGucxdL7fV3nnIuyBIBh6NaG2naHR1KFQF1Vnz1/JmCWJ6er1er05KSqKkIahn5R101ROMKu67x3YwicouR0Mivns+ahQdyRKicHu68j0ckSNVVlzs+d974ovHPL5exPf6pu725QeBjGEEM/jjnlnmQYsXbgLBsNdABkEHWOJwRjkIwxriisl4AmQJVBmG/b8fX99vXrq7bda4oNIMqsBL+cn5zPFieAdH5+0vd9PyhqM6QYUs790G82uy+/+vJj2/EDM+sdhn2cYBUHEWZllWpub86ckXOClIw9eFJktfhmBpHMHFMSZp0rMnOIMUzkOQYAMrYoqvliOcaM5IqiG0JgQeMKQBNTyjGpQhaJpqBDkZxyQFE7uo/ZfvYhe+CDmoA/cmHSAkXVvXVdn52d6SLU9712/WOM9/f3P/zww08//fTNN9/c39+rCZ7+Yp2ar6+vQxjbdj+Mg7UmZUmMSYgFYkzC7Tj06zvS6Dv1zHjz5s0f/vCHuq7ruhYRJQrA+z4xmssLEkQtZQVECNAI0MTXPbSmdZNJ+HCqnki+ohUL8ANmjAADZgE0tlrUF0/xb8d903RXL/PQGVcUs9Xs/JE/u8DzMynr7CwKIgkpPQlIEPV9GcAcqktjTdmUPhWy5c1+0+3az54/H8bx3UdNyi1Xiolk9Rw7iIAAAIlcb7UTgUQ5pWEY23aPiCGMztknT55670TQOaty2JwTIqaYcsqI071HJCTSrsR8NvfvFzEiLDx9ltqS1SohcxYQJCwKTyKEFGMchtF77wt/8ET69CGHfCJEVEimaZrLy0slx6jBTF3XiitqTaOggsYIAMBsNtNGjIhojaJjTEVJ6l6ii70iMcz85MmTYRjati3LUpFFLRdWq5W2ZvSttAq/u7t79epV27Y6wv8akuzx0vTuqO8zgOz37e3tbd+PdV1NLhqIyuY5cnuVy3xULekVafWvWg/tr5lDMqvWQEoA0ou6vb05VGlxHMfPP//8s88++3U8bGLBIODBuBoQkCb+9vSNw1J64I/q2+HBNgiPZFURJuGcGSd7D1bib9937b4tywqMZcA+jjmlcdj3fa8ssTAO3b7db/dV0xWMRUGAZAw6q8KHwAKJU5YY0tDu2uuh3282tzdX82X50ItIBEWQRbphuLq+vb69SZnrppmtqgzUBdiNkpxky2CT8T35Xdtu+3Y75lECO/HGOzIW0ABZ4cwizKrXsmQdGsuQQ4r9MBgOAWMKebcZrt7s1uthHNia+ObqZrnwJwtvDM6qwntHaBERRUtXEc4ijMLqno7vl4sfjyUAUBx6uVohUV3Vq9XJkydP9/u9chBDCGMYxzCGEGIIIcYxjCnGnHQRYgAAlJzzGOMwhnEIKFD4qiobTmyN+/KzzxfzuQaOF1VZlWXly8KVvii899Y7a636EE76NbSEZKYbrycKB0nnFEV+PKyzp6cnX3/91d//+388f/yYD4ZTpTdNWZfWOTQc09j1AOjqyg3lb37zVR+H+80agG9u75GgKorFbHZ+dnp+dlZY560LYUjMnJMl09S1QayqCgGKosjM2+226/oxpAgpMxjnqrqxvlidkHW+aWZlWRWFJzIi7C0t5rXkE8ipH3rtX58s5ikGTzxr3iExcFjmlSVJRHAA6Y93zBLN6urZkydNVV1cnJ2erv787Z9f/PjjZrPt+24YRhBKIOMoREKUCUCDEADVfgOJ2Bh2jouCS44jd5kKKipAWfdx3aebfb/bdkCmKMr5Yuab0+XJxenpeTOfG2vn89k4hmEYwzjq5Km+35nl66+/bj61JTvUMdMFHhmNeHAJB1GrABEE5cABCFHOnIlIGwppCusE3Zwd9WIK3zrvfc7KpyTrkbxxxWyxur9f36836822G4acISbOIUXdOSMiTQBRZgkxZ+cqb8dxzJyntfowLb3LTqIHdh3Hfxwv5njNxya60gn1XJXtq2vDzc2N0hSUCqNwt+69iOj+/v7HH38Yx/Hu9rZtW+f8MIz9GDODOupa5UiDGGOVkaAUzr7v7+7urq6u6rpeLBY6f3244+fMnJgtK1IHwsi67QGZcFuZanMUUgedD0o3/QQZQSPZldQ00VuwKIuTCwMEZMaulZTFlW6+Wjz/sjy7HL0NxgpadVJUVv+hLXUQQqEWNmSEkYQlhzC2bdvdrzfb7XFSRgBjjLHHJL8sMqnW5YHAOCLpywBA92rqGrLb7bz3X365W6xWCkiEOI5hFBFjJ0c1BX6PnRdWccnEQ5iGBxExI5DAu1EjwpJiUobp/fo+xiQCKWXOeRyDGspYaz8Zd6f4jaIFzFxVla7oq9Xqiy++UL2bUqyUE4OIVVXN5/OTkxMROaYbrlarR48e6fDT/uZRxXZkfKsgWYGclNLJyUnf96rSN8YURTGfz7V/pA2aYRh0bRjH8c2bNy9evEgpNU3zS3yFXz+OhVfXddfXN85ttYunbjHWWu8L752erVZOSvLVx0TTPG5ubrSsOQrCj6ItbckNwzBJ5LtWPWMApCxL7eT+xS7YcTgdD3xXoBzKl/eejqkDi4QHGdM0TeAU9EgH6BJBRnXz3u/3vijA2IJZEGKMfadM6jGlmGIe+m6zWVtflMNQlJX2SYeyNNZy5pDGMPbj0Lb79W672e/37W7ftm2M4eHJ66eUMrddd7/e7PatIPqyNL6ITJCSoAga46gyRL6hogCLMQ+hj5kzcSKxAsAikiVlTkmYhQANGTIGEFkkpTxyNDIECaEP212/3e27Pou4xLDZD29uNvOfb0LixaxpmqosvHMaDGwMIomZoOBp8/vXjSVrZrOZc66um5PT0xg0jyiqudEYxn7oBy1mYogh5hTzxI1knGRmkIVDTGMIOTIIFd7PFrOT05NHl5dnJyez+bysK+edc84b74wlY/BDFx5tINID0uA0LRx1rx9ckC+KJ0+fLJry66++uHj8VJX8CGAILJERQECOOTVNZmYCcfjkyUU3tOv1PXA2gCGOTVU0VbmYzxeLhQW01qYYJXNOCVGctXjQ+hlrx3Fkln4I621rELohzBmMK1xROuu991VZGuOIUESmiEVDdVmslvOq9ADInJuqjHGUFKpPgcrTgD+0PA5fYRAhwtJ7a+181jSzuijUX2DSyvXdcEA4REAQ1HSetEcFk6MYEGWXYswmZhgDq2E2Im63230/DCkHFmAuajdfnp1dPD49vzw5OSvr0liKkUOIYQxhDGMMKScQVknE40ePPvZc0MpaMf7J6w8A8EEmDPDEsdC97LRgMGZhzscaTpfK44zxbtI4JPJ671lYADGLF2yaWgQ4T0IoY02MHEIygCYn5sy6YKOuTZJyNkgp5zyV5u/NWu+lWH+8b3v4lePyqQvG1CM8oDgT2Ruxqqq6rs/Pzy8uLt68eaMEyaIoVEfatu3vf//7tm1fv3nd7jvj/DCMu90+pbyYLwrvq7pS9YlzTjsDzjk1p3HOtW272WzKspQHH9nx9IQz5yyZhSazF83SVSESgjqHAxETqrBGDv5tpNoh5gQgE+PuoIQUmXJ4wVgzW1rfpJHhx+8TrlmAbWFXj9zZoxgD5YyCxAxoBFGIGRg1iANAqyYkg9bGHMexa/fbdrcbuh44P5wBiMh5Z40dwwgiD6zoAabCCIRVj8r6FMUQh2Fsu27oh5yTIfPmizez+WKxXCFCP/TD0ANiWRbNbFbWlQCMUfdwo7W2H/r7+/txCClnmQYfItJhqzjVfwjAApzz3f3djz/+uNlsDJF3jgStNSJojXe2MObTZFglPF1fX9/d3QHA2dmZ9keU2qIE3oPxyQTbTkAks5Y7uuort1eHgRrTTbOYMQCg6dO73U55J8qnUUPbrutU5LxarU5PT51zfd9vt9u+75VHomDhixcvNDXsiy++UBbOx9fy64cxRkuWvu+ur68VPqzrpigKIizLsmlm8/lMxd4qHSzLEhFPT0+PYMzd3V3OrIlUqt5SdnbObIwpCg8ACrEqTa3vu9ms+fzzzxeLhRaIv3KGLJBFkoiTqZ5HoEMkpEGSo5cGwLtFSwtZ0NcczZGVMyJEJAQWLSGQsMQYY0i73Z6METJNTta7GMN+t9tuNvvdru97BApxuL+/SjkURe0Kb6y11lnnnHXOeQEe49C2u/v1Xdd2KacUkyFyD+g+IiLMKUZVy7d9P6ZI1hDDGFM7pu0+bgfYR8+m9GVlq9rXBVmIoQWOIIwERIAozFkSq3+AABOAVd9IgZQYiMlIQIGY2n23bbshj0xobYXeBaabzcjfXb2+2teFn8+r1Um9nDezpmmquinLyjuvZkaS4C8Vx8cSTXeMzrm6ro8z0nSwsLBKwzIffAom+xk5VEpKOdVlm5lBGIwhXxRl6cui1KlGqamHHjwKCGQ8zJxHpiACTqqth50jVAHmYUE/HmVZfvH1F8NuuVws/JR8jqhtKJbpSgDIGm36O0+LefX86WUKf1c64xFv7+6KypfeVWVRl6URECRm7U9MPAylQ+WUwxi2+93bm9s3V9dvb+6cofvNfjZfVIWzxk4oCjNgEiDOOcWYQoghAKfCWQLJnHMGQmcN5oT2U6R+/WwRp/jT6TbIpEk21pCQdebs9MQXfrFcnKxW89k8hNR1/X7fxRydMwa17FHUHwAM6SZAGAQ48cgpRwpkQrfpdneIFOPYD703CFUhgCfL2eefP//y8y8eXT5aLlfWqxw9IRlDjoyXsYcYOEeD5L1z3n6Ajk+b2Gnwk3HGWgMMDAwEB7tB0XJCJB+nf+YswikJkIquH4gDiIy1h+2xCLN61TDbnF1OHGOIYQzDEMeBc7AkdemcaQBMzDwM4xiCpn8wQhaJAhLZZERjUU2sUAmw74536iR6394D3xFd39uTPURojl9/eBkK+2u/6fb2VosY733btj///PObt29ub242m63GU4Yw5pyrqjxZLh89vjxdreqmrqpSdafKxtD5fbFYrFYrJS5oRfnx8JJJOkFTIwkP8oojG0aA4UDplenT0EkaYdKSgYja6x7KIi1iBInAWDKObGPnK9PMqaoyGSkKqRopZsAd5kDq2o7Tn4kYM80GkyIZyegoRmFrbFlUDLaZzY7QpTFmuVg2TbNv90PfaxvlwAlHQiRCa11Vls57Zy0gBF9o8gMCjmMAoHEMfd+XVa274bZt9ZIUNgPmYRjiQfiDSNbYvhpAnRke3FGAafuNiIaIRVJK28329avX9/f3VVkuZnP1bSgKX5SV857IfnKbKSLDMCjNNoRwenqqiW6qltK/j0vjNEsfsKKHKFRKabPZrNfrhxCFQjV1XWsFrC0bjTIdhkEHof6WY86zfne73R7ZJG/fvv3hhx9evnx5dXV1cXGhLOOPL+QvHgovPXv27De/+RtVsGsdppCPismHoev7fj6fNc3MOavgzWw2CyHEGHLO+/0OEff73W6317JMmWdHxybFkB58Vnm5XJycnJydnWlJ9OsnyZNnybtnZCplEJGA4NBwevcDDAAorIiM4OEHaRJl6k4dkTXXJmdWtGC32wvg2HeusLqZ2W42wzAwZ2tJJHV7jVgq1B0LyapRdeFLIsyShqHft7sYgvLYjFZRD4cWQ84SQgohaQK8AGaBMfEQ8hBzSJhFkMA4ImvJSjVWRVEE62IYOKVMMQEKMzOEmFgYCECcJTGoVm8gYgQcGARBsJk8FxWgRWNKdH4UXLexG3fFfV9419TF8t4v5vW8ma0Wi/PV8nTRrBpfOjRINE3EU47hr9ymgyLwXzUO5VgFHdqB/5ofZ13tBUXkYPD+4NP+VP31qbHmnDs7Oxu9Kb0jHWesEIRMhacwCBBilhxyarv29v7u/v4+xeCtndVV35VZ8jgM293+fr1BkZR5DGmMrFGViXNOKaUUxtj3/Xq7e3N799PLl1e3987aF6/eZMCmrurSV84XzhTO47Q7iiGEMIY4hqy0jZTzgZiIIiIppvRBF0KfYhbRifEQWZIE+JDNops/KIrC+6JQ7Me6YRiNMT+8eLFe34Gw8HsLqAL0iIc/IMI5g+aCx5xGAGQR5qzxVABQlc5ZEuG27Tfb1hfGWKUwoPUODIIRGygnQgFDn5gLcs77/X69XscYrHOAoJOGli3Taj/VWMiAJPRgTs4iAqwbfjKGjuWB9i+OVWZKcVCieWQFj/u+77p+GIeU2Xl3UpTGOFeUiaVth327223Xfd/FlMecmcUwEzGiKquPhLx3h32IpvzFWQ/eLx2O532EZ47fms/nX3311bNnz5TJq0YyT58+ffHixR/+8AfFp7a7fdd3ZeUvL8+fP3/2D//wD0+fPDnGZYtwCJMT69FaQ9016rper9fvNoKHk0FySJ7BMhhDDg0h6qc8lWLTwNHUXQOIB//Gd6JrcxhUB4ETKycPdWRPVBnj3GLhh1MRkaqMiGZqK9JkDTXRahCNiNDknDytEIaMccYW3jez5uz0rCzLnOXy8pH3hV5LURSPHz0+Ozt78eLF9fX1VMQwKQTqrJvNZ2en9cXlo8ViTjRRK/q+3243fd+nlJfLRV3POEvXdZvNen2/3m53vrCut3d3tymGwnvOHGPSxOC27Zll1ozWeWMsPqisBYSQANGQsdYAQs55HMbtentzfWONjWfx5OREYYbZbOZ8aYz5ZGa6Pjmbzeabb765urrSeoKINCn99PT07OysrmvtCh37m1p1abtE8ZIjS1cPxW/UkFcN5fQNnz171jSNfhcAUkr6XQBQfz9tvWkL6e7u7sWLFz/++ON33313d3fHzMvl8q8RKn/y6bDWnp2d/cM//AMi/M//8/88jqFtu+12c3V19dNPP11dXW232/X6nuitiqhPTk4Wi4WW7+M47HY7ABiGsWmyiDhnF4u5MaRb7pzTOA5qja3+K8aQ98VisXj06NHnn3+uqQV/8Wwn/pcIawf18CgIAAodkkbx0N0W7dCCIAhnYXxX+Ch+AzDBzoTE6gIQQghhHPphHAe1Bk0x7tt2UEcG5TlZTHHgHEcyiCSICCREaMgaR0SAOpOKJUKyjMIfxMBMMz8KCyA5761zKY9DSCGamC0DoEVHBiwCRWGWHBHYGWORxpBiijmlZEfrHAgEtYq2gNkaTJY4MQoYoMI45ytjMRm38EXry64fckiOAQeGMSQTsyUuAq6H/Gaz9Q5LX5ytFs+fXH72+Bwerc4WpXFoCUUhLfvOevvdrXmwVzz+95Mj7ZdG4l9+yYPfhe9zBg4zIqAu1g+LmGki/PB86FPcHkNYegfOAqccB+DJI4dh8loRUVRDEuduDK/evvkv//KHn1++2u+77bbd7vchp67v317d/vnbH/tuBOAQ4r7VcAKOOcesSS+h78d2327bdr1vt/t2u9s5Z+Gb719e3dZlOW+qk/msqQpvnYiMYQxjCDGEcUzjmGLIMatNFxly1hXOFM6eP9up1gYAtC0CADrPKM01HnytAEE33sDq3M4qh6iK6vmz52VVLxaLR48f/e//r//9mz/+4f7uPobkCm+MwcMG8R2Sge8wMTN1eUgAIGdAss7rZhIBbm+uEXHfjadnZ/NFM5/NmkVTVaX31nv01nNhUvJaraX0oQFmDOH66vqnlz/1fV9UxdMnT5erVeEL7UJMXU8QESEhRgFktZHSQJDJiFKycBSBqWJRsVI6KK5zDmHshz4lIbIsMo5hGIeuH8YYmaGsZmdnZ4vVaT1fJMH1Zntzff329c98dzPu2px0z86IERG1qAZkQO2uvM+JmcbnR82jX/rusYQ8PmwPf+S4lhx/BBEV0tclZD6f393errfbtm2dc5eXl199+eXf/9t/+/jRI7XlEJGcs3IddPTofl330OrP88Ezysz9OOz7rsjJZWets9pqREGUifty0P8aQuIDGjOdIQBM5CRC1rwt9cCYTKtwGlcgKQG7xbKUEZjNrImSYeg5RE55YrnpE6rN4onKDsrrBRCe2CdsjW3mC1uUMUszWxyRGOf9+fnF+fmF90WMaRwDACAYZokxNs1Ml/zPPvvs5OQEDuQGRVxU4KOcDxDo2m6z3e33bdu2OXtjqC1LawywiICqYbfbHVGLQmFMviitc4RGxYT0zqDGWGuds4rYGTRN0yzmCxAoy7IoqqqqtL78Fae1I1B3wJbk6C2rtHO9PVqjHC0B5GDEpKbDCmMczVdUu6EVCR3ciXQU6S86pg045xT4EREFCGOMCsP0fa8hUH3fKySjI1bpk389sfd4qOvM06dPisL/7d/+bQixbdv1+v7Nm7c//vjDTz/9/Pr165ubGzXCXq/XzJmImqZWcETZxIrHIIJ6+CmOlVJU84YjMyaEUURmMz45WZ6enj5//vzJkyd/TRHz7ng3IQBof3/aIBy3N8qDV4wRYIoVEwEtdvQVIAwsACwGDRrlLxsAGMcxpTHkLJBTSmEcRaTwXh9tIhJmZXtPEyfQBH7SOD2wxjhnjbZ8Prk2a7qX0qKcI2uBiNEwWOXqEIKzRgwgJskpx5BDkDTxX3KMAlNoMgjEnESEsoTeDO2GAAUcEQmCgBP0YNGXJWDN1KFPGCAmThwTp8QcUo7AlIQ5EGZL476PIbFwnpWmKU1deOeNevrRYW/9a/fnffYP/MJs/K+444e30uPjdzv8Z/rSv/ad372BMOSUMmckLWKSCKvrhLCmSSNK1/dvbu7/+O13//E//9NPL16NMWYGABNj7PZtFvmn3//p5eu3AhxDavthHGPKEjMn9YmOUYHnfhj7GELKzGyMGUJ8e3PnnW2q8mTe1GWhU1+I2jDMkjNypoO5rbHGOc9AhsgZkfcXweMyJzKZMTNnzeUFgnQgtLJMGdOWjHGuqqpHl5fOOWNoHIfSuW///N3d7S0D6+OjPLQJACWyYNTsgBAMqWaOAHQvKQYNEemT0HXt7e1NzLhru/l8sVguFqt5M6ur0hXeFs4SILMMQ9rt9mW9/8BXSfHsV69e393fW2/7ftQ9pHfeWnOcV3PKRx0WM6t0IOeMSurMk/RIvRVijDlpe5OZEzOHGMdxyFmsdQAYUx5D6MYxi5D1TVHOzy7OLp/MT04ZqNxuwBdDDN0Ytm1IHFl9STIrw/iTNHj7ANH6BBLzSw/Gw5+CT1U8uoH+4Ivz+dxZt1wuf/vb397f3+/bNoyjL4qz09Ozs7Pz8/NjNwEOAM/x1x235sdh9MGbxxTvt9dvb36uqtIXzhmrcZpIU/GCh46d0YSNKcSIBT6YFAQlH/hbnDPzMbddCLRbmIJZrJrKWuFk/JhC2G8k5QPPe6paZLr5EzBHaJx1Ajml3A/7rutiStYXYjyHBOZdC8Zae3Kyuri8PDs7u7q6Wq83IYzGWGGJMS0X5vLi8quvvvqbv/mbk5MTdRcT4RiP9OooAkQUY9y13W67H4ZxHEKKkYhWSyayvihyyiHE/b5db7YIRGBCSL6qjmwkXWOcc8ZY52zOVjUxxphm1vz2N795/uxZyrksy5OTVVmWdV2rdRt9ypJIP+SmaZ4+ffrv/t2/+/rrrzWjIIRQFMXJ4UBEFVTjoU2pmeqajH3UKx1LnOPf2o5ZLBZnZ2ePHz8+OztTKOX6+loN+6dlmUiLGCLSAMv1er3f71NK6u643W6Vu6OVza8kcv/FoygKddFl5pw5pTgMw3q9vrq6evny5Y8//vjtt9/9+OMPP//88+3tbUqZCFerlaK12jU7ZqCIiLWmrisRVsuZpmn6fvj555+ur6+1sLu8vJzNZk+fPtUi5i9iSPTgmX83+kWAJb8TJOnnfES/J6sTOLg0CU3Kf42tl8TyYGZwzhrTFEUR4xBiTGnUHYjIFNUp02bvYbVPAjC1rKaq5PD4IwgcCAjv9b6BEMmQdc44R2TROPKFiRbZYBayaJnFohhBSJFzHIahbcd9G4cBclbMNQMLqpA6MEcMDJwM4DDry2rhixI9ReP63ubCGazBlORLC7lwQjlZDjGNMfSSOZMIojGl5gF3Q3z5+q2RcLHwZ4vi4qSqyjImFplYBb9+p36xyHhwfDwlHn9Cv/9L7/zpNzzOYb/+8796cOYwDEO7B6JJICCQkJgOSI/6DhFutts/fPPn/+s//8s//Zc/vrq6BUIyzrpSmIeuu9/t15u9904QhCXnzAKMxIKZtZDQvFDJzOoaK4CIcd/3KIAg1mBprdNZDSb/fGtt6d2s8E1VNk3dVHVZq/a/9MZ44FnzrsUvh9DWYynAIioitQisNOGUWCRnzikBoHPO5hxzAoS6qb/66uuqLJ89efYf/j//4U9/+uPbq9dd1xoimuhI00bbAKEICONxWdZvWH0MdUdpiAhFYgxdu08CbTfeb/bF1RQnX9floqmLokAww9Df3d2CKcbw3jzGLF3f397efvfjjymlm5u705PTueodmsaXpW6c4hjSZDuUc84xxaHvY4yi7BjFwlMMIaYQUk4H/4CJQvFQu6SS7ZByH4IYW9ZWrLPVrJiv7GwJxs4LPzBvd7v7zQ5uNylD4hxijHFAMZJrORgUHDhYAP8qJOZXjg/RyI/qDF08dGfczJqzs7O2bXW7qeJe1cTigw7RxxXSJ2uX4zGG8fXbly9+/HPRlEXhjCFLZrI3AUNEhIBExqi89V0RM9Uo8EERM/1G1jlTL1MIAAGEhA1EgRSFI7csW2FSoTy/f9XwoIgxxtdV7bxHohDHnKOyqiLLENIY8/FnEdFaP2vml5ePrq9uuq7v+4E5Hd7HFEXpfSEiMSaVKeQ8MdXS5KSbYox9P2x3++16qyLeENI4jOMYYkwCQGScc2VZLeZCaJpmVlWVK0utWszBxV/5JU5T0cyhiGmak9VKkRAiKrwvvFdLtwn8/IVxorSV8/NzVQYp7qJGtIvFYjabpZSODv06uatHYlmWGkSqWIvWMfCAknXkTp2fn3/22Wca+6xkF92WqWRJuZ/6gSh5Vv1prLXL5bJpmvl8XpalQj5q6ftfXcRoBfbBF58+ffrZZ5998cUXX375xeeff/7nP//5j3/84/X1tdZn2t5q2zbG+PLlz13XwmHkP9QAKiqp08owDH3fLZdL7SVdXl6qvc1f8Qjj8dPDB8dBhDT9XmYmY6Z1AWCKTNXjQb9D9HmaSDKk72DeZUGQsSElJfEAABgiAeADnwlkEkCIEE9FzDQLHJI98XhBnyqQYYKDEDJLyhxZYpakoogpfVVySjHnoRu7fd93bUoJiVxZWgA0Dg0ZQ8LJBIoRchpzDN1uzSlJjFzWXFjJlTCkBNaSCIXsolCGLKREIjE5ZYnCmUG30WgIrEFHYgmsIWuMJUvGGsnMv1xG/Fcdn0LQP/2a/4a/9JcOZg7jMHQd6KILKAgZ1eRvOkLOwzC8ePn693/68x+++e7l2+tNOwKA9YXzgAAxxhzjpu3g0CTT2laIQKdvFphmbEScUEVU2EwERQiBARMICSPqpGYLXxRlMSvLZVPNm3oxa5q6Lquy8IXzzgBgDMWDMEvdVKQURASRlBRKxlhEEJMzxxTzO9I1AEjKGRANiLHGGbNareqq9q6MMfnSF9/46+vrMIycWZ8X0Vw9fcokI07Fim7F5ci6J2OnnEsyzgtSypnHEJK0/eicdd5VVdE2o+4Sx2G8X2+WJ6cfIDEsElNqu2G93rZdF2Pebdtm1ixm8/liXtW1V3/OcYzTMpOVVj8OQ0xRASdOOeWk0oIDFjXRvPGgdSQypPJFAkTglOLYg3HZO+GIyEhABsmTZesKax0aApQsOUoWSUFSYLCck+QMH7aSDz4xejyEzel9xfUHx8NNsB7vb4zwg3/IwT5V/3uMlqQDVQfVWvvwUx+/8xH2xEP78INTGobhxx+/++b3/18zq7y3SKBtckTN6pom3MmxbZruGGAqUUQA5IDKvLuWqSg5XB0BAMIEgWrLSGDSfKmI5/ijCjZOM7+ACBRFdbI6PTk5WZ2ekLXGECTqh7jrhs2u3Wz38VjjM4cxGGOfPnm23ezv15v9vk8xAqBzhTF2DOP19U2M0Tmf8+T6rJl8MaaJLnJI6tvv9wjofTEMfQix3Xdt3dZ1XRXlcrFazFfGWOeKqmqKojhoQ+zRl+Xh8ZBg+PAWHKF8NRLgnH9p5OhcoPQuADiu8fpuWnsh4jHrS7lW2p1RhdohF3MaG9pFkomRRHjos+Scj1GIWiRpmMN2u9VCQfXJisGoBOlhG0tzre/u7tbr9X91EfNLh2qyzs7OfvOb3/5P/9P/9PPPP3/33Xd/+MMf3rx5oz4CNzc3u93u/v5ep6EDI0u0GtNeoYq5tAJDpPPz83/8x3/89//+369Wq7/2PI6Pgz4RRPo3kErp3u0imCd8hRAsIdGk9eBjVGc+zh2o3kPwgDNHkwLLsBTTJK+x0SpolkmposMmM06CE3XWnnTbPEmgEOlQ4L6/PvNBOZfHELp+2O27XZdCtjkb3fHnJCmEfdvv991+143jCNYU8xmSQWONK4x1zhnkGPvd2O+GbhfjyDmO/RZTiL13vohVk2MKVSIbGExMnHJOkgBZ2TsEFjjlEJgTklhPZelP5/WTs+VXzy+fP3l0sloa4zLrnHP868M7Iw/EE3/98de8/r/Va/7iIcJhDH3fG+dIw7MQEDOqTpQIyO73w4ufX/3TH779lz98++LlmzGyqo4Rp0xOtBZFJCcRAe0skkFC3WACwVSrgIBMhhoGgESsMd77onCFL+uqnJdFU5VVVVdV4X1RFEVZFnVRNIUvnPPOWGMUQkYATinl9z4CEYkxpqRaSF2eCZ3Tm0c5AyLqvGeE3ST8geOklCflwdn5+f/wP/772XIxW8y//fa71y9f7bY73TKwMCFatEqTpXcCC0tE2k4wapJhHRlL1hhjyXoyRtAor1N94fsxxdQS9USSYuy6YQz8IZNsolMQAjHDMEbct2OMXTdsdjvnPQIK82RgAcIsE+clJvUJ07aywjOTPQdoxBTnnERTI8iWviwK6wvjDHorAfPY9ikPGAyPu9Rv8rCBVAC6PLSxX8d+zeOGUmvzACzMaeQoDDlFzuk4e3yaE/Pf9nhvkXtQEmkV8lC5qh8EPCCywYMH+/iPdzvFTx0pp81ut9/dQxzQW4EE6tCmvjkyadq0jkG10hRWGjpMgd8H78L3oFN5QGTTE84AOMXJiAAIKlZ24HNPZwvvOI8iwJnLshIORNl6ML7oh9CPsQ88jKEfQ0jxeKXMPAxjTnk+X1xePnr6+CkCKTOmKIrVauVcEcZwf7+hQ4bixPjkrOaJuj8BBGNc08yNocVyMY6DtbRYLJbL1Xy2mDWNs9a5oiwr5wrnCmMNAhl7eFLse/mgeuPgQUF5vMt65cwsknRR+xUFaUpJhTbH0sF7f39/r6ZzzKw0FP1uztl7r9iMSvSPousjnVz5HyrbAYAQghraKp18s9kg4sXFhRZhwzC8ffv27u5OsUB126uqSvm/SvjVsklEVNucP5WW/FceD9cnLeL1NJTjpVTcZ8+ePXnyZLVa/fM///O//Mu/7HY7lUyHEB6W7Ppv/YistW3bIqK6pxdF8bvf/e63v/3ts2fPPvbl/KWDD64PKjw9ctl1s3s8YRGYOgAq2yMwBg2ZB8N7qkPgwAFFeLcdevD8TgEz2oQSAUQGMNO0p2vbAY2ciIXTPMVHtY22xnWAf3A5iErhkZzC2HfdftftQ2CTxQASM8TEfR92bdd1wzgmEbFFYZwzzpN1aJw1tnDGSsTKxt52hRmGLur+UjilKCwARNYxC1oraFiQRQAzETgia9CSBVNkI5LBUCoLs5oXj8+Xf/P5ky+ePXp0dtJUFSJx5l9+RP47OUQkphhjZEAjU08dtBmJJmUeU3x7fffHP//4+2++/+nV1f12z0hEVjQchmXaNhJNcDmhEAohaMS6ZBQgFDRagpMl8kSFtc67siiapqzruq6bWV0v66KpKnW60/nNOeutKwxZIlWWi1pX5ByBk2SRh2NMdKIlOj6MgEhH1FG8pzz5cWjdn3ICAEOESKpRZcCqrh4/fmwMIUpdz2bN/P7uTmfwkCIn7dUCaYaGljDmUMRoK8FYYx1ag2TIGN00yCHQGACAiAVCTCKAkHNKQd3+P75BgEDG6MdgPaLJDEOIMWWANmo+Xs4AYC3BA8MLfhD4kznnlBSgAgRhTjnHOIoIoXHGIxMAI5BD4zwZy6NJkaHAaLnL/brfViIDOZdyhn5jc+txLCnUNgnQgJiT+omz1oIfXMV72UkPv/Ex1vLx8XGZ8uuvfLgE6lJx3KvJgbz58ZsfX/PwVD/GYwiNcSWYBsqGHOU8omSLoubHmbNkgYO7JIog80EUKjp2lSoPByRmWpwPrFwBADEwWe8CkJmGgYr79as4DSMRsWTK0ltnCYGFYxBnszExpW63u2PBTT8OGcBVgmiturRN18KZ267rul4Elsvlb37728tHj2OMIGKM896p5YR1VqPntQ4DgKl9ikRqGUvaYJWcE0sGYGOoKHxVFXVZl2VVeG+t6o3t0fkDCA1NAtvpfA6GeBNz7XAcS5kjPyXnnFJ+OMQfHrqtiDGqJW5KSW1aAGA2mynv+0jcPko2tOTNU7xlnHb+qtJJqaqq8/NzAFBzRY1G0paQ9369Xv/000/WWm2yaAXw5s2bn376SREdPHCN1Wgu59y2LRGp2b92cP4riL0fD+Pj6D3q+I7faprm66+/Pj09XS6XV1dXP/zwQ9M0ABNrBA9JBfo56HmqJ17TNBcXF9pB++1vf/v06VP/AAD/9YeXeVKZOmNQABEIyCCSIWJCnhytFajEQzwBISQUg6C0Ms0qUl+1wyAUBpT0rmGhn97UVJ22nKxupxMJRkDytHPlw1jW5Wv6vopaePLyTCkfqNzvjTFEctY6Qsghjfu4v+83bZ8oZhKkxBhCHsbch5gYrHXGluQL8oVxFRqjbDYk8GSaosHajI0bwmyMaUwcgsTInDkD5hQMMkYkQ0qxI4vGoHemsLa0zpFDLlASYa4Ku1rOnj66+M2Xz588Ol/WpTdWAzpx4sy960D8d3ZMABuzanOVtmKEEQmdiSFe3+2++/Hnf/7jn//83U+bfZ+UdAgoLAycMyNPC9ekvAAQ4ciCzJiz2okai86ZovBVUc6qclFVi6aZzep508zmTdM0dVXXZVkXzllLSAcBcAYQhIw5SQbGCT4UFs4ppzGlkFJ6WMfglKcrijcTGfWpM2SR0DkH7lBGiIioFU7mnAXAGMfCY0ogbAlPFou/++1vz09Pnz59sr6/D+PYD8O+7dr90HVDiAkmX3kyRM4q1Xdq0RARGQtEEy1kcpw7GKsenMOmmIvMciDdfNBZnIJIyfiiatAs5vOyLJFImNVnv227EAIIE6H3FkCmrfIUpMgAYgwxS84JAY21qOep185CBkUgxgySc8jEZlYUhcmzkkTQl1iZKMN6exWvX2dj3XyxoBznJp6U0hZCNRjnhyhIEBIaRGAQmbY3x4v5/yMS8/HxsGR5uJt/+N1f/9lffXcCV4CvwVWuoNq4xsOyMo4wpLwf4qYdhzFyFpEMwoI46YeQhafsJIAjgW3a9x3hlXdtIh2mD9a1LDzN0qKxD2AQC0dN5Qtvp/q+tGSdtRxCO951Y8y7PiQwvlky2ZwySDyiFzqlGTJlWRljZ7NZCDEnbU4RIojigIZQvXAOfo+GJtdaY61Ro/ppvRREIAPKIjPamLfeO28mQvH0GLAIIBzCWOBYjhxvGbxfxEw3EaeH5OHLPj60K6QOzurRsl6vb29vleniDodq0I4gkL7bUa32wQlokLUxRlOgmXk2m6lZXNd16/V6HMdjMaTQjsYnHSXZD89ZWSyr1UqBnOVyqcSdvzD2/rrjIcr4sChXV+u6rkMI//iP/2itvbm50QxFOOCUKSU9N4VwtI6Zz+fq2nd+fv748ePLy0s1nPxrTsYYrKpiPq/qsnLWahGjSnr1r9Jh9q6IUYI8ACATCh7B7uk5OjLalaI72UsATP8+WKHpOsGHElnnI4acmRNPDVjt8hJMw1w/K9bfwAIpZetcVZXmPacYQARrqCzcalZfrGZD3xuU3ZD7KCwYkowgDqF0jtFYV5ApsnFsHBjDgCkzcuaUEkkyYlGsMyU6sAQJ0KJJwJktSWGh9lBXtiy8K9WUyFhL3pnCucoXhTMWwaAY5MKb+aw5Pzt5cnm6mjeetA13uLj/3o9D4PG0vE6wHQjHtNnuf/zp5Tff/vDDi1dvb++HkAUIgaa5ljlLRJxYiZPbFqiJFTrnPHpvqHC2KIqqLpu6appm2TSrpl40zWJWN01dV1VRVoX33lmv3HMRlWSGMeScOOtaoBXKZBIgOcu0VH8CgpXJ3xyImIiJSAjIEBl7AGn0CtAgCZgYJjmhBkITgjXU1OWsqVarxenZWdu2IYxd12+2+81mv97su64PMaaQEmdhpnfNg0mQrb1U3TcoInRYW48bAS1iOEcREcr0yRwYRAQiQAIgNBbI5Mwppn4Yh37ouiHGSAjWovqTsKIwAiygDzwdmiuHZ3mqqzRLwVhnyRskBAZhYERhQ1h6K4DGiqSh39+3u/W2bZ0v3LMnlfeNg2VttxVBNsZbE2Q/RGb5pVnYPiwpPn2Rnxya7zFFfu2VD1//XgPiX9lz/fh3fXDOgijGg/VgTFm6Ryf187Pq68eLWenbIG/uuj+9vH1zt++HnFIimEyPQQSAkbNwBs6SMzCgTPD1gV8oIHJImDlUEA9OB+CQci4CkAmpKYumLpezqnBGOJIhXxWCNIS873bbbd/2Y4wJjHVji64ITHFsj1U/EVVlNV8sDmuJ8CHZU9cBVhfFjz56XfbMNKwJELJMnw0AHGxYGd+xCySldLgubb4JIvDB5Q4e1DFH5Awn+stUT4Dung5dSp0QPsEnBLDWnp6ePn78+PHjx/v9/vb2VksTzWLUGl+5Mg8H2EMc6OHXtQTRZVt7NPrfxWLhvVfrl67rZrOZSgfxEISprF7FexSwUX+8siy1hNKP0Xs/n8+fP3/+r5Mr//LxcOQf0Z3jtYjIo0eP/rf/7X/7X/6X/2W73WoHLR9y45WXo6eqRjhax2hBo6etJSA8SD37lafMe//48Xnf7YvC24NfxZTzaPAYx6FSgMkWHeQwluSIrSr37DB5TxcyPZsTiikPzuRQxDw4BI4U+ymOTkD3W+82FAAgh/om5RxDvHx87p0/fob6Y0Qwq6svPnuyWMyeXF7crnd327bthjHmMeQxcUySgRIji4kZusRdlCF1IQtmySmNMQycdpwtJm8ZJSfODMa6xpelM9YTexlPZ/75k5Ozk0VZ10XhjFULPeOtKfwUOuSILIEzxnlbeFcWniTnPD3DinPh4TP57/WQQxVz+AKisZm568e3V9f/8qc//f5P31/d3g8hIRprSJfhSYJ2hL2n9wJDUBgqynJel8uqWjT1cj6fz5v5fLIQm5VVXbjau9J7Bcnw0CkipROIEDMxo2RRoughQWD6XXIoMOXdjvVw6kiEumgoGmFIhIhJjBhImaY4jomkS8YBEBnLrPIcMYhgLQIjqMShXK5OdGYbx3G326+3u/Vmt1nvtrvddrvbbPd9P+SUhUXLkGlDhdMHAohEBt7xFM2RKyICzDkRAkjK+cNWCwAgqQNCiKnrB+t8CHEchnEcQ1CxdBIQNCSCzGAIJmrkIcIWccLsdbfDB1kYgVjvEKhwlTeFI3LEhmxRCJIREuM9syTm3HUhxJDybr+v62ZczWq7qAsTmrJpipgjWhpzEo6cBYxMeNT7q8u/Inbg14+/5pUfFzH/FSDqL52wACYwAATAlZWLuX1+4j5bYlPAPpIk8/bOrL0NCbOYifSrFtzCwBk4g2TIDOroM62XLAgAWcGUKZT68Fwez+iwiOvUS87ZuqmrssCJnTf53GTAIfSZlW8bOSeUnEeCFLJQDj08kJRrvI61ZnJDJNUGqiRVDRcOn977S4WiIhNBWbtk08KDOIkcp6dT4XOAidk84U0yAZPTp/o+ZoYPFqr3lsl3fAhAol+al40xmiDx2WefqR0LAKjK5limHAEeOWjsj0XMBwOGDi4jR19dY6aE7bu7O7XfFZEnT56oO9FkY3BIlNSKRz18VexTHI6jBd9qtXr69Ol/qyLm4fFw/B/L8aqqnj179uzZMzk46KSj+0LOInK0w1aw6pPv/CtI2MOjqsrf/vbL5aLRpNUHJcZkPT+1UzWX7gghHahf+t/pZiuoQgTHIuY4wGB68XtFzMdboAPictxOybtRfaCoaUWrgpSULx5fVFX58XV571bOVVW1XMwv/3/tXVtz3UZy7u4Z3HFupGSStmXH0aaSSsXZzVMqr/n/j5uq2Nms716ZtiiS54aDmenOQ8/g4BxRa3ut9drK6VKJJAgCOMBg5uvur79eb+7u15vtdtf7nQvOs2dgIc/gAuxcWHdu1blV1292rnPc7fr1lrddcE4YAAktmQzA2DyvmrxoyiwvDOTSPZ6VT9+/eOvxvKqqIs+IyBIaImuMyWyWmcwaa4zVCnVlJseOAfun///G4ruMiEAogpuuf/bti0+++OqPn33x5bNvltsuxBidADMwIwiBAAqlfEqW2UIbVzZV2zaztlm07aJtphOVvG7quqnKssiz3JAlNIgAooSvGDnhMMq5A0qKJxAy7sMIo6D7n88MjMcrQ9Bnmrw5YSSyaJCMIAkKp2kMUq8i1aSxWa49yLxzbdtMZ9Ozs+39/fLu7v7Fi7vnN3f396vNptv1PfugzF99eUCEFMWkNR1ToYxEKSUtQ2YO+oo/GMgQDmHXbTertVKJu+2273vvgy4xhkxUgSJU4jOAhMBMqFUeKiMGCBy473vPASR2lootJhCtknqIBcJm58gJSGARx15X1N75zWbb7VxVXXfrjSFZr1arbbfte/a83rqu2/oewXqtqjkylfs0Kg5mvk9z6ZdjypkY4xgRcZ7Bewq+BlkY2/r7/rtrRt6y6ZcCXWc8g4cQjGr/g0lwBBkoADCaqLksmqgfvAFh4IDigYM24BBJqz4SUhToI4DMYF0WzbQlhPvVEjiURVki8NYHxD4AmqKZZHlZe7djDoLkmZ3rpe9G+VdkAREJzAKq4q7+q3bD5Vj0nfC4boTIXSAFMRiHOwDEIAvp4gIAEPVzDlxBQUCN+UhCJgdRugewy+HihJGzR/hQ7FJnsSzLFovFBx98oLq9m80mpIbMw5HHCHVY8Abq93BABTFN0+gyLyIaH3rx4sXvf/977/3NzY2WbTvn9ETa/FxrtjWxVde1xjOGeMy4V/bl5eXFQ43Tfrq9HCk5ijVqTEUx2QDgcKTs+WeO/EPWyMmk+d3v/rXf9Qo4Rnf7yM9RIIMJLx/lXRW87kcRYmy0ejBA99/vbTzaD483/jraYeQ1IGBeZG3bDJtUyFNnbyQsizzLs8mkeXy+iOIenj0LMwaWwBhYXAg7F7quX266+0233Pa3q+3N/fp21a23vQ+uMJKbkJGURdFMFlVZ5yYrLZVWzuf1++88PjublHlmLSEIxT5skb6sKwtJwHhVQkCSUvk4umUUk3JvKKxJKEKUBEnEJN/eLf/7j5/+1x/+98vr6/vN2oNBohCCBC/gCdgCWkO5tVWR13U5mTSz2WQ+m87m89l0Op2006aelmWVF0We5ZnNstyqBgRR6rXMiYwlkILTytQwKIRa/eR0lIrEB4KREUCCpI0Axk8lua6ICEr818c8aFbHXD9LCAwsZAQBGJGRBLRhi/POiQQyxgowg/NeWNnEngDqMi/yvG3q+Wx2tjg7P79/8eL+5sXd7f1ytVx2XT/EtTDhe80nJIFlANWqRNCKXEsUYl3p8bSAwuyd33W7zWq1vHW+A8S+d6nTDgBAZqPsV5HZPLNIRvG4sKQAAA3MSURBVJh76ZEBlbBA2qiYQgggDC4Er0g0MAQXAK1YqixSYHHe3a22LLHYk5MabPChdx42q7vlZ8YQQHDObbZb53wA3HZuebdFyOqiRgg0moLUrPq+g9rgr8VCago4bCmL/L13Lp7/5u/mNT9Z2PffKh7XPuc7YQ9g58Y+MVDO7H1numDRWCSDyhgRAGZMcQkABCQREdA64T2IIfDqJWjpjyQWhfY7FBFDWFhTlcW0rYX57vZWfGjquigKY5ERfRBVomQOIUnF+MBd7/7pH57WB54lCu7VlWWo0FBogfvFQ0eCdiGJpa2c0MDhMokH0eshLInDlCogAmG8gIzBysvwQlKr5APP/9WRGL1dTdNcXV1dX1+3bSsiq9XKOTf0M9Isz1DLPY5VHC3zOm5VpFhEttutEkd00tQK6ouLi3fffVdZvSKiOZqqqpQ6o+p8R2LQQzG59so+Pz9XPPHXtuMpZoRyvte7GFDmDz+dtXY+n/3oq/xlG4NK7iEayJEwBykjxJcoc6/eOTBL0OrQ3m92/brbrTt3t+6e329uV91ys+u9t8SZkdJCXZaTdloWhUXKDRW5mbTVo7PppC1zq91N0hsJKKTvWRK/2deCKsIaPakfHYb+lZlE4XVvRNtSoAthues///rZ/3z66adffnW3XPkQVG/CGjRgLJWFpTLP6iKvy6Jtqum0nk0ni/lsMZ9NZ7NJ29Z1XRdFbW1mCGOsi5KOqebQo+oE8z7ArDX83ntABiIgAqDYmXeIIgOOOATHNoQ8MNFeQPM5ZChJugCAIAbWHn2IA8QxIBwAegEJgSE1WpLIgWUBIQIiY5FsluVZUeRlWRZ1VdV12bTVixfFcrnZdV3vnHeeQ3IT0nQMIMwoAKwS86INKoH0Fr00OVhjpm371qOzd64uqqq0eS6kReKSBijmWVZXRVMVTVXkWYZEmvniwERobaxiNWSYudt1KnYVQgjsmQUBM5NXZWkNMffO77bdxgePpKLEeuEcAqtutg8qz8FUcN6AiAQB3/vz+c6abD4/e/vtt+qqPOoEZbUrzWaz+eGVmX9zQ0S9ZmvtgL3m0/Y//+PfPnhrNslhWsq8lMr0IGsWDmQec/7EF7uQ92xZLKBBA2iQSJf2KEkRBxamkvsEFzRdSiIIQolqqpVwhnTgIQIYotyaPMvKIheQ3aYDkbIorTUCQQBYCJGQVPmgFw7Kz2Lmi4vLR+eP0icEIkwRO0pELgBdzlEo8Xn3aReMnnr0CQA0GkKjeEbq5pg+UsqJKUYXOGgO+iBYoZQySNvhQN5P4nwtkUtxbHoZyoy5urq6vLz8+OOPr6+vb29vB1ka7dse1ehHQYiXQcx4owIajdZovlbRORF98803i8VCj6zkm6G0RxGMRl+GFtnMrGmpyWRyfn6+WCx+HhDzY20MXN5YP/6HWhwI2vcRNLwvAQCC0oSjHyBRoFsYQAwwkpic8qyctAUz9D5sun7duc2274MXFGuwyLO6yNqyzAxB4FT6Z2xuRFgVSk0igwGgsDKfNaGbAi8AkMjOCKDzibq7RwWrb5KJCmzudpZB9RJvV6vPn13/4bPPP/n8i29vngfvM2vQgjW2sllTFpOmmrb1tG3mbTOZtNO2nrSVUnSrotBQKRljkSwAMoMyfgHQWjKUW5sVuQDseue8Y+XsEopAcL7vex+22uwByQiZWMgQSUoQNaFFC7z5YMaJJc6kT22YjRFNlulCTppRDSHoJRlDSAQCWhrtdaoXCC4Aq4C7EUAmAUPMxMGFwMGHwCAANjcNVNZS2xRni8ndYvbi9v6757d398vVchM4qIYjEWFk9HLsai6MAIGi2I4qKOFLqKwsiifvvsMhXL71eLPdoo0M9/hpAQTQEuWZLYtMC1kRiZkVqQCIMdps3lpjEGJ7a42CJXJAlPMGEed771wfPDPjYW1j7BQbOIShFFxizQoAB8+73hqq6ub99947Pz+Loc5kVlvNff3110qofF1j92jLq8LmP3yfYeHUxfXm5kaVRQYNj+mk+fff/fNv3rusDGTEFjyBY+kFmMkIZgCFYAZgAYxqx2BM56mDlMiMpIKSKaaOKf0PKec5BCcAcSjRUPo4YtQmtQYAggsIkGUWEVm0rVKsH0IAEL8P44MURTkKj4MidIyLtIQwYA8BAEnRfRn4VKOQhQoXqHS8jECMjD5SnM819U8DXgGWAFFKfp+nO/ofEQf4kv6P1xyYVUngVU9ZkvTZo0ePnj59+tlnn3300Ue73U6LcTSzWRSFEj7Ukxt/OBgt25JoNMM+49olPd16vV4ul6vVarPZZFmm8vwKWZQbq98PxVD651pivVgsXm910g+3n3NJ04hm4mr81KMN0cGffF2vNtmTdI5/AQAAsfSaRQACgGDCEgIQvRJBpVwAgKGMYhZWAHxbOh/6PrbLI0M2s4Wl0hoDEFs7EzFg0IwzsDCkxvfxIoRjOF4OK8VhT/B5KX75JpoueLtupxGC3a67fn7zxedffP3VnzbrtUGcTRpjMzK2LIp5Vc8m7WzSzibNtG2mbdM2TVOXdVUUGiWNNXM4THRBRTHSz5pn1da+HAb9I0SJxRGp01HgwMO/cSsuRo2zKxet9yPtrnROSbMQHW5XRxIQCYiMsbo8ROZNUts1JrM2eNMD6MUEQJKInCQpR+goQ0KwlgwVdZnVVdHUZdOUZZGXVZ7ndrVad70LzEjaeFq5AzHhq6oyhihTIUsoyjw7SvLneX55eVmW5bvvvO29B2OAjPLh4ucCISBLaK0prDWGEEmYVTlJRAyRzawx1qRKUkhaO3I4Dw9OpqojRWlU1LeAg1a1R+QTZ6HkMAMwg/dEYG2m6cQjn80+f/58tVqt12t1T+H1TaBHfjOMgMhf8NujI6tg/OXl5QBimrr6l3986vz7WqUX1XgjTwsFUBWBksOUuFDjBMv424cmSTzeBUdXH7fgvnYU9hlUxBjVhEF9BWHPIUMAIR368ROCVtWy0L6NbCRIKjHC6H1IA0XG+8jo8vWbWEM04BIFHBI5vcrf12CMVo6kjNDhPRKgPcMz+b5aLpoYz8zsg3e9e3mGHsd1EHE2m3344YfL5fKTTz5R5dwxOWaIrzxYlHR05HF/E43fIKLWPek3inJUZE8DeBprUewytGHSuxRCUIz1+PHjtm2VLvbAaPhr2s95xv1k8foMH3x/Xt/RH9o25G7iexep7jB6z0Q0vAoKgvWPEFgEWVgCAhBgYamwGSsvDQAJCAFC4Bj+jqz5yDsDVf5OKVnYs5IBAAQYgHh/PQfvaQSODzSFfjNMRPpdv9t2wrjr++fPn3/1zTd/+vKr9d1yUpXzyaSq6qIssyxv6+p8Mpm3bdtUVVnkWZZnWZ5n6l4gMzuX8jfD6JLEBQFINWum64zNEDFEHrXys1Fff+dc3zvX967v+93O9b33Tg4vWERYxO12u+3WHWhECbN4Dhx0hjTJz9Nu1opRjLGZCtDFEDgHdiEonRF0n9xkOQe323U+eGMzREraeI6HrmCMIgw6Jg1VZZ7ntqry6aQ+O59cf9dcf3dzfX2z3nQAEbkgqrSMyQ0aQ2TQGpNbSwAc8tmszexBVtpa++jRo/l8FidYXafGL9ewfKla8Mh1jI9iTC8YZayG8fwQBAQAkFE9o+4UlfEV4iAAJJAY10mFl6Bx+mMQc3V1pZH2ocPiLx/EMHPTNNZa1aGPn8SY6aR9LVf+N7css4/Oz0SEKEWEIjgBTB00AECdBh4v7ZL2S4YJDcDoTsqA7/g4JSFRKjvyf+Hw/g/fiT6j4Y1LpxSWwOHxo7PvTcGUZfnkyZPf/va319fXl5eX2mdx4KMMqEITQ/HgrwAxOHp/hoSXgpjZbPb06dMnT55cXFwAgLW267ohfzSAmCHWou/ZdDq9uro6Pz/XjqR//oOc7G9uiGitPYrY6ZDkFBiHuEkbbWuQUifN5IrHjsqx5aS2guJ4NAGWNPdqrfk+9UqHY/KYdrh/a/YgZvSyRn76GznMbF4sLt4GgSzPd31v2xm1Mzs93/au0EBoVZVFYbOsLotZ0zRVVRZZlmYATaKnyN4wxRw6ncN9S1TyQbQTETlpFI3iHGGo+NO0yKAEAMNCC+Cd2203l+//fVFWw4mszXJhNuoQmuHcgyoSpu4rsTmfAAMYowgmsmesIaI6+B44Oq5IWliOhASShqoWLUuGgCnOASzsfVgs5rPZ7OxscT4/W222OpaV56UXYWwU8jWGMmuVbHx5caFFmoOpahfAr4ZGMtgRfxefPXsGh8vAL98GN12JC79MysJPMe/DerNxzr0MjAEOveYE9x7ab79dXs4WxDdXJ3SUo6n2KOj0KhsQ9+iwApJnWds2r6oBHkxFeFXNxUfh6uNx+GMh9dgbEBFNGylvFwD6vtfsyaCkB/AAKtIa7IFr/KMu4GQ/v0lKqsYfD74c73v4hwdb9EnjyB8de5KHe/2Fhg+9WcOA/ClH/gVacG59f+f7nRJCI3RwnoWjomKkRqTqdM3OQ3LGhxA3HEwEY1cKD37SXz98G6PTNYRbUhb+pZ3iV+aQl9Xs7DzLi2GLVnQcXsXeEAGHmqY9h3E4C6KKLPFQMoIxTg9RlOD4ktOZxlguBHbeO+9d7yL9Rvb7D5mAfd0UAADked627ffOyb9Ge2MjmSc72clOdrKTnezNtp+bsXiyk53sZCc72clO9lrsBGJOdrKTnexkJzvZr9L+D7NbT4pGXbFgAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "execution_count": 10 + } + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## 七、使用 paddle.jit.to_static 实现动转静\n", + "\n", + "飞桨推荐使用 `@paddle.jit.to_static` 实现动转静,也被称为基于源代码转写的动态图转静态图,其基本原理是通过分析 Python 代码来将动态图代码转写为静态图代码,并在底层自动使用执行器运行,使用起来非常方便,只需要在原网络结构的 `forward` 前添加一个装饰器 `paddle.jit.to_static` 即可。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### 7.1 改写组网代码" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "class MyNet2(paddle.nn.Layer):\n", + " def __init__(self):\n", + " super(MyNet2, self).__init__()\n", + "\n", + " self.conv1 = paddle.nn.Conv2D(in_channels=3, \n", + " out_channels=32, \n", + " kernel_size=(3, 3),\n", + " stride=2)\n", + " \n", + " self.conv2 = paddle.nn.Conv2D(in_channels=32, \n", + " out_channels=64, \n", + " kernel_size=(3,3), \n", + " stride=2) \n", + " \n", + " self.conv3 = paddle.nn.Conv2D(in_channels=64, \n", + " out_channels=128, \n", + " kernel_size=(3,3),\n", + " stride=2)\n", + " \n", + " self.gloabl_pool = paddle.nn.AdaptiveAvgPool2D((1,1))\n", + "\n", + " self.fc1 = paddle.nn.Linear(in_features=128, out_features=8)\n", + " \n", + " # 在forward 前添加 paddle.jit.to_static 装饰器\n", + " @paddle.jit.to_static()\n", + " def forward(self, x):\n", + " x = self.conv1(x)\n", + " x = F.relu(x)\n", + " x = self.conv2(x)\n", + " x = F.relu(x)\n", + " x = self.conv3(x)\n", + " x = F.relu(x)\n", + " x = self.gloabl_pool(x)\n", + " x = paddle.squeeze(x, axis=[2, 3])\n", + " x = self.fc1(x)\n", + " x = x / paddle.norm(x, axis=1, keepdim=True)\n", + " return x" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "通过 `model.summary` 查看网络结构。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "model_2 = MyNet2()\n", + "model_info = paddle.summary(model_2, (10, 3, 32, 32))\n", + "print(model_info)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "-------------------------------------------------------------------------------\n", + " Layer (type) Input Shape Output Shape Param # \n", + "===============================================================================\n", + " Conv2D-4 [[10, 3, 32, 32]] [10, 32, 15, 15] 896 \n", + " Conv2D-5 [[10, 32, 15, 15]] [10, 64, 7, 7] 18,496 \n", + " Conv2D-6 [[10, 64, 7, 7]] [10, 128, 3, 3] 73,856 \n", + "AdaptiveAvgPool2D-2 [[10, 128, 3, 3]] [10, 128, 1, 1] 0 \n", + " Linear-2 [[10, 128]] [10, 8] 1,032 \n", + "===============================================================================\n", + "Total params: 94,280\n", + "Trainable params: 94,280\n", + "Non-trainable params: 0\n", + "-------------------------------------------------------------------------------\n", + "Input size (MB): 0.12\n", + "Forward/backward pass size (MB): 0.89\n", + "Params size (MB): 0.36\n", + "Estimated Total Size (MB): 1.36\n", + "-------------------------------------------------------------------------------\n", + "\n", + "{'total_params': 94280, 'trainable_params': 94280}\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", + " return (isinstance(seq, collections.Sequence) and\n" + ] + } + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### 7.2 模型训练\n", + "使用 paddle.jit.to_static 装饰器后,训练方式仍与原动态图训练一致。因此这里直接传入 `model_2` 完成模型的训练。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "train(model_2)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "start training ... \n", + "epoch: 0, batch_id: 0, loss is: [2.2664194]\n", + "epoch: 0, batch_id: 500, loss is: [2.1221528]\n", + "epoch: 1, batch_id: 0, loss is: [1.9064648]\n", + "epoch: 1, batch_id: 500, loss is: [2.015831]\n", + "epoch: 2, batch_id: 0, loss is: [2.1349819]\n", + "epoch: 2, batch_id: 500, loss is: [1.7188847]\n", + "epoch: 3, batch_id: 0, loss is: [1.7870805]\n", + "epoch: 3, batch_id: 500, loss is: [1.9015355]\n", + "epoch: 4, batch_id: 0, loss is: [2.0960422]\n", + "epoch: 4, batch_id: 500, loss is: [1.9041044]\n", + "epoch: 5, batch_id: 0, loss is: [1.9104369]\n", + "epoch: 5, batch_id: 500, loss is: [1.9426862]\n", + "epoch: 6, batch_id: 0, loss is: [1.9272857]\n", + "epoch: 6, batch_id: 500, loss is: [2.003079]\n", + "epoch: 7, batch_id: 0, loss is: [2.0555334]\n", + "epoch: 7, batch_id: 500, loss is: [2.0897827]\n", + "epoch: 8, batch_id: 0, loss is: [1.735752]\n", + "epoch: 8, batch_id: 500, loss is: [1.6519189]\n", + "epoch: 9, batch_id: 0, loss is: [1.892964]\n", + "epoch: 9, batch_id: 500, loss is: [2.1541076]\n", + "epoch: 10, batch_id: 0, loss is: [2.1418836]\n", + "epoch: 10, batch_id: 500, loss is: [2.3189983]\n", + "epoch: 11, batch_id: 0, loss is: [1.9001983]\n", + "epoch: 11, batch_id: 500, loss is: [1.8500187]\n", + "epoch: 12, batch_id: 0, loss is: [1.7524569]\n", + "epoch: 12, batch_id: 500, loss is: [2.2970917]\n", + "epoch: 13, batch_id: 0, loss is: [1.8639088]\n", + "epoch: 13, batch_id: 500, loss is: [1.9846786]\n", + "epoch: 14, batch_id: 0, loss is: [2.0572317]\n", + "epoch: 14, batch_id: 500, loss is: [1.8811153]\n", + "epoch: 15, batch_id: 0, loss is: [1.7000355]\n", + "epoch: 15, batch_id: 500, loss is: [1.9591945]\n", + "epoch: 16, batch_id: 0, loss is: [1.6536798]\n", + "epoch: 16, batch_id: 500, loss is: [2.035933]\n", + "epoch: 17, batch_id: 0, loss is: [1.7236006]\n", + "epoch: 17, batch_id: 500, loss is: [1.8770548]\n", + "epoch: 18, batch_id: 0, loss is: [1.5971379]\n", + "epoch: 18, batch_id: 500, loss is: [1.5866497]\n", + "epoch: 19, batch_id: 0, loss is: [1.4629636]\n", + "epoch: 19, batch_id: 500, loss is: [1.6511686]\n" + ] + } + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### 7.3 使用 `paddle.jit.save` 保存动转静模型\n", + "使用 `paddle.jit.to_static` 转换模型后,需要调用 `paddle.jit.save` 将保存模型,以供后续的预测部署。保存后,会产生 `model.pdmodel` 、`model.pdiparams.info`、`model.pdiparams` 三个文件。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 14, + "source": [ + "paddle.jit.save(model_2, 'model')" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### 7.4 使用 `paddle.jit.load` 加载动转静模型\n", + "\n", + "将模型导出后,需要使用 `paddle.jit.load` 加载模型。加载后的模型可以直接用于预测。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 15, + "source": [ + "model_2 = paddle.jit.load('model')" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### 7.5 使用动转静模型\n", + "\n", + "前述的模型训练训练结束之后,就可以用该网络结构来计算出任意一张图片的高维向量表示(embedding),通过计算该图片与图片库中其他图片的高维向量表示之间的相似度,就可以按照相似程度进行排序,排序越靠前,则相似程度越高。\n", + "\n", + "下面对测试集中所有的图片都两两计算相似度,然后选一部分相似的图片展示出来。" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "near_neighbours_per_example = 10\n", + "\n", + "x_test_t = paddle.to_tensor(x_test)\n", + "test_images_embeddings = model_2(x_test_t)\n", + "similarities_matrix = paddle.matmul(test_images_embeddings, test_images_embeddings, transpose_y=True) \n", + "\n", + "indicies = paddle.argsort(similarities_matrix, descending=True)\n", + "indicies = indicies.numpy()\n", + "\n", + "examples = np.empty(\n", + " (\n", + " num_classes,\n", + " near_neighbours_per_example + 1,\n", + " 3,\n", + " height_width,\n", + " height_width,\n", + " ),\n", + " dtype=np.float32,\n", + ")\n", + "\n", + "for row_idx in range(num_classes):\n", + " examples_for_class = class_idx_to_test_idxs[row_idx]\n", + " anchor_idx = random.choice(examples_for_class)\n", + " \n", + " examples[row_idx, 0] = x_test[anchor_idx]\n", + " anchor_near_neighbours = indicies[anchor_idx][1:near_neighbours_per_example+1]\n", + " for col_idx, nn_idx in enumerate(anchor_near_neighbours):\n", + " examples[row_idx, col_idx + 1] = x_test[nn_idx]\n", + "\n", + "show_collage(examples)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuwAAAKoCAIAAACjiz3RAAEAAElEQVR4nJT9Sa9lW5YuCI1izrmKXZxzrLqFX3eP4kX9Il/Ei/dSiYQQLRr0UTZB/ICUyFa26CBECyTo0KCbSHSR+AH0gA5E6S8KD/d7/V4rT7WLVc05R5GNtY+ZuWfkA9Y9Mpkds7vP2nvNOeYY3/i+b+Dw7p05qLmYi5qYV4UinhcVVUQFdosQKfQQG6TITmTAToQBiIiQGZiRGRHZzFVURERUdf21iJRcRMEAHBSwEiohMnOghpDBwMDELavN4lOFsUI2LhCQILEF8gDQELbMCTEBBCQm3l5tX/zoVdM1ACBSh+NYSlYAVcm11CJF4Hg6v3n95vtfffurb/8BzH78099lTu9u372/e3139+0wPJhoWepwWqQIggMAExBxTE2Tur7ZAtI0L9M0TNNZtTaJOBCTA7lZBXAERKIYabvfvPrqeb/fY2gA2Qy01mWeZCleFAFTTMyI5A4qIrUu8zzlMpeS/+Lf/w/+i//if/V7v/enADAdvnv9V//1+fZvKUQOgZkRQdURkSkQRUYGJHdA5BAiIpsCABKhu6uKmagJoAZCisZckZTIERmAARidgADR3b2Km7BrMgsiJKZiVVRUzQwIeb0BRHBQAEUGZohMRAiABqDm1b2YTvNyOJ1uXvzhv/nP/mc3z38LPrvMrIjOc7m9f/zu9ev3dx+O51MpCyFu2v7m+mUMXa714XD/3Q8/v/vww3j/oU4TGKhLtkVdEI0DNykxJ0QW1bpkKYoAKaS224UUjZwSd03z429+8m///N9/9cXXbno6nt58/2673f/bv/iLH33zFT7dT8655DwvyzhNRHR9fRVjyFk+fLj7h3/458fHA5J//fVX/+4v/uzZzTUAHB/e/PX/6//2/S/+bhin02k4HwcRS02TUhNTiOuTImLmEGNMDWAUxZzrPGUzSE3fN5u+39xsr764vnm23V83fUK2KuM8P4ynD6fHHw73t6fDsIxLWdatU+tSJYsWd18fhJkBgIMTArFzTLHZiTanM55Op8PpDWF+8WKz6xIjgbuI5lzmefnXf/rv/6f/8//yt3/nD9Yn4u7wG5dfXvnjNxARANZvIJADOLiDuYO5mRu4sxP6+n1wRCByQgBAR3QgAAc3MwBzXF8TwBEpIAAiuAOguTsCAayLCvByD/jpHp5u8TfvDeB0/+Zv/x//19vv/sZlMrVqSTwqBiJqIjAauKQu7W+etf01xC1SQtcYrG297Zq03buF5bwsp8M8vEUfug2V6u/e2TBV46Xt6vW1pgCyoCtzSsjuuMQG9vuemUu2mqEUROa+j4Hc61gWmE7teMbjueasiNBv4qtX290NNtul38P2pm1acqjIvx2a/zHSVwDws3/86//1/+G/+n/+5f99u9s0bQJCNV/mamLEhAiAxgwxMgKqQi2SszD7bteklolIRZc5u1lqKDSRu+TEKl6zyShk3HR90+ya5ub65qtvfvS73bafl9P7++/+6Z//alnm5zc/fvHsp8+uf5qX+k///LNxetjump/86Kd//sf/2R/8zr/+ra9/+vz6KjVOAZ3CmPPt8eGX3/3yb/76//3m3fdVlz/67d/7z/9H/5OffPljAPjVt9/9X/7r//Nf/9VfihaBolQhYNM07Q63L8urH7e//fuvrq+ew3J9eOO/+NnDw7sJBFzB1NVNAVVVSpZS1cTcgZGJAwVXnfOoUKklZ1AwNbPq6Jw4MQYARcBIGBgjE7rXmrNOk501TtRnagyZQkwp7QJFcCONXLvpoLevD+fjqcrwn/6n/73/8n/xv/yDP/gTACjL8nD74Xx8zHkAk4YjIzsSICgoghMSMwQiQnC4LHQiZERCQAQEADcHcDAFAHNEZGYiRiQgcgBRXZaylLpUL+aG7I7kjurmbuCAgGRhPRMJGMCdAAlCCLFp256BpWQ3JTYiICSkwNw07aa/esYhAcDP/v6f/zf/2//TX/313//4q1c/+uLll8+eR4Lj4WE+HZd5eBwe397fjWq0e+YWltOMIh3j1VX/8usX7XZbgEPqrvdXbYhQpQG4auI+hX1Dyzh89/r74fGQclHVU8DbUn84LI7hR/tnAe1+fHgcT8M4zuO8TIOaYWibtt/v9onBpsMG5EXfLEv5x7cP93PWENqWrzfAaGPW07iUUv79f/9/+H/83//v/uLf/vm6/QMgrKHk4xcREvoaLRxQAVRd3QLoGp0QHS/h7ymmuX8eXD7GF0REREIkIvL1NQmICQEBAckB16ipDuqu5mquDgpgYA6GiIwQEQJAQGAAeoplDv55FDbzUsq8FCA0s1q1ioqCmSMSMzMzIBIS0eWP6wIycACKMaKTm4I7IoCTKoh4ZUEkdyVyDnC5azB3AANwBnQEZ8YQkBnMVLUSMSCouqq4qrutt2pmAIhu61tEdFozQEL6tUgNZq7qjo7o640zO66fJF5C/3pwmBkiul8+8vVwWi9Yb9QMUYl0fbjg7ADu5gaI7gZuDg7rgwJcXwHAARGJkJAR0d3MzEGRnAHXV3a9fAyinlUXqcM0H4chbmZV+/Re3M1MzUop8zLnPKoMIAPKCaWEGBPFxDUQVV9ARrQJbSYvhBXAHT0QrMckurqJISIauhN7jIjGRMEd3YGIYuCmaZqmbWKDiPOyjOMwzxOHOM/jPC8pBjPLJddSdU0TlgWR2rZRTbVKKSXnXEqJKXz+UFRtnJdxXsTs85N13QHqAA78tCHWtekOAATIzJRi07Rd3283212/3bfbXUgdA2KR5NCV0se2T23fdYaG6KWYazVEQwJmc19XyfqjCQjQECEEbtvGoQckVRkmNnGpWlkhODioqtn6ZfD/04X/4nfdzMDNVF3dTW1NYgyd0GBd4msSA0iAgI6IwHj5X90vyRcSEDCxI9Al7JD/Zq7y/89lZqWUpRQyNYMiKkaKiOQmwGSMSkGk5lImqw4YEF2DEwJzxQVNaBqW6XyexpmoYowiqGZqaqCm+vShmLurAoJzBGZCRDMoRZdZSzZAAosxAJlIRVUzACB1EjNzcCTlwCFCiMDsyAZmiL8RPNcfZgAGQIjAjOgIl3/m7rDuL1MEACZkxk9b/ykUqxqqofpTXEdEc0AVUzZI4Oa5ZBvtPB6G4awqiACgAEoMIWBKnAsBmmid85Tz7O5EhGCmlks5nU+3t+9vb98P46mURayq6qcFA64mYmJuQMTcEIeAidQ1a550PM9NmjrsQ8NNh6mlMqmJ28f4tZ5NBAiI7uuJwggQsIEARNyTgI55Fi0iyhhTYmIC948x0d1MNOc8lzzWpVKmktOG+m3kGFHRRKVWBg+x50RI4K4u6qLgHz9MHU7Hh9sP03xylTbEQAGJEMHBcF34CEzECEjrOYPMxIjEwLjm7usOAAMEcIQVBiAkAiIkEtVlqeOcz1OZiwmQATIgmqu5gRk4kafogSESMABekhiOsem7TSC2WtckBgkQiDly7Ny93V5xWBcQVNW51PO03B/Oph7Jyzh6zUzYNqnrWimiCNXVXMG0AhTRosqqdf04VCHEwJwAyA20ekUrWUsGlcgE4KUs87wseTEPZ+SIPueplJxLzaLiYI7oDuDMEBiVL2scmVKTGvXKGJhiIAIluDwO//U4FojIARyd0AmA0dfcH9HcXZCK2axKaIquROhI64awp2zGDXx9iJcUFJ8uIgJ3Y+Zgjo7ujkSMiAwOAGiA7uhmai5q1awKVPNqXsEUgYkTeUcQACJCRGAEdDcAN9Wn5GD9VE/ncRinkIIDFBERFcVajZlTalJqXDVwXMvkFJsYO+ZG3YhC1yVLKqWqiJmbQs1oVU0XZnQUDtp0aAru6uaqhMBIidCJJARoe0oNiC554QgAGERca1WppmrmBCiiiG5ekZQZkD1EdCAzDkwfo7ib12qlGKk4UIhIxERARIgEQAho5pd17UDoCIxI8FQiq5m7g5u4M1SDEkkoEgcHZ1OsZqKOCG5gRgjIFAAiornTekARM+GaH1gpVVUMlBmIIziKrieZq1lRn0o5TdP94fju7q7SV6XWpwPGi4iIVNVxnB4Oj4fH9zK9w+UdTPds2oX9NuA2bhBLloOX91BuSR4CnAGyryVOIHUUMTOzKqaFKBBhk4BiBGnBkws5Ymi577r91f76+nq73RPS4fD4/t27+/v7Wuv9/W3Xt13bqulwHqvUEGLO+fHxsGbjTdOo6Ol0Pp6Owzhuaeufneilyvv7w/v7Q991sNZXDmBoDmLgtib14AiggIJI6L6iCx44bTb76+tnz29ePL95/uLmxW6zDSGggecaTiMJe4XiTilsSneeTsejg1U0RgiG5G4GvuIxT6edA0rTxGc3+6a7ziU1TTgPb07H8zJlUmubSAQitdYsUlTlX0BfPrv8X0hf0OGS9IKqqNSaq1Y1EVc1cTNQ9DXIOgASIAEwEDHhCtQimqmbmZm6IxExxRhaokAEzBQiMfN6Rvl6E09b4T9ytx8vUT0O58fjqY0ExksuRc3I3BkMAmnXVAdJDdY6z4XMiZnbhrSC1tguh1Lg4XY+HKZxHmOC6hsizlVrFfUcWNGYEdRVTCUbJ05tijERhVpsPJfTcZ6mxd26PnSJmxDQm1KrGjgVp1w1qzcU29S2bQ9tD7F1DgYm6yn48ZkiOaE7qIEgBkSMiYxdVMHcEcxcRMEBnBAxRuaIhGDmSGpmgGjuVtUBgFNIRBQDmRGI2LJU99q1aOKn41Gs3B3enoYPtWZiNK/mJUZnCtttIxoRZcnjw+Pd4fhgriEERC1VjsP4/esf/vYf/vK7H375+HA7LxOgl1I+5srmttS81AURIscUNzH2ARLWXE/1FOb3zT14/fpV2uw31y+4LOGx1GUWN1gLOPC1BCVHQyckCoyRIDD1fRtabnZprOP4/nHKx5Jrim0fKbSIK/CnDuoqUOZyPg2H83AYj4vN1OjVi677yVVKG6hYcj4P55Sa7dfPmg1TdNcqc9a5ul2eS16W17/69tt//sfT4V5r6ZqujTEyMwGhg5u7oTshBMaUYowxROZIkTAwhIBEgGAAiBgc8JK5+lqaAnKgGMR8mOrjaXp7ezwMeVEw4BgYAaqouoobM7QNp4gNYQAguORAbZP2220bIqqCG5CueGaIXdNdPfvyx5vrl7HpAEDdxlzvz6MA3R0HdknofcRnm+arF/ubdidoNC1HgdlqNdFaBYwy90uxWKtL41xy6WPqmmYDEMrsS9FiMhzrcISybHdXc/Xx4XB3PD6OtQrq40MgzFSmWk+TLEVgvXlVB2kjdhFrQTZwAoppu99pSrPWGGDTJnCZ54oqAOBSP89jwhPuBYi+VkUMzgSEYABZYXAfVBFcWTFQQyE5ktMlxLitzwUcAdCfgs+awiAAubN7CAFQ1dwROBCgmbkZmKGZq5mKiVp1U0Pzp93JkNg7hh4vLZBAFyzawdfT+uM7UbVhmg+nMTURkYqJmZuRiK09FyI2v3Rkmqbruk3bbJY4WXAECRxNLONciUxcAcTRHVQrkqcEHLDFoGI5F8mg7m7AyERIZEROBABaSwFgJAJWqWqibopuiOjmZuKgqgVQU0JkZwZ3Ev7NMtQBwQlxTSM4hBDCBc9aES0HQEO/FF8GSHj5+P2pkHEAcDcAAzQgJzE0NRFVMAM3RAJ0dENaETPEp9plhWGIiYlY1c1MVZEBaS3p0MzN3N3VvNQ6zcvpPDyezo/H0/7Z9LEgU9XzMORSAHFepnE85uU2+g/79CZtHxG868/bzXTVzAAMzbH29+XqtvVTbRfJIuLqLBDUXMTUKxIgIWJgDhwCgVuxWqSUChybtO+bvm+2gZo8lzzn9+/ff7h9dz4Pjvbh9h0QpJhUdZxmcO+6vtZ6e3e/Qil91yPgOE7TNC156Tb95w9lyeX12w/ffv/mi5cv+hjNgYiBGDAgRqCAzBSYmClEDgkporODm1GMTdtu+s1+f31z9ezF7tmLpu+BEMxhUcLQL5Jr3fgyYzWyUqYLoliKaHVy80uN+nTaIYADSiyiYm5OBCFQYAbDZayWVXsLAVRrrSXnpdbi/h8HY/A3fmPuZm4qKqKllLrkspSaxeq6ZdUM9AIcmoM5uqE6IXEMzAGZDdYkRk1V3ZGJU2iatEmpiYlTE5ETEToYIqyV9q+nL/7r9/abl6ieh+HxdN51HUGaFygCTqQOVj0Gca8hSi0kksdBluoA1HbsGlAT1XlZ9PH2fPuwDFlClzyEGMO0SC3VvEpUreABAQxRHRTQEZM75GzLKKdTPhzmeZoAVGqwNlnTM1qVqgChsSYALh4a5aSxsdRATEAkAOZWHeXX22QOaOayQj6X0ECOZk4ODmZeq7o6InNYEWXwy6H4qYY0A1NwRRcmDuiOoO4g1ZkAjER0OJ+yTOfzYckToCJSrXOtM2INIcTozFo15zrNeSw1EwESllrP5/H27v6H1z/88pc//+HttzUvYgII8zyaXfa+mWUpRUqTEnOI1CRs2KKr29zkQz2kEsO47x67RvursB3xdFAfxB3NyR0BHAkIiS2oiVo1cUOPhmxIIbgRghDVECugpiSxE05i8gSNAiAAkhEDuNdFllxx9i4BLAEaqkvOy1LnGjhR4NhSTMQEpAZiH5GYWvL7t69/8U//cP/hbc3Lptv0TdNGToEiIaGbqauCWyBs2pRSjCnEyClgihQThgCEQIBI8SMGCW6XzisTxSAGY9bDYbp793j7OJ1nLQYhBiCsqmJaXZmw72ITqUEIiIzEREjQNWm/2WxijAiIbiDrGRDbTb9/GVIjtTxtaihiY1HIUgBbAmPAqtUsxtC3UcCEaDxNKlW0VqniyiVOpXqu4uDApRQV4aYJBOyKUkyzTgOUJRLsthssnKWcx2HKVisEw8ioyYtBdRJumBkJAxmH4C6mbi7IGLqOMWwwVCbPEMiaFMGw4ZCIsin6J7QPAMJaPpm7uT1VkkDgTOgOU9GjyNEUQS1gBNoldAhrhw997XEb+Fqv0aUxDu7glxORiADYL8iLozOTA5mpuYuBiKmoqqmZODgAAyXyQISBu4Bbgg59hQuIAJEcQM3VbW2oPG0Yn5c6jEuogkTqBgAIQXU94NHMREzVElLfb3bl6nzaLu0MBibCxCripgAIjBZB1d0VqKTGNrvQNCFErpXPR59BswMgcSAiWOueWgUQqII5U2R0VVU3AwRiRydHcFO1KloABAA5YmAmopVrAp+qMWQOMcWma1JKKXEIIaVIhHqpaJ0IAqOB27oLCJDwKeL7x6IaAQzQPWjFuZqIl6W6e5uaFEJgoksihKoGrgBO6MxkDoR4gdccVM0BmhBD4hjJwdGJCBnJQMxKLZKXIqW4G6I/Qd9Qar2/f5iWebPtVYrrFOmx675v+u9TmAOZ4y1z26YegHeh3nT51f40zkUXqwWX6sti8yyi5iZIFpIT4QqqG7CKyTJOs45zFdjF7lkTNmzdfJIfvntT6vT67Q+H44Op8IxvP7w9j0OtVc3BMcW03e1U9O7hAZwcaLeTGOKSS1VRU4d1iV+Oz5zzd9/98I8//0Ve8submzY0KTYUEocUmoZjTDGGEEJYsb6WMKpCrUooHBqOMcSU2i72PfUttEkRwIHJ3BSmDeTJFzJVKTnP8zQOw+m4LFORqmgKdmnZuMPHJAY8L6Z6l5qinoZxNAGEMI/zAlWqxQtqVpZlKSX/x5GYSzvyEvfBHUy9VinLkpepzPOSp7lMVXLVqi7isnapzMDUTV0EqnitDkRNSiEhooKrmZuYiKEjc2iabtvtN5t+s+2Ie3DCS4IeCBkR3GnFW//FO/yNS1XP43QYJjBm4pxJFJzcwFRcXEOtrbIDoHvJdTyXuVjbcoCuQdgweS7D8XB4nE9CVBQCtU3S7KAVUUU0LxgZCTHGgMgYyICWRVXm8VRPhzwONRdj9tbIPKgEQyy1YKBuk3oKJVPbcGwQ2TgAkpkpqGgtSJWi48f3h+6uouDFkGTd1/jEJFprRVUzcSQEBCUnJWJiBkJGAiX3tQWFASy6stkKryIYIRB6cCOpojkL5DYF5maR2UyWZVrms+nCnNwX1TmXsZWWGWMbQwrudh6HD/d3b96+f/fu/ePD7fn0IFJFxdSG81lF1rfi7iKq6swhckBTrxmgInrw3jMvD/OR9X18uLpZmnTTX3HqhU6iFkAu9RoCIFMIpCLTOJU6owmao3qM3B5bbIzJb647DhBiTBHda5Fq7pGYiTmGLjapTRxDrZnQHbzx5BnykKfhWLWEmJq2Yw4O0DSha5MGDoQfi8sq9fHh/t33v3r35ld5njddv+naTRO7JvZNCIymrlq1FgSPMcbIIYYmhTZx01LTYIoUAzESOSNecMqnULYyfkAds8A8FD2PcprOD+OYBQIroYCLmbgSYd/GJmBED4gBOTAxQZvC2DTbFPsQiHwtoB0g9bt9yVcvvjSVj1vGiSBEbrrrl89/+vWXfYDp/l1PNaXUxLDbdLMKD6OpqFbRCm5RZBHDWsUckWqtUoqkYAzRlU09z1BzYGya7vrZDcwzhFgdjRgDMVAgAPYQQgwdUMMhxoAtSYIy5TlrhjqHftNdXVNIgx+i1KjIiEyIGPqm6Zv2LCODfx4Fgq9JjF2Oxo8d1ZVeNxc9FTm6EFkE3EVUAKfPXuASZQwMHS9cis9qCgBC9E8VPqwchxXqMxO7RMG1UWC+frqYHBGQAXrEDUNPCE5rVWIA6mCXPtanstIdRL2ICQgSrWcPofvK9gAyA6mSlxKiEHKT2r7f52WRIlVnBCSiGGIIMYUGgEVEdKlqIdauw6aDEJAzLhOVYMzgBCECEZoRgGtFcAgBiE2qMPraWmYmNFBQUzB0dPV1NQI4Eq+xe+VIfv5gAsXIMQRmAvCnAnqlRKyE2st5JiIAGAKtWAoAEJITX/4tohjM1c5TeTiMx2MeByUM19vN9X7z/Ga77VMMyBeekjO6MUZkNURkenp8IQRAbpoUG2YGB0V0MydkNQwUInMKsWuafd9vupb5skpE5PHxcB7PqvuA6jIxDAHvuvBh25UUVAwBmD0SUZOoD7DvpFSwDFJgLjbPPoyoZoEtRm9aZHIzVQVxFlEpMs9ymuSc41QXkSUPo8xyPh6WMt8dbuc8cWDH+d3794Hv52Um4u1mv93uAFHVhmF0p9ScHbhr2yrKIXCgUkvO+WNlKSKH4+n2/nG/2/fdpr3ad5urbruNTRtSDDGmmFbQLIYQUyIMdknTPXCz2e73V1eb3bbpO2qiM14eamLoG7raBl1S2dD8mHM+n8/n82kYhloXMREw8UsSsxLKcGVlu5cCtT5yzI6xSjEVQnQFEVtAJEGIpmZSVVX/vyUxl8sAwFxFSynTPI/DeTyfxvNpmYelLtWKgRqogpiprN1LA6lWipVspZoDxhAoOKIhmDv4UxJDxJt+++zmufo1J22qLUXVojkFSp42gQNcSHWfbucpfeF/4W7N5lzPY2boAkmtQc2AFVa+J9QsUgTUEBClwjLb6Vxyy7u+qRtkiAEVzKrIXMmhxCEUcTYMaIFBDZesgSlGJiYgUMdpUak1zzac6vGQ51nMvWkYILrHWtFcai0pxH67SW3Mc2IyQBepaqjq6uJSa84cC7f21CR8glJWMoeaGyAAETLRGj+fwjWs5zHgBYTjQARkdiHPOQaCiB5BghqIelm0FjVhNJnGWdTVhaK1HYfU6BzyUkqd5/k8z6eUWvCKIGZFZKmaRUqpOZe85DzN8zAM5/N5GM7zOKxgulTNy/I59UrFpZpULZ7FlkgMMXGI6A2UTp1mnh/T4mY3zxPH1G683eBUTc2feOAWQmg3HVvMmMuUc5aSlzplAmhz2+1jf8P9tk0tI5KI11IEhAJ3bdPGNmAEBS3qbFPeckI3SE2QogtVA4kNt5tN0/bLXOtclzlrFXBE/HTUmWqep/F0PN3fL+NYui637dLFvk25jTEQOJiJ1gpuzIGZmCglbpvQtpQSNolS4sQcgBmfGDMxEIFfmrEm5kW8zkoiyXLjeZE8L5rdKrq4KzgReg2VMYAHxEgcCJlBIkMMkKLHyAQrSmoONefYdGUePsaxdUc5IoYQm7bf7rYJsY5JJ3Bw1UjUBCYAcFUVMQGHapZFUKqJMXKpdZqm22lYyK4Jes08n+ZprFU5YQUuGCoFoWiMxJw4dozCBhQL7JF7Tk0K2FGhfC7nEUphRKWoMQFHA3DXlfuoqgG567rNUngcw6+XMmFNW9RXuNfcAQFXBqEjLFWHLKMrR9gELIhKdMFD8KngvzTNV/rq0+m6MgMAV0TrsunWLAXAAURN1FRczXQlpIOZAxgGN3Rk94i2YdwibWLgwAa4qBVdGSaqbrZSUgFgRR6QHdiBYGU8AgKuqB0hIJjXWodxAgzcBCTebPd5yafjqWRBUAQIIXZdf331LMaUlzzn4zCa45QaJzZzEavm5ivVEik1QAhV2AxNAJwYghupGjuE4IEpEIF4tupugRjQUdzNRNwBAn/kCnw6YIgwBAwBAc1MrJiqAmAIYZWkIBCur1FlmbMDNA2mgBhXBkZAQCQjxhBgzHU4yy+/n/76P7z+1a/uj4eFiV492//2j1/96z/86U++fnazTyGGQAQAvDZYPaiC+XqSUEDsNxsiaFIIAZHcXIjI1MHRFLvYau+A1DRp2zevbm5iiB8P/tP5/Ph4D1r6FsBn0lKWZYTR65yiElxSbSYKHGMIsQ0QERiUNVOdSafoQND12He07ZnJa1GVqqvgxSFXOGd+e2f/+O39u7s6l75acqaiMi2zAoTIpZY536JrLUvXb7qu58DErIbuICrznEOYERkQt9utg43TeDwdq3yqYFZySFVXiKnf7V988fLlq26zQQRmDjExh8ArdfyJhI1MGEJsu3a72ex2++um71YxwiWgkFMTwrNdF3Xn48P8MH0/PR4eDsfDNA2EtlLPnnqEDr6yOMHdVV2k5HxGXDAGR3VbCC3GgIZS3cFDCATmTm7435XDXJqPK8/fwdyk1iWXcRpPx9Pjw/3h4f74cD9N52rFyDAAMDiamopVVXP3mnVZpGRTBVFTFQBDXOV+Acy1KpgT8n5/5a5Ng9sd5ap1OKOjCMbQbftnXdvH2KxdEsQnWs4FIVrxlI9Y1HrzUKou2c6kkVQqOgAGR4JVMFBEaqWq6BjVYhVZFlHjPEe1LsYtQeo3p6YVMi1mc1UgaVfGAwcAzUWRvHHnCO5U1ZZlmec6j2U86zSYiMdEsYnEvUOYF1Mp1ZbQd5tNs9lt51RrzaXO46RNH4EQQKSWOuXQlrRzjpcMhplC4BACEIioma4M38AI4GZ+SUYRiWBNrVIT2zatYIfV9azCwJEwoUcXrsVykXFZaqlWObBJxdQ2FKHfxe1uk0LKJWSHWpZpOh+P9323QZSYCIuplmkejufHx8NjExo1XSU1Dia1lJLBXc1E1FQ/rjF3NMOSbbQpg0IZm0j7/VXb74kDQkJHGXG4VQAhOsXU9Pum5LicqlQFJwMwUG6a3c01Ncxj4nNzPN3Nj/k8zlpqQ3nfb9q4574LKah6XualFnNo++7ZFy/3mx061lyG4ViIb2DT7pMJi9XFxqC2e9Zsdpu2vVaJDx9Ox9vz6fa+HEasCkgfj0tcS2FwNPNaBWlxAw+qWSTEyIx0+QeI4K4iJrZkKCUsGWPElLCJ3MbYxxiJHIGZY7tShBmQwNWsllJMrAl4s20icz8sH45HW0RNETCsVDMwckC4EE0NgACcFBlA3UAQ0EEveooQrSwm5WNrzGHNjhXcS8l3d7elD4mAMeScsRoHQjF2Q1DTqiqIKKZFCtXg4pGk1npYlu8/vOus/Phq+yxAWIZcy6n65PH1w+lUZYKgTW8FIoa+77YxaFDGWO0KeMOpjQEjZUDPw70jcWw0NOdi7st5Hpc8m1QAmxdoU9P3/bZqe3cX/1tJzCobeEoyHBF8FToSMzI7spiqeUUSJCValVuXeLJGPze3C0sXAD+nB14yGPiUxCCCGdgTDu0rFZVWHgaQO4pTVRfJUhS1Rt/0abPbpa7DkJgB9CIN+g202ZEc2S83sH4RrNAFMRG7QV5yCLkNxMRds0npLNXmaQGQwNQ2bQiha/uu67tW4uxVjrlOqmZe1WrO1dQRgQOEgE1HhASLSyUwRsc1m7nw8RGZndGcVljYEH0l7l2oLCtT6+n6/L0QAzESI8DKX3E1R7vIuQnDqulyogu/G5EuWAyuUBkSEmEIbLM+HvKv3pz+8Z8fvv32bjrlgHDYnXWW6912t2m32w5DRDB3Xav9tfK7JH+OgBAwMmOIhOhm1dzNwX1t5nITGyCKKfZts/Tp2dUuhouux8zGcTwdjxGrLQp+tOWuno8oY5tqjBaJAnPkkFJoO2raEFNiBxSxAprRBRkdg8eIMWAgJCC1tfdgxMBEXaQmci1wv53z7JHzXLkomnlwNYvVQ6kwDNmtmJZttd12iLFzI3c0B6bAHBCwlqIuCO6m03iehrPZpyRmzfEACCmEpuu2V9fPXm73O1PBC0MhcCBeO22rxpJiDCnGtkl90/ZNlziQ43omr1x8ACbvKEC3LVfX47Ob588Px4dxPosVqdmsGuClAPgYiJ5iKyIHjoCsIGbFPSNqDAjKVZ70Q0Bu9Bsg6r90mRmo6VpmDcNwOBzu7+9vP3y4v7093N9O86CgEIATUyIKjITAF86KVM1ZpboblqrLPNVa3RUAyMFEy1K0Crjv93upi8io8PJ67pHczEuGGDc3u3m/u9lsr9qmiZE5XMrhJ1kW/XoEAwAwgCqwFEO0uHaqwckM2ZxUwQh0WngcNXAoFatSqeDuS/ZSQZ2BU0hNbBLl7GJVhBkZgQnZoAj4AtUsK1AERytVpylPY5nGMo+6TOAOSQiZx9mkmuTqVihUpiYGCEwIVKuXJdcqTYfmaCaSpUy1Ud3pp1D2UT/pCLhSYRw/kdwcEDEERiBmipGbJqYUQmRE16e4CoDMAZzrbGUuOWupOVs1VTBycBHBggQu1VVbJH9iRYJqnaczgplWQkMwkTJM54fH+3cf3rqaWn48HB6P9+fzcVkWKQLgarbSAj4FZAcVl2JFzaCQLAHJvHWvAAIeUFBnnACMKoRle9W1/cvddTM+uIiBszmoY7dNu2fbuEkwK+0tXkHacWgpjwsxxk3wQFXRF69Zzqcll0LATbS19Vak5jpPMlUuzVUMfWPCOWfJmVvdvNrur7YB+/Go0zyfz0PO2VzDZdF9FpORAlFEZkBXleILqJqYhShMiIEoEDAzE7iDFkF0Nc0FmCEFSJG7JkqTmhiRmSOniDGEgJGYCN2xgs5oGsCbxoiCg881CohVA1sZQhAA6LITHNzcQN2USJSEXNbkTy/qOo1FSzER+PyIMWWwPnEbwOqcZ3Qy9rrIguRtil5FSpGStRZVJWIzFZFSqotF5FyK1HIehlznjVWI2Go2ROU2tFvsrmKHu5fj1tPwOKB6Sl3fJkzOGKfaV+ww9hAcAIETYEBOsd9xv8sYTYs4qGmtxU1NDZG7DceYEmAi+jyQBfU1tTe5wBoOa21LFGPoN30P/DiZoSqxUhAkBQIivFQFT7YRFyoEPVVLnwimTzRTX38CKpq5qfrKLwVHcgZAJBBgRBPR8zgdHg+376fxUHTqd91X33zz6kdfv/ji69B3SA4GxMCf9SxXadTqTHE5ei/icXJk4hBSYg5qUqW20DOHGAyB52k5nUdCXY/ONpdcStN0TdOIdW6UFylSwIuaqKoKERInaBre9AGQ3RwBwRMYmFepxoqmgMDoblZ9BZvgwoRFcCJexaaqrmoiumpQP76XlZpDIQAyqCESUPDV5YXYKQADAjFgBESHJjYxBA4MAOp2USMSImBe5MOHw9u3j4fDrMW3nIJZPU6Hd/dv37x//rx/+dWVxc5MrUouWdSMiEIMkYnY/ZLWMiEyqspcal3LbYBIEYlWAlsHrXRtznG33canZWZmy7JM49DHotO4nN9Op18Ox9uaF2YKARN7l6Bvm82m315vN9umjcigXuYy+XngakatcLJTtsAeEUGo5oTmTbQYIAYGRAFAwa9f4H5vi5S50DTCedD7oz5O6ZTTWL2ImCqCm5V3b26noW6u9m3bBQ7bzebm+qqJaZymcR7G8TwN53w+yTzCU1xeLRcix8iRQyROHJvU9qntVYqbXkTptNItL4uTiIiRCBAN0NzVQREY4Ik4hOjgYmoM3X7z9Tdfx4DXN9vN1eZXv/r2/fu3ZayGCE9eLCu86eiIFDl0/fbZzStkPp2Pw3SYl+JQKabo7BBglesbmKF/tF/57Lrgf76y9F1Ecy3jOD4+Pj48PHz48OH9+/fv3r67v/twPDwsy2wEFIkSxzalvuv6tt/2qUnEzIRtADACp5yrY9BpynkuOUsuyzgN59MyLVal75rD4+3d/cuHxy+ev9i3XXSDedYYNs9vji+effXiRb3a7/uuSe1KG0Ncu51o4ID06y1tBzHMAoguZGuwRq+o5mSVzKqTU+Q5Rl+yFFUxAbOllmnJw5KJwThQikQVwcxMRCs6Aqh4JQsRuThlcRJTKKLLXPMiedZl0WUyM+OCWVSU+hTYrW1s12MT0aUu43w6lPN5XJap6axpgwqvorE66xbNPiUxuOZOa0uJmQHQ/dK9BQAkSolpVSMiNCm0fYqREUxFa60iqgpExBwk4/kwjUddlupkofOYYqCuiV3X9xRYIZvqNE4cVEQJQ5sgBRbJOYPIolrcVLwO4+n2/sN33397Oh5qGQ+nw+t3d2/fvx6HSYo5rEF9RWL849KSolI1UggxNWnbNhRSQwGJBaGIupRqoIVyxpP47kdfvdo96+aJYufk0c3FpN3325smboPl1Nj+Fe5q/nI8nadhXOap5CWXejrOmr1MdTwPqhJDJIn34fEch2E4L3UqtlDEzaaPfaPKoLjVXdrC7qtN27c6o07VuFKybtcYoQ+F8DOiO67U29g2qaao5qZeiqxiETVwU4IVGAtNRCLSC4SqQg6gmSBGyllLY20HqYspNgJtoC5wE1OTmojmsV10nMswqM5AklLY73oL6NNMVd2JEBnxYx4DcDl+q0BGCQAciR1KVpVKbpSkZpEqn1aYGZq0ZC+26cW+iwwmZRiGIiUQxMiKJDkvwzAPQy3ZBJDdVVctulXJgHlZOqLtfh9yyFLOKsCWuk139eLmq59+83t/LCGdrm/GzXcH+YWczgSh5dB1IUA4GE+G4ggK1Z0MiEJs+s3+WbvdUWwtT6HtaOJ8yrXkkhqg0GRR9YiUOBB9yi+Dma9Od2ZmF9XPWiISMXdd3Dg1WrNVI6qI1VEcDcgAwFc43wHNEX7T7gDgI8awgjFr0ohP0AO6MTrRGvQQgAHdspRxPL57d//69Yfvv3043J7yOWzSF29ef/Nbv/Xbvze9+Oqrbrdv21ZMY4y/bq9CAKvC88l+YrXaAgJi5kjM7raWhojkTqZeqpZSiQ3QkJZxnvpxCCFsqHMTVa1ZNVf3ulbk6LSK4ogAGQghxDVnIhWTqiqKCyARU4AECAbmK+Xlo6LH12QGLhqf9euzN4JITBw5JMSgaIAIFJzIYQVYCICY1u4qo0PLIRABXX7Yis04kgE5MGHoUvvier/F5gpjY1aXcXfTXXVNSsxNwIZdxG19CMBMFChEQkQ1t9VRBkEdqulcSlmKuxGiR46EfDloQBnZaxPCZ2orN9Ocp+F8Zn1cjt+P59vx7KVugXoiDDR10Tdt2uTmLH0/xz5pRFPBeQ6Pp6Yqpc44GpKiO1lwYa1ADilYCh4DIgGSOxMEDpH7iDFCAowriwq8mmX1AsGQCUGMzmMVPc/iu61e7fdMHJmZENxWt0YTIwCGzxJlAEaOyGH1O1y1YxyZI4C7IfilVCKEyyoBgCfCtcEK7wpqXVviK55pClVkqdm1NKD9pvvqqy8RdZjG83i+e3gUG9f043MHGkAgAgAMFNo2EfM8E+PaHBZEQiZmUINadRUG/cdtYsysqiwlj/N4PBxu7+4+vH//9t3bd+/evXv7/uHh7nQ8LDk7AaWQuq7Z9p1Acbbg2xg33S7FRECEMXBU8at5nqZpHM7LNOVpmpohhmZOY80ZXU+ns0MROR9PV89fXCPS4XEi7MazLLOZkorIbtNKSimEwCEwkxMhwn8bT0Kg6JgUAkIgZCLkoEik4O4makvmYfKmMUOixLEjJgCWCmXWwhgghJDaGCuLmbmoCBMIiFkFJwnIvuI6UrRWK0WkulYsBeesZsZO5mq2LA33EWKktg0pUc3LMvn5IKdzXkppi282ItVqEclSF6Gon+gKDnrp7jsy+mpdgQxgZqsLDzExEzExEqYUQiSi1aFKVFXVzBHX6lKhZs+z5lkweGwphJA4Nk1qUgRCV3R3MwdxKWZiCEiwJkQoeqngFWSep8PpcPfwYZ7O03h/OB0+PJwfHx9LLq5oDvZkd/jZU4GV+RFTbBK1sW0a4pQ4xhgZHCy7ey266DLNcAo9YcDdrqPQ1pnQglUtJVMT+p1iYw0LqgEgAdUUJAUTrguWSfJQZfY8lWUSExUCLvOjHSjAaTgsdRaU2EU1aFtwYENTNmOqAMHN0KixzfMmBGeBcphPrx/XU+7jdcHAOMQQUS+9BFVXuSwyAA9MZkhggcHM0V3BbcVRLw1kN3SLTKGP3ZX3O9hsebOl1AqxVi0+FhndImLEeSa3RlNrkkpVu7T46dLvuPh5Pbm2GYMQrLRzXxZxkYDGRXIutdTPwX42aVx2wfZBwXWs43A+UC590zZNYvU6Z8kFzbomxQAialqtVmNSsYo159y07Xa3j30D40llqSSxabqb59dffP3i6x9LbF+A34zL5t1dqbrvups2thED8DHFomF0AIdIFEIIKUbitts23R5CckCODRGbWRVRZFhKmBYo+WKd9NkVLv5yF4Xkqop3BwQ3RO9S3DpvpYCgIRSDolAMFUhs7SpIIEQCX58UPi3eNSz6SvewlS+zblHz1UFKCT1GBgZBRcYYGkMdjsv4cP/9z//p9T///PaH7+4PdweZCkP8+T+++vpHf/T6zZ/82Z//2b//d89v9rnUkJrPMrKLN836C11Ok9V7jB3Yca1eHMkIwc1LkVJEn4TXCjDnBZEis4Oo9VLnWrOK1tW89sKFuixoUSulhlVrAOBWzdVKrVKraqmgktqWY0RCXHGWlX+kK+zieGEgXf4KP+5/RKSQQmxDaIkCkgHCRdiOCIzGEIgjBtCmYiS11ZxVfW2hmyIQEiMhUNO2P/rqC8D21dULnPVVaDYIrjlu0+6b66tvbvZXG24ikCJaw+iGyAGIgcjMVUXNARENkShLnXMutSACE68yK2IABF9rMRGrn5FIAJjALB+P91g+4PIOZGma69jsgF8YqOtbxbECnTOdHzGOsGskhqpgwxLvjvuldIEDEQAqgKMjOLrapV9IymuTE52Dx2ghUQjMTqzEbru+OmEl9MBUN8UiUGB3kyWL25SZYteqiMzT4k0ipBQb5hxTu91ebbc7+ujLAshAASkghguWu6KRgGuB5IZwcRICCqujIwCYu5ihmUqtlXyliWAkIjevVeZpPp2PLqVP2ASMkTabzW531fd74kadVmrshXp/oW/j6kVZSh2HgYjyPEsRFwRDd3MXIDCzWrLU/Ou2Sr92rTCpiCxlHsbhcDo+PNx/uH3//sO79x/e3t5+eHi8fTw8ns/DknM1i22zweCNY3Us4JNxm667l/v9VSBOoem7vomJkKXWcTgt01DmOc/jMg5lnmpejof79+9eD9Pj69fvljy2XQohPdwfpJzLxFIYPajUvOy2u67tUtumtmtSbANcCIfwWSqDSDG0KW1C6AM1ATkGTi0SeRZTcRRxoKqJIaQuUEcehEGarUPSjDUgQZNi2zXNyltWVZWVwlcVHEHZEQRMtNZFalERB0fCIIrVxB0QYlUcJlVR7hEwtV1MCadxnKfldKBh0iJu6udjrQvWUiXXukjsVJ+QGHOrVXIWx8BOl84QwArA0RrDCBCdgjdNDIEBVii3iq60xvWRWhVVJcaYiJUJyEKAEEJgZkZag7EbIbWpc6zDeFiWQgiB0kXrIZdPwcxyLXMex2WQOt/dff94fBymOs/FBMAjGKDjxSL26QAgwrbjzTZt+qZLKUaOkSgxt7FrWgd0rLWa0JjtaMu4LR0E3D/vn/+oZ0ggKFMez8dSq/JQTNDPdRpPh/Hxbrj/cJ6HxR2seM3uBb0iZeYSrWKtNs2Zy5GiTeU81yWrYAjzUVM3UmQIblGamUXyZtt1KcUufPU7N+zElU4/PNbTCUj8Qr4HN1c1VYOLbTqQWVFFR3dyRbPLKWjuxiv90wAcVuyEmBkDMVKoEAv3tHmerl+l/XV3fbO5fm6UDsNyOg1TRQDa7DapHTPdu5nlvLJUeWWq+lNhDAYAiiu7GwzXtUoIxmo5q4s2DFQkzHlZysc6mcCja2u5lXNTUEx1GobDA1S96r0V95yXvID6pm37za5Uu729l1q8FmcGA1etpXjTbPb7ntH7zuezLSdNbXv1bPf8ZX91U4hT2zVdt93t0OzrzeaLBORTAs+bABI/zKAA+yY13NbcIGriyKHhdgMOxBEvZvFUFTRXOZ2x5OK2MvA+S2IUzMEMVqjEfE1lHFwUKTC0AdtA2cjcivhSLbPVCGhei4ALRL5wAeFp9X5MYj67Pv1Md3BnBGZsExHDRTta83Qabt+8+/6Xv/jlL37+5ttfHD+8PYzHo5cZTO7x7nQeqxTE3bMbYuo32zbQ51XyWgGvKtE1UcWL99hH7bEBIpExQ4ihbduu7zeb7TRtkMStSsnLMg2BgNR9Ni1Sy4rdwwoNro5SF0qLM7MHICZANxA1FS1VBEBsbWt5AAjMCOb+5IvzBMasXmnuF9bL58cKEjLjKjddG4AfE8Snkhw8rNV2AHRlML8YA/hlnRMDMDg1FF9utnyFu4UxyTMOPWHiTdzEpt80mNqsgcWJPCQMCZAI2QFVTUCJCPzirGiuDh5j8Atj24tWAwNyxcAOIpJLSfVT1k9ETRNDgGk8QX7o4JwaavgK41eUvqlal6GYqEJVhVIjF/Y6x2jGYSz9uV7NZce4gi1rm2ANDQaAZuCgRBXRCDGQhaApQojUICdgBgNeiL2NoW8aDVu0RjAwePK2YWsSN6kRkfN5RIO2bZhZzB2ZY8scUrdD4s/W2Oo3eLFIulh1IhGu7SHE1YvwU5fzYsHkiO6ubqiCsqZ9Bk4mkqd5Pg/L6WhSsYvYJm6aj8aGgOzI4B8hzQvlzHG1M9RS6jRNgLgsSy1iSuDs7gCKBIhmVlWrqth/BxRjZlJlzvN5PB2Oj3eH+/u7uw9372/v398/3D4e74/nwzAO4zxVVSBmZMOgEMWDQULex+Z5t/mi394wUiDmEJEDcwjBAne7zQ26olWXXPO8TMPdh3cxhPcf+HR+P47Lw/0BKdzfHaWy1ta9YUqmMs3Dftp0m2a77a9s6x1gExGZnD8vxlJqv/zyp+MpI7WBUmBuIjcNIUGuLsW8ChN2XWw33O0CUs15RK99j/t921/vAicPrjAOM80FJM8AFRHB0dxUcS3ZilWpVYtodVNHDDGRIyEFd3UgMVcRBvANp46unrWbTTw85GEspzON88XCbTiLFHRzL1CzS/0sJjuomlTlQAAoa2tstTpwvLTVEIDWNQXuplWeXCcv2jWkjzEKmCKzM7qjPK3MFXBfiypD4hijOkixslQiCFxFBBFVxMwIaHXKMK3zPGTXx8OH4/lYlMyQkFNgh+iuCpXpk3aECNs29H1quxhjICJjQmJ1rKYArqgQLSZ3BgUE0nE5D8tx33PTcgTUJOp1eTjffZgOp2lY5vNpPNydH++Gx/upLhpCZAhogTyyB1dEi+Toquq2jAtFUczgSopaYcp55goBPaixhpbG+2m7765vNvubrr3qORIzYLqIwH5zm4itJSjSR4jWwRAQVsNCQ9CLFaHT6nu0kt9o/S9S0/N21z170d582T9/1V4/a/fXaXM1FTsXuR9tHJUdkZvEXuJsTY3ujVGsILaYgar6amvgioAeGJ7wGAMo6lgkqJshIRmCmC+5LEv+uP0ZoY+0Dd7p1FQgh6gLatVVX6PgCAF5t9l2KTx7/nKalvPxOC05EEbCam6qpZQq4kTGtJiZWaDQ9Zvt8xe75y9S1y2lLCWL1L6J/W775XbzBYvlqVGt7Bns7KpI101oYpgHFDVyNTWpXhVXjd2qj1D1WqT6gqXAZYbJpyus5ZkqqOOaiawTlFxVEDxmUiCrZKIKxXEimQi3kd0t54IuiCkgrdtiPZUvQfYpiflovIaECORqhBgCpUhd5BDAwKd5Ptyffvjl65/95d//8u9/8ebbXx3vP0g+L6gS2Cg4wHnJ//SLX8xSq+v9491/8m/+rN9tPx37AISr0+XKgVxNuw0RkQzRzNRUVruWyNj33Xazd7f7uw/utZZzXsZJipnMywhYXScEE8lEEInMWUXX+mRNWFgIUTwhBwD3UmsuUkXMdHXCFdFagSMBkOvFw88uBqgXU38kdPVL6viRrQlAl1VpDghm68CE1ZgO14xbEDkwQLCVQCfqouT+ZFPOFIJzUEChK2FfvByX+TCczErAXZvi3MZq7SJpKuGmg5sOto0nRmZ0NnPIBZwo8QobqWqRmiK17U7NcsnTsozLNGdbakocG2ItdVqW+JlrJzP1m77t0nCo7kvTW982nLahfZH6b3JZHuDNPN4DzA4RoXUPVc9IiNgS7kO4ib55ov4T4Mfg62Cgq+EhrkxvrggVbBFfuacRA4MijqrVDBI1LW/UmmLGMex318/6dL1pvNa7+/sPd/fH46lp2s1mwzEqgMcGsYW2R/zokIsQ2JkErLhUciF3JmSmlYT0UTwGiIQXoy5i4oDETmgIakYmQQyxIJIueTk+zqdBlgXdKqQCGpiWUoZpmOfZ3QKzgoOtnnJPLoIASBQIMgnNGcDmaalSHRAwgKuTEwiZEguSroX5b8xFWluPqrosy/l8fjjc3T3e3d5/uHu4u7u9e3i4O50O43ielzHLIiYUYrfdt9t96nYcO+Q2NlfXz7559vwnm+1Xsdm66pLL4TCVZTGVQN41vO2aq12/6UIbSet8Pj5EDil119fXb952p+H2zZu7nOs0GGIHNhGeAgep+TRsdqeu33Q3N3tzBWDCZkXB6DM+3Haz/0/+9N999fK3zAIRpxBipBgAAERcq5k5EzZtbDpMLSJJlQVAQrDUcNtHQs4Zmv7hNPIwe1Vzg0DMCGKsZqKWS53LolIZaDWjRHRaZ0C1jajAOqDAFBFTy7ub+OKrbduG06SLTodRphnaloPhNKsbtpGZorF8jl5crCNWYo/6WnNeWuP4ydJuNc8sua7tWgAjvlgqECGYr/x/X3tPCOAVHMHcxQWVQZiEAq6GXkzBxbR6yYLkTHlZ8qVFYsAUAjWpaZhwmQaTeZ7PpU5AiULDqSGIKZFZXfIY+VOLnxDbFLs2pIRIWrWAQ4BGDeZZgRyBsNfdTYf9HhA4+vvb1+OSr25eXl3trreBrA7n4e2bu7/723fff384D3UaS52kzCLFALBJKYTEGJk9hdUPPsYYAgNCNRqdJHQUqQVtZKH5LPlci5VitVp2tJhoe92Vr+f5ZRdvQghEM07vxum8WP3Io18VKqBqS6lzKRwSXAyF17LqKdFBFMesqm4RkRDUbe0wKSESdZv99Te/dfXqy+3Ns+31883NM07tIn46jx9u7+7u7pdpYFStoQ2OkLi/6bdX2A6zvKtyUhXTXEVU1FyJKXAgRgRjJEZyh2WpAbANIXEIZE40lzyXT0lMYLratM+62MHSqCWOJcCub2rltmmb2HaJGu7wZs/bzcsvvnx4ePz+V7/KOW+6NjbteZhVpJYy5zxM8+hy9+YNyPzF9fbldnf9xavrZzeIOA7n+9t354e7BP68b19tmq8Iq0NTZIF8NGtFPMSbJjaG7nmus9WpTM00mZSMVT8lMeKXpqc5rcZ0nyHKQcTWv75MplrNrtdBK46AhRSCCbuZkxqW6jlYFgOXXAVNmNnxyZgI8VKNwoqu2Cdf3Y9aZ0N0TwRNwCZgIDOV8/n47pe/+Oe/+/k//Yd/+NW3rw8Pj/M8gGcJUEM0YgcoZsPxqN9DbFPTNd98882XX//oIxkWAYggEMAqmLgM3CA3KyKuRWuWuhAG02KaEbXvNjfX+y++eGW2DAOdjlLzXEqt1QglUCUCteqgSECA7uRgq6+XVjdyIgOwYLhKrtZEbS1b1oFH7k++mbZ26fDShfm07n9TY/Vx/1+ofatICJ7++ESOWPnv9tSfExUDcyZEZAQ0YEHK1c7FHha+HdP70+b27OexmiihdQmGhY8z94l2Lbza4jfXYDvftdASESO6Ia8OwCu8cBGQITdtY+BhIScXr4UUEI1gpaQg8ypt+nhSrpqddY9z8NRA6ELsm6bvYSbkBBAAyZ3UIjgLO5kHDwgtcc/eMRsRIK8DDS/EELMnF2gyAHIP5nTRu6EZslEiMARCKswWMJCyqg+5NOCUtrvr/RfX+zpPD4/38zLnnJsqjtx2iIEpRgwBYwOf0UiZmIlX4omB+zoYjAM5rqwwQmB8spVG8rUL9wTGGAC4kYGbupIjWc2SJ6tzAFsTVbh426qZIUFKqWmaWi7w22oPAwDuzhxSSik1KSUzRSK/OKMRIDIYukEgTyu9F4h+w2EBwNxU85LP59P9w93723cf7t5/uP1w93D/+Pj4+Hg4no7DOFd14BTbFNv+5tnzdrPD2Iamb3f7/dWr3dWX3eYFUF8KS5FpWA4Pj6fHh+F86prw4x+96lMKHJi4lKw1I8Jm00cOfQpN9Dfv+PWb76bz5BopqMgyzceHR60yjXM7DG3bNnm5CQFjiIFa5ng5qp88Y9q2++lPfvfF9Y9EEQBT5MDIq7vkSkMyR4KYODYQkyHZZV+jIQMHQHARUOe37z48nh5KCVJlPf6NntSvplJFRYmRkYAREMzUAddqTWs1UzZ3DxwptSFtUkjBY8xOY67TApxYnYpAYGwjc2BwiTEi4ecP5TJvbI0qvlo/rbYluP496DrG6cK3Q3KOFyI/OTACMXAEUOBAzMDMjkboK2lKXY0EHB3UVS8j6wS8OpBbAjDk1ZWQu5BSjF0IW/KoeV6Wc17mWrKjEUKgJsWw6VszMSufC0cQcWWPIZK55prNPZqnxCkisZsLRuHGuAEDLLUe3999+LBstuOzZ/sffdntNhEJiWlZ5HSox4NMZ/MCYCESxcARAjm7k7kVE2IjWv2yVnstZdSYKMbI0lZjpbqyxKxCLWauNSghLVdN2rCmiog4wHJYZDSv+NGJbI3bRKSqVcQAkXiNxeufADHE2HR90zYxcmQMgLjal6x65hix2/L2unv2qnv2KvQbDylX0zKep/z4cJjOh7qMYNXRpkUqGaG2kZtm22C3XRCoz/MIOKh6VS9i5E4RLiXeevqaqyoiU8McEEAUfWVLfYT7Ygyvbq4fbq76UKIrh6Z28VrTNIMJLKUG5EAhhdh13fV2Q1pf3ewY7HrTAoUJXVRFZSn5NA5a8+3jgb1uNp3FuLu66vpuGIa7u9vHh4c8jT3TTZP2bdiC5ILVfOe6D3gVHRJdd03rvW02gVBS40xWTU0DcUhN020UUCuIB4wBc8HsqW2RPy2zoOru/tRjIvdPfSV3pZrZPLlEcCMGJHUvYrUKuVZRMOUqBrTKmWnNHNbD2exCr4EVdkCkFWADdktoiT2ikRdfxuHD23/6q//Pz/76H777/sP943mupbIomREKEVBAYjRD9yz19u727ds3jw/38zjYM/tskWGKRIFi4BSYkdw9r6SmMpY8lGUkTzWFeT6mJjapaZvw6tVzwnx3J67zMg5SwESMDWB1Dq1qiu5IFwuHdYCNGYJBXQlthiFS5EgUAKqZE0MIwKvXi6OuRg9AzAyMiEakIrIqWt19FVX+2sFPyMyryt2A4SLuxdUrcO2Rq1txE1NzM1REDITEFIBQjCfV+2F+/bC8fixvT/o494sGs4WNENJUCBAVPJD0EV/tYVxgKv7FFV1vIDkyEpKBilRz40hE2HIkRo7s4ICJIsW2qaIqBkANRxNB8m67/cgjcQMTUCHEiBTBwV0Mi2KuXopIrl6FObTubRF28BAkuDggACMyIK+ZL68TBVfJ7ZqtoCFZCAgIVUAVFBAQKAAH54BIAaBHj6xVs+sowzjfHs5Nm15dd4hXfdcYe9emc+QLGxpWJSMCflQZPWWWRJFCIiZbtXBAl9kMgZ0QVzWzryF0HdxhftkI/NF5wEHN1ZDXYaCAABRi5IaYmS8SM0f0tk2bzWa/39aapwmJyD24f0JTY0x91/WbTdf1VQQQYERRcTNEBnA0ZbIQUgxGqE2zpc9aY+Dg6pLLPAz3D3dv37/54c3rd+/f3t7e3j88Ho7H8zBO81LViLumb/rU9Zvd82c3bduLY+p31y++2N18sdk+d2qGsZhMZR7H0+Pj3e3d+7fvXv9wtd+8erZJ4QWzj+PxzQ/flmXYb/u+afsUuufPr7Zh28ZlOFsuFwN9zu5+HqZS05LbcYwhcC0v+jb1TdPENsXIiE7seLHkjzHcXN9sWyuCDhAIiZzQCHWdEqAijsYBOHpKCk8u4mvTDUjXdu804/4adw9QZphXTBMAiYhtJYRf5I6X4cNk7rWUuo5gqLXWgu5NCO4RMTrEXMCRBBrBssi0VO0dzdkBgBgprOq8tk0fkxhcu96uYADI4Jdm5ef+rhe5WQXPaKsnCDs1SMEDemSIwWMgSoAOnCBEbCI7eCRjBxN0NUNxdYEiBDIXVw0C0cgRGVOX+k27Y6a+629unrVN74rTMN/d3+VpkrUklIxY+yZS26Q2uOI00qXm+bjEHE0RFMV8nkVdG/Om65+/3IeGTsOxUKk25HnMZZ5GOZ9yLRlhfPZsq8vNT3/68kdffsV8c/uYDI7372V4rHUuZLpJIQVCdFGd8pKlVilSDNwdiIAgCIbSJKUQOTAaceCuZ0TGQliJCwkIBu92Tbtt200bGgRFV5dsnAMVwk88RWqalFJCQjN1AUJjJgMvIk4YYtPuNi++/NHN85uu79aBRyqylGXJy7IswBj7De9voN0opWIwn8b5/e08L3MuOWcsyz557BtVmadxXrJ5Lanh0HVp9+zLTb8bTw+3GB+AY8VjLQIiwSEiEjKuemB9UqYGBnYRMSMIAJ89lSalb776YvjqK5/vECU2my13zxumQz6/uxvnPDcxtdEzI4PuNz3qb3/x7Pm25a4bigbQBcQhFCnH01FKXnIJ6MNcs1jXNkzw3bu3333//el4RrHdJl11ISV0A2OCQB3RTQgDEKTN9XbTQgovvtmVZWm2jUfLPi8O2Blsmb3Z7XtITpEpQJ702Fw9exbCp9G8YcVg9GIOAuqgBhdBprt7dfPgGoAqIDiKeTaYi5lLEUVTroKwlu6goPDRXuTCg8HLHORLhoyMwI4NUiBxLfN0PHx4+8Mvfv7tP/3jD9/+8nhelmoa0ENQdkVQJQBAgJjSdre9udp9+eWrL7/4om3ShZ0NAADMvN92AMABYwxtExlQVM4nPZ1zKUPJY1lG8jqTEV2c4oDYdGH2EIB5LblXPhuty2EtsRCBANcDwMxdEUDMQAUQXck5ABIzeAxu7sS4jqdenQDdAZyJVrsaWrOWp9PIifEyZPvT4XIZBAHg+KkYAHAjv3B7zLWAyWVSAMBaFxChIxvQYnTM9mGA7x7hh/vwYeBZOg4aaAYAhEasU2+yRgc/zV7UGC/CNEDfA7aRCNcpWisniNbOLhGvgRzDmmrNuQ5lLKUUzCtRHj9TJ+El90uBG6PoBqYeAGl1ywE3QwdCDqBcda1An/Q3tM6oB0JgdL5MHLmMEV9/ywQpreWpu9k66Dny6lTtTogYYLU9IxEpyzyP57Np66qBsImrN7G6F1UwZnfxtZjRS1ICn11rVkUO5MCADMS02kMYotM674qfGoUA4u6IhBxC4BAZGQACIgXCwMwcnZpN4ZhWb7yLKStAjLzdbp89u8klhxCmaRKpRPixOQsAMcS2bUJMzDROU4yBicxWj2VCcFg/+qZFTCL88sVXMTafvx03q0seTsfb2/ev377+/vUPb9+9u799OB5Pw7QsuVR1iqlp9832qtlc9ZtNv+kDs1dlbmPacujVYJ4XKTVP43x+PD3c3n94ez48aB672O/72ESYh4fz6eH+7i1o3bQcN+22CW3smPebJi7zsG3jspzXKVHqtWitUmqtTEGEppHPp4fhtNusvcmYAOwjEoOEqY2RIQrYavNATuQIRSSLTEsZi2SgytH6Dca4zk0BVQdQRCV2QmA6d+3Sd3KKUooCkH2yDDNECBwIiDmuNClVzXX10XCtLuKMhKFxa0pOxwO8eT2Gpt4/2DDivEDONs8amQgwEC4oHp2h1vprgzkJL8NFn6ahrTQYQmcwWGmNWl0z+IIm4IAQnNRDgxgx0Gq5ZgAG5CFASMDsZgACbkAFAlhSQTaA2gClRcCh94Rxx327e3bz1asf73ZXzNy23dXuKoVYc6EKJ2Zwr1mWKZdaiYWxySkumU10nM5Lnj53hr2Qh8WKWK1g7oHVXTkisM1lmvUcaKw+HQ/zMrvVRgVqyZahCd7G9tWLr/bPrn73D0K/WW5fy+P7ZXg4o+rNpu1iAPAidZincZnHecp5qUVKVVW3S8q5umUFiilADMShlVApWazaGTsGaHfUbCICyqJYkUpgD+HXCxhEiMwpcgwUAxFdmg6qUNSZU7+/ef7lNz/+3d978cUXbdeFwOBepc55WfI8L4u6haZptrvY7arC+TCM03g+HnNe3B3BAnoK1IbkjGwhk5RaCa2qhcBdu8WKY/kwzOIYQ7vtHEwLoqv6hd2rhgarRHd1/VI3XO0yYvwIksUYXzx//uLlq+NdFckaekybLqUs85ROWkSYVhulMg42Hvsu/PTlPt9sKqVjNgrhtIgQqbqUmnOuVYEgiy1F8jwPw/nucDiOS4j91S683Mbnm7DpQwsJWwCTGBosND3UWYOpZyflrYcIFNuQvrjqqvTLwcuIdWlrrYuRXny/VZsutj1+dlwGXcfTrpxqdHUvBmKgQKsWTM0IICIuDg5QEReDoWpR0aIMGhkTExOhuboCElJ0J/X1pHFep48S0Ar8gQXwhhBMyjJ8eP/2n372t3/3N3/3ww8/nM5nA45dDF2QiMDVxWRGreYi203/r373d//4D3//T//0T37npz999fLFpu8+PpiUwhcvn11fCRCEyF2byD3nBT2/e7eUfK55qnkGLVqXeRmOp/uQ3gIF05rzNI7HUmZdFUampr7aFPpqkeruiCtZmtDRJefLoOcneRuu1Nt1DuNTHwhhld4iElF4SmKIkJndTVUBgczB0zrg8bLx3YpKlkIcEJ/mtjswADuSAaqp2qJuTKFtODAC09pkEPPiPhS7H/H9ED6M/UMJhZgaTKkGmNmcIAF1Bj15EBWtdZDy9rSKrzAwNIztWvthA0ENEdHArKqb86UoZAZA0zLN97d3x9OgojHwbrNpr+SjbScSptS0bZdSW0s0dRdgbyJ2SIlJmZEZOIFVU8+mq8kNM6GhISu58jol5JIZ4NoeBXRgAnaITwbZSiudGoHRAFxAyQkRXA1ErJQqZfG8cAotUhuIUIvOpZyX5bRmM6ade1QxRw/spvVzk6jVGxIdgmMEjEiBOGBwVCZMMcQQ1hGQzOj01FsFJAqBAxGbAyGFGJgYIKRGrmJb8mwqbhWsgiu4t117c3OtrjGFm5vrUiqArwAAfEI7AcByzqfTcRjETdwEn4SA4AhKMXU31y92u2dNe/3bv/P7XffZSEsHE8vLcjoe3r5/8/33v/rh9ev37+8PD6dpytXckJFianeb/YvNzYtmfxOaxrwutU61LFBomAsMYTYAlCXP58Px/t39+9cfXv+qS+GP/+Bf/fEf/f7v/PhVk+y77355eLwFK9u+3W3SfpP2Xdi27Waze3a93fTNd6+e/eIXf/NwvMUQxGmpTkRdT22iQBzYl/l0Pj1e7a/qdu/d5sJff7IuXg/LlcyqrgTOAWudzucPj4cP9/fvx/FQbWo6e/a87bchIKG6iCF4TBgjxRTncSR4aOLEnBGrOajCOiKmiJl5Sq07kbM5lCK5aM4gAogBVxyNYopb8OZ85B++K8fTSBGXpTudfJ6gZDidstWqm2iFZLZAAjZzf5QnQR9+dOyN6EygKwC99p/ZDFaNTM1uGSGDCZobBEP3FrmNq47PV68bE1lRYUIVLWX2ANBK6By3pIFUQFqP1xuHEI02ur3afPny5ddf/finP91f3TigmqmolgwmRKHv+iY1eZFxWESFoyKezXRezlLKw/3D4fCT+vReHNzJzLVmEzFQZgQCVJHzcK66vHn7YZHT9oVVqe9ezy7x5YvdtttkdM36+hcj6f3zl4+//a82v/8nX/3W74T339f3353effvBs35xc73pegJW91zLuEzH4/l0Pg/DcBqG83layiRokZ08BGyatue2VUcxbS0IK0bGxJwIqHod8zxO40RCW9gzc7NPaR8v00ifcsnA2DfB+hRDNOc5W1VT8K67+vKb3/md3//D3/3DP37x8tU67NF99bNWEamysq/NAMzgeDr+8PrN4fBYa0aCrmsSo4G6oYE0Tby62QL20zwu1arrkotBvD8NP//l9+fT/bNnV7vd9tXNjdXl/Hifl1FQCZzMCYiJDahUdVVASCH2/ab77KxkDvvdfnf1YpiXeZ4rtAYNhqbdhquXL323dIFcyjwebVlsPHRxc3PdctNK6CdsfqJ0LPa4TA+Pp/v3d2UcwXyd2Tkv5d2b1+OYj3PGdveiv+7Zvoj5y96f7dptInVVAouxO04P//x2uhtvj+eyaJlrVa0x755f//ZPvkiJb982h4d2GobhPNTTOc9zWRYtGavWXzdzCWJuAOIgBoqmDtWwGouv8zW1GuqKnLs5UEWaHVktKZJTY15ySWaRndmBzJCrRqdoFAk5BApEkTyAsguaoBQ0U4BxHN7fvvnFL37+tz/72c9/8Yv3x/OkaoEoYmi5aUPkUNWFgTFuu+1PvvnJn/+bP/uTP/mjP/j933txc+Og/FkLhpl3u74VqzWri9a5iuRlnsbD8XB7Pt7neSxlMYFaADMCk9PK3gBTyctU8qhaVvbKhSdkl9Xr5oZghkRITMzrzGowczBYzY1XpcATx+XCbX7i8AKsU9jNAFbYCpjXfAfM2C38BhIjpkWVXdEvZgWr9zoCmZrMuSxlzoVS2lOIFABcRUopJN575Oq4KE4SBsHFW2cK7CkSu0B18IgYmEJCWm0+s9jjbJFp38G+gRcteiRgwxWJuchwRQSNAq2VCBE4OxKsFm5WSpGKiDjOsz4d/OaW87QsQy5Fq6irqaMiiGuuUstl7ieSAZZaXG3txxPC06SsNdMGNV3FQL4OjHlycEUEM1OV1bABicDJEFzd0cjIAQxAxEQWk4VdG/SWgN2kzDmPtc4iixmZxlW0yAgE7qafl5WIyE3kJmFkfALWAkfmuDJmV1BzHdkD1R2flGjmDsS0Gpet4rOwmuswAqAyIMVETq7rigKzZrvdVK2qxiFM01xLufDMwMGBkFYdtZswQWRgdAITFVcAYnAEdQJsU9rvt/vrF8+eP4sxfLbMXE2WvEzTMJwO43DOS0Hkzfa66VwcxFAUKDYObEDUdNx1YMUwm7ojL6I2TzgvVmsex+Hx9v796+HxVvPw/OVXf/pH/+qP/vB3rzZpmo5lOlqdNn2z37abNnQtb3dxv+l22x3C9W6/67o0DvdVi4JXx5AQCduG28SRYgysUvIylTxLWadZ/RpCdkHSVdYJHmZu4NN0vL17d3v7+sPt22F4rDqkVk9D0/XE63oSZ4SmC20Tm7apRebxpFIQDHHlC4GKqYIbIXKKCTEiBFUHKA4VsAUH5kgAZsYY+2bTxEiAy1yKnIHNnXNBgp6pmFopvjCgasmFIYNPV+OinxndEhEF5kDGdAknDmC0IkPiUAWkOGSCSqAEwI7gYiqwzhJXBzPQ4i7rPBQkrGCiGdioAbxyfo7YIpjHGMPVgrhp+12D+/3uR18///qrL1/9qOn6OZfD6Xh3+/58epQ6VVlKzVWsFCmLOBig5rqI6TRDzfk0nOc82achw65eqy45uyqiMTG76DwuH3Qal+HN29tquXgy0+O9sfl1D8E8zzKPeRxHyXb9/HVq0u/9/vb6esuyaa1pKtqsz6/3Xdsh8Kr7W3I5nYfTcD6fzqfhdDgN0zIVnyhY31Hf9Zv2WeCYVeY6D5UKVe4TpYABNS/z4yST6egEEHYhRjRsmueR4mcUH3BGDwQNY4psEKp7G0Obmqvnr559+aP9iy/a/U3YXlGMRIx00cdeQBFzEZFay7KUam2ziXESVfdaRdAcQBABjAN7DB2HoJXVwIyq2jgt6+C24XQIMXSbzXZ3hb4tSy5LzqWaCrsH4sgIK/mcjRkQ13lun9BxNRum5TQvY4XZmJxNMdeaS3VCTNGYTGsRyS51jr6hbrPdbNqwvZFmN2B8P8zz26xaas21VjdTwDmXD7f3f/N3P+t2zx9LqNQ3m6tEVHUh5t3z6xfXGwjBI0NkfX8X3t4Oebj9MA3nolXVRXj5pqOrXXu939bppHlmJFfP07SY1GVSkRSYY/p8rFVQdwWojhWgmlVDBaqAxUHcFUhdqpo6IJiTVUwjsrq17i03rLXM52WcAiycIG1SJT5XVO6b7fPUtX0TIwHpQrqgDiCjLUPJOWd48/7DX/6Hv//ZP//857/87vbuUBQ0te7aoDQxpIQeW6QAm/Di+as//IM//qM//JM/+aM/+eqLL2OM7pZLVZFPxF4EDqSm8zIcT4fxdMjTVCXf3r7//le//PDh7TSdpcyKTuSo4ASK7ghIYCp5zsuySM2uikC0dqPXLoq7O5jiOrQpJUYCDsgKpuZgzBQCIZqu3WoDXAXJtupg/b8h67+eJMmWPE1MySFGnAVLWvyy6Z4esrO7kBXIAq/4t/EKEVDZbXJp3WLJgjkzcoiq4sEis7Jno+olpUoiw8PdzPSo6u/7EIxQFRArMJPIkxSGmQCXgRTRZ8uwBiBgFZ7i0gJPO0WGiMCS6zCO58fjdBya2F24rgGfpczzdDwdGSiuLhtiICZyS3OaHaOnEqhgTamIipLD5U5pNBLUKjIrnGfbD3RqMa1R4xLyqiVVUWIS0VwqIXlnJE873A65b9pnV9dN049zmuZpnIbT+fwpRFNKurv/5e27v58ePzg5dn0xdVJSnoY07c/TNM9JqtXqSqFxLqgKgA7RISxKhipqJoKGUgmZOQKSPi25IqmiipVaxqkkQBR0oTaegBRgkT/A8gZqkTqBpcZB6ygCYMnDsZ6HUy15GcoRICMGZgqOyNvHSvTpM8YctqtwscE2qudldMQhuBC0LBKZbKqgIlJyTqXkkkutVeWJBW9P7YIFtgxE0DR+u11dbNeXF9s2OgNaNvLBYJnBe+9V9Xg8PtzfH4/HcZqqVDNz5IjQM7Zt2G36vnHRIYNoybWqY/8kINcsMqnN5Ao5/dQeX0qrIiWVlMoMUiPxbr3drG/6zSVxnHM+noa7+4fD6Xw8PE4qturXXYxt52PThKiG6jnVuQ5zOp/Gw+P+7v2HNz96gm+/fPXf/st/+l/+5//x+bOrn378/nB/1wXXXV30ne/btnEUPfar2G/a2AR2bbu7LGI//PDz/lzP48msNq0nRqLqmaIPIQQmMtNaaqnV7NcX8nTB6JIGTFWKgYjVOpX9/u7Nm7e3H94fTod5GtQSDuU8nBCrlAIiJuAdd31smxBiBMVpzsOgKp4Ma12MbkzgPTFSYN84F9l5M6qlqiiAMXFwkWg5mqGj6NA5YMRieFKoYgwIuspSM1phLKaScklZGAqTlEU3/OlGhkTM7B0QggooLHArU1KxIlAqghAKoTICEUfgWqGY6JKIBDQCFENNavOkGdASg0hlEl6Ru6bwFfIGwKxgDT4H3q7x+to/uwkvn7VXF6tmm4seHo8//PTuX//tf/9w90Zt9oFW6z7NcymKRkiIRqImlrXWknK1ap8dks206JTqaU4K4qPvybAmGYfhND8czse7xwEdGpF3ZClUw8P98Yjn8ymP5zJNMpwmwzoNc53ty1dfR7ha+w52z6TRJhARqIEhOeeCa2Lot6ttuhinNA0pp5KSzgri2brY7tY3QHQ4H+5Ot+UxFSlPmrusZUj5KDByZ23bx83NygXAscaXEeNnnRhQNEGtoAXVkXOx8av15fWrLzaXz7v1JoO93z+cVVfrTdN23ntieoKOEgCD9+CjNa003Wq93T083L7/8OZxfzcOpzGniFYJcikGxi44h9M0V2PfBC18fDwdD/uSUy35eDys1i3R8za2bb+dxnkYhzRNZMhEkbXxjA0RABA80ZTVPt3Jpjn9+Ycf//kvf8slseOV81Xtbn8axtFKcQbROc1pnGZwMs5xmvMwzKGru77Dfm3Z5P7hzU8//v3Hn8+HKQ1pYajsD8dhnn/45Q23W+if+dXNantx0fLRn3rY/df/8NWLV884evMsge9qnrG8O3z428/vHx/PqAhYKybXm9Q58IqlOpPOs7VhbsLkCUGItOvXXbci/mwnZjlpVsMskFWKoiEWpayQFQqiGJqimBmZLgPkxeED7NmnqsPtbRjutjTterd9ts7ED/t50BhW5/Xm8nq7XrehYXFYEHJKx+P928PD/mE//+2nt/+ff/njn3765e3jfpzFY8tEUEpQjehX3jhQ03b9+uLV66//8fe//earLzarngBKzovHgf2/4yuYWRrnuw+3v7z58f3bn4fTAVCPx/2bN7/sH27TNEjNSCaqYGCoFaou6xKqtVazQmjOIQAvkAZ9asrAQidZtAnLjggREZnKk75RFeijGXRpDIAhLuSnJVCw6GgFRMVMmQnpKdqy9MY+X73AZQeYmYmX0gZx2QshNjJAEJW5zPtJqZ7poXZTKmlI02E4hRhX1EVo+CNiiZgIEJ74JrCMsYoZAzhEBCtL50ANpqznUc8TpIJFgElVckpFhJjFoIowowDw0hkyMDMm7toW2fkQAe08HJ+e5QAAkHO+u33z9s1PeXro3VwbVdNapqzHobSnueRcAdjAq1GpspSCjNCEjDbHPFVBRkUTNFlIC8QOEJjEuxKdxEhSa8QxJ0PM7CI3rRhPM0hFBIegiCm6Obohujk68iRapvF0TEMZ51OtEpxnavqm79q2b1sfIxIXMf/ZCcZFv3lxc/H4MjgKm5U1PqNOJeFpv98/DqfjPE05JamL/TppLbCMJ6uIqirWUlPOdQGYoRHqZtO/evXi9avnWl90jZ+nwVSaGMxgnJOqtV273qyHYdw/Phz2+4fHh1qLgTl23rsmeISNv1x7bvo2Tk2ouTCid34Z6rerNkRiFsSEkOCzDSsFrSZZUpEMIqSKiuRciH3s1mukza7sdleH4/HusK/s2hgY0AxEUYykitTJcs7H47h/PNx9OO8f6jw+e37zn//xP/xP/+2//u4338bIt+9+YoImeO/9etU2MTAagrjA7DFLLkM5n/Obt/dz5irN4fCArC+3V90q1joRaHA++hiCd879d8KBp5OlyHw+z6fzPA+5JLGaJU9p3B/u3r3/5fB4P85TTpNoNsvIxazUWkwE1BxT0+XgvXcekURRhdDaEIgYnMcYQNUBOMSAHNh5ds4AJVcDY6bgQhMaIhTJaobmGBxbQBOBTrQUUxb1TswqgSAUtCR1zFlEK1I15E+pMXva+zZDQiYiRQK2Ba7GS9/NqpHhsrvMyI4ZGM0qiNaixSExG7AIaQZNhdVWHVbnhzM14NccrjC+JH9paFJFXK3Ocbu6fumePU9tq+rzWMeUz8fpsD9/uHt49+FOMLWt16ccJjEHRMBlB8+0VM31SUxpv37ArNZcyix18ZNFNSw5ncfh7nG/Px1PY3XR96vatB6UQWEaiopOQ53HmmYzkZ/+8tD69uX1sPM1bnzDvTWuWiUSQFnGPEwL58AFx030vXYb1WpSrYoIqLShudhcG4IPIWl+f7hNk6gWA0OBOpR8rDCbd0xI4KT4OtI0wqyfXS9M6BgdwVKZOO98t109e/7qqy/jajvlcpyG8dHaWi5M1ipt0zjviRwSKT7lGJmROcQQu77v+943oevbh8f7NJ5RCkjVWucKOCZESCk732xWoYqN5+N4PnrCNniHBiomSshtt47tUO4+DFNmJM8OgzqmKlYZUG0BBHzOVpnm+a8//vzHv30fgtvttt3uQlUPh/3heCCDwK6NDdQy1+pMx5ynOTfeLS0f4jnPJZ2P58P+fDyMY5GsuKC7ch5SznrENreXbUfr6mYy18ZyTjKXqqaNQ/Q0oonWWkupWTSbVSICVARFqyAFpTqwQOQ9QhvTqq8lqeQq0vXr0P46GgMAt9RQolYrFKliZPSEWVlW5MsTFwmW+JoaLMY8QUB2Y5p//v5v9faHmyAvrzpwzxLhTz9++HCs1a03u6tvv3j9xfOr5xfr2DIxHVP+8adf/v7X73/8+e77X27//ObDh/Mw2kI5IFWFXITMm+/JNywX2+b1N189e/Xlqg2PD3dvf34bYry+vllvNyGG8Pl8Xy1P5eH28e9/++GPf/rn7//2b6fjY9MFlXw4HcbzUMq06C2ATKsKLslChUUZAOi9t4bE6+K/hKWfrB+ZmWZmJlWTyVJWsGORqlpTng04BCJmz05AUy6GwBR4seYY1CXWqEoGiGQgpsBEnlAVRZZ11k97JBR9sNh454lw4aIsCUsHSOg6bgq1Yx2n0/zz/hdQrWVOmhNKv9v0cc0tdGA+EDbMgakYmLGqA3OAAqhmpdb8tLtUERRMoRadk07Z5mpZl8lVGue5FnAOHAEyMSmhLkOcqkWqSAU0ZoyRY3JPqyAf35eS04d3797+9DOB0EbkAg0s1yHPj49DGLKJgPcNcoOMBrNalVoIZdMVZZjUO0pMiCYoidGC984xe4yxrtrSt9B3HsHGOeWipmwQzeVh9h/ubRgJIRCqo5HhNHanNJcpeYB5HA53kHIaimYh6Lt1Gzeb1fbq4mK1WnsXAKmIrtuGP+1dtc3zb7880YAinr11zcnS+8MHvZW///Vv79++PRz24zCklGopWsUzr/vesZOqCkDo5pQeHh+nNCMBojHo9eXu8JvvxtN+PB+Z8MOHD6WU9WrVdl1sYtf3m+2m32zWqxUT3L5/u3+sTEYI7CCGBSYW+64lgN12JSV5olrB+TY2Tdd3sY0+sA8ENokM9tl0zNAUpFipWsFUcjnuj+d8vjvW1e76xbPrq+ub3//uD0D4eDjuh2E/p+OcT8dxnEtOueYCUjXNMp/Oj/e3795AyVcX2//4D7//v/5f/tf/8X/4Lxe7Ta3p5uZKZL6/zQC1iSEGl3MuJatJqmk4jT98/+7/9f/853fv7h2Fw+H8t+/f9Kvw3W9/8+LZ1TQfpSTCZYW57bo2xui9x6fu2tOTv5R89/7d44cPw3BMaShSxjydxsM4H6d0LHkuRXMuaU6i4h2wC4gRQKvWqloHQKxmxYyQfOO79Wrbdh2hB3QGzsybsRqJggEYgYhUyAbq2cUQutgiYamTqBA4RuehIUSDpmpJkqoKADJj8I5Qrc7zvD8dqBYiZnbNp/a4meZUc65BAyM4RjB0yKRclaEaVk/KDoGQAIgBA5Gh1qVWLlYdO+8NnRXWClZLcHSz7VDcPYEb3ZqbHcQrC9cVFGpSPil7jpebnXb9cRhPh5MSJ5F5ngGgabtuvSkwu0BADkyciyEYAgCjOVelIqhprYIin7FV1CRXyUJL2Fiyis1pnMZhHlOexSqA15pF/bLsBVIJjKJ32OrSREhHG24xP3Z23nK3Y4qgZdHXEKFbCoqFQvdEJhAD9M57isRkIlJLcL7xjQK2cR3cqoo/7cvp9GhaN6HlgvlQVMQ6w1JhyNMw/PLu/qL/OqXydE9GdJ5j9G0MNXgkF9t29eLF7uXLzdWuAh0PD0MqLnV9TYYLVKuLoXE+EDtAQmR2zsgZOsfkXFhvL0Ibr6+vjsf9+XQYjsfhfJ6G85zSYSq11lpr38HORSp5Oh/LeN70ETtuIq+irzllH2LTN926KqYijpGZkB06Z6iiRmJFZPlen4izU8rf//z2L3/7YXuxxuBfMhPBOJ73+z0TtqFdQioFqJhOqY5zXrV+GsYPb9+KfzxVOT3u2SR6l1CqLr9yYqLlMOD6y+biqt3umn4dWhfbKC68u39YN/b8asMxPOa8f3+nKa+b7ssXL5/vKgMBSrH08uqG1eqcPFIbg6gCwsWFhug369WUSxGkf4+9eCpiVJ88jWACRk/zZkRbjDmLg4AZeDkxLD4PU5Vxmt5/+DC/eSMdOOvXl1AZjo/vP9yeH0Zru3U+vrfpy56/ddDN8/DTL+//9U/f//mPf/nl7cPb++P743gWrd6R844oBN9Hd9nB1Yp2DTXe1izByng87B9O5yHd3x9DbL765psvvvrq1auX3Xr767FSdR7T4/3jzz/+/Pe//f3HH34Yhn3bB2LLOUkpJrLgdk1NPvpJdBkUITrmp4TPkqFapiX2xMd8Wgr5WNIQEbEnMiIws1IqojF7WlJYi6L4SaW9xHCesqCLj5YWfZ8iALKCiJWitcqvTAIA5sWYCoRPGGVb4peioMDInpwjNxc97Y8yJ6tZUSTgbHQfP+R27BN2Y2pBGkdoyoBsEBAbZnxSpliFSqAE4kAR1EDL00r703qPiuZSUkkIhuSQEU2yZCtKRFJrKinllEupVaqaSEG0z+1ctdbjw+Pj3WPbhE1EVVSzKnOuQ8pjybxwdRCRHbYNg2Bw0vi8W4GLAMRjmZEITZcixjETO+cxRt10edVC3wdmLFWqgBqrmQAdB/Vgp4YAlFGim8cpsSkapGoAYjrNqU7TJGChC9433nvv2DtiBKhqCATG+Gs4kb3f3Fxe1RcgYgZIfsb6Yf/+/Hj6/ue/vn/77nQ+T9OUUq6p1FwaF662u/Vq3bYdsavVppyP5yHV1PWNI6pFpnk+nU77/bHtulLyn//yt9Pp1Hf99mLz/NnNq9evrm5uVqu+b2LN84e3rwiqqDBTaGLXNX23ury4eH59g2hNG64vL86nsQqy75q232zXvnFmQgzO83bdOffrxS8mqebjcHzYPzzc3x33+zxrrjQcx0n2AMguXF5cblbrpmk387w5DvfHwckZ82giZRrT+ZjGY5mPw2mfxvPFZv2H3//uv/6X//K73/322fNrQgCh7XaXyzxPp5wHACwiOZdhgsNxGFM5n8rt/eP7D3d394fNeifGzjXb9eaLV1989dXLcTqmaUjzqCLEHyk6qgs29dMSWc357sPbDz/+MI7HlIdU0pjH03wsOpMXAy0VUqrjOIto8M5774JDdKKfABOqqkQUQnB+tVrdrLrNUsQosArXCrlKyqVKFRVQI3JPMLcYu6ZFgMlqXXQfxA07xx6xqVqocJECACGEVd87ppqncQgAmmYy9ewa+HWpH6pIKVKroiM0QwNShapW1AqCEBoiL1Yv8AStJ2PSAgWebBNS0ZShMAowSN+4m6uG1dVUTSkYOsXGqEVaVi7M0IhcDOKdnso8DnOts8isKlJDCG3fsxIxsovMsFpBE4qpAaMFL6rRjQ5PWg8I/lNXSUSG0zichuAax06liGgtudaqFUCRABjZkfPsvWMTk2Jg6IMPHrxTU/MOV/FiG5/17spp1Ko1pzKPQkqOyHtDlPrJaoNLdoLZETvHDKol54UUCgYOQ/BdG9eBO5ke61yKdyI4H0vVkqvMphPZKMP9++nwfJDyVPQTYfCuiaFpQs0t+q7fXVw9f7G6uqbg0jTPeZrm5EiR0TtCLVBX0K8drZlRTcFMqy03flNmQ3au69cxxrbrVqvtqT+dTsfT8Xg6HYfhqJrAeeNYqk3jeNw/judTw9R37XrdrNar4L1zjnwb2x6IxYBg4UA4cs6gigqqVdFaRT7rxKjamOuYayMqhsjMAI7JOQ7e+xjQe6m1mM2lnmc7j7CKRIDnuZhvNXqPerXbzAKM5yOM42kSUQRqY9hcXq2vXq1uvmh2z127atiinUZNP72/dzqj1hjD7XG8++V2eDi7As/WF9CTVcllOmegatNxHMmbASHPteRSFdA3zbZpQy6H0wyf5asBwIGKLWQMgGXTdGHELJIORhQAQQAicgzeoaIzi2JcteRpGs/DOE7zdCY+Tfi4v4OAaLPU0+3721JhPryB/PBsF2vZ/PTm3b/96x//v/+/P/304y/TpOdihgGdLsZ0QtxuNr99cfVizT3tI06sWsfDj3/5093wxzfvHx6PU0p1td59/e0P//Af/4mdv7h58am6VNFpmh4f92/fvr398CHnpCA5j4YitYLqMksRMzWVJcOsqAqmtOwFwqKvBWMgJHREAGRP/7NWU9EiYijE7mmDhZn0Cbi78OcWTA46ZvjInl9Ag0txokuQfSGgAJhhrbjI5EoR/XezMQWroPhprUYMQFVErcii8AjBh+hlTAjg2AE5ZSxjefe3H98Ztuo2xV0nd+FpS641ZNIGiUKYkWfWYrWW6qwGUkdCZuoAAkIk82iMwFgVs0pW8QiEpla1qFhlYmZW1Wmeh3E8nU45FyCSWs3AOf7U9lexaUjzkCJ5ExRBUTMoioKs7BwhMirBFBxe7ZANNz2uu3q51s1aLzeWLRgyGCBUAABjQwfgvLPO5yZqGwt7XnTlixVNzHa99h6nycyq49r4Ok24bdrIUgTmjG2U4J1iFCB2DoxyGkeyfvYmNU9gQD66dLmxTxZrwhBju14txBAzTNP8/v7d4+39YdqL1+aiD7uuFknTPB8Gp+hC3F1effeb3zZtd3//ePdwz01Dnl5/8aqNfjweUW3Tdz62yGEa0vu7/du37xDg8nKXS+3X66oWm6b1zr78oszj65fPSs3O0Xqz3mw2m+1F36+b2IDINB2m4XQ+zlWI/Sq2/XrT+8BmVbWIln511TTN0/tiVqWex/O729sffvzxL3/682k/he2rVb85KZ+H6fHx8d279/f3Dy9fPL+83K37zRfXNzfbm6vV+OFu/w5ub8/zfJ6Hh4fz8JDL7F344suv/s//6//6P/9P/8N6u55SWs5FsVttL67G8Xw84pTmWrPUOpdSVF3wps75+Ls//Iebm9P5PM7ztF7/41dfv/inf/ynL798kfJ4Ou0f7m73+4fz+ZRSmtM8zVNfSqxCThfmVcnp/sOb9z//VeqU6ziVeZaULJmT4NnASq0p53GaRaxW7yVGi8wkC+t2aayyb5pus95dXTx/dv2qa7aqVMVKtZSe8iXzXFKeay0A6j2HEKPzrY9dCGpaEqkCsjC54CF4ZueqOMFqWUWrc9S1nfchs0cEZphnP03MvvusEwOmJlVLFiQwFSxgRS1ZmaFkZwt7CwwBPGHjoY8ADokoGWVUVSjZCI0rO6M28Hblbi4DKpz2Oo2iGbOSgBcAMctqIxiDDJrZCjtj0pzHKeVZpZbZe2qaCEWJKYYuOr9qtqYiRQ0JYwNIUvPx8AjyU3A9fSRc11Lv7/a3Hx4vdxdd55CWVXRFIOd88GpQQ/B9169X3cL0nYZsik3TEbm2teDdpu9+9+13v/3mu1fXz0rJw/kwnx+mYXhqhscGiBZJgg/ex+BDdN4zOVxGFKoopmI55WqmotHH64tnUyp1ysPDIxbLUx7Pec6znROfaxgtQ5n3YPOvXaWnIqYJTduoalxfrW9eXT5/Sd1qP54Px1OpFdEcGmiehgNLdlobx3G7aRu/RIWWWEM1zUhIwIzLgJS5Wa18bDb95mq9PR8Ojw8P9+M4GiiCnobp9vb+4eHhcDhY2/Rt2G63l1eXsV+70Cl4FxpyAcmxY/bsgiPvTEwXG4WYqHzUAgMAOO+2l5frZ8/Xm67pu4V6tNvtnPNN1zL7Kjiez1lU83wa4EClJakpIY9xvdl0N8+vtrzZ9Bdjv3p84+9q+jCMg9a6jf7rL15++c1vr15/1+6eQ7Oep3H/7of9cfjrsC/jMTq3ivHD3en2x9uHX+7TMd1cXwYfx3SaTvnwcC/T/OH6GRgBQBJ4OAzncShSnA/r3da7CLMYfga7AnAL2pAJPSIRLXFrU6On9Q5CMFABBM9IjGLqwBo2p6olzeN4Hs7DeejBH4b68JjB2+k0j+fDOBzM0LTP6fT+wy8f7m7/9c8//dsf//KXH98/3J+J2gJOgBTErC5ZoOjc9cXu5WXsAIM4KGl/Lu8e797fjm/e3o3J2tUmBB9idD4g4ufi5yr1dD48Pt4+Pt4Nw0G1IKpoNRA1pQVU/nSOe7ILISKRLZHdBQkjogYG/KSqXoo3Y3sCXRKpiopCNe/gacKpC1GTeUFjwvIHgkVz9LHB9dkXiBiCIRIaLZX5/8Gd9HEX5wmLYraoFAAQoIrMKaWU1CqAgBWwsjhrwDmo9XAepzkfBI/qJ2wHDCP6NbmGyXtG54jAgdiSGyWq3sATMdmuw6stXa5p1UEbLTgzMefAlLwHgpyzqnp2i0FXRMY5ncfhNIy1Vuc8LMkb/pyoZmjiUJtITcPOI6CJVtGEMAYugVP0yYEywbZznnIfc+OLJ4tOQjCgZEQLMxiATJfPDBBiYPMOvNfFyIbkgByAU0NmZHS5oJk60sCSZnTUsmOOPMyh71okn4SKoCrWIiUlLTaPMWEaz9WQ+lWb0vjrONlsiawR8nJlVKmH0+NpOJi3ZtdRjMgOxKbT8Ggm55RLrrXGpmn6lg/H2DbPX7zYXe1+/x/+EBz/8sMP+/uHUvIwp41Yqnqa5ofDqeRcpF5eX5yHsdZKSDHGi93FN998u9ttp2lkhs1mvd5sVuttjB0Tm9Sc2jxvpl0VYXS9j03bOucQltWEPPu4/gx2p6I15XQez8fT8Xg8TZPEC9f2a3Ktm/Pjw+3pNPz408+n4+nqcndzdfPi+Yt+tXt5c73uN5uu33XNrnEfen//GKuWvm9/8/s/fPXNdxdXN1XxNMyA5Jma4JtudXF146Ob53PNSUUA0Ttm55hD1/nrq9fDMN7d3s1pbjw+f355sd0GFxa+HIiKyHAeci4p5bK0KT47WYqU6Xw/HN8hZINCUB2WikXAtLpqmnPJuVSpKlYJSRksMBIxESIzOOebplutNtv15XZzvep2nttcFwNPqVVTStM0DsOY86ym3nPXxCaEJoQYXHAsYgQACgpqVBErkzCyojEiIVQTM3HOxRgXcDqRKeRhOtQlYvDrCQZUQapaQQfgATyCoCUVq/hpuE0Oo6NVR5cbZg/n5M+5HjPM1aopIaCRc2Hd8MWGL7aMWh5WQmf16HDRVCtU1RlwREDQU01REpABSi7TeTgPOc+1BOc2q5VPjpj6tm9jEzgwoFQlDnG18T4i6GF/7zFeXz73Lnx8X+R0mg6HIfoGyQWnplBqNcMQGkPnQo1djKH1rmEicBgdLN4yRDSxVde9enbz9RdfPbu66dvufhjm85CmseaZKBA4rQiEy/xg0TWYPDXaVZ7CzTVlQOAQkB0gNb652l6mUqbjGWfJj6eaFmu9LE6TbEVInVF0kT5LwTChY3KeQ9PEft1uL/rNVXV+fjyOU1Y1RnJEbKA5KTOjxcB9G5s2pqK5KHwEYampobGg6pORHIl9IORIHIg9ku+mCdGG4Xj79u3t3cPpPI5TIoBV6YBdbLvVZutjJ+a28/TsxQtmJdDoXdc2HlFn01pRPxkMf31YOh8ub569+PLL60334tnlxW7HzLXUXHK3WqUsb97f6TCEpukibtbURpBa53FkLz5GMg3eX/atum7KeD7nfXOY5lFMEaTz+HzX/PbL68uXr7Hdfbh/+N8efvkwTIfTYz5TF9tNiA/3x7dvHu5vj1OB6wtEYqmWxnw6nHMt797fV2QkHKf57uHxPJ6z1Ng01QUkmpbE5ufaAWamZeAHZMxikIupVKy6MNpMxWpmcx0pkWZLbNA4x6Kz5jmNx/PpdDp2GNvgQoOC5Zf788NhRoDrm6t//Ic/PLu6fPP2zS/vHv75z29+/uX96TAK+OAaAy4pVREgAxO1IiVbLYGbi37dkbc0qZ3D8dR6fPHsqu0vv/ru99989/tvfvvbZy9frbdb592nXn+VvD/cPhzez/NRdEYSRgPCBRxCgA7JdOnCACIyLosvhoZL+E2L1Y9+6Y+ENwSAJci94D9SytOYRdRgETMuXDPw3vkQnKMnVtsCjkOzRdW1UPKf9oRBioCB44XrSsy8EEQ+vZYnARUyuADI8FGfAgpgKprPwzieTnkcShqkTqDFgJFjdA2S63zJ2YY5DakcZHqPfufitm03Tdf3vmvbhtjNJYxMZgVpaFUj06rhm0386sZ9ecPXV7TplQAJue2D86FtSi3TeCq19m3LbCKScp7mNKVUBZC8Dw2AGSh+lrQigqbBzZqvr8LlFbddISe5SM0j6l0kt2lz9EsQGULA4FIXz0h5nJkdB1+cF/ZLfMshAbIBkunCPCUjzEZYnFkAdIgeyAESAMc2hpYAClpFNSK84a5br56/2mSJCCBqqcI0yzSW06k+PtY563gecqXTNBOj0mrOv0ZGRXQap/Ph7NkzEyLmcS7zhGjbyx21jTUBnXNG5/vDeDgdj8P+ODLQxdVl0/Xv378H5BevX//mt7/9p3/6T7WU+/d3w/jm8eGuG7r+4iIvSDUCg6df7zynlFIpxYF3Lm53V+zC8XhQrT40pm6eqsrsQzCp8zjnVIugAaOB5pTTEdGYWdVKzk3f9B+f/WYmKqoVwMhxaHsVQeKm625efGnk9g/X+4f7w/7xb3//4c9/+fNms/3uN9/95re//93v//Hll6+++faLYfzt4fHh9v7Du3dvUp67rn12c00u3u/P0Ycm+qYJTfSIwi5c3Ty/enYFVlREakFDz47ZExIwMblS0vl8ymlGqKb1dNyfDo/I6B3H2K76LeD7UudSlum+2md9SzABHdBOjqsPGPpQ0B0SnlOZks5Z5wSlEKEnZ8TETMH7NraOvGfHDvt+dXVxvd5cdM2aXavKKZUplZRKSnkY5+PpfBrOwzCKSgjet6HvunXXRue8I166pYYqJqWiqgQWQZFan87CUksunsUEEZ0Paio6i/E4lWH61TX2SS1iVdFx67h1HAMXpDxSMpWiBsYGzNRFvtzwy5vgIxzHen/U+XGaspRiROaYQojbVX+5hXU/opbtJvNEraeIJINMahVsRDojAOihzF2ZBERBU56Op8PD8aiEm8vLPvZzKYDY+Ng2Xde0zgVQaNvV5c2L9WrtmPb7+02//vLF87Zpn8pkhZxlnOvhdFazJjYAlHMVgxC60JCh+eiYvAmCuabptlc7QhrGc07JULZd+8WLl69evGhjU6tMUxrHlJOAuRh6H1vixgjFiqEhkVYb0lRrLammeRpO53meay6xaS5vblbbbWyaNsQtb1Mp56tTHqb7/anUQqRN5Ng2Fcshn4FluwkX243/OLkwM9WqKgZg5MwF8C03K0WuFUs2UHJEgXwgB6BNCLvt5vLyYr1d+9BSqojFrCynoOXIqmpL7URkn/4WAu7a3rNfdg3fvcW/nv56e7+fsmbF05Sa83Sc0qXCRduvNjsAZs/E5fHhZh4OUpIDklzmKrUmUZNFDPrZUz+E8OzFy+9+M7++2b642t1c7hzR9eWlAfTr9fvbh/e3D6pyeXn1ctP89qbrdTq9/1HnyXHDaJJnzIlDEzw3wTcxNk0MPsySahqHx7cwPP9iA99+sfHr67+6+keQ4+k8PJyHoxL6jQ/jcXx7u787TcV4O6VW8Dync8pDriPom9uHQy7TPM8pzXlOJaeS2Yf9VHwItdaU0uduThejBwBBVkQjqgaEZhWzSVFlMFb1WgLDpTcXYVQlwE3jOcAs3V0b1GQYx3uZUFCRBcr7x+GcwYdV263I+eN5/Ntfvv/bj+///ubx8TiaiEMPxmqs4MwqiBmoYUrD+f72bkMz7UBb7Jxr2m6zsVdx/UXYXD//6vf/+F+++Oa3Vy9exrbPtcBnXymlt+9+evPm+/PwKDobFEBZ8kQLd25pvNAieIUFJWtISIggS7MJ4YmKwmC4ZNJMFRGd98s3EVG1BLY059AMn8wKn26nZguqZFmo+bwKRkBHzp44tWZLAwg/Wad+/S6iMM4yjVJEiak8/W2IBlwtzTKd03gaZRw0zwRCS9AJEQ3I0JFn8kA1gZxrOVjZS1mRrANsW95Ss3IUmY04qc1mmciaGLbrsNu2q1X00WWl4yxoOc1TBlPmyjXXnKwUdShMVqSWIrUigPfOEVHwDYCYKpP/tYhBCA6bgG3U4NBM5yTTUEoZiWtsqI8aGXJ2RaCaiqXKJRU9j2gAIQgzGRCic46chxA0eHFsiAHRwZOiBMwUbNGYCgIgFV5UQpZMZ9WRCJrGhabZ4uKCrbXWXC3NdRzKPuYA4+MBD5NNE09pJuYYMOf50wNGVcfzeNwfPXnn2DGlYaxzBjDfeO5jDg6dY2AeHDKKSi7pdDq8efOLj/HhYb9ar7376uLi4uWLV/M8+9CkUvbH45TTw/4gZlXVEBW0al2mJznnUkog593SJgnsYymZEWutx/s9Ea43a1A5PDzkOQMHQC8w1przfCCwpusQOOeyuaDdc4ntx8+ZKiLGELtutd5dImYjZ4hN0zT9qmtC1zZEVETOj9N82Nubn92qe/nlF9c3l6vVar3rmk0Ttl23Xddalod613WGvMCUnGfviBmD5xiiZ6AnV2mxqiDL0VkRIXgM3jmKOWstdj5Ojw/3OeXYtN47ZDifTzlXgyfOtT4phT5ddWqSTCYk8C70fchg5zyboKl3FLbrACsSVTBBFu84uiZycOijj03XbLfb68vnfbdB9FVwyHlKeUplTnme5vMwnM6nYRxTyszkXdPG2MYYQ6AFOi2ySMJVNJdqBrX6gihSqlh5+u815zxNA5Mzc2Ko4A28Kqvw550YREIgNPSAKxe2IbTRzw7Gs4xDXdBD6NEz9i3uNnR9QTGAd1wK3x2AFAEIwCE5Rh/Yt177zoLTly95JMePcaUeBslVi2ICSAgGNptGwhDbDqw59sSHaZoVYbOFyJ6QAZDIkzGCC65pmu7q6uarr77dbNZSct/ENJ6fXe6897++NcgGmEudUyYkIiemQD42jfNhQRqAiVZyTbPuds9vXiDi3a2OIkS0beLlarXuegKqVUXMgIgb57Hv1rHpAF0xywXmkqY0pFxqqaXkMpfT4fD+3bvT6WyqFxeXLjRN2xMW8BSIuhBXfd92HXkiZ02LhBwbX5QmydzY82er62fbz7lKUrXWKmJVNdWaSkm1gnMxtG3bpQkAFA3RyAe3Wq2urq8vr67atjVg1VRKrjVLVdWF7QGIC8ID6yctMAAskqYYAQKANU1D7ELTXlzd9H0PUpp1Zxyz0lw0VAuBVut1iF9fXe/Oh/vxfKpTGk+nOk2SyQxt8Z989qyMMX7xxRfkmm9f3zy72KzasNxMiLjtut3u3Zt3HxzRpmuer+OzbfDzY977UubgiNHyPM3IU9Z9ttPplFNyTDH4mnNN4+O7n+9/Wo3vvsPnuy5QX4+cTmUehinNVhnuOnY1lYfTeBTJqu+Oh8DDdDod0jiBksFxnibVx8NhnmcgqCq5ZCSeUvHOkcnh8VE+AhUBwK261gAVFsuIFQUisOITSKlVpSAkBVk7ftli0+KRCJG3my4S13WYPjxbdc0vpdyejtNZ5xrB4/2pqG8vdhsF95fvfx5P5+//+tPtw3kQqoaIXIBK0kWO48jVYqACJufH+7+Mw+Mv7mbrX930X7++7tbrF6+2X3S73c0XL15/981v/nF1cZMEplJLFSfyKco7z+Nfv//TX/72L4fTo8hsWM2q2DJ3YCI0NFoWeBGrybLSREsQGmxxpHjnAZDZMYGpLP1IIopERKSmiy7ARFRU6IkAjqAIUH0FY5GKaLSoTpDMRKWq6pOGZ4FsLVMrM61atHwM4P4aF69V7w95fzu1kZDcYkcCRA8YjeSU5yGXMckwUy6RyTnvwAG6nGUWUzFHromdAheYp1TGOj8ONUpZqVwg9U1HYBnKUeZUsqMQgde+a6jBSfD2CKcTLIJ3MDILjrvMoGbVW8V5tEUcjeiDa4InMENC75xZxQqR42faAXCApCJ5ShOecDaR4VgQy3ZXgoPIEpgV+znTcciKtfRsgkSatBJLrTQOQSo5J10v213erG3dDTEE71rGSOSJGBgNwX7dUCeQoGBgSbVoTWIodgY6sH9kdA5rIGmcioNtg+tGGy+eaX6bsDgSAHM1uZrzJxaRiI7DdHg8MjjPHIOrZa6lLDVHKWmQZIQR3TgOKSc19d6JyLt37wBxTlkBhnGotYYQ0dAxm1ouNdXy7sMHQ0qlGIGAFZGcc0op5VRLVa+Inhz3Prb9quSSpvH29vaHH9/Uml+9eoFg7375OY2zb1oAnlKZxvNwvmPCi8tr58I4l2cv7fV3+dfnC0Bgv1ltLi+fjc+K0fmceZjn0+mA3vXrVbfqd5eXz/evPtzd3h/3++n017c/Xf/9BlGvLq+N+PZ0GuYZ4tKW6Ld9t1m1677pu9BFDh6DIyJgBEJZsMkiIqXMYxqP0zROOU1I0jQeuJY8pzRM0zSdp+GcEHljtN+ffv7l52keur5ZrVdPEkR7+ufjyUGlFqlV3UJRjiZ1HOs8KfvVbvvs2bNXTdOVkkWTwSw1lTlLFqsYQnuxvdzuLvtuyximqU5zHlKec8m1TvM8DMPpfD6dDilnRAohrrpu1XUxeESotUoRZapVikiVmnNRxZSrGeb8FICsWkXVUto/Pqa5Ot8jsSoBxBhWre8+G1vgUxYXqWF/0bTXq3bdt6dG9/vz0QvPpgCBsW14veLdGncr9V5qlaPXhtCDE4pAkcCDYs1iIk3Uq0u36mLahPzjCmZ0t1MtUswVgAoIRMrsm36z28VNTUKnqb798DhOU56yc56IDKhalqQ5iW14s768vrr+9qsv2rZ5//Ytm/bBd034lOYjotg0MQRmXt40JGBy7GJsG+cDoIlILtUhds3qcnt1dXkNJuPxAecpgu2ijwRYa06ZfGCOsd0wOc+02Wyjj6I2pjRNetyf393fDgs9Vs3E7m4//Nu//dvD/YNj/vrrb15++ZUUOecBGLFBrNUTx+hCw22/2KlgAaNvMHSX4ctvrl98cRGaj50YtVpl0WGklNP5BMfHZn/fby4vL7Yh8P393TiNuQqx9s1qe3H57MWLq6sbFTsP4+l4OJ3PtRZVeBpM+UWO6QGwisnTMWz56Z/+BTQiur6+AjAtVaWYVEcQG5+UP9wfh1l328163e92Vxe7zbTbng77w8MDqM7HQ3WkSPAkEvu1c9m0zXdff/X8+cvff/v6ZrsmkCeFGxE73u52cyq//PJWS/J1Yj2rSQie2xg9I8g8DMfT+L5+uB3K7WEeh6qqTXTVsKbh/U+3f5bhi57o9OGL3/zDcTQ9vvd1ZoRc9P3DkRAAaZA8BRpzHR7eQdU6J6lzdta2XphM6jhO4zSRZwOTKqo1zwlrwTS+++pVyunXIqaNQQHUsIIVEUAwQK/kvQtAAEoqNZ0D4Dr5PjSMYuQanSIHavnZ5eabr16f3724f5OmdLo/gDIeZqOofpKi47t3d6f98f27+2E0iB6dxyduiqEZknnCJrqI1BFR1fE05BOcjjBMczZ385y77bZr2tWq3+62F5cXzWoj58lyXfDbn15JSunt259/+eUHBUEQpCVNJGCITPZR/PsUPDJAWDQ0oE/pZgME5mVQzvgRbb90SX5duP34fZZTl31k+2KVnOuSdUAE9yR9VhFTWeBmtJAMlnQXmKItQmaQqqWUWn7NJs6p/v3nxzd//9A1K+ecmAIooUXEHtmlVA+zToJZnWLw7NkBhVphmNKUZFZVg8BOgqVaitSStUipGW2euaQ5uEI0OHlkyaRBtc11PWbvJp3nem/VMoAyYhNc3zR9G8ZWGKFUUwVEXSzbjtk7z8wIhkakBEYBNWAg+GyWjOZIvCuEWKvkWc6nyiSrlaEBWjV1InFKdPeYq4oUQMQQzEyM6jjRhw80jERIm7W9fFlLqaBmXTJXHDXEEYxrtaq65P1UQQTNWM3AyuJkVyPBCpidm4jIcNmaRjQCJKjWOGk9OnVUvC8RXLuENz69EFXNcx7PMyl5Jo0OoCIAO8fECki61LdFUl5IjEyoouM4GKAa5JyOx8PDw/3+4UFF52lKKU3TJCaH49HFQM51q54I2iayd2Y6T9PpdNJS5yY6570PPngDzFkOx/Pbdx9KzV3fB8fDeUrjGHJFwDnn0+nw8PB+ARyH2E5JVtvxE4QQAAgwONe3/WZzsbksQwnnx2HO+XTaU3AhuLbrLpqrZrWK63W4v9X3b2opb374G02n87OXcbWZyKkLbdv1sdl03XbVbtftuourlqMHR8BPe+zVtJgU0Sy11pzzPE3n8zgMJc+IooWRtdaU85znVFLSWlXpcDjc3e//5Z//WLX+7vffbncXCxQS/g9fKlarYUFMYOc65nw4pFR5E5vd7uarL3+zXm/HaRjH4zDej8OhpGqgyOxCbLp1iF2pNuU0jnma81RrrrXUMqc0pTTPc85ZRWIMMTZd1zVNg0gimnI2keJIq5RaS5VcqijOWdQ4F31CSAM59ogoVXOuRubZcQydiqwuVt3m8zUypCcftUOMRJ33fRNFJDhaQNJEGINrG982HAMQVgTBhd2L5IgZHaBz5MAgzTklIYK+95tVkymcbnkGNdFStZpWACAkx87Hpl9dXD+ramOS9d2eMdQ85rl6XzwzEJuhkVYTAlqv19dXVzdXl2Yyno/3t+8Pj/er1qnWT0VM04SujzH6GJxzjpkJvXNPa3WLH4GAoo+7zcVud9G1Xc1TYEKmtaON5yiF8qTzRICBGdpWvHNETYxkOOd5Hsd5nFJKtagpErLz7Buep7ntVt2Ug/ebzW63vdxudjnnIrnUrDlpzWbFqJLXGJARVREFG3Rt57u1a7rlh/x48wdcxFyIiAwi6Xi4Q0cXu6uuvXQOD+fTOE3Ou9guM7fOOTfM0zxNKU0iiQkc4RLaMK2AnpGQCfAJpKHy9NQwE1UBNO/dzfV133W0MNtVVKpIXXxeVTFXLVXF0KFDjuSCAqkBECzzAED67zoxjmjVNTHE6932arvWmsmA2S0jclP7/Xff7dabNI/5eFfufpwHCIFVOQSqpvOcH4f0y3H8cM6HUWulxgcwIVDTkqfx/Hj38PPf7npqZD5WZ49veD5ASmUuuRZDU8eT1EnzKFlThVwhZwABj+ABHJholVxLcuQRkMDQVErVNEE+l2n6HBXhQmBRWGA4BIpmaIRAjn0AYhTUOu9vC0zWDq6sOg4J/TSesgudj7tV+D/9j/954/Vf/t/8y88/TmUapjpWqKkc8z0iSpmlZKlIDgXARIEQnka/Zlai0+t1c9GFXdOUUd6925/P02m2dDvej2+v7oaXr2+ezXactEDsdy8uIZanQNUCYH/6qrU87u/v72+bNvjAHz0Ai+ntaaMXDWRx3zzdJQwMqqpUrVVgiec5WtZyTdSQHeIyFRLVWqs8RalAxAgNCQFJEUSh1CVe9CR3BLBa61Km0PIuCCgaEi2NWfs4I1K1nPKyM7u8lmFM//u//vKv/9uf1/22CXGx2TmQhmFLtEFYV+0VWvORlp/QKbtS62Gez0NSBWQXYozErWP0vGwSesbIFtiUdWI4Bzh3LplQkdN5eKgGD/vKkK3OeUaw1od1115uN6u+iX50noiQPLEjdkgOHUMl4aW/7IA8MpJT7yDgxyIG0YhriLJewWqNqpRTTaUiSiquVMoZK8GY5XGUN4+5FjWg4GAdLZAC2zDIu7t6d48l226NIkYG3hRLzS4zTQBNTnw66ThZLlYX+Loi2KIcFwUE8ApsAGYCMMESSnlSngODElf0KU8VEvrcQN0ANhHZo6NfQWQm1SRXqWiELOI8+BC4CW3sKIaoWqvUXHIBEgBVVSNA5wI7B8iIeH939/fv//rHFy8J6e72w/l0HM4nQ8g5hSastqumjVJS691mu2XmaZzu7m4fiRy7GHyIbds0Vex0OH74cHt3f48Ic5bgY9t2To3BCK1pHao/76GoqhaDxnv24VdNBwE6ouhcG9q+W3fbGgaDc85zPp4OYlpr3ex26802dO1liE2/3q03x9v3D3//++mvf364eXH9xVeX3/2Hzc2ua9u+bbZd3PRxuwqrhhoHbrnwZEmzZ9NJ6yw1yQKJSYl0jC63npgQHSCicRDP0jRzLCc/Hw7D3fsPf//hzfd/+8EH/9XXXy4mP2Z6Ekh99nQRoyyUE55r1lMeU7rbjxz63TWv1/3zl8/Xm4uHh8ec5/NpfNg/ztOIQF27whDQx1ThfDzMU64VqpoYVNVcai41F6liZsTMsWm7ru/azvsooqXmeU6m4iqbaRbJqqkICY5peR7Bk+ScyWHDRN57F1oXu9Cu2q6Frmttvlhv3ScCKRoiINqyjviE0lyQBx87o0zUN7Frg3MoqsMMhHWcNBdAYEYmRURwzAAwzvN50lwZKbRd6440ZoGpYFYTqyAK6hyHEJqm6dfbq+tnorDfD23sAFiq1Sx1rsbCzjkfnWP2YbXqn11f3lxf9l3zeH//8w8//Nu//vP7979ImRe6DAAQYdP69aZfrVrvnIkCIFAAcoYislhcIYawWa9vbq53ux2oljSzKTNsHG3QYh55PPF8dIwdY6Sg0aMZmozDeHt3ezwPc1UwvL6+IXLOuRBi3zbjOF7fPD+fzsG5Fy9f/sM//tPV1WWZ5+Pp8d39mzJP83Sc5lMqY4XSOvKORcgqZRVVmdIwpeFX6wgSs3feOx8aR+3lGlp3Pt0j4/XVbre73F1tj+Pw/sOHUmvsGmTKOZ3P5+PhPAwjgHVd6JpASJItpzLOo1iOkdl5550BiyzvNdVaStVFy9y04dmz61orGi4fAFOVBV1diqqS2ZTKnEYtOedxPB+OD4dhGGqty6WhAApLVP9jxV/reDpMY95vWldmNHVI3kfnHDGx2vV228aIoOf77u18X/fkPZmQ9yCl5jSfTqeH+8PdOc/Vm7FQYlTDHAhj1637vndI0+H08x9PyfTxROdJjqUkRSJFyBWGWs7jYKUCIrACpgVNTxgcKyJ4UkfiYHEOEjg0hoqxoKy6X9ldAOCYEMBUgcAIlJbtFEMyDkQuegOZbt/I8OFo78P1RvvtqPzhmIrRult5x8+uNvwPv4ua+r758w8/7x8OcymzqKXZzKxmRvFESLj8/tUQDAgKKqClbh2+e33x6nLVUTg8TKf9dB5KAZmTHfN8yjqJHoa8exyE2udf/L5dX6MP7Bx9Jk5aHjAl55xTiGiG9hT8gaVjiWCOaWlpLqq4ZfyoalVUqpgqMTGjY2D61LQhJQQwk6d6aYFAABniQiMgAwOsS5IaYVlcQQNUs1qWIBQ6QiI0BKmy+JLAPt6sgMDQ7N8Re0V0msr5nAhmrUqMTOpMDJURGNEjRYTlR0BCI65AU9XTnIZ5dkSR0BEwYnUIglUBDILD6KnxWJ05qIwSPFlwCpCrDuO5DCgIRSWlhAApxNqaJhqazEzs0Ad2ntk7HzgE7z0FRs/IjMG56pxjJFTJ9omjbqal1qLVEIiJiL3nECuYEaoqloqEUBaUgVY1EwGpIAVMMURsAnoiEtQBioGMVCfLU5ldrU5Ra8lw2Lt373V/tFSxVhABUTD7yFxGxqff8WIH10VeTM4Hx47JmbVt3Vwk0+zBeqfFWntS2f5K7DUDESlFIJshelPHPnRNt1lfXl43bQdq4zDez/djQQfk2XMwQvI+EDs1YiYzHYfzuze/gNn+4b7muY2Bg3vahHUdAqJpH/zFZrXdbYkopVmqMGETm6ZWU8ml3t/fP+4PKZcQI5CLsb3YXYgPkgay6iMHJ+N5PaTinCNGcs57/ixsAWgGCouh2Thw7GLXZ4VS8vl8Ulg43dT24HzTx5bbNeiHw/sP4+M9f7jD0+hp1bm2aftN2267sOl8H7n16J5gSAaqoMV0BpmtjppnSXNNqeYMmhwKMxHC8pQ2BTRgxIVUXUq5v3/48OH2eDj265UqPElUieDf92LULFedymJt1Swyl1KUiVhV5zw+Hh5z0cfH/f54HOckiqHpnQux7Tl0SXBM8/3DYRhmleW6JAWrC242laKASx9FIeV6HuZSFrd1lVoBVQwRQYnYh9gCsQvtKsS4AKiYHRJWFQJ0nomDAhUxTBVyrUVN/p0HCkAAFEBVrYjORXkq06xlyemqsuPoOThvoGMS2VfVMgxyHKwKIzCKEdoCgihFhkn3R94fCQEtgUyik4CAGGTQCoIITOSc88G3XacKMUYiVlE0XHWry4udDxxi8KHxIbCPz55dX19dbledZ8zzdH93++bnX95/+OVytyvlIyCO0HsO0XnvmFkM1J7IE6KCT45pDs53bb/d7Fb9Ks0DmrXeu6ZdM7UInEYbHvXcGBq6hjk4YlOTNM/n4/n4eB7GCuTb1cV2F5rOzJgoNsEF/+VXX5ZUgnPb3bZtg4ECqEgdp/E8nOZ0znUUKMDggvPBs7LOorPNU94/2OnxXMtncMilGgBwzu22G4nt6e54OD7uHx+aptleXjar1kdfSnHexSbM81xSPR2HlAugNsG1bcNElQRUxqmqmGohqYposOyqGiIQIykt/hIwC8555qcnFi26anva6Sul5FxLKtVqkVpNjJEDcTAgMasiQPzfpV9Ntc5THqeapjp7kyrEqEhqC5qo8Y65j42POj02wRE6h8qAKMscolad5zzPqRgAKEL1DN5r24Rt6C8u+76JXgue7znJxmSH5b7OUxZDJufYh9i3u92KnA/es4GlhKDscb1ZPbt5QYb31xfzODGzW4IvAE+U35z/0z/8h77vfy1iUJXMCJTAGIyWvG9VEAvebbpQSfZvfspv/m176uqznb96dpftf//+3X4ofd8/v7n57uuvXr+4fH31v7z64uX8f/9/3E1/k+mQSkV2tGxWQl3seAubpYqqIFlFNYa6ifGffvfyNy8v50P+oT54YgB0MSJhVTiXOv58++5uv7u4x7j+w388PP+idk0fHaZSnHf4kauGiCH42ATvHTM9yaHNVMyggHF0npBIRRREZGEMqlrOyy4qMlFgWn5bKGBqoCDLN1lWUtiZB+8qgXnvffDeOQPjms0EkQgIgQloYdQBsKmompESs4CZPGWDEXF5Oi40PO+Cc7++lhj86+e76aubVd9F75iRUFErS3Gl+iw110nNIxKSZ6/IQ9FTqkMpWav3wXkLXgGhVpUqChUQnYfQctc6CITT7GruEVL0c+ShyOMwS1EE5xemuKHDUCseTuk4ZDMFUmZkJnIcou/bpm9dGykG8oye2TMzsyfodr8K7UTtMJbHc70aoelcE6nr4PJSEaxt1AFqRQNALa3Xm52J2Kaz6AERHdNuQ13HMrmtupNxG/B5kI0zMqhiQFAznB/szRv701/xwyNm4PLpIyxPzggDBgQA+QjsUQBQQGJovHOEpLBZ6etXsl3V1mvYuGmu1QFEx58l4MBMqpRcLJkhCSMBNW13dXn99ZffXm0ugtHDh7t/fpgfCzboNbaRmYgQWcFy0eDdxW677rp5OM3jdD48MtiXX7xsV127Wfm2oRCdc57dtu+eXe52fdd6h6ZZJyJwgZeyq87peDoO4xiaZr3etF23Wm/iaqXTeXx8j3Xu+rjqYjU7jLMRAzOyc8ERftZVUs05Dafz+TRMU1Hk9eaSXDwd97XUcRwqYBLtVnPfr13Rer/H+0N3OPHDHs7DearvZsfZnm83m5dXmy6sGm4ZHRiZgAmYgglIBplRJiiz5aGmOU9zLdm0KqjW5SKVWrRWUzVAyKUO43weTofjYZwmdq5pW+8DESMyPBWkvyYuxGzI6TgnCgDsBZFi7JrgfJjy9NMvPz7sz0Qxz8VQm4jb3fV2s/WhFaVa4HCuw3m4fzwN56kWNQNk+tS+rVXAwIVGVE/jdB7mx8dz9N47F7wL0fvg0MgROR9CpNXWhRBXqz7GSEjEhEil1OP5LFKMnSCnlMswl1LqcLTDW0Ar+aPFGhSxAqiZVbNU7TTXVOZh1GkstYiKgDpGJMAidDjLnGvKeZ5LLljNgxKIAIojZGatNE7y9p05quddiY+YDyoZzaiSJatpwYmrqoqZAigC2lKh5eSde/361TfffL1ad03bOOeJHRBtNpuby10THNSapmkcxuE8HU/TOKXP07xEaGZpzogkZmAEBEgCSI45uMVN6L2PTdPH0NacovNutQnB96IeBaezHCw3bFYkriC0nhoVycM5n0+WZ5MsgJH69bqPsTsejsNw3h+yqkAFJnaOc57evv/R0Gqph9Ppzf2Hu9NhKqNCIQaKPrR9jF5Es8ypSp7mouP9F+eS5NP1UkVKLnPOsY3bzVpj/+5hPBzPf/nr387j9FuiZy9fXF9+i0w5zamUaRpTKmkqZuA8q7qlRCcCxAV5brWK6DSXUZWWTws7BgACALNSSslJSn1C1S2ZWERa9LgI7BnQOU+oQbSTmrtutepWB8f5uM9Fcyqq1BUDxV93yMBAK4O0nqPjOWdVoAhMxIioWnNSAEbvHTl6erApLnMudN7H2DgfmFWUzRBUCSw42qy755dXzy9Xq5VrvW04dYQVmiq0P09lyqmY53bb725ev3r53be7q6sYQgBiFSbgQLFv1tsdEk/DUEshwEWswYjLppAavHjx/Oby8tcixp50F4amBMZogaCSZFHU4pScTE6mkk7lcE5+RKfTkG9/+P72MK3W6yCTvrj02AIbI4ihKCkwgCEQgCEaAplWMwVV71zbtt4HhyEgtqH+5quL715fvL7s73KNpIzGRBQChgDs2GMga7u43W62l9ex6Yg9OWcAnxsTlyrGOXaen/K9T8xhUDTRymaE4IgMqKjUqtUACNHQgwtkjePIHJFJwZaGsi3ZbFPTJFIJzDkg8lwXe4gBLvAZJjYFgCX4hGTLJ5QYWM0WJaQq4IL0M3uKSRkSEgASPm39fuqQt9F9++VFo8/aNgbvGBEXvdOc5uOQDlPKudYqhomwUQDCEXhGLsjGzJ5jWIblZrrw+k0A0JOPrusiMdVz1jyRYCAfoyfPUy0LT5IMOCAoKAohe4/AZKCKCihGYMiASsTM4L1zHpBAQYqQKCpgzvnTlrIoDLM+HPX2viLIagWOMAt50kV3pQqESmhttJudAUIXdd1R10Pfu82GTLmeOUxwmDQ6u97Ybm2+RQpIjHmmabT9A7z7wG8fqBJXoKpQVEuVj2z6p0WspXxBVABQA8fQBOcIUGDOdbXSTafPrs2xns/5YTy9P9PD/r7WX9HjPvi2bdFBy+Fi3W136/Xl5vnVy1fXr262l41yr/Hxcp+OKXKYxoGeSM9WRXKpbdfdXF9s1j2Ymta+a2Pg6+fXoY2pZkFAx7GJm1V/vbt49ew6EO7vHw6Pj4fDXlW61aptuya2wzj98vPb/f4w5VwF3r5974BeXF6uNhdtYLYSG9fnonHdHs/HYUy1knfO/Tv7q6qWKinncZ7Ow5QTxNgB+ZRqnadUtIxjMS1StBY35/z2fX7/1p2Pbh6ahFRtzHxuW/391+6rm4ZC651DwcXGZhVUQStqAUlSppyGNA3TPI3jXEpdujTLl1SpRUtZVtMw1zpM83max5SLqgshto1zTISfZGSff6lZUpmksj0tmQPRMlQZ5nlM9eFhZNfG0K7Wq2612+62q36L6MepzDWdz8PplM6zzsVKXhYqn3rvCyue2fngLJf5PGmtqg7ROe/ZN6FpYvTOOyJUMyJ2MYQQOTRATsxqVdE6zfPjccw1B0YDmLPNKU/jJOORhvv1dlWrfPaCDNEQ2YxTxWGWUXUatRQjYM8QnGNkU8zZisDxbNNstQAg+xi846jmvG9c8OxKLbXg4x15tXwq/UBuQBQ0hIlsEh21pDxTTqK6GNEQ0Tn2nr1j7roXz59/++23V9cXXd8uFaSoBu+b4CTn4XQ6n0455ZprSqWUX/H2ZpZLSvOsLhI5XYo0VjZkBjSC5UBHxMTMnsiBASO13bpt2lbE51Gnhzye8jmCQ1n4OZC11nQe8jhoziDVEGuZh/NxOJ0/vP9wOOyHMqhqwBB9bGJEZxXmAlUMxlKP8ziVoXBBZ+DQClZBUSKHSw2Rp5rHfHg/1fwx+r48cRZz7/JHQEROaRjOH+ZcQozEGF+9Wq9Xje9yrcM4LcqeBfIOQCKAZlJFRFQhzfk0PoxTfjycazEfQtu26826aRrvWLRKLTmleZpqrcsKBuJTrUNPTXwwUwR0TxB5JvLehTwNyEEMpRqBWFX4Nc0DjLQODWeDalKqiSEvEH5QgZJ1mrKa9m2EKlqqpmpFoKgZmDADM3lGIljO3eZJ++Cu1s3Ndn2z22z6hlnUCqgy4aoNl2v3/FIF+HAaiGVN8nrT/bff//bLb37TNq1nx2bEy1I+h6ZFIpWqoqBGgEzEgPYE4qC2b/vuV+WQK6UYwKJbJrTg0DERL8biNB2y5uPLm3XVm4s4dBECl2iTL2df5hZjQyVY2t+9+9O//ul/++Pfv//bL6fTCQ3DomBdAmSiWiuIoULf+ldfvr66vm5jv2n91Rq/vOaXl4HrWIZ9Ho4oNTI679v1arXdPntx8/U3r26eP19vdzfPXn/11bdd3yORPrEi9FN1iWjIBggKJmYEQPSRMlsFCBxCQAKgLCQVkqoQtOQufXvBbsccAVHVimpe2ifkiVoiNTlrPikM7EXNQ61QqqiWaghMuMyGCIAMDATMmAgAjfjTLFKNCJjBOUJPRPi01QtPYkYCIPx4d+5a/4ff7L64eB5jcOwZSUXzLKf98P4t3+a6P2rK+UgQTVtC7xldUyJCMzni2HLbuC4QoznwqHVKJArqiILv2xbBjlJ0HkQAYtv5Dn2cqyLOpRbW2hCA2VQ0RLt8tm03LXoFyqozojikGEIfQ9s2XRcck6jUIpJFspqYYf31lKw4ZXw4KGM6HmHTk/cmIn0LeI3BQXSKbITQeuh6dB7bxlad7Va02/BmHbTStNayLXLKbZSLZ+7iBqgl4KCqdUYVKBlScVmcIldaNOySLIsJ2lLE2Ec7uNLTTjWIGbETUxCYpRaR2OLX3/FmBff38/zXdz/86YezxXH8vz1dLc5tdptnL24a89t29WJ3fbHdNqtus7u47m9WsfdKFzv47Xd/2G6vT8NhHE/zcJzmKaVcpRpYjGGz3bVNR+RDcCGyd+7q+rJqefPmzWE4aa3O0a69eHGxfnVzMRzP//LT2z/+8U8//vzLNE1N1zZd1zUdAMxTmuY0jKN3/pef33337Tf/7T//599+8/Wzr182TbCa0zz5zRjvH+qbNzKMxJ75MzIsPO2kK1qu+XC4n5K7vNo0oWtbKHaq6VxqxTzPWEFmPZxOP3wPb39ZT8cN5i07KOPxw0/y42p++/v89RVeBAYGy2oFtJgVUKGFtq4lp2kcztM4DPM0TjmVxYipS2C61kXzDQaAiEnqaZyHXCoSxhi6EtvgPTI9vZfLbuWv0kSESpgJF0CQIYKp5GXxnphDG5quXT1/9vr6+nq323rv51SHIZ+O+TzO05RTBuDoGgdOVFS0LoAnYteuViF4AKw2Cjpybru7vNhdrNfrtm1idM6xc1xFhnEsIiYoc811UtVpmlJK85yGeT6dp1wyQUUwUSxV0pwwT7GcXw7TZ1T4JxbEMqotlcYiUrQkNHAheEfQBE/gpKKYzcXmGXJmMHbex9A79k0Adu0qrBxydsDqpkN9LConmbL1yTGSEoykJ63HqsNw0mGoKsuxEAnbtlmtV5vNGpGvr65evnz+6vXLbtXJMsEopeRSc97PMwPuHx+lCjGDoT5dWwAAUuvpeDocz5uVD4Fkud/RgtoNzG6R7C70LBUQ0VIKGbTNauO4QbThcJ72klJIM6ZJyZlIqsNTVTzPWgRFiXE8Hf6yPx0P57dv3j0e9pOMIoLqAoe+a1yA6pJ4MO8gNtQ2LpKPQELAVEY7HWZJttpG51z0flQaHvV8n6V8LGKIQoyxbWMTAe10PFlcpHt0Pp+Hccrz9HD3/vGbb7788vWLVy82m+1msylVh/Oyvp/VrGQpVmpKKeVa5XQafn73/udf3v7005tpyn2/ur65fv3F62c3N7uLbfBOpdaSh/MppbRsDiDiMkw1MzGx5SjMLvro2DM7BAT0yAHYAzIoQQUrZk/gNwCA6PzL7fVRTuk0H8RCCD54MBKBonCaZH9MaHUVYxmmdBjScaqnYknJEMBMCRRBAFUW0H9PeNOH764vb7Yr79FrLqmeawEuRL4Ebtar12HL69G9eztPo6VHV8+v1v3vXr7s+wv20UyFREiMDBez0RMjVmEJ2HykBIqo/2xqAQCu1vo00kBiZlGtpUga5tPj6bSf53N+fB+DbK9Wu0B9UHDSO3mxa5rgN5frXe81nw+n8a9//uPf/vLj/mGuWZG8IzQUBCUQYiPgtg8Xm/XrL17/9j/+4cWrl33sNx1fdGXjjiu9He7GmkbNM5kEwuh43fiLVfPly5v//J//6ctvv2v7bdttY1wh+6qaSym1sHwGJAAAW9Li+HSQIliKi6cpBzECIxghEJgD88g7F14362t0Ta2WypDylGqpqoDokTywJ08oiBUgmwsIbUCgkrUIaK2qCE9eRqJFL62moPKkcPi4jgW68B+YcfkwLqgxA4KFN/M5KIIZV6vgJHofiDwDqYAjSbOhOxd0o9IgSGZBsUNunQ8uqjnq184ReUECBGWwyFg8x+iJuNmu+k3fNN5yplogJxBDZg+qDmKgJGSmjNY6BtNaxJOuOr/dda4zZFerItbGueh9F0MIPjYeEEuBnK2yFVLJSvwZhwxAgedK+zOUaudRnTMz3a1hs7JNDwvzY3En+QAxQGwgNuojsQMzQ7DY2ubSnGobZXcNqx2hJwOUqsmZmRaVWWFWAiM1fLI8fPRgffphlpPMsgZmZowAoIs8p6qIKhLFPvZbP2UGGm7v30t8n/NTLJkd9avu8nq34va6v/zy6uVutXMhNF23btZtaD2w40ActxdXp/NhOO/H4ThPYyoZzFxg59n7wOQM2MxELhmxbeJ5OHmmSORjc7leP99trnfrTRvH/fHxYf/D33/51z//5XA8hib2fb/ZbIIPqpZSOp3OYPa2e3c8nBGcAjfrrd+sjXJJMKbz6TSfDvNhmJBLv50/D/TZsiMAVqXM4zBM1LSDjxxi2xEaQZEJrOaUZZ7z/vF4eOTp3JGRdwgEKlRnzIOlQeYhT+c5GloGqAiVcJH6IQBhBRHJOQ/TdBqncS65al1kzUsRs5Q0YoaACKnU43ka5ySAPgakvu/bJeRLy30c6b/rxwiREOHiM0MwQwEAYHIhhK5tt123jc2aqMuZpqkcjsPpPA1DmlIuJVcRBTAjBTBiRGIGBxBC6FabEMLiTOv7woSb3eVme9F1rQ8OUcVAq84pn4ZpzvnjQ9xKKdM0TdM8z/OY8pRFakYthAaICwjOSTaoRT7jKyyxEiA0D+KrkKrVbFIQ0Yfg0HFgMqNS1IqWalIIxBGRo+AwBPZGRBTYCI2ceVQrI05FKJsJaSVGyygDlkcox2rnUWkcUqkLRNATtW17ebl7/fqVGa5WHZiNw5BrKikZmHNeVXKac8pS5XQ6qQgimpl+bhg1y6WUUhGIydsywmXH7IjYDEquyuqIRaTWYqKE6H3o+nUbogdMqhkd1KkrhedZjcTmlGqtAObEDIEdqoqO0/D+/vDh7uHD7d3hfJrqqKpkPvq47jsOkHiUgNi3vOoid4Gcx1zylEpNcylJtLHgGQDYyIFjdaju08ESiXwITdf2fZ9rSnOqQqDGRGaW5/Rw/0Ao0RGjEoGo9putd7HvGiJS1TTneU7LWsc0Do/7w5s37/781798//2PP//8ZppT3/XPnz8vZa45qeTVqkOEkqZpGqZpIloG04vLBtSsajVUJCL2yacY2iZ23ntmQgpmqGJWzcgsK9RfhdzM3K36WsycKRF4NoeCogpFWQGcDyCgJed5nOdxTknFQJEUslnWZT1LQZUIAvtNG683/avt+qJr5pIg12IyOwVRJJ1NsIuvnr/YvtTVtn24+zAdD1gnS5OrdR0b7FoAqEtHDAREUI0MYWEimZiqoRqpVl0MRZ9f+05FiJHROcfsXS7zeDjt7968/eX797fv9sdHnIdnVDY9b7cXna9jnje9+6ffv84WXbc29tPp4cPb2/3Dh3k8oaJDrFCWkx6CEtboqV+3X7189V/+4z/9w3/8x9/84x+un99EDh5mr3f18PfTmw+nMmrNINWZBoSOoSNrLPXOri4vb54/d2FF1JhxrjWXPM1TSol9+HTx2xMr18gxOdbl9asgUnRddAEoijlBQvZtiJ1h78KL2P6u266Lnc+Pt/vzL8fjfUoToHoXol834aq1Njh0UZDB0BFt+i5aHcs05bmUVEwcIDlG9kZQ1KoKWSYFMjRQNUVAFEMDQDM2QzCEqiaoplBUpYp+pk6qYvtzOTzMxMJYENmU6myHgzwOeEpuLM2oBiQNR2p7anujhpw6qTyRlHOS5LMaGgE45n7VWtdun91sNpvoKU2ZpFKtXM24YimIiCjLHhEAOo6owAokjoQ8cOOQnGYgJl61oYuxCYEdA5uaKIpn48iOqBJ4/6spHYlccC5E42YWP4+KUMwAWOesImgqoKbgTAgrEBlVywWmJIRmIo6JA29v6PIiNJHWuxpbBXBgrKaeBDgVshnraERmbMhgjOqdggESInzaiiNczLcAqgKGhKSAZakkQXP1h3Nv2BwGPs86zVpK/tQeJ6LYhtWmv4ib683VzdWzTbMxQxdCdDH4GEKI0Lf9uj2v6Jaco/WqB1ME88F3fYNMpdRl7lBF5mkcz8MisNVa1237/PmL58+fPbu+2Kx7NE3zNM3zaRjvHw73Dw8hhs0mE7kQdJqmYRiPh4NKbUI8Hc/39w/vb+8E6Pe/+10Tw+Hh4c///C8///TT4/445mxA4LuUf+XE2CKaMjMRkTpN5fb2XbvKm93ltlvHluc5ztM5zWOe8zSWhByatkaea5YpExF0XbjYxlWLCKfDIZWBURjFOWwaHzcriB7M2AoQi8KUyzilMdVS9cnc/kQ40CpSSxVTREi5no7DOCYzjDF2XVhvV94zPLlQlgW2X8vTZZXeiJAZiNUACJ3j4Nu+u+i6bd9svevGUc7Hu8VdME0pV6lq+rTmb7pI4xCYOQTf+BCb2DRN0zTOOTBzPnrfMNFmvQkxVtU0jCnPOadS8jTPwziknKtW1eU3WkuppZZapYpVIzBhKExGjp9wZ46ZAvvwGVcJ0YjUgbCoKwaoJoXR2HEkDqhECFWqzBVAqhoZO1oCUB7lqVtlalkTGkM1NlYNAqCOitkZVXEeIA+aDpZOYsNU3ThMKZUiqsrMXds9u3n2hz/8YeH7vX375i9//eM8T7mUvu9fv369Xq1Utdaa5zzP03IUEa36ucYakZm98zE2TdMImCESMyEZQK0lTRMRMVDJqaTZtGtCaEPbbzbRBSmW3Xl2wSplMTdnTZKLnKek7P3qEkPr0UFxMI825eGwP58PikqBEZiAW9+tutW2782pVFOvvm8x8qzjOOZ6HMs4pWORQXAwHaVx7JggWaTAW7fdbvkjsRcJnXdt126223keVLWkbMIOuW+bGlz0jpDmYfzw7t0wnLcfPjx7+XJ3cdW3KyYgMKllGlOpGVT3x+OPP/30179+/8c//fmXd2+H81hqnafRTGL0BAZWLna7po2l5Hke5nlGXPag6dO9dakjDBAgJXKlESLPLnjvkLmK1FRqrsygRVR+rZONQFpEi23fsGc0UZAMCY0MfdP6588vtcxYjnMZRpknrBAYkbXoVPSc85hzlQqmZNB4vtiuby52F33fsg3nqWiuHRdCNKzF9tO4aq6//vLrdrt7/fXrNz/98Lc//kvV8ubnH7bbmxjXGxcyWCGtpIrC1XAhxKrpExnWPtJMntq3n+dgFuUM0nLNB1/ydNzfH+7e1/GxDg/727eYp82mrU0sgLPaOE211FXohHxFG6fpcDgf7u9qmtGEkPhp40ANjMk826YLz65233714g+/++p3371+/my32XYe2WnFZCMVq3PNSYqYGJl5xEjWkAaogSyG6EMLFKphyTWXmvI8pTnlHP69QmVZgCAkz255TD05Q8mROTECdhxj46mp0CpdAj9Df1GdzvPjcfz5cP7hNN7WkshRtU5xAkwEa8bOBWbPFQNQJTR0yETOzYlzTSYiHxMFddE2qpEBGxIA8wLUhaclYzRQAIQKJgBgHwWSn22PT3P569/3P/9w69xiMmMwsgrjWPaP4/4kh0LFPAEjeK9MQmLAikhOiWc1UAGVyuCZzPvYNm7Tr3Z90wQoVUqCWqkqVdNaoRRgIlAihSdPkwMgAymF9vu5AoYBfCPM0gaq5CuEok6ZFE3BVNCMCRjJgODzDAwiIDMyG7oKVOvSW8GUMRWsFVTBDBBN1VLClOBwVO9h1dO2t9TWrsXQaPz/s/VfXbJlV3YmuMQWR5hw96sjAGQmMpkUVaOKzVFj9Gt39V8n66GbRRYqdSaAAEJf4cLMjtpirdUP264ASRs34iEewt3uEXuJOb8ZaRgxBgfeqiGaA2Uz0BZSSaIgBmJgAMRghNcarv0uTeKLSNi0PKD1k+ew1duGargVf3/er3K4THxJVjT8CY8ZwTlyHsmBSJ3mSROgkY9BQatoiIWZzaCh8REo+I4Zub0Bu6gmOdWSi0Je1vX09Didz9sy1ZIP+/1hN755/ebZ3e1u7Bhhmad5npHJd50LAZBzlpRKKaKWL5dpmqZlXbXWmmvO5XS+5Cr9MF6m+c9+9au0zD/+/PabP3z789t3l2U1ojDstu0zJAoap0DaDMRE8rqejSj0vndjDJ5pZEQyXjMRZxr2yGSoqaSVZk+0u7nl58+q90tO6SRuRUfWBRrGCKj1UUTKMs9SskNNRbdcU64p19wGX9pYtvK5AyF23lVBUWsHqnM0DN1uN4bgiLBBJPG/m8SogRpKU04iuRCHfuy6fRcPwY+EISWZ53Wd87KkUqqZWqsbqK2i0QwbLoXZh9D1fT+OY9d1zjsAqKUiinPBTNcrgbCUktZtTWlLOaWUUtpKLVVE9PM/179cIECHqAbFUEARgM28MSEz8hficQACR+oAWIxUBKpJVQT0ThkVFBA014xQEdTMpBFgBUCrVSAmQAIogBmMWYkNC0H1DEYZwFLJJU11nWWbJc9qW+Fu287TdLlM67oFHwFgHMevvvrqcrls6/LDD9//4dtvnh4faq3Pnj9f5vmXv/zl3c1NDF6qMJPz7Jxznon/RKpI5BoV3zlHiM3y2a52rTWlTIgb+21d12XOaYgOYww+REO3bOkp1futwJZjSCZKCkWklKxxIEQfQh98V2tBmueFALT9ZTCRdwZITZjqydhqtQrGaAi1Skp5WddLWZKugAWcILKRQvBu1w+d683w5ubovgxMRkQmYgZAKaWagXpHOHQRqeu7bhz7vutU9PHhcdlSLmWZl9ubWyI+n5ZpmqfLmmsBhPv7h2+//f6P33337t27+TIhoSOsJS3T+fT4MPbdOEQmqKUTlbxtJScDQ2hPQMs0BAVtJTgAVayOAyJ677xveyUwEc1VGJqGHr64w8wbdhB79kyai+XNSjVF5t5zHJwTsHXboK7MSoGKUlUoVWepT0ku21pqZaIudsdxd3M4DH0vJvOapmUGrWPoPfOVdcOuG/evXn/1/KuvX755dXdzEwin0zRN57c///DmzS+H/c7cVUoPLYzweia29tH++8+Xz74LwTVhFTG7EFTk/du3p/sPt2PPtzdPHz5sy1y2eib7oW5e1zQ/SalEcxE3Z12KrsXWyxLYjUPvtgygaM29qYzQe3d3HP/86xe/+upuHyFdPnz325PzLnoXMQW51+Xn5XzJSXKBWhEUGdSTeJZAgAY5y2UugiZCtWiptZScSyql8cQ+fR80IDBm44HCyM6ZVS2p1rlorYIMGP0wjBGDL3hM9mqT3Zrr08PP0+lvP/z82+XyTmxGMsLOCCpg1sR5cXgXws4sArPAqWZ1GMcujl2SYU3rPE+lZKsVQA2FrL1oAAGZ2DMRUFUTlQKAik6ViJSbHqYZrbH5v9vnfMn/3//zx//7N7/t+s57T4RESICiUKrWarUoIw/AKpxmsZyYlcUwZ855y3mzWpz2RJHJd8Hv+m4cnEOTXFIq22a1ggoogKiWYo7Z1AEQmBkmATCuGNdVP3x7L99XozLs/KsXh7vjfht8H5x35IiQhZicQ+fYOYegoGDGYH9yxhiAohISusbBdgBWKzekqYEhqaqtK58nuH8QBLy9pZfP6M1zvT3KUKsJUvRqjBqQGMwjOERaJVdoSh0JIGTmzJwZAhjZZyCRqYEJGJhVUTUtpYJddf5qZMZqbs3926dbn5+tm3/KqHRwvqMvmARgUst2SbA9Lj+tPwcIXRz3+93h5jiOg/ceiFQk57Qti2r1joiuOaCqkvN6ni7zNC3rcv94/9OPP0otd7c3X3/15i9//RevX74Y+zE4Ni3TMj8+PZ2ny3AYX3/95uvHEyAt8+y9RySpdUtbytk5Ju88OgNYl+UP3/x+Xeaff/zhf/9//+/H/S5XPU/TP/zTP/707h17f7i9Xdf1+j3allmslqpVmMAxGkkp88ND6bb98eau64Y+9LvuOPvJ+46ZLS9AVHJK4Ry9O7x5jW/eTAB8PvGG3lN0uN/3w65ft/zTz9/+8P333/7x2xj4f/53f33YD7lorlZEcy0iV9ZF0zkSUdd1wzgej4d1zZcpXaZNaiXkoYvj0Hvn6Ep9+pgb8umaGIhaFcWiROBjOOyPz1+86sIuZ9wWOV2e5inNc8pJVMk530XPzAqi13QzAiLnfdf1Xdd1fT/0w3h1GGEuOed1mpd5nlNaTapIqaWIlCqlVlGt0igfTcVvotoSCFWvPAcCbJzrJJZrFkMi2jFGxWD0WdTfItPIHAiLQE1aUy01g6FnI8wgQGhEldEQrQEymlULEYGQ2n9FVGJEZvBszgP2Pqw5eoaSlrQsS55XSZvUjCAap5Te3z++e/fhqzcnh35dNzM4HA45p59++uGf/vmf/uZvfvPu3VszePPmjUhlohfPn93e3sWwXC6Xfuy7IY5D33WfnxdCZHJMbS6uyKH9bqogUqs0PJmllOZlvlxOh10fDx0jGcBW6v1l+unh6cf7J0xnUqtd6No62DF6r8QY474/BiPp+2pyPD/cb/O51IpGIRhYljrnFTdT0iWvRVQXZCXjaiXXLZUtWaUAru/9bugO+363G4BYhWqB29sb7/jjPXaNM1u2dVlXJSdgBsjg+xD6ob+7uzsed0PfVZHT5ZTW9e2PP50en+4Pe0Ra5nWZt7Xp8Inef3j4w7ffvn33vtTa930/dKY6XSYCzGlL65K3Na1RSlLVnFPDvn/yKNB1p9Ssl21FR85R38dhiMzsvQvsGFFLlWpWBfQLjAcqUmFYfcWuoqUky1KnC4iFuHe+Z+eqpLKcO0nHPsxj91TndZNNy6nm+2U7rVtWDT7e3dw9v73Z7/dG8O50yst0maboaL/rPINum4/jzbO716++evbsxfMXr+/s+d3N3Yvb5z9+//13f/j+8enDNN/fpoPjIZBHsxZvCthyrD+tWeA6j2ja5j9x9IBj5iaHqTXfv798+803v/2nf77c//zL58eaF3ua5bzMa4EzXJyQbJovVIVxqxWnra4VCvCaRSsSOqKKZHAVOSAjBubeu33ve5a6PJzfz8UEETrPkUq0ieq5rsu2WtogZzQFInDevDdmNnOpwLzWYiICKipSRWqtpTVwXx6TImZiTmA094qHwdAob1QuJpkYOHjyA/kefYd4A/VVrX4rl3mS6ZLzVk2ZXUQHxB1RoGYlAjHRWkiwK1XFFqjqiRwyOu98AMOSkymIAkAHpAj1OhIwbBt2gCv9RA0QzTzDNR4FP1ad9oUvsRS9f1h/+nkaBvXBATaTF8BHE15j1FxfB0mqVPBOVTVVzOJqc0mSAVfkiASATq3mDGaybNuWikgbXKiqlSquIII3DYxGiN7AjHunls7naS0rsAqOd3c3BtEsmkYp3FQnzIZKZKxGYFqS1KJ/Wizb9Q8a0TUuRMQuMzx04L1TshilKE4rvn+w73/AUuHmBPMGREBsiIWZmWOBoaS+WhAhAgqR1rxWTQAbARBoq+ObMMqMmqK/Pb56DSRog0LVBvGhj6IlQ1VW6ISfEb+qhMIbcofEfzKLwYaFRyBSsFyrwdbk5Ou6IICY1Vrr1TEsV52A1lprrXnb1nmZ5nla1uV8fnp4uA/Bv3h2u9+Nz5/f3d3dkaHVkktZl/V8Pi/r6rwf97txN/bDUEsGgFqriJRSTMV5z0QIpLXWmp8e0/l0UpFnd8/+7Je/AKL98Rj73gAu0+VyOTcE1qfL0n6zUkpJCUHGsQP2a0rrYo4dKPZxjL7Dkdh53/laNi9gOVt3gOj5q5dwd7sRupxCw7ABN4P009PDf/2vv/mHf/zHb37/x8N+QKJf/fKNmVa1VOqWc73aWNDHOIYQY+j7IYTAzOt2+fDh/v79A5CLYeyC72NsONE2iflv/EkGIKK1CEINHvrQ7fvdvt8532stKjlty7Is25pV0fu+7/zhsIveGYiIFJEiIAbkQ991XX9NRoo+OnaqUnOd5+V0ukzTeV3nUrYqWaSail2LcLU20GtU1Ub8UANQRICWyAwGWs1Wk63UYujQESFsBLnWT/NxQgoco+tZowhJrSlLSkXFmJWAm+MjOPBM7Fr7SQjUUOKiUkXVpIIKAzJ77tksVyiqQuYdqmpCm8lWsgQqiIyYSv3w4eH77364Odycny7rtrVb5f7h/seffvzhh+9++vHH+4f75of+7ttvX754/pd/+evD4VBqrrVIW81dLTSfrgy1/ridvkyMSGKKqE28TERtk5hSWpZpXaZdhBL8jLxu8vbDhx/evfv23QcuFw9g++HonHdeEFHAAyJ7H7tguGWniEVlq2UtacsZGxleTYtiMvSmpOQAUAGQgRk8AQOQmioqMriIPnI/Bt93UvH8mL5gqQKAVa255DWt67YiRUHNphUqEIHG4Ljv+nG3q7WuKW1bni9TSSkwEPEyXVoRs2ZJVd+9v3//4f5ymYh4N4zH233LHKhZVGrJSWpp0UwqV8iqXRP4WjjCx+QNAEAkM2KPpiq55K0A1Ly1APlMxAb8p6c+AwxgtK7ycFrmTealTud8PoFaGA7IoZplSWuZni7328ODLEte07qmad1OSz6nPNdSVQNT9LELkYBSLdu6li0JsmOXBVNWzeoiDePxeHO3O9zs9kcA7bvhMByC7x7uT7Vsj48/7w/dnXsV/L7RMdv3arMQ/NOhy/+A1Q3g2rniHD3cP/393//93/3mN3/3f/7n5d37D2MfwC7LVCWLwxOZgRBUZ9WDBsxmkApkoWy0iq3ZSkIAIja0xrkFZnQAWK3M83T/ltYPQ3TOOe8IGAVrtkxWTOu6wDJDSqiG7Ch04CMBR7GwZVqTZlXRBjFUAzVouc5/CrurIkW46L7SV7F7Tt5jVS+pw+yodl6QYKu+SF9gn+rtkjCtXNILsD/v+uD9BJSMKgAwkjcX0Q+ud7hLW1+2fjM13DkEj2mbtfPDYYxM0YcKqKWAKRMUq5OlTWtFNYLGTaxWqoqoILIZgDlUI0RSwIbbay70dlUc3e7jq9uxHwZyrnUtVQXMmIE9OEeegE1BzICAkNEbSq5mRTtjoVARMlJVzlmzLGXLEINHqFtZt7SJJqCMpgpUqiAikSfYBQIm59VIuCPxNtWMouM+Pnu+e/V6fHE77LshciAlUFMTA21S8ZYck7Ylrat9hivZtWwBYGiLADKEVPTdYy2CWfiF4O2tGdi06uOk7048r/Cw1mQ0DjQM2A/aGSftJN+d04s5DfMqTHqzB6hTlmxmrf9VBDBiQ2yJPXgVgSkYmJAJgRJ8dLy3QFAARTUwNXS+v332vDu8Ol/y8P6BmcA+v8oIkRzHvr+Jt4dw3LsDFFovcy4FAJZlyTmnnEsppRStJectbVspm9SqpmBSteScqxTV6r371S+/vr29+bNf/OLrr96Mfa8iOeWai0oqKact5Vza+PQ6tBAxs2WZW2VE3DbkpKLN29OSdn/++ef/9H/8p/t//a///f/6v/7rf/s/KfHt8+e//f3vYheJ/uSRUdVa6rZt0+Uixi/u7kI/vrt/vMzr4/395bzc7O92w64LXdcfD8/GXOq6pLSl/njXRcfPdrbvxJESkHM++NAFNXv/4cPvfvsv//E//R9/83d/f39/ur09hNidp+nrr1/HGFIpy5Zyyo7d4XC8e3b3+tWr/X5HTJfz5ds/fvvb3/3+//qv/9flsvziz351e7uP3nnPdJ0v4HWh9OWzr1pLLbmgOepg7Ic+9pprLqtUAStEEoKBEZEfht3N4Xh3czP0kVBFdCuypjKtWQxj17kQvHeOGQFEJKc0TdPT09Pj4+M8Tykvotmstl7NzABUG17FWvd4PWsQmyGXkNAUaq0mycpiuoFWASfGKmYlTcvyyZ1ExH0cd/2BpE9giaoo5qK1FARpvhTvmCh475z3XYxd7L3zyKQiJeec8lY3sGJe0FP0EdXXtRbVWXM0F/rAkQCqgBVTA/Ih1Gr37+9/539fch3HYdvWNh6blumnn348n0/O8c3xOO7G3W68XM7f//DDDz/8AKDLsrx9+/bp6XGeLus6l5I+r/ivnSw3Y/B1M64VPi55VURKBcBWx6zrvERDrdN5Pk/px5/ffffj93/46WfW1HnHzsHoosG2FIfleAAwNNVN6v10/unp4cf7D2/v75/mdZWCvv08F5xi1uCo23saHMWA7JiYKJQqWnHJa1EpVoqWYqJsrnNlzQ/nxw9PD/lj0a9qtUouJaW8pYRo1XitaxYQxFpzH32MYRhH50IIXfCppByZn90eg3cMBaWYciplWebz5TLPi4gOw3h7e3z54plqLVua5wWsyfVafylVrlHon8pCvKrZwOyq1TVDjCo1nU8PyzKZSjo9eML9MEjfoahveQ8fHxlneCd8flju//n3l+9+2B4e8/kpLzOAuWG3GTxOl6Vu6iRhWSQtkmYpy7Y9TctpK6tQAahqTkWL5C1Ppky1VKUQ+9h3zFnqUotXQo4h9qEbQ+zBBc0J0A274+2zly9evXy8f/fu3fdEdRhjHKIzh4BNDNOQ9tfp0ZUJZQAG1kgZn4sbB2A5bZfT43d/+Oaf/ua//P7v/+708w/ycH76wB0ikBGrEGTTVIuBOrRAFgjAQASz4Ga4Cqxac1P6YMOvXHPaVLRsZXo6PdY5ex0iD33ogqtEDpVRm1Z/Otdp2lIqTOgjxY68J0ASwVK05NoibxEMCRw7MDbTEAJ+HF2qWilSsqCYFxgL3iKNhZ2hImXFnDBrLWulrF2xrtS+ZEhZS3mhkDneUlgAE1gxFQJ1Ro4dOq/gc/FbDWtBoND3B6BNFaoN5H1oSxh/PRaZCsgFedFa0BQBgNQkgWbQzUBMUSpCc2cjIoFWtfpltngf+de/OuD6PHajIaeU15SXNdVaDRCJnXegKllAVcEZEXpnFapozYKmzHZds1dlEkXFULoiipC2vKxpKbKZFUBTgFzNUJmJ0bORw+AJg+u6QJ6KDMjw4vXNi5e3r14cb3ZD77xHsmIiWj/OXESklqy6iSTR8kURc735CLD1ZQAmatXstDSqIiahrEZsj5OdVpozXDJkgO4MH0707NZubnEENu2yHB7XV5ftuCbxrlLKTkj0EWBBEASzlunZjJwG8DH+4BMZrVmtDcAMP+ldDFXRFBHZdd24G0Yp1Ad21CJgP3+InHPRx263u3l18yZiXC6XBnLIJacWH79ttVYEKTlv65y2JedUpYKJWBDpDLSlIx2Pu9ubmxd3d8fjgRFLzjlnLZXIQog3N8et2vvHd5fT+XK5rEuTT0JrkZmYiYP3jCQiKmzBi0gV2VL6/TffmOrt3d3XX3319S9/SUypltu72y8ThpuotpaaU96WxciDWnB+P+xU6XxZSlpnfJK8rc6HGPwYyQXfj9zvyFHf+/0xjj1FkuDQe8fOs/PLcvnhhz/+0z//9sef350u01oyTcvv//h96OJuv7+5dVXVez+Ou3EYb25ud/t9iN28bo+PTz98/+M//9M//9M//PPvf/8HBHr1+hUjhuBCGzhdERlMRF8kJrbLiqREwI5D9D2T39ZU6pqrpFREMrENg+/73e3t7e3x9uZwGGJAsFp1SeWyJMM5F2UmBK1lk5rW5SyqKaXpcjmdHqfpvG5rKZtiAZBm8W6NsaG2Yt0arc7g4574CtMwVCkVrTApEFDLLpaSBbC6lD8f/ETUhX7s9iQdWZl5bWiWKgZa2p1L6JG6EOMwDrthGIYhhMiOTTSntG7rtM1UV3IZHPvgUbwqWBVlsEB+6AiUtVBTEgGFrieky3kCfGtq3rvL5VJrdszV6rLMtZS+74ZhOBz2PnhVeby//+1v/+Xx8T6l7f2Hh7dvf356erxczuu6fqlTJGImZuZrvY3XDwExcwhBkZrEe13n89l7LOs8lWSnaX13//TweP90mVDzj48XIi5qQ4xiPHjdGZrCltO2TD/cv/vu3du3j4+naV6LFBADc8boSAxyFTS3G3u/j+Y8Ugg0uCoVsAquSUTSJnVK6bIsYQnUh6Wkp+V82eYvs8ZEtVbJteRcEKEIpqxb0aKSU2o7TWTuh52IMbsuhHHobw77EF3e5pK2nIvWfD5fTudLKdU5t9+NNzfH4/FQax6G/qq0+fRpruKW42fanCEIH9dJZqCAgKBqqtu6LsuqZqrCeY0Iu3G0ww6q9n3nvfvUwDBgr7RMafrjjx/++Xfb/UNZJpWMjmgcZ5GfH+/nmmhgHAL1wZBTSlsyBe+6uA89FyWaIrndOO53+8Nu6DpCpzGG3TBiztvbn2V6qqbzWn5+d++/+2H/+ruvgGMXY4jk/LA7vnz9SmU9PX24v7f58ma3G9kPDn291mf6uYG0Vrc0FdCf6nsAnKmen57+8C//8Lt/+Js//v3frO9+ft5ZvO39XLkKkAEZEGRRKbVIqaBKJoxgUAW2aku1TSyjJTAQdYYVVNFEoADkLPOlPuimZ9h53EXexjh0vnfOMzpqT6ieT/lymvNWg+eud0N03pGKaM1aEkhhR84RITJRCJ6I1Gzoh0/7VzMrRXIWUVDRumUV5VU6MWKoCMWsiJRUIImrSioVK4l21Z4rjhAWxIU1oTXCjiGgEGZWsJwxFU01e3S3xh1EA7AKcKrM6h0xIYJDJmBXPKawy6AFoa2/cikLpgnzE+VJ61IkqRqYOWonqDWKzsfPfhf+t//lxb96+Qsf9lX4MqfLeXs8TdOc1q1UASBOuZ6h5GIWkANpZAWrZjlXyxugcGTzZGaOkAKosEBR0GVepzXNW0nVhEgRoCqqICMgKqpT6roQ3I78MHba+a7fhz//9ZvnL/dDh9GbM7VaSsqliliz+GApskwrlpU4E8nnwV/bI1395ewcAZha0WpZUFZLRaZVzxP6ADnDklCZKCAQFaHLgqcZkrgCoVpcdZjrzWYvsHfkcuUnqCuoI/MMziEAgVGLdmhsLfnoTVJDrXj1t5hpVUVUZ4akgtqmNIJqFalgMIionipj/SRWQiRHjtCVatUw9rtn+7vXr16CtdATEdWc83SZVGrXBURru4x5vmzbWsp18A5gzOQdxxgcc2uQUmoPkDGTj2532L3++pWPP/zdP/z+h+++f//u3eVyCZ69d20aEQI652KMjtmk1fekqjnnbdsul+n333yzpvSv//qv/8N/+A+//LM/m9f5669/EWL89Lx8pMzVknOtKdf84d17VT/sjrHbd/EyL/O2TO8e3y7nCyEd746HZ68OL35xuLmLu2G3CzcHvw8wWIkgpEoEBvBwOv3ff/N3f/jDN8P+8Ou/+lenaaq5Tsv69t396XTp+h4Qbu/ufv3rX794/iKEeDqff/svv/u7v/uH//Jff/O73/3hw7uH5TKD1BcvnoEKoQXvYmxJI9c/TPzlMIYQPfvouxiHGAfmrgpezsuytrR7rVWcD7vd/u7u7vXrlzfHm95FR6TVtlyzIrMwO5JqJmXbtrSu27IuSy5JpBaRlCWXUqWIVbMKKAjQ8niJwKDxLY3AQKlltgHAJzpaBVHNjNIPwXFQhLWoTDWXbKgmBb64x4Lr+jA669BSCBP7JvtEuYKKFQlijLvd7uZ43O93fd+FGJkZAUop67b6Kfp0mWFVQM8eyEk08OwddzF2Y69mSSQLJAUCGoa9J5dSnk5T13UA8P79221bnCPfTHfB39wcPPtxNzJzyXld5r/9zW/IcVVZl/T0dLl/fHh4fJzn6dPB30SBjr13jh1/LJuvvnoEjD4Yu1oFQC/ThVCsrmh2eZqmZZuy5LwCYlb9+emUSj6ty3F/GLsDDQTmVGSaLh8e3//uuz/+/sfv70+nNRcjJnLKzXvMAFBqJSPq2O28kicaor/xAoKcxXxKa67LJlYXBMyqG2ipMpclW/5kuDAANWjtZhExtSqYs+ZU15zkMj2ezg+PT5dlffbseTcMwbvdbry5OezGMQRed+O2LJfznLb18fHpfLog4dgPx+PxeDh0XUybxhC9T1VEEava1a7aLJUmJYuaEgoianNcGiAgI7fGJi/r4+m0pg1AD56+3oX9bgx3d1A17Mau++yAM0NQlCTTaTo/XeqWEDGMA/URx8FpdViCFr+L3WE3PLs9p/Thj9+Wiv1u3O334eZ2zfXDD++4wlfPX715+fLNm1fPXh53t7t+6D35y/v33/zmv9x/W9N0evfh4Z9/fPjnH97/eJr+7f/y7//tv/u3r16+LmDOx1evX2udz+d383y6nO73u91uzxiYrjMYgU+BTwZtZ2uqLVHsy5gep1W2aXr/3R/vv/s9Tu9veTuOXehdwk2SASl7dtFVUxcgVTIUInPEYJCvkmVD0Ua1QiGqYGAqDdh5xSujGggAXcE7yiamLCTUiAnVRILH3RgoxDj6ISARVBUGDQydJ4wOHCMgEYfgAVFEkT4v+xAapRMRUVTmeT5lpE1qBUCTVsGI1FysKIohKLEygK+IxoQWGcEkoGLbZF95DVrMllqlyCpihEOVIwgrgGlzhAZm1/I/PUu1Gp14VmbA9uVEKq4VZqNH5Ecqj1bPaBtCZlBHihR6duFzb+kYb/Y+pI5dKJU9I4M1bVeuNZUqVbZc11yzGqmqVarZaslSilQrlU0KAoqZqjl0wJksseLVHVNFVAyKgVw9puYNAExF0Kh2ymxoQOSiH7rYeT8C+pRTLdlB0ZJzWqsIsCfnPXsjVaxGlRyQ+5PdJV7dgUgN7AdGBEoISqVarVarlWwhACBkAWRyngi8KsyrzouVimoAAgqO/CH45yF2jlYQqRYVnDUEFH2M+7y+ej7d6NdKvg1pDNqjoS2UlgDMkM2IhHFhvXfKXreI5zHoEN2XKxgiBiAR27Z8Os/Owhg5eHbOBQ5MVGolZDDZ7QbvGaykbT6f+3meUtpS2nJOokIfd10qolIBzZiZGcijZ2QC4sbSyFtK66pVCKAF9YUQnXPM7Z8WDUzxmnpj0zQ9PDzM03w6nZctmdmzFy9evnw+7sb/ZhIDAKbWTDRgmlJ+/+6daXgTdv1uxD0A1Pl8P0/38+XJqpbtJLmEbuyH3iqDgBapYEmLqqAqmCDou/cffn77/vF06cd+3O+5i/O0TI9Py7KKQdf3x+Fwc3PcjaPU+u7p/P333//N3/zt3/7N3/3j3//jz2/fa7Euxhd3L7/66tXrVy9uDoe+i75todsfdi1E6fNFAfIUguuiH9j1hj4LrlmXrUgtYmqG7FuwUd+PQ993DhjEVK2KlWKlmjUqZ0nrOp/PD9P0NM+XnDdVMSSjoMBV0UBbPNpVWwlXRS1eK8P2ur2O+xSuSsVaSymJHYzjfhgiMk1LSunRpAYG/zkNAhDIsw8usDI34juj805ECdVUENQHH4IPMcQuhi646F1w3jki8tGjpwpVWU2oKjBGAzJvqBCC67oYQqhqPnQuVs6VFJkdKOZUVGyeFgU9n8/LMjFDP/Tu5hhj7zmEEPuuQyJGnJf5hw/vly1pA1IXm5Zl29ZSyp9gL6qKiImqKFhVBBU1a8MqRCIDIBLROi2TSJaygcFyWdaUs4GohBAMdClSp3mVekr1dgQX9+uadl0BkGVdn6bLeZqqKBI754xQUQkRjYjJdb7bRz90rosCjil6P4Bg7Wq3rZ66zdZa6lIL1aUKFAMgEynM9qWWpInt1FAMzUzU2sOrpaRS0jyvaypVz6fp9tndzc3huO9FdVnWnGnb8pbLsm7TNJ+ezvO8EtMw9Pv9MI59cE7IOeedd9o6MFMDJNfMRsFUt22tuWiDpoC2TX7bXCqY5jLP84cPH6Z5BlQZuxfxbu+46yIahL4LIXxu+AEKknZd9/z5flk0JWT1Q+Ah0th7Kev9sbM6HHf729vjixfvT+c/Xrbgp2evvzq8fLl/8bxWff/8LRV9ffv89fPnL1+/vHtxe3h+6PqBgO93P8zvP5TL9FRKnbd125a37+vf/I2yf/3mzbO7FwiOnD/e3OTt2ft3h3WeHh7eMzmp2O8E2BlRc7Fe8Wltg6T2P57ESBZJW51Psa5/8Xzo1HdIJcsj2bqRWvWdv7ndk8f9stRamJuVlk0sZdmKbgJzkaWUOeua9GktOqWylYSCzP3QHcfwbHB3He8CD4G7yN6hA3AAxIagCoB7Zh6reOMATtWvAgqkMcBhF2+OIwQ2JJHmoiZRTbm48PmBIaKhC0MXgucqcn9ZZC2nbKE2dosmqVnaE2UM5NA8gTfwFRBIiZVMWQk0mDKAIiMQIQvgojKDLAQV9LItDMmpEWjLpxYDAlDEypy8r9FB8OxdJB6AdxW9kInLREuIT07eU31H5d7VyUMdvDMUn4d9IL7eZLXoh/frh+/PxLkqrVnnpZyXdH/Z3j9cTtO2JMlVqxqy81qCbDkr1lzqBiDaQmsUBAzAxCAbrApc0SmYgDMMgAKWDTNQATbjYIBiWqRUE5jdqtRVdT4hXiqs9iH+jAab59IHQ8s1rYAQuqEfhmEgAsyCCgxk1KJdPlUwhE3eh3TdZRLBNd8KTVWr6rxaysYeDZARo2c0D2DblrZNLQsWMUve6c1+gHAbukFlmU6XrEERhaAwFIIKZKrX5Ac0BNSPJwqA8VVIhYioSAQQAMhQhHq1DkqEhwD/5O0nJxL54WaHx33v+PN3aRJFUTudL+vj7/6IPjKMXbi5OQxDH7uoYi20NqXNezLN27acL+d5Om/bMs/zNE1b2kwFWnisc33nd7vheNj7MLoYkKnUOs3nZZq//fbHWmQ/jLfHY1NzhxCHYej7ru86QKg5E/HY98eb48uXL0Hx7du3hHi5TKVWVf3p57f/8T/9x6++evOLr16HGD+9yFr8HgK294RjlJLfv32bE3bdgZ3releKN93I0nEfZCvr5eGpVh+ilC2O4zT6S4+dtwDmEAKzquZt/fDhnQE5H5ZlA4bYD7HX6QmRaBzH169fv3rzHBF+/unnP/zhj//4D//y3Xff3z88rMtye3t48/rFcb+/vbl58ezZ3c3tzfGw3++GoeOWIexC8KHBXq/t0cfr4tlH13nXEYUsBIaKgVwPRqAiRoahmssVtk1mV1iziuVN5rVeljRvJRdNOS/r6Xy+f3z4eZ6fallrLVUyoEM/IHdAHTE7h4R8zZFtua9XNaKBGmqrmLGlO10lTbXkbYm7fn+8eXZ36xw/nabpsqKuu67bjYH583Vx6BhIRaQWtUoEPjhERAUwRdO+C947JBDTUgsWAFJFz+Zan8DeRQmSsYIRBG2xgs664KN3ZIRmSNRmWqZWc0XRmrKKpi0btdMRml0c0JzjGGIMwTkGRO89Ii7L+nQ+1VqByLloph8d8NfTRVW3LS/z1scExMgZsE0MiYgBQVWq1mpFq6Sctpy2nJxzTAzBSynIbr/bxRLWvOac3p/ny5ynvjL6Vzcvdl0c+q5xKLz3Qz+Aq4rtvFMARAHfxdvXt+Pz3u0AHKMSoydDNIocO+yCBlecFZKsU5ZatlK068g7Gzr+soEBICAGZGwNqmlbYTpHTqlIXaflh+37+/vT3fNnL189e/PmhYJsaUOAaZmeHk/v7p8eni6X85S3tDuO/RDGPnTBOSQGdM557xSUWq4wYdcNh/3h9vbWkZuXeZ3nlLaU1lxSKrmluxiBmEqpy7JM03y+XAAsmixrt+sCag3sXPA++E+UW0VYAsPr51/9P//Di//pr6VmQREPGJ0f+jlv8NNPVeXu2d3N82c3t892P739p3dPcJ7+6t/82ze//NXx+S0hTY8nrnY7Hvb9EPsYh+hG73xkcvvb9OrrX5XpUvMqgOOL7pzl3bv3w+9/dzr9b0UKOe8dO+6Pt3e/+PpX79/+9O7du9PjtG1y+yL14853PTG3jBH7bAvBK2j8S0VMg91pKbItTrbbnvYueMQ146qWI4IQBrYBwQMzO7PoMRA5YxNLRbeiSSAU8Rv7TTqnanjaMpECKhL76Pu+Gwe/G9yhpz5SdMSMbMZghAYgCuojxWFQC9VcsbKZNqYngjqm4FkdiaE2HalorrLmykU+gcgc034XbvZh59klTdv6OKelGgisYqvoUmsyFQAwIKCAMAB0AEGAAIXQ0FDUgUY1AlAkBGYkBUxmG9rq0JvEumUFNmU055jAUMzUMuJKdGHO2UPw3vse6QjupfqjwWA6METDLrrOucH73uWnYFsfFufCYMe70X20862p/P6Pj3/4p5/ZRQUqAqnIkuW0bPen6TSlOdUqhkDsXEgaY40+sYql7KqSgRqJoliT50MFqKq1SIcaWs6pp6qqFbNCZjLAKgalypoZoQByVUhayC0KmRDfPQEbYeki3BxC5wC0OId9n8eNU3KeWIqaICqb8peVMhGSAyIAUjUBgIa8YiRFq1VUoV6d1oiMiMhtoqKWs6VkktEqABkjBIfokZkE0DELk6IZ1JZbdR1wAGCzuX8yRhnQ1coOZACGikgADoHQCNGZoUDZ1vnyPWg3X6hsutuNx+Otc5+nF9flvqCUelmmPK3T6RFVDvthHIdhGBB52zIRjkPnHJnlnLZpmdZl3rZlWduSIje0jjMY+vjs7kjw7LAf2sJkSentT+/ev/tw/+Hx/duHp8eLGTjHwfurJCeEceiPhz0AzJcLER32u2d3t69fvZSq0+XsmRsMTlUv87x884d5nphpmmapX+oVqIlLCJERtOZ52kRoHPeGcvt8n9OctqmWdYjeeRQyklTmp/WJaupl9dpR8ugYA3P0Ppfy9PhwenqsVb2PYk13hETkve+6bhx3XdeZ2TSdf/zhuz/8/nff/fGbDx8eDPS4H+6ePbu7u3t2e7y9vbk53Iz9GJx3zMjI5JwLzgXnvHOO6HMF045+xmveLQCVKoYgBoaOGIjRkfOhI+5F3boZQkGtUmVby7yWy1K2XETLuk6Xy+PpdH+5PKTtglZFS5WsRqhK3tgTccSWzWbWAvHU9BozagbacvaaVag5lrQVMbVmgD7EftwduhjB3G54j2r7sR/6jj8Wl8zc98Nu3NcsCnbUPTpKqdSqeJWwiHfkPatpyhugpMous3OemZufWaQiUIuQ8dwJKVZD1M6HGKLzAat5zg0BK6YiQrWNn62UDGwtKkjkOrpnwj7GBs5R02ma2uRJak0pASL2DkDxWuh/uixgaAZStdZaQQnbDWeI16yettYUMWnYQTUIAbrOoXOoQkoOnaggsQBuRUpWkOnx6enh4eEwDI4JkWIIXex8rk7ByBRQmxGUsBvGu5cvhud94qWCAJBlXfJkFUBFN5VFdFUrqJXMaBWVuslIhxv2+KffphVfzrH3oAggzpkKqbKolqql1GXa1i3lnFJei+TTdOm7DhFTzpdperh/un84r/NqosFRH30XnWeEKlYrmjVmG1+ThCl43/fdbrePvotdv/Xjti1pW1PZtrzllFujkra0bVvKqe2Xc06l1mVbJ820ruKDl53aZzGsEhTHcNwf9jsUyZKS1Q0qeO6GHpdlJE7b5g77cLjdPXtx2HS3v1GIb15+/cuvfrV7dnSO8+0LVht954kNFBrxiDySD914fPbifPf87Q9/7Mfd11/96lJk+e3vPzrXzFBbVnzshhcvXmuV83m+zPPbtz+tueyOx27cxRBdaB0LAzAYgmJbJ/0PNDEgYrVATVTVMQbvKzlWQI9WMVv9sD3BVqupJ9yTQ3BkAoYtMJLACMSRBFZ00Dv0BAhgaMbAzG0h6jyG3rpegyPnkBEZgFDBTI3VnFpfxa8FRMxDV0HqqimVUktbmxSDUq0oFLFcdU3V95/Rfc7h3W14dRfvCsVNtFopmkSS2kXhpHYyXQGEGRBJLIIdAEaDgYDNFKz9i+BKGVEQQCWg61rGTCoyQlXxZmCVGCK5djoXgFn1SfGDwmJZ1FPhKHoH7hcYvkJ+A3hE9Ju53r9wwy6GnfOP0U6BpgEPXffixdGHK1hpmvNv/uGn3/z/fh+6jojFTBSqQaq2FN2qbsWkiokygQ/c93E39h7NlhKqOCVDVOWikqsoCGR0bAvByHgTuHO+i65W1XkrakIoZqnUumVZF0bYOXCkojIVezel01qWVAUheHfcD1+9vL3dD33wXSDJUDbZptUxEZhDdYglU5M0AwASkANiaDagVsRwo/87ZxXMgK7jGaO2DzJUVdNa0Wq1XCAVKuICBACqNVW96JYQc2DhaBNW0EQqTr1jj8RXk17z+n9sC/GKHySCq2IMCQ3NyMBVRduSf3gS9+OD97xO/bzuu+Hlzd0bF8L1uyA674J3ZEjO9fv4YZq++eZ3P//4g0px7Ha7nfexdbmO28HUAmFSyqnkrYogIjE6ZofAKre7wQHc7HeILXxO7+/v//N//s0//8s3D/eXdd3IbFmXq1jYuWbF9ERj3xGi5A0RhiGOY993YVnWdVnm6ZLTplLbX0VO6f7h8Xe//+bP/+Ivt7R9+i6NreCdc8zYRv9apunh22/lMt+/Xl8p1PPpMS0za9e5cHt39K4jb1gXyGIYDL2BB2QjVoCU8sPD09PpyWp1Lhz6Tk2XvIpI3/eH/XEcx7xt//D339zfv3/4cF/L+ouvX/7y61chhq7rhmHo+77rYgwxeE+sCAKAhC0fPbCL7HzDqeF/U8WgISiiAkgt2YBqKabGLgTfhW50YXAuAsR1g5ozaCklb9s2remy5pyzaNnW8/l0P1+easkIxo7JzFCqYNWqNSNHVVZBA7vu4bSBhwHaPt1a4sc1cRQQr6sl0LbDNDAiDiH0Q78fdwS4H4au7z51/M65m5vbV69e1qqHbR2X4TLPy7rmVLTqR01A1aq15nkp64pIiIytHCVsDb0HZKzovR/7QUQlZQMLzvddF7vRVVlyckYgaiIGgkQhBiRQzWbGjMFxtoqmJsIAu6F7fndzc3eXUv42JQTsuzgOQxWRdiRBUy18pisQYeidHx15MFQzh8b0MQ6k+YOv1R6A8w6REZ0hGSAQsvO1Ss5525KIAJDznhTajubDhw+7rovBA+rQD0M/3l9mUWF2LfKFiHzsdjfH2xfP4k14XGrZNlJa5/T49kNda9/FbVmmx3mdMgqgOUIPBiWXRCI92ucIuOvzwo5DDDEHUyQUU0BVUDElCa5VrVnq5Xxa0vp4OY/7/X6/995XtWVZHx+eTo/nnJJzrnfc+5aloSXlvK0tzJLNHIInDAyejEClFGHvfByd74ehSq61VClS67Jt0+VyXx/WbVXVFy+e39T69PDAuqVtfVqrzXPnA/i4pi8E10jm2LqIzplZzWuqabaKjOS6ilWE50uazsty2TqMdUqh4A78DsMAziuSkXeB1BQxiZRaEDFAB2rCpsj9sIvDUKpQ8H/+67/AfqRxNx73NzcH5wnIqohIAeP9zTM12FJ9//79/ePDh8en8XAYxl3fD+Nuf9jf9MPoXSRkVTARq2Iqf6KJAdWS8/l0fnw8DcIRPDErMjjmAEqWc1nXVTQTEwRnRmB6BX1Dy9FUAmFUT0aEkcC1g4La+I3IMRGRQ/SCEdEZeiAm/njfo3k0j+qt+LZcyMpblWktYd3WUlKtolwNikISKNWyaFIsX6hhmbEfqO8Atly3hvvWbDqpPSk8gZ0YE7F1AQChFC+yqu4U9oje2g5SAYAA2hhBQQGwCXyvZ6EiARZVQDNTNIymLXMuAZxAnxAfmVdHFh0SuaRPtcxSL4Ab8QvE0WyHYUjee9wRSQWpAEhu8OMYma8vslLl/rz+fD91Q3XM0KjqSAqkRi2AnYDUSgPNmoiqGKEhGKI1aw6RgRlgEasqiJbQIPAYQnQBvAOQCjmrZhFRqLloKWTmGJnNsSlUFclpXZc0bdWQoR9KhzlxjuyQycCkSq5l0+A5ODKHwNa2fl90MEZkxPqxhb3C1REBGL1zRgigiEpkLdIToc3jrSpmoSwmgMRGvDHey3UKVkZ/kXjJnBgrozp0eDWDoAGooTX1JQAQowJbGzywtVu3EaYJTUEDbeZPyewpOUdl66vulXbk+8+hiWp5zdtlhURs0gcnotuW7h8eHj68zyn3fe99/ExjQiBoPslsZsQwDMOzZ8/2w+iDYzNL66fAvxA8Ec7r8v7tu3/+l9/97d/99nTeCOD2uDMTVRGpZooAybt1DfM0OcK8rcSUWy5LSjnnWrNUUREiCn3HzgFYjJHItSSST9eFqM03QnDeMTECYc0lPz4tqVzEFva8LatWzUkYxEcGNtVUiyJWwSrc13YpAZFoTdvD09P5dOq87/uuHwY1WctmZswMAOu8Pjw8/Pzzj6enh7Kl4Pm43/Vd3w99jNF775xrY2QybBxdJnTcSsfoXfw8iflvPtjW5iKS6maqlEXAmImJfYiDjyOgM/C1oJiq1C1v03y5LMu85pyzaU7bebo85jQTQui6rvOmdV5x20qtqlbVFxWShvUXMdUrahiui56r2sqs4UexZQsAEBoBmGnOOedsw+Cc6/seVENDEX8WKVOMsR8GqZUYwalzHIMvuZhYEwqIlLSlRoU2s+vE3cykKiCANaqrCjgHMQRVvaBVVQBgdl3fY6memMyadViRjVsgo7UiBk0cE2EI0Tvm4NzQdcf97tnNzbyuDTwYfWhcnypFVWqt1kbln24wR8Mh7G5D55EQajNlEhqiXMdXLZaZkdGxAyAzNLNSaytViehKaDUgIg8eCRhIzC7z/HQ6Hfa70LngfB87RDQzaOloDETsY/DRA5OYlSx5y1BoPS2nDw9lKWUYtFTNiortR6gZM7JzPoJzjT78uYhxjmP0Xd9pzaYoThyxJ2QyYkKuzMQO163MqW5LWXM+X5ancXbei+GW83SZ0rzWWrvgg/PeOTCrRXLKeUslN3yrmIjUUtK2EiJArRbiwD5S22411E0TeYkhLqqacla1/X5vZjWtkK3vOVopOSFjI6z9CbvLVFWTiphtAMkwC4Aaay2bgnJN8vjwYX46D+jTmiyliNwTR0ArIm0ZzaBEhqZCCIjGaGxGzsf9ze3h7rbbDSVtxBS78OLFs/F47IeIpGKlCVwYOPhxt7PnLwsQC/y8bWuVvKWlvescOyLEgI69GmpDSv53kxhZlu37H9+9+/YtvhpNdwdz4EkrsiIAiYKuImoUkZnZyCFRA4ip2jUsWwnMoRFSIAyMzgFWu1bjREispIU1EYIzcIAOoQ1slE2diE9CSWE1XASWLOclf5gSzutlTWsWZRSkapgVsmEBEgIgB5+1F0DOCqR1SniulMwUNoOL2clsQizeQYx+NxhAWZectimrgaFxhI9tARoCuPaLfbx3Ca75O2CAABXJEJQIGFZABkLEjexRdHFcxz6Og9uNiKjLVub152neasnoToBHhUMp+5mCRulcriRixoT7gF8wbplp2MX9TdcPfXC+ORKBSAGLYjVQI5U2zVZDY0e+c44M2bkCLIIG7IgNAnktmquKgQJl8pWjcBDABJqRNpU1pSIGRT3Y0IVD527G3kWXjAxxyZ6Yj0fk0O33+8M47Me+98ygYO3NZWCOELxr0ZtNF/CphTEERRJiZSIDbIIdNQExQue9J3IIqlpFK6gifBzdoqlRUSwASsJhCfEe7dtoJzAOru7CnOuH1S3BQXDeO69MQMCIAGxGgEZ41foiEkIbkTgkvAaBIhigGlXfp3AkjJrBA7MPIrps87SmT5CGWur5/endd+9rAk/DcS9S7dmzV5fT5fx4Om/nlkzUoj2u3gI0lZpyCsHd3t28ePHyX/2rf/Xmq9chOMlpfnoIaLe3h3E/Dn0PAE8Pjz/+9PPPb9/dPzxsyfoYEbA5VM10W1NKyaSWtF3Oj45IRV3wbd3AzjfemPO+tfvH4/F4c9ztdrvdbhiGX/ziF/GjO6mZxbzzMcQuxhhCCC4EKJJKqZdpKbKEOETXOwqlkEhZthwidX3XaQRTRsvsDEnBxLSazetyOp0u5wvsd7HrnPMG5J1LALXo5XT59o/frsu+yNZF3wfPyN774H3wzjM5xo/O+JYRAW1kFUKIoWuI+eCD49ayf04ewGtNrGa1pHWrsygAOubIxI0DoIAEBMiqDFZrtWXLT5fLabqsW6olm+aaLut6QSh9P+z3481hL1Lev/+5lgvWKlqlFmwhs2baRi90VRrglWADiIZXQLNeg1Co3ZNkIvM0X87nvusAIIYgteDHG+Z6uIA1tXWtpdZiIgQQmF28RmZ4R2ZQSxGRjzdai5URE61X7w/UqqWK40rNYGBSpeRaRM15b20eqYJVTEqlRtQnBLjShlWIaBiGvuuGvu9iGLtu6Lo+xlrFETG1vD1GRDVNKZVSrTYB76fpOO3v4s2rzgNbxbRBLQaIgiqiV6MgsvMezAjZrO22qkhtK0hEZPbeydVHgcjEvQvex6w6rcv5/DRIz4jRe2a6dgTMaMaOOXAVeXh6wg0u8yWtq6yyPm3rtMhWqQIDRB+w15S2mquq+OAPt8PhwOMAsfefEB6IGELou34cBjIFI61SYsrRhcAhJZ9KyCVm9p45lCXJViUty7ZlBSwGVayUaqWSWft2TL5W0ZpTylu+ZoMr1Jx4XmZE4PPZuUcO9+wj+8jsvGfniJkbIT2nPE/ztm61CiJ634pLH8P41Vd3B2/L/YOW4oeOPH/WkKliLnWe5lqzmQBWldb5zLppyk6JFc8Pj48lQUomusyn3e7o2Qg0rUmLkncuevKOEYGdAwouOufNOQ4u9pSmN6++evPupx++/f471z+I8yF6JBWoItUMHZABlQJA/e3z1/1uPDy7WdepFhFRU2TCmnNaN4cejQyozT0/PlkfixgmUrNpK+9Oq2fbqt4sFmKpykBIDqOEHY9K6tn1zB2xR8KrzEYQkAnYkBEMlZi9t64Lg2qH5F1gdoZUDLZqljWRuQqOKxGQmZqAEZhXtVqpiqvKBVx1Aw1xuLPu+MxczIqK1yKmGgldc7fRx09FDBCwR/C2WREpZKiGCWwGW0ALO+qjGwY39gaGVCtJ1bqZhqtoCODTxAWQmnIGAAH06nq5RmMrkhFWMiCoaGhgABvYRFAcub6Lu7HbjYhUnU8Ic93KlpFqApgYLwC7skUyxijkVgelEnwaGAAAgA/84tXhF3/2vOtiYNdCCQyoiG655qpqpGpNn15Nkcl13jFQ9VSK2xJXaSWZc8574OJaj5TZb+gcMBokoIqspCKgAETo0HWBhs5FJgITsN7js5t+Bw6j910/7IY+eE+AqjXnUkutFdEEPXno2aPD5t34slJGUmJlZ47A2vwVoGHaAcF75xwToShobsHr+DFsGqpSKjQnW7Yy5s3zExqSPRAwqYpuaVvWraTqFAJwQMfI5K54V27/I6ArmYKQiRw7R0zoGAkVLJU6rUkwqN9DOEDoKXjn2fJc15y/AEObWJ3rdtq2TUHzci5teDeO+/3+WGsxAFXRBtK/JhuqKiEiM3ddfzgcnz9/9uLFCyJI66x5QylIH7G+2/bw8Phw/7gsS84l59oFP4xDjK5KETOxGcycY0SstYqBmqVSlnWtVfph3O/2Nze3qkjsq8rdi+fPnt3d3NyMu10M4Ve//FUz0H6slV1oKUGNfN7FlJdSoNSaa75cStiSDRBdNCVAQ28VGfg6JDNQNfJVXGGXybl0uUzLPNda+77bH3Z914nVoetBakUOgdI2rQv4oF1wjp1j39bN3gfnmIjxmv0OLQvFOedCCDGG2MfYh9A5Hz5qYr64wRC95xCYHFVRKduWqygg+hRTrjUrhFQ8d0yRjUxrqeu0nJ8up2mecsm1FpBUy6WUtQt8OOxfvnzx8vmLkrdacsp1y3NVBastQQOwzfuaULUVXS3X9TqcVjACVTAEbGtFQlDVvG3Lsizz7JjNjIBMVb+MFldrsEQzJbpKaGMICMCOnfPBOwA0E5FGDrgWTCpXnHkpJaeSUtlc9S4QQRERraWULW0pJ1UBMFNRqY0SCKaiHJwjwoYSNVNEajqjq539o54BzPCTPoSd955LqVVKqa1i+zS9IIZuxH6PrCZFpSkngEyt5jbMbinnBNeJFTKzmdYqn3za7FyACMxORE0QEIgq6FbLlNZpWRpOzzN3PnQhsA9IpA2VjphLPp9OtljKS0lbvqT1suZ1kyRUIAbfxRgDe49520oqoYPDjT/ceO8rx09DWEBE71yMses7NEFwJirRl+i76LYc+lS3UtKW+5S7Lce1zFteUt1KLtWySGlajtYRISF7Q5crMAK6iC4XtTXlqqWIGLlpXtGAiJEDOe98dN57/9GwFLz3QWqZzufLZRLVZjwkhC74fYx3z25vO7cFL6Wij7vDrk1DAQDMUArULLWIAaAjMy9gFUEVkcbdrpbbu9PdspwrSNVsAdzAYfRxCCAk5Kg9wc4hERM4oADesRNm57h3eLg53r14Pl1O87pAleHm1ntmRiITETMCYAMyNcQQIrnAvueUdzWlkqUWAUVC753j613V0lE/ng2fipjgvY+d68cV3Dcf5p+fluOw7kM3ctj1/f4wDv14sz86RkBjVueUWnAxKDlzoKYgIJmzqhqQB7czPIaY1kzIPgQxXovqqghCi6hmVak1a6kiZkZEHXF03Dnf+zjEbtcf7w7d7utwOL74erh5rugFuBhVRQVH3hM6BvSh++RLRkLu2I2edz6dta5SUDLAalAQ0LluHPw4QmAACdRV1K0UVSiCDMhwLbnx0wzhOhm+GnavRX5bkiFC2+0AGGgxy2CCho67Lg4xRvbMrMwLWpKc2B6liFkhXogCSbDilMnI2Dt2ob2/P16Zrg9/8RcvyX7lnSMkUDMFFVu2/HSeljUVaWQQFoNiCt7FXR88O1DYkp4m3DYtamaOfIQohiSQqxaDWUGrOkfJSNihR+/IATjVgWBgdASSqxQtCC7Gl88Pbjf6Xc/RkQMEBcklpWVaquRZRAF7igS0DwN3jkzxc9EPiMAOnAd21vi3LRHADARE1dTIILAjMirlk1+1vTJRhLaET0/ycK89AmwqkAF8cwk9qZ4n+/kDvj93i4TKkTyz9xw5+OB8Ry4wE15pW43UycyOHXPwSGQG5/Nl/vE7qYld6Qc8HnZ91xPBuug8B6LPImVCjBgihCL5fFl+PH+Qon10APT6zZvnz+8+trJVpORSS6kll1JKLqmL/tnzu7u7W2be1q3WvMzn0+lEWgxKN4bT+Syq9w+P0zR757sY1jUx44sXz47HfYwhxC7EJ1M7Hg99jERYS5nm+TJdzg/nlMrx9tnhePvnv/7613/l/up0AoDjzfFw2I/jLnaBiF69ftPF7uN3IWYXum4Yh3G/H3b7YdilvKaaxBSxpCwlrYtA4uDQcwwhdEBcxVLOtUoqNWT1LrjAjokQLudTSVsX/FevX714+VxUc05oOnaRrOx7f3vbDX27IBRCcN479t674GNbHKipGCCiY+9c8D6G2MduiP0QYx9i530k5xtK4VMdQ4R9141Djy7kqlsCKel0mXJV9tHHMfb3sTt0ce+4Q0FQqZq2ss7LZStJQU2y1k3qqpJC2L948exXv/rV12++3tZlXeZ52eYlVUkMymRtz0DsEEBF1EyqqompNOUttoUiXtFuTM2GbaAqtaa0TZcLs0tbKrWiqoh8Sh1R1bYYDMHFGCMGAGuLP/74+XKbZh+jfT92qJpz2baUtrylqqJIlEsqteScASHEuK2rAdRapJZSckop58TsNAbnuC1kW2JtKSUhOsKcSkpp27Z1XXPOLbADkbz3fd8X1XqZwIyZQ/jy5DekSpyQCFv0U2AC1gpqWlMVqWjgCBFBQQk5xICAKaVSSs4ZAL337Jw3U5Vaail5TalCgWh9DktJMXvnmYF2/VARlZwYVBQFrSJ129IpgzODWnJe52mZt1qSVsjVPFPfxxBGkZi2eb5M3UCHWzceyUAxCH7sx5pkzQcXQ0CtjB4MQIJ0sQyx1JyKply2LS3btlvzbk3Lmua1TFua1zIl3UyKgWB79VFDNifhLoZxN1Ry8uHDtOU1rQB2mnPwHgkbRcE773103jnHzdnjvAsuiNRpmmrJ5Igdl5TQcR/jbgzD0I+7bhc9IbnYv3j5yn/U9gEYorKz6L0DAmQQVGeg1u5d8nR8cbh7czsv53WbHx4+XCD7/dg9H8e7/Vi9ASmTOmzSRwJwQKHpGBBcm0wEfzjeHG+fyWWqQMzEhN6xZ1LTK4EO27y91qIKgsR931PfoyIomCIYAzCxA2MwFFFSc959vscAnA+h3+3uXn3V3716++P3757WfWc3vt75mEeowrXyTp06MFNDMa7AaiCmJtKEmpjFtmy5mhkUI/TBCRCUUmSaV1vSAtWxaBQg+PiAOwLP7LzvQjdwHLqu6/oh9uM4HHfHm3F/O4y3w+Eujkclb+QI2Tk2ZGOnwG37+bkhI2BPYQj9LWjyiybjqqImwGocG7IpUGAkFbKtlsxsqEakiniVYuB19tKuDHzp5cKPBxk2dagRQJvlqsFHILp3HJ0fvHfMYlylYAxS/CbiTAKgGpIKVSBE7yEqD4jhi4D19qOMzVgEUUHbTxCDpHWVukot1dSIAdSwgrVENSVw2Oj77UJJAAiIRpyRN7OEklVRtJh406KWW1QlEoExISOggYhtKmK6oSG7DpGYhEkRVCuYmNQqdTFdwVaDqlBKtZTDtolVp2XLWexLFww4B8xABNf/zEZqSGpiVTKisfPNPvfp1QwmaqBKy8bv7n10ZiXuh0ZgFkRnyFn9svqn5BI6GnxgUhQOLo59P4xdHDlECmZpygABAABJREFUpMa2bekaraYnZibviNAMq1AI7ytuPnCMLvYhxICmG1JDfn/6rbAVu4paZJnmtz+/TVvej0MfvWe+Od7e3B6GoXeeSsmn83mapumypLRVKc7xMAxm9vDwME1TzmmZL+fTA6OmfOi6ME2LqJ4eL9ua+r7fH3aXeUYy513fdzc3xyYLqLUOw+CdU7MqKga5yLJt7HzONcTuF7/61d3d85QSITYrdgyRHRnY/nAT/KcXGbQjZ9jt9sfj8Xh7PJ9y2apUBCIgsFKrSd20FkHnsfe9QwytHWRuL1bvvQ+OEUxq0VJAhckHT8FzLsqInn3ose/6w8C7Xeg7ZuAWFc3OO+e9DzFERKq1VhFoC38fQuhCGEM3xm7ouiHGLoTIzhPxFQj06XFBbLoNdGyG0TlPaFLytmpaYJ3dMsc49d3B+46U0KzxvVNOVbOimSStq9YEIN7xOI7Hw83xeNvF7uZ4u9vdh8enLScCRZPrqAhara1oCiBgAtZGY4CEgFemMFGLSALvHROKyLZuE03Be9XGZfz0brl+F2L2LeEpeCKgKyXyWsQ0BS9eM5m+LGJa2qSVUlNKOZVSJOdaSlGV480xdh0zxRjNTFSRMAQ/jEMjOzBTy5o101Z+AUAtNRk4opTStqV5XpDdmnLOue2cACCE0ItoFe8jszseD3+S/Gyq0qRY5DpCdAyhbprWpGbNq+SJEEFUWp5S25+2rwTNQ+ccAJgaUwHAXERUsspS0nmZGa0PAQAO4w59mLNstRqhWZVaREWqkQP2YCoARmTMYKAipdZiZt77cfQyhOjQd7o7+G4PVYCjwZdv5ZY4zuiYrrhFJXXkA1fxsWqutetil+LWpbFvwMR8Wd0Uc7/SspW1tIwLFbMiKkBjP8auI+cEYE1l2dKasqluWZi4sak9k2fn/Mcq1rmWCh6cF9VlWZzjm7tjm8SgmWd2RLVIqTUQOR/CMITuT4NsQQi188HIARAIGoHZNbSTIwN1NzfDutzcP74Xred5Hnc730cfHAGBooBWgQpiCgSARmDSokxVtUqttSKz7/sdUhID0Jq3klJNWVVM0EStohSRWkQzYkGnzMYAqGYCVbRWldrcRyCitUqtZXx2F589d/21H3Mu+P3N7V/89b/58cPDTw/nh6c1GeQqtZZN1yexOG3BITMgKJAZCZDx1QKLSATM1WyrpSggugS0GWy5Xi7LNK8nMS8WTIlAvfNdNwz73e5wPIz7m/3d3e3x5uZwOOz24zB2MXbsove9D4OLvfcd+k5d16zE7KOLUYG2IrlIlWr1s0qZAJm5G3r/coxOfNzcU8I1QxYqYBQcoSfsQkdkWVQwEbKCIhIi2XWNAYAfZzKNiPj5BYNqdp0fkxE1mmDTg4AAeERAYDWPMHrHjrdS2BoWmrASVgNCQUtogqK5BKz7vfMWAOHLUcy65d9999Pf/tM3jh0Bq5opqVEqOq0lFVVDNBeQCFAaQ/myYtsql0pb8rlGtQ4pOqxoZy2LWDb1YEJaCH21arpkSWYK2uZ6BWwFqAAKVgFXtLJUxEmXYmE2R4ZKRJ6QAFV7kZhIRWXNdZVtyXX02KMcX061XKfBhMCETEhkSNp8JEiGrOxMzGpNIsXUA1LVJlO8WulUAcDPm/vh3W5L/nTux8GjQwrB+x5dhxTUQg3B3bhDNL/mZbkQ0+5wuzschuHgQrCrWeS6gyREs+s2vikGnQu7cS8S+250LgI034luW7pc5nle5dO0v+knpZa8rsvlcn66XOb54vvo+hjevH717NnzX/7qF7e3x5S277777seffkL4QIRqwUxLKe/fv3///r2ZqdZtWy/nxxg4ffV63I3zksDwcllKksPx+DzX0+WMaNN0GbrovT8e90i4bVutsmxb2tKybfMyp1yQnAsdez/sdq/ffP2rX/6qTbxckzETAYCqxmH4ZONvKzsfwu5wuL29u3v2fJqnUosZEHmm1XHKzQYhtUrGqlIDwrgbdrvdruu7GLvgYwg+spNSpsu5rEtwbJLP5wfv2wbASsrBw9CH3T50HXXRBXLMHp1rq71WryCiGjIyI7FzMXYhDjGOsRtjv4tdH2J0LhC7Rse1L8uYj0AWNGCiLsZd3699p1KWkmqtpmIqoKX6PpBjZAMFFbKCWlWzSDLZQCsREjESAaCIAmDfj/thH0PglQDEzFRqVcRaroA7gOZqBLSrh/+jmBeBiNoW0xEyGtZa12UlAxv6PvbOuVprC7a5VpbO7ff7u9tnXR99uNKcm9zGOX81xWPLxbNmfjJTaTGBomatFOAY1Axr1VLLOI6Hw6HUZgUkJF63FGM8Hm+GoVe1Nq1XtRa+VGuuVWqtuRRTdYQpbWtK58tlXrc1l3lZcimplKpCjsax77qOiUPoX7586T8Vygqasa4oZuyx24UQe7ZutSIqatp1Hys1s2uaeZVWuHjviMgMiD+Kjggde4gERLVW1TrnfH96qmk99H3fjze7fRCtj+dUhIhRm4op1yTkATvHnoahd0RkuEnKa005zdMaQtzvD3G3G4LnkPoRfVdJKcQvLNZXH5W1FxOiYJMAECK2lb8Sk3McvOuDL31Ifdi2fEjdvKV57ad1m9b0OKUqqWrd0maIz54/jzE+3t8/nU7ny2XZttbnaRVDhYqIWND4c2JYu6Na5Egws5Rzvxvu+K6LXQjBgWlJJaXHh8e6usDQd/1ovOb8WXgFZlrJ1BMSkxlZu7MNmvIEVBDQARq6geLBj893t13fe2At2ZJaNbHG3RMwEAAAyoDIhA6FVFAul9N5XorB8fY2V314fLg8nU73j4MPxGwKNUta0zTNtZSPA3sCk5q2klIppZGzUypVrRRJKadcSk5f/+Vf3fzyV/3hcC1igGjc7//ir//Nu6fpd9/99OG8nlNe17wWecw1pOQcOQIiIzBoYXnt5dgOfyJ0rADZtBogcgFcEU8p51RMG3TQDzF0cXDDYdjd3Nze3d7ePbu9ubu7ub27ORz3u10/7Lqud+xYFQGcgUP23gUjV4CMHPG1BayGUsTACM3/yWYcCMmHEI9dcMg++TG5eXVL2WarwhScd64PAQmhVKbVgKpZMWh8KgJkIkeASO11pWBN4IGtq9Ir4BUbcBbxYzo6WhvCMlNbV3hmx6QVEEHBBLRSFSuARlhABU3RgBU8oSejz0MIAKgq53W6n06eA4FXRRGsgrnqmqQqYpP3oTmAxo3MtSgYmlFVVyUUUwVFKNWEZDVMphUBUJMamRUxNa3aVLgGZmJaVBGuwTBtE7eJFtnyXCsnJTIEZo7OeWIkRgK5wr0si5qVmrWQLFv+0p90TSkkIALRq9GKWFt/VVRVNRVDZPtkDkNsrncDzZUva8d+DN1tdR0BMwVHg8NI4Ik9hxACmC+K53ldDJF9F7tdN+xcCKoN53ad7l8dndcJmqgqEQ3DKBKZfM0yTRPCLDU/PX54erqfp7tP63kDE61qFdGIFLGapZyLVswr7fcjER2Px6+//mVO6Xya3r59tyzL6XQiRjNtUs1aq1QR0S1tl+lp6MPYD4+Pl/sPTwg0X1YAvrs7APG7D++2bbtM5z6G/W7Xx6iijmjLhUVC7MbD4fk1V8Vubu/+8te//ou/+PWbr75++fo1ISOoSW3gABURERfCl9tkRPQh7Ha7m7u7589frOtSpSKg9z74sLWtRkq5lFwKkmmttaSSc61VRQGMEByRY0a5ZhMyk0Fdlnno435/9M4Vqs7hOA67XegCBu8CBSZvREiO2TF75wMieiVu/EbvY9eFbujiGLuxi0OIXQidu45h/jtrEoDqNRiOACM7ifEwjgBKG2xV1IBAAAoCMwO3Ba0JWSHNUJNKMslgwgiIKO2lmTOIeh9atgNhm7vYFcCF1NqeViBfk9Pw+mLEKxKF2bF3noib3coAHTvnnCMXPubZuC/pw0QxdsMwdkP03rUEjXaKN/oPEYGhqF6nvwgAIGLMVT56N5xrcAFSBZFax10tpaqqSBFJubBzALDf79uqnJkBTKS2zIqcU9PlpJRN1Tv2IYjItCwituU8r1sVZXZdP7AnZtfSP2McXrx4GT6uLURsvZT5VIywG4HRRe/RXPHKDsFR13W9j9QUPU0cJNq8bMSMSJ/cdHaVySMzRwrMLBWryJRSy2HfCRxiZwAtMlEBr5R6Ua1Vi6Gq65g9OfbMhSibaS15XZYuhnoYOx9i7HykGNQHdBZavs3nm+wTKPPjBwAAG1wWUZWYnLngvURfiy/R5z4PqYy521KZt21athhWBUpGWlPa5pI3sHp6/HA+PUjeHFpTFnxsztHAwLTtPexq27weNoWTApRaOXhA5ObcU6kAUsoyq1X0jKWa+WHL5ZOpR1VLzjmtAIBUW7CyVG0+F0Aw1AZzKVtaLpeyJFKQVN799PP0eMIkJg30qCK1EQauwkMC/DiLmabpMk25FFjXeV3fvf358eHeMz28fReCN4OS87Ks5/O5lELEzpFzbCppWdK2pJzXbV2WdUu5iuZSt1Qageffbdt/+H/9f55/vCyumva73V/963+zVfv9dz88XuY/fvvH+2V7QPAMjsk7DI6YrrmZaEbtLDekNlElUgQhUAAwLKZrrcLEsb+7PT6/uX357Nmbl69fvHhzc/f17d3LZ8/ujseb3W6MsWPniMywAlVyIlpzqimrVEBkCtH70JEH5OutXAuIOSkIRoHG8LFMBwBDUCb0voveOR9iv6/d2sdzevyQ02bou9AFHwMAso/IvhisIiaWFQAEm5kTuTIRYjURMxNDsBaB0rxLCAaE4BAAVBEBmL0SFyTnPcVAnsUjcHOQEQhosSKwGTl27EAI0AF35I99fzvEXVSsWT6nWBND3NF444LrEWItmLPqJqrF0JAh9hyd65idgQiIggcUMBVrIYuODItVBW3jbUcdkRKwKYqItq61rb4BRc1U1Ipep0/VIAGshmuxLdVEVlC1iWVBHFa+9oZgZOwhBnSuEYGkveC/PCkbxoJb/OpH8qJzDfCJZlYLiKiBEbb5eSOGMqCKViQi79xw6O9e7463HLzzgZxnYgBgAma+mjVMtpyIsKHzropHaUQYAsCPycPYUtZqFZUMYH0/NjTrZZmypFK2IvPl9PDhw8/TVy9Erkm2ZlYkKdZu8IfjcDz2YAUMas7zdHl4/PD49LAsq3cBDEvVx4fTN9/84f37dyEGx2SgzlGMHRhuW1nWtKwFgZetPD5dvvvuJyZe5hRD9/LFq9j33373x5zW0/nkkKJ3fdcxYdfF2PehGw43N4fjcb/f78ax7/rD4fjs+YsXz1+8ePlyGHaILfujaK2qUs1E6p8Y3z9qFcdxvL25ffnyZS7JQJzj2MUYu2VZtm1ttu1SahWrpus0vS91upyGYRzGfuiHvuuH2JvINF22tBGTAZdSRW0YhuAjGMWI+91+v4uOzBGSOUAHgACM6LmFAxHH4ACIvfchhNiKmD7GsQt98J13gZ37dIx8+UVaQWqiRtag+DGEm/0+BNenbik1ZTN0PnTRx857ApCcs2i1gppQEmhWrWgGhKqWc123vCyJAMyIkBGBQNtPJoRrym1L4sPPGGhH6MgRITETccuFCE2MzEzsqImVnWsuEzAzMf4ScwtwVdQ6773Hdjh8kRLVng6zamAtmIBbWSNVREVEVWvzLWq7yNEMpNarTb8tUarc3d015DAAttLWTGutjUik2mqDWkqquYBWUNu2tOWypbymbEC73T70MfYhxtjFPoToXHjx4sWnaIta5PHDdP/u0g+DZ6CCVBFRHUI/BGMcus6hl7SJVK25iogpXmHHH0lAdt2YXeM1CRkRPRMFE6mlTKUsKZ+3chEB5su8pFq0BdcDkCFWaO4bSuQ7p6qSQSuCmEjdlnliPEWvpQ8OnEeHITIDYOe+0Fy2v3wmZnSeHDEAfYLiICoQsjVfq5k49a4GH0oMOXellir7MmxbHsc19PE01yRpenj7/TeGiA/37y5PT4H12Mc2lPtYurUhY1MUWOMRXVMR1USqaDOEtdc8MhOjtWNLBHIxFUUqvOWcqn6hu1q3ZTqf2K1mVIqUqm2OZwAAimi1lLQsaU1521ItudZcy7ff/lFV2FqlzqqSc6m1mGqztje6hanUWpzj3W4npX737Xfv7t+9f//e1L774x924xiDN4BaSkppWZZaq12t9mQmJedUUs45lZxTzqUWsSpSRVOqczbr4jzPn54XJ2bk3HHY/9mf/9m//3/8+yw1jP0PP/60pi2XVKpsJqxGZq01BgVSAAH8tC5EEQTlZroG53nYHW7u7l6+fvP85YuXz1+8evHi9ctXz5+/vr396ni42x/3Qz94HxCptCdOs1o2yqLZ+8pJUhYADiF47xG5dR7NBcZqHRgyksOev4yyRTamFgTAaizqqjlV1kq1EjCpoSoqGFSrAgIM6NGoCcaJHKojcVS5XQ0CUGvxQwbVrDEPzdAY0WPzCCCgYwfMFREZi0qWmqUQcKo51TaRr9W0ogkqExgre+oi1Y6rx0KGpvULiwIRxIH7fWhFTE5gXLNkqpU9MELXYx84OscGtYAIOlMxk2rQoicqAGnNolLbJMn5do8oJhBVMTBAZTZssYPVTESttCuqkBEyUEUsAFWxIqgZIhC0HDJAJFRAh9DepN654Bwhaf0TqxVc+fZEcH3fQ8O4tBc/mQEhlKKm7UQAIlBr9DK7ZmYgILPrhjAefIjO+Y+xWUJojIBgPriui7vdiEQxXv1VImiiqiCApqZWRVXFqmgtudRcyya1qEjNdVtLTlvKS5HVbNnWaV2eSkmfisvrJAbER97vh5cv78Y+qto6L2AiUn766afD4bcxdKr64w8/vH///uHh4XR6DCE4RwYaY+D/P3v/tiVJllwJYltEzlFVM3P3uGdkZl1QBVQDzcb09LCH4OWJax74B/wIfhF/gnzmWlzNl1lcfCDZPdMkutkDVBcKqHtGZsbF3c1MVc8RET7IUTX1iMisAgokm71KM9Iz0txMTS9Hz9myZcsWSUyplDpPtRQbpd7enX7zxVflNHW5m2e9urmJQnARdvd5nkspTLTb7Xb7fe76frd/9OTZi08/ffbs+ePHj2+ub/b7/W633w27rutSyhSVf23yr7XUaZ7naczqZhc3ZSIKt5JHj26eP39etRB5znm/2+33+/v74/l8irg8SqXGYqoOq/MYGtWpjNM8nOd+D7fT6TiOo7sPu+HJkyfPnz27ubkRSWrWd3Q4HHa7nqHkCDeh0Hp0Xdd1QzfsEmdzZ5KUs+QAMUPf7bpu1+U+Sy+SiQX0sPLtgmMCmHq0nSEgp9R7by2wKupEbq5Fydxd51nLbGXyOsEqu4alqTuraligzvMcrcVrKW4WJd0xxQR8icRTI6RBTCGvTElkad7MSVJOWVL8Na3enwwK1BCJsPVEmKjLXd8NfdfnLtMluw235sfj7sLu8CaakNZULompqZmn6EdarZX5EQW6UVVVq6bm3gxz2/KHoJKiNsrMiMjMVHWepzJN8ziO5/N4nmSaUlf6nUvO19c3+6t9v8t93/fdkFLHzE+ePFk1Map2Os6n+7nPB1TWs1WpqeMkdHXVWwa713me21ozVzejaJq5JPKDiLBgztqlICZq0XSAQBQtWore31NKYWIbSmkWBiWBqmkZFbNahcPrDDgnSYAxrMzT3bt3WqbdLknqbN5xTcwungn8cJhtzO8iqEWkEONyRk9QouSWRWqSrkqX+6pqVlVrKbv9btj3b++md8e5Onm5N7OE6Wag6+4Ai/02BBZA1Jrg3dUQxiZR0GbqpdiomoRNay2TqiR4Dv1fSiIgqBP7xfECAMZx/OnP/u6Ln/2MJZvTPJdStEaVBSIp4VrKdD5DvctZ3U/j+O7+9qvXr8dpjOIIYXGzUkrzBwKIw2sKXZLdMNxcX5P7+Xz66U9/8qvf/Pr+/t5MX33x6z51OQsAVS21lFJ0MRYLjVexWrQEZV2rVXNVVIM7pgl3wJdffz3XsgUxIHfU+dHj6//F//wvPvvskx/9kz/58d/87d/98pevvvrq/vbtdD5qmV0rXEN5qQar3pJLgIEUUA7jhPry6dN/8V/8l//sn/2zH/3oTz/9/NPrm+vDfhdd63rZJe5IrOhxmo/mpgYmSjmLMKcMkqGnffVpcjVnjimpWjWv6rW6WmLe9V1QQwObLHMaEyUWAWqZx3O5fXu8vx+P53J/X+7u51qls+pklBmG43Q72zn1vqOcjVKI5YRJGh6UxCkLCcGhqmVqokMzNyNjuDDcwJmiyxKzE5TsNB5ZnDpwkvvj+f50N83n2eZKCsI9TBwE64gLi7j1ZfTJDsXLxouImfsh7676Lg1uHZGrkeSSlBwQocOO+h5dInLiaDeuxGqc3JUi+DBRJcxa4NaxcE4pdOHqqhRktHMyJiNSmBaPNrwEMiIVgSQRiXmUAUPr00uOmMUpEXfcdbLrU9+lnFnYWWXDjwEt4dbYRjdohH/wIN4TiyZK2VTJlBDlS7b4ATRf8mI6u82EwhReZx5uYoEtiTD0vTx5ut8fiDAMu5wTTM3U1LVqKdGt+TwHzp+maTpP0ziX8zzPNcqIZlWdYYVFu86AylRyulRa+RIMJZGr66su51Kqqx3vjzfXh3fvbn/605988cWvf/KTnzDzl1++evXqC7Pa9R0T1GopczyloFg8jAi1lNdv3p7u738O3w/Dk8dPnenrr786no7n02jqMkjXd8N+//jJk5tHjx4/fvbk+fPnLz558enLm5vHXd/n1HFY8xORw9SqliCZtMxRfTKO5/PpNByurp4+zf0yCQPM3HXd4XB4/vwZMXKS3W64Ohyurq/u7++Px+M4nse2opeqHrWvpqpqXuvsR69znQvMz+fTOI211uvrZ//0n/7T73z+marN80Rkfce7/b7rM5mRgyyzJBZJjXPZ7ff7lDo3EHHUbeau77q+64aU+pT68DeOw36g6V1WlGhf7u6uWkqtqlH/b2qu5lVLVbdphAtRuKya1rlUcyWhqJtzg7mVMo/n4zidzBWG4+n+eLzXUgmhMWoSL2GWFG4doXtpgXqWnCRJqxhf3AKImcKM0l1NoaGk0VrbMnDpASeH/f7qcN0NSbIQ4Gja2OgHFlouJHFAmJc6CTCzE5OwOzLc1ArXdsWIjJnNmFnEE0Xtf1wtXTF6BAbRKfAiGjNztzrXeTxP43Se5mLuxLnrr66u+l2fMrOwEAPi7tfXV6vuyt3jwHPqEtJ0P0N5d8N5yI8e7adzvXt9Ot5P5TyVMlc3EEnKlMKzDkxhpGbuysRx+os4xcwUDskddz2Zwnw2Q61gEhYtFiiTWTzBDLWOtZjV4oCaC1I/SLslsPvj/Xk87odM2F9fc5+7lGCFL/49jihjL9WqGpMRky0jEmgVN430FbAL2MQSpTBF1Pj87jDcPDqcx3p3rmMxdahWfdJ51UAtroHaLNL0BmhIx92X7odmarVaKTZO5X6cuUuu83i6O3OVnPdd6lPXD0kSyGvu+n7oU84rn3d7d/d/+7//63//b/9NzjsHTdNca+PnHQYYuTFcwNdX159/9pm7/exXv/r1qy++fvNmnEaRZUQvxXFRF0NEwtxLevH06Y9++Me7XX883b364ou//du/efXqy1hhxzMnbiXSMTicCIsZBQCDK3l1bU6OTE7sTXZM7E4zSGQ7CaSiRmZmnnP6znc+vbraX9/cvPzs889//stff/HFuzdfn+7v5ulsZYabwYp7VYRXJHvYiJECGnpird/7/LP/+i/+Z//8z//5D3/ww2fPnuUhM5N6NTMqZnWu1dSstkuGJJkFIuLNHiKgePBndWk1bOxGMJAlpk7AbFUVWi72w010qVV1noMEn1UN5F0fc2YYRc5mBppTtuur7JaSc2qKb17oYUjifkgpRb8fi7bP8dgbmjEu3L223mrUyGVOREOX94NAWJVNM+p+2MmspvDoTMhiXc/DfsiHrgliwH7xuoM75snH0ZHd3afZ59lq9ZjlI66qtUQlhKrVllL2aBDLUTcFVPgUkghTM4UTO6mhmqvBAWdbhU7GreklRbvQaCqRmKNHd2N3neDkxgSJ+TxxTkQEM53maqRc5tNct5oYWmhwYk4JpKSocG/6ASdhIuFaoASz5QCW8gQz01rKPJUy1jLmnMKdJeIwD5mCu6kTo+/7SO6Xcq6lSQXLXMZpmudpmsZ5HqdpXhtKlzrVpl5VrUakWdD3yCIp+dB53z/QYETvDhfPkrurHITvfrfrug6EL169+tWvfvGLX/5SmEuZ3a0f8m7/ZBUchM2DO9SKagnz+vvj6WhW52m/G5y423W7291cShK5ub558ezZdz7/zne/+73PP/v82fNnT58+f/L8+ZOnTx89fpz7XWi0AIO51xp2HaWUWqrWWbWUuVXGno8nZ37P7DJqd3e7XcxEwtwP/WG/v769Ph6Px+PxfDqfx/P5dI6y6lpKKXWe52lqjrFE5BZMtYtwz/3Q913uRZLqnHMahkfDkA+Hoe8SmRNYkJvDSNf1XdcPu91ut4AYCi4jRdlT6kWScEf84AH56GbuUIucSKl1LvNca9GqtbrWuDimSgC5UUT4qs4IZ1YCK0xVtc7TeDof707HWxhu37053t/Dvcu5yznlcBviqBBJKUmQZsQgEpIkOUliCQk5fLGeamkob7O1u7u71hh91VZjB6Lo17f0HnSPpLB7LELetmbagmiWvUg1gGa+x5cmlO1Gu3tKyQFvchFTi+K79uVL44KW22o60khgqZUy17lMVc0JklLudrtd7gQU7aLIjNx9GHa8qYyo1erspl5nLefzPKkx7bjvB3ausx6nOtVqtZpGto7NzFx8caVx1Qr33IlIaqI2oNYKK1GAnbssRK46jaOZpyQhCAptjbtXZiHJnFxhRa3VS6c+M5PVWuZSx7EQwVX3u1zOpmcgw+alUnU5nfANFnHJPROrGRFJYoKr2dIRqGU8W+Msq6ZqOkfP1967g3mpdjPZVHSq1UyptUiBm1t1DRATxAtICd66f7aJMQZ1qTbO5XieKzz1aRDLVDuRXd/t+tx3SRLgknLX9znnSzPL0/n0V//xP/7r/+e/H3LPTKUUVVuK/BuI6YQPw/7p4ydZUFV/8Yuf/ebLV3fHY6ka6sYmHW3J1DbGM0vN3fV+UJ3n8Xx3f/fll1/c370r89T1mUDR+NsWcWJjFgG4IbJmaIF+g/9Mwa5GAXCymopzSluCLM2lEIFZhSHMu93wgz/63tPnL37wxz96d3t/vL+dzqd5Gr0WglW3UXWsNldVBTsYBCKjMG5W8vri6ZP/0Y/+7DsvP7u6umbiaZzVa7WqOus4e63e7KQlADyYDKWG/MrN3Eq1eXY3Y7Ek3HEWZu7YXeAWfgul2jxNENnm+epcy1iqAYYu9bTP+x2pUi1eK+oEMyZWg+4HGboe3nGYoIl0Xceta1444nDfsyRu+rzwdop3cLtvbq41eqc0uRU1yS+nlAyYym6eb+ZSprmOVUutJXoksqVEw64b+rzb52FHOSnTBV2W2b5+Nf3m5+f9rieyMtk0lXkqagZwZczzzDzDKYZ55IY8KqwsHIUBhYVDp/k01eTeq4mTz1WrWo2+H+qJWCLzz5xbs0R1V3KL7BsLCWdJS5LIQ9YsJCGKIrcAA2ev0II6fefdqSyNBglo+CWuIVo1u7s3nZE7wROWPLA6sKiF3QBy9TLP03g+H0/j4ZQkxRy7FJeGGKY2LUCtWkqpc5nnaZ7maZqmeR6ncZ7mea6l1AjRda5F3RTk3uz53OEiGIZ0GGS3k5TNnfb7i7WSm2uFFmcySFh7URLZ7Xdd181l+ru/+7svTvdffPGlqnUdP3ly853vfffm5ib8dkuJ/LUf749VS6mjmwEoxWBWVXkut3d3+8Pu0eNHKaUnN4+6F90P/ugHP/zhD//kB3/88uWnNzc3h8PVsN/nrnPVcrrXoJvbsdVaa5lLa7qh1YJlHs/jOE3T2Jf9NnOxiiVTSvv9PlrDDLv+6rB/9PjR6XQ6nY6n4/l0Pp1P53GapmkqU6SW5mkay7xgv+qqllMyVyJnll/+8pfH4/3V1f7x4+unT59dXx8SuzALiXBKnJNkblrQoe/6ru+FkodLBaeUkkQLAg5zXlnyHWjtTh5ua81IROi11ho2IyVMs9StkilZbfCljUsPZZeIEEOVKqprMS3TeLy/e/P6686qfvXVq+PxTpgOw34Y+pwzhy0ORc/JRM19i5Z5LQWTEfBjxTHM4EVW7kG9uNdaSp1t4xMTaEzNURXqDl0MYNrzFhCmeRrHIrDOT0v+JdQjIhLrKACOWVeiC2pUA7RyoGBigjMC2JdrGLCJJKIVZuau63cgAzsnYskpEcO9uCs8vp5TklUS5+7zXM9nPR0nctbi0k0T1aHm3QHuWqxAiHMWZLLqK0JrJV8N5xGRSOr7nhfx0DRN5/MIeJ9lv9+llFwtiWhVFnZC0mzt4SrR1KrrOmGZpgnhDpo4d8m1zEXPUy3VhNmMXMkr6USuKLNv74uDWbphd4VOc5dBXEthoSFMm1SbhXrrBCfBSGmdSxnHs2pVJoZD3EUkZd9bs1smWEBVs6j50aWC3WNfzgziJbnmoYJR91JtKnWuWrUy09DlXZ/3fRq61HdZBHCSlPpe8qb6dS7li1df/fzV26vEOaO13o3oncL7zLzLh64v8/jFb341TtOb11+V6dwl7jJTNBRcDKqbEZ0TiLLIoe87ofu7d+f7uzdv397e3g5DJ+lRmCbCPJh9BgPepnE30zbODaiCYJ7aYmTQagoHs6v3qXZd4o2QJM1zdQIzhCkLs8huv8+7/eHm0TTVaTrXea7RdBceVUizekiwYM4gFnYiI5ArXK/2+0+ff3J9uIqcWdR2q1utOpdipSx2nCIiyZN79LihGjX9wZUpglJIzFVUmuq/2bhUVS11HCfP/RpZqtrd3ent26ND1KlWchcCp2ihDEfRambV4MrwBZ4g6sIkY7EMZYeJEAty5pxy34U9Ys6SUnSvFGbm8JoI49lwCWpYOuoC3FVzaO6LWTEvqqXMUd7C7CHt63qRBOKa+GKuoBXHt3b7pdqVilidtVRT5Ui1GLl5bQkJwBG5IY7HDHD2KJJ2L14L3L26VgecBUwKU6rF1E1ZySR1nJg55Wg/7W1UAyGG9dA/EVHUDWEBMa0XQ7vLGn3pap3K3anq5uHnYGKWPDcFbdXKvgBYJKsC4LtzCzNp0ee711rH8/nd2zfCPE9T1w8ADG4aZg+qtapWLbXWWudS66IJm8dpnstUSp1rDcGANVOy9ji1f4mZMw1duj4Mh13qOmIpZjUl36pIQw5MRDG7EZGntqwyc0rsbqfzUavVyvtD33y9QTl3h8PB3UNsEUFmkzp7I95L1WkhOfb7/ctPXj5+/PiP/+SPv//9P/r0s8+ePH4yDEPX9UykpZRxVDOtrYmymWtpXEksT9ZoiTJN52maxmkayvweE4Ol4iPurAh3XR6G4er6ehzP53Okoc7jeB7HcRzP8zhNcxAx0zzNpZZ5LtOsWs3ciCgl7vtuf9j1/XB9ff3kyZOnT58eDjuYMsXa0aWUE2dOKeXU9X3OXZIcDa0CxCyWbkIsrQAI+BC7bFAM1LRqBTXHPNtYwAEu0dfFYlfxPQ6E8o2bXX0k+VjIvczj/d2tMLn6OJ4A3w1Dl/PQDzklaqEMLnWvLRxd4PqCRRCBRawPcaC4mOxGNqfWWq1uQ/62gBERmflKtPua8HKPtdJb2oWZWXJOiEYzxGYOhnAjA4KJZyZJEtSKuampqKrKAxDjpBbV2uqLE0GkCURS8OQOVrA3piQyi4omOuWtrxIMtVqtfjpNcLIKqdUylOZiFdBphlkGMkQ4HA9oTXI5EYVREzOZWtB+mzRozik9fnyz3+/VvMyl1g4oi93wZc2mUEoTEajW2gi/IEsoYiF4mC1HUlLZZqrFyvghcZlzv2P3nJODiFNKtNsfUpLapqGqqnCE2Q/BS2FzBYkTeyvLbgFrjj5ybRZFE/KYW0gzzCI4jZmx8XDwVrbp8dRDzeaic5nhlkRyTl1qRpLMICdJXdeli7cCYKrncTzPVSp0ZT0iCo80g8Ndzco8neb5PJfiWrokkhMLEbzJCZgAYmkxKpgyS59zZjof70ztdLw3q/t9M3Tx1r56IfxisTO1RZAeOUIhtyjLiOySeXVTdzB51MyExcuypXEuiGo8pi4zSY343tQdnjKLdLlPQORbRVICKFxogptNOTW1nbubxQJfakFqSoiUkrgwkSuKS4xLnQuz5uwiDlY1m8octawRMribRp7Uz0xJsrBEb3kih5Y6TYW6S9qilPrll7e/+tWblHviZM7mTE5WQxoBjbJma1Er4K2vMoyI8xTccAKRmRIjJR6G7vpw6JIwXGCCmog7li5x17G7z2I1uMBA0lGwzEHxkxt7I2vFRZygMLVSymxWQcaMlIQI5t7Jxa/bFXpP9ZadBClRBWtYQ0Q7dTPjkLsaoA4GrE2U7fEMlsiLocAMJGCHgYQlebZwSFRVBjtJzh1LR0ncOeY8JgUqSJ1qhZuzOqcQby0l08QerXuNXNktAWzOY61T5cvD3yo3gukwN5hCQwOQnOFEkYhdJ1Jz5YbW2aPBpWk9He+/+uKL4/F+P+xS1xFB4apatWrUUUS3mFDturlXVTOPioeIh4FoupN4Yd3QFhpzZs5dOuyHJ4+vdn1CsIORzF5b2LdVpwAeYzWm2lrrPM9v3rxxRz8Mh8NumqacUynl17/6zZvXb7uue/To5uXLl7vdnojP5ykloea2HrUNQSfEFzGBDvvDzc2jF5988t3vfffJk6dEfD6fp2mWlpGmRa4QQj9vxVamS5YHTSCygphx3E/TlomhCzojZk8pEZGw5Nztd/tSAq3M0zSN4zmyb9MYjMzceK55ClWgGUCUctoN/dXV4frm6urq6vp6v9v1XZdypgUtpMRdkk5Yorx6ITZSdLZabOvDVghLSSmWv+GjOSV3j1EQlcxLIiSo3kRuJkaVQdFALgZblFggosk2Njh1GcRc53J/d1dLiat9fX3Vd13fWjxJOwxvy02sLUtpNTWuJVBU9MpF42XMlkc8uJRGIKluW1tEPwAzFgFRCEtTiswStRWsRXqtuQWIUhJgx8wsfdB+aEo2R8MaMfEZgcFORCItGbBoYpqPBCnTouoNeidKxZkIJBxtaM1NvVqttZhNtRZXj6ZJ5/PjdeV3h6kDGMeJwOTSEWvxeapFT2qlzuQ6JO+FRFjCa8fdSylxbLGuudH5fFbTnDMvFc3XV4ebm+uXn75MKb1+824apxDCTvNctD2zkdhKcfnciU2SeHUDoB42Y4mlSwmwSBMSMYxrpbnadFZ/gGJaGooByQmR4EipH3Y5Z7WYh+ZSqpkTMecMUy/VjGMGjZFCiPZgi9zWEc6q0eYN4tJumreJiwH2JbnYeGysiUonH9xscHg4sUqYfQSgJUmpS7mXdNHEEFHKSYCuR993FA9eEHFRKsHIIlbn2TU49OurnQdQAciNAVlqS0MbliSxUFBNgE/nE4ChS8OQKbzrgn2khcfhcFNqOF6VQq6hZqyqcENURENhIqxNyxFVYb6V96d5LuYwVzDNhSgEbgQ4wk0yniMOA2RJfdczs0UTejUmpC5RrLAthG8xkJoC0LULGkSk845JlWpFjbJVVofVWlTnUtQsFGrSeCTT6qYOqFiiZKRMzDD3Ustch3qp6FG1u9vxzZtT37vk7BBzhpFVd7WlQXW7cE30TRpdXInZXNVVrTpR9ANKKYEwdF2topWc3J1C0sKCRMLM3KWIyM281DK7K6uHvRstaTYNno4pkZGo0Ty7KtwV5MzuDrXGmC+zMnlNNiedhI3chGwZw+7NbiJyVyB1M0eYCFCz6iInr1pmap7mHFE2dVn6XqRaGb1WrVVdJFaf3DElanIBYzGgulcFVzdiRiKL2i9Ekz5qVIm5CzmjFaAWuJl3eKjqD+yFpWtewH20FnpgkJM1XiQeUeGcE4FKaRLfMs139u48nu9z5kB+BDNVj1VAtbSieLdWxQ0EnWNtSQNF542UKGVOWYhIq5m6mQvzMKSrQ97vc98lNWBOqvygPME9Iud1flTVUsr5fL67u3v9+vXxeFTVOBF3D2VWSvc553kuKeXDYTKzVlW4cObcJmurtY7TPI1zKSqSnzx59vzZi6v9tUgqpdRSWmpuUQYgSq4WEBPRTKCrqGyqtaw65nE8X80fYWLQKsKivw8Lc0rZuiE8N0NhM89TKWOgmnkOy6k5UE5M2QARS+6isml3dXXY7Xb90IkQUEMwJtE0kDuRpgWlkFuxMGSxuKXozPaRKqRvl8TEvL8IP0NjG6lzg8GhSaURpw3ENDFuy8633E/cDuYkwQqC+qFfEEy0+qY166FGhuj2FQFbA5eXnMiqVWm8wAKn3cMns4EY0wenQuROZqHQW4qfAFOPUphICLWEazAJRKq2th2L5S1OLWKk1hDJaamqRmOOaL1otFD0BiCM9SIDFaxYdBZvLbOb3F5VVauVGn93VZvfG2MOALFYCLEbtDhGVRS1airk5lRdEouE0mKbzMKSWaq1rnynmQ1ddzjsHz26vr7aOygnAaGqTqWM01w1ntBGMUaxTlBfnBIDrsqEHHczZzc3q8HJEsiMyuzjWKexrqdCzKnrcj94IXIjSQQIkaTEqaOUxJOTqJO4RD0lKDkxqJL0uTuw5AVgR5H8tothG7QrZReXLhp8AgY2/vCB8KC3I4u4wH1vlwkx4ZGl1PW7q66/aJWYKefUM7o+9TkvICbafpGwZ+G0WBtF1iL1mURATu5ixqC0hFLMkrucUk7CICq10YtOlHOOW2BmlQTB7YFXjq89CLGgEbm3yJKjFBZwkDIzN7pPDLy0il+3NJVialVnby1vaL2mbbqMsSwsIpbMzZlb90E3X62dQkwN90igBhSIwHClJZm5l37F1/EJNZ/rTHHCkfttR0AiQnCFO8gjOIh+4mpWFbWqXzqmmmGa/HxUdxVlh7uzK7mBzKMGLrqNBTVggEWhNYzhLJkY6tXMq9bwsKiqRee5kJCSMZLA2KtAjVn6ru8khWJHVU+j11pnN4fzMvUQYtYI3t+dyVytVjdlhjtah113ctvM0gTpwF01QIHo992cZwmgVsKZGETqWs3VNeqQOUkSMbMiszrrWFTdwFmGPFzthn2PNMmI01ynMqN2IEjirk9JupaygxMrSNRFITVAMRHYeaFVmsNX6KKM3cydmWC1y5Jl33JPwJLFjRk0/JpIJMMBVAI4FCktGYsISIyYWWbSWqdgVd2tzKWWOvGSYVjaWC3LkIGM1+TDGs9TswiLom1mTwm5x9AziOvsWh1GSWgYeL9DSmu5itTaSxgUx6ks/P8a09Ra7+/v37x5s1RTv7u/vw9T3XWyMLNStNbX5/M55+zupTQ3jnUWU9WoUbl13w+70/lcq+XcpdRNc3U/EdY89OIpspLvLTi/JFCIKCVxs2mOrM88z9N4HqcHrp3LUFvOJZYHkcTsyDkvi5SqllJVi+qstTTRUWyN9mfhaBWYcw5CM6fEsjjfghDu+URJwq430AOjteoJDiaaja/mbu1fvH/EH2zELJKSdODQ0loQwIxEIjGhqGqeZ62qbmhd5JhaUNMEsovEJGr5Uko5yeL2ThIFGcGD+CJX9xADbLAKNmKjplRZdLIGaw2rg5WMiM+DOFyFvRx2Mupuivat4Q1DCnBKZG4gjjaMwcKziBGpt/bTuITrK+UDgJjInNwuBnoODj1cfPVS6eo5Z/dE1NgJiimoKXRi2vWYpd05+tq4V9NGvazTWOxZhJNwYiEii8IOhzvDO0aqpEhFYiFzWuF4u3RBb7VMbmUWAoRlvxt2Qx9SqOghO87leD7Xou7B6EPNmDmnFGPb4bJclSx06AchJAfUalEgzBpQq81Uz+c6bbxVWGS3P+wPV9PRVStYQCycOHF1gsKdzNkhofgAEM4kJF0eOHdDRG9h++Phxeeb0d0Gz0MQ09iYChjTwum1ZzYsVsHrrVifZSIwG0vw35JS11/v9tcsaf2qLqeuQ84550StaymYXIgSc07cMSdOwb/RogEFOQOJKAWICRkUh7MAJxEnkHslDms3gru18jehVl4Hp9ratgfibyrzFj8QIlZogDuOLXrUK0gdFua0ly0FpdmyUU1c3XRitCQO21CKdJ3ZQswTSYzR9ty2e2JGTOYULVW1tjK/IGZ5NU8msqj08xqPdMA0XvYNgEkCisciWE0jkkJVN5MgfpbNzMdxPp5GI5Kqsby6MRk4cniRQwBHHsRhhgoosUuC5CjdUDdzqkQMUvN5KiDMWrkknnPqkiROVRXM0fpEhCUlU52mcazn0Wcn16SVkzgzmDzSVxqlyaHJIHiYDCx8qZqWC6VMZCyVpRD7ZXATImAFk4gLe4o5WMmMAmkwUxISgaqJVeJRrRQVUHIyScqpOE/mx1KO81yoaqGDWSXUdtdBYCNWQ4Ub4BEfEWHhNyiyPzETOsFbbTaHtgpK1K1Lo0cLk1pYUsSXbuxOcDevBItq06V83c04QhBzqDUjgchxBZ/msIBzzOAcCCWKPkI+KQuCj+qnNbcQ6V5lcRYScUkx3JTI2CCCJDPgqu7Bo6FEuLxdRheVZQu+17Hddd1+vyei3W4YxykyLaoa0Yaq1no6nU60WHHGXfUlUgc855yYd32/30WroF4kuft4HssUkKwlC9Ei1LZQubem0svyGofEajqO4zRPtZZ5npYOxh9hYtZtjdUAEnGRFJNL15lZNavmSwI7SB9v13xp8yKL3ygRO+Ac0XscOKTleChFCOltbSQivrT4+K2Y5YMtJh+z1k86locmJA9/PLiSwGEcIvgma7voEUCOhmyEJaUsklLrGNqmowsD497E/A0huMUE70veyC8zkzffb4B8rQZyb7moaZ7O03me58uzH8PMXdWI4BLFGzFXwNEK0RrtIpKEm89YlF+aeW3JlDYdN7Ym0itEIDTCqw08rEVMri3N4UvMDFpMy+OQvdZYgNrwY2KRTC5KCrDVsmXMfJHzBOKNDLS6O7m6AyySHVK9mhp5YmEGR17GF1YMLRI0N3KzaNnFQg6dy4SjqiJynMfj8f7+5B5J6jj8ysKmGkmoKDCNslg3t6oEj2JlnWaH1URlnsZprIVOp3EcywpiRNLh+tHjp8/OOddaKAyFAeFlLDncLat6VKzGg2nmVgATisagjuh+DlibRH257QEJlqsXLDdipapw34KYCGUbI74BMY3IJgKzcxjOOIvkvD9cP5LFv2eZOJZiS2v/49Q09BQd9cjZOSZXrdEgMMaVewOIFOR/WAta2DRpNavuukzJsDU+JyIiszAjbYRehIWlVnePcNG1wQH1SMh41K+VWudpmg3b8A9ASiIBf8wVaJnUnFPOfW4BE1bAGAIp5vBSaTgnnhQsOWCPYl5fCTNbEmAggptVVTP1BjM9VA1N0ususinwAzE7s1m4X1idyqxVocYAiLcTnqqexuP90SqOuReiljsjkICEIQnCnKgVQwJOVIg9kgu5U5ChVlNN7EQuqRrpaTxPo5+EuiR9Tl3uOsm7Wgx+HsdSChFyl931NJ5mmwsZmBInIWmctnRM1KQV3GAioxkUgMjcahlrmdb8qxPNRJMwC5ss4UgzZ0lMYiyVVpVMgJ4UcJopiCo9l3Kc5rvzOM9T8g5d19fqPPms93e3X969Ox7vTGzPdZh3Mid17TQUR2zgql6quRFzFk4x+5kHhmgPDaEVi7jFZBf2wW5bbZ/ZOE3n8wnESQIyQ3VyN0P49xOihaXBADM2rbVyLTyNdjpHh5YoxwigFqk0FxAZGSIMamtYaqlfjRSGoYmBXBIzmGocrFYpcxUmN20hqaHMbCZFEycWEYdVHdXn7QPjHmtzjH50XXdzc7Pf7z/55JOYqadpvL+/v729ffPm7e3t3el0GqepzEVrIPBW7rDSvZFR7rp81e+uD4enjx999vLT7373O0+ePGXicZzQYpFAr61Kt83EWFIZCyD2RjUCQNU6zmOZ56qtWGucRvP3QcyGA3gvYRPILwFgNodYNLr1oICwrGQLnmvgTJa9YQFejbaIzAgtFbwLfmlDKfDH5bs/kjz6RnTj7qHhjuqb6LlFq5YcaEIvEJGwNOKoAY6YvkJiQMzMiQO+JIbAEEVPjfyCAx61rwAipVJNw6hy0196My81YGbmrlrnNgyiIEOneTod70+n+0trC3etNpcay78kYXZRhOw4st6mVWsh8ljRJSWmZqJTVEkX0W8D3GZm4Ygd6cjU+qGupQ2NnWgKnsX/A+3OBPIJ6tpqKaEQoEgGJpHUoYOqlVLczu3CtnOxaZ4AzMVhpyDhJOXo2CAiAomSDoNqCZZRlntBZh5V6dZk+CSJSYZ911Py++PdNJ1SSlV9HMvbt3fv3r47nk6IKTIlJtIlvg8rQBCH459XdVfMM1kZx+k4nu9bjvGY2bvMKfHpdJqmi7I3SXr0+InA5usbtUqcQAFbl5h7GRMxqyMy8/CYbxjeajFBkRlawIuvz+D2AbywkZEKjHbD7aXlEWk04ub97TcOorDOgDmDJXVXj57IwsS4+zzP84RZJpQS7k3sEIEnMmFjMhaXHB1zQRHQmsEFcPICwIMKDHdpkSYX8+pqVpudqmM9u9BpeXh86OIKY7YQveYehR0R0LYVwYFq0IpqUMUIHIFxPPsmA5sePX7i7tYMKy04+JRTzl3iRHxhWeLmLNBlpVXCw6BVSDWudQkTEe1SKWRhHHC49WNrVJKbW6+mYRwDFxZaFf8g98inejUrWqZarBo8cnLy6NGj1R3ycLj68//iX7p7v+tTTsTcJv+WVQYLUqJIwsfoABmxp8TR38SBMPICgcAcyTxVcmVCEumS5JQTp74f9sNeWEqZAE85uftcpurVmIhXr3BmkSyZ4+bAQB6ZWm7MrZub1lLK+bPv/FnX75ZzOfz5n/8zymno+6VkkZp4nBIjyniCEfGAFGGmC7S1QatO43g6Ht+9fVtKSV3e7/Y3N9ddyjqX8/3xzds343gGY9j3j58+Oux3YSUbwYI7qnpVh5NIjuQVQJG4WHOSBApUtixgqFXHafyzP/0nh/0+3rPfX/3Zn/0LAoZhL5Lgi2WTWzQBoCVqidXdnEylKmmhebZprjXU2+6ALwgGxC4c5Z/LQApf3xRzqBEt0ZhHbjARg1mZIeKSOCVmCV3ORX/BFLVqLIkBWC0/+tGf7/aH+G3fD9///h8l4a4fIte7Au6ofojZ4XQ63t/fB4g5Ho/jOJUy11LD2rK5ofNCc4okka7vd7v99eHw+Obm2dOnLz558fjR474fUhKzsCWiEA/hgmF8mTjbvQ+AEuuoB3NZplqrebOQ/+STT/Omi/Vv3ZjX/AKBolHckhG8NHlvUGYpRt1MxK18wRvrgkt84g/e+Ptu/TB89wc/8BDDAk3y0XgVCZlF1K3C0UAMJyx81hoUBkUsJJJSSzV5qwaixRggbG3XBWvNfaD1CPtIX6fIcAVsKc2VIbS5Vss8jecf/MmfDrv27Kecnjx7Uq1JSrlRQUIEh7pZtWqmpsqM3OVI4BFJ0Au2nItf5uKVPQzuhCQlYcaS7Vrfv54F0cVgBo38aw07Vo6EImHHiSkBZGal1mmcnj57vPZOurm5+Yu/+Atm3u/6ruuEhFsyUQAXSTkPAEqZzWtUDKy8/2YNCJ9aJ4AT9UN/dX3d5ezh/ixs6lPR43F89/ZummeKHhaSIp1kgUGZJCViaVdGlczEFFbLXKcynacJ5PvdcDgMV1d7EZ7n6Z/++X95OFzFuUhK1zePu5x1ntSNggeJp2Ndri84hNDEQ0Sw4KvXmPtDELPg9wfPTnuhTX0h/X3vPfHRDYCJnTXOZgUxRCz97rCulVdXN//V//h/IqDdbsgiQY+TuwiF51FIXnLYToePq4f4K9JJjUgPiNtMkyQx8SLS04gbFuHyBd25w8zVWjVbywGpLTU9LUUSInGzIHhg5gF7Sq3nyf7Ff/1fXV3fXK7D6XhcodJ6aZaEz3aacb9oh7aZOSzPANYHe/v0LrPsMnn5g++6PHHvoVG6QMt1omk8sTuWqrCcUj+05WQ8n379m18c7++ac9UHA6IRk9uTWpi5hdLHElkSFmwbASdt0t6L4QKH6Lotw2i8k1+uEYDLk7gNzuKllT+OCaTr9zc3L+KpHqfpi1evjudzo3/X3bWTWn+2ByFopfWkaDO9aq1ma2WZMJGbR12yW2iQOeXme7Eed9yaFlNEMmtzr98D/e8RyG623+8++eRF3/cApun86tWvTuf7lqpad45lbFxGQry0Nulq/MqHb14vyXLA6+839/eD/8ZdoiYr2pzSw207tt19vz88e/Zp18VsW96+fTvNIz98OtbxgyXfVLXWEva2rafdFnhgwzS0QcW8xDQpp1YTScTvHeJmsvLNgHpwC7B5z/qlMci6rru6uckpf+y8f8vm2x/04e++iSYh2n5gM8D+Ebcyz29fv57G85bA2c5TK0wBPpi7tj/WeYJWqPXeia3vbJAGywO83Se9/4H213UewzLjxXO62+2fvXjR9wMArXo6nea5LLtaCthiD0seJ3DVMiXxhsfy7b+bH+uBbEbrZhBfzue9eX+ZJtdzxWZH68ywPK2Wczoc9rFenk6nX/zi57e3d1ELiAZPeP14I/LdW6XNg8nzctabmxOqAInQBW1NiaxEVOdZmzFb/NKuFi3ffllV3QmXbGCsqSE5EJEIzveHw8tPPxuGXRykaTVrnmwPqMLtENkOwM0duYyMpajoH7htvutydb713XH7mIVTigt+Pp9/9cufH+/uWNbaPGBllZa7QMtVix01gPRgusea4WrL3PKoYcVnDw/x8otlJG0W/+U9G1znuLzVlxnt6vrq8+9+f7fEyfTg03/Y/rD9YfvD9oftD9sftj9s/3+yfYT8/MP2h+0P2x+2P2x/2P6w/WH7T39Lvz8T8w2s/IPt/3N8z/rtc9U3t9M41wdpgg8O7RuPdc1irdmahU1bSTsCmBCeCRRVz+8zZe9x7UtCak2grBRZYzRhrTjWc5brqz4nBjDN5dXX707nKZjfi7/Rslu/ELsORGpq+QJaqecQXlH801i3JXWLy39XbjlEDNvDv7DOSzJolURcaMR4LxOSUE6yG/q8cYes1e6O4zzrcr18cSoiX9K+DFyEUFEZ/eHBxHsvSvxQA9GSWl7vAjXSseWhfElqrt/mcckeSOGW67Lc90WABM6J9h3JA7OYh4mcSyISH77+4Uc+fP+DVN23br/7Pt/71HuKBwDzrK/fnsdJifAtDwx90/98+FXfPg38XhPAg/EfrPIwpKePd10nAM5T+eWrt3enaS1n/rYj/x2+a5OxbVmBjxz+gyTCZgBuCf9v/Nzljrv71b7/zovHu/4iV/rYrfz9ruA2y/9tv/y2fWz+3X7wwU8mTrm5EqjqajcQ20Ym8P72UJr6uxzP771981nHzCFJhqFvftbLJ7YJuA/zSB8e+MdzTd98RO+Pv4f7eSCe8ffPYPvyVhzw3veq+Tib2tKEu+UFV8nEB8fz4BzWN4Oacn8dzZus2T/uHbwk5pZZfLOlbcnle+WX75/QN2z/3wQxH64f66T85nb6P/3rn//db25zwmJ30krCWh3EqoW4fL65bQJYWj9SrKlClJOEw6gQuRvBBTYkud7nXZ9y8/6JXmOEcE6IJRpYrcd9baSuUTMcxYJsDjMUtbnqOOlpLC+eHf7iv/z86eM9gFdfv/vf/R/+L//D3/wq58xMYRLnhrXxoYLUQ/vn7IiuvB7vYOfEDletDBpyN+S+7zuQlFKihWTrHc/RtpZZ4kpSSpxTEuFV/xQq7pRSn3shRqtfICZuCrDm5eB9opudvHx288ff++zJo6sVf9wdx//uL3/+my9vSciB4l6NHKxoheyZ0DGnHN2LuUvSpdxn6ZJkluiH3aCTJ3dyVyNyjr7dSZ201Xy3TLeqlTrVolq1la+7eSTLiYncTAkuUXbR8N8C7qKMIUvuMqdE0j27zn/2qdwMDSWsAojtIPzoCP8HgJj1K77pmfp77XP9XyJS1XmeAQyLhuz12/H/+N/+9G9//jbntSLwoRQBwIWqveBV+gC9b96yLkUP59rL0v7+xx7MwxcJx3tKKUerwwLgVa0W/cH3H/+v/psfffrJFYBfvHr7v/3f/5//+7/6xdCHcL/JJ96/bh8/tM2xYEXFFB5EjGZK4UsccwlFlpz+5lPAw1k0+hx/cMoU7l5wqOo8l3/5Z9/73/yv/5c/+u4ny2Xwh1OxRxHVB2vW77StggJ7uO4+1Gk5Ppj/gY+M6q1u2FsApstPM9Oh3z17/Dy0veM4/c3f/N27t7dLmTptt1Ug1JZbvoy6b0I6v8ta8y1XApcRdXnloxfVzE315tHND374vf1hj+XS+WaBjg67BgCtVESWdqzbL2hTUysv+LbjixukzRzl4s0a+1HAPAp2mrWvL5HwCq1ac2hytIOhZT++fb6n2f/u1XR7qsJIDBYSIhFKwjmlpalGuDFiNeWMj4e7UmJKjJzQJ2RGWECSGuI+ynro24ft43fkG3/rm7+sp4qFS9jgpAdMzEehxu83bn6v7WOP0Dc+xuNcf/ab2//wt193HQk/ADG0gJjV37BVVlxE4o0JYGq+N4kpSyu1DBAjZB3ToZfxerjeSe5IBNxsn7YgBg9ADDXLh6peDVVd1c1ZDVUxV5uKnia9P07VfCotZDmep//wN7/4v/4/ftL1vQhrGAsawWBO7qaIUjUndgGSGS89VpRBmYrV4+meDId+fzUc9ocDU5rnYuZEQswhkWNpXRlZmJm6Lg1DLyzNemjZuq4buiFLYtiC8ilJSikq1onId5meXuUk+M7LZ9v7Uoq9+ur4s1/dspCRT2ZFSZ0VVIiYeGAaRHKf+k5yliGnoe93XRpS6prHfvtOOLuRmRpBRZRQ1aujUnN3d7Abqto01zI1S7bo4O1qxM4c/W4rwaNNHy+q1zYKOHHOqctd75KJxJh9E0m2aXiLMz4KYt57amwp+l1/65vVYFXGbWHH+nO7tGy/6wHhSG1++fC3vvSgCSv3ruuaEH6qf/uLt//+r7/qO0lCW4Cy3fMy7V5AzIcUJC5v+S0gZrsMb19ZIMtlUfkYiGkKwKo2jwWEcQzXb9yfp3/741/8t//dj3dDE6kDWAWklzP6cCrbHGa0oNiCmDYb2AXnLvOFA1hq1T0ih/XkHoAYfBOIYQO5u1adS8mJ78/T+2+7jKgYn/b7gJi1LtwuMf0CYtZy/d8JxGy21rxMzXTRsCuI1jL+Wuu7d3dfffV1AzFOq1g0KJkQyK6NqLAC5d8BxP8DrgTeAzHxPx8zTjIzrQqi2pzlAQQR3T7hQAUmd4ugF8gPPKbjhpHCtZVIQwhYCgy3+1wfGlpojzbYqFEb5m6O0lwRW9MvomVlX+4SAfEcx6pXw6PQsYTlWDtzVvXbY/36bk6CJEjC4XbTJekyJUH0JjInM9RofrDUHjKDhRJTFvQKGCHBA7doO/XGIdDlUqx3YOVsALS6xQ+5qvVCbuGLxXkSwpjxwo4hbWsCPxwivyMZg2+FF3hgovX32D58qN47mO3hMVHf8a7nLrNIc854j4lhhHNo0C4X30mgsQu81BNKsy90kDpgsERIXep67jpKCcTRrWixIwIc7OtovFh5Aq0iOvqNNL+walD1atAw0klhEnZZ5CRJysIpkzC7OgAXGLEpfO5QmDV11CXqk/eEnsQtT5pml5pwOx7P41xqcUvuQ9ggehbTKNoMi5Kl0DfsVBP3Oe/6npnnaTQL3+6AOpSYUiKhTEA46xM72KUVRboIiUTaCg/U+0Q5932/EyEjJ62s0TGYhMDMO0l9kn6QruMuS59z33d9Slk4h4Vay+8weedOVcXcTUSJK6fqqKTefMvIjFWRSGbSmbiSmJMZuRrIRYTIo8V9YuYwrACW5k3MnDh3klOfmbNYA7EP8MqH4/Cjr2y3D8f/FqZ8dDyv25bN/l2+8cN9xgGsTiTLIVHfyX5IfRfVGB8/Kt5S0xuC+mMgZvPbB9sWxGxfbjDuo++kpS/M5vX2wKqqEPpOlkgBwrQfusOhPww5h8toTLfroW1A2PtHtgV8QDS5JgcDqbn9t7zkilNWELB+CJtCpq0TD1/es7025M7mFMZa5t3N9T5t7nIQzA9BTPscQN9uV/iNWyM6LoW+HlMWouPqx2fvB6+34pPF6i5wDxkRmYXDPRlx2vjEEFESSamtMstH0ZYmX0uN5FIG08L9xjRsrslyCP/gjQKoPTg94OO6UF5sry+1VEBcvXBUK6AJfnZ3eCIagC6C5QWJKzA7FcWsrUQ/MZlQXJ04PQKIweC1Novb62FcBAcbUM1rtamYetDgTGE0Fwfv7u7qxNEhsXmgo5IrUAyRSc+MHZE0jOhJPLELY+02AKw31t0QLY7AkIDbDbkRweFhfeIVqCD2aLJDa5VT2PrDsWCf5aJbg2abe7qySDGcLvlGcofZurjGvhwcT2PalIemb598/39Iw/x9v50IKVHOnDNvmJj2K15BDG1ATGMz23cxX0AMA4CGrWiYomfhPqeuSyLhI7Q+x42AWaBqDNGIM8wc1byaF7Wp2FysqqmSBogJfB3DecumRtIrDpSJmgEkEbu4ZdZdKkOqQ899Ri86JNrlrMrvTjhVmSSB6m1OXjUemeVMw8F88fpZPPvjqxpoiIbvzaWQW/bNvWphAue8WWdbaBo7uTiEf3ATU0o5ZUls8ApOEZE5MXmYgucsOUvO4bKYcpKUJNxSUztgYk6E5E5coebKrdUJA4nY2ZngYDNSJnIhY1IiJ3MyExATQYRA0R3WG5Rrz10cNkchoiRJiZnZHupy3D0c7bbuIDFyWpdcwN3XHkZRbi0ifd/HG9b3xNiJStR4c+w2pQdrADPnnFeSZqXiYyerJxMz11rHcYwO2PFK9IJOKfV9r6rTNG2XRiLkJH0vfYq7fnnivh3ErPf+/Ru9XWC2dMxm4d/Gqqujyebtvr5nC2KWEntTwKMHvSOnS7cxIuqyDH0aupQXWunD9MTH5pMH4MZAGp91T/DEISaKxvS0ATHbmN6x8jfu63m18eRrnnN9LXYvZmSu7k4s+yELPzi2LS23fnQl7z44i2/bfPOxlU/Ce5zKRwAl3nuFFt/e9f3roRIRE4eL0Lfgcl/c4QEszTGCD8U6MvnhNLjdz9/rrD/8VAPHD/ruPBim73/yg6/0ZTU2oAAFmOPFUB9SSwPR8h51VPdoM88S4JgUoNYy2xlgf98zaXs0BqhhrjZXm2ZVd5bQAoCZhImXaDHuCS1El8Jnw0xWDAZyxw7oBIsTJYSRJBzWqa0C1L490gneKq4hFE362kzPbbZ3IV+7+jpvkz9OviT4GxZdIL7FrjfU02WMhQ+7rH44y5oaTQvIW6syqDsnCvYrtrQdvh/Gix8O62+KQb99kH374/FN24f7/LZPxZMksU4vI7Dpj+jjICaclJfjb2s7YUlfhN8+EhOzdImHLmVhAKZoU7NFIokc1GRSoa2Bx/6r2lh0qjYp5mKlWlWYk4YjocPcVK0uPVXW0wzJS3gzERRusJrY91256cvz/fyor/vsPVfm0mXeH67G2ZLNMmqfrrX2N92VaCdpcOaq5qjuoFiVHOGLSY2ot/BHIEIps5mFTUV0wTKnUmupZZayG4YsQgAx+8JHXxwklsntweyzXluW+EZCcxMnR9PWpLAIFG5/6AK3goyJlqkR2To1h4foqcEULTeY2YFqqIVMRSVVrsJOCkJroCTRgxUA/KJ2bj3vQQwSEkFa8AbHfV2mmVJKNEg6nU7n8/l8Prt73/fDMOz3+5yzmZVS1t8Gqtjtdp9//nkYM8YQC0ghIjc3NyklVb2/v3/9+nUpJTQr1iwiZb/fP3nypOu6SAallHLOw9BMa8ZxHMcRwDAM7969+8lPfvLq1avT6bQip/j4Z599NgzD+Xzuum6N41uULPFvYy75A8YlZqPlGWEsv/j21AatM+I6pC95mLbxduFcCXEsJsT+/rzuFwEbS3LZMpcAyHn5QzFAP5yR2o3cLJNNPbOSAzFVQEgTkGDkHjbyznxRvsTxbDESLq/Q5j28uZKbKxaNGBCdHCVT3pzLek02jEtEoy2ftjSp+12hzLeBmI2L0PqN37LnFfGs8H39382vLhDHF/MYCut6NVu7RtbKzGEltbXX+zB5uj2Lvy+U2Z7LR87rI/Rg28ytubdukPgMMoDIFdCwjGU2eHUYUJ0ykEEZkCUtQgyJDuRMSjQ391gQkCLFE+05KDIlWPrCcaATdapuk/pUfFY3d3Yj9ujtk1kkUWpPgjGBhYihjhF0Zz6aFw8sRTega0a3ROwiSIlb8Nnm51ghYUsgER1zidpSiFgTGUlIGAwTQopIFw08MZrVXkzP8bc2/p1oIS2DJVjqU7w929FwaYU4TTcWWi4y90CE1SHkeQP90t9rTPwnvnFkSjYghrcghqg5ny/WoQt10m7skrdYqRkwQwiJWUQ6kWBFmzt3fNZBRu78IZR2g6rN1cZZz9Umpbl6pJDMKfoArRSOP3yUHNDFhl/gZFVQs9gh25ODPt/Pz/fnmzT3pOxztZlcks42yfluurvvRn46at9x78PgLMxJPdaGFdptv2yJMN1NXWutVae5EpMkEDkar1CSCAHedcLCAJjJjNjI5dsFa2h8z7Ishu8z2BzMSOstAy/tVCl6XW22pQGGwxOSIcx7nckJrUc8s8PZnBxaOUlKIm6mbhwohjgFiDEEiAmoufQFj04w4Gh5xRxv2Cr1jsfjv/t3/+5nP/vZ6XQ6Ho/H49HM+r7f7Xb7/T7EjKWU+/v70+kUUOZ0Oh0Ohz/6oz96+vRp9HQlolLK3d2diDx//nwYBjO7v79/9erVOI6hWVm9766vrz/55JO+71cQs9vtHj9+LCLH4/H29vb169dm9ujRo7dv3/7lX/7lL37xi9PppKqBdXa73dOnT7/zne/c3NwAePny5ePHjwMDAUiJQ0z9rSDmwlX844KYB9H/tqMbv48RvC3bMTc6OZT9vYiLN39iQuRvGJPbdVA2DvvBczsR3AWeYB15Tgzu1GhUrSvH8v6p0JZt2maQ2tS/wWnr1XAGO4iREneJ3jvah9RIQyBL42psfvX+9k3hYoMIm9tygR1rK8LfBiNWyBKpyVj3LjmIhwxNbGEWzHw5sPf4yPc++w8DK9+0/Rao980g5gLw1hMBRqAuN7sCrUMVSIMyWf44kBc4IhE9gyqRLa1mYplO1CSw3pocNxDDIAElJnKoo5jP6rOihmKLAgqgrfBLC/IwoSuMSphBZ/cjMDlqAzHoN09spEpT4gtzRhHQQd1drcWa5NzqXdpjQ3HMTFmQiIXAhMQQBq9PnG8u2XZZdLhDHSvvvT4XAXbalyz5TnOYUbN3B6mhmqtDHe/d1Utby/Wl3wft/u7bP3qiiggS3Q+XDF1Lc0RaBtFp3rm1IAL7Ml0CaJOsBpsTIjNmYYYgbOhZGGTm1TVaIho5swC0+O4TLzFuhE7q0VlsDhrGUDwaZUFXdRe1CZfYae15A7hDW2NEAE5aO5medPXFtX7+GM9240Fuk5281HkqZS7nigL58l358c9uv3jHZzzh3curZ9/b7a+rqYOIxJwBipkzsrG08CIxcVs1dy3qRXWaC7NIDuhfay2lTGlpDZNzFkoOAjstKfWLbOD9G9OwXoyU6CcizCBhQAQi4MsN43h6QKGrlKXyOoa8ASCBCAmSETvBiCLvxdwkA3CoiAqsWdNWd2oNc4SI3IzdXYjhbqYLG+oOI3EWk2QiJGCQJ1w0vG/evPlX/+pf/Zt/82/cPRiX0P21xs05d12nqufzudYaBUGn06nruk8++eTq6moFMeM4vn79mohevHhxdXXFzPM8397ens/n6Bm52+1yzgAOh8PTp0+HYdDWL5pubm6+853v9H1/e3v75Zdf/u3f/m0p5cWLF+fz+cc//vGrV6+im+CawBqG4ebm5vr6+ubm5l/+y3/5gx/84NGjRwg0L5RTNJVYKY0PQUx7uNbXP/K0b9/64KVlNK+7iIWq1ftc/r5JUC4/NwtMyyyFDt8JgKjLhu9vgcrmD5bfbg9qG7S09jLLGTVJFGLoOZsmsl3iq6HbXd3Mildv3h2nOQbix850DbDhuDAo7LTO2ZeIfmnCm4RSIsnI2wx/u2a++Ytvfv5O8+2HDET7ub3KEQIvWOK37md9JagUd88pr9d6c4bvvT12zkvPYwBQ1VB6pZTiL99yDB/yMb/79ttADPDeCNle9mVWi60CR+CMizy2iUSAVdxR0cJRggcfI0QaHSDdDW5GClamABwB5bA0bo1xLsSJqAMYULNabTYv8JbXSQQiGAFkwsRUYt0groQZro6zYwJmkMYTENFfU9G2SypJkgRUiyvh5kRu7mBAWwDPfFlMmxQbALsLqEvrartAkPZ4LyN1zaK6u0fXUkRXvbXCkZcIkom5zcHAUodVLcQYl5A+YJw02NO2/3yYGAYSo0/ROIOotWn1aKEUixyDmChuDAdlvWi8gwSNSSq0U9EdWUBE1KTdEbaoV4uOt63e6T262L0ljKp6US9G6tCGYC5th4JTc28ZYWyLKYDElNjZirD3Um668slh/uyqfnaoN90p2S0wFqHCXqufRz9O5c3b8+3du7e3ejuP3ZX0N591lJjpgjAIDjc4wwMqOFrsSe6mVdwEcKiTEZFA2VGshsCDmKNKKvrJMsghH4MtH25toSIhEXInkdA+kwgoRe6o9eyMOZEXJ/6FV4uFytvCxATioA+W9ksIYoWJYF6ZEnOVlJZZVCj8xDneHiCG4OZkviwVqCSQRMKUFl8cYlu1f+M4/uIXv/jJT34SKpPj8aiqMRETUUopkkERrZZS5nme57nW+sUXX7x9+zaATkppmqbXr1+7++l02i1Nc2J5CMYl9Cu11pzzmzdvIuXk7iJydXUVuwoQ88tf/nKe5ydPnpjZq1ev7u7uaq1B9oTO4N27d69evQoo8+LFi2m6VMGkqL9LvwuIubzyEdP0hnG2A+HvCWI27MISi29AzHYZNhCg8jEmJhqb89KrY0s6XlJRvkaetPSlbdTcApjIkWC75E8O3eOr/e5qf5zs3e3tGQaSBXARzABaJDyIY8OKWdixRkmtyKBhnKBfmdAlTolaG6/fFtP5coS/+/a7g57ffYdLsxv9+++5nWEMy1CDrQYZ37Krb/+W3/rxb93i+nzku/yDeMwXEcxSR/3+MxLvUYCBCsjyZ0Xa7HCiigZClrrWiLTZASX3KNs2U4Bj4SdUJksRWJML2YIZlMgItMSkATEqMAIlJOpEi7bsgX6ZgMTcJTGjBSCv7OmiKXY41J09KncbxWnLKZOQBIhham2itnVegdNXrkUNxVCWtEOgsNADLS3hCABZk3+GHUnU8FZDsaWFOyGsOrbbR4S9/4iD/h99+xb+hgg9+yDoMqfUimYQ4ilYzG7SuvuREDGByQGou0eVkKGlvSP3wETLNNQA41IMb4A5JQdAwiBEf872SIQHTFUvStUvbE8MKrDzljxfsolrHgtRbdHxlTjs3Js+7suLq/rdx/XFfrzm+06PrkcnkuHA3NtMOlnV2cH9rgzTeFtqqed5GrupQJjIOdK4Ho0T3ZlNiIhcmT0qdIxIE1OXmQmaAVLJs4KdyIgSheY2SwrwoETxiNAawS7k13uwxmPl4IRMbARxgMgipuWFimlVUCuCDHkMgQN5NreDqFF0YmMCQRqFconJTciV5lDdkzC7iBFcKHI0EgEoeUjqIczm7uqrIkKEkyQRBqBkYDi16CtULEGrqOrbt28BPH36NICIiAzDcDgcDodD/HYcRyIKQLN9A4C7u7vAGUHYdF337Nmz/X7viy44WJwgZsI0jJl3u13Xdbe3t6WUd+/eHY/HYRhyzqEw+PTTTz/99NNVMhnC3khvBbLZtrCncIZInDJfVKUx9XDjB3GZrDfP3YaV2b7iG9ix3Ztv3rMAmg2I2bz+AMRsd7M8Wcu3kAhENgt/I2C4hS4X+u7Btj3wlbwBKCp21uMRtg521afPn149vr6GdLAxM1oFMDXJnG+SawvZ/uB8yYnY1pLFS6GVm1ll9pQoZ6TMeUPErLmV6Ka7vGZ+qTH/XZmYD0HM+0zMx1I5344nbNmImqzzvV19GNSsOMOW9tfYmA689+3/AIb+H75gfZBO2oKY906HFlDS0iZ8GaWt0yMuNzg8u6IamIgFSAQjMJECM3x2r1odSBxBEwgogALFtKoVUwMRi2f2BAIMREBteioCFhNUWk6DIjMFi2J1X44OgC0Jm3iJKQn3rZAJvuhO2iVZtJIMCFwoykjb/teZNkrb8HBmIABMbptMKMjUi2E0LksmSNam3IzgQ5VbRjYOyAB1sqVoZjkbAhaqfnPX/jNiYgi90CFT13FOrQJnYRyIOfS5S26oObI2tGkBYhacCETuiRa67+ILay0XAzWYQwCOZAQh2jCH81xVUvOqCBpmQ+Uumb+Va1sGwjauHDr5wWeH47vrMk8dT4+H+nSoL3bnR/nY+VFwdq7OWXNm7w0+13I86ziqk6Tc5ewuZFpKmYV7IWy4TwfcYOoAOIET8y770GHX276n3SCZoYpS6qSn2WVI+xndVAFKSw2OA9bCiXbsv6Xsk5g4MYk4izqcXJ2ChAILSBCqFm6ghVciJkrG0EAnC5zIlvWjkWGbAW1OxizcYCu7JKQGYoiJxdzDc4CJADMrqkWLEbH0mcOYhhIzg8mMGlsKAOj7/rPPPvuTP/mTFcSIyMuXL/f7vapGJdHhcLi5uVHVr776apqm0NJGnmgV2zJzKSV8bOZ5Pp/PwzC8fPny+vo6YM04jufz+Xg8TtM0z/M4jqfTSaS1bY9M1m63C2rH3ed5DogT4uJYwkNVM8/z27dvI8MVhU7LA9Py4in9/UDMh6kl2syWDxaUzRrh2/9wcCoOLJNZqDHc179/HMR4eDsi2QdMDC80DK/i+jiqzc/L0QaGWcqO22IKghM0se+T3Bz6JzeHq11/HNXKRG5C5DHgGpi4nON6STdnCgq9VzwwfqnGinNldmFrQP2jC/fDUur/FCLLC4hpj0978bd+JBZ61erbgGMDbt4DnR/d52Z4rXAh4OtH3+/AR/b54J1+2Vd7YbnmvjT+3u6Rl1zSyvG12j082A8v+17nXFpmXoaTWSm1ztNxPJt7n/sudzky9cyAe2Siq5pwDpl/W7JbdRghNAwtdfWg7D9YliWsXI/B+f1CcmFOqe0Hy/QdC2a7zh729LFugtt6GWJkJAkfSKzg53JBsZI/oAWAV29MjPuFwqIwCjI3gjsYLu5MgIfzWhxVU1MGI+GXfV+2/5xADO06vuolZ8ppKXl1B6JmAdL4lQdOiACqwwjJQ7URhZQWlx9YBuNlxFB1cge5FXhyX24uDBZ7MIPaYhOkKO7qMDO/2Bdttqg2Jt/W/t0c8v/0zz/53tPzeD6h3vX4OtV7n2653iczAXPqnHNNwpPXOp9OxzfvXr+5P48GUHe42nm6Ija1mT17c2+Bg0DsRBrpWYIQHQZ+doNnN/LkEa73vOuzwMs03d1NX76+HT13j29KOtzONM1kBaYuKSwglWDt2Jdls1XgPTjJVniUUqKUSaKru4tBQQYCkS0PW3Awaw42ysDjZjFDpJWWGTHcnSAc4vnLCklGkkgSi0BYzZg4E4J7YyJmKBEHn6+1TNO7cTzWcebcH+SF5MHAROxCIpSQZBMm73a7P/3TPx2GIbQvp9Mp5/z06dO+7+d5XimQ+C0zm9kwDIFLzGypbG/FzwDMrNY6TVNK6fr6erfbrSAm4EtAmdAIp5SeP38eIt9pmqIKKaXk7lFZHZctZt5IPwGY5znnHDsMkLTcFRKRnCTLtpLnwigslTWXV7aFkbSZumgherFMqW3ztkpdfm5IiWW2jNf5vXdut8vrrfifRCAbHQnBg0/hhYXhVSBIAJpFY1uzmr1qy/ITLTYU4Uvp2gndHIabm8Nuv3Oi27u7d3f3airSWMn4UgF8UcouU6tvr4AIdSLhvafm0WO5yfkJROYx8N2aZdV6vmYXB7p2AXxRGvzDmZiVVVielr8fE9NQq1+ENGZGzNhKg99Lwbiraq2R2YQ1V3EiQtCuvu6HwvCgVfY+PAba7O8CGpboz+OZAvAQdjw8knX8+KX290Po6A/fv1yY9oE11KQL+xJ/2hFRi2khIAcquQNCgU2M3NV8nqbT/fn1u9svX389q17tr4Zhl3PKXc59H3NWUS1auUv7vk9EBVD4AoMggLgx2oPX9IYbKBPV6uFjrnAFiDyu7uWkmWgB0PEgyfpkeEyuYHiAGOFVchsKUBKCeAzhhqoALGkMv6wADWTFQKc1AxGrXUtJqjUTg4X4iSDWG51ERM23qaVr25NwuXv/GYEYxpB413GWYJsbckWb2iBEUX65lLEhosFIW663d5lRlogpQI1TyxPBa5BzzQDfFyuVByAmDNbUYRZ20cv8CWBBqo19j8eCHzxSzHrIx6dXR76yBBmQMXfjsfMyJE+JRIimircnKlM5n8/H8XwqZTY22ku+6vNB07URVZuTD46gLshdGCIggSWyQfyQynVfrns99H7IPKSUWcmhPAmNbCcULvevS6pEe0EHToTQAUSTJm/Lxvt22+/dGmZp+otAa+am1gwADI0pMg9It34uit4h7ACEkRK30jI0tN6Ym03pqxlMkRiJIQIzsAvAqRnuwD3SwM7wUsfT/ZvT8a2Vudtd7/0pi6SUU+KUDYwwfVq3YGIChbh7KSXKhYLwCKFAgAN33+/3RBQCW2zWhq1DxhraBkmTc14dX7bS4IAgwcQEtROCm9iVmU3TVEpZJ3FfclIBkoLLub+/f/z4cWgRYsSlxF3inC4g5mEt0oaPiVcW4mJ956KHfW9pWbaPgBhgyZd/CG5+C4iJqY6dKTKiD8ZbE8Rc6DlfJuSFGb9ArjhkEkIKv0ffxLrE+yE/fXy4vjo4y3kut+fxfpzMXZiMI8BnwNmVAIowsikSlrNwwCGMTihJKy/wZnIBX4JMb+72VVXfP+nf0dDON//53RIxF8fe7Q5+y/6Xv1t4dm61D/axDNL6SwvAvUYmS1B4sdwLz9t1fV3N9LCMwFWERUsizxqOjinafNFztI+2ow0csoCVi++Orz+W0uCHp+sA+YIiH5wYb0HM5n+3b8itMrmBgRrmh+5QdTUzncZ5nMo4zsfjNJYyT951U8op5ZS7zCJrTNBZb7sClkZEkAsoARlIBPFL1Lu5p+7LUa01UxWYgfwe5xQTIS1XltAYQeK4OURgWEykvLCyy7lTxByw5RvD3GVLSTV0D/V2JAsLAFoVM7GPUFm6Ay6AtJKORcTZFKsBKxuj6YaNTcx/RiCGiLrMQ4qceKhALoN1iZR88RcJR122S5izZgcjsDBraSaYwYzMw11cLUyd3BmuFDU/LWhtYZYt5WHOhuB1GnjayhtX0EQEWnznYhvPx5/+zV9+/eWPX37y7Pnj3X6Q4eqGHomg9tILCYNevzm9/elX97f3t7en01Qs7Xi/z/Tc6bpqX8DqKlYyCkEMORB8Bjr3HdtNr4dsu37uu5nteL6vdk5vJJv0TmxW5mk+n8vd3fzmp28K73dPP+9uXqT9E849kYJaK6LQGK09lD5yX5hYhFMrG3YSdrgFi2NYxNRuoa0mX1B8sP2RMSaPOiYihi0Wk3HdmMMtBhEdFTURSuLhqO0OVSZwYmIig5qZkZGrwK2e7999dbz/OrGljhi176QVBhFXqzpXM4a3GSBqnkPLstIegTaiQCnQSehRVsZlW3+xBRmBYCIJFZVN8c4wgGmyg6UYJADK+r0rQAktcCllNeRdyZj4ukBCx+Px3bt3L168iKKneFsW6rOkADFtHdyCGMYCUJoMYEGP681t2aHYYcMItL6+vGcLUGLI4/JKE/ky0Oa22P+20LdNf62cFw4PO+m1LpkIEu5bKycIiDkBTqFwvEzhS6AomdEly0KC6D5hOXM35Kur/dPHj/quP1a7PU7vip0s4n1Eaj6CQ3FjOLsywRe7byBcRt0Nwp6pijcrIraqMY+4hYLRHVVNrZZ5XhiCuAwPeRi4RyzlLaLa3IU14H24bVV3G6Cz9kfwtspT/IzVexNOL9DAaFlrAkW2LAs5WuzgreEqmX/IMrvbNJ3P5yOL5JRy7kTYV1IHFqWN4boJWnNPHkmnsDpzDStQbgLTSw6E3E11Bmy1xcCqbULEBw73oIjb2GzZvWWwBj+75IjWsW2+LBUfXNuGjx2yLJ9BoxEhAT2ztBdR3atbUdNarQRY1VKtOHEe+qvH9TyeSz2dZuYZZDAngqTcdd0w9ASZ0ugVLuJJiCkJDUwDUc8k3giYlQE1wFZ0sLAd5qjA2amji6O8watpUbMoRHIWwJuRnbVEKyO12NJ8QZjUJJAt9bBesSjMXTTz7co64ObVUH0zHh0OV3NryT4ysHlAPRjcwg3Mo0yJWkRgi78CyByWgmxqw+0/IxDT0nXUgqJ2edt5tmviTTi0vNiycStIDHBpbuoBxlF1qe/ydZ5eNa3tpi7PVHs2V9R5ObKF+2mPziUYWHKl/CDiP53OP/7rv/nZ3/37P/r+y09fPHl6GK4HGrIN0VchpSTpWKbXt+Pbu5O6X10fHn/2xPOTYk9OZbgd6W6ajvO9k+2TklhxOFEiPYg/zvZ4sOdX0rGO0/14fHc3vVWdE3VAP1FXwRbuN5VO9/MXX9wWv7ue043l6+469zuAwAYyavrobyZhYuOLPXAA7Mg9Qddnjg3RFoRbJNOAUTMhoEX0EIRnTBkLiMEiX4I53FHZkyAlJG3FLAQkIY48qzkRtKiWaZ7up/P9PN4jWZ2G+fzufD9Y7Yl0nI7n6Xwa5/Lk8CePP8ewAxC6kyiKDhK71no+n9ebz8xrCVLXdYukZx2EvgKLSDa5e6h9u64LGibm7/U9WwFBWITFR3wpgApEtfrjxTFsvy40wnGofd+vv21MTE4p0kn+vqldSyrxZbH8CIhp43kT3W5Q+vro4SGIWWNwoA2BQPj2AMRs9mBtwW1l+gT7kImBcavbiICCYwWOsJEYTgvpaQi3oATvyDKpeCEoTA9pePH08OTJ48PhqihevX53Op+rViIkAROqu8Hiu9khDraofIQIiySiaHyh0apIYNRmZIMp3BZfAwrax8y11FLrA63/ZvOHc8n7v10Kotod/ebNF5qhRbQroPRv/qj5Ag/Y3eZS5zpP8+ywnDJvlX3fsJnZOJ5Pp2PuslvHTEThA0eGRapKkEbMuLmr1kg5ubvCoWZVyX0RyQmRWNSUkblpLZO5bqvqlmN3MzNtyyILt/4hFE7qTa8SyV2idZQTAGIy88Ac26HMD/8EKYLFG4aBvJZGu6tZVZ0j0KhqxUytqJo6QJK7fthNinM5lToTwV11LgRPWas6ESepOU1qhJQgHDg9CbuIZMm0pU0bwaWbG+IbUY4C6T0mxl1NEbSYmzk10jlUAQTmaPwHJRcPSratrbSpUGxwsNX5br6BCIA1ZxfXFqNibVoR34RlNC6PbsDGTYJ6eS1wvMPNyPzBsPtPCMQ8oBD/IZ9vidqFPYzXLlHgkjO6sF3ewoFgyKhNlEZ1cdQJLq5GPg/NiC2RpyZCxYLwgXiPIUa9GxrKAbiZaCFiDWCd6duB0PJn3U7H+f/1H37zb//7H//4P37x7MnVo2F/s++vr9L1VX992F8ddoer4e7u/ie/+vr1/djtH3328vM/+dMf7R89uzvy2/v66s345Zu7V1+dz5N12Y39XNXY9t38ZLBPD/7po/zZs8P5bH/11+9+84tf/+bLL8dx3vU7cH9SKcYK5Jz3w96V340orqev30wydNdPd7s9cSYSUF0MGX8L9+2L26i1jtLEzLSGO1iWTbCvbKIwC4RdWkaWlswRQlq9iiw5mg03WsuFEHFLEoiQGRGD4V12JlQjd8pJJtPbu7vz8c68Ety0TKfbd1/98v7u1mCn8f7r11/d3t2eztM//eH3/vl3/5tnN7sYnIFOgjIJ8iO4jbULwcqCrCKV7ZCO17ftAtbX48XgV4JiwSbNH/hmtaVZM0qrQHgt/QhCaE0nRUFsePuWUtYAn4hykm5hYpYBegExcWhbqdbqqvLBDfblPj+gBnzzy8tkh/AKildcWm6JAVhTyRgA23xXk8xHl3Z3ByWDpMuFJRhBW5uJJbPjS9/XaIJH1GLoxM6u8JLMsluy6nX0Wkx1OMj3nj/65OVz5vTm9vRVOdt47F0pAQQlzOYKN3YPQsCIDOzIQjlzl5Mwm6dI4WlVgjZW1wzwgKjeUvxExu5W1YpuxBxtlr8YeMSpr7zA5Z/LVb1c88sjtxlyuNA4Lcvi6+t2eYG2CT5vSwdBWESr3Z3Pp/E8TXPK8ugqrYai3lgAb3Bts8A0EHM+7rAjcppdLTVHUo4GsxLJZXKCm1+Sa25WqxWtpZYZagJi5pQyS0KSsHBVNS3FLxVP8aQQvIEYbzIkiEiXO2a20OzWKOQAiaSUQ9mDtoIzMcNRq87TdHleVvhCizBl1fmaO0GIUyilzGutUymnMs+1mrkb2MmsNc5gocQcvVZYiIyZGSaUCO7EyY3mWUWKpFq8GtUopU5ME3PtshwG6XIKj8TGTxitUTbgi61WNavLOojL8xI/3dwYMGUD1Qi0KVhCYyIhFwm7V+K0NmBxpnUoNQ1AvGx2yeuHYqllf2CLPf3SWcyWueAyVJujhTd0SdGKj4jIYWrRkzgMoZdM3z8eE3MBHw9TiO/N3cthLgzJN4EVv/znEgM2wuK3hPy+aL3e299mP/H11AhtehhXrrCmSaUWu3lCc3IhMDV5tkRlGG39LJaBwmi2bDGwYmr+SIR6gTLGD3r0lKpfvTn97Jf3t6fzF6/e7bvh0HW7fT7shv1uuL7ePXo8zGX85W++mos/ebx7Tv5oL8+eyJMre/7In9/Qm8fd1zfXxzO570btbkevPg359HiYPj3Yy6v+6YFfl/N0un/3+vju6zLPhoOyzHOl2Vgh2oG0gKQ4qqtOp/F8W8c7L9fcJaa0pAUWFfkmSfnhZvCi6qrjXMCy2+1FRKJbdtyd1jOYoympLJVKjYkhoGWO0CLZRfvAF+NAgOCMRsMkSoWdzQiJ0WeIkBO5J602j/V4//btm6/u3r0bT7dkZ+ZbfnN07orrVM7H07HMxUlcp1WhEHNcJIxWtwzatOuL+XTNBEXwuNzuCw2zPij+wRa/XTHNio3iK1Z/jlUHE3Bn7da0UCkUsCZ2EmaFKzBq58LIibssqSkPA41fgrsFxFymGvoAxKyG/QCaTdUGoH8MxAAPQYxtQYxd9tZqeWIPtqzkLc3h7pAH/R0hMEFlVrAtbT0vIIbJQcbuZOplqqXYNKkXZE1cyQtq0apTNj2+qXeihvO74/j2S70/ifHAzImNKDOKW40qVgKMqTK7C3km7wRJ2KMOVlFiZSc3JgbJ4lXTbAgIBFKzagsjuWze/vgSgD74tX/ws71uH752ufJtGlxuxuWnOcKEfAUxjdRc+tWDiFDNjlO5PY1TqYPng7dsxRKWfeR4AJjZNE/TdM45SXhRmK2G1IvGPYU+XSR0vurRKFfLPI9lHmuZXZXNCSQiLIlyQohK1VUbRonnDvGkWKNh2uPjzswlzxwq7uZw6Q4nlpwyLR1QCUvzPEdVnedxTWtStKpe0IwsRUB0MdxyNRuratWp1qmWSWvVxiJiKaik5VPLH1ry4tGZ2cP1rdQq89wNO1TV4P/gM7yAvddeWIh2nEioZQ/aRBxQdUEw4SxMAL2/3go1K6wlmme9aIMd65RnrWWoGLlEhm/xisFCAVwEK8szTm0oWfS/djNDA/JtBohHcx0vzbGpgVG4q1qtBjUN/71FUUXk1jr8rNvvBWKWiRdY2N3Lc0JLn3VvoxnrJOgRGPGKSby9/X040R5LXioXyDmWr49CGYJTdE9ZeZbYBbfah5bZhT64fIiRFSWWS16XsDTMkRbQw5sQyqWZ1IXaKMp1YYARh79QDNoAQowYmq2mv4GdOAUDwGYcwkDZwBhi5i55wmy4n+pUTm/vz/olyJkp7Xb50ZOOk57Geya+PxOBbnqb7p5cPeoOQ/foSf/9Jzv97qfTvDueu3cnf313Oo8Vfh74zU2apabT3fH2td6/O9cp77sXVz0/uuacUYtXE5eszAoaXZOD4NLVTBOmd3o+dKmnpfmSNy9KuPPmBj4Ek+RmOs3TXPX2eE45D8Mud8kMICsW4hphSURCFH0LKQmJ+NIZCY2AZ7Asjj1R2NUMuNviIOICksRJIGJuBEZOGDrqekodzNL5VN69md69/eqL3/zyq69fne7fej2b1WpizJRoOAxPHj3+7PNPnjz/5M/++AeH3b6dx2LBtx3/KyiJ11fBCrcOva0vTICJQDnrjBLvjE9tOZL1Pbz2qFp4mnhbSGECtcQXYRNDr+/c5qdWTLN+SxbpsrTe4wAWrmX79zUVdnl+tw9dQ6DxYK2k5DYS+Vg6yS6vbDsBrb81gJuShoC1BKhBGXYnpvSgu7hn0sRVUJmqU3KwL3iOovEnnAxWpvHudj7ezve3KOeUaifWZ2GYzpXP735M51c312Z0nuvt/VgriPvcdZ30SKnAZ9BsqpTAnZGYC6myG3klT4wI5b2SOzkLu4u5s7mwV2uLjTgZwpyIwlV9vap+uYO+aFfbz5hFfGVk3oOGD27J5hZt4eCFfWmXm2yBiHhIojSONFJyNrudVY/VxmImNjs0prAl3RUtZi8M0vJ1pZR5LgEmaqlmxrWlYuN5EpGQhKUULVlBQmzkQCl1mosW9VK9Bpp3IuLA3ZyCZGPhDBLmZa1xM9OqqrWU6gtwj7TvRmIMdyeG1hJ9UuPJDYgTE/40PgAxuQXTUQcXNAwBxAR1K6WWaZ7OU6k1ijwikcktBcBwvxQhuHnVaKTnHpoPasCc4PBaaxWGO7dmK66u6l5NAe/OwsKSBcwaEs5WUN0gk8PVSYEgJ8G0rbyIZ7/vmukrmrGZrrqsWHJpqdeIs26DEEu1CxaL3QVuw5tQMi6wuQcejYlnSSe1QUrA4i3gROyt0QvBoapTmcbz+TQe748nN98Nu6Efuq6TlEVS2L6vw+wfgYlpNzwUmvHHDI4V523z+riAmM0i582TuV05UPCT7TjDGTMG0rcyMQay5oO9aMx8yeI93HxzDTY6yCZiCtFWmzl9Ef1eLj+FGNcbXUZoOpiYlACAyUkWHbE3n9v4DWiBUE4gFhcCOamQXlqBkrd2BpSIkpNXs3EuZXbTlE9yN3PKrjYLyXS6tdltPn/56vD8+e75s+tPnj5+dPP00S7Z0L3hIu5J9YR5Gu9Q3tpczmOeR5zvUyf52aOb5493Q5ceH7zPBnMFKafZMZmdar2bZyP0u37Y7fc79FTZNQyql9q5D20I3t9Uda7lOM5v7+93u52ZpSRwUDVUN6IknDZeH9Ejfh1QHpWt5JeKQAcicWs2z9Ud0XTICdJUwEgCcnBCTug7CKuW+Xh/+urLL3/5859/8cUvvvzqizdvXo+ne+gMMifmLmXu+q775Pnz7373+59997t/9J1Ph12/nsh2BrTNdnkWlvf40mUmJsetomWFO+ub3wuUVujz3mXcfnUsdfHZtdBpi2OwIKqVqtmqZYmiOklYLnHBpUppgS/bA/uICqJFLPG64cK2Yn3rQxATi+jllYcgpv32ErEFiFlLK9t73B1pYxTDhCFhl9x4BtjJCYmbPxZRGzJOUKvjfHp3fvfV+O4N67jfi2afZkDrPBYfbw+5nt8N81znqqUSOKe8836QOqS+61IWElIulCopEbM5wZmMHezKHnSiRXs8XvJbbRoi1yaWpEiZUCgDHt79tfAatpZlYJ207HJpl5uAi1/HA5YFmyu/3C7CpTwMiNi66Y0vaCgSAE3GZ6plquVUyv1cxlJdeFItqk2gtuW28WDzRfYeA7UtU8vTsZxrG2xLhECgkDYbsZhRra6zWTXT2rouStQKZGZx4oRMHaWUhAWAWoAXVzXVarWlZed5xtLoICBLZHeMq0viC39Za9W48GWe11IsXv1X2roecfeifSl1nOZxHMfzXFU5sYikxCStxegKheJmrFljUzNzNDntwui4mVY1oRhFQm5Unap5JajbWMqppKF2YIkyZ9CCazdLpQAMKqbjVEG47rqVEVAt03nCNKFWcWfJMuwpZ18eqNWLZhkFl2V4EaF7rIqqMcYshb0sXF3hruamptYUx744sQFrs6R1YTbV0Caglnoex+P5eH9/fzzdHY8nOPb7w27Yd32fc04pe716/ujpyv3/XiAmPC3czaIfmEjKmYjMQg7C6+wYHQOX+/gBErG1+alHMsbNQFibS8AdjE1zoY9sDjixh1CawNykLkzNenmdTImaE39zbmk0l5laVQWitRUxsZvOpapqm0eFwaxO0Qmk3QsBgcmdXYPBBCFnFol+xXWaRp1nrZXcWYQowI6jycpSOJlk7qlNBXAzlIkVu9Rd7/Zd54Y6TnMpppaJmMXc1Wqq1efjdPdu/uWvvj7s5PF1951PHv2TP/7k+58/e/78deoOb095GrMVovNtvX87ne5uZwihG8yQP322+/R5t9v1h14e9T4kZ3Ejm9wroOCx2N3pDJarx49Nrm/H/qjdSKaqDriRCTtJNGl3unTyeu/+1qr3p+ndabw9np3ITTNT6iQlxqzmJCyJhVjARAKWWD5j7jeDtXCCIvoiN2KCCOZa7u6O5nh0s5fUUUtamzCyWGKkTDlRJzaOpy+//M3Pf/azH//1X//qN7++u7+7P55O09m8dpL63bB/dLO/vtrtdy+ef/KD7//Rd7/73ZefffL88aHr8mWYLfhgpUZijg6h7jRNRBSSXiyT+LaSCEujpXjDWsEUH8cG06z8zQpQiChcYdb2e1taBQu42ea21q9e15LtR0QiKw9aAhtekMvy4+HTuqFZtsziWpi0fRgv71zXz/eSRO0wHgiJgKZ63a7FiwCw7YGcYCRyoY2E6KqX6x5nTBr+lmSCxtQBRCYMY6u1TnW8nY9v59PbXfKb/eOup/Px7nw+no9n0n2drwrb7bvb83k2Y3BOuU+pG3Le7XeH60e5G9RIlUulitwNg3TC7BzKY1MnhxkhGnJZCIud0JwvGoFPbiQEWdrHr9euES9LecxWidvqkh50sbb1qq4DdPPbNmI3WZ8FA17eePmKNZ/Q8DEgTOY21/k0nY/jeBzHUQ1M52k+ZOFOJOpHvK1AS67swcNimxK8nHO7AG20c3QqDVX7kmkiEImkeS7zWCetpcKVXLkpeMxhztymBybuJB2G3TDsAIzj+QzSWou3EqV4DKPhhrsjup1Q/Mpcldw8CYislhqiHDM3mG40ZEBexmP7aSiq0zyfpul4Go/ncZqLqhFxRtcxE6KGKMZtK0cmgNyK6lzrXEpVVbUAugxXOLk5QgaeCZ45KF5SQ3WKTnjmOs9lLIWEQYKlGTvBeaU4WpqKbsfy9ovfCOjxpy/73Q6AmZ7Ox69ffXX89a/07r43XD16/PSHP+qfPnWQh2qr/QE5ewhCdTXQ85YMcldzrQZzYcqSkTCbFiu1loZfnEDiYLOl7A7N7ppaqorMaylTKWWep/vj6c2b23d3t6fzcZ5GVyPirh9yyiKJhYnl9Pkn3315uNp1cWv+kYS91MpPGr9NxMGE1iUAXDoy0PL2S/i5UKSA4+JzxquDUsvVf5OG5rK5aq21CMMZyk1oFsWTbfg6GrNlpq4X/UEoymotpTLRbhiu9vvD9RWBjlamOtZSmLkf9tKJEXmTsIQjgAgL3LXoNJbzdDRVt4QkLGy16vmuTpObMeAsTqvuAZEJALMbdMwr80mAuHeEQdIu55QdDGYr2UqVatCKWqGF6kxamgJ+yLi7Tmz++Crvsmm959zfjZ3WXee7eTwf352O96XMKQvfXNP+IJ886neHfDjw1UDXifrkkklRT3VWJ+JuHu3dGzjh+lEqqXs1dq8nQdHRS5RZuKVKYFD10DjyB4WWAMjUx2k+nc+n8zknUa1MSCklhzpV8zW4SplTCr9uOKAUVbKR8qAVF0cjESa4WZkmc7j1DAOIgcTU5RaBdx2XMr99++bVb37907/5m5/+9G/+9qc/ffvurTMUXtQonikWyhki1TBXLdVAfDjsr/b9VuyzYotI6ER3JHcP51zbuOXSw9ncluYD6/jnZfNWLvEgqfRNzxkRrSBm1e1uU0XryhH/uxXNbHceTEzqFsL0HwRitlE+beyPthBkWT6BZS1tbwRwYVkuezNr6dr1s1u2Jryawu9ucy7eie2TMnlFJSrxJd5sK5mQGWAyZx8SrGMZ5GpIL54/kuRfTPeAdl3aH4brmyshnubpeLwn7liKaqmcKoj06nrY7YdhyN1xtuP9SW2CCOelfa+ZopJzrIJwi0Z9EX61ZNty9Zzgi+rrQ8fexsQ8AHzBlCxR8Ib1WOi1DXDZ7MqxdCy47Cjm3TYn2+YnlvHjzcGKENyG1qKlaK3qNUZ+TRLdTMzcsVS0vL9tQXPA9xhYWhVwEV54yZgVTUSiFIng0kK8xmIZrfRHG+IkzGHYmFLfd/v9wBT2015rKfNcl2NYH4EIsaImSVW9rbTZNDqOzUGXhhbbat2eS/NfcXeHmZVqcymnaTqez/fn6TROc61wsIgXBVUHkrQK1paBiVjbvZqWJbQw9TXZ08pyCJKECXWeRqYkDLe5lGqqRAAEVLvRtU67oet3KQfp00TH7HHNon7ex/v7X/7dzxPz9548vmogxs7n87uvX3/985+dv3glp+nJi5f56nHaH7gfKAm5beAotUW6jaDI5MdJuWqdxmk6nshsv+8o0ah1nMfz8QTzvh+6YZ93B07il84HSyzl5CBi0qr397d393f39/e398fbu9PxdJ7LCLNOEjHX0ykyPfFEH3ZpnUvxe4KYVUjFklISNTudT3Ac9jsiqaVO4/nueJzGca5FtbnyEXMSybnLScCRE00iSZIIJRIWYkDUdBond+/ySnmvDQA/srlZnc/zeMcE5gAsalq8VtcKODyKVKOao9Qy63x2qwFiwk5jHMec05OnT/Lnn9+8/JNhNyTWWz0fp2Pi/PTmsL/qWj/QKC4mEUk59WZ6POo7vT+/eTedT5olZUlJtJbx/k5LzS3jS+qmtVZVV28Wug6tetxnre3GMPGQ0i5hYBEHqhpHLInRyjz7XKwWeIVWMmUHEaPf0dOn+6dPh8OBzMavvr6rRqe5hx96flRGe/Nax2NyH673g1zlQ8bVYT4cpt2+7HraJc6JKNGslesIlx43SfV8/7oUuJtc+dXuhWbUsVDRamLupkmdSShVqItBrGH45TaFqBFcay3TNI3n0uVS1B1dyg4qBlQnIknUdzJ01CdPDCfXyLDyUljirdOTkCPkT1Hj6s7uCQFYPYGQOAlbDxH0PV69mn7847/693/57/76r//6yy9elTK5W6hmQOxMlf1c5vnt29dv34ylXF9d3b57p1ZefPLkxaNhm0uOLQK78/l8Pp/neQ7wsSoWg1xZs0UrTxOTKS3q4Hi/u4dtXdQ/tznUHYvIZnWUWVHRFiFFlmqLUdZJXpdtYR8vNAwaE0MpC7X13gHIRvUSX/FgfV2DDjQksnAAm0TGJp3UgEgrnI584IUTXeMZAO4XroWa/8hlD9Ef3iN360zJDHHr1oMzsqmjuR8GFzJTUzNVMzcSpxRdRpiRdzk9ubnpvZ76m3333e9+WnV68+brbre7fnHz8sUn3/3+96dx/MVvfjOb9R1zyiRsZtNsQ6kp8aOrq/3Nk3en8ubufJ5nd4U7iM2pqpGZe6Twwk8lAAZHhvly8pFAgQuZQAX2APGima0FC725kBvguEElWyZmm85bgOaFPkREhYTtp7yBmMa+NAoI7lhbo1FbHcPXFa0wnN3gNs+zuaeUckpdSh+icNom7DcDFNHpUMs4GgBVc0dKkXRiUzWbRDR1XhVWHGG45Qay6GZHJF2Xh77LWUQ4JckpsRBxAzFlvoQNQJjvzfE4iJCbhWbDQbVTIpR5KqU2G2JrFTHbUzGzalaqzqVOpY7zPE71PJe5qhMRS1gyzqUGA5qCZqVQaPnqr1Ii0RXQSg1GxB6pNmbOKQ19FqL7493xeJtYtNbT6TzX4gAxZ8m7rrvf91eH/c2jm6ur/a7vJSdJLEbStIJUzMcyf/X1m//4H38y5Pwv/smP8BjtOpzH4+3t269ev/75L06/fvX0xeurl98bHj3Zv+iSdFD1KDtt6y1tR624UBgUqpnV0/3tq5//cj4dd4eOhara+Xi8/eo1E3/y8rMnn37a97uUE5GqOQU3wQYPdE+SWEd9+/bNF69evXnz5jzNkARw7rosaT8MBJyneS5V1arWWm2cRtuI3X9fJoaISMTMxnk6nc5v370t89zlrFWP97Edx3Gc6hwgBuGlIZJzTjmllCSlLmeRlHPKKfd93w/DbrfLKRHAxKXOWVLX90m+7WhNdT69G2+/aktDCITqbFqgFUvZSK211qJVVWcrI6x68FpqUovoJJypdomm673sD3k6YUp15rkTOvTYZRtPU63Vl9psykN3dS1J0gDr/ZbnYieu0WE5kdXko5AlSgxSNahCK1uEG0Ic/bFmsZmWB6br0ssXj773nUfXh33KqRiqewWASqiqWivmAi1uCpgLo8vpsMuPbvZXh4FJ5snmWUuh2RSomiadUIubEbMRF5Gpy34Y5Gqnu6H0HfXhGSKCWdOpjOfpPNfzm/n466/nyepx7p5j972bfHO9u5JJuVbMZtW1QqpZl71jl6Xt2HZjjn4B5Kp1nud5qqXCPDERS67iMGLuMu8G3ve0671nDw8mSSChsKsgB5EnQiIHO8EFJNHFlJCZMre+7ol5rj7OZTzNt2+nv/vZL//6r/6Hv/qrv/rZz35+urvv+pRTCgjpiUFU4bUWq8Xdiulu6CShyyy07WCPqFU+Ho9R7+NLM94tbb6KeVcQE8hmWzq0vphzPp/Pr169yjn/8Ic/vLm5mabJN/1l2th+2EZnu9t1dg5fGWzyXOvStR7M+/dFOCXeghjaBAntI3RZLJcS6zVAI99qoTbTfQS8D0DMhrTZLKkO5sZLrIvcqnpf9hC1RlHowIvnBMvljJjQZ1zveHfTU+rKjFpMq6u5E9QjZcXMWYYrOSTSG5/Hw6779LNncznfHe8fncdnz168ePbikxcv7u7uHj1/UUj2+6ucOncvc5mOE/U9d7k77J6+eJrP5errr4/mYFeAQQaKZIdFFa/HWRkuw0fWK7lcT2c2gfGl4COunoUsZnNlm3Ky8cl+uVZ4yIo1ELOFO1hI7eU6g8ixkH8NJQXZ78uNcjf36NMCEkaX5HrXm9usloTd6jR5JTLVaZrMPafU5dyn1Od+O1zfU8HbxoZgfX1JucYbVoDuDgu7BRAXrbWomzOcGTlKRLMMQz8MXUph12ggz5m7Lg1DN099mUvdVuSte3YDmhNuw4khFgrZNRjszZf/A7nSrDaVevmjWi1a0VEoF8wdWt3IW5VU64tE7WqbrxneVVFHEBAn6URSSokJhvN0fvfujWo97A+l1tev3x5Px1IVhCypz3nX56v97tHjm8dPHj978uT66rDr+ywiISAmKmZjLffjZBBJ+eJFFgxlyunqSq6ua35zKuXtmzePXr/m66u+S16ruTFdyBNaw5tWtetMVLWO03h/vHv95RfHr7/ObOIOYD5N7968zcPukIfd1XU+n7OI1uZLvWLnakqAOI/TeD6fT6fj/fF+rtoNe8mJiZgTE0cOytzUtZqVWrYFnviHgxgP3Um7KKdp/Pqrr77++us3b9++e/fu/u729Zs3X756dX93p2ZqHvOJrVMhERySpO86FgmwL8R97vb7w5OnT16+fPnpy5cvP/lk6PtxHHPOT589O+xSA4Afo9z/35z92Y9lyZXmi63BzPZ0JnePKSMik0wmWXMBl4Lqtl4aEO4/IOiPlQA9tQRcCGhJt291sapYZBbJjMgYfDzzHmxaSw92jkdEVtVLHyaCEZHp7mfY22zZWt/3+yTHaXffP7y31hhDQIAiOQWVTCCn4y8iI1QWqGLEBrXC0sVALFKestOYqlotZrOuqSpnDRvDzlnnDKPGoX+4uTkeehVJWVNKbTt78fzFcrl0jhct950hYRUBFKKgDLWpVFFEY0oSEmkCUme5rdva1bVrJOkw9BddY8zp/ewa95d//prTz4koZen9MEw8hARH7DkVsbto6ccIADSO68rO2rprWsd1GBmCkdyoWoYGyaIwU+xmXDeByLf1yJUHU6OpjeXKalWRdWStM1Sj5FFgv93fvbvZXu+P93uJ4BaHldevnj97Nn9SrVq2LkXvo45Jxpj6EbOwM7HBaEDw85g3QEI2bCprDZGkGL3PMWhOhpQZLCuUNkyFbY2zmmZOHSsgMKG1qAiFqE+IjGAZDaqW76zIgBUTEjhDNZuyiEeAaYrr+9vrm5uPHz/86Ye333///f39HRG1XUtFXwUEJ/I2ln0/p+ycffbk6hff/vx//rtf/8WvvrtcdfRZFZNSWq/Xd3d3AOCc67rOOaeqMcbHiMefhAyUNgwzF5wdABRlwONf3t7e/tf/+l+rqnrx4sXLly+L5DB+Qb+Qf3vBl9ZO+Q7liT2+4Z/PkooVHM51zE86McSl+X72/j4WMZ/GSecVHvAn/5bOZRTiJ6tf2f0+vfwvYwfOdPEzOUVVRM/IiU9NijN6SR//pliyS/9TVQEL/ufTBmOIFm319GK2uJqzdX5IwSeJmDII2iAmRCtqjOW6MsvWVBZZsrM4XzQheds0SWS1vGrbzhlDTfP1L391+aJv25aI/RSGYdxuD0wmN7U0rr1cUNLV5smRN0E4qjAYKOjak4DxJPVHkJNyo2SMnYQLgAQIAiqEmUBOTLzTx1f8fvIZFkweCZr62Ff5vAd2+sKijwHFc5DhaXikJ3HI6Rh8cj0Vsw+dSCNy9hbJY7lhiCwTElnCee3wcrGYNSGlGGP2Ux8mFM05hRhE1bAxzAaRyaRn6fEaw3Ow0emdOQ10SkOhTF1BT7JffKQwF8pcud1Bc0yxH2SasmQhAmewqU1VV7aq27ZuaqcKoDlFD5ALWbOuXO7qEGPKqXQxiQhU2ZhyAzJzKd4yZTbFGolsK0VmYiIkIFfX9GURkxFDFp8lKCSATAyskLmYCE9Xe3mpGQUgqaoCcbHUEeLpvBFTSrkoC09vtyFTWdvUlXM2x3jYHh4e7j5+/KCgz796kUTeXt/cPTzs+2OKkRUsU2W5rlzTNE+ePf32m58/e/ZssZhXrjoL8E+pYBHNL37155fzpu3OLksmbuvZi6euq+fPns6fPdMpjcnf39/S5bI2mEMQyQSAqMiIjEwMWHgtAulUL2fNU5yOw7E/Hg63t7Bekw/GGAGKInxJMacxTGm35mksvRMkLppnUChiEwQd+mOBntdNSzmzqRBZVUOIOQTRnEXTucz9VJyfH//jnZiygmSV/fF4//Dw4ePHm+vru7u7h816u98djsdxHLNkZx0yA5/YUzHGaRyC9yGkqqouLy5c5WKIkjKKgIhkbdv26fX1L37xbdPUCouH9QMiZYC8knnXEf/7PBIEsRAcjAaMRTZs0YCYYmwzhAWCpKqCiNZaKiOqwlMn4pIuiIgAAtS2LRurCimmHFPhyEqWME0P9/e79UZFUpYY42y2qJ2tLNd2UVszrw1lq6qn2RcRMquijymE4FlTBBFl5rY2bW272qJobdy8M+bcHmfGRUfPL23VVFFks4fjaLsA1owhig8akohoyppEDaO1PJs1i/msrmaEVYqkkUENomG2BEiQ0ERjBFGIQuWAnSILMxlTWWMMMwGloFMI+024ebu/ebe5+/Hh8HDUIaqiDHHkSp99yE11yWk2byoIVUWztomp6o1Ok6TkTapJvhwkI1praueayjnDmnIKQXJCEMtqHTZCVsE6qirqamxrbC1YRsSTdLc0FjIqIxW9NkDBvBMpWmOsteVkkHNOMU9j2ByPN7frNz+++/Hdu3fv3l3f3Dw8rMfRMxu2tujryizvMfSMkIzjq8uLX3z37V/+xZ/9xa++e/3yRe3s52P+nPM4jtM0tW3bNM1isShR0t77zWYzjuPnPY+fVB6P6UhFxsgnTo70fX93d4eI79+/77rucQaEZ2AdnPsuiFimVGUI9ciqKUMoOB92H5+DnkE1/2EnhsgwnXXvn27qL4qYEzru3EM6TQdOLzDn+Gk/hU/NJy1FZlly4KSfP5NHCE8YBEVEPW3Wj+OkR+xneQmnHkr5eacNOYMIfmZOAkS0hI2leeNcXUXi5AyITRmC0HGCfUgKNG/a1XL25HLW1pZUmcU6ShLbWadIXbswxopk1zbsXIyxqipQnIbpcOzXm32Mua5dtei6y3mleLm+2Ke03k8xpaxUUHZfFJwIIOd4mZO/8dQJOA1wCplBE+rnqFVIIuks1ztxYs58cD2XqI+tMzhrNc4FohTFxrllA+fSSnLW0jM4DagUEBVPq+IJUS5lCgaAiLW1ah0SGlAwzG1dO+NDOA5pe/TjMGbJJzMEqmHLiKDSNd2XJrjTx3lCtiqUS7gUFedr83EIS4BYhj6ShYAR0sAKELOYJHoObGM01rjKuqpEkBXxrgipADBbg1C7QhkuPZ4S4a7GVHXtrGV+zIjImDMRkzGIyMYVPUnJIEQ2j8IQBUgiPqWQkk8piSaRfHrD5Axg05IFBKpSNOsI+Jj1BIAIucSZFWuSJJFTb6YsEdYYa0zyvj8cH+4erj9+BETX1GjslFIfwsN2Nxx7zLlydjHv6rY2MURjXLvI7LxA0yQ4B0MWopYxvFhdXKxmj5EjqppyVjbNxaWta1c1fn9U7/dTn+9veTwkH1TEErIhY4vWwxBhLi+4FIaaM0jWPI69ECBh9B5Hz3VjG0dd4y4W2fEhjPKQS5bhSXlirXEVICTJKaecoh+n0U+iysymRMnoqacQU1TNgCSAoo/h4l8srf+DRczjNHry/oe3b979+O7+4f765ubd27ebwy4htYvZ6199d3F1NZ91VV3TSQBAh/3+/Y/vHh4ehn5cLhZ/9md/Pl/Mj8c+jKOEsFmvf3zz9u7+fr3dZM0//8UvbFU/PKz95I/D4F/4+mc/M8yImEU+B3MBgDF0sarC0CKCtbZuO7ZGTzIkA6IqKcUphgFUrXVINkIJa9SS72ONMdYSkipUrk4JphT3u/64H4jAsgaf+n7abPbrhzWDimjKGRH7fpimkDswaDprbVsbW3htXIzCWdSH6FOVQh1CnEIEEUPKEAyosUBdnrVA5/Isp9Bv7sJw/+zZS3a1IrhKid1iPmWVGPPox4KZIGJXcTdvLi4Xi+XCmJmqEy2ZsYkpEUdCNaTMkdmzSURqDRiTEROhMCKjJTU56GE/3l6PH95u33x/u74+pCEYwZmtAeEwxPsPmx/gd93t5vnrp0+ezi7mfLGaXTx55uycrDUBdlPMI0P2n2/8RNhUbtbW49hU1oJIThE0E6ursK0R0WQAW3FVUVNhY6FmKNHKUBQhOaMIA7BBVChqfussAjCCdc5WteScBfbH4f5u/eH99R/f/Pjmxw/v33+8f3gY+r0PXhW+2MkJkY0yE5IioGLl7GI+/8Uvfv6f/uf/41/88hfFlXRqM3xWAKiqc+7p06cXFxdN09R13bZt4frvdrtxHB+1vY+KMT37iUr50rZtcSd57/f7/TRN8/n8eDz+wz/8w8ePH7uuWy6XV1dXJehRztnX5f55tDU9PpkStFT6q6XoYeYiOi6/h8+Km59s/IbPVEz4fOM991oIHy2BZ2fs6ctFcko5TKE/7kPwJ8cuMjMZNswMwIqPSapQAhIJAYoZh9AgkUEjknMqJH8ozKETxvm8MX9G9URFEFBlhJOm8/GUrEW04oOKMpGtLFvHxDHBfkrjNPj+SFzNnl48Xc2fXCyaxomkchEq1l3XKRKTKyeZ5cXFi5cv6Nzu8mM8HsfN7tgPQwjjYtnNLzpRvHyy3PTDvvdh8sKCSueCk88IaVQlBU34qG6BMxtMsNBhNEuOOX3BP8wphRhPbZhSjOCpbC8FinxSwXw25jvLOLLI6cRctkcRlZxyTimHLCmLgCKUYxsAIhRmXE6Sc+HDGeaqrg0SKjKSaGZAJFKmjAop+mns+z6mpKJYlKeAWVVTCpP/oog5KUBPxR0TWWuZDZ0x3MxcVXVdV1VVFfNdTMlPU05ZMx37MAxqTLZOswqVHdCatua6IWtRJaeYFQDRIFhmsIaIybASlYk/lXcEANiY+XzurDlNcRRyFkgJiYgtIrIVRSyFyQmJd34hWaSf/BCjDymmXJzVKeWUUo4x55yLXeSxIwOnuhJPzABAVcBCeEoxpZRTGbCcPuZTKw9yEj+F42G/2262my0QzHer2XK5WK0iQH/oY+9Vta7apy9fLS9XaLmua7FuypJO/J5z9LGo5pgzKWjKn86WOaV+tz9sj13XOFtdvXwZL8Z+u90Nw/WHt0MM2QdUaCtXV7auqsqdmscAkEVjSiEGHyYFIGcMYLNaOJUBFHyYzxfNxdI+uZC2HhG2YRx3m5wykTnF6zrHlUPDQhpT8n6Mk9cx5pgLuVqSCuSiLjqPZU/zaVVN+fT5PL6c//FOTAhhdzh8vL358ccf7+7uhnHsh/5+/TDGcPnq5YvXr19/8/ryydOubVzliMkyO2vX9w/77W633QKAc9XTZ8+fPnmyPx7GfgjjEFIsY7bOdkAYUhi9jzEeDv2u70OIy9Xq6dUVEwPgl9UYMGHbuHlbK2RjbNNUxjkoqcdgVCSnEL0yeFWxzED8SOAr4hskssYwMygwkvdhnELfD9M01taoczlLSLkoOouoTRRCqEMKSTIgEKNhVRZmJdaisQcAAgEWUo0GUVASZFXUrFljkpwlxOjDp5tfRbL34ieCBGL8GKYR6tYSYFGhw6khj4RkrWnqeta1bdMyGVEUAMQMFJEDm2SsWEPGiCHhklHIakkZRGMKY+pjUsl9H+7u+h/e7t693bx/sx53vkIzqxwSCena5004HqLgvr+4fbi8ap8u7dOrxdMXu7ZZYLTijQ8sVKefSPoJa2u6uhrbpqkcatH8i2GoK2wbIkJRsBVai5XVmsExIOaU5DhMm/W2H6dcvFLWEqGilMZj7ZwlTTHv99M4junjuNvtPny4effjxzc/vru+udtsdkM/qEQksM6RMaXBDaRKBMzIprQ4LEDXthcXF8+fP//266+//uqryiIh6heiDyg9vKZp2rbtuq6qqrquu64rpckwDMMwpJToTKh71KyUzkopKaZpKgXHNE2HwyGl9OzZM1X9/vvv//Vf//Xp06cvX76MMS4Wi8fr4VEB8/gN9bOBXenEVlVV9DRyBsOUJs1no4efPoiwREqd2s9QDo5IaMpKWJDWIhIlSZacNcWTPnsYp8N+v3m4HcehQI0QDTHbIkk7me1PfPaCAWJmNMY60zjXNlXX1Y0rR5sS0vhpdqVngOH5meunX5RAlcyX2UkKmgsMTBHAIBgiNiZnCT6GyUNOlatXs+ZyMVu0tauMKIkKgsDJwkqiQMTGOVe5qrZFLZSzxpCnKT3pp74f+nFfNbxadVng2dPLfghjH7dwguAnySKgyopEZ8bDZ6kcAqfkNi0ZkKUVkGJIMcgZNCaqPqbRBxIpGAgBTEiCqAS5wBXlC79m4YyegezF2lTStUuvIOUcUwglt0cVpJDHAVHx1LcJSVLKOZVOjrEGLU+ZjwGmrBmgEPN9yv0Q90M8TNlHURUGZSQmJciimnJMp/AjeHw5p0qgrLOlyUNlhg9Q4HVMxpiqrqyxAGBiRIAUk2bKGbuumaJmME0C6ypXVXVd1RZrEwz6lEfJiZmUGUqsBJMxLFQqbwMKMfiUQkyp/HQBSqpZ8DRwQcaT8BZENMYcgi9np77vHyHXIcab+4fDOBnriFgVskhOsRQyWSSXIvKMaD05kQWkgDMIirLvdHumR3TTaYx3Hp2eitGYivXRZ5Xjfm8qV82WbV0zEuSSCQXGOts0ZJmYxxD6cfBh7iqhE+NcRSSGSKSAkFKSzwpliVlTBlFTmbpyVVOrwX4D0/3DbreL44QqU+3app41TbD2s8kgJs0++GkYUs5oTOXcompM09inTwxAu1p1Vxf11SoQjNvdNAzH4yH6QGTYWmsr4xxHkxmD5igxp6QpUxRIUCKcTpEQ5wbXuRF8fuZfAhXhsYj5/Iz6b5e8n/zb8sf79fr/8//7/76//lj8au2sm08LY+1qPvv13/3dq29/zsU8DDrFJCE7wwA4TePm/uHmw8fd7gAZ+n2/WqxKzGWS7EM49j1b/vM//7PvfvkrQBymsa6bA/c/fni/64+rp1fk7MVs4QznVJB6j2pEZDSGjCiRskTICCX0RPWEEzybogFBs4hmACDDhICn8YyVE2JR0jD2fT95P+bkhUXFQYEYIhJCIS8VL2AZHFKFTKLkQzqklEUR0aACiyAoIGXRGHMKKYeYVcG4oBSThhgOh2PA5c/j4yyZLVWUbb8PQwxv3qz3x9zNuyiy2w2TTzFpFsiiyMDkrHGVqRwTQVT1gok5WRutSc4mZ8BZV9RlqBahpFoLi6YxHCZdT/64T3d3/fubw58+7u/WfT8kFl5UTtGGnGOSdUpr1e1xnKaEd/vK0dzBrKtm83nVtIZc1yyeXHz11+7yL6N8ZhsBRKwMt65adE3b1ASKkgjFGm0qmrVsCLICsVpWi2IJDUGIcb09vHl//dt/+ePd/UYFGbmxzjlrGlO39WI+a2tnjWqS4ZjuHx7ef/jTh+ubu9v1bnf0IaQkBNg2DWoFUCbUiETIhAhKJMRIbIypjZ05M5/NZ4tVN5vXrrJEpCX8+ExsLHeLMfP5vFQSjz4jOaNiVPXRcV3MR5/PcUpVEULY7/fH47Hv++JIMsb87Gc/E5H//t//+93d3atXr7bb7TiOT58+bZqmKIIfqxk5Q/PKTyzFU9d18/m8aZrH2sh7X1xOcsbG/MTyXXY+plOuYVk8EeBsrnJAWCLwYkx+8uM0DcM49NPx0O/3+91+t9nu1g/365sPw9ArEpBBsoBIoAKSJSggs2NujWnZNtbUxlVY2aapF7P5k6vV66+ePHuyvJzXzjIkEZESYPNo1MdHWuRjKcMnhzEDYiFnf7rMAAABSBRTTCIZIuyP/uZmfRx8Zaur1eLpxWI1bxwjQyZUJSBkLelmqgJAqI6oNlxzCXNUNSDWdhWtZosUY8wXaLSb1THC6+dPMDMlvqurwR+HqR/HGFJKUQSAqSRfWEUG1VMmwzmHW0QKBk8lB+9D8I9bXxYdfTr2E0tW1cw8KQ9qRsVJUziJldGAZSSkc7rvaT8EU2DXoCSKkjRDTikHiT6iqHWVZctsyo0gpbelKSmKkAgDEhoDrhLb9OIOR0yaM2jQPIn0we/7KQ7JBq6x6pytWQwLIghoypJIlD5VMKqaJKdCqCvtSYCYU1YpgHJV4YLmVwEE56rTUDjlLIKQjdHFomFn2q7JSrauq6brZjNGjePW91t/HDSnqqqsAoigKhMaIsGSxmpB1YdxCsO+T37KCZDYZSlOD0IEArUGsqhK9n7q++HYH6dpSiFeXK7i2TE6juP3f/xhc+yfP3sxn88NG0Ap45VT6+txqvT46s8y6dMNBkWeemoDnYxJJxLI+VEOvYzGWXaWmKIPw/FYNbWtGsw5BR/CpDH5cdhvt2jQVo4NgxCkdDGbN1VlqqpAlKRgHTQ/yuxO9z5RXVVtHStjmFBQ0HF7ubqwdsqKAqNiTsEwW6bKGiKaxlFEjDVsGJkMAYvEyY/hOBANVdNW9Xy5rOez6mJl5zOuawqeBCBJwZcgKQBaY0El5TTFtB73SaVtKssshbNUerePbxic9VonJniZdOrns1f4jzoxn2sAv/iNqqr6EHaHwx/++Mff/f739+uHy6ur+XxOhIZ5uVx2y+Xr16++evHCh3BObElZhBVJoSKzaLuL2UKjVGyS974fNCVSZcBZ071+9aqp6r/5q79+9eo1GQaAarkMMbqH2/1+95vf/Oa4P/zVr/786dUTxM/3SgAAJmRCkgK4UxABPaGRT5mBACnl4qcBJERiIsOWqOxJVKwYBXITQvB+ysUCpFzmx0SlBV+63wVxrWepWlANICPIpKpZKGtGUavZlHEAAGpGSIwZEZgylIZfiimEFONjRgohOVODusM+7qa0P4Rdn8dEMevumPoJYmLRM/Ma8ZTlgWIoMkZCzyYbK9Yqs7JBNsqIpKRCIJiyQEpxTL1kP8Fhp+u1v74dP67797vhMEUFrNlJhokEfcwgveaBYNJ8nHQMAiI1ZmfJuA07R8ZcXjz51c/rVz/z8csgmFJcVtbN2rarnaUskgiSIamMVhZVIAsQqiG0BBaBAP04ffhw/ac/vn339v39eieCCOTIVJVtZrVrrLVsqLjoJU6wXj+8/fEPN3d3+8MQYzbGWraVs4YZgVRVVBRVUA2jsYaNA7ZIhgBaw5eNaxtHxgGepuUnxe+XeMWyKBR3UkrJGFPX9U/uFDmPbR+1tCJS8heHYdhsNtfX1+v1+nA4GGPKWGo+nxfkzOeFUZlbWWtDCMMw9H1/PB4Ph0Pf96VUEhFr7Xw+v7y8fP78+WKxeJQVPz6fRxDfv3ubnyq6YqRFKmOjGPP+sPMhhBQmH4ZhHPr+cDweD8fDfjgcDof9frffb/eH/W6zf7gL3qNxYBxSsT9ISlMIe5XE5IzpbLV09cLVc9fO7KzrFotRTbYVVkcxhq1ZGGZDrIpSWl+owOdF61MRU5ak8l6T4ueviQhN5VzlDJ7scTHmfjpudv1mu08ZrpZd21RMICn4nEqfqMgVEVHP3nkmqpgqIotKJa0XqTjREVi1FnBKmQ0E1qvlXAKkMVWG+qk5DnXfD8M4TYOPKQFABskgWc/65POnAqBFHkOIkFKafAxeP6tTxykch4lSEoBg7EHMQ4jbJH0OEYQMETBLJCAyWEqB0n9DQGeMJbaFWw2ZQEkY1AqKYWi4BlsRcYGBCmoWFeREKGyERIHRWGI7aJUjjlMYU0oqPqcxxX6aDsORY7gCsZYsU2WFIGRJ5dA/ee+j/7yrFIsQWDWrFgZLKR9OY0wAZooxpZRCSMawZD3FZ+YEcuo3ZwECILKWsmWxFhHAK4Sko8+QhSgzoMYsOSECNo0x1hhGZAX1oe2Ho0AexqH3UdEBOSJj2FjDlUGDJZ2x+LKnaRqHYfCTH8ZPnZic5dCP233fzUa2zppMqKf527mlIo89KD2PDhWksNoJQD+lf3x6lCJGVE50ZlFAInS1my/mT589DX7quq6r666uCeDpk0uDAEmqppp3bW3LYYmVkB6ZkCKPBrQUo0piwymlTz0i1RCjj8FW1oAgILOxVd0CrIaFTEH6vh/jGKbkR40RAId+yDmxYWMMO4YsoR+n0Y8+JFWy/XyxcE29aFo7n7vZzBCllAgIBYpR3RJba62xgOhDPEzHh+1DBtHlsjYWpqxeJWmGAsdDVSmzNxVBPp0lU86TD8H7z5sx5rE7fdpyzmdHPIMlyoxfzp0vAHh4ePjHf/qn7//wrw8P90VgXNbZnNLLF18tLy9rJBx9heCIwTGoE8kE5JDtbPW3f/FXL6+e3t09AABLHvc7w8aANmy/+erlL15/vZovX738quu6kGKSTEhV4wDz77///v/9//wv/3JxVf9f/q+ztu26jj+NxQERGMWSKiiSMGckUi1HFcSC+FcYJ5+DrywYR1w1bCvrTPFk42mMfYohP7/kUiiUE6phY4gNsQGjkCDGU8SXSkrjkXCCOFoQa6qkPEVVVMtoidiwqCIqMVuLehpUiCpYVKu86qw5u0YRydkGoNrt0y4kdI0RmBL1Y9oNfBw5JBQEMkrEKqopYYqs4DhYE4gCGWVTZAMlWpVOo3qFlCVO0U/Bj9EPeX8Idw9xvfObY9pOaQ8aAQjBaw5hslEVBZ1STeRMayxmBtUUEynmJEmzRJ/Aq+le+OTlC+QFAEDxPLPtGu0a6yjE5EkjgRjIBoVZFZFLkD2TIQDQ43H44/dv3v3wzsZ82TReNWZNUZIk1OT76Wa33u8Pw3FKMaNSCP7Yb30IxhnrKoPFcylBMoick5Yoa2Liuqm6dubcDBS9n1qUSwsW0nYK/RBDSEVzwfjpgF8eMcbb29t3794h4tOnT6uq6rru81umBMGUuU/Rr6SUytjo/v7+w4cP7969e/v27cPDwziOs9nsm2++Wa1WiDhN0+Xl5atXr7777rvXr19fXV1dXV1dXl4656Zpur+//+Mf/3h/f//mzZu7u7u+70uvhYiqqrq8vPz666+/+eabYtIuvJnP4yH/XVUvYuF/FPwOlKAHFdz3u3/9/Z+ub++HYTj2/X5/2B/2x+NhGI5jP03exxBTijFJMaUDGWtbsjWSBTZKQOEgcZfTIDKK8YqChhgqrNgt5s2Tq/ryidT1dT9Nt1sh/grpaukaYyQoZAVhACqSV4XH/CAgPaUUljebP8tMJeZm3nWLmTPGAqG14xhu1+uH9b4fgnWNcRYQ9odtSn0JuyYo7DVrTmIj66xlthVhhUg54ykIpjjmT9EMAqhEhAqMXUVh1o6XS2dshisfxn4Yjsfjfr8bhiGEOPh0DCmn9PlM7FTQFI8OEcScvc8+PK7AIjJO/nCcJMcEOFl8iOnNwd8NfkheGdq2ZuQcRAXIEJ3YPpJTRgXLxiATkmF0TLXlrjKNtca1SoRsIprSEREooDfNxKky2UlWyYqipEAacoi5H0bvpxijjz4EP/kpjGODMqtZmBENgqYQQ5zGGIdp2vXDrF08DpRVJYYwhRBTKidaPcemEpEhNmRKKTGNfo+HlNIwjNM0heBTjAWIR0yGrbG1cbWt2qqZHY8HRPLTGMYhTokkI6Qw+hwn50zw4eJitVgtrbWECGhTbvfHGjT3Yz94EbCmWlhXVw5a5NoVndkJ4AtQPncF+KyrAkBsutm8T5AVxnEKfFabnxso8slgdy5iPjv5n5QycDIvFRVSLsdsPU9OTva+jIhN0zx7/nS1motkS2Srpu5mUaSr62mYUJQMmapCS/lEdOSubdu2MYYRVHIG0JySxJQ15Zjks6T0GOP95uFue1ADWFGlWOjSxtBiPgvHfp3ScbvbH/c5p6qqATDEmHOCcmCwhUavmiGrFvxH8H5W1avFkgUcEgEYQEvMyJIRgbt21rSdcdbHOA39brPbPqyjZAi5ZktTkiApS1YA5IIK0JxziFLuRCIkzFnGyQ/PLvJnooWfdmLOqqRPcXGPv55XcyyVMjM/e/aMmBfLZU7p5uZWRa6urp4/e7ZquxLTgOfJreYCt4GO7MxVT5cXz59svfdlGupcxUyqUNf1xWo162ZtVROBiRxyLPsW+Gm4vX37m9/c1u3vf/7zy9nsZ7/4dr5YfP7kRXOWCCKIhjSDshbbPyAoSJYUU/QxeJ8jOeGKKzZQgHXl1Z8ROp9EAuWRRQu9io2dL5aSkuZYaGLz5eri8mrWzQwjK9Wurdixm2W0Y8oqYigbBGIUyTFOLkeRDConppdKTpgqu1iYR4u1qI4h7YdwzOmQIAgHpSFoP+EUOCarIMxITAYBNWtOqJFRbSliOBITk6FTk59EMWbUhDnKNMrU6zDgOPA04faQbzfT/T5ux3jM4g0oAytFkpSBSYHAsenaupp1tVvUYrnV4CPEUSUmgChZYhKBc5X772yYxOTY1BVb1gQpRZ+jRxCD4AyyIgMyAiGklH3yD5v9ze3DdrNbtm1XO8w5hzAdh2FMMZgYx/uHh+1uPxx9SsrECCoalYCsMWgYiBDTidalRMhEQCgMi3n78sWz5WwFUE8+7Dapyn5ulEl2KeZzWB0w/9uQixDC/f39zc1N0zTz+fxRThtj9N6XQdKjfqW0cLfbbd/30zSt1+sff/zxj3/849u3b9frtYgUL9J8PgcA59xsNnv69OnV1dVsNgOAcRy32y0A9H1/e3v79u3bN2/e/Pjjj+v1ehiGkv5IRM65wlO31l5dXRXXdxFIPt7FjxKZzxWXcBoelXgfQKRx8g/r3Zs3H37zj//y7v31OAzHYeiPfT8ex7H3fiqCxjOwswzL2Fpn6hlXjZIBMmiYHav0EXMa+yyeZBIIYNR19erZ1erZi9l8QUi+P+6D3OxGMmwtcGssEjOUMHMBzYqqAuVMBqCKxQdcolp+IlIuWeeYBZJkVJ/S/njc933K5AARMed0OOymEYgyl2QLYkREQAUwxrRNM+u6PE1NW1sDxlKJ2VFyxBnQAIFiBlYwAIKkaFAdY1NZYpdr1zX1atZOF7NpHMdxfNge3t2up8l/IewppZhAcdlISjmEHAJ81onpx2Hf94oU2Q2Ed1HeHf1dP2SJrrKmQiI4eh9iLskuTIQKOSUUZSwllyEmZ7it7DxrV3FlyJJyLKlnKidkuZwQ9ygJJElOJxm9qmIMaRwHPw1xGmMYxXuJE8TIlpI2ic2ErBSjH0IYx5SGcTwM/TD0+XMtV/FhFFuf99H7mKKWWTuZyjprrLFGAUoPZBinaZpiDKnkm4KyocY1s/miaWe2GtkNtD0gs5Y5WIpGE4ho8sNxxwwxRQFwdeNcVT7CyrmqqpyzhgkxI4AxXDnnrHXOVM46iwQJCJzhurI5VwhimJqmeWxtIiIbQ0Ryyl7F8xkHyv8rnpQKP9lRpQh7z9vKTxoxWK7qk4u+MJSFidqmscwAGVUJgNhyVQPRcjmHXJDWGiQJlAwFo2Qq52ZdY41RkZwlx1RsWVlSdlk/c8ClmDbr9f1628wrtjyNQ1GGoiIDgUoIfhj64/4QQjBmAMSsomc6C54ussI5IwXMoNLUhsgZdoYtE6hYw92sCzFGkZTSfD53zgGiT3Hs+/5wiOOUVeLokZL0U55iKlM5wOJXLMFUAgp0St7KScZpGvujfKZTPgEWH89qKieO4OPcXc6188lfhNR13Z/96levvn4NJ4YGXn/8cPvx2k9j7dzlcvnVk6eL1arQ/UuZKSVS6wSIqBft7PLiUiQrKiEylUwEImRmQoCh7wEAGEIK+8P23Q9/+t3/9r/9+Pd/nz989Mb+8//6v7bEs1nXzuZ8HimpSohxDB5EiMWRYSpsRyAkEfFTmEZ/UpSHMWbMaAGtde4sHMTz6FJP1yTiKRg9Bh+C94Ft9fyrl1eXFyiZCa213Xxx9fR519RGA6UBTE2Ipl4AVxGKKj6CpgJoTv6Y46g5EEZGBcwqSTJKxHZprTm9lhDjzXr9/u4hspvAHrP0gaZRp6CihgmNETZEbFmV0gCQmRITMAVDiQgIidAy2jLFihljBD/ksdehl2mkGNusDMZpE3S2k7wLevDBexAQQBBVIsPOGFOxmTfNxbJdXVSzp5nabpJpmuJ0SHGMmlOYwtDP66YyzP/2zI+KmIGFDLBFYw1MMI3DOAwqSkA1gZ6T1aLIcRgfdtsP9+vDNCYEtGys4ahp8Pvder/fafY5hRBjyqpIbImIAMEAKEIhNKmqMrGryxLJRFyw3Cwvnl797V/+2XK+Wu/C7f16ONyzhIYcM7gsLBkezR//poFRODGHw+HJkyfFnYSIIYS+77fb7X6/L7yWUhyIyOFwePv27fF4dM4dj8fNZlO+PIRQ5kQfPnyoqqpt2+VyWdd1jPFwOJSqqAyY+r7f7/cFTrPf70MIjw2YUsF0Xde2benl7Pf7xWJxeXlZDErl/i1fUn79AhJVahBmooIPl9vb9f/+9//0299+/4c//viw3sZUYmRSlpRzVEW2tbXESCVjREElZ1tV9WLJdRsBEI1hS9p0lfXHbrd+H6JXRjDAzswWs9ffvLp89iIDSNK6chLCrp8gR6MZLrqreV25Qo3XrEB6GpBrsfSIZgFVKjYPwk+zvqzZ+3EY+gqNJo0oQwhTSkm08DRVxPsppsSUDYkhMmg1yTRO3k8+BCLqum7WdrO2nc+7xbKdz9q2rZ2rmRyxRTJACKRkgC0pUEgQxmnq99MQ2BgitKTtvJt9dQmo4zi+fX+93h82233xWeB5mZJTv5+JWWLM3ucYH9vjKafj8bDtj6ZdJlf13BwwbjP2go2tZ01zuVghQkh5ymNMUUEtGwIodD8QUGRBASQmtD5sx7EyaBkZQTN8KmxTKvpQRckoGXKMMSXJSUHBsFXJIfo0HcNwVN+bONmcalRuLZiFB/NwjCQxRZ8lJgEfwzD2wfsS0wgARNw0TdM0Kno4HO4f7o+HQ4op5SxZDJumqp2tnLUp58PxME1eRPI5vUhECRQRu7ZLUVNWF1XJT2GjRE1dW0OsiVEkQfT9br1WzaP3SbXpZsZVTY1FHM3Ms667WIW6ychV2124qmXCypmmYgMiSRSMaRtnubaVb7uc09XVlTXmXFxqDDGGkK1RRoHzsgWA8Oj7O1+TeCpaTmcJzQXtgUifzhbySe3x6EQD0FJjdU0TmYMfRMUay8aRNcZVTV1Z45gwpXQcBmJaLFeuboUYiJlURVNI0zQNfQ8DxBhTjlXt5Cy4AYAc4379sL17eHK1ItXj/uDHIYdYOXdxeTUM43EcxvORrLwaRiw2aVVJqFE0aiYUVrJkamsXXXv1ZHV5uWway6yi6hp3WV/NVvPVk6vgfVZJKQUfcgrjcR/63hUhvWHI4qOPftRUUlTOREsVECgeNiAC0JjyOI5+HD8/j5lzBXBSROeUP4+Lo3OOHZ5iyjVJUtXFcjlfLZFZVXJMcfJPrq7GcVwuFl3bOmOKs1NOtnmFLHD62E6OIOcsAJeS4aTVUc2QJQkCkAIxW2eSJu/H3f3dzR/+uP/T2/kwWZP2P7y5ffWv+//D/xRevazq5uwwhJghRARABoCofEZlI4GIxpRTFiJLnFKCGDP6wDbUqSbi0oMhgp+IUolIJE9+yiknME03t8bUdQM5Vs7OFovZYtnO54g0DClPqIEBAJOgSUqAjM4aQMxJRE7mfSY1pJaBCHOR7jC46hNQMWfdT3E7JqxqjzxMMoQcvOQMiGqtgiltD0UVLCg/I2wyszKjYUa0opwj5JRTlphwmnAccRxpGm1MrOqIK1c1xJEDchLMiQgtKDJbU9euntVtVVWuss28XVws2+VFPX8C3MySBu/DdExxypCSn8LxOK/ri4unbTvjn4B8ENiotUoWKkeVMz3iNI5D34eYUs4+Rh9jCHHw0/E4brf7u83m/Yeb+90+BN97YyLux2G32xz2m8NuF8KkmolKZOQ5Y54A8ATDBlEBIWJXV67tqqZxxlgmZ6Cy+vrF0+9+9qp2nQ93dAbcKxkkS8JF4v2TjsWnu8WY5XIpIt98882rV6/m83mBtYzjuF6v1+t1KSyYuZQjt7e3P/744zAMXddtt9uHh4f9fu/9yYYmIp8PhooBu/yUQqMpMprj8TgMwziOzrmf/exni8WiYGbKvVnqlVKjvH//fhzH0o+hc1A2fhlk/cUnQyUAgbwP293hxx8//vM///63v/3Dw2Y/DJOcSvky2Ucia2zFZBkJmQBRNecYTNXYpuOmQxXNgimpJCZmtsQMCVSTZi9xlNBL6OOwH8MkGZmdxDwdj2lAB5klV4yMtTFaPN96yvw5r71YcPDlFPql0EcVcoaYJCRBq5bYurpts7Kl2nElkvr+EGJPmNvazJqmaisgSjEe9ofdfpdzbpuurpwlXi5nX718Js+fGiYEGqNXPeUPIAMbMo4VKGYNk5cUQCMIABBANsRNZZ0zlaXNtmbUHEMqAs5/U8QAm+h9DD6nBJ/UFBoL/V4xKK2n9DCE7egHHytltAlGLyhpGvzYTz6IiKUvihgBymgKnIRQLYNF5VPNKVnk5HFKGU4NcgES0ZRjzClrUgS0bBEkacxhSOMR41DlyaAYx840nEii9TlCjjknVVEkVSUEPs37ShGD1jljOKbY98ftZrM/7CVLSjmFSGS6pq2r2hobYtxsNyGEwiPREnRABEhM5Kxr23Y+m9ftQoBh8AJY17WzzJoJEoOIBFvVKYWQpB/87tC7uhEFZkxJELFybjHruhata2fzlauac2B2khBT8pqTYWSqrDFNVlVZzD6tZjnHw367365rxooRmBEJ8hn/8lks83lDO3nqPyPNaNFRFmKPnqZXRdj7RRMbCY01qJIjoSgilmy3YkKsqoqJQgg+eiZu67rpOrAuA4bgvY8hQ8yQFVPWcRy9H1IKl7PmcQSTUtpv1uubm+3VRfLT/nAY+z70Q9u0VVXHwi+hc4JFaRuWDxQRiEviDht21lbOtVU9a9rnL54/f/FsdbGsq4qZRRGRrXMxJ2TebPPD+qE/9pDleDz4cQSfDIE1ZIFdXc1sDSlpzMV7ngpUMaUYYs6SRDQnBSggAMn587fLYJn+pTR5f+x7P01lsSMkNqauK2stGwPntvk0TjEnQJBT9JcyYtu1f/mXf1nwUIbN4XiY/ChSoha1zABLopZIiX6XlIJqPikfc05ZggiT6Zp2PptdLlddN7O1pQMxUZomf/9gdsevbd02FaVEx8O4ve8PG2sMWQel2yxWpEKEnFEiM6BF4jJcU80KSNbWM2TrMaUMISXyvolJkVKMiOics0glBxfOys4c07DfxJRps627xXKxsoajn5qmQmO5btIwxizb7f64P4yHQ/AhZFACttDO7NVFVxkIU4/Z1xArig5CZTI4YgMBskjSHPkza6IgRnQRG2s6VePjFKagKoyJrSCoRfY+9cdJstQkxMhW2Bm2xliwbFQpB5imOE5xnNIw6RSNT3VWq9iQrYkt24rq2uToYqxSaKIH49DVtp2389V8vlzOl3XTGja2qlzTuKa1bUfsRFSyaJmLAUiOcZwax88vlxdXz4x1+llXlRCs1UaVLTY1N7UzjH4cj8fjOPl939/cP9zePdzerh/W2/V2vzsc9kM/jKOfAqmKH3MK6/36cDj6IWpKbJjQlMFD2eIE5YSnQkJAxZxyYuSqqeaLWTtftE3dWNNVpmvo5dPLZ1cXyYsfh/5wzFkJ3YRNwjZxLeRyVvkSa/34mM1mv/71r2OMr1+/Xi6XVVWVFsg0Tbe3t7e3t2UqpKrH4/Ff/uVfrq+vS8myXq93u93d3d3xeFTVsjLiCbpIpeIpX3V7e1u6OERkrS3T8bquAeD169d/93d/99133y2XS2tt+ar1en1zc/Pjjz9+/Pjx97//vfe+qqqnT59+9913T58+dQV18zi6P8/m4WSmRmayxhwO/bv3H/71X3/445/e395vCW3TzkSl6M6xxL0jWVMjWcBHW3ZCAGMc2crYmjWHdBx3t2ncI6QU+xQDikCc0rD3yhvmNyTVbD4Fj+zmi6vK1sVAdZdHyr4ykCU7W/oaVKSJelal8ZmSBqCswp+JrgmwJtOQIQBkrppmUdWCdpoiq0khDYdxv9/t9g+G5OpyOavby4tLy1YBxmnKm3VRsYBCnPxqOTeWl8uFNZUxbrfdTFM0rmJriJENs2NATBlCzIaxqSyQEckxhXEIhMlYypLHYQhhisGHWIAjej6Xgwogcmb20xiDzyl+fr2VKzkjHUO+OQ4f9/1uv08hdEzTMGz226zpMPW9H8cp5iTlTpCcS99dARNgPuVOCEM+xWtLTjmLKCkWcBhmRVUGMZhJs8QEIqwIilKgIJhFAqaRxRNM1mFjqhbQQbBIaBDYcNGtksmajIO2q4k+HWMK3i3EOIyjDz6lhIU8oaJyoh+WIvtkGzamzEOtsda5pqqaurq4uPjqq6+urp628xWgOU4hJmVDBKo5aPaSfArdarEI0ceYiM3uOCBvU9a6cqI5Z0WgxlVVXbfdfDFfVXWNACFMu/3m4Pv+uJec26q2rqqrukiw6qp+rJVDCHfXH27v7ua1ayvHUDJoi6XvrFI+lyPlrUc8MYipnIyL9y5lLf9kUZEyBCnXxKnMBSz9x2KwUpGUoyKQtao5RC+aCTHEOE4jAjBzjMl2syi4OwzHwU8+SM6M6qP0fb9b3+UcG8jhr/7iXMTE3XZ7f3N9MZ+nJ1fCVOYYbHJWYmParmu61o+9hiwl2LpYYxiMNbWr6raZL+fz+Xw+ny3n89VydXFxcfnkqmkbAkJQKpp4MimmcRze317/0+/+ZbvbLZqOs4pPVlB8Akm2xaerJ9+8fD3ruhhCiD6EME1+HMbD4bjdbvf7Q384xBjKHZ+NMfyJ1g0AJqv6yW82m+1ms93vgw/M1NTVYrnsnEGEMgI8NWNUSjZEjDHmnFICVcMMAKuLCxHJKYnqse8fdVKqZeiqIppP12rJ3Y0AykwqmlLMSTNC23aL+cJYG3Puh14nmMaeyCyWF89evm7GvEKYta179uTpN1+7yuWUPnlDAJJgOpHGQKOwJgEyQobxdAolw9QAGYWEMcez3EdEctEvq8oZDXK2NamkEKbBjxP6ECY/9T0ATGO/WCyq2dzMZobDcQpvbx/ubh92D5txmFIWMlA3dHFRT3HV1Zz8YCR1RjujyolV1RgVVIAsRY3zKeMDgLK6BBWBldN4KyNlwsxOCTULpCgiQbMax86htcAEoJQS5ogxaD+EY58OR9+PaQgassmIaNlUtbVgEIEIkRIZrJtqtlwQt0DVbFnPV+3yspst57OZcw0hExssomZniJkAQE7vEiEpaE65cXS1qGeLFX8ZcUUETUXMyBY7xzUj5HQ8Hj7e3H7/xzdtV334ePvx+v72br3e7HfH4zhNPiVEqJytDU3e++G42zwM/VgiU+g0ruECXVCAs7/k5CsCykDAlmaNWy2a+aJr6toxWQTUNI3T+mGdI6QQCdnYGkUGapmaBE6AY8oxlYLyp2zouq5//vOfI2JR45bioGTzlo7Ifr8vvZOHh4ff/va3Nzc3j7i5vu83m800TaUd8kiOYeYiAY4xDsMQQijreNu2s9msrusiFq6q6ttvv/2bv/mbb775pqqqlFL5WeM4bjab+/v76+vrt2/f7nY7RHz9+vXl5eVqtSohBv8Rt5cIiUARhnF89/7m7Y/Xm+0QI7ZtZZw5CSc0lr4BkrFcI1tF1hM1PympqWrrGmsrlCSgMu394V7E5xwkByqnUe9jPhz0OseJqirmxK7ql0+aZsbElbFTZWVcGJ2G45zZECNqQSKdnjsTGWPLHxnZ2ErVftopVTlk9DFRxEYqV7FhAWqaxMD9od9tt9vt9u7u1hpsqkoVq7p2xpHhwnHJJc8mpuHYA+FhGH0S27TEZnvoN5u9sZaYEZUNG2eBKJ+SE8qBs1aVGPyU4zT0AhJiuLl5GPoxlemIyGeVZAEoqqrEFGKOWT7L9wEggizpsN9fT/v3m8PNvj8ME6XkEXqQBClJOmgcc/QhSVbSUs4rAQIzIKAqnWS7oipljKSqpMpIlkwxZZEoZmXIBrMBYQQ2YBEJgIp0BlQQkQ2BWtK2wot5vZrXq1llrQ0++Jh8mEChqiogQcyIivipIJOcRZKIEGFd10TIbDRLaCIhd3XnXIWILkYAEJGmqeu6aZq6rpq6adqmbut6sVw8uXqyXF403QLZLotLG1Ql5TilMIZpyM5A24boh3HMWWLS4+CZhxgioIzjFEOQnC1jZciyWMqIkDFhDpJ8jJNkTcaw2LKA5ZS/OMyo5BjjOI19f2B7khwoIlHRypx47wjExGyKbRQREgITGWuImJGgYMHGsd8fxuAJuRjMCESKORGpHMnxLG6dUjCV1LOZq6y1hpkBkTQbYyTnEAOOQwSYgq7X+83usD8cJOfGWT/sD9vtfv1wOO4v2zqGcHopqjH6frd7eP8evG8uFmANG8uVA8NsbDubz2bHfr9LITrnSsxh5aqqruq26Zp2Np8tV8vZYt4tulnXzWbztm2rumFmyIqqVLrAxJaSI2aFHFL0MTuhEsSCjBoZuK2ai9Xl69dfX6xW3k8h+BjiFMLk/W53aO/uzM1NDD5GXxpC/1Z3ZGJMD5vtP//Tb9++fbfb7QFguZy/fPlsebVqZg0IjP348PAgoovVoum6puvI++FhGKbTXKqsjCWASyVn0eSTiIrmE2haoFjRCnYixKiSDbE1bKxVleADIjVde7G8eP36tWF+tKFaa54+vfr2z/+y5np/fRP3h/ms+/pXv7x89ZW7WJmq+aTmUc05hZTOauKUJEbJJibDFgornYwKI1lbA7tEIRhriImYWE9NqVJDF0+6KkhKEiOmaCDXBn2cPt7f74/HYRyePn+2ePG8vrpyVd6O4w83H3/407u764cwTM7arnWLhVFoK5dSZ0mSAzAZrVJFCGCQLBGyZgUADfz5yV9JtVJxKWWBbE3MdRLNyGodAaAEBcpEggaaGruaaoMGMEedgoxDPB7z9pAPx3gY4hQkKQgJWTCVOgEryUjjRawIEEd2bnF1tXrq2m52cdXMlrbu2DlDBolRuYj1oTDiNWtxoRfXFiKysbZqatvN6qZpiFBVHumuTNjVplE0DDNnnUoeh20CH8N694CgD+v94Tj5KCFJ0gQABM4Z2za2MehyFASUjCpFqpwURD+Rw6jg65EIjQIqCiCy47q2q849mVXzzlpDyafheFxv79+qvlv92LULMovV6ioJ+xBHUwG6jEYUQoghBNUG/s3DGLP4UkteunfL5fLVq1fjOP7www+bzSaldH9//8MPPzw8PDxWyWfjaC4EF2YuBwNrbWnqlL8s6JfFYrFarVarVRHqFh3xkydP6rq+u7u7u7u7vr6+vr5+8+bNH/7wh+vr6wILnqapfPPFYlF0bEX8W75tKZUe7xfCol2WmOLu0P/4/vbj3Ra4aubkXMWmxAgnzQSkxMRcGdMgGyFUUhRRjZrR1k1dNdZVmiCTMiRNQxi3OUXDDtkSMCpkiWPajf0emMEgGzuu76ytjLGVc7O2Cft5Hu5vmzYKpyQSg7M0n82qumLCElBs2BCarp1fPHk+X1SfmhdJ8mEIu4MK1m3XGesqy9MEipUxccIQpv1+d3/3UDn7/MmzLJBEJIV+HMbgwRBXjoBLPwFcHZQSspstVPRh3//44fqR8kFMrq6RKakAIBtuu9nVxRUbnqZxGsdpmvr+uNlu73fH7W5KUkTAj+ZXAIATowG1gNuzfmLwIqJhiL7/cH//p/XwdnPYDj7mXKlOKpjiMQ5ZszcYCUQU9LRbFnSjMUVVKOd/FEEZkYnYsDHWOdfWjWPDiCigqUAfxBqorXXWuPINcoasEAVEAAUwAgVbQdvarmvm3SwlufUPx/7wsH4QycvFzDmOEvzUy2ci5RhDStEYO5vPmqYuc8ATDgjZsitn4CzifVAQZ2zbtYvFctZ1TRnwWeOsq6y1zqIKgTS1UyVRSRIjZdQgkVAZlZBAgWLOgCgCx36cxhFA+r7fH46Sk6GCAfDWGiJIMaYwFoEjKGTJMUUFSEmHoV/sl48Wa2PMarncbg9DPwzHsT8eovciuVjbTLk6jTHWNm0zny2qxiGSiMQQiKjt2qZu2NWQJfnQ7w/3NzeHY08lpwlJ4uXzyysDVHJ1FBQgRdEYYz/0leqVM7PFvK4qywYQY4iWrPdBAULO0+F4HPzmbn1zc3f78cM0DW1doUZ/3A373frhbvvk8pF5g4hkTIph/fEDDv1VftE9uZqvFs3qkuqKmGeLRRjH3cMasnaz+WKxXK2Wq9VquVot5vNF23VtW88aU1u0XDgNhIjGILIpPVI8maIrqK9mFz9/6v3Pxs3lwdoqTH6d7mIQlGyber66WK4uqqZha01OIMLIVVXPF9TNl65uRGR9dyMpAlJKKeUg+VPzAgDMZrO9ubn53ff/+v7dB2PcYj431rqqIqbj8fDuxw83H2/u7m5zluXF6umzZ69ff+2cS7mowD59r7N6RrJIzCmXSRKcdU0566mIiT4EVXXGSjYFEhZjqut6OV+2bTv0/Xa7/ed//ucPHz4cj8emab7++usnVxfzly9nz54dttu2aZ58993iciWAZNzjxFFExmnsx6EUq6fjiEbNKiSlPailcYfIRAqUclaQEAKeyuaTAKgE05Xt54S5yZlAnTVR8vG4v39YH/uDGtod9u1+n4fxdrO7ub9bbzfHoc8hEYEIqUJOcZomx1AzK1EW9FEwlSlstrasbZlFJZ6jex8rfxVSQcqGs0PJqoBgCFUgSWYVR2AQKyIWjGPuMcSQxyHvj2l/yPtejmMefAwZhBBJyIkTqIhq5sY1bKw6x6aqjGFTm7quu1m3WLm6JXZAeBrUnnJtyqkuF4VU0SmesuORqISvGkNfNvoAABEsnj+EEPM0+P4wUNgO/f1urSLTEGIGLdItBkMWyRnjnLWVAYsaicqRsfD3i9rzLEgv89ripD/ZGqumXq2uLhbtrHYmBwx9GPW4H7bb/f12k0XG47hcpdWqQtPU9QxMyohZIZ8MbLHE6v7bIgYRjfkkI4Ozaqpt2+fPn282mx9++GG/3/d9f39/v9vtikr30VPqnKuqqhQWZbZtre267uLiouh8izJmsVhcXFxcXFw8+qWLAma73W63291u9/bt248fP97e3n78+PHDhw/7/f4nz7OMopxzj1ULnh+f/UdgGFRzP0zr7f7+Ybc/TmRsTc7wOWwAsLRSmZnNKS8A8AxIL6dRydmPkLOmKU8TaMlJKJOXmk1N5IAMKAmAhAiYyWA2eQopEpPh5Cr07YwzLmt2lJLx/bTbPkhObdtWtWXDruwQZAntxeWTqukkLx7dFpJS2B7i7mjnC3aWyCASorKBqjFmoCyxKHiNsXUzs3V7nCYfprvNw3q3HaYxxngyuzJn5P007UcfEQHxGOLddj/1QwwBQYjIuAoJkyZFMIZXFytmbJp2GIehH8dh3Gx319e3m36c1BX6sMKjtEcL8wROTZLCAPgcEJeDn4bj/rjeTZuBBt9GYdQGdInqKABFAUnMwvwJE4VkC9edyTJZY4vTukwymNgYY41xxlaVa5vWsQEATTnHJBoBM5IYRiYgRATRrBAzedCkKWcByaRM5Ay3dX25Wvkp3t4/9H1///CQs1ed6tqm7If+kD9zjuhpFonOWW6a8wV5yj5j5fMcBkqzipCapp7NZl3bVnVjjWEiRI0hxBgBB2LLrkZkgQJRm6KfvJ9yigRw1ixIFogxeVJUUcnTOE6TlxwJIISxVPCEqCopZh9CP/qcdWLPPBq2MeZjf1xdXDzaxZm4qRrnqhDiNIzrh7v+sA/eq2pJ4kNGa2zdNBcXK33x1TzPAGGc/Ha9EZXZfNa1XVu3Kab1Znd7d3f98ePhcEQiQmLCHKar5coYY+uKiUBSDiF6n1MqOABnbVXZuq6dsYBojUUFa4NPKcaUQvJ9v3+4X19/uP/wbpr6uqqcIwItlIdHKR7ASambJfn92PvJaYKUOmNxkUGEXTWfLzFrmsI0jm3bzObzxXKxWC4Xi8Ws7bqqds6RNUhcglgJgLJCmop3XLOW4Ubhe+Zhqg7jU3J1PVNjjgKjNd6QGKxAOIS4263fveudC9OQQ1TRIqcKKfljn8dRS6WhWUo+hnw+tQDz/v37H9+/e/PmTd+Pf/VXf/OLX3z71VdPl4vOGPjDH/7wf/u//z9++8+/HYdBcmY2v/jFL/7P/8v/8ovvvjPMzDyOY4zxcXE8n9NVTrq8T0WMnpHMCqc5H6imXPp1oKJ1VT979kxE/tt/+2//+I//+Jvf/Ob+7u6ctOC+/fbb//yf//PLly9rQmLeep8PfV03rYXH3lKKabfbb3a7xXxR1xWdYjfL/5JmjTEWKjgxGzYxhcPxUEZkXZfrumFHVJLqSrHzqOLPErMSIhhHmslaJYySR+8PxyPeXN9sdw+742F/qBieXy2YuDa2bbhrqWsdg0OtDHfWGETxod8f9yhDY7FyVBtbGaoNuA4+7ZsoihPQQMRAYDgrFP4XsoAkIZ9t1BmxUXQJUy/bu6lnGMcwTOk45dHrmMhn8JBLireqQJAAmK3jlubtrF1cVd3M1R25ml2DtiJrkWxGTkkfe3ZFqVM+0hM6HEu3q7CKQVQ0Q04xJT41YD9HPIukFIKPKcphu+332/6w76kWV7lcVdY2bd0SZiqoMwQwnC2TNciMYIyxzKQAp5grQCXA0oA5yfsJETADEAAp6XK+/Nu/+ctlV20+vj9uN8NuPY3j/d22H0NGrtuOyOYMm/WOXbRN19pqSj4FL9GLt5K85C9uks8fn58AHidKxd785MmTqqrgbF1+9CiVgVFd1/P5vMho6rou5qZSzbRtWwQxRDSfzx97MNZaVR2G4XA4lJnR3d3dw8PDZrMpg6diYqIvswVms9lqtVoul23blg7QIy7h8xeCiMwokjbr3cPDtu+9ZDDGAhKqqOZTRxMRAAUFISho+R2IYhLJMeUpRgzeIzIkn+OYlbhe1XamCoSG2CI5JFNUuagJC1wAQfU0eCA1Rmjh6m+/evL82bOs9d3D/vtwuF/vtusdlGvAGMuW2AAYkfTyq+co8VHcJzGPD5u0Hy5n3Wy1RMQUk0pGUluxrVlZlcFU9Xy5evH69fzi8mG3vbu7efP+3XqzjjEWQ4xh65o5itxtdtcP6+1xcNYGwCGm2/uHqR8qa4lICyNDY9YMkK+eXDZdvVyuxsEHH5NoEpii+ChiEImLBAbOAAw4U0dVSydGP3eOpBj32/Vx80AhXlpaXs6RyKHWrDNSh8okoBBLnBIzImjOBFAOEABQWzubNU3jnHPWmHLEsNYYYlawxlTOgUKIMQbvfYg5CiUfp344jNOQUsg5qiRImaeUpjD0Q0hRUE3jFsuVM1X3cuZMQsGxH3f7XUyDczlE9mE6HjafihiEEutYetxEWGbRCKfaC1QKUBBPSPtypvWHg4xjz8ZySdwqBykAQUQ0bCokPrnXIEsKwU+SEpz8r5hUUlYAZUOgklKM3uesKcluv08pxDCqJD7tXJhFp5hzVgBGJssmpzxO45OnTz69FgUq+7XklIKfxsN+t9/tYwylqxpiZMOzbvbixYu2rg1ilrzZbH/44Yci7a+bpq7qnPL+cNhuD5vddpw8nEO2pv7YuGqchmY2qyprihEoRjK0WCxmy4UztkRJngbDzNDUZKxJ2fsA4EHkuFvvH279cIgxoGaAqqprcg0bV0aI55cCQigInFPejevddlxvLkIi5a7qZnXXzOfzbnGxvIzhUeCPPub1Zr/dHaBwVhmrys67dtU2F01bIaof8jBOxyH0YxgnP3kffPRBQkxJULWxHOvK5lBj6oxYFB6P0/sfP95c36hqzmEac4xZRBEUjTBnxCHGqT/iqb9QAMlfZielnJhouVp0s/lXXz3/6qvnL148SSm8efOHf/iH3/zud7/705s3WkZDWVTkyZMnKeVXr16WwfxjEXNqYBQKAj0C9D4bA6sW3RlTSc4gUBBRJKrrqm5qZt5ut//0T//093//9zfX18WOoQAl3+7V69fs3Hwxt02jiFHE6RfLcojx5vbuzdu3i/mybRvrbOWq2tbWWkOGSgx92XhOtm9JIarm0YwEqFlSsERkmKxldpWiFZGSNBqzIIhPWYlmy8VFTkDQzTpmRgWDPG/aedUYNrWrK+us4cqic+AsO+tqV7fV3DGzJj/sUshjL6MfIA2c1aI4Ay/pyVVI5xmGIHmkEdAhMAKwIgpBMTZEIa82oVEiQYzoj7KOCUC8D2NMY5IgGoAiQATJCIqEZJgtVW3Vrdrlk+7y2Xz5xDadrRqyNZpK2QKSnNJm5VPw4clvrF80WD7bDeHf041+sfGLjMNwf7d5/+7ddrudpjFWSGoYoXY8byprKYHmgpoSjoFNUctBTjnFnPQUA5wBc1kRURVOhONTk15VkKyzVVe3i27hLAz9sL2/B80hxKGfAHnWNfPlfDHvmLkfRk3SGGOsQ0kVSdeai3k1a6va2Z/0kz69li+RBHBuz8xms8vLyydPnhyPRxEpuJeHh4dhGESkJC7NZrOmacrvH8W5AFAsTkXPWMqXkoy92+0ejdl3d3dFO7zdbn9SSD0+GUTsuu7ly5evXr3quq6kZItIcWsXtMwXn5yBKGm93d0/bPvBp5TZ0qmdmrOeRocCUFALiKDnOCWgrCAJNKtI8oDAKBkAbTWzVXdaaYGQuJCKEBRVSCNJ0lMqEAqgKNTOzNr2crl89fzy69dPAWfzthn2t9Hvb9dHH4JzlVonJiOyKI7DUcIIEh5bl5qz7gc6jg1wjezHKebIMbEFzglzopwswqJpLmbzZTdzSNfrzcPNbb/b++MQYyoIHOeq2rUkOU7TOAx+mgybummqug45jyEaWxGZcoMgMEJBPqmqYpmOENUdg+EpCe4PBy+DT6qa85dd1jKdyv/OiqyqOUaWtKzsora2qp01NaszakkMKzJo1lBgd7aQzaKKnBs+2tS0Wtbz+aztOuesIp5YsVnUR80+9WNOKaQECE3larAhZd+Pu/ubzXY9hVE0EQODskjyceiH4JMIApvN5gBCXz9/7ZwjZMOGmZKAYhItYv8vWv16am1nEVI9JWSXauQkb0A8m3kAVLPklDQEr4XDoogqqFIKHFFVZCJ7hpABoYLknIJISQxHAM4AOQOgkiFEPZnJBQr8ZpqGcTzkFE3ZhhBL0ZmzKBTvHeaUp2k49IfHW0ZVy34nOcUYYsFmB++9Z2NySsM4AmAMqW6a/eFgrVOV40maut/td9ZYY2zOeRjGcfQxRckKWMZ8BlQP+z07roejNQZyLikKTdusrq4Q8Xjs66a5uLxcrVaz2fzEgso5+ZBC1OJ9BTnJtoQJkdk03axqmhD8crlitp99LgCExKRjmg77OE5KRrJSEhg9PH3WdLPZbJZzPUxjPw5j38cYAVBUU84AYBg750LXal2rdSYlf9yG/X7aH8fj4Mdx8j7klGKGlEEBkcSZ1FYj5GHYh6HPw5BCioqScpx8DDFGn/KpDS7IVNWm66CqojHwiaWi8OUuY54+uZrNuvlyFUNq28ZaAoSb2+v/8l/+X7/97T8T07e/+IVxlgAwiYr89l/+ZX84/qf/03968eKFnATwJwP2aTMD0Czn5f4RH6eljYrIRCcyULGiucqtVqu2bTebzZ/+9Kff/e53m83m1evXTV1nEe99fzwS4j/94z8Off/rX//6yXLV1XVdVXwSfJ9ezzRNb9/++Jt/+Efrqrqpu7ZbLBaXy4vFfN41bVs3JYS99JCIGECs4RhFUh77YRrHYvevnGm7pu6EuCpJW1HUpyw56XGou+7Z8+ery8vd5sE17dXq8urZ859/+0u2dcFl1pUrP4VICRMTGesMVUwOFSDnsd+t56uHuw93N+82m+v93d103Gv2fxban//dtDxtL0LsiScEVEHIpIkwZY05hyRJKTFmKLaDFDWBjgMoQFZKwBEwQU6YI+QAKghI1la2bler1fOnz19fPP1qefW0budIFsgIkJSIp1NJgp9B3U9L46m5dlqftGDkTseCUpWetG1UuMCPjZwi7zoc+999//t//v2/PGw3UZOx2LR21dWrWbOaWWewqPUBdUq0I1IAZsg5jcPxOPZZFQkVIpaZOpamjWK5plQ1R8nZVjCvVw7N5m6dwvD+x/fb9T0bqutmfvl0uVhcrOazWVtZ54PEeOxDf9iLMdYZWHTNsycX37x++frls4vVoqwRPyllHqu0x2sezyznooz59ttvr66u5vN5Sun6+vr29vbu7s57XyQpRbFbzshEFEIoUt+UEjOX3slyuVTVzWZzc3Pz7t27m5ub+/v74/FYCpFixgb4hHp7xDgBgHPu2bNnf/EXf/HLX/6yaZrSp/HeT9M0jmPxcn/eUhbGKaeH7f5+vRumKcRImgBAJWkun3jRQwiIZGWUkk5wCpVlRjYMaAAckiMyJbi9HBOZCiucAFlVNEfNHjJoLrAFUDQKLGhmTf3kYv7s+dOnz1bPni2JFpWzYfpaNYz+KDnWlauqxtpaFWMKRAI5QPospkPU+lT1wQ2BDoOffMq5sugyg4667XmY5gpd1z5r2yqmvNv7+01e7+sgIjzGHIPGKE5zk6UDIcBaFWN0RM8uVw/Pntxcf1SB1eVVWzfF581l/9S0XM2eXF7NV8uUBZmrukoZnn3z6uPNw+//8G68eShm0ZOFRU+DTy3w2piKEPIRrUmEbe2uFrMrbAw5Z7myWFtklowpY0oiYUqaUs7ZKCoKQko5Rh80CyEabUNNqTFEDbLmnKYxHPu+3x+nw7Hf7Xa7nQ8BmFaXF9/84udtXfebzd27d3/4l9/e3H30yZPRZta41tqKlCCrJNXsYezTYft+/9A/W149f/HMslmtLp6MVz64xdxYo8Fi21Sfsbs0pRRDVOYyehURACRCLt4bZDhFc5ywqsUbq2cPl4qACoiUaOmcsygCMQApQAlOQBAQhYJtQQI0CiRAgEB8qnaIiImRDBlrbGUl8jlyIiXNOYWQoiiWmEbIKYRx6Ec/PTZlRfLY9/1hT6gpntQwrm7YOmtMSikriggZkzIcjoOxlWFKIsZZtibmHGICGFNK3ntVqF1tnbOuart2uVo2TYNE4zhOwaeUhsMhhYAAs9nsxbEX1XcfPhDRz7799tvvvvvFr361WC6in/rjsN/sfRJyFRDNFsuLq6dANI0jIrSz7urqyli7nLWvX70qfeLz3Q9MTFWFMWFPoT8+/PDH42ZzvL7dvHx19fXXFy9ezK+ulHmz32+22/V2E2JwVcVsRNQxzZ2trEnHwz7Jpj9O2/1+fdcf9uM4jiFMKWVEcBaBMIt6n/peNKKzmTTGKYegMUAUFYQsIppFIkgSjSoZCKzhtqs1G5xnak9ZBHDeYj4vYmazrm6apusmH4MfVVPfH25ubr7//vt3P7578fzF5XJBlUVAynLYHz5eXyPg7e1t27afSwX/rRLicSM7/6vHqZMWf2fZEuq6vry8FJGb65s3b94UXWTXdcvlMqXkfaiqahyG25sba8yvfvlLFXHWIsB+v5+8b+q6ZJ8mkUPf3z+sRYENV1U1m80uFqvlfDHvulk3m8/nddPUVVXojSnG4ENKiYnkrLJkIlBrDLFzLouqZtGYJSQJPkQ8AtvFxdVyYTrn2Lmubtqqvri4bNsFETvDdenhWkMIgEJIxloCo8AqoFl8N3d165o5Vx3bTqGKcHPY3vcR86MQXjWlHH3MyYhQ9JQTYBRIKhFBmaCYxxXKcRZIwSgoojBmIEESwAyQUBWYjWvrbrVcvbi4/Orq2cv56mk9mxtblcEVClIpVD77AOE8Qnr0af1Es/PFAx+V4//Og5ljyh9vPr7/+P4wHFXFMjpDlpCxJBohCzCAYWKkIBSFiChFHYZpGKYsJcwgAYgq4RkWmZFUAXIsyyxqQhA/jdcfP0gY8nSsSIxxXd1dLFer5XI1r6raEEhO0ZrsBJSlbfhqOXv+5OKrr56//Or55cWyrqv/6LU8osL0nMjhnNNz9GOhz81ms6qqrq6uvv766/fv36/X6+PxOE1TcR7NZrO2bUv0Ukqp9GPKwj0Mg/e+7/ubm5sPHz68f/++MO4ef/qjPuYR4AQAxpiu6xaLxYsXL77++utvv/22mKsfQb2F/PTv8G8UUkzDYRiPo0gBe5cPnssRGJGJBaEc8pixAmQgJQKDSJSZLBIi1EiVMRUzGwNMyMxMxS4HGSilGMPgx2mKYwhDikmAiCuylXFcVWwdIWkIYz/sEdUHbxitwZyin0Yio0rFQRxTGIZxuzsc9sdPjSURnhL1XvZ92h+lrJ9oKwTQVCd40nTuSg3Zi9Xl3DBmmbGJTbewdZhFP6WYYk5iK3txtapnDVnz7GJZMzmmq4vlq1fPN9v18ThcXT7pmpYRDaIlBpAsqe6qJ1dPukWHzGStrZwAXcaExr37+IAAJbYYiaE0s8qR+cRVFZBPFUxZJR1jbRBBSAOFBEklIbAmoxlzKNHc45RCClR29hhjjFNAhNpVhHA4cMq5HwdAnCZ/PA7b3f64Owz7w2G73W43MUVbV1///Jvnr7+ady0ApBCHw3E8HMmAMaZiqpwxDaNlBJaAqYcU9sf97Yf04V+//8M4DkGFAC5mC8F6ubCWNQZ/sbgw5nTiV5EighRjAJGNObftUYFUS4w0npKbP/lEi2m0eFqzStZ8/kPOqiincDMAENRMIKfLlk5hSYpcMDkoJardEHGJnkZkJCI2CGAQNYtoTElTkqxgSt6rnkMHPuspqWpKIUVvDDFiXdciUtVNoSHElJBNTNk4A0THflAkZ433XgDZWFQpulBFBCJDXLd1U7dVXS8vVy++elFV9TAOMUcE9NPUqxYD4ziOdzc3x2P/hz/+UUT7Q59SbudzBZUYx2EchyEkYRFV7ebz5aX3KQCCqhQzUVPXjePV6sLYT50YUAAiqZ2qQOhkGGL0YbfOoj5Mox+Px/3i8JxctR/G/fG42e9yTnXbWmdRUYjsRAMBicAw9ptNvz+UCiyk6HOeNCubkjvMWZMfjw+3aexLj70cZUCyKuQSU4ZlqCBZNaoqMaEBwkSlbSmqJJ+EZV88jDEs5TgnQTSFEPaH7c31x77vUaBF25L1SXIBTCFWVYWAm/WmJM+1bctnLSc+rrNFb430uOaeZYUECCfeHVMZYZYj7MPDw9u3b398+yOzmc1mxW5KxMzcdR2AHo7HcRwPx+MwDJeXl977N2/fVs5dri6auik/11W1dbUPYZr84XC8v394z+8r65q6brtuNpvPZt18vlgs5svF3DCHcSx80LqqijDVsrHGgIpILu+YqKSUQ8rjFMaowPbyMnR1vejmbK0BSNM07A4QwdkancWY1RmtnLWGjWE2JeOlNNeBmXhRtd3q6umrb749Hrabh+vr92/f/OH7q2cvbFWf1uQMQ6/7nTJFFU0RJSMJsDKjJa6Ya2aLCFhCL9kQWS2xqiAZNZEm1ISQgdhWVbeYLy+XT76aLa+qdm6qVsjEfCo9zkHgj3ixE8G4IIROdcxpOFj+8GgPwpJ+fCp1Pl1hnyoAIrSOjeFh6A+HXYoRQJkIRafgQXPwZJhA2BqetQYMO0OoBoBTRj+lMAYVAVTF4hdFButsRWwSUE45RBEVJBCQcTz4OOo6d1ZezHHx7JLdylRz6zrDGP2YQlZJSdQRu1lbzZZPnzz79ptXL54/u7hYzLqucvY/qmBK4eK9L2qw0kEp5UIJB7i+vj4cDoh4eXn57bfffvXVV1Dyb7///u3bt/v9frVa/e3f/u2zZ8/KFbtarQCgTI5ubm6ur6/v7+/X63UJsi75R+X2efy1rKuP+zcRPX/+/G/+5m/+/M///Je//OVisXiMsC6Fy+P866fCXlDMAiHrGCGIMa5qW2vQIFKhRCISKVEmFFVFsJZbIgMsxGoZCROiJySmhrg2xhgmS2IYXHGOoiZRn3GcYEBIw3jcX+92D+MUFLCqZu18ueArFRjHeHcf//Cncb2+TdL4KR/2+9u7u/X9w/1656rR2IqNIzKKlBN37d3l06d/7h/1CgohpX4cHrbVcs5dy84aZBYymVbV7LtXX6dn4qyt66btOpWML796cbVSRRVQKMAhMNY0s8o2lp1dXl0uZm3t+OpiofDKGJwmP5sv2rp2zJaJgVQlpUiMrm2qrqmbliynLCFLiHnWNpYZ4cxEIYTCkj5hQB7LF/38hkFV0iyhn6adH6exP0qKxMSWubFkjCqklMMYUogppZhCacJr1rquL1YGKQ3Tbrq+P/bHvu+Ph/7YD33vp9EnP4Vp8n4ixnbWzVYrAG67eY5pcXm5vLxAo5eXi/mibbvKNgYdoGE2ThLFAT7Ut7vb/dgP33//u4f1bdU1dVd3bT1fXF1dzCrHKUwvLr9y1p3WMVUfwjhNuXLIXAEQ01lORycpfmnf4+kSJSzRdUV+p4ggZedCVS6SGiqTpnMRw4XqS4hIBpBUWRQLAhlRmdkYa40x1kiCIJpPodpMTElyyj6lLKKIZNkay4hqiFTEuerzoFEiYEbLZOq6GBVTzillyTnE2LZdSClpRqDjOI4hGuYs2fuIbGZ1g0QxnUa7BFjXVVU1dV3NZrPLJ1ez2WyaRlV11oYQ1svFNHlDNAzDzcfru9vbfn/IIu/evLXOXT65QhVnHYgSEaGGELJo27UxLvaHrfcTQKZC8AU11ljn6NwhQwUUEMToLDoLzrCfIAYQzUjHsR8/vl8fdvXNjW1bYCMAKNkRW1WjaoA4pziGTZh2YYrDcDgehah9emmbmhSsiNOMSLZ2rMCjH2/dcNhJGIsrj8kBY0YUQiUWNmisFD25ZIISyNZy3VJTq3GCoFLks6f562d7DZiUYwh+GI5T8ITgw3h3e393d5cl1c61xs1dXTtKqDklEJjNZtaaYegPh8Pl5WVd1wVRWvbBk9nvvOA+FjGfFk6AR+1neTZElFI6HA7FVu2sqSpXvrZoGwGUmbbbXcp5t9utN5vFchmm6c2bN13b/uVf/OXjBpNEEyAZgyLJ+2nyKQRQKJiNpm3btp3PZvPFYrVc1NZqzs6a+WzWtW1T13Vd17bK2QkYDJFjiGEahr4fhtHHKURBcVPISVRAFSVLGD1ST2ghabIhWMOM1rJ1rnLO1bW1zlhmZjKWyTBZKjpPa6xz1jlbV+ycIM/mC+e+KGKOe6gcERtQIipZaVXlWuta61pjHRIUTwIZZnYImFPJeoBEIIUtA8a4uu4Ws+VqfvWkamdgrAClrFKidAEQC/SlLKafwAif/3Mao5Snd65TyjS7ZE98cVl9+SBCa5kIyww3Z9GUJecISUVTIkOGmRUxZjSMhkgVc8aUNIacY1HLnCoqUWRgY8haZ5ECxuAVUZ2zbDhnH/OUNDVoFs3sajEH0wiaICn4iBiY1DA0db26vGjnl93i6umzZz/7+uXV1WVd1wSfOhz/9lHgvN57PYdUF+VsjLE0WkpLpu97APj6668Xi8WzZ8/Gcby9vZ2mqa7r5XJ5dXXVtu16vZ6mqVz8wzA8PDy8f//+48ePxS/9WKMgYhlFPd5Q5XxYDq3W2tls9vOf//zXv/71r3/96++++46ZS0hk6f2o6iOr96eKJQEMmX2yQWqlWdMIsUEokVFU4iFJGDOzMqFl60zDzEBCpIyKmEsMNlNFxY4EypgJtbjuYkoiypkhj37cHQ736/X1drtOOSNy8KNqrB1Fq4mbfh9+/GF/bUw/kQ85hbjebrbbXT/0k49kLLFh49g0Ckf88frpi6fTmXsBAhCTjD70g/GxvqzcrLVAxb1TV229WDAbVznDTIgieXbRqGRAJmBic4LDMpmKyDJZdm3bNhUbns0aMlRVJuZUVVV9lstq0hjDNI1JBAuczToBmCbfD9M4xd32OI5jDKG8/zkD4im5SAFEtICziqTmy+ssqwRJPvp+GHbjMIYYBdFWjq1lZhWNIeUUY0wxxpiCSCaklLKzlY95mvL+eLx/uNtut4d9PwzTNKUUs+SMmoHUWA4im812vV4v5jM/TYrYzWd153729VeXl4uqYrYErMjMxqlw8thwt7vf3Vxfh+j3x+1lRY2bP728ury6uFjOrWUJ0+Xyyp47MSIaY/IxIrG1BVx4WmxOfd1CsyiXeukDKhXNIiggKCEIcJH1lN33zDU/8WSxpIKe1C2kijFJzpJSBoVynj6vZyo5xxiCL5ROQcWSkJhSEsnlPzXMhpmRJIuzjr4oYtAYMsYQsquqcuTLOadYPI055uRjSDGlKFlykJyzpJyZ2VUVM2NAIrTGMlJVOWajKjGGFINKttZaY9qmiSFE740xhih4fzwe+r6v61pVvffbzebh7n42ny3mC2NszDnm7HMWUDbG1W4+nyOiarbWsTWIJxvp55eYZslZA5BaIiKsHaQIsST6gvhxzOnovalqW9Wlv8rGaI7GGkamnHSa8jQmP3jvp+jdbFYt5tVyQVLe1qA5CwKlTADMZJyjqlJVQUJjgbhk5QgbsQasE4QsSYumylhsO3S1GFMSrT/Zg+Sn5HHT98dhHNfr+xjTYjEPIdze3j6s7621bjHvXLVqu/rZRTZ02B/2do+MqpolxRidc4vFomlba+1jEVM2QYTTOAnxU/74yXOVUipCuvPaCrB59+79/f3DNI11XVVV5apquVw8f/68rms/eSbabLaqut1sPn74UDk3jsPbt28uVhc++PJKUpb9ceinMO+6tmqQLdDQ6yGGqClFkTHEQ98/bLZVVdVN5YxhgsrZWdPNZ91itlh0s65pF4vZ4mIhxuLUH4/Hzfp+s1kP4xiTIGLOIJlC0GHoRbN1VRczgpGooxlKEw8RiNhVrmmaqm5ceT1NU1V1XVWIlFOapvF4PEzTmHJKwk+fv1yuVu48s8yi/VGHHtm0bd1Z54ytjWtdPWu6ZV3PqrqxziGXBioQIxEjUEn+FYUMIIqCJGrJOFvVVdvWsxk5kxWSSAI5eX3gNFIuv5yOiWf+5Kfy5ayFwbKCKBKB6AmaDaer7D8sZVyFi0U3m7XXKt5PdprYVYhGCJMQsjG2RmNKlAITCGjMKkk0netuKkreog1UQ1Q5S8YS4ziAKHVdy8ZMPohqbe2sbYxdilYhhDFNRy8K0FU07+puMX/y7NmLVz+7ePKim6262XyxaJxjhXx6T/Sn49HTNZbSbrdT1aurq6qqiuikmDCLVrf8voRB7vf7AndZrVYvX77c7XZFHLNarQpmtwRTl77L8Xgs5VFhydBnx4AytOWzib08sTJCKDnYf/3Xf/3Xf/3Xv/zlL58/f+69b5pGVQ+HwzAMxd+Uzo/Ps5NQBKfkpjxLsDLuar4wdRZJkLNKVlUSQBACcgbmjWlqW5/N10XpD0DMpuSpgHrVqJJUkkieBIJPx3H0WdVUx2H4ePvh+vbdze31NA3/f/b+pMe2LUkTw8xsNXvv0/hx99vf10a8iIyMyhSrQBYLkkBAkEASnAiaCNKAc2qggQYC9Ev0A6SRBAEEBEEDEZySYAOhWKyqzGRmZDQvXnN77845u1lrmZkGtvb24/e9yCIhJiAIsTPSn1/34+fsZjVmn332fW3Teofj2BNAdNghu3gpQ36zH47H4d310I8ZQBPzkBKLFEkoTOS8aIPxcBz2x1fPXz4ep2nZnzCL2Q44ws1u01xcAJBJhZN3TRObNrZN470jEFLxXAhEwZmQniO3oADgQE3br4ngHFFw3sfWq3I1uPQBRKdhSkWGaRgz+6b1gmORfkhv3324urq7vTt+/+btmzfvj/3R9rRSdVyrJIyISuGcczGdiWXeqKgygbbRw6op3KWcjnd3/TApgnMuhoCIpfC9t50wADhyAAPADZJPSQ6H493t/ng4jsOQpswZlBUBXQhtG8ghM19fX//t3/xNf9g7BzlNoWsebS+++MkXTx9fOqdEM/2TAoID8Ztmq0W+/eby9u5DiPT8+dPnL54/f/5id75rYkAASeNmvXX3ir1aRDNzYJEqcwpKQGriCKCzy4vJ+AI5QkQRFcN4Vc2oawYU6QS0moOZ+5xLFUvmcZzGMaVSAEzUABAJAVQ4TVPf9+MwiBREYOcKV3tt476oMCkEFzx5LhxCXGShyTTsXXAuOKL6vBBVvcQoKqxmSFVyLimVnPM05Wmakrk3qaooFwGBNjZNCLFtSi63d7fTNDnC/vJyvV6vN+vGh5LLNI7D8QiAx+NxGAYfwtOXT8j5q5trROyPx8Pdvm06AerHacy5CCuAyw4ALh89Ojs/F2FVBUIVlpTLibaKFeZSzug9gydEdAGJyEfHQAC+dp5qLimXrGoFHyTnrCccVK3pIueJRZTwzAdsGu9jSiOnlI77dDxOx6NLeasE0+S9j5ttUkmIzgcln5HEkXin3qv3imCNNMqijtCRgPXGoqkQiIpJR9ZLW4IYEeHCaZpKYVUtudzd3e4PeyJqWnP69CEGF5xRSYgwl5zSlPNkMVEuReooqp0q1TJpzvxM505VWWZ2lqFw9hpRVTkcDkN/TNMUoyfCGFyMPsbgnRu1emiXkm9vb968ee0cWe/76QYjIv0wHo5DE2MI0RRmgZxCKSpQOLNMOSOO7nh0wXlH3lMMoY3Nuus23Xrbrdbdarc7uzw+2vX9an/Y7w/ffffdu7fvSsmIFGPDoookosOUUk4hFQDftWfeFWU2lzoVVQA/+JRyHCYfYoxN042rrlt1LSGmaer7w83tzZQmBXKOYvD+JOonF1fbJ2ePP7u4fLzabGITfWxdXDXdZrXZte06tq33HgnIAXmk2qCIoChi5WWo3R8S0HkXgo8xdi0QZi6as01NqSUzReMqLYcu/WX1qxG0cdncsXLpcG5jkh8tV9YtBmKML18+//TTT968eTXmrMyciwZA9Og8uUg+kHMCLAKIisKcS0mjcALlStExf7XqAlO4FEVCVeedA/Tek0MAdQTrru3altUNSZJOQylTgRDb9Wb7+PHl8+dPnr948fyTL3YXj2LskFDKOHHyYUUUbHH60QsZx/F3v/vdOI6ff/65qd6Zb5GqWmPR0oJkzdIm+mI+AIuuknPu97///fn5ORG9f//+m2++ub6+tjYlOIFerEprkr4LfXjBNQ2SMWW81WrVti0RHY/H4/Fo4cs4jkv39Y+7WCtgEVdkhXAW/M5HKZLSNI3HcexzmlAlOlp1beND9BSQiROYLIJUIp5qrja9XHKZuKTZe03GMe+HobBSjP04vHn/+ur6Q87ZudC2qxgaZnYIPA3j4eYYIR+hP+yv7w7vrg/HKRsfHIMDdJULSs77qbCwHI99ef3mPKXp/lpEIJU8jHlKigjBM2tmzaIBaN117XbVtjF4R8BOJSoTgEFOzhCoWvYFIBAERadIQI68J+/VoWqxjFaAcs7743B1c/fm7dVhTBQaJc+s+33/5s37q6u7/b6/2d/d3h0Ks1Vm5z53EVVAqJvejyAxyswq7L3rugZQmflw6M2qUkQm07Mj8s43bWsS7EjknbNIYJrK0I8pTTGEzWbtyTs39pKSWCuca5oGCcZxmIbh7ZvXCLJed00TVuvu8vLi/OLibHcGWmozGiKAAyRUd3Fx9uVPPl2t4oerDaI8ffrk8ePHjx7t1qs1EimzkMTgF/s5EZ1yHqfkyLuU6DgUI7thFSZGImdutUQOyTJeE3uHuQdFFKy7yogyCmKpEhKoifzrvNUopJQPh+MwjFNKoNS0rUHsJm2XUxqnMaUEIGYJIAqAhI5I1c2lA9OCirEJD5EYPDke/kgJ0CmpcxoCx5Ijp5SCc3MDGyACc07TCCLeIahT5pTG/e2tqqLKNIwXF+d5SpwKV2GbkZn745FFVuvVZ1987kOjvydhGaexHwazsBZE22sLc5KkwiBgt0pVhVWF4cTTBgAUgEvhXNgXAtQaQZICVF9LN0MPXJRVzBICLHKs9AGo+iMMoN67ZhiG22saxzQOU38cD/vpcJgOB5/Y++gQWSB730tJiESoBIwWHdXeuVqcEVU1F3txwGgM2qoNZu3CP0BiYmhz5BgahGyyFuM4TuOkKuACRZ9Bj3c3QoiipaS7/U1K0/ZsN6XxcDx8uL6yvL+Oo8oxVxGp35ttKgvAvR5AnXZopA7nvSMy+4apP6ojWHVRuNzd3LDo/m5/dXV1uLtj4dsYHaGlm7vd7vmL501s5gkj0zgeDnsCaJqICCUXqN4UNG+/5r0CwpJBGSWrTDkfhv4DXAVy0YfNZvv4yZOz813btcd++Pbbb/f7O0Jq2/ZsiywCBOBQVHIpzBBDUSWkYLZYHlVUS2EALAVEi4zZ0eiPfdvEVdsgQRrHYTgejoecswARoSf0zi3CSk23/uzn/+Auu935ZbNamXMMYgix6VabGBvvPREoKBGEEMgEoVTZCPzCXEREWUHUATly3ocQGw+ImIBFqDCAqGiB+uBU79McrJ2Q9+GLzOJyc2G1GqaDKqmJn9nbAD6QiQERKEWD737+s5+Pw/Du7auUclaSIghEPsY2xhCdRyPpigoxc+E8pTwdlAfUbDae1YkQVFSGoc+poAvoKERPhEb748IxhnW7ijEep6nXAq6oo2bVXVw8+umXX37+2WefvHhx8ehRs9o655ml3+9vr96gc4+ff9atWzSQ+8dCsv1+/0//6T/9/vvvv/jiC9PPNajj7Ozsk08+sTqRqg7DICIWiNhXK2gagRcALi4ufvGLXxwOh1evXr17926z2ViJaolUan/PvKQi4gKiGJvYQhMj07x///7777+31dRIwXd3d1Zsshlta+5HFaXazkHaNbDp3FaalFi59Hm8uf6u318JlLP1erP+NIYzKeMwTYdpX1LPORvFIxfuxzHlUkQzl6mknLP9f2EuuaSSVcR7LWU69AcW2Ky3q26z2WxjiAoipUie+uP+1bRXKcM0HcfpMExTYZba5VQ7ERCBnHcxNPucpT/sbz5clFzTGLIcPXM6HI+3+64/5r5NQ8mplInXq+48tqGF6DUYYXlephDM8nymZxCRd2isC4tgnCMfSuZpLKkU55wqlJIO+8O7dx/evHn33eu314dDUhoyj8O0v+uvr+/641SKKIjzalO1FKMxmfKbmsL5/TQ5ATBVoeTMhX3jY9N1TRd8o0Dex6vrq34YSimIftN1Z7vdo0eP1utNCMFanXPOh8Ph/Yfr43GI3j198sh76ofx6sPtq+/e3d7uRbmq9xKIc8aCH4fjqvVNaM+267PthhBTTpyT2T+bcLkNHBE5v9h0q/Ds+TmAdKu2a7sYCaBo3TizIC8XI6rDOB77AZFEdRon75wjR0RgBiLeWfnGm5YiEUFV6YIZ/QVAFRVhExbTWRpQwQR2CxtYq4qIuZS+7/uhH4dRFYwj0HWrGIIjsNpNLT85JO9RtUEl50ph51zTNiFGFzwARI4hxCVeqcUjBQeK95FTrXGYJoUJ4XjvvKPgMTiKwTVtyLkIS0rT0B+4FJXCMXnnj/3x9uqqCCtzmtLQ94e7/Xqz8c6lnHLKwzAMw+CcO7+4+OLLL0PTHsf+5ubW6NIUfLvqCgsgpJJ55HEcjvv98e4up4yOvOlhB994d0IHAFWVwpoLeXZKpAyAiswKQgCI1nBhAgAg9flb5FivV0QZDJYgUUQdx/R+f3eLyClxmso0SUqQiwOS2LELPcGt8rXmCdTSbqi+luTIOSRFZIsbAJ3zKhC81tAW64ps5ZyqrLQEMaqKQHHGzarFaCk5Z69YQBKX/WFg0Oh8SqmUzGzRkKpqKTzlXFjm6wSxaFnvgxhLNSzKJbKyJjk0Ag1VOWyzn6jBDRGRMB8Oh5y573tmXnUrH/zjy8e78zPrRH10+eiLL77oullaRc0qK6U0WrVDWGwzOCWcIlS9UfMSAQBFLCLDlIDFIR6GYch5dXvnnZ/SdHV1NY4TOVqvivdxSjmVzMyK6FxwLobYhdjFuKpsArBnn0FVlJQ1lwJYXMklJ84JUdM4TtOQUl2rASCpjuPEc4AZmubyxRfPelytt6GJAooOHbgY46rroo/OYTXnQ4yxSl4DgMyQZsmllGKyQWL0BuskVmRRx3TSBdDsrmIAAQAASURBVDmv6CfDgk7CkKV5HmqjmbPcbFZQB1QxtdOP2vftYJb9vuTsnjx98Sd/Mrx+/R2z/v7792NmBDIlyhgcmQ4Mi7J6p1JyGg85HVQmAAZwAASgViYHhVIyF1bMLoTYeSJIeVJRRAyVoODJFe9j066bbr3anj958vynP/npJy8/eXz5pFlvAEmFmadxHN+/fU/e7S6fr9Z/QA0HAOZy0qtXr1T15uamNTwMcbfbWUix2+02m81ms1mEfZfDwhG70xcXF1999ZUlDNvt9uuvv37//n3f94boLI4EpzyY+VGp/cqQFStavX//frGNHMfx7u7OMBgLhizc+WE5CQDQIXn0XoNjL0l5Sv31/ub1h3e/29+9A+Qyna064HSmhXkap/42T8eSM6CSD6nw3bEfp5xFMnPmkm3c5cJWPFAhZecKKLNA26436+357nK33TZtQwR5SsfDTb+/ub67GcZ+KpxYWBXIhRhAMaXEhavXEJJzPuch55Km23G8FblXhiUFZNWp8DRN48jjmMacp8ITe6JSWEXrkoMAhEqGMxCgAzMLUpMp9ArIhTOnnEURY2zGKb97f30cBlXKmYdxvL3Zv3v3/t2Hqzfvr276vmfpUxn6YTxO45ilqCPXNH6zdt6ZZ4fq7ANg6ZxDQgXn3EeoHyIaNty2XWzaEMJ6vXHOO3QstcG+aduL3e7y0eWTJ0+3220MwYLl4/H4+rVeXV1PQw9I57vtdrvp+x4FPry7JlRCdKhSsqKKaQWrOII2hk3XbterJvqUxuvroT8cSsmIQQW5tgVxjH673bRtaJsNgDUMchr7VIdZKWX07eZeW8W6k6YpeK8ik4IhLkSk1mFtqz9RBZeQqozMKSoMKKLGcxGx52it+1QKT1PKuYgKgHrnFLRwycUenlqLHXmnINWyngVRndnFOiIEQW/v6JwLTfQx+uANdDa97HotACzCLDI/sTmC4aqPpgCAzhEi+qo2QaaqkHKepkk4t00oDr13YJWanBREhcdxwFvMKQ19397eWl5amM0czVogfQwhhOADIppqgqqSsxjQe1UC5MLTMBzu7tI0uhCbrnEOwZMqnSIxYNEAF+ACiPYbNj4BIZioE4qFjKqKOIeVKEYtYhZlsN46x0JS8tAPe8ksUopwZmYVcYDF+VGRgxyIDqg9SAIlsW4kdIgeSJEVTR8cFEGQEIQLU40RUKtEvAUxIg+vxQ/9WEoJoSFyqsgsoCgM45DEyZASBj+WKQsncjkl7wM5H3wMPrTNar1au5RYeMHZjE9QleHrmgtzdwXOPBmgGSVCRO9dDDGG2DbdZrvdbNfORWbNeWJmk9B48uTJ5cXlp59+8ujR4261Ot/tHj16tNvtVuv1PPkhEEZP3hESiooAkPPoqAqjqc0N261NVt3F2Ky7FYIeDkeeMiIWwP2xPw5J1YoFU8mFRUSw7Ybj0B/6Y2wCOerW6/X6bHf2ZHt2sV5vDZ4pJUtOSGLOKgCAKIoKiApamEGrsEfwgZwX69otRU46nNGF5uwy7gb1vpADVO+pDX7dNJvVqokeCUCFpRCiD6Fpom2oWheOMk3TULNkKAosYsA4K5AIlKUhaYFeZnXle9jwXpF2+QpWLbS4xYIWc/uqZuXV2uF0hKXMb972CvjF59svvvzyn0z/xLt4u//P+nd3iOCcC955RwSZC6cpI0Db+MIpj4c8HRUYCWr93P7PDNKssitFCbygigzTiEDr1aZpAqKG4C7O293Zdnf2+Pz8yeXjJ5eXjy8fPV6vt843KqQIIqCAOfP1zZ33rpS5ZffHgRgIIVxeXl5eXhKRCelaMOG9/+abb6x3+tmzZ1999dXLly8vLi5OsWi7n+YHudvt1uv106dPf/GLX/zzf/7P/6P/6D/6Z//sn71+/XoYhhDCIlJnwcd822v4Yt+cBjFXV1cfPnwwq0hr+LQQaqEem1TM0rVUT4YIg6fo1KnokFPq724+vP32zauv37z61bG/8Z7ScD0Ot01stSinksaxlMRSnKN21bHy/nicpmQ14ntgv6Zu1osjzExIMa7W3WqzWp9vN48uztbrLoSQc7q99W+gvL99d9UfmRWQfAzrzebRxSMVeff2nYkHimn2qACwwbpkwfRybxWcAqJzgFK4lJJAC4F4zB4m0gkhkiMfiBTJWvIsJXQKZJ1vACRIpfBxTHd3h6vr25xL23bDMH33/Zurq7tjPx2O4+E47PeH25v9fhj7KQ1cRpDJKqQCnkz+o2kiOV8ADHTPMxummhsTeiUNIX00SGyMcTnG0IQQTec+xIbQpZy6tjVn0N3ubLfbnZ3turZDNADAWybXH4/XV9exiU3wu83aI940t8AspcToCXUajpZkr9rYxrDbrC93Z+dn266LoHJ3c3M47t++fdP3g8MggrmwSFEom0334sWz892Z957QzB3ZgBNhSWUapkOB8PPFaBBARAtzzskyHAJy1luEMzRw0tlanZxr8g/zyAebDMoKoAhGYvI+RC7aDxZFFyK0TonYhKbtFEBEnPchhmBxibDOdn6EWjuaCFEIiIAYHbnoQxN8CIQUYmzadulOUlUuUli8KH0cdwKYfrACsyiQo9rN4JzzQWLwMfgmhtWqLYWRqOQyjkMo4ex8ZyJyuWQ+cD8MjsgFH7xXgJyzMCNRzund23fOh+P+mMYppzQc+2mamIvV+Q3S8IAeKXgH6kMMq64926xDCGY2dLKGq5ojsxSpHiJg0UoNGRhUBaqHvOo9nQBUBVgM17XCFSg7ycoFmT2LChcWVWEERlDQrKUwHMBPhEjkEX0VA0ckdGARJZJp+hAJWrc8zDxNXMoE9rGn1wIAvu/HOkJYhbOwrtebzebs5uauMPfTqIQjJwFV50spzIJIITTOhZzz0I8pJ1Ex/ASRqvmTbXt2fxCRDKKvLCxVQL1HqRwRM3er1Xq9BoBxTADovTfpAFWNMcYYN5vN+fnlxcVljE3Xrb2PhCee7wBkZHU1HXxVRXTOnMGxBjHVVdt2RFQMLmzWGwTMWTI466ti0TRN2XQe6wyVwpwKH47D6zfvcsohhvXG+9jEpgFCRXDeOQzkPYXQtO1MSGIqJMrVMRiWwg065xBURMuc1DzY7ULjm9ahI0fkoYl+E+O2azarVRsDEiCqKCOgc65pYtt2Vj5ABBZJKQ3DOE5pymXMZcyZRZVI2fBzndcUsPoPYJVGqDbwUAOXH+W3/vghhtl8rCWTEn/3fs9KF0+67Xr94sUnL168aUMAzioKoqjoAC0Mr1Gm4cRpKGkSACAPQLMKTcX+rXUQUEVLSqIgKaeuaXe71aPLi93Z9vJ88/jx+tHl5ePLlxcXTy8uLtebs6btkILpHoP1YKLF5J3zhA+3kx8e3vvdbndxcWGe1UuoYQzfm5sbU522juunT59ut9v5oaDMqnRLzSjG+OjRo0ePHllNakHEZD6Wj1hOYJGHsR+KSErp9vb222+/ZWbj38y5xBysnESiHx2KmKTcDnfvb998uLl7/+H9u9ffXH94PQ13ysWFVljubq9VoaRccimZWVhBvHPt1AjoMPacywwwfHTg/acihRC7tlt33fnZ5vnTy8vL89VqPU7j96/ccTiA91lUmAHBafWZAlXvndVd0GrnKJ58165DePryk8+Wbj4AIGuUY0FWh+S9h+BYFETbtsMYGCEpgCgBoioIqvGTmUW0ZMmlFFYDZW9v7z58uH779v04Tk1sxiG9fvP++nq/P46Hfuz7qR+mfkipCAMIAXs1vmoMvmtj7WAiUbBlo4jwA5p8LQraY/h4jF3sdsCDI++8j7EZx2k0siBCE8Ljy8vz83Prp3SIXLJIdUQf+34aBynZEUTvgsPoHcewXXUX52cI0LUNOZ2mIZcCABcXZ+dnm1XXeALlPA08AKdpuLm9ff369fHYO4wimEtRLQplu+2IJKW+iZEQuTCXIlrT45Sn43hou8syGw2qSOaccy7BO3LWXz3T7Uyee94grTHAhC3qFgkqdbk08kVF9Gv4HdpmJYLDmKaURMyuTpCwaRsfnc5aHsbEdcGhojCIsqqRGBx5k3ow+oiQd847MkdqR6i08OjnEY2G0CxJDiLMDYNzsgcoVdaVyCILUe+8966JcbXqREQBc87D0DRdV3bFGsxmGJOLcJk45yyqpRQEMGO1m5sbIjccj1M/CMjd9c37N29ZJI0l5yyFp2HY3931h8M0DADi2raqfBBy0Y94JKbKwyAFuOpnmBZj1dAAMDGfWandzYsvARosobZtEaBWLAfFagHCIgWBAYRICQWhIIwIYqVMJD9DLEBAhnEgVtsuo0zNqiyLR8eyaKl+nCf7vjfj8syFGUSBnjx5Oo1pvz/sb28P45CkAJHzzkVn8i3Ohdi05ML791d3dweZl2aaC0LLFmiXjYZ6VCsWmOm/tWsKAAhpGPqzs7Nh6L9/9f00TpvNZr3erLoOQA/HIwCklLzzm+0Zs848x/D06eM//cXPt9vNcn3CnDMzFEE3h9rgUBFIq4GqkKCw2E336tbtmoiGYSSgpmkRIOUpTalosWlk1dMQPSDuD8df//rrd2dXl48unj3D9Xo35Wl/3DPoitZt17axDSGEEBRgHKaUxpwmLhlUAATNLIQIrWtwQU0rpXAm3oOiFBJuoouNi43r2rhtm3XbbrqusSYLh1ZWR0DnXfBVjthKSyKaUhrGcd/3h37Y98OYShYonIVt4RYURUQgUCBUVGPx1THyoIBRn9kDYtv8MO1BV7OCSlLUE1rMmPmbD7eHsWwu/PNLD1kJAbVAyZIyJ9ZWwJmBHZEDAEYSgFzKVEpWNFN7JZOgAgEFVi0qiOgjqUg/HkWYyK/W7fPnj7/8/JNnz56cn19s1pvd2eXjR082m12MjXOhIkzWfYWgihj8env24vMvCHHZFLEuWB8f1vZvfo2qahK6houoqmlx7vf7X/3qV69fv97tdrvd7uzszFi3hpqIiEnhee8t/viX//Jf/sVf/MW33347DIPhKzaLTsManWt5S41p+YqI9ok3Nzeffvqp8XJMbhjmgCnG2LYtM4dwb6egoEVhP47fvP3+b7/+1TdXH15dvX9//XYYx65pdtvz1WpH6MbpOAz7cRpLHlXVitOFqe+zglqr6g9vVP2EZfEnCj5aU+D52frTT59/+snL84vLw+EgWj5cf1ivNm3cjzKpqGYpw3Q8HBBAVFxwaIr1IiH41Wr19OnLL7/6B//6v/FPttuz++cFCCo8JSjchbg+O9OmMUqN96GNjRJNuWQWNFZVkZLLOKZpnKYp9/147IfDMB5yuu3765u766ubDx+uxmEkoJT4cOzHlHKRXKCwZoZckBWBwAdsvGsa1wTfNXG9arxD5VzSNKa+lGQ2C/MDtbKpghYAzClb/f1+RXbubLNBPldFJPIhlFJymvb7u5vrKwBo4ifrVQugw/F4l2/q0i2MgP0w7O9uvKNnTx63XesJuSRC3W03P/vpT1LKq64lp1VXRrVt4+58Gx0N/WEaD6oqWjLn4/HY931KGQFAkJVVCyAP4/Dhw7th2AcfHZJ1RhUpIooKhdOQjo8e7xf4UFSnKU1p6tqGiNqmNc9qsOasmQsklr6w1LsjIqWySU0S0NogRWs9FEVLEEBL6YnIWbsK1x0FnXetaw2vNJ0y78mhF0ZzRfAhhBhCqOJ75Gppq9o3gcwep/cHEjofTL4NK3UHwEot9wgHWBe5VrYsAoJDBQLnsWKpZIrDKiZ2yCxGIJvyMI7jMI7jMKUppZxSrjrGgOM4HY9HBzQc+/HYZy6g+Ju//uv1q1fMKsxa2MQdxnHIaYptbNpWRErJIlIyG36xzE3bf4sKaiU32xa9bEc2bZd/4DKlRZQJURCURFSEZm1uRc65TKpJoSAwoTgn3ovz9pXI+FC1F8VKV1odr6uAEFqRwM2Fm7l8Y7cbZ2bxae+F3++PpeQq3lWb3pmcd84Xkdv9nQ9+1a2CBmE+9v3t7Z1z4e5u71xze3OHgCBs48CIiIRo/lDzLZu7rS2tx3pTZGn9VkVA5pKmaRiGu5u7vh9KZhEgRAW9vb3NOR8O+2lKKfPZdlc7cQB+8pMvvvj8UwtigndPLtafPD3D0An6osQsbGqPlc4O1beKCJXroxTlIupAWQmpidE8CUQk5ZGVQcA5CjF0q3az2bRNy0WmMTFLmtLV1dXh0KvgarN58uzZ5aNHu91ZcJtAwXkXqMkRxxGnCfM0sSjOD4qIQMXk/T0BmDbByRjyhK3HLriu8U3nV23ctM2qbdZt07RNjMEHc1az16Or6b0LIYRoLvA8TlPbxiYG5+jQj/1Uci4m412JjAAAqDV1N6zMFpdarzkZ9/+tIZmHRyr89vb49qbfnsVpbHd+yplBlVARFEQ454xAjlg4M4tMKtPYH1KeCjOgQ0IkURBUsSDGQEznXds2ROCTC8Fvt2effvLiT3/x8y+/+PTJk8fbzS6E1arbnJ3tQmjvV5llVM7Ts2nbR0+eIqIP4e8Gn+zJmfkRES1KuxbBmCBvSsncGa3eZGYC9mLT3k0pmUrvhw8ffve73/31X//1119/fXNzY+9vofZpuHiKnVq1aAll7E9yzre3t865s7Oz9Xrdtu3pC1S1KhOFsOhS2gQcU77a3/3u9Xd/++1vX19dXe1vj+ORyO/Otrvdo93ZYwR3ONzcgPbDQbQAwJKpyX3lrca0sJSK77+SMeO8i0TkHXVdc3lx9sknL37yky8uHj2+vrl5+/7dZrONsfUuBCcCgkAll/3dnV3a/JiMxk5dt3r2/JN/7R/+m7/8s3+4Xm+XR0NEIJDHBIf+uD/q/oiF0Zt037iHgwG1xl6QwiWlcczDMAz9OAzT8Tgcj/1+HPc5347jfn/c74/7u0OakhnzFqPVgGWnDtArRXLOOWwaWrfUNS54bII2lAhUNIkm5SRcHs4dVQVRBkFQYC6z6839GAshRB+5OoMpqCJocG7Vts45U7XiwglyKYqqVUQFJAZ/eXG+Wa9fPHvexHh5edZ2HQBc7vTp4+cA2MRITpkzS1EVJCVClVJSlZFRozIQrVarGBkhgKIpNgCKDxiCt9EDqAQEBE6dc+CQQnDO46rrlhZrUTUhGxEBRJobf+xXAgAmFW4WAzyHeCpaeI5qhIW1cCmiXAybBxHnfIyBKIQAIbiUTBbFe9Pk8t4RKXDOiawxOoTovbCzPKtt27aJTdM4Z7LLkjMTUds03kciAkXmpYnBxjmZxoHzzlmPgTnQzoTZCnnaS+sMRMTKFJyV8i3/9gu5okYTIjnlcRz7oR7jOI1TSql2OAvA8XjUIsfjYej7zKWUIiqxa1URRFQq07+Gp2XVrnoXgio4542c9KD/dN4U1ei11hxWO9/hBHWYq2Xz1RkvHaqWiu0dVnHBpAQKk0oiLAhCKM6p90IenEPrVECzgiCi+yAGahBjt8foJhUXWqbOciN/uBP5u7u7aRyvb677vi/MRUopfHt32w/DME798S5ET0TM5XA43N3dXV3fAFJh2G7eed8QonBGAO+rjoUzA3jE5dEqqBV5VLWiMFZiXFiloqWUNKb+eLy7vRNV50bnPCEWzldXH/p+IMI3r99+/fU3q27drVZNjKYMvDRar7r4D372PN99yRDGBP2Q7vrh9u5wHEoqzGoTxjppXFVEF0453d7eImB/PDoihxqDQ4yllP4IXIqIIsUYwtnu7MXzZ5v1ljO3sbm42KHCt19/fXNze3V9s1qvf/6LX3z5k5988uKTfHGRu7jZrDZnW+g8qec89SWVnL03F1cEdIjkSL2CqDjU4O5bEwmpa6M5EXaN7xrfNq6N1HgXg2uCb5rYmCiwqw3StfULyTkK1syPrgm+8b71wRN5cqBDGrMDAFWq4A9C3bVRjSEAUnngUBtD54m6IDB0j1JgxZDmXazOjdOjiNz20/fv9tG78dB8eg77Y2IF8s4HRJKcR+akjlh4TEOeek37PPbjmFhVJWtBJAYVwAIERsojxBjCer1er1dN01xcnH/y4pPPPv/sqy8/f/bkSbdaxRBNz9gUpe7Xoh8cIYTd2Zld4RIl/PBlYB1w02TWpK7S6WqEYQw+8xNYWqkBIKUEAPZ90zQhhPV6bQThv/3bv/3P//P//De/+c3d3Z3OTN7ls3Am0Cx5LZwUkiy4sT8xrMXqVvYrm4kWWtXk9RREAwAAZt0P/eurq19//92vvv1mf+jHnJFovW7Xq/Xl+dmTR5c+xMOhCxH78Talw0eI9DxUveWxOLeoeiRy1n7gRSSVBGDYvmzWzaPHFy8/ffHp559uzs4phPPLR6vNhsgDUIiNLVQscre/q08NLdYVkRw0Nu3q0bOXP//ln3/18z9tV6vlXhGRKkzjdPxwffzdNzSN2kQlUmMgmjquQsk8pTymPEzjME3TmKZxGsdpmtI05YklIU0CuXDO1jA+z4AlCUJAUu8hNC7G2ITQNtQ16IlLHsuQ+7EQineoxr0xIXzTPUEhAhFAQEEwrf0FvqyPWNQk7Erlb2hOqYnxyeNHhEiEF+fnXdsp6ApEdQv1JtkuYM2ySEqOKATy3hjxHtQDmJycKBRQURDmPE5jmvppOKY0llJSKVPJqRSTfSJ0dWUARVJys66ObUVk8v/iiHwI5ECBX3z6k9Nmi9rcryp1pZ+TBNvVaQl5CdyM4Nda8axprKLGSQTw6BBBRAjI+2BSnbnkcehLKc5TjLENPgbnfVArdxA1MbQxtk2jwjb6V127WrVt18YYvXcKyEWsiEnoATSn3A+j9/5e5daYv8GHOYixkq9VgK3maV1XdA9V68ytWCiINZ9XtoGEhIje2WrWNLFbdTmlKeWU85RzntKYJhPS3O/30zAeDwfrtE85jdOIRLB41amKWUt5z4ju+jYV6VZTjMEhDdMkp60bhObO6skb19pOUUBsjJ/McbQ/qE8U0AiFaq2/isYHyqjsVIAyhqIkVmwgp0QGmNlWAdXQBHTmpS1NJA82FT2B+e9/iSf/uz+86XVVFQmuQkwxNhcXj5zzh0PrHO3OL72tSuRjs1Kg1WrVNJ33kRB1lh/wzi9SFstaWYMYrRwGWLL8ucW/lv8LR980sd1ud4QY26Ztm65rmYtzfhhGE70hi4ZD8D6So9PMsmv9V58/wuFlkTAmPR7TzaH/cLO/ujveHIbjmFLiLKpqfQygooJauBz7HgSmMYXgc0rWrGu18jn0FyQXQujadrvZoEAT4qptj8fD1fv3333//Yf372PbASgot+SjiASUY0vl3LedChKqI1RyhqZavbcujqawMeX1ZpATLfmmiV3XtiF0Teha38bQeB8cOUKH6B1F75oYvCetVUsLRxAJfX0IDkAjkTcKHmspmqYyxDRF5mI9H7TML9uNBSqxRUQUrHm+sjRtjfwR2sjfidGIwJD4+pji+94Dr8kPSYCoWzePnmx35xeNc4X59nhIRWLTlgb6u4Gzt+KP6Wc6j4DCkl2gVbcKwYPIquseP3ny6PLy/OL8yaPHz549f/bs6dPHj7ebDWLtZoJZaGoZjT88Q6u5wNyE/Hdci87Ccdb+AzNtyBa4pRd68VkkIvv+lMtyPB6nabq6unr79u1333339u3bBTg5rRMtk2jBY+7v98lVLFHUggYt+nuqat8vcNHpm6hqLmVIaT9Nx5QSC5KLMa5Xm93u7OnjR59/+kls2pvrW4BydfVm6I+5ZETwMXgXTMLGTN+ttQSdNZuQafMFF4JvRKQfjjlPKtLEYJJy3gdyAZFEIGdOqZTCbbd++vT5at3lnG9urr799vc5TwCI5LC2yCkgbnbnj54+e/T0xdn5xYMOMEIBSDnf3dwdfvfteHPL3jOiFhbWBXwsWcaUx5yHPI15buJL2YI9BmTyjKTVJb16EyJYX4/zHr33IfomhqapTgveqcOiJeWp5zKBluARmwjkbT+zMsmcVdKcd+qcxH/MJLPlsv6XxSFu1hvv/dl2C4ir1SoEvxTpzeBhCSO992SSZIoKxSatw0DUAFiLilUARUFKSeM4TFOfxlVOYxHOhc0m1ARyiVDB+NQAULkQDtDyaaRqNWQQCzlE5EeXjxfFXhurijOtUJjEVT421YouLMULgCVO1KWhSwHUgRejhmy6dQxhtigwbpzmnIahs8pRCKFpYowxhAioxizxhDFGK2l1becI2yZ2q3a97pq2bRpragEi531AQGEex3F/OG63a+fcyYP54ZIwFzpmPkWNS+5DlhmzuH/9yc4suvBAaNZTkKbpmAtLZuacx5SGoT8e+8P+wKU0bYOENqNr1xjqsiiYHp0LAclllmnK6JKqeHK5lI8WN5w7gW3DnoOFe4x6eSoP60kVwAeZk1hAQGLSjCCk7EjAyVILQrKbg0vwUQluPwyUfuzQhfz9Bw/vvG86uvR+u+O5AVxn5cE85QmYyRyG5tL8TEz0VfAFFarA84OVd07dlxSjDln7Z5WtrDtknbY6/9PuJjkEAOM6298REiI570x44PNPX3ZzNtZG/9nzsyY/UWxZXMrcj+W2T2+v737/6v3rt9fvr66PQ1bAIjokLlIAuKjDnECwsALwfn8cpqQgtXOvxlmgoqVwSolLXjdtEx0I52kajsc8jt6Rcn77+vtV1758/GzXNMzTeK23H141221z8ZjiumtbbdA5tE2lFM3WDz5N/bG/ub0TpDSz+hEpxKbtVm0MbQxt62OoFUW0xypi5VhTXTjd7cB2Q6z2rQFAJW66NhfOBYrxuABVAFM+jWorRx0qalYYBQFBxag7elKhRJg7PIyWhTCvcPiD8aYARXEosJ/0boBjoiyegju/XP3kq2dffPHl5Wp3PBz++m/+5jgOF48eK8CHD9ur9zdXHw7MsNms1uvVetMi6XHqm7Z58ezFqmvKmFZd+/zF8+fPnz9/9ny72cbYxBCcDwB13Zl3d4BZH+iHh538gjH8HTAM3Gf8mlJa9FoW3gnNMnSL1gtYa0opAJBzNv2YGKOVlqZpWsAbmFfBU8jkNKiyb9zs/mj/tATAAqlpmvq+Px6PTdPoCXRmBOE5Hz6JYxCI0MfQbbbb3UXTJlCNwV/szp5cXrx8+fxPfv7Ttmlfff86T8c3m/PhMBTl0MTzi4uuWyEF70IMjXfBkUfDlBGsQkEU2rbdrjeqcnN7fTzcjsMhOEwpXV/ffHh3vd18OB7S69fvvvv++7dv3x37/uLy0b/1P/mfffLZZ8f+7q//5q9u9rfX7wYAVSnL0uscXT59cvn0KQY3lSLqlzFmQ7ew3O6PX//m2w/RT+QKotUtZggFVJFVi2hGFbGt0uijTglUUZGWMoHKUgtAT64Nvuua9arZrLu28d6hCqc0Tnk6TkPKKaURVIN35BqgiC6ACggLA7PgrEVjw8ihoILpO6HUZh0AQARnLceEqqpOXPBN1wksa+CyRyLM5ekZhFGF6q+IgIB+jg9sI5W6VVVoSYlo1bVt42TdihSTRiuApnRsLHtDGlSVheuaA+Stv6qu05XVoCqqObh73pV1UJtkQJHChQsVw3tRq4wuzDsC3he4ZwZEZefZQufXq/bJo8uz7bYxDToEYc55yjlNZi9jXcj1S0QiVR2n6XC4U5aubbu2ads2BEdIbRO3Z+uuWzVtG0J0zgqeTgFKLuMw7A+H84tHMdybWVq8iypCaLp7hqos0cA8hU9xl2UVMo7aydqiIConFIK6hjvnyLkA0Kiq6rpw2W7HcTycHY/HfhyGaZrYhMBYiigvLaEW1NqFWP04Bh8COQNOfhCCYY1jHpzoj7wEPwrEZg6LwSoAhObKaZ7DdfGptZ97rB4BK2V2viE/utKaOPACTeqDU5sZmx8RewFN29abb6/cV/hIQVlESilcEEy1yXvvCUlhrpnNMwoJTeWs0qJgDtOXQfkw8loW5/mX9bbYiVpDPtTxQXNBcY5j586984uLpcjqHG7WoexaoBYoiGgWGDM82W92Z83j8+7N23joJ4WQWA59Og7Tvp+GkUtmszURgDEVYgEQqwgYzomAVrPs+76NkUSECxEdj0ezp1mvVkjInO9ub9+8eeNFVpC7SO26WQtvmnWEKArMypyHYTgcDn3fj6N1+4+H/eHq6koAx7EqkBJRE+Oq7bomdE1smxCDc/erG4ER+038E8m5e1+1uYRpQQwAUmDXxNA1zbqTwmKmdzkzAMgJSapWkVBZlYUJuRQDu031BwCq1DdC1Te1KB4dgd4DCT8yLlVZZMw8JO4TOlqdP34GelytY9f5x4936y68/r5rGvflZ5/Etnt3efnh8u7q6ggKFxfb3dl6e7ZGp8ehb2Lz7NnzVRunYWxDePTk8ZPHT548fno6ruYR/3ejKh+fIfwBnOb0OEVclie1hEGquvQT2SsNC7HowVgypRRDa0z+4eLiwlqZbGGCuf/oo1NagJlFvXeJbwzdsXL43d2drV0AMNd2rXh4f5xcC4TgH11c/ukvfkmAh/1+GvqcxrP1+smTJ5+8fPnTr37S+FhSev163cRmtVrHtl1t1mfn5223IgoIZIkHzgUA0VI4RxfXm+2TJ88+++yzpmn2d7eHw03f74/7m8Pt9Yfru9/97tsxadetX7158+tf//bt+/dE9PT5i1/+2T/82S/+9NjvQ7P6za9+nft+mgZmnm97ePLk+Wef/uTp4xfAOA2j8GrZ9QSUQYpIP6b34/gGYCRXkGrZn+7XXUFSQCGTh8E5Cp8jA8NdQADBDI/JueB9G0IX46qNqy6uuugdqJTEU0mHaRyGaUq5WGEFyaHzQEFNGaw+ILnHMNHWsGWwfYzEGPHcISoQEDoDbqy5Zwm45yepqAjLW8+YD2itZcw/Vi0AiHMlX0HMVJWIHAXwznpsFVCIFLTUzlBZvjKbSyKQosPq31hHlDV+iqqA8IP9zntP3tuqzsLEpKjOJg0+mHE43xPbVLVq9Wpdh8kAIatygxlrItgW4XxoCH0MMYTgvI8hxtgE75HcOI6owqWsVqvddnNxft62UUV98OtV17ZNiNH76L31zThV5Vymrmvbbr3dngo+zQ7bdLK51/WTCE2y1dJ2rFQ2gB+GDsukBhMigZOJqTX1AAAiZyPFe9XYNLFpmvV6PaUp5VzBXtYiUqTOPQCdfZcdLho8PhCBMH/caXVy6HKT/8CBDy9D4QchESIgGSZkMbTOCu8Ay636V6yuH5/Vj9y6j8MXO7ytERbOAxjvaIZSTInY+cYygJlO+8PTqeGVgtTqdcXSa1UQAH6wn9wDNvc/0SWIQQRC0joa5sxhvhLDeEvhku/Fu1SVs+ScwSG6AoQ+0LYJbbvarf0Xz3c3t0/HlBVozHw4ju+uDl+/un717u76+jgwk/eATgFKAVW2EkAIXlXJkZEh9nd7FTmGQxNDCKHv+zEnF8P57iyEkEtR0K+/+WZ/c/142z692D3uGsWQi+ZhnMbxeOz3+7vb29vr6+v9fn889sdhHKbpeDjub+8o+GHm9zjEdQxnXdM0oWvaVdfG4E0KylIutT7wLEhKCCY4vlidaa3+ICFUoTzvYgxd5NIpASnrOCVVKFIr6lRLuCAILJK5EAKpFBWpSjD1IdnzJyBPSM6Rc+gIAU0qf05FHqzRaLpIkpL4PsOu3X350z9Lw/vbm9vf6+9bvyIgDM1Zt3754uXF+aOnT1M/5GGUEPyjy9XZtutWDQFMaSSktuscwjRNBNC0bdd2Iky0oC982k0FMPcI/tjovx9Pf2e96XTQxhibprH2oiXgsDFvul4Wxxj/FwAWgzCLUZagX1W7rvvss8+22+27d+9sSJRSDGUxbMZwFxGxWGTBaU6nz/KTaZo+fPjAzM3JYX9u8/GjOi8hdbH54rPP/t1/+9/+81/+8vvvXr36/ttX333rHT17+uKTTz794ssvUeG7775Hh4LSds3LTz/d7nYKCM55F9I4Xd9eHY/7nKbCRUFSnvr+eLbb/exnf/aT3Vc/+8Uvn794WXJKaUrT8PXvfv1f/mf/6dsP7+Qv/+a3v38dm/b91ft/+Zd/dX1zsz07/+yzL54///z585+knKZe/tH/4LeU5btvf3c47EMIq/V6t7v46qtf/uLLP3958SkOOl4f5WkD1U3QfOe5CBfBgsBIgg5sVCjgfX5ck0cCD9UVvY4CVEBSR0ykZFwqTzE0Tdd0bbvpVm0M3vqzlVOahqE33e2UkgACYggxhtA0TQgRkUw+uxQu5dTyoVIYLfxUuVeamEcj2M8rwEJUra+Zme/LE0trIACI8jzrK5BdG0TlfmtUY+LUvNYSE1FQrmlkZcIpqCDb38yUYqhBnQCKqAqLMCgKzpBOFdQVzsyp3aR7XNOiT+eRDN/Squ5pWmI0A6T1nBUBxXpkdF716+kis/bHw1vhu5ub4EO15TDHSCJz1FVh4ULkJTICEmCI5J3rmhYb3Z5tLy8vnj15suo6ESEE7z05UrWZRQiIVkZzrmkaR3613izlJEviwKStrK3pZFmg2tOCiPfS2KeJw4xl3Ic+Neec53ItRtinVO3FumkTQPDerV23anmRexMTY9EaxGh9EFabwvo/RCIVKTl1bXPPPsEKHi3DZvnmowVQT7Sp5pO0go3aUwN7dAhQZQ7wAVZSkcAfD2J+GDlZ4ca07H50Ka7D7WF06C1rnHEUK43hPPKXmOWB9NmPZrgy67qe5oj3H/WDP1lIiKeX8OCqARCxiiE+BOXsUxYLtPmWADNzyYiEJCrq0AWi2PpV055v4qNdm4sAUGYZx/z2+rher1Zt87XqlfZJsIgRACtv3jnvnKqq7QTTNN0d7lKegnPBB+vdH6aJiFzwbdt65lTK67dvr96/u92t9vuLfZp2Y25vB3V+6Pv9fn97e3t7e3t3d2cdjCmXqZTj8XhzdfXhw2eLgQ4hNN51wccQ2hi6pokxkkULAABqDkOlCGKeu50dOnQVrwOcl8oq7uQohtB1qkAe3ZRK8IadogBUJjZVWi/WRkcVJ6qKckrIQLUBgYQmsu0InSMA79DRj1dtCJSAAUoq+aafGu+fPPoM8vbt+69z1g+3I5Ev2K26dded73aPVhvKjLlQ04TLy2a9Dp6Q5jGGiKY/ASLGJNGZ7gonc/Ikivrv+cCHh80IK79aIwbOpqc4l5+Wus+yCgBAjHG73aqqWT8afyXGqKoWDD0M8R9gXXhiRGBfzU1MVc0MwfqnaHa9frCgzneHyO3Ozter9ZPHTy4vH59ttsH5lKb1eut9RKTCpR/HQ98P05EiffLpp0+fv0yFgbCJzf72dpz665t3H67ejOOgoDlPfX8U4KYJjx8/fvbixctPPxVhKcxciNzXv/v9Yd+/e3f95vV7cn5/vLu9uQ0+fPL8009ffN7GFTA68Gfr85/95E9KP6yabn93G2Ncr9e7i8svPv/qfHMGOd29f9P5qfxkDTAbJoMUkKKSQVmBEcV8BgFs61atNRWowpNGvrByiCKQc+gdxIAxwCyB64IPoQlNpC6Ic5lUC5cppWkaDn0/DMMwDiLinPfB+gKjdYHVqGPec0ROpKAq4wPMKgZ+QJc2iGOemnNKqlq7S+adqP5sCYEerJD1k5b3rBukVihmCWLs9QIyY/Vwv9ouO2O1wqsXYroqIAAnwuxijcIlTVM+JYATOSI/g8c1TDAinjE7bSO1J1SbbWGxULrP+RXqGYzmXeAcVYkRdM4FbzBMNKWXEMIwjE3ThuARoJQc/Bx2qCKAI3ImbAZorEcrxizVHkdEEcND9ALNl8L7EKLh3KfJjwUxy251+iCWXAPvGbR/8Did1FBrFEhE3owXAU8IblWRbo4vwDTfZ89qk89AYU4OmhB+dHE+vYS/46xgBpvnMWBuFB+/BuenhXMQMV/E3+Nh7RVAUMs4cMIPgB9g2nCSSsICwJy88nSh/OhhfHT8od/+MMW8n1AVLQU7yY9k1FVVpCizC2KGj1Kt1b0qgkD0Eqp2jIdNt92udmfb3bZzWjzoh7vxOGatFWtEnBvVLaURnaZJRYZh8Db6yYlIKTnE2I+DFYAg69XN9dj3797g77v27Hdnm/Pz1dkl+jCOw1h756ozn2nskm9KGpUz53Em0FldHLzDQOgdeu9C8CGYxDSqaik5Z86lsCWfHKAJ2EQXg/nB2fuwQClcmIkoxmBalwgYQq8AWaQIaK09Wes5AQGiACs4Ja8IiLZm1UUTlyKnOeSp3QsQB+rQug1UT2hbBOARPCqhpDK9vykB1892T87PLrrVrh+PV/s05klgs/a7sbhUIMbGB+8yGMbLXJEJPxcxQdWhA0/1E04ifV3A6Pkc9GTR/0Po7jLqfpgcfDRoU0rTNJ2+UmcOmUEm1qZk0YMteaWU4/G4VJqWVy5uAIjYtq3NHesqSimN42hDZfkURLSd1fjCixPT8oKc836/t5+cnZ0tgjELLeYhyQZYRAFDbDbbsydPn3JmZrm9uWYp7z9c//6b76Zp+v33r16/f3N1+2F3cfHy00/+5Bd/puhCE7eb9bt3b1jz7d3VN9/e3d3dLfsNkXv+/MXLly9Xqwa0lJSYGRQ36+3Pv/oTndJf/9VfXF9fMYBIOdusHz9++suf/fLTp5+lQ//6m98z5/G4f/b4afyzf/TJ05fj0HvvfAxt23ar1Tjcfvfd3TAOii9TegGwsYdqcF8GzaAFkAFMwQztwbPO+2HNQU2P3uFcpXMuBNdFWne07lzXNsGTMLCFYGk6DMVcPlh4zGVKZciplMKq1aQmBO+DJfeAlQu13PMHESSiKdKiSM2nT9xTsbLaTEHYQJY6fJf9HGZOoT5Q26q1mI8+Du/LnTJvfbb/VRTIJBXqBmVxTCXC3L8e7n+sKrIY8umCAYhwKeaddf/Rla7qEFEUTMsFUcmyLEU368krgIlmkSxTVtmAIWOeCSqAU2dJfhHRYhUuw5LAkz0CT85750KVzKpU31XXAQKqlpzWXRdjiDHG2JD3NmK9995plQiBGe4/2QpnuMUZ18QRIajNaagEjAo12Q+tE+X0mBEJWHwo4GHoMCO7D1YqnKtuaHQRqMUaBDXwneh+sRWZQS0rGioCApMQYZj3s/tRUb3v9IeAwumOf7qznx5L6AkmgKZqdMoHKPzDwOGjdz79uNOfnMYGH73y46kEAAD+o7/86Pjo7f7u9R1+DCD6V77+h79a3uHBa37w0pOS5PwTVUQlNKEhMlo812Ygc05BInAWFkQXgwct0/EQHZ1d9TeHPCSZivl9zwXQOrur1BKZJ10dhqCgLcA4TcF7R5hS6sdhfzj0WG72rru7bT9cr7c35EMuU07J5NEAoOtWbdsG5zIXAvEkjvT0YjyZe66Z0yvUTmohdNVZFkSkCLNa/ilBpIg0IVRfW1UoLGmqaiuq4Ai9Q+fUOTBzMq8WxCDV5MYBAat6wlCIg69OkidBzMmdryCqQ3Qg64ZWTWhsdj885p57LVwOJd1Gd3MsbVy33VOg/qa/ypJCiBS2E/upYNt6R0FZEECKZIDCBUCjc24OV4zCBmSAIZ4EJwgf13D/1cfSPfR3v0znDiCLUU4Hqv3TKL1LHQdnZsyCoOgMw9gnppRSSohoPdt2Ama1gTNreFliPqL9nh4nFC6wqpaNtAWJWYKn+2sBMBQACUNodrsLUHQuvH796rtvf//m7Xskdzwef/3b3759/55Ftpvti5effPnlV+hC0zSrVbdZb6/eX3149/67b343DckuKvjw7PHLJ4+fbVfbMqX99e00jlwYgXgsF5vd88cvPly8lalkZSJtWv/kydOnTx430e1v3+wPb6Uk4QLKm61H3ObcIgIQEBHrcL2/Gca+H/bddsrlHy+Xw6AZJIFkEKnDAmyhJjBrL8N4rUkYiYBIyUghDp1H76EN0ARtnEYnDrXYFMsppylNA0sBY85lySKJTSYMHS0iTXWuKksuJedSyqK5rPerGWJl+doT+SESs9SKHqzX8xs8+Icyz8j3SePgD9d6/TE40HiHtgnLDLTASc79cOldNnddghiofF4VWczSH/J7atmiLlhGGiABRCC7+1hbkioF5n4DVJ2XGpsD5BzObA8AYAUWLUUtDnQohdV7cY6XZhgA9c51XTt23TAOh/1d28SuabquWkP6GC2CCSGG4L2vWkoWCyJ5efh0Zmfc07rMvRPIfOft7H98p8Z59zhdb34Y0CxFqPthMBuGos40cEQCDSAOQKtmNSAICWN1SQQAKAq9wsdebn8vx8n6+d8X+KJ/5z8BAMDPEWLFVu9DqB/ETX8oOvkogluO0yl0GtPBw7Duo9csi/Xy+mUmwZJtINYdwju65/waz9QRefLBu6gIgCSqZZZjQBBHWFXnQSPx4zP/y6+eP3l8fnWbPtyOH+6ON/vhcJjujuOxH6Yx5VJYRAUVQIARUZQIrQkZRAoClK5LKWkp/ZhEBb0zWG0qLOPEdPTeG9xqrZw2MkMIzlHfDyUNTXSrNpKbr4XQWQTjkAhUcsnKBYvD4r2VXYWLShbhoqCMJU3TVHMRH7xzCAAqmlMuaoxrVKRSCvNEUNYtica6ptQWTeeM869auNr3nObu9TbfDyXDR9EhIugq0m7drLrGk8PT/jms2gCCKKCssu/7333/eujPXjw6j3F9tnUNCwCFGLP4KVtcpShFRMbBkUMBRQT16lAVwSF5QqdIAYhgbsysw+D+NBee4Mfn/+PHvzL+tqXKgDQr9ywtCQuF1s3HsrTJ7Gc0TRMAGFXQfjtNk+E6MUacCb/2+iUSMvTFkJvD4WAAjH26acOoqqklNU3Tdd16vV6tVgBQSjE2H84x7wPkEkAUC2vhgghtt4qhPTu78CF+++2337168+rN25vb69/+9tc3d1fr9dmL5589e/ry2ZPniMGYg+cb+flP/kF/O169uWr914jQNO3ZdvfFT7663D2RrB9ef0DFnBKXAgJcSpny2Xr385/+8uWzT4pkdBIbjE0MQQ7H13zMrElLFskKkrlMaSzFXIeElYuUlPM0DcNweHRsMk/ztWhGnUAm5axkIpLobFgLAiDWfuBqMuyJnFoxYm7oUJUCwDnxPunxgDg35rCYteEkKkAogKyoimZiC0iuNmlWREFYWDilnDMXWRKhk/K6pbFilokMqvpjvg1IVSDHQo4lDFqGor3LnPc/WDmh8moeYAkWgi/Rz33vPYACsN7P948yzCU+rtcoavot9V9LqmdtYD8+3+YIXlUrjVkJUc24elYRmS/M/kIt6XQ+eOccklkmBe+cc6BWNSEiFgYAdc7F4L0LteaKwMymx9wP/a1z3rvgzbM3tG3TtU3brmPT+FoGjEZ3M731uTceny8qTVoFa0rmjCykVAWzHtxnywdF0DjIM/qFiLA0Ls19Knbj77fBpST+YM0BsOKfq70yYEtqbetSIUkEouqtXhq4dJwCF5AKc43oBJ3T+yR5Hn96Px4/DqH0o+9Pf0JwL2dsAGcljIM1VBsMfoLGnCAxdSwYZWn+/j4sNCj3BE6fOe/zr3VWfDo5fB1DhDD3NekfCF8+ClaWCzvNYvUHml2nr/9DB56A80sMdP/b+erwFJlCnCX1Hn6K/ZycQ6cArKrKduG20VmzoGVpBLxuyT/e7Hab54PcHdKH2/3NfrjdTzd3/e3d8XAchyFNOeesmVVECkuRwixSvX6gFJnGCVRQYKwSHSoARVWYyzRlQXIOxHIVUVUiHMfU9332bhyOyrmLYdV2C1HUObfZdIhgPgKL0HUFD23lRUcELA5BcVZDrtsbgWqt2YJlogCICqTeYxP9btsi7i5zgXqrbXrQTKqDRUzZ0KbTWwwAJwMYYSbnRU/rxp+frePHBs6mSMnMZhrO48QfuDiE880mxqaJHakyIyBOifsxjWOmCEavHge2chc5ElGHwCoE7NH5QFHRB3R0GrR8/N1/v8eSxS5TwGpDp7HCUuhZip4y82MWWMWiEws7FibN0gU9a4nery9ElFJyzlmUs5yDhVMWGK1Wq/V6vdlsdrtdjHF+Ylh1nEP4qEPBfF5sQHrnY+Pbdn1xcTg7u/j++1fv3797/+HdsR+auHr+7Nnnn3y1arZSQCWLZmaZhtTG1fMnL37+01+uuy2hxhi3292T50+Dw8PdlYhw4ZwmzlmYVYQICrNveeVDEUXHPijgeOTbPE1TGQpPWliFFZWVM9f2C7aCmLCI5Dz142FIt1VEGEAAEkACKA7QUxvjJjTgjU9aQKV2dxroQkQOkGrFCRBBSVmZGUS4SspUoLxWJEVYi6qhoSRAAM6Colr7ecCpN7s1Pg0ITgePApjIqu1+H63INVAuqeIddbiJ1NxaQJetz1bO+pyXT4f70gYLmz5F/clS61nC6yWIsabr5ZzrQlvHCcCp+gCB3SJrU0UjLasCOAD3QFjlFLWY32o+SWXT7L/f5WhBVOdhb4IF3gh8roqwkPUhuBoxeHsb51wMwTu/tKDnnHJCEWHhNE0AZngC3lEIvokxxi400fvKZAqVlB1CCM7AHoGf/MkvFlloETGatnOsqiTWMq0P5+P9DnXy6HX+Hy43QB8ecL9L2veVLDSDdw/jSFXzwLNBhPZfQAV1IsoCIpUUNq/8P4Iy/3dDq/+VB85f9eSf/18f/22QGEfVrApqd9EcKAAa1WkuydWvp/UznQuoH73p8lA/euUPI77lQDy5+PsM4KSZcJHvnCt+s5bs/GIEqek+1Ni+LtIGKZNzVV8STBUOVBQQoInYNO58455ftmNqp4n7xIdjvr0bbvfj/jjcHca7w3gccip66Mf317eHMWPVTvYKejz0Qw+qWoTzXIRiACLUImPKto2DaTwQknPCkvMUgw8kMbiuW61W68VYJHj/5PHl+Vm5V/pBBJDTWFJVFdXg19N0x6bwEgZqqIum3b1WddU157v1c2HVGTDR+4LM8nQ+HvXzjz96cAq2rCMhRsIm+LaJD5YtFS5TzgORN90yJsjIWVKRLFJAKzpdCgxD3ntpPUnXeucEdJgmFiDfxBBAoYCmlEWEFEN067VvWx89grOh+t/FsfK/+4Fzwchak5bM1YIPiydU1fR+8KH/kZz4S9tvu64zk8j9fj+Oo/1t27ZN05ydnXVd570XEdPrNM/q1WplRBk58R8wcAgAQght2242GwNjrESFiN5782/abO67LWaBhJqB5CQMhZBC6D799Ivjsd/v947Co4sn5+cXP/vqF19+8bM8wqtvXqc05lIKc8klp8kh/uyrn336yQtQBhQicpH64f0wvVdkLjlNQ05TKYk5C6gBKoWzSFYq5BiJATlLTmUqhbWYAilVNAEMPbJl2ziLbNYty3MRgElhAlLv21V7sTnr2pa8F9VSJjb4QdXYKqpm5zqxFC6F70MWxSpNQKBzL1jdlIABARxa27NhvFop9TTPtnn7n6chAYpNxwWqmIMYWgKah71JAKo6TWPfD7kwAHrvVIG53vJFIlZEEWjhE1sWutStEGc6+Tw4cSabn35YPTWoEYSCEuFS7rS1CmYsvPLKiVC1+r9bnXvhWzGJg9OuvZrizPpv80nWGOyjjKMS6ealef4L50wEzoSXREQBRYmAqOpmARAqeO9iCKbzbu9MhMIZUQuzmuE2F1XNmUtO0zgR9WTagKYN6iqb2yapMLPoP/rH/2Z9LqLF3CeEhdlkjGeKZlVFUQUTLMW6S4JJbi6JuaqKmGcHLijIA4RuiRw/wmO0xp0PghjAAkqCDM4WYQVhcuKDA0dSIY+kMBkh6f49dQFj9H63vT8HeliaXMa21n13fp9l+ADivMsscTT8YGM6eeBkl2o0H7qPeGrH08mosHN4EEs8uBQj9gJU1QALCuYPQ8CKE+Gyjc6N1kutDqA+yIVCD7XjVE8fw2kY9CAXvA9rcC4YmQAQAuiscYfLZUgte1m+W8oDFcKa8auwCltLjYiAKIECoiNU1VJVcQ1zsHxCHan36JA2rRd2mXXaNcNFexzSYUj743h7GI99ngp8uDu2Dby7PhzHkrKKgLLmUqpbWV2Vlt5GhCrohwRmu+OdaRuTIwJH0DVN24QYohnD2pU45zbrTrq5LK2nz3a53nojcfYGn+9nvSUncN7J8EKoC0v1DK2PTmfEZXk6J/85zcd+JIhRqPOFVBftu5NHD8FD4yGieqTofPTYtBSis/ZYIiAGUClZBhACRta8ybuzFQAehyllcU5jkNIGBJmmzMKo0MTqiitBg3fek/OIDv6+j6VLaNkVLJIAgFOo4zQctBe3bQsPFwUAMEFx0xziSsGO2+2267oYoxWYxnE08P/y8jKlZGDMUktadiaLV+J8LNCLvedmszk7O1uiKGbuD8PtzVD5DNk6DqTvB0Rarzdnu20pEyHsdhcX5xeE+O7dq3dvZZz6lCdzZgYVRAHU0DGCsGaWPKYp9X3hJCjCJaex5GR+PaIqyAJSTMEVCkAGEiQV4MKFCyi7KpBbl+6FuEoOyTviUnJJrPdzn1X7nI+QskRA9Q6iAyTbXifNieemZUXT4i4sqbB5BnMd+6iIHshbnchKZlTVlqx5tUpZVXo7FCBBICFk50QcizhHhCQiKafMwnPD4wy7zBwURBXVnHNKoA/IsCKSU57GMWcGRAkeEMzj2PjZYrCmKCEFaRDBdu45ShJVRTDE2RCcGsTMAY3cT26cv9ZvaJngZEKu5ADUXJxmPTeHprUMYK09vGy6WtmIy0zRuWvP6mIG99b9GsSEUkh1lovFmdIIMpt8k4g1tqGdniiRIIAFlAY/LztbPQ2o+Fqtdi87n5GAhK04aVe5SHhibR2qYtkiUnI+v7hcBEhlptuH4BFqHWxWHF7KQyeRiDXBAYCJaM2fAdZnDnWjnU/7fo+bwYKTnRxP3/hBEGNFTwKwLN+eQYYZtAIAgMLSMye+Dz7suaScw9wPCw8Dl1OoYgEpdO5DW2Lv+bezj9JJKEZzi8fJey5QDSASUK0e4Bzl1sDuPohRm3j3105kLaAP933wOWUbgKoqrKqmivtgz6w3Dmoh4xQM+OhE7Y9s6z0dzQukOYsEVZ90wxJn8T+AewRTwRr4wJQdQeX+ylShMOecxnG6x4FUVbJK4uIRVdgSBtFZwpZQWFjKBADqLNUSFimpFIDiqiuHhcpeade6sxbzrs0lTnmVik6M72+Gi63/3Xfvv/3+w/XdmBiyVLEqVQUVkyuvl6vkKm3MN6EJTYxNBS5jCD6E6H30jkCrjP39/ldTI+foFI2Gjw/DaVDh73jNx09nRtngHvxa7iDMnJIfHrgMhx/+Ai0egSW7OnkPT3S2DpebhoC8920T2iZ0q3C27kKIgM47BJCUhVkGKTml434Y+pV36ILfH8dxYgSOLo1tRAIurCAAWFiD96g4EcRIXRcjODR5nL+fY4k/bAYsfUaIaFHFZrMxzGNZEZalZ4lpTpFL+0Mzh7+7uzMjaziJk0wL2Dln779arZj59vaWmc1X0oIhqi2s8wY3C8MsfVLe+67rLi8vlyAmp/zm9bvXr65FuZSSp4lzkjKknKeUchqePL3cnbcqgoD9eNV/f6XKpaRpGlOZSplEC2BRZKCCxM4DQCmSi2QxxUTL9Kpzjs7IBQgYYYMLcylJRGzJqaEEI4CbBWBAhbkIAnrnHKHzKFKmNKYyKdTWHWa5O/bXwHnox9YPHlMeRDWXPFYcqDBbAFH3eZ5bU0FnwTwEQAYqQM4qGQuX2u4tItR6FBIpgu04AECo3nhR3mhtKppzziyis+jK7B13T+MVhVzgeATQYRj4ZKtg5lJyqQxZBVBmu0vgyFZORbRmWxZmLhnmUG9Be+qWLSwzh0BFCxu5G7G2Zpmp+xwLVARjSVyWQVsZLwpzzdmiCgAQYFXLH6u1gPCySrDIME6HYx9j8K7G0zWrMm4+LdW4OkNsIIipJ3gnzFyKGRY57wM5X41yzY2c5/CQHTkRMes+C0zm5j9OKXHOyqWmuCxVKVhRZk8FNUy7roBYuEzjeHtzwzMnhkWGvj8ejoTEzDYa6ySfN0W7W6LCbOrGtknDTNYkU2EupdIUDQFbVoMFrYc5MJpdEU9SyR+u9afRGwjgsgjaX2kqMkxpSFlOAuVxHI/Ho6rGUOvOS+CyBH+1J41tp1aLRGFGDmt4cRJkLAN4ebcHsF8dV3PgjPdXN0N1cz2gfvn4/Yko5dz3/TiNp6uof/78qf2BStUJI5gjTPv5SfQHSwwC9x/zw0PlY0hqKS0tf704ai7hGJ7gByeIwhzE1Clau9OKcCnl0aOLMMtC+9CePfkpIjnfOOdtRIoomJCzGXswW2QdYyAiUDNDz2oW6QiiAsb/RYohkHcWrYsqK2bG20N6+tnNF6+vv3v14XrfpwyZjS2uqmwNZjPKWJt3vHMhhiY2IVZJbG+9mJWwhiI8TdOXP/1qNVso3N+Ze3RxuTc/cuCPfvvf5njw8tmD6cePPxjE3Mc9JzXd5Vi18U+/eNp6rwre+RhD04TY+FUbt7FrvPeOhLmfSilFsYAIctmuYrcK3vszbmNkVOfJx2gq7aSggNgE1zTOe5rLDKf36u/laJrmxYsXFhwAwDRNqupmDeUY49nZmdFZfjSIOc1s5nyrFqvHcTwcDhbE2IGzAeQpUWaz2ajqfr9nZlOCWaY3zrZN1pcks+CefZD3frVaPXv2rGkaOzEi7Fq/WQdRx0wlQskmzecUVkg7cM8AWFhKzqMZJPKUcy45FS4s6T6IwYJOZn+rIso1p5pR3xkxNJUMAKikq1KsNd2cdE0zxJBYWgajsnJhC2LIARIqcCn5T776s65b27W02+0X//hfHwPKbp23q7FtsqsKCKmkkhMXZhGVundZIjw73c0bibnOEanxzqyeMcMUqqY+Z0sJWb/gzBYBvd+QyZauwoVZ5QFKWlflmvOwKnMZRt7v/9G//o+220q9cD6sd4+Yme9XURUpqkquMl3MEgARCL1zYa7g1JRyRv0r62bJbkXVApsliJnTx3s32PsRCziPQC3MakV5oiqZOMM3IiblZ0dRybtHz3yoY2y9Xv/Zn/6pVnI62QhYljWq/5rn7gzI27qNiOjMh4sceUfkvItkEgNukYOf6chCiCHGe3toRENTck4pJylF1coNs86NwUEwA/4nxRQAKKWkNP30Zz9fzCzbNn7+2UtE7FZdjNGgdFrA8GV6I4gKl8V11a604lqGdZ0EMR/tkhXEWdYHnKPM5TXLGS4Z6LyZz2uvPdD51FTrtbx4/mzhyW3W6z//8z9TgLZplqyGlg+ejxOsBdSaY2vcf3KvfgBk/KEgBk6uqyJV9/yhk/8+fJ/5UwAAkLCUMo7Tn//ZL9fr9f0bf/hwVf/m/lx+fCvQByWG5W9+7OU//PlyLfgHf7L0FZ5cRr3e+5/q8itV1RDDZr2qJcySxuMV53HezeZniHO5CmqeAveZsWqFxXQGJmwC6/2wrChUXYMK65TKlPI0ZVt+T26yfnSWCDNcNqOU85Sdv9jlqYpI23WPHj2O8x7z/zdHzny9H8aU4VQmz6TykBYuMVdA2G6oOqIYAyLa7nOPDZ+MD6J7eT20GjkuDMu/l6OUst/vrcUaTjCVZRbadvJwMt4f98nAMpnnQ2YpF5jH9kevhxOjylOX7NM3X3av+5XuZIWwotJqtaqxUZFjP+VUZsUPk82aAc9l7152xFloREzVpEYoClZRNDYSzg8RAGxSPVgK6ipvOeP9u5/UsJerWb6zHWa+luWH0nWbJ4+fN7EFgKnvP/z+2/5wUO/UkRDpve/s3FR8eitPVxm83yRO95D785ifwpwUn5zq6dXN93n+nCWEe3AsZ1DPR0RL2W63n332qeUwwmUae85pfm9c4p/70PB+Nf5oy7mfHycw+cdZ8nzhePpYfngsN+Z041xuwJJtai1F2zfqQujWZ855ABjH8dXbt8f+uCSvD1IyXO7cw41lLu8toD8uUc7JgH5wSXWdf6iFAovWzTwjTr+eDFM9+dfyriKyWq2fPn3atC0ApJSvrm+mabqX5v2DGabOd+z+Ncvrl4H40UWfnNEPHsfpvPlx3GD5q5Mt8/QRicYYd2fbEDwADOP46tXr4/H4cLH66IoeHB/dsx98+/Fp1SrfR/Pso5M9vcK/M3ee92XjMst6vXrx/LlV5wEA9Q/flT8efzz+ePzx+OPxx+OPxx+P/589/j7z1j8efzz+ePzx+OPxx+OPxx+Pv7fDf/Pdr/CE6XJfHZyBIGHJmVXA/Fm9J1Nh+gPHR9W7Gc08ff2CJH/0m/seHESs1GKFpQA0A7C1sKzMsuo2z5++bNsOAEpOx9sPaRoXxBE+Rq1+CNP9nT+Y61HLf/Skho4zzLxcEYC5T9F9L+JckKq9VCxzP+fDu6IKAKFp12eXPkQAKGU87N/m3CM6PKV7VAL9Ikdp51khfwDF2hI5d9fNtF8Dw83HxFHEWUPzD138TL+qV3X/yz9QOjRoeEZKlch531qnkKpW2d8Hf3VSLvnBz0/e+P4DSynjMKRpKmY7PvNYAaCK/TeNN/7grNWwkNAX3t1cwa4gayklTROXYlQCuB+bALNcWNO2u/NHIUYAYC5933Mp5DzNmvUnZ26AutRGgbkAhEhz64AqCKgIl1IyqFI9WxspVIv5D+7J3MU4A6r2UTOFTUDYhiVzmdI0TtMwZmZxJvgGwKIpq3XKbLfrTz/7wsoW4zS9ffP22A9UJUoVQVEFZ+8L0QWDrwQLAHTOhRhDZXMZtaXeY5uoaFQwT84549JPUyrZBPplKaJAFTdaKgXLdJsLQLOi/X355MEwkfVm+/Tlp23XAcCUxvdXr4bxWA3AajnsfplaahInVWtdfvHDAT3Xn06KWHo6WeffzEQfRw4A2Doj5qqPqMq9uuC84J1WO07WsWdPXrZNBwB5Gu8+vJqGnpwDcnWqIooAC6tp5IfQNE2MTYiRjIZ8Mlc+vqbTatLphc71jZPKPgrzlKZxGPq+LznP47GSxJumiU303tdiz3xPT1Z0RSIz3gKAktP+5ipPI8z7y8lp/sGzfFjMe3i6P/zT0zLHKfPgo26Hh6WSk6Lnyfw9+QQbh6FpN+d1TRYp03TkkusZzov7MkKW0mgtrdY7ZNo0IMKqDCDmc4zLdidLpbCe6j0laR6ri14izLQHQIDZqHrpaTfjh7kBDeYyi1oTrguxW22dq660fT9lLsvUuy+FntxfPYkHEMEhLj7qJ3xbBVs65rlSZ4sY35SZhe9Z53VVYVAiF2MIzhHOKw8oLcOpFsFU5jmlqmzccdHYdGeXj0Ks1Av/H/4//o/GmSJ0ADPXG3TuuYHhmK7eHdPITfTdJp5dNLH1KggKeL8Q2BcTm6nkEp6Vj1VBjQSn8wVWT9ZZO9ekX6rOFCOgI4+KWoCZJy4KQh4VTL5JVDVN+XAc//Rn//Df/1/9B19+9hUAHG8//Iv/5P/17rvf+NgQuYVydf9YfqQkd/LsKh1pHsjzdKgNZaYxpQCOnPPBYUvq5xkj1YVNnaemaWPbNm0XY/TeO+eJ3HGa3l/d3e37fpq4FIKTOj2Aggjzk09++uf/o39n9+g5ABz2b/7r/+r/+u7tfxPDJoSWQkAiBvA+tHEdQuPRWZsHgAAyS8plUlXvPCBkKYJicuiEXtW6n9yqWXft+ap9EvxK8J4yNi8Zxk6fw4uZWrSIH2JlnFQK9lJKNu4aINqYY85N3O52X8a4BgDmsj/cTQ/55PoHyF/LhqUANhVpPsnbq6vf/vbXr7///vrD+7E/skjOeRgHAFh1q/OLi2effHLx5Mn2bNs0LWFd6513hOgd+dk1DhHN2TWVcndz/fqbb483N8rlZNrUI+c8TsPLz37yP/6f/ntPnr4AgP7Y/+pv/uru7q7bnLXNOjQduWDm3wDVyZdLKmkCKY40xma92QYfUDNoVinCk5RxOt7e3b5l5m5zHmPn0DtXed42crWuwdX7V0VUCyiic6DILFwS52PJPademZ3zh+Ph1Ztvvv721d/89v1hP2wbagM6p4dBXl3lD3fTcYB/49/48//d//7/8Ce/+CUAvH379v/yf/sP/+qvfxW7VQzeg3rNxL2T7ECVZcpcBFQ1Fx6m0cxTV5vN02fPLh5dbHcr8i6lJKLOBVBMuaiiQ9+0zdnZqlu1MYZ+GF99//bD+6vDzSFNE6qqMnMCzk7ZIZiOqjGhVZWlpGkqKZdSlMvcUaxVkh4QEVSE8/QP/tE//l//B//bz7/6OQC8u3r1f/+P/8+//t2/bEL0zhOCQyTnUE31xDR5K7sSqRI4FJRq6Hhav1dVKYXZqLNI5DwiovHfqqbMHLqQc+RibNerNQINY59zAbC+V3O6HnKeahjIBaqIHCiqAIrqOOW7/fCnX/3Df/9/+b/58tOvAODuw6v/4v/5f/r+t38VujPXrtG3SFGBxsSHflDAuFpdXD56/smnz168ePLk+WqzVfLmIAZzsPBDhsGSYACAteTWaO9E5x8RD4f9q1ff/+63v/mb/+Yvbz58COS8QwRcrzfPn7988fLFJ5+/3J5tBQHJOYpETqt+qzIX4RRid7Z7GmILAPubq3/2n/zHb775rfNhMR/QmQp4kkrZdK+BCM1Urjk2qynJ/XqFHyuQzTEMzle6tCjb+mzXO1+xKJeiKli9GKl+euU4g6pyYU7j40++/Nf+rX/3/MlzAJjG46vv/mJ/91YEEX3VpCFHFLz3gJBnmwlVdbb2kkMXyDXMMqZDKT3i6FyJHhFFmKUoZFCp4kMKqIKFFZSc80jeOSei05RytszNOhisbzGGtlutt7uz86bpEGCc+uub98OwzyWLKCiqCEgSSVLS+eXzn/7in6y3lwDQD9Pf/Pr31zd7E4U3Oevqm1eDJ1LAAlhEcmFQiQ5W0a3aQArTmEvOwqJSQAWhIIhD9Y68o+AApJRp6vvj7d3h0I+DEUgVWDSzTqyjSLtaPXvy5GLbdU4DMJbBQWk9EoIIsEguJeU0jD1zQaBc5DikoU9Dn158/rP/4b/zP3/0/KWNW//b3/xzQvLBQv6a3ylYrCWqejxM79/sp6GE4FfbeP6obboAWoOYmuaCKRkRyL1QiHmbQU0cTQLZAkaTvs0sImAN+1VIV1QUGBE9BVTSJKXwyIWVMVhOXx3Txind7Y9d04xjb1eSpvHtd7/57lf/IrTdInn0A37ew+9PuHg1iLEwjoVtRwJAxaqNYK91zvvYeOhIA9Tmg9p+ia7pGtye0XrjcocxKGIhBMDDcfjw5urqZn8cp5IzqoCKzGYhqiJcEClPY72WdHz9+l988/v/oom7plm72KBzAhhjd7a+aJuNp+DAKQtAUcxZxin1IuzIgpgsyOoEEQlIRNOUvIu7sye7zXMtOcYz89o4bXubr3AOYir/n3TON6znFE+SUns5AoLS3PGZcx5V81Y/XeKSnNM0DXMQYwvNvX+QnCxDc7qhCrUJ34IYQri7u3313be/+dtfvf7+2/3tDYtMaer7HgDW3eri8eOXH949ev70bLdrus4hOuebpgkx+Co0HmKMTTCz2wgAuZT97dXbV99cv32rJVvSPHcoS2FOKR37A4tOY30upeSrq/cf3n9Yn43rzXm7Kj40NYgRYcnCpeQxjT1ICY7arlXVGDzyBJBIi/BYpuOwv7q9eiVcJPe5sbMNITbeB3PXNc18QI+AKiBchCdVNfVwZi15zOmujHdpuJWSvQ/Hfjh8ePX229/+5X/9N+/fXV2u3SoiOrg9lN++0rd7mAAaPxz3e7uW43H4y7/66//i//1Pu/W2icFrCZoCH7xkj8DM/ZCnIqqacjkOYy4M6La7808/+/Tpi6eXj89iG1UFyQXfELpcGIA8hdg2w9DEJjrv9of+m69fvf7+zfs3H4bjEURUikgCyY6LJ2iib4ILwXmHhCpS8jSWlEvJwixchKVqlc0U3ZJLGrJ3NBwOdi39cPzrX/+L/+ov/tNV00UfLIhxzqEC82yc6WsQCwiqtfPYIpFZxEFUBayJR5RFTd0Jyc9jnwjtXRwAVaKzYIzt7mwXfEw5WU+vqiDq0B+vrz/0/Z5LkVKkZFWxkEkQBJRZj336cH0Y+/K/+Pfqc5mG46vf/OXv/uK/bM+fhPW5i+si/tinQz/t+0EA28364tGTqw9v97dfpnF89OR5uzmLoQVHpp5N8BGqCvNGrnOODgggczOYCoDJsXB5/+7tb/72b/6bv/yLv/yX//X1+/erGIN3CHhxcQmlrFp/+WjTNE4QkLx3Qs5bwC3AXDKXCaqgKABAnsa33/7um1/9hQ8NkZtT3QV/q4jyooVlK8+JQxgAPGjNvQ9iZpjiIYX2PojBOYhZQCoz3MyppCrPU5yj4H0IVR17TttAVTmXPPWAlFOd+8z5cHh3c/WdKAI474I5GTgffAgKmqYp58xSZRW98yFEFzof1oXL/nhdysH7KfgcnAJwzlkyawZlBEAQUkEpWrKqIlEgH33TqMI0pSmlnLNpHdnO5mOz2p5zmQKhifX0w+Hu5v3heJNLUlFEpyJShlIGnnoAKKXadIjqlHXIEhS9AjkgBVKcW74AEUQ1iUw5D+OkJUfiHEm66BGnMZdcpLBKQWAEJmACcQTeUesRlfM4DHf7u6vr69v97f44piQqCiTkC/lEYZ3LerVqnIpTL0nTwWvJHlCFc85pmqZhHI/9cCglI2LOcjhOh8N4uB1QNM37PgD4i+4CAMHZzqELkqJgynHsoXHYpKkAgA8uBhfI2fjDKvoEjsg578ihOoLZUwRrgo41W0dCBwClSg6Zr4jUZWMpiKgimFIkQRZhSSJFuYCoKlYJX5kkD+PwxWfPu7mdBxFdCD42PkTvwozN30/kP/D9DP1ZCMdcchky92MeU2aFGELbhHXbxOAQ0bngQwgOHWQCtpnnHPgQ2rbb7na7R0/azZbIg4qkkfNUSqk9is4FH5EcCsOJtrnZ2NPcDWszT0mFhLEUKABEoAqOCEKMbdMF6ggcsIgmoRFFGQqXZBPYOQcgmRNLEslSOE3cxK3oBRCiI3Ku6tIRLJPf4hNbGezn9wuAoTC22i8g/VJIUgIhUSUEUUVkhXutCLCqivd00lo8txkTANDC11eotQzCBYmx8eAQfQghRu+9icYDKpELsVFVRRyn6d37d8dxjG3jQnBEIfimaZumiTF0bbtZdev1erNZbzabzWYbY4w+GGjWNC0jMWVmASRARhFAZBY3G8LNYwwsxrBYlxCdIwSB6lJCIICmEE7Ohcb5RhW4FJBMwM4DKQES+abtLgCk6zY+OJVEmBEDgIgiATlqyAVyAdGhgnDKE7JmG7iE5CAoNCIN5AAg4Gl9dvbF+tGk53/7+2PJcrl1bUOskF3eDYPSKAlePt7EOCv2IsYY26ZtmhgcETMJBh8Deu+oFCYZEQqzgKPYEEVAdLFdkQ+GkDcxbjbrbtU1sbW6hnO+htGlpJSnzCLYdevtdnu463POzAWVPHizqfMEMfgmUhOo9RQDORSQAsrWB1srWSylcOFSMueSx3447u+2m+7eawwQoUHoHHWOQp3YAqIgYiaDwVEgdAgmWzNr3JEDcs47UBXOwlYMReeCd04AVZALEjkXmia2q9Vm1a1X3UoEDofD8dgPx1SSy2OMm+3FWacAx+NRhNvG92E/7vPAiUcpSc2P2vq6BZAVmCH1kA9QhqWIB0QuNqvV9mJz+aTZXrq43h/T26s3N/s+swCi9APLu36Y9vt+HMvniT/5LDQXrXMOZ/xhLo7MM3SZZXOJowrKqqoAK4vwOA53d/vvvv3217/622+//v3YD8H7rmtjCAKw2mx2Fxdn55dttwlNK2DCFRHJQ/WnZVOe8aFZWgQRyYcmNisfIlV9FwQ8QUXug5ha88VF+gxrSYgWxEXn1Rvq60/Q4EUhty5bOgcxDtETAUBh7ofx7jgc+uM0jKjcBbdercJ59DF6H9Gcw1UBlAM7T7HtkO7nS9X2VWKBnHMuHII65SJZlcdxYpPiVYUCHAI59NiQQ1RSBUBqYhd8ozJxyVyYWQUFCJxtA1k5sSRWRsFMkZEIfXDe+wXKq6J9Ct6ZvLRVkRw6VUD0zkUiT4jOBxDO2aUJJ2XycxAJ0DTN808+PXtUnAdPSN5wRcRFgZeImccp9/3xcLcv4xF5apxG5EiuWUWVoIUBxJlCIZhgQCaEVeMdAMfWU1R1Co4ZCElAQ2xXm7N4dh42l6vdxfnFeddE0iJ5KtNRuXgCyKMe70BvdCqqDik4Dw7RoaCqU8FcuuaBzbCPoVEFQQMG5ix8rqSRMkXnXSgsYjlNQLeoJGktRhAaVOsIbKQqKhERQm1GI0JHFH0wOUsRtSAGACyIYRBVVtBZO55UQFxWFhZlkWypkSIiiNOCZbNqzndb75dGUyRy5LwV5Ksc078iiKlbrFWMmDml0g/Tvh/vDuPdYSisTRO365Z3suoa73wAdQGJnHcQ0Flw5pwPTbNarTdn56vteew6FihpKoWnKU3TOAxjYQZAmn2Yzb0cAERBUKzUvZyWghbgAoUgg0wlC7Ij8DFEVHXknAseggKLQsFC4IKPhKDmTEDAipKnIiWlI6fMBaNv0ZxurYN88Su4j74NKFe490uFGtbMxaWFu1BPc1mGaoGMhROXgTmB3hePZnT4XgWyBk8Pi973P0FEADHFbqg4XxXJBSgsRQSqabS3ICblvL/b98OIzqFzzlEMoe26JjZNDE3bbNpuve422+3u7Gy8mLabTbdaYbURIJ4BQuN+zOH8w3J1vRawZN5CO4e43KAZA9e63oWAzllpGDUjmlI7oGkZtR2ChhDJqQAgqtU7DH/2viXfkAuIiCpCIFJA8CTN8ACROZIPIpmVQ4jrsydPn8GL58859ZuWCXVibYrfbBRBiNP5pvHLxm+i7oSeyDtHSpF8F8iTgkLRrMQMWhQEgYKPREgutq1zAdBMhX3TtG3T2awLTQzBe+eZJZfMLKUIIq1Wq81m23R3/TCYwoltKwQYArVt7CK1HhoH0UlAdeS92fHaLiVqwhuFS8kll9IfY+thu1kt16IKkpUnYE8CztxPaz2fRRWlkACZi1gpJgkoquC9EqF6BNWSBQGaGNdtd3Z27n1MmYcxHw4jM/iwatxm3ezONue73bkjP2zHw+Fwe73nIl3bbdrtbnuGRJH2FsQ01O1Xh+mYMbvMAUlsxTTqiFGE1KfchFXcullqGol80zWr7ersotmcq2t13A+pDFNx1exCx2EYxpRSKaxjESCnCLvz86btal50kkMg4un3ULFzUABhTimlcRz64fbm5u3bt7/77W+++frrD+/fcynBe++9DxEJu/V6u9utt1sfW3SR0HRmPJBZ1AIqEqAqoAv3Sy2id86H4ENYghhDeU8FKXXGYGoQs1DNHkiHSWVJ1oIzgCrOoNMsdXNPbRCbl6r2kpzLoZ9u7o7vru8Ox2NOyYF0DnNmFwK54EPjQqQ5iCFiAPAniSUAICE6AkEQZWEAISIrTzHnMY0q4pxHAKnnZvYISFQ3S0QERS5QspaizKoEiIoCPOXxrk/HxJkRXIhdAHRdS+ChKi8imkykBfZcCuecp2EaBNBTSCkXFlUyCTIfGpACUKRMHOKpmDg5v95ufQfkwBE4B0SABAvZFRFKEsReOUl0U9YyTWWahknF+RhbExAiAk9oVg0iZRoZVByRR3LRrVZYihQWLuKdZy4+xFXXdat1uztfn59vt7vYNAggnEuezBpZph6xFaGc2bE4IOBEqOhKQyQC05BDcKfPxRco1T9qTrxrGd6QDwUiahy1dd0GMxfVGgzX6nJRBWEQQSxa6WxzOK1qyX/j/Ta2kSIpkoIUILCyNTIogpQ6swwupCKSi8pUQBRZrJDNIkIKLaqTuQqsy+5yupMALtyqBxN4eXG9VERHyAIp5aEf94fj4XA8HKfru+O768OYcmzCbrsa+t3Zdt207arrFDH6JkTfBUeo3nvfdKFtm2Yd204Bp3FKaZr6fjrcjcNxmqZ+zGkqVtifi7A1BKw0Jpy1huqs1sxl4oy+cBl5HFUpOE/o0mZkzt6MMsytQxQUPQWPrjq/ELJERBFOQ5aSi6MmOB8cOazyYaqEiCiwLAS12mOmFrrEL1pTJ0XzfFi4A+bdpoqgcyGmpJT6adoTrWriWdcf41kBPNSrPZWptq+1tCSKgAICAKRiaaSIlGLw5jhOKXh/Av8CM09TwlwEAKkK3TJziXly5A5u76iJoeu6zXZ7cXH5+PHjZ8+eidUsRHJO05RMCmzOdTiXVIyXdsLaQRUAIQRzb0FEEFATtrKFFcAi1Ups5YzKjphQbN8gVOcwBAcqs+kKETmk6ELrfeN863yHPoISoKhMoOB8ACGLtWxegQbngqNYdEzpKEANSrdpP33xBMqhpNtpGrGwQ+xaRCHM0ESc931QVRM0BVWH4By1Pm5WnlDGYWItRSgJpCKgYA495F2MDTmP5AkDiCtJDzxM0wSqTRtjE4IPojqMmRmAvCO/Wrlpk9quccHJpDmXjBi862IMbbvarNYNBWIvE5RRJRsuPe9yCASi4CNF8RJI2LceGydn225JYER07NOwH4MGWhHFQOQQQVi0MIMiZyEBQBEphaWwMCMhu+A8OM8qMk3TqvHn293Lp88///zLplvd3Q3v3l1/k14fhxRxHXETYBVpvW7Oz7bnbdOlnK/efej7HgFDCOvVGhEb17GU4ChouDw7aILW7UvO3iFVxiMoW6ih06pcdOnl4+eLcCoikY++XYVu6+JqKDBmGYsUBYvIAZSFUy7XN9d3h+Hqbj+lNKX08z/5k6ZpDaAQlfsxey8AbxTEKusiommcDof93c3t9dXV69dvvv3mm+++/eb1q1dDf4jBxWDRKvoQ27br1uumW6ELy8orFkBUfioKEJBDvE/GZgC+Gp1YHmMCbnCfJgGdNMk+CGJAYMGDa6pgmn21AoW1NlXtoW2pspFTmU6qzDxM+fbu+P27m/fXtzeHfsrJAXrgIDyMWVRF1HlPwZvBpFE4afEKuL8WmLsoLEqsEJEUziXnlAzGM98+RCCHziM5IRXnVLhMqWSwTC/nUlQFEElAio6H/t13rw/XB2FtmtXu0ZNt284VERHhOYe0MEtEyjAegagwtE2JoUk5j8PEzDEEH5oYA5d6tt477wPeK3ACqxYFEvMqRucAxIKtKr6eS5rG4zQcoYyS+uH2aurvIE8x+O3mrG1a58g5it5BG+OqRVQw1B9UyRM4R75rO96KKjQhDuPALGUah7vbAgQqkTDgNjatazqJHauKAIeWwRGgAqoLpd9rGc2WEChjgv8PaX/6a0eS5QliZ7HF3e/yHpdgRGZWVi8zPa0eYSAMoO/69wcSBAgQMMJgprqrMjMiGEHyLXdxdzM7iz6Y38fHyMruKsmTiECSQfL6dTezc37nt2AowPy6tQzITOBuzuDb5+8LzTZsv9MLboy4rdzxHj7RHaWwW2V1R0SvorXWKuq6zbAJIBINHCXXKaSAgYHcgZgoMhExOgGQ+QtRXtHdtZq4K6mTAyMpuIJtxv5gCvb6dPn/4XqZoUqT62U+nS7Pp8vpcr1c1tNluV6WJqoqkeAyJCIShc72S+x30z7mNMSQUuI8UkjIyR3WdVWRUpZ1nsv1XNal1lpaD3P6LfDwX7nUrJkGUwSoVV1BKMaQS12alMCNibeFLmYGCMwYmQL17FJH1AKSrAYXi3lInBkIvZMSBJ1vaejwkqIE8NUAcmuF8ev/e61jgFv/5G7YGYOuqlXaUss1hvl1sQIA4N8UK9/8yj/3EP2l5+oB82ZmJiK1SW3SVHtXCkQ95MJEQUuHQYg6H8JDd/NlEsACtiIt87LMyzov2lpOKdzoeLXWWssNienO9CYi9pXqf/saEDd6RM8W6P3RNzyhLkoiZlKVcj15XSLpkHm3HwNTJxpjYHfoFdALPE5IzDGERDEhR3QykG76TSGisYOhK5kbOkAIIcU4Sl3LepJW1EoIfn+crvf7y3kxrY11iHjcxSk6ih73ib+iF7cixiwwDSnvh3DYZ3RVBVxVoWpvNDjs9vvdNKWcpmk6HA77/X7MuxAGMxLR63lV06FIyjGlCEiqThzHYYwx945/t5tSilcCtU4bcOYoBkCBQwgkrOLi6MbojNAjdjr3oWefOSIwOROBgqYhpxdIGR1RkZRQkQS7mSohcff7diAgMAJwRs4pQYCbMTwFDillJJQwHnbj799//29++OO/+8N/l4bpIZ+xDs+fV69L5GmM+4F3/cd+uHtz/xYR74a763WWWt09pYSIU55UBdxJ6c1htgYRB2m1JyObmTV37a+4taS72O7395FvyaBEcdzl3d24u8O8ny+rOKojIMWYckpmCgrYpJVyPs9NNcTIHI7HQ4o5TRMzdyp4nx514uLtmXvXIZhpa3K9nh++fPn86dOvv/z6448//vlPf/r866+X8wldQ47dRJSIxnHcHQ67/WGYJgqh0+le23P4NuQEgPAyf+nXltTYkdStiNnQ1m1XeTk3b+vr9WqDlx3oK9/lpWtFvHH1NsvMV1ZynWNZa1uW9XRdHp7OP396ejxfllrNPYfI6GtTUUM8ARLH6IjDMIYQAInIX4eH3L49dVe7fWgE2L5MN1UXUTMj4j7T67qz1prhIiJmRbWoreiyEQikmQEZa1Ob2+nL85efP50fzoB8ONru7o13WrqrdYpmJ2zBFsXj7qWu/RAlCggsotJE3XuirlRpUlutqtqDNF9/s1tshm99lxsAen86DoCgbopgAY3YxdXKvJye1suZGduy7KfdMA45J0oxBgCLCAamIs3UlDRw6rypYRjcIRAFpnlellJak2aGrpk8WKP9gfLIIRGRAlCIYdhR56PGpGlHbTGtKkXrikKQKlB8/fqFFIbt5eiZC4Bg2jWgar3pxEgxEPexS+e8GmDYXjLs0IIDKnipUte1zHqZSym1SQM3BAyAI4c5XnYh5hByjCnGIcWUE8cQGdOmZtJeYBtiBXFqEo0QGDhyFABxUFRlEJAq0kzs2yPwNlX9dim8JvB+/cl+AoKozvP65fHp8eF0npfzZTmdl9Ykx7AfU4xxGlIgNoMmDRZoUgH0uB/uOOwOh2HIBiwGTUS0qmhttda1lrUts9SqqmZozo590Na/N3L0l+UIX5kmfbmAAZqjuaGTqam4gi/ruqzXZbgEyhyJkL1PUpsTEGGgmIlY3aRpXUJbkq4TYR7okGmPSlbFuDm2r9WJw03adnu7bzm9GwazDQwRNm1g/003+t5mrgkI3umwrc3S1t+c/fBtsfK3qs+bxG4T4/Zd18AR3FRrq6017S9rH1ISm4F6rzYAEEMIiLxl9TgQIBMTgHYClkpZF20NEMdpGmJc57XVVkopZe14z9Zn3dLybl3X9iL1kSV27WunHAOCEYB2I3pECNxZpGFZ5k8ff5mfPwcs93fT7//4x8P+QITAAbe/qkJPqzBAa53mvrHJCBEZvXdriByAwEHQyFERzJ1DTHnYa6vr/OjarF1BJbDmSCVSimAChJTzCJAChPfv9jHyyyOoVWqt4JoCH/fj3W6432fXVsXOqzgsDhxT2O13371///b+fn/Y76Yx5yGn1BOdANysgQUwMGVXBoshhDSEaZzu39ynnNUM3X45TF/GFE49O0ZV1BQIaRpTDpmDh236AIzACC/heS8kj15FIzptP76+Noy0S9M+78YwZIzRQrgRGMYwbUcRIiLkFA/7fQhBS2utlVpCiMe7u3EYEfC4n354/+5333/48OZ7xCRzPA71fniCFjkPQ9rt82GMU4TIRmxhHIfd+7Hd1WW+ttY2Yp2aSGtNQGE5FG1OyrWsgQjdTdTQUboiXRsI6zpw+prDw2HYHXZ376a7dx6GU3HfJn4hhRA4GLgZMYcY3BxbWf/yp38iwuPxwBy+/8MfdvvDCwmatkzGLQrHbyMZEynrcn5+/vTrLz///PPPP//y8ePPnz99ulzO6J5iTCEGIgQIgQ/74939/e5w6EhMJ4D2Nb9FOiK6o3Vcm8JXTswNGqevhLrbPvx1Pv1NLNv2qy9TjReNUhcM91FcpynckJJeymzACLiriZqozmt5ej4/PJ8/PV6er9d5qU2agzH22AIQ8FnML8X8Gdy1tTfv3027PXEAemWjcVsvIiLSHHqVg7DxOMEdzUAVmqhbuyUz6BqKGvi6qEmtlyZX1RlBIhOYN6kmgBBkrsvn8+NPnx8+PsznNQ/jMDpgAGLrilwVta7Ltb4dBCYDaNqoVQcnpK5jckczV/Wy1lrXVubWZvAWI/irFnSjH9G2594e1ctTcABnginH7NmgYeIzmtUyX06mqqXI4XD/5j7yASJ3TMN7epZqVUFvMWgIAbDXMWP/s0X0er2UNotUkvUsBZazHg6yOw7jjmICRHIgAp4mjEzTjvZLaWuT2upcrmeU4LE6Z3hlzR6ibpbR2EfjxBgSgClb/9YIMYbIxEwIDrcipiujqVe/qrZWXdd6udTn8/J0mS/XZSlVmvROnQES8hPTFMOY02HM9/sdTZ7AWZttFuG2HacIiBBJ1ZUBkZkoppiZSCEwqpJXZXQPFP+aV/GvuVBV5nl9ej4/ny7n67KspVY185Ti/XE3Dikwh8A9tsfBm4oaXJfyfC37Xd1PGlKXF3qtUmqTVmvPl2lVWtu0Lobwr4xXtu2HbUFz3oO727zOeTkzRnCPIZvYulYtkigjsSg5UFNfGq5rqOtgdR/ISCYvYT0XkKvLxcaYBuavdKJtkvTNX78VCtvOcxuY3L7trdBw8BsxalN2qFtzb/A3ypR/7dVB4Q7DlFprbapmDrrNOoNxpwqLmfRsHiZi5tjj+PpcAaCnifQMcQSU1q7nc2W+Xq/LsqyltFp7QfZSxLxQZL79QF8n992zB4jM9ZUPxEZwJaJlmf/ylz8/f/7pMAL4u/fff3DYORigEzMgufitMTeVSDyETbeF2y7qQMTgDh78Bf0CAHCG5A7oJG2NaVAtroJWU8RpDK6JLBFYaADEIcQxprdv9iFsT7l/pSJiKogeI6cUQwjqhsT9E6SUpml8+/bN7373uw/v3h3v74acYBs1g6q2JrXUWhqAQySCyBgDxcAhhZSYhxiA8P64//Dd23m+SKmq2jHOJlJqLaXWRAMR9IMOiMhe8oG3m33NgwAncEJ4XcQQ0S5Ox3TIISdmRgxIhBwoxpCIgjsAeWA47nff//DdNA5a6rou8/UaYnr3/sPhcIwxT+Nwtx/vjsfdsK8VUBiFA8TEKYQ05mG/2x93h/0wTTElxESUYrIUElqt7LdtTCSsJCIyjbslzzNfBBr2o96Bb1NUA0A3NKJXGC2FsDu+kVbv3n1oEOKlUad23gwbmiICMlJgBqAienp++unHv/wf928osCO+ef/ObzBpCCGnHGPoI5cNRgcTkVLW+Xo9n05Pj4+PD1+eHh8vl1MrZYghhZBC6EhMTnl/PB7v7sfdLsTs9GLYtY1TXpf4/V+/WS9baNC3sO5LnQ6wSaduPDx037IYcVu5/ekToPXj13sdQ0h4YxjeTuQeH3Zdyum6PJ+vp/P16Xx5OM9rbUy4H2NOxEhqVMWEWB2L+bkIPTy7W8wpxDiMgZj9N0iMu6mqSv+7qJ+GKl140IV00tSahxBiiqpWS1Prz1vcGriaiJsAERhqI6lmtSyPl8e//Pr08cvl+SICnEgxKgRxJjVE61nrX6M/ANHJb1klrmqdqG7a5yJuJmZlWWtZVSuiIGCHHl89lk1+il028npnB0M3BCU0BGlavK3WqpSyzkurRVsFlcAUiJgwBK6BALcebvNCM3OzrjOPmfsUp9QSTlRK0yIVZCVnbyCL1xXaLqYBepcYEhJziImDpkyqQVuoK8V9kxifC8UdvAL8Al3mjtYTBcpDzGMahl5DuXvPcmMMLxGcfZbkG02JzFxEL9flaTl/ebx8/PT88HQ6XdZ1rdKrHd/IM4QYEFPk3ZjeHg3DEJOFWrSqSHWzft6ETQziQJCJLbByxjBQGkPgwNZnSyL1ysMx78Orm3lNiHnNiflnmTGI0NVrnz4/PD6e5utqagiYc4gp7qb83bu7aczdykZvUpnOX2hiXx7P4G6ib477aRyBuHQZnDTVnjbX36iXQ9FeEUq2gS4CGPytKmzLiWBwpm7iA2Y+L9fADA6iMqa9NTifZ6+AOQNTW71JW0VLs1VDbaM2J1RZwio6Py8xtXLHh/tAPHBM22bk/uqYePnHbY96ebdfY0VfM9k7736LmiM03rrkV7jLNm/y3zyLv4XH3CTWjghI1BvHJlLWUkoRVTVvzQA8xBA7m5sEWiEEDiGFmHJOKacYI21McyaKIe7HXR6HEGLKSZvUZTmfT9fLZV1XlUa4ud30l1ZtMyV6+ZjeH4lt0vpN0tp5zSY9pQ8RY0rMBK7ny/kf/vEfHj/95e9///7+7VFUDMTs1g4iaZ+VSQFvDgScou1emmeHTpQLBORO5taPb0MHDIiMEBEwjeO4P0qdCZkchsTHfRp4l1kBjUolxJzD3S7d3x3iLe/N3VVFu/RXmomotFK8tVpqVTVmnlJ+/+7dDz98+OPv//Ddd+/ujgcEvF7PyzzX2spalmVZlmWe1xDCbppSiJFT4EAAUuv1+WRSpv102A3/5u9+FwNGIib6aJ8vlxkAzKzW1lqAnF5WLxMROWyMTAfYfE1gS3+9LY9XxyUj7+LuLt3lFDkgohMjEweKgQZENkBCHwK8O9z9mx++v7/ba69hzpeYhg8//OHu/m3ME4dA0JjZEdZSn5+vp9O1luImBJBTPB4O7968uT/sp2EI7KQFUNA1oiAbALiBIRCQQyg1hhiRqNW6zjPdgrldAW7uj01aqbVWeQnEDRz39+8phLff/2FpPjzNMQ8xRa0cXjQZnXqFTAkdsbZ6en7+3//3/22tpYl8+OGHGGNgRqJxGI7HwzhOHALxjSdi1lqtpZRSaq2l1rIudV16zxmZUgwxcAwMSMM4He/u9sdjzBmZ+grojBgAtO054SYu/IYUcCtWoA8Db8HN8GoUtDH8DV6PjbbfA1vb9EJKQeqbkL2gvLidxi+ESFVbqzw8Xf7086+P54uaixsx3u2Hw5SPu3R3yCb665fz02U1QceUcjTQL/O5ueZxjCmnPKXMrvw6i2nbydUAxQkCB1UXaaoOEFRERaypuoB53OL8FNEJicgZmTCAp9awCbixQ7Clzo9Pjz8/fPw/frw8PgFSGHYw7ixNxdPaAJqRm5q8dFTeXcVUHTpSC9paWwsKmjm5IjiZOFiH013NXKpZp+x8XT7dc2/7Z/8i+5Hk5EYurlXrXK6n+enL+elhnS+1rKXUWoqbEjgyefd/QzB0CmwOSIEjdwTciZ0JqK9ocNCpjeNuqFqkNdOmskqhAg20oFwkJkRgjppHiIOFwUPkEEPK6BgGy+M9wjA/L3E40OsiRp6f+/FoyBaz5dWnZnmMOXGIkZmYcQvXA/TO87zp9xyL1rK259P666fTx8+PHz8/P5+uy9pEtM+ybcvgsl4+h0BzVQUah5GZTCGhaCtkFkIIhG2bfRpziOMuUOY0UR7TOIYYiPubjyJtwHTM+0Dhnz0I/+tXj0RX1XUtz8/n8+lCCDEgIzsG4rCfxvvDlHMStbXIupSl1Kri3s0r47zUZa1lLZfr+v7NcRgHewnx2xJzN/jzr5k7X0uE/8blAIZoXQPnBOa2loUZgcBMVBUkiihDjmGKPNbi7oCIIdnoTryaPIEsMpvhWtsKXOczrgtRnCikEIk6NRUAyG6wlm103s7ZoBuL+xXm+LKmNhDY3FS8oxGur5k1//9cbm6oJlqWdVmW1pqZO6IDqDmakW8JsYhIBEw4pDzknIehayu2Afym20cAYOZpnFIKANi28F1RFRHpRcxLV/LievftI9lQ7xsppuuy1HzLrWUOMSVCtKatro9PXx6fHj+8O4r1DGFVUwAlBHBxb27dokYVFuSsWs30pfTvkyRHsM1L13GzKkBz7+8Gx5zHIxO5KzOMY3QdJFTG2qzFFDjwNI1v7+/v330IIb7ci1mXZzZp1VT8dqf92fZq7LDf3R0P+/005sQIKk3qWtd5Xdd5ma/X63yd57nEmLpS28xDY1MB12fUccpv3t0P03jYDb/78K6tVUVrbe7QmvGt093inzerhc27uD84vxW722jP/FVrv10ImDBmygNHZgLUjYqBgZwQGIECYiYYKGbkjGiMMceJ9sO4e3u3Oxx3adgRs8ms5uaiUjqhjYiHcdofjvfHN2/u7t/cHQ/jkAK5CVgDcXRhK9iBFWQlciRx7NaFtHkcJzcF1W5BY6qmDoiiWwr0Vxouh2F/RyHs799jaTGPHGIIIYUQmQKTIDKSMSABBHak2Fpt7dOvv6hpCPz09DCOY2dZH/Z7ad/1cPUQQyemdBZzrUVVmaiDLt32xNFzzmN3JojBkfIwjNM0DBNz2Dq/rcPoO0VPBCf7yrz55uoO5l9VQwDbM8f+q3D711eZw61weT0p2nTTQORm2M3FXgJ1bynYhFjcL0v59HT6y68P53mZppxzzDnscnyzn97dTx/e7mpr12W9LIXImfl+d4hgq0o0t1KlFHC7RZJ/E8vTdwNEMNwgD1WR5gCu0ucWZmbWf5eZeDOggIEDBCKmBGCgVIq1Ak1hOdXnj0+PP305fXpqy5L2O0qJhhGHEUIGSlvfpKYqtjmpdfWBIXGKWxxsrcWl/5cF3V3B0d3EXTYDIJVa6+utjDYLLsdbj3BTXPqtglnK9bScny7Pj5fnp/lyWddVmtrN+EJaq7XWWtdSDDGkRH1skSIi2RYE39PIEYmDxTzkcTdWqfPcN00TqYRGoAWKESMYhRDLiHkHee/D5HFEyoA39RRlwAQYXr9sYXn63DVG4KCORgHimKb9eLyf9sfdYReRgEzVATeFc39zzL01eT4vP//65cdfPv/550+fHp5P17VVgQ26RwBsBh3wcjXvbS7UZ6KP4SJq6yHuEgagROTI6q6tqoqYp2Ha79M0HvK0y8M4jEPsto8I6CBBMsZj3vPrMc0LAAMvVfw/i8EgEalqa22Zl+tlbqUeD0OODOYAiMQpBXbz1ly1zOuXz6cvp+tpLWKWU5iGfNjtnk/j09Pl6e1cm7x7e5hy7izCDqdt4lC/ubffjF3NfXO5w79dxiAgOpEjGaERd8cLMoeqFat33kttmukQ0m4X74/HdxHHy6zBaJ9GjImYL9fTL3/5p+X5c20zqDaRKu1Tm/enxuOBUt4fJuJoJuiABtSrVPC+W23qpC4VcgT7WsRsnvzWebc3rFXERFTF7Rvo8l9yfcOYwQ25MTM3LctyOl1Op5P1Sjdw3xZVTZogMTOFEEJKOYUh5yHllBMRdS1/d0ckABFdloWZ99M+xkRI6FZSrjGuC3T3sxuEjdiVX34rRV8+G/RwCd7yHxDMmnXnSgLGGGKKKZObCJB3O21gDIyhf0tuBtYUGngxXU0buJuhWxWemxRpNUQhisTUbTy9u5hsaRKb6ax4Ue/+aSHmPRGonE1xmgaCqYXVMYt5dYjjbn98c//2h+OHfxfS+Ope+kio1lpVBAFyzkSMeOrFA4HHwIFQW7ucTqfH1kop67yWpbTluszXy/VynefrQhRF6nW+7KZ9YK7r2soisg5DfP/h7fvvvnv33fvdOPzw/XszL7Uh0uW8AHiKITLHEJi8qrk14RCBODAB6jdFzPZKkNnmofCygronuDkBMXHnahBAN/cFhMCJkRhASn369NAuJ9MyJDoe9rscUFdZz4QWQwioAV3dghfwQgS74yEOw9sPP7x9993bt2/3uyGRMQpgM6vQimtBbexmzkCJw2Aeb77AEGO6u3+XU67r2ta1LItqfQE2v8U3AQCQOAwTMA+7Q8NCIRBRYPZAMYZIpBzcgbY5PROzmUFZlnV9+Pz5HwA/f/51mnbTNOZheHP/xrRpq7vdlHLmjlO511JbqYgwTdP93d31fKnLUksxaftx3E3jkDMHdqCUUzcfd4QtWKIDyd0lD8HMAciRwLsLwut2f8th6Wz427jptjEjbCxSvCWbO9ykyHTjFXylzvS9yNnduX9vt9plq2AQSc0eT5dfH54/nS6iejhOuzGHgFMOQ467cXhzdyy1DvmBmABlCPSH/eE+RgkZoCIj2ZYMQISbcvu2QXVpMzGAg4ipgrn2yYmKunXKbR+BbzMdtH5qBqLA/ZuAqCLLtTw/Xh8/ff7844/zw6++tECBQ6SYOOc4jHncDcOUkjoUkaJqTTvI37qEsg/9AFxNWiuGCmatrIymsaeyrGbFvKk28y6G+krCJADCfqd+Y1o7IjCag2hby3K+nB6uT1+u58f5crpeLutSHDCmYb+bdrsx5cQhAlJT07Ww2TCMIYVpf2COW2nuim6A4K5AzpGnw17cm2NrTZGaewAHb1LFwcGEECxmyhcaF9eDDgfhsXpszcvazk/n62Wdxul1QRakVkIIXfxXRQwU57outax1XVu9S+PIYfPsjiGmlJBITUuV83X9/Pj886fHj58evzyeT5elVEGHFEMIFIgdABUEnJAV0RwI0R2b2GUpHAgDAA37MWFgZIdeNiIaB4sJ88jDlIYx5yHGFIg3O8p+trJG+kbH/y+5cEN6XESWZVnXQuBjCocpxcDrUkuVprIWWWtlIjc/zevD4+nT8+XhulazHHkc0mFcpzGPOT2dr02ktPbh3d045o4S9wCF/mNDJV7XWv8iHs82ctroEUTQLXbEiFsVQGSzGNJ0nPbH8c20OzKMRg6ch8N9GEZETA+fTp8f6ukEVsCYIWqtTw+nefXp/l0chpxiTBG2NvebInD7pNAJPUhbUb0h+13116lkHWkzLSJFpNS2tFb+mtj7r7kcwBy0tbrOy/V8fj6drtdLYN5N03F3YMD+dxMR9c09xMiUYxhyTjHFGAG8mqhK32c62iitEuH9/R0T5mGIgaWWzs3Q/h/bTVJOaHBDm16/P9QDkSJR2OyLO8rIHJGJY99c+oCmbU6btw5Ki8lqKmDVfQWors2t95bWRN3XNBbJxWQFIsDQA5A2E9Obb8bt/XH3bisNIY5EQNwQFABDxDog5ymNYhjT/s20fzfd/bC7/zsK+dXNYJ9hq/ahujugObTWWq3W9TvgYCp1XbW2skgtKlVaqeVa5usyn+fLfLkuACyq87rspz0R1mVp69zqMgxR2oxgu2mYdochx+Nh9+bubl2rG0ir3eS9o2hMBE6dmcjUPaO+tvAdCAYCImIKv+mSb+UAEhB0Hxuw7iJNBCnFnEIiddHr81O9mErdT3mXIk6D1bURAhjEiF3XhBSw5Yi7XY4+jvvju3cf3rx5u5+mHACtuq5oBWQxuXpbTAq4A0aIE4UbKyvH3W4HAPvdfrlezs9Pl+cnqVU3Mdprx/9vXrCQRuDAaaCqneHcFx8jMYcUHYm7tgqYg5kDqlsptZb18cuXdZ13u900TeM4WmvTkBnRWs3jGEJAJHPv/VurlQnHcby7O7a6qoi2ejdN05BiDMTsiOM0DuMYc8I+6EdAx5sFQ68xtc/ZX28cLxd1U+TN56n/zNcRf1fzdsVDZ97brZrp1mLYo8e+JtER9qIeeg31tYgxtVrXh+fTT58ev5yuROE4Tm+Od8ddUm+E0EQvc3l6vi6lPF+WUlpCepuG34/7t+O4clx1KbwSYg8bwr9GYtzMjZAAuwsDmKkaqLjqttE7uLmKioOrKRgZOSIMzGjM5izmq5fn9enjw6eff3n45bPM54kwcFAFMc9EIcZxGHbjxFHUoGn11tS9Sit1EVMiAkJ1VdMmzRUYBdxFKpCbgqM1uTYpTUWtqYl26cPrN+1lkNSB+G2WpNqKzKd6flwvz+vltFzPy3Jd17WJABJz5Jhi3Pj9SKAqohLAY4gEmFMMIa1YVFurq0pDd9emrdXaABA5GLK4uBggpEBmaABgorK6acUrp4GboBo4SQAFrUWup+X89Hh5ft5Pg9lXC48AMTPRmJjQQ1lbExFv9Tqv8/V0en44xnFKQ8xDHodxdziM00TM69JO1/mXL8+/fnr89OXpfLmaWQqbEjvnGJg6wygqKpN5UHNRA0AOHAOrWam6VN/tYtrdT0Mir9BWJDfPGIY07abdfshDComITK3qlnBBiObW8xv8t53MP3O9mqpuM05VKWs5n6611uNujAHvD2Nt7eHx+unx8nwpTT1ljhwiUWny5bI8z+W81io6E56X+nxeUwgxhi/Pl3ld51LN4bu3dykGBNwAmBsjxgHN4IWt9jLj+Fsf2Dcpe1+izBQA2bvLA4Iaaje6d+UYjnf3d9PbhCPBsItDmo7Hdx/CMLS2aFuHnJcUEQcyJ4rSXMrjUh5/+tNfQkr39/tpP3zVMwP4zV/uhuz2HgmdEJzgJTbJ1E3cVJ3czKyZLiJLrZd5eY75qq98YvDWk73AUn+TDeN9QO4A4i5lvX758vn58Xm+XpdlHnJ+/+ZNRrwMeS1rE/Fu85dTYHIzRiJyBDNr5lZrEWn9IOw7ZGsF0ddydThO00i4I3IgNxdAWeZLrQKA5oTOtgVmff2siNSzJpkTc+hzLeiYOYcQAvchLqcqdS3L5Xq9XJfrvK5raXWRctbSTSgEvKArYAdrXJqu86qN8q7osKqwsQAMxAkpUAgMiLaNKbvesven7tVBiTPRxMFCSBRLHHepvRlV3zhwnIbp+5DuIeyG8XuiFz+S7q3HTmSIYtBUl1LLul6u8zIv0v1uRaXWslw9EJoE1BAc1ZoLStVSaymlVhVs4vOyXK5nBpBWva0uVVoaMu134+X+zg2qgKkNQ97vd6WUZW7aSqtimjjQMCRv6lpbVXBg3sLzXjr43jcyEhPzxnba3jC8odcbQE6O0Ft5SintDrtxCCwr2VrneZW11rUtw2FMOXIH0lVNQ1CmwBRSSOR3x0lpWA3TdDwcj9M0RUbUarK4XBEWl1nXs5aLlBncQxhoPFKMnGKK4bCfYhpae6dq59OJQ5TaltMJumiI0H1LrflmNIZIMROhExqY9mGCmnfEg0NMzA6KnRTBzbS3N61JbRUNtGrjWpDIYUnz+fk5x4imUgvHiEjq0Gpb5rlJA3MmvDseEDxyaLVMOcVATAiEjrw77Kf9lMfhZlj3lf2OoA4vWsFbUi3dgr8AEJGJQwhI/DIi3IxSX4lh4EYz1y5TVlMVRkgpcYxERBwgBGbeCFPuvp178JJRsNb68ZeH//KXj//5x1+Wtf3w4fvv37757s2eWR9Pj/OyXK/t8en608+fruvy46dnFPjj4d3v8+F3w24axk/orkDgFLp97k2f+YLEdGQdrJe5BthDzJqYdIYTIhCo6Db0DwxE4ChVHWDgwADeTFdpl3l+fHz8+afHX35eLifUBjmrY1lrnNdRJBLuh3zcTRCkKTSXqlK0NWvXMotpzpkxijXR2q1imbgHECqAuqjV0i5rLbJJmty+0SeBU5+xQ88t3LTqriQiy7U+fSpPn3U+S7nWZSlraSoO3vOIRd0Ach6GcUAEt+bgLgCSQYVN2BGktPX0/Pi0LouZgfYgD3DwsrZS61oqobtxDphCikgGVpvVsroIhzUJBg+Mg+fg6Frqenk8P30+PX46HrKKvNxLMCBDNgqIQMEYiEmhSl3XdV5Pp8XjkMc87XfH/Q4Bd7uJU65Nzkv58nj59Hh+usxrEQCMMUQAZh5yvPmqbZG06q7qpYk6ABKim/va5Lq2ocgsmJ0zMIeUAgIChpSGqccocgiI5A59gNH95t2/5kH/ay9VXde1y1JcdbcbxhzGHEWsFH2+rL8+XdemKXIKYQis6pdSl9JKkyJKCNh0wdZ7x2WttTYRYyY3e//mbuhJCN4pn1/pIS8lzSYk78O5v3HZ5iVF4OSOpiDNmzqaE4MqWOiaYo4ppzSgMmEc82E8vDncv+XI14swYwwUmME4UIoxT6Psxum8lOvj+fnLY1lWUwXqdQO69T3o9hE2bgjALSfull+3+baYqSmoieisbRa5ruV5Xk55vP7WJ+Zfc3U1qJm0Vi7n0/l8arWhwzQMETADDIHnZa7anKA3BohQS3F1dDMVAOzuMeCGyJ3fpiIirdWyrrO0GkMYhpGoZ6qsbhWsQpcBuHV9u/0VuadLrHv2G/RtmgMR9XQe4vByIjkScECO6nhdrpfLY1l2UrwLxsErIRJnVV+XdV3WZVmzwK62npRkAuDmIAzJMXR0CGhzpngJIOzBNQ5OxIEmYwYiioGVAJhDjHE/DN8T75tRCCO+Gr8SEREjB0dqomtpKdVWmqoiQgwhBnZXqbWxs4eITqiuglqhNS9VSpXapGpTb+Zc67ouBG5S0YRdCWVdxvlyPj09mblAbE2ZachpnLJbVdQY+rnPAFGhNS0iiu7O9JqYv2Go0JNs/wohA+gzc4RbrKD7po0Yp/GwHxL6vHpppmsr8zzPaLouS11LjBGQXaBgA7MYab9PqiEGmKbMmNN0GMacEjEKSnFdpJ60nqSc6nyS5azrTADjuEuuFAfoug0KMUZiNiQxmvaXYXzaLLuJ3PHW7X/b8ROFmJwAcGv9rdPfzKx7PjMz3LLPGdGCeVflaG3RnTiEyJF7YIVIWdf5cmFwbY1jJGJ16OkNTRq692SG3TQRgIrEwNwdZhGdeXfY52mMOW3xqVuDg+7aT8eXQqR/6b+Zj202LkR/s4hBhBfbAmIyk9pURN3E1BXRiNREhDmEZBw2lUn/a7akesda5fPj+ZcvT0/nawj5/Zu3P3x4P0ZucnXAUuVyKWWtIE2kueAxTR/2d+93h5gS5ETjPhpjw64U6OUY4rdIDJj2ug29W0+Ym1jrTrlM7N71pCgmPb2IiNHdRNa5tGr1cZ4fLs9fTo+/fj5/+bycn7XVSA6AqrBIa/O6XxZrNRHsUqScqrOhi8laV3ev2sSEnQ3EUNWbqasrdVNfd2QQU/UiVsSLuvWEQlX5zZLpBX+3Re8hYaTqteh80euTzM+6LlLX3gp2vwoTE5MqIuYcY4gsUkWam7pq46Bl8FbVpc7ny9PD548fL5fLRmM0BCQkLE2WZam1EjpaLIEzcw5MyAYk4mVegVqGFHFIvJJniuzSpCx1uZTlXMvir8dJTaxv1UzozsycEmJoql7qcj4/r3bhcdxdqyyFwXdjitNuLTKv8nRZn6/rWlR6SiITIMVAOfEQ45hSvMV5iFmtupRSm1YDUam1FRGfV2BGDq2M9yMfxjhOUwikpjHFnFLsPoMbjLkxNIARnSgwMb2uA17ATN+e0e1pOdwgGDDTspbn5/P1fG1FmHEa85ADGNRmtet6RJcmumXBuZqXpqIv6Aq6myOqI6mZLaW21qQbFKQQUgwbq2XzNbiFXIN1ByQVAfAY6OY89pokvq1sh54UEdxZG7SqtVhVx+BIpOIWodtEa1NpwkaUMOYhTxOn6K61zK1cEYQJepJvjHG/P/7w4Yd8vl5XaZe1LUWlUf+jXhJ6b19b/zo3Z+H+nd6km24Gpt0Nvsla26m1k7TLvDzM69NYr/YKidk4wdus2P+GUullZW04p5mJtFqrqkSOfTwpHFg1EA4pigkGwoAUWLTNbrVUFxEQMkLAgBACIwZz02bgHpgQva5LWRdwG3KK8cjspjNoJWuMvqzFm1XfpmX+rU/MNuPfIpSIiFIciJBDQAQzd1MBcfA87fZ3b49v3p+fHy+Xp4cvtJxH2QFgAAQEAY7Eg4g+Pz9dL2dVdURtzdVcwUzNrmiLcUJM4LFP1pEZAMyYkcyFGluPVCSOHIndfDYEoACYKewoHJAmgAAuAPL6jMENWoqAVJvMSwkxgEqIcbffEccpj+ggrUoAI6fEaNrq2palLWtbq6yi1VxBzQncVFqraOLaGD0xqEYTLev69PhYm2AcFchcQ6RhSOQT5LAfeL+bxogCFRpWd1NBN9evJiEAX98f1VZrlfaVidzNAHij/22OsQ5AlNI0DYd9PuwCtVKaY0lBLZiZiDZTN3WpaqjOXqVdrpcY4b1NxKk1RuJhHIfdGBIgVbQKvqAvUk7nx5+vp8/L5bmtV1iXFPjueL9zBx7AWCJV8LlQNQZORZ1jzuMYY2Am63Yn3fSZbomIt1M/puza2evqvfxWEdFmljrzuadWchcZW+Aw5KFDdUhMIcQeeEkUObpaXdcrgoqElLq2X0Tquq5llVbdoRsbTbsJEZioT7qICEOYDoeUMzP3h0GM2IPhHEwc3XzbX93BADYBK3xzdX/IzWX1xl9B6OIm5pgGIrbbHlnLer2cW61ApN5rh6qihBBTysMwTmOIEZiww/IOYF5En67LaS6ANE3j3d1xN03rfLnMy1pkrXpda1krAezi9Hfvjj/s7/9wfLufducAkByPh5GmcqGAHvMQQjTVbzcoV1M1adYCI1FARu/lRVtVfbOH6eSfgMiIDEyYY0SF+fkyfzk9/OXz+fPz+nw9P5/m8zNoZcJADIZqXlVkKZfzZb1coJWBYBgnpZGJVXSeL9v4GtS7Yxp1P7weLQgEmAKhI4gZVGQjdlFtqh0zfSlibj1033AJNhyGwK2ta5uvVmavi7ZVW5Mm7h6YibS1RRyZSFR7Q1tbqWVVaYFjcKoplWUkguvzw8Onjz/95U/PzxfmSMRo2IONrPdxHVZ1XRmHQJYzcwghE5eqLrVVXBMtQyiZWqRM7uSKJugCrw8XgNCaNIBldUTkwCkEHGLfDRCAXQJ4QCBwkTpfL4+ff43TrmButXkPchC1JtS/DUZCj4z7Kd0f76Y8IpM7VNFlWZ8vl+u8aJHWOnlXwWwNvC7LmknTAMQhDTEySGHm7o7geJth3J5AhzP6yoB/zWVmrdVlWa6Xa1lXRhpSSDEQUatNRJE2NTkgqlkV6N7lzV7av69cj273pmqlNAKfMh+n/MPbu2nYKFe/6Up8886XVisAEEbE3072v35UQHdCCAgMQJ2eYeZsCN697wEUemHcQgWgkJwjcwzIKKXVea7rjKY9l1HNWlNEPh7vkQbwMwNJba2UyLHjCi/suhdp0m/G3F0Iim4bU1+btFLbZS2PpTy3dr5cHy/Xp+lwfT2zvK2bf+ljIiQF7DWSqaFjiCkSM2IkQrMQMMTQpAK6ozs5GAYiI1I0u4Wrd7k+cegwsDIhcYzcWrtez89PT0zMgcAshTDmJMOgrfbCDNoGN/3V5As7L4aYifpJsckkzK3LAcwFwGJK035/d//mYdqt9el8PpXlKnWHnLDbFRA4UlM7XeYvXx7nZd1fahzepJxjpBAnYgLkjughyKYx/uqN0beeiKi2eTZHRHTPQGQeAQfiHfMOKQGQuW5OsbdLbyIzVatVahIHTHm4u79vtZlBQAJXlWoCELvbvLtIK2WZl/W61LVIbSbmm1DF3ARUes1IkVW0tVbXsi5LCDESO4U+i0R3JuIUc4oxRiKD29b2upz3mwQOYePL96r9taIHoIMwSEC0JbkFjjFO03i3H4+7YTeQXis7oCBpCJ6HEFMwsLVWcdS5LXK5zOX5cprGEOJ3u8PRkWLkOI15GmJAgkZQAIp5sTYvl6eHz79++fRpvZ5Z2n6M3ioQYdoHHgEmpOgWzLBrNPunImaim88+4ouh7dcbIeQYGTeiWcdiVK2JtNZaEEcmAEagm1CCmYdhSDkDIDHT5lKEiB5CZCRVXZdVRUKtHYwx1VpLq7XW4g7MmnPKOccYmQl7wj0RxZByAqLbfLv/NAIgGN5C517iQ/pn/lYu2gtM+qpR6jfey2dKMaachjGE0LmErlrWlZjWdd047V1FXIpKK2tx847FcAzb/u+A6CGEPKRxHPa7No4DMTaVa1ku87KsdSltLrVWYaJd4t0wjeNYEU4uiBzYhj6qCoHJQ0ohBLk54bxcm01833PQFNXAxLVKbU37eRVjRETRZmCBAgCRgSz16deHhx8/ffrTL5eHky6lltLqAq7M3eqY1EDUvcl8vc6XU72edV14NwZOuzSueTrFnDgEQlVANEQDMiDrzLiOVQMkJxRXh2aunZaprmKi9lsk5vZ8oJ9CBG6mUouU1bW5tlZLq7VHZ8cYQ1N3056e4l5rA5DL+bwuV2ktcgSFjkkD2uPDw+PDw9Pj4/PzJXBEDG5uBmoGRDGnmEIIrIS1lDVyzRkjOyAgO7KYSGkaKo6NslJQqbIuSy2rq/7mzAytFhGd12IGKccxZ9OBwEtTZHx3yJyH8fCWh0FRmqwff7pwHPL9e4S4H8I8xOVR1mUxNySgGAKmOIX9NPzw4f3hcOfYj3k5nU61lnm+al3busha0R1TCpoy+RAohtChQtz6/47IsncalX3Vipja1yDTf/GFiKoyX5fL+bIuC5hP+2HKmRClybouKm1MfNylS0mq1rquBXwTosFNIHF79uBwc+53UV2W9fR8eXh4nHLY7w8psrt1jthWE/RyXrW2ioAxdH/w25T51fHiDm7Y83QDBzLquTHmFnrBDz1P0KxKW0rDgoGSC7ADu1qrZV2ul3pdwJwBm3kttSwLcxiG6e44IKV0SCayLAtn4sibg7CjAtJNbfe1iLmRYcAM3Nx69m2Tdq3r87o+LOtTKefT5el0edrPV9WtiPEtpXzTY/8tNszt7m+aA0dTNwVCZkopbO4jhjQiYEBD8hVqXUWbqpgKOgRiCr0Ff9HucggBAVMCAANUAFXV5+fnP/ufnp6epnGIAU0KAUTmFGIMgauRC+hvJxcOYIZbLHdXvoYQAgFY6za02sykm9cx4ZDz/d3d/nC4Pj4va2vNVJ0JCbrhb3Lkan5a6l8+nf/886dp+ALAMVgeadhNnO44jo4GLn3apSZd+YcOpgLmhJHJAaRHFjAFxANLUwfHxJSQIyKp9fA4eZmLu3lrraxrWXMJhB73Pg3DdDzs7+/flLWcT6dWVnAx6SIDQoh9VNZEr5f5fLmsS61NdZuuAxEAoRvqVjF5a1bWWmt1Vw44DlEBl3VtZS3Lqk1yQDfo9hpNRE2JgBNH5K27txt0t5XYLzKRr0RF3NLFe49PAUPOu/Hubjge83GXdzFnt7KGQEoAqjHimze7GDOwXdarXJfztf76cHk8Xa/L/P67+zfv9sP+nmPiYRynKeUcWYIbowKIeQOTVsvz4/kf//Hn09PjyP7mOKIbxZymt2GoIemA6DkGi83YsG72HtgDhoz6e0TOv4no6fnQRm7mN4MyU21NSq1MEZnJQnAlY8eNaB5CiKnztGjDaRAQnIhiDAggrUlrHCrHGGNy99aamSFib+0AvB/DiBiYgfvEkgGgi2ljkq6/Qu/yDCToQmu9Mce6fDx8VcHcqEo3azqyTnftNhA5H+7ejrt9yomZvM+lWyspMtPQSnegIgqqVuZlvpxPjw/ruoQUOsM5dGUWOIdwPO7+/g/fAzGlT2JwXWaVui6Xy7Jc5nVeS6mtqQbnonqpzS7nKg/Dfvph+t0Rsp/PAQW0UI4cmGPsrIuvcD66gRs5BgQGERGVrY4xadJEydw4EpivTYhogiEAqpbl6fLrnz/++k8fn355KJeVOyUfDXmT+zqQAaoHUV+Wcj6dzo9fznd3gWPe7WLAKeZdGqaUMrM7RsJulgnsBChN17K4KsAgToACqI6y5Zx2TTjCV67SregHcCIMW96yulSTYtb6GVRKLaUCYoiRHGozIgbwmDIgXa4XO7fT88M6X6S1FKO0Ld7O0Z+fn56ezqWKqqtU82riotqaIPMwjaOPgUdwbK0ty3Jl1hQR1BxCiKJYxKxpUm9qWOU6L09Pz+fzWdWJvg2ATEMmNUUSMUAX01IruNcmjHQ4pHHa5f3gHK9N26rLXOLA+xDSMIn5sqxfELRVEwWCCBp26W6/+/79u9///ofD8U7Nm0grJSdcltP5QiatrqustfdhYwxvD+O7u/1xN05jTpGR0DyGkDgGDgG6mBDcoKvbug72r6xU//Z1I/Nqq3WZl2VZpLbuNojgpdRW6rKsUltknHIcU1xCq2qixmoGLmrbcPFl37wZ3OLN7aA1vV6XT1+eIlOtupsyk7/WWMDGpqQes9vNu/8Wc6QPMt06Dzpi9lIdmmHfXhw6tcyalaXMdmmhYcyjVfUmUjvmr6UweGJWZkEsa0NU5iGEeNjtwhhdrZVqNvYawl6A+F4i2u0OO90WNtmVu3RvN5OqbWn1XJbneX5c1svl8ny5nteyfsOJ+U2N9t++CIxcwRURiDEwMlO4lQ8IncQGbqYmoupoECmEyMa2OQl3yj1x3JxO2d2arq2pqszXSyv6/Pw8pDjkOCYiEG0N+jO2zV7hr31iABmJw2ahGkLgbvSnKiKt84R8C4m0wDSNwziOl6cgiqJohgEZKTigO5mTGlbj51n+9PGJwQ5jYvamtZb67gfa3w2cR0Q3XV0K9namu+uZdHW3uwBYd3xnZkRk7IrPiJgcgwP2tBzT9pIubrBN69Z1TYERvG7WXZjzAIDz9Syu0LPPGBMhganIsqzX6zzPy7pWNSOAQITEFCIxIbq2CmquShQQemiGghkj5MiOdA3IYCbSSmPn1rQ1Je/yKN/iZcm7bOI1s7L/azsWv+1gaEsX71ouDhxznoZpl6ddykBY3BTNCCmlmEOKKRNFBywipeF5WR+fT8+Xpc98q8BcrckadMa8MsdETmSkYi4q0oqsi1+v9nxqT0/rzA1c9lPcHe7uygrS2AwRFckARZrVta1Lq+UmAgTsYfKvFcRf3zEE926Njq/kCGYmKgDGHX8BoBCYOeaUc87DEHrs+VbNgW9WpWSuTZqoQHWOcRwciTrNpi/v3nLUWpk5hM4I2f5WM5PWWq2bith6reoE4BRurV1fKKIqSvH1Un8xXOmDM2YKkBCJiYZpN+13024XYmBGNzHhRgCuohkZzQ2RiaM7hBDdfb5eWl27fLfL1HqaHTNNQ/7w9o2Yr01O8yra5u59sM3zu62MidllXT8+P8fARdo92btAznQ9n6EtAYVgBwDEjPQ602nbCDe6Qi9ITRExBEop9WobqFMDtmhKJHK19Xo9f354+vjp+dOX9TxrEQiI5IjWOY+w9XiI4OQA0sr18unnnzLg6TRPx/vhOFiAKY1vDvfX5UwFOHL3TCNEZEbuDWWl6uoIZIgGCA4mGw7z2yDbl9vphjHk7tKsFWlFpNoWItBdb3oUHfb2uQ8Trtd5ns+trfP1udbVzYaUmZKony5XMblcL/M8lyoddXM1sVZqXdYViMQNmcZhgG2UUa84S2GiPuog5OgGgEQhInFTLaWVUqVpRzRf30i4//ABCRFDq+16fqrrairapDbJKeTdNO4nDN6suSoahbzb3b37/ne/53Hk/Hi5LhRYzFqtRBgS7Yb8+++//7f/5o9/+LvfT4dDqdKlCkPU+bJ7egqmUpaiTSjHEMPxuPvDD+9//8P7IUZm7PxqphhzTjGFyOhuhkh4i7UBBHDTJq9qir+6cBuObJ475tbaZjBa1+Lmjt5a0ybrUuq6ifABIBJlxkBo7lXVG5h7EW1qAjdbFADciK+GSIEpEKLDspRff32UKpdrub/bHXd5yilGBqfeTBJRzinFTm0jpI4ubXYyX4khDiouzbQZBBxSSkSiRKU2FXLD7nNG7ALrdfXl2QGr4/Td94PeQeNWi7QVtAWEnALZgK5SSqntdDoNedgfDmPO7OA9qtNuw+0+L+rf3e30gBcxpBu4golbc6umVWWVOtflvF5P1/l6ma/zspb2KtPqFQkGvuXBfLtvf+UEbJQzQ3BEYwQFJ3QiJiRH5FdZzEbm5GCmFAgQxDb7OlOFHl9KnFJKKYvU9XQu6yoiqlaWpmKt1Rz57XG3GwK5tVrbWlsprbQebP/aJgYRkULPaIwhpBQQQbS1VlqrZl2s0bekrsZrzBhDYM5A1G06KWTk0BXVyA4emCfHfLm2eT7/b0Nc5+svf/nHf/9v//w//s9LDHTI/y7kvWoxLoqLSTNzc3FX01Lrs1nFnmGOTJwRmcgJwIybhe6ubSbaVgtfu2R377OeUutaAhHMy/L4eAKH3TS6tlqKSguMKcTdkKYhEfi8LI+Pjw8PT/OyqjtzGAI5Uwgh5YFDAIRaCzppkxzTJtYzc1Fyy4EopsOYl2ElgJ55WxiXwp25jEzqBlrBGKEvHHjNoPp6JN4ku3A7Wl4PPjcIp6Pp4mqLrIuWxoD73XE3pRCDGMxLU0OKMY04HWocp/1+evvuPuTp6VK+fHkAvrxf6LvvWvqwz9HBTE1KadfZLtew1onifUhF2uNS2ryWpZTWmpt24i6DgTRZ13I9z5fTulxF5VbP+y2Zy16f+v1+N1M8UQQMN7s8ZAYEN1NQVKQIKcdxGPM4piGFEJn5pWbolUUXG4oAIqhqLZWbBA4hxt+MSlWklkKIHQ0nJ2R3cFZt3SdAdZNp+HZ6EiOgo26Z3GqqrSk1+7rYXyrODWGKOedxCiECYkwpjZEDEBpYt/rpyKcCqIO56WaWjhQC5XGcdvvSkwytZ7yRbS8BhhD20/ju7nC+FuJLU3OwIUcGrS2oRAKasV6W5fF6+XK+RObdmO/evRmnKeb8+Msvy+kxeQPVd++/x6mTWr4WmAjISORozRxd1cEgEI05B06ltrVUd0fmTiyNIeQ02LVcvjw9/Pzr9eFR5iUghMTYXbm+tlpq1twguASkkcGXy4//9F+efv0Ud2+nN2/vv3v77od3P/z+/ffvf6ithktqpIRExmQdkgKOoWopbRVzZmJCQDKDJrZlg9Rmr1rwvlgQe+XkaKpSpK7aVm1VRcwdCXs+Gjm4YZ+2tSbn81lUS11EVrdKCB29WkupVZd1Xcu6rIsBpJhyyilnVb24W6lNmqire4jxeDg4oDtI06vOKwKBESGHCBg4hpjHYdrFYViLiBoRhRgpphC+cVgIb3/4XeiwSq2Pn389Pz7Mz0+tiXXwnUgIqeOGFEPilMbj23f7uztgBnhqalVNHCBwzunubv/mzd3d8bCbpphSSIniILW0uTFBCBgDhUBIZABiUFWbmkNv5CITivRJBXA/O2/OJWi39qArZt1c/WVm8V+/ENHU1rVcr12rW8BNiRzARE/npayC0NmQtFYRNXUXsyrW3M28qjZ1sxvZ9VVcACFGphiIAGrTh+drqXpZ6nVe2ru9Hff73RhSPzx63ULECNC7GoNXZ+TrS8RETMXBgJE4hBx7/q8BOBmQUeAYKAeMrr7WhedzqbNIYY6uTcq6XM/X06PVNTCFQNyhJ1MzRXcGZOTQaQRONzAGwA2tj5BejZMIABzNekqRWVUp0oq2VerSytLK2vc6Ef+XPZZ/9knRS9PZmrQmPYSxR7feZukYKIKPoO6qqM6AasKRHKCptNY2FyoA3hQ4GIgMwU1FmrSmYqqozVqrLnglhxZTQFOV1rqOScQA8VskBpECcdwwGAR3FRGRLX4Sb8wNN+sTwRw5p0AcOvgLEJAiUnRwNbAiUsUNEMgdrov8+Zfn63X++DM+Pi8F46Xiv//v85vv/o7TwCF4x4a0mlXVVWRRnc2ECQBucZVIiMQYATd9i0JtbZG6xBjg1e10vKm11lqrgZe1PJ8vgCAqDNZaQdfAMQcaU0iBWqnrup6fT+fzpTVD5BBCiCnkmFLKw8AxAmKphYFblcSR0cGK1FaWpZXC4EMKdphqlad8bWtD7AUHiBqIeBNTAVXAPt5k6Ml/r8pc/woTfL22SrkzSFCbtLIuPDMncFGVk85XaRKIY5piyt2rnnOMzI5xYrv3gEh3d8f9YR/SdJ7Lz58eRc8KYx7yu/cjheBKTfRyXU/n9TqbaBrHo9WlzFfwVpuspazrWmtNpoTAhAgmdV2X63q9lGUxEfgrVvtvLtsCeFurRbtHGWIPLjY3967m4ZTTOI3TtBvGIaa0QTA3G8YNHnE1td6VmFlpjURCjNlfvjDbIBn31hozS21MRE7shM5CIiJSRbuSeHt9CMCJAIDBTZW6kaNIY5bX7xh2c8YeK44YQhynXR4mYuRAITKRg4ttvNm+t3wdPZuZigISYnB3joElWKuq6ubUpVobU8djoCGGw5hKjee1AuAuZ09E6InD5VoBvEgtrS6tNqWcOcRwd3f//v1bdHj+lJaHX0uTdV3TkAGBmV+jZARERlYNEFXVDRmJQgyMxMEcxIxC5BhjjDHERGE91/npcnl4qpeLt8LISAS3maj3PGD0LnnOZIHDIUA0mZ8fL88nCaf08HR/eW6oHz683R329/s36nCW2cAZM0NiDMwWUiTtvasmD06kxjddUnfc/IbdCK9hGHAwsbpKnbWtKlvqX2f/uTs56M0ao7W2rm0ppdTZQVLEIUUgcodlKU3m8/myLEuVxiHs95TSEFOKiL2xa9KgNDOX/jo5IJKblFJdBc04cB6AUsAQYx5znjjmeRUz74lsEip9m5Qe3v3+jyHGabcX0bw/puFnM6+ibK4Ip2VtxOMhYRjAKYXxeH93eHPHIZzn9cvD6dPD82leG+DusH/35vjHP3z3w4d3IfJlXujx+WC8OxzV6fH5+uXxdJ5XdRiHadpJc1pV7LoMD09/+vhAMX739m7IUcSbaCltMJ92Y/YISOCb9BVxo7j3KZWovDpjtiqHXor/rRUgAJBm81zO5+vpeV7WFcEJAa60lvbleV6LBAJGipGa2mmpS5Um1m4h6JvP6uaKcOOIIBBSQOx5aUgk4hdtS9Xn63qeV9XmDjEGCsnJb2Ol2wL1G9dma95fny6uYirm2kmQhmCdNh05OAB5FxePYz4cpzeg1J5bp9maFqYdgdZlefzy+ecf/4tr+fDdhx4rk4fIlJiDtFJrmGiX0xApEgZ3V9imFb6hTbQR827YDLiBq1tTKa0utSxtXbUUqU3VEIgwEmTCV8GcL2Pxb4+c1/8PfvOfIqjoOi/LdW6tdnWpm4FuRB1CTjHh4C5C5o1ITYhBXbGCmxlx99Eg3gpG1WoqCI7u0oqKM+U0Dvf3BwZwLSJCiK662QL05C9CgN9AMYE4xhiYSLtLcWumThQQEbBDhN3DAAPxGMOQAnU7GmKkgBiQApBpk7Us8/UqZSHX3ZifQvpykqeL/pzpp8sv//nL/+N/+un5/1bbf/of/y9vPvyHmHdIAQDcqsos7SI6u0tXWZuratmcxDgFYgN2qKK1qbZykXrWHL4S0307L71DRiJrbed5BgQzTQygbWDIiYYUUiAC01bLslyv13VdkXIIMaY4DuP+sBumIcbMkYGwNR3TJFXQUcpyOdeyrOfT8+EwmrYhhjwM4HR6WtxcRFPiEJP7Os+rrtdgLYARfm0X/ZW3ULeM6sXK69dp0/2pAjY3cJjFVW1BLBxsXZ+sXUgtD9EwVg2lClBM43HgQZ1T8zS9JeJhN+WUMIR2evjyeFlXzbs3b9+/U0fk5BSr4NPz9eHpfF2qA94dDgOXC51QL6a6LuVyvk7Xa76XTMgxkIhIW9ellqWV1Vpzc+yaGuiD4W/ML/vJLSJrWXs0aa29ghBR6fkakWmchv3hsDvsp3FKOVEInWFLsFkjQjdwUBPfTAN66IWYXa9XEck5I6L02UxX4iB2cI4JydmNyQFJW4+Ea6JinrzzWl9wMXdGU/ce3y2BXxFI+2reuEo9rgZDTMM45iERo2kzaaai3ZJWpGk3XSEEckDtXrNq7qii3Q28tcqI3cA69DAEAGkiKqotoCa2REZEh2lIcTrup/N5/uXLo4I0UGLMKRDSOMTdbvjuw3f/4T/+x//0f/6fPv/84//n//m/XB4/Xy5nIpj2+xASfUVioOPf272KAGCIGYlkA4Owm4TElMc8Rg4ksAqU61LOs1UhUyTvVAhwIzV36+6tABYIGGGIcEyUIrWqs+h1uZxULlDTPv/b09+Nw7BLuzZZnaGaJhojhV4HxJyixtrcRI3IFGpRM2JmwhADpjC8Ri/w5Y7cidxUtS1aF21FW621tiYAyMzuTu6o2ueFaynn67LW6i4xUUppGFPOGZ3mZV3XOi+lVhF3Qy+l5UEQKQ9DSikPY8rpcp3XtQCgirs5hQgIta1SV1AlDuoUIcUYOYwxDRCy+QyAMaSUEixM366ZsDvec4jjtDNVFStreX56jKVyHlW1upHSFHfDdBwwhzRM+3GYBgfoDaiqmwOFkIdhf9y/fffm/u2bYRo4JUQCQOKArGqgBswxj+P+qEuzuaqspmqltuuyXuZ1HAd1EIXS2jKvq2gcUgfH0Ly1hu4hpBCYmGnLsf1vqJNubT2IyLqUZSnzWsramADBVX0u7TKXtSoTEmKoIOZLkSp9JG3N+0vbowJe6XReZoqEPSPFAZpufQQhKPhhivvdeFcl5s5ph77UVRoAMDEi9ZLmr5kxfSLRva5EtEcxByIMwQ3QFIyYhmE4Hu/fo1PVykNkQgIL6OS9/5uX5YogSIYEolXVch5CCGidd+PWrC6yAbOdjvCSs7fpEQAADakP6sHE7Ea7WWepRZu6AkJg5shA1Ai+ybb4F17b4E+1tHo6PX3+/Onp8alVIeC+ASM6KG5TYAoY3fKA7oFJTcC1SVPSzg2xjnshQedFVhOtjBiYCMBgM3Ld7/eMUBYAqcQAiBEwAxYFgSamr5EYRIox9p4AEfvT7vzMW2aqghkBKQAAMvEw5HFIOVBkijFzzEAMyBwyipdyPZ+fHp8+n87PTVSdSnNHFKD6XB7PP4no3TEz2X/A+Obd99qqyiKytDbXcmm6IgAzhxA5cFcgI1GP1XFAdReptS5SLirV/ZvJxfaQN9GclSoUGlFB8DHiwBoSDymMKeRADEDQA2M63EPcw9lSHHPKMXZjKAAEonHIwsGaWSuuqtA6Z1NrddUY4pjSfhrKWkppHCmEaNpq01ZlfDFWvNlzvS5i7NX1+i5eYjDQDEBdqroQSYgeE4o1Qop54hwbJLdQlALlMR9TGlURWAWrqM2rlAYhgRiP0zGPeLy72+33KYzkqQnW0tZ5bnUOoe33FGmU6TiFe1mQQE2s1lpqEZHQE5K8LyzX1qRWF0Gzrh0y/+fXSC9i6lrWdS3rWmvtwGCpxR1SisSUxzxO4zAMaUghdsqXO/T6AhBvHCJ9iSvvNvBuZqUUd+/kvC3r7VaYdO0kIQQPHp0AgJhFpLZSSiolxIwcAHATG20hYkzE3c3rt8QLQuL+690thra5UkpM0KxHijVpIrV3pdsHMgAHMscmVltTMTftH9LN++dsMXUmsrmJNBNB10g+MDQGIsgBxxz3Q55iZIeJ05uxXNe6rKuYIsOQU4rheDi8/+6742738PEnk1ZqvV6veRx/03q98AX7h+vlmbnX1mofkiD3+UhrokVtaefH0/X5VObZRQicQPGm8AC/obcESN7PkTHwGCgwASOJuqk0X2e4np+vz89tGgPCQIGBwLQ1dSeKBMxhSNEyrSxNzNzUO4RHN6vjfhy/vp0bDNPd0UXrKnUxKSa1te4F08kO1sMAVaWUOi/rdZ5FNaYQQuxRdTFGFa1NSm3mABTQzR2baKmtNskjjtM0TOO0250vl6fHUx9OiugQU9e5qZiroAGwQPRIMaQhpslDAiAz0L9SWvQrUBcvSFNRROKYw7AbjhZTbE1Oz1ePeTq8f/v+Xd4dELGWpcuEwX0ah+N+t58yuCamyBRCGIbp+O7t3fHusNuN0y4OGcCnaToc76q7IqtxaXK+zq4SI4855RQQsTYxp2ZearvOhdZaHaZxTiEEAnLLTNMogXKMmZFaSiGmbzXK+MKIv+EyANBDdrSWWkoTETXbzAXM0H0IjABq4O61uzSLaAf7uqjdcHPG3jb9Dkr0v843syUANXfzRdTdAmNTKU3XKqW2QYQ5uruI1SrzMiPAbhpTDLd0pZv84nYb5FtTpqKNmhOgcyDmThVs7sqMaRgPd2+/T5yADBj245iZIji6qjRE2B8PKeLh7mhNLpdzrZKHcQwjAzFRXYs90VyVx0Q5xRRS7H4//VZfUJltV3TvHlRNpbQyt7q21lSAMMVgwNSUA1YEhr+xQf/1taE+N7Sm1vr08Pnnn3760z/94/Vy3U/7aZjcxBTRGRzRiYwoBiQOMQFAiEGltlrEBAEZyJmdqCdgd46MNDNQZso5So0ESkxMtBlq4IgWGR0BEmKs4mH2y3ydr6/XDBGNQ+60A4du64k5ZURCYncTdUXAzfxeiWkYx2kap0hTpGna52HX+acpTdJc2vJ8+vSXj3/+08dPvz5elmIp5iGnYSQALWv56ZfH/+X//v9alzkEc/v3IUzu1Opa1+u6nBU0pymEMeddTCNjZA7AESkZsJiLedXa1pPUGc0RvoHHb5r6XuVbFWXRWGVBYMdhxBjiOMRxiL2IqSHkmIY8pNScI/XMI2ZQk7KqaQ+odCA1UnMpUsuq2hJD11S2tS6Xq4hK0RRoGpKDEyHHABANyA1tI+i+2Nbhb14Xe9G+v+KQwY1NAtBZ6IjuKmW5uvswHaZhjCkQM1T3poQhUhohTM4ZEFpdT+fr0+l8uS4U4v3922l/+B/+h//T8e7+w/ffv3/79jgdoZV2afWygC5DWscE5IzIVvdt+n69DNfziYnBwdREW22lCDWBlOKQM5hba2CbUuTbm3p9f1ujX0uty9qT21trtdYOqXDkTvPKOYbwNSqTCB3xJp/b1EIdLOy/XUSRiBxUtdZKRDHGvvTA3dzRvP/ShhaDuwMhW5Ba63ydiSJRcKCUvf/VRNBpYh6TqbZa6JWTMiJy4NCF5YGIIwZyU9PmlhwQTN1EW9NWmoiIibqYiXjnwhiSODb1Vhq6DSlSiBXZ1dfrCoYpJkQQaN0WNgAmpiGwRTA30AbK4xD3u/09jm2ntehlWR/m83Obr1py5OV6vp6e3r25343jD7//Q13mzz//aZ7XY20b13zbk3FjjxsiYaDYhWDS5Hw5z7VhCMgg0rTptZzbXOrz9fLx0/OXx7Is0GvZm0LolgFIxIgMSMiMHELqDsUIRJgCTgYpALMHWdfnz9eB05jJGrba6nq1ElKawo4jB85RWwzZSVXBDZB7KdQtzPvE7ht1ElC3I9vml1qLtsW1qbXWNhaUqtXaqpg6tCbLsszzvJYCiFMYh2EcxikNkZBUzNyBMOchODTdpoPLWs/Xa8xp3E2H/S6ldJ3XnD6dTxczq0VgdKSOITCgOWBTDwbEKaQx5tEpdIXasqzzPFutPR/mZcmErlbq2XcUAucxDPvkNO7G1mRpHFOe9sfj3f3u7uhgT4/WSgWAEPjusPvw/v58ef/4dEJTae38fH4cxzAOIeUYIxBfqy7LelmWtbXaIUkVBB9zzIGO+92HD28/vH9zf9ynFJECI3RdnzkAkoi7i3R+M3d/J8ZOqyHibyqYbybleEsdMrPWevJaKaX2SZwCALg0NbWeleCAbq6KTbQPcR0AKliD9rf5w3Tbd27mzm7uhJgCp8CBCMD7GYrRHExE11Kv15UIcoox9j/gn5EoMSH33cW9O4n16RUhmqOhIUYOYxoO0/HtkHLTWb3lEFG0zbOUNUbeHw9hwMCQ83Btl1pbKbU1cfDeuM+Xuc2rMkKKPORhHA6HcRhSjJ2K7oA3k14wAHcTNdFWWl1bXaWVmzFlYjNxd6c+cfobX9g/c708MpFWSnl+evr4048//uVPP//0F2kSiYaUwASc3GDzGScEA0QKISCBe5CKakqNCJGIAmwM1k3GI9JadRCOm+6UuTO+t306pETA5MpEnHIQa8BFtRcxXx830TCkPuYHM7NOV9w0QWquioQUOTohQtjtDvdvv/v++8f58dcx+G53CDGbNQBkToGLu7S6zOt1Wa6tNXBKMYw5DZnNtBZd1vbLLw8/3v/l15/+4TA2ChNSRuxmbRWZAIg5xjjGOBEk5EQcHaJ5VF3X+bJcntpycm2EUR3/2QdjAGomaiJWWZhcAhOGFHhIYUghMcImROJhGMZqRpFDjDEFIjeVqrVVURMzR6YwdDoRggXGFHlIKRJJbfPlikup4iaF0QjdwGut0ppah9c7PWvLDPtmnNQjvl6USr99jzZ72BeJnam34iHFmMbpcBjGTITamnsPgUkQRgiREVkdQ0BmCoFjTnk6Ht68ffv23bu3b97cTeMQTMt8mZ8+r6cvJNeRa4wYiBAZhoHGd+uUn2I0p5RSTwsCsCa1VjcRuHGkcAtUo1vK6S3v/vXj6DqfWlv/WkRUtYlYd1JusUfz9Nvt+hYDY+TNt2yrTTcrpxvzSaRJd93sX1Brzd37vGBLQQMU73/YduISIBIHEWltXRfiSBwN0MEcYuCOtXdqSgxBY8wx5tf2XZujEhNz4BhDjCFsZjk9RQLd0RVu+cyqHQJ33ZhSLmq1aSmV3BNxwnAYDgF5CEOiIWJCcDECs4AsHCkZi0fQIuIm2oozDTTu03GgMeRhHfTLcP5cnr/UxzHtY9N2nWWeCelwPB7v3jx++kXLrLqJA17fCzM740ZtBiAibyCqrZen7OqOAvVa1ufL/Olx/vVhuVy0NeoEBtjwfAT0PhrstngI/dULzF2vRO6RYJ/IInPmAbWdn8uQMt+nQCPTQngtpbqFKWXIzDGlIaXBq0pTQCBi6CIot348/WbBUNeZaQeqS1muZblKXVS6HYCJSK2yLGtpao69glmWtbWW8jjt98fj8XAcYiBt0qjhJvbPAQill85ra1pqayJIOIzD8e5+nOpyra3q5Xzu51HsLxIRYMeP0YE4pJjHPEwKBMSiVkopa4HWtHNFb1dwZGREZiIIgDGPnKfglMaRoo0HyzGP024YhzxEdUs5gxMRjcjv3jgRxBg+/vLl488fT6dTmS9fHr58enx8//13H969z8O0iq/rWubny+np8eH56fHp6fG5lDpmvj/c//GPv//d7777/v2b/W4A8y6ONKfWTMzdu6+zdvJkddeKDbSRRCIwfX0n+AqCedElEpGIrku5Xpd5XtalEyxcHEy1NjE1ZB5DmFIMCL14LGLXItNan+YCUC43GcHL7ggA6P0lIARUs9bpdwCMOKbwZp/fHsbDlIYY3K2pkhmAtSa1trUUZrKvmrcX/c6tUiYMkVPspyNtN+QAiIyBkJQ9xiGkKeRdGPZxGIbdQdvCAG1Z1jqvl3m/P9Dvf1+1SC1a1lK0z7RqabW0HLOaPZ3Op2W51FrdMaTdYffdd+/u3xz3h3Ecc4984G62tyVwqEitdS11qXUxa4wUQxSNq7RWS1nqZlP9L1LA+22s7iJyvV6/fPny8eeffvzzP/7y80+PXz5HjvXuzk0cDG+21RE5dJYjOHHAQFumSVlvrhlEiKq2/U+t1bass1kLCQHUTfG2zVcRYEyBkADMOYZxNwWDuWmcZwDoxr3bskfMKYMhAXSnR9ykowgvkirCPGSmMSAPaeSYcsSBK+lyPB4Ig4GiExETMyNF5l2K+xSnJOSUAjEReUSkblozTCNRvJ6efv2LrGtFzrv7D9N0F4cUQyQKAAExI04URuJMHNwIjEzOl6eP5+dPaIrEGKn9lZmqb9gJdJ8+UW1KUdwcmSnFkGNMkbnXbNoAfByGg5FxQuJISOQdnJNaS61LrY4cR40xB6KUI8E4RBpSIiJpcj1fa2udMl/VVK2qLcsqrbSmjGFjcW+m77+dF9/A8W1R3NZ+H2psonfYZBcA5irujhSHNN3t748pZwAwkVoLuFGIGEMIPDG/Md3f3TPHnPeH/XHIU4phSDGSo1zrcr0+/PT06z8sjz+xnEeqbEDAHFLIcdyNtp/201TFIe7yMOYxU4o+Wy31crku8wXBA7OAi5mDGqL59pbeln9/Iu7eO58mIp2gtWUjuhcEXnhZl1JKE8kACGhuZOTkCEiMCC+RS2ImffNSsdZUTZAw5dQHSR2PAYCtHgcAJBdxVWTErs7hIKrcGlJFms1BTB0EYIKcAgbsVCUMIeRxsBDSSxGDHaIkRiTCEGLMeRh20zCNMUZ0AUIjMEJFIuCN5N0H+OJNvdYmtbVa11LIISFPw+7t3bt93ueYQ8gYApjpupJaQhZeD5AeMDwFPK/Xa1nrUq+lZPYj3n2P393h7zEOF1wfwsPH8KeW9A5Hqm19PlEIDJyHaRh2q6u5yzfJzxRCCCl1lHx7VABEFGPiKnOtCpVrJEVYRed1fTytj2ddC5gCIN4i9foYLiAhbxgEgDNCIGRyMHVQMAmAMUUeUtwP+0g6X9tlCMf9ME5vw06Zzqus0motHDgNKYSU8+TNwauqo5MCqLr2bM1vd2REx25o6y5SyzLPl/NyOXmdtdU+xBCRZV0u1+uyijmczpf5eq2lqmPK+c2bt9999243RXe5ns8FOcQIwBwzADmxGQBUe3WwIXFMCZCGYQgcRERN1yVDZDUn5kDsgEUZKXDKOY/DuBMHRFJVaVJrI2mm38jFg4oCUGAmQg8cUxzGCYnGcRC1utYUU8opxMCIABhCtLDhauARYBdiCMx1nX9t6/VyXtZ5qeV0Pj99eQpxWJrWVq0tZbleT5dlnmtpKcW3b+5/9/13f//3v//w4d1xN+bIqkoIHBiJ1VC3FW5NtYnUTu8yQEYABkQi51fYeD8IWxNAhtC/MnCgLmp/Pl06aVqth0i6qq1NVRXNAWAIjExMBAhmEJkSUWIKiN22/zeKm474MSEC9A9GiIl5l+Jxyu8Ow5vDdJiGIXUTVTfr8e4UAucUX2WJbE0jvCL2EkBgDIF+4+a5UbGwW10OedjlcR/yxCmHNEpdL0+nVqUVBcdxHIdxWFu5nE+P13UtghgQvTWttfW3oDSZ5/X5PM+1qlOezutcL8/z4W7a76dpl6YxDWMKKSCRgbqK1FrWua6zSnUzxsgUCBmcWtPWpLfsf/N6mcVBt8NwVS2lXM7nLw8PHz9+/PjTjx8//vT05dNyvYzDWMraWrE8AIT+Oxgde+YtOvANfbudaD3UtjM/e//aRKrUtRS1lhyZARCpu54SbT5dXQDn4Egckxkgs9+YFq9WPjIzE71AArBVoF0ZpIgYOcQUA3V4mJ2AvAa72Po8DNndwfo2qIiCLgjGiCFQjgTE+10OIZmiOeYU74/57//uwx//7v3hcI9g63xyII45cAiRb0Nt7lpypIAUiaI6iMrp/PyXP//n8+Mv+2k/jDvKPtVqv0UVt5ews0lEVJiFwQzcCZCJu5rRuxUOmMUYxgGBEyAiGLqaumg37rYqBojBnQlyJI5BKUdGou5LU1qVtZRqCkTNoRVdqiylubYAdkvQ8a6x2XgIt2lRZ3ziZjryLVX8Kyt8G4V+nVNy4DiEvAt5n3dTisFVl/ki0gCAmGKOOechZ6K42x2HvE9xAPNaZvJqpVad6/nL/PhTOf+s62PAytgjdDAApBDGcSSYUhqqgkBI4zjEgAHHFBZu0lotVfWlhOwIzGt7hd/we+zWuInpzVfZDN1EsbVWSl1rqa2qWfx6t34LNoKuTJIbF6YzCbrNJjGlnBCx/0yfiZsbISOAYzcHVwyEHSMgaaExNQoi0rAWWjnEjeZyo1zQ9kWHFEJ8HTl048x0Fnj3Oth8gUG74bZ9tWG4ja4JkdDA1VVUagelAjBn3qX9d/ff309vAgXiCESu5tyoeTJWmpNzgpCIApCbra2Yq2pTqsAaGQcahpTHxGNoJa1Bc5pVTxfJ0VVjDONuQtTf3AgQUAgcQ0/z7XSDzjpJMcXYoFVVNQMUoCKyrHJZbF5RlbYBot2QGCRAImDa3lrv9t2dCKmOhmDKREyeI+924zQOwU1LafMShrTfTxrTtdq5VjLwph4cjJhTCKLs1jVp5o7QzSf/auFvQyVza7WuyzyfT/P5hLK6NlVX9VplXdfLPC9LA8BlXUut5pbzdH939/0PP3z/4X0MUMsstZZYck4Equ6dTQ4AzBxTGIch5xxCAARRFZHupNVTHNZ1dSXXxgTEAZDJiUNMeYx5xBCsqaiLmKq5as/bfH0joc5LjCEzcmRHy5EO+zxEHIYoTXRMHGKIBACq5uaMFAMjmLiDa2S8P07o3srMoL9Yu8zXp89fnh9PP6WPjiQG6kquqOLSAtOwm7777t2//fs//O77D2/f3u2nIRCB922rg6PancNzjEgIhD0Fs4lpU3BPoYtHJcavenE1W+b1epnT5CnnCBYgAECp9fl0fno6nc7zPFeknuwFolqbrk2q1sC4lDxEZgB1b03XZnOTKpvXiCIYwQ0tuWV+MjJ2Jo0x4cA85PBmP747Tm/uhuN+3I1DTjGE0BcDIuYhhchjDuAWummHb7ak1gXct9OdEXrAZLfndezudn27JuKY4jhO+2HcU0zAwSnMS/ny84/z+YLA+8Pd7vd/SMNoywKXMi+yLMKcYiQ1qE2aGgXmlEOSyIqmrbRaLnWRx8/P45j2++l4v3vz5vD27f3+OKYhIplaa20ty9zWBVQJkZE6JmUGTdTMYuAUAr06Y7zjVttu1bdc6920qK61PD48/PiXHz9+/Pjrr58eH79czs/LsrYmIciyzmtZ9tME0Ldr6g4gquroiIzoZmJyS9JxMIPasx6ltSZNWpG2tGomuKUEMFEETBxi4E4r6GJOZwZ1FNvCDbVbpr6q+vuxowYvmN+WzecK4MwhcIgpEpGpg1HgNI0HfPc7maN1dq0ZIACsZrNZUa2izdxCRMrp/s0BIH5+vJroceI//vDu//o//6f/+N/98bvv7kxnD1SWSwjg0FSrinIkQAbw/uaCB/CoZtcyf/z88//6v/6/z19+/uPf/f2btx/ioLvj/K2ab8MuNzmr2kbzNFLHqtiUbHPk0x6UZZ2KFZHI+uar5mqgQAIslDxwCCHnPOU4RQ5ojQO4qdR13SInXaUDaSq6LOU8l+tcEPw4RkoYmRNbQGC88cxfrGIIYZOQw6vRMTiAQXcr2ZjA4OYuRBxiSClzHIhS5wqkmCgB/X/5+q9mSbJrTRBbYgt3j4ijMksBuKovm9PTM9Ok8Yn//51mfJgHdpPdwAVQKJHiiAgXe+8l5mF7nDxZuJywQllZoirzePgWa33rEwS1VBEhghjykNKQ8zgeD6e7GEYHWpeLfV7q/LIuT7p93s6/lpdP2J4SVgZHQPMOHjACGRCHNMZhQFLgMIyZndgfDpMJPX56UbVatYo5EhD1YIydJop2tZLcV1hXmvVQ507INTXrygJ3cxCVbStbKQeRngaK1M8GA+/+5qY9cKlJq60jCuZWaiXG1HIn4faRgZk6QAgBCZ0YTM0JtuoAGRGRO3M95hERkNxNSynMnPpsCBEIX/WMbxNG+y8hUQgp5dQ/gZmRcOeLSjeVFNXWapf1BmInQABVQVDTJlK1tBz4Jk7vDg/vbr+7Pdz1kssJwBATUkXawLY1aEiWsofkAYHOsqirOnyEJ0VYYz3wXQwTGd+kCXkIBf2sLW2l9dB7Ox4POVEOHNIXdVJ3V8BApt5Zrr0vRfSY4qDDqk1LM0AztVplq1CExLrs/Xq+W89YZ3SmPa0U3K3bxqhotT0rmhABTRoBnA6H0/GG1dHg+fFFmO/u7r65uaMwPc2Xl2WuTRWrgaMzUgQQcxN17znpTN7pPW/qmKt8F8y91bbOy/zyMj+/sFVwA+BWpWx1Wco8b1sRDqEPiznG+9vbH77/7p/+4ffffPteWrmcn7ZtabWg22Lby3nZSlMDQMgpno6Hd3f397d34zQ4+Hk+b8s2r0tt1V3NZNkWaYQuKXCM19FjHIfxENJQ1eZSS6siCp3Go+aibyke4eOnzymFKoeQoqh2nLJHRCN4d8JopZRt435qW3cgd9o5lhBjOB7zu4fbdVmfn5/P87Iua5W5Wyn3W58RA0EkPJ2m03F6/3D37fv79+9uj4cxhWju2K9m2jlh6ICEIXR7dwZENxBVrWLmjO7W8/K+bBgTWy/ry+dzWGqIKQSKIaQY52V5fr5cLkspTdUYX5NY0RxEfa0C4KKeA13Z5lrFq2rpS7VfnlfqCiESYWYeAh8SM5GaIUAmHmIYYkiRezZlVyab7bJJ6mExRJHAXe1VKdKvya8L5dc6vV+cV0cBAHBCQAoxppyHlDOHSCFwykC0LusyX3IcwZ04cZ6iM8WzGIg5cSSD2mQt7WSeYxpvc6Nh2YDXhlqaNCmyzuslhcvL/PJ8nl+Wsrb75eZ4O6aBkKq2pq1aawze06vQe+aJdTEkIvLXOv4vH4N97NLVyGbrOn/4+PGnn376y5///Msvv768vCzLXOsmqkDkAOu2zfN8mqYcOYZkDk3AEVQFERg778jBdScItp4HVZpUVW0qtbVqYj2TJnKMXUkRDCNzjCGG0EtnJApAwZxE2rbVstXf2vX2YsesQ+3XpHbveUl9ZM4cCMnNRapodTfmMI3HauvWlmbq7gwAIAiC3tAVEZEYr/UqgBFZHvi799M//8O3/5d//ad/+pd/Gqex1EvVdVvOMU4cBg6ZOXDYHc4QAVzBFBhE2svLxw8ff/zbT3+9PH44Hk4hHrLlUtrXDdlXggXv9iRMTag0W4ouRUvzJs5oXSCj1tyV0RIjE5pDEV9VN5G56ibaFDJhjzw45JDYa/BWq0irmzFR4KCwM6H6dbjM63lemXAI4DF0mIzJicCup4E7mO/iuasJ7FdIjF31Sf2V9eghghBCDGngkB25G3+5ecgRcQwcRRohDilNw3CYDsN0HA63FDI4gktJJHPV7bFdfm3zB6/nAA0YCQgcpfPvHd1RDQMyp0TdESgymQTXmMM2QAoBEZtKFWG/Gl/5G+nBb9bYNVfBVPeh86446roz9B5b3fZw674KOzgABq62+xw1qVVKqaWUXZ4kqoYi0q1XO19QRJFg58eQuzmRGzQFMEcxaKoAlNKYc0bICK6ttVqliUahvpkd3qIpr5+ekRT2AiaGwOhqrZiLtq2WUkop21a2WouoO4fA3aktuBsK+wqawSnG2/H4ze27h9tvjoe7PB7B3a61EzEjMxqAZQZGCOBQTZ/jtqK4ibkv1IAunmgJNcdj9mGMMTqatHppL1jW7BVNXcYxDzkQeIgRrk2yew9TFBVX8S8Ql5pqL7K73W7Ttdq8yLx4aazWpwYKDoaOjn6VN3eDDbdX6w0zcUd3cOYYGACtHyO1amuMoVW5zI+bWbq7n0K+T0N0oKaXVqq4urmiO6mjGnQHUwLsdDf9u6Os+7aqWW21bNs6z8t5Rt3AnSiuVda1bFtZlq2qjSEBBUfmgMfj4eH+7pt37x7u7y6Xl1qWnPPhcDikYYhzq9JKbdJCiDfT9P7h4fv370+3Jx4CEIiqqYZAOcecY3VprWkzcLU9qMsBmUOKaUSKy1ZfLvO8ldqadzPRnVX25RP++Je/xpyOxyPHKE1bE60lBVY7kNu69ZEBgEmk2xCCteaq3qFHpK4BIPBxGqbTIQwThLNAEzMG4M7GRqCewBvDME53d7e3d8ecImOXlyFCDy0PXYPn7qDqANp1fz0Pzo3Be25nv/G/GLf0U0x1fV6ef35U742Oh8jDODSTp5dzKRUcun6qZ18TgOwnITZ1K22rCABqXtSadpMYVzeBnQzXIWwEz4GPKd4M6e6Yhxg6u0LFO3Vg22pkxI46gvseNZ+cd3qVqrnba712LWHwzeq6EnvRzdR2cNUQnciJEJhi4Bh6fA+FGPN4GKbTOB1Q9XC4OZ5unYJACCnE4cgxdSG4V1vW1RCb4WG8uT3e8mG9nGU+L41m72MaRWu+aJkv6/l5Pr8s797fvfvm9vZ+GCdAF1QlAHJkQLKduNTN41u7pnO9FVz0TtP7l7EnQpnJVrfPnz/9f//bf/3Ln//84ePHy+XivTUzQ+LetK3r+vLyfJqGFJgGALfixdxNlQgH7xxkFndprWxl28q2rVvdVKuji8pWq7jFYciJb6aUmDpjrxoBc0opBdRWASEOMaQBgGsr61LKspnYW3nM9ZQ29a6Q7/Q+7QcRd39uxCbSWmltFRVQQ2kATrhLExzMun6JgNACeYopxozQSpWnl+cU4xDhm/vjf/ynb//1n3///ptvx9MdkUeaHr79JzOLYQJH0epIMYWQOIREGMGx74da1sePf/7865/XbSliy6bLppBcDF+L5R20v5YCu0RFRRpVpnVrz0yHXC6bHHJwFC2tdL8QKQCQGWLgHbWSdl6256WtVcVxynZMDFM85DBGLoEW90vZqjVECDESE4VIEBBAREopy7ox4iGHFtEjO12FEx0m6j+fAwOYAzu+zjHevhczU1OyfchsjkAcYg5pwJDUSWtDhnGIgSnGmFN2d0bKIaYYY0jgWEtlxZBSjDwOwRNucyOricBCMEcnQyDrDDEEc2iqpEZmaN04DMBUWqFWh8GHyEOOHLjbKwE6XzGwTgijv9O+vhJj3LTrH5mZQ3Q3pO5Zyf2L6bVO11q6OzqogzVrrXVacC1t27ZtLa2K1B6WRCKKJO6u1zkgGgJYrRoYHBDMxaSpVdFYW7fVjzHlHIdpoo7AifY6qfcE7tg3L/EXvgL1CibGlGLKMQ8xkFtdNlOtpSdalq0s81zWqgIQAjEjYuh/pYiJG3mMnNLNu5tvf//tP7y7/y6m0Yh2bwo0ALAA4IDC6EycEqaojcps/lHU1QCJNMaW+ZKlhguHGj2nmGIjFN0u+rhKiR4jD2M8HsbASUSYw+saM7Nl3ebLYkadhVxr29ZVmhBy053MsM5Le57t8eIvFyiFzZgAkQANEQ0J6NXWGx0cqKfzIbj3CNWeetIZYeq+LPPHD7/Wrd4dbsHw8fklzBdN4f223d/d34aA45iIXqRdam1qot7Mm4N2uUlrqtJE3rJIsE8jHKwHVklv/Oo6L7pdTBU4VfVl2da1rOuqyMeYEjLHBA5DTtM4TOOQUuo6wRji7c3pmIdtWbv3jHx6TkTf3N797ttvf/juu3GamrdmKm4BmIEZ0LSdn2xdl60UU1ENMSeniDwSBeZoDpfz/Pj8fJmXrVYVMXXYZ2NvkJhlmblVUUcOrWqTprXGQKU1BL9cZhd5mZfLslW1Q6ffArDtHj29A4yBpjFP05hyphDNUa1fV73eBHfHQGkYDsfj3e3N6XAk4g6WIjEzA5EBACBzwCtuqr7TKhEQXHEPeUeHvnjR32gVTW27bC+fzrWaiANCSDwcBmOfy9ZEEIEDcaB+XvfTofewDtDUqvfIP69qYi6vUojrH9IJCEgYECNhZMrMhxxTIAIUMVNTcDVbt2bmTawHMDkghUQhohkg/qZlsS/M0S+fq6XCVwN+QiSm3VscEczABMGQkWPI43g4HXPg0/FuPN7xMHEcmcNwnPN0iDlba+7QauOoTjEfb0/f/2FYtudP5/nlpS0vUktnrIKBqJZa1rVI01raVsqyTvf3aUji0sOGHd0ddT/MqtQq0gRRVb+qlN9Qlh3Ru3Vh2dbPT59/+ulvf/7Tn/7641+7AVcIoYdLBQ6HIZP7tiyXy/n5eeiCLyLYPa1aZSICBUjgQWpd13We51JKqUW0mSugq6loc8QhD8dpOEw5MUmTJs7GIeVxHBNjQ3D3kAcKyRxradu6lfLvITGdIUe731IfqbweDu6o7q3V2kqPUmL3PajBHYmRI3ifLhIRxUDTkO5Px/Ps2+bPS3Wr4HZ3GH73/vDPf/jm97/75nQ6hhjdhSmPISCGECY0bLKaGzKFkLvIofsLGECpy/PTj/PyUzoIUHR2AYCQMQ5fjfn/7tOJFKViD6x+TuH5soysDZvXUlo1txADE+bETGjNVWQrdd7KvNa1mjgSeKvBdQiAOQQE1KRbCNqamIJRYKS9NUFwtD20i/pMqjol74zPHf/ue+DVI3v/z/5uy7xiAR2K73yMkFJImTgYoDRF8m2rQ0rDMKQUwYGQ4p451ScsCiTsjOiRIAXUzp6KbJ4Mr84v5uCmDupojqJGYsQGxMjdcMHclQhSonFMeYiIrmZMQFf90L8Lw7x9F2bmboQYU8zjAOZMHN/YrpuZiRlIL/vcXHugWa21SpOeKdG22ueqquaEIGJAAo6yu0gaIqqiSFdT9LQ3RQDcSgg8jgMhjnmo4+iqnZ+6a1dSiJHRCBD3MvLrLdPp1jGFFHueQc9xKm3baq2l6TIvT5+fpOgQpzzG4CECkxsCRgqcRjrcwcBTvr+/+fbh4dvpcItAjrSH8r6uCQNgwBAQA5lhHZ2D7rHyALjHvqlLIoqRA8hCzkiEtoj/WmWrHoPdIx2PmAOj+1s+orvXJlsVsF4/eWu2LKWWgkDiUMBKKXVZZZ7hMsOysjbGvabuzXg/LnyHpB1387HdTMBfzWPAzAz7qEnrenlBM1IHw/PLCy4BAvq28jeX6eY0pEgxxBxTip+XtagBsSMaQFPZ1rXWItrWbf1KaAmgAD1WWqwPLqWWus2rtAahqkHpDuxmV/ATXk8u6Na967osS601hDiMw8PpVKeyXDpnskaOh2E85nHgmJA7fMLMnJgcW6kpZ+o2P2atNXBdtw04paRqLqLSpDm0Jk1EVPtyBYPfbP1wzBmJ0KFHAbda13URkQ+PZzWrpZgpAh4P549zef9wc3/MY45hx68xEHGgEBiQpyHnHAN3HAwU3F5lAm4x4TAOp5vT7e3tOE5qsG7NqQ7IIycElNaILIdERECv1J+mZqbm3k3MIvYa3NGQvN8lfc+rbWudX5ZtaeYQUlCLFsAYWmsKFgIzcde1tCatmQMwYSBkBHFUN7G+6DvdDvwNr5C+hMyhOzTVrbbLRoFwiPmQQ2JS87m0UnUrslW9bDJuUo6igCHlEDNF7zeN205O7R2kf+3g0yl1XYZ4tYgiAt4FGBwcCNxbWcu6iNRoGdFTjjf3t3A4nE53abzxfII0UYylbYfbu/HxpGvpekZwpjSMp/tvfvhDKe3p18/z4+P68hmXuXsZE6AhA7KZLUsVfb4sy/PLsFyOd3dhyp4jMaqBqILIVmutrXYDe/DW5HUKB68489WbFNVUSnl8/Pznv/zbn/7HH3/+6afnxye72lgR4xDjMAw3x6PWts6XZZ4fQ0iBT9NhyIkQ3KSWDaDP4l2azMv6cn55OZ+libn24QyAdfgxBJ5yOE55GlMktpjMSTHGmKZxYPDCCA4hZ3Vat9rNOWqrYE74ZY29Tv4CEREDIIAhGKGbozo2UXCrrYqIGyGEgOpgTaqoIueYwbQQ97xGHvJwfzrqd7nHR/z6fD6XNUX85j797tvjDz+8f3i4TRHBGnbYEgAhACaKKccJARwVgAHZAYkjYBSFtczny88KH7/7B1KZghMNId/e5tPtV9lpX7iwX2TMqmLFXRVMzuyfHpllmEjYRVoj4uM0phgymrRW12XZtm0rtXSXT1NHCdBakioqBgbMnNIwTA1qNXQghhCAeqwIhhhSGmIGIuZ88BA2NxTTQNwpIzvq3nejI+wB6q9JarCrYK6ype5wiICOSMwpc0xA0QCbGlRbS5tEu8a6TwLUrI/KGZ36bFGbS0GVAJ5j5GFQFEESEu0cEgPa6y83IDVrIsQCzDF0djIBIbBHpMNNPh4HZoRO6nbY+VuIr5XKG+jyylJSc1U37TKLPgYnoB6lxN1coJNz0dEU+ryjSNlqqbU1VbMuBKtqVbWpqgOZN1VvgAjd22MfZZuhKLoDkF3HpqYtMLt7DGFdl23bWq0p5Z5IU1vlGlKK3RTDd2T8zbP0n5i7AowJHM3cFU3dVaRty/b49PzzT7+44A8P+TTECUZ2bLIieCQe8+3DN9+mcBzGu2G8zYcb5ORqr0Ru7/IN35l3iACMHkCjaVRB7UCMqm9r5eZNaHKO6QAhFROIkHLYlF+28FxdpG0FvxU/xT2I5s3OR3cyJd9nnOROqlCKSavNtJBLLbquuBZaC7XGaD3tCnbClvVhEewVue/ZSY4dc8Tu3NLZUm6AkJiIHazV9fJYGxi1JoD49OMqTx/KrzcP7989/P53p2++e/fu/QWAPj0KWJFapKm0rZaXy3ld59LK08uziLzZ+gDW14+b7jy/1qyU2moFFgPqrBpmBmLzVzNJlybLsnz4+HFeLp+ePqu0wzAcDofD4ZRCvr2d57nWzcCcgdta5seLjBWZKBJHRiSlQMRmbuDETMzuXkXXdQNKiK22ss5LOGxxPAw5M7EDKqB2+yKAN28GwsPtjTsoUDVFMzBE5YpQFRwoptREam3nteDjRdzNDneHcUwxh8A9KgzQ3cCM0GPgGENgRtzHJNQjyByQKA/5cBgPh8M0TmbalXh796QuIp0TDszeCYbSZ7ute012gVt/eDdzE30jgQPYU8FSDE4Ux0Q5YCSFPcYPu2skUxPdRKUpIUSmIbJ1AxSD7ixsVx65vf2q4Mv3p+ZVjEAIkRFSwEiUA6XADkikpWpTq2JeGjHGVI+tDaZsRvw6ZH1Dyv+7thKvc7SrhpcZe8QsM7M79Zu8bkuraxoSgIXA4zRi0jyOYciWMsSIKaZxON7cHU+35XzhkFIeh+k4ne6Pd+9u7t9Lk3fffv/84denjz/RC3fPTHNRJO+z1a1upeCMy7Zqa7UM97d8OiBkYzJ3rVKrVJGmpto5b2JfP8uul1CptazLPJ/PLx9+/fXf/vxvP/741+fnZ2kt5hxjDCHEGLqIIRApmKrKtp0Bhsj3N6cYAxKim0ozs41RRMz8Mi/PL8/zvIADMxEHIjQDcCeAQDCmMEYORIEJQ+CQOU0hREI0k450pZRLk9batm2tNTP9e9SiaxKurptmpm7N3RwYzMXF3USbdSdfIES9rnFAithdO1HADR1iiIdpAlfw4E7DGB7nGAJ8/+7w/mG4OaVhICQFF8BISAaEGLoVDnMEZOs9vyEAcRia4XmZP58/fTr/urTneGC2uL4UlPkE1Uj/zmft7UG9/6AIKOIFfV7h6ZmjV8s0BERA5sAhcmA0dRDz7tdzFdG5oQO49giATkftroMhxAAg7tRdfmMiDEY6NTxBhsFCyt883J/GGKwmapmBqSdAqHcagqq7gKk5KjYF9q+nMDtLeRfL+Fuxkne2rBkp7D+V78oYd0C6ymK6zMYNVEEqWiVXRnRioOCs7thHGG6ADtx/A4eOwKk676YBAXeRghKH43E43Y7jlGJkVPBXlRI6/LarfHPa9PfqEJjHcQgxgkMHAPOQYoy8H7Nuqg5uoqXWdd22tW61ihkiq7sCKnJzqQZmRg5B+pRqF63YTl1HwR6a3Re5qmir1QKLiIq22mopnd7kSIBQCnKglmN34/1NkuWXFdXtalQMOudwDwQBQGl1uVw+fn7yBod4OgyH43hMHNAjUUohj+k45ducb2I6cBw8xK8OYqSrvfibAwfB0Bq0CqWDxsQEjqouYsvWnFocPAI0BUQMKQAmpBEIrBYl8Z1z/fdvBM1wtzFHROQYMwcpW6utVTRrjcTIjNXIlKjzdr+QUDspYZ8fYccUlN17UXGN2nAGYHAGCARM2HdCK6t7nzJBXeu5bVbm1gqkgOMw3N8fxuHuOBZrzaVKK3VrIlspl2XZyrKsi9pXClvvZmyAfeIXYqYQDUjM+k/d8fSee6UiIsrUnZmxtfby8tKkttZC4HGahmEEIGm7eAiZ1XReVgaoa50OwzCNaRqCgyKISLf3bU3MHZGQ2U1La7htzD1yY85lG8aRdiWdGaAjA7N/TR4P33/7rZn1p10DycB4MyGSExtQM1hrOZ/ndStN/fm8Erir8/0pZ+YQCUGlllKWpdRtC4RDjjmH2oK2fU7SqQMcQkox5zQMeZoGBGeiGAIFdpPOMQOABmhE5iqqtTZprbZm5oAgMYIhEWpTNXGTWla/vhhCTJFvTlMeR84Jh2CM1WXetq2Jtd1JFTmowdJMmh4j59CdWKCZg+uVdLVD033dwXWXdPcucBJ7dW4wNzXRUrS24TTlcUjjmEV8Fb30pCvzKtp6bdD9vfezC5F2Wr9+rbH01wxe76RPDhQCxs4Y5m4ZAyZSSl3Ldsk5ojcmZyZXExVQQTAAUxVgOt7e3ty/Oz8+pWE7Qbx9/+3Dt9/fvPtmmA4m+u7bb58/fPfLj/9Gnz9Za61VQ1NiBzTz2lpPEWpqKraVUrcoDxHuw5BBRaq2Kk1M+s429x7/fD1S+lTRRNrl5fnDr7/88svPv/z884ePHz59+nS5XKS1PAyHw2HIOXSXvcDutm7rNp+1VWl1lpoCfj4emPF4PDJBFyWVUhZdl2U9Xy5PTy+ttZwixYSdAWlO7kwQmXKgSGDSFHwY8nSYDjcPhDwvcylKISEhxwSiW9m2bTXTLj14e1H2urML/QDcCd3FZHVw4AFxp/n2NMjd5bi/aQpEUV0BBADA1dTchDCkmH2UB0AkPt2M83ZCsptDuD1FokXtrHYyGBkAsDvgcLf/B0DAAJ4AzLwSUghTKfXD04e/fvzrz88fn9b1wCdR+PzylDaKt3ffLb9XrV9O+zfXPOxjzevdT2TmpbXzZRnZj/lIMXVqf5NmJupu6sgh5fFwwKK01U4jA8a9PTEHNRfvXQgAMRPGYTicjkMemEKuLmGLR7jDNN3c/e53vzuNWctMVgMBQveJrG1bpaxSN6lFa/F11orGyb8ejWGHKl7tLruzgTSVJq0yIZj2LBkCNDNtajsPnQiZKCAFREI3VCHdSCtag260sV++jEyAhtKzzmynKBPuAIbjrksPARFUq0c+nPLd/fHm5vD8eWhLMXWiPvjb1wniV6XklczvAE5EKUVElCufEQFzisOQU8rhisaLSK1lWdbLZV7XbWviiCENzBFCIiBpWr2pGJNFY1J3pO4vZ/5amGtXVPQF4HjFHBABUc2aSmul1oLMXQBFBDlHDsQh9v2CX+0XN9NW67quZjr0iRIjcoyJY1UEa7Wcl2VbJedfYqTTOBzT7RCmEHMYbvJwGobbGAcE2jm2CMD4Wi+9vuwr97nvrra1ZW2rmBDDkCMiV7Wt+VJrmwFCGgZB5BwjEY8h3XNOiaTRHbfY/fx65vDre+maet/lGgDAHI7HG0KW0jappgbmkThwBCLoh3ufO3be7+7/QL7L4N3A3BUAmUIHAhGAHRghIIQOvFGIKQNSaeIOwAGY0BHAZ/V6mdeff3khLmk4ffPNcUzOtwYmUuf5vHvWNS2ltfoFHYe9GQMHJA7DOB1ON8eb2/l4WucXac32EtoAnJnVsZaq5jmnGGIeEhKUbePAwzBO03RzcxOQLufLpw+ffvn144fPj+d5lirLsjzFOOV0Op0e3t0d3KImAZhLuczzsizrVnrEbojRlVSllII0D+ullKXVNbSjSGu1tiaOCDGCRODwdp2F+/tbES1lC0yEoLqLUIHIkYBCs2k9TctazksVU0Bem182QZIRODKBoRp0EzkiZGbiXWXhV7oq7uZeFCOnyEOOvSfulrtqBmCRGQDIbY/dVEUVUEVT7P4Q3W7L0ERMam+ZX+d8Oac//NP3evkXzkkAllY3aaitmHrvOQACUYzBicZpkN7tdQW1WWQNRGL/ZwHMti9lx24ZbVBFCcBtt4GJgW9O0zQNDjiJxXWTpkyYYiAiR7z6RLyeVv++gyrAF+MYvN41zNxToxjJO2EGwE20VW0loBJYZFJGN5FWKBQANAsIcDicbu4enm4/1waj+f23399/+/3p9l1Mo7He3D/cvns/nW5CyrYsTZqAGgWkoGalVlVjZutsPqkm0S1znBzIzaqo6JdZ+N+Rx11V1mV+fnr89OuvP/3trz///NOHXz88Pz8v22qqIcZxGKZxHHKmHXP30up8vmzzWVp1U3Fdl/n56XMIiGDE3GrZarVtK6VeLvOyrkspCJAxIvfBSwftPTClwClQZOq7ZRin6Xg6HI9msGwbEMcYkYiQ1Gxd13VdTOXfJSxcNTAC2P9ZVAoAou+1pbs7GPY7FNxA9xsCGfd7wcDFTACc0zAAhGxh1DTZcWvLtji0IeHNaco5MQfiiBz32Ejs2N9rp0hIibBL1tkcl2358Pkvv3z6t+ftaVEJzgqhwqY6n9df5vWDWv33HuurD16106XaZfFDZjE0ZAQ31VIaIQzM4KCOQMQhxthiDEmCuue4xxGYeRUR92raehoqUERKeZiOx8g5Nt88o5Dnw+nh2x/+4R+Ph0nLCibMiN2gvpW2rW1bpKxS1lrWMl/S5WV6+J5jevszv+X57q25aUcrwzZHdERj3sX/nQMM3tMJ+Zr+0/lqCt5AK1gFbd1u03rZ6djFdZ1v1ZVDnaqPoMyvW3bvmNUaQsw5HY/jzd3pcDyci1prnV8A7nhFWn+z+7sfASLGGHJOTKw98xIxEOWcxnHIeU8OErFS6rLMl3m+XOZ1q1WFOA4hcQopj6AWxKCJlNJjGgkCMV5jlrDPNXzH5XD3vQZwi51/0yn/0rlvUgmiu4s6EeYtc+QEQEz+G081dxWppSi4aPOcU0oBIjPthZpUk+puTdvj5fkwDN/dPjwcbqfxJk+3lI+cp5gPRMFVXlU90PUV15HcK661/79uZlLqttVNtAF6iiHGFM2xyibWVJZ1EbXAEdxzTiH4TbCJERMemFNAINsboS+P4iKqokgBAcyAmXMeiXhbt82krqIGZJ25++Xb7BxUxH4HkgOYmwN4J2QxEyJ1jpd7F7yRA5qjAkYmCoEYEJXRETAycDAnMWwKa+P5aZvxsdBPD5ue3j1gCoeQj8M0pJyvzjxNWgjpKw6W74wiDiGP43g4Tseb8XhMz0PZVjAVlavhgqm51eqAMcZhGFJKzNzX5ziM0zTFmNpanh5ffvn148+/fvzw+WkpVZqwWSIeUrzZtoZ+4zbpwQmXUuZlXZZ13TZy6JM7BzDzJoq1bNuyrud1uUAey1pba+YOFICjEit+dW+G8TC0JobWzKKaV9LOaNbCRMMw3I75m7sTIG5V5lJfFtlq+3Su501vD3qc8hiZYuZgHBIgm6M49NwWc0cA7rU8dQNOj4SZKacUQ3dv9yoWmDnkbrthKqZOQJRCIIgMqnusHYGB94rcSy1Sy6s86Xh7/L//P//L738YXubtw8env/z40/yydRKGqFU1dhsIxyEeORyG3LYm29pKdTciHBhbQDHo1tzQGeV9b1zPxa9n8LA3rAhVbaktrXiaEgWeDmOMyRxOdZMm4BBSGobMxED4m03+5vPGTvVKBujo8e5Z5J0rw4HInQJxNyhFMNdqKOiSIqlTq00KABA0wTiQ4zgejvfvTu/OEEYkuv/mu/v3302nW+SIgOPp5nh3f7i5SeMIz49NRRwNHRlErZTq7t1Yt5SmWltdVXPI5J5CsCag2pXke7Pib1Vj5tu2ffr44U9//OPPP/746eOv5/NzKRUBpmFExBBDTjmnxMTu3rT3lPPz81PbNjJjBEYy1fPzM4K6Vo6p1LrVtpW2bnXdiqg6QooppBACI6Kbqio4pBCGFBNTiIE4DuPhcHM/Hk8hpNKaAQKFPrZprdUm87zMy9wtK/o7ervx3bu/hpura1ewCSCjV+y2iR14BCc0cCFQcH1zkIFRL/mFGPPhmKajOmbxscG4bufzk+o2ZDydjofjN+P0Tc7vYjxcYcGdl9Udt4iQOBCQk5vDWten8y8fP/y3x6f/XmzRSMqBQj7cErhv7fO8flBt/+7qeyVlXS9yaKrkvqJtRap4E28m2krdNkaHcSTiWkVaTxaEwJRjMPAxpTHnGJOYb1WaWTUp0pqrI1JMjhTiMA4TCeRK0hDGw3g45elmvDmR33buFxJ1LNGkWCvWNq1bq1td5vly/u77H9IwfalgOhfmlTUP3jPl6jrzJVJOxJ6HnAMxgXekl+0a6hOIGGDXRRqIe3MV02baTORquqIGqOBqoKrW40EBFaCpYVAKIe730w6mgimbEsKQ493dze3t7fqytU27swu4d7+4N0Kr6+jLDdyZKOdsKgX3kToz5xSHYRiGIaUcY+ho1bat5/P5Ms/rtpUq4haQkDDmPJ2OyaAYFLVtXVuTKkpIKUTubZWDmu9f4tVKmpkghBC4iwm8W+N18yWRxGwOKlIAtjVxYAQMkdUtfDEiB++awbK61CoJwA0xUggOQarWtZWVvB3HLGpbXZ8vLy/zpd75MLyfbr6BGJzZCQ06NNKT6gDgSg/rf3Nw674NBIRdndFqrVtttVm0QDzknBE5alWci5RaaxOmoCrM4YA0JUsxDBkSYwqMQETtTWEM7l5rLaWlzIzkZsg05DGGWFttaE3bthVvYrXhrro2Q3dycGRCBgxE5t4EDB2Y0xim44jkZVm0VmvXAsfAmgF6woAUtV/z6MREkZ1ZjdWT8tiM22Yvv9aP5x9vfrl898Ny++4uH6dDOp4Ox7kWUefAwzje3NyGcOXDdQoRACKGEDCPbTqOx+N4OKU8hnhpdadul9Jqa2KI7MQxhJBTSjGmlPIwTNM4jmPk1Jqez/PHj59//vnD33759ePjyypiZsE8Mg0pLdo28jtr92AxpbLVdS3LWpZlo52F2d3QgABUWynrMp/j+alCWJqKKGLAkJxjA6xfl8oh9vhDTb1uiEnUtNa6rSaq27q6GxHlnE9TyjlykMta52XpFHvfc6o5JmWO5q77yPmKpAPsE789ik9NFMyYevIIIHrw4IgcA3rPGyTCwO4hBAuh/0c9Y6R/8SFwQDCpMfDrKks5ff8P32ea//bzp+d5UddSChCJaGlamoTGpUnc6pAxhRBGbCDgJqqBaUrRYa+9ZO+nvjS8b+s+erXXQLBOZkPgQIfDeHNzvLk9nW5OgRncR2UTUXPkQCkhkXX6j6rv9LDXb+nvtRaITrtk08DQOlxNCITogEwhpSHlIYSESCYCuid0ILprs7qBAhlySJyHw+39/Xcln24phJv7d4e7+zgMjgzkaZqm25ub+3fHm7vPnz44gpqLCXSzAbh6EyOoW2vOhPNsnz9v7jZODuC1uepeyuyY9/XTWvv88ePffvzxx7/85Zeff5ovz9IaMw8dZuhHZmBCMutGJd2CovZwgMAUELopkbS6Lcs5YIixqZUmy9q22rpLbIwhphhSQMYe/w3uzDTmMKSI6IAY8zAcTsPhFPKkhs169BCFNJjqVubLZblcLtu6udkuIvntx8xU0cCbttVUe1GB5A7SR0fd4Qh552fukYXe5RT+JQaOOORMFA3ZDUUwDAsQiixDovF4zONdSDdEI2LuwDYC9D50bxLdwBURiUIt68eXX3/65b99/vxfL5e/iM2KtFklQEXRVsrj56fHX6T9PRLz5Snfkki6I0NT35otpcVAoM3qVusWEQIyIs1bXatsYqrKTCkFAI+REbGpzuu6FmhmzVRcDdwR8yBuwBxjGjHxUQIp4XhzOJ5iHkMamTDEGGLGEHqiGbi4NtDqUrXVtm3TMt/d38WYv/rJ96ITrvNaBLNWFlooDCFFyPEEHk1VtLXWmBkDBu5Zk7sNk3ft467d9dem2q/TC0JyACM38KYq5s2sqZAGDMQxxJiJoyODKjShIOQeOUyHw3Q48PUi2WEF/3eIMZ3pDwBEGCNLDKrWX02MYcj5TTcMIrJt27Ksy7JuvZrf+UAEiP2YYKRJtNR6YbJiImLM3dYIiJyInBGAOdAOwhAzEyGEQAhflFA71Un7JlcVAGy11JpiZMRoYH+vTkKk/btDQmbiiGCqTVpxbYx+GGIVXbatqmx1q00QE/MEAY3Q0Ny913xffl+EL9OlV+DtdUG7g+0OXehAiJE55MhRt2ZN/TwXUWcOCDjkMqQQgo9oxxhCCI5k7lf1++tL8W5DxWx4jU9ijhzCdDiWVrdtg7WAF1QFNTDb8WAAJCCnAMhICCYOxBSn4XB3uv/mnpguz89127wZmQcDF2+tOZPHQZBEWrf2JiRwNsOmWBwrpOpJVFtpcr48vbRl9oen7eb9nY/kjjnnYcgi6oYpfY3E9G+R+pQuxpRDGkJISMEB1fYw8d100dzVQ8Qc45X8Ztdg0dZDPJ8+P338+Pnz56fLZalNHLtrFgL41kTmeXU7S11cx3FEhaUTxUtlAkYkcCIMTISdpe/gYlJbWUUAATlEdzUK1aHaV/SLQGYMkDnQiOOQuiRnK/Xl5fL8cv70/Fw/PnHk4zQ+3J0O03Q75tMYy83g5pEwBx5SdHdNyswmJq15dwOjq0NTDylTq1tbl7ptpdQWU9wbECQOwRxEzXq6D3KIEbsScZ9rSy1FRAyRmadxdPecw83Nqe/k/kIQWQ3XdbtczstlXpfVkZe1brVtrdFGYn5Zas5hGsecOAZOOZTaIlPkEJiaelOrqtAf4VrG+D6KRf+iUQI31555EfnudPiXf/z+H3/3zft398OQWxNVIXNIbOaOwTk4ooq6m2t3d+X9tnhlfn7Zodf5svexqjuam4IrgiFwH6PmfBjGUx6PHLmUi9UaOsOagB3cmhuBB8DAOU7H23e/45MIhzBMxzQdALnfK5zTdHO6/+bb+2/e//rL3/DlbCYiKmYAFEOMgWKkfsYzh3EckfjzYy2l3t7GmHRrXhtIcxUwJwd65ZJs2/aXP//5j//9v3/89dd1mcEsxzgMQ4ypk8Qc0E2biMgefepmMYSb49FF0BRMXYUBYwyE0GoRqaJQxOSVaxFCHlLKiSO7g0gDtcCQ4/6uRVVUD2lM0ymOR+C4zltpiiFFROJYan18fvn8+fNlvrRaEZyQ7DfbfscsFMBMq2yLm1JIwA4qBqSdKEcMMSaOgYAUrinl5t7QDJGBIpghIcWBw8AhgTErICVRVckxURonTifg3NmkgRMyewecEfrcyrxCM6fIlObl8qe//O9//Mv/6/Hxv5b6k4GJx/P26MptrXVe6sv52+M/tFb+7nHeUGE6q8kMEDkEJgDyqvYyb6aNtJELugLhspUm9nKZl6YK5MBEmFMEN0IvrbzMbeluJ2Z76hURMUtVaw6GyDHH8ZanESMNpzidOLAaIKI6dc/qHcECBCLCAJw5KsaG+TTcHLDTPPuDGOxJim7gfZOSu0vdaNU2uySThJJCCZG6pRo5gDFBhOgI1sO5AiCgGzh1z+zQ1RP9PEYmR3bHgiJVxNtaS5EmKsRkoAAOyAaUnQwoAjEbNGOgmIYwDhiCE+7fy5Xz+laaaG6mYtYvrSvGRIhEIYSU0pBTSiEGdoBayzwvl8s8z0t3MgwcQ0BDoJA6i8/dQoyHaSrbFgJX7+QN7yHwfK3TsIPP3WEBcTen6SgRGF4DtmAHWvs/WhcZiVTV1BPE4A0Sg0Qpj+PhaEgpp/FwmsYpD4PLtq6iWhAhxjDmWMUMIeZk7rWVum1eC1CAFPbh0W4KY4CdeARAO1R+bTSvfbMD9radYmBWcnAnhDFxCLxV2dby3KRU4eAhiOy+yOQejBi4W+X06IOvZpSmJqKtCsTuCNV92CmldJimWk+8tfa8iaF3ynR3Z95D35C8j+UcTAPn0+3tu++/++YPvws5nZ9faqloyOZgWNfy/PxS6qYBRIuUgrolNFZWMCXdJC5OG4hgYh6cQ2tWXspy+eWXX54Od4fh3RDfZedO69nHG1/JR67DNyBAJ2Ay3G2fRLS21mSPA3R3VVMQQ4qazay2uqyLg9XWlrUwkxZ5/vz0+dPjMq+M4XS4ieOUUsrMrZbn58e5rC/b58fl8rwux+PxNExt27Z1LbWlyE5Ebuz7Ok9DGqdhmnJOAQgYIcYYUzJQ51ANy9eZqaGW2uVVbq5uPcp6gCSHqTZdlrVWqc3mZYsILjIcppjyISUmIoRIFCM31b1WFRERt74ICOhLwWTmW5WttK1ZNRAgxnDdpNx9A80MEQJR4NQzoDvvg0IzB+sZE/1AQVKzkPLrIkPsueYkoqW2Wmop1YFrbR1faU3V3L1uhZvYYUw3QwjMY46M6ArufkhBzBBh7VbwHRl6/bqIEKBXjj2YkRAPOX33cPoP//j9//yf/vUff//d4XAg4rVsIs299a2lQOasDrWpSGu1qKj3pt66wuUrfAygF8g72LXjprhH9QEYABOFNBzycBOHY2BqfDGs6tIn7YAOqgACpgROHGLMh5QH985F597F9haJOR8OD99+9+67Hw5/+bf4+XFpKqq1GVFI4xBjCOwATpFjzNN0IIR53WoVB8iDm0MzUkEzNP+qLaq1/vrzzz/99FPbVnftcbfdKJc4dCNm64kYauBO/UVyoBxAzWrpRDMC5x2DV+iG0gCI2F1zOKSYIkfuuUruzggpxSFGJnSzVoWzOEeKg4esTmvTbWtqAg6lyvn8/PHjp8+PT+u6mWpgQgL7O4aUuZmJuZs0qZubEHTDKnLcPZhEKpiMkdA7YaorUsxcCRyRiBMwEROHgeOAIYEziLN6zBMREpsDm4EqEIM7IWWi4LtbIHS1Fzj0nKhm9jJffv7w558//Oll+VTa0pSbofiqAtKa1G6q/lVKj8OXDpZ+S8sAIursIjGY1+KKETSRRUIDX0stVea1FDHgSIwUCBHRwE3XTSo6Xf2MoYupYkxIu2MGEHFIeYAhDDzwcKQ0ce/zkHeG5pdryQHQgfv7ZmDHENLwlcP97n359pgmAO1W7m29lEgcE4dInEKIkqJpMOV9TNKxh13BuBdOPSBtp8sQEyCH4Mhq4OjVYBFbilQRQIiEqt5aK8uK0FMTiJGtiVV1BWYOMVI3szbrRVff/79xI3r9pasukWNkB0wxxlffW0QR6cHC27aJCCCFEJF2Ex4ndrNWS1lXs54PboH2mDzcA426mRt28w2EzoUyxN0ZpB+1vlPwfkME9+ugvTsLixmCu73ZM4QUY8x5BA5pGKbpOAw5xiBeEYGu19WheXMU4hiisxVZni8fQooZbplGoDd1zPXIur7iN/98rWCuL7+7Zwcn6z4IiSlGqmOeUzGRdV6RGyP57SkQxEAcAnHo+w3M+pjv7XtxBxUr3sw8xagxdgv4XqLs8IGqi/bx15cfpxuSXQE+RIghTIfD8e7u+PDNcDwdHgQMmIJVmS/ry9PLwqNuM5JAW4iVBBMIIah1EMur8eyzoKc0gntTaa25lLXWCnKI7Xh0HHrmQaB+X32t5tu/QAfYrXu9qbem3SpDVZlDStjUxVpt6ihi0kS2bQO3rWx53fK4EZFsMj+/XC4LAr2/ez90hs04DjEsy/zj3/7608dfl5fPSz1X1XUr7VhBtNSmqtojS90ckJ2ZeRyH0+lwc3Ocjgfl0dmHTbbaqlZFbEDytUtUeLlcevh1E1u2FRGP4xhjHGMK97dTjmsptWkp27Zclnnh8Hg4HB/ePRyPhxwoMgJBExVptdXSpEkf++DeLwI4oRMq+NZ0abY5NUrKo3YSjAMAiEMRUHMidOJAgSnsNDNwQsQMiASqBlDFELQ2E/3KWyUE5sB4JQtrUwM30b5h1M3NEaGJP78sUlvG6ZjjzZRr4POloPuUQmA8DnFp7XmTtalczXX7BJEJImNECkQBMaB/e3/6z//xH//X//yv/+V/+59/+OG7EKM7dHMpc+2tsxv2Cq+sZVmXy8v5Mi/Lum0qqrJL9b8uZDoS080PoIdNMjI5wq4K5ZBiPqTxFNKRA6WpIrKUWb24ikFvqLrDLyEHDCnERIDMFJiRqGOtDu4McZjefffdy+ff3z68H375+DxvtWlrGgMwYmAm1M7AGIbxME1qdpl5q/XMWiqEQEbBLYKLdzOI67NIk8+Pn5+fHqchDznT1SBOVKgfCmXrBBRmZmZAF62AHAO5anMDVSEk6zHREDobDggNQEAcnfp6YQcQFTQjhBTTYRoioZStWDNyypM4CoTqLOJr1ctayrbUUqTVl+fnX37++eXpSZrsvjywR9O94tgO3t2zHNyaaN3cxSn0IMruA93ToFzaMSeIZK9JwtC7MEfiLvTuHT5RIOzFvjs4ESlAq9XcKSzImeMRISCcaZBZAAEAAElEQVQkhIRkuBcHXTyLIQRRmrf2PF+eXh6fL+elwSphW6k2aK4OaEQhHfLt7fH2Ow7peiLvRJgdNEXc79YrxeTq64kOsDUhBwgQEBCw563UJh0GQ2Yg3GO93cza2iohxJSYyc3ZHQFDcKYQOAQK+xAxxszJ0xjyiGmimDCEfh+QG5rv9Jw+HjK//ti74fvrHbFDAx0neLOBAAmBzaxtdaHF6KVTpIY8ghm6EQKASi3gQClDYMbIhKBFd44rACMQAQRAJ8qGpKpF2rnY8ybLZgA85hxiiikScNsq+hyIQ2ALUVVaqyrU+zrslUIfrrt1E1J/0ym5u5m6amd5BGLrpQZiDKHbECCiqm5buVwu87z0GIEhj77T0joyhaZS1sXNKARz2tYtAAx5CIQxpa4TCBwAsRNuukcgdwc2hB1Lv3YVHLrBw365+17o9O/bXFX3QKQ3SAzuNpycc56mcTrEGNzFASiEPE7g5kBVqTpV4EABoq328uvj/xBZ38M/H+g9IWKgfqD0VXotoq5Dvj1eaxe7798lITBxZMPuc6eMHmOAA10uxbXNl0szJzD+4f1hjIdpHMchhNj1EoAAqG/nL1eQ0qWVWkWSIYVxEAeuTbZal2VZ57kuC5YaHYDIXjGuLp9GRFcED0wxxTzkkAcIQzreP5xup/GYUz6f5z/98c9S0I8QxmGIlqAEOXFbWDfZymVe26Zgpm1bmxS4xDYSsaogY/9tp9OQhuRubh6YU4rDMKSYvzQquHvq7A7012FZqbLVUmptrSFAyjkCIgegrcjcMbdSClkr24oIMeXxcGQMrbQyr030eDj98x/+wzfvvz0ebsZpHFJ6OT+f0hCItrI9zi91LZ1wxwCiCoDWQUlTBAbEEMPhcLi7u3337mG6eRCYeNW1+lyarnMzECQjfqtMDMu6OqAhb0VeXi6qdhnWIaWYUmAOIRyYB/WV6dzKZSvP58v5vNamD/fl/vbA08A9e0BVWuuueq9F3mvp5w5qUEWLWFUXJwgRQ+50Ad/ttQnIAVAdmhiRIzMTmqsBORFQ6KI0cQfzpv61MSwQEQeKeyT33pGjWUQSJHN3cyY0tyZC6LVGC7z/+wCEkAOnQBNArmQOhKBGHX0FAEKMhDlSZApAQwqnKf/zP/zwv/3nf/1f/vN//Od/+aeH9w8AZOBdzfCq0+5eQq21tpVlmV+Oh/P58nK+dJnZtpXW7Dcpo7s66arUfw2CBFdAQyQOOQ5TGI4YRwyBR3XsSQCLtYLYGJ0whBQ5RqAAnYCC2JN2uoEBwq4T5Rhv7u7fffPdu2++O/7486+fHruHY+cdhr3icejZdH1YqtYalA0Qe2BQYHK0ZgZvHXvdtSekjDldg816/6a93HllLAYmJHQEckKCEAIgemAP3fey9zvQh/lEDIZ7GgkxEAOiublKQIwxjkMecgbTTVqTxkNCYnWsarqVUuT5fHl+epov57IurZX5fH5+ft62zfdxOPpXL+TL83Q/eNNqKg7e84xxN4/3V/pvH6SoVNsBkDcMMSSKqXe5CNzTIlVqqz3jxtzRFFppNbaUzaKrdqY3dip/x3gBQAAuW/np04e/ffjT08uHbVuqmkmARrbStoEjxEPklPIQYs5vhTDX59v9LL6c11+e1NWhGbDs8WcGBMQIDqjQVYddBmRuqmZGLqqt1g2JMAZE7qB79wYJ3ZEiBKKAxAZQmwAKJ+ixJMihhwsRWB+YIeyG1lcMyc3V/a2L+uvTvCkE4Koa3r3rTIq00tpWtmXJKW+JU+CUkra2LlsHK8dpvL29HRKS7QoSBxd3cTQIgOQ4iPvS7GXT503OxZsFQk44Ag0hpUDorZlqrRuXGOOwO9sqgRkhxF6pS7ua5dorA+b1c0ViHK+Ot92Mv1f5RNR7gFZbKaW1Bt41utxzk6zf7b5Hem4qiAxAphqZKCdCZI5dLInM3bwF3btSBq9f5peJDSLhHka7Yw5dXEX7bL1zJEC6g7B8xbIi5MA5D8Mw5jwyQ2uKiCEkH0YEN/etWlGsVpA4DKxcnrcPADAebtMwpRiQXmVobwdI3Tvw+uZfv0LvTDF3RnIO3coMnQAiIaQwRCZ0ldakuU450jSkccwp573C7Bv5K5dLAETmyBzBzK+uM83czFufvpemW/FSUBoD7EkxYOTACAROYI5K6IEppZhzHoYpDYdhvJlODzENTWRttjV1wuPNKfI0ZhiDZZLkwiZtXZ8ez8+XNS5VX5bHp4uWzbUiBUAOIQBxSDgeUhqjgZmoi7t2S7u/Q/u/XnJq1lRrkybaz0DmQMjRgLi57xa6FatLTxK0GIqoM4VWmleLMT7cPfzLH/7x99//fky9aY2Ph+N6uTy/PP384ZdlndXBm2y+Ml4dSwwMu7ksAXTcMaQchiEeDgOEI0a5LOvThcFd1RwIvs7mC61WR1QM69bOl/Uyb2LarQimcTidpmnMOcZxyIx37vDxeb58/vzLp+d3dzf/4Z9++O7bd6fTsSPvZkJm3eXOuggKcY8dMFQxFW1NWhNVY+IYomhTV1MF8JgiOIOqq1ZRN+XDiMAq2pr2/IFubGhADt3z+6v34ohMnFPIMTACupNBAEiIgljM1BGp46bdt9e2JmbmatAn4Aj7HAxRzDJTj1BQNdsdR3hKITARwN3N4R9+/91/+p/+5f/2X/7TP//LP97c3oaYHIGREtFrFf9aqHUHsFZv3j3cL3O3Nnn+9Onz58enp+fnfTZ9PZCtCzjNO8eiM576VBrciQLHIeYDp0kxA0aMEChSyJpm2c4mBdyJYogTxGyBe/pTp8P1+xbRzZ0AxB2Z0uFw8/Dum+9/uH//I/31RzEVs9RNjZlNQbXWrdZSzAQAainmXUIxpJRC0qLYrKp6dwJ93f0hUGA0VRXE0GdCPS3EETDF6AAxBnAXFTUBMMT9ZCXCEJgxghmjdyPUXs6E7rThaECO4Kpq5iohxnEcD+MQGVsRUXXEPB7ydATEbdt0lXleP/764fHz55eXp1pWcNe2tVYB7Bpf+ZX16OsJigBoarq5VkNypEAROQIFBXBXB8ppSEzIrt6abCYNXAF24ZabOcMutbjO89xb2eZ1vmzLCuDDMHCIqlCL1CocqvscWDAEQAATcLE9eNt+efzl//PH//3PP/6355efVTZQI6HBcy20fGyKdE9TCARUAbc3h32X7l2dT7s0ab+zcGezuLWeN4oUHAVAkYlDIHRCQwxerHa+PoiqmaI1t6amzNgnFj1lm4CYdxtDjpECO2Ap7emyOW+3EI9xisghxB5j2IuYXWm8M3X3JUXg/a83r8f9S5jHtYjclzsjkJmBUQBGs22ZiYBACSHnJE0ePz/Ol7WqHY83v/+Hf3x3d5hCJVUzFdNNtBoAJoIgkFdpT4t+vrTHRdaGTGOgWCwmHygeU2KPm2srpQIteZiiiLYiQioNwXNKOaVNqpraNb7+KxTWdyJ4r2OIMDDvoW39TQF0MEqkZyEBh9ClVW7qrw7g10vLVR12umQK7IG7EWOPg4zmznuhwkTc9UjYS3gz6b7r+9p4Veq8Mh73IsZdVbvhgObfkC+ACGOKKee+cLpVY0gDgCJ4Eh0nPQqKMRCO08CMRdZZnuf1eVhv4zhRzOqvKZivNaoB9EzQPUuHHN27yYEJiIIyExLzjs4bgDFRZIhMORIADpEPQ5qGoUNT9qpKuMKQr304IoU4DMPRo1ufBgI3IAVsAOZA6lEVRck0kGO3knPvo+0+4gMyIOTAMcechmk83B7vxvHYmn1+/PDTjz8+fvpY5ktm+Pbh7uY45ERDjmPOeRiGnFXs/Pzy+Pj866dP8a8/vrT/XrYnbWYQkZMBCIB7zmMYp1SgltbaWrZ5XV/mbZ7f+oe8PpjvBWBHM7WnNBAGYgZEv0YV7eq02tBdCAnBzFo0pMjEUlrmeHt7+8N33/3h+9/9/pvvuzAyJJah3E6H23E6DeOckzAa9qb+VY3rV+di6B2uuaqJWiW26RiRw+NzyOyozUXIiXebiWsRoyKOCAxuIirrVs7zImIx8PEwNlVT89EDE3HkkJFCqfa8LWVrIYSm/r4qEW5bURHoQXfdOLPPk67RQ+agYrW2sm7btrZaNSVT6YnZhNh5hN7h19ZKLUBARN4tGtwNETkQEjGLqEBt9rb+du2yLuYUI4cAiE2ttu7wsLMXuyV5jz07b7WaMQA6dFpQ4N7rIgNmZnQwQ2P3wAgQGANTDsyECH57HH7//bt//MP3v//h+4eHewp5vxcIOTC9VoveXV6tO8jmnMdhmKbpcJymccgpxsCIPk0D85su2cmdsLP5mSNR7JGQXRPMOcQxpSnEjBgcCDkjQiCgzqOWhA5IgcJgnLrrz375v1K6digRwByJYgzT8XT37v3tw0MacjfjUrceOWIqJuqq4rauq7mXUpACeEDMiJnYE3vVzY1EvrwYROgjhN18zHagH5D7AYfYgXpQNZFqriEQ7yplxMAEEQ3dDF2ZkIm76Q4CInYBP6iDmJmISjPqTN/QCYkcIzPn6cgx11pLe6ni87wt81nq1g3BTUVVEaE7WOBONbHf8PlNdVsu8/lzs9m0uTFSAtFAShgBUE0BKDGngH2wIlJNGiF8QXKv2YZXshN0RGonDdaKRECJw9BjJVW01uLmFow9A4JJNas9W8yQS1men399fPz5Mj/VVonSEEfCjNXnvFbDTCE6ogHaV0qYvh2+5sLscD3C69XggISEbJAMDUPIU46IUhzBpLmYi4PhvsDV3NTAeT+ikAi5pw+lOI7jeJjyOHJMgLRt9ePHz8aJh9NwVCIKHMR1v5++0BxeQawv+wP+7rPfbF2Wso8e+jHUD2pCA6l13tZ5Pm/rrCI5JeYwXy5Pj8/Pl3kYnhxR2sO3NzxyNVUDNAxGCZjVuCrNRc6rnzdfKlXhFCNCqkqb0CYcc0pDACtS5qpSyoYYXWEV2tbS6gau9Er4+f/TGO/4TC8dkBB353DfuUGwyyD6gcaBKYCTdlN5x55t1HHT6wLuuQrETA6oiI7QpYCijTEAvA48iAMzh9CjfbGaChJE5sjcbb36wArx1fyL9r2tPYNH3z7YldBNSNgJucQhxIg+9Lo0DTaJmRFQBILTMYNLK6t6rbI22fq5/e8KBffvsUsijbqRl6FaEMjAHkZPjj5EjgERFLQ5EKIOKdwcR8fh/cPN8TDm3GHRfbPT18jO9c/ZhbcEe3KQ+AZzQMayzeVllssCa+EmbD25GsiRDa9frb/SujAFigGJ3aBWsfO8Nn05X56fX1TkOObbQ/7u/nRzHJkx5pyHYz4cp9MtAh0f1unhKd/+KkifXp5KbWtRdeaYKSUKnMZIgQDdpLszKZgHovjmAX+z4Tv3lLnfDV1PQuZQq4jBtpVSqoiamqoSofYW1MwAY2iBzKQRx3HIN8fp5jidpgkrQYepzd0UwXOkcYjGJGBVtO8t2Od010DcDvYREgExxITTyIA2ZRwCRLDgzn+HHAdXRSYCS8FjQCZ31Vpba2DuIQZwaKWlGJBR1KdpOhVV8cva/n9/+uXj0/z77+bDcVBtIgo72HjNVTTv3NxO0FXTtq3L+WV+fp5PBwbbiQTM3KflhISpSbAZ1m27PD0CQDfYZgrMgbmHNwcrtc1r9S9QjJuXrbStAmFIKeTBOV7qfFlKVe1uhYEgB3KAJliabrKag6oRwhR4ijwGTowAu6F6N6tGhJw4R85xVwKDOyPkFI43h+PpGFPqaG13o0IicDDUvXFEgB6xcm0XgSnmTMwhhpzzNA45h+ndXYzxumGox88x5xRSYs5MmSkggwNTCmFIaQwxB049jQXMAQgoUMqRwHVAx+uAKQIyXt3hOwZzTTxGBCP3HjQTUj7e3d083I6HISauUtWlaOXmXhq6pxiBUM1KbfOyxZDhxIhJBNloGA9qG2qw9uUc2xPgQgzMCOim5khE6AzYnfnJXcWaSBXZCCCkHBm5z7xi8IBo5Kadw8CBAckMzHQ3vUcA96ZqTUSaEPdUMwClQMebG4oxHY6ONF8upWmrJk3R5DgNt6eptno+Py+zo6tJn+RhL952ccZ187dWPn/8+edf/keFCzGleB/DsZgls2FIRLFpT+OKgRC1mDRtzaUhh2sOesfiyZ36iNK9S0g8EAeiqxMWUxhiTBySmpW6db/nSI4ArW7SNpXKHMbDwyEeRx4ZeNtKFb25eTgMhwH55tCGidYmTuDgrpE0o++1dQdg6Bo6tF8SuP/tGrYKauaKTkaCkYJhzIfTYQi0nd3N6gZq3QDOoIszm++OCh1NFHBE5hBwGNLx5nRzezudTmkcAWnd5g8fPgrGw923N007XR3Q3XrUb/dL3mMg4ZrV7L6XgG8/XQJmZgY9771LG9G0U1EIDFS0XC6fX57E/XhzLOsWUzwdblxFTS/nl+fn52KtbO/zPzzwMaAoOsc0GeRGWIutpZ03nSsUYdWkplXJHRQRi32+FGV+93BIcaDFrdZ1mVtRyHJRfjmvl8u5bItKQwciMutVyO4U8/og2sPi+u7s3bBqZ1cQQSBS32dsHFJw67+VCpojISExeAeyAAEo7G3rFzRrp66aqdeGAZyZCcEA1CFiCCEPKYJrRTQlJgwhpBBDiP19dLI2U89BiUyMvkdbf8WJISRmJHRzFVEWQOYQ+c2y67NZIh6nAQlz4taKlg01GKmCdno1Wj9d++1lb5bqlQi0M/xUQ3GShOEwjbkJQkhoKRCbWLNmCCqHMX77/m46HL559/7m9oZDAHNzRTDYHUgdv1TPAHuK9XK5XCIGVZu3RcEv2wpudbno+Rk+fcbnSyyNzemq9epaJ7ouXiIAZojJkavay3lZfvpZ6PPLslKI3zzc3d/8/mZMY4CMwtdUAFFHsaAQY0yHcMtMjKWWTy9PCvT4slSFOBw4Z84hjtEQllK3VmtTABryNObD/f19jF9y03amjkHnrAbGFCnFGGMkDtZTfYt0cc+8llabA+5qAuzGrY4GYsaADMgEAQ1R3cRN+5rc2npZzo8vj5flDGhDjhBQAIJYE1UVd2fac2k4YAgYAocY05CHMY0D5wzqNiSbok8BB6INkK9+QXsRo6L9EJUmnZoCYOjqDipt20ogctUUehAYHIfsNyZNHl8ujy/zZS0idnsz5UzLVlR7HUNMtNPxYKeJAYCK1FrXdV2XpZaibeiGbb1v3rkanWERAjN7czPjwAQMiETMIRCxA3QjEH/DhO+tACKN0/Hdt9/843/YaJg+fnp5Ps+llLJtpRR0izGI+la19M7BXM0CkrCrwy7UchdzNVfzbhsVAuXIOQYAKG3vUfdRbD86Tc1tNzrrLLTXcRIh9EsCr+Q0YiLkGDjFmHII7C7hazMiFRQhEzIBoL4P+uWH7oE4M2fm2HWiX3YbEWBAROJuNNiZjkxI/QQk6jfDKxbTTwIjYAAkjnk4jNNpyEMIAZHUvLRKbtwkhzgNoxO+LEtr6o6IDMCqsKzizNNhSPHAOCCEr37/HQLqqpqOcQOYuYtZt+hQlarawBUJCb1PEzpRqffybqDiV+jRr5A5AAEhAyITCYKrN5FtK5EwEnCffoQo5iJt3UoTQ6cUw3GaUs7DMKxlRTRTQTepAK5uZKpqRo3eynaalI+ff/zx5/+hocWUD6OnuAFjyocbrTFMahZj8hDBsTspt1rA9Pr0fD14yQwQgffOdkfoAUjVxGS+nNU9j4cQDbCSRI8ZOhPFsdXSv6sQc4z5dHz4/Xf/elnn8/Ly+fyxmAfTcQhjCLc4xK3Oq7aiIODtqwZzj6btdRV9Gc2geV8ffZCgZq5QBDKROlLIISWSEmOCnNkQXB3RYyQlqXt6CvVYY93Jw0w4DOnm9ub27u5wPKaUi8Kybp8fnwTjd8tSm4DvJ39fNX79mWyPX7v6wPw202zfMq/jpI7AwN489HgnVLVWyqb18vJcpG3rjAC3t7fUD0S3sq3zulZviet3NzDxMZEjx5iDom6mm29ztbnoWrU2EEVVMHdggxCawnkpEHg4TR6Ch4wO2tSlqq9LtZfn+fJyuVq5wBfbZYffPM4+FMPdaH/fK25dBrdPigCQKMSEaIgookiC1j0pd3Zv/8669QZ0bjkCIDKxOSi4uddazT2ljEg9q6qJdWISUeAYmKA3jimmFCLuNjaAQMwcwh6p7QYm1kNg31J8emdtKlIbIgFeTahjf3YDM3CLMfT5KhHWyq7NGjOr+WZSXWQ/4DqUSPC6bXZWb3/fvbijhkHjQFPKYEoeojUCpW5/qYgIN8dpOsa7+/v7+4fD4RhC6BOqLycjAv5mjfnu9+G0B3G5m5UGqj5v/rL6eeOlktqXFUxEgPua7pQuAmByRDHbasN1DTxDNCI8HY8//PDDt+/uDzlEb7qdrRVzUyABUvPaxJEDIQeapvHh3f0f/vAHYB4fz1vTOEw0ZM4BAnQIJiJySABIxDHG27s398ubD+6mIchEV6kBKYCo1WZbqeu2ldpUjYj6RAM6OMaExL0U7dO6JmVZL8/Pn8eQM42q9rK9fPj8y+PL52WbkTzliIEYANmIVYTcjbqdq0GMMec0TePpdDqdTofDcRxzitjEc8IhYQ6QCHgPXfnyCaJigrK1pbZla02FEFJARAwBwFqrzACmjb2lwMdxyjx1ct26lXXdfvn4eV7n4zGrSili5oQQ+uWKnbMLiGDuKlaKrlurTdyBmANTCJwiEzNAZyCZucXIE40hs5vSdQ7SrZjcWiu1rgvKGlxenwcRmcMwTWGcxtPd+9/9/vlyeXy6PD09v3z8/PnDhw9/++VyOavBpbRLkag2EDFi6DqR/sfs5weoezUratqjfwiR0NzNvANrRl629vJyfn5+2da11dqpi8iB3MGuGV8EbrDLsfuM9dqDAFAIhhwmt3spPJ1i2LtkN6jFtlkTt+DEQqTIEYyxswscIlHoXnh7z0od6kFA6idcbye6zxLsKMA+xMBe++KOwCP0ze8OyJQiD5Fz5ERYVLWsjaONBDnxzemoAC/Lag55GHMaAbmUVtqmHu/uDiEcUjrGML31idoVA32GboQ9rdVVWu1DQkRTUwDrgWdo0qFwAOjE0EB9Mu9mKj3gvLeS+5cOFDkTuXutRVqbLxeXNqYQUwjBXK1tIoBmEGM6Hk6n483Nze04TTHF5+fnZZnLuqKbELqKqRiruEttb7vk2sovj3/+yy9/DHkcxkNbNURuWFIeWvlmzLeE45hvWqJAwesqZWl1Q3fG4JEBgncHH3MXB4OQuoIGAdCQ1KGpLMvl5fwYU55Od+N0TDmnPCGcCN2suIOIMoVhPIzTKebxbrj5Xw/3h7tvGnr90//718e/PC8f/P27KUwNoii07VzWCgpS61ccUtw3zuuK7GyGnSzjOz5j4K4q6I26cSyqkzkTxWk6CAWD1cU5JLEgm7bire0wNZiKW2BkwnHI93c39w93p+PRKcznbV22l8tZMC3r1lqzV/ozAuwmcPuM4IvpnIM5uXU21xedymsJAwiETD1EGtzNtd90zW21qhW0WatzKynGp8+fh5QPhwMTqNZSF5jt/MIvz+NNhnDIKY3EoWGry3kRW0WWJluV0pqIaFMHw4gpMhBtpdl5CTk2yWOKQ+RA4qqmdVu3y9Pj+Wkpm4q6d03zl1HIl9lSv0Q7tI5EQA5oCK/vxcGtJ90ycYpkvBPLRYTcHNANAAGtM8D388av9kLIRBwMUQSbSGm1i0T6GWWm3ekxMKZAiMgxxBBySkPKMUQEMvXu4N0pTl3R00ylSttKG+oVOgNEDMSEYK11vjESxsi9t2Aw8IRuCAYaQj+dHFJkZtBqWBroWdYXpYgpE1O/QjsKR34duHWhFBKqgxqhcrBAmDmkMEWIQTeX0moxMzeKIdzf3VI63D28PxxPOWcmMhW/UsFxHx70BPvXaoyHPIzjSEDKXXaKwzigSNtqgVgUvFmwnQ/cnZd6RjMCdFbcnlmh6q2FbaVaEuPdw937775/eP/Nw8PDlBNIAdmYTCW6qZqDgoHXskqr6Eqg5DqNw+9+97t4OJyentfWKGXIkXNooJd5Ka2R7/ErhESBbm5vmf+uiEHoiZQ7CQr2ycmeq+3eg/C0t1zd4cPcyQmdQ0gxpBgCIKGbyWU5//rx10Mcl3k5jTdm9unl88+ffnl8+rS1jQIlTt4dDMiJlbnf7wBupphSmqbp9vbm3btv3r379ubmbhwPHJiJUqCUKEYMwRD169R3CE1NFLaqS2lbaaoWGRPHwHsKEoOZ1KbWtGAKhyENKd4eR1Gttc7LamBbbTC7attqVTF0x47H742RA6DvdB1pTWqVjjr6lQaPO0ip2gt5QkJIMYBzNzfFDpNSR54UXBiMvwaVOYSUc47pQPyOsIrMy3p+Pj9/+PDLjzf/lujjr2FeC57XuQgA7GGpgTgQIpiByy55IsTAZAAM0OVLAKDWScAdaUc129ayLsu6LHXbkJg4oMNu9Yp0rYz2BAP0buCH1wm/7l0YUYw9Me4KKZuVtc0vGzlZkZpojXFJrWeNTgCjMwC5qWtDDADh+nsiAHf70X76X6WSV/XM/q+9MiXtNWO12xQTMXXybe9QDaypIXAOkTkw9XBxNe98fgBoTbatcIDWKKQh59thOBF9tWEQYKfY8f4V9GgyM9mjutCRgHfr+J1q7bj/RF3W5IRgqLZjYLCLJ83dCXFIkYi6lWQ3WjFHNXA1VdlMDDnFPAzj/f39w8P7u7v7cRz70T6NY87JVQjcFU1RBUG1d5lvnsPVvKq22gRWNGW2YjMxzuePU7qZ8sP9zQ+ncVAcrJXWSmuVAGMwc2DsBi/qbiZiTDHE3mureq1WqpTSlnle1gsxHdb1dLo9no7oHkJyd2kFkFOaYgzEEYnNLcTwMH4r5o/nj1url/lyXj7Nq3hWxJECMxdEbdqair3Z/IT0+rk+n4MbEoDuxJj9l81UXQS20i7LSgDSgCGkTIyw1I0JOHOAoKyBnTcH89311aB32DGGw2E6HqaU0mWrj4+Pv378+Pz8gunQduq+vTXXuF7o8He0GP+ylF8/tvPeXu3Yuufy630KCiBmroEoEGylbsvl+fHzkDOCl7LVsmzrLFLOCZ4ex9sxDIlDGikMGFhgLupFvck+tDQRVwPqidnQ5Ru26NPjWWo9jlEHnmK3J3AC01LqurVGYo5vH8/gS8zx/uuOuzHFde9QhwngCq46MwEEpi6B68bR/VZ/26XuxO2OgUIfvXIIMQOSRttq7c5etVY1CxzdUZqlFN31OOUcOcSQUso55zQEZuguiCFwiCHGECIR90Fe/31a+6pQ7oWYmimIN2JmibE74CAxcsRgbEKBUp9RmAUmDiBFFAVk3ZaPZp5OD5zydbKLAH3jG5ibukH3OgUzqbItZX1u50qX05E4OhECoVBnXnBI+TSOcTieTqc8jLRnnhO+voceNN3BsNcHIRrzMI6jiRESAwbkcRhgK4uRN+/dFQF0pfp+5BHSzqzo8xs0cBVFtxB4HIab4/Tu7vjd+7vbh9txyEyo4g5OzIAJwNDMxMXAwaSJyUaukTEQnE4niDEMedGGOXgMmHhT4TE1sUw5YLg6Tdvx5hjCV6Ketx83b036ctA3Pgu4mxwa7AHqffhgBMiBQmTuwU5E4NC0nZeXXz78VNb1NJ7M7fPL8+Plcd4u6sKBAVkRwNy6WhHRrbfhGhCGNEzTdDicTqfbw+GU0kgU+opmxsDI7EgKIN5jdK+fUBWq2FJ9LlaKuNmQOEceYuDA4KTmrTWpVaWghTXnPMA0BA430xAvy3betrWUVuuytbW01sdSZtJMd6txICTYZQMq2kRalyntuBQz9VNHxaSqiJg7AYZeFzAhOYUuFCTCmLO7qBQO/MpV6pz3kCLuAk7KMR5ius35YUpTYtAaGT9/+mympUkiNDVCCAF7gIqbdxmJOSBRROqyAUKMTOigvYLpNvw9vdJMWt3WdVvWkHIIgPraEVKMgWMA5B2B1R1D7kolUYUe0VHLtm6R66s63dSWy/ry+NJKm2MMBJE4hpCH6XRz+x7lRtHBTYrK0t2x+8TVd15mRzG9u60hAF4NARyu3H5w249Pu7ot7CUPOJiqqYAZgZFjRE4cCLGUsrZWyqZmHWJ2vPIDm5XNkdI03h8Od1+q/iu8z0QhhsAEbtaaqYMpmTID9/KGiXm/DGAPkUZEJwIGRkaC0ADV1QyICRyw5ziIEvuQ8zBN4zCoKSEydq0ZdLKpqGMMaRhON7fvv/nu3ftvjodjCEGkhT7SDCHECK5G3RgITJV5zwXcdwsPD7e/f7j7dJGLgmzaSFrTdd2Wy/LnzMP397+jH+T9zR1E6rE70hohiRm7E6Gjg4pJrVJC4JwDO5pbbbIuZT5vy7LN8zYvs7u22kxaIEsxazq2ok/Pn0JM3/1wSsPo7tu2qnpooqmNMf0v/+H/kemwne1Pf/2vZVmt4ekU85HByTAu9ri9iebcJ5+78Qdd1UnwSmJzQnB6rXjNvYnP6/rrx8dyKEOMU4ocwF08oKNywkDBcQiEkdBUkRnBQVtkJsJAmFOKIZjZy/n8pz//+Y9/+rfPT0+nu9g5qjv/vQMIX8oXQnjVHO0Ld/+HL2fwHrrrr8wYtK7cQSQi7FQ1AIjMNA0cwE2ttZfHRyY2ldLqPJ/XywUJB/LPn4bTlKZxiMMhOjmw2u4mr+aq1+wUcO4EKFA3Azdtdnm8rC/Lc8TTIb1/d7w5DdMQD5Ml3uF4NWd0+NKWwVfw+L41rUMUe4m0AwQ7FNMbPGNTsda8yq58VNU+bxIVu5oAdShxjxQgphhjyszRAUIpqnpZ11KKzIuqibqJ5ZRaXe3u5uH+xCGnIeWUU9fGM3GKecgxpRADMcHVg15a6y4br2/mi/it9/Eq0mop0QFiIHAyIEdGjuhA7ITqBkTOIQmSAtSlPC9/47qcGAa6SyET8c66BzUVa1VVBBQIaUQhWS7zr0+f/vjxbwXO79/nh5v4cOBE7hCAAGOKPPFwSnkMHMD96v+IgK+3Ce2yOPrChyOiIQ9jHjfbkIBzSBTGmNra5rXpUlAUewUDV1ex63Nf/wJkFHMzDYwP93e/+/6b+28fbm4m9lYvT7qthEjeyJX3BEoG5kCOBo7USmmtNi1O3ekgpJhOxymh4sAaSAjYAw8RgadwiBx3IZuW42mit0XMK+IJAI4iuizrZV7WbasiCEDMAZCkXYe4HfTuJZ8BIBPsifCIgQMBEIJ4ezx/Wtfzp5jAYallraV5o4DIDIhmCu6IhoQMbAhuik4hcB7yMIzDMKY0EEUzlGZortoNWBzR+ozEXV4dFwAgrEWr2FJkqyrq1Kt1Ykc0RzdUM1ET1V5zpFKYYx5iHHOXYcd5fn6h59a6Frp1+Ol6oHTktAeRALh1p9NaW62tVcSoSqoC3hsKMRGRVhUcnQydI4cufd4FqgBIIYY8hFY4xrfqCmRC5h09dUOHSEA5Rj5JrS9Pj5fz+fzyArvrLuz/nju5c3fgUOrnNgMQE+yEQQAHNatiauZgAQkAzbzWtq1lXddtXYd95erOziHqfA4mfg3RADAwVxVrrUl1B2YWaab69TnmLiK1VSJr2p1y85AoDZzuhsPDMN2EkKRtdT0nZCR0CtfWDndEpg/0dn4DArwiQN301w0M/CsEvy9WAxVtag1ACC0Qx0A5R2YqpayliIp71y7tfSA6uOK2Kcc0DDfH4x29mb/6dTX0gtUN1E1VXQXdCJgRGHs8BTg4dk61A13Nka/+FWhOpE7Qm1MgIrtK04koppRjhG7j2/9k1dpEmrhK4HA4HG7u7m7u7k6n2yEP/TftTp3dhMOZcbd+6U4J/BaJYaQxjrfTfeaboqWuL/NlfjmfX16ez/MypeEYp1ou2jattW5L3RYRYQq73gQdUFFFpWlrXUZijubemq5rWeZlXtZ5Xi/zot5qrW6WU2IemyUH3rYyUndlDdYjHtQQlUhiTO9uv9Xfw/P/dZ7y7d8+/WkpT+6obsgxpCENQ8wR6QuGQW8+fZnTdc4BBKDQ/7evFwMB3Ep7Ps9gCAfOISIHRsUYkCGOOYTM2a20FpO21qfJLtj5bh1gF9VlPf/yy6//449/+suPP5Vm9ynlcUxDQuxue3Y1APk7uOX/9HPt7vBKLN7nLL+hZ6UQHGJOQQ22ZXnmJ3cTk7ptroKGUurlsrycl8tdHZrxSI7BOst0p3AgGLg4oDP1BtEc3K21qtrUzNB9PSR3A8RxGFMeUkyRGVzNjLoSRPfEu7+HlToficCJwAmgmzPj3mx0hpkhuhruwlgB34s2AECnnVLGnFKKMYbeIiBRjDEm4tj/mJgSbltPX6q1qToC6jgMmdshA5x61kHKOYYYQtyVFTF265qd1bN/7Eqj+uq1wJ5HsCvDtTWlftyCOVnniZADOfVCFh0dMDgk8tI2nd0wyC1KBDJG3pnFbuZNvQg0BYWAFKl6edLnXy+f/vbhY7EZ6BBoOuSJczRyQGYcOR7ieIwx9db6VUYJ+7nZv2jyr2OsiWgYhnEcVVQdI1EwtNpkXuu8tq30EwOcXtdiP7SoM81dCSEGYqcimAIOiafMx0RDMJJNXZU2BCRQBgsMxAQhAjNAb/QJjIWxc4+QAueYQ1RogD1dxhSB3EOiQHFI6VrESBWN6Tf+w19/3rYH+y/s9OkuLrMuje+rCIx5T+64grndRsHdvegmWkIjcKimzdxw7/txH9h5xwYNjIAAnIlT4GEYcs7/B3t/8mPbsuYJQl9jZqvZjbsfP91tXhsRlZEZ2QmRqAaIAUKCklKpkigopEJIDPlTmDNihEoFEyQGDAqVmCBUKItKZamKyozIzIqIF6+773ancd97r7XM7GsY2Frb/bwXIRiC9NY9775z/PrZvjoz++z3/ZoQAgCZYfMrZ3RACCn0fWzhTsi+zUvrER6nLGpTUREDZAcq5jW7zRWgolMrv9y5GJnCkjWwhKCJQxcI+6RuJlIWvjC0PEUVNXcmQiARdXPb6gFTL6WWnEuepeYYCcBMBRW07VzNxUAczAC1WvDQ4G4jRxAFIAzMFPo4auiHpyJmU5GYu1YxWc2w0YEDhxj7fggxzVVPUz7PdcnS9DmuHgNFpmaQQIRry7mZkxKoea1WRBdRUUcGJye1Uutlnk+XaZrnnDOH2AQfDm6qRMFCaEQoAtqU7e6quFmkrdYmpg2dve74ESEF7BOFAEQIFkLa74+vXr79/Ac//vHbzz67v381jLtapvnyoZGiIfSOYU00X/X2K+1tNWRZmZJkvlYwzfLUAZtra+u9G5iCFM3VFoPChBxj7LgfYqAw5ZJzaUtFKdnBCZCAQghEvEwSo9282I/jkbd2krtX1VqlRokajBnMa621ZFVpd6W5DribEzQmVYNhmDg1XROtUzsiMLNvk+eaMAYMAGoa3UKIja4bQgDwWuvpPOm8sOfUdceb29vbu3Hch5h8xejbQ1+NvNa9xrPV/epmCwDgxnU5hu7ztz+dTX711b/87vvvf/brj48fz5FSf7dn6jkEcC95Pj1+qHkOHLgLbSpp6gnUaqbQeExObqCGUnVZ8mWaz+fLaTpP86yal3kxgy7tRSM8LrHf7w6Hfn9jxGKNCBCQO4odhQREquV4c/i3/9F/90c//vGf/pt/9rNf/unX735xulxIewQ67ve3h0PkT9VJm5/8NpW1/f6WDeCw2YQ0AZxXsaVqLNIF2w0E3FEE6kZ2TeNh6Mfk7KWW86nmrC4q1WrbnZI6VNHz+fLt+48/+/nP//wv//LbD+cXbz67u7+/u3+xP+yJaXU3bhMq4EpOh43Tu3WbnjQD1zUGEVtAAHPbnLTh1rRgCNs1IrYVIaWuqpn7fJmkVgOzKqn1SDiWapepnJY6FuucHalNqSYARgQRnU0Q0MCNSCk0U5lSaq1ZpKiILhOVkl3tuD8ip24cu+EC57OZQIhX5ujz+7+tJ9uZEjKREwGqehP2NVUAMmGLLVCtItVUEDwEphDMAWtRVXNPKe12u5RSe9ANY+YQAcm2TQUAzPN8Op1KqejUdQmgI4KmGI0x9F3fdR0jcQgxJQ4Bse1HDZq60BwAiTEEeq5Vhs1sBVu/rTUr3dwawRZbEdOiroDarlJA1/2WOxuaBDWwDBe0aJrRuEV8AzU1dVVTB0DGEGjR+b2/+658/24+iS77Kd6UXjw4dergGEM8UNyF1BPThu+tbz5sbJgN58MtCBgAgImGYdiPOylSPLO65jI9ni7fvz89PtaSIwIGNjPasGdqI8kUXMErE3chAZF5SAGtznl+lLm3hNwpeXKMBt6aRs3B0FPC2FHsQiQmohRx7LOX6TyjWjcciXkuZpara2UrhMWxKAgJOVQOuLq/FIPyO7Lx9fIQgDn03TAMu67rQ4i1LCK1raJIHGI0h+a2zTFACzgPkTmsMaOrvM3QDdkJgRjdHZVQvaXEXBOlVgUvoTd1XggphKFP4zjGGBBBaq1ljcVDhBjjOPT7w7g/DOMuXTMon4qY02VR8yLm0AJaUc3dvYi5O4EHohAJjQWCqV8WASzI0ZFCZERMjZnbUm3UWo4jNKHMRsG3Daw2s5zL5TKfzufDecSNTrsWSkQUAgGgmJmCYwgcmVtTccNHmw6TgwuHDj8lkK5KS1WpRUVMhZlDiiHGlBKFIOaNkNOsZ9p82YYYbOrzxr4l3PAz8lYboZq5STUlA+e5yHlaHk+Xjx8f97tRzYe+iXrQ3JgMmWCVJsXG62jsgLbF90aCcUBwCCHEcC3IiGAYaD+2LJdIvD8e33z+5R99/sOffPHDH7y4fzGOI7ot89kvFkLy1lJqt2K9IVdOg9vqDHbFYNYe0ubbjuBNJ4MAoG7SADHTdW/LqwoUwEsppZZmB6iqKNLFyMwBIxHnpYTEe4kAT7OyuYtIzrlJprFhtWtXrpEXyZsExo2fFM3rrIfP5kBoXX0Cpnby63U1jsEKdiAGDqnrUkwO4JiBsiNxSMMwHo83h+NN6jpiBiAH+wSOWDEJAv/kK9cXzExKeZB6SkzOCQGraKki7mM3DLt9Px5CSLUsXuv58UOty9CNrY0nMQRCRicwcDUDFCtFHBkAVa3WUmqpUtUAkAGiGBSBWjFnrXnqMR7vX6fhABTVKSIRRcSI2DqtaC4pptvbm34YTBYCyyXn+dd5LuDaRfitHNvfQmIaJX+j8/41uzZzEPNFLBadQh2yXIpSQIEEkeNw0++OI0coZXJCulTJiGQICE4c1HEpUh5Pv/z1b37+y19/8927RWHc7W/v7483N8MwIK2ZQhvr5bc4MddfV7Tm0+n4uZ5k4/pei51mcOwIxBhjRA4iVoup2DItzakocIgUCEgFxAh5oDhi6ExEqtcs7ZdVcwVXAGzi53ULIFJKKVJNqtaimkFEUkz3r+ZhN8Ru7McR4KS1KBO2DvumJPitC2kNa2OGwGDN6VMNYd3fU9sD+SZUAmJKmFq3yAGixIZ+tiImxthWa3VHQOJgACYKABxCDLGlGdQqCMBEkTk2xksIIXAIoUlE14gJRFUTrbhxFVsMZFOlwW9fDSARITWpmptqLWYGJQCiAYALmlIAAAICMAIHU5NqpVgxcA7AwdkNc3FFYFMD9NUmgtTWSHj0gEI6+3KRaaqLaS1Vq4IYVqfq6JQ4jZyGVoeZP8WjXKnIz8fHcyQGEQNRCMgEYFZzzefL5f3H6ePHslxcC7A1NUUzBsBNIOZmLcqegLsYQkocE/eJtNT5Upa59j1TIEDAZkifTUVdkcmtomkwJVdzJcKUotduhosboCM5oJnXajJXqgv74lgViYL7EkIgdHMTLWPd2+9GwT2bCmKMXepS6kIIUpuHrgFi7BKl4I6wmkcHjtylNPR9CozurWvRtDvWNs0MwOjeCEuuvobCG6xCZaKVO0QATNjF2A/dFYlpdTCuA4EChWHo94f9ixc3Hz7efPf9Q0rhOaIczufFV22ZExICbc4E6NuPdAN0UkjVNE+6SK7Ai0LfBea2jqCol2pVTdXWinYjBTrYVpuimk9z/ng6ff/+Y5eigaE7DQN3XQopxhj6wQByWUyFkVa7WPNSq5k34kQKBIBWAzfr0/ZjzFzUVJHQV1aHYgsCizGkSDFw4KYGSYGq0lJU1AjAFWCLpoZrN7MNPkYk7DpIyXwiseUy1dnNUgqRumn5+Hj+5tt3gankst/v+7WOAWZtD9FUY0oAiWNAJkSgwE331lz4TIQqMj8hMYHpuA+3N8GQOHTj7v7tFz/923/3v/PFj/7wcHfb972DLpdHO7+veSZiQ+w4MjMYA0ELxkMA9+ao9rTbaBXMGqSg63a1EXgR0A1UoYqJtdcxIJEDm2EVA9dcc9UKtG52CbEf+j526KwKuczTuZ4Gm85n3QaMu9dS5nk2UxNx0xQYkGLqgGMLlzC3KmqmzWaLkR3c1ABUzBlAARGhEaMb2R+wedJ7K2EawtzstkRE1YXd3XOVy1KKaEhpt9sfjjfjbk8htnbF9qTXiL+VdLA9e27/e7ZRFisP8zffP/6c3w2Kabl8YLD72/7mJu6P+5d3x8PtHXM/XR695NPDe5WqQ1nxGOZInCKnFJmptScALqlq6pKbmFQ3ZeauG0LoRFXFurSL/ZG7UbQgh5BGTiNwBxSJA1JwJzNUAEZEDKZ+Pj2C+Q8+/1vMQ5FgNXx1+lfT6R0yy+l8JV3iaki5FYnXCRw3ZVJrTmyvEAC4kzpW9aVqKIUvk7OGiItyjAfq7tPubpeC57ksGWt1VSej4EzAIQCFKdflvPz8V1/9+jffzKWm3eHm7u7Fixe73T7GBNA4+7Yy/gFtCxlcqVyrjGc1QPitOsabDahIm31axNXqFOeI6CIWnWLqUtft+07Fp/OyLKUWAbDmYenqIO5OHIfD7avji9exH6flsRSZL8t0npdpzkuuVZvQW6rUih0AONYqtRQVcEdCMrV5qh8+Xr757sONOMehH48O35ZaAdE5oLX6RJ+v/e3l48BuwV1xNXoGQFJt9ocMAKoqKuoGAC1PtWVyUWAnWqt/AGZOXYcALc6iVUHEQd1EBBEC8ziOd3cvQkinx0dTTSH2fTONb97kBKtHKAGimqtpFVETNwEHQkBvxclSlqVJDp8KGFwHrTmSVlXNtaqjGKkjgnOALlIA9p5bUWQGUm1Z5DSXIojcp35IXQqRVl4irlV22xG2dxOREAI4u6LrhuwCmVMVz9UWRUQcOVCMGz2YnhUuGzOmjYDmOv9JTWNuxSS7lpKn6WGe3j9OHx7q+ZFkCVjZbU3e3CqYtnsxaJFiiBi6NIz73R4JQ2B0LTmXmoqFCEyOLmRqVtHEvQIAiSAISJYajUKMXTcMKQ0pDFKbkbyBGtVKdjG4TFwngFbEKMSgjMhmupQldaNavV5MKyBaZWHe3lhmbtm8kSqjELpHpNi1Yo61Bd4RdanfjeNut4uBXcVX9YSoojpgoPZgVC2rFjEDcgdHbnULeYuwQMIYmJgwBu672HVd1/fDOA5D39gLhN52uYDpcNy/ef36cinffX8axpH5id8Tcs6Aqx2UbkI7wCZ3Q3Vwa1t5MGc1lyJViyIWsYOmLgUmMNVatdbmPQ1t36zuunl5bPUMiNi0lMfT9P7D427oh7Hf99W6tH5L67oRgEeIMaWOAdVERII32whi5khoaxzA72SOiCBvuJXbBukBIXddNwxD33cpxqUYr+L4JiZrTcHnewgE2NTzkZgoBkdiQM9Sp2KLKM2VQ+k/nLr0ramWUl+K3N3e0DgQh/aJZmpSFFtelaMzrcR8cmZkdxVEQLTQHOUBAIAZ9ju6PZIAx64/3r347MsvfvCTn3725U+46wBRNUtdAKCW6fLo6kBpRI4QEkJAws1LAQCuqRm2tZOacZTCGmm/tYPBwLSxdK15SjSbSUdRz1XQtbagOEIncgciSjGmlNzcXd1KyflyKtP5weQTArmZ5WVBs8DI2AcOFNjFAMwRzV0dDZCQmkFfoyk4elJj820aheaDiW0INlcfXFOEYJPhrjoRr0XqZV6WUh1xv9sfbm7G3S6lZ0FoV2TsOSYBBE7+DIy5XkWt9Zvvv//lb37uMYV+LPUhJD3cdIqWegwdMvcmdJpPMp8vp0czrSI5LAFXu7C+S6p9CEGNCKuIiYjbUPJSayMbAVEAYgroCUJMRdRKVoQOGbgD7gCjUwSKSAyOzb2+GRi6aZVKRLvh8OblD376o0WqlOnhe8vYvLk/ORCfFTGtvaa/A8HQM+jWHKrZIsq1YkY/e+gihB7hIHAQ2BVzt1wMi0Ft6jAxQkjgS5HTtJzn/P37jw/nCxAPu/3+eLM/HFLXIXNzzW9IzCcUMfC1aH1CYvS3uBeNiCYivm2hzBTAiahB++YOoKQOADHGw+HghiagVQ3VDRiQHERa+hCFOIz7u3F/awBVfV7y5XK5nE95mmspWqqrEgNRYIoAbGpStRRBQLAmdfFa5TLl79+fKA0vX7053nCXfo1wUlEwD0C2HZ88lcbAZWYPsEZaEohA80olMndv7BUkjpFj64cyIbd81PbPxgbGFbBZS1YiDqgm3PYMoe86wBaUg1JrIBqHvu+7tALsTVCnBGTuaKbmuZRSi9ZipuhrQIRKqXmuOf/W5RCgbyRyNSkl51ynxdQ9MnVdoLE3TmbBsWkevFTL1YuiYgzdkPqRYkQmc12jUtqlATar+uab48CEIcYuxcSM1VxMikiuSkVmQUbt2rS+bs4dwLccuadpv7WUHOw5i8TMqsylXswWqct0Pp8fT8v5BPPcW2VQaiBSYxV6i+2D1dPEwJ2AQkz9OO5TSsiURdGsaYJSrOTA7uDqoK1WAzcGBa2G7BgA2PsxxohAgSOoWDNxFQURlkKUgauToxOQmBcFQmB1VcvmyydUeANd13gzkbzkZVlKqbB6Q67wGSNibEKZIKaWnSj0aRjH/X53iIEbh1VrqVBAVnWIIQigulXz2txGWnfDG/zYRDgUQwpMkZgDtpSSEEKMse+7vk8coKVDNvwjxrjfH25ubg6HwzAMz6flYFZxsxlWA0RiDhsPABtDF5vTiIMZqHoTo0gthCN4jAy1LCVnqbJui9XNrLYgO9wIaeDqaNXEajovHx/Ot8f9a3FqhYR70SrFqxsHRqCU+m44IKLMZ3BIISZHXw3Q3LRazSqfyPm2lKLqtl48gLualApm+3F3c3NzPB7H4f3lUsi9j+xAph6Imha+jY3GbVx9XqjRhSnGNrajI747TaepyFwRGeC85DLPi6hwoMNh16x4W0m74ZZaazZT1qZOZGzCNARDJCbEyDFcxwwz7EY4HkmBu7G/e3X74tX9/uYm9GPj5AJFCokDu8p5/lBF03AIseO22NsGxrmBCZi6t91LAEdrKmVTgFXz0yjOCOBeVXLL+lllqgAqXooulBHcwIGRAzmyW6PcEhOIGYAQiVmeznU6v1eV6zoZYwyBS8mluEgy98YKq15NG3OBnJiQKEZiAkCXqgYGUMSIDYnXPDYEBnREBlJ3IhdTB2nld2vUAUCVWnM+T9M0lyx13O1u727vbu+6vqfm7bZ6ba8NqubytC7nRNSKmNVR/WlDNi/1579492/+/FfehduXR0WPg3YhzUUuyxzgvHQ6V5XpUufHZZrNdc7ahdAxdl30vkdyQKxVqgIB1SIiRU2WeZqXJZdSRUXAkTnEPiUAe3d6hxce9rf9gdTYPBgEh2AUCLkpW6Tpzk3dzNXVZFnOMdIf/PiP+iE51u6wf3j4hg8HeLaD2Vp3uP0emgMyYBu2Bk+X3iZ2tBZahhpESAgWStAF3gc4XGoPF59t9vk0naayFFMrRZfLBKZ930HoxtNlyjJlMaChAWP7Xeq7az/LXdENVkHqswIFNgqmO4BtPcenb1BRESFmX8Fqt60YImpRKNjyos2NmXe7HTidHycEbH4tqGKGWoRDBGAOQzfuY7eb5nnOdZqn8+V0OT2UaTFVEHOxntPQ74a+R2ARKdVFlFYoeCXNV5HH0+Vwp7vDXYyHw/FXD+/Puc61Vubo6xk91WwtYqc53SEFjoDYDPvRkZqaGMCRGBk4ATswB6JG4SNHIOaYYuDgbemtYq6IGJhDDMQMwNSSrtTam0MhtqJHSmGEVsTEEBpxQaQSUWB0BESsqrmUZVlqXkSKizRfeTDRmpdluRYx+MRUBEDkGMmkqlwu58fHycyHPqENiVE7MgkGoNWKWBYvzpBS4C6Nu5B6D6wIDgHaIr3ehYYyb844ABR5f9jtj7uui1LnUpZ5mXMZkHkuFiCOtYIbUoB1XdpgSNjGxcpdvK5dWxHjMpfzXB5Fs2ku81Smi+aZpTAIuxGsqjk3W21jEQCwBcg4AFLk0HXdeDjsiOiyzErBVEvOmWaQys37KIBha6maayWAFixjRqYeY8ccGdGJRFsBoagW1HqGsY+YUC0gYCBDhlZRE1CX6NqBcfcqXgwI0KuUy/Tx48P79x8eHh5KKQ5XOLqR0lbMloCIOXDs+3EcDrvhGGMwU6k5LwvC7IbuDISOLibVoBpoG4Cr9BRdrRUxa4R6CJGZEHzDI5kpdSl1kQnMRUzBWpaJM4euG8Zx13efFjFbzIa3bXfT5RIaEpiBNVgODIAJEQlCIFETkZzLNLOrBLLLNF2Z7Qio1nKO3dyRsAUNXl8PdV+W+niePz5cTqf5uF+6GFrIWcuZYg2BO2WrVQAhVzHTQIzYnOYdVaXWdeQ8qy7b+9j64IToTYJuJrW6WWAe+mG3243jwHRCgMDoDtXAHKpYQ203zAJgszIkQHQMRCkFZnIADsHxvCySq17mkiJW1SYESH3fdR22krLrWhEDK4N0i0V1fDplYkTAQBTitQVLBF0HuxEEsBtDP6auTyEFYFY1cePWKnKsJT9++BinOY1Hjk1vQ8hbY1ZF62K1aFnczDEasGA0IAAnYmTezEtAK0g9az2Tz7sebg6hKrthQmRaDfmdrrJJb1jxdYwjSghiWlwnk9ldt2uhll9mqg4um2smIqljYzk1V0liCDFS2zjCCl6pozqKgeNK9yNCIsZW7JCD8rYnZWJGInXP87KUep4mMUhdfzje3N3dH29uVxjm2fr3O5SY5nf4NyEx9v3301dffTy+fmdJQmJjUkYPjoKuJAWyWp5KnssyVTMltsTUB+wyL7n0S9/3EjkZEhNKLSJBpOV8l1I1FxGBEAGAHSmX8u37D0j8Ou4MaP3laI4GDMSriampmyFsTktgbBRTtx8Pb1598eMf/x0l8F9jHHfPL+evPeiZvvnTA1fBm4OaVRNSRnJXUk1Qgp1kyd77TDVbdXNUoKx+mrOU0hcxjDx8qOJzqchh7Lrj7e3xeDOOOw68eo+DIRquQMuzlR0a9r1yjn+XEyOmosIWV1rmJrNoBqObO5M1QjsipJQAKAQm3OhU0oR5ompmCI1yRMHMaynLNM3n83K5lCW7ORoSAIW4P9z2Y3dZ5pxNWq45rTZ8q7mj+TTnJUuMfdfF+1evTw+nd+9rWcSaIeVKV3v+DAiY0QMBgBEiNbEMwWaG6y0NMTBHQAwhUou9aZwA5pQiMbt5w/agLQ64BmI3mVzQEEJgVTMHAovWdR0jBvKUYuB1vq1SKZM7WER2B/UsMi1LnmepxaS6VHdjbFaUuoU+PXtrmjaSCBE1RGYG8JznWitYx+QxhpKpJAQBra2Sb4rMnuMQu55DaKXm+pH0pPZcPYHaswYn5nG/u7m7efHiGFiGjiIDNU9VB2612tY9JSSH39KvrQyZ330m5pZ1ynZxVPTidbayYF1ICpGt9hXgG3/Zrx+y6X0aoMAxxr7vmdnAi6O7WF2USSxYm3QwApEhO7hLpZYG4aRG7FTSOcYe3QlbKKOYCIiRWIw0pEBjdAvgxKBIDkRuKszjMwTazEvRIkaIVvIyz9M0TdOUc1ZVB0RiCpGJ3JFCJA7Egd2BQtf1Nze3x+Pt2I8hkKpW5m2TA6q1DU91a5aYTSjbNE7QtOatiFnN+hkRr4GmtZZaq0gxq60G3ByUiJBWG4yYwjNPNQAIzZhPzZCosWhjQEIDWDfJCm5G0MowIohJlUtBd1+WUrK5lmXJuTQglxHUTXQN+ltTe9sfuREPAETlMuf3D+fffPuem6EYYdcFQjJTUIUAqmvQoFh18MAEji1drJlxImEMT+gFtgymEMxXV7k1DMBBpbbwKkYYh24chrACJKAGVdfs+tiwZwd3YAdo5rqAYM2UxY2kT/zFy8PNYei6+O7j5XzJQHRze/zss9c//OGXX/zgi7v7+6HvRY1DSMMYu4SBN3pzG3StwbXSJ4kAiRGdQrySlBE9BkvRCJzYzKRKy0gXMRc3NS1VapVlXj6+f4f8wP0eOQGFATlERw4IrjXL/LCcT5fHj7UU4ESh535HsQfiECNCQmxAmFYvy/xOy/cxnF+9YMu7Kq7iVt3ETUytsSOwEcTaU2iaM3dBkpQUzMC1C0abDyEzj+Nuvz+AgUgx8yqi5oAuIqoaYuAWL8fIzO5ums0BGzbD0YkV0NXdBBFTY6sEXs3yqbmzYUiJQgCkInqZ5mmpVbUbxrsX929ev71/8fJwOMaYVsscWD0WyVcoHvnKD0F3NNtYUc+Gi5kvk50e9P37SkNOO4dklZ2oH8fbPd24hqJW1bP4lLFWJ6yBYSEI5I7epe64O+7GXT90ziCuJWPJXVWpRWu1eS7qsAu9u06zfjydvvrNY0jp5q4Rz8kcxTyYOaAjN7TfVcGdmFRlyRcA63DASmInUPj89Y9M5Xz6vov9bwc+bpHJV1pMU+QhNDv7K1SDW128Yu9ixmaKQSCoYLnUUz71EW6SjGwpdETuJavPc9Z5WqalZvEC5EhLFU5dP+5ub27u7l4cjzcpRUJwakwEQ2i8WdvO0QFgZUK4AzqKAdbrOmPu4iZuAZw3p8m2o2keCbYhi43l2PxUiDA0lKY1LxndXcxIVVSaulGruKiXXKepXC51WWqu5oDIIQQehpv7lzHFh8tX81ylmilQc89vhgGIjlByLbmIw2Ec3nzx2bzMl+lUl8V9Wzyf1Yyt3UMcAbxlBiGReeuzgrUNgAMDhLhCaM0Wq/n9rAKtZg9hxpXAobmctRcaHAGNbIUtG+VFVZsxBq4ObYBrPVyQmsuGd4YsZiS51PP5UkpmcGoOBdAScNQIm4HvtYJpG/q1oqMQo+92+zxn4vd1LlN2Z+IUY0RG7QJAzWbmGENM2O8oDcyEuD493IqBZzVG202t45OJxt3u/v7FD754fTpwz3rcD4f92I/HzhOnYeiHwGHDhtqJ0bV8abVHe2Wu5onrj0ETXJRmZmSqDCVYUa2kAm7NP3g1tQWiVmevxottW72JmFstE7jrOjITMLaFxBGCOypHV0IMgAGAzVs/Q5thmUNZLhdLGjmuPdNG7lYj9eA8hCGm3iGBUwBgdGJyUKn50O/Clkns5rXUJQu7W81lmUWqe6MioyNjTEwI5oTEseMQ295vMNiN+1evXx92B2yudQKAcWXPutdKZk3wHwAcqcVRUatjkKjJdBmZmTlEQmj6G9Nass3TdDk9Pj58TF3gdBuIHZxaAxSgVmck9GejpRUxLby3NVQjU2SM1HZjTk1WgLiSfjhQs6wDJyIVybWq1FqWnOtSVFf2xSoRekLiHGg1EW8lKopZzvU85YfzvD9Nh90QU2CGwJGJANBahExbINEREQIj4qomars0M11z0q7zcXOn47YvB6LGCNmMdpUQ+j6NK2+IzUzMsmgrls2dCRGAABmwpcqs7de1wnYm2o/dMHRIvB+6j+dlN/Q/+sHbH//oiy+//OLVq9e73Q4dapnUTGsNMTCm1WWoIcybreg2Nto68YlnJyKEACkBOSCb+yLlnOePy7TLalXMpObT+2V6LPmSl0dzPH/8phuHbuhDTMTN69rAqpZlPj88fP/NdLkoAIc+7g6hHynG1HfjsEtdQFSFKnWez99r+a6P5zevYh8OVV2K10VytjxrrpYVqlgRc/Xm4IIAYAZeESthRapgyqzXh09EKXVDP5rYkkm1ipiaAmLjNJIpURNBMBG1wnOdPtZeJKqBmalZ4xExIjIxBSQEBqcISLHrkLiaz0UuSxG12PXHm9tXr17dv3y13x+7rmfmT1YMaOTALRqzJZhD24X/NUhMTN39689evv2iH27MecmzShG2LoZdFxk7FSwOxbhYXERKFnchqAEUTERrF2O5VVUjAkhsWh1sWbKIzvNSaxVTcASwnJfvH8/fvX/49t3D/nBsQR1N1yQiwkHNW+oCtlCutRwR02qmhGhqwBGJj+PNy7s3r1980Q/7yPHZpT+X8/y2qOTpXdw4CNu3N0O1htSSAnqj0xok5DBw1w8dsgkVNQN2jkYhm9tc6oePSFxEuOvH/f54c3tzc7vf7QMzuBEaoCIqYm1q5nVtagKc6y5ZnMgAPgmCWmd6WHOVtlUO3ddY52YzpeZiLobmhL4VNmZq1goeMQGVXGtux7KUZS7ztJzPeZokVwCIXdcPu91h//L1m5sX96pSRZdpEdmCE9rGfKMjO62tsH4Y3nz+dp6n3/zql+eHB2gm7r+rTyICZnfe0IZWuzqg4cq53sqDVolw3PLmmrMRIoGZqwggiG23wMxU3UBXudPmDejtlWqiTW0WrLAyeemaL4wciAMQMXsI0d0ZgQEInRECI4GbajeMz4fMNoKw5VkzhK7rh6Hv+27JWQGy6lJrXDKBKnuwgojOiMGZVjP1ze3wr0EIcW2SrP+VCLuUDof9q1cvx57I5j6GpqmJ2IXUhxCYqAFaV5X79vefHZ9A/NvPCspRo3MMTiCoBaWiCAS4soS3c7zeAW8inTZmVNeAzNZkRxV0R6/kAC3j09WQGQLFBIjuwdxaGxTAQGqZLiBCXY8xIQdiRHcQQ4FoTGHwfu/Yo3MAYABkBBAJeZeenoupTpdpmnIiR6tSZpMMYMSEIXLqwQO5ujtz6FLHIbZFn0M47o+vXt2P/VBKqVJVyDR4n3IOjDDPKIJSwdSazLN1G4hWB9rmw0rIDd2BBnhIdRUlEKklL8t0WeZxL3uErtUmzV1sTVckeGqMAQBAKDWnyF3suxi2abyZESA4MroDYeyQI1IQ1ZynKrIWqqa5SF4kZylVcpFSpaoabMELALBSkcnBq6mZI4Kqi6qYFbWlysfLHPvY9XEYQt8PDrjkqqLtPcMWbkuBmDFymyFyKZfpdJ5mvbrcumvNUhagSBSQqZHdTcXVmgUdoPcpjEPq+xhTKLlWtaUZBwM0xhgzdquL6Ro5TC06sbn5IChA6uKXr/vPXt9Ww/1h/+UXr3/wxdsvPv/scDwAYJnnfDmr1lqy5MN4PMZ+wGseMmFDL65lP5gDGKuy27ZFAGaIEdgJ2NAuWt7Np18B5LnIkqUsuU4nmd6X8oC4IHiZv59P/XTYpWEX+11oXtfoplqX5fTx4eH9uzlPhhCHXRz60MVxP97d3Q1jRyRqJdfLdPqg5Ztdmj5/093f3IqBiNdFllkvF71MelnqZSqXKUsBhpBCYEBwBasOGaAAFoDyKe+y2b0kH3dIeLmcqllVdYDmGqbqRIDQxEAMbi3z1s0wcINlxaxh/g4YTK1JozkiMzpSQKQQ+76aX87nKUsRT11///L1q9dv3rz97Pb2ruu7zZBpW4nBmjfY2v594rjiM8LrFY0AADgcD//w3/5vxReEYVnk8fH0XZ5rdfSI9QjSeSFVj9W7DFbAs6nUrJJNZq251jykCAgccOgDU+8OojrPl1xyKaXWumrOXR5P05//1S+/ffcg6rEfxd0BxRp31Yk5SrP1RAQCYnB1F3clYlfNy5k4hfEmcES3MQ6fvfpxP+xTHK7Ppb2TBJuHB6wT8AqBEwDQyhl+qmM251xF06tWv4YQxi7eHYZX9+O+Q5dpnsCm2Smk8WAUai2qcp4WaM7vMYz7/eHm5ni8GceRkMAUURAFuWKrhqE5JwN+QhQ1b46fUK9R1hvIAq3Rtoa+2DX9unk+OZq7QVUWY/UARqVarWsKbFO0iKrXMs3z+XK5XM7TZbycHi+Pp8vptMyzqaVhvLt/cf/m7dvPPr95cTeO47t335e8LPOsImDQNPQgrbmiyCF1XQwhEPV99+r16+l8GXc7InYDVb9u/rbHAoDkSKukxZtv+NZJhNaaX2FEBMI1wih1XWIORK3T5KoqldQNqapZrbVlO4C2O7q5itYWKCwqVUo1UyLqAIFjSF3qxn7su67v+qFPQ4gdEVfVrh9qrW7iquBCCO0CAWx3uOHN6PJpBK0daG/hcl2fDseDml+KOFJVyEXJxIMNJM08HTi6CZgh0bqauNNGGYANR6HraMbNLtehS93h5kUMbPmELlVM5+whIGtzrrHWImgcyE0NAACrJWPjWDyHewCIPCUceo4UNBK6utS2XLu1v9XOU9rJYMvugk0IjyCqVaSUWqvEGBsyYCqITmAE0irLZpOO1CERQmiNALBWBkmR4loYNBDELqlHAiR1Fo8eOA04HgFHgtDIOEDgrsq5jzvCFYkR1dPDw+V8OfQhoFpZQDOhcqDYD9bYVOhgHmLYDWMgEqnMvNsNN8ebly/vUgyXy6UWBI9tgc7LwuiIVhZY3KWIK6wBBhSIA3IgpJVwQwwckSNIFVWtlcCgxWy4ixap1VXRgGOLfCYHRXAiCBGZnyusIYwdxUB9xMDgbq0T0x7uqsLENTgdNsaJqleRWmrVmnNZmvtubSNCZCsc28zDBIEpxaDgmrW2ZCJidyei1MXUdRQiEBuSIjo2fqW1SC8HXDMCG8WWmoYASMSv+/VtJmuFbqDYQpOR0I0AgdysGZkxxRS6LqYuhsCQq7YNnHolNXcEj86JW7+CIq8ILVOT4RIiuDkzHsa+H4bYD4fj4dWr+5f3L3a7XYqpeSS7WS1lYyoFAOIQiLnZsVwFzwBXyzltitvrREYBQyBHcjKAScv30+PPa/m4FFkWKblYyWgLwKXvzVTBHmV5X+eXNc8NxFA3A1sLMfdalvnxfdHMfYpDTEN02XX44CUhVbWc61ymk5WHQJfjHm1I6qDqUnhZdJrsfJHLhOfJx7PnBbUEQgxkAIpQ0SuiAIi7mH8iTULAEGKDh0Rre/QtO6UN9lZsh9UEElKMoKIiW2WxuqUhITM2AyLiGLuOKAEFgODIQFyWPGfJ1UI3HG9uXr1+8/rN29vbu3EciX4Hg3l+hs83ZZ+e+fM/ElO/H8bjzo10qiZRcgQkohGltxCroSFWiMoGQYCLZMi5zPNZNBM6R66qVSSXAghqlvNyPp9LyY3P0Nq9ueSpzkpCPXYYu32iyOKWc56XOcZIxF0SCQGB1u0NgK35qS6qJV84VOoPDqgqzHx3fDnsDjF8gsRQ4zkjrqjBb2v0rkjM8y82/cXak3ewEGA3xBe3+1e3x1e3YxdsnqzkCYmJYz/sKMRSci5LXiZVDWjMvNvvj8djGzXoYGq4LtMKoODWOh8A11plAzdaaM6n59mSJUSNVFeqbhsGRADA2Az/JQImihyHEEcwK2JzrrlWkQqrvFGdJZfGUSo5L+fHx4eHh9PpdJkmJo6Dc+C2vjPTdDk/fvxwOT/mZTIxMlgDG9Wa6pQMgqiUcjmdL6cThaDN+oEItih2e4bD4lqVDIgMKo0vgFiJK4cWOWfmZs3JgpmapW7XpdQR0xb86kBtRkN1L1pzKe2KTFpfrslttOYqVUwUHVNMyDSO4/G4v3lxdzjsh2Hoh2EYhq7rU+xCjIjc1H8iolJqKTnPLaAjEDFBGnZE/OzJYLPteBpERF3f39zcckhdFjFPTW9suYoklpWjV6PmGTBATM2EbHvi61htraXN5r+V4A2WhJTSbncghBms5lnFyTXwMyRn7Z0+NSSvEuuNtOj0yVkDMx/2Q54HO8PMLWyloFkjca8Vv7sZoFu75k8HkZtZqbWUUkpJMVKgTY4ARA4gAALS2g9E1FFILQsPAQAEms+5FNBSEDAExl3T8pIBCQSjhCmEAXgECLBm/qCDOXYp7K6hvKY6n0/T42PvPQWwuoBmAgmMsesgJEcCQnSIKRzGMTBJKTGGm5vD7c3x9vYYAoaALVMlEDLxNE21LCqVmnMNK6O0sql5PIcQANFUEQCaIISC0xrT03wdA1N71qvvAEDgwBwN0R1DDF0Xd7thHPtPiL2f3e9bS72ZxwIiU0BwUVBHg2b0VomUWcxXL9icyzwvRVZnhFKrFKm1tZLX1AEzYMYWW9r1wcxyaQ0zI1JC7Lt4d3N8+eLF3d3xsO8xhWIApUYOFFOfqFF9i1RzUAcXR9zqHMKu67outXCANsM130jiwM3pFgEZEN2NnSiEVTG0pce3pQsI0dCruZrCKtUDphavHdrQpAaJETLSWlgjdX1/c3tzuLkZ+pEoqIpI8UYI7JJYVal5nkLqADF2PceIHpDWVDr3py4srKK86zuP7QQcCcgcZ6/fnx+AL0OtXsVNHB2YvessEJm6+Yz+aPVsdW4fXWs1s+bxtt8fp8cP89lKvXi9OBGliPVSLxesaLioFVWRki3PoJUQiJ3cGT0SBIbAnpKPOzjmmHOYzvD4EWtu5rFiKAiCpC0JzkyfeUW0moxj7EIKLbGt67sW0WSExBxj7LqumaObMQKkwDkvrcZvgQBMjOtoVw4xptT1Q9eNIfbEqRpMS9bLPC9Fze9e3L397M3bt5+9ePGi71taOfpqaO7XieXZCW4VOyE5Oq2cmOcwDAAsy/yLv/rLv/qLv7i9OZhBnQPoOIzDrjt0eEs6GgYn1MAYYzd2brEuoFIu89lJbl7cjMfDMO6Y41JlqWVelmmepsvF3YY+Dv3QcRCzh8u5ov7gD1+/RVwW3Y03cZ+qy/kyAaRhNzDHIpU1ABI7MTT4ykS1mFYpZb7EJL2bgYtUNRvGYRx39OTY22BBfKIz22qu0Qi2baHwTzrQz5m2Dq4qJZqOQ3r54vjlZ69f3hyOHZksZUFAIOaQEhKFmLq+SzkRYi6LuSPx4XC4ubnph56Zmh/tqq93IwQEdgACBsAGqjQZirupmIm5hauGyd1ErdQaSr2OoZWURw4AFV1rXfIyOt2mftzf7Pa3Jecsdp6XnLNqRQAAc3VXqbWICAKo2el0fv/h48eHx/Pl0vVdKMvlcv7w7jtADyHkef7w7t3Hd+/LvDQMz5qXgWmLSkUznPn08eGbr35Ta1WDd999N89zmwGeTN63wU/Ew7CrIqoCjaytWkuRWls7AlyrSF6yqgJijDHGLsSExICg7ojAzM15rJottS65LEuel2WZplIKqDkAN0Vq69qbxxB3437c74+3t7e3t7d3d/v9LsTYdd0wDl3sOARCdEckDBwAXEqdpsuHDx+meWpuwhgDxf4Tj7iGwWAzDjcAQOKuH+847m/uqoI0emqZy+Wj16JmDMZoXpc6nUQxjiPHtAIuTZvmjbcDz4bo6mDRNjshhGEYRfXxdJ5lAYdIlAJz4lZa4BXQ8VXOsb3lBgjgzuRsEPBpxx9juL+7A31xquf34LVKLhLMEdCAzIkcHdZ0V0doYSlN/OjujfJcS8l5yTnHGNgChoCBkVfsjFxUwURBsELkqMAMbYuBBK6ualJBrZJTiuDiELCZUiiwAjszBMDgHszE22pESKEPYYe4ImRmWudzuTx654gEkkEruDJBjIECWYvcJexiHMYxBrK+77p4e3t7e9zt9kMIlLqIboFCa9rEx3g+P5ZlQQcz1/a2ujt4jDGlLsRo0NRwTWKMgckhMJMzB4aQYovIaPybth5yCCl2RkisDrDf717c3fa7Y3gWaxN6ZkWvrmsLGQHRzawIiJv56nRE3BouYKqimossuYjUKlWaw1hr99lavzTRCSHGQCFSYFR4itMiBCaITCmEvku7cey7DkBbwmJgaIsWrOpDlyrVGhi57tnN9eoC/DRgthRBbNSHBisxEzPFGAC6vt8ddrvDbhj7lEKztwuE5m2nBuAeWwOeKMXQ5EgNgGkyzZUv15JsN4dKd1fVUmrrUjs4x8g11pawsMzN9Dc2HhzzVr40QKZZ8Zg/2421HXmIwYDczaCYnPJkhEkNm+YdiQkYGSODqdda0WfN55rPVouUMk9nlxyRmCnF0HXUJTOrFC0kTFTIsywXq6awuFUHV1Ep1dQ5NO9cZ2y2zRpDMRfk2iX0fXfpwFWmVawt3rLpCVVb4+5T3wvEGONuNwJ6iKQqMbCpZgAVCYFj6saxWSCgu6bANXKKwcxWx9AQthgjEy3EIYTU98Ow28c0AATIVadFVBGx74f7+/tXr97c3d3tdru1Jf+7Le6/8cBPX6uno0p9/+H7d++/61LsUtd1A4UYQkRgyVgFKTKFYGruzsFDdKIG9ikQ8BCpD9VlmqdSs5pM87wsc845MMXE5i5qc62P0+QDvX77Ou3GeanoUag8nB/cejdGwq7rVataBG0CTm9B00VtkXnJp3x57Oo41ErJ1MBx1Ufi89rNAbaEB1jpWf/f3yUDU9dKIEPiw667OQzHfT+Q1S04DxGJGQGYySESkai07sDxeLy/v7+7u2sqIXddxZzADrxttgm8FTFX+sZWxKi5xetjcoAqmktFyqE5wq1EQkZqw6x1sikNw939/YuXr3b7g4rWUudlqTmbaetagEJTpoXAKSVmFrNSSqlVRKLGWsr54UGlTpczEeY5T+fzcjm7ChEh8KoHb2QYJAeQUk8fH7/65S8fPn4U9fP5NE/TlY7yW0gMEffDzgCb4gzcTUVquWLc4Coiy7yICACEGPu+jzE2GrOBIgAFckBkaaG5zSDKHc1AZAWJCakxTYlD3/W7/eH25u54e7u/vbk53hxvb4dhIMIY4zAMDcBrGAwzDcMQmFV0mHZIIZ5OORc1wUaA/JshT2jsGA4hxB7BnMRdquSF0aqiuFrVXLVKviwI2NkI0I8YQ2BmWOOEYQ2SuLYMqCVGrUwXJo4R+24YdnskcreU0rjb9V1qqWqrhAK3bSSuOSYbPXFlxDzvWTDy0A1DGiZcXKHF2qzJ4g29Wd9Qc7MrcIzYfPBdQc1MRDcwJrIZA8TQtbd0Nao2sVoNwD2YAncDRYY1dbF5TquZSDHKHeRs6zhZswdBHRWB2SCscpXmM0yBw/AkHHEjLawLaUJl1IJWyZXImRGRIfSBQwjUd91hv+tSIIC+T7c3x/1u6IcYGM16RggUEKEVwjfHoxaJIROF1qtvRqax60KKHGMzATYzJo6BuxicoMRIrl3Aoet247jf73e7XfOMbWVAwxuIPMY4jMPt7TEN+0+KmMulICEHTh01KnWbSZsEyxyIuOv6ZtNuZjnLksvqa6cK7Zetbd021yA4IyBRitxFTmFF02Blt2AXOQZEVymLlNxqahM1R+6IQyAid5UiVYq08nUpZs4hxBhDjO6eS8m5XMc/EcUYKUYg3ljFm1AhhJZ/vXN3t8s0H3/9dT90/DAReGR0xyKrDtzAgZADpshdF9Ys5NYhXbFG0CLzZYbm0qYGDsTccpuZCNHbKEVAVct5wSYJRkJk97Xsb1ULtre/FTHbbqyt+immqiTqYGpeFMm5OhBj43UbYm0rBbEHVYRSl8d8eajTyRROH9+Z5F3XW5nBSwwyjBYTpiFwdCQDWGqdvTQ6iyKxitdc3AAs+LNiS2updZK6mFXiGCOC8zQ2h/Wq4Ni4U4SCJBWeYb+N38Ndl47HfYhh3HUmgohSyhlBqjBz3/f7/T7GaNqI2NW003GwLRSeWyWKqCaWHTmE2HWpH8c9c8pFaq3TPFepwzgcjzev37x++fJ+3IwdfQ0C/BuPdQa7Luh/LSOm7fitNn5zGIb7/THXejpfztOl1FhTT8f7yElzBs/EE9GEUJmgSx10SClUrx9O06k6U1DwKlVbCiYlRBLzZZrPy/wwX7puTOPu9tWLA/h8zh+//Xh6XOTIhLHrU5WqqiriBkYU1rcIq8lUHi7zu/nxQ9/JLucwOHAAM7FcRa5w35XQambtLrUSHBwMDLcUroZgbesPPmEG3pSLwqAdQ0fAJqDV3UDliXlkjeKPzATedamPsRuG/rO3n3/2+RcvXr5MMa20XUAAckc0cNBWzViz5H5aHQwcTNVNHOJV3OPutcq8FDFgrsTIyBRCy/pwcEOLkY/H49vP3vzoJz/64svPd2P/+FFryXmetWYAh9AM5S0Bdv2w2+/G3a4fh65Lad0hhoBkVU4fP5wePxCtC6KZmwqvYaXtPjk0XxYmc6tVT48P8jMNMaqDmrQH0SymmyzoChAS8zDuOCZTNdNm4VdrbalS4NC0tbWKbZLPtnlVtcZadlcARAxJPCVJqXTJAELL93QgVRAtpa5I/hj7mxf3b9+8ffPms5vbu9R3/Ti28ejmzNz3HTOrWq3VQd2AkGJMKWGzwhp34+UyTZfLNF1aZtNTyYINiQFYfd8ADdcTAQRXRuQYCAdwFQZbIF9kuixTniadwlBeACPFsOMWbdOIBbDp5vBZGbFN0AgAjDT2fXz16qpEW0N3nvpO6/dZS9zZwjXdwFHsect/fcdABaWgVvIKKE4G3EyIWn3oq9NBW+qoxdTCRrKx1vE0EasipZZoigTgCZExMDh5zeZq2gwXmYFSiDGGZicOqkSMrZoRq3n28wXY0A0IKyioxGxUHAIbB4MWYZmI26/+WsQwwhjcgkWobKZeyCuDMhg1pC2l1PVdiruhv7k57IYhxdA0MX0fU2RmBG+p3QymUmTsh7vbO0K+nOcUe+bIMabUqSk1X15mROhSMnNXDYH7PrmylE4ZEuNuHG9ubl/c3e1uDrvjYTeOKSVGtJYi6Y5AXdcdj8fQ7ZmftZMCATHGREgkVYvqkutSrRQTdUBADqrNQExylcs0nafpcplynl2KSnW3KlbVVd3cHIy2ya/ZqzCYq6qoSjVVRDAVk1KW6fTw8XR7fFlfIu44JCZX9Vqrs7ub1CJSm3wUAMxNW3YPoDmI6vGZsRJsLOAGqRBtL3QTuCEAeAx8OOxf3r94+/b16XxZlioilyWrmKuoGQBCpEgeG30F3DeGD/g6RgjRpZG0qtTiIo0NDaYqQzN2W90C3VUElmV14HGjWpgYm4JgI5O6m4li97TAAHi7RFNq2mZHdZeWQwsU0CMiGzY+GbVyzYWrf1hO31w+/BrD7vTxO6k5pwh1mc/fmTwEmjjNMQJymwalFjEToooEREEFaymu4BaYV+jV1WotNZ9LWdQrc0Qgk+C2uJkbuQG0eCZ30Gq1vRVPi2UzABCpxNvq1xD7Wht8BeBdSgigpq4GIOAQmI1Q14yrRsyGqlqqRmQzNEcRzWV5fDx9PF0ulwsA3Nzc3L982TCYVUj/CXPqk1nJtzNchYqqquJXdpWKqljDRLcFph/6YTekIfVDGoa45Hy+XHKel8lKAhxjx6MvC9gU4mPJ53m5lFoxMBAuc17Ok364eJbAEZncDQk6JlNlJqR5qnouy2O57AeYlrmbJzE7PZ6/++57rClqF4kRBdESE7q22o5WTwrMkudlvkzny+WxFDs8fuTYrOREJMfw5Kbq7qWUZVmI6PkXzWxV9K3tpTWDfJvS3c2aEYGxOkCZz/P54XIaLmPXk3IKWnPJy7Is8zQty0JN/2XkDil2Xd+/ev3qyy9/eH//ahx3ACgiZuhrQgC2DTC2pPkNiWmrhBmCg7RkDMFrq0vV52U5Xy6xlBBi86tt47ABhBho6Pb3L+7evn51d3tMEefp4fHDt5fHD8vlBGYIaGEVPTDhzeFwczwwoauAG4IzUgAkc6giNZuJNxCrKS8Y15ZlOyn3ttpis+4R0VrytACSAQIjB0ZHFxGRWqvo09hHROSAhgiCiIDU+gXoa5ZIM/IJaVU5ElIIrVvammHVXd2AQwVgd3bgFIel5KWbYxpimkLsc86tDELEm5u7t59/8cXnX7x+/Xa/PxJTSKkfhsBsaojIIQD4KqwxwLCS2K7/bv0CZlbT5/Ep18EFW2/yOr21/1srESIMAYZR0At6qVaoLu61bY5wba836WjbZ6x/87libt2ztt86ukfGlAbANWQJEV1bi8Nw7SC3+bytEwQA1kJmEQHQfpt3RQQ9Qg8aQRCKQKluYIjiDtg28GqibXuK2EzNrckwpVZHr0VKLaXkFJu+0jwliNE9upOsM+1ShYydgSn2IcXm/vDUUdWqYmagOFBUdHKTrMXEB1F0BIoUevBI4MyJQiSKSE/IJYEn1M4LVjJDq4vmScsiZREhjxQAQgh93zfi2nG/67rUpZhiiIGIgclXNwMnV3CyLqWbm5sY4zAsKQ2AhMRdTEWKrj4wCoRdSojoKsQYCcyhi9HJE/NuHA/7/fF43N8chv2uH/rITQMul2WpaoTc6GshfYL0h/u71N6iIlqmebrkh/OSq61MhEAELgUXW3LROZc55/M0nU+XnGfXAmbobu6q7tAE4IQM4KCqhgHMQUlVSpGS61IMHKzmiCUypEDD2L/+7LObu/txHMF1vpxmn5vjtak4OAXuQojDrpR6uZynaZrmpaoh0u3LRZ/Nvy7VagEGZG5JZ0DY3O60VikFAPoU7+9v//CnP2A0NCOXb76ty6VqLVWMESjBQMPABlalrES6KyTQipjGS80Ll2XSmgHUJEuZ62E/jGPXdymmlbWnRbW2pbHkWc2JOMYUY0wpcYyI6GYiFdJy5ZGYq9a55lMpLMLqCYC1BU4gKjFhJCBo9GdmQiIP4KKOZoROwMPl8pDzIlKtZqhntI/u75BONVf3Kiq1WikCbrEDJnKMIlCXYuagwZmQyR1creZS5jnnLFodMrOWTJdHyZOrkhv6mmZiJS9lypKnp2tRvVzOHz+8My0xheb1XEquOZc5l1xqrSml6cVlHMd1MnJlopQCAJRSmgtAE5eoWRXvBhvGGuZlKXqe56+//m6aM6d0uLl59erlq1evd+PIgd29qaCe9e6eZqUWLt7WHDNTqaXmvCyEje2hJeeSl1rL9W+lGO9fvXrz+PZ4e7Pb7cYUyShglHKepseLvK/12572PO+4APFpmR4/vP+Yc05jMtHTby7z+TI9nE29S5xSCIwp8hDCHPjjw0NxP4lmUIhWYv3qq59/eP/N6TxfTsvyWMe4P1AXvFwevp1O70nF66sQO2I2V3BHpKrzPMk86XmaMsn+3W/ALHYDEUqdI8Vrp09Vz5fLw+OjiKQurdi8N62yaasa3dYezlMDtBUxzm6BOaWyln55ZhWSl3RzMCmPp8cP79+/f/8+l9L33Ubk575LL168/OlP/uCLH/7weDgiUKkVXMHZVzWHrbRKsOuy5H7tvTiAi0iupWS5dmBV5Xw+P3z8uDZWiAJR4oDgUiUEHvZD9+L49tX9m1cv2OXxw7fvv//mFz/7i3fffDU9fggUCJvVL3KkGPD1y7v72xvJy7ksebpYKaRKblCFEDpsYUC2YvgmbuTkSgZb5Am0xRfYzZvFUmMCOKIhrsHeZpprXYrUp2sx81x0LtW0umkz2lJdXdkQ1w2ZIZqbqSKBKTQ33kBAqOCm5kk1pbEfDrv93bLMy7xcpulyvsxLy36qjfTDMd7c3H7xxZcvX7zaH/Zd6hGBOIQWtkKN/2u1yjI3Ai+uBsFbJFtMibbwcDOLW8rwVvGqqTS77ZW5Ag4bhtZMesCNEYfYKXHgYBgmI0m5A+77/fF43I19c9/bih9oQfcN5gB42o60nwmreS5s3tzeXmwwg0Z8RAOCxt25doMAoBWsrRfkLk8bHQDEENMhpduAEwr7UvRycTdFMHYlWEM5m9G4uxM6h4AMCFWtSGVNuV/KkkpOEiwEBBSP0QNbYHXNOS/zlKdTEayk0Th2Q0wpMK5NRBU3dalSFlgy1MCdxNRJzdNySV13axYpQDdCd4CoaE6tA+D0TPXdmlWFykWxKHiueT6fp/Pj5bLMStgBptwNIwfuh36/3+8P+y7GGKhZ9iDZmmLW2BSq5saB94d9PwzjvqbupKrgsMQwz/O8LPOyTPNMRPHAXZ+II4KZFleJjMSpj3Ecxt047nbjfrfrh5FTQoQq9XKevv/wYZozAFXVaVluXoA808GEv/MP/lF7TKXI6bw8Tvl8yVWtRZhyIMSgTkV8KZJLLSJLztM0SynuAma0SRqbkikEYkZwF9HIvBtTIBKVpeh5llIN3EPAXR/GXX/c7d589vkXX/709Zu3u3Fws/Ppo2pNKRARuCK0bRUjhVrr+Xy6XC7naRFVZn75+vOWGwcAyIGGGwYHCsQMm1NZw7e9VkgVCVPfH/cK/Yt4fN3dfn7/g2+/+/bDh8fLealVjRCPY/rsbn/c9SESImrLaNz4N62p1HJ8iJADD2N/OB72h/1utx/GsRuHrutSTFEVutuuLOaATKnrgUhEm/ogxBjWUHt0d5QadrfNDBsAOOzGuz+5qVKFVFpwRiMnXfXATIAAho1yjEQYwJPagHyM/R1gBA6xlFyySQ1wy/SS+TOk2aGYSwM2pRogxIRMTMCikLOY+1WW5Q5mVovMLWJZ1QyRghS8e20lg7Wksw3XryXP0/mHf/QP++GwLvyp/+yLH7jbMHQcSK21+HMzzJYipebA4ebmpu/7tZXjFphSioi4FjGw6k3MXRVT39/evej63h3TPCnEWmUYdzd3L968fXN7e9sYNm2++xsOByImDISm9vazL0NIL+4fS860eo+a1FKW/IMf/UHXr7Lk3bj/k7/1929ujsMw9DF2IS7TfHf8wbu3H6bT2aMOr2KXBr7ccA2Ec16m09uTqnW73sGmx8t0vszTZG4pxRQ5MqXIfQiEKGrZbDJTgtjj7tDfvzgw0ek051m84r7fvX75cj/sAfhwuL29vT0cjiF2SNSqDUJU67uuG9K4iyMh3tze73aH2A1EpNqN4+GqHNnvd//w7/9ddx/6PsawUR3X9NqVgwKr5dMTfwvcHRCM3JgwhhRiiqk7Hm/evnrz8sXd3fFgJuNxd/fyxWenxyrS/ElVjTnsxuHlq1c//smPX7561Q0Dc1ydntYk19bDMlhn3I1dsVZPzbTBVbVIvTnuQljn5XG//zt/7++ZahMzQ4tiJnJ3FWGmcT++efvmj/7WH71++yp1qZRJ1d5+UaTg+UenwImQzY0QOfHrzz77t/72n3z+gx+N+4Oq3r549eWPsiucPnzklQrdzsncXNv9aAYK66tz7Q4hevM43nyDAVsRs+YhGZjIsiw//eM/Hna7dR4DYMRA5MCwLdFuBi37aNtKbSwoa03AEDjG1GzPVzly02OtMNAKjs3zUkppDMaGsoQQdvv9/YuXrX9EFBAbgYraLGdmompKITAQhbhShWDr0hIixSeDO0S68hWQQxgO4Fv9dSX8bh6K+PQVZGQDj7Xyfobd/b5UJO5Stx8PQ9+1Hdx6W339DGgWAU8lyFOpvZFaaGO+rDBGU4MirhPqsyIGoDk6Xzv8UsNwQF6vhSj26eXhIPpyKD8O9QFfvfm2OecyAVNz24eG2oM7ITIxIwKAmBdVinF32B+O4/E47vuYGLoYY78Lw4760Vzp5mW8nPrlUgWEhtDdHI4v+nGfUgfgtWaTGerkZZayOBCEPaVd6jrRgjeHsEvDix90uzfQ30HaYXBcGQsIDsTd9f5ziPvbF+xKkdw9SoXhBvrjuNRshGkY9re7w/HmsL+5OR5vbnbjEJl5jUg2RG1SlGYVhRgJlVfqG3TVuNsDd7ubcy15yXmZl2ma5nlGxMPh0PcpELqbaHVVB2PEFOJhv3tx/+JwezPux7iGqbmKUIehr9EjAJI5xn7c7el5fMo3v/qL9jtrPR/z1tPEzSwDcHNY2PZkrZXuz4Id15cAN6nqNvMgrj6obT+3WdM5Iq6CaabUdcMwrgPDXRp+S63Z6Ru4B9gIKKIt06B9eNf1h8NtiBEA3NTL7FZhIzU8nVqDNFfFJbWqtpS6LDmXUou0xbldNROtCZqbkePG/rres+t4hesMsgpoqPGQVlWztTzMdmeoiatX1vDKP9g48uCOHLjbITEAmC55+lrLedvA4Sc/t/0BNnRw7e82SgEBhoYc+tYUgDVStTmJWYt12VYFANi2Sa0nZg0Kx2ccoO3R27acIYKBanO836bedrfM1LQfDi9efZG6EQBqKR8/vs95aVcN26b6ukS28rcxqK/FEG4uVutiCp/MVEQUVv8AUNVaq7m3DNaUUgiBtue3znrwJEp6uoPbq6qqeVlqLSpXUVVbuc3Nun64e/Eypg4ASi0fH9/nsmzKZFLT5i+gqoBOCQkZldGxKXZVxB2ICcBVtDlHw8r7W8nvtIk9zTezNAJmipERcJUNeqMrRqamWgyp60NzecbtQpunmVuz/UCAEJp3CAEiuDGH1A1t/M/z/Otf/+Z0vnCzh3p2XHtHn9z3pz+2B3SdIgixSflSjDEGdvfadvoq7r4Rq9fBklLs+yGmeP367xD04Xf//PxHt0cTAg9D11rjyzx//dVX5/N5fceeNQvcHdcw5zSMQ0oJEc1VSiml5HlRVcQr9RsRIXXduN93Xc/Xa8l5mZd2S59VEVd+0HX9xvWrv33ez3+L8GzQtOl0GMf716+7vm93Q20tItt99md/4flteWrxtbYTPfMJ2Pp/T2t3mw3UnpWl6+zKvL5X26z7dJHtsK3hCr75GzB9MhtdG5GqALCKPwHc1Eo2k/Vjf/shX2eYbTQCtPMUVTeDLTaSVnIAPt1F396p3/nItaXk14//5JZ8uq159hG/y4FxR2JOfZuT3U09qxTJtUzLcr40aB82Ys52ftuPvk7M0LgQjtjM9luTA6lxHoiRWn6Im1ZTdWvmq4zEHGKzYm53Bpr1yoZJAjISN+ayaiXCOAycOggJruyfp9tF1HRQAKZS54vW2gjN7puFprl5C5MLzT2xySq4mWHg9f4/lYywDUhY339wB1WVUkV169Ov/wBCuD7NFR3b0AGkwBRjbD4buE5Z0KazKrKy3x3MPYTYjyNv9eUz1t7vj98fvz9+f/z++P3x++P3x///HP8f0uB+f/z++P3x++P3x++P3x+/P/5/8whVtDWSmlHD6t9tamsPQX9L2tF6Qw2R3CC7K+a54pTtPz/vkjbq/pU/3sBAWnFQgBW5t9ZoWiEvsyq1sWJDCPvdfuiHrvvEqu/5UfLy/btvlvnS8LcGdW89A8S/Ds7EVVf3ySU+h2w3i/X1q08dXLgC5E9tl2eNj2sD6umTN9Bybdg+waLt0tX6Yby/f5O6HgBEyvn0vuTJm2PXah7p7Uld81YawNYgdEQS1ZyLm4UYYwyNU1LL6kHYHAiZMKWWGU6mtuQC7jGFEBgAm2bJHUJgDtw6F83+pxFCt5ih9Xq33pCrmLtfQd9h3N3fv0ldBwBW5vzuK80XoJgVPk5lKqtkrt2WLdZtlXPg+sBWHLa9ZyvHoL02q0bh+lDWvvgqblyxTWxmEoEpRYqJY2JmAgJ3VPNabV4kFxVRdyCELvI4pKGPKYUYqCUIq1YKQ7d7RaEHgLws333z9eVybsoyb2yg7UV/AtjxCaJu7YxrjuT1388tgq/j6VnPAT/5wCcwfHuNri/oXwOrP92s9TZt7YB+HF++et2eS8nLh/ffLPMFgZCYmFqrwN1bU+CqoGu8KG/hN7TaDjUTkZaWkGtRtfZaNIrIhrC3p+jPr8KvWP82wK6jabsv18bhOkE8u50rkG3ufRpuj/cxJABYluW7b34zXS4tK+R6m+Bp3Pt2m/2TJsOzm/r8buPT+/XJtzxD559u9vMzu17t9VV4/oftK0/9uq2dtHv1+k1rJ1mp+d1J54L81Izw51dz/Y1fB2EL6b6+TwDQ2K3WOhBAgJGQrhTptcftv3Nyn16d/7VfXl8vc10V+itfx91NrR93L1+9bddSa/n48WPOC2Jz6hEA4y39D4FbTEQTYRCvDmVusrXSmkcZ4TVn1g0aHRjBrTkiEOJKevbnbUSz1q9GXH1Pt0nZ29/Z9KMuTeEO25zW/JKImCh147C75faOzdNvfvXz6XIJLYypUZvX5q24exN8NOHpSllaPRodmmnx2nv95Dli6yuvqbRbex3adyI8f3F9O8vtNdy+3ibSa3BKm1TdzBrxsbE4xv3h9Wdf9P0AACJyupxLqetU+my9enrAsDpDr2FPrYFO9HwwPg3lZy1/f+qqOT596NbhfPq+K3OrrSxbh/5pdD7Nddd31B3Mre+HFy/uU+raF8PDac5VHk+XuVQkNKsiS61TqVOp8yKLqKy9WViXEDMvUptuh9AjO6KbttaXi6hUMXPm5rOEzGno94ETAoKhqZMDIgamEJAQwFVrnafiSjGOxNEA5mX68PDd4+nd+fLx7vb27//tf/CHP/23vvz8h/3Qbzfxk+H37t03//H/+T/6y7/8s3EYU+oCx8YIbpE8jVdNT+PfEVeG3prgqoZbQbDNGW5qVcTNiZCZAkdY1ayIDITI1ET8BA6i1Vt2YSPCbzYc7cNo7aPrE+0PENyrSCllmqYf/+SP/51/8h989vmPAOB8ev9f/fP/5Otf/TdalYBTv0NmMcm5Xk5TzqWd2LIUcEx9H7vEIZ7O869++ZtSyu3t7etXL95+9pKIvvvu3bt3pw+P03nKInXo4tvXx9vjPnXd5bL86lffquqr13fH40hMy1K++/ZB1Y53x/1+v9uNAHA+X+Z5LnlBgGHo+j6lFAldajERM19yOZ8XFe0CBSZH/MO/9Xf/nX/y73/2+Q8AIL/76jf/yf/2/PM/hfHFLx7t//6vv/uzb0/v51rM2+vaHiSBB4LEFAIm4rB54Ve3al6tzTWAiDGsKb0t24o5dDECQMml1lzrGn+YmMaAN4f46n64f7W7f70fDx0lVsPLbN9+v/zs5x9+8+354+MiRfoAb1/u//gP3v70h/efv7m5v+2POyaYp/O7/u6nn/3J/2S4+SEAfPvNb/5P//v/8F/9y3/BKSKxt1buGrKFjYXT2vjX2lxEibBLsbV6V+dneur0m7mIqOhWfsH6Ibi+tG06aAKXlrmxlgLeFAKNYdY47ADQWFAGDogYGxPLtFbJefnJH/2tf/w//p9+9uUPAODDu2/+r/+X/8PP//xPQ+hjN6TdyF1nTCJ1nmdwH/q+izEQu8I8F3eM3dB13W7o3rx+8Ud/8OPYhd988/Vvvv3mq2++mZc5xUSAq5l0DBBaYxvQ2ny2xiuKt8wlYEA3l6reqsiAyKFJG9HM1cCRiJvfCyKutpLNJcXkyzd/8N/7b/+PXr/4rD2X/+N/9L/7N3/6L/phiDG1bVNb7VbbVHBTEal+dWLedkqwlpjEvLbhcZMfrrQqb8ser8UnuLkhXBmgq7fApuG6LirbPNxYS4hN10vQyL+rcl1qLXn5oz/+k3/33/8PvvzhjwAgvzv95j/+z89/9TV3CQJtZR8AelvSsWVlIUJL5DYVNwVvCWTojf7nxXUBmWGZYLERuhcDdmRSpVZdWjQnGaEjbnu05s7eiKn2jCT76dK27ji9lDLN0zIvy7I4eAzRzC7T5Q/+6E/+yb/3v/j8hz8BgI8fP/6n/+n/7Ze/+FlkUJnz9I4g78a024/73S3zbilcJIon5NgPEXzJ07eSH0QKugUOMYW+i4RYRWutUgqipxAIQUQRIKbIgZ0YgQyRkSIjmJcqVVREiKDvIxPb6opemalPKcUQAtVSH89TLoLI5qBrjAamFId+ePP5H/3h3/vv729eA8BvfvXz//B/87/+V//iX96+ut3f3IzjGJCk1DJN0+mj1RJDGLrusBtTiKBapeSSRau5AkIMIXKMIUTmdelBpBBSjDHFpqNWNTGtVRA5xo45rvwtkSpSpLoZMVxzQkRb+oMiQAgxxNUTlAlUdV6Wx/P84WG5zLWI/+1/8I/+Z//L/9UPf/KHAHC6nP/5f/1fff3dd4FXK/NreXtFLUS1ljIvy/l8VpUYY+pi3/eBmxeSgen6gtgq1FvrkrX8cTdDN9hWQ9UnWm2jTpZaaynLkgGw61LXp66PKWwbkeYrdC3dABxQVWstP/7xH/wP/of/+O3bz9ciJle5LPn96XyaZ3MTXUq5lHIu9VJlLlbEqqwCand0QhTVeVmqVlNlhC4i4zoRq2itKlXcMYRIFMAphH4cb7rYEwYwVFEwJwBCJ3IEBRetMk8FLaZ0w9wZwOny8O13v/r+w1cPD9++efX6/ubF61dvRNdQHjP7NKED5vnyF3/xp//1/+s/O+yPQ99HTsyhlTFh5QptKcWNKN+SrsFb+pmJAjg3xGhdTVxVRaqbI2Lj/yMG95ZtQNRiKYkByZqNomorYmB9bGJbmkCrqrHR1tb5Dt1dVJdlfnx4dPdlvrRrqXV+9+1f/Orn/4XMFT2kfufERcq8lMtpLkUQMOf68eFRqvXDMO73++Pt42n6sz/9b87n6e7u5osv3syXHzLRX/3iV7/+6t03786P50VVjvvhxz94+frlTT8MDw+Xf/2vf15r/fIHr+/vb1KKp/P8s599VcXefPbmxYvb/W6vqu/ev79cLqY1MO52/W7od+NA6HmZtBQHX7KcL7nmgq6EQBQo8PVabDlPf/lffvzTf6q7Nz//3v75f/Hrf/Z1PsHfeESAHiAhBARAqA7FIAPUZ9+zOqMBEEAiGLqeEEvORW0BUAAC6AAOAHc7ePUy3L8a717vdoeOOhbDy+Rffzf/+c/e/+rrJW8pT697+PYXr7/+ycsff3n/g7eHz1+Pu75qeQcIJkv7nuly+dd/+i//2X/2/4hdTxwaSta43HhdOIlos9gxMxFh4mFIKcbYKhdqJpphFcyb1Vql7Qevzo28ZnbhBno1NrsBrrXLFabyVmHzJ0WMqZkTYiRGRFMtJU/TZG7ztD6XZbn84md/9mf/8v/ZhSENu7Tfcd9bClnq+fHk7rt+tx+GXdej07wUNQxp6LpuHNOS7/u+xkS//PWvfvmbr3799dfTPHepY0Q3AQLoAkR23IoYAEA08GoiruLubuzg6iriABgYAkEITBgdwExFW1wgI0cmBFQwWCOBrFh1pFzX5zJfLv/mz/70n//n/3Tc7VLqnj2L1aQY3UxrKbkFCuK6cV93gU+WJ1eu8roxXDc8DkjI7isD21yvAdre0rDXhD54YpBv29FVVITo1MiVTeXQjrZOzEg0b+NF53z+y68//ou/CrsOY1iLmIZW4HpWjMSIqKvstqopNs4tNHN/dc2mF8gXmB/9ogcY3u5pYKu1LqVcZhXzSBqepFLQvPDWFCF7XpBthPqnIsbMcs6n0+l8Pl8uFzNPKanK6fHk5tdryXn+1S///M//zb/oI2qdzg/fmF76jsfdeDzcxXioktQGpR5Dn4YIOi+Xr2R5L3Um9BS7vu92Y0dEItqirNCtT5EJVIwRU5+IWRx91W9SczCf5pKriCoRDD2lGAJHdDStMdB+7Me+G/skIg8fH89TVsVmFtaywLou7Mahj0HqvI798+nP/st/9s//6Z++/WF/c3/f9wMDaqnL5Xz5+E6LpwC7obs7HroYTbXWnMssWpvVXpdSCl2LsWnJzkAUUhqGIfVd6BIyO3pVW5YMwKnFbSKq6xpWULOqhtCKazS3UktbdhEhxpRSTDE2f/xS68Pp/N2H09ffnj482rRAFvjH/97/fH0upXz1zdc/++UvWtXj3sTnKwm3iQOqaF6WyzQ9Pj7WWkMMfZ92u10MEcEBDE1bGimauWrr2jRrBjBDN3IN3gT/Vs2zuBg0AwI3F61LbnZSCyDtxmHcdcOQushhdcZHWwPAr8A1Sq1LXtx8WabrchAM0RAUpMi8yLLky5IvIrNDRbI4JgaGkl2rujuagFevC8zFirkxoFtkANEqWlWrmTs6c6BAgQNCDCExMwdOMaFjKVVFAKxIyfNkmhEEHBwwBFIWxNDOvinuAWF1crIVc9+Muu1TiJ5STEM39F3XdV2gtkgAMTSkvLHv3daFp4XyAACzspGyujttCLI7mDgSUFpp3msxRAEQOYQQI3NY/aDNRdSdiQAhbI22Fsa0elI1vJcc3W2jWjsAOEEI0RT6bsQtZZQQhg52PVQzlQKGKl5L1qKBPI1x6IdlyXk+T5JdMNH+zf3tzX7/8ft37wgiA7lEBmYAEIMCIBwgprjbd+NuGMa+71MpdRxTLpA6jh0PQ1dFANXBUkddx0hW8zItp1KXsU9jH/uehoH2u0DgaCiIRDyM8XA75jmfPn6sVWLklJ4MrxApxi6GvnpUUIxd5AzPwi6vBwJ0CF2APlLPKYWWeqriVlWzWBWTVs77uoYQA3EIMUTmGEKSGvIiCggQGVJijeHDTOev5RfvHjAQRnBEqXCe9N3HKptnEgFkhV98dS7Zv3+X3717Mec3X77pXxzvh9098RqaSMSp64dxF1NHIWz4MF5RvbZVXzcSzWKLOTC3UJCubcMAmDCG9RaRGSEyt35fuw0tdH6Db2ktdtVMFHR9cSA0JLgFGYenIsa3RRJbUQ7gIThCMg0pXhtPxDyM/f6w60IXY8BgyGKRjSh0rOpAwCHs94ch9WIq5ooMhERwKpe/+NXPzezdh+8fHh7MLcSA3MIoIzBijB6oIS7QEE4mAogeCTyYuxuKAivEgEwUIwa2ltvr6Ga1AW+KBNs+ERCRQ4iE4BZD6q7vGDOPu/FwOPbDEEJcixgEImqDFEFNNcbobmvBZ+s/gLgKC8OadLs91aeAZPBNiNec7FytKcma/nJtcFOTCLW/10pSWe2z2p6Jrq3wDYixWivHOAwjb1syRMQUuI/cJ47BV0d6cwQkbjYLjMiAaI4aUBRMgzvyVRVp1YVcHMDBxNV6GGLHIZonoZQhCqgiGaGyG7tjU8U5QNs9+6dFzNO/YZ0eHYmbNa8ZqGqMUVS6QWLqcLtMQk9UxrDs+qQBLafzpTye8un8+PGhdOnUpTF2Y+x2AP18YtWsZTYRN2km58wBKXAIxEAcgQjMQuRIhB0EpthFM9RcTb21uat6LnpaLNd2U7TOyw7C7dAn7mvVRDj06eYw3h2PADAM48PjdF7KUqSZKBFZCj5EjKwbLN8CIHev7uDty5e721sxd7XEFMgDmkkmoqHrhsMhRq4iJCFaB+DEFELs+yFSwBb9YAoAxCH2/bg/pL6DBjh2Scwu02KGMfQhRCZy01KWlJdUZlMlZiRsCiAsOagCICEGDjFyl8K6VcrlLIwXsOAFz3OxuTwLg/FNNQTXKKB1Bt70o+ouAMaEXUyI7Y3VVt+0N8VXD0ZH2wJoG6RnyqB9sJ6sAwWzLLoIMNCiKERqK0uDSQPHlCAE2u9345BSCokxuTOsaGdBtJb9DIiODGSq8dP4lKCaq8xLPk/llGXJdV5kUq1Ixs0dEsGpLRqmVouUXPKcL6JCxIgsTgquLupVoXm/cggUOQQKrsCmKAtu7owIClDVtMgylXOtC7oiIkEIhNWBYDaDpUwGlZhT6kPo3UlEc85d6lq0YYwrfHYd/CHEEBIRN49QZm5WLoHD2llFbILeTQgNW18HN2LCkz68tX0Qm0VTm9gaN4WIYp+GGAMAqEmtguhP+DGsWyLE9vTdYVVaM5A7ED5rlxJKMKJI+PRgGg2BHYAZzdVUqyzTVKoxpRjD2A+MYez7msVUwXTo0tj3b1/focmSF7AKKsih67jvQ4jIq/a8uUsogCE5B2QnYmDGtA4AYIcYmQOq1VIXkeIgIXap4y5RihgDEGCfWIgBAANT6nNHNZ/NBcmhbZq358IcELlUWCoIEDCzma6t3xa5BgQWEAJDCNyeYwyRiRDV3NS1Fy8KVa1qrWq1mfcQQuOmIMQUKKADkFZwj4FDn4B5Vj+fdalF3DAAILhhFZirmSMQkQO7i/r7x1yrni51ntWM83wob7l7Ya+2kgu3+rW5ra9YYKuhNxjmmfLVESESB2aisK5AuHXwn27O1oSyp1lm7Wis2ln0Fo+EROBuYA3IpLWTvlYIay1PjWbV0kxb+wMdm1ayrd/rjyBMfTfs+iF0gQMwOaMRELINnRpEjClwC9/oKIp7cRc3c1skf/+xqkizmU8hpBiQNmEkIwY2wgYFOzgQARMisDO1lrc5sqAbNewqRCAWd1fzKq2uI0A0JVMiBwQK3O6+ghP4lTTQbleMse1Em/cSbUUDU1i7lrQCIk2Zac8cLFeAbIPTnm+N2m+8mXluvCV3RLfGiCLk7a9cIRy8fj4Jrdyv1h1sqzs+FTFE5O4xpadJGRGZIHBLmCPmZsfo1/KqAcmARN5+rGszAmlOKmrexKni2ipBR6LAIYUECoqJPFSXaiDmzfvayADXJGd8hrv89UUMgLtH95Sk1hpidkQOAYm6rk8pPRUxYB1LH2okIJKuA1Fs3SjEQkQxcGB0lVovU27+rcBhAMIQIMbYmHlMV98vd7PA2DgpiORAopqri1ggdPSqkqtNFdSYmBwcvIobsoaEgENzdEbuMIzMYdxHxR2kHKq6k5uazuTZrchmCgIAjDjEsOtx7MIuhapurOjEHiwFJQ/MsYsYmWKIsc1nSojEMcYUu54pgBuImGRXIyZOgVLAEAzRiTkmBOqcTYFDYgqE4MaRgALHLpkbNqBMTVSRI4A3tkQIITIGRiIwcK+g2BmPYQC6QLbHpfqzOAh3VzdxQW+cxGZft0rxBayiVfJKVtkERdzUMbjUq6VDoylBAyFd17gF14DakY1Bd8EHQjCaigN4dayGBmgb08wdAFoKO3cpdimGlgTpzgimLuCEAGsRQ+hAZsS82glci5icH5bpfL58f5kejNxQMTgRgrO6yJINxF3M1FVrzufLaV4uuS7EtNvtQ2B3UzMHBVJqXquBU4iREipJzqCL50k5lNA5rZl4VaWUpdRcallj5UEACtjHtslpPZ6Q4gi3Y38DEJZcHh8eVbSUgojDMPR9PwzDddIhCoSk1SsIxvZku5Qih9UY19xaDnbbZKibm4lolVqrtO0FrbQoXwlN22SI4GqmDmqAhJFTH6O6eFVrNvUi7rZ229vyQQiArUeNT4t6ewrUXDRUTIrlLKXq9R0z8zJpmT1SFwlNXYpNFylVu9SlwO4phDAOt3nB8/lUsqjUcRzfvL4Dl6+//kalLNM00HA4jHfL8eMpT0stpU6X6fH0mAK4a85FVZu9aHNoIsQYg5PFQACe81JKphZtStgytpjQVJGw6yIzLDmDaauBui6WWqrUKvk6+NttMIe56HmWuWptPgjPGE1rh6815A3VUBQI1dwIDUEJIFKz5CFWRBGXxrxyUanFya1LaSXs2eofTAGJyRXNQIxXQ3AEMBQDt8Z+snV37VCrnsxqkVpqnpd3343ffhZq/PKzf1D2beivHZx1Z73yKmAlBbaF0DeffgNHJA7cviii4BAMCdwIzYy4QZUtp5YYHJ85s7f74gCmT/GAuKXfwdYnRtysJht1AxCRnMydfLOKbTGEG6PwaW0OKXR9GkKXOAChIZmTIve7PSCAUWIyybUAxeCELWLOHNC8OqF5H0NP1O6BEzq1lPm2rzdqCyO6ESqtvI4VHXEMMZEDr7GTZI5YpSxleZxFncaBCGhRAonRqWfvOowBDE3FVRsod52UwRRMmz0mAiKsFpC4mr8ZuDW86gqHXKsW2tzrrjfeNurMM7KRP9FxG/ESqPGIaaMer1tYaxwYRwJiWNGoZoaGa5XKAERoho7Aa626PpeWD25uYuamqyPLxvxEWx30ryKDbZppdFc39ApaQRevJ51OcpmhsHYjARIHZAYHAxBSEPCV7+jgQFsv6a8pX2xbcj452s1pps6tFkwpxZToem4IfdBEVYqa1xiXm0O9OWLg2A+7Lg0hDKXCx8fL6VRPZ+M0jq9ejWMHngOWFCxGZAYiJ0InCtQB2JrMhVDF8yXPi0yLiHlgFJfLPKsDpx2HhEjMxtE4iuMElLpuR9BV19OCxh4iOxxoOAzBooMDS13m83d1sqXky9xCF9exGFDZ3PIEpdulDjk0Bp7WIlICJXCqkom867vAgKYASJyQg2FwYqYIxAaqXsCrVrMFuC4GyJyqVOLk7ggIVlWlurkbInDgru8cXatUqRVqAArcNY+fwCHEiOigtdRaSp5ynYsrpmHfDQvJN49LvfIzwd3BBGpF8wbeQathVqtuZRDWqjVjvujlYrk6AFjCLhAZsTfSuBlseSBVTVwkkA8d7oJ3LEPAMUVwVNBFDatvhzUyj4iaObZavY03MAcCZgdUcN3IGCv0s/p5N8DgkyLmsuTztJyKLP0wpv83X3/WZEmOpQliZwOgehcz9/DIrbJY3V0zIxwZPlLm//8NUoQinB52VWZsbmZ3UVUAZ+ED9JqbR1aNSkiEi4e5m11VKHDOd75FSt7zqE2tVlU1243TVKN3aj13TQaCmNUBtA1iDyiCRxggMCETCQJhJHIxLRGkTfvWkI2kAVT3rbfadrs5jyCACDPrrhruGMyYIQRBAETVt60tywIBtdXRUzJzKYV2PQKKCLN4hJozBwIlySXPnAQRTC3cQQLep8BhDsAcZgSD1aW7QR+888Bx3/EDUN+tljNlySVL7QYQ4D6IzY8iBt0BEXZ0JvwD9AWAIEQWERat67a1222537da+4cIG+g9VHF4giG4R1OF1h3AJNvUjUnmw6k2X9bNPHpXQHj+dNq29e8//X3d1tvtDoJEkItI2kexZtGb1tpyTb332D3iHoAWArMIOOJQKnUzS5KQIKVMLACoHlvriSkJIjHgHmFDxKWU2lrrm1r/gF0CIKnDvel106VZ83/cD9/rGAJAj1BwwkBGZhi57ADASAxID3MyBFOzEcxlhA4CQEA7dLETZzBit8iGh5Hc+MUwXd4Xg7xPZzxqs7fLAl3r/XZ/5fMff/3ft2+EHH9nQ/zD9Zh6wC5/INx5LSO/aWTAOQrCoE0xAGI8zj/8UGd8f2feB0CAQIY7DXMIMh7f2R94FiIBBOzjgR1N5Pcj9ttfS0hJZAy50kiQBArHEIyUgDEsEBCtWwekAGRCl8F8BcQAQiRJPAy0EBzCCJzIALoP9m7gTqQbPz0KCQERcmhEV1XvfbAZQ9V7633dtsvNI+ikzJxbKymmpyxTcuIgGncSzMG/X0QxqvARLRQAPkDkQU0ZETzvcMu+Yb4jXo8S5OPdjg+hoUT4MUJ0HPjjOe9DpnfyzL5GEGh80Tv4srNtHkAHBCABBuEDE/7ukQfuzTK404hPgVFB+WD5OgKAj/TdcAsICrfwxl6pN9Ar1Fe73221FEVKyBg6CsNgS2K3QFAghwHDoDv6KBEg8Psi5h+W+rfferTV+416NwkFAHD3bWv3+93BU7LTSUse+02apylJQcrrqtvaBRf0zijT4Xx6+gzQyRewN4LmbjslAolJAB3dIkwtWte1tqYOguSoHrX72tyBJhnVp0NYsCmYxRpwYGaC4qibiW4oSpzLIJQkRHeo223bFsOteW1G7/lcRDhnnhOKd9KahBDIe6VWxTqaiTubQesBCEIAHBHhYGaG0DFQ0jQVCFTzcOOxiCsQNnNASq025rSjiEIRYG4AwCK5FMlCSAojh0jdbc85JRImYXTz1vv9vrxcby+3+na3taNjAhINUPu4I8MwchaPGNgtgAVYeDcN7xotUZwPMtNEdb12XdamVju7WJGMAKgKXaMbqLmaRiiFHjJxTolQwAQpC0YQk++tlnkEeri6qQ+drb/DoGMyEgEWOMAGj2+Lax927kvuO4WyrG3d+la1I8rT8YdpOqhq663pttV7mEVYDzdzV5WITyklPE4Abrau/Q5bSLgg8ShBDCCcLMACNSEdMh8THsFc7bJtl26bwxq4Albzrdu21XXZTJUxAMysjQ9IkIocELJWWPK2rVvdttZ6kt5aG1X/ezQdDHg8p5SlNR0xAUSSUill2osYVgTIOQOCdjVXfAz5krRBxK2qAIh5FLe8C5UQidiDWo9wZEABzElSkqoQPsQgAyH2sd+pxjiTGAeUvu9iEIEEnDjUzf2+rC+vl+vlfl/WdfsQzjc2FaAAApBAQxQU8a6rVl+JU5nnQzlOx4jL/QZMW9eDWTmUfMi199ttOb+9GQUm7GoAyJxyoiTCmCBoLCJmIea5zCVPw9OZOFG4B6q6aSBQybMIl5KYcVjOEpgwlcwEECgAaIoQVMphav123z6GJgYiIPfAS7XXrS3dNB4uxA+F8INPCUQEhI5hrF4QC0tODGBVw5GBGJBon04kwtbATGFX6o0hLSITeASCg/uoMN0wlMYYAsj36iECgxgZgJ0YhkgyCFEIe7evL7pd8J/+9bXW/ti7wUbc+EOo8jiQACDCKdBGbS3Mg/XiHsNw18dKwQhEHiNHB91P4kFAcAQUfu9iceeBwD6xiuGmTbEjfCMT7vEK7IOq/b6O1MR3/eMYj8Y3YRwAISaSTImAafg54x5fFBER6DggSwezMEOmiRkHlhsI5uijjUdmihE3hQAsihBusUOeDu6ImIkzp0lmNGxV67LdL3W5rtuybUttS2u1aVPqTawTkZWrCM9hT0/ldPhBUFqAWfjAYCLo48k6ZN0wOCkYsS8IHARKRKdvnsTv/c/7n/5Y0wwgDd+NJHbHYRDhCBjx1AHogSN+ejxV2ck0sJfJD2eHQbp759bgA2rbT0Zij3gQjd+Lggc4ROAAYUow4jEAwAODAAKhh1m4+sgo9TE26hQbxgZaoV19+Wr3hj1PZZoZigAPSg0kyobBoeQIFm4eEo/1sv/3Pxskvd+i92HcuPNjK1bVAUiPL+7dfv7t/u8/vaRSv/zAP3w6Pj/NHnlQuIfBecZoZwYFAuUJn5+fT89/Rgirb/XWrFUPNTJOSIyMBEigZma1t9Z7s06ZP50PEHi99u6R0sEccXTNtQat2YzEj1bnqAFBLE7iwfdGYJCDZi5Ph7MwtboG1uDJZY6kIOUdIRPGp+P8+cSTgHj3CmGm60ZbO7gBIJtTNwoc3WlnAgQNrAbVcQuiXM7PZ2bsWxXvhwSIaL2ZozuYb2vc8VFroyAOA2hkSblM81gqbdtarb3uiXI5Cbp5Sr1hq/1+v/32cvn7b28v914jG2UUX2vVgEcPNzaEGIi5wIPVCejhXa31rn21fn8+T3/+6z8Vol8n+ulv+u/363Kpq65+KGVOiNR6bFWXamu3pkYUh4J8TFaOIQxgwYBDQxka1n2Mc4J1BI6Ntg6AdpXDbsISAW0vXhD2xR477IAxWBrwfdEv6uGAxCmLHKfn4/Rkpk22TRdGMG1du/Wttk3bkrSdI55ZPkkG1ZeupD3cmgEKIUEACtAckU0T1iPJE+MxrFhr2qhtVnv1WAIXlGrRNLa1Lve7ts4MBGO6ZmFGFByZkd3Ad2xovz7uMt/erg9uHLsac2eouWsfwMJgykhOUgpiGVgRIrTW5lSut+W6LGqeOAnTIATuBgworqCq4FAyTVlKKZIYN3zUiPGYNJAHmtvAlkZvvCtiMQKIAgdqp6q1tfuy3pZl3Wrt3eNbrYxMODI5RidLyImxU+8afbttNxA4lXM+pHwoENHN1G1OU5lLKjnuy/W+BlM5ZDMTTtMUSTAzi2QAGmhXzlMuuZRp+G0MaR+iDwFNSmX41jOP/srNDCFICBkt0NxbQw/oZkzImJIUwu88/gNAIzaLS9Nr1200F99duE9JHrpiKVBOcv6cjqc8TwU0tretb85K4ciMYpiJG1IF7IpqDojxTiMdh2eAOUCEunvYGHekQewfM6rAMT4UHFnrIxIuxrw11Ldma4OvL2vv/vHjfCsE4MF+HOSpR+s9pC4ybFdMI3Yy8vjBBoCiFhFhYDv3hYacmHbRIzz+3uEsMZoUdwILN4QIQMcxYB5NM75DDDCKHGYgfIAx8JDDfI8iDWg3nALJY6+2EQzBEWjPqobAMHd2J3kX7Qw8aHxjHMyDMdEKxMAwCAUIJkQSC0ISTOKMG/a1XV9u15fL2+vl9nZfl60utW3du6J7Cp8oWFiTl5KPMyeUwe4EB4dHqPw/YAO4Q19IRGGGj4fzQFT3p7WXEPgd+jL+ze9y0/cK8lHfvNcYOLi7nAKoq5mqW9/DCPFRp4xi/CPes09KH7y7+LYJ7/XK75CY8SmIAsHDwzHcYWxHEN17631pYwStaho6VN9giRSlJV+j3u3+5itI5Okgh8w5MTECYQQjCzEHjS17HDSADiPYL/AdtfsOu/uwaj6upX2oNEaog4XzuNT87XZ7u739IDWn+XR6+vR8dD+6hrY7+IrggnHIridGnng6nk/H+fAEgEoQ7bduN9edreARGhrhMBZBCJADKSbIMwEwb0GCIgls7MZG4K3H65s3szn1OdksQCzIAiFhEpAUkkNCyo+holmgAiumnUMHAAAi8vnT849fnlM+EIk7mHlgCMNcBAKD2IC6QlPzZkGERC3gXm1zaCTcUbkyg27twHEs85STAICDqbewQd4PNEMEAxjTbyQdZm4AyLLrZ3T3VesQtdYBma9rvVxvv369/PTL5VLd5QApAHVbVwKQD0EREdFVa2uE7LyvSg9TNdtlz1tOaO55zp+/nFy3bbnB19bron1rWw6irrA1W7a+qXV3EWKQKr4sJM7OSBGVewS2rfbaXSMMd1mG7+wbgnGfhqoa9xJ6jMYfb87HydF/eAlzSmk6HJ8R8iznmU9ArjwVS4yhvW51ra3d7re2XibrB0mpHJ5EsiTRlqGL1lUVOopIziWLJAiBzm4z8IlZTHW5LfdlWdumtgGuSPegzaBXb2vblsV7/4ApAQQjDGIxiWDaw4x28v/H6+PL5aPYi0AId+taa13BO5p677ZVIY7TaX46H58/HY6HQ5IkzISqtm3b2/X+28vrbdn2O7kLowCRAhKAazcGOGQ6HXKZZxZGujya8b1tJtqbGjcbHE4A9AA3CwBmCQDzaF3bWJoRwz/DQt+3DCLkzFIYGN08yFEgFclO6mrelnrFFPmQgKkc8hBaqBqRzIfDlx9/aGpb63q5PyEEcSnlCUsEC1JOAAiqAMjH03kqJecJSTAisRymyQxKnqZpnsoRCZOIuW/bptqDOCU5HSdh7K2ty3q9196NMUqR05GBEr6H9TxemNrtXvXS4abed73myJZ9nBKEY9CJBElwPsmnPx3+9F+enn44lFL60l/+/e3+dYu7RYMAAqYgKEQTcVXdVC0cYEcaYodMsCkx4ogeQgRmzCQ8jEjGwBUG7kIJiQFoeAsSBIZSKEAP6P3j4CLepTIee2aHj/QnQhyWUB8SfSFCR9yXgyMiBSIFkkO4umGQEwszSyYuWYYL4XuzGz6STHi4A4SpgYWamwGQIwVx8BitBb77PbgjUkoSENx7195Uzc3C4mEeAADu3rRvvTmBkQhiBmYGEDAO4whCCNrpReDgSo5haADggaNCZAIM3nOCh1mCVohFmzKIJKEkyBzMkWzT68v17eeXn/7tp6+/fL1eLnXdVD0s0DExT0lEECOCCIFKmX/48vz5D8dymF3EI8YnGI3FB6R59+ah4cCB+wjnfYsYN/Px/MAMIoDeMZuBO33AZt7pz+/MmA/HORHnMh+QZNiQeG9hfbeFAh9Fzl7r7fUevpsGuccItH8MqQkf9O1vdcxAJQmBCQndhgEXBHJKrGHXtny9v/788nJZb81U3R47D8lhmuTJiVZbV11W2EpKPKdymEpOKfjRaO3pdTuzCx4N4V5owe+QmN9dwzhgUAbfJ3QxvD/8oV4ZXxm21rv57XSKz89zzpnlVPhz27bl9mvfLszJnRHoMOd8eJLpx8NhTsKOTFHwOHec+xZqAchdo26ruRFRznmeZgbT7RVYNRyAgFmEWTCiQ2wsfiz5evN//5t/fWmHRKcpnmaUJCAzQwaXQCHOhGTWwdT1HrZ0rU21mX3DlABSyj98+fEvf/4rk4RD66036YVBu7i7Q3O5d1hWXdQVwQkRsbpfV21ANLE46dLILWqnOZcvz5/P50mYwlvX2lttrZkphLlrxOB+mQ3XumrdOWUmIaDEJcgDPNBb6111Xbfbfb1et69v6+XeF0Us4da1L3W9Z4BDGXlN70WMbb0Ds4SMXcxcwwxCza12e7ks//3fflq+PH15nv/41z8Q+zTLv/37z2+Xu96qARmQAXS1UfZSACI09Ze3a13oecreCyqG+/2+1qphhMHgEU6D3B1uvvv6jXAo2E3YAB8+TN/VLzjSAcPx+2UphMwsWRKCjOKfICGFeyJg8Oi9121blqWuNzetKSkQlKmk8sPxOGeaNrrrpqbomB1EncIYgIEm5lkyhA62UW1bVW/CDakHdY+uZtp88GCQnGhYggFgOGozIGVKH9ua9+3p969WRO/auw5jhjFTNmvdu6+bbzVqc2IyJ4SSEuRUSp5TJoJgmUQyp8x0W7am2tVaV3UbuZW9Ra2mTTlJyWkqmVgGtvX+qo+taLA4I0ZMpZuBOwWAmyJSmRADurbaeq1VTYfnQ+zZf9+uYVoUoy0mxMTTPDuCO/WmDqGuBi4i82EOdQB3NyY6TocvX37Yqn59uaqHOTDzVFiEAYVjTEx8dPPARMIeGAEMNKf86XT2wNPxlOYJYNcJ962ttdfagDAAT4AR2Jrd7/3ldds2ReDDLAEZwQOJHnHcY2lWhVuLt2q3bv27igB2BAsCGJCJhMopPX2Zvvzl9Md/eXr6cmCS7dasKwF22mx1CAAjUPCOnUkUSbGZdRt76FC1IwSqguNu4EGIgphFEvJYLer4sYihQTTAGIQbEgjVMa75+Fze5zLmPqg6Y3BIDyxgPxrNHR5MMo/HoAY8wmI3R6MxegQU2ukpIkyw084R0R60Soxdtxuh7g20BxCmiZCJGZDj/TgeHRshJ4a9Zglzpwfs/+2DQBi4ohMBCwQSCEGWSBRCzhg0vJzGiYpB6ISAMbwPcM8vD6DYmT3sEdEAq7uGhxM5c1A0Nw3vUW/b5ee317//9vrvv7399rKud20tAghIcJBCOSMTYzmen/74T3/805/+y19/PJ7lFvc7NNh9nnfLrI+w5TvUpKofu5zvH9zOTt2DBT+UON+BLg9pO0TYA495bKKEzCI5lUkk5QAzs95Mu2k3U1cbNNv9uz/+PYSRAQ5uDgT+YLU/WlD63WaG+0wBCN8tENVNTe9t+en260+vv/70+ttlWxRgOG4xMwdP4WcoCLxYrVY7dEGGwUIaGDCYD/8x8v2bjLs02NrvM16Hh5nFx0HSvix/h+o9SEUBEYO1/V6QEUbJejj0pxPNk7lVM5unMqwzVJtb82CPiXlO0zlN55wyCzsKhWAu0LP3GuHAZPsTJKDC6VgOTxb91tamBquNVpMEiYJZEXzK8XRMgB7/Rm2F1lCdkBJJRimMBYP3fQfBzSK6D7gAnCgegvv94xPzdDgcn54SJTCvddPMqglcGbx17ytU7Zdml2ZGGByIoAFbsJMI5w60rc17x9YE+LbEuSDPUgRzSZxSKpM6OJIFqHtXbb256fA0inBXR46HFSM5mFtsva/berncb7f1dm/Xe1urV4OI5oDem/UmAFm+jVTd3Uy7KrZm7AEI4WEKbgT7ZH7d9O+/vHRrSb48H9KPf/hEYNfb9b7UddHNMFCc0DwIQyiEcNhXbr2BQiEsLI06uPfarRkEEjkjMFI3cAv3YMaHUuEBBMA7cOrwqPf/4bj/XREDQDEA49C+NGSh5KFde9222+1+v1+XZdm2tdeK1m6tXi0uzNOZn05Pn9Pz57qt23Jfbtu69rV5KAUwoTCnksWTAwawAjeHFm7IwAARGMZkji6MSrxT9njMX9DMe1sZbco4zP7ifW7jvxuJjwcTdautNpZC8qDLhZu6rRusFbsHecd1CfCuUOvsX+RwQBw+UnxMfPjyuX/yrduytct9va91q7rV7XJdt3VztTlTLlly6ea7JbPHMEndVxbRsLxT7dp6hOGQG7jnnCUlBNiWbd3q2mrvPQlNJd3X72aWiMjEiGwOFmhIlMpJSpKJYVq3VsNI8nAHOB7Ru4Y2sJ4Q0jT9+MOXWr0q1t44FU5SIMQJYEgqkIEAQNXutXr1XCUJTaWUaUqfUjDn0ymSdNWtbvdluV1uv71ctq0h0+mQBTUT3W/ry8v9l19ut0Uh6HhkjTKVMEOi9K6e8MBN5dbobbVLNX3U2nt/HzDoa0FAgunIhx/yD385//jP589/nuazmEYAnn+cGWBF19TAAhq4gjOJAnchRu4IoaYajmGAwYBkHg7u7gwjKFuKpEQUDyQzAgmRkQRpDxEYahGCxIBKDeyjmC92Ar+b+cBTRjfNxGP8OAzSzc0hGGEw+DGACQhR3R2xuzkiAzKiEGXmOUlOnFh4CGHG0blXwuYRRABM5N3rqm3VugESBSRiyQWZ1cz2YQeC82OsFMQoziHJRRMxfaxjCEIQMlMSHkELKWFKwRQMQBjDqWDY5iITIhBZhHkYhlEERlA4B6IjIif0iO5ggEQiQJNKVL+/3tu9e4t2r8vrZX29YbeZWabJkoAHRTBSEpmSSM5Y0pc//9P/4//5v/9P//P/9Nc/fVZd/j//4/9dX36CaG7mwzJnWC298648Wm/btgFiBAxbwY+lzDsXZXd1B0BEEXnQVOL9MB7PkIYXg7+nSQMAMhFLkVwkpZzLLtU2HW2eanMdIcMRe6c5yhXcbWtip5L7NzE9IqIQMn5jw+J7OQVEiDJMeyk2a7fb/afbb//Hy//v58vXt3Vp4DRlLkmEJaVgsVl0IuJQUA1zDAdXbdq6qwWYhxmYo3W0XRgGO7w4qqUHvwve1eTfHR0RI4bdB5y1V2mAiO5BSLmkXKZ3nnIS+MMPtP6Bzici6sv9N+HpdPpzLiWXQ9um8Grh3TwAsufAQiwsxEBqpMAAgkhELgmIBWC2SJKP03Sej6et3VV/uy+xbCpCJRUiJmrAnjM8nfjLZ5HiP/yUl9VEGCmRFJYJOQemhBxBY86vagSuwYBcEoWRIpXE758lABTAiThnARQmVzHvAQ6MuvZ7vf9al78t23VTLELMhMaSuMwpFUypu29Ve62ju/rv//7b/dZ+eJ4+PU3nQy5Z5jIzFU4H4OQAalbbZq4IodaW9V5r89GojcoToHtsrd+Wer1v1/u2rH1rpua9R6v3AGAGHCIH/P1z1N4JINj2R+6G45iNSJyq+evrrW5L9PpPf3z6lz8+/fnPn2+3i6rrL0tf3WjYkQYi5MRFSJDGbApj1OFO7DsFzAFCCT1LOPDmZBYORHseQ+CYW8eHH/QfUEB8pGQ/SoFHEYPgbm1dr62bKMZk83QGiNZb712tu2vsth+xs2poH4SnlETIu2s06ogNqEdYRHiHMFLQYExADJSRp8BuEM2joTlShLt1cGNCYGqhsHM8x74UqhYIxnnIzP4Rffl4ufu61fuyThMRUWKPR8vrtWMzBhHOIgWcluuC7plQ1xUQhDnlUso0zeVQygl4PdhUtut9u96rtvh1u6z3hTEwMksKoPuy9F63bW1127attubujJzLbgKhquu6qnbYkzRAsgYgI9Wtba0ttXYb2LzD90/l/REi8rcN0IOFcsbATOBSUs5TyZlkCu19wyS7iKKkNM/zNE/+sN9KCVIQII94ouFohXvaiQ9kWJjnnA8TB7OKbGHN2ta3pnVr9X5fbvfVI9qaM/QstNzr7bYu27qu5h7qxFIPMwuBffOIAndYO10qvq522/TdXw4RRipEIsgJJMN8Tucv8+c/Hj//ZT5/yXlGFAtTEM8nABPG7EeC5ljBO2qLVk2aSWeq6NQNTFvAIO4GuBtERBgBEJMQJcZEGOAOu3yEdjQTITCGW9M4vpGNKaF928Yey2yHYR7OdLT3Et8GD8OGZ2hXBgj0EX0ajkG0D2p2gGTncIwCb5Re1nvbunYzR4hOSK7eVtMttAEJayMrCYIIGAgGMjHkvwjDsAYRMQhCjEXefUrGRcQ5yVxSntJwV2IOlt2Bdpy8zIycSIRk6I/c3AEhzCEM9zCBgMHBI9jF1ihO3MF76/e2vdy2W9XqfW3tfre1kYUgBfNIsqIARiQMc2OEfDj+8Kc//8//6//9f/3f/rc/fDpdLr/9/Pbzr28v4OtIuuqmvXfVb+PXAbqqqj9yWJj5O1OcB+jycUN8wC7ffQ3xY+YS8Q1QAUAkGYFkOUtKKaecEhF5eO/Kwr3nUBuZCmbWtJsOxWKMMmT8TcQE/i5wQ9h5PN+DRg8uzxj2OLiC3W37ZXn52/XXv9++fq3XToFJ+JhlLmm3s2cqGRIF7qlCY1mGw9CaNujdm4I5uXEEASGxMwONmmq4eHxjg+8/y7cNaXDkH2OjnfI8njvsAUrfUXyY4XTEpzOWCYnU9Gr9ArESHZkL89Ssmdsg9AAyUhpZG7G/GcOUe5fDidBMB6CDlCdJBxKxbdmqraux5MgjzSgCnBnLlKeZcsHpEM+fKGUqBZiRRJATPNwMA0dkg484KQ9GKilNCGbMU/4W1WfuS2v31lKaJEnBgpndJDCUCXRb7Xapeu+xOggQA7q6hE9MtG+8QCxIYuBL059ebsumt1pubfry6fDp6fR8mKf5NE+fOU2GYW6tV/UWbrWtA4CstQ4ZrIOb69bbstXBK1tr37qOipAIGAARUiLwUAv8/nxxV9duMKDmMWR0HPN4H0o8bK27+YvA08z05+fpWD59Ol4u69u9V1MD1BgwnzOMLXQXfkaAm6ubjlCOHe1zQicAx5Bg3gcZ8W3ENShAAfgQfsB3U47/9BJH3XT57e2n5V7bseq5sxCJdKvmnYXylGct6hktTYHnaX4+nj99ep6nqWu/L/1yvV0u19vlYqpTzgjctTdttVdJtlme5plwToWlWnisfb13NxZV77VFd4aEjOoBEMSBNLq5IHYEB9QAI0KmR8PyH30iM7sv6+V6N8VwoIAkDABDSQFAaTpOx9P0/GQQl8vr22UxtdeSmKjkNM+H4/HgejicztNxmg/H0/Hp09au1wW6/Xv81OpWEkAYInX1t8vXdbuHrtu2XG/3dd16VxF5Oh+J2FSt9XVZWmskDADdApZ6uy7ClEXUfN3W2iwiam+m/n6WjSdn2sMspSJYwsjUtr41dSWiaTpkKaUcprnIUF5ZL5IIzV3b1loN1ySckoRHmLGIsLAkDOo6rJ/dXYefFtEwTZVpnnOeNOJlW5bl9nJ5q70yEUio67qu29rqwgX7VKhurTVl9lSsdzWL67W2KlPKdfumsLbAe8e3Dd5Wuze1xwwJkaZjPh3Kp2OaJ6Sih0/p+S/n85f58JTSIZrWtrg2NXUQzE9Q5gkbcA1sGJ365tf7llZtzXglyBYS/d77KBotzBXcMQZlhQmB0QXCUWkcV4iEAfSg6xpGgMOA+ZABM8NHd8jYFYBuEbQTYQh2d7/Bp4fYi5hgZhhziaEqGWS1vWjaZzDq3tWYdC9m9rAkD23atrretlrVwsPAHUPJG0EkQkL0riA9mZKkYQcWYeA7KY4IAnCQVsBBeVCNv/X8hJSmuRxO03RInMYwbSi9hzM2AWfMJU+JhJEDwyMUjVAB1ALd7UFwCgAwCApgZDTEanpr99e1Xrd1bb2aqVnVaEa+N1/jpA9TwkjEGqq9HpKcjsdPf/jjn/76T3/8y58P09Tcpvk5yez22nu3iK69ttZ6/2jeBcODchfLppHqAIDuBhBD6mz2jnTCA2T5ljz1sYhRVUAkEdyBQyBmkZynKU977A4nZqbwnY1jlmN/sUK101q3utlmQ+0E4IM0PWoZIAoIDBzN2U72Hp9kHCbvX4mh4Hfbvrbr35avP20vV2+WuUxlmuf5dMilDI3hsB2SRO7AzOLiFoyJUQCwqRrE6mtHDQZGTigMkscG4W0MCgMM49Gx/gdIjJvvhI0I8LE942DVuBkQjDrzcZ8JJIVIAAagJzLBJfTihAQJcFa9mSmJUXIWZB4STowI8B3ECsAIVzNOuUyHVJ5S+RzAtd1v6+2+3Wvvp3wimrqCu5o7J8rlxAJbr+b16blPBz8cTMQHBylGbzNQGAAAHBbqEYI0pwRMBaRO05lwn4yr6uv1+uvbhTgxcUmSiMLQwjAYvK6rbtUQUy65TBNArLq1bgHdADMAJzmfTprL7Xpta3vb2lL7tV5f1/S2Hv7Su6TT6ZRTOeQ0KZiFJeFu3PqmSsIsTA3drJubWu/at9buW1u3Wruph46ZAOOU+JSyCDNBr9ulNQz7VpJGhJlr973sG1EmA7kb+zMyQkrEAGbWm7aukjFnORzy6ZB6j+5gFjpKDguLMARgImCPqN2W2kSCgJwCCLEHgZMhAMwIRmFgj4X/mIaPd3V0k2MVfcdI+0aN/7guJdgcVX1ttjY79lg1miAghQhPJc9WJs3dMlguQdNcppITEZitbVvXel/u21bVnIBEMiEHUvcRlcK1I8moJxLLhNytbRqBPPyfRjcCAUD7zMj2qjiQCDDCTM16hAV+90b97nL3rdZ1XROnnJN7QqCSsqA7sbn2HqQgzsEAlNT0urS1VkbISaa11tYjgjin6TgVSbOUnDPLel8+Px1bvROoCCNTV317e3u7vIaurW3r1rat1dZEJNxEpHfdtq31rmbCiEAQMFJymBBKcRhkdDWL4fnz8bFEuGrrvTIVc70udtv61haHyFNOOXHJnPIwMJ1SFgz3guCE4N7AnQimkkZx/I55sFDYmIhqRCCGMKbEJadScpmmVDIQttaW9X5bLvd6D/AyH2eYj+fDtrbejACFpWRBAGbOM27Ntrr1pt5tW1U3uN/7u0Oberyt+tu9Xba+dn8I/QMJSsmfPh3/5c/Pn56EyjY90enPh/KUMQFwBIU7MA03XyNGnrMYc4NRxHBzPyJXzZulLcnGacl8bXnRrWNr1mtYD1AAGMSzQAii0RPRDrKiDTWNOwyTPB/anAeZ4Xdd8k4HiHcCwd5+4Fiy8E4jDSMCiJ1Mt+ckvKuxB4CP4ehoZqgdMMIJAcJNrW+tbdty32qt3dQs3Ak9EZQskhIwm0e0zrUGkuREiOAKj0hhBKbdICD0G67wMYadWJKkQpKDxMI8gjDAMQwoSFBK5AOXDJmRHLypokYosaL4+CsDIXCvJgKRhCCa6WVtr2t9W9vawgPUrau2br276pAZqrrZ3vcPw7RqLu7AiXNmEU6Jy5ym0zQ/5XIEQDeL/6QnG9ReERmzpGHCO+q54ccVDybwe2/9kQrzrY6BbxQZesDCjMRJUpryNOeppJzSEO0xQYC7s9AILQ5z99AuOHR2xGYKu1l5BIy7Fv8XfaVDNLQNuwBAcA9ffHttl6/tcollY6M5T1ymeZrmeZ5nSWmQa0R4wG0PL3VCZAQese2tK6Ct0ToZCIkBBLIjBTIwBWHAe+5bfPPS+rYruX/TuPljmQHAyHQZ6CE6/QcTqJHmCSFiwtXtApFYhGWyIDVPAkzDN3knooyFO/Kdx34YbuzGCExAYFXb7f56vb+tdTMLooQorW0eRkichNNk3t/eLsv9XtcV0ZgnkfE5PRwdEIZgPnCYl+zgFyRiJM7oU8rHd/dhj9h6v9wXQonu/DSfJ0mCHGyKbtGa1maqFMKIjAiEpOa993EvMwSXLMI5F1NQq5uZbtZBWxhQOhzuc1mnUolQvZkrhLk175trBe8UxuAUat5MW++9t9Zqa62rqg0tk2AKlCyn01xyQohtCd2afEuCAQDYE66RgL4VMeE+qJKBOBwfIDAstGurNSMheBE8FG6Fag8dIzYH1XFmWQQyoiE0DW6GBAzoijYs+wA5gDBmcudQGl57DuPu7wTDANgL6d/R+HYXk4/OwwAAICguBeZTAo7jseRjcnaAKCUDzhFzt7JoaVbAc3FMzGBWlzs4td5aNwgrRUo6MvJcJkTcWkpZ83QIwMQpjKppCyceElxhAOYEFDhlRwUDA0faPfwBYJw1BAkQu7bWqvaRKf7QYb0X+x9UMNpNtQcYUSBjzvl8OGVzz9fbtV3vl9vSNoN8nDgVyqK9NWuorXVd1l67ISVOE+YFkPM0M/PpOP/446f/+s9/mjLd11s5TMzczS6X+y8/f93WS+8NkSyitUYEqo2J3N3UPEBSyjkJsw8dnSkEDHxZhDwEMcwsAD9QYiDCe9vquoDxfV3+z79fX25bp16O0x/++IWFewSaiWrhnHKeS2IC8K5tU20iWLKcjlMuGRAe86Jxe621zdSImDky0jTl0+FwOp8PpxMRvV0uL7e33y6v17aZW57L8el0BibIcz78ml8K4z/9+cv5VHrf1E0Ba2v3+/12XS8v2+1ar8t6uSyqu5K6m/92336+rW+9Vx+kp4AIRExJPn06/+t//ctf/jhTvsusfEYooIPODDgOhd77uq3dnDiMR9kbzu4F89PMHrrZrHF2eK76dKvXW7ve2v3W1nttS2tLh+7uYaPBJRYWBDIDcAdw+wadRyA6gdNu++XvQ573HXmgnns3EDB8n9/9WUZyEUREoFogACPu1nMPPgYihBkEEYGMzGYdZI9w661b21Sr9araa2332poaIokITrlQ4jwzS2+qvdvtVlSnwyxM6D3cI5CZCDMiDedpH9Gs30+SEZBAILgrBGoLhQhBYkfuSIEZuRhPIXOSxGzq9019M2xKpoKO4QF7lHIEDGaHsLdlu//0dbuu4EhAmQXAaqtqtWutvdVeW29qFg5Cwhi0Q8kUgF31fr//9vLry9trnk5cDtP8NE3HkbgpIsQY6GOaMz4LIbKQ7CFa35TSzEQkg8bo/l6PfqNrfiDN7LrIwXKjR2kDAAggkvI05zKX+ZBKySVxIn7PVgraYwQ83FzVmShJmudJu+6Xd1Ptpmb6DtqNPz7+2Psqc4wF6wVXju6KW7Rru/+6vV76XXNM+ZjwiEzDoDKlBACqisycUxIh2X/m9/raPXq3jRsSdgyVAQ06tC6GHPs4deRZBzyIMY/W9329RHiEPWKI371kBsEAB/1415o8Ppx7tBZbjbmHB0qGlDX8Cjil6Sm1wfwICcIQJmFKjPyoHnEk3BGCxRA+t+iLgrdtvdf68vb17fW1t46YkDDAW1sBYD48pzwT0Vrbb39fvv52vbxd5wM+nSYhQtDwHk6xG+7HmH2MgAEkRiKhjJiBFXkC/OYnBIi1tb/99Ov9cgv9TJ+Pn05ZkKAPC1rrzdZqpiFZkrAQB6Gatc3Dm6lYz4OFQUfixKrdXRv42+LMa0m/ITBxnKdifTXvA9Y17a132zbQKqDBDq4GqqAY6tZNu6tGhCQiJI+YJvn0PB3mQgD3HL3d5vnbNDncXc2aMxrQYHD5Q9Y5SCxo6tpDwN3QtNf1npy8VQKdhA6JcLCyEcwRMSzcvJrjCItRp61Ga50iCEEQEjPjwGlglgAwM1NAGovKMYaZ+Xun97FOebQ6wxLpQcB4FDGEKEzzlAAiFwqw5X6tsTGC6RZbw27kkYhpmg6RCgoHWbem2lURcJpmJh6TzFGkp2CWNB/FHbWP5zsUxsKSBIXDBss0ZVa3bra/6faIgnUgAMYIt9Z0Xbdam77Dwf/JtXNgwgNdhKaSn04n6XaT5B51a9bc8zQTTMcJmKpjGHIgmJmqBUpaKJXgFIEH95wLsZQkn59PqpXfIJjNrHbrvan21tXUWWhXGiCYjZfckaiklLLkLMIcHmaRzTyCGSIipVQ01EOEzX0E1z1efm+tbevinS4X++Xnr9fmpx+fDk/Pp8+fy1y2dVt7a1uzZsIswmWaEqXO4Nbnuag7MCd1jzC11rrqsBcycIvdN4U40Tzl8+lwPBw4pd77vW5L3cYYRsM5ApiS5NPTMTSs6cT845cv52NZt1u35hjN8mHmLKJbLLdWW9s+GPd181/v28/3duvRR3UNo7siU9emWhXMJqTCzIQOoR7ORCmTCJBstX/1V681KDwAGTyghwGSFElE2EgciGTSmLb5uLTDZbvd2v3S1uu2XLZ+b7goAnLOOZcpJ4hoW/PeHjt+0NioARzRBp4doQH+D53lB2zTH2loCL47GgwVDD7glohvR8qglDGCEBCCUGT0BMqO7qEeXXtdq/XNvYPrgOTCFRFEJJWSpylNRVJBBICu2mpvXRuAT1POhINPQACj46dhgfzoYX6ntBrf1NSc0GIQAIM6eI0wB/RIQ8DEnCjUY+l63/rWunXHiHEUu4MaRABTsDmb3rf+tuq6sWQcNOGIMDVtptV6c+3hxgCMnIgRPUwDAFlYEktygOttuVxvn79oILEkTmnIdYgIA8b45GOXNngw9ODBPODpHXpxJ3pIAb6zkv6AwUSEm7XeICKlBMShOm6mE0fEoNqK0KAXPWTSACPFHtF3+xlycuTwYMvJbKSaSO89tAOxKYNpDMqMaqu1t/YeoeAYNdk9VYjW1e66vm23r9vr6tUTY0pTziKD7krMPDha+HBaGr8zJFbMDIhqVnsDDCTe07cJgKKHu4EEeFhQYAA5+I4uvpfu7y3iNwzmceCNLx2pYbibOf5u1L+bZwEiECMLIYfbhrAyzSJBTIDsQRE0hEKx38MRLTe0Qo9cELOwqq5bv17u68vr632phJQkQQyTEyeiQQ8y67W2beu9aRiAkzXWTmYa3txpt1KDvQC14WJJSogkTDSCZ/r7yz6GlUi8tRq2zJkzx2F6mnNGjBGMgDwwdzA3DkxJAN28qSlUcO3aek4ll4MIz1K6cWvdtG1qr7cq9IIYRP7DeUrQCQZlxWO0od4RVMiDwimYgmgUqu8GnLsuF92JIAlNmZkwLB0mKpk/MuLcTFWZMWgM1wa4vNsXBKCpuzkxlCRZCNy8W5hihBAIj1p1dG/BPORNEUOIuTuNglpAuDCADBowjkRUYhSCPIQMvjvADWuqofcYU754h0thF2f+Thk3LmEgQc4sKkoQdVnW17fYIgGi92631a89VuKYpsOJ8OCYNNAN0Idt7un8VEohgm1bXl6+rnXD4Jzz6fQpgG7X+33b2nAi42HZxuQArQUHS3iKdq/r1tqm4DzlQijWXc0xumm0rd3ndduq9j2cCP6jC5FYErKoh3skkeM0nU4nqh2JLcIBLKK2FisrOhBu3QhjloSE3VtsRrfN+eaAZtbqVqZJUum9J4Y5pzXnarEua+3KhMfjXDK7GwBY+PjFUEVAOO2tkSRmohHNsD8QIgIItzALC1+WjZGO8/yhUo5W23pfleB27dfrFQ/n//rf/vWv/+3/dv58atr+9re/vV1u2+X6QrxuW7cvufw4HabEM2OYGxDBsmLtvdvO3UAYkhzmMXU2QMiSDqU8nU7zVLrpvW6baTAfn56jrbevX61uy7ZBwUCXTMdjOeby9HQ+TNL70tUBXAjPx0MYXl83EfRQ9f5eSTfzX+71pyVWh4fhIiFQGN4u69//x6//r75ef57//If8+cfp+MOUDhzoaUqnz2U6nMv8dKumLVl/22J1NwC08Oo9CAsRJXIyBELyDJxO09zz4VNZ136/2XJZ374u99/u6y93VplO5+N8Ok3ZtV/spWvlMfQ2UAIKMAjD8AC0MNNuoP6tannszDtfHB+NXACARcSDaY+IA5gY/vw4bF2DCIWgCBShLMwYaI7RKaKpbmtbW+u1RRhT7K7EWWYkkDQfznmei3ASEhw+xa7a1tq4ChFkPuXTMadsagAw2MYDmWdmxN0x8mMF1kw3bchAIIJJHFANVrfFsUelwKzshtABJ1Vf27Ku99tt7aowcH+icO+qETESGwFAawNzISJCx1C11rq17l1BO1pHtwSRmIhIkCxgUVBESikfD6fnpzIft+q3W621YpiHjlkVEhOQB2DQdzOZnX+7kxeHv8s4y+ORF7B7TgJ8sBKMd/oyRLTeW63btj5QGO+tj3Ja3AwcCFKRcA4bYU8jZnafd4wMLiQUATMMcLSRm8GYkDNTF9Ks5tZ6tK1vW29rW7fleluXxR8ekIHRS6yltaarb9d6u9bbpS8tegQnnDjJw42IRfbq6kHGdRz1nEjKKYyIsJuude3aWRiICYWJg6CDa9hIfgtxQEDHXTH4O5HBPhXyR2rt/kaM/z5KQH8oSD+gN4giUQrME5VCJORAZo7RkO+MlhJJSh7YHcRJAA32uVtE67qZbYBBRCNQKEK7ttt1e7ssLy93dTyfzzlN1kbzyMwpCRFoXS/WrtME8mX6/BmZ2Xq5XejTyafUwxEIRhUTEAE29DphDcHAHMNUWztP4W3/LERTng+Ho0d27b+93Rn987nkJEyQM5VJpkM+MFbHwAiMVDKLq3YzD4OuUUO7mDtO81wOOYdAQHMPhK3bL69vqk2tLZ9PP57LsYyd2sANwZgDwRWDAsiJhFBHe4SASEIE0APUQtWJtbeuhUmEIISIPygUPELd1BppMNPebY3x0U7gDlcHtzTJp6fy+XkumSkMHt1aAJhD99gtehiFyNEBUAJTYAokAHUEIHB0o45oI5gWACF58Ig2UTOAHigQKLsP3DcwJj4wY3auo9vIL/hWxHgL0CADUkdQr673xVcTSggKXgksE7CkKaWJiS0A3Fwh3MMM2IOGfWFtuta+bp0pgGwMFNTDgUAKgjto7DsRmlmEEUO4qbbeuxnQuH8Qqq49wN16DAuG3x0k/3iNB2HmW629axY5TFPJ2bqraVM1AEfsg5BmFgbr1gHcMxOE9iDUWGsQQ4T2th3meZokl3CvtUU4E3PEeF1KSYDH8Onb+7yv9aF0jwe+K4wEGA9pHOJIzd3ryvDwZd2E+NPzk8hOInOPVtXUT8d0nHmep/R0/tNf/vxP//zP83m6XC8//fprc19Nu1rZluN6uK/rXORUUuIjYLAICuN9vS+bme0nGoEzMlHQDgiVLPOUD6UI0XVd11qROc8HKtIWdHgx9abObNYboJ/P03mapynRCEtWc4oAcMewIArJkQtI/iaUU4/X2l8NHqDHvidERG96u+jPvnEt3A5kJwGkngJUs699gTXx8wmcqCfyhNARcTQGIDkoKBNwICPCCP1FRnbnNFE5cDlaOSBnSBzsIZukw4HLTFl8G2E6kBMDAFCoBoUN5UhEhLupa8Dvqv6P18fWZZeo0ghoJEb4FloNI1U+CJABBEKAMgJjBCiGEYJat7aNoToSMXPKMrxtOAGmXA5HSWnIgzA0rGMoete2daScuGaO42HQfYZbQYThHpj+7fr2vgBYmIYzgpBMPLFH3+56bXY3U3BmmJKwMTsRurn21ltt21KbDs4HE0VAtx6xJ8k5gPUeZjD62wAbXBbfWy43c1MAGLAJY9hgkrDkUvLhMB0PknO32GrvvROounqMve8xD/oQgPY4LJNIGnf8+1N2N2SDx4b4TnkRkffUsN777XartbppTmlIiLU3dw/hAHCM3VDHe5M0WNtJZJoysewSprFseu+taa29q8IwWgz36GY+QhqYZJ6TUEC0uu0Y0fvHIYgUUSAYFKK2VrEZdQsNCHId1g5jWYoM9s+DNj4AA6IyTURgvUeYhbfePYZ+ApgI0AmGmWh0VXAdOeHvr6e///JDwfeRDfO+5cJDYPfOmImPaB+BCAkPDRgBMmJCACIjsiQwT9ksaqdB5PVhVuPmtmlftC+qNTwCKCLMh+q4L+uyrGtXI56maUqS7rfaddAVMjOE9fV2M11KwafzXEo2w+urbAtYHwYLHQDJGHAM9IZX2Wa2ovdgw1DTru3HeBSXCMjEpUwgh7rV9e3yeu+/vCwIVHLOwtOUDofcmFBdrQ9SHCGmxO5suvt2m4WpumoYI1EWAQ8C7K3dt6qqHt5a1X78dChFMHHwIO3Ezt5x9BFzMw7zYWENiEgQNmRegshq3pqCx6Ba4/cYmbuaqSpG8D4Y93086uDDmwIhmCkXEaEBG7bu3ULHNwUAwD06ABAAGREBhUEYBAEBDMI91FENuo3wd2NCGQK6QNhdnhWhgQcmQeD9LfhYxLz/2PBuf/7tkrZaW1SX7luH0sR4ZueJnqaCkJZq5EFIloKJGcEwmgRSMdRu67a1tb2ie2u19dZ6cwsi29pyu3cE1gCXJIcjI+h264aAgihjuhVm2rp1hYiUMgabh2vTESPfARyJKeeUcxaRYe33PsmGDx8yIrT3bd1qg/NhzjnP84SIvfdlW9daDdK+D1Fizmq911pb22S8Y5GFoXWAVXvbtuV0PMzTlFMOiDps9DyEGDkhywm9TALhgMAsPBKTdyxsBNiysDDTAMncx6wsEDHtrMPB7vR13eYy//jjl5zSY4VFa8Yof/nTH3+EcsdjzE9Pn56Px8PheOhdkRmzlPOZAbHk6vZ6vRbB8/zpcDjkkqZp4pyJRNVa7YTIRMAIQNp3PlcSmkqeSxImN7vf75vqdDhSTi2cag9gA3CUbrEsS3L/8fnpeZ4RvNXWa9NuQdi732/b7b6objn76UlO52FKAgBgHrdu94Fj7z3jSOYJJAcE06gLXF/gkOlpziXcVe+6/L2/Yn59+nGhebrD5hSURHI55mNKGZgUdNG12ebRcTd5AYBADObIOZwjiICyEBSSuLHgpI5369ZrNyWEkjIzokZHvevgK6JHdDPX4a71j1b9HyqCPRMLYCgwYFi3kYzwE4Cx3RB4gHMQ7tGqoCFBANoZgkSEnMAIXIQl5eNxTiXDsMYND2Qkqr23bUFtGU0oCEBQCVQ11o3zIsf5yEhjXmzhgREIXX14Q8MDmtk/x+AhM7JIydNRjqh9W97Wt8WWTo4lM2GuOVhIWMIg3IZ5gLUGAEg0JDc+jKsAY4SGmKm2GPUKC7A8/KzQ3Lt5N/MAkV1krmZdLTjl+TAdT6kUYoYAM++9E2q3qt4fePeQte/q5/2sRCqlTNM08qp26e87XvGQW/u3if9gwkopBQBr3a632y+//mraz6cTMQfsoVQxfPhdo9kaqr3eRcakJuc8zzPE0zQfOCUGMOvet+V6WW7X9basy7q1qqZjxmfhzGk6Ph3Pz+fPn5iPeZ6JudU2z0d6+AUjAjOkSbIUnGmDtWK11kHBDAjCTWsFMxVJRKd5nkUKILbWRoM0SM0t8botvVcPxwAHpH3xephykAiCk2mEOY/zMZCQHCK+Dzn9WMHEA4sZB82OZj1skc3U/IM6CZHGgarYG+FchHJmTILIOZBPRw1Hdxswlgeao3f1duv1rbW1dwULc3ADADfArdvW1BxynlKZp2kGALWrahzKlHMigF7b9W3BqKc/zV++8KfPsC6+XL3XGKZRERbWAwTRIjxs9X61fre+hqvzfrq6bd9uRUSYC6Xp6ak264bLsvyPv1/q2v/65y/MPE35OJsSRO3b1iAsTIm5lIRAjcw1ZOCJSKpqd2VJOWeZJxXZEHpvy6Zq93Xry7J9OZdPp+k8y1xIGIbZWHdvZtWsdq1dq1q3oRbb5VySpLCUJO6wrr1z17r1PvzJ3z/KqISVmQEoYDDO4YF/hEMgDBUAusPWDKyDtnXTpdvWVd1x+OS6hwMDAYRjACILjrR08EB1da/q5rsXBTMUBiQdM1h3UPNhSRERD18BwMD3+w7fhpr7dPLx248iZoRXRuteNwOmECYvRaYDIZPnbM3dvIOHoWksZi1AkTMJ5RmxdzXtuq5qFkgTCQGiedRqEQajq+QxkEP3UB2BHx5gwzOBkUUIgl2h9x4GRALM1rpZgKN2/V1F9o+XiDw/P3/58kNAfHr+/OXzl6fzEwF0bV27uhrwKH9iRLh51NqWdSMeuTXogSmjBWytR7gDdYuSHQFqVw8QkZSKTBOIzDGPkS0x5VJEMlFixCGB2R1Bd/dxDsTRHA/D7+HYEbt/jLdWly/Ln/7pn3Mp7y+/SDkezz/8+AfKx1fLdyety/XlhQlMlYjyVCTnRHwsk0iqave1rrUf5ul8Ok4lB4J1vS/LttVwJ4ox3OiETkAAwjglzkzD62ndtgYwl5Kn2bVzKikXq7XVjmQQXrKcz4c557bW9basa123ZgDb2i+vy9a2IC0TPdH09DSLPFj9AOsjLwkfDK1xhg7yNiKY2ba0dm/YLQcSsjW7/7I0UNdSPpsfQWYCzknyXE7zNMuUenTaeOvkIzzGR2z4IOwZ8qABAKJToKDojLhRvffbfdVl8VZncCZMwgqjfA4zA2R7BD0OgOf768M48/slSe//7NUMECIRRODInnXtERpowECQhIDCRwUtzKWkQAokksQpBfIofIftvLXeVdu2ZrTjMR9GvDnC5ba4q6m21rdtY2JCjgC1buGBoA5d3XyE2MM//MREzASEGr72dt22y2K1MxBB6hlNk5n23sFDex/utK4NECEIYhQxHo+EJnPvatqrmykQiHAuGEEYD7X5TqMEAw8yxG5mboliPqTDMafMSGE+qCSK1He6nDvshljxHUUZAAlTSiXnJEIPOJMe1zfPmO8OV845TdPk7rWuXXttFSIkpcGW7WZd1dzRkBBJwJRDVYk8gpAkJW2VCZHoIBIRbV2Xy+v15bfr2+t6X5ZlWddV9VHEuLPk6Xjt6yYI0+Hg7pLS4XyeT+f3IsbMtvtd63Y+PvN0qr4FedrovtZta+7Re4tQ1Z6zHQ4TAKTBcY4AIt65QYQI5jrID4hIMsI7GQYsDGBIwOGy30jywW4JAAN4eNmMAdMHQsyH+x6/Mxl//7IP6wuFE1MxB3MBTMK5FEnCQAIocym9WW3WQgHUXXen0O3Stkura6ttGBuOGa93HHnF7jDlUqZZSNS6qYZDEskiCObe3DuEdvXeWBuMATtGmPWug4Fk+/kYZra6XsPu4S1Mm+5O19q/eUWY2XK7LfflfHzmVCjPy9J+ebv2rmWeQcSBmBlBCTwxAkS4AWMpSSRLM+3D5htEGBBM1T0IkVlEBluvVMBNzW6bqa61rU3XU346pCnvYKLFYKNaN+823B/HK0DCzCgsKaXEiBjWe+/NrTfV3zuP+26zETugvLuc78rmx+vlTXXZeuZwCTBdlnZf+9ZdHYGQKWJMbAM8wC0C3Zy6B2Ggu4ZrhLqrIwQxAwZ6gJkPeDIcaNSUANahEwIC425cDt9TrB6Drt/3lZIycwUIVV03CKFEJJHQJ+XEMknaGK/gVU2hmW61UsSZ01Oefjw/FyRtrW4NZDVz5kzECKCqW920d8QgRgwlDwFD1163bV0MjciRkVEO81HY62bqvbVKIPN8Aidr923ZtmW9XC7bVh+w2H+sTprn6V//9V+35cXB//D587/8y3/94XzS7WZ9QwggcHN3wwgPULMBjbfahoYBEBiFJadSwNUAmwIqojAidOuAlCXn+TAdTnmaWQgZ3LskKfOcU0FkHqPHEdcH4OFExEkA90h3QSAkoFFrDlWju6mqPv/wp2ma9qci6fnTZ9Q/nj//kOfjPzv//evl7//9//vr3//213/5FygZAQ/HQyDOpfxwekoB/XK/V/v6tuZUns/H41y01W3Oh6m01oRIu7l7uAqjW7hDAsgIAuFNm1rr1gWdCVIiolwOh8PR1bbbFZif5umH8/l8PKP6y/Xt7evbuq7rtq21bWtf7i3CpiOVaZoO+PR0ZNk3ZYfQx+uDjrhX2I4EwpiEUhYWDHdwLwmfD+VYypzq19+6diRAEeKZ4kBdUHLOqZQ8pVISqnNkzaNFbM2HDVS4RxihCTpxc4tQJOQm3i59XZeX21t7W8qmJBzhjCyIFDCIxhHgI62YIdHwiXn8/N9yFt8X4ZBo7sOA8VDBHQANgRgT78mSrdu23MN6ThSJICIzJUImBuIkfOY825hqe1NvddXeu3btXVW7R0QQxuE8//jDp0+n2SK+vt5+fbkO8gcELFsFoJJyBGxtU7Ogwdcki51Z/O0QQoh99EWhttyu7dfr8nLZrndXE+Gc8QFFgJmaWq1r3VbtNVxHWEY84gkHXcL3aNPWWu2mFoAmCQKRCJwH+RFHrKH3GMU+uRuAZfHTjOcjphJAZtZ76611ZtUxPYlH4gq46ztQsm8CIsIiKWd+gDH4/UVDgzPiNhA5cSnlcJzVdFlZhKd5IqTT6VhKqbW21rZae+8BQIg581RySUkQ1N20961a7yOMuaTsbvfXl5dff3779ef75dJba7XWtpkZApqFqnvgG7++/vr17eXr4fw0Hw+SSjnOx+fz+/uirb/89PPbT78+fTo/PR8Bfygl366F8erturbWYHMHcyfCAbAxYxJhwkB8BEjhOBcBQ40RMZfEzAgcFrvCY3gbJQJi60McK4gwsjv3ext7tfIBfHzXJY2zcOf4DoBm7LHvxQ0iCU/Mh2EXiCSSZJpKluLIgFxzltxSVvMtYHHfXLtbtPVSl7dtW9d1rVtz1ywBgE1prbquHUlOZSq5oIe1EQlMWSQxgTekPp2xN3h7q8ut/vpzCDNing9hdtsWJBIiCVAAD+/m1W0drnUWpLWralivW3+fXPTef/3115/+/ndNk8xnJzaRe/d23einNynlXq1ZLNvWu5UkSOhuGJ5LZpKu3prWrUZEzhIQrUVTrdfGIsfjKZV8Isy5LdtmrV22Xs2q2r3m65rPh3QoIgIRpmbdzIYpwu5FToyMkiVPkoowu3uva1O33rQ1Nfi+/BwKmJ2D4e+/9a1sIA/tqrj66yuRFzllNLjf632pVcmcCIjJAznQPMA0WgvF6O6JYWNgiF1FhCiCyJQYBJF3WeNYvJiJzEHdXXtH8PCEWZgGwv2IHYB9Nf5+Kg4AIMiObAZNoyJAoLNES3injZicvCcLNg9tTata1Z6IMXHJ02E+FpaVq2LPOJuDcCbkAGAzmptrxWiEyhwYdip8nvOx5E3TZgOlHKM4HM4dzJRSIhRhDkBmRgJzVe3vdpz/2TVN03/5L/8VvXr48+n0T3/+U8F42y6mDQiBWTXMHczIjBUsUHKZkEgEAc1NckllymUKVwiwgKaAGoigCsSgPhKMkTkdDseUJaAzUypZUuLheiW7ks3DzQz2+pPG8ZeYCWn4nj+8I0a146fzE783kcxlntM0K1Bi/vz5qfb+2y9/v1wvhMiHeQNDBhGe5nJ6OmL39e32elvqbY2uf/zhdDhNh5xOUz5Og5hMrfbeuvYgNARjCAFIBASurS1re327NMHy/BwiHgDhiSkzQdeJ0qfD8TQdtNl6W19erq+vl1br1mpt2qvZaEOYSuZc5HiYP1Lh9fGLBxIzsGjkhxxFGAG6qffWwX2eMmH64x/0aHj68SSfZz+BT5SEOU1zOZY8sTAhTTCxSASaAdMw6Td39egBBmAIZFOA4WBnmTuuplkbKYQ1h26abcSKwZhYuzrQKJ4wayT5zud2R1fg8VLBHjAThO5gERi4czcQnQY0MzxXFdwIQxJL2iOmRxM16DkiGOgjNb5uvWkPN3AVNwwb30WIDkU+PR1Px8N1rQbkQAE8fqTeeyNJnBDQx9SKd4rWcPn4fQszbF4gtPf+dt9eLvV6a+saEIBJPXfzZi5qRN269Z2eZh6DTQDuu8XLAGPUhwlXa21TNwekMQ8mglCEYIIkREFmIyMGIwIYpyk/fZqfPk+Hs3D2wG7RzUaawjsXANz9fXIR3+8GYzw0Spl3Egx8aHLw/Z9vFyAhBo0/ezjMTJRLIkYP69q2WofROwCkxKaaklBOEGaqdW2td2FBxDBXbV9//untt59vr1+3ZQk3Veva3BwR3cJ1kAk2bZv1ul7f5uMpHw48TVtd3zc363b7ern8+rL+9U/lfDgcjySJUdyobd67t9bUnB4WKoNchwiSJBD3DGoAAGDmBImYkUByYmZGAQtFs4c5FTGjowGGW8AH6fd+ufsOsUR8Q/Mfk73fd8v/oBwh4knkSIwA3rpu1aYENIxMMZAEJXFmMRo5ohEa1rXe6nrdlq1ua+8bo6VC4XzdYFmsNUtFhHj0ZtoUA1g4CTNirc28lQmR6H7Ruoa2OM5w/oSH44hbiSQe0T0agEXoWJzjTdzPdbfQ5tbeCzJCzIkZoW2rUeaUp9MZTH1bf7nWuLY18Fat1u4AzJkIq6qqJXNmSIkBXA3CQBIFgLqHxlYr9k4suSRETDlNiMrceq/ur6s287XpUtP5kKZMKcHI0lEb4Sd0PBTixKlQKihpiOFrbdb3tb9jsN/DsD6wk/dnHEHwPq3FB7nau/pWtbY0GBLNfK1Wu0dQSSiEJbNpbNVVretwtkFjJ4JEkAiYMGMgAgkM6WDso1p3B0BkpPee0BQCgZgoeI8cQwQYk7JdevwPlBiQwG7YlLbOlRKhsKF1rou2XexsFqRGuunWuzPzcZp/fPr04+F0TBM4OHkkZmICYUoA7B6Z6JhZsLPevL315aW75XnmQoGe3uS36+VeN/Peu25bdwNGmeb5MB/BoTfr3YghF86TSGbkgF3F/h+rk0opf/3rv0yZMWJK6fk42fL25uauwAySrFk3g9aQhShzys9fvjBzSjki6rYlkTIf0lQE0d1bbd3cah8eqgwOtQduGgSUpsOJuTAJgHpvzXpKEiIBCXfPex2ZcDqsmMccXfIYJCE8mnqgAHC3PB3fSWSAgELN7JeXy9ngeDp/+fR0/fzpp19/+/lv/94R6XzI53k6HilCCAOj1vr1l5f19XV5++Ff/vJ8Lj8mojnn06F0syTEBBDK1SE6eKdABmcMCu+tXd5uf//bTysal9S1iaS2VehtIjieDp8Opy9Pz2H4y9+//vb19fL6drvf6rapORFzSrkkEUrFk/BUcvlg1w2DmvHY7R6OhUhAjClhSpRHU9+6v74uT8fyfD6dn4//y2HSVPjzqU7yFlulyCnnPB+mk2Ay13AlEiEGGGa0vovIo3erbt1ds4sVdIPaOibLT3j0cl6P5OC+WPeqjREMxG1PDnU1YMxCE3HJmtOHZJtx7BGOgbF/E/NC93AnH2Q1BgBiJoxAdXDt2xrWpyS5TIfzLIlDFcwGXc/dQEHdl9ou93WtzdQZYRKcChUphKS+h1A/H6d5yg7423X75VY3J+CRVBXjpGEiIk7MsMtfyQbteI+8eTyW3VEK3b231q/X7fLWlsV6AyIL6uZNbW0K3CwcBoxJ43kG4DsEM3im5haqql27tt5H4JtEhPcetFdRQngoifO+/s2jdcNE02k+/fnT5z8+T58mSKZYPTRij4VGFEBxhzAPpp1G/aEd2ye3H4ZHADDipIhw52l7eMTDqZlMrVGnrUVEAOacT8cjIhBGWAvtOsRK66ZqYzBX20TCcZoTkbvVWqN1Jm6t//brr3VdLi+/LbeLtW0P7QsIg+GpCAzCyCN/JJy2a2u37eVXZVFJn3/4Y922/XQxr7d2+3r99effYC7nL5/nY/FgM2odusXavgJ4ylPOmQhG3chGspMiB99zUKmBRAgBGUlYWAplDnSx3vrSN3NPnDAAqcfwIXTYLTi+MXq/Q2LesfB9FT0ewhBGm+1xcu8PhqhQOkkSj3q9vVpbtPH5IIfD5oDdk+OM6Sg8uxyJCqF5bG5rr8uyLNq3wtvpAD98OtSGL69aN1N3ThAOrt57V+3CPGaJEb6t1aLNT0jMrTowHA50OvHTc5pLQTghHZAcQNG2gM4EQRSRHMhbdXdGAApnY9J3t/55yv/tX/5p+eVPXzforc3Pp/PTE//wdHt9+9v/+Nvr22VzbA4KwImHi3e38K7m91S0lLQT/Al2FxwWYg3E1rtdL2mVJKmUcjwe4HSqtbXWWl3eal+73rd6W/k856fzlBhcvaupmaT86dOX8/On4+kJSZatLdu6rKtpJ0JilpwC3aKOyfr7K/Nekn57xvDhfw4lPiLTIGQTTwkcnKVZ3O8NHPlU8iRlYu2x1N5tt0hBAAsMDBZkliJE4YRA5AGoQ9PkHu6MMW4GwV6ToxsYupEN+Hp0gMO54hGubL9/+0FGk9ioV6yBIBABGkFjDyFEUAf35m2zFQAP6XA+lB/Op0/lQN27OxJJKVM+Ic+ECZDBgSlEgG2JrWuggwJaKZJKQkAmcQu3uOuoEw0ZhUVYCGjwppkdCQHZMc+nlDLjwxjiI7H3w4WEmEUyy5SlpLTR0ABZIBpAc1cwgWCmsptdZhEmRHeroxBOiTklEXNv6tpaXysgCFMWRnNoXX0BlDIdEDGlgOjaN6AoU2ZJCPwAvXxXXml3d2JiYuGEhMNFRkZuIMmYvuYyvzcxEdFVr8t9rXG5bz9+cUKY5/l4PL4tX1tXFiRGJ7ZSbFmjd6vLdnv75ae/cV///u9/fZqSIApzSWkuidHDtDMQOoABGABFmHmvbdu6Xy6Xy8vbBrr++HoqTHlit4kAczqXMotE1+Xevv72+vr6Vlsz8zHcY07CQkQslJLkJMJMxB/J8PEPvxhKIkGUnQYLDOIOt3t7fV2fnxYp+Xg6ytMRPx2WxK0jBlAuOR9KPlKQ1xUdCSkAECSIWGioSCw6Kpmyq1JwIJi6pMpqJFgczz8eyaGF89I9UYchCrfAAMIwk8ADy0whAfk9wP4/ud7nmyOoiQQzp5SEhQnCtIX2UCUASZJSiiDT8K5gxhhAQoxMw5DG3Xq4ZqEpyfOcT1M6TolJmkFV22rLIqbetF/XXjXSdBQzRAiLwXdNSUQkvIjZMCQ1tzAboQPfz5jRA9w9tNd1qeu91dXUOOchHejmsTV12ypSeOhQCTmAj5jLMZjYs1DVuqr21nvv2gOAE4F7gAHsEZYlJco8c85DJhPRzGFK06en/Ifn9HyIQg7avZpu1jfvXZCFRSQBogegAyFnyVnyd58G33XWI2cCHyZ2GBFmtqvccSdcm3t3t6AAaM0AqOTMRDmzmQ2XtQA099ZbN7MIBDid6lSSTBkJDYavTI+I3vu23m+3W902cEMAxp3C+fjxggdpERDc0VXNVKNq3C0uL19tmHwCIFKWgij3ZcvXe3o6F05AwqmU6TAftqmu3FsuJSUBADNVNRFLkIjQDB6mw8HMyEhCSBAIwjylLEBGRoAdDMNEEgISszexWnt3cHofJQXAu0/v4zfigckMRdW3TD4fgyr7iMSgBY/IGnNava2b1j4vNZ0aEMPmWSGDCPjkcXJls6Wtb7fr5XK5XW8rQT2ctAgzBYSrau/mCO40qBU64lmYsgghudm2VoetHALJSFQyPP2Qn85yyCKcIDKCALSwbrYBdABGZBjTD3eMEEJJbCgpMT44cSmlP3z59McfPy0/Xc1cCA9zOc+nktPLy9Wv67JszSNNhVgMMMy7hqp1rWoO4DTUe7vrJQXsCWUAoKrDqgaIUskpSZkmYnawVmPtXdW6mTtwkjnTEPGyyDwfnp+fvvz44+cfvjDn27pdbtfXt1dwr9vaWgz7oN3a4uP1IGvzNyug/bfhMcQhYkToGmvV69oSgZQyH1Sbh/mUoSRgig5ubhBWeIwNgxhEMCc+FM5Mu28pgLqbg3p0c4gYMwnbiTkUEOEYoYoUghLfIG+IQUz3Acf+jowlhqyIG+od12pVYkNIRCmIyFkAvXurrfW2wVYkzRN9OqRPxzwjrcvauxPneT6ePv0hT89IhYgZIXSty8t22Vq91PXS+8qIBXDKJT0XRlnX2pp1REVGyQgogGCmtblqTpASeYRMTFM+/1DmU06ZR2zeaLnw4Wo1Pklr9ae//9tvf//vz6fT8+nIT2e1Pl42c+tma+9AeBY+n08//uGPp/MRAF2t1lW7TSUjIjMGAoy/nFnd78viEYd5HsG8alHb2tUDYVkPUyFC074yx3w4MHPX/YUnImGO8K1VdyfiQZsbk30myilLSiQpILTWXI6m++DFzJZ1+fW3r719FZl/+fntdD4fjtPT5x+UclmWtbdYmwP3oNUDXKneWO+6Xt6+9v/z//g/J6E//uEzCTFTEnJjYRpWTCPIzyE0+trWret95cvbtd03ZEi15rYVDGTKU47ABNTW/vbb9XZdL283VU3CzAdmBsCcsnss6+pBp/Mp5QwwopcfvdqH1ea4O9YyPazeyBIqIycmZNgafH1r9G+va48f/xzniTMUSpylBHJKk8gsPLsH9Y4oCIFuEYYjtQfZKSwA0DqCI49zRIuX0t2om8tkxy8kgj0F3VsyjBr1ZhVNKYKCHArDc6YDgSvIx4J55324IwTRngGJgLs5l5sbpHQ4TMd5YiZt9X5ZtNXMwCQkyQzurzfVjt4TxWGSKc3TRDnl2jTC+zyVnOdSTnP54VzOczmUBEBri+tS43pT85e32xZQm6ZUjsenUL2/val6ypxSLiXnnJhA1QYVTmOowFrOH73HYzhgBrqbqbbeaus1HIQzCyOTRfRtuy+G3gVizkwxiJ+majYQ6YgRMaimXbXpgGMUARGNkICAcNS5ANkzw1ORQ4LCwUzBEocpns/9NC059XAIRa2t3vt2s21BnqeUplKYd24ZczpOh/PxLCS/KyhHvQIjV/GRragOw0tzFFLEBG61qQEum3ugaWPwKdGU83w8mEdXzM1yaVurUKubBYS7au/uNm4O5RQWxIzMApC8lGlGAHeFACEkRIbhoNIjnMCJUIYzJrB6FAPaer2uqPqOaaScPv/4p69ffjbg27rl27Kpt623rsg8HQ6fwnpvOBpTd1Uzc3AgJCEZkx6OkftKIsRJAl1NhXHKIiDNurHnlChYckIgTBiiyoIbWK2huocQvAuadper95FSfBOzDPjTvOtD/v2BMbO1uK3ADZEmiAJElzaXheeLTSXlaeI8AbH5tPWT9kB/W95++ennr5eXt622qfjzkczxcrHb6rV3AwAUB9YRquSK6IkliWBgU6u1qq2SnIsGtOkoX/48PR1Sv0sYsRBhuFbX1XqNUCIep4l7QChBpMSE6AlLnt9RWCY8HqbzcT7NTTePvoGVeTpm/rT89S/d8br93bY6SWJO3VHVm4V2Rwi1iAhJCBGI1HsPoHFSsEjexflhbtu2mek0lePxNM+Z5bSJLPe7aqsdFo6pKgIxuggf03w6PR0Oh+Ph8Hx+mg/Hz+7X5ekwTxhxvV7cdyO5xzTw45s/1N4eSLjznPxDKTMwS4mI+6qqS1N9Oubz4Xj4U36a0Hufs7jBfW3bUr1rQpizZMYIk0R5zlJSEg4PbaDdu3lzqBbdwh0QR9cIYcMoMTzAIgJCvXMCCGZ5kGFGPoSje4T676AYCUQjUIoGXc1RK4YQJuQkyAbkPbZWu6ljp8SlYMnAaGBN+2aKkuaplPPxWKaDBbqp97WtL+vr35a3n+vtV6tX9E6S2I3dZ8QT06dSlnlSNCTqY+Sqbq6q6qq8T8IcwBmBx3gM/q8u7f3t9eX1668ThRdxm96firur6tYaMDoAM+UsOYmpmZv15toQCYFcVUfscOztzCiQuzqpIRGC9d6bGgqra++SJCB6CjTtw194DPKZGSQFxqCsBoB5PAwewoUf+ym5m/b20R3S3W+3+9eXl+VuEPnl6/L0/OnLHz+lktycAqJ2c+89uoUSlQSfCts5vc3svf77//hbIoaw09NBtSM4YzAGITBBYlQeOX+61qV3eH3z16933VqZ0wHhhCGg4RQWXWPrsS7t8nZd7nVrPQAwDffFnZ2gar035lxKmefS+/Z75tWHCwGEoDDMgoeEs4CgMyIzAqE53avD69oBWthn8OcpSUplniVlRAHiQAx82JQFA4KaQQQSDpNyhDDkkY7i7AScJJUyu2G07tEBiSk6KJ5S6RSbp2KSNolgcASbEj3P6cTRvR9EPuZYfy+L2T/RGPQiAiee5+np6Xyci6tW740RGYVp2IGoemvq5oUpMZUkOQkRwGiLMY4lBeJU8nkuT8fpfJgOh8mDfdHViKtra5tGc2CWOclxPvZaby+vpkZESYSJZPDLAMfkm0e5klMW+Y7fs4+U8EHKNDPDACZIwjklJ1yXum2r1iVjxHGeEqMbhpuaDvOXhz2W2RBXq6oOIzhAAuSRbYwijEjkk+B8yOdCxwQ5C5ZJD/N6mK+JDa2rI2CPttltub4sl98EzmA97ZsAuUUwJilZyvsBE0OuUxsAOjM8RFfjcDJT7V3NCCCYqfeAaLU3BwX3QAQvAoecCNmcursGW3AQA7KPoUjieZp2+8pcAqBMvauxiIiAMGK4KRENSA4DGIOHeU4IhBEYIzKPktfZgx00IN0rfzC9EUlPP/xw/uHLBdamvqxVPLSZtj0nVlJCBBxU7UdWl3vgyKNjQnRECAwagiQcoi5jQCbgd6YzEo+5BhIzBxIhBphGdXC15rCzLwdp+x2JeX8DRlhK7KbNruru/i2nHsAsrrf6+rqmjCQzUgEurDM3TFstmQ+dc2bA3Drd7lutG/SX7frb69t9WdUDxKkq3Vbo3e5rbE0BeNj7mBtYeDgRiiQkHi7nra7dtrRGRgPWVLjMnEpu9+zGwh3BwGtEexji8J6VTTCA+cQ0HHs5Hb6hAYjEnHKap7RqU928ZYLnMpc//OHzWvuvr1cNIBIYaamADmABCAEeTQ2QhBmRTN1i9whmRqYEABED247eOyLklJDK/5+wP12S5Ma2NNE9AdDBzIdgkJl1Tkm9/1O1XOm6XSeTZAzubqaqAPbQP6DuEcysuteEKUKGSJLuZqbAHtb6Vs6ZSJCo1cOPeijcDwXgkpBTmpfLsl5SKsTCLDmXOSXJUzjs+/7Hn3/cbmxHj7HN+ev1+WE3Y/eTbPZevnz8vgjoAarhpuFBgdd1uVzlOgN6Z4/9Xo9tJ7M5kWR+mFIRjDBKJHNBSQHRuxkMaEV09a6hA2aD5GOoGycnekyFLcDM2WNQSEeM6yhiEMfU1+GvejgBciRHBkAYER/eh3S1CAoHhoGqBQQlTJkkY5Dux6t2ar1DlIw8c1oI2Y9tu91fv758/V9v3/6xff9HP14JNAsv85KEw3rbdWtdj3rh+LwkwpIJXmu/d21NW1XTsObWh/b6BELXpfddrZ/uJH9ncf7Lp9La0XsTxpyFiQxghA0HgJruRwuC2lqtx769grd2tN5arzXcSdIZlUKkvSOiuiNAybmbm/te62jmzDzlyK1zSsRAxFMpU5aU0gh/cXsnf4//lTTSRMy9a/MIIko5z9O4mMlMCSClH+NxM7vd7t+/vW57uMqb9O8v9z++/ZknEZYAsK4QgKlrIK7rwzqvT+VpQt/33//57Z//9WfbO2L/9e/PKeVADO3oyuhZaMqCbmqurvtxvN3q7/+s377VXu3xMj+U6WkugLG3frxtr7d6bHoc2lrX7nqKv8Lda62qGqfDykXKus7LOt1uBkg/15w/Lc5DEArhIngp/DDJKpwICP2MexM2pK15/XL7+vL69Lr9D0qf07qsC07T3lszNWjhHmBMgJjQyPoZQD3YxAEEI5AVBj4BkKiUEoY2YuowIAg885onKKRcKtDX+0FfFCxI18KP1+mRUSGuU5GPy/Lj8R4GJQCI+FBoJ5F1nZ6fHz59es5C95dvin5ZsiV0N+3eelODxClP88NSlkmmgonD1fZjsOdxLoWFCIDBQntEIhEPaqEdCNPMmIkjB14FgjinZLX2rqbGRMIM4a594NqGHIKQioillJJ8XPxniYHEo9QgHOF4CChIRXidcnN47X27bXV7SxgJnErOLOQRXUfmnAecFi0YtUwfIXwkiVLBlIPImXGMJiBQkBJK4WmSeZpgWfZcXpmOcFUfshWNvvnrC5Zvl/8V/UGxg9aEIEjVzLqFwQ86HIC7123fbzdTI2FEYkSkc0gW4QMI5kAA2sDCvbfeFGu4IzGCEI8EtNvrvjfbjrZVqyOqN0jy9Py4Pl7Wyzqv8zKXOQDbbK33xGN9h0O5mUTg3XIIEKN5EJoYRn08IqOtW7g6EYhEzjkn+VhbkMj89Lg8Px8HNrLWukW4Rmvtfmy9VTdFC4b3rzqQR1hEOBAgMYsAB3k4orubWvOwGHnDoRZkbu97nwBwYCIGYMYUAcXwEoS+o9rh4T+yaSPgFMwMP9JHViaEhzmYjUL2h/Cyq379+vr7H9/XC5UpkSQpVEgwZOty9LgdjrCbb0e121s/9pu1b2EHulOaMhOmeDvs9Yhjt9a8m4nwMuVUxLSbBUGgCOcSQbe3t+3+2trm0VoPVEgZgbmr1Ja7TmHM7Q7kEA3JOKex5EQauz5GSu/cQiPryDPih8sSjghFkCKlaa+113s/tny5PD2s/benby/PgbT3MAuZODCwIRoS8mmMQ0mpIMI4OUcQoBChMJMAYgSMkAqPeLvfJ9Pr9WFZlvWyHvv+7c8v9dhfd7fAC8rEJc2XPC1IrOp7bZL7xCWlab08PD4+PT0+bvc3bYeCIUMW+inLNt55mB9en3/1/JxLWAAiQgg3aN2P2h+u8y+/fZ7Zfdu///GyfXsLAZ6nImmdODMGuhMZiwa1Zqah6l1dNVTDdIxhKJD0nPS9hxdAxAjLc7dw4vFQ4Aeocuj6fpoovRcxg32vQwgWYe5qGqEUZiQCjEEOMX4VQLfQrvVwCJUAZ05CRrF7/W6H7y9f377888s//u/b9z/8eEHQUrKkiYkR0Udyba3YdQJ9EODCEhLdmvv9aO2oYe4drIMrhIWqa9Pjon1XU/+ZPAT/9kIAJsop5ZSJCJAQmTmxCIkEgJp3tVqP+9trP/ZWu3V1M0QUB3yPdLPeceRhBOWc2MGR1Lz2Hmaj+Wit56Kq5CVJKml8RxASi1O4Ow6m6dkSIiKaGzbyCGJKOedpkpQBkI0RQFL+EMN2te/f3758fTUXjNKFm9nW75K5pCTEDESAho3NXhJPbOs0l8zLnAnx25fX/V6vT4lzPD8+pJzBjcCFoAhbyQLQux7d7r3Xum/7vh/qRuBj96YW/Tjqtm373mu13n1k/I3H4KPYGl90RCylrJd1vSzTVI5jp/+DjIQAhGBiXDNfS3qc0iRMYYRjswHq4IZNw727Hw1w/fRtenhcnj+laTrC3bV2DQ8+2wsWImcEpMSFRZCgB7I1BPQTsuLvVkQkJCEmCsQEEWgQnBmnCYtcL048L7m/3a4A0yw5ImWZ0l8mMT+H4L2DTQMACSHn9Pj48Pz0uK4zuVXGxJhLMsZWW1gQQhLOuazL/PywzJkJVPux77XVGq7CMiViYe0tzNzRR9Y1YPfoQJinJMgUBoEDOeAjTsAAoKRUkgwNyOiRzzC+QEdkRv7rXhxPYjkREyVBZkSkGGltVITDHMJU21FrD5sYUdUlQ0Svrffe3Xz89kjEQogiQxs1cZ5QCjIjBBOJoGBgGDEQAyVOpaR5jnkGSc2smo+fGodGrR2v8e0f//if9/sKHN/3t7YdoQ7mgeGnW+vjxD2tMsPtBYEOgX6CCBE5JUEa0oeAUOs9QM3s6KYBTMQodRJzf91sq3qoHkffjn5064HMKZWlLJcyz2VZ5/kBMFSNj8MdAEFSImbVfprv3cyGez+EMAsJAoODm1oDM8NAcDBH1pRY0g/hFRFPy7qs1w1qeB2rhlE1x9haOuApf6Jg5sSUmBOxEAudjrOgkchu6oMrQ4Qo4007n4izDB9eWx4CS2RJEy5AOHxn3QHAAgw+YoX/eoMEwLDRftwxP2tizPx+O75/31RLmQjFUvFSnCipD/agu1o3bbXVvWrf0O8lw3Vdc8mE6K5731vV4wh3YCbmJCkJY60tICSlMe0zte1+2+5v2muQteacacJEIW0H6HEcSI6JiREBBFGQBDEzT8Tp5GwjQ0S4uvUAiOCPZswc7tV2AyllsjhUIaz3ZqoplXmZrpe5fN9eb/fmMfOEhCnJWOCfSTOjZYBB8zkVWiwydq1DyWrMLNx7773Xo4lUYlnXFQIk51bb1swigKhM0RTUwQKb6tvtpg5T95QyIs/zcr1cLut6v916O8v0vx7Gcc4+/hIK/eNk9wjEEyrBQGN5vh16tJA0LYsEizW7P+yMIrkk5sTBFIGiARZkGr1Za6bqOuoMC7cY5HrAsHdzGyIQjwMJBkkOAyUZsw2977vUHH/iFf14Seu99l5rr90TMDESg5qp9QgjLnJmi6CbV+3bfr87rYUzsWQQVqKbtnZ/+dbq8fLt68uXL7evf+hxzFLm6bqsi5QcNA4fc3dBSORibbZehDhLO9rd3fejbRURCShxDgB17dra1urWezMbxDs8r8/3d/1825l5mqZ1XaZpTjkzJaLBfZmnZZ3mJZcaHcx83yuDi9AIlDyT0qgLMBG7+3EcAIApSS4550kySqqtvby8HLUNRZLqPNR+iMJSWBjcAoKIR0oR4nu4PDMxM5GFI4mZIYFIonHwEI0BuOQfk5je9I8vL7//+bYu13meJUtKAqxmtqsy0CQJAVRt3+/btr3dLq0/COr92I/W3m71qPby8vJ8m65ryYkInDEyE2QhKJ2p10ZhnZAJWAiZAqK2/v3tTim6tcN07xEs0zrlArWqWQCdb/6oXcZQN6X88LD+8vn5crkwA7PQGb7w/rh8fEYQmXASupb0OOfHuWShMO3Wm6s1V2TyEcFDBNy6vXz5vj788/rpgVKAgJvuR3PzwpwlETJTmksRzCVPJOyhR6/de9VuHt3UXLX34+i9algQUJLCRGreuzs5FLxcHy6/pIfHh+3Ly9vvf8DrHVvrtQs6/QjlHSNf69q7KRKhBwE4BCMS0TyXXz49Pz9dhcJUhTFE0EHDjVCEFiqc0npdr5f18TolhLrd+xHHvbemJWHKXIQAo/XaDXyWEZzYHbu5A3KeiFJm7Nb77a23pur7fgBgSTJPecqJETCcwAPPdfcwzP9Acp6/y7lZRgQSlpxTTkLEEYwoOOIRYkSBGURXfb3ftdaDEyGauapW6xqOxJJSJpQkS1m5TNP1kfLUDCKC3Dk8gVN0MODT8omUMubJpXTEw60Zhgs5EGAYaLe3/vp/t5aELPSw9noczX0MkNzec4fPi5/yNE/rNZfCLO9cXgIiZEqSp2lKkpE5XNuxt2MzoF23dt/31gkxVDKZML9tutfoEXs93u770RoECHAL7pAjXWR6nC+PhG6m4X7bDo/II72GhUhj4ElpkASRGUVYMNDdUSMCgjiho2m0GKk3/ENyTYiTpDWXeysRQUkwESKTsEIgoh4VzUbacmSWScpaprnkSZhp6B8QYiR5u1urNcKXeWKU8CGuHC42Hl8DHI358HMh5DJRkpOKHNDOjHV/J0lSDEndaX0/W+QxbHC3wY/9uCe1x7F3szvf1JGJk0gmyoEpgNRgULLCO4Nl8XXCx+v0y+fHnPNe+77d666ttbAgTinPXGYgsQi1CgAsGYDNo/d6HLej3kZCRa+RMkgkNqk3bXAcW06pzOsjlgR2QBggExXJi3BBEgBwN7d2qsWsv185AABq/v3eXg+byjJTPtQ9oJnvrRtKdx+Je6+vt6ObQ8xrmcocOXoz9yAEJDJzomEfYXMDQkkZkIaSCACEKZecUt62TXt/efneWsPxDc+55bxtW9ceEUSS0x2RiYW47a3jy5ukb+uyPj0/MsuyrOvlOr289qNDGPPPejj4UEz4D5QvInxYSkePBkggKCKchYlp3/Xlpb2+WuE85Xl5gqeG5XqYoql1O6pbOKhB63ZUrUdvzQZV710nHjaG9+OrhyAIzEiADjgQ9nZG17lZDLTkh8By7KxPic9HEeMBZlGb1aY4QI/IQBHxXjLQ2I2FuVdtN8PZxdKCo7fBMDsiqneox3ZsX9v+rddbWHCZclmm5So59RghA+/5ZBConXvLIo74nNI9pe+ER7hqGBKxAPJQi/cevYXZvzIH/+XFROuyxPWyrtcyzYhCnFKZpnm9XB8enurT3fZq01SISFXNQD0QkIgTwNAS5JKG6EltWC8MEGRoxQnf3iggaIhLGISQiQBoLOkQgE5m8rl4/ihimIVl0KzYVANHftfZvyJBBLJkeG/HPKL1MKdc5mVdS5mJ0Ia/MTCRlJQ8opvuvde3m6HmokXidLAkRQABAABJREFUtm2tmxkKk5kPuGqYjEl6Fhoku45U3bWiIAihZJEM2LS7ve0H39EwFEORQgQxESEPTh2Bu/feRy086rN5nh+fHh4eHqa5uNtfsSo/XggghJlxElqSLImLkBBpIDiOOXtvGh0MSBJe5yw5M3jU7fj+JxW36xyErtXcg3KEQACRpDwVmadpJsJmzSCkJyIaWX8xxifu5g6BQpKEBcSAgrS7d0ITupT56bL6Lw9vz9Px+1f/81t8fbXd9SeM+sfd76eRAcYOhUWmKV8u68P1ellmq5u5ghuCIwQTljS8SkRJkiCTIxrCiFOLEcuSk5SUsnCAJ0ZmmuaSUuqqe/Pa1SOVMifJGKquAdB7v2912w9CyEkyk2DAMP6dOQAwTNQDe/ovbJUBxBiNEWWRnJAIzRAAw8M6eIwaF4RN8XD33mozxtO10l2DgFk45/XhYV4WSUnmJV+fgNNWWz8OOA6ylgMZCJBTppSLzGu+PPGyVKLatfZozSAQDdQhPLy7erSmiDEynpp7EEliADA1Vf1YW7DI5en5+dffJGc+Az3AkZCIU0op51SSJGQGN21HP45jv2P69nr0qIdadB2n9jvx2MwCNMACAVABm8GhsXevGubIwlmyiLiHhWcLQhiZMjDShRDfmTQn4A8QDdCC7MwJCh98oDGJwZ8+lKbYVAISMjGjyPDHFrNwRzVAFCIW8iKcGTNGihAbBph3/8s73uydj+2OvVmMBwFgJLWNB3mQQtwdzp+XRXIpMwYQ0gHQe43o7udc/2dlzPhODbPFiIP7+ZEnZAQKc4vuYNq0QkUSpgTEAQThGJ4opkxzSZeZr+s0lQGLGz73qq0jMhOnPDEX8+EdcCZiToisXetxHMfeWmWJkeWMTtg5KnZw97bdb2Wa/bmAPAQc4YYIwBl4ASlEyV3d7qZN293a1vvRe/14ZLr619f9j+/b0yMjxAAZ2X3fmkuq9+3YjmNMUNrR93tCxOVSmDkEY5iE3nMyxrWARkgoIoCoMOaiyCypFDN39y3i2I+Ie0pSSmHmMk+1d62xH8ZYs9yTyDQvSNRV1RzgdtRDEiOGmpuB6hC1RO9/Pcd+zC4Df5gwYoxDwB1xLKOHOQIC3CxcY99tu+lWFOcAZJlydtDu0KBX1DgFUq17a9aadTWPMUIFjxEQACd3N+jMwvmRKzCi6wBgZDidQ5ePH/wn0PCPlxAJBPXu9VDgkFPULwOPgyQAbBFm3lRVHc3WSPEARAl1KH6MGXImQmBGTkgJHcMFXSiSYCkJMNzN1Vob8yRX9dpJLZN8mia94nY/tPeXt61ZYOaI6B4aYINmASd54X97QQIACz9cluSP14eHebmqubSWp2W5Xh+f668tmtN+6DzNiTlcu1q0ruZoAYQzQpnS9XIh4i3tR617a2Y2TBhZCCBNJZt2RJ8nWeY0zyknQYTWGgBNmflkiw3gCAEwAONQGUqGEf4B6GH0nvNz0tPOoL+PqZLMy+Xx6enzr79dr1cAdO2HKiHNZZ5TmSSbG+63rXbV2Lt/ebkn6ttt7+qlrNd1uixLSeym2hsAMwIxC5GLCEDsh4AzhBCVnMtEtUEgbr0nK2WZWZgs3EANxmI8htGi67ZtvfcIYOZSSpnKPC/LPAlLcx9jyr9Q4SPgLGKoMJckRVgI3by7dzf1cEAL6NW62a6xrvnp+eHp0/rb5/lxpvr2h3HN8neaZ2EYVBBAgCBCzjKVaZ6nKRCiB+vwro+QX0Zj46EMYaJgoiIJGSlNnPrbfqjB7X4vlD5//nX+/PT0ad2eLreS3tRvL/et1x/zVkQYzwciILg5hLl7yel6vT49Pi7TlIhHB6q99dYInBGWKSOSe3Tzut97u1vNUxIGSILLUsDzVLgUyYkDHJd5mssvv/wikr7ftrdb3w8IyWVekuTj9r335u5d7e12r/uRmKYs5D364W4x5hSIjBKA5qZdtY9A7g+LAtBo1U0hHEUoCxCO6Bwz7f2wAGKUnDhnhXDw5l6boRn6YL1gSjkvy/XTp7/9538+Pj1xyphLlLlr0P2+v3yv+x16ZcbMSKnkuSzXy/z0afn118i53rf9uLVmeij4SPKwcAAkJMmSiASIRrB7QCBREOqAx/9w9JRf/va3+34TkY+MIAcgllIKEZsbBo7N7piUam/L7/9828darImkeV6WZRHDVP1123tA7t2G186xqd33fSz3iuB1zgCBxOZRu9HRCaLW5l0JDAPG9zPcDcLQg8J9jPHADB1CLcwBkFJOOf/QKrnq8f1t//pi1GAKggEbJmZOKbkqSArEzEKZolAk1Gi7OatPkhNlClRTH1MrpJSKu7tja9b6MVKQCc+IJTtfw1jkATiCe8EiSykPuZSMRLFhq2DWcASCnY81hp9u6wEahB86mbOymadymWdJBVkAyAyqRgQmsSSRkqREOaVS8lJylsToQNBqr+3+/fV2v9/avodDSoklJ5mI5DhahDIjp5JzIZRj2/f7se+td1+EEksWysTeoO9O4O6t3mv4pIoOs1MBcEQDJIsELoHirr3uff92bF+03Q28te1jqtS7/vHt9j//8fW2H8J4HIeqw60GsFoctd9ut6NVJmTE494GArPMRZIwn3SDcEMYWnocPexwWYsgD/0Bp5TzR2Srm/Xev3//Pk3T4+PjuiwQsNHetu2+N+GtpHR5aMxkYWqq/Qi06TVHxLfvby8vt9eX7fV1c4v7/TD7UaycPvmAEX9zfvfeFU8QQQSJRZiYMMKPoyNQlsktjtpuNzA1tF6PqqqIQByjbXw34Hq4O4RFqIUGqMdYfpl/qMTHlOSM1HvfbQXCO8nxPW4ZzsNm/OgDkv5zEYNjLGK9dZJAZmCmkx3FAMmD3FTV1RS6gvZNcu29c7fmXnttjRjmJSMYIJIIiXj0DlqtJ21ozJKBCQGDMALMQ83VnJCYcBZ5LPHLuuz7sb3te1cPdQTzdyTo/6ly+bmIIVrnIrZO05LyHL2TJBp5enlalvX52dZmU54QoLZGrQFyP+OnRmAepJKTZHM0wGbh6EyDH91cNcKG616EsrAQju23dhNOiJmYP/byQ5GDPGiqNAABAAEn0HWwmh0oAGNUqR8vIlqW+XJZpiln4XB3QeLEjHMuRUoW0eAZ15DemhFo7dq916aBsCxpXXNOjADWVbkLA9FgHhAQIFujsQFGRkwUKVHKjARV9eiWkEWKoAe42QDCIARYt9brceytdUSSlIi4q5mDWtSm+9He3rZt2z8eGHgvswUhCyc+R09mdrgjokE4ILKAuZkf1e9VgbCqA/HlMq0zbnXTG6bjiXLOhIaUmIUTYxYuzAnpxPN82O9wrAmdzy6RhRgDQYhzyWMwRqk7SmuqqrUfHdokRLPwmiMnRdzNav9hGWXmdV0fHh7maWYi6zqgumWeLtfLZV2T8JhhWO/adawOibmkREzhgU3b0c2tUlDolEQE5lkQMAulxDklpMhJprmUMgHR+3wORWSelySp72/uftR2v+9vt3uorddlLpkgQvtYtYwiBigCcZiGeu9DRfOXxybCzDEChUg4ENystibHAQRG5G6UOK8zzTkxhptuTWvToyFAySmt6/L4ePn8+eHXX9eHB/NQJBfRGDwPt15JG0nOOeW5zNd1eXyanp5ifTgi3vT+dvR6dK06HNtuBsiUOE1LWR6meU1lUbf77bW1HaIBdHVT04+WRpI8fXre9t/OROgzfiKIecoFEVvr7g4BImm0MRCBRL//+bW12motmVPOksvMJbJXh9ps6gaAXS0ximRmISaIaK1WDgzrGl2jdcejIUbrimaJggEcfPBfEUAdyUPdVb2N9EvEMQVmJgZOP/Gt3bzftvp218lDGE7v28CjsbCYSEAgARKQsLI3a722sNY5TzQzSPj4f6BwgkLD+Ny7wxgk85i5n9PiUb6Y6TiZ3Sze9YUpSS7z7BGAcR5VfVhFPr5A51D2g5L80xeMiNY5P14XSZloqBKhakBASVAyT1MpRXKSnHNJhYnddK/1vu1vt+12v9ejurqQMIvIiewcH2/KIpKZkxvs+75te+8KEMzjUUImBmeEMuXFzW/xYvVW91uenjnNnJigIwJSAmQACFfTTdtN663r4YwGP75jFrFVfd0qCwrBsR+1aTccs7oRfjpluiw5NO5HP8JzFslSpoE8IHDrTcPHsnGgJoc+KpiYmE91GhIyTNN0SmsjjuOIiHmep1LmeQZArb33dr/Xb3Iv00utFWl8dHa0OqzIX798f3ndatWIkcaWf56RO3zoS0+KbgyNEmAMs9bJLwR9x0AhkJCZaqt138y6Mqi37uaI4HHyt9Ws9yGCATXoBs2gO5iBneNHIISA01AdgRYnxfcvYpd4f4o+bhHEc07z1zNMwCEcQs17B/JAifCgxDgR5AiOCFM92bPRI2K3/W2/TUpyuG3H2/0NMNbrWkpCQuJCnKNrbUeEB6rZMi0rM7uNBb92s+6hSEkSSKKICfGXZd6W9Qu9hbaq3SAQ+UNDTQg/s2H+vbAhxCklzJk4wbC8UDKPptbVAGiZ5nnCZZ4jfNuO1NI0R1frtZlp71prjwAYpJ6UOFtCn0sSjH173Y9Wj3tXTULj8zb3XpuZyZr5TG9J7z/baIOFWBDRAay1CDXTEecZAK5mhgwIQGq9t/5xWRLTvJRcRNu+uwpgzrTOOQmFA3jv3YO4TJOUqauBNYnDmxM2EcsXXJZAcG2myYyN8bRrDIOII7IwCQ8tDIUKeikQCKraajO1lEBw6P1ixI9GhNZW23602rsyJwto3R1pmlciqd1v99t//ePLw9NL/wHvOnVLmTELCzMA1K7hiBhMTIMLx8zk2FqYa/dtq1++3379lJGelpJNDzOn2qBpThw5ZcmJZ+EL0QxI3TQO87ButWkbunpEYKQYgzCJcI5AEZYpS04JKZmnPO37cWxbbdsfX39/Fcbu9dvb6+vrbdu3qs1+fNlSSr/++ut//sd/ShIM7L25apiuy3y5XstUIrz31mvTNqreIErCzIPfi5ATzDB7uLATAmIwwTSfRxoT5pwkCaBzYlUN4lKmyyUdrjTlZZ5SSv0or6/4+nb/89vL29t9SmmepssyMQ6xiLm7qwciCCDi8MG31lr7YeMfGs2I8BF3TQRMDt603e6gbj0MRA6LIFqeLlTyPGeMaFvdXu9vX7+7Wlrm5fHx+suv18+f08O1MX17fdl7d8lq3m93vb/ZtmVQ5JLX6fJ4XR+flqdPvC4b0vd9//J2//62HUfXbqf6iJhTztO6Pv7y/Mvfnz799vD4i5l9+eN/ffv6++3tz3q8uTf7YZsBZrpc5qfHNQIsYswW3AMBE56iHzVoXQE8Cc/zxCy9t7/99huCaW9hCghVg0tJiDn3UtQtEou5J+Z1na/rfL3Ml0mSYLdem973tvdo3Z0aYmg3gUg8CKPxHqwHZGAQo4I5mnqAZGEiQRmJ6e+WmFEDuLVmR1NyL0ncw90CfCR1EDGRAqp2Ik6YRn61WmsBG8oE05SXZVpzTsNYUAqp9vt9D1cAAEZmYaaPg3RclmMAY+atNbOxb2KHLCzzepGUidNGfGxvrh0/lImnLCbOtnewVd+/Y8J4Wafnh1lyQaTwMIDuKExzkankqUwiaVAAhxLfCdXt7W1/fdtq624gnEaRw0IRGgFIRohJCnMG4N7rfdu24x7gKWEumDIQARER53l+/PzpN7e+vW17vd1e/4kyPT7/95QXhHGwMQOCa8SBsQFUIiDhsfz+sCbjMNxJAqRu/b7X29t+35VILo/rdS1LKToVDgKN/Whdw1wBQwRzFiFSjeOwcBPJxBQYqtaaIuI0zwIyXJ99fLIpIeK41Hvvqnp7u4X75eGBWfatqulee3y7abd5Es7BiRKLSHp92U19u+37fgTwcr0+Pyy//e3zoCOOOnMsXOE97S08LOLdAUEwqNYBqqbaIyKNYGroZtgaH8LeNLETeID1rmYxnBnHYa26dmwazeDocFh0CzMgAEZIjEzo6Lu6Q6hTQNgprnJ8h1aMmR5GnMB3HDSHj8v/J00MnSZMZmQCBgdVA5SUiVgCBtcazd7TV8Cr6f3Yp8blcL3vb6/fR7++XC7TsgAmAPGgcFUc4KumKhFs6qpqpuanCBYlcxJUz8yXabpOc+aMUFVDw5NInH3I//9ZzFCcG46PCIiYJXEqkueU92kKkoRIpWQ3VTXzCIymtrfeWxOGqatqB6L7vt+3vdVWBCEyhpt17aNhNAIxM229UbPAiASRTuwCyQnNiADk93U4hvug4Hs4fGQnjQGaG4RZ72b94+Efnl33Xo9wkkwkWNIiRdiNYqQ1M6ecAUnNvFNomFtOimyF81qEcXDgYtA8RjZGxEl8pyScMksiZIoqYFMSJ6YBbjMnh1PPk8k5ApGJPMwjHLB3RSQ3aF1rba9vN4DIW9r37e221frjsgQAJkSALDxi6gBCx+MCwYJFEEmEBcEJdCgJ1OK2HW+3o1YPoxRCjlAVmuaSUIRZUko5LUSzR6hp7U2tqbfWm5p6OJ7x70g4ChkAZBHmkkgYAPNAZBCE1d6O2/a6A6Biu93e7vf7dmy7/jyJEZHHh4dffvmFmMBBdbi2rOQspVjEUQ+yatoBgnmY4whphGchILBAQfZw8D7sTUQgwoyIQSKplIJMXVtXD1DJlPO0YEx1pyxTZmQy9+2o315e395u4DalaclShDHcuqvbqGSGFGOssdxHEdP+2uuMmbVjjAEjBZEzGZMzGzIQB4LkVB7WvMxlTgDQj8bLFIm86zzN0/WaHy845xquTd+O/WgtUneH0GraTJuABxglmtd5uaxpLg3x2/3+5eXt5bYfVSOQmQUJiRwJidWiHm0/6lybGzCnaV6ned23V3eovQ2G5Fn0E81zuV6WCFS3PpjBZ4x3EAALE4GpumlrFQlKmYjpcl1Vn8P6sW+vr2+96xw0kBuldFcjwAhPKS3L5XJZHx/nORF4ba3trR/dHAiIzAPR37eNARhh55cmAswd4jSaNrUIABEWZGJBQUiZf3LABbia9t6qWXbqmRMFnX0zEbEIuLsaEQkLCiRLEI5modFDKXpiE4Fx+TNL7701dQtEFEmDdvNzK3gWIogRPt69CCciNS3TNM0llWkBQMJwa8furh/g3h+KwH8LfCfCKfM6J04JkcaD5MjCXErOIoTs5kOjPbpyA6utH0evtXdVBAhkgPH2uFsLAARnSsJMSOMDPeretDJ7zpgzpYQRDjj8eTJPF4J+XYvZfXv7A3Ba12dYlhHXy0QYAwnZIQyG5NwpKAJ+cvQMHPT7ysTUW9VjqyXDlNPjZb5MbEVBvVd9ve2hTufKiJhJRALGxOK8zsbbZapjZHgyoYEAUSRN04SEpRQzq/U4jlprJaJpXZA4ldx7al33o4f7cbBMmDIlFkSCQNdotYc7E01TWa/LvM7MP/0655bjnfMU8K41iTHNjAB1c/OuBgDMHAFmzRXcimkc3pRjykxEyEMuEr1brVoPd+Om0Q26D0HCsKbiJCiCTKEB3WPk2o4oyJGPZu87rYHhHCw+pHErDj2i/3ApvxcxJCRTXqd8EYIwr3t3t5Zd2Mdb4o7uFMgQHkDquNU+wW417Dj2Yw935MxSUkZ3MWM3wUBCSVyEUpipee82+JKnGHqoGSUZqoCX4ClNpZTEFVSHMw3Bhx7qJ2rkGZXy8fh9HMkQFtbdqtuEzJLTvD5eH70qoNxb6+GOiK0BIKnaftRv32//+P2Lu35+ul6WudZtP/Z//vHy+nY3s3XKSZDXKQmLkPZeayMoLdV929wDWUQQYvDECZACxncxRkvibgH44co/VyvjXsVhW/cAh+gQ9lHEmNtxbPftppQyJ0dhiD5xFsk5k+QABmaUBIimZugKypETo2AsOU3CwoMJx4g8APMx0mgQHZFzztOcShWpABtBTMIhmZjzCfD3JIlKivegZo9YL6uq1tpba73rvh+3t7uq3W5v7diJwU0RouREPzoYFEEEyDklEQKLGKzGMbrERBIoAQwBiCCEOYmRt2a3rb2+1G3OAklEelWsPT8uJGns9XOeRBZzh3ZsdT/a0a1Wa02rub1T6BEAiYlHSmBiSBjkpoYBSQQL91kQybRbN1CotW5HvW912+I4+oeOjIjmeb5cL+8KhoAYB6yr+tu2ifcUmsElycLTmWCDYB+VOFNiMjdt6g7hQ9MjJUmSJClxykfrL7dNzdblcuEyrSUEp02BMXE06y+32x/fvv3x5Vvdtl8fr58f5kWQ3IbbeiTDjSNRYOzZwN21de0/UnnPvbj5UCcjIrBETjTP0+PDvK4l5xA2CJjy/HSVKQO7AWARmnO5Tq7GSMLJM977sb92M2/WgIAoiBAKY6ZRpKv28NNOrNZft+3/+ePb17d7a+ZBOSUWTiyAZADH0b5/e9E/v//zH39er//P51//fnl4SJndFB1M7e223bZNzT6+YyWleZ6JyMxrrQdWt9ZNzQ1Ypizs1Fs/avt6fCHiskyuioLLZSU3hPj2/eXoNWvnxCWJ5tR3UoRh3prKNM3zPC8lYfQYOkp1l5xIKFwBjIQEnUkxfIzBT05N/ExSgQBgDw8gJuFUBOZcfi5iEMDNj1o1KbaSMpMEIEUEIKaUhDAUKXHOBTKTsHtn8+jhDcCp1c4k87yWMqWURKTWOhZMKeWpjDfqJBNGBDO/H6QY4aataY+IvcnUm8U6zfNyWXIWhNiQ9v3etb1fKWezfIYM4g9EFAIyoTAQIyAFeiAxCHGKSNvu2/7a6mGmYxbIzCx4VA2zM4EQ3ICUXFWRwFGHF5xYBJEiet9b3VQbgItEypSTMKNZd4uRAu+mpdDT49J7/ceff9ZOD0+/TfMq08w4jLembuoeyJgmSglVtVZV8Q8c0Vi2RAAEIQpTEslkSym/PV0/f1oTmVZEnXrrr7dCtefMfEIpgJk9hJh9QIvckZiQ3L11VT1bDgACpJSzqaaSmWmaSmuze7Ta9lrl7S2lIpmnebZm3tWBRiS4WrSRV2roHqYmTOuaU2LAQY79oYeLkTdkgThM1mdX+TFhcx92iFHcgjlCeEC3jIPNeHQjRy4yJZmyEPV67LVpbVZbhEF3VA9AYAyhSMPSMTMzmFtVbzaulVMK7z50wein7MXDjQemL2jcqx5uMVrznyYxAQTBBAW8qKo2bwe6I3sYqYIhWFhD6pAQkQFMPbZeCwQYufXW1c2paq42KQCQO7kTBriRarSmoBEeXc3tPFLHPjjlJCzuPooVojEQE2r+0R+c3eK/ucP/N69hFrTu3oVZJOVpmeY2z4eqE1Fvrda2bcfbbfv+enu7by8v9/u+5yTTPM1zAYiuvfVaa+2q4fbymgjgcs0jGMjcEjOdOoMGZilznMZ3AiQ46SHDF+CO+PErfBRcwzRGOKLUBv65h+vHmhLPcdkY1yIxsYytcMq5cMpA7+zaAEF0ykYRiRg9E8yZBMK0n14pIEDyMfiFQIIgpJxlMikTpYzIBMbMlIRTyvlkojEODtNQ5EUgcZLx4PXejnrcb7ckst3vrfVamzASwZRlmn7sXwkhJxICES5F1pQmQeEwt/3oDjBiqtwhTAGgTCk9FGN07Chpq3rb+7WQALoqWkNwxJHbYxDBhMzJQwNBfYi7elNVdyCIIAAmDCaPMeaHQWkPc0WHse4FMAh3Nw9nJC48Xed+ne95V/qBUyXElFIpZVxPhDRkBWb9uG+1a617BpUimRkJFKJptwhEIhr51qNYG7X4cOEOoHDOOQPS0dpt2+/b4QEpuzn4GKcwOUSrx8tW//H7H39++ebWLpP87Wn99WFeJVL0IbrSeCc/vHP3IUbWhMFHwuj7uRwegD54GGman//+dzJ4enpKOWvrJ6ezSJkKJenYAYJEUpY0ZfDAocMDUjez7urnVTbu7bATXmU93AixlCml3Mz3vd2346hdOCURlsF+p0G21taP+73WxrJZPdC11cd5nSNM295bu23bff+R/IyIIlJylpTcnYnC46h9XD2IKMJuSIjW2+12M/f5mJDItAlTzqJ9YmboXXuTlB+u6zrP67Tsx9FaZ5F5nlNKYwE3dPvnyBXOzCYiloQCTqNg+ek9NjdT7z1U4WRvqgkBiiSRVWSUXz+OsRFEGt41amvRJROyMAsDBRCFoQ/ngAEYJMokKQsCg1K0ZmMQ5R5DSgUQIpQSM3POZZ4mRGqtfZytIzgzIogAwNV6a7uas0iAkxAnmdYyyexq9O7N7a3/TE/F93jUvxzJCCO9Ck5jPQmJBx1H37bj9fXlOLYIJwhkej9j4f2TjffSYVxeMLZEI36VEAlC+9Ha1ns160PEkxIzU5gFIBCY2b5tDJJTmougf+/Hl/3+Z708lFwA0FRND+13bZu6KqBhUiA1N+UfyhEAQRCM4ScvuSxTWPW5yJJlycIQGhyLPD+U7fMyb81G5NO4x8abw4RG7gHuyCOjFCCi9/4+FyMgcncCiPCUU0SISErJ1Mx92/ZcPJeSSkol69m7gweBee+uquAjNwxIWJIgQ23HcRw/X6BDd+vmA+UP70P6cfG4D6hs+GjJEcMh3nl0o/SoTR3AUcz5cS1lSZegcGyHau0GQIBCQAiZkAAyUxaaMyGBWniwUPDAEBnYWAAEjWYfAewc8eGJEw3E9zrgX1yW4g5q2BsdG7VDTQ2cEBk0HFuzHtrcqgjMl0KJzK1H3/qeyRNmYHBgc+gdqka38Z8nCwYHaB63Y9vhXMOFj4fKzccsNKUkzO2oZqYK7oaEPOjxFmr9JIZ3HRInOF2L/zq3PJ98EkByV/eOtFAQsbAI8YB9eGvt5fXlzy8v//jj29fvr7f73cxKzp9/ef6P//a356cLuFngZZnN/Hbfm+qfX1/NbJo+TSk/P16XNhNTEkmJAKypShNzD8RzcDQEMUMp5Qgw9PvxPkuyGCIwcmQeuQhuQ4HwIz+FiJZpWpdZXIpMl3m5XJb1uszLzCkLJ5YUgN3cI5ARU8HCjHMiEAIBA+0dx/M+dGfigM0swAmBmCQlCZc8cSrIGdEFKfPQ2RRiGkhOwkhMMChhLNO05lySoIUex76t8zyX15f0/ct3VZimlEQAcJ3Lj0kMYcpSEjDjNKe/Py9Pl1wK7Ef9/R/f3+6tt9aaIgJBCMblujz8/VdZpq0fa/aG8NZazgKIgRrQzZtZaooWkutNSMp8ySlxZuhoLbpq62bhcAqZC7OEK0TvVq2bAyFDuId5b127ttqsWzgQcS6y5PQ4LQvn4+WgpcBfLpjThPrjT8a+nDkAa2sRGkUQ2c27+n5UgEBCoTz0kBYKMfy/SMNElSSlJJL2o/7xx5eX+10tcimjdtyPpoAe0Vy/fP/+jz+//1//n//59cuXp7X89rD8j9+eHrJAqxAqSTqjBwZQEAlzzsyMppooEodQ/JBkxnlHuDsGusNyffzbr//9ulwul0uv9Y//+q+3+8aCwQgO2lRRnSBOFjV/xBuOfwmMjDbj0DAL1+5112PTdnA4QiRJy7zmaXl93dQgpemy5pIzAal17b0PvWLt+35EOxLCOsmycOKm9eWlfXcz7fU4bvt+//lQHnN+Fkkpj6Ogq8Hb3d0TkQy5ZASGm/a231tr0SsRmaqI0GUpuSzLonbXVnGefvv8t3W9msF2HN+/v9bjAEQC2/e9N5/SGAYjBPTWAzwJinBKLOGgbUy23ksE86bWrSmYEwIDuGrvoJ4oSV7X6XJZWU69AiGOXoJIgqJpj1ZFJGcquSCg9sMbhIO6HVv1hiRc8nDoizMd1N/0pgat9lZ6LikgAJwock7TdIpD4xxjY0QMQUxAkI2Yvd7qoe4Zixof7ZAqk05TKZfLJSGP8bHZLdqAwsXwY+J5Ov/lfHYPsxrIwJkJOSVr9vL6+vLyent71d5ZeJT4SXjOAsQeADRmOsEUTE5gBIQnjhEAgJExwHpt9V7r4dZxzWlQeYgVDRFzToD+7eW1HjJnyEmWyatt+/7n/f60XJ4lsva9H9/78V31reOu7j1K76RVrFO8dzBEOAllpjAP4mW5MEmo5RTgzRozIwNmwadLFn543drXWztGwICZhgXGSIUOHQCB93GpMOipZAPwEeOkvUVYawyI7iHCeZp67611g2BhJpnm0gj6cXQzUQFEd4pgpGDhMqWppFw4QF/f7q8vL/09my/eMesfBJdTHwdnnxceCDjY5kjjuzK280LA5qGqvete9eWlX65LKZ9+eZ4/PT/sDzd2Y9Pj8K5YzkxWAgB+PzcjAJARkREQVLs3i/GfilPzOszMhO/AynE7xLvg6l8EsdK79xqt4vgrDJmIZOAcTbVZ3XrdiSDAUxZHB6LNfU7gKXFi5BQKY1g6EKABaB7WtYOZDfJZIJ3++KEYYWYRoTNjVlXVDH8IxIgAPU6Nnuq/8W3+t69xur7venEsbAAgzHqt2+32/dvL739+/eef38bCqGsrpfzy6fLrL89PTw/LUu73u5khhBDmxC289Xa/4+tLXpepJJlKliQIaK5mFo4AwEMpN1ILYLjGxsjuPXQT4p0SFwEwsHjDXn1+ZvCT0Q2AiEpO6zxnmpayPj48ruu6LJJSgnMuIwEIOKSjyIzCkBgTAYFHr46DQeKAOHz66lBbc3DJKIkjpKsf3aq6OQJx4jEYTFISsCCL8FkFISIPuiSLcMqZHRgxInT02Vq7aZ+XzES9G8uPax4JUsY0gRRclvTrr9e/PS/TBPtWUQHp9rK3qh0RE2Mq6fK0/Pq3Z1mmb29vYMet9W93T1LWBJ6AtIk1MOkKEWKyu0yeSpwGr48v+VifnQwyQoMA9x7azTsgoyNAqNkxsvUOcwMMSDmlkmZOeea4W7oWKOnnIuZDPfDXooZERJnH2ME9zOPoVpurBxIYRJh3C3dD18QwJUnnjZLylElYzfdab9t21JanJZUJSNTDa7fhP1d7O96+fn+975WYP//y/Pfny8NlKuC9e0SIIAKXQBpxuMIlEdGIZfJMLhR/iU7yj5A/cI80lc9//2/Pj89Z0vb2dnu99QBI7Ag9OoIRsaF39zgrFhyonOGnjHHywZlxEg5IJCnFPE0I87qWZZFUAnA7+m2rtZudZCv3M2XaMYIQcuJ1mZBoWUouTNB7a0dv7o4A6v3fgVcjEFFkHPpORACB4ExMhO5DjddNm2vzdnQ3QjJ3KMVtRuZcSqr9qGq9M9E8TSx5Xpec8+1+P/a97vf92DLHOj1cltw1IAjud3crRVISZkTroeRjxzhwc+Fqpt1UceDDAiJcSagIzSXN85QHoOL94RcRyTlRZlE/cYfqyakgM4UziIcLKZym9LNtQmAiEiYgEg9vre/7/n4EGjOvyzova5ZJzQZTkgmDWYQAGBDMmE+A7Mj2fBervLsUU0o4g/arW6iZdm0jLfLjafhrBTMIxmZuABgOFO7We7vfbm9vb/XYMUKECGl05K0HoHfzceYThlAM21yEgRMgEQENvq3ZUItAaGLIiQcfa1QLKaV5LsjytrXeTB5TknK9lNQB49brS28bE/X2pv3V7SViBwIgQS8YAV4h7GMFgxFg3XtzFxZ6PwuJyE1bb8yJEQLRSsaSS8rUTH13dVXt1IeFYyiozLqZm0EMsj6MKFYLQEA6o8gMQrWP6RaccWDceh9WQ0zIQslFO4aFuiOgnyhCG3hlYkyJQbvWow/m8fvrA337MbcdAS1Dqolj1GZOGER4wlMQKDAcejcI0OZ177d7bR2fnu3hiZ+v01TSsVVwfHupx95P7f1IDzjFYmCn0RrN0QzHxuqEa39Yrx0c/Zw3up/n7XA7/ttKRure66H1cO1ElImY0EmAUwS4qzfX46jedd97KllKtjJLkZ5mKg+FvJbD/RRdDHc2IKpp3XcAgymLMAEmOok9PobOwwAb5t1bq101Ig/bLxLR+ygAAM3d3eJ9mPPx+rhEfhxjZ6k3Zg9nYeBq7Thury///Ofv//jjyz//+Prl6+vXl3tXyyWty/zr5+fPn55Lzu7RWt/3Y9u21lpiTFOyFq7tv/7xz3Wd//bL89PTw2Vdzf3by0tVIyoplWmaSsmj7qMPDdLYE7mdGSVMAEA89DLxnj0miEQCHMI/UTsRMIksy3SZnx+vz7/+8ts8T4B9mCFH508ITGng9FOSkiUJMTpo664mgiMBHbF101pbs70eAFZmyYk6yX07vn19fXnZjqaAnEoqJWWhJMxlQkkwVGxugMicEMnMWm8RBGi9t4GcEpGHp0cIz1nMtL/d7CcaERLwBGmBsuB6Tb98vv791+ucsR6dcZLpe/v9j77vLFhKWi/T9Zf58jQHi7/FcTQ/aigSRoVg8DIl1kbKaoAhpof2Aw853OtgxFMws0S4QY9gBBFBIHBVOqsuirFkHfwbcAdTMB15bCwiOZdExDlhSvgTrjvOMC8bqqwPGQEh5ZQsJUKKQHWP7re9aTdJWYSAqXV7vR+tNkFbJin5Os3z49PDZS7Coa3dtvvrbVfANC2Xx6dpWhCwW4B3R7bgbvZy2/fWL48PhR///h+/PC8pWt3rrg6ElFiYeSIvHkQohCUBDuVl8old8AOeDBFh6q4OGTHQzCJApDDl1lpvXSSt8wolOUPVBhRSuJt+v70dteFQ0/iYSQ9HM1AwBUNgwMClXTglJJkJnj8/Lw9Pznwc/dvb7cv3l29b7R5FJDEzoTBmkSmnQHQPi5HLFBGh3ptqa80BUhJiSpKypJ83F/gulhw1kZuBO0EIIUK01mqtRz1UG4ELOmgbnE8Eal0dkFNKKdVmrdaXby/hmKdJksxzJoqwdtx13+8wpfVyua7LvK6X5e3rd+m9l5IQSbVbuI0lHoBjKPooEC3CA93dIQhN0GaRx7U8rFNKPx58OK3UKadceGrSOoW7t9qYuKQEOcUIHWASTBOKDsBc92pNyZnNIETEQ7X3+5vVejCih13Wy+P1ablctLvum6m66jBdMzOc0tk8lanmKacK0ImZmYukJAJurmoESDQvFwC0cDU7evUWMBrlEXrwUwUzFkyu737a3hFi3/d933prTJCTXOZEkruzOrmDqtbWu/UwzYIiIAxI7qHeghhKllGYHrW/vrVt7ynRMvNlLSxyu3dhe1x5veT5sqjnb5u2Tpd1Wgo9Pj3OvVdX8FvbX8HN9SXilfONwIWvHqv7UuOI/RvDge/7JDPd77ft7Y2nhTOahTbtHoDRTFvvBEY4lviQJE2J5sxHD3XVBkGAxOPotog+iJQAgWTmvavq4L/TRzkIEDG6AUCA88/HcrC3FuYpZWJKKRnaaYwPikDVUG0AlhBkTsLcIQTsp+ryQ+HwUxETARAxYCyOZ9I1uSBzolJQAK2ZqtVDjcHVXb0eXWP//evbdC0Pn9br5eHzfyPhNfGfr99ux9G7uToC0fDY967qYQFV/ejW1CBCCFhGjRJuru8/y3v9POpfR4CB8dW/4u5kvJnWVdUIYyQVAA7Ptlrv1t0UtXM37ApJETpQiysTPi5ZaF43jKhNTbuqSk6ppDLP4AZuqWQhjgBOaZpXYWqtuttYnZt6r621pupAiZmmnKecaKthOur/c639s2Dsf/sKCDf3n0IaguB0lx73+9vXL1+//Pnl5eW2H5UYJk6llGWZr5f1cllKKeYagWbWWtPec06I4Ai1tX3fW2tP60SxzpkCaL9jOGMqyzyXklOS0x/6rvg8eTHn8gvPuuP9kxm/z2BRByCwEf9okomw5HS9rE+Pz5+efn1+/pxzbv3ee0X1GBDrc3gThJSEc85D7wfgkBKBO0bXVnvXHm7SmtejQyhodwEm3ra63fd9b02dSSRJzokZeUQOC7mDmmprgCIJUNACzM2MEN3GxoaklCUXQABmqL1KU5L0cS4T43yV6y/pupanT8vnz9dfPz8UxlY1IB8Av7dby55nWef8sJb1MecZa7de6/3t2O1oB4FDDZjBL0tLraVJwiMgmR697QZ0eNReu2vACPMlwkBzJBJhBHRDUiAemCQfEj13OIOcA91GlYxMQsMd0+w4tLYf6PH4qYP5OA3gHAGKiHBKEENWb0fr7p7niRNZ2KF9r9qbFoHh/DcPyTmVEt7V42jazJEHm2Nlyb31kUQTCIrQ1PZaHeDp+dM65+vzYxJocTMDn5gRtWQmJnGIEASmYAZwA3BKQsL/olc4WZ0OACAk4xUA277XVstUJEtnVAxIzELzOtV6vL7drRkM5dfwlZxUEkJgJAInQCCWMuV5veT5ugheLosslxa4tbYdx30/7vte1XaiImnKaS5JZMivgRgR5Ux40N56r9q7GhAxCBElTkJCH5R0iJ835eMDGpr20U7U2vZjP45De8MwHDVSIIIEROtqQwEAYGaq+59fvmz7kUqZ5mmaJ3fv9TDtEcHC8zw/PDyUUgbUZ993YTb3GhDUkTmcIUIHiDp8MDliPLFuRFYE15KuS1nnIvRzMh8AIJMwp/eRdAASeLhqrdUH7BeH2RozkQCc7h4foc4GCMzEKAQBCNYtRi+BMpe5pEnrZiORz3S0VYQjloIGMzalwlLEgUmSSEk5i9CY5/g5d5ymZb1o6/2+3Wo7BqHw3w9pRApkC1BHQnSLDm1EDsH7wDtnYcnoCZ1NAfxw2633CHOi084TQ3gahJglJ8kR0Lse+9F7vV7wsqZpYiQyM2G6XJbrwwOmq1buVoEoaJE8SbKkOxzgYL0fDhReGZ2zCDPSJeDiLtDrDv096fr8UtV927d7JhGUc4VKREIoQiIkxOBhnTBEcMq0FDl61OoWfip5mUMCGMeXwd8PlNOeFfCu+6CIAAMbvQXQ4PkCgBBH+EiQH71+ypnIemtuNm5JRB7XfngMMcq1lLWUf4lOi3e63cc/vp9n72q5cIQQhiI4ZaKA2kAtjmYiqAZm0Hs071+/3pZL+fXzmnnBVKZlWa6Lag8Mr2oKJ6U6QB26ugZ0dbVAgCLIjClhIHSNBu4R9q4wdg/AofGhIdOxfwOPC/MACKlrtTAjSznY3Lxb07qZViRYRRhIILjv4Eco1gt2/zWXdaKnTxzQ6vd21H3bFlqXyzrNsz08xMDgeDTVlGVaHxIT8eamhGGudd/2/ahV1YBSJOGny/y21z+/fve6q6N3I2CmhDQwMf/HOiYitLdeDyCh3ky7A4WbW++9Hvv++vZ2v+3usSzLL+vEzKoxT1OSxCJpKmwiOREP8JEPMlhvejQ9ameI2+1tu5TnaykpPc5pmQrky3Jdcsk4YsVGdRI45qtEjEE4PEJ8ugQjhswtkH6yWbEgykfsABHOU3m8Xj//8unx8dM8r4AI3tCcU4CPEZOFdYB4t2y/P+RE01Sc4AA7qr28vfUemVYwJiUw0H4EGRP1Zt7dDZp6TkFJpAgARBiEjyXf0fpRWwDnWTnPJJmZz/U3AADntEBGIAIID3Xm+QLTeqH3AYYkevilfP6Py6/rw+ffHn759fH5+SGHH6nXjtdWr/vFH/j6OK2zzAJTpqBWDz1u99v3u7W2ZXLFGviAgdc2NxVXAkBv2vYeGYAPgNpbs06AQYBAhCNDGJkRAYlBGEXIgyBGezywj4Qg79tYIEpE4ob3t+Pbl9vXL7fXT7vqRxbMj0nMqGOYGXiww1hSyrlEODBZH6xnIElAWI9em1kApzzNIoL7Ud/u26feiyVtrdZuAcQpF0FJgCcK1s2YKBB6eO+mZpLyw/VhXWYoUsFt4pB1lLONABHIfbgcHAcSoRtIFdd0BKePUQwijnxS90hM01zmZUGhau3l/hbanq4XIPp+3M2MU5mn8nBd78imXvd6OqIBCYgxjXiNseYeqyFiSdO6zvNjknkseQR383sbsZHeXQ9t4NClI8/sED2qgYV7uCGYuZqpWteRbw0iHEEIMnyaH5uLiFBVtQ4ACGHmHi5MIAIAqnrUum9b3Q+tzbV7uLkhsZSMIr33plZra6313lu3+9aQmBPnkkspSRjcIXyayvVyLdOUSxGRMZtMIr1r9IaEwoI5D/WNdzu/MBE+3NfgDJY5LnO+LmWd0pwFAH8+2caMGpBMw8ElC4oIEQIex96sSRFmYUJBPgV/RCM2z8wH34EYkqSpZEIaOcJmNpLKQaMftW81ekNXFgH0cDV1R7YIQEHKRELswilzKTnnAeTz0FBCImRkXtZLV329ve6talQfJM+fNYtIgRwg3UgdMxPiebwwj3s/xoQaiJkyQOJEgVEPx+geaB6tKyOKkDChcMl5ntcsk3m4qeoGUZe5rAtJggCULPO6fPrl13V9fNlK1wAkTinN1zxTeI62sR0RuXuM+UfiKdMsUoguAGzWOvWI7m4fl7y7t15b3TFPJDmYSSjlVOY0rQ/LdZ4TovUKDqGJEIQvU64Ku3UIJBFMGZAgkHMSN+sxojiHTnIcqTg2JmakpwA8ApCR0B0REJkoHNwt3Do2SGmeZjc3NzULNyIqUyFGYRcRcMhJHp4ePj89pHfdVcB78zZwjPih6B2XyLksGFyiSWTJMgu5ewM0j6qgw6oU6IDa7OXrbS705SmBVujoXWlOU6xGaLfa7z2G6CdAPbpF1+jqGDExzRmnTCmxBmxN7xgjfOuHqMwHRigcQP3HhPZHESOMhBHR3Vu8i70inN5ROAAUSEAJOIfTYC2492Nv3TyQBmukH731FkjX1tanh8QJScLUzNXDgBjZkR3GJiwYQ9Vq7a127W6BwM6Y1nl6WKZJWDDMzEcC5rlb+/89iQnT3ntD6dyb9gbI7oYwcMij1AwmklKenh6Z+e1tQ8Cuehw1bWlo7oVpKhkhAsnMkEmE5ykXIdde9/t+n3GeCHxKmZdpnmdmPlnNcOq83xf2SIR40ixHU4g/jOKDX084VPsf3HGA05o5Ii2neeaUIoA5RXJyALdB6jdVd1UE027REzODJ8aURAoG+tFqN9+O3oLJhDQkgskJzcGsmTWPIE5zXqbpcilL0d7cvbUjRuCkGUYgj2VuIJqfrBtiEmIeVPgg9PDwTgFpxlR+uC1Y6Ppcfvn78nm5/PL5+vi8Xi8z9w4euXBZ0vK8RKSHT9MyUYbOQaFNe9Wj9q21aq06QFUAk8jP05Oeygkw63qEJeTciXpYD2ekgDA8wTbCxEQAThiIwYTCFEAjDRhgfCI08AyIiCQBrIb7rq9v7fWt3reT/fVxX44na1QD+K7AGEHDRGREwzQ/mqII1B7b1mrriJSSpJIRvNW27XXbqzD1emhTByLJTICSkMUsalfrWoQCqVo0BUTKuazLUqbJwjUohEjgPejRAYOHvhaBwBE8vDtNXRnWoOXy83ZsKBgQkJmXeVnmhZlU232/gevz84WE7PDullgQJXEWThgEPnoKHojRE4l0EvvGGMSAcpqm5fr4dFkzxr6/mXdkdhFIgkJBYaFq5qhJCTVaKGIMrVmcibVn6NVwW72rPxAd0X+cBu7eeh+RXh9rvo+nzszGMsnOFPoT7ic5lXUOlO1otdbe+5B9mFlv3QNQiA9ikpxlynkqeZ5LzjkiTHWo9emkm+OIBaBwBAkwQzC3d50rvv9AIIFz5us6P17XyzrPczGHn1fJo5QGpEGeZpZzQIpgbvCuYj4Vf0wppZIzIPWuql17G79FyXK5rCVnBLDej+3IKYVpP3Y7duiHgCE6umnr+3Y/uoXkcRYxj2A8YuLEklPOkscn29URgCkNWXoueV6W2msA1qOOM+Kv5/LwI8OHLvB8ToQH3zyAkAaLODskdTAj4TB0wEGV8lEEMjPJCGkoTKx9d6tEnjMNwF+ZMmBCwXW5crk6LRYEEMtCOSfDaTPSDtrZIAXJCMoELMATUELMgBlc3Q/VW++7av+r/iI8vHfF1pHonL+IAApQziULKIWh65RFDcylOd6amwLyoC7hMJ2TCAAMNCMiMjMindDcgCHhOn/1IaJE8FHm0I/oRu2dhm9nxMSrmisGcpKUGClQMAY3uSyXZWGmv34058LgQ8Rw/tG71gHe0+6KYBE0QyZQi70pGiBEM7DArt5v7fu3/evXOyHyyZazHmjELhxkjmbmatG69+7dws0JITPORUoiIgzzD9Xox1U/ZHCIjjC4H/+77CQmQPSIBtAkpTGWQeSSGRjILNyq9h5dUJARLTACXNXa0fb9YKzt2Ov99fb6+vrt6/f1+fG3//yPaZrq7d5rd3Mk4jnPsKTtYIz9dtdeMcyHJaGPvQSCBTJMOV2W6XGd7/fD+36oaqu9VtdT//Px+rhUPv7G/N3wb916DZJRmeZSlnW5XJb7vsOhknkqBQDNfLfj9e0eiK/3uxBQqAg+P126Tk291S7EUHKRSyaX0HbU79/fWu2cqKxpyinlhID+HooRp/xoaPgQB+7/NOOe7z4CD/srIL1/XPRuhz4/ueOo+15PTnwEIokkHG2mjl+113r0tpueKZU5S0m8TFORJZciWTQgv91e7/32tmHDGXhNdJmTEFVV79aqAabr43J9fnj85WnOuN9e6/3Y7rcxvJecL+slT5NMczCrx+BJnxUaJZbkSOPicaCgRIIs6WOqxILrU3r6dfq0rp+el8slT4XDFMEdlCTm6wypzE95KpEDoJq+9eiVVNmCnLXF95fawXGGy6HmSDgiCOM4dmJO02KUDMNHPgl4cweIRJyYmfGdRWA40tcoOVDvrmah5kMYMAR2RIbkjrXH3uJeff8JdndeHz/JSs7jBhEGj9ncTJUwIiRLRPSuverby25hy4i2kwSuHlS7vd7ubhpqEEAsxIDgyIySPfRoTY9GWQLx6K5AOc80FURUtTboz5T4nFEGgiORkyCMEMRzKh1iHeeEU3n+BSW9//AnlJGIspR1XtdpTgTN6r7fwrS1K0dq9WhNwajxkHxAopRTEZYhbSQihyFf1bPnMDePTDnntF7my+MDm+37PQLTtMws+XaT/c6VsEeEdtDd0LqxUwSOmoWBTtAAjkRoDCRCDI/oZs28+w/mjUet7TiaqsuAdZ/WL0PEANDWtDWMIER3IGDOktdlvj50h/tee++D7UJEOYnQqWa3CO3ae0ylcEqSMiId+45u4V7bfru91dqQkJmnWZzRoporCEh4st5VCR3JAVCQZpHrkp8eLo8P1+t6mUrp5umnBPtzT4wYBMHESdKUi6SReACEZ8U4DJcYRFimklNy8977CEE091LSus4PDw+XZQ2z79++99a0bV0t2k2iMoMi1F737f7t69d7VylLyVNJhZnwfSNOzDnllHLvTa232iJcuI8JUIAvyxLhTKm3jsjhfyGTEmJiXibu6uYNw4UlJScWQDEDd0GSnLKU7MBb7YyeJSCjBBKhEBABM7FIykWkILCr9XoH3+eSWKTM17Ksl0uWlC8uiPOtCTTXHjnRelmRZG/4stn9AAhZpyXnxCTMwjKxCCIbIJhbr7W+bvfv+35rtf4QXxKmkjlJV/P9wDCcJCVBiG2rUypP63UqUwIQtLUk8yA+WuC3ez9Gsg2EjYhQAhROfCoMCIdIOdTOtNlRJY9qDwBOmvKIRqcYp80ZVIz9qAeJsLDkZL1HKFJQIiAAQQVyIEqJ/xo78HEIvKtqAYeYaQw5HIbmgSmYI5EnDoQQwdp9r4cDMJMqNMOqZGFvm31/6UlqEgjzbWu9KbibkTO5eW3aavQ+8hYDAERCElFiJ2rqe/Xb4XsP8xMO+k5YAzrj0iEs3H7oeM4ihk4ylSM7CSBhhAeNCCTM5t0adSUHzkhAgRzqgGjoW697z1Mgc0qSGakeFW/bvm0A0Vrtrbs6p0SQzf2+bWB6bHdtjYfQGQBQUmYP8vMBiCTy6enJgkveUrox3eapJPlrs/JvLw8fATGclFW1N5SAMCJIKc3z/PBw2Y/D/G4Q7WjmUWtVc/hK921LidYpPT/M85SXuajZbasYQeFZ8vPDKmj721tr7Y+vrzkfD5f5KS2jiB7yexqRyeFjzwkIQ0RPgXFWLyP1AxARgwZb5j1W4YdUeXy3VKH36GqqStQRZQRJutnYuaJzZMaQPgY/ZqZgBB4RJJTnJLSSPNV2KO/727FV1U4uT1Nh4N7aUU2NuSwPn//+9Pnp8jQJNG2tH82rRwBzLsNUWUow6TuG9AT6pMIpMwsCWpAbxJDTdvs5o4cIysLLVdZV5kVSIhpTPghEhzCz3tGbY0JM7Ghmoe4NQwkCAU299hbJLj1rEFImKjicoFWRG7sBCJ4DLDhBg4DDaDGAHgTBOMpwIGIDssG2DMYIcIQYkSEUTqqx77rvvZ2CxL+8fv4aftQxwfQxfgMg5phKHh4aG0xOwpKSCI16jzghc++2Uwc1Jk5MJMwEIxDPYIgJYlTEvasCIZVh57Ph3UUiHkn2RITDjBYoEWgeAT68jUERyIzEyxV/onb6qZwb+U6JEFur+74drYJb7320fWO6Yqq9d1Mb8GN6Dwm3CD9ng11d1fvYZ6CAJEpJUk7QQs1a1wzgiOPDICYRDpBx13lAWHiEq7mDgzO839RnB4kw5ExjOPOX8Rj0rr127TpGLyM3ziLATHs37WFG5/QNkSRP87RcyjJDd2IeA5XE7DklEQwaIYlqdtBBRDnnEfvce9/ud9fKRNqraYswpjRy6TU0EB1DRCJcRy4iGWMgYhFaCq3ztCxzmRbOE0qK0PjRzACM/pgAmTkFZ5GcJI102VN0Eu8kvXcXQxCAMFGQM4UQWhABoQtByUIgvc0VI3p3qwUtCQDi3mDXut3evn79+npUKcsyr4/XRxwS0x8FO451tXuYdTNVbUg0AsNzzgAXwtSbvkzfRX4UZKNnSIkBBVD1cDPLgYhAzEgSPsZ4wsxzyYFiTpqSSg6pFEgEiUGGIRcFMSEyxNj2N4/IuXBixEkttc4BY87qWz0glICSiCSy8L3y3vBQYi4FMKFEJMTEPIkkJHDvqrXXW93etu123/a9/gBdIhJLFikBacTpuSGXBIhHbbetHlXnlFMqs+BlzubRDV/2KoxnLKbDuTYiQiYMZIeQQDzHLRGEZzsFEAYARBzvhsv3+wLOlgtx0C1b6wlAUi6IoN3G/sKQKDmgnkkN/6rEGJzCeFfGQAxvNbz/CRAEERCB8MmaGk/PcL1pQErshkPv1Q22w/78Wt1xnsHNb2+1t8EsBgL0IDVV87ONH4tvgkDojs3xqHY0azp4tPAx2YVTw3guOU5P+L9MYpCABXPhVAQYYqwFCJ2QiKmghBQXMUxZmMQ6uYK28Eyb991tLeXy+PS3v+lUytvtDbKMsWEpOSex7ixSpgkR99vWjr21A9yzkCQR5pSTcDaHrepR2/2o7vD586/Xp1/etvr9+9uff359/PRpXaf0s3H33wqaiGit19opdTZVU0YAMBzNSk6PT9fa6l7by9v25+9/NPOjNXV/vd9HCPCvnx6eL7JMS5qm3uyojSEo0XWd//63X4TwT+F//v7tv/74io7//bfnab6GAQaomQcwAcKIVDJ3AwIOdnIePuxzZjSwiEgcAkLkY20Ofq7O338bCsjuqXU76uFBwk6nvs8IfS5CE8eSB0en926mgEEkKU+UZswzl3yZ1v+cF5mfDv3/7u2P1+9v4P3zNQPg69bfDlPK8/X5t//4H8+/PBbpXm+pHGVq6giI03yZ5mVelkDaa62q6mDAzCXlucwzpwwI5IgY1Nib9qPfX9/ut7t90FQJWUASEAegRZiaQThiCENoe/nz21dvV1v6U4IlxELDDRqwoRiqBWjrh3iJxDRNnFeRi6uFN1fHCLQgDzZgH0EgJEGIJMgUCF3BTZAKS5CMZZQHghMGMwZDmBuYIxI4hKNW297qca8RwEx/KVtOeOC4PiLgDGmLILcgIpIkI0c3S1c7dmWW6/VKDNPEELHfd0K4LPOyFJFRcFgApFFJZJYyTfMKVMs0hxoihBrYuLd3DxRATmm4HwXjvKiYAnRomdzj/fB7v4IQQzJK+bFOOvX/7u5qPgDWvu9v97fWVYhUPSWcpCC4AYZba0frNdCJwMNMrenPIPDwUTsRC6eUEzNCmGm13o5Wj3rA/b5r3/a9dUXAknJJhQCZGIHCQ8N0bOsGvgaEaISnYgA4QmC4uYUa2kd2UkSEuXZtrXp4O+ogSrfWrdW67W46fDM4cNUpleUyrRdJ2UJLKTq1iiPz2WHk6DKhsLnXJog0zQsStVbdGrmGl3UuIlgyEQFJGgwT6NhcwZ2TQEqqKbEytAQoglPmeaJSCqXinDqIGx5qVX9M+85dASGTpMySEiehJMRMPvhtEOgegGegR/RasXdGCnewjmFDYXrs9xsAqCYRMMsM4ECALCkc1dXNvR/77fX71y9/vt6c0rI+6K+6TBMzExU4mwwlYh9b0gi1sXcDGgHMkkuZc1oi8PZ2W9frhx4OEZNwSuyIqGGq7i1LBw9EYMmAyMIAREglTcilu3X1nt5UG3hnipyYWQCSWRJjN3BuBqqAxoXyBES1kb3q61tHPBCZkAFESFJKLHy7vTkmgzVkTnkuObEgoIRn8MyYmBnRordeX47ta93e9u14u/d7VfupiAFMnOeSZ0AyrQgwdFFH7bf7/etrYlie55QklzR5RMqdmYfkyNUAnSUHkmF39HAHZE4EZNo1IJgwCeUkRPwuSXD3YCEPDEAHNAuMYCInjw4eoU0JaZqEc06MtR7Hsffey7okzA2iK5oq+A8ifMSYaHzUAwGDFwRwVqvhiIFMLERMANh6dIXxr3F1jzCCCCQOFAeD/fB//rHdd72sDOHbrfVm4JgSLxMnxnBgCpSzDz57D4/aQs322tVMkEQGkQUB0QODxvr3XHxFYDiF/2WkNCYxwAycEBMHoLkjkiMZQghyoSmSOzIjACCDdkLkzvHa67XXC8tlmi6fnkkYhQ2j5JxEWAIijJ2IE7Gq1n3f983NmNCZEZkl5zylNDd1P26tR+vqxPM8T8R51rEOvj48Xi5LSgL0f05RijMMYohLXBuMHG83jBCmueR1ma+XtTY7jnur7ezZPQKJkEWwlFRKZhG3EKKUhICXZV6XNeekQLcG9vurqToIciZOSGTh4YHAhAPpF4N4GBQRYWpwFtInznJUwMGDEAOj5Pz5okSklGeRYua1tQCCBFkmIhncznkiEUQPM2u1t1Zbq+YGwMgCnIBzUGah6zR3yJ/uujfvtffeDwNVv1frQdPl4eHTr58+//bwuFp7bb0yJ04lZwgAFiFmGMN8ACRKnBIXkUXSRJICoPc28jx7bdtxu9/f9vut/pUOOYpuSchyxs6NhkSI0KPdj63uUILTtEwJB9OSAwpQAYYQhERYVrk8revjY1keSJZej157q86sUJVQ4FDvfQwax1eaxh2qDUOZAJAV2cPVhodJEpECYGiYgYegoMP+ut+/7d//eLm/bhSQ5adcm3f1Pr4zW9+v0BisqoBBgKNBdzoRQYxrmZmR2HurropMOZV5miUxgrsHEiMzS8KUpEycChuQZOA07HYAgO7Rqjk0APGCKREJxuDPgTACsOPwp/gJhsLz5xuK/oB/68Y8TqYBcQS21lpXRCZiMwSnLBnRqxuAd221H2pNrXmAw8eXPQCCeOCqRogYI6CrtrrfCbTWox21d2r1UG2q7s7MGfKQBhNiOPo5xR5h1u6ABG4OgadSHhB6QLeRyvKD4QEQbiNvqLl56721dhxH3Xdthx6Hm+JwCBFySnma1+tDWVZDQDRJSVIxDwAkwfdOI4KAECAzIDGBh7t187BEbhIQhMSSAB1ZCBmHeWZMUogAYpRm4Apu6MBIOaVUJkzFKB2OGNAMe+DPygt/rwAAw4dGB7u7o42m3AJ8MD2EKZgZPESYBREgMfMJWkVTrfsRYSkJM0MIQyJOiOFxNLuHaTvasbdWj+NoXlt3Qbqsi7AwMxGOaAIRed+Q00CjeLg5RpAIEIkkWdfL09Pz9fooHwLSiN5H/u6IjglTq9UsgolTIkdE+n/Z+7dfy7YzPwz7bmOMOeda+1JV5xySTTa7W1KbltIRYuXBCJAnAUkMOA8xDFh+9XsQIAH8ZzhBkP/AAfwQBwhiI2+5IwgCW61INiQ12+pud5NskuecOlV777XWnGOM75KHMdfeuw6pll4CJAAn6xTrsveqteYcl298vxtHMIDklCnPySM1S+VGtWl/RDRmZk4OKZA9wty6kQVoZEehRIThZqtq7RoOAyJK4lnAnaipWjXk4C3N96XkLIUwAQhgBhQixnD3qv3S61Ovp9567976gHlf7TBBwul4OHBK2ithpFQCEEC7ttPlvCS8m5KQCIuamXtXtZdoqCEH2tufY0IC7pqCsQAwQ2JEwgCOAByeQmbmYEHqe87zs+QVPMzN2cF8RFIhgpoi0DIvc07sHcAxDEM/mfvuOszuAkYv5jqbaMcREYhwiGfN0S16d92/ZzdoGG9wcNbN43TuTb12EYJeTbt5DxFHhMhIgMS4CwqvVPSu0M3Uo5sjgqTdtttihCj92t3+2xI4EQaiGBScNCfi1DXCQsHNHNAo45Imj9Aeqt0pnD0EGvqHesnCswilab45LEwKrm7zYUmZwdXVGR18txJvtWpXJho7paSScpY0Eadofau2VbVACFDTATeUIvd3h9v72+Uw55Rp8Eo+BV/2EYYIOGDTKacE2rS7BmmvYR3CELxkefvmHkk8gM5oHkQkWZa53Bznt29ub+7uOBfVMHMWmWZk4lxmC6SU333nt0LmDx8udd1u37yd796kw0JZtLVwB6L9mISxB/YAAYANnxgYAg5BBNPdbRpHjjeCm7MkfCbDMh+WwzTPEdBaCyAimQqVlDBTYisFiQLMe+9mQdpjJGbh3mmLwG7OyJLTfLz/3g8IMIN6//CwGkTXzYPL9PaLL9587zu3N7c5y9ooYvfSIzY1q61ZoANxSsSylJymg6QDUvGg2vt6uTycHtbLudfea2393Nqmqu7tRbs3qPBEWVLOiZkRGHBYNmNCEiNo0C5eN3cQzBQZYGKYiY6UM+CMCfDuO7df/ODzz773xeH2nji32s5nW8+9CMClgYKd17bV3jshTYeZCrqph1pfmWwqjMDoET3MLCCVqXBABQt1a50QJ0lh8M0v3r//2cNXP/nl+f1DcliSPEsTr2z5EEFmBqBhaRgRgLBnqJkbgDpAhJq7KzLNcxKirk0DhCix5CQ551wSYAAzE6aSJSeUQpwBxcMcWQNHIhoSC0aoqtlmJqbpcJNkeIebqRHhcGkijhgDcSe++DCTbF37q+wkHz4xBlw45zJNU5asriQpz7MgATA4CiWkCOsGrt5rX7ftstXLwKBGsxj8yjalYbO6O0Vt6+UpvJ2fXPVSqwMkMzMDDyZKOaGRq0U4jORRHGbrBIgWYRbqGoC+m2eEobpB19agve7EQIRZ773VrWqy3rX1dj49bZdz9O7W3XSX7SBN0zTfHG/v7qSU02UNd0RBSaBKQ54f0bWrqrY2/PKBOIb1RJgwp8QsHEAGBDQROROPqnY00He+PkS4Dm897QoumhDlBstkqTRKYYAYHqTAr+rLnTge6KrqdWuhRFdWvZpq8+FJyihMx3ma+C6XPOfERI7JwXdtgRu6R9vMlJIk5sJUGAXMVGuYa7fWPDQnmaYSPVT71++/enyQKZdpnuZ5EZGrtSAQoaSEFMxountWxRXZTEnu7u/v7++F9yKmmz88XR4eL9N8GGivO6yrOiFzKZkreDhacEDmVKQUVqBseb43a2YrRAAl5IyQiChA1QOM1VMPCQxhJ+zgYR1GEEVJjIUllaBikcxqrxeL5vgE0XApHBMAA2ZkIR5bSrP6oNtHbU9hbTh4DaQWPnkqxoSHw+FwcxgyIu29tZazAVjTbe3icBz8RzU9XS6ndd26WQATB0BvvdsVVxmubQEjqzIxZSGCMFNTDRpMccEIbA1G5mAADHXIrlPZdQbWrW2VAtKUyjSxcMrT/Zu3iVAvjzlWQaWwZ8+b2HMcXD3Q98TH51cEuBomEAWQGTRw1+jNe1fTgbtj7+HgEYBAQmiAFtG642pZMBORQLcerq0hDZYtEV45Uw7R3atGa4oAU6GcMSeKwNbBug93pXguqp43k4Fwvy5i9gBrARaUhCQUADYkBuCEPqwW0N374BSHBThCD3jaLgyQAWPxz8uSpyxToRHzxgwYDuAIpqG991ZV1d2Hox0gO7AZrqbd+uXSTpetdUNhHGlkZhguCCXJlFOSa3z8r6vN9k/oEQ6IFO59u6iaczazYRbMhFn4eBAgCoBlnmpTRMglH4/z3d3h9u44Hw4iKUIlwTLzmLc5p1EhLYebN8Hf/d73tnV78/nny+09iQyLBryiiQNQfGFIGbi5RwwfouHY42aESATDGyYCR7LCKx4JlWme5kVyQuYhcond5Rc9oKkSOHiY7a8+DEuRhTgBsjuEDc6YSM53b1Kt/vDVh4/n+uHpbNtWg5b58Obdu7fv3k5TDhy9YgQYkaCOQIHoQHs4r4jkKeeFZQ4Qa1bXfjmv6/m8Xs6tVe3NfXPvEQavTskIyCAJc+IimMxAIRiJOGUpc5qOZTk00yAwcMcAhhxySOV+ciJv4BEg+Pa79599783t29tc5rbpV189vf/5N+3xMksmL5Tlw+nydLls64aIy81BpoxJgByizTNPb45JOBMbmWk4IDmFWtta2ypCCBEDbpf2/mfvv/rJN5dvnrDqInQoiT9x7N0f0M6SiwHZDn/gke8RW+2KwQk8DDESUykpsXBHdHc1Yc6lSMrEgowkwkSShCRTKkFSm621N4seCA4IhJwE0LyDWa2bIvF8GGNskHIAATAFgLmPWQZ7/OAQO9iAy1+IirslSE6p5JxLKsw8Gt8OboFj50oiTGF70IqNCFd1G3IuYhqG3HDN+xo/O4abd9VaqyG4mboi8S4G25WdLxeOdh1ADK9li7CrHQGAoY2EOBZkZEqQgVN5sb1x915rXc/bOrOmWrdtXdfLuV4u6Apho0kbACK5HJbj8TgvCzDH+eIOLCmV2QFdDQPcDAe3InZjSSQCIAwgkiI7O6Wbg4NZACITIDi4hStAABEzhY95a0SQRFKZpuVYjnf5eCdlgZydCAKCOSh9criMocpwN/MOAD4IAtBdW13XS7eOjJx4KiIYcDwkxIk5ZwG6MljMVXtoQAQTCGFhmhLnEczdw1R7q7Vu2vt4hwrhTWutdV1XvpS1HA4NEed5JhIRRiQRYQJmUhp7MeCVaEpEh8NyOCzPackeUVurtZVcGHFKbMrntSmMT8+0S9sEMTNn5gQQSFnSkvPR+jlCkCegCTEB8sDRuqGOZBsIgA6BvluDgQcC8AiUNQe37rZZvXg0EAOrYPZsLp1zylkQY3gIazu5VXd1cyI+LMtxeUl+RsSUZCppKnKYp5Szh1/OF0IkRvfmYX1MMggUgg5ba5e6J5DJqGwxCJGZAMMBzdzNMFBYslBJHGbrph7BKUsuOWcY6dAe6ANjAWIQ5uthHlTVTXvrjEhCklgk52F+OooVM1BDe93sg2fM9toyD9jNZeM6FAeuBOZAAG6hQwXhHoHhsDsM4yBQjVEwHE2ckVFYaLd5UPemiMKChDGi3MAj1MkiIEAYl8IlI1K4gdHe/R9qLdiZMTE6Wf4rNcCIFZScs2R+TuqC3VIpgCJCW7fetTfr3V3BDAFEw7WpVe1r2w6N3+Its/GozC18RH2yDZ+Gvm51sz3PiRzQnGqLWtu61Q8PT2vtQMQp5bRwEsfwcHAHs1B1tTH4rsLVX2MYE+69t7bV3nq4XZ4ezJznu0CSnEvJWagLIRHLcjgctq09PJ57V2I6HKb7+7vjzSHlwizCUK7prB5GGEFo4RixTPP3vv/bqnZ3dzPNJTza1gKCCD3iamEaMGKT1HGnUMUeXXqxCMOIlNLQWwCimp/PpzSd9g4NAAJKSmWel2VKJSEKY+rm5htGD9vCNwwb8X4j+GbshCmXVGZAsUAMwkB1ApaUeJoPeT52kK8/nnXbjnfHt8fb+7dvb29vHUGHcX1QAAMKcAglksSSJWeSFEgB0g27qaqta314fLgMExHCnCiJEM5qvG4r8Z5xOCZ/pmnCQ8EFLa/miDaxoEypwOHQ3t3dV8RL6YIUHSwFC5ebcgc0H01rIGKa6c133rz5/GY5ZgR4fDj9yT/76c/+7Od+sUMuTx9ayvK4rqfz+Xw6mVkqSaYsS0lTmjK/+/zmzWEpU4GSCQODm5K1vp7Wh28+1G27OZaSE2icP1x++edff/z5h9JxzkmIjqW8LmJg1ygRM/s14xUBPQCIKElrddtWdJ0KJ0EhyTmlLCWVaSo55UAkxFwmSdkRmGiaZiGCCOBEqTSHj+fL4+PpvLWqDg4ClHMmN0aO2trWqOl8lXF7QGvdPUYgaK0tIiQB0aBADvfa2GlX8FIoHw6Hm+NxLnNOg53jtW+X9fR02RLJTcpLzjNiEBMN5za4BjmkIEBBTjyIRG6DG2QBgUBAYpQC0IkcIMhH3SfIBs4RMKgWZgBAQKN9GebR3Ta3bq4BAJxoVP2BBmSUpCyFJSWDm5tFZN9gzGy9nM5Pj7kUyflyWdfTqW2rtsoj63MgzYSJp8PxeLi9lSxqu02f5DJLSdNsTXtr2pogi+QJl90KHWEYfzE4EyCRmqk3izB1IuSSgDxq1ba5OyKN6ESE8Xwn5HK4e3vz5u3dZ2+Xw4IsyMN2NqwrpvLJghZXb3KLPQoL99gYU13Pl7WujpGKxM1ynKYwY4hMtAg/a5cAwi2DB8Ruw5KYMhOGqfZuXmtb121d17ZVNyfEJAyAjNC2ermcL+fL+XxR1ZwzkSzLISUhFBSiYGYnMh+4FiJAEEHOKef02rczABAMo2dmXsQhfTxd1q4RGzMgFpEkklmESTDYtYcBoeR8QHjnXpEoUALzrldBGmUwoo8deo9uVxciYs4liXBA9L55X10vrisT5ZwTT4HJHMGU0JY55yyqtTfVvqqtGAbh2rswfv7u/ovP3+S0d5WY+fZmuT3OSQDBcyJEQffE1DV1TbWtFrD2Xs04C3lS99rMjEbAKhNzokFr9DBwVPW2VQwveeTYU2/9UjswleW2zEsWttajaqAjOrMj7fGTECDCRNVdzU1VGyFc0IQpExI8nh/RtT09QLSG5N2fKZcRuJPMduoNDgeKuEqU4Gp3a44RPPzmDFAD1MIc1GE48gWOzgIijpSboVRxRGRhomQWzbyaW2cx4NhzkjXAgoF8KjhnvplZGFpv4c5IzDSS3s1jd3K8HhGfT4wvRcxu1T/0+NoDTHu4AwrQrvi2brV37SPswTF2rzVyxQDg0FPSc9cMCAEJYPD8SBiJAggZAzU4pLCZI7IGWwO1Vms7ny8fnx4N4nA8sggyA1GMZqUPuYO66o7p//Mvd9/W9XQ65eWQc2pdAYDDkVgkSUpMSBAEKsRp1xrQVqt2hQBV126cQJAlMexIkKmN1oKr+rptgKnMc0Esy8xM1muE04iFh/1pjhCIb0FeMcRTbQu3xMJEY/IFYmvtfD7Ny+WZR4JEKZcyLcM1NYJwjKRrpqjvzNJBdAIPhJFzxxlJPFBH+qFD6IhVQWYp04K5nLqbwd18mO/u5+Mx57Q2NdUIRGTkhGwMNAxkkFMg+ziXBrqBu/Vq67pt69rbBqjDf+VKXVfTZr2/nPiBBBIqb6f+cDmtjjdl+fz+fp6XJS13jd+9XRvFCVdIkYMpGCVgkjlCMlsPZp5v0t1nh+WmAMLDw/nnP33/Z3/yi5/+yc+h4yGX08eaM9XetrqtlzXcUk5SMs85TXmaMjl+5939YUklCVK4dXfXrqaKAUnSPC2MtD7Wp2+eLt+c9Vxvp3mZmJol+bYc6fUF1/bbXheIAHN1Be0pUyFJIkmSeah7Epacp+WAiChJA8w8EU2SScRUe2BXX5s+ntfzVg2ZUgl3wAjGcA4HcEBDSplEeKDoSO6uZtE0wnsfVoo85DwRsOc1or4+7u+75pXZIyLh6q6t161tirxu0yY5EaOkgej7cJ8FDMT9d4O0fjW3cL860wYiBDMxy9DkmerQ6TESI1FgdA91xCsfPgAMQgfXBhGRGFMWECRHI0ThPMlhKSyUDOelPEtG3X29nJ8eHkbQ+7qu27pprWG2J8WbeQQBEdN8OByOx1wKdss5exBKVsfW+0bVLZwjszBhTgkhdCxErhCGYcNn1dwj3PZEV4YwMLO+ed/ChwmRA6KITPMyLSlNx8Obd8vd/eHmJo+IEkIANA/ETpJf53MRIg//HkC6EowGaBO6p1QZGCr06+ESzBJBIYJnK3BAYAYGiGvm88i99ujd1trP63ZZt63Wrh0iiFBg6J/clABBtevFhjLLLG5v27IsOUsaepVd/zvG0eBqxLeWaEacCx9nOU5ckkSgRYhINOtdwxuKIMbwLgSI8dmGywCliSjc+87lQgEA9GHk4xY19lLPMFwIJEspQiScBQDcm+mmuoU1wkQypXIn+dZw6k6ILQzRC1hyba5tBBxezZ44Mc/Hw/F4w/xcxNBhmY6HKSdJTIxIRMPIOAm3juraLR6eLktO97dLbX1t2tQD5KrlliCgAMSBRBOTgRmG5SQ5MTMHYJ5mA05lGim/Gr1ZdB22vg474Y8gQHWffD66sUaEOphYAGrR0TXqBhw8qD+fcvvc97PNkAPhbjk/tjFAB9VQdrUAANVoFt1BAyyeY+oIrq7ZuDuextUPPRBBhIUiANRDdQC348ODBqgHAHJCSSP1OdBHHxMkoOMnC+/u6vWKvPN8SYwIbDNVRTU1r5si83wzsXAEhLm5mY9UYIKRz2MW6hg5SS75JqWjurQWbMEe4E4xUm7ZgDBnWaaSXEYWVrdW+7a182l9fHyqvTpGWaZ8OOR5CkRVHU1rM9Nm2tS7/QvjH03tfHr6+PEbTOlwvMksKaUkBPtRkgNATXvr3cOhBkrO4i7b5bxezpfL5XJ789kXn8utADENS9bwsEHXpNZ0a4+B5EGSUu4QzqGKY3VAvvqMICE50HAlIRwq64ARhOCOACmllPLQgjpAa9t6edq2yzCzAgAkymXK08xZmNkccKT6EAsn5kKwEDiAW9e6de+KiAE0sh4DncEpfPCxyBxwj0Upy4K5EMnh7WfH+7eUkpmPJigGESeSIjGsCUxtrBFIY6+hILBBnBwhqyOVDcPAXbtu9bSu53W9bJf12RoaAQm4rf3L9199o5yQvvP23f2bd29u75iK8vzu4aTQDkaajVkQw8mADVkpOQmngsu9zEcmgct5++VPv/lnP/7ZT/7sq5//9CMFFZGPH055IOYRHp5ZhHikJ+raKvdM8vE7p8ON3L7JnKB1rd2gRRJ8c38PwMtSttP28ZsPH79+gG5LSjdLLhDVzKPHM5Z8xW6Gae8+JAevFYcOK1FOTozskkopOeeEgOtW162VkpLkshyIyABb1W5aArICMmtE7bqeTpfaT5fNHPJ0oBnczbWrNrOuyJinpRxTLmVeJBUWDhhxQd5aG41ARHC3a1LH0LiCqu+S5TFfzC7r+nQ6WYbjdExMIAl3vEvN9Xw5i4FuTUrBKflgtu5Gx8PhNdQUidAZAcEBfITIBUcw4ijgQnvvXs8rM/nhSMTMiSmjNexGABB7j5rGBCKWHB7KieaDcJagAgKUUJJMOQECV8zpJTTRzdbT+fHDBzMXkSEFx92DnSLGsTKAEEXKPC2HQ8opifutNwuW0tQ+PJ567QFATDnlXPI8TxFxWc+1bWFoGq4d3cdxKMIJQBiToBCSuWkDbRHmALV3BJAyTcvxcPNmOt7mm1sp0ygBECGAHJA8EEnyS0wHAiaiRCxBwpxSxkSurq7WNTymMpGQhgF5hPc+XPw7QzCiWwcIV0AAGkrc2C2bHMCRmvZL7adLfTpdni5ra0OBC0zoABTABDkLwqG1Xrd2uax/+Zc/f/j49Obtu/v7+9vb22WZcyYkNHWAIKFBMB1i9qb1ee4nxrc3pb5dbo6LcOoKGnhzODQF1d5659iEUDgncY8WjkTKMhr2CRAQJiaEwb1ys6a9166reQNwhCEZolIkp8SyBFA3bXWtdnKtAM6SUzqU6XY6vOHyxvDQnATP1i/raessHhjWEjHz5BDOmKcUlCUvxPOzBykTzVM5HpZUJk4JA0IdHQRQhCESc67b+svzg9aWRSLi8dR6H4zCnHJB5qZ9uNsh0EAhU2K0oPBwAGKRdHN7Z4FO2Fszs23dLlutW0W3YdJIAO7qDrXV2trYp8yd3Uf1CtrdLKoLwYR4zHmZpzyVV6kje27S6GhEhI/As6tLxdWqFTpFFVeD1nTw+RX2zIQdFBn1CwIA0tDdRIRD1xCCkoCYGKF1X7tZICd2xHGoM3UkcGRDaB58JUYwAiNcnYoYgIa5MABC+N5EelUNyADBhuKcAsFHfgYxEzOa4rV9LsAESIEUHhEdkXOab5f7z26/8265WZIk6+whVkfeRxA70mZRTUIWFk6ArXc7r64XhejYOoqzc6Y0F0opCLWbme6mWWbWdShY/8ouzP5Yem/ruubTiZh5OSTEcAsYAbkx2qwBMfJYAZ2vrqZmvV8UiZfjlnPhmYebWuzo0JBMhJkhcyoTEao26xBmzIzMATAkr8w0CCzjnO5g4IP7prH7jyPynrZtbjTg709d1JCIU0qpjLKFggglccosJYWIE1mYWm/VtoDuu+cv74880BwDwdXJ2rAr1rYRREo5z4eIKMdbmWd13+ksqhERA59mHwmVDuaxB8bumbxjQ1rrul22eta+AvRBeWitbnXdtq03tVf8nn1hxv1nEZaUKGUqc87LwfDt27cBuvW8RatkzXpAXN1SKOepzGU+plRy3frHr7c//fFXf/rHP3//5fny1BmhS6/bmhNPRaacpykv03w8LCJZPSzMzPvmTx/PTw+pzCQZB7ELIwR5zskNdLP1cdsez77VJRGjTBnZrZMh2afD7OUaD+wlfwQRmUmES8aOQBzISBwBfTAjEYNkzgkIt6223jXcgPKmFmzhtenT1tbauwUSU8rCZO5BPMYTkRARcZaUUyrMjMgAe+ys9j1EjhHhOgYRryl8n4Kw7l5rXdeNI43gFRFKnEQSIHTr521F9Vb7NC8TH0GoW++9d+1qo6kc5o6AED4snSOiuw2TeALILImld7Vu6+lCBOvhRsp4SnqGCqpDCWSDyAoIBMiDwSaSKc3MIxZWiBIzSxKOCHNh/oR0qap1W4mYRdwMAIYT35hOiCyZyrIcb28Px9tlORAhRht4VC6JmS9JLkQRDhApp3mepnk2t9ob9h5oDuAxaIWj0TEEjKkkKUIAaOgYPrj9SJySyDQt03Jz91k5HqlMw6SHYOwmpDG0BSiS6DlyBCCRZE4lktEghKLFWAu7avcIYi4kQAGg7tF676rje8ehfCjHhjkaIF51ZGEBm/bTuj6eLx+ezk/ntaoNpW8iAEcEA7eRRsNMEFFrP51Ol3WrrZ/Pl9PpfHN7czwuOSeAYKYETDSwB22tjkr6eUJkoZwG94UCgkjmqSzVziv0/aTaALp7XevFsbduZs7gRIFMhEgy8AdwhR6qatq3gJqFhEVQkkguKeeS0mwOUaMjRQgQiojIkvJNKjdcbjEdgzKAgnfXup2rSGIpTCipBKEqBykmBMrMBWl63WlIwiWlnCdJBVDCgQLdENCMSSRdoj49bbrpMh+Y6Hzp6siSJZdcsgN4c+2KQ8TIAgBJBDHQ1dVbAFAKFgB0bTammXYbXNKI3Xk+QrWbeWvN9uSZoZV0g2B0AS8EgwK1lPx2KctSUvkkMHUP9BqrM+xdLbwKreN6GmkAjV0Y9TmRFT5phlx5wAAwsgFHZwhVQcmdSRgSYzhVHSycseOC2YiQhaY+TIxH5jaPkN6hTXpBX/YG0e5W863sJCQCJHNwAyLKOc1LpsSUyMHNHSMxEyYAZjfsPcLUEVMqNzdvv/P2e7/z+e9+ttxkN6mrnx+jnUE3R3em2u3DuTb1PB1zOaYk0NumgOaZ+FByPi5mGmiI4QBbbaPJ78P1M2ykkw9n239BK2bU6xC91bpuk6ROYNoAQS3MOouknNXCQynCzLWu2rUkBsi1g3tczluSLCRU4Hnim7kGAhBzKmU6HI9IUben3pqZMrGGpyRMyEQpXXu/brtIAIaXiLrpsBYbfZlxYhYgZjkebg7HIz/7K8AuuSMRSSJcmFPmnEVKBiGNaK1e6ua1965m7jzWHUnECVAAKIJC3cPCu7tt69rrhoDHm9tAlmnWgLVuampdr0yeMEALtAADDGREGrZsQOgerW/b2tbzejmfLueP2jdGC/e2edfu0SKCSRKnq5YOACMoyiG9e/P2Pt3epOn2cDsvsyM6UZqmN2/eCWGth1N9+np9rNWMEFM6lPlwONze301zQfHL2r/85enP/+TjH/2XP/vpn31Tz5Y4CTvhcHAE5nI4Lu/u7+5uj4dlEZbevZl27ZJxPW/ffP3IQmlKa7PeEIw50CzWp/XjNx/OHx/icjkKLLcZupKre2UOlnie+1c2DD3/+jq1hp0EIhJLmubFqWn41jsSI2EgA4UGooF4uNrT+dJUidiB6bSmZkio7t0ikDAREQfiCE4L4oEfDeFLIBHzIFSNSmXkog3PIdzJkjwaNAARPjCRT7qZEdFVW+/K2lvfLus05alMh+XIp/MW7dyqddvYD0h4mAipbm1b17VurTeifcWzgSQBC0nsSTeQCpK7EAtxd2hbP59O7p7yfHN/P09HM378cF59u3aJB0d2dwXljJJF8lh2hmEMo6PjMAZ6tpq4di9wCJJfnhOMjx0AQCNhYJqX+88+/+yL79y9eTctB9etrq1dnroaEwNIIhQC9x7hIpgyE4H5OPaFm7n7+JfGGxg5iPM8zVkyhWM34S5Eisg8L8tyPMxlmufDPB0pZdub9siITAxIFGgeaCRJXjoxhJl5kjxF6YzhZGqq2npfe21tUzViWpaZ02h4STOrpgYRg2Fr5jr0qYNBQQAwjlDd7dLa0/n88enpm8fHh/NazYEksWCgeNTefcjHRiOdiLiqWa316/b1h4eH6euvbm5vv/ji85ubmzLyCJSFiRBMrW611fpMvvCI1u28tk0ZIPbswJSXJSwiNuxqZqp92zZq5hpyqRYQU8ZMiMRAAzB1cxjiuLVdrK+JfUrTPOUsE3EOEEDxwTZ1MpydZ05pXpaUJ+BMnF0mwsQICZ0gTLWaukeRnCRzmiCW0AruCQiAPRAwvYY0Bg2spFymhThDYGtV29Ztveq20lajb+3m/UWYLzUcRHKWUnLJahbudW3aFAnzPJfMWRjJrXVVra1pkJNgIEZHAOYsBEyURISQB4MgYtggqTZ3owE5IgVCdxWgOfNnU/rsON/OpUxlzjQlw/RySo7Rs44YjoaDyzlgSkDYGe0QAMZBXXgEu/KVrKXmw1kBRu7SUOKOhgyO7Q9Mo6E1cgQaWn1mGp7FHmEebmBBYe5qYJFFlsKHIhH6dK5Q1XXQRyFG7wcwrqHbHp+0YoSJeZB7RRKnlHIqMzJ176puhmaMMbBWBkJhpAxJcE6Ht3efvb17d7vcHqZDipA0Q56jXXq9qFcjrbZt3qpBWAxDC2eELByFirAnt2LWTbuOetN8tLh8/LCdxuMxGlz/gm7MEDnWWokvWQTGykQ48hdyyYsfSKbUuvZea7Vtw7AkRFxSFiAJi7a1NjUZuX4YY+OIIOI05SlPUylJe922tW5rhDOLRfQuSVBEINJIbzHrtXczHfGjiMPJNwKgaw8CHh6be/11/fHp5yEikZzyJJIFEzMiR4B7kA/nOA/bD8UxzKOvzgM703x4raq2VrfWNnfNJQWKA1az1Lp74PCt2VFScAfbfwzLREQHc2u9XS6X9bxentbL+bSeH9x6SeQWl3NTMxEkAo94JYIBj+janWK5Wd4d33y23C7lSGkCpME1gAHGIYVG31TNYJIi5e54vL27vbm9QcbLdnr6cPrLv3j/F3/21Ze/fH8+rSKYKFM0D1MLZj4cDrc3tzc3h2UpOQeBojuCYTgCaK3njzGoWlvrXSGCTEG7r+fL+uEbu1wm8yUTUPIGfWseOB3SYSnDIWk8p0FDGcsBIe1U8+uHRQAhKWVWIG/bpg6kROQ26LwJSBxIw7tHtxDCbvF02aTp8CEPRCAZoqeRGTwgIZJMGEyEgLY7WaJ5QLhF2NBr+t4dpqsLwVWONOAmf+WmCACg7mYBSBho3Vy8cJpSZhiQbu9BVTxEsqogjT7MNWiQAcNtd2qkcCAIhwF5IQcYjHk78tfMondd163MfVqkZEiSibhr39tiGEFBCblgKpwKkxANHgfCCOXxfQU1NRsOgc9ThQfv7Xq9rmyIWFI53Nzev317c38vuQCAu1uvo4gp04Eyz1OZ50IU2jXA3LUr7g6og+4TMUSADMCEibFkLimVxJncXHpObhNIxlwO9/fz8ThNS8mTcIZB4g0YcDOPzkTgCBvm14FWQEKSJZXIG0Ubon23HtZDq/XWGhEnkastPalHM2umTbtad+2mBjZStAiJHKCHd7Oq7bRuD09PH56eHtf1omrIKCScMBDV3L3jSA1GYSTK6iG1tq699bXWx9Pp8XKuqne352WelqUspcxTmac8XGSeyRXX6Q9do7mpQTcPwFKEmIiRhS9rG92jph0cHTgGJBIIgR6GTmYMiGZu1j0aojFTkgEtTiIFMHdjt9GyghgiHcrEpSxLyjmIkfYgNRHMRAkSQ8EA4sQsxAIkQ4EkgEwMgapGnJ/jU0a3r3edPBAocQJAU1UEC+9mqmBGgRw4QpjRA4FIsuSSUhKPCI/e+uW0WsTUtM/5MInQEAThUP917xjBYcI0YrcEhyk+MxFCjEzjYeuJiGPUI6IDmisElVTuD9P339y9OS4kBOQe27ekMDvSPBaxQTjd6bMeg8UObhAK3tSIMe07aaDZkNxc70oAIDgPN+K92AMwD7VoCswhQiJYgiKs9b2LO0omd1APoujqHiyJGLhVrDwEXsPBJsCvIvBPy5dxSRLJkudpXpYDEwsLc7Lw2nrt3TXcIBRjUI+BM+YyT4fl9jDf3Ey3h7TUdX3SuClzyst8uCWwWi9bPV+2k9oTThGgm2197asyMWLyIgJB6qgK2h3qvpGOjduJUM2G/SioPYfAXeuYZ07lp08FAcDMbFsjxrqAMx8SC6KK8DJPuUzHkFb7+fxEp6fwjuEBWHhK842DtNbCXWtVBp7ysMpEYqaUyzTPywACtvV0enqodRu1n7oJcxcqKSMEi7hbrdvT6amriqQkkpMgho2iAyBHTJMIcACp6um8Luf12eU2IsINwnFkvUtCSQ7UwttWIRrunAQCEoeubmE+as6UWHj3ox8xw+bkEV2t1q1rBdRAqK2uW8kpEwMPRpaNOiZGUqiaj4OBkwBCa21bn54eP15O53Vt9bJt6xkRhBY32FpzM5ZiAXVr69aeT2PmcdnqZWsWISUtNzc3042DmGPv/Xw+fXh4ePjwzWX9+Hh+/HB+1ISH45u745vP3n52OByI6XQ5f/mLp//6z7/8Zz/+2V/+5Uc1PRypSAazdtHeMJxLnt+9effuzV1K3nWt2xmsk3kEakCKwr7oOb78cL5sejmPgL8IDwoXtMy2UBQiYjIIde5ZMFMp9O7+JsmLzJJ5hBnQda1Gv+a2IQQAMnJJBR2qatNmTUe3JKcyLaWUeaDCnIsgE4sBrmslamXKqZSUCxMOfMcQmHjPWeSRZh0QQeYO6GBhcLXd9OvUADMP1wEe9a6jtz+W4IiXZkyMNHTknKecy7C1ykh5BJ+21qvWwJyCcz5qDxYdQbTB6OzjWBSx5+cO26tAcKdgcgKDXtXIxtzJZfHY3Kl3t6bgkbNIkrVtrTeS4AGiTDItIpn37CPefVeG352Nitx617698rxBxJzLVOacC0vaCaeDBeLGItPhcLi5Pdzc5jKpqvbmbW3rVtezWniveT7k+cbAv/6ST+3S+7ZuACCqXtumpuExJFRMWJhTwpyoCGdBQRBEYppKEUk3paT5MN3cSJ5xJHsHBSCBBQAjIeE40wzV075yvfIiH3M+Y07oPdqoPR3AMDrY2huoQ/d5nsoylZIdoLtfak0YZjVUXRUdCJCAAckgqtvW27ptj+fTh48PH05Pa1cjBmJCQRJ0iEAmRUDYT+QAgMJSSolASX2t9Xzetoe2bu39/M3hMN3eHN7c3Lx5c5fkzVTSMi/L9BL+ioDMQsTNoZltTZPw7aEQ8zylecofn9beDZgVkMGFeXhLIoKbqm3uECQe4N7dXBhkFvSbxMJSHFJ3seDeOZANGZBQIIkwF+IsiVmYKZGMIoaEMQtkOiaeGYV4N1vegViaiYVZMAJJJeVno0s3P1/W0/kseWGZmBIgmrVmbe39vPWnU9TNp6kcZr59dwSEx3rRbjlLzsJEPQIjVPtlXbfank7nqeTLoRyWskyJUxHAnXyiGgDgjEEQyDBCv1mSEFO4py5ENNqrpWQRGRPfrZJzYlrm6e397dvD1HrrVvtgsr2qYAiRkZ7RaAC6YkoDR9i/0ihqVxLIcyEE1N0g80XnFD5gzOGSd315CED1aA7iNHNKTIgG7trcTd3RgwIAAh1RA9amc0NTyonmnFz3tcs19kApQMAhzQn8tI6R4c4pnIQTESHyOO10tdY0jMwgelCwoBSZDuXmON/cLHdTngWFNJpu0BQszMAciaAbb57OJmskl4lSAwsPU3MCYiEaieRj7Y/9kBOhCIjkgEOP4A6oHl21jdOffwqF/co1klfNQ7tu28oslDPs1qooIoyMVHK2YeZCCL00NWOayuHgQWcId7PeWh0rsbBIYsmJpkkOS/GItm2qu0nuOO1ZuBuZ0U5bcHP3rdbLunbVlMxzIUIm2Ecnokja/Rw8eu+XdV2HVdN1bLiq9x6W997Z+BCjenPEwABGTsSKrGFoCuFADsOWa+x2wwFPLVqP3sMNCDELO5LbMGrqI2QWEcLCzNVczbvFkIUFRmD38G09r+eny9PDej5vm9a1tVqJuIubQ23qbqwC4ee1rtsLLu7ul7U9nbfztq2tNbce5hrr1h8en75+/80vfvHLx8cPrV+2vl76xpKRYqR1tNZabx8+Pvzi5++//OU3T0/ngH77JiVKUyq22dM3up6iVhAeXt2h2glWxI2pZQRCMuRUrHBYb6dvzg8f18up926AwAhFgDOWmedEBYOGsxFTT4IUJdP0qtUPL/L+ff/2IQ2I52P6ngEMAe62u1yHgwWyIAkgB1Agc8qBHECDK+sOEiE7jwrMzFT3GL79eDsc1GzQ/sGHXVWoWcCzswMh+FWTGA7+PGuuNJ5P5sswT4kINT2vZ+vce62Xi9Ue3dwtAkeeqpqhknbTbqERfTR29wk8XIGuXV4HZHQAA+1mJSTleTne3N4DPNWm9vDkgY7YtQ3FW5CDAKWQCaUgZSTZ7/SwEkGiANCwoXxQ3/lyr+XiKaWci6TEnJh3jpmFt95ZpMzztCw5F2Z2t3DFq8ySwyhU0FhIhIgiTNu2RoDIFAHjfo6TKyMKDZiXchp7Cgw3DEbIpUyS8vEmL0cuE4zdN4Y6OxgRYMS+DvuB0YvHEYD+rZUMcWw0eNWCAYx0BmER3vWhz8dhIHNft01A3Xq4gjs60BCKAY5c5nPdzpfL4+np4enpXKsTEmdgCSA3DPQRY5lH8PXetwfiSCkNPxh1J26t9dP5tK3r+Zwu59N2uah2Jr67PYqwyMt8GSZb01TIGVqoOTOWxHnKU0k5JyS+VB2whAhlkZIKIatC1+YwgNDBJ3cES4IEHF4Qs0UOY3AMQAVGFCdhEkIWTpQycSIEZhZOLCLCzJSZk0TmlDgIeYT4OIaHARJSRkqI14AG5GfI0j222tetzq3n3sbuv26Xra/deu+6ndW6LlO6v5/v3yxqnj5It0hCzBi+q1U8htYTIqJ3Wy9t9BpSomETjW64p7iHagdH2M8IHGMAIbK7CEmWCM9TFmLrBmZilhwzkQgHgoaZq7vjULy9FifGlS6xNwf2yYSvypAAcI+ulozM4zkEe/cdeBmuewPYB833+U9h+APsKKrsrdXY4dgRPAmAgObQ1WuzrlGYhDmnyMm5Ow4SDQIOnwGEkTHw+hIbHd8gc/QRwobebPBSwrprD6ueiea53M33n919flOOAil61G1t7sKsSOu6ITwQMOLArly9uwdglswSgOC+76uhu2JzuNk98wzIkEIVbHTKUSO62lr7trXe7VNM/9sXEqWUUi5kAYC967quyGJqsuvLkBgYPRimeWLh5XCjvW3rJRw4sTmES+/g3tvWQ1ctaZ5nCjdwyMywjPPh4AhfAaCAayQfBAAQM0V4bU3N1QPVmM0iwKH3hkS5ZGamPaHUWmvrutZXhLiI8N563TSJSoaUfdBTECUVBAFXV4LAETDA0X3Y4qLQoA0DgJm6b+pb9XW11pFomjMyZHUPxNDetjXchHnkqappU23duvlgckVERFPr6/m0nc9aq/VurXu3MDKj9TJ0Me5gWJubnc512/pz5oi5r2t/fLy8P3w85EPmvK4VjJ4eTj/92c//8stf/PL9V2tdObNkpIxc3HFb64cvv1k94nI5f/x4+sWXHy/r5XDMh9u0DGUJpO2kSfyBmZ4sAh4enqzXUux4iDd36WZOMyEjBUsQB+P5rNgabBW3LuZJqCRZUpqYpx5JHUERQZAESRIHGGjz9uI+vLuumCIKBBrs22qMtgbu8clAhEScOCAIMNxNDSMcsHUVYAdgSYFsHgRYpgkJc2YkVrVuPnzERqd3HH0iaF8t9nQ0cL16VSGMzlAAhBPyi5ESXjNKdhrJq1UsAAJCTbe6PjyR1QtHaGtP53PdVgxIxIgsxIgUAW7eq/W169atWTyXEIiCMo7vPsBy8qtNlgdwmqajJFNzoJ/9/C8v33z91cdvODEAWDhlyFkkAWdME1ICB+sWRIGAsoP24Nfj1wg1GKvy80KKOCicMooeIuYxwcIdgHOWXDglQIThB8zElHwqh3nS3id29qb10urmqta1+gUdp/sFmVWrGYCPQ/5IkgGAYVhMBAGmZo0wcil5OSx3b7jMBmQOQ42INHSjYzUnALARAzUW5aDXlOtxqlMzDTVxTEhA6EiIOSWc50wCGgmFmVl4YGZu0Wq7uDoMd/KAQDQIC3Nvqltr53V9OJ2f1nVtVQGkFJFkyGretKk5AXBKByHTUltvXdWdffcyG3HWhyVIWqvdVC/nc9vWy/m8XtauVtu7N/d3z4mJo4iZ53R7uzimrXliDAhhTkxz4ZITiUxrr6rDVnFKac4TUGqdmqrUS6utdjczACHsDD08Wkj37CaoxAx8PYZLSUQ5UIR3c/ChkWDOkiQXykmypMQgpAyD0wHPZ3wHhGAcOeoeZmAvcUMQAF29du9ug4norut21mjAhO66ruBxvJve3C5v7pbadErcmgohhrfWa11b34BiOc7TshBKeFjXbettaynBlJkYMpANCkig67CY9EAwAN4ncqiqR6TExFJKxgBvDbQntZJ4YomI96fHcyWKSERTEsH8wlN8JbS8LhHxCqtBuBJ43cMculpvFjz02MAEQDDy0vBaDgEMX6TXPUVixiHCNdh5ZMhjs48weI6cBABVrz3WFomARxIJITGgxjPPghBhtI/ok7pfkkxzvnl7/E6tijCEV1Gtr22tTbWDdvDmE0/3x/u3x7ef3bxbZI4WfatnBXOVLIGoPYYUG2BEoZGkTJiFQDDy2OljF7v7NTpgnN/M1Ex3e3Qza7333mvbWq1bndf17v7tfDimlPDbR5ZPrjGWaQzPiK56uVxUNeU8gEMZfqCISVgkASV3K+tqqhGgaiMnd7to0+4cGKWkhDkhOIIzISCnnFPOzAmpwlCjuQGAO+zVk9MwpkipUAIChOGOFd5VeQSTXp/MGEy99/7KW8Xd63rZzqfMlFKinJGZOSEyDbvHYZLJhizICRkoRjsfPXxkHIPH3lPpbooIUtIkwJm6uipAgHnfuqvSbt7h4V1DHdXxylNw6820RW9hOvzOYDQfhkCqb0O9xZL2lLhRfT/3FgMDSANWaw/bU36Up/MJejw9nP7y65//8uPXH9uTgmcuJacyU6RY26rQqZ49bKuXS6tBbT7K4X5OhcpCLAhKZWHwIxMj1naxy/lJOx1mLCJCy1RSYUhEIRxEBmEax5ltEqpqAFmgCC5MGYi7YQSAAQElBAYPNPPeal3r6xag79yT3SZ+nJd3SOD6AxFlpMATElK4W1c3pxFACMMybjzHwOHowsRCiGDPZiyv/kXEkWiGhAjjgB07f2mXwowiJiKGyv+vnCYvC5l7137ZzmF9RaJwU61dNYKYcdc3Xg1h1K2bdYMeoIA+Yo0NEHA4zw6iijsh9m6925AYdrUIp8Qk1Kyftgt7TVOaSuHEJTEgUwIS4Ix7ONpOE3x1qBuA3QgdxN3l8fVnuboHv1xITIHELCK55FJKzimlNFrnDBwll5LRzXvv26UlaqqRMpWJAHi4gIh0kZEZAxEjzBWveTGESG7oGtpBKCUp05TLjGkagiuivVk/Mg4Br7Vm+CBQoiOMiPPXz+X5gDyErns9SjklIQrJ6CDBRARpVza5R+9KDgbNQXelq4F166qttW1rl217Wret9w6BkmSaKBUD9NoMqroJckpS8gwRl3Vbt7q1qmr7DY0YfZpAJMAKULVvW6utq/pYPQDwsr7KTcMREcnIQgSDopUzC7MIB0bKkgx6AGAQMSD7kFkKZyIhEBbaumqPwY6wEbk7hGyMJCg0lOiSuJTEnB1kR31ZkJiZU8o5SS6YRIRkZEjTDoWMQn/3KHG73v5wf2F+7B9FJKWcidkhxk29rCd15ZR781BDQiZBpNZtq13VB4ErYqgRGxDmeZpFEAWDe9P1fGl1014BoPBOZkbEnd/jbuam6sOtA7FDIIK6AYSkJEJMSBEgWCaZCt/O+TglB39/PiF4Ij6mcj+TOX0iGL12lGHImsfCRYSBw0vjynYBRPDRayeKMCaQQi7Rmnf9Vp70GL1xvaujGQOtqzshokYEEmJcAxD2ue4OGtB6bM2z0JQwho4n9pkD4xkhRtCLW/r1kmO581v80ff/4Hv330cCR9PQrW+X7bzVbgpuiE6TlJv55pCXiWd2smo69/tj83BkDBzy4RhtKhpTfHTAB3R0nZsjmXO0u8fitHsfm8VQu48WuKqZdRv4dV+W5bu/9VvH4w0RufvLPfpWZyaGyDkF7njhum1bqyVPOedSspspOjERT5KTpAIsZblV3YPQIqK1qqbaKiRwFyRiEWZiYRImzpPjPC8pFapbDJ7TWNqGt0wYeJgqsRzvjsRiaqq9tc16DeuRwK5+z8FB16DzeNVoMrPz6fH88LEITkVSySzMA1bYCYsjUIYGnIkkJAEODtF7792HrN4dzBAtCqUsBJSckpKqdcfWvZvXrtWBHBlJgthx/IhAIPYwc+toPRGGiEtiMiQHcDOvTWtTFj7cHKcl5yKq3XtM+cWIjIjmeZmWhQptuP3y9DV1sLWvl+1JT77E4eYGhTmxCBODuX88rUQwHXLKyJMfS5pvS2DinIC8QzVVqzEhCR1LSuEfP1jfTmurgS5LmdtWWqbgaIIYxpmlyEEk8c1hyh8E6rkxISMlDDSF7uAOBCAYgOawda21bet6umxmz3172KlZI2OKeZwzKIYb7nB7AMJhqMRCu9ubEboPnlaouZl5IADyQL1jZ0IgYFAI7xoTfFYA2ZC2CDIjgoOPYBEIIKLRG0TEPchkUEII3a4HK7wuLvHpbHHrvZ4CGm2CQARI7IiQhYWtdzdQt97V1IjC1dCAglJEAO0GQz5W/pEu7YPOW1OrtfXuW221q5vW7bK2CwikWWjmNEkpknIiGCj34OeMNjMNMi4xj/7O3vcOHy7iDOjX89i3Fs9hDTFUinGFgZi5lLIs87Is0zQBIIazq9csKdXLZT1frLkt3ADjeJu4LGGzpCmlQJokQ3ILcPPBSBwNXUYQcHJDVXAlEBYkYgiMAVZTUOyHXxwtJEAc63eM5LxdczAc/V99kLESxLP+KjwQMUnCJGFBjgLMxDg8kYQAwix6ePeu3szd3Vyh915rq7VuW2tdu4UjUhLOUyoL5UQBw8rV3JlZUjoejsxcyibniz9F7Soiqm5uiEBEWRITiwgSbmvtrZ7P61f43twh8MPHh973rMFRWrXaSRiQl7kAAbEMMvLWbKu6Nm3NPcIUusLWXFhFkojMc5oKiWCvYNZ652aTBjiFkOVMkjNJQU6AnBIvJQmTBaqjOhlgZkkpz0suiWXX9rgZgI9SX8aZfoSjUYCPJDTaRaXxaodh5tvbm7vbu3maSLi5ddfLtm2tE6nqiLaR7vxw6lv9uG7146lWNZAe5JetVQuZliwpzxORuHrdKjDQJbyBYKSchFB7pyGPpzAHhXA3ByBzUNMIIPAhbpeUGNGdIeY5H9Py2TIdi1CiGv3D+dS6JpbbrOC01u4vXhCQhLJQFhbhPWogRmlzTfOIZ4g4IKJWM9LEURLNs0DE08kDvCt50DAI+BZi7R5m0TDUjAmIaEhGAocoYb/DNsyogZrG2i0riZAHmA0nyVFIDL/G3Y0Q8ZOiX47lmDBlkKobMjhYs7rWy9P5aat1sEsJKVOe8pwpUVAoeDHTnV8M+4n9ZY18BnRpqK6GEh2uC8v1444bNboxI1o+/LpNDFfK2CdjSul4czMvy9gzrgD/r8GWEIGZAtkCwsPCQR2ge4S7dSGhYOaUEBFBknBOZXKHnph5qM39fDlrbwGASCmlUkpOnFKWlEhyDkw5ESEEjPcyInJGW7j3DszhTkLTNKc8add1vayXU2tNCHYLmFREErOEewCYdbP+fAPdbD2fz0+PxyXrXPSafCk5ImegEV7PyEKSJQOQewxmrobpyDgYLTfCoOHzQhQejkRAQugAYlDDA6JHAIA5AlAIATGRIPUI1ea9bdEbYSRBTZwSS0JJmBTNvPZOjIdDPt4sKbOpCMbtzSIvAComEUkSDC1a7TWaR/ceZhllyqkkSkKMEKDdttU+fqwQfmO+3PC0QC5clkSSOYuHnVuHhjDsp3ISxLrNrhra+mbadb3006lTBJKlTPkgS8J5Zhmu36qXj+gVrsIXJwQiJxjm29AtetjarDatat0+GWlxZb0NJ1MiUlVzV+s7LxuBmK4VDPOI3QGIAGY297A2iOrPqHDsv9j5/WPixDNzeJyZEOPKfh9Mz331fd2GuZ6BfkXltq/H/qk6aXyZxyDOGyIg+0BJBnCFAHsAW7gPUZCOPFcYPpBDHWdwPY5EGACabVs7nS6lPNRWzQfVqm/9QgVKyjxxLlKySBrtKHDci61rqtJgwzzHKQUiCsrY0tkRQr91GrsWl88HpnEsAEASkWmapmnKA7gCQHBxSmVK0yJbt+7ICVNC4DjeQCriKgBEBBGJ2Zk7kzk4OIEnwAQm0ckCtYX1PQOTBImHA0fsY/+68gIRCYyMyPEGAQnR0MP9VQXzPM78Gj3wae2Je3cdIYiRRZIwYbhHa92iN9ua1WHAouq993Wr42DjQ3PNQpw4ZUoJWWA4PexNExQeq1MCgG52XoWZB0b3PJ0HjEVEw7RYuzbVp9NlxCi9/+bDMK3Zn0uAxYAhhswTerfu1rqvVc9rb90jrobC+5IFQpSFc05jVGF4rerg6qgBAU7kKUVKhJKAk8NAKYY1EJIjGCNLSpKylMRZiAjCo48YRYIrCDsywK5b1JV4SMRI9ikZDhgBw1qt0dsek95sa+aO5uSOQbFuvbuB99b7tnULWLcaiK33QMgl5SmXqTCLu2cBRq1itgGFZxaGoDA3GEZiOkhgjOCwx1GO3sh4XEDoEV1F8O4wvTvMXxwPWfDS6mXzVW3rKoYQWridt27XzhIRTXM53CzzPIvIc6mMu3fD/rHHWjesol2NwBNHzpizuDlij73Qg9eCm+dVyBDUEMCRAs1xoMyGQ/rqsEfT7z5bDmqwdS9dp5zi2hDbsT4aQzTc4Vf7zHLM0yLlbjo4OhB66Fa38/n8Ab7ZZNuxgUEAQUZgAoxMWAZZdv8UAPHqhZ+n3DhIfOv0B9/+k+ufwg5Pvv7i/ZaMg+ZQTl4jVX9dHRO+p8aNMEPElPL4F3vvrVUmLCUl4d409RauAD5REskEs3DK0wE5XbbNITCMcynTPE1zzlzKLHlGSqxGGCNFAIEcAMCe3626D0QeCQk5sTCxaXM3N6OUp2k+HG6Px9ucCgC01oZtUWvtBU4yq5d1O5/aeqiXCwBq7zQd8mQYQKUgIiGLlJHNYu7hYWamg8TUMYKZIMx6B9OR2G6tByqiEnYCIwocHsDACtyDDMVFgFMW8V43rap9u1xC6zRnligTOIC6A0TOnKfEWXOWN2/y8WZIkfnmRj777JiyXAfBaFW6hWoAIHCWlKbkmNQUzBiAgzC0+7rZ40P/+usG7upkAcBMEkiKAe6qu2EHEhMTpUQU8nk/JMLEcvq4trWtq33zTb1cukebF76nQ7md83FOgr2demzVWu2WGJiQMJhBGGhPHoTNtKqv3Xp4pEQlf5tItpusQ0pJRFhkhwIDA52JBx6/U1MgAoB4cHbB3XvXwfCC0SLeV80gJ7pquZ+7coOLwMwiPA7uz0pp3vmrdF1uhuv/6MTg87df38TemX4eY+OVU85LWhjYejNV7+Gh4A4ISIy0Z6uN0BIz7X3kzbmZjiPt3kZEDOQhH/CIrW5u2upGQuoaNKw6kGY65FkSiXBiRqJ9ax3MBU4IpDZonDFQm33DJmJKTEwA3ZqHPsvDnqfeOPAgOcJQT+BY6jmlUqZcCuAe3IE0EgGWfLifIlGwS9JlahYB2Im6ah72S+aEIYSKgRiCntALWQYQdQi3XiEcmZw4KBkKxJW7BDCKmIFyDTn0WCmGRftwEw58lTR23RV852W7eRg6IER4bR3C0IECLDg8KKXx75japVfotdvWrHbzbtrUW+9b6+FBxEQCSEgCKIA8IGlVM1MkFKG0E5sHBwVoDLvh8oHPhKrBLmURnEqx4d9dvZn76aLav/z6fev9OsYAmYHZAUy9mddBqequFqqhaohUcspJslASEU7EWTgPqr6aMQeQ92jdYnD1EHHPWwkDt0AB9Ajq7uhILDlLQhFhYc4JGR0BMCgcRnwYIb0gKmMLRgIEJNzxTEQAZ5FPXKHPjx+/+Qo4OZLtBPMIl7WDqoYBmZkrc7gpgEEAAY4Gf0RIkhKew5M2gSCGaaKZSkvREoSpIKKbIpsNujtKRhJ2dzVPQjI+D1Ef6Ka6mYK2xOntMn92ezjk7KZdtXUjTCyCSB3ocWsPW33uKLPI4fZ4/9mbZZmF0/jDYYzM9PKwY+ShjwGhHu4EjmHhXnurHVoDC7iyaXYEasihRzy3EsYQr9Pg94QZuqM5Row8jMEkxQBSg9qtdlAfTlzj9DIAXL/ahziOfuyrQkGSJIC9Mh1XoZktWY2CK+Le0oxdqr1DZxg0zhe4D4H4tDraKX9wRXxe42R/9UWvAzni+XUGc3ZfqRFxcM1fv2BEqFnvmsgAh31GDOMdHxQmbUgYEZ5ECMMNd49Q4TxZQADKcCU/3pi7to0kc8opT6lkyTMge0SYuvdw3S3O9skdbqYW3kAkzfM88kXGUnulGu5HmOFTFhG96+Pj08ePH5/OT/f1BUs2s9P58vHDw1Syu5fLJS+HtLRp1jA3VUmJWQKZhZFArkWMDne2EHRHjBix42FDcwNkgIakEGPrYEIQZEBB4NhdvAerRnur5/P5/PR0eXwE7x5FMgKqpDgc8jwnBG69z09CxMtMU8bhqWMZ5pmfJz9EgJv11itgCAIlxiwzhlh0MFDvAcY8ktltrbqu6mZ54jRBOUQuJAThaopmYD3CgZkYAlA5+XSkY011y7219eyntZt7TgTYDz2lYzp27abA0KEqbgbdQkNdUHcdKqEj6Iguqr2at2HFzR78ig47fHeGdkh11J1qI0yjj7x0EBgyI3WHnfR1PVVENLXW2h59ccW5AYABUG2YYY9Iu4gXsgsAmBvs+USjZsAx/p8nxYiIv24eI/U1hsVJRKgOutlLERNDXdXNwty81aq975PODQlJ0ji2mLmq4pW51ZtpM7Me7kg7ch1AewsEACDMtar2yzY2DkpcKJeSS8pccBj1BY66ygNwUA4tmHC/Ya+ohjBIRKMWjoi9c+Qv6qSIGMgzsQQB7oc7lJRKKcu8zNOccyZECHcAAgQWSiUvx6CcODtS5ZhbO5QE4XPHjMFb5VAiYLZAM1RCFbBsnQHB0CHQFUk4JS4zpgkkxRj6wyt3b3DsQL4Dwu72Ow7/eH1Sr5bOCO2919aiVakdolHv1luvW9/C+0CRyTDLZBDuUwiFabtcfNu0b01bM62mm3kza2YAyCRDr07qGTDYonVAqK332kIV3MHNe9/WFRC76nndLpfLtm6t1t4GUbHr0CIzQwzyXXiAuvceBn5a+1fvv+nXIkbNH07r+49n4uyOW/fatY6s0lFFEyShJQ9OCwqTCCMy4Jhog2cVHmhBHgwwCAMskgaNjwgG1EBX4vs4uBMDM9CAj9TDiZDCQ9UCgpDdAQ0GX37UOGPb3sUa133r+cQdrn17rOf3TslHpx8FJSPQcDhLQlmgsDGEQUNwFgRAHQ1BxJxoEk/UGZxDORgIoqCRVEyuY0tHE+jqm0a3UIxwF3ZwpUEFsgijnX5qkSAmiqPw/ZxuizDYNuRIyHMRDhhBXjW8hvkrqIQzp5JSSVnSGIeEwINudg1Uef4pYjhCOZibdm3q6CiJE2LsZU4EjG3FYyc2DDdvABrJ0qo6opzdyQ1HADbAOK4MW07EdQTLOmOsrXczdfQYU4cAwLv1XlVfDvwAIM+Y7bhGvgawiJRwGC7ao50SOASf19TKl++KVz/DtQSJ10XMv/z1rbrk+uZCZMR67T2YgfK8pvqGR61t2xpxwuHIa27Rdvc8s65KhEQtAEAE0GJdVU1bY85OjJw5zxGxHI4RcD4FsgAKUMa0hBS1MG2trtpWjxGDBQREjBBh5l3bVmtKeZrKyB8YEx0B5mkSAkR0s1pXRERKp/P55z//yy+//sU333zz7ovLc6WsZh8fT7/48uuu7fHpcTkclpu75a7Nh7Zt67QclsMxT7PkQjw8lznQGIGGEaFn9269NvVuzbQRjFiuoe7DQaYxB7MwHF4RLHtegraql207PT08fvP1+eHjdjkh2FplmjhPOJV8e3sspeRUuvaHj0+1NkJwbZQEAdU1XOGKXESE9963bWXtmRF4SpgnZ4921nPfVlxDNBVyix5hZMgGbqraG/Qe2tHJGdA7uiHokN4GALbRFYAI6VwUWNe2Xk5x2mrOVBKiwLbW8+n8zQfPE1jfDBsmDWm9hiooohJ0AgBQh666VTOAyIgCFmHYPtkszbT3we9qvQ+g11177x7BjCmJuzOR6+6QtkcO+Y5wDP7r0NoNNRMSDw4fwIhkGy3vvcsyNmyz7h7XLkvgdaEZLnY2DL0BIaBFBwAcOcYe16prtFBe4KQwb+f1/OGp4ebNt/Pq7qUkYSZAJAQyYIVUEHGbM7m3Vnvbtk21GwxbIRwIztAMASDG0N1IAIeRgQQmShnLxLkQkpv1cNJBQoiwZ+dQwDWIEGF3xiFERBvnMHDam0hu1rVe2rlpfV2QWW/aGo1RvCtkUIQPh8Pd3d1yWHJKo18TEYEcAMiS54XTlHNxs7g8Hax/h6NlKkyE4XUFqCLioNKqakVsaA3NoIWNGlMSFynLTTrcyrRwysh89f0aFcywgLtKkAYWOQ6AcYW9Xi2ebt4u6+V0usB5ldY1NtJNt61fLu3i1hiCLKICS57qdjgsN8tUIvzx5JfV6tZaW3tdzbbwjqA0KKIxDnWplOPdzWQu2gOhae+19a2CW+vmrdWVutm6bU/n89PpvG5bV++9t6a9a+9mr5rwtfdat61fyXwA799/eC5ittr//Kdf//Gf/uXhcGQWHd+JlBPPUyqZRVhYhBIiPbfTApoqqA4LxwBEtYBgwiRCgCipJMmcJ0mZeIjSRgeBiABh2JS7hwEg6dUTZQj11QYxKcLMGJFixzEDAMbRfKTz9lbHpL4+GAV9RP1AMgcIOAKmlCiIOFZhenM7Hec8C4u7NQ1TDEME2NG4YVFjQgEQo9GPwcQCEjpJ2BjJZMZr6x+3dqp9M21ayTY0DSNt2C+sDq27e1BgKun2/vBunu8zF7St1dY7Asw5TykbxNpatx7gkeJZnBThpr31KhXBnYmZEGhsCuHwXMSMaQR0LcQdIoJBQkpaAFLpw+xAm6upqo/5bB5uQQiIRkAOhBDeu3Zr6t3QnQJ2a8+9BxCgHVrzreJlXROCm7oPnu3oBWIEttYv53VbXzzVAGCHmV93TogwpbQsi6WE8YpcNv5vL2JeX7+2iPn0K/6lS5lfV8S8/PkzhDR48imlZ7A2lemL7/81AJqWmYjNRlzA/hpubmZIKJJSkpyGN4oTUZJBIRSUxHkOZDOvtV7OD0T05u7N4XiT5llYEMC1l+VAZYZ0/OxyGcbezHujoPW21U0kvbl/e3NzN8+LpGQe2ltrq2oLd2GZpjmlHMjT+eyYy+H2sy++/zu/9/vTNI/PMi+Hv/b7fyvcj8fpsEzTPM/Lcb65neZFUillmpZDnuaUC0lCRAwchGIYW0hEuPZWW1trO7t1BKTY6aBuI7Ni9+QNHDXQsAAGdd9qO6+X8/l0fvzudjn3VhG8ZCqFy8TzXI7LYZrmXLKZnp4u27ppN0ScZkHE3vWHv/OjaVrGZ5nK4fd+8LcAPZXhXcYlzcd8QyHrpa5927AGayoUAHXD9amfvr95t2lOhwMf7mhZcMouBAN7bo5AOAzotLs194Zt1ctje/jt9csfPq6nDkhJuGS+uUlvP5tu3+TDvaQM6Na+00/fqdtj181Bg2FHSQHAHNSs9x4YWBIJethf/5v/2rwc988yTb/7u78HADwUDiPJb2i4zAKAR1xLEiIyNfcrn+TZUmWcB0aDbKewDmENveRtXanrSCPCjAGi9xY+kkkHBQ+YeRRVz5X9+Kuxg+MeiXANznBz99/7vb8+TdM+xqb5b/zuj7wZBVu3ulYIKFPeO5yEAQTMICnP5fZ2QYj18bRdtlrV1XYceKwKNIqYEYPgiIECSOFoKEGJU5KSigjDcKl9TkIZpVAMgGB4cwAmJmFGRkTwa7YwISKP5pFaa73+zg/+xlT2+ZLL9J0f/A4gpakQs+/WxTAflrfvPnvz9u3t/V0uZfcFDCAmSSkCOM0ekFN21ZSnqa43PrL0DPrWb2/BmoiAe103axW9h/ZwjUHiY+aUZT5MxzuZjlxmHEa61yLmhbtACIQRobCfyxEQHNRsae1w82aQdQBApnT87S8+041hu2fVHA2tWau61b65d4YAA29BzGma53k6LnOO8NPFtxqt996rts29QyihM9m1J4cAKefDzbFMhYaViJmrWu8QIciEGABddd22ddvWrTbtw5RZ1c1M1exlY8duVmtba2utb7UHwH/rb//Bzc3Nvibn+fPv/vXL2o+HZRiyIaIwlyzLlEpJMhrTwDvTM5CYPVB3oyIdDWMPbH3f1BCJJTMLSn42aOaRjD6wR3qZmKM+QUSCYSIB7iNdfNey4RXI24uYXYxCbta1v3332aAHAcC0HH/nR38bwIAnA1EHwJSnRYNOl42I7u/m45Qzs4Rb30IbuCICMRMxARNSIqaxIgQEEACzDBDJx7wd7j9b7w+1nVuvva+9b7WZGgSGhzt1A1WPAAY8Tvnz+5vP74+f30+S8LJtm1oLDkqUso8ixruD/e5f/1vTchifZVmWf+X3f4SIJeWUhIed5q5bDhiMrCvMNvBQJAYYainbpQmjfBlt6aZqahaqgzwX7oAQwy02CyKEdu3du3l3jMCAq0vJfv93WAoJEgET0ECTB5uFcHiUV9XTWv8bf/AHh8PhpTb4Vnmxk1yedaTX0uV1mQG/voj5/+71KcC045n7cQ0RALS3p4/ve92Gk8MVqnv5eFdI6/pNAABx/fad9zzwlCtqoC+41Z5jPkjItsMHA89/Zi7vZ+5AxJF4NNxpYpyI42WnGQj52K5aa6rd3Kdpfvfui1wmAKjb9uUvf75eziOJ8+p8IbRrS4mZrzrTV6Xs9YPu72aXsu8Iwivm2rgVV33/9RX2yTxyncxt93a32IGPfXHg3T2WrukKu+E9AhDjGFFlWt68+TznAgCtbx8+/nKtZ9yBkWG7Lhg4yA+D4zX+zh2GcjsCiJAZWXZ3oyvXbF90XopaBwhwGxxDa9VsmH4jjldIiTjhEDAjxLBwd/PxjeNlXybStUqGvVqIebl59/n3c5kBoLX28cOHdVufD9rXoQXPPIgrDQWvrxQvg+/V9Xok/5rx/erv9jsTPkCV13/5PMg/feXxty+/ff6ieZrfvn2bcwaAWrev33+1Xs7jkYU5jObP/tHg1SmMWBgD9vHgz8PnmfH2cjf2BuwOWl/Fc3s3Ap+f3vXNwYsa4Pmb9zn5/EyeX3uM67EH+FSWt/efDWKZ9vb08UNrddQPz7eCiFLKkkRGIsZ+p2JY7cQVs8Jrz3RozPYZ5B6mEL7ff3OIgQ/6y7tGBERiJpYR9PMr57fr75+HCnxyB8YsZUnTtOycv9brh6e2bh3cMYKuvISrp+J+T3xfy4bJ1kjxhes68/pL43mmDLnTWD1GNbzfz7gu9fu79CtGea2+X6ZGvHpkY+T4tc84iu/j8fDDH/7OsiwA0Or2/v0vt+3CREivoLTrEWDQnscmM154XzB3TX08j4ln3vbzDBt+5Hj97/ktPQ+XTx7DJ2RLeJlX8MlzedGhAIR7Snk5HAYI0Ov64aufbetpcC/2SUYcAGaD4UC7gDQgwuE5vfA6mPd3+rw3wfMigq9uagSAR6gP06UXP5L9XcaVcxWAACOtLwsnYUS4BqThmLkAYEMmAzDPy/27L3KeAKDW+tX7r9b1grtVwf7GXvaB609XvGW/V68Gy/Pz+db1TPEFGDyb62R+5aqyr7u/jl0S+6x6PUlePVCPMPPD8fjd7353nueXUfirr/Sb6zfXb67fXL+5fnP95vrN9f/j169I+35z/eb6zfWb6zfXb67fXL+5/v/hkj//yz97FgHgCH5JHAG9d3d/Rm+vWke8Nrevzb29rzWsusB2zMwCfKeyXfGa5/YTIohwkkTDkHgwNUafcLz+FdfnqzTjyksbHDgcBEb0mKf57dt3e3u81ffvvz5fLtdW2K6lZKYR53H1qHn+FDtEqtrtat24y8uu8Mu1w7YHKZh5hA/2OwuP/rSHm+7S1sF+gmG4/kyDeOnBDSBpvK+BUO3voatO0/zF519MZQKArdZffv3leT3jtbVGw7qXKK7A5Gji7rqNvSu7e3WMx/ksvv2k03f1HqFn4B6ufeVPm3LXrvfLQ4yRMTbAo+GysPcix6vsv4iIZV4+f/dZKQUAum4fTl/Vdrl69e0vC9fv2p/8q57htYf58rtP3xR860/+5ZqJr7/yNVTx6lfxrS8ODy9puT98kaQAQLP24fzxXC/a1X3A7Aixu2mPQeW75MbHI3luocaVRHK90c8QyScfMUYGE+6vHK8ACLw+jB0fuvpGwjNotY8EZuIkaSi2za23qmFAcFiWL+7fTQPm0/bx8rH2+iyA+vRmfdIZfg3NvmAJv+YGw0tj/jVXLq6DBPZnf/3Ft/GWFyXvP+/hIYwYtpLKu9t3OWUAuFwuP/nJz56enoYA5/krX4bWP+89X18cf93fxScJ5S8vMP57vuvX93/tm3/7Zv1V2HtEmPvNzfG3f/sHyzIDQNX6/vHLtV12o9BvvbFXnfZvIaHf+jJ4fiufQM2vwKxnG6Lrqv78WvHqfn86cV6A0ysm8vIXg4aw5OXz2y9KmgDg0upPP3z5tJ0Jf80Y+6uub2Gin36w/VevZ82v/Yrndzv+b8eu8MqDiQgXxMLCiAGgEc32IMgxtW6m5fv3ny95AoBL3f7iq188rRfc3WVe/uFn5qgwl+HTJwmRLDAGqeMKkYwEPA/YFdpug6VIw5UREPa040Goc0RkoiSJmIN4bKOElHkk6YBD6FDiu8GeQQsIe3KFvwSw+3E5/vCL7y7TDABdt4/nX2ztfB2yn4yHT+/ha8D4k//9msV4//pf+Yt49eevwci/4rte41nwvLWAh7trSYc3N9/NssNJ8h/9p//hIHsGIEmaD/Pdmzt3+/rr9+tWiQSJUIAZk3ASYk4B0JqZmQeAenRPlJY8A+Ba62k9PZweNBpnkjxIjglB3KB3AzDJfntcvnj3eRI5ny6X7bLqaq4IQCiJcxi2rSHgUgqLjCCrZr1rt9pDESOjIlb9/d/96//9/96/8d3vfg8Avn7/9X/6f/jf/9Ef//hqCGwjfuxwmO7ub3OS1pu5D5s4IRmOAGvdPj5+WOsWFCycU0okZDhYVIjIwkHYw2qr53Xt2pBoWtLN/ZIyu/da2/l0cYtpmqdcSprDY123XvuIrbS+Z+gR0lTmUb2lxNOUh/nHWrevP374a7/7N/7ev/Xv/vAHPwSAL99/+R/9J//xP/njf0LDpxdwWZY3b99O8+QRrbXz6bRuW2vNw5MIswiKG7TWe+tuhkS5FAToqtZVtYfuHmnD1VtGsvuQfxOCR1N1tzFcxmwYE0ZkmHok1Tifxz/bCWmaU87CgkyAGEyQeChi9F/5Gz/6t/7N/9EPfuv7APDh6cv/2z/8j3/y1R+XNAkLMiLB+HefK+RhLL1D5HStMfcV/FcmFO576/PPr4g+L+TZl+95tfe+bKvXdXL3zX4pyeG56FDT3usPPvvRf/cP/u3P734bAD5cPv6f/uj/+o9/8uMPXz/05iMDNSwyy2GaE6cIqK0/nS+9dSEcqQ2u5nv+vJlbH5HIIIMrArTbGARCeIQGA08yMQo4uIeCxatynJEhINx66zbkIm44+NnIKJlkWpa7d3efHaaFAC6X0y+//tlTO8UMf/D7P/p7f/d/+MMvfgsAPl4+/l/+8f/5px9/NpUpicCnd8wj1Ac7ynQsq+Zue5E8nsur3Q/Ar1yRIbWJl/gVCwCAUbHz4JDQC6Frd7oZ8qRnTs5+8rmyEyIcHIZLGULb+unp6Yef/fB/8K//G997+z0A+MlPf/o//1/8r/7BH/7DMs8ppSuX4rr+jeAPunI+nokKz08cAGF35nymiu0f1GFnbCDBcwF2rSSvfANAYmFKKQHirhcb3k0+JKdxHbbPDjbjzUXv/VzX//bf+df+p/+z//GPfvT7APD+8cv/5O//b//kFz8uaUqS8Hqjx9cjASEgAEcQAF/ZHUEw7GSe397YZzzALSzCAobadJx2cDffImZiYiahQT3e9XHPIeVDLbvzXXzn28TOmxxeaADD36+bbr3+/nd/9G//63/vB29/GwB++uHL/+X/8X/z9//8j+aUhXmoZF/HKceVrvc8018YF4Ow+DzERi4P7bUAXNeH6+726tWuR8OAcDAIJ3NEUEEkTpEQyBAgNLzdcfrtw+0xl4bx0NrPT0/n3knIPNa2/Z0f/qv/k7/77/z+F78NAH/x1S/+g//d//oP/9k/5WnhlHcaiQO4o5sAFMS7ZfmtN/ef3d2/uX0reTmr9BADIcJELhgs4RGbx1PrH7b1qZ0v7dH7Kr0X8xkE1NdtO63nj+dz1cbMy7y8u7ufD7deloDkClOaPjveLdPCwi3s4/Z0auetnl2bhLM7hre2PTw9nc/nWre6bdjq3/6b/81//9/99/7VH/4eAHw4/+L//l/8hz/5+h8LZSLZj8p7YNHzIePliYy7Oo7oY7yMM+3zano9/8bLivqqfn8+yF1H1nUA4KtKcF+GR1otXCfhuM1EmADADXrfLtvTb3/+N//u3/n3vvPm98bLyI//9J+GhasFIOcyH+abDzfa+89/8YvTZUUSFpHCpcgylanklHIAbq3rqBWbedUEclOOhHyp9eHy9P7x/eabFORMLEIo4GIKrSmgpuJv744/OH9/SuX09HTeLqteLAwBmNKcF3RqqxLAlAsiVeub9qat9aZbBUWIQg3h0iRw27bxSS6Xyz/98R/9Z//gPx+Og4GehOal3N0d3769n6Y8FnztAUFJEhMjwmW7vP/w/rydHY2YppwTZTaO8W4hOHEwKVjTvtatWw+MaUn37455Yo++rdvHj0+uflgOJZfExdUvl7XXtq/7VzUDk8xlSZwgQoRKSSOx7rRefvHVV7XW8+W8f5Z1/aM/+eP/1z/8+0zEJEx0OBzu374tUzH31tr5fF7XdS9iUhJipuQdam11q22rgDgvCxGpqTXV3ocxE+GwsBJJwsyjhZCIwL32rmo+/IBo5x0TckpJOAvn3v10WrfatCkSTXPKk4iQMDCBMGZBADBXYlm3dXyW2teffPXjH//kD5dpSZKRcdDfRhGzb11MeGVc0x7a/FcUMf48bYbbys6l/xcUMePrxy9fJufr7/WXVwiP6NpruwBA7ZfxUmvb/vTLP/tHf/5fvP/qoVebyyFhCo1C+W65SZJ7t3Vrj+dzb30IdCIMzMx61161tl67dQdkLMQ8thwb1OZhqdxcQJa0CAoaubuCBYyUR05pN3xzd+1dW+tdTTu4BQQiYyqcjre37773+fdvlxsOeHz88Oc/+2ffrN/oHEHwb/53/u74LFvf/uL9X/xXv/yvlmUZ/YznywMcwhxG/Jyqu+3ilGfhz75T0tj099A1cHDz3YPTIQIcQgcDEZEYGZGJZC9irhsu7mct3DN6CfdspN2q88ryDAQghLrWj998CIut7XP/6en09//wH/2Dv///AFiQSwy5EwKOhCMGRuKhwQDcae37GW8s0PTKkScC9hi4vZTZCzLaGzOjr3wtYka7moglcS4ZieyqaDfzUB8hShAxVn28NonG2FSoAJdweHo6XcfY5U9/+eN/9Bd/OOdDlkz4SREDGMPHmCMEgHeJBwGBksdz4/SqNBnW7933ImakAeF+J3kIBhKLjJAHwoDhkr5HeY4iZvTAw2F0fwf7ef/1GC0O7tF6O9dLQKx1X8eetvMf/tf/9D/7J/85lIkGRf96B67z+VeKmCuTGAE+2VH3IoZeihj61SIGYNhjw/ADcgCbEO5ECOEprHmEiwMGAYWJtR8sx/KdH/rx5in0J0+P/+UvfvbV5SIiGm7bBQCftv2znOv6T/7iT/7f//gfQJ6ABZAACRwhHGyvTO+X5Qdv7r7/9t33Pv/ustxVmDtkDUFCIRQCEXCEzeGp9a/Xy8ft4WH7pm1PtK252wKE6nXbTpfT1w8Ptq0QQNP8+Zt3x/u3cvMGZXbFKU2fHd/cHI55Kh3843Z63B5Pl8feVrLOpgTWt/Xh8eHp6bGenuB0gst5hXg8n65r8vmnX//jH//0/5l5Zsq4z4DXRwt4HqbXuzqOu9dQKnx+jHi92/vJYdS78Ulpsg8gv5LA9++klyLmunpfi5jBZt+LGGZMAOQGWzs/nb9xt62dnkeR3BxuwiI0EIhzRiE998u26qbezMEjRU6pyHQz3xyWpeQcSE21+xCIaz9vYnRIc6K8zDfz4ZiW+WJrsAE5hIWBK9pAZ4BFgrGgEiFlLDjxgZfAgIjE+Wa+SZzCcJiwbFv78PBktmEkgWySAQMgAYAribzyiYndUjrPuRRhwWmS43G+uV1ubg5lKuSpbvb0sPZuKQ3Tf6QCzja3rFYBMHMSKORZN9N+aqpBgRjMvMz5eHPjEE2bZJznkgsFunA2R+8+TxMhae9dNcBYSDITIjkxCktiSkkyOGpXNx027oQM4CIoL2pxIKRlmg/LATxEZMpFUqrrVrfNdwd4H54JgDA0/hAIBFmSs1dfxya3S6RyFqJIMRqewyx/P+kiMHIiQgci6aTdNCCGDYt1B0QJJkcPR48pp8wCCxIhClAa7QHKTIOcP8DAaToQ8XVpopymqSwlL0nSrsYdyN0VoRy/vjo9vEYhP71wb5YC/EsWMa864REAYGMfCnz53us0+5WfnVAgIkt5cYUPcAsGuj0sMUPiwijQMVOeywGBet0AZC7HnAwtGGIvlsG3bfv4+BFCmA1IUpnp/8PbvzRJkmTpYth5qpqZe0RkVlV3z1zwXohgBQi44R/g/99ThDtCSAAyc6e7qyozI9zNTPU8uFAzj8iq6sEApMAkKiUrwyP8Yfo4+p3vwZyQnmFhAMnMmBCSAlypCggBQSYc3v4OiILDRAVH1ErW2cPNurfm7gGAXLiUqdbhgooWQqQsgtyteTN4rCCIyqVIUVKlw3p8aBFHbzUAS45QgsyBcvtIiDrxMIShN8o81BgZkJYZEH7kAMSwwUIQJiJkRCGS4WKfmXgob47OGEQEEiUlAQzrj9GkhXM7Q0YUZNvbMk98ThgmuV5eAD7Ny8tUJ0AgJh61tYCWgSKLkjDR2dFLONEIYcIRToY4jHd6H96Aj4RygIQ4QpwG6pRH6komIgCRFNFSkMgzzLw3t+7e/LDdjdOAL064BzIhW1vvDS7LwmdMByFNZbpMlyqLHo6xiPjQEgZEEg4YBhiJCQgxCYjgKGLowFkAICmcggM8MQ+cLEa2NuHQ/vKAckd3OCENIzAI37Pc8pxgJ8T0wGly5N9EgEcSckBWrfjITUOcuYDWKlVZjkIVDggD3ou5978foR7vKwCeU5QSABmP8Xlugec69oDYRqMLHBIhCtqfa/3vP38ugP/L69e/ruuXHnsCMUxAL0z//ctP//f/7n/4Tz/89G/t/v/4t3/519fX224q6pC3zFkLnXN/0vKf//TnP/3ln+6tNQ9HymETihhxZN42pJ/vq9CXUgsi1AsWht16JEFKggQoMk9KKIVUpsK10I214WvS7hmqcJlrvUyi5fb2dr+vmNTv3ep+uUZVCiViaHm/GyAAq155Yk2lXFfu+wrcBF0YlHMp+EXgGyaEV9EzTgAQSXmqcimyMJUPKzCc+XwJgKOkePT6+ThkjiLmOzZt0ol9ZgTlOzLzQGuGzArDMZKOfx2i9zy6k2ckZI4RdawIo2InFABKgJCssinXjy9Aik5AmRAIxFwis7fmm4+g2oF3U5CkaKqCcgoSUy0S3nvDwBRjAEggwKlUUNkh0NWpR1pYc3CIBBoIeooiobY9OQJSCqtMRIThzsAFS+WiRZHIAxD2t1sXTKIMkhhrEHBwBAchf6jjqRSdljpfyjyXMvE86+UyzXNhAWac6lIYs5WN9qRIjMQkoTpXlHTj8MQkTEZiFCARShidDyZSLXWqQLj3PcHBwRugMGGpuiRl0ZKRPTwdmJgItYjIEEMLIWcyBEYmUMZo4REyqhSdlqlO08eAEhFRFk8npFKKiJi7mXe3j3vtWBAH+QIOaR0M8XO4+7h9gDy8yDJFZBQxcaZxQowfRCVFoYwMSEZOAEDPBIjhrpYEUEVQj7NycqIgMomgjL4XICAQAvF7cYnjIazMY61Eei/5j+nxoYg5T8QfGgof1rn3ah2OMxwBjOF9zpgYkdLv54DjfIAJAPygRQ1L1e/LnXjwBxAygwmYB7Pk/VUQskqhGSGTSTEoh8WQlAxGMCKsU0FEjKQcjrXhZjAabhhEiap1WkjEM9wNvUMGjwjZAhzEIAyspAgA3iPAh78KHeL2w6BUICDdxEWsd/PIAZ0yCzMTJQQeWx0daP7js4QRic5MTMcneG4x+CC5vetdR1DOu9pzDJphLz726OECzzl08ocwNCIwEGEk8Iy+hRCdzrxxJLMc3fvhhgbvEeEHio1Do8uEjAgRtRRVwY+LslaWpdZlqjOOwlpJC2hJLViVi0hhFZJRxLgP51YkouG4xsKImB5m3lo7kOYxReK9iPEIGwjLwzhh8C2EWRUJKZM8SYKbO3uYm/lRxJyRrWdHNAFib9+ZdiIisTALE9Np3DL+zFGu52FyPKyHRzvraEmeJ2jCQ+ydOOLtAJMiMzDAI9ER4DERx5Q93MUhDyk0Aj78Nc5wDITwHM98HJWPIgYBMcNDSBjf5wsCCg4XUSks54JF70XMGJEfE73w3STpeAuHcyHhcNX9x0XMYyqPQUQQC8I/X57+b//pvzxr+fPf//7/+vWX/+nbt1/anpgX4r/o/N+9/Ol//Kf/8s8//Xl5+/Wv9/UiVZEKi0N2Fv2gmS+qf/784z//9JfX0ct3s4QkBOQYvvAJlvHaTe73+vVXxPxRaJpcURzEMj0oAyiAIAvmlZBEqFxK5FtAQ0pvmS6EKkBxrYASue/We9vW+3W9U9EyTcgZ0HYncZkYJhGBicw54JbpBgjGBBNDYSRASHhtVrQ8Nn4EJBLhIlyF/6CIORtD8fFzPrFRIhQ8A5be0csxFjLw/YzwWL5z8HUQAsAPJPS7IgYSTiwnIUcixqB3jgUMeCzYRMKkowX2uOFCyZkxPKcCAwDISYIUxClRmVUlKVv4anvujRpXlXlKgH1v+7p6b9Yz3V28MidBQuIj3C7O5iqBEBGzFkaU270ZgarWqQgVIui992bt9U2Fr9e5TJWoMLOKlhLh6YkD3z4pG++VHgCw8POnp88/PhelOvG0yDRpLZIY9+1uluX6VHR+uVaV7dv6ZW87WAysP4EgNd1b84hGlJBAVWqV0ZolJAbhYEisWZvtt/st0KUqMVFWRuSQiCA3gcONrc5alJHRLba17evWNnPLYRKDGaWoaBEuhni5XonfqQnjWNp7x+PdCTOTu20+DOaHEysiHF5PyW5p3SNCS2H3yOy9gwEjKQskDpdDd4fhKGBm5hhpycqqRZmE0DIDgY6eZmZ4ACJTEpM8ZjUjKqMQCBJhBow0QIQEIv8uNDG/v8ZbGxPjLDgCiU64PU5qwkdM88MCF/DeTvqjP+Gdb/jhODD+JY5cPTq/e3Z2PzSSRjmYJwb64Y0AEZU6TfNsDOmOCNmjRRIoIhEpkYowKalKEc3e3759u9/u99tt33d3G60HZhUpyJLuQSgJETaqSQFGwLBwoFKQAN0jPRgRERlpEIog8eCeELIIIxBh7i1O2gcON4tRXyAwUVEtqt8tZHgyiB+f1bEsje0QHzZKAEiZye8UkvPxPrDf8AyHOO4fYCYd224mDQ9wUuKjiBlErzPpLDx8BH/Zme50ErNirCSJASFH94nHlou/ZQDH0Xcaqe7MpXKdsEypCkWxElYmJgTAyHQLHy8Vg9lFSYRwRFFmBMdhKTieHw4D6ghwz92dLXqAj/CR8Sm7dzAgOLY0wMCjqzbQD3ys3cegfjSZjiF3rvcQkeER6A7DsvjYSB7uLZDACIwQGAe1jAhzZL0CETHFaMjlEc97oEd5NIkSEujknyAMn8tEoIRjIg8zxhMeee8KPFanx1Z1zJl4f3kfp8ygN4xi8TgenIQdOLfAcXY/7t15kPv4S443eHTxgD6s+7952PFZJUAAIxagH+fr//if/sv/5fnTP7/8/Plf/qX3/09vv9y9FZI/T5/+m6c//eXlz58vn//ruvE5vg8I6Hs0mFmu188//vCXWhd9e/319eu9baPEReIhbonE3eFLb/Drr+YNCH546bVemeZmZGEATOGcRtnY++yOQCwTTfaGsTcLa5ahEEthWUr2AhF3a/f17dsXYvAX/bEU2SAd+ravGHCdLhMKSoXi3WxLDw9EYi7zRISaydvaS3lHyM7PFI8eET3auI/ufQIEfGjY4dnW/HDBAZXB8aGdy/t3a+b709EB3T7u1Idr3P18FyngOF/nuZYf4+UIcfmOLwByf9vSI/aOiaw2zkuSIihFkCdlUQHi4OzQs5sbVakJSbne1229R+vY0xxdDaoEkVsf0Q6PNlhkQuJowQorAO27GcAciCxqAIwQBIFhGTicyJGEOVFrrQ7h6URC1Lm7JXjL7xcxZlrm6bLMiC5CqiosgOQerXmGNXOUCASH2K2v2+7ZA+JYHDzd3LqfazegAES6RUYSUFhkDwTMhL3323018DJ7rXWqVZgpEDOqzMBJzCIklYQRBRr0yN3cLCwThzvi4DkMGzmVoh9aY4DAjMcxmVlrqVPFBOy9e38sEyd0wQB4ljWWkFpKRvRu7iO4wwmJAUdOi5lFxsP7nhw8kSEghiqGzuGEjJyjix1gZmAQo2Ia5sUZmIBAEWnd0wdMjcTc3wNTP0yJ/9iVEI8h++HP89d8V5n8wZ+RiXlgKudPvRcxR51y/qIPuCecR76Dj3r0ZeNjnQwPNDWVgRMTPIEECIhZIQSQAIJH5HaRntatbft921YzH2jE8DZ/HE4IiFACILxjAB8uoilIhRXHnmORCHwwYDHhqFWA4OC+MXOmiPhpAszMhDRS4QlRiIOTmT+uHkw0krwYyQ++EX78wI//e/BHxic8qgUgSMhkSoKkEdUYg5mRJ6QDQ5wRSEmMfNBIkQ/bUs90wEgOQQ8JFx/DaNyXszcyaN9HcQV0fv3R2DluLiYSMKMqasGqUAQLkTIOy8PIMASPwb1IZmBCGU9DSRRHztwo5hIIAXg08NEjwZIY0KEPIMLhIUSMowRDYqbETCRkgDSIUe8duz4MlPF3az0cY9gjLOLE2AFzYCFHwMSBigAEwociZiQ/AOXY6eFw1AQ8Ol9x1LR5TMfxzVHIHc3lBDjhp8f+8Zti8R9cmR/n3G+/Ob7O2vT9eidF/Aeu/9DrOLZBzqRMwFSWz5fn//zjP130Akb/9a+/vn359m/7tgD8qMufp+enMispePqhUv0HT05cpmW5vrAoEnfvAb57tzSAHHqETAigLfzLvuGri2CmfX6BUmmcAtx6ukO7oa3sDYGkLDNCQ+pMwWARaQ3ShZAUfNYI73t49O3t2x1zngszYamJbtY6UHIh1koaMm3FBgkzIxNTRBaeukFd3mp5R/ofb2l4JRKd8PcpuvoonvhYxODBw3+/H+d3If5jCzwh5aOl/Qe37jdtxoh4YHEJgzUP8ZsRI3/729/BIptRUqnTPM2X5SIgigrMZZpFBR0VmVN8t9t683su4UHwdn/dt836TpY1ycNzlSRu+9ajJUXg0Ud3D0xkGkFdDIndumVLyMBIslqUAER4krkWXS6zThW1BEe9dEDMHlE0ovZubWstAMgIHjGDQIjKpEieAYbZyYDcKQPMFZHvvW2W+9but+31/raum7UW4YgA6R6OmDJyVEtkpu29tb7fu1vQQacbzWhsZrd9DczoQBeeeWaSTGfkOh8iO8Qc0YYIieiQwMIXLYQqJOnQ94ZJ3iIxwjztvb5EJBWt0yTCtUxP12udJncDRk9DhH1HVR3OuQDg5m1rfoifsagiIvMwFraB2QBhESUmdx9JbpigLDyIuUOYGimDahoOQMo6GhF767fXb701Iqq1LJeFiftuYMghmdm25mYQiUgiuu/fBXQBJVAinkkZYzdCOLm7jzL/OPr+Qav8Mcj/PQzmcV6EcykbCoWxteFBvxmnYIigBMj08fDH0+TpNQu/P1dkHPbtg71zvPKgApPWGo0s3LwrIjCa+9bv6/7W+sYCosrMAdh7CzNrhjzEIkjIBGGGGMkCgoxMlcusNd06YIabuyMWV5DTHVkYEk6H2QBEUSXgSKLB3RbxBEgQZCEx8MHofMwXISo8vKWZjg9qbDbnB4+JeJ6DBpIfmJ5ukA7pDKEMKlQIFZEiwSEBUURO3lUkOmQCBkJCEgZwQqS3tkc2QCN2VUJJqMcBJvKgXYyC5HgNNIAhGh37I+T6w207gA3MxEj0EcvLgIIkSEKHKgpxbHIIOLr+iXgYoZ/whEeGhZ+ZRkSETMnjNwAkE/CgjQJ4DEiEEhJpGLVioiAhMwqFRttp7zBmIhyf8jHo4izQHuN8DDnL5PD3+jGOKvs4wGQkAgE4JgcAASVjJhIhMWUkIGUy5eA2eaYdn2me1fMwAgaIQBzMASAfhdWBPT1m3ONwRXjkdgEAPgz7z4NBYg5w7yMZP0c9OEKyDgDqw1k8E842Lp4A34epmMevGG8+j+E4asGPjaTRJT57ookJEsEZhr653zyByz+//LS/tv93ffrVeX/rF+cfUJ+lkkfbtvvttm6bZyTSAfTjb8pMDBTUaWYCSssOFF/fXr3vEZFEiJnIQBhBu8XXvcHf/9b3PZNePrHOE0P2vW33e3v71ddXaquyTE8/QCmCraQFBqFBbhCWjoJwmZl4yg3Xdff7+hYuIp45/fCTFgyP8N72jThVdOKy6OxHzkhaGBIWlTr5Zb7MdeLv+8l49Ij47CaNkmWMzAQgekQyvNcw32ExH8cGIsb7gvldkfHxMe9LyYfr9CTOkyrw3mnJQ+IXgAyAHj3Dzqr4uGTf9mje150DlyUpSFGZeaykjCTEyqWgKEiY962v0XazZOjR/LClzxYGhtRLEve+m/dAD4yAyBHeenbRckQijLFH7tB2swQRJORSpageHeFkAkkSRAawBIyxE46VjD4UjsccIySiTM7Etqd1h5GZwSVT92YRfdu2rTVzh4A0iNFaSbdoXHASKRWFwT0cHNIBHEdgVMIYGh7pEcNjXILIMpp5ZkKQSqla61y0IMBuW7dm1qMDJvFQK5MSUGYGcgZEO0IC09/vCxFIkfkyEU5Fq1YZkc2qvOAkKqoGgLUWQvLwfdu9O7NTESYZ+TjnmKMIh3QVviwTIm1r883CnJClaOUiwHQsIIGYhDnSyHiYzjN3NA/fe0dEIFT3ROzR04DDPWJbt3AfLfbe+9beE7n/z7yGhCLPQgaOumh4rhAGj010AAoAnuiZB6R/rtoIeSzwv4PGAY7F+gESIJIoaMFJS7EYjXsHsgS3AER7epqmIhjpFr2NGJTmiZmCBEPxKpQQnt3BM6KT8jJNVScmNrfHc0HC0AhFRhJzERD2seJgMqIURSqROkhUI0kcAYVYzv7zx/cytGlHjsTZ+IVDCHIQrM6lDQAAkTLSu/U1bbdogg0YeCpUVFgKI2sSoRQswocYCGDoXbr7yXENs962LS2cyKU6LqATsSLKwDpjVOQQY4s7FtYxnoEYjvDijxciIjGRkhQSJWI4Th5nHXPKkw+VE9BRUJ+/bIyd8TFhJtoIuUFnoKM/hwAIDMAA7kclA0QwKjOkMXYQUIAImBjjAF0lM8ziWJxP9uofYkpxNpQA4nHSPYb30XUBPFy80gEggeJI52Chx64x9ouhSRqDGT50AnMsqJCBEQffGAAhfveK8J0l8R/ETD4OMgKiRIwT5MxDeHQgdeO1/P7nHnshjnUfzv7muH95yq2/+9wS4BAvjje9Z9zMvt33bbWXafnTdPlvr8+/XJ7622vF8pOWKeP+5ZdG+Ouvf3+9vVr4Icw8vz7+8g2iUc5aJlyevEeaR8AGm48QcEsMIAkECNw8c9sBUMovTvpMEysCZEK3MDNHT4CsvROCYpugYZimJzilcSYBsiiRJKMCvq5me3/99hosNC+kQlQQ03zvgMxCyJNMHhgWe4LnBpBjAZ+naZ5+h8QMXtSwvQF8oCAIjyr0vVZ4pK7/ISD2OJUeX+fy+7iZj8cBASS967P/6M5/j75HRB5aM8QIg98jMUW1WfRm3aGUtB7317uo8EQI6HtLxOX6NEsFQ28Gjvu9fXn9BgL1WutUiswQ0e9rTxPvkG7eem+eFuBn9oowM45Y3UwEFGFhqjOThMO+WrJTSFW8aHJ3S2egbu7dWrfNeuu7NwtrAT4yQvPdPe3sACQDg5rHvjZ3YJZa6+VyYeS2mVlrbQePyqVU7aDWe2SzaJAoBaeLFNH0SE9EVBG5KKEIFwDqzdvu29444qKL8JBHRLvfOiYz4TSlViqgIMzMyGtguzXbAoMZEALczQPCMi3BwQdD471NPMYRSuXlOl/mmYh66/veE5OElzovSd2CkKc6IVLr69vbrbUdIJWriorIiD0PIC2MmAhWpvLy9JSB3768DUMlQp10rjppEmRYNk9PCMwUQAjACAwbMDMxkXAiBmD3yHTLzEz3MLN93QFyqiXR99bW/R7p8L/vOqfHA8X+g9F99nviQQf7DomJjEAfkkcExGRBZhAOpSjQ2XeMEZwEnmQgBuognmRwtprOs95Q18TZ9wcAABrIFIYDADKrUGGZCs5KmualsCMmtNF0mOf6z3/6z0pqe/v65fVf//Vf397Wtq9uGIURIywQwCgpIr1j5A6tXOXpx+tUptvt3s2AQEopkGFhe2u9tb4notRCVWGw0DJL0Vm11AVpWqZFhcduxoQ8xPQnc+HD532omIkPChIdu0NCDhFBfrBbYwSyjL77/bVvr+avBDcpOfsSuQBOoqWo1lKmwlWzMPBQFXlai721bW+bt31vvt631/ub+R3Vy5LziyzPOnFRZuIEIhrc4ICzsQGDP4WISI4kiPybKUMsWrTOtRYphUSSadQxyCCEA248V1gYoXx8ZNslRIxWFmaOUgky0jFgkFDO+h4QInFQkjPjiJpiGZ2zPKA8JEAKwMwYkIhQOEGS5dFaB4CxLv+mLX4cSHMgDw+WDwBAfOjE+HghB6wBBEABg7xNo22c6IMGnEeHKCIJMY/883jgmh6A6GPxPKAYGGRgwKN0O9fYj3tOnnDn+x3CE1b6cFeYUGich87QrYEqjQP++Z5PRIfyhP7OQ/1AbEcxmN89bQIkPShGJx4z3pdTOmRkfuv955+/fZm+vHzCAvDPn15uf/5LMSPEP88F99t//Z//p1dr//r6y9fXXyychJLwcMHJ98aHZ7z6+hobSS1FL5fLOJnrTb6ub/e+tbRIwExAAsYE7qCvFvnrlzXwLyjPzy4yT7NEXFgVMzWBmSlNraM3jZ7pmJRIBhYZh3hfl4IaO77dtvu9Gb7x9JVIri+qit08okGIcJ14wqIZAIh3yN23sJZgddJ5KcT4fmO+A1cA3ofhKGkYzubOh8kHA355DIeHlB+OPhGP9GFIOu4QJtBxe85y9VGHPpbVQKRBBHiAfXne4TEyBsUXkPK9jH+/ZJ4rJqy6A4JIQaB9b+a26MxCacGWksBAmQCB6RA9zDsA1FBCYCYA7EgHInvgSe7WA4JkKHCIhcKPsYoEzKSKdULUbJ7WzTtghyaFerMNKR2Mu8Xet2Z77601u2/du0umOgrLRx5JQnYwAxdmSGxmbqBJtUjRmZna9tqbD46kSgECTmyQzW2QBkohraKi3jwTtBAx4DDLLVMGEnegFoSYsExTYUYE6/vb+tr3vUF6NyFVqpUnBgbH7NBXtz0OKPo8jEBk+KjxBAGQGPm9TEZCUa6TTnOFzH1fzY2YiaQUJVKxJJRaKiKKAiCEd1u8SFVRYuq9kULvIsKqqAp1qtfLYi0yfWQoQzASDRYkIQtioiIBekaL7DkiY1EViSYt5kcAb5gbnQzBGGGKSYRMHBDWW+/t/2QkZmAm51GaGAiDKVVCKJRc0cR39Fv2fTS+IChSCSrglLAw8CiO4lHEPGwNHs+ScCR8llqLsLIIVckqOXGwcbAgJyA5UUqRedLrdebkt968t31d27qmGaZQQkZ460O4l5AQRgDEIiPFmdC8WxgwFalTUYjYb5vsGzN5JjKPFksega2BZzLoaOVkZB4kk2O3w9/HuQIAPICeY1WJA1Ie2gSA46RFRMLdIDG6t/u+/drb3zubXpbn7fJ0vTwt8xMuT2VJnIArqgKzIKEHQcdo2e8W9/t2+/r2+vXr26/dV55gehEqF12kjKRRQqBkwkPNnMO3ZpyygRCJHU/TkY9vYpyVVFWLiAJhICbCSDAeLqsIB1twHPcI8aAFjTl5Qr2ElEiAlPigkX/YU7972iP6mE9vVszBLI0cjpmIGZwcwJg0Oqrva/C5wH9/5T/6y3t5MCAyPPD3c9k9YZYD4BnVxfHp/e5cMEqBYeoxJB0whs0fvqb/o9eRJD3ET2ePYGgIP6BF57n88WNxniLGq8kAgveEynF0zfhYL53lzehPASA4QMd8a+u//fy3f6V62baCoQw/Pi+0/xDuC8G+fv3r159/3td/Wd9+3l972BhX77/rvDzirW/f+lqFmZi0TPOSkDQkcyvCfk+3zEjARA6mBNgibN/99RtJcfBPz5+FpzIzcnWL6Na8s3cyq5lTIIEQoifcI3a37paCXGiap8sTevLr221ft7cvX4S5liLEkJTIHs4YRZhQvHhgtOyeZr5DJAkN8d0/uksf/jx6hXBo1R+fQfwDJhp+qE/i7I1+YH89Hjfq/XdRxXsBDAA5BEGJRz/2/WfH7498bzL99pLrZRIW75gdl+WJEt72ZuG1FxWamItjbK0bprM195YEdJkvNKUUQQjrlh6QyCjCkojCaI52zPAQhlqEiNvwTaJEREYSAi1IFQAVNuwtrMO2m+WWveVGSZQR1m34be3Wbts9Wp+RlKapXuZp+chm33zfYwchYABOAlSVWqa5XhDw3t9yTyEpwiolMiOsO6RHEmjRMilzIVZURUriDM8IIBSpU3iCOQZPzEK8aK2iwthaCbeve7u93e64phO6CNYo0Fpb173denhIFRI6ljjCHt3cwlMqUWHjQJHT/AcGCMTMA4Af3sgnj5wRD7GCuTGRqjzLZZlKBhDJ4AKb7cub9r4z4zyXp+dpmioh3d+ah40jZ9/DvHVEpakW1WmaprIsC2bur2tfe45WhuhbW9ve0tOGjM3MjwFFBMSIVZEZVYq5DbOQfwCm/LvXP8ZgHg+AB+5y3HQ4geeMDMDEJAYtMHFU6opNYOdoaXvsa19v1nbfe7hHgCUn15RnKj8RXxG4J/o4gRy/8/sWb0bubYuIp8+fLvNCgJhCLtkFGgEFcpInU9bKT9O1Utnut9uXt7/+17/+/W+//vrzl9Z6qVV1Fp7M0cEiHBGH4piVl+tlmqfurUXfbO9gIjxN9eXpSYn7ulkzj+hmu7UW1iB7HKr7CDfrkcDY3I2Ce7e2t96am5Mg/7H7+7mdvIveEwAjCSBOP5ghcxZVKIVFEdH27euvP/9sr7bUZZmfni5PL9dPnz/9AE+f4HKlacE6gRZkTki0RtsN1m/2+uv91799+/Lz12+/Ntj1qqFPS5QkSMREChpcWELMhyzncd+JkDiI5TDLe7wDHBL0jxn1546OR1fpsEoZQ+WsY4bzLSEgJ4/iNhPDEIkpAMgHEjlAnaEzzfevwWoa1izH35ghMsAyAzAQgxDoaIwFDrAhYdSHQyP23T3Bc5N+oMyH0PNMITh5uwED/IixGQQAH0fmg4J5jtt8/9V4uiy9z6BxEjnIMHmcMh8FE77PuN9c7xvQeGA+Tvcf5+tI1B4lMAJERJw7/dnqfXBfTjQ64cOTjPcz8JmzloMP++Z7AXR0ggeUBkkJ6JS3fvuXn//n/2l9019/vE71KzYs8KefXrzbZtuv295b+7d1+1/Xt795a4yPcXXc4vO9eMZ931/X+yJKWhSSVGe6sLIqiwgFoK/N0QGTaPDmPCzdb/vuP/+1WUOC5+uLqGbYvt76fcfuJfJCtJBUmBWU01owWFrLm/emwOIo9fLpCaV4+H3d7l+/YkYR5oBpvqoCZVA6QzLTUqfk6NkgzdwswAI+sBXOT/HweDpy2jMfHDPC908Z4cTt4iRxQfLRWz1uN40GLCAAxaErivg4Oo7AcSAcrigfV/IkxMgEHHBhjHI1DtDnEDWd8/V41scIAACQMldkdWdweZovYNGspxkRU5IAkqNvFowAah5ApEXlwjQjKpyRRAQgQqIkyHRYj0daGGEcg+J0hDhcC5IjKAIIExiRKTE9oFt4dnNwhsMiOzMs3Gzvbdvv2a1IIa4qOuKExjsJj3Vdb/cbIRXROqmA1rJclnmaprAAIAgY7D5gyEzHSAECKUylshYhkEymASbzOMDkSX0a6JESkpIU1uHkIKm1TlNrbe+RAMnmOfRQvZnt7haZQMgiQjT8mhABe+vhKVVS6ECyz5s+CBlmNlT+fF6P0QYH9tCSSauWUoUXIhk+4kTovs9X7rYTRa36/LyUouGgIu4uKKp1fWt9dwEqE89LvVwv1+v1erlS4jbd2r1ly0xAkrLV1joA3tvavZ+umkOgx4gUbEQgzOFO+e7m+L99/R8/9B10wgHhI5IAYzKGsKtYxb3AxrlTdrTd9s22tbfd9uZb996j9xaQrFhWWohLEl8QFQ71xyAmRH5ElPL0X1ettc6YBMGI7AEW5tmZgRkzPQzSY9+3119fv/z9y9/+69++/vp6v21CUpe6zFfVazNIjwZAlIzAozB/vmqte3SL6BjBYJhJVKbpUqecZkxApL21r2/fXteb9+YQqkqE7r5tm0dHLG7Oib211pq1Hm6DAPRxJfsAKNNHSmYiABBEHu3ngWYMwU2RaSp97ntlFu/97X67xf7m+w32N25bzV68UV9pucK84DRLmZAQ+462ZrvF9s1uX/r9i61fnV1iJr5oZZkEheK9OTBe2LCgGjMjzl1y0OH+CMN4bH4HRQb58MEBwKM3FXBkwiWgBSCAZzIeuxciIvqxcZ5mJaeCaUAVQJ4E+YGVcy7nRIcbAyVQkpKgAmA4rLsdz+0+PLMA8B+qNM6Jcazfh3Ex4XsRM8zBBpPurCZykIKG/aQgwFC+v/++R4UA5zg4YaE80Pw8DVy+exmPNu73X/+hK4eb7+hvAT3gmOOYfr6KD8/1+MkPAEEC0LEbfLdiBB45DuNxh11Lnh4BgAC7tb++/vy/bvvTtr3M81oAhS/J0ft6e7u3ewv/1vbXfbunO+lvEb7HU2Xuvd9af2uNECtQQZQiSvN14HwWlPTW+uZgiSPULpGDsrn1tSNmrQxg1+UCCIh74m4RGJTEBKSJJYEcsrsYk5NbNvDsTUTmWufEyzqH27qv99d8LSqAilxIiBhJIY2QqnJQbT6n29bNsRmQ/TEyPpg/Z0n4fv3hh3DWi9+3DN+/Sx+LUYRh6D0OEZiINIy7R0cxPxTHAKOXOYQHA+AHQEiCTMxhWHWcXQ+brI8vS1BFES4vRbA8LxewRIa+dSWi0RcOsN0AAQWDkicthPVJeBoHJo8eDhYWQlyxiEhhrVwUeeubp0GANU+I3rt7JnVGSSgIzBs4gwue/GAIz4R0AjunDUS6u7W29a21DSOgVBJixg9NPjCzt1/fvv39W0mZnvXT83Uui8g8laVM2vaOiqmQEsZpkJa+5h4c07yoigojgJmFAyJBQHSP0VXGhO6QqMSsfOo008K6RUTIVJ/507Qsmag6CVdziDDI0c5FQJLhCKOMhAEODBdaht1dc2tra/v+aMFExLau67pChaJ6WRZANDMAcHeE00/MTQtnkmpdlqmUiUWJEDAyy9WKxR5hiKFKA6mcr/Un0svy/PJpf/u6fvtyy+6XUq+Xy/PLp+vlaSozBy1Sfeq+exoAUimTZwJTfktseXYrkUikKAC5N8gYx91hrfY96S7hw/IHo4E6NoexXRAEHvITeD8Evi+gmI8DOeBYwTEC4rCwA1LSEgvHhLvmRn6Hfk9bI7ojoPW+bmvrPSGTItFbttu+WndCrrs4TIvTzCiMAR6QCeSZHvCbfX8owqxH24ORCZCTInxr28C9RGhrftv2/mbt3n796y+vv75ur1u7t2jJVZdyfbm8lOWleSLR/X4L25Xx6WmZ56lOUyDc99bDYeK0XLed+24ZLFrKVLVMta7bZun3vtnqEVFrPZyWrHdDhGrmDNj2tu+7d/NwS/Nuj0p5bLoHGH5UMGdl8I7HDIg4CeGoV0Eulxl65tq35/mXWXpBhqQ0sD36zbayM2E6hkE6IWgpiAyHqUrPMIouGHOlWnl+mZ9fluuny3KdQCEpDGDAYZAAp0AIAIbOOA+DvMz4uOEdRBLzsO5EKMNOX1GHAQxgnKFAjwoHAD0humc4EakK49mCOdgQiETDg4fp6AdBJiIQoAxYFfPATIbpDjIADMxqrnJdZlXNoLe3XegXjFfrI2JlONAMAB6/50selPHH9dC/HgTMsSYi4rEZYJ6UFGZW1spVUABiGGMOQjQdu30e/nxwVFInZ/go0JFiWBEdJ/GH4cEHdOTAPd95r3j2H844iQ/3JXOkHXoMxz5EBKLBjgSIofY8ekaH+fMBFeV7ylIC4LD2g/MYf7ysOPp7B8YGMUZsElEQJCdE+Jfc/hrwA0r3bQODyK9G2X3rm4GnsgMACwSNcXQMjt8sYZmWuXq89Q5EE1FlqgnKJPP8RCRERSp8/RrrHpGBdnBBcLQU/L6vf/35r63f/vzDD8s0lQkZpVFwQyCKgAgwS+zee6QNMII8o7WNCYSUla5PM4L7r3tv27dff8aMQiJEPDOCezQIJKkVy0Vn8EA3sxb72hMfnCoEOFV+meBxQDCnHivz0VQ8RRLHZIDhXnDyaE6FWgJE4uEYgYkIjMdhnTMTx7fwREQBk+AjyD1AGiI4mt4HdQqHJ+YYWOdDk0KQvmuNSSIGZXICRrIL8+Xp4jWGsSATZEa39EQgTkiqwoxUGAWZAZIYUkEQQIknrSKcAIpCAZS0++4ZEBQw+BNmvQWKCrhL7xA7hGM4QhAjCzESRwZF2hBZRqaZ9dbb3m1jGJ48aGFm9hHq71u3rae5IC6lLMssPKkWVXZ3LlJS64RAufW+W2vQkYiLaikYGN1tA8zkQpgABuk55ueITsREQRQe5uXhYd0sM1l5KjItSya4UwYHMsDIJhFmGgEjiYkMxJABJCBVKBISuAPLw6ASACAiWu/7vguJyhFU4e7uAegIhMAAMCK1mVMEtJBWZmEc1G9kqdWT3HuGH+1IB0AUpWlhZi1aSy3ZrDJPdV6uS6mVgCipqGZQQARnBBbPqU61VhFGI6TIAPfh50sJ7tYhHZAIs6pUVaKPK8A/vv5Djzph8UeTIBMhGXA420oW8Sr7jHuJVfrN12/7vnbvEQ7EYN7XdWvWAcEAAiEwLXzvLQz2Lo6YrHIBVIwRsBjjDPmd/wERalUW7j1WMGWSMyo80hMcMSDDmrdt32xf37avv3y7v66+ufcEI1SmUKVpuVwLYHMLjOhUqzx/fl6WmVUcYehxgch6p9ebSpFaqAijMPMY7mOhH3YgIixCLCKG3KHWWmvVYHokrVt4Wph/h/HSw/4XD7nI2Lnyvc+dA7OAsdsNQICEWESLllqKlVJBK7EQYJjt24q49/2+vunbt7Jc59dvINz72vb7tr6ut2+tbQihk9JFlqdleZqnS9FJHHpgZAwkGtMzgzKOV4MIiZiMccbzfj9GRnSvuVs4QuJorY4sjBFpYIfeDBGJORHQI617b06EU2QRlhG0yeRwKJKJTnsbTALPyMPglkgAhnz8fA2YkOlJSMIyTfVyXaZaAUR031rfd7vdtz0N/5FFzGNa4HlvflfEDCl4QiBEIgYEpEMCJinLJNMss6JmxpY7RiPysX8Nck9gjGTPhESAM9AIjpPGIFV+PzPzhE3OCREHl+Yf2PX85r5AZHomBp4k4e/glnGdGrTfrggJcGZs/ras+P0Vj+IsAQIhJSECXsN/hv6zb9R7WiPLiIKBCMjERhQAjhw4CKQPm83fvhBLaBE39/TegCekhjQRzcQ61QURgSyS4O1133fzx/EnARGpu73d3iBb4Uy/LvPCymSQCT1sTYAwdgMzDzMCQKJAhkzv3rHLBlyk8hRl7hPc762tr9+wlIrMSALElMAIYgRIhSS0hi9b35PVkf/R7fkNugVH5+boJR1A2PFdOmvJ88dHXZpMQBCEmZw4FpzMBMZBzDgtpQcJ7DyTnsD22Wn6DTaDcPDeI+nRXczh+P3xPYhldLP7uqJDt/tSl6ksc10YWIiUKDK2zXd3Q/BohM0wWjgZDN95ZS48zfMwaT6oapwImhCUQB0MkRA8MBw9rCdGSgFg94w9rTkES07KMtWJiNl7C4MIz0SINE/r0ZtZQ1ZiTIB1XW/rzeNdBcPIylJZCjMBUCYhHvZazLWqlOX5U/W0/svPvu2exqhAFA5tbbaatS5EZWS1BB6NRDq8RtIDiFhJRJMyHcN6hg+VqrKGw+3eI1OkMAtjJqWYpFu3Hs1RKgKFW0TGiP1DlEJXmS5P9ZGfkpnuPuJbeu/jALnvezcPT8IRHqBapBTVwiQQYBa7m8GxSsQZ+06AhMQZ0brtW2tbDwNErosul88UAN0JWJjcrDUjS4lkTwyAwN6jNRuBnwGZBEBgac228JQuGdFaQ4RlqSw8zzov5fsi5sNB81HtH4ft79v/cJb4cCIxYxJhwpD+JiQEQTCgppa8lFjUl9ykfY32Fm2z2237+u219TYiVzHAwzdr2966GRLrNAmLqO6tr76CkSeATPVZSJEuDAxHRlV+d+QnwmmuWkrr7n0vgpUJhTFBhYyx7dZbs+5td7v3ft8hWLAC9GF4kMZ9DeuoZVIV3W41O2GZ53J9eZovCxfhWn+aayCubd/vW39bS+JleWYWb/52v/Vtv9/vr6+v3k1ZCSMzROqPL59Y6rbFPL388Pkz9nxbllsp9/twjYqId3UiAhAB8yHNPZh8H5rN4+B8LjuQgBHolq3FvnnfPQ2rTDDFRDohK6mQuNvt9rb5l+ZhSEGSrImYYZhO4AQukKQoU9XrVJ8WXSYuBBQQftjZQ2RCeFrP8CNr5YigY7K2m+3h9rHAHOhAhqc7HMlCADkyAAa9Kcx8mDASsuShiOjm27ZlZrrjXMs8Un4A2sCNRjb3MOk/HU4QkAdawaPtdjhUZzqEe5aUWjGBMzEBmUknfXq+3Nf9ly9fvwMmEzLe/f2P+TEOrb8pYo5KcyRiQsZBziE4HMw5aZJ60eVSngqWzBS877E5WeDw2yGAwwfczCISIc/TRgZ6gHlkUmJAYh5r+amROpqrObTaR4MPhpXQo4r7vieBp3cLAVAeoQkf6C3nUT4fzOSz5zXCEkbffPwJSYdFzYcCEEeoFp6Yjz2wj6SAgxFAt8AvTF8YFowlvCJP86JSiaFDvEaDthtYP/bJI8Pl+O8xwA5XBtgiMmPP3JJq0pzcM2fEadKZrn9inJX1l19erW29Wwze4PCV4ojYtv2XX3/xvgNEKbMjOUHvvlmsnhIG0JGdBABIDMuYCt76fgsxYaGJn3+4aqUvX77d9zv8+neDDJErEmkIJHswKpMoadWp6MxSgOWDr9LZRx43DB9wyDmVHtBAHtKgPDvOowp9gGQEQEmUAkHZCYKI2Luvb1uPBtVlAilCCnns1EfH+jwZ4YenRhjn4DyhucHMPxCyMULSQx6pGuMSC7PsFs27eWzhVi6VlYSUArv1iEQW5YKY3SGD3TN6h0hVBBYRLkWfl6sib9vem3n3iBCUKuAAlObgkMlIDEQITFiKiAqCDYUfA1etC8/LNFEi7QHmHgkZhAGYhaAIDHdwUQGEve/bhxYMEdWplqkSkZu3dedUmIsy8CRVaZ5mT6hFLaKoqHDrmOH7tjmIbREtogMIEbCKILBR793GKoaAhEPJgIgITCxYySFFGFWkSPGeu4WbaK3KimmJXYqEsYVFQHgQDm6huxlkDvWrKn3MgsnM3ntrrcmOAC6SmWZm3d2CjkwfmqYyTSpMmd7aOpS3RxlwJEWPhjonUyaGhzv0bt6TJVm5TqpIsVsYAmL0AeGHd8dABZGiOpVQ+eq3vGcP2/uOlObWekvPTGfCOlEper3OLNLNSv0PIzH/2xcCQNARYouBmCxZNKT4VPoifcJW7A7tq623dt/67b7e1q1ZQ0KU4Xce3X03v687Ik3IyCyioiW3tVvLG5Lm8ssslYsS1kEA/U0v6SA+IEk64wimRRm8ttE2HDmJx+ocmQ6EwgROgBykQKrAQiJlmmjSpS3BFtZ5Ur3O0/NFatGpylKDUPtk25LPVoJfdGKL9u3+dl9//frl7XbbvRsmFyGCACdmnWqtixSa6lWnGtlPmhCmw4nfff/hvp+8z8/6bHgngAOMbSgTMDCRzHzfY9ti36L3zGQiQeQE8oiwtu177/1tX9fWNrcW2QMDEiGFsCjNRS+1TtepLhdSJhVWAswEzxG/NFricfj5DxbuQSJJGt7eiPF74tXo0DAmDxYbAAD4YcMMnmCe438JcoRVASAhCyshzNP8dJ0/P19E6L6327rTfd1az5F1ke8kDiSgoQU+3W+PhMdIi+jmHnkC3rn1xiQW2b0nOmACHSSR8yP/2Esa/3TiMH9QxBz1fp56+BGjRICassjyVJ6e6svECwCU/tZid7JxTxkZCSNi3/fWuodDJBOOpIGereWOYGPXAvzugP7OEIuBxBytkt/N1t+UMR/GFQxN0h/FicDRtxhz7MOv+vD78FH7/SEec+A79P1PElACbgCvgG/gXXTh+UXmafmx6MyMd2u3+5dmfYXcR0LHP74G38EgMMwQHMiBPD2CHAlYq8p8uWgmWa+Qb/fYu8VIF2fMxHCI8PtqCC7C82QZAkmEmRQBSekRRhmKAsSFKgaK7y1zd+tIwcgiKlMi1L3FfVv3O3xjnpZAKkuUDEZX9iIVkJhVysRlJql/RPf5ro/5m/uSR+T0R1YgQhImEBCjEDCnUAq6QmffCZyZxbZt/Xm/75Z1r89INFWSw4p83J3AgQziIfh/v4mjTj0lYu+T/OwY+5gXH9+DRDQAF8WMWO/37DHzRakCYVvbLz//PQM/ff6pLhdRFfAM6M067sgeyaihTKx4fbkqUvd2u2332xYBtVRVWZTI+tpW96RAQZm0llIuy7UU7nkPABGpMi/6fJFlEQX37M0BegSAEwYL8KLIU6fOpHUqZNTduvXHR8Aiy8tleloM4u1+39e2VX96EuHn56daJ27bfdvd7ptnW0rNS0T32217u38hkIkXJqWRV6B1niYRNrPXb2973zNhuKCObEWPIBSdyvJUmYLCCVNYe4vuYK51mhHE+4qJWjXJwMY8QHQkoHDvW8uIUgsJZ2b6+yl5FDHbthFgRtZaz9Z85ojeUZ2mernM8yRE0Xu3dT8PmkhMgszMIiPDp5DSsNBjVMw9s1uzwahOJohMZMAkpUoF022/pwFXvT49P//w42vbXv+X9b/e/rba+nr/duw55oQkCMt1/vHH56eXy7JMZv7LL19ECT8UMWdhhfm9Hc6HKx+TZ0CJ+NhPhzKBIgE4gUEkitiiduGt5J3Wm2+3W9t6777u/bauW+/DpnDbtgAf1E5MsqTxIe0eZZprneYZ723t3fe+0Zvff+EyVb4wK0L2cSM+HsciYG/hhnOd53KZZREU8HBr4DBOqEioKlALG5IR9OYMNDI3E2Se68s8vczlWngpV7wa9y+/runwQ2G5TGWpJLTHlgBcdZovGvWK9TNXvLc3/2V/fbtv9y/rW1bBwspKCBQUhK/7tgMXuQBTc2u233xbofcCwQzIWPnhcT2G3GEkFXHkUhwlDAJA0qF0jCHATQKk3mPbYdvjvvu622beuzvEHoAR0a3te2vbuu+77bv17m4jdQSSmYvyXOs+Ldd4ui4kXiN9YC4ceEJfx+kPRqjBKe9GQGJiIUkqRT6OMTzIWKCESlSZCh3OOObpAYDpiZ50blPoCAggIjrxMi1zrZ9erp9frj/98EwEX1/fvnx7E337drtv2+4j1AkOwz3AYS0zEugBHIam2hMssnlE6+u2fnvFZVZVQqRM8Ij7bbPoQBAekHhYjcF3SAwcNOsPKanv10fF0vgpggQiFpAJ6lN5ep5ePk0/XOoTIV/6rUcLTkJkGOHhHOHbvre9mXWP8eH3Httu693WFrtlt+FjnQecP8wUHrlIJ8Vy7EmP7hPmd9F/v7nGoIrHpD5sAsdcHzDHqGHyw5Z1NkxhECXyEJSfXTV4J/cfRxw6yEFHbTfo2dQhtszVLXX68eWnv1w/8/SZpXIG3t/c77c7vKbfM4JOh8YHWvRxkTqcgAxy+FRgc0giQHISj5hRrkR1ufyF+GWq377QfXuzMIdwQstsTmYY7uu+//rl103XwqVqqVMRxXS35s0tDcSoDjIvWmtvd2sG0BPMgRErIZf69PLMIre3ddvXb7/+HJnPCIAgFJAZkMiSTKgq0yJl/siHRRhEt2Gyge9Q+IF/n7kDZ7U9MDQIREAKUapFJoFCKeCSXWIjv0cYInJ761//Zf/y+q3z7fJZGFihlEVIwMEOz2rEE3Q8MKH3nLocNXskItBILh8jIiKJ7PyR85IIQ8xSCILHss3MIjQ2j+G3I0XqNKNqMs3t3nzvfQt0QGRFnVgXpgqQAArBsUfzHkAgWElIiHAY7sH4PyhaihYRCmNCEKlVJuVCRJkB4CTIhYQJ4GiBTaBqCotQ8qVecMNdd+L3/hwx1Wmq00wZiZiAHrH3tu3b3lotUy1zRLvfbxadVCeZLtWi572v6Z7kQHywcphYpJSCxCLb4MeNQ3gCuBtASCFlneeiShgdwwfocUk2V9XiDmYRGKjMIObmEdYsmVj4WI5wyEmxd+vdP07/A7bLBxfxZEANmt4RDcPEaG69b9t2b72FOwAys5IKi0rBCdARHZD4WJgSIzLcwgMiOxNlAioyFdRZhFWIjAmK1KnOz0/P5OXp6+XyNF+u89bu3jw8SaRWvT5Nn394+ss/fXr5fJnnqTdDxuvz5aBu/P985bGUEgEVL2JV20z7Qm2Oldpr397a7b721gJy731tezMDZIvce+9uTMQiImXE2nXz3PYARJYEEFHVtnez3tfXvX7DulVaHvz7706WiKQ61/lymS6TzJKCTjH8nptZ9zHEweHQtiABAIvOtSALCC3z8vzyaf60UKXkAEUsjFV4quXpUq4zKVnYvd8DQrNivczTZeblSjUbvLbe1233voEZJCOQlqloYQWmlhnRhSAoW7TV9nu0nZ2updJFuMzPFzrvSwKYR7cUBuQRFzjs484wjzw8bD1geG9nZm/ZenRPizRAB+wJEQ4Wac22fV/vfd/2vnfr3bq7eURgJACzhCukE6FaXTBBEAUT08PNMfw8b/mRUjigkhOXGDnonJlSlEU+chcGY1CIilARKcLCR5c9Ig9p0kEbPI/0AIgkA22sU6mVmd0cCJmklKkU09139LN3PyqMs8gY66hDQnKe/heJwWTpZrZ5uO+HYgmZiD2SRVjTHfK3XIQPcx8OPOz3X+81wyh8clCUZKLpQpeX8um5PL/Ul+v0wqyzXz0tR886UQaBLrJL66WP7BHL3mNruW12L/2+2n3N+56bAXx3BD93tPzd1v4+U383X8ac+Qfv8rGhfv/4sWMmPFhf7yKwOBioeGRJwQOA+T2LBY8fpOEU7BCApFIul6fr00uUC5BKJPXWEO8Zd8gdk/9dms9pIB0QCRiZ4MMFADkoPUZGnbKUeeELJPh90g5B5n0zX80pvUEEAUF425p1VkUsnBMT+eh8U3iSOzCJlqlKKDbHQAcDDOAApkwhLtOSgK1b2+1+e0tEGXB+TUDoHpACIB0ySZD1dybXcM6b37T+AQDhcHj+cAUEDjHvZZanpTxLVt/RDL1h7gF7h57ABE2hKbcCktXq4p8ucCmESb75PaIfLPNTLf1+69+jkxAGAfykjw1c/PfSJAAQSCNCVhGstOdUrk9Pz5fLE1gKodBPxPr8/LlMT8Cl2IwEzOCvW0OvVZdrff50qXO5xwoeoUEz44rm/tZW8V6mOTLGsoSESMx4ZEAOaJZJChcm8e7rvu1gRIACVESyEClqqrCKXCCW/QUMp5j9NfIpl+XdJwYQGbXIpAxFZS6VSNz8tr7Sl5+v16d5qiWXL19/3nYvExPJ0+W5SKlS9q27R2RjGm5lGWGtg5lF+hBQAqZZdw83I2EqhK6UIMQskEFmzopXrZmayeu6W24WjQiBKM4OkQgvyyyidZ4BQbV0s21b72vzc9QQUa11muaiReRhGT9kGUGJEd2jmTc03PZ13+/bdrfWIQIRmSXIHSmLazIlhNk4avthcwfWPaK3fWdEYiBW0kyVCy9FylQvrKhaGCU9EeBymX/66QfLNi/z66/f2taRyvXp8qe/vPzw4/L0rJdrXS6TO3DRn/78kxb9fmLg73HzD1DxMWwRDlcSGMglnGGDITXqZBfdZ1onX6Wvua3r/e22bVvvFuEjDhkAEtDdu5l5WA8DEPMslhnMLBkRsW9790G9xmmqGAnh27rdbrk0FufgYRH2Ts4HAFH5/PnHn2ifWLDn9ma2Ozrue7/f1tYbFSKRvr7tvUEPd+vmpNOnn35aXp51rlOtU62laKDte39b31r06Xp9fnl6+uFzvcxbW+/7dl9vzfZEWKYnepZLLUm03+4//9tff/n550TEqvfYwaJM9XmZfvrhx0T829cvZhkYDtGib7Fv2bzgfLnyfIWSL3/6QcqRlJ4Bu+XWkwQgiFMY+RQoIZziSw/oHuZgHmFuu3lkDls9VdKS0npvHubWuu3dNrM9vKcbjSgNTARIBGIgJlLGQjSJzEWWQlWT2T2gRzrGSCoJ8IiEZAIRYiQgZiksLCIRyFrpY2DqSfERQVWuRbSwCCNmDCvGDDg4P+O1jAUDx9oYkN3769vb/e3bv1oXpml5CmR3HiE8HkcqZ1LKkcUxOCZ5WM8SsGIEViZXtmB37tY8emYSKLOWMgmndTLbrDVzT8QA/23TcmgZ3l3vh4XeAwZ4POwIGWPASuUil0/6+VP94Vlfrvp8lSfVuhz7bUAmH6pfAEaQzJq92973va8tNiPbY7vY7a29ft1+RccN0rIDnujKqF/Or2HEfNDvMk+XvccDH3cFgRCIEiHw8CnGD4y34/3GEXUBcEZpRsJJvPlt2ZQHtQYOGtdRPCaMhJ08xu6IK0cMDEhnpLmURWci9cBhgF4Ctr3fWr+57QhGJ0sfPqKB+XiZmQnhmIRBdBqvJGRHCMJIDorM7ARXoCLCc33WZUbzff3y7Q33LfbOgDJXYowwhl7AOHfwFYhOxQ9EsntYKiuViYFESGIND0wuALxZKwBVpNR5WTrkuq37+ppFhZBYGATNPYI9eIts8QHnP5ZeOHGQg2j1XTkxpsuHpe804UlFXeTzy/Snl/kH9Om2t7Vb7gatgQOmU3LV+dPL5+uy1KLPn5afPr1cl0K1b3DzluYJ0g8Y9XRNGDDM2ADPbeKg34z/xxyb28Oc5v2SwbRnJGKsdZrKVEpRZcAUhqpPxKVOVUSQhQjDL62vb+tMELPWpS6X+aLM2/3e954ONiLywq33IGcSQMAAguFwjgCAycMinoCEuEoVqiNmyTKQUwpDYQYhAVZU5SJKAKUFGhebkqBaefn0LHIsyoRYS7ksS51kmnQqNSJut737dtu+oGSdfgBCT7KOAF6qTNNUtQjJXbb7fY1IEWalgYAM9hEx8kilO0ZzJIR79n035ZgUVIH4CNJCZNYMNguSkEqBgumZgsxElO44jnUjypgJmNxhd2vWH+awRFRKmaZJRYfEAhFFhsw1mIk4ET3TuuW23df13vY1zZmZkSJHjpGkR7pHd4gItASIAIiRxZ1uQ8gBxMkSCiXQEoxSi4gmsxQlAQcmuk6XHz/9AASq5VedtnVLoKen61/+8uOnH+c6Za1YJo3Ap4Tr8/L/FyRm+AtQiHitfa620FbjJrFFX3vfbUR3JWQMktGIFgp3z/DAREyOhEAwD8IspahKZJrHbpYOpbCIwFTCLMKth/dMxz80IkGkUqZaJwFId+Zh7XTaXSASSWLbu617ow6QWKZpuX7683/6p+cffpCpMGOOyRF9b3v3jkTLZXl6eZnmRYpm38y99b7te4BTsk97UDOgtt7vb2+97fVar6ybcRDyrLrU5eVKTHew1rxIYWVkREWdS+WpXkVnhAplnvC8LwHQHXYHDaCkBBoUxGMByZNHEmGRzdLMrVl0ywxgoCIyF73MsllfM8wMwDL8UK8cqD6Ogx5SMrGo1KJzrde5Pi31aS6XSaYCQhaQPTL40M0nulPimBDngjYUOkQRFEkf3foRgAmVSYVEiBkZYWQOOCIiZhwFy/hVcIJkkdnNPLP1RpBpva9r1fLDT0Xq1C3NoXtaACMd+hgCYmJKIMwR+QfBOJoNNHoqHtQddsvd0hOYlFkRGDIR5QNA/vuInvGNM2+a4gQb8PGwg5cDMMg5SjpRvcrlpby8lJerPM00F5g0iyCekuMgPO8IIhEGBlsffy9cUqJnn3xmlNbbbq3lDmgfCpN/BMCcL+ofITQPXS29P/Tfu+K7pAmAY0c9wmMRctgFnZRQoATAd1QLH3sejtBRAGCIinCVcpFJUZm1lgVQZDc6TJ7SH67QMBboP7JVOfWKj/IXTmTGIyIHiBKNsSNMCYJ4JS7KAkDiBN3XuyM+P111kt1XD0foEBFGjhREmQxIwOIOHWTzFQxb31frPTlIkEsimzumcyISSa1qvu/NrN1vr8RMpVTCkOIkFtwcPOMPIbQcg+K7le63iNqD4hAAmKw0P08/fZr+MtM1OjffDDpJUFGITPGqMtdaiwrSdbk+P1+ePs8yQ6c3anL3vXk3csCPyRbfjYt/PJj++Bq2SAgGkCiqrJJpEX0kw6EIAgN4ZONEgmTESnrVZQJauF5pWeCSzbYv2/3tDom9md9b7A4eSRhsiEiJispMidDdwzIshl23Upl1Ua4GaWyOlOpZIUsgETOosrIQIgUwgSpfyrWUktX/9Oc/lVLGOyGiea6fPl2vL0udClLurXW0tluP29Zh65qOiAzIbe8IcJnmUqfCWrQCUO9eSlXW0SHUwjIkyuC9d8gUVRFCTOvWbhtlTjoJeQSSEosMzrWB93RkePp0tV7W9Z4ZpRY+jm7pbt0zMDHJGVp2Iwt+91RERBWdpqqihENsN/h9kJBEKUwskOButu33bbtZ74xcRYXFLQBQWIUPM8CANI/eesJh/3WGDENEZjimoya5RWwJSCA6mK8sFKAo1/rUnxwIRWRZlvV+3/dtnuvnH67PLxOJEUVGuCdRMP+RSvE3OMzR1k/A4T2QhwMBnBMLUaBwVO1z2a+yT2SSDdvW2+7dDQimeRaVfVvXzQ9lkEd6QAICCAnKEMGmRyLzPNciqsJb7798+bb23RxZqMzzUAAQMQSDE5aBSxAkfdB2w8jf8khJmqZJGdqtRfd5nsUwqEfDdbfb2rTxzPMPzy8//ukv/+m//OfLy4tntL7fb2/d+tZ7c2OSUvRyfVrmCxFnju112IEgIXMSe0Dre499XROi1DJ9elouWqB3yIIocyWlMtWf5Ad3oFABFRQg+Nw+lVVCLMmOmIh33QH0yBbQAfn83M8W5nGHPLOHm0d37916b+Ax0ilklvo0zZ+vEQAMEe7WqDMLg3NkQFIcWa+AxCgi0zRd5uXlev386frTy/z5Wq8zTwVZIjD6GP4YMUD9UcNET3BPtrDeWVIVevdt89bfzSGRsIhUlSqihJgOiZQoTDKytR1jBNGOcUijiEF3b72be2YgJGdgOIsGoic061tre+sRwWU0s5AZRYb/FgAEIyURHHGZw38WLLB5ciQ7eSKBhlNvvm/WtiEMOjMD0vP7RfuEAUYPKwYJD4/teBz9DxEsAQvJxHXh+SKXJ31+Ks8LXwpUMHQbFK0ASkLIjEE0AIDw6L2v99VsBB0XJg5yleLmX+Erh0Ac8p48TnB5Bjo9dvff9INyoG4n7fjxT3l2g+l4/YEAQEc37NGzGm43jwpmFGrD3CIOmOAo/RJiND2PuI53tdJIz6AjYQOHBUpkhbwgvUi5alXSuV4vP/2ziPYv377u90JCiYdvyaG6OaSE8KF0w0xyB3MMQYJEyqHpBkwAyox0I2uAe+ZGoNZ4a7v7DOUHvP40T/WV17evSf7f/HOZn6Y3z7dub1t3twHdpXOMMlccMxrkL3fDe27r693xLp9yUtaCIO5mlqsbZRCz1qkutm99XVcHTNWFoDw9A/GgcQxHpI+yrgSMQzSfp+zu/HgPOtIw+owz5igIQEBnffrh+pdn+bG9Wb93MK9MMk3u9XYDyFjmqkIAOU3Tp5fPl2XRQubb1/vfW/aatz13ixaYh3XAOP1jjLiP+I0q7Ng68BxO8D4+zksYOSO9j8MrELTed1Ol07swATPNHSJs3+3t9bbe37BnlXrBy5yLtOIdaGNcyd3Tko0rIBDQSGFDIpHBQvMMHzBdAAYyq6RKiLAgBRKSUKhnjVA7SLCcgBEe4ZkZhKoiE0+EMM/TQ5aMAIwoTKWIVIo0CCcNysBw5G6xZggrMXPbVwS3NgnxONAQMjNqrUIMPtDMQEQWFpdxV2stD4Hifm9heb14TDD8CH1w+GNgAYFItRQRcjfwECIwh3Dr/b7d3SwIEhMtuxuMO/r9nXsHcTOZZZqKqhIDYEI4MQ7/wNb23o0QRVS1EFDzLTJDAJGYlYgtzM09YpAAAA6GozVE9Axg5MJcCMd+kpGRFCEe3aIHkxBPOl2mBTCnua7bdLu9qsqy1GkqSJxgbh0RtIgWwT+oYv6dK3PIIcaoIZIUjsI+cZ9lW2S7UNMI8O7dunl4RAKoKBGFW+s9D66Pn/zDY1MckHj38d7LPM/zVErvzQx3Hu4bhJgj4xrJdmkr6QhR/3iEBIDhWNR7RCJpESak7AAemEt3Nmybd9G5FLiU8ml5+aef/umnP//5048/lctk7tvOGIaQyFwAQLjW+fr0VKeJgKI7A1Wpy3RREoC46DwhawR6Qjgz1rnU52t+mlWhQ2LEpMqzcpGlUASCMSUzCDC+xEvZi2NzNGefL+9cpYS08N168Y7ewhyTT1rfsaJ5ppt3zx5u4Z4NMWXggiA1pqWP3djTLFrLtuOwtnUCokNfC4TMXKcyX+any/Xzp+c//fj0p8/Lp+d6vchUSOkgrIw1AnH0w9Pdw9wCwAECqQ/LbLP+9rbtl/d8LgQQJj1zLsPNLYMzUejQQiMRDPzz6HEMZ9Bhje0e4aOVqUxapM5FtK7m3HZkBEggQEYWFkEZ9OjDvyQAceBCB8ydaYlIlMHJ2Ay8R2u+3m3fvTXzd2g/8o9O/I/G8QeQht+/eSIxRFylzrJc5LLIZea5UlVUSoI4AwzHZs5InKcjc5pZt27WIlJEhFRIEyMBC1QyyY6QR87Csaf9e+bCcAYL/+86P5/UpP/NnxrpTgQnF/QgDEHCmbETj/AvCEgMBNDAMfMl4hrwovCMdGVW4iLl6XIpWu5bm1Qm4gqoADzql3/wKghhJiiUHA5HkTxG1ME5TbAcrhQUTrCbkQd0n6Ip1b/w5fOC6/Itcv9EUhC5EolE8GaJwOCcQQlIiaMVZr5/vXWzWLdmXPNSiKYkBWSQ4unuwQAqTIAVFsB9v29932+v35IJiigTURHEw6fx9/dgGP5gAuG79fGjWvgYGB1BBEplKZfn6dOC163/2reOmbXINGmGpO+Q+XS5DHVqKXWaZxYJj77HfvN2j2wEwAfmOz5YogRIooA4BGDwcbwhnC3Ig8r2mxIGQPBQyvRtbfve29QvdS6iyOFAOVznSwXwfe9fv77+27/9fV23ovr0dK2xVFvgFdH5CZ9VdbW1eU+qyMDMiJRAQIjCAdm879EoDQB5iGWSyDXbcfpjIWLOElHcKCOau1m6B4yoPCISKokeEdHD/aPZXfTWtu2uG3agHnv3btlFeS6lsCb0ANdK2ul+73vz2116bxbZmm17JxZhEWaPZmF760QEiKKVSJGwlNJai7xtW3v7tnqn+BExFRLMYt+bhY2FlRFVFIblliojFyR0t7av91uz1sKTwjGiu3kUkAn1QVnKU53UyU5e46T6dL0upQpg9sEjDevd2u6ZOM2XqdYi2pvtW08PpTKVWbUSU9t6RBCTqh5OPCxNdKfdzdKilqQw0OkAAQAASURBVLLU6SJlMZI9fF/X7JxuPLxFxEbCKmApqhOXiViSCUR5qLkTKAkVE4WnOn9QwZ0LT+IJXT7+hcYpJvCBygChFC41Zm0X3pa4FdhLdHFHA3c3HzT5hEyKpEQkURYlZkBO9Mj0CPcwHyoQtoTWDYASaRjDzSI/AFysZ2a3vm27hbEWRNpvDII1BWeDZPqQbRMRbmbdECGAzU2gqCoDMqemBkWw/HA3q/bj9PSXlx//m7/8p+vTkzMFQVGphSbB63WxSBTVaZmXZVku5v7LL7+s2y7ET/Wy1JJhGVZTnmmagyunK5eqteJ8nen5KrOEMiMNdiwMvz1MGj7CSFXKszwveSHOlEzJP/30F9VyjrFo1va26g6BnY2Rjh5NjHPvCLP2cIfwYcsYCEQMg79IzECCRNkt955bg20D4kDMsRQT0gh/Vi3zPF2vT58+P/3046d//tPTnz7Nnxa9VK4MhKe0ayyZhzWNA4Z5b9GtR5i7I2EpbGZv315v17ufVuqjLTKQygw3c0gn8HRnOQSZiCQ8SqsRnRgQ6XCU+cMbrRDMSs8vyw+fn6QsqJKUe9/3LVAAOYmBhVSJIMMzfJQuH5pwEJhJ4MzAgOhg3W5v7X63bTNrAIHhwxlmyPh/Q7uCBxbz4Rt5dpTeNyJEFJa5Lhd9utDTQotCoWBESPCMgHfvtkwYXSwGhvDo0Xq05MThrMVCSJEAnbJhbBH7EfeZOQz84gHEPLp7JywE+f4u3je/D5tkDmNtPEqWU12V53cHOxIT3xOKTxIznG3J0bQdWakjsfsAYJITMYkSMBAhMiK8ceZEzIFuUCNeMH+QfPZcMvVoYCRhEGdhuBA+IS4EmodJ8EMG9lE0JoifJ/lcqIeZG5AkETAM7A0BEQIjOQOREQEigvgt83/+9Vun6fnz9afnn/67/1atf+tws/XO15iLeF60hzmZo3XIRECiBMro5ret7z2bC9ZLoSfgS09BBBQFjDBIB4QUpVkuhZUCW2vr25tDclEiLgsTa3OUjx51cHLBxm14B7vgg1fvSYE/4RkEKjItuiw6abD13r0VkVp5qeTdVwRAKiqqxTPWbf/2+urukNn7dlu/rf1th900hoEbZORg5RAF4qNJl/Eg0j9G+3catRFq935rlmnu2H01dgAb9LqACKDwiK21DCylZcK+t9fXt9vtzZoVEkEuWBRKdueUma9ai2Tp1OEANygB3DMBSdkyhi4mMRJRQQREksjINwfrJIzIrAIISU4MSB6JjDAUEqNe8Yxuhn2Pu23r/vHdRqSZt71bQo/ds4Mnq0yqyty7JQArlAmmRdOIRy40C1EEMRKWiXggxYHIwwq1HMSHSHffdruvbW8GyEDqmd0MOQK99b27ZSQRIXMghnEkgCcBFi2i0IkiXPaN3ABhQLWIoCLKih+KmNG24CGWizDrpRQR0nLhQYrJ3pu33dyRuVwuz8s8YQLmJqIBfuTzIsOw6M/hPcqqKqIkKmzMEt0hoKpcp3lCEQsajwZ37A13JCYuScmIJYUQuKCFqhJgTFMVEWZKzHBLSBxRFr/1iXmgGvn9vzxWPURAcIakbOK75F3gTn7P7AbhmWloER7e3axtLTKlGzMRi9aqtbMFuA9W6EEKJHynCw92fkaEE8s8zxpTRLTWANDcUBIEE7G1xBUJCfR7JObwTXYmTIzMAAQWZkLiqsAgxFrTNff8pPOP89PL8iQk3+73zXfHjDQIQwAlFdalzHNZJpla9goSIEwIlMAK6RBeAi8hNYAyAIKUlLQuEy1zTuQqosoZ0fcwPzBhigjvCUDEkxAIUoIkKJZa37PGIvZ9va+vRNZdiel0N6MkRCTkw0I+Aw+KZR5o11hWSKlcSvTo3zZbdr+3LHu2LXsHHj7jx+FEpmm6XJbnl+XTp+Xz5+Xz5/ryLLNSEWQESkwiiBgskbPvmMeMtt5b7633jgitsZvdb7d92z7OfTyjjCITHRyi97FLMnEgHlDEQ9A5xLuUgIfVHxHkJHip/DRPT5eJddq6TbXUou5GREAM7xkNgYCYMLjL54p6pmFARMKQrfXm29bWte8twpFRHpvJo5z/3ZUfsI2PZcFHGhAxiXItVDg0A5s13O8mJiw8RrrlIfs3qlwSlQLNfNtXMwcAHpYbo/4agJcjBVMwAWHQo0D5x0DLRwpFnH/+0UN+/6+Zv7OL/eMHfjSXyXcxzcCpkRI4gB3ZnMw5TAEuihjcthSPC/lcrPau4YrAmOnNe0CaEjwVeSm67FQcWkacRoa/uYTgWfGHQqvH5rBn9MjETDx92yApTcNHJi5AGGEjuodT33+4rzLJT58+a843+/vGr1Z6YNb00S0cLTeHfM/dSY9wC/YUhBpYIMUDEZIRgTmBEcLSMaGQMGD2JIT7tvm27a/fhKWIkCJn8h/dhYFEnnRZAjgdGPC3dy0TCKhwqVwVlRMjLNOnOk2FwXtbt/vt1Sw8jFRbt3XbXt9ee9txQNjeHFtqz7mBJDIBBjxe1vdMAzhyKc5vHt/FgVD+Fon54dNLW5t0VKOKVUudxiGLpYfd7+u27mOuRUDvUUudyzzPU52qKBPjEWVMZarTPF88fEhgIsL9tIkgwPDAAAYBThqmmUSA4NlaJ3YpRZNIkJ0hWVkKcbIBhXlLSjPDlHDYW+/3aF+358ttzMbxDgkFU8ySAMxzfO5EzDEy5o3Qk70uUMoThRBMVS/L8pyQX++/Nr8z2whSwRSVmXiClAyKyPV+//Ltly9fv3399S0zr58+X65PRnnrNwIDNE9Hj2GNDpTpYDu4xb42AirJJCKsWiYtk4T1aAMGz0zk5PKd2Z25mRsAWPf77fb1G9zX9e3t5U/9p+Uyh2fvvq297QHJVefnp8/Xy+LWhDUcwmKus2r1iOEcBkdBDUg42DKqWUuFAEFWpsqizdI2MCg8YVGrlFP0uvOUjLWmQktHZUHAer1MMTpuREPPOkZY94Yo349Kel+xEyBPCcxoQR8Jg8zOaAw7r3d8+2b2bbV1C0uMQ9F6HlHdeu+tmzsiTHN9+fyk06VYqiU2y7Rhfk3DQiUJAhGoKis6etu3TqJcFmE2CFW6qiR3ns3ZttYsvXWkbRyp3t9IZvrwyzizPBJhKG6HNl+KLsvzy/JTbsH3Jj3uX75Zb19ur9/ur2/73d1qES21Lsu0POfqvrRW7kR0IZ3nS2SY994sIxhwQpqTNMJa670FJhaWqlDE07pbMjpApBG4KFGitTCz1gOSVEpCdmuBjsq3efVz43f39X57/fYlvWkpyKOVM0KBmFhYi4gwyxmaDjFsAqAznjJ/Ui2iU63T7FPPuWfbwQKg48nCIUS9LPPzy/L50/TppT490XKBUp1ohLRQIpzsmfMWD6F1j+iZhxDPvSVkApv11lfr7WMvJhBj5DwBAWYAWmJ6egY64OgXYhIGD/rt6F0eqmWkTIaoRIvqojqzANEw3BVS5QAc1SVF4nBRGVs+GLkPRCGTEyiTwzOax95i373tbpYx6jQgQIYMsCELwQH00fc65A8yoAfGMVKGjv7+2HIQiJLBsHe/t3XvjeFNRWop8zwRYfTu3d1DijpetVY4IV4AqHVi4gTwHGffTAdKKlwL1x2kJT66UuOewLubyLFt/+51/hbrf1SjgO9pyceueGIy70AUvjN/TvDmgHAEDug2Do/ghEiEwESKUCNtoVufLZ4AFpVFxIG+mMceCjtVgm0Da4rAGH2/RZewXShf5unTMi/rTfveI2NUt5Hj6/FGGODC+bniE013g1+3du8+WoPH0pbBAaVzSRKgENwnjKJ+nX956//Pv/31ra7/13/+53/69Oml1Jm+fvW/t/0r9IZhEkygqNUTWnTwnaEJZ504RdHEhSwAPBwABfg4aDCypzlkSEAlWq5zEWLAZt5e3yiwktICkIwR+OHWnCSnzAggggA43KDwLBfw4doNABlISYpFQSkA3DNChC6XWQm//fzr3/7287/8299u68ZaPGFrdl/X19trWC/CIsiCXEEm0CeYCohgMhyoep4AGJxt2QPLepQvR638PtI+FjGcoIizFijB1omU4Ehn6mb3+/3125uZDz6BUK1aipY61aIFEY5kEyRmESJmToBBS3B3692amXlkMDoBaaqFJcQh9I9jsUoHpoSeuScyShGqmKWkmGPDwABDIzDGRn0LaL7d133bPqQM53BQHMJZRcnhLUgUkQ4eboApQsKl8KQ4EyxFrrVeW29b37tvZh7u6STELFVkxtTe/b7e397ur29ve9ulSinl6dNTXRaQMOqEndAQB3PqsCRGwHQIzzDLpEYNPIghE1S1WNm2FhZICURIjCofFzIkJCZVIYR9Azfv+7be9X67DRWMO0QS4pB8FCYmpCTWUq5PTxkwhOuRmBBDEotMLKJaqlYCAkHgJEBF5gT2gPCwlABlRKWsaDW8OKgjOSULEcNIy84EjuHwhSgiBAyQNlJ6gf/xAes3pxyEZHDEYGicK8Ud22vs39r6te2r+5BNHsK2YRoCjwmYGWS+dxfOSEzETIzAGLsUISIzEDOhcFWcGCR7a57hzJVEiASZa1GcmK6bkeOWewsPAgYk/M0biQhzY2ADZ3QaNnJIRIqYSCykl2VK8H7/2m/rt/ttvb19vb1+vb++rm/delEudZou13l5vV2+1WlWKSKqRYngKGJsc2+U0Yb8ADC6NWsBkTjci9MjOqQbQITvm0BcuCKCp/XwNrSgQBm5993SwXFv7zySiFjv69u313RXLSMWCZABBVFFilZQTVFgomEc52bpNm4hEjFJIUgIGklcZfIye5nDPIGRbLA3iKlcLtPz0/R0LZeFJw3M5kY9KRINcGS1w7lXHpvZ2OqNOERgBB4lJPMw8v+d++g5OJD58HlHTIDDM+pBW4SAQILDcGSsm0OXpUhzKc/X6/PlWlR7gHe37ghEJDksFwMtwMbyGzAchkdYwtEdyQgMz+ge7hlD44iMDJgj2JggAInIT5XNP5gn//5FxASUls3M79t93WINdBj5KpfrzIy2N+8WkbXOV7dSa7j33vfWCHGeeykFmEREtWKim0Fi1ekSF88W4Hj0vcDBh/BqBC2dRMscf2Sef/9DUc//jus3CMDxv5ijbwN+NDmcHBiiAFwAp8SSUCI18pL5mfnCXJh2Qw/YPSsAj5QsaxHNbdtXQqDY9rR2qfoyz4tIAdgsHAAYhsr/N7kWfW/R+jQVIuzh6NYzHDAPUVqIwxQxJxcUBw7AnSXneevwb9/e0OOH+1IX+PFSVS749jU7ZHOwTjnAQqEEB0PvCA0RilBSBnpiM3+LlsMmHyiSR34eD1m6ZQqgCvNU0XNf97W1HvdVvrGlSwXrv+WSwAgiiTF1xiSJGOXEQ/x3yIkJgEAKFcFCiZAoTIBci3prX758+be//vWvf//76+3/S9m/NkeSJFmi2NGHmbtHBIDMeszOLFcowruX/P9/h6TI3eHsbPd0VeUDCUS4u5k++ME8kMjq3uVlCAqSlZlVCA93M1M9eh5rEu/dX2/7bV3XfUX4VHiqOi2lLloXOaXyZeIFXADJu5gRwN+vhx9Alzsx5s8vffn6TI5Rsjn50LFY6wD2fbu+Xl9evu17F9Hz6UGWUmqZp3le5qol3A19cCIyQKKlTKKad2PH3my/ra13Dy8Zc86e3r179B4W4RY+WPODewRDrJbEOk81CwtbaVsEQ+o8iWt0otAk+AB87H3IbThvqatOOs2FpQxyFCJbdLhFRJEyl9MynyaZl/KwTB8553WL11t7/bI/v26OLTMFOk+YiqpWFt2u6x//8dcvz588tjrJP/3zL8vlRLWm8HDrZIoRb8s0ggmDKQAfXu+sFD22tvaOAbIXlkkK7W633RGopZ6X4O/mXePkWs7LaZoYeapqZsJcagn3tnetSqRaiFnTWlHe1yuiE7MIn04nJuXxgATSTbQIF1GZ52WZlnmIv5PLxJLEkdQdLWKj9JHliSHoY+UoFJoOQ3hIDK1B0lC3OHiIz2Qk1HggUgjyownpHcWncbAeo1dQMphSqFNubK/k39KvETv61baX9br2FuiZASZAiWrRuZapTtM8i8iYrb+83tLd3be9mXkMweSAmiVVWVWr0KI4V0K67Xu6Q+ckJak88XQJPgdOyeJ0ymIIgwf8OOe+I2Tu3q3DHZxw5aLKVUVESqa11swdINxsf76un75cv3y5vjy/bre1r+a9WbvuO4jrcqrzqZRJy6RaRHTkY4swUQS599a320T8y+X8eDrP8zLYtT1p6zt1DSGP2De3vtt2rYyqXETN3dKJQSDw8QiMKInevztcR8R6216eb9GzlJ5Ewy4OpMylFJ9m1OqqJiNKDJHumY7DUJNFSqjDKCKImKWITlrmKI4UFk8kCbHKdLnMl8t0nmWSQGztlXFjCeY8nD6OEmNs5cNtkokg1auQVnWXiAokCfd9p+zT8i6fiw73W70r6u625W+12TCVJLonPx+QNYJxgGmqcjqdfv75l49PH7TU262ve9v27oEEH1VKAo4+6AQj6/x+fh/MkUi39Myhw1WRWtAdBhr5SsKcBiYOJjjl350r40HDwSA75jiUd9ByYH9CwkLgvnusq3+92YvZtYd5Upaqp6UyZ1/38CDI6Xz5uPU6zXbknHcirqVoKaw8zfPDw+NUpxGKsEzLU/nACU199Vf22x57R7cwyiDEQQIdNk6JOJIi3oTR30+aQXgYzPp73vQP0pPvspjBwsIhNno3aKM7kWbAgUEBiiyEGXiC/CzlgaRSlhKSPFM+TjKrgOjqmAFiXrSWoknZbb/tr3ItbI2SbN2atVnlcZ4XkZJEfg+E8EiLtO/AUjP77evrb59e/umDFtbL3kvrhnQiU3ZCQyhoZrqQnkS66JbBRFwYJ8S5fdv2/+P3/+7tK/O/nKbs32A3eBvMkCRyZMvE0BNlJiUpZ8Cdbh6+783jwnQmqhmSIQlwCgcNt8hOoRmV+Hw+Vy7ZX/fNr5+eee36cIm2464sO8ThBxoDznfhI3em0/32HR0FAUJaaC40E5RY53lxbwSs6/rbH3/89bffPj2/3vaW4HXvX55f1m2LDEIo51Tl1GttRTd1nuaPWrvQPC40MkesJFF8Pyh+nGAeSN14V/yjVYz2rXFySb13Km7WyRQMMxtajH3fmb3oVIuN1TkIsMOXZ5AZ6IhnUxUdmZNEJKQUYOJmPcITkGSmMeuJHpE2rM8BZHoGPM0MiKnkpLpomPfNWjSoJTDCGFvrbe3rbd3ezcWJSSeUmUvlUnhwQZI4PIeyKTwpw3uGAGAuWnXxrreXly+frl9+vz1f16AGhMD2WShuceKp1miN0qsSaZ3P9fJhmZZqnA4nokxyAzKLkiqpEGW6mZu7S+9o3b15pgtDhWup0zSBpvM8e7db6xkkUvgdJ4aZp2U6P5we5rkwx/kUnpSHSYWwFi3EIhLIopiEgzOjWy110nKaT8Ialj4Az+SJlJmLllnnM5UJKoGSXEU40lvLreetYwsKBQEM5yBhCMDkSLM9I4f/e45GNB3po2oP7wj3YWro/ndej/+T18HkFYGyqe/kV/dv3ve2r9t2u+5735P3QA8CsjBfMM1znZbpcrnUWhNp3a63tXc/HiRmYsGR3hgEksrzVE6TLJITeVgv6Z4p3pgqT4UvKBenU/epCxsViHMYmVEzeh8ClXfHQmIRZeVhUzPmSuSRrTU2mcvMnuhmt/X25evr85fddk8jTrYe25YBc2B3002kigiDB6KqQswAp1vbbq8FiPNpf3p8+PAhimzWPbhm6IBCEH3f9223vaVQ60YJi3HsEnjoZKFFksLMjjjDcS2RvcW+mZBZp0jKZCCYgjmsIo28dBEa3v9MSRnESQwSTpYRLwWX8eNYRbW4TqEGEMXhXzxYvXWZdRrRrWa9I4IlmAOUeQAjRJQkrCQkqqyiLKACASSG2RaIGPvG4W2ay58iVAYDXkREWITeFzEQHnnf+A6svd8fk5lL1XlZLo+Pp/Nlj2xme+/dPAZPaIw9htEoQQ4ZFaWM/vH4XDORTveTeABDEIUG1MM9hSUYzBxvVOD/9RL5gTdzFDE8Mn8j+4iW+Nq2r63fmrVu0YVRqzKl7Q2govV03tY9S50ibPDFxjhqTHSnZfn48ePj5XGpsxady8TClcocp6mdXtt1xb7n3nmPMMDzOGAQiKBgMuOOaEb2f+KC/s+98l4yvjtbCSlITirIJekC/kjyT9CHZMlQAk+lSs4VyohIpVQgmEtRLuKIFm1rq25Vh2uumxLO83zZ5xNrDbAFhoQ7Au3NIh8AzPN5bV9et1nWBxFet8WdlUPEkB15y1DgxHiQfKxqoru7pxPYRPWyTBR+va7X3F6flpjnODkeum+RRsKg4YhLwqysSjUoAwxksnnkZu7pkETOQAGXTBnluSRxJmeCIMKzlAJqa3O/bds1bFe0dvsW78KS/ycfOu539gidpkOXP6jhZSrLVBbiKqTn5bStcXt9/eOPT799+vz528vafffstn/7dvvbp8/7tmvRWrgqMgXwZp13pZJPt9kbcSQdruBHSTIW9JgiDTr+HZoF7jjNP8hOEgglhbuFO8wBjg4fx2LyfVvIhHXb911lq1oxzzxxER1RE8PFhJlxt8gESFhEucwVSB8WIuGZPmwkKTLdzXp3D2SkMlMGcwTCV0ZyyMSd+8vz682euYZWUVlyj9vLtj6vr1+/vfx07X7cGBY+n5eHx1MtlcB96wBpqUUkJXt3a23fe7TX/WptMW8CP+8r/fUvf/z1P/747Y9v120lMUIgouh2e94up/Pjw3me9Z9//Sn50cmMulG/7dcUZ9FaZg+0rRP1WqhOXCdKj+tr21u0jbc1tquZdaKolU/nhedSzzKlsH6clvrl20sDzdMylemtuhSh83l+eLo8zvOslcECFWhk7K0FSOocoN5NiC5zEUpbV4pcaDrJ6aGchbhb6xkeQJBAC2uleYq5dFYDBzRTu0fr/Xr1tdEWGly5QGlnd8pkAnEkmfl22yJcRFVVRYkQ6TiyyyzC3HLonhPRvb0Z992Z/nQQ9IZtAYE4QUlCKlRpKvUchYi3Htf9dltv17bt5kjWDHKzTLAS8Xy+nD/+9PHp8bFOUwL73nW6Xl9v63b1zBKZQOwjBdyEqKicpvp4LlUCbYOjCiJT0ESbPE38kJhvqdegLdIAZSLWHNd+99MBgMxsrbW9lWm6XwZyhBaGm9neWs1SF50mQdEN6dvN1isolCDMqqVMC4jqtGiZSCrLYXPQmnm3gAeSKdONdrOwb6177y0Dp+klTE56ES1l4kndetjWu6cjCL0ZOXnEnTJBA4yal1lM/OZ/hmODM8ScM9nvQcyMYPaMhgzrxAgmFwoRKkpaWIoQhKjkyEiPAJgYIhxFRYuUmgSk02A9T6VOkxYdUylKdzdKQ0ZSpCATg7RGTMoiSlqglbUwHx5zwNhPQSBIQe+1Tn8mj79REukITQQPvfYwLxcevJuBmn+PUj6KmCxF6jJN88yl9OsA9YaXLAXzkDw7cuAOIlRZZahi0uBJSemEHK5HwsiDMMlghnCMjXewCJ0wPJ/yDbx4fyHvXvxmopwgZLxZuGWEe2+t3fDt27o+77a11va2b+7Gd8aZlrLMp7Xly820FGaIiBYF4N5b37d9L6X89NOHX37+5T/9/E8fnp6maVrm+ak+btmeb9cXvt5o32hrtFo0z+40OtLhSpgh1nJb7dXcAPoxL/DOb3pHY8j3/Lx7NNI7EvMBbOU7ZCcJno7ERFhADyQPJA/JT6Q/QebMdCfKMhXRTNp7Oo2YK04Sgkoqd449e7NtbzVBc5mWuaqWmOpl32dWDWIH3IMz3KOPRPQ7cgncQC+9l28vRlStnYTPddEqzrlnlnDOvFA+qv+ySLJiR939294p8XR5WGplpkuSrF10/vX862VaPPbYI4+5iQxIkahmFu7eIyjBTGDs3TJbbjfYMPTwCE0tWmplEWQhFISChYkLnx5KkOwvt9Ze1+eX67ff3dv7ioW+oxrj8Urc09LuHBUi4uHZRExFy2k6LfOFy6QoD6cHW9f/8de//H/+/d9///r12p3KzOT79vJ8vf3+6cu2bQ+Xy8N5rloBas16t2TWiu12OjcWDzru9NES+IG1gIhE+W5RNEp3MJMky2Fy9q6IOU3nQ65auktaBinhyAcZmmNl7u6HXqbI3muPCAaEWUUJEGEenVp4UrgPDlcwmIeKz8WdPGPYw785qpiZuQXSM0a6IVuEMyigyZNstF+/Xle/yeR1LpgFXb172/u6bu9TrIm4lFp1LlzDKJtFpmSmHvkLmejurfXGFp5hJXzebvT168vLy7puvjewCCHTwrlxcAXHXOqlPjxdeKLNttf2+m2zCFNK5dCMsPTNSVNFp0nrAuud1nC4WVhPN89MVsgs82NdHqblXChBZQ71hq6OOpUq8nZniKhWnibVIqqqVJVroRIRSPJMZkmQKFXRp/O5MjnNbDFrOcm0YOLIbt0MCBpcFkWRLOKcLYmcAgxmUDantdO6cyMm5UqDvtQ5gxGMkdKcmRFJFBHh5HQoWShzNKnDG9g9ImAW7R9Nx/O+dO7PKUhSNap6lV6iIw1u3q03M0uwlmVearJuu0cUoXmul/PpcjmdT7Oqmrsbayk6TTqgPtVSVYvUfW+9FdXzPJ3mukyqsNYzEUxgQamQOfjc8wKXNaghY4QHERMyJb9bAh4XEGndrFuUksf4zLtbAkTmbkPzMoQp4S28ZXROH+RRMCdAoiAa3mlShFkY4vAYOVlumRFIuLFHuHe3KyGmwpw+FymaxJFIz7SEJQUJV2WilEMbg4OTmZ7KwnUi5Kjq3s4SAosU1Ul1YlYgwwHwgFqGg0R4Jizh4GBigImLKHERPgwU6O7tg1SwDgV7TQLhKGJKraVUHlQmd+9h0YkdmXe5D6sSi7CyFqmTlqplkqEbGDlFAN+tWBHppRYp8v7WxHj+4vt5ecelD4P8Qd4D8TvLr2DKUeSI0jzXea7MbB7r1tZ9t8g7lzYzh2xkMGGQNKhCmTISdCLD/aBq3bWpMUZO49/ecPLDMoF+CBH4uzrmnZzvLd4mkTzwqKOIiei2bXG9btfX1Vpr+75vm7WW98NvqqUbthYkm5YyTaVOtdZCgHnfttvr7ZVA67b21gtpUZ3mOvFUSuXeXrcdL4wm4mUiLpiDPWCOYZ5GoAy2NV89bc0Nf7fs77yZMZf5x5d8ryfvNrlv1cw749xMF9AF8lH0ZymPJIvTifgsrOHOOFTkDM/j4WbBUMcmMejwLKLDS6xMtU6iLOpEkqRJGoBFdj84Mf0HJCaADljm1XoBED4zhFEpPR1h6Z2BWaOyFt6J8imDEQ9EKvI0lcKxXVl6pDUkTqeHivqyf+nZm+2ewawkSqo1gOycjVqnMCUKopkoInrraXyY1ISLp5LMVZZaJ6mFUyk5fPhYyTxHb3ntL7dru76E/a+RmO8f/X2OOcA6LlznZXlcflqmJ0K5rRvZ6uv1+fPXf//v/+O///v/+PT122qYeLKk7tkterduNizVwQzmYeLlYesq263tm6oN6jTdBfsHEnMwvwcK9WMRk8nDqvX9m9aPjz8RkoR69Nd223o3SyYtpYRlKXW0UOZmEWpmffzy4KqLDCMGGnlD5gkgPIjgzjx+npAUkdAWe5gPDUukR5hF79EDIDjBHcQeYgLylOiwnfp+23q26AYLySpGClHWCJi/48QkpSmsSE5kYPMw7xYkPSX9zsZu3rt7EpnL3qhtullPZqlzZWZ2yu5MlXGa5/Npfjwvj+fz0+MlNe3VCMIkRctlYSXyPftu2ULAVeZ5Uq0GCq7KhYhJCFNRVpQzXT7MH//p8XyZtbL13sQ1Y0nVnZSo/MAiwXDSt953owYoZeFEpPdxKV24VJZlmh/r+VSmIlk8pyQNULO05runoRArM0shFneyGGGVBGYnTuLM0AQPfgIhKY3QOJvAKRMQJqUyT7P5YYtx9Lbj/CECQdiJjCizW++7+/bO2fM4e5ITHFC8MXQli9hc4ky32r7m+rWtr9u2twYOrSDM0+nDx48sut1ee+tAXi6Xy3mZaxG4t77e1tvemyEBnWYtygiEhXWz7tYYVItORSoPFrxHRCBVZT6pXKgvm1cP6pHJqcM8/th874fOe9VYxPBdjPAwdKRGsFBPdObUWpR07/t2W6/Xb2u/iWCa1BFJBBE7soDB0klEoDTYOxGE4Q1//DuGA7noMFVbWy8R0+k0nc+e2NbddmoecFSuVXlWmYoio9lu1oehfu9WRGKJcLtdr9tpfTd+5TLV5XSalxNLCfOBkw7RKAuVKizDUZmFsxQuU6lzKXWSUlgLQSM4HaHpCghcICqhOmafJKSqtU6iiky37i0j3KizRpIUYRXVqdSpjsxGKaJlfB/2Jfcn7niQxoyGh73k97VyD50w692NmIKJBpBGwOFc+T2o4G4cQ0NfTERa5HRepqma+95uL6+v19vmkWBBHBWjHydxMgBmBQ0v50h362GWOXImyQMdYRE25jcxHjuP4OSD/nG3nvvziw5C+ns05lhyd1TzEPmEu3dqu623bV03a6231lr3bqMMZqZIBLa9BZjrVJNOYEoMI+CIhEf03lvv6TFJKarn0/m0XNjErv2Pv/z+2x9/NDcSmc9znSfRiYQ8g4k0hTIDTUN2v4rLvWh7dyRGIjJ4cGLu07gftrmDppR3ejCO3xnRL0lEyIDZRPxTqf9Spn+ZlgtxNqNMFgQoWYaFCCwri4hqKd0jYgyaGcGSXFlP0/xwuTw8fShSY2u9+956u23oQQ50z+6ZlO7ZPf2dHwkNz1oyVSPqwV2kg9g9fA9vEr0IlVJBtLbkLOr6k2h5mAuzpvV9b75GpNHJNWnWSeWxfexozy9f0q3IpFMVLZ4g7OSUCKRHoiafWDM5ujsaDWwPrhTF6cTy8/nhYZkqU+zt9vxse554Ohe9PMxL1nb9K1bDD1P+I1fnuxzojtMOUj0Bw/GYQ6dy+afH//LL6b+cpp/2ln98/o/t5Wq319//9tf/9q//+pfff3/p4VQ6JII9IKrn86LKdSosmiTJMvSl7tZ2u93aei1zIw1iOUr7Uba+PfXIFBpiwyGVAhElYxQx97ACANDL+YEIotSzcxPdt+1mcY/jokH2V+FIOpI3cMAabwkpNKbZyIxRxODgCUVkMAQgFmJlEQrhPAwaMg6U9w4QJQ6Xm0zvwIaOaGxhzsLKpWopzMwcQ3BLFH9HZfZAUFKSsAyu9VB7g1il0CQEoiRRTcqt732kbdcy+cwmTIbglCyUKkzIMLPerXckhQUFFEWEl6KFqQey8F5dCopUJhk6hVJlOScHFU3fnAtND3r+MJ8fL3VWwMIzOKhgOqkqk7H+XdYQZcZgCqUl0Qh9JxIVKqUUKYV10XlBPee0iExAjaBhztvS9iD3ylBhFgpwT/LMQHSiwJijDjcQFhEKJEsyuZAX8QIXApOAmbiUSSTukdoAeKggzZIZPGKQBz3Gu3l/t5XdyxgiAksSQtI1TMmK2dS8YGN7jW4k03LRUvOjBTyp1vnjxych3L593bfVIud5mqdJhUaxQt4pbQTy3c2XnZKoMEIy9M71iOwR0TKCmbVOdS7lUunMfWohdhetMDB89xCZFEw/IjEYeOsAFHpHaIQg2Yk8mghorh10bTdbX6+3b3u7kaROAk8HJedbIp8jZRiB4aAR+TgoDww9aOjcwId1a4Qwz5fLfL4E0LfmiZ5AQLkUFiUZRmrecxAfzL33HmZCnCNQ6p0ClpnnZT5fzvNyFikZ7uZpAwpKZkgR1mQQS4pwKVKnOs1TnU+lTqKVwDGkFHtr2pP7IKWwqAzKtpBW1VpFdSAo4e5wQ2MCBykri5ZapmUqUxEVUWZlHsDMkPkdndpRPFASDg/7HysAoiRYRLcgdjAFQSAJECjuXJJDWk0MGg9tMqUIn07T49PlcjmBqPW27XvrLZE84qcFBOXwI1778Pk9nGkyyRND2xeOTIqAU9jghnqaxfjKBHPc+TP/oIJ5ex0DehqhvT8osAcxPgJp0fa+bW3b9n3frXWzbu4Rh21cJGVaokkPEvEMFnK3MVQS4TezUHdvrV1vt9t1tW7kxKnZaf12e/383KxLLRIsrqQM4YQiKYKQ1tD3bObft4b/6YuOb3/6a98nexhZUj/+eaYESuKB+WfRX0Q/Mi+gznBkMJJISWl49OQwgheVKuTm126RQUxSqUxSZilzGViU7O7bvq3dttvW9x7do0daAIGRqGQ/ZCgFAQRn7sydsBG9mrceaTuiCUWAeuDWfd1uEjLlfCqnUy3K0bdr7689Nwh7cZdo0Qu4TvM8nV9v15GeLlBhpUSV6OLG4sQecZ8WQcMzgtiZtUiplJWkUqnUJ9KZNYWTxSgL1RRUnlr1mT9LKuWflsx9KbyFKg6k7AjYJB48GL1c6s+P8z9rfvjyabt++fL5999ev3612+vnP/74y1//49PLaydNDQMzF2ae5/nDh8d920mk1CPPTEkchH1vza4v++lFz3sppizgw4jqYLANDdxR1B7J80cDk3dA8/116FQnJpJCJcTDw5DSm7s3761lGjFUJUGUqqWWqUhRYkSGh7mzDBMx4kyEOwARBlHcPZ/GjxTGEAxnghpuBABFS5Gp1srMZhatRzZKz/DoBAU0WKSclsvHupxr0WJXMo5IgvDdAHyshDR4RxNARXQmLeoe5vBkIqnTLMpxMWYS1jDdb+Qu8yKZJYHeMZyqyZPSkb5u6+foa9+2tuokPYwSM5VC00xaikxKU3WpNeAspTeERZJOU5mqxIX65uv1lhnTeZpPM1NxQ9tj3fq+hTuJFiZOkXeGvRiTdBpbGfFBEGcQc6llrnWZp0mKOtXQupNsriBNCIIi2AFLN89mRpFyJLy4ihP1yIbsFCxEhYhEi4oPGIZdFUo0JU2EKpAB0IiqRKS7eQSQeVh6mXkjQq16BJFmmI/z8t1iIfBwUsGkXrKrXamv0lZFk1sGRRKy1unjL7+czg9lPrNoZjDzVNTa+vJlWq+vzZxIispA8VWIliKFuSf17J7mYdbHBIcRegzTD61/phFnqZNS1VOVi8YpQhOUHN+z0MfjygDfQz3fX8iIuejWkXDlqqJSk6j33twtupKoiW8v1+3F2lokSClBEekIG/RZohQEp8Ep0z3cjryKOGgYOdTvQ5IyLNmk1tPjYz1fXvd9bz0CDh64BEw8EL2bt713y5AyhlWebtu2UqIWnefvZncsfDotl8eHZT6LKCHczNruRmFGFFwgyqIysqNLraXWeTmfzo/zfCo6MbF1b2V/3V7y9WrcCZ1ImBSCRLJAtWipXDjY/Zj5mJNlcow3oUP1X8pURJmEiEFCx8Z17FoDtZCBqeA+yvx+X5ilVqrFiZp7GgVIiQRDJn8ftCc4iUYqNoMkiUIL5sKPD5dffv74eL60zW7r6B2cMkcyNqsyUYS3huFQFI4OPlJnkoOqEXXrbqPMQTB5Zk90R+vZerQ+jPySho7p4M9Q8ojc+P6QMdHfoTHfsaixUN1gzbeb3257a6317tbdPTGslg/vQPfI7KIpADq9vr6OZG9mXuZJq4JpmudSymle6JBBEJIHA0oCcPO2pVvXJZ09t4SChQzZrO/Xa/+68bf9fNuXniNu5vspOfKu/+4y3gCOo5o7JCIYXKW7jglMI0i9Zj5J+VXLz1IeE9paZiY8CQxhiGpBUnTL6J5AQkkC0Xv0HghWqrNOi9ZKwpG9NfP2entdr9ve43pb13VvW48e5AlEemSPtHdUnvs1eVJP3gF4dOvijWwv5FPhymh7z3Vt265OD3L+MPfh53Ndv972l032Wiaa4dxfXp5LkeCUUlknWPSgsCgco48SZlUpIdmC0zmIk3QgThbQUso8K88qnLTf7LVX1KmQLkWTClx6gL2zTvN8meczvYvoeQP13rA+HvtSRlAGgiDMZSkPH5Z/fpz+ZYqfXr76v/6//4/f//K328un7frcbtfr9fb19XXrHhxwgLgWqrXq46VW3vetdQNlUVHVquxE2yrW/du3W/1Kj7fL0pULv3tjo70ADSOuRCYfBLb3N+HHKlcpgKEUTlLSWSpPRdH3ve2Z8KDMospMlFJKrXUMmCgGtSzc/G5iiYwYKYZChAM3P1ylaQC+oxUmGswDVibRsswLM5v1Bm5mYebuEAhElKdS9MSnyzKfVIM3vk+/6e+RSTfvHcBw2D78rAEnAguVWooqgRGezXMcGixcClcVBCMwwCFEWPfWmnfq0UFZp5LHx0wZFIWThIRVZJlhYWk4PDmFS62iIiWB6JERKYUIsB7Z0Pa0xvAqxFCKEYoJe7s5BFIuRUqRwjy0oSRCKmWIm5Y6TSS6Z3GqDWrBcB7gFAwRFEffm8igoAEdMmIYdCE7kpMEKchgYiEkJQmKYGKaQRNBadA4ADALUcZdJXKHit2sgyBCImParyJFuLw7+0lSxSvHhJzc1DfqV/QdaYkMlii1TEt9uDz9/PMvjw8f59ODqlJGeO9t328RtohE755BRCIHEBSEoIxD+Tn4IIgBC3KOxikGQudhgAtYpNT5JJeKc8TcRxLdYRxPdxrhYfjDB3vhx4csYiRfsfARoE0JDzPv3ZLBGhJ93aIBJgJWBhCW/Qj+BDOP0QkLJ+AZPtrmA+RMAuRuiQMkqchUyzzpNLFKrOHm9zg/ohx+6xnh5u7ugQBT3CPfwkzAqqL83VCRmadpPi2nZTmpFkZ6tL6RdTq4PUojaUZr0VK1VtWpLqf5cjkt56ozE0f31dZW+yaNSYAjJANQUIqSaGEtrBQc4ExOSPKQY9eqtZY6lVq1qhQhBigDGBMcSmJwigBgksEBdI8xNnofOcLM0zLPp6VMVYqCebiijVjRJGY6eoLvGoT731LFNOn5dPr49Phwebh+W7fNSlEVlgglsDCIh+xA4AInhB10pUF5JOZKwsmDMTOQBEqijIwcLs/pnkA6J//D6OofXnR/l8dWeccveCxkJEXAeuxb3/fWezf3kc1Ih67jaKkz4RHpPs6n3kdUlKkqE6TIPM3zPM/LfJ5P5+lcSg2LbduJ18OlU4pRj0Tf2777bWvdEyRpEW1v7Xqz55h2Zoo6Gpx/dEF8EPBwhIvQG/vlh++ZFPmGxIyFyBE1cGF+AE8RjEPpmsOUkaDMRRUpPck8RwfVI5vFutu2RzN4UIA8wnpv29aZm+O6rWvbW8d176+3/bY2HyQYAxxkoB85JGM4l4CBt4RFrB4jurcKe4onaWZG7JbcHFipgxKiudrVyHBSKSUp9tu17atoqY+TAaSVipuH2yFU8RFKOuwQmYahMgHKmRwexmSqVIpOUynaM8xbM+qik9Q5hLfd1vANtrLlUuRUfyDC8/elQG/gJoaHkY681lM9n/Vpiid7kd9uX//468v/6//53z7/9hvs2vfrervue9sPjHncUaLE8D5dpqkqd+tAqkoRLUU6c7ndmvm29fXa9tWtpc4/fsjD6v/ObRs93xs7/B+uFt1v+zjhB/190mkuxard6Gbrxu5kPnGBKFK01FqnUsrdjzzdY8TdCyeBcCwZixwpmGMAERk5fJaIqNQa7kQkokxQLQNHLqwUsG21DHdHohapp1JmlTOXuYgwOcEiWnq3dMc9i2C8maGScSdCdLPBaY2QgR1499DCpWTmvt3Wq2237LsydAwHEenWKHcuSeiB7gNZ6mjdMtl9CK9QaslAb8kydkehpL51z0wiMKI4qCftllv3jZB9jzC3vYAknSRn1pqcHrb3vfWt9e8kZWauOs3ToipEGZnMVKuWUmtdVBSg9IA5Ndad1ZnCkjPEQY50z7BMA5igo51UTVCMgXPmMPK11puDR8QQgxSYhGahGTyBhYLo/jQNYssx7hj9J8LvcV0hpKojAJyX5fy9409Sn2W7oJ9s175G362bp0JPUk91Wuhyvnx8/OXD6Zen09NcT8qVmDl939vt5WVbv0V2VhQwghhSQIIwt3Xdrq3vPmCYTKAIHaVBIM0QEGYumpLpRpHEJEvhB7WlZXGi5MzBULjzD9/6wO+kmPE7Edl7771zUYC0iCqPsWmkh/ceHU6FBNFSQVXSMgKR5J679W5BKVK4lGmqVbRYBNoQaunden+IA8CqBDiDp2l+OE/LDEozczMgtCqx+HFT3AeUc+cQtN4yg+4EfE4mv7P/x2ZBXEqd6jJNSylFCBGlM6zDWiCNBFJE5yJz1VKpFGbhylJHZrsIcYKtmIjwUEPdFQ1MRGPIKDomXRAiIVamIlApS13Op2VZ5nkqc9GiLAPcdc8RRB5EpIeyQHVkUXvue1/X67re2nn7XsSInM+np6fHaZpEZRApDv4sDWIeKRML0Zh9KokyUzKMCSJap+ny8PDx8UPlyR3frrdb6x09LcGaxJSRRFyLMkR43/u27+Ye4KKiZRIpGSBisx4x9nNQxp3Ecnx9l+DcXeLyPpf/vo8fL3lDAt+wpEGZCSCD3Lw1a8MaKTDIS4NFO4z1kmP8sMg0s7GTZHqmizAR1VofHh8vD5dlWS7z+en0cJkv3ezL12/fXm7ruib0tDwy1d1a7/Z6e/n09ett2z0i0txa8h7FSuUzn0hwqI7eNcx3jjVjUFsQw3P3ng56UOcyRzOQh3AVCZBxSmaxLIGZUtIb2itBHIW5sk5KhbmoCGumRCEnBNwRae112183u6152+Pa/aXv3zaqypYpnpZ07dsWZig3z+d1f1l3o3sZ6MzGNBqi42KSfWgHyZIsQMGcwlRUqPORaHyppSCU5qTWX7bnbW271YX1RPV0Pp3miTSv8fr85fbpRqIP//lnfZigypj8tlrvsDY8YMdnMhxaMskjctAxNCi6aFBpWut0ykXBlhqWoA405ZXxuW0vue/pN963i+UFEHp7wviwVqJ7lHQeLJkUlXmuj6f69Fg/aF+25/z9Pz7/27/+x29//fT187P1dqqMcLPezQIcQJgdx727W5RSRKgUWs6zKqswi6jIKny7Tp6Wlr5736K3rAFJOmyXDk7OsAoej9KRd360zge19Yf1ooPZk5HEpEWl1KJzelTWvu+fWDnHbqAspdRlmeaiFaDwDMrwCJCTwZgGByXcuns4RvLAGNK6jxaKZbynIYMUHCR/YqKhBTnuHBykXLhMpSzCM4kwktIRHelJnvfO+10RF0Q+JkIIyyNdPXPA0QgMzxgzX6/by/N+e/H06TzPPD6HzAyPaO67277v+0h5BXFrFsFt72aWAdG+732a67SUOtU6VWalDiYRVRFRUVBYshLPZSImygJI+Dgkj60enAoGYN5K+SH5+Zj5H9t0jFgWErAyE8Myduu3zrtQVA5Ot/ERgyzIx3TcwgmApwf42FEOH/EAYRwXhm45dLnQ5Dl9RlZAMB6kCEMEYfCkDhpS5j1b+J0rER1eQSOz6d1x6UpNfIXv0bt5OqaUOfUxywXlRPXUyyVkdpTmTJk7gwsLibMc8W6gGK1DYakgHWqNdLdunhGJABEJidIh5fDjczssyQawQcKYCaeM6iFBQUcqINNR+ucxo0+ig5Dw7nQZkuF5qlOdSlERIgnKlDFEAA/YB5mkzEURMX5CYDg0RhHVI7KyMAuSmDmYMwkMHBTFkd1HSQgVmUpZllKrm+W+Z9hA3UB+V79QxsFqcTTPZt4yXZIIQhBKpGXu72b8mRGDrhqEHNwLqBKKkGcS8VHE6FykKqkmE2umWFAzcIZQ0AiX/86UAmGERIw4chYWSclkSkYKIGAhUdZDra8jKRaIoV+wNHezMCKYqKq6iHNhsHlsW1tv67at7Z37MDMvy3S+nOZ5ZuE4ppk5cgWYWWVQW4gGo268seFDSkByBqdjJM8v8zTXOpWydx+eKmN0nh5IZ0IVSU3vjniLoiNiklISAN8t0yLoRzlOvvuk/pecmOE5zHwXwOKH/4SGcMcdbulHH0d3D+PvpTgnj0143GsgI5I4RXSe5/PlfLlcluVUp4lZAjD327rerhuSE2i9v95et3Xb277u69rWl+vrl5cv274lIdXBRnPwQvpQcUoUCvxpS/6+dTHxIXuJod8ddd7dMi/fJyaPK4gEKLIE1WEt6fba+4YU50n1PJ4wzVFrJNKIDNwhEdma3fa27n3raBZr95ctXzaatXiq7eiJPdY9wiK+be1la7fWQ4VEDqAsfpjyMY7ro/RIPj50ZiINUCAiM4PY+SRSq1LUtlPb9n3dxbJGOUHA1BP2dWufb9dPL6VO+HA5nyaaKzFsu23RKH0MQAZeFZlOFHLYcwmHBCwSYkG7cUnpWsuiRZzCY4+2Gb55fPb2Er1nNLKu2X/0Hz1A02OKND7yENJazpM+LeXnGY+6zv2bP//t22///tv/+Nd/+/LpKzJVmaGDOsgCBRFoMGaZgtLTezJYtEg5z2WqI1yeiSXcVFlYEplO1tJahB3265RxXxOj4h8iqff6sAQyjpn795ee5hmDslSIJtZaa5kFfJoXd//tj99fb1t4EucyTfNymuZFpSDSLZxSkDlKmbTBwcsI67u5IREe5mYeMQx2IySYRcYZJ3Jgo5np4W7ee7cwR4gSFWZlLsRFWAFkeOZO0cBBIx1y3Oz7dRMnS4qkDtvxBCyTCPoG3Uds297W9vL8+u3r9dvXpnw+laeilQd0ydhbf71+uV6f13Vl1qeHDyJT7+HhA3wMy8jgrzEv84cPjw9POtz8lVSLnE4DoZ/B2PbXJCtzISb32Nt+u91a3wZnjMhIqFSdl2k5yYcPT6rlvoajt71va6gSk2eKJEiYSsqURLFbvzb/skbUy/kRpXikd4P3QAsy892suxk8M7jUriykzBSe5hnOykkUnC18T0NYzSyQWTGj630EFT4cSK0zM5dSVCg9DAE3wJnH9HCQDdPDetvN9u/qpAQcbmYezqDHLBPXk8jMMgWrcYku+a17y5dbf6hSOVFlOumjcj09nAixtc0tGCQiyyyzqJKzWN1VWiNzBOT++EUEZYc7ZQyp0jjfabh0VMrFfYrQnuREQm8eJN//OZ6oO+HtvlqEny7nn58+LPPCIolk8lKYACEOrcnsltutORlLYelJnvSWvktMXLRUKSVZgyg4AwoJgr8VWnGI1i09lHoVmgpPE4v0bUvrQpEE990DDj+UYkkR5t56rBbNoyMcYErJrOFiDX7r6ffYgfRtv11vz8xBOacqUyKdAVI9rF+qlFJLVZmUlJySqFuum7nZxqHUZd977y3iqCgO9OqgzxLxKKIQAuMMCmRwpJjEncV8MEKdMvKQfZl1a5kxSmJhFVIicY9teCtsvffvKCwT1UmXZTqdZhYZFOYhec4cibnDFEwOpuydMyvg0Uaut/b89WWSOsx+lakIq4i4WbibtX33bmNio1omLTRT79K7Zaa5SRIzlVpImSPcIrqNQOl7bRwR9Ja3x0xxp+u835EJNHJb38gKd9XIXfmalAH3dEfk8HcdOU/IAcsNYDlBIxWafFR1GZGJono+nz5+fPr1118ulwsXNfP1tr/ky1dSTk7LSCSymd3Wbdu3ve9b25qtzbYWG2rWWctZ5FL5THwSPalObBzZ733yfe1nJgzM0OQRz2zRMUahTIdm3MYZBk7iQRoaH3RAg2ZwdYTHze3VGyIkdal1T+kgk5wVhRjQ3dAtu/FY+uvee+/m5BGt++u1v8x0mckQX67fNrPUboTm+6fXl9e2d3cWYdC9z3trZ8YzhklA4hQ7ZQA6Jr4E9qAM6+m9WQ9vRT/M83wqk9T99fbt85f920Yve63tfHKG7NfW1+6dPsz6SPXMk1Qhzy6xU5c0TpchwSA2UGcyERaePMTcHQ3cyTffyeTs8yOWx9NSUr5d129r//26PRvWkD3FIR20em5O8a58fk9TGp4AGVllejr9epF/qv6zv/DLH9++/vbljz9+//zpD9+up5lOp1NRgVvvPoewBKBBQ/YzhEM6eoZSeFKaCs1KokSgIDAl03C4UOUSHbaFtZAKHMyPtwrmwGG+j5WOX0YcSsF3SMy0TABBGYWy8jD6AqSonp4eH3/6ae1+va0E1lpq1VqUScLs4CJQjpmduzsCRO5m1swMCffoNtDOI64Z4EzPFGai5DjMjmIENZu1CANBSylTLbUULSQJigxPy3SCH7S8PyExzDxP8zLNaQQf4OoRnFOmwiLIDDg5IpwBRLRt64ltec0aZpvZtu3X19evnz79/vL63FqfprmWZZr7ujfmWLe27713J6BUmU/1dP7w9PTT5XKZpkpM8zw9PFzmZRbl1tu3LJl5OT/UWgK+7euzfr2u37b+uvermROykmgppFLnEcI3Po7hytNLQKSoqpJKMDzTPEDezNd9fbn29IcpdGJiToK7RTTP5tHT/FB5ppeWKEnI5IwMQzgiw60RtfBmyW4VkGB1COJwIoF79GaZScyqqkLEnBER3d0ixwDtICsA0a3v+9ba+3TxdOohLSpDICcqi9QTSRWSJASRO3K16LH1uCorZS4yO9qlfrycPyCpfHvZaQ/34GSGFiiRGouQDAOTIw43kJRwuB/5wodhe2YmmHliLBxzoEawJ/I9D/FA7DnG/jvMpt8n2NMwmSiiqsRs3jNjZKZxHiFizAhSE2EpJJrUQSylSCRtnTJFhVmGxgmgg+J5JwYc6hkiJNwtRLhMZVnm5TTV2TLcnDjBA64Mhw/C8TBtzjBvu8eeGGEDMGcOoIvvsN2+15aZkc1zNysuYCo49HB5JHIC+UNnNASZ5rnDI7NzFLJi5h5jT6E78jEkk3dax3hrTMGwoSkLJ0HvrfcqnVnIZdgsIx3whCdsoAcZREZjZi3DVcGNIvh9nPEQH0yTTnNVVff7cG24hNy7TqaxTA6MaAw5AHLz23X/4/cv7Hk+L711ylCGDKrUyK+3br1nOBFTErMoMalSwoa2LI6T4S23ifwHS663g4OJITyozZn/wOwOeC+/oqMceFtOd/bXff9jEUHhZB6FUg7L5mGDmsEDsQwfd2OaptPptCyLqkbEdr3t1rd1d3N5I1dlOry7b603Nw/ztKCGYjqhLjKfS30QfmA6ESamIgClZfY/XwkF0D1bS0muhYSIOPg+RaIfEuYPCBUZDHhIoARNzjN4VmLQrbXeI813M2dzplA2QlUQee9swyE9AhEBSBFOmPvebNuxNlw7stv/+OP12vYyZ3Cuxr9/u629D27n2+pIvD8owYRSSCsXIopDxTDApCEWikgHvIcjSNMLT9PEidJ3p+xbu22295tDdoeDuU5ap53USapWkchJvVN48P2QjkwnCaID9AFrpqSANCg8ffe27ZvVPqnOPK3NY+0v2/a8R+c5uAbz4Ofs/v8j1yoBIlaq3KU92/VT/+M//vj66Y+X2xeL63IhLdP5shRha31v0D26FQRnkgclGMJDWyjD1LPKXKQqmJHpEU7RhaIIRERZBnAzzPRHAtWIn+TjKXgD5AbSH3f5csSPcJ/qqbLItEyptJM3t7U1JFWd5LL89J//xUvF73/s+w7lZDCnUBAPdTRUUYswZ7Q07/cuapjc3Fl4Hjn4s1pKURZiBjNnUngA4AyP9N6994wQlmleluU81aWoJnmkuVtGcrDQ8dAfo+X7lYjKw9Pl4enh9rK1rUcGi8zLrFORKpnZNkuHcpmnwo+XtPj2+bpe169ffi+6ALnt1+dvv3/6/Lff//jbuq4iCujebWtNbiuztr233luzeZ4fPv70n/8v/+W//tf/7ddff13maVqmeSrLaXk4nxP58vLy+ctn7y8ZmPHwMD+UWbu38/z45eXT52+/9+77dkvqLLUgDGMXvPN7Ms2yt6Skwnqp51omgABBT4/uzdventfbGnm6NJSowqTcu7s195ZuiAiHGRxQAzoJsyV5whCe7ha0N9sDrVNJ5kKMDh+p15kIC+/eWkei1IoRpwCEe/du4YG3RBQjCiBaa+u27u9MCIPSdPNl08skKlxTNJItM+AYG5dHELeEh+3MBPemS0jqVJ9Ov8w0Tcvreu1bf4F18xKBlACckUKpDB/MnASE86A4JYbXCwklwKDCdBZcKBZLPWbvd8rLGAkcO+vbmfMmETmuJbL1tm43jxARAMJkw9ZimCfBAamQKpWkB5dOO1RKqSly21pQkAoY5pZwhkfCw8bwOxEZBmTRjEDrHcTTPF/OD4+Xx/m87GGb7b3vkQGlQWGOERZFA6el6B5ucrCJw3pkS3RJY2/vzO4IotCSxJbo4WMmdfDXgACnQEgASXBKUgqggwA+dpjB28hxZL8ZuQ0PdZZDncwiKUEysPEwN3jzDNFKPAiBQVS1jAiXgacqRj3jOch1eYQFM3FRpiqmsrzFdNBIXCpSipai5iQeIRwhd2eXvHNKjuyOu1VsZqRH3l63v/7lt/31+vNPFxUJ74QkBDLosGBPwIdqqTv48OmjokpEW9u7W7xjBIHfyriRwc7MCXBRVR6JOAdQ9CN28YZlHTTvew2TB1l4zJKGbNsPf8JSqjJBJCJ672agYYzFTEdOeCaxCE3zdD4vy7IQ0cvLq7td121v3cwzIeMsI3hGh1lGzwCnVpGJ57nUZVoedDpJXYRnxOSu6ZKeOQqHQ2zxhmUm2BOr2bUxlM8nXqrMgoIhBIfwMP4Z+eBAHnZJCWKoZTVMhpOUj5czhYHy9XXd9vCIZEsCWMyzagoZkVrPdWuRUStLraeHE1bv7uvWzefm+tJo6/bvn6+v6205UXK8Nv/9tu+RLHLkzB6knHeGBACIddL5VBde2KRvbi3c4QAYTgJhpxw2H/vNrhpPU3mc6y//8mvuj9dvz6+v68tmW2afTimTQvo8byQWxFKLQJeFcrNmIaEW7DRoQpI5Al0oQcM7m9SQnOke69o2bfFAoqVOs5Zm3datu3AqQdWGGOHHmuxeuOQBgmGYbPu+ru3109d/+9u332/P3z53u8kc5w+s87lWrVoYHFa71dYm6wZDdJhnBqUQcxGpI6dPBtsUgXBzt9ajr0peFSwQAhMDMh5pHMP8o5zCO+zlcM46VsoItfL3xtDaS4qElEglC9u97d4yaJB1zx8+9MDaWr68INOjuzOLMkNYhEM4eXQUYd5bH5lBR7L7eAcjgp4PK1XVsbZVFQlnjwggwy2shzsTaSnn0+VyfpiXEyk1bOFGPHKD1DWYdzqsDn5w7Xyzt0wmCJEKFxFVEsqI4RIx9DO1Fjc/P8y9X2/7c95eiND27fX1+Xa7blszC2EmUgJHYG87k5kFkKXq+XL68PHpp58/Pn748Pj0tMzLcpqXZZqmeZ50XW/ruj5/ef7y6TMlP8wPS13madZa6EIgNre276+v3zwdMcYZb2Da+4tRhhauVeaJ6x3PcoukjJZ+s95Cr+41Ixks6BSBe55PkoMbkZEIOJNKUs+0xL0FTDNLcyCYmVRSuEeEJ5iRCB+2oMOtdZRWFoP3NDIWj/9NRPTxII5u9cflkk4WYjoXUWEBUQweNuU7++j0yMwwJOCWZNSl9uUhPqpcdJ7LfFq3m3k3dw9SHkjb2HmGQjPxVokQvu9DRKnCTDyBLowzokZy5J1E9qfX/Wj8Hp39/lruzgJ9zCkoOd0BkAGB8DGYZQR6M2stzAhJIjqhLDOV0DIzEcI9vO3dwptnJAYrM2CCZGVOCrBM5XK5XC6Py3wqWr1D0iQFxCzqiK1v6UmB8V7h4Xs36zwpkL5336JtkKiznsq79UJMWqVMByNlUBV86LzNRhGjcJahekQWSgE5EEgOUEYkdzLDXVHPzAyWHP7+wsQyWLXDHYAOb/Mc+i7rrTUdujYRIIVASUlBkkzHHQ7P9Mj04WwEFVUmlUm5vEfROJMJKqQqTBRy79jGgZRx95zgo8LNRMKRNFxVvB8Kc9/nqVrAzMKdMoSoCIUKhVqER2RYxD1RnemgFw05A4FYBhYT9w9laGWTmMC1KIE8nZiGdl1Vhf9x6vtgeb9x447JUlLGGJQehBgRZREuZZiQRvgQCo+7LKSsQrXWIqfzaZoKM/febrfebejFc3A+B0fO4Qbv8JDkiXWWepLpVOqJ53NZHrTOwiWhGWxGQUMjgDdI5d2FJMgTzbFamnvL3B0PlRahMrzUj+SBQ4LyJs8k4iT1KD2lQwmzKoGrFuVGlOFozVdBESAQilpyquNCJUnqPJnGaSOj3Zptu922eH61Pa+vu/3l8+u27x+ySMHVbPX0JJD8KHf9076AYJDyXGpRtbAeto8gBmCI35IpEy2yuXskwZRlWXQqM4nTpP26d0eX2blmyKby2vvr1s52llpO5wdTf10z2urmaTl0Umwph0knMNz3mQXCoR65730vvXfPSkWKvNWyIZnEGPBn+J/JSrhzzHOErY/zfd1f7Hb7um5XW62ufInlqcyXMp20VhUSSoFzePTevXv2jD36bt7GqTOcHY6MEfZMH1K+7n1P70XA4KGMp3sNH0EExBsITncMZnyNdXB/HfzHdy99zZUCsq0h6PBubuZwNstCcynT+Xx5OF+i93Zbe9v2NJQ6lUll9Bae2SK829b7bt1GCz6YlcxgURqhqyI64gmGrUMpzOTm1r1bC3f3DmTRuiynp8uHh4eHsswmvbcdAa3MIjrX2B0CEqrTVKfveUPu/u3l5fn1NZ1IjxS4TDIL+FHZs4iMqYiywz/eHi3t8x/fXm83282auXdhOS1nr1lrPS3naV6Karh7BoBa6+Xh8aefPv788XGZte/X62sVJlUlSNtvz9G+fvn03//tX//yl3//47ffVATRzdbuv5wfH2qdns5P7tZbf3l53jtNMlcRpr3w9xOdiEVLrfNc51omAkfkKA6cAkQi7EpNyDM35DZEUZRGh38gIR0woBOhKCm7UKU0Dosc/4eRngoGifCkNJco3LK7JYnw3ZRiaI6YOTPvMchj4EBMFDFGTj3CiQmIUuo0ffcjGYVODH83ykPkxOCxL2BEXBDnEAKMQkQ84rY9jxPhRL/wfJnOZ359iX14iKESs2ipWorw1gBPRBITCYgjebDOMyMYJMSLyAn0CJwyZSxovjeNb/XPP0b/3/3OyGeTcU4hAE8iCJghQwBHHszua7t9fW7fXjldVDI8hZfHSyQVLpwg2/t6e7297m33ZOFS54nGRIyThYSHZuby+PTxcnkqOmVQ9CSnWSYpUk5zd8vdyHrRSszhFlvvt631jaMSsq+t3cxuvpTzx18+PpzP+mbJwFzqVKZZuTApJdzDwq13N8sI4USIjDIuyTolOwlJDRFncrhmc7tS28175EiGZR9jmDckhphpqAPAAgbEU2QQcEYx07swKO8Y64C1mcElON3TyAxhHkykzBAqoizy/XZFwoPNOUOJoJLJY8vziIyIMVMMBIb2xePO3kYERTrSPDy37jZV1VIdMDNKKJOoFEydecvsaXbk0mVEvHVtGbBuFj7oHiIy7OCIRBUzy1valrt7BhGmeWaCWdfyLpF7rJo8BjtDb3wIlA5SAyU4PdzT3IedUpEqc5UIt97N0uxor4lVZa71NE2nZV5OS0R/fn6+3V5b34h5WS51WkqZgOx92/u22s0zhGVaZPk4zQ+1nqTMojPrJDoRFAFLgFMkGD5SZEYUZh9A0ttlpDs8lYQ92tdXuq7SF35Y+FIIEoNjcHAeIgc2iiPzU5vxFtk5SNyaUjL8zjwHZXindgt11jlnpkmlTiVVSAvViVefO1+Nml/XZl9ftt57fH1+3f1vXxoxn89VpqrzXKhji3Ab/rXDwucHXSIQGavZ5s4TLzoRlc72etsiunkiKUVA4wvIaG7P2x62R8PjrOfz/PRwkpa1+x972B695c3659Znwvnx9DgvT5eP9VzoFdeNve/ZDD2oOWewe7ohgbHZ0HAMkMi0nvturZlNA3kQINPNs0cyg3ys7fjOKR8fdn43bgwgGLDcr/7ZQPkY84kepqWetJxLmVgK6WCnoXCUdFjv3h0dvnm77vu1tbW7gckOS3aQDJfcdPee0RkxFXFBgIQiI7JH+uBwJ3hAMmNRhsf4g7jnbb+93nRM9yLmm9/IQT2T0igiAp348EcoxFS1nObF5o3MvLdMiwAgd5z9gLQZh3vTGHRiRDoxixaWcg9FiBhD5T91t3FkKjFRqXWZl7kuU5lVKpA0GH8A6TtFImGYk789ZpnZu3XzwpVJBcNElo9PAIeHzojjUOE618uHU7cW5KK4fbttiNxJRM6ncyap6rIsU51UxboRUyn1cjn/9NPHjx+ezkultPX6IkQqSiRmkZmt3b58+vz50x9fP396fv4sRFMtQ8tlbufLAystdXk4PVzmB0ZyMjwPD4XvpyVIwYW4ECQte8TA0HIcD0HIieVcudcQtHRYUO9prolBXwxCEgVJTGVb2Et0QZCbYChAiVJAxAyhLBIjOyDTMjgx2CYsLEf/d4RnARCVYbIcY5cazrDhxHQ07nee7P0Of/9KH6nrh5iO5N015/0vE0WmRUP7xldp6mcw1VKXxYEk3y0ACvfm4RGW3WOUV0MvyHlYFBGEUMATeAGfgAWob15af2YbfH8nx/e/t4UFDweqUoQkPCUgEM3BB4T3iGbde3t53V6ufV2rMqskk87z9FCTxHvE3iKbIy3DMwFikVqrsERRhCEdFKplmqZlPs3TqWj1TEkpVHh40KFQoIZSYtEpkNd167fd1ubWg4hAvll2H+BD31rbvo/5cjBPIoUS6QMe8DRP8+jpASdOGDmC0gChICeBTi4SRJauvne7km/kBgyJDgty5BbepylvH94gjDAPtIRpxK0Nsz/2PtRtdIygDskSuXs3YzSkAUkZCI/D5v/dvRugxd1FPXGviBgH7peD9no0n2OzfNsTA2nh3WNvW1Gu0ywicaiWR+bzKF8lFXBEUhK96diOC0wMwwGPtO5Dq6elsOgxcDkKKydKKVxEGLlp+TMSM6Q6PDxnDqj/rpPj7z2qR3pkAsykWkrljFJrN7feM1JARfW0LE+Xy8fHp/NpKUVv6/V2vapqnS51ns7np1pnYvXo245sve1Qyjrr/Dg9/HKaH4tMJBWkTMokAwkiCojzsZVnOpzxZzEVDtoxURWOIHN4yNqJ2JEIpUmgQ9oRyDE8GZRklMgTeCFSZLiv66qCiByPVfBohgYzE4gkZFGalyLL4qxXp1vYmr6lt0zx3HqCrLX+rfnrHrVUUCEqEeHBmTK8e74/Uj9Y2yOA7jDDHjlxFiWeuDhXyKGGi3QEiBMMYgdvDnjAh6tNneZaz+USsa8NvG/Rvdvr5p8Jl69LqfQwLbWecd6nQmu/tn2PvQdnYry/yJGheyeDM8vgDLjncDrkKnoY/Ge6Z1oSJwHmYX+HxAQigoBhsDl+y8JSSR5lkjIvpSxFZhFhEgiNFCGSYcLVU5xg8J25ggszc9+GbqSFYUxD3pbY8N8mMDM8h/TmsJZ+t/EShlXQCFc83tgPRczfbdfQl7bSPSXA0pCpoTNmERJQNEuLScvldKoUrbH3ThkZzT2VxxOaRShrIVCTNmDYzJSxgqeZWCOjd9u3PTJYtagCYCK3kTbcMxwgVV7meZ5mBqUnLAGgkXuGGQmE0DYPd9CIhPvuCk8glanqXKQwMYJGY0iZfqge0jKNwjMgSMK01J//08eff/1pv9q3T9/++O3L3/7yW2ZOk4wNaJ7nWlVFkNBSHx8en56ePnz4cDrNlNHWW9927y5cIlBKRaL3bV83yihCymTWvjx/Gq3ftm+Xh4fz+TSd6nlZPjw+EnXr224ddRCu39DUBHfoHkKNvMUh+WDlMimEIp3PfP75wr2yco/eW8O+cvM5MKuKIpBSmJfJJ90rdjYNJ0RwZgAWGinEzLBRPI9oWkYSjRA1EVYoJzKytd7avu07gWaaRYXoSGVorbt7ZCqxe4ZbN/tBnfTWaeXgwPBBAsU9Ki/fwt8PC5oBi1jY6/bVOB1lpqfz0ymnatvLrW3XtfW279ttXbetb3v05uTJ5COMZTCRRWbWJXUJWZKXRAUESH4XpPP2LvEnPOYOjr8ryIaGu8g81cIlPclSQnj4FBpRS7u2/fq6v7y0dYU7hsplqvPlfPn4McHPX19uve/du4fWScrEpLXOl/OllEIZbbu9Pn/ZW59ZQMwkylq4CmDchUSLJmVfu7dWUqqWU1323p5v+/56jbUjHRwAUcuJdH68wOiP337/jw9/bfuRZBsR67q/vq69WBUZyaeRBjJQECWCw6gjwsKagSnIqaQaswQRhfW2UtwEeyEX5EjglcPchO5Gu2+bECUITEJMIsOrWpgEhyscgTiHvwxLkUlEicjdhRqP7jLCbN+3tl5f9u0a4e/uHyUog/NQkY9BJ1Hyva3KI71xTHmGLJIAziPOLbOFra0zpe69jJeIjFlqRPrhQ8FCkRgmD8RKgJkToCJEHAkLW7cNzKfzpU5VRbvZ9fZqg0aB0JLMUrUgnGiYZLxdSVIkDbe/u/3isLIdUOXBWPMg92EdEEw50OBEnSbr7nsbZ8Zpmj4+Pv7y08///Ouvp2Ux66Jyvb4up+WXf/rpfD6TlG553dbb9jryppit1jz/NF0+LpcPc1kk2YNGZrWPdzR8kEkO95fIkLgHkbznIBOFMKbiReeJ59PC3WK3/tp6696KfFjAGgjKPDxaCfAkixr0YVouhEAzj+fXqwiYkaLDUp2YWFiLSCGRZAnWlMoyT2vHX79++/c/nv/H56+31007VS0QpSKsLOQkXbgUnRl8W1+vt5YdBBmPCOUdiXmXb5XjTRk/b80L5jHvPMlciXZw89a75fCH52ROSnDpwS/N9o6Xbbuc8PRUp2n6ZeZT5vO2b7nv5l9eY/qNxO3E+fihnOeHddavjV8qr0qdwynBGRZpKUbpg601+PMC5HhkxohYVIqIErMnIpgCSHRP8/d5Dm+6nzHQGRQ0AkhYS+GlqAgPsAwZyTx46J5E0dMGrO6UkKSJmKWoAIVo79db31uzRLJK5SRkKnOKIsksMhJDIPg2fRxqPSKA8yBND826D/H9OBnvb5f+JBbXHs45wHwMixWOEMqJtbCOdlaK1LkwzyS+w7xbH5YJSGGqpagqsWS2rW97b24dgHApIBYjRoRb6/u+eYaiOqKZDUfWDBvPCBBEykyENGu9qYoKy8RTpO1J3noPa+tQYYPB/K6RB4hTBMqHY2USwDwmGd3N+z6gTdEiARMlZpxO8zIv/oilzsLq5vO8MHNGmrmIMEOEtZTTfHp6enp4eJjnWVjSWjeLAIhvtxuJltIJZLaPmYuITLVE9Nv6moDWCUQjou4SS2SX1EJT990iM7y3d+p3AmuyRqo5pR9xbvcAT/Z0SuV6rmqzBmFkROy9WMbQrjCnZs6CS4mJOntQb2YcQcwEUCYN2iIYysGw6N2GL35ixMQlB4KI7xK3uws8CAdTPN0j84h7LspB0e4jxR8XTBz5v/fhTWK0rsN/Ju6w3qgdRjWBiGi5BcijdNiZPmoVSvXg67Zfr7fb63Vbb62vlh6kyTwuEAopwMy8kJySF1AN1AT/CBH9//+6w8wpRGBiGQQOGjx3UJjT/nLdXl7ZQ0WkqEylLFM5L+W8eIDXjYqkCJVpqQuTEKSW6XQ61VoFubKsr1f3SJLDqJmUIcrCy8XDE9Gs5e7seChnUVHRaJ0tqacMe/+1EygtWVghHrHdttttDX9DYrKZ7b0fxJ/BlpERgEkAhmuYhxthwHUk4KQkYgURvEdryJ7sKu+ETHTPaHx3Bhyq1SNPkpWFiQuRJniEDY0kNCJKefO8YhpiaEkJVy1h3cx7b/u2tv29Ag6jPBkEGhwIyfHUUhLjcIsBhN/CwmhUMhhqJg83661t4QaMUWHSoTsaxQOQSUQix4YZlJ4UQcJURIqWwSvagZ0oiaRIKcKHc4xH9BymD0VUtXDx1u+08h8WDAKI4e+Dd0/s4AZQjLRzd0SM+QKpljrxYBc26yLkUVSmWk7z/Hg+f3z8MM/Tbb213j48fdAq/+X/+p/P5/Pa7NvrdfMWzUOMJq8Tl5M8/jqdn6b5pFzIM21ATIMkMJiHYwh8xDyBGeygPylgGFkVi0aWCBansguStDsHWkPsNgwZc3BrkGBIYIq8cPlY56XQS/i2+taNO01VM8nAhqBIzSCNOuty0umkqXQ121+un6/2b79/+Y8vL1/Xm7lPKQZ1cLJwZU6DRCTColNst31fW/iQ//yI0v649CMVqWsA4Z1QhUfO+gTVpMmzW7QwG8MMIiR5sru0iM2ieSPeHqxMJZVJJrk2vTb03b9+fZ3cHySrnU8fy3mZUC7KXEh2YqPWpckOI6fhc57fCeuUiaCxuw6Cu7Iok1gincIReSRy/90rAvTd2icOVvqwgpTB1Hwj1Q73uUB45LGTD1UO0Qg9U7aJQ9Ddd0f08EGdPAbETDL2A+YRo3KwJ4bYGMzIu0btnt6U+QNV9B+hMACgKkWSS4iAWEDp2fbKskyLyrJb9IwsSIAG3bgjunULyxbmDF6mRbUqy+7xers9v3yNCEpSKVVrrTuLZqaFbW1PJiT37m1rbd/bvjJiWaaqShABmfe9bQkH5aS1ztOH04cl5pf+um63bdtsNW8OSyXVEbVyXCJRUBo8PCiRKSNjFdH9tu5tfe3W4KGq2nqts6gSTxOQojyfpo8/f1DRbd3NfL2uz1+fzWxMSR4fHx8vj6fTQy3T2PAoHMgEhUe3vbU9M5kpDuExCZfldHb4y/V12297W9u+biLhfru+JLxbDxOOGZ7Nb23zfEsYJqiyFuIjLmZEoiDBFkM/CArRUqtIcSILC4eFJBOzgZPJJ4pFfILXcHTLltwpg6GSxJHw6IagQlpSsfm2txZIAokUhMAjEEoFYKSoTkwKgJkzYBHD30FESVmLTLVEWt78PY8kcQy7Y+CK8RYTHUMDCiLHXdVx7B6jw6Zx5jXft/U/VrtutJ/06XSqLNN2e/my3T59eb6+3MIbK03nLHNRJS2hM5UlyslkhkygAlDkG2H3u+rjbYM63urbWsl3rcr3QyYBZLi3fSfOypVTGSQ0xjt1Wkrets/NfO9TrXUuOhedp3o581w3790zGDJP5XSpukxaBRIBIa1lKqpKFCVrPWcycwEVZhUoAqXo4+nsbl9fnrMFWU5anx4eRfjWVjHMoovWzhqt970hEyQuvMcWTiJSy3fr8UO4ODpaHfhIkkgKyDgR5nCPMGQGEXPRMlciBTEGRj1Q8wMNHd/ySDcaXv93GGtYkUUOLkgKCUgTJUgz2eNIDhYGg4cxPtA9kqnkmBWwsk4clLl385F1+H3Gj4wMyxhBWd+l4RgD2CQmVSlVi2qd6lSmOtWihYUJ5OY2eNbebvu27XsbLAP3sMPohY8+awRz6rChCxACQVSERaSUOmj7ouwZSZhqIUZr+3C2iQNv1jrXIkXATRk/NpY0EpWO36VB6L0z65EYwXIeZmEeHgllkVLrNE9KjHTb910YQkW56tCK8OjOEVFVf/7l5/N5+ef/9C9aK317ed3WHvvWb7tfU/3yOC1P5eHjXM+FmZIPj10MrD+HSPLoOEYTBAEFaIyX36kswUxzwalYSjdsFgw+YbkYkmUne17XtTkVCkEczwZm4ieWX4r8dJrY6bmvW4c7kcN6AtSSLTKsgfBBcjnrh1/PtZab+advr3/58vtvz/un63Y1hwpV9ciWw0WeSIskQXZrdnu9imRft+iGUBKWHLarQYOl8YM+iQZKmKyNyNJ39wk5gxfVZVaG9L3f9r6aIbOBknWQB50506+bZf/aJvrpVM6T/jrPD1w/Z7vFur6uv2+bbNv+fPnln58uP5+Wp9NUpmWaVpoa3zZe18Tu3dyN4cFOlA5ysIOc4BisciYZztiKyPR0H7N58h+0ViPgIZNiVI9IDNDyTpMZY44ROpx3JvwBux14yHd8Ojl4wvQwaxZqyM7pa08DaHgWDqD07Xg7vOKYiIMYPCBYIgInZ/rxqCeOvXrApge3crBJ3m3gqkUlSEwlWZkInuxFtJSiUpycgsMQAmLlLNKkd+rdRuqmI0iZVQJiEdd9e7ndQCmQqsjkuw8TkjAMUUop3Wxv2+vry7a9CsJjXuZl0omJ9oZI96giGicXyDzVgtIR3iI4O4JiR2KIH76v/kQOp30hZkoalUy++Te7+75733cWBTuoEomHdO+UQorlPJVaood3u75ci9L1urqjFDmd5uW01FpFJDIzHJ7jGO5m+74TX3tvzISM1nbrHoGRyWvmHvu+b/u+lVIy4hYe7kgEzJCe6OH9nYfH/VwlHlYqB1daKCWNRvUkg2NKJOkElIwkKqQicCFXmKBztrQeYegBS8Qo+e67I2K4eqiAvUffbU+O0Z8SigchOd+QG2It/MaEzePsYh56+1GFJN3Prvd3Zri1DBdKyqNJ/j7BOYY5f9+PjglT9N36vvVm1Gbj02PMHnOP2WIxa9Y3V+Zag09RFioT6wSdQ+bkChp2Hz/g3O8+5R9m+Ae0+fZHfyb34JAnebhzdyYGaZKCKxcIOpySxq1hES1al7mcZp5KKFl6EOlcJblgko65LJJkPSipqiqLMtKxLA9EkkwRtF53ltdpniSJ65zgaJ49Z52maVrKDMStBywWrY+nM7lr8rpeI4K5FJmKTjrX8/nx119/LaW8fbw+Qn3uZVoe9xPEh/4oD4HMMI8sRZdSKhciOdh3wh6H68p9bzwmI3xnH9KIN+WDV0LEQ4+kREqkh1o7Y2gkItIG56Uns4OCmO/vhJMkwHk373//Yk4VFKW5ChPzwbwCAUKsRWrVea611jpNU52mOjjhQoSDrUJp4avZtu/btm7rum5b23ZrzSM4ERF9b+6W7sPB4RiM3Vk2pWgSEYU5l6KRQJJ79m592CrFQH8YyRGI8N797/vLgaVHJI2W4ngI884HvO9qd7EG6I1ONL7ujLehARlE1cGtIVLVouV0OtU6kXCOIRE7aTCjzPLwYT5/qMulcuXI9BzrmcdxdOwe71fFyIJ6q43fb2IEKKEKQUJiR0pgYakoi0wRNjWs6CbkAkco5yz0oPpRy5NOi/Daogu6EkwwZGEBM3KPcF+YT4s+PSwPj2cDP//x7S9fbv/2x8unl331COFSRJhTIokcacNHyd0l6yyPD+dJqYvdbv715ulOrqzk4+n50y72tiURObFl2mEqnMqkQjrpBCCTe7IPX103jDgeotFte5BBQmei8zSdNTjwkn1zkmZ73283Xa/LNM+l1gKZwwkh5MQW1JI8KMA4Qpwc3CGWbEhDDPNRcGWdRExBQckUGHH3f3rOaOh4I2ksWeKDLHh/vA49P4IHngmKHJZuwx5sgK7jk2IjLuUkGiXX9J2iZ8bmPmSBdzfmo1cd8N3oho7YpiTCPbz6zvl6e7xwZ579mGV1f2mpDKP08EwkC8CirIVEWEWJxWUY0qiKZNXTxNZj3zMyCtEkPCmU2t63tq+t7W4iAyNXLoW1SFEmZpVS68hRuK3Xb/nVbGv7LYcdunc+PRDQrVnvuaTVZcQglaIEKnuZylwvE1tZn3emLuMAvl9JZFrzaDGfZhFJCtAQJoB5KoVL4UZb21dmWx4qgMjo1nNLgqQTi86lKKmAHi+n82l+/vb68u1KJKpypOsQmAQJixGcArR2W28WxofJFfXW9n3v3c3TLHsPUKy3bZn303JKZmt7a927RTgojJulRfuuTI5Eb2GdqqiSJDgDSspQuA7mt5CMmFkyY8+JMO4XF8qaveSGvnVv6dYd7INrwCyMcX9ChHVikUJFksMjLHq68/BmZxZoAuM5RKbQwcjMAaorcWRkmPVwb+EJx+Ey8n6t0Eg2ZhIeWzgR6F7rEO7+HW+zZxwnVNw5KZmE7L6vr39s/UYP1zoLP+4PAn6qy7N/+4PCoz5ieYrTBy7zQdwkRRIF8sANBuMTx2rBnX5+/+X3xgL3rpf5xwiFHMkzQYKIaH0HZWFmIWX1bvttbfteSp3nBchgLqelnBdjZPowGpjnUhbJGWI8ycyO1gwWMljRnER8aTtL6d6t++9/+/3b8+3xw6M3Gw3idlsZ+XT5ME/V3bdt3W9rdD/Vuaqcy/w6vT5/La010TrNp/PD4+Xh6fL4+L//3/7r6XT6filDYlvMWA6JFYDgDMoY6eWkTCQionWaz6eLLoX0sEzkNCoWmocrHGfeZQ9DL81ELETKXqRIKezER0QtM7PcbVR41NYEDEuoEZ5GABMXZhkhQhhW76yspUyT1u+kfmZUxXmmp3N5uJwmLUo89LJCVLTUqU7LVKdJS1FhGZ2gHAjH4GqxCkSCxSPN2rZt19fr7bput2vvHZFt31+/vVyv1+t+NY9Saym1lhqpRDDPQSsb6U9IuCN3D5B1CucIyQCB3SgOW0Lbbptb0PfKGaMPNo9xVJEw43hg4+CMEB1YJtJ9zJXSza0Tk1sL7xGeaZmc8JEcbt5KyDDu8YzW++v1Bsbt9tr7rhPOVCqWsuTjh3l+KDoROLsPhXrw8BnOO4T5lh3zRh3L4dOfPyhHxjFIWVSYqfUOiSo8Ky1zPWP5JzsFYufsnEY+KT5O5WnWx6m6+x+fb9+2dUsEa62I8La31sIcQ0oyT+WXD0+/fPi4TJdP1/bXz+u/f16/tNxFRYdxBRKQIsIK5tZ9fd1evXexXz88/j/+7//b06L/7bd/9b/99nt78c1hgAoExCOt47vmmpB8DC2RQxKObGMdmTWiRamyisrZprnF3u2677ubE4ipqpyKPk7z46RPVS9VFmHSrEJPk2znGT1rlrnOpNos+bXzDqdAgo2lczGyAINAEcgIwJI7aSPlyD2yBRk0ZOFy0grykggu2bxv4B/xPoyQ3Bz7a+Y9LPZdO3OwFXHHZpjfiumhG3pTcGXCwMaa7BrLyTay1t08ot0TVEYFIywMDP4bWJM0D8b62HWHQ+VgsI7W/btn9Yi+OVySfyhihuNYRJJTkiZIEpGwMXrFEAO4uRNTEkiVyijaUU7zdFnKeSJIX1sP56JlWYpqLXXRZSpzGQEzzFp0XmYRpURGLNO81qm30prvexdu5yVJmCHE7B69295aNzsRKeskJUtCyGqIFIAjWwxX1vvqH+pbcmLlxGA4Z4CYSlXxyk2TsY7zuIiUwnz0UU4Q4mQhFZm0TGWE604ZMEtVlbdM2aMLOkJjI7L3PdJwAI4S7mbukR6cIRnq4dvabrf1siz/X/b+rEeWLTsTxL417G3m7hFnuEPeHJjJmc2aWNVdAhr9pFYD+gF61IvQEFrQhNYAqX6GBAECNDVUJUAP+gt6VEndpZLAJqtIVpNNFousnO6Q954hItzNbO816GGbR8RJsluvEpCWeQ/inusR4ea2h7W/9Q1I37atrc02ywwpHOKZnvac3IdwShehqlySOAi6Z04LwMJcRCfWGlI8OcAsrGDhLGQlTGxL36y36CkpmiT76TQT6YPdwlSERJ0omFlLoercd0fDZBASbsMHDZRPLXoeA3LIKyPMzDOj905Iz5+LthgDKFx8jMdrKMR+1CFKJPHOycJTQTPaTYFEEiPJW78k7Nzhk0YJvbXTgXhWSLTVmSkYqOB5L4Z2yfbA54kfew8fwKqPs/p6hMxdb/FoXvrB0ZIhClVWJUoPyhwWlQLyyNY2M58OMyusN65KUwnlNT08mXgai+towHEpMkuKauSet5HMPpyMmDd4uHn3jSBpJ3h676AdlrXWLmbbuq7bsq6XSFflwoJS+XAzkVoEkZZ5Pt6+uH356tVHr19//LFekZiIaFtfL5tA0shr2TVDSZQcTldhCfM40HBhCEOGQxUjlUSzhIWvERIOw45o5NXXBMOxV1VVq3KAOAZEihEYZ0QUgFPss2fnhmfvHuGRxiysLEWkjARHKaWWaSq1PuI/IvLidPjk1e23P3n16vbloU7KzEGUOaIqylS1VqnKvDu65RUe36k3RCwiWqhMJAyg9345nJbTsl4uvTU3Xy8XjRGkZBZe6lSnqU4zQLWW1t0jt94jnIcXcGRv4eOku1sMI5P3PFrzvrZ13cw+8FVKwCysO6cl5PlqHY9kofG6IeFwCzPrW9/UCX1bzFqmEyXLUFBFprtbpjODkyyy9XZ3d+fw95f3Wz9LzWMtwYdyyONpKhNDYmRwjibDc+QlEjSc8ejZm/4vuiIAqLAQubBFXNIm7gv1o8rLepi1ZJEUSvK50OtDORRmxjd35/vLuzfvl4c1vCUBsGg9eh/NetSqh3k+zEeR6bLkN+/Wr94s39xtK0uKihAIPuIXmAB4WAtc+rZSZOXDy+O3vv3Rx0d9sC8/fxAtlC0DIxWJwLs90odXjvVIgkdnOUe7NcMpu9DMcio8c70RMTa1vNjWvKvybZ1fHOcXx3pT9Sg0S1YKppzUj5pNyTuRc2EiCY++bQFLR3d0CzfL8KRMIRShknADAzk6IJttl7Ud2vGAmnrk6SjVc0OCqwbxUkg/tFR7Bqj93F1eg6NAAEWCgp5/ywAAx6o4wt3HM06yFKNa9TjVlbbLwtKYDSPGYUdnB7HGQUkCqazTrsyjvXz3iGHGZJnYt4und8j46y5dtwWW3pJTK6BgM6foKs2cDdH66tZ96E0yHRwiLlxFb169vH396nA6ektLT+Kbly/ri2ORUrVOPBfSYfyUBFGRMqkKBw5TvHrxGoCKPDzcX84P3Yhlng+3U52R1FpvvZ+XZTqsJ7stU5nqREnWU0iFNYma9dZbxlMRQ8PNz2IHyTI8HURaCwuhis251hUUh1qOc52PhZWHaXiGpLOZDRuqovVwqp7y8LBua1cpQ9Y65BIR1wYrCw/ecnePIGKVit1HTQBKTCRzelvWrg+X4zTNU2lbs2ZDtq11GsmZe7tvDJZB609VnqpWSo4A0ZVzy1JLmaUcUaqLwhlBEmBQIRNAMxCebtFjsM6FETTqW4oIZ3FJCFiDuEcm6DDfVJk6NSQoRyo5efRmW2SqlEDxbkKlSFUVRiTMbet9G2e9bomElpFzSddFLHrv27YmUEJInrmYXmm8NJxed300EQmNaospg0DJSqpcJAnZ+4pOORI+heoJL1WWe7r/GR7eEwoFaDqyKDySErzn9xDt1MSxf+1SxSGnGNypAYWPFLIE3G3ra/f+FDRIVKTOOh9qFSKQV+hUSyElG1mUBsZ8c5py2tqSSqHc08/d3KkOFWD3Zj1XqTFFlYNKLVNC1nb23oOjNdta23pvrQd4KvX2ePP6xcsXNze1lsg8Hg7n88PnP/1829YIB2NYxqUjwnuzUsrH3/5uqZN5glmnuRwPWsrzZSwj1nN7eL/4lm2KeaqlTlWKsAoxBcHzyrUFRUbv63IuKIVUWbWKFIWwI9va2qUHfNCediw4h7xjwB5VJJQRaJl9iKrd0omEyRkaKEWFKrFe+0vD6L8loIV10gllUAhrrfM81VrpWsRU1W+9/oi35bvf+fbrl69mrUI8nNt8YAlESQjCQMJHioDvMUajUmM0YSlcutRaigrRsU6V5FRna631ftGSFsRU58nTVVXrVOsEot6ttb61fl5XRpqZsrT03odz5E4g2ouQHPa9NCCXbnsyy3UZC+veW6esmSaQHEj/XlpfK7AcEmsPh/fWtuVCIci2rdZXphg0NVUmikwfOA7tjJts1i/v1s3Wc38IafWG6lS4kNQodYCtvrOmgL0RnISkYbmTmfGYmBqBx2DhD/t8lMmZ5DksG0opHvHQmq/dW7f5pp5e3x4PL25eHKeq8KngOHN3++r+/NWdf/719uWXy3JxRFolzuwtMkiZ5yK3p3I6nAL1/dm+uX/40dd3X7+9LKvToWgprEgOohgcIvPW3JzQOWJWPs7ldq5HnaasbFWizMKOUOqcGNaZj0KDa/0y/uCk4sO0MXGNfl7TFvcZDK8TyU09CKJu/rDFuVll+fbh5tWLm9Msk6JyKkzQkGa5CW8i5kBQChGJJGULssg1mkXvaREtvQNelCmZiGtQ79nFe/S2tvt390c9vr796KD1RuYTT5e+MuWkCsnLQaeJn0//vX55BjI/tvYf20nAIMmMZTJoaPmuHnQDq7n6SCLgnhtzLYdjHJi1EhfiTuxhI51GmcjHxkBOQvVQpoOwDrE1MkbSYh+pIVcGuewnzJ2QsPfmPihi2rqlp23BUIaAFOaUprJ6ICnd9/LlGvCmrFVLLVrqPJepsojB3D2RZZ6Eq0qtUidUSR60uGEcPtKIESCSaTqebiKJk0o3IuZAIamH0y0z03mJIMtcWj+v65wxTMsUpCzCAlw7+s8mDREEOWbO9VEMXiERSSl0PKS/6MRxOk5z1amoKKfCDb2hW1j3IBIJcCrLSIJgGsEOrCxJ6N3MbfjY7rycoXZ3T8ogJxCYk6iZb91aDzMXgfXW2iYUER2UomBlKZRCPHQzz+5EuBSpylW5Qig4CRQJj9ipBSAGSYA82XNvtQulhJM7IjkZXJhIafRRwiwDHMSD1RPZEMhsHDvjpYhSzWGc6+4jNiXaMKtIJEKUkqowIRgZjses0YB3B0hFKX++ZKa9GypEwkRXr6BxwtuJtI+T6KpTqyKFmQEP3oI7E6Wjr5GSXBpJAsxKU0Emrfe0LbS8BzwpohyQlAwKCIZdCO3ozGATPzFgduyHr3zQJ2R/l4M9HQWIkxnCYCEiTgYi3NHh4WHdzTPneQJpQzeKNax1nLNDhTFpZneH0ZAsWnhzlxF7RwSE9WbWaCTkUQrRcZ4O08RAmDsjAWECcD6fz5cHJtKq81yJyMzSwt3nMp3mm8Pp1C0CCBEWTdCzDGtkwHr0zRUu8DFxRLGPrcjoBgcSzOxE5EROJcpBJsg8cEApwhUmNpaV2I2YH3/JVchCpDwVGWCeBHq4YaQjejrlaLymF2HOhHv2lq35tjaHqXLpml6qFS3FzdI+MLwSltvTjd++en378tXNTWVBwruZsUkOD2ofoUIZnunuzczcgdwdY1mYmcTRjXsrpYrsSWZDzQSAmMpUD3GAUCBLKVpr0ULMZt5bX7cmyiPGK7Mju4WN5gcoRRiUTFREpql447BtHenjz2RWmTCz1gxpQ/uhA0kYTlsD5I9d7xURYWnUCERujDDrbh0ZNKyEMbgz7uHuvXtv3lv0pa/nZd18aVhlzklrmUWrcAHkysl5Nn8Hp2KoESl2YiVdyc7PM+x+Hr0YeLg7iEQkVbv1JYxiE5OpV9pKqLrblN4oLmec1+1Hb+5/9MW7L79a3r/dbHMB8kBKCCcBM2VhPtaqqufu981++s37z9/eP2zWIxUgQhAglMzIkY6Sw+BbtVhRU16z3293N4Sp5OlQyqGwU+rIK00AyYgPl7HI3TBRAPZd1pwECAfYEAUokYWywItn9zQLb1Yoy9p02piEglIyJZKTWSRmIgF5pluP7n1dPImDyAid3MmDE3AOCHElKRCQCtMmCbZGsXncb9txXZetc2gawWCbd4oyOwmVwrV+wCD9cHX+4KmNx78jMKMNFADLqGauni1XyPqqD44Io01onmbJo+o0S9nEjd2BiBxbwiB+0whQkMLDDmWHZSNiT/vzocK+LiCP2OOH6/P1UlstLNpmQl5pYmFE9PCFNgvSIhjGuyxEitEAUxwOVpgBdovO1vvwhondmmHPWKfosNabW4Oz8hSoquLIMCfW6XAqBWW2FO/WnDZHmQ/zYZY69R4g2dzf3t3XIoVTmZWqMg/j3/3Q98j/GSB9oaJUmBKjBZFByNjFZ4fTYZ4Kc9YDaRm2ElzrFELnrbXu3jPJSd3ROWNbW+8IgwuyQIiTMtzdegZG0psQE1MgkvnKWyUwOeKyLXeXh/vzPaUd5pMWgAxEWpKn4WGsrNzTJXmkKT/ey1TLVKciRVkG24BFIqJ1y8x0j0SPQCPZTHsWCAslUZD37M7OKpOKFCVCjyGGygwIMYW4I92bWQiCBC7aU0VKna6vT+vmYQMCiu4RGGnpkuJZGATKoopM7k7OVAigoqWIPLoPM/M8TcfjaZ5OpVQWHi73oCu3d1iOp+3KaiRRqOhUX016I1Td1yV+ZnAkwng7S1DOL5hojHhiSa1887HwO758nQ93gRaHl8kniAowksXG89mbHEi5UiFH0ySfzNF2zSt5eNF6mI6jaB7zKHt6cyewEmWau3fvaDMfzK2bWWaKJGELX3xL9eZYyJUnVlFVDojIrLPmlIZuG6wpSJUo6Lxubq3OSjwFOpMcD3MRfri/Xy+X6TDXqqzKlCJcShEVVRERZFiz9ODh6NLC1Ydw2Tyo91TtA5e4Ll2DV6dclIvQMDYSAiMQZr0t3q+p1wMEVNReQk7JJ+IT4UBMkbRb42Y8rm470XQwhJ0QrMRVlbhI1vBuV5Pu8G5uGcZkvZCIj3BLt+i9resW3lhIlWyRMmkpk4VdHs7bsj1T87HypDwh2JpH9jBfW++2s16xdxHdkTEiJpk84OY5nM5IihYEeuu5rsQsIqKMgLu3rS/r0ltzOJSzEyWVUmudVORaAYGZVFCV5zpPUy9lDTpjWS17pmuFkgjTca4vb2+9d8S2XZgoI/2pk5zZu7dmyE47R5yYr2Klq8ne3tIOD4ehZWS2MVF998LJkcXb3c3Cu7W10dK3zbcW7dLX++XcsVEJESbmQVAniYBH7Dr13GGXcSAMcw8faci7jiSvRrs07P+uZPjHm6HINLetk+Rgu5daU6Un3mZfHr75/P79LdVD0tSNzLz7ZbFv7tr7B7ss0bsBkQJyDmYOSCaRC0KFAvnN5XLp/fP7uzfb2hQp7GQeOdZiMLNSIEhomspxnnQqkHwf68/u3/7lF3/JL6Z5otevb+qdIcAqJEBY5G4hnk8nmvR0uGP41DTXyAoU5pIirAkvyGPywSztblvNzhcsi2xLtHxn2/a+nm6m+VR04ulQ5sM86UnoNTGQ3dtyub97eDifL++7dZLkqnpUmYUrieRwG4hUhmoUJAfnJt0lWyYx1fCbZZEmd5f14dLPi19gJgtNIsS16LM80gQHOOhKSsRuu/YkybxCa3k96l1rkMHyTezQSAyaW2Zmt02lcUU5lHo4tEuLcDMn9vT0XZudMSBjICmuv5Ii9tTWSI+daZxEtNuJAVcbjusQezbKVLJkWHgDPMw8KMwcAHWwkOSwBUZiOFMRg4SiOANw2GY9JMwLy1SLg5yIWQhCITysqZFMSLBFwqMEZSAIVLjqASqeWC9Lpje31Zpm4alqIXc4aDVr1shaZT5NpwhjJhHhkQX5WJcxeAjkedfeMEi1BNKQRFRKLVUrj6z1zby7GWWgMBLdonfv5qBk6wBJZngIcTCHe+9m5glYdzOnJB40tqtm/7GeIqYqpZsRJ6gzd1WcbsrpptYJZYKqiIwuRw5yLDtYn/OuaE9oGIeoCAxKX+TI/TSzBKWzbaC1l40OUgUcwcbe02zU7SpFdKCjQcGkIAipkBAhMs27I5DBOWatKAmIdqFUEpI5JQPWE+EMpAyjGo4dihBlJBNpKHOOOLdnt6JSX99897NX56ketdQRPYHAcPuNBHi4X1imX1ljXeQw67cqv6AsRhcSSn3ftbWeuSorz7dHlYz0AJgDleeXWj39696XyAdkpXIkVY4gGo4rvFtaEAlBafeRY2bdI/uYQSJ7VlB6eK/tdvpU+EnRk57Rw0bEDyWC4MEJYx2dHVamIiDkYF2nt8jOke5r29igDUQ51wNJIhHhzXxkJ3n0bmtEq5OylM2Uoce5quhlXTczYhBNVVlUDseZC8sesEGIUOKMYHCR6t3b2qDqQk5gZRb+uayxkSNWSqlTmXZODJAj6qRZW7z3nXNHAz4Pi2idtZM0EINUAhKwgF1JReOQ/njoS0TAmQYESDIED4AikG7e0XtY70hrQswG8J5QZa21Nb0RQ5i6cqlap+YRy+XclvUDn5hEONzcunHGiJyLTNBQAO80bs4YjMUhM4wIeOTuuy7I7G7D5ohALCPtPqzZtq3mDoKHIxO0f54sQkQZIcKAMkFFVCtrJxZHsmLp2Ub7WSDMh7kcj+odp1N9ONRSleVpxkTAbBQxRmTEg4d8rbHHZxq4JkNFepi34MidBR87MZO5IYR4q33btsty6dbPbVl9bbFt0VZfU60WkQmkDs5kBGWEB/b21WgyZDzhPlckZk8MSUJcU8sG5vZzyd2PAM6usCXSUhKSicXt0uyub9/0h9JCt56L2cXbJZZzmDFIIEBJLoyiTKIGDQhnUTrOVYrct+3turzt7UyRE+9JIhxB2HOyGCIAcZn1cJh0rg3m2/Jg69eX95/ON7cvD7e3VI4X7sFFhEAGSu+C54AyAZyEACL21WuwVROaVJMEVJEzZeUQMogfJqpUjgXmFuF9uTxEW0zkINWnQ+Y88SQzhySpM6VYsnmsfWseBja5MFciZVZIJRVSSkZQIFI2x9KwkpjClQlWlntOfn+53G22GDZQrMaIlBzBe/jwouuZbn9+z65d2fCoER2ICMUzWtbzHwNkevaQrpX4WI+nG7uE9Q5aI8k9zS0cQIKROjg31w7+IxATvhNxf57+8gjUP8dm9kuP04tGW+/DdcDM0npnSpHR23aL3nszg1YSKgISEpJEeG5oYVJIwDeHg05FvG0ZmSSumqLC81yCowl1ijaSpkiSEbEFu1aeanlVXq6X6eHh/ZaXn737aum3N7evtR5IRy1NfVnu33zD7p+8fA0SYtQ67DSf2vxExIVQyHnkpiWxlKkSyKyTynSaj6fDXNW9P9y7DYdFC5CZ5XndltbcU0TSOxGJUC10OCgjvVnb1oswwH0L78S0x2Ah9p5ghIM5I0uVOk3CtG73FsqsU5Vvfevm5YuTKqrKNGlSbH0LJKtyuBiei2AwDjjet7Yw8fDQH4TxxPAINIroIbxmLq10dp0rClg6srN5EpIpcniJEki4zFURkGAhYZCnm0WM7UWcRfcVKPfzXNXizmFm1tFtZBMpkYIkKSzHiNyhOmVRyshuBvgjv2fS0/de/62aH6tWLVpLlYH2Z0SaZwwzVHeLMIS7d+tbxqT4hPzYnQRLqSedv8H85tK27Dq3+RXdHEoJ9hxEZUmfcLGNXtxfKCQPk9db5TqHx4aEYhKaBEWg8kjlZFGdVCqTEgmIhEVVx5E23Lr3j+bPyqAKj+fimT1aeArVMiz0RVLCPeB1qkkhVYOong7W4WQgB7D1/vbtuzP44GrlyEc5Tph0Hm2gZj0iva2tL8TBqgSpkwiVeZ5UpohwpIiQEDNVra9evzB3XCOThSAgRHpzt3C3yxJcC4qGssp0OB0OxwM/ZSdBlMok01EPp3qYCzN577H13pqtw8mOdJq0Fq4FgoBTBYjMbGsrmImFUIIN4skj9UEeNQuEoEg4kSEbAmHsBmtubp6e3tBbtp5tjfBkWonaaEqFm4eFt0xnJDMPj1WbLNKXy6Utz5LSI1pry7Zu22EqXJhYaJaSeznFScgdYQhPBEIzVdiYg9l7p0iiiMy0btZ9bNcZmeBBjnUL927mHhEkSrFLNhiAu0fsAmZiAnGAkwmFp6O+u9CyLZYOSmFRJc8O+OFYb26Px/eHOj3xezLTPHo32osYHQo55d2hYFC4dvbRCB9IG94Zw15mHD6MIJ0oUbU+6KVoZeVLP6++tNyCHZXKzPVEOhOVQSJMRAbFddN4dLkc6d07ozMzKWg/pl+zFwbBYkS9PCkNgYg9DgKRFsbCw/LYMz0lptLNbetYDRTpiI2JwZXq4PaV9BlcdarHOQuvoeYl+jyVly9OmPnr9+u926YcLCRaiPZ8W84gGDIpoxJEdNY6Sal6zuQg02xKVqUe5hmms8omWrRQas+WvOrOzcO+edIhBeAcy79QCPmwgKfwpJlQGMShBfOsFUXjyEEjC3a5LOdteeiX89IzmKOXsKlth7JOMk1c9EiHcqw3erqdlvvL5e5yfrhcvr5svYV7KOg46CPEEM2SrMalKS8iWbVN0snWy1sYtst26dZQgssWQyK3XS6rP/JHdyZiEsVTOBxhsLiZY0gNByLNuzWC0sjG4bjyHR8f9BgGkemgKJUmnvxF8QWX8705eo+tWe8tPJCQQkWYwWMERxIN0WfaLkrapUx8VSbtMZADmwFRflji6CwzCTdejbtgD3sDEyuzXrNNRtG5u6oyJwrXSAvbo8aoqKhOLBZC4daDYk+oKkWhtNsxeIvI3VggMzlcO4tMpaT64rmsa7ssLRrP82mauFSVWlXcrXXPbdvmVWvlAp1V56JVP+CSDBsuUNCjOeyVUk2ZHEnmBAvr3XsPN8rMxc08usVw2FRhxg7fgFJqiqeHRaR5T7C5e5ilCzHrlJwYKRCjHoCHGEKVcTpoxMQ0qVIpIHhEjsTiUTcQJRVmTxJ8SIpB7FrTnbY9etsEsDAQ3QYJQ8hB5GDp5LsHeA6cbyyI0T2ugmUMu30AxKRamGXzDgJ239Qch04iVmKWiYScrHnblSOc4+yug6jiETnahklJLFSKRETz9oEffHL24q2mS4ZwMAZCh8gkZAzSIEdSOGVyGGINr+xH87ptDq7T7cfJcoZpXjJF86D2Un3KuKbPUQjSaJlq5IRSXhzq8eU01ZoWl4igqByFUhk8mtkgUDCyuGtAhjFxCEOZiCLhTr2jH57rkzLdo3f0YGVAaCdOEA/93WlyWEgEo5zmycm8efbI6ObRrEdK2EoorZCAJYXZeAN6Ih3d0JmQksSsUxEUVmZmVs2MILZMeM8Ih8UgQ+0fJdVS4dmybWbhiUGESWSypwV6PCsuAbBAC9dJpoNOszKyAebBFlpAVFWn+XQzHWadJ3B2606dKEYGCgHCREqsxEIsw5SCMQqH/aCOwSslz8G4v6odw5tZs96sN+/Nh6k/IzIywodOGGnDsyhBIzVoeMTQVez6uFlaRIsBkpqyyJU2fj3DjdVaIokybKTGZCgjVXQkDmpJpKoUk9Zab2EOFjrMh8dk4GVdt24eBFa5kqX2vT32cBBmEUXNdNKQCRounTVWaxHBREC21siDmWutpRaV8nzyR4RZcDqziZqZaHmslx4H4h4wg4gIp6uWY0+vQyaPSIN+0ZVYBia1xKVjSzWZuU5Vj6wHyJQQHwlT2PsHO55yTbF5PCg/NhkyE0GDaTmatDTyuvnnmBfP7FZGk4KIdiYheHAtowiqRympERyiqRvEI9ignlNSFS5CzrCgpKIyFRGhnnFZ22XttovRiZh23B9pIB9ZyVKSNZVYUQufwDU5KhamC6gnJzEV4ZlFqTIfq2yc5/XyfK8U4hstk1YSTkJkdsAzHRmDCJxEieETXqoetBykFq4CMYvLsk6Xcz68g69dMjibhWHtYZPWwzTNolVFKh1qlRk6iVQhEB5oa62ZbxkuSCYmViRJeoEzWykoaiKdcvONDEnhKgTlASd7T+vb2uNDq5ixQxPtFoYjivN6y6NSHuo4vk5ogPyJg/rh/LpOxCAOLXw8ztvBmDUS5tm7t+7pzgDLcFcY7r/mzrTnJ9qu+B3a1x3NHSnWhkHQ++uEcFqogNP06GSVKwGcKrUeDnOZS2bACaRAIihzWODHoGaGh3n0IkA6BYRLrbt1ATIDAU4ZK1wySJHBwYkkYmKj3GgloqnOmT2nbm1Z1q1nn5fbejgcj9PhME31QODpcOshIweXKslRtKkc9LF1kQBGiAiYiZMjkW4tdjJ9LNt98wcGovt2sWjJKeHclm4ZxDzNpdYqTLCWEd234WmW1QlByRiO7mw9tt5XduFCpCP7EgNsTs90c2simIridERu3bbz3cN2uYhKnWRrg0ZHXISUAMoPVfzjlGUentsVkA33TkCpSiDfTa+gLHqcSshupapEgmGH6ICn7widj8bjqE6VlcrhkFNqsgejJDGNZdrDK9fDPGtVArXWYWdSIpkG1UuYVPiKPUXsKpQAC0BJ8Ij+DLrc2vKvf/oXf/HDf8mFtWgtu1ydaITaEIOIhSAjUQeJiI5QRvbGDw+bFPlEX7KfYp2jdxJN0mVze9hoxE8kgPSk9Sy9F1a+uT2+ePny1eGVVm222RCAmLtFiz60+OOA6ekjsW/0BYkw4pEzs1vftmXz89/4jb+xP5fItC22jcAULKwcYuYsXG6OdSYUWnxZYgvOcqpEJdrG7iXd3KI0mLNHUL/EXfYO6YUk2KUSk4A5tgzKzqEiPBVGcQqEBbETZdLWLWyxWJudPZ1FCQnzQnSaapjfvX+wwOl4U48nLSU1PG3ref+A88Otj6jGsbkwWKBVShEtw6lROVNZ+ciTzvPh5nT7cj4cy1wjY71cWl/dt0yD0FTm43wiVdQNhVKxM8x3HgrzNbUwh68WrtGvlJ629a1vrbc1urk704jJpb2XhCTaAx1URFRq0TqV6agRltjqJM/blsmUjKvL+q5wGvvyYEbwnswHTqR72xZzFxYVrlOdSjkejqzsGWvvy+W8rpu5TdP08ccfz9Psbtu63j3cP1zWh9Vaj9jNQnBtKOMRMQUwgpBVqVY5HKpTxJqt9Yzobq0bDLybCT+aN+yTP4YpL3zQcT08Q66/ZLwE13/J0UgbTmQE7NrfPdAjzXxZVrdYlg2CTitNOd2KTrWeuJ6Yp0yJyMTeZ8M4riBHlxf7CrLb/4wykvY7vO5lDAq6BgQ+Z8UQ0SDB8zA7BACPyBy6fckMCKROdCTcIteIF4aL0dqxdVgih3ckhUT3Fr5SUJknUd625Xyx+7vzZdlcC6kM8TftAeokSigaBZQZ4J6R6QfGjcqRdZG4gN71uLv0i3kKuDJLVtVXdd6qvrvc4ylNA8r0cpo+PswuvGWuZj18J4AmeaIPpmfyTEo0l3Ko9VB1Ei4T8eE1Tm2bH95f2mWLtsW62dpjc99WrCHawFVYhfVAMsvty8PNtw4f3b283K13bx7eXtavo29ASCFW50qsoSUKexEUHjsIKRXhWgWdyhZts2bZO7Clb/nod3dtERMrMdHAOoeH1iBcIUbgAGWOybynj45HPmpEjAdK13MF7co58x4cddJprrueINIi3JNGpB2TKotkpJkRdaLAPsCAa0CBMg1DEA94Zt+ZGyNH6bkXEaAKZqkyv/CI4Xuj6lLrfDhI4WYt9+UoKQkB70aUMoFpBED5FmYBHSIEJk4mUER0swCRViEKEHEq1EdYbJqRGfrmGxEgCOk0J3WKHkZt6Q/LdihHTZ51lskPp9Ntc0qCI7myEGtTnvmpWA6EITquBKiMMPfmwxrIo3ns1NGedgFMJCuCu0cyZFZWAnLkkkQMJ8NACRZoISYqzOnkxM4UGzFyGNENLiQRDXPg8ERQENx7W7flvG7bskFFWJTrpK37IaajTKIcnt3dM56bqySye299G0crQsagD2QGjIgTzMkIMAkVodQcZ02mFNqTXXZVQljG2KUZADhAQRbUIaASHIDy7vkfmR5AFtLKE4gg1LXRCB2la0p5ApkyNt3df3eIowaFlpme2pbdtm/ufvyTN39Wimopqiw6kor38cI7K2UkJVYiogzOIljaSncPq1ApHOn9/v3Dsp31oO4b1sselMHD/YbCeVnsYb1wyGQ6G2+tBE/dvffe22q2mZt5y+yBjhwBWd3D9mMm7fZKo47sbtt2fr2eLNpTeekW1hEcwRBkICws3cNFRSZWZ/JdjBcYUbNAkoxHwuR98zD3DrMSgEw0nOEynayzE2CUxMgiSLKBoxalhLk3sy0u3S+eF3CKVAYhLTO5W7htuSZLlHCxxZfMLQDeJM52We4jHosYEtFSaim1aBWphBQBFU7KImU+nE43L25fvD4cT3WaImIp5209b+vFekvKQrXKASlF0iSc3ZkTj3v7cD8DYWgvMsgjzWCW1r03a61v1luapXsSMQmGnjEsBsZGycJSqFQpk06HcjjVCO5RdH5SWyTSIprZ2tbK4S01RzBYBlK4TPUwDg1EhNEobNvWGhJFFXUuIgSoiBCLUBWcDlNm1lpfvbwppbpbqzpVmeetXNp56WszMx8bgogMLDbHMriPbKLhUlVK8VBzd3iau/UWsCxCEc9Yfc+uK5ySuy3HMyv//Ty6EzKfSp9xDLpSnccjhmVkdjOndYNmFitF5nooRykHlmmIGQdODUIyhsyRx3bxhME8Oajug+dDRQsxEz/N/ce/Bo2ZzePvMwarIkdFywrkMBNiJiVIhnIeJDbKjWgFG0vuG6x7JDupzIc6TcWsb9vWlxZroBJ8LLpgZPLOeWMgVaCUYEoppdzMJTRPPjXYJfPN0r6OyyUiM6cqs+RNkdtaasRxkqk8w5UyqXd1L0VViCjZ4btvMnmCk53YqRjqFuVi0jKlW1IMnwEPNC6pk4TUYCIuoYaN2GSIHdKThgV2oYl1Uq1Kh5Kz9vN6XrZm0SEOSS5gTdEQzr3nlZkgCmJWEWEuezkbzcQCzy3Vrg8RvCdgUcTIk8jrCAsERRLt5kTP4Zb9yT4Ckc8GAQHRY+vYqpwGhLzvRiP0K5OGwbeObw/PwUAa2o4xkIaIdbcTzLCAZ1juItZHG5unSwWoWnW6RdJmO51fa5kPc1I07wEMdJGJKeFmoJR5pLtK91i9JdmskEhyCc+McPe2GacHa2EGjSNuhmX3dfNLo7Vx6+jDvRKZNMmEQwiRocXD3YUwuUx0fHGqc7l9cbs4vF+6G2ZWETkKz/wU0xOIzWMNMA2+pHu33GwkqJNZGBGK1my03UduTFE4lVikqigbYl2WIZNhIlaiQlJYGJmkopMWBJdDThvapgiIqBAxJANoAIOSSpX5cOi23r25//pnX/3s6y/d/OWL1/M0gbzU6MaRRQoryLJ3772Zx5PnVUa0ftnaRQaBeT/ekEfY1gGwFCUlSACBdKRTEoOFxpimIfmGg5ORycmA0MDx0tGXdiZkorPmbksL5j2kmSmBjPE3RUbkeI4KOdJ7a0BOdSZIRlqEec9IcmZQobnyU0ZPZFviy0v8eMbBUXqADE+nT378WpmFQpmZE4K55Kve9WHbfMN6fuPW3t99bVhKyMS8VlbZU3wYQHB2WdZ8d795w8XKvR3v4kU9TpFwN/c1oiUiyUa7fw8npgFXDtLhtb9PQIKsAwvVhehxzgy5hnt3C+raUEomzP3h/KAmPDEXnuqUvZ23y9bdB8GfCAhmSsqhd8lwprCcChclTcOybr21ls7Mo4gZRyFPZ4HWisC2Lr33rS9OTWcuk5Y6CzGHw43cOeQ03zKr1snc788Pw1tWp7Jhu6znRzUvE091Pkw3U71RPTJpZhJGfyhJlLRSKVSq1EnqJIGcCUHeMogjHVEpJkqi7JwsIB39lFHEeO4LE5NndLLmfeW+Ul/Rtt66bxZtgLnpjoB1J+LB+0IaUYoADCUmBVeSScpRM6ha0UkeO7CZufW+XC5nzVgp+wJrgDNAxNN0uLl5eTzc1plAHN7Dzbstl8v54UygF6fb7ebGuk1TIYYWORznenNkYYDcemtbmAE0TRPLBGlEW+Q5Ryf5OkMHgDoGtgxLjaFxx4hbLi5AsIMyLCIZvKOs+QzoJ9DI2hS6+oA9qkWuB2XO4Yc8/s90VdEM/Imu/WNCIBLkHgOz4ZK1Srkp9bbwzMNQamijhhWBACJ8BbFy51o+HX+Tx7Gcd/oN7VvXXrg99hieap0iPCmzMjgH3ZZ2R3vOJFB6uPXIawdLIyUxM/VCK/M2cU8a2FSkTjpRPd0eDpOGb2nGDnHOzt7JLTKCMkMQlQCJIydxVpZapjLf6PHldCDOk9u9LedmXz9cfnq/GiEVN1VeVH4heqQQ8leTvJiKXlEls373/v35/fuX5ZN5mifR1WxZN/NID02eRWadSplc9L3x+7a1fm7dtm6RMdzcBamMqchUeSrHY70pAuFgskTP3Dw28+7ZOvVMzpQ4COZp2urNucW53y8etlsnJu3M29HGAcGSgABZJSlVqiqVoYCUv1IqP5YmOyqzFwk7nnJtKOUYq8LMyGuhsZfIO6XmsaomogQ2W5XPlKcgHyjOdXYMvvig7yV0WJiGRRBy14kSP+rbdreo9Eh7LMEyhxfcB30lHaG1hQvAlgAnMWspwtWymUXv1s1gSIlBuAMDQ3Od7IHezYNIpTAoI52GxdhoXHs6hVEwC4gj2Q29RWvo3buTc6Zh9M+Ji5Z5itZ725YteSGd63F7OePISqLSGzxThCl59GofN/6IWJd2flgGWdazB3pSN2w9F6cemUwSQWkyGCbpkemcYGdyDGWGpxMPDQ5RAJFXd+Xx4aRUUggYsdtBJZDMPOkAwagUmWrJzXahcQb2M4pmZjj3ntsW65qS0d0suoeFPUdiwn0zW5CVpCAHDi/0iI+TMCtDkeweBmdmEo7dczWGKwohZTCFEsRcRGWHXODRCckCUSEVFkKwECtG0RmZTgAzyuAqIoggyhRkbpwoUpk0LRnOSbG3yLNSFCqPdpcB73lpea/pyEI+whvosYjBQO+IOQUQTmawYLE0zxIUnjivF+vblu9CtzEpNiIHOIVjSGcYqQ3o1I1CgskesN1XLpmc4YGONFAOwuXVMYlSBm/qCWh9xOkhRtLA/YMkVQQxtGrhQtd5N5Aza33YnIRGZJiZmY3nEJlAMKdffbWRHhQQBMXWW7TwZubmcEau1pxi7F6UnKFFJ7CQEgUxMZilQipLIRHmJO/Z1pYcUiYSCU5La+iBZFam6N7N+jOFAiE1Q6yhUTRYRET3YbqoJZI7l17nXqqzJENABVQixQy9R7eeWMipXda+dTNL9yECxnA02itCioyQDAqPMLKO3qw1ax591O6PgdKxx107woAQgWYQJxViZw2z0Nyd9p82/swY2dbrJZMz24LoTDF8eAncazNtokqsiGRAWBjiPhDtzZO7ZS0igvlQWKgoi7CHr9tlXVtvnSClHhMyTnZCohLjbQ8bXnZL7ARCYmZRZicyIK5HDHEEkzCXZA8iixzZk8+3lxHJOZK09vSED/ae2B0ZH6lHz7gb+bg90T6saQRQp+8tnEnKQctBqVBwjg88aBBJBqtmWGVTZPpg8+Kx8MXwPhzRN/k0aa61y88xFhiszFWJlcAjrzqffCb37dMjM9IyiXMA86PZSQMcoj0KgxIyq0JESISL6KGXQymXZm0oaEeLOB0Yvgky4tlRGbPkVCDKxIooIhzi6ZvnQ+8gEuYTyUd1uhXW7kz5yXH+6DiXKxE+PbdlXc+X42lVUVWZICTFhCKcY0S0RJe4h4db77a2tra2NXNzAoSyMk3Cc9Vj19Ncj7UeVCZRIhEIJSm4hHi4URrSCCGAcBE+ESfUc6PNeqaRJ4CUkQwc4AGIxzhoUZBAmJhEXFCZ5QMH4muu8F+rAxrh1mO3Gd4tkqmP2BsxHm3VsfPxQGCAAtFj2+IivnQzsz6aAPuPjvDRViKAeTAgcl/lUuiv1FnxiEPuUGTkMCX6YJxpRPbw6AtInHOvjpzM0Dy3tS/LerlcJKiVohAPZyZk7kF3wWkZFN5tDO/B59WqdOB0ZtnDwyMTlK491D0izOExJgOIM9OShgeBAyDLSGwPdCnl7njkE/fwbIEAmKDpfbu07bI9kpU8/Hw+v333flm7lkKSUqPUTHazJdlqnYWUgkGqR8Wk6RJG3p0oJSEQlmqpe4ZyULbomyUFCZt4lxw4hnuYW3gCMk4fU9HjaZqmokJEFE6T6MefvtIS05R96/N0Up0iaJTP7rQsnTqZd09j8mue2L4qIw3ZMjjA6UgWYSVWLoWJ6jSrKAWjh2/WKUWLCJMOQfU411AZugzKkOHzqwMwzwjvlkmlFCmMUXIQhLiIKgsycux/oKIqKeZ9WI0Ko6BSEEMpBJkSw4F0ZGQYQjWFnjg+w06AEAS/puEOR/hxmNvdGAh5TSkjJKzHe4hOp1pLRUN3gCgUZUaZSWeSsi+d43gHcZlyfunhOR+pHi2npdMGYJgJDrtH4JHyOf7hx8X3eaM1d9SFnpu3jfOJVHlxeDHpTLFjNkGRSIMtl8XZU2EEAkSEEs1sa83DVZAR1i0jRURK0Voy8u7h3pZeuFBScET6eXM1VpWCYulGqCDWSSodpkNBWorHknDLHuFEZNkvvrp7RUgWZk3ieqpMUuvMIpHxnDwegbbF+aFnLBfpZpER8By2e1pkmtetWYaY0emEUgoczXNt/rC0dVkigt89sBEeHOegxakle2DsjT4AUSDhmah73ASBItyGZYHZADKqFE7OyHS37BZmzcM7C8TIXPvAT9KdLOH3D5dlfVInIRPWo7XOqcqFSMukw3uYtdTKxBFubWNJFqlaTwdGaqZe1s0Cd4udt7MQlP14LN362g6HYwFyuWyX83o5b70BmMEKkWQmoqqawDDTG4mfkWHmu7edaKkonluztEjLtBgSvzJXNu/delrbK7lHzxsiJSmiRUoRURYhHh3THKdjH8hNEoFGfvRjQyGvf15/GIaIYm82lEnroeispNfPe/+ZIQCCWZIywZGEEZlne2RT7k0yenZYjnFeHr8b8WglnHh2L0pFMPKhk/f01+EEQjlMD5jTPcJGQCpxgACODIuMSB4/pzBYOsFosxaFX94etZS3iy9+6as7MnU/mVAluilyU6kWqJqKF9okLmlLwxaZ5JKkw2gJiQx108iP63QSbvbAgs9uT996cVPk6hEFIMk2P7+7txZlnrTWk1bM1alb69n71trSVhdpgBGlwCuHlAiFgzLWCA7ny1KWnB7koHoo5aRyKnqjfJJy0FL5KIKU3NIvZpduS3O4zyEkSiWq57n31a2DgyVHH274GyYFKIcsBChMokKT4CAyjR7NmC6xQxrhI8zoyrh6HEKjJCUMEX+OvEse+N4VfRllCbC38BI06Htbi4u0+3Xxdbls6zZSZgcNwXrv3QMThEiEhXYLQSBz94R5ZhU9rufCisyrV/JTEUNEGehmoORxn8lIYVJKM4veupllkHMXBgur8t7mCAiJgD3cuvtgyJNWhkiZjjOcMyPJkzzIA2HUTHrIPl51ILGqTunWQWDFMCsncDBtbvfLg1HoimxmbZWqlUVYRmbIU5WX2aOvbe2eqkUnqTlSecI9WUkhAukWGS6sPMK3ha5b6I5Iyai5GHvrJNI9B7HGuLGosHqgNR/QsTBUiAuXiesBKgmENQdizpI4IV/3tTMXpgJIjGJZkERmvjWLNGF3e84dT3fzbiTOMlz5VWX4gTsxF60iwpBEWE8CkQipcqnEQFAGyBzj/MKkpINiR7kbKTAYRMqirLs0k/O6zeyht4xkYgHnaLVQ0KBNC1FIyWnI2ZM8hi6WMmL45H5Q3edwBgoaAo5rmTKg8j2l/QqG5PCrDwTQmGWahAXB4CQqiEKiJEqs440mJXZOGQfXnG8pE2WG1kjpQdeiiUZP80oWeDqVfHA8uf65C8J+jkEGIBkQcGFRGRq7q19HWNjWN4OlIYSGGUYMw9gcuuGxUTDxsO6XYZZjYZ6upHuwT6aT5whXHnQy6kCTJGIGpyhnsrX07OnBycRssA3mFAnTADNUyjzPwoIUj9j6trX2SG2IiLa05WGBk7C0bsMChAAwiVJZeG09g3vPtvZaaia2ZXn/7v3D/d26XMyMQOJUNtHG2qn0AV7iKswdnboRVkKczEEZ3re2bWvbmptzkgAuw8A89py2bt4s3JwznMZhsEdYhiEAf3hYl/UpDiIjo3dvLYSSlIQpKTwtR+s9mY2oZaZqCiYWqaXgJCxlbn3t7h5jLS4c0ySihUCD77pjEUnDfiLgEOaiWgvrYytlRFoyBeeQamdmkoiMY8NImBlxC7kfdMehMpLy+RjE8O9R0apadM9speuOQdcuwF6F//WUmn0Y0/WLBBLMpEXLpFxkmA5H5gg72aMdCZYAx2gdONIGK2awOK/3+oy6O1CPMZweFUzP+ArEUorUSaTISF3Ip3qHQLtxUQjcwZzDD2JHL3fpUuQelMxModLc360XcZsKEdHtXJeTG1p6GHMoQ5lnlmPVY+W5pkooBWNFPHh7v/SteadGnKpSqSgnwjXcPc2jETXAdjbiM3MeYhIFifWgdQuPtNB53rdCZXM09+a+BlYmY2EWKEM4g0bKHMwwXHjc1Kz0PvV+VLkp5YXoLdMN84ExEVjIgWsaig/Vn3Sox4QMGaLEsAQCI40GuYuLfFBQMgNUmJwTyqQfIDHXlCILorjKRDJB/Oj2tA+wyP2Vw9j12bI5FHJPnR0ijnCn5r6ELdGj96337u4YzkyIiO7D1VuGeVUiJPKJjvPEy3miIT+fIX/NaFfR4paOREJZWdSDmXWqh3EYdR+b6MjTxDTXWnWqqgxOco2qxQ29u/ceSBYNzUMph+MskN5WCw9252boPbfOW0gfaYWFtdQqczVkbAtcQBMThjewJ1jLFvDe+OJxbrYsR8y38rLSxELPCPsgJqmEkq1vnk4yB3MPZwahCsA+BWhbm3tXiaKY9q1oSIMiI0fOswIQFuWkNNPW+rKt44ClmjIViujr5u5FVSat01yLIMN6jzCmZOaUTO6seTydvHoEiESlsiqrOuXat8t28XSzHpzuz1tjac1bMy4JYi2lyjSVgzAN31wQE2kplSWdiIJUqpRa5wMrm7fWV8seFsOaosiEZDfzcCZnZs6hlBYEUfDe5AbcIilFZaydAmbIIO4lR44YOyoMKTFxSGq6WWtbZCpzODJC6EltMbazUc8PqhjvJ8SknUA4GqrXbmwiB62Vg1iUuIBjxDJUsjLc6gaH+rqExw6ic6HpRggJHWSyPWYyiWlomHaxDNN1sjwv6q+NpASu9rN75f84yJIkg/yyXcKzagWhZ3cfqYUWcE/znmEZJJ7Z3QNUVIkk0yl5iHNHy6DZRkH1UFCKQhAZPQjMVYGwbkBOFSQUgyvfLCk4LHjr0Xq0QblglczMQpQ8IqhZUqscjxOBL+f1crncP5zvbt6b9esYi+1yWe/vJaAizc3dd5nWEBcJb1tLR9/6en/PrGZ9XS4P9w+X5dy2LSMEXKBzzJPXdGUXNdrL4J0GPiAE0mD1pMhofX24rNvZRiNpBOCScXK6wyzcs/ewnuEIWNDQ3lBkD3gmEJeH1hZ/RGEz01r3zWiaGYLM3nxbF89gKbVOh6MfDz5NMU0ZgKCI1ONcT6dj0PCJYx4sOKGqVCozZ8B63zCp5DwVtCnX1ddum3ULh4ExGJ5jASdmZlEB0kcADAgkTEVZhZHpYW69m43pMJwIdIAtj35XPDpRUlSLlmHsOSgFu3/LUzVO1272I73hw2scCPaXEwtLUVEl5njk7eaOsyQwqHDYVxgKQtBu2YDdL4QeU4VxtcPEzmlEePju87G/FSbSUst8VCmFJBF7s2Lc6FhVAA6XiCxOEeTDJ8fcOxHnSJeJJNAQxXr4/f39feSyXF7M86FOn708SpHq9iBoE3BinqXUIqpg8ULg8MzV4m71etdt6Wv0LCy3x1KkQBIkYUvLLx4uOkkBGbBcls8ul839+lxYp0kPs2ohUFtXa823bap1rrUKl7mys3mn3AvTvSnz2CCLsaASMWE/x2cjXyMfur/bcLCczWu3KXMSqSIiAhkVLyz66r5ZC8ZhqsKFrC0eGd3dwQJKGr8pMzHCLzPDhnnt80DLzBzG8+6dwFf8Lgdt5XlhnMhMzySPTrTnHw0HmdzR69HNHWaOoHTHhiwMY4z6x8MDQCkaAmsOBkb8jAzVAw1jqPHrYj9B7yvvaAsOkleCCLzbgTwvYp4W6kwzo0gPBrGP9lX4MAdwjzVWRM4VSgIhABbezd2zm6/eN2sWnUSm0mxOoVKkWDanltw6lkt7WHzd0syDLBXMDOXCykJgFyawiohOrCDqYZbYIlpvbB59be2CmpZBSjoXnZ5JrPe60DyAzDA1iEVnNlERUOcM+La1iAxNgFREKAOOoNacyJiFmISZhAa5Z5wN4QZPIoYnPAgpFMkBsozurtaj027oCMpMb5svS2ubDyg2KIRTKk1zqfPsGXmJzXcu/8/xrTPhPa0jhZFMEIDDg3OPTgSxkAjvnkHkgyUj10QGxogrFyIlElEpCEZwZDIGNswAhQ3ZsA+Th1HK0dCxCY0j4ABVBolrT3oYJTslMaCEpBy5YMCI+HX/ECHrbWubkEbGUFrSNfGRmXG1KxgpRcwiLCQENYDdnKy7d5Pm1B0WkQSCX/OHsU+5YAJYeEyAEUjB15ckjS7lTj58VsTgETi9Vis5WgTpZq039yceSSIdvsUWBjOf60xErTd3d4SnezZLT+QQBXqmhUOkUoIR3imhsjvSNksCK8sksxQxi6RIBZiyDMWNJbhRBxolZfRmPdMFHrQ1v/RohhQutczE5B478EMhe1xxT8O6npfzeTmf27LkE3oRvbW2blOZoOo+DOot3H2vELOti61tububSmWw9bZt62VZ1m0164hU4sq1843h6DkhlLqABUDE1TJkJA+WMtxf7LJt787LdnbE8BUnEpZgMDJgnuEDhMphRMTICHKG55bD6MaXc7us/dG8KyJb6+vWWjcV7vAw21r3BAv3tJCeLMkCYSVRZqWolepctUxSioztnVmvwbzufetr76NvE6IkJcQ6eXimmSeSMogHiwQe0Xtvbh7eu62tewSB3T3dRvrkLh93s+7Nzbpv67pt2weIMvYXOTzgBB7jCQGipAQJRgk0zEl774+cgaeye+y7RFcCQwaZBO2Uabc0d4y44MiMsS14Xp0BCUP+6DySH5NlL64ewZ3dkzDwCEW23ra+NXs+X8hZnDVE4zG7IwL73k4xYo1DkMkSNBRs3YN4f//M6D3MM9KZkoVC+8LL2mJZt8hPVVXLfJAp8wLPGbiVnNWZg5BpltgsPPDOOy0RS8+lL+5b4SgyJR5SiNCJF4q7bsx5rBrE793fmtt1t4zMNWLzIElGuhkyzaxbM5+KijDHfjAbLDxDduTOlh7cpEE4G7L40RkEoicuSPEsLUt3bVYjKngiriO4HXDkGrkitnSaZBLNyiysiB6WkXACJKHYcQsCpScaA2ZovT0LS89Ms9b6wiSxRy1mpBPt4fVPSV3wBCc8kZlVMDhK+357DUYcRk5MQS5MyY4iaZKAdWttXZbuVoQz3KyxkYd6SkKe+dJgVMuDdoCr1m83OLsuWR5X04Fnh0/dtoakTA2Ph4fL0JgWa6nZfe22eZqH9eatt5XXw2F2PsmBgmhblst5Pfd+btulrUtf1m1NQi3TcT4vlzZPlSW5Ooutcf/m/LPLdjbm8IyehfU4n44aEQSRYeTORaVUYgUxJaf5tnlGVMogX3yF5cUX1lJv6+HFkwNpZvTWetvIdSCT3b1vK1MeDopE61vAWvSd/8HcjT3ZmnvH4Oa5JxO0Mss4MgQQYGbRUgqzEifQmP104w7rvbttl4dL36Y4Vs5adKbM9bKdz9vd+2VtfWgfmXIqRSpPXLQSQ4qRNq5VR0TZc1coJDw4XYHCpEiY9b5uIjzVuU5VShGRseuSyLWVuEuquzWLDiYSESXhQiTCtahSUISPcMfw8ECEmRuYSlVmoWG60k3FMTFUmRPIAfM7vKe36ASe1QsVSYl0w0gPj9b7ZXlYlsszqN/XbTkv9xmpVq/6053YO4RrPOi9zMMsjFlYmCt7EM4rt9ayWW1BPUvwSNgeWOeoyIdfAY022TijBjAs5/dW4Q6P7u7t47Omv1LE7FvBvsdb39qytvVR/R6Zq2/nvqjbRn2zhkTrzXN4BJlFTyQLB7CajYILLM02IN2MgKKS6WvfPFyY52l+eXpVuGxbA1CnQkKdWsC9jIf0INYlJ0rxQUXv3XPd/KFlC9A0H+bpSCBbe98aZVYtRbj3fGibrX55WNbLFluneOZVlfCxKGQOumVEmHvvrZulGdI3ovXd+ztWJWEgI8z61lq37uZAMlGVeSttk+1AR8vJvXQSrU30GlQeoCqCqam3vraHZX13WS5no9FRFtaqk4gyg6+Ew/R0i/SxiTDYmSOU0ggRdjlvD5fu/lTErFs/r+u81O49rSXAoqwlpIILgtITjnQUTrVQ8jCnCKFUlTIcwHmYo4VZb0Gb0dZpWbM1d6fefOu9devWLd3JKShHSHRGN2u9NbMIb93bto3jVHh2N7fOCOU978P6tq7bsm7v39+d3759eHiw64k/Ita+XrYLM0eEiPCo9Ed/Q8AFYdnMm7W1beu6hcU4/O/8lmeUFGA4pyQksWX3udt2acGcI+J+nL15YAeeHLt/HTFDKBTQHO39q2p8Z9/s205ccVbPrW8Py8OyLY885UgsHucIDPIN7ZKQ/e3hCZLNMfORpJnqoRxV4Mnu2S27WW8RaSQ8KybO8/Z2ae5JbZvSG8OBzfuaI6wXcMtMi+gZ0RPIrWNtufbUzAtyCeqX88W2IC213B3rucqZHJkbUTLfi15E4oqQdfdvHh7s/v3D6UaKDBJfs3axjS4PIjLXolOhokJZvI84RwQhK6BX4vPArAKRI80Buds2OuDJKwNF4ETdaV1z62jG7pkZGBnNjGM9JMpNkUlJKN3RG5ohgFRgeDdelz5KmGFbHtYnx96Ab7Yu20NkKjfs4LgT57BIeRYbQhREJB7mYTpYrvsYeAoKyMGV4RThVJlYGaZJsN7Wy/3du633qVbKsL4449AwGSyAlAELDRcBJhmjK4J2a8UxQCgGdtSsbX3pvT0nyui3v/UdgDnVPTfrnklMWsp0nD36XOXy6rW1Fs2ju4DrPB1Ph9vbo4C2w3ld2uq+Wl/7trVta2sgVctU5+N8O9WqhWRKrtHi/PL+5douwZJBYSksh/k4Hw7T4cCirVuOHqrWPcEH1rpvm2WLuiIubTnf1al86zufyVRfvX796etvHabdEn6e51/+/q+EB6MIaZGSmW3bmHCYixRyWMKdnRgqolKKTpRkfVgFUniaByG1MnPmXltAREqtohNzJeJMInGulvBtc+uIzsL1eBi3MgG5XNbLZX31Ytmsj+1VGFPRw2E+Ho/z8QjgvCyXZVna2nuP9F/67g+m6bDfy3T89e//pnI9Hm9qmYYhhndjpmma6zRprcwyqtRhf4skJhUtmdm9G1rCk1OEmFRQFEWoUlKkh5m5hXt6uruZgaFlZ/2O3VpE5jpXrYUZgGV4uiMsrXkncNVJqQhJerhbuiGzt76eL59++q1S6riXw3z6je//7QTmchAdisWdHojhQER7iPNussrDSYClqHopl4pOnTYvhlNChzj6ir0/1ia7Bdc++egJbnzkDeT19cQfkAnG4jL+iEdcPhPmvfft+9/6zblcn0udf/nTXw5PDpFUFUHC3CJjeM26GwiiEsBm5hEjV23EnIU5CEUk4lrEEE/T/OLmhbJuSwMwzRMre1rCY/hFOlGooNCY8BnEFrm1WCwtiKbp8OL2FYPOL+7b1ghZRA/TQVnSwjZvL3pv5h6/+t1feZwvp+Pxd37jb6iW0+kkKu7ezYegoFtPc4QNup4kjYBvuhY6Hn6llpJKnfVm0sNE84w6hxbaAY1dvZUgFTkU51xsfb/c/8rdL523iyOCCcKiVerMRUfu8lit3Lq5xYD0eDgii1QptUT4ulx+59f/xs3h9Dj3f/BrvybKL04HVfbeQVTqNI5DLCJCpehhKrUWVdWddVvmaa5Tnee5lCqqMuDJcDOT3qU1PTQ9bmYWDrPoZr33Zs3TSfhKRh+ouXUzC88Is903cmCCO4uy+2bWWt9aX9d13bZl2x7uL2/fvf+7f+fv3N7c7M9lOv3NX/qbBDpMc9Eqj5/jaMwJSIGe/aNcP26Xz9btrg0R9GN79FkRg6cihjG9qC+/e3P4qOoNo6SnRToGrT6TAuQ5HLQxKgpBDt380FSPCfqcZ7M3iwckk83asq2/9d2/cZj253IzzX/vO78K4oMW3f0tr1LqZ9d4x7RvvHvqNoYIYuySZr23ETDGAe5OS+PzNvd4LTyphMpC8da2rSSdJhQeQrfhktU5KbP2PDpujTVgiUZYharwRyylTttxuhS+wCB0qIrMy7L+7W//+mk6jjd5ezj+m7/225Ixn46HUjiJBocrPMKZeKqlTKVONRmtt+Z97dadPEtAhvCdrpUmj9NNBO+Axk434mGa75HNYtt82bIZmWMo+FSpiE6lnqbpVOpck2Nta2utte6emZLQZwj0aPAY2vY7v/k3bx/nSzl9/9O/nZlFJ+ayd/gpxsq4O6I8Pp1BSBJVLiL1uk5j8MEjfMRVAEhOYaoit3z7KX2nFVq3V8eX33tz975bL6UyELaWE734zuH06Tx/UuUge18zxx4mIzMgrvZ3j3LuzAiPbn1t6/c/+VtzOT2+Q/rmzdfji0FC3Ac/D71JjuSq/Xfssj6WkSQHhO9WjnG1ZBrn7/E4hIWJR1Tu+PFm3a8FVO46WxlW1URDhno9qD++8fGEMykAzwgjohE1YuFVy4vji6IFQGvt7ds367qMw/bIeRjgufBgml6PD7u+lna2du595dyJZ/tR/XFujbt+3GT3T47Hj8/MQdkedBqWpyyV2I35rz9zb5oLs8jTa67Pb5rml7evSikAWm9v3n2zbus1H3df3YHdG254M+w/+WnJIhpudBmPd7o/jsFF2bmw1w4o8hGC3j8T2n9mYjydJ//N69qYu9DssUeOZx3M6xZUSr29fTHuZWvr128/v2xnfhz9g9CL51/mh39JYxBSEjkNyfjggmHETf8cv+vKD3j29x/+27MX7r/pv+y6nlcyM2Oux1e3n1adADRrb85v17biManmsTlMV63g/v6xmwDT/hc75Wc/HF15BERMrKJEFDu9ZYiNnzrOu4ALTE+0hxxMyjFcmVlUCXB7qi2G889OPfa9y3CYDq9fvK6lAljb9vk3X12WZY8wzOsx/qklcVWePH6443fn40QZz2r4BzETczLvD+9Kob6+iGTk54SFd+sevo/dMcDomeHT83F5nT7Xl2EcLyL85nD63iefjZqsbe3tm2+2dVW5OlKArrDB9RvpaTzT1TWBH68nHwU8fQzXRW2fLddriIPoqfp9FE1EPvv6WgzjymcdXph5pcDmwMat283NzS/90nePhwOAta9fvvvysp2ZZH9XH47gMUfDEH2wnUd2GwhPY+zZeH/8MllZq3Bhkn24PqMUXj/mZyTDp1L/cWo+fysfDIkxXyIijtPp05efzWUGsFj7yf3bh7Y+K39+7oYSjzZnjz9/7+tex9jTuNwn8GBJkwdH6nWdiEFD5l20cB2oTzfJAdmXEIw1O4YtEoiZg8l5jzccFIXwOE2H77z4+FAmAJdt/eHXXz4s58dMi8cHn9hJVcTExDkKsfEPxhy6UlMpr6sygEdmxz6fnqkeBp0l4R/Eazxuj3uY7YBHrzJ57Cv+s7MZrttYxM3x9INvfXYc88WWdw9frO3h+ab2bBH9qyvk4/bwNCCfRvdT1ZwAMUFIK2oYrUvbWjezyNxZlxnE0Em4MJeri/PTTxi3/+znX8fd+NfhJjvV06ubz6rO11/7fBz/4vrF9YvrF9cvrl9cv7h+cf3/ycX/31/yi+sX1y+uX1y/uH5x/eL6xfX/e5f+p7//e1fM8Aoaxmh/EAA8ssTomrb+/Lt3zP4JuRq9iitkO2DzfN6WGTjxSEfbvwkAX1sK42XPYM5HFHJAbNeQeBoNs5vb2x989/vHwxFA7+39uzfrchkYHl2z2fbf/Qgj74Bw7mk5IBHhnWWxI754BBWvbQDs//kRPszrR/EM49/RNtA1C+vaQ8inT4p2hPuRerHfEHKeD69ff1rrhMGZspZXftz1Fz0D+fYPO81sXZubJVKE6x7sMVo33Hs/ny9mXZhVVVUzs/U+XDEGXg6AiYrKNE1M1HtvvbfWB6mwlDJPkwiPKAkzi9j7fnsgikhmWh9ajJ3gUqbD8cUrKQXAZVl+9JPP7x/Owlch9xNw/HRHecWQn7ddfg7U3Fm519c/Q6GvPZvnI/NZ+/6D6+ewx78CwfO1TTDI8Lc3p+9/7zs71L+uX3z1+XK5qArv6fOPnbkrpD/g0MwcppQ6FGN4xG1zF4TTCO177Jrsw+vZMMvIfMxBvFIK9sbEI75+vWve+4UEXJsxV5gaudt4nE433/7Odw7zAcByufz0Rz96uL9/ls33NLiuH+cORz99kh8+lb/6Xf8l11/74r/6Xdd5RbhSL5410fYmQyCPt7ff+u735sMBwLIsn3/++bou0zwz867KzUHZ2Vt1pZSbmxtmWteNgMPxWGvV0Ur7cIyMz3CIjLZtvVyWbdvaCFoqqlp00Gquumhz27bNuvm1eX29RFQwWPlmvXV3T6SqHg/7/0QlIph5qnWIuZZl+cnnX9w/nPcmF0ZDIil3iyfa/U6HVlcADObHHio/JiWNdAyPTLpqo3MQAPaG5lN3bHxQ/0VPTVSneZ7mqdQSHpfLpW2bmyPisaM2pNxjPbm9vfml7/3S8XjEiONuzayZ7cq23toQ8g+e0GCaMrMKF2GVobEctP+RvKCQkSz5yCd9mhxjuox1yeyZR8Dj23psCj5N+scl/Fmz8nEFuS7Z7hERNzc3P/jBD8a9rMvy05/+9Hz/sLchhUVVJmXh4Wrr3dJ8n2/Peo1XshL23tn16+u+8rxPl8BfXfWetW+u+82YkykEJsiVBbA32oYNz+NP2ekkp9PNt7/7net8uXzxkx+f7x/4Wdr7Xx0Cj6sqffCerj2wsQlee0zjjbOolpqgbj0zBy39cdt73JCvn88Hj+Xxt/KVP/7zw3I8sIhpnl+/elXqTrvU/+H/5D+EAJWpEIkgE80koapI+GYRkUyplIWxJ+zsqy8cGN71RESCjLROSFVSFSrqyHVr7kYMGmR3R5gRQoVoqOcFVHchL4E4GEHRMhOkxAQBCaXAI2NFmoOcuvXe7e/9m3/vf/bf+5//9q//GwDev3vzn/zj/+tf/Kv/fDPLTGVB5hoeSGIS0aKFZUgPrG1929q2NiY5nW6nWkUp0rtt4T3DBxNwvH7c5JB/moebZTjR1W14lGUEYWWVQePPx2ZveJglHERM8nghsWsKGIGwtF/51d/69/69/8Znn30PQPa2vf/C1nM+9iCJiMpOiiMwZ2T2Zm/fvv/RD3/6/t27zLg5zt/+7OOXL27rVLVUqtM3X3/zn/2LP37/5u3pOL+8vX31+rW7f/7Vz+7PC0DefWsLZU5FP3r18gff+07R8s2bN1999fUXX321tn483nzyyUe/8kvfuznNfb1czue37+7WdXMHMR+m6XCYjqeDu339zdt1XUcQcRX61vd/9bf+7f/q7cefAvjxTz7/X/3v/uHv/rM/PM5zrWU3vSDJwYQAEyGvq8aucwgnQEVw5ejshB8orp1VM48YhHYa6x5d82tw7TCPMvSRp3Vtqe7/7ESQeFrLBoNFdZeat9Yvl+Xv/72/8z/9H/y3/43f+FUAX3z1+f/5//KP/uzP/vijly+mor2t3bq5m4fF8HiXnZUWmenTrK9eHW5OdZ54Eq7M5PDB+BS1oNXRLDzcPeAe4R7pkcMOv68twlRCi07zJFqSxGOkbXkzC1y1aUglmrUoE9Gwm+nmPmwGzaM3u1zWv/23/+6//+//B7/2q78G4Kc/+tF/9L/8X/zz3/v9qWop5XGLGOuCDLMBgscHZkw7BRDgp271Ti67ErWeStErwyEBEA9eDzOQV+YhrmSB8b25c63AgBIF0JP8egjIPdInLWPJ+O1/6+//N/+7//0f/PpvAPjii8//4T/8P/75X/yrX/7lH8zHw/u7+2VZ+taLlBcvX6jotm0ff/zJ7/zd35mm+sO/+KGw/OZv/dZ3vv2d25sbrRLuiRyk00fyzeWyfP3mmx/9+Ed/9md/9qMf/vhnX36VmR9/9PGr169fvXp5e3t7Oh1LqUDe3d/95Mc/efP2zbIsAI7H4zwfplIPx+Pt7YuMePf+3Zs3b7/55uuHh7O5vXr9+jd/8zd+4zd/6zd/4zdevHyxXJZ5nr/3nW8f5hnAjz///H/zH/2f/tkf/IvD4aiqlMHh5E0zCqFwCEeVrIXmUg5lzqT7bbvf1vfbZompznOZZi1hdvdwZ25ayoj59IjLsnZ3Fg3Auo1ImYgPipjH9WZs87evXv3g137529//pU+//a3Lsv7pf/bHX/z4x8vdgzcbUzcG/YfJzJd1/a/8/X/rf/wf/o9+6zd/E0Dv7c1Xn7/9+qv37998/cWPf/KX//LN11/en5fz2pael+bL5gQ+HqYXN9PHL+ZXp+l2Lqd5nuqs00mmG55v6fhC51Odj8w6SpZubr333ntYhl2Wy9u3b+/e393f3S/rZmbDq2b3Qult2zZzG0fX3fl+yNPNfHgED2kkMfNe/K3ruizb7/zO7/yDf/APfvu3fxvA5z/96T/63/8f/uD3f79oKdNUj6fTx7cvvvtRPVXf+vb+/PCzd+1ugTlGTAxG3kNe7XieNutB+N7nxTjY7R9/EOjKd7yu+tcBOY7wII5McwtFHAXHwiclZURyB2/BW1Bz9BxAARGb2bosf+t3/s5/67/zH/zKr/8agC9+/JN/9L/9X//R7//e4XDQUmhnweJ6vH4iQg27MCHolZmJjCGL93FI0IlFMaJiSOabm1ff+raTfv32bXe/OZ6meS5DMkKMzN5tODUDu4/klbh0XXlESq3jlPDIAd/JUYPb29v3f/DL/7V/99/99Fvf2ouY/9d//E/AQAEKoEACK5DA0L5sQAACVOAA6DXEwK/eJjT0XAQIIjDyIhWo4EkiE0ugPRaQ1+/FVQim1//LFXAIwJHDkUuJAQ0qhEnDgTtDGuBABxY06ncP9+NOlvXyF3/5J3/wR//vS+/hrsxIbOlD2qBDIy2MzNb7cl4vl+38sDHpy9tX82EulSNt287uG2eIcJ0KKyNzpB8iyQPdfJy6MmM8Yx5esEzMSkNWOtiNw5/E3fqWYeOMpGNFqVXA0XfKpWXffGu9/Tv/zn99f2bhtp3b5f3Vru2xiNktYrRQ73Z/d/7xv/7JP/9nf/jlF18Q8pOPXrbf/JXvfvuz081pPh3LfLz/5qu//LP//KvPv3h5e/r044/aZ59trf3pv/rLr9+8T2Lvvm4XyjhU/c63PtW+HOb5y6+++tGPf/Kv/vKH58t6c/viu9/9jmyX1y9Pfb3cvX//5Vc/u78/957McjocXrw8ffTRK3P7/Isv7+8fkFmEjkUT+JW/92+Pe7k/X37vD/+z3/1//FMcjzoVYSHmpBE/vTtnZabtBzRPd7gBUFUiGmTzK2tOk5iQEWnW4buJ004O3+nhw8hmZ6APHuj4/GJ4DLgPRj0xX7l/1wNZJohUmYYqYttwf07k/cPDuJfz+fxH/+IPf/c//X9+8vr1XLVvS7feh/rQEQlmyaTwYdpq00E//uj44sV0c9Bj1YMq9VjPq1lCq5GuRttux7SnrSfgiTD0bm1dw7uws0C1sApII8k8e7e1mwOsY6qHAhOp0oAyo4cNMCIT1mPd2v39GcTn834vD/f3//x3f/cf/97vn4B6nX+PW5kASiBCxI4w7dd+2NiLmAEOEfYILMYjUS+ur93BXOJkYEeTsFNLGVdlPD3iX2Aiua402x5CQgkEp2ek5xbxEHDgfL/P/YeHhz/4wz/4gz/8g3fv3pxub755+/b+/mG7rCr11atXRUtr7dvf/vbhOE/T/Kd//KfzNL948fL2dFNUalZ3y4wRcjv2jSQ8nB9+9vXX//qHP/zjP/mTP/vTf/nTH/0EwPe+972PP/749vb25ubm9vZmnudS9f3793/+53/+xRdfvL97T0SvX7++Od0e5sPhcLy5uYmI9+/fv3nz5mdff31/d7f19smnnzLz8eb2448/jsy7u7vb0823Pvl4FDEPD+d/9gd/9H/7v/+T4+mmlkIRHEa2lbRZqHIU9UnzUOk41Zt6k0lvL5c3y/mb5dISh+l4mg43Zfbe37x703qv81SneZqmbnF3/7CZq5YAttZb61trP8eK/Lki5vUnn/z23dtfXc6/1Jb7+4ff/f3f+8s/+5f3b97ZsgkLMj1iFDFhNirY+/u78aOs92+++fpH//ovv/jpj374F3/6L//kj7746Y/fPywPS1t6rD1aj7mWT17ffvujm8snL9ZXp+3m1G5ujzev5tPrekOcxUNi6Z53Zt7atrW2rgMaa917hF0u5zffvHn3/t393cOyrL07MmTEu5qZtXVdWmvWe7fWeu/W3cLdrJsP+01+onhnppkPg7h1Xe/u9nu5XM5/8sf/4p/+k/+YWcs0z7cvX3znk0/vvnd4eYhtW755/+5HXy7f3GXrGSPOjXZZyiDgXwUJGQh/YotfWeZjGgXhGq5JI8tqB/cTO1WchM19bZsr4mWR11P5eJaDwsEN9BD0YPTQsTo5Dd+t1tv54cHcHu6vc//h7g9+73f/k3/8T28OXKc6yMJXEce1D8MjfYqH2W/ZrdwDGQxkhkUQcykHkQIRsID19OqjT7//KyHTl2/edPPbm9v5MKvuedYZ2UfTgDmBsF36MvCV8d6KlvlwKKXsKM6HRYybb9ua4HVdH0esTp9NkWk5YEcGQOpD4UQxstIzODATbgXK2ZI62IgCiRgRBUmCZHiSGmVAQYVo0ghYb+lOnkhmKWBKSkiAgzWpMmSQmkEyTD4ISYhkIlHlJGw5Ed8eNSiwrpfukeytgfMwHeVZHkTLbcGyohmM3AGiYQpNHGQ92liiLL35sra2bp0yRNYOVNeMvq5L+loUqmIIMiVmSSgR58hOpACa+7qt6TGpVilFlVk69bAx0JhVRJmJ0t16d+seQURFyzxNYKkyjKPTrG29LW1Zl210eQAkUUKSZECDe4cATpHEXESYq7u/f3/+0Y8+/6M/+pMf/vBHqvz97352ezod5yOJSJ1KzQj0ZtvWW+3b1lrrl/P6zc/efvGzb5JLIHprhJiUS5nePlycZAsYpAWtltzs7rJ+c/eQBHi/X9v78/r+/rxtwcxL68Y0nW5A2YI2z23dhODHebV4PHqI6s2LV3j9yeEw1ZEsBey+pFeNVQxr/qt5FkZnigVIMwMgKixKIgEKd3Mjy3AmkAzTQmZm2Wv1zASEWbWIirCARgvGW+u9d7fHtGF+vnAD2Fc0QmY2kS3zMM+7aRtAhKJFSHvPzHDjiAIikn1cM3OCWMYGYCzcDMsaQslEyiW8vz9vrblMICUjCRKwCBcVEmFVIRYkp4e17t7SW7etbatHEKeKTFPJxOFaxIBoWKNlD98VS8pcZfieAO4h6waSw+ko1ywYYT4eD7fAUbmUKnjCToa4T8doH0XkE3JMj/D4s+IDjyjLtekVzz/VUcwMXHrMcX4sYujJ5IeughgBhr0rZQaREoOoU/QMc4/etPXnLrfMMs/z8XCc6jSV6TgdvBl5IimsO0GEIuzNN9+w6N37d3jxKsLHqRgIGiezsZHsMB3MbFtX652Z53m6ublR1Y8//vjm5qa19vbtu2VZjsfjy1cvRj9owKtENE/T8XScyyzCl8tltGVfvnw5TdP68ceXZXn16tWnn3xyezwhc12Wy/lSRB9N1oXlME3Hw+F0mIsqIimMjAr5JDRJluJTwVRommothwyaKQ+cBwrNPMzzoU6HOkfTtR2L+zTPdZpKnbpZs2AzLRWAVitb01Lc/HlPZR/tO04Zx+PhcDjM01RLnUqZaz1MBz80Yx3OARY27Fq7WV/WaZoe50s3++bd3Q8//+Iv/uIv/+LPf/jnP/rZlz97uGzezBEpTFOtr1+efvCd17/82evvffr6k9evbm9fv3jxye3H3zm9+vT46pMsh3Ozt/cPX3719Tdvvn739u3d3f3DeRkOgcOLtfe+LEvbNusgjClPh6pFdhW027at2/lyfjif7+PiniTDx7wC2FNVhlENCxHc43I5m/nhcHicL1r09cevPv7s494dUuvxUA+30/HV8eaG5lZT86GVIFs3t3EcyT0zaNTlu2sdMtMtIhJ7psKV7wDap8ET+wJXKeAIRqUEmMUzLbK7c4gKTTelvphAnBtCPbNjY2qdInkXKjKNSPTrdGTiWqa5YJrnMlWi3QeIAVyb17sXKUEILCj7W0xOMGF4HBKJlomlJNPo/U3zoZZJ5tMnpJGY51lEsDfGh+2rPHbZQpVzL2Ieu1SqOs1zKWUPirnWd2NjdPUE7f/1qYg5TBHJzTOv1mOQgepTQFh4hNvMhJkh8KEY26GGSB6dOI4gZDIrMkYaMYiFwWXKdLJEgFnATEqkCHHSpMpECRv4/57OASQlhElVFMwit/Pxs09eByPfvJHL2SLWjXsutdZnC2V4do8tokUYwpiJqTKLsjBf3UGJeHf5IFFJZ3Pj1oAALMIIocRCux0Rg0GqJDJmrJuPmj6ChkZcVLQQc0Rkug/nnwgJVhW6dn/dg2k4fexnUy0lic1sOHQ+C+UdKwqDZC/C933iySIuE+uyffnlNz/+8ec//smXP/niq6noVOu79/cP5+V0cxMWiBHfWGopMlAHd+vWWlvX1dEdGe6ESOdl25atzYc9YyJBHrm1fr4s7+7eM0II58t2f1nvzltrzszdk0o5PlxI+LLZZfNlbZwRifPSHo2ViEi01DqXUlV1LxRoV+ViKDOdkjOT6dqGIIDGqah3AKUWVk3eoVQ2YsFQ6UpChnsejUnOSIBJRIoUFmbi0QF3yuGAzCnJSVfwhp5RSR6LFWSGxqY6AKHrIxiLkZiN+BeJFIDiugCRMAHDPA7JJOTJW8eITlFGOrfg1SxzA2dKTZJRISR42L9LgohFRUQJE9LN1vWiZv2xckiAIGAWLcFk5t7MrDsCQSAhKJGSEDNLSbB4Zp2mR4drGrkVwFRrKfUxxxt7e4j+P5z9WZMkyZEmCPIlIqpqh19xZyYyE0AB1T3ds7P9uP//F8yx09tdqEIhr8i4/DAzPUSEmfdB1Dw8EuheolUKIgQ8PdzNTEVFmD/+jvOo3VsR8wh8+9kZ8LFw+c2/+k0Rc/6GtZtqhU4bXdHjQ7/aNzTH2GZ91MT84AiyRjkbmDawi2p9WiE1/6S+77vUdSGmEBaWjFjVai2AGEKotXz8+BEc7h/umPl4PE7zuNPBXJpNRGsd2gHs7rXWaZoaIcbMQgwpprYpj+Ooqs2WmhhLG1isdDHPOedlISA2rlWZueu6lFLf9/M8p5R2u13f9YxYcgb3vCy1fHa5bTyeKCEwB2ZAdwJEYyRh5OASgkSQQBwCSXRzrkFqCCmCewgSo8QohpRSItN+GFJKLAFzCWFxRAkBABxX9mFt3lCPN3G9pdjE4KFRgERYmLnZa7CIgBkDgTs6tumsA5TmvnG+NSWXt7+++9e//u1f//LXH374+ePdaVysGiKKsA9Jrnb9V88vvnt18+2bF29evby5ebm5eL69eDFcPk+7S+k2Y67T6cOn2/u3v/7667t3d7e3h8NhHOcl52ZRYauZRbOqQD+DHky4or4kTNE23TSkU9/1XXea5mXJpdRm/OqrQrdRORkRES2EWOsUQnh8L8y82W32l/t5KY4hdEOMKUAQ4xYqvBl6LlX7rla11VGptl0dCeWzWQZobWMU+1zFrEQ3BV/JT9x4Ie7NlEl1zUlERBBKrsgKITSukBCJBHAsUk0AgkECTNYCybEoKHlAePLss4gElhAkhHN7snqpM1MIgYihMbHAiKDRb3B9fgEQzQ2RRSKQOKIj00oWk5S6yzgAURBpVWYt1cEcAJnWKRs0WxqGsxtBm9YwS/tD9FjE+HkwDQDIosRfZLuLNlbYbO6Asf2OlvXnJG6CxETA2JrLai0VzZmQHAXAwdWbbZqrW2mFJwG1vBPEQNgqgmpejQAEmBAtBAju5GjeShzXFjnYcDU3MjejGIZN/+z58+//8CdHKv/2F/j465xPSEUrSPhsL+HgaEZVuRbSyuBMtFYkBMwrjgLoAshDFEzCXpb2NCs4EFmKHChtAiJxwWAoiCFx2EgQgzLPea71NKmW2IWYum3XdxJZ2B1yzbUqq1attaqbM7alyMRugMzc930MiRGJsE8dxOaEm5PHEIQeq0tEIAKSdUy5Wtw2ArK7e6l6f3/44Yeffvzxl3HK7uzI6riUmkuxNs8wC8JXl7u6jIkxBSF0Io+JuyRzdVNfAcMGG7mRW2ROQYQJ3ErO0+l4uLtjKzHIaZzGOY9L0eJI7lh4nMLdPSLdH6fTtCxTBq+51IfjqE8cSHMuNeci0pw5efXOWgGPFlXmbi0ot/kMt76/MVeIKMRITIagbqDYPBJMDVqmr5qpt4gkBGBmCSIsSI2PXBrg3UwhGZGYvbnrrWgQtEKn2R7BmTarqtAC7Z6QQhDInbTlPYHYatiy4rGAjTneKJbcLJXU/HjKtYBgCkycNqB4GsdcF5KEJAaECMROKw6EhCIcUkxdil2XUhf7obdScinLsozTVGtFYkERDo5ogApoiAYEyAhsSgYO4CIYUhAg0cpRnnYw667gawHhsDpFEa4cwYaZAYChIbgBoLdmYEVN6PMUn1oRQ3BmNwPYajODZyJNY4/hyiNuMLut9h9tROWPrwcRABjxiZ++QXPeA1wNsj7fFepSGvq+7/uYUuO+aaml1MZwD8I5508fP2i1u/t7Zvnw4f3t7fP9fhtTrFbdDBSInCgikWstpRxPp/v7+7u7u9PppC0qvFYiKqU0Gpxqvb+/H8fjp0+fDodDSw/48OHjOE7b7a7vhhBCCKHveyIax3HFhQG01mVZxuMppaS1PinyAFqm6SNby92brTucBRFMyATMQGKA1Vwd/Pw8tQdLkLWF9RLGGGNKRKzWRhXtdzU62lOo7POFiG7eFv/5lp3Pk3WusTbWbRE96hfOpPT158zz8re//fTf/uu//O3f/u3+9hODX/edEDKhMOyH9PJm/9WLq29f37x+9frFV99fvfxmc/O6211xGqr73Wn86Zdf/+//z3//299+/PDhw+HhWEoupTQOr7bhcONTt/Xh6GYO5owCBQIJYZekizFth+dXGy1Xh3G+vz+9v7u/PxxP85RrWUlczW0H6+NChd9AiYiNmkYcgAKnIbHIvKCpLidf5g4p7ja+8kaaDkLtDLcgOhEJCSG5gpk1BMuRmwPaeXysjCiCKQRiBAdVy7WoeQMMTC2qxm3MqIuYE/qojhq6yJUkg6l7ZBCAzp3N0GkmZ7ThiRb50fbl81bw+esi0g8DE9VaTaubfybpwGdHMSRuNZ8DmHmLYGrfEli61JMIAuaStda2LX7+ZFcuOPIXFQq2wxjcELxR19eXdT7ifR35fkFDFs3q1aEYAEJcCanr8dN2KYJWwqE5AJCD4mrzyO0HV3P9DH417AsqATgKkxAgmGoD3N3cyZBJImEgMwNtTuPr+9A2IVMAdA+O7sw4bIfXr9/ENGQFEfl4+7PrnCOH+IhcgqvnU1nu51wXdCUiEIdAJgjSGvamGEABAiQXUHHQWkp1czBvR2NgJGpoKrgDCyEimlup5TSV42hTNjAQtgAGaIREaGeOTGCmDDZn9+qEIIyIxIKAEqQZg9p5kLwa7zM7nYmSTx4aWOncYNYQSicAFnazJZfbT7fv3r27vb0Dhy51ITAT1ao51zUqziwKX19dglW0Gs+KiqFLm6GjpZbaxBQQhVMMTMiEfUrbYbjcbWrO5tAFRlevtYFyMUiXUmUDhyYDOY0jApac3ZyZwLg9wJ93Moe24TzqgMxda3VsDLFz1uL6BK3ShFaGuzu7P9qRNQyA23cBGKIbGoBb2yPW9oW4GcYCgjf/1KYKaQ8qAaBwOyad8AwqNPqdtqNxXcbu57C6Lx52bwI+A0AyBzU7z0laE29tAkjERALAapoXVy1Jlr5LHFJIDvOiljWXljLUyNptko4ABCySzGA10YocJKIIh0BE1Sri2tXg+mg3Oh46Iji3jDRQcDQgbCUbEiEz/N3G9Zu/fwY2v1yNT78Zv/z7459/aNjQPjFafwj+w9/19Ed9/lfYoBk/Y+otw7OpVoCf/kOElS9vZrUFjlSttdaCGQmg6XxMq1ab5/F0Su/fv3v79nq33zqYWnF3ApIQU+cOcBpPHz9+/Pjx493d3TIvbSTk7ofDQURyzq06EZF5madpzjm3oVKruRuQU2uNMSBiK3pOp9M0Tcs8xxhrKTnnhuiUtj5/czOaZen5HjT+obqpUzXICg6tym58soa6SgMhm+O1kxOSg53tMemMsuCTz62ZFD6SRpvkkBBRXR9LlxUBfvJDVvEV0sqhb6eL2WMuwfnnY/uYSEHUg5AwsmAU6hPvN93lJm2SMELj4M45l+PRF5v1wzjNd/f3v/z89i//9u+/vn13Op7mOZu2EVJ1c2szlvbRYXtuHNzcajWfrNSMzFhNEI252wxd6uVqN4zbzW5IH+669/eHh9M056XWsi7w9Rj7MosbAACIOKSh22ylKnDkzb7rewbEUrkom4uIx4CR2xQW1LRUswayq7kSQuBAxOhoarlUQ5LQO1P1uuR5fDhqyUIYhFIMzAQAVXXJuRoAiYOVUtRr5NAo3ipOgRLFHfXCXAiLQIm5osHGrUNilMyBRfaM8uTtPN7H1rM8eYqZOYYgzADQBu8rsPrbB/tRlLne6wZru6uqolUwany9p8/1CnmDPxa8bm5eVVuqlLsFxjY4ktWxc/3xbZagWnNzh398IaJLy1wAaoeYYMtXbfRbc2iMxQb+r8sZ1pxvN4cKtjg4ckIQaNltvrbFayIfIJipE0BkM6+gKD4kIgYtYI6mCAYU3MhV1/S8NpZ3p1wqgl1sh+fPXgmnIXX/rUzL4SGHJYXPBGYtdvgwffr5VLUw2RBCCAKMyA5UiUmEQgyxCyyEQFjU8lJz1qqECIzo3Ni7s6m5ZVNgB2J0P+VRT+P06WGeswMg+vgwT4tW9b6vITAiFFUm3sZO3LPWmpcC6jF5CEACSMDBiQ2hqnktp2UiwOJegWaFRT/zSGBVx5q51ao552Uap9MB0bebDSKexuXTh/f3t7d5XvqUAhMR9DG2dJv2NDpYiHzz7DoEqXkCMyERkW3fX263KZaqa7XLhEPXBZYgoU/sl/X0/GaIwcxDkG2f+q5LXUwpOsJm6Jcl16puAISg1RwEjRNx1yOAW+mfBHO25d6odkLgCFZ1KTNoBfdVF0CESL7CrauQeO1BEc2s1oIr2X+laLRgTGugnxkxSRuGNwzAtLXOamotYKGxdxs8ItzU3s2TtzaWjVarZghIX2CV/uRpaZYB2uYgj9/jbdRHtFL5wK2VHtw2djNURVd/wNkc9vtN6odBFWha5lqrIzgQNvteRGv6JlXNpbj7vMwp0mZIXQoSAweRKHlZcl5Uz8+brerbxigDXzOG3byaQs7uLU7xiaTxfDRa60lWXsuZqQu+BqKs4Mrn/vTsSdyG1SuMgtDqJgdaSxY/71iPnuqITR0M5yk4tNqNfM0jXeM8VxrOuhYQ0FqCWVMCIwhhIAqf+5f2ir3WOp5OeV7G02mZZi3Fai3nnU9rTDW5g2td5unXd79utptuSON4NFdCDBJSN/SbUnL59f37H3744acff7i7uwWEvutNrZb67t07AEgpXV1dDcMmpaimzJJibASIGON2u40xukPgkFIys48fP47jeDgccs4NyV9yzjmfTmMp1cFryU+L/rMxhftZuQHuCl7VHExdl4wELk49MSM5o7sgCKGjMzohMDVg09cjmdcb286ZNh4EImSRFmgN51lSK3QQ0JzIjCWsBAkkJJYgIYQQIjkQkrtjwyoRHKCEyBIeEeVhM/z5z38e7+9kmt6CLfOYaynVOWCKHAMupXy6P9S6TMs8zaP88uPBwu0CHx6mh3HJc15yKUVrVXAjsCUvyzJXzW5GhNj4CavbAxKgIdSCtdYxV3ADBDnRw3G62PZ6uX1xsXm+H15d9K+uhvf3l399e//zx/t3dx/HecT2HCCaeSmrJPvps08kXbfvN9eLTZBivLpK3YAVyKwTwCpLLUpAg5CQmKM65NpSktQ0awZ3YRYUJtJqMFakOOxvpIsV5mU5HVh0mZlAmNoWBQBVKzK7I4egpCc9ZVATDIExsgsx8UaG63ARC80ljn48oGbPFhR6kI1ED5vYDdeJwpnb91n2tJYeCE8pxsBETRz0iMCt1r5nS2B3UzUkJ2Ikayp+YSbEquU0nWweiUPfdYQILZXJHVqMQItGN28yC6211JyXRVWRKIRgeS4xSiP2rg4Qa/2tVvO8lGW2s/8IAEhjIRATCgC3PEuAs7bGDQHxMTcb+Kw1AHcFUjV1cAdCDgzoVguYuzkaoSMDcqvzV+06OIMScAAUpzVJAgGxhX22MZQZOboBVEMyCEBE0qfu+uJSZFtL+fmHvzAyOJxtXQAAXKGOVk4GiM6kCpgd0NYkLMbKqNG9BwlgAEst+TSWpVRVRPKiNQiHlpho7lAUnIobZAcZ53o6zQ/HWg1iAsJaay2qDrmWvosirO5CXqDSUnEpXAtFRhDA4ISwJku3IFlz81IzOlW1qlaqfc7kbW/HWkyN1VzyPI+n48PtJwB1zUxyGvM0nvI8gZUUMIkQYhICU1tn82pWmXG33TDCMkstxdVikO3Q11L6Ws3W4QUiXOw2KcUYY5+CoOfnN9shuTkSBpEgEoIYeIy8bIecSy21VtfHqa4bE4YQCMFqvrrchTMhDhGjsERJQlHI3Cuu7tHu5vDZWwcfCwU749XQKG2uZ4Vk4yEhPRnjt5YdWsDMWthrSzrE5o9SH1Px0M2xnfNtIrFGAVvVqupm3n7MU6eCLyH3lvwb1nvUThlHBGwkkXYctLbWCRyttqaAzHSaCxHFFGOUvu8AUPOpem3kbSImBiQCh8YQN4dSNbtVBUBzhE1gCaEXDiHITHlecm5zd8J1BNkOwfUwbI7cpmZuLUHkH8AvaxHWcoPOoeUtNqEVw+ci5vykfe7bnjomrXPgx03/cah0Vn+dv+vMs/lcgdDnn/0Z2G7tta+lELZ4YDBQAogtnenJW0FYc7mNVGtZ1R9m1RpIuhKnANBMc86Hh/v3734dNvF0eCCCEELf9V0/pNN4Oo1/++GHv/3ww88//vRwOCLTZrMRkWmcxmksudBqRaPuTkQSJHUdMccYu67r+x4R85Lb6lHVcRpPp1POWc1EBABrrcuyBBFwQ0StX6TyPulvHz9xNzNdYcf1DBFD5RAlcAqGdBaUIqylISEy4DqsXZNSaR2grrWNqrdlf/7UHz3uW2IjrO5gDWk8T7Vax/ybP+t/sacvPcb4+vXrD7/73bu//ut0+/FkFbVmtSXrcS7FDE8lCA+JPtwd3n96cAofJv1wKu8fptNUwEEkDsMmhoBAudRxPC3zrFocPHBrTAMRILhzG8YCEYJ7KbXWYu6EME68LNlqBisd6/V2e7GJgYNZBAxZqyOYVXAlRK1qZl/0YOsCo0BDlK25WxRJIcTA4GIaIaC4ZUBEEpEYIiKpGxVTBXA1lUrmwM1fhkjFwAJQSimFFAxduGIZLAoz8efhDVRVpFLVnKCSqlgl8wAmBORICMwoQjESEvYFLbIkMauhFZjuAJSIO346SX6qyGrP77laAXcotTqA2pO+Gh6BbFBYx/gAjuaIjSnrdB6AgpZSCyCRZWYBAAJrvAFVNbfmJvE4GSxlaUUMMVcRK0sI4RFBXCvUBhBqXeZlnk5fFDESGVr8+nq+ujMgIDKBuSsEoI4pRObeKtFSDdFDpRa2VElrByBIg7i5z9lAW9kmRAFZ2nlUoKo7ugfwyJ5IEcBN3Q3dAjkACMLqb+QuXlfTDBhC5NSThBi7qxAuH6646zLgNJdlnD/jfohC1EuSRETuVhtfmByQ0asbaJ4VFl1oqqpLyeM8z7kpbsGROIY09KmPXR+IyKpXy9Nxca1pWWBayry4I0skQFTQWo92XEpG36WUDNC9Hg4Psiw4LZE9EoJQJTAycMcmH0dEUnIEMDMrRUvJtVbXz32yN1i8Zq1Wa9FatJScF7MaQhCJpoZggSCwe63gFpgTOZu6VqvVavVaCCEJehcYu8KkpfQx7IYOvepK22j8HBiGYehTl8IwpC6S6/V+158PnvWUQvDdJrm7awu0Oxcx6IjOgiEEAvRanr9+EdPZiYhpt+n2m65PgQXNQIAEogdyM2yPEz4hdTc4eB20trmeVy1WFVwZIcTAjdiF1IK8z4CKOZhqC0vDs7xiPS+bA0RTL1Wrbei5cgJ1bXyx9Z9+PpqJQOQpUdEcqq0GCYRQXd0cwckJvCXWNtwf3NGtRSiqqrohGNVq05QRHzabbrsdCGk+LSVXM296cxEiIXM310ZORiS3UtWO09K0SD1yEAlplQ9UPXmtZ5AUUNyrOxhaO8uaKxqYQi1Wi315WDYwxdm98egAtHEB3aGCOzixI6A/SQsCNWx5ZEBmbi2BuHX98IjyEj1Ou3GtUgGf5HKCr18DPAMGa4PUSDey3j8HAG7hOOjmDhUQQIgCfebDrdKSc4gKC0vgZj1j6ogIAaAxaQBUTbXkMj883P30N7jffEop9n2/2+1S7JH59u7+L3/5y48///TxwydzuLi+3O/3F5cX87xUrQ8PB2HSmh/u70vJSBhj7Pp+s93eXF+nlErOy9LSrDWXYmqAGLsUU0QkkThsd1VtmqY+ijER8pe8q/XGtJbnfJm7AZ6TnFS1qAIyNHMvMDhHQLZincidgcXdWkY1NbrB2nwDrA4qeS5ZVc+AGj1Srd19Bfasoiu2gFytmnPJcylzzYWapd5KAfNcSi2LluUx9Z2Y+02/2e/Cbhs2w2YZrZbTlI+H8vGwmDsyBqZtkj5yF+6L2e2Uj0tdiqohE6WY5s02hADgVS3nRcsqpTURMSUzZnNm1va8NHiJIZ9bFDNwzMtyOh3u7u/v7zZf3Vx+dXM5dNvX11skOi1ZAec8q2UCY1JALyUsS/6CEuPIFlgDmUAGHBc0CSRhzd0CFgYg8MQWU4xMttQJbGaoQiTSGSAQEwGRswAzuhPaXJcZuLDVIUVIIbBgS9ZzNwA2ZQ7jMt/Pp6NPp7gULohgxevo4ELdAEOMXCLyFKpukfdDb5IXyvOcH/LitQTL+gW1b90viIEfRzYrelrNT9NMRG1Z8qMiGgCIW0tiDgoI5ylKdcNaFSj0GghTADQrNedTJuYQExKhm2ld5mUppTTFe6nalFqmTZ5KRF7Zay7cALYneBEAEtRa53k+HR60PiliQFqmL61jffRzsh+BgpkhIgmEACGSMAChtjdeHNAkhthH6VMaklUdkZfTbMUdgBkAzNVNTRvDCdwFkcgJ1AwUqrYmFIHIGYEJxVnBEbVAKSrmzQSQOcSQOAy7zS52A4hks6WWzw8MQmSKTGf4i0gATcgJER3dXN3ci5lbLUVrhrliaeRNKGYgRYvVXK1EZjGDUnUqxbWoKpeiRYEIzIA5kCgggqGjK9RstZqXyvMcaxm8ikhgBmEQVIJGHHav7khk5I9t09rn/oZj9/j/CFGYU0qb7c5MU98zhxDh4mL/8uUzrXkaRy0ahHbbzWZIMTCiu6lZZSJhTIHRmJyLW5fCbtsHaUz01QcTEWJKfQpBUIRQ4v5yN5TusRtoAEeb4Kx4iUFVWPMr0YCAGIUJ3b3Wi4udnJEYItoO3cV2k1JkJjMzk3P25WfYlgAAWnEIbbCzQkoA7l5qsVrBKhO61jYPgtUWCh9/SgNXcD0HYbVtXfFIdGi2poZ+dnB4BO3PtHxgAlgNbOgRY316vKxOSe3UrdAmreyEDgDaZjBtllPdUNWquYGvR5KpTdPM7JtNJ8JD10H1aS4ALkQiQoHUTKs3RaWv3puozVMIyRGrGbojMocQYzKnpbi7rygKwbrhtHXVGD9qVtewwMd11UXeJLnYD8PQRWEEdFXX1qVDNXXCEIWoTQwAztMgAhAkNyhV1RoRFeiMu7SX8Bld+buLziv86RmB5wLIn3zgraxZJWSA6N4elDOs8vR5QXevpbabxiuT/7OPmbvnvBavrZqd5+nTRx2Pp6HvttuNq4cwV9UPn27f/fru/va+1soSCIiYQ4whpTdfvdluH8bjAQBqLaWIxNB61rW0KGUcx7wUNSMiCcHYRWuIcbfddl3PEkOMUXjlzeQFkGsp7o8YFqwl6eou1iIAz3/Qmm4LGREJGJUQwXUlOjvwGRpBBCIjNiB7ZG83Lgs3pUYgQgn8G/4Hnp0PmivVduj6FDuhgBAQUpC+i15TlbN85iygDUJotUvx8VQkxBAkpMhd4s2AZTc4ZDuVag9THWtRdCEcowRGRqqqx7zkqo3mdCbvOzOvqdQrtW4lHpkZmylro/Jok08hNeyt3X9DNIOqNpcy57IsORcVojc3st/0gNv78YqYHuZxzpNpyWVxdJHl79ctA0UMGAYLDkZYtJmxOpmZFzW1FjjfYegBaikTVO0iMEFV0MZQQw4BiZmA2wszUyd04kAMSEIMdi5iEMHdoiLTZJnLTI4MHFDMFZal5FLyfKosLsy0lAlIY0eMRBJJq94vZa5L1DLXJ1R4QCJsUyv+ksmG5Ai5GqLheUZN61mFAASE7uAMTmAORaHxuhAxqHV9SUL7IXRky2JzK1OKITEgWc3TdJrnpTYrnlrXOeYZ8CNwcHUFNUTS1aMa4GyG67XWZV5KXp42Y6IEQGRBkFox78jYjMJWwB20MphAbFncbLW1mMEpY+qG/YuX/cVOBqlLPm4+nm4P43FclqV4qVZLcVMvK6Dv1EiM6lbc1Wo1dGJkovZfEMkJjKtqYyCAEaMIi8QgXQgpxa4bhtAnC1Do81shxBhYyMdpRIJtH7susYeVf4zeOjF1U62ogATExK5ZlcDQrarncalLKSMzMyBXg1EzuwlycFwzvsERMfUxCbs0l5JQsp2Oo05zrBnRPTFTYA4kAkGI3F3BzbyAt40VwB2JYgyKttSF5XNFjIDEJCKIxsQxxn4YLq6uAJElIILVmlKHCM+fXd3f3i3TjOgpxd1uu9sNMRA0viw6IjADExihM6YUdvvNMDQDIj5zseAMLKp7JZF+M7StEAHw0ZvaHM8I5ZmXZaZuYL5W6u5VvVIMnzkxTDR0/cV223WRmZtrpp5RkGrmVVth0QA8NV+WCp6zu5ZGjVNTNatoquA1U0uLXYMhVosCwjNE2vIAWkqCm59d9cDhDB21BOhW4a9gJRJRCIIkzXVXm/y8nRxPjkpY2fhmqM2pJnATQqEpNGU7OoG6QXVw9dqOA2ZiRqIKXkvO8zz2qb/YbzuJHz7dZi3MKMIk2KBMU6hazybZLCHE1MduQKZxPJmWQMhEw3bLUvLdQbUCEZIjWetpCKDpigzcq1rRM4UaAECE9rv04vn25cvnu/0mCiGCmmkxLbVWLVUp0LDtRbjZKD+eDQSEjlp0Hpf5NC9j1myu5IBCjXy9ztbgjN80PVKDYtYRvJ8n8W3BtwHSefDUyi+HFaMhWKNKiBCNWhH6uUpyAABTW5alMSnXe8tBwqoLrmolN7n+6ivkbtM8NctlBIwhZc6nabq7u1vyIiFcDRsWAeJ5Xg4Ph4vLiz/+8Y/TOP7rv/zldDq1iA83X5bl4eEhL8vh4YGQ8rIQ8Wa3211c7C8u2oAzpfTtt99eX19zSFVtPB6sLGo2z7M7LPP8eMAgNbugs8TW1E3RncDRnQGEkGMgISRBZEMqvvJdCdxM3bW6GoAhAnATNZ1XOwpTEOIGMVLTZqyaIz9Lcp5wIeDq+urm4mLXdx1zieH6cj+/eD5uN1oLnjlPDoBupZTlND2/uWrx9e3GNNo5MFPfE9ImdklCRwSAtzNMXg28mpmzEDiyxMhi7ohObapba2kCwycVLVuD1EzNFDEjAhExM7MQSZs5pxCJARDNsVSd5qVU/XBQgzHFhxDjfrt5tuvzi4ttFz9N0/04Psyn43hSM2KGR8ucdl8QhGxIgfreAsxezbSWjOgQrKodTotqlIDgsYs92HQ4zOLTZR/7BMuy5IK5Rg79EIeUErM4YDWtWrPNaupuZg7aKO1MQMjYuHUpRWCQCWUhNd9Kb2APdHfU6XiY56n4MkPAUjMGT5JSH8KekAOcQKeaH+ZyP3v9vMZQhERQGFmejndXQLbNggkIwFy1+davz6sgS9P7a6nTaZznvMwLuMdU9tvtEPjZbrAhzIs8nKbTlKc8GaCEZKVMp9M0zcSMCM3dS4jxbPCwwn9nFOIzRPSk9TpzeD5fAkzA5IGAkNQei5iVFJCIEDiFOKTttotBFtNsXhQIeKDuen/z6uuvt1eX3FFeltOzTw+39w93D/eHh/vx4ThN85JdoQup0Sk5IHXEDMEAzau5UOhk4BCN2xxLXWuZ82maH45HCSLtdPc2ceIudrvNfrPZk5A9eS/ubmqllHmekKAPZCx0VlA1uMNXJgQAIiGLNOogARqSkVp19do0s9VRqkO1AgAqKG0XRVAzspYCT0HEmWpxnXIdxzrPwSoIcxdIBCUiR2aCVRBvBk6EIQRBQWOCQCgkoVQNT6VW59u2qqsRQuDmdwPIgA6mbRe6vNjf397P40m1ImGKcbsdYuqIpaFrjcpEzCTG7rFRrR1E5DFSvqERqkZMzVdYRJDI3FYvosZpWrPjDdzpcRjQoJCzq5RhMfcv38g602HmIKHt6QquZlUVVY24+cK2ksIMmLTRk4pIacaatTRIu7Vfbt74AUTctmcHcDN2RGnCbV2lRr7KDpw+j/cdqTWyzHS2bzjLu/GsEW0vs+mqntQwTL5iq+s+QF0SCYxOpVgtbo1ki4YOTW1ERFFYAgsDAFQr4LrMsxD3fc8DdafgxYSAsKmsgQgMoXlDEAIxIXHq+surG2YsuU65aC0x8KbvATGMxAqG7TZB07DzOixqJoIG7c/5CoGvr4fXry+ev7zaXWxiJCJ0JFWvee2UWLjf9iJnvr1Zw6tay6RZl9M0PpzGu+N0WObRcrbasKMzQ/sMNsLTzxDOMMw//E/tL48LyFfyzfkfnk9O+NJXycxrqXnO7usyDjECMRM7gGktteaSEZB49W4utVrRStXdmLjvexGZ81xVQ4qXXXdxeQWId3cPOefD4ZBS7F69CswxxnmeQxBEnOb5eDyO47jMc82FiEy163oR6bpus9k0WkzXdZeXl5vtdimqubSFiUToXtaW9EmXfK7soJWAq3a9uQ9AZApBJApKUMBqkKuCwTmPrdmPqDVaEeHKaDmDUiIkIpvN5urqarvbxa4jIgM3/Uzv/VzEOGx2m+cvX11dXQ+bjTB9+803281mWRY1bS9wLX3ctdY8zX/4/e/7vnt6Y4Rpu9/dvHwZSGCc9N2vQ3g3q1dVUJ/NzFxB1WDtV6NEEkI2wNoMGkxt5Y01CR9gI+MhqCquSHYrYpRZuclJ2nciMqNI6GJwMzDbd5KQRT2pbsUthWGDl8yfmN8JkXue5t8ckwDgrssyLvOpDwO121zzMi+KDp1UtfG4lFJDCKDSBUaf6zIjLFYBAzEoA4F5KT5OWlRDQCEkRmEB6RwAGd3Rqqm6VTibmVAKLDEaAouk0FfTQJxxmYNwACpVq1oBAhZ3ULCpVoAwRGKOQzfMBhUSBHrywDVEjpiJ6VzENPTtESdtjhWr6KutJkciEgpRQscSfM71OC655qINGxfiyNRHIWQmn6a55OX+7kEdLy6vEVovx+1oIkDm5ryF5yJmLae84YBPPv7zf/W/3zlERJzQuR2XDA7OjgDkJgixI4kh9fv9dnuz3/aRF82L2lxx6HZfX7/5+sXrb756tb/YoVCteTydHu4Pd3cPv356/8OHX95++nT7cECn6/31dtimLjCjeQE0abN65BT6fdon6RzJXd1qLcs0T5/uH35+93Yus0hQ01yWWjJG70N3tbu+2t1E6fDJ+1Hz07gcTtOYCxEEXmp18tw+/DYjAEA9l3uAAIJEyMpRKTg0mYfB6pBQ1NFdWlvpBghMjfygdc6IBtUSDai+jLPOE+Y5WEnoiYOIkETn4BgciJDC2cyeGWOKQgENpWmWSynqKfaIfH5gXKuWWh+tRI2czEgZ2ZCQCVPf34Swvbi4eTEt47Qsk9aKCCGE1PfcMhbWBxkgKDoQEHKQBIRNb44AZ/mCGqoiEYXEIYaUiLkVhdM85nkpSwF1wVY1Nz9lEJYQA3NAcIBqjXfo9UxEAQAw1ePpdH84EJOnNphyXb9Pm1cINmgFkYmCcN8TwMbNatFcS865LLOWbLWqNv9jNQdA4iAti0BVS86mBlgYHExXI3mgZrHohM3VBBDBG2LD3Ap7cINqVlWLFXdDMAQErQXyUmt5xNsRXcgjKYISc+pj10mfWJis4jLVshRTB/DV54CQmKNIl2JoBqIOi1bVuiwLI23SBoW6IWI2IAOv6EznAYqvtgatesOu77/66qsYgmarRU+n+2raDYk7GnaiVHVWqI5t9g6tvqN1XLryjb8oYl6+ujjcXu+utsNmiB2FGCR0iPwY0YeIIoKE6NoWIp7N0NDRzeqS8+k0fry7f3//8ef7u7tZJ1cDavjLug/ZOiZqZ6qftZnnFeIACGZwjt5ck5VoBZFxTTC089iiMePhSaiTuddacslM5OghCBH1Qx/NwX1ZyjSXnJukhUqt85LHaVZTdCBiM2eSeZs7JhLutz0n6Yft6zdvctHyl3+dPnw4no7EdLHfg3spmQg5iLo/PDzc39/nvDRyTEtRHYbN5eXlbtdC2aQFqbrbxw8ff3776zgtXYoX281+cxWZ6vH4VKq6qonM3NdcMCAgNwEQ0sAYA0cRiQFZFKiBEmjFVNHrSr01BSBGB3R+FCw1awJmZt7tdr///vdvvv764voqxlRNH+1lz8/iejNYJPV9TJFjqKq77X5Zmrf4Z4YFtILVrOb89Zuvt7vt4z7mXrskr1++2O92292Vz8vx3/+aQro/jqdprCAV6rxSAjU4BQnbLl5t+ihSDI/T8qGURa3VYLhaPXvzqYPGg2gdd1uVXsHByZjY3HNVROw6uhj6m4v9xdANgfeBL1huUtpl7ErBxbbVngPfShp6h5If2od6fmvtKqV8vP3w7tef9qc+9NEDV7X5NBEh6k7dltM8z5Vo8uU48GUUZ5sRynxUUm4zJAM+TPVwd2+AfeBNJ/sh9UOkIaa+i93AElyt5jpNeZqXec4KEKgXSRuklIZL83mZH6b7k0+l84rASAzU97GLXcTOzMbjpCf1obLwvt/vnm1yWJ7trwOfNdat/1yDNRmeFDGrbe9KpgeE1pE+kjUJmEIMMaWuGwinW3A3i4H7lK4uLva7HSJVtRDEgael3N4//PjTz0ASumGz3V9cXKS0zMtsqm1m+liefFGwPJYsvj7g7SstyNa+bGBEhI3AGvXcz54K7uSOhBJ5s989v/nq5fXzN5f7IUquSzbPJtvN/tsXX3918+LlzcV26ICwapmW+Xh5erg+XV1dby8urq8/3R5PTOHF1fOL7T51AdG1zO5GwiiMJFG6XdxGTu7gpm6l1jwvy8f7+8uLm/vTnVkeuo2qLnn2wboQby6ePbt43sfhqfLd3XOtS6nVjADmUs3OEzx0cHAiAFoxbEZc/b1ar9xUrijAzRBK3RdFUC167v2BgjCgFzWrq6FcYSQiXJagGchQPJgzAbGABMdgGABIKHSpY8aqBdwRmEBEJHIKITmGECahcwzm4/NvBmcHkMZyNXcEazsSM3HXhZS6YVNzzstcSzVVJBRp1CBwd0dt5lco6m3YsU7E4AzgN9d/JTNEkphYggMtuY7jdDgcP91+Oh1Oec7okEIKwsTEjMIYYxiGvutiy+BFBEBuiofHN1LNDsfj/cM9Eg19pbOhmwOoraclnm2gGZGFAwZmQkIJjAzMGAVdI3orLld82QGIxRGtHdQpoimBWc1lzqYVkc/jClyJwIxIjOso+DF2UN3NDWs1LRWdsG2M53nw40UIKWAXiYlC4BCFAyO7YcOpGsto3QSIQAhD4CScBIQbjR+qgyrUastSx3mJMYYUSbB6MXJstpznKUw7xB2gVkXky8ur3XY3Psx5yofjIS/TUkuKFDpOJmM2aCq4hpQ5NJi9qW3py/fCjMMmbvex6zl2FBPHFGJKxNLaXlr9u9EB0FcXpeZoui5OVS9SO+yjBwF3cwG8zfNUQV0fh69+xlHwvFV+sWX9dvP6zMRaew3ELw/Mdeb0pZFHg+hWp9Raz35DuFoENXB5zayGhgKyMjm6Kxgspcw5o1AFdXQJQkK5lHGaT+PpNB6bYPsHIiYaxxEASq1F62k6LcsiIjHG7WYrIlpre49tu2WA5jFzPB7v7w8//PDDksuzm5vN0IfUpSjzsuAXTeeZCYXNJ4cAnJwIvZl2rhGyZ80zYjN5c63Fldby0Z3AGBwRBL1lvzmCEIE7EcWULq+uX756/fzly9R3pVY1bZSnp0WMnUMHAcEJAWC72X154qyVKgG6WS315vomxvTkvViX4qsXLwxxf/Xcl3KbkpX6669vPz7cndxIm0WYAzgTdUF2fbzZ9X3gRYHA7g80wvqJnpVRa+IOYoNEnYiYsOX7oFew1VNKyPtAN9vw8qJ7fb293mw2MfRAsUJUwJPWopA1GCQS4lAHOdb6s3ziv/M8cvdFl3E5CddoAZmqeZkWYbGQkDlygIjg1gXd9bIdwkVv7HMnOUVMfVpUJpXxofz8/jTlukv87CJ1shl6I1UyZgop7iSEWqrjMesRFndAkiEmin0PruB4PB3HvJiTIRJz6DBJd7m/2vf7gbc16+2nT3OZ2UhQuj5CsgXn3Wb7GKEAj/SoxpBaeSdr4QIA6y7W+G1NPeFnUhyRAahZKaV5D5ppF8Jm6G+uL6+vrlLfc4gSAyx5zvVwPN0/HEjCvOTNFodhEAlumt3PTcs/3g7+B1/+B5ewEKIDgWITTWFyZndzMESTsNtf//n7P/3x6+/fXF0OMeRa1BGl67vhenex61PHGAicoBKhGXYeIHTSXW73v39TFvMQu6uLq77rmR1MtS7ugMxI0vZFQSYnAwAz8Kpm1fQ0Tt+8+fbT/ae7hw9dDIg451m9xhRfXD9/df1y3+0Sxc8ut+BN2cDMgGCOxZxc0QFc7ayvMDg/c7Sm5JxRWGzWNoGlixFYZmTKeTxa0UUUIoEwE4FrdlNVKHM9lCyBukB7QYhBK9YlG4IFUQmGQiAMItIN/V4Cl7wsecnLYmSxD8wRUAzUV7P1L67HfR/PLhrNFAqaWtaadxliS46JsUW0grcD2JsQ36wSuXS4qmZVtVZTBdfm7wnojTUn7oQkIar6PJXb+/tf3v76y9u3P/789u7uoeYixLvNduj7lKIEFvYuht1muLzaP795tt1shAVBa9FaPqMXqno4HR9uP5Vah80Quy6mFGMgItMW0Ja1qtd1WiFCEoXODkxESMTCFGJKEpjZAdQtmxVVddWqtagQDUMnSDXPp8P9x+VU6kIc1s4NoEmA0XkNJEAmbFLvlVqnRUtWUGvHHwsHBE0xxs9jPiLq+rDZdIQdYkCiUjXn2d1d2VSAhBM2fyhi58Y/QNBa3IAFFVTX2DNeFO6PY9fZZtMFjrnOVauCgT6yGFpdxA4+L3PJJYZ0fXFdvtK8lF/evT1OD9M8IYowxRBFlBCs0ePMzIDDaqMhwi0m84kSoeFPWXXWQgpBHashEjfDBowRhd3wDFwScXNMAHPVulheLGeoNSW+uNlQpLiNId7efxxPD1aKPWKeuLqhnbM/CNueeFbAAKzl5DrOcEBt/4OEjWz1SJxxeOzHH0ubNnJpRs1E1Ex/HMgMqpmZdSlyhIMCAAEAAElEQVRh1yGimeWSsREo1u0ZDFzVlpwdvVhRM0C8Pxz+9rcfDofTx9tPeV6ihGWcPn362DhqXd/R8Vi05JxFZLPdbPuh7/pa68cPH8Zpaho1Yo61tlACd394ePj48QMgXl7skSmmLnUxnk5Poy0eF31DHowIrFF8cPVUajpSdzRrDYEQObsSu3urzQmA0AXd0Bld3MnN0ZrOq/0wX5MyEJERnVZFRMuJP//dz8MFPLP6V1eM9uV1ewIABnA0cGL+7ArdXOqHLoWXL0LsdvsLr7oVWcbTX//tv3fvf8VmkLMGDdKQwsWQroZ02Yc+8KJaCsdInLGx8LUatF6OSJCIqXHMk0gKEoURPNds6g4QA2+78HLf//7F9vV+e9ltek6sjBWtmC52mkudS50zI8Whh22/H7Y35rvYdcR4DsNY7wqT9Ik3ySMVr+WUrSqpUUqoc4zbeHUNxOj16mL3/XffXl9sGGayI9Y7oSV0cnfCY865Lu8/jQ+n5WojXTCW1MXZyp2dxoJ9kH3aXcQEy+zChbgQceg2/SaJAIKVWjIA3ffokecQNEah/f7yq5ffPts/H8ImT2UT3o/ziRiZqQtctdzrfey7Rw5vw1ORuXF7n649Oq9AeHznbK3vQEB0csAl52kuqvfTaTqeTm7K0m22w82zm+fPn+0vL/rNRgLjNE9LGafcYLucc9W66TsimqdQa4UWlvdkFa1b0/+gfGn96GMp+7mIMULDlfcKBE1oAI7VXTj0m93N9Ytv3/zuj19/9+Lioo+hmgEGSX2KqY9ByLwsoNXREUBZTBQEqMMUohNhSKnvN5ttDLG1QFYLACAHJEHANQlLTc3AzKF18XixrRe7i5uHqw+3W61FOJRSlrIwxv1ud3N1c7W/2vZbps/VJREwgRqu82FfD240f1TCuDc11mr82fRYAADeBFqIgIGQgniIE5GfxtoomgLCHAVRFR1KkzJXZeKYUh+ZmLCLtttLv91c3fBmrxIhSGDph2G7vYwx5DyHeZ5oFqaL/WVKSR2Aw7bUvt8QM/z9hatZ+Bl8b8iama39PhMCMYu0SfHZFdVNm7rSEZGFiVZ1DOVstbhXN8PVILvW2owl3U7zOM4fP929fff+x59++fnXX3/59cPD8eRqIYT9dtunPsQQAkehTRf2u+FhHOdZr68u9tst46pOfvp6mwpjnifmc6NoRoRWV7Mjr2a1GQ27VigVAcHUmkRBREIIHmOzmGMRREJ3JFiKAkFMst9tX796mSQcH+7fv4XT/cdpVC0GrAwJGbAp+AGw5f2hn23AdAXaDAkYCYVb/jWynclhnxcYpRRTH72KO7q6WpNSeZP2MQkioSqA+RpLbdUcVJmRWJpdnjUudIXRsiOmPqXIAQMyemnB8Y+skTY0adWMRIm77YW8jss0/+Xf/uVwuluWQmBdkvbbmcBh5V6bA5o1IhwTsdAXSgSHVkHWkCsFBqzIDgVJXbVFJiCCG0Hr+Fuh0WxHtKBWMgUzQOAUKQRMCUUAPEQJXZ6OpRUTVlfPmeZf/ihbWnuJv2PGnOff6+IHhyZtJDNcS/l/cJ3bysZa01JLUW9ZrCISU2QkNau1qFsDmRpC2zpPB1TVWlGtFtVa9TRNd3f3p3HKuYB5UVtUp2VGxO126+AsgYQ2mw0Cdl2XQkDEJgFtv7VLqVXApZR5nlX1eDyO45FF1JSYYt9LEHXPtfyjjRvP9IDPOwGeWxts6QSIbWxkiIxkQCv1q7l7gyE4Q4PazZubr6+Exwa9+7q/NJLb+Tg5FzTrJHDVhrVtEvHxFjw5flozTwSPM3FYv8IppkFS7Pth2IA5A91/ev3s5fOrX366XZZxyRXckDrhbRf3fdwl6QUDenUj92YWYrWCtTkjpkAhSJQYhAQgCW262CUJzAC2FDIDoDjEcD3EV/vudxeb66HvMJCSVawZPHtZbB7LMi71NEoMsBm6YbO7fn6d+qu37zapb1Z+TxYYy7CR7c7Aal7marbkAICE8zIBM/ccmIXDdru7vnnx6uWzPrnAaMsntJGDp0N9KNPtdPh4pM1pvhjw+U24ugibTufTUhbL8BEgIJEBHU8P43ScphMxx1GANCUh8iUvc8lmwB6id00P0VHXUR+xYw8MHiQmUWZipNjSDUHgyZ6MiBJCiCm07KQv1xyci5jzl+z8UCIgqa0nXy5FVfu+Z4Jt3+8vds+e3Tx/+fz62WXXxaoKJAbgiBIjsZRal1x6ByJuIUtWz7aWv1n3Z6bm3z/mTwrsz5csjTPijmt4G6p5dVvcJMTrm5dvXn79+vrmZrffdn0XIxBTSKHrhZnRQas2SUYDOggdrdal1oIOwrGLHGPoCAnMTKExFRBFaMXJ1ZrtiNaiVt0UEBs9f9t1gpiEljI2Rcs0nWK0lMLF5cXz5y8ur65FViY8IQi7kDddbRvfI5zJlbjy7/HxVjXflrMdCYC3T5wVtWQg9tgZsSGrU1M8CHEKHBAj1xGb0zinyF0KXSAE6He7y1dvhuvnYXtpEsdczE2Y+67f7fcxhmZGnktJMTy7vAoxzHk5jXMctjfPXjxl9eP5pT7etHP/44938/O80O0RyMHzQYEEREbNMKx1soQMiCKGAAoGRdVKzqfTaVqWXMo8LcfD9P79xx9++PmXX9+//3T7cDpNuZYW2ha9+MjjUqoK027o9ptunObDaXr3/u7m+vJ3b95cX2x7kfgk+ZkQgwhwjBKEmB2s1Dlna7gRYiBhoiDRoXFqarWiVlu0G1ibfJFwCJJS6lIXOQgAVq3zMgnzZr97/ezyP/7T74euf/vLL6j5w7tfHu7upmU2xNS7EDIK4jkvW83Ox8Pq9OUuwBy7Bto7gptXdzd1/2xERoQxhhBlqV5LtXVsQoiEnJACOIM7MJoBNoOXYuTGABEkYEBkcDYHNXIAc1tyOY4nx9R1MTCVmsGdwKnRlVxrNWHuUzd0m0Bx6Ibr7WXJ+cWz5/f3H5tjo1Vv/MXAWL2aOSICeGNfNplBC1Z77JLNrM6lTItwp1xUhMxMFc0JDQFNtSGWxMRBiLEFYGgtoFXAkclSBEASAXPFurngEGR3tb16mE734+lhGg9zfih5smzYHIXA1lkbIsGjYt8f65qVm9yOViN081pUq5JWQpDA6+zhKXSBjTBI7g7qLWpimhdi2e27vh9iSq42zZO5EzOKNMufVanOzE3HgijMVXWaxnmc0K1LcegHLfV0PNVShdgBTuMIRNv9xW63e/bsuZtPp9Myz8f5eDqd5nm+uLj46vWb12/epL5vWVewLOePXVHR3Ygl9h0BHMYxHVN9wh+39XJ8HJ+4O7qdB8CILdmT/Gyw3GIiAVvx7GgO6AQGYM0niMD90Rzk3BO1D90RnVoIyPppUmvovDH5V57+Y1UJj+cOPtlN22AeV3Tn8b4IxyBJQhIWVwOibru5fHb98vWLD29fHMYpL9kWqABDitsu7joZApLVUm2c6jjndtBpdXCLwpvE+yENfeq6rgvSkw+R933okrSY3+oVkYMMGw6XkTeMCRlmmlazD6/FtWhZaq2aa8nLFAT6bS/Pnw2vv746nZ69fXfxy6+MZKsuBwAAWeLmUrY3nnPR00K1YGWtcy7z6RjqQuNDl/pNv72+fs5p21+82l/0MRiUA9QJYQm7mYfp4tn09TfTaVqGVLZpuUij16MtMeeyHH4+Hm7ff/gxO43TNM1LnjMSHltwZdcRUS55yUteZkHZhKEgqxUY9fjxvh4KAtdSx2k0qyFGYV4cS1mmaSmzmn6+w6nr+qFPXRck+Bf3Fj6fMg4Arc73FQVZpUGGSMQ0DH0XYmAih8vrq2cvnj1/+fLZsysiuL27NyCR2PWbzU7b4zbNc7csUUSCRIvFG6L4uBT/f194NpV+2stIe3TQoeFyCG5ghkAi2+3uqxdfffPqzc3Fxa5PSUKUSCFI6kLXMxGYGrpXMkXzz+5+5mZWwRFNGV3QCYwcwA3PYKkwI6K2J5WM1BAUXd0Vz1R8CcLYMcG88DSf0L2UBZGQY9el/cXldnfB8pkW02w+/tHMfYUnznvAunk2e8rPFR8COFTTosUtACOHEGOEUrpSE3EgCsyIyECAEMyNOMXQ910UVLVue/Hqm++f/+674eq5cTycTrUWQYwhdP3AwlqrgwNSn9L1fscic56nJY9zff7sRdf1T18zNHCsWaHS5878vI3xuS593E3OdU+To1T1WsEUAdsWZeZWtS5LzYvluSzTNM2ncXw4HE/jNC3L4Th+/HR49/7jTz+//XR3P89LdSduaeLoAKdlqepLLoR4mpfTNJ3Grns4MOL94Rg4RKb+ahdi+ixQciADNCcDqmZeHErRouaOTsQgttITwRHdmsvuWYXdalIArKiVW9pjbYK1VsREZk1sZYGavZLVbLURj9qjgXjeuFvZ8sSf5gsyWUMaiEkYHUG9gpnVorV+0Q2vWFLzBXFr9QJRY1kBGrZBDaiDumvL2v7c+je6DYEAGziAutda5lockzCjEFXC6sCIEgJTkBCGYbi4uPj2m99dX91c7i93m00p5dtvvj0c7n759cd5OoBXphbS/dhCYUtBQPMWcYNrVX++DLRUzdVVm11gE1I1D54mQiYiJ+YQQkxIrnWxqrUsZAbCzCKh4TTCgByg6we/2OyXeTqdxofT4e403k3z/TIdyzjVklsgr5/zD9ZBO+BqQ4dPdqYGQbk6IIYYYt91ISBYXZZ5nn7TuzWPlpyLm1LL/SEahiF0/cV+3w+bGGPJVU1VjdhbJ0jEqhW8aZCbKr+aljxO08NxmmcADxK6lCxEr6pBYurU/TSeRCR13Xa72+12ec6nw+F4PM3TNM9zk800AVTLSKq5lJxLzqo69L2EiMyl1nmZ2aGUok+zxs5P/v/saru/n2XRvzF6AWCiwEggZkatJSdwg5WQRkRn8oyd6w847yLuYPZYIraK5NHG+ekvOe+i6xeaysKfNtYIKCIiQUQIyMyIKKSw2W9vnl0/f3796dPHcRwVYTaLwrKC81azlqrjWOe5qFqbIQamy06uN+nZvt9tuphiH2QIuImy7SQEai5KAADA4ik59QjBEICrshqW4rVaKbau/KINgQYh7Dva7sJmN2C8vnzx7Or59fZqmzafkX5EwOSQiupSfMxlWTLWwuhRJZTMwkuuqvBwPN0fp+OiPfWpS5J25Jk9x2Hp9uXiWX71puZcosygdzq+fbj1h/viWq0s8zLezx+Pi02llkbuJjiciEOQ5gNcqlrLF1fTYlrNal7G+/n9A4kaqJlaJYSQEjODYcn5OB3G0/gotETCEEKMseV/uf/jImb1nlyVCmsR40QiwEFS6jabYb/dBeGa88XF7vrl89315bDbmiryiSUM2+1ut5tKnXMuVed5nqapDXYDi1JZbxn+gyLGz2ReeDJsorMlxtPvlMdsJwJsZJ7iiiS7fvv6+sUfXv/u+5dfXQ7byMxt3MrEhILURvVt5/dmlara8Jimy6ilVoWaF2YRImRpc1UmIWEmXq2w24t0QmdtZQ60WsQcjMiFKYqoBHczraUsTWyU+qHbbL6Q8rfZ7dq9+JkxdJY0YGsyGvCJjq5m7U6teuFmqeu+aHGvzNhLuNxtlLBblp4hErMTAAYhZDIHYI4xDdsNEORlwWF3+eLNt3/48+vvfh+H7fE45pLRrPmZmFvOhZmHYTN03RAbO8zUXYH71A/D5slbeZRVnlWSj8SYladPiASEK53HV9PPZkprtZQlQ1UGJ0Z2XPXn43Q6HOfjIZ+Op4f729u7h8PxOC2naTlN8/1xfH97uD2O4zS7Y9ps9yGkGAhJ3eeS78ZpzKWqm8NUy2Gi+zElIQHPpV7tL6/2u5urHcvnCHt39yX7nEGyKlY3dauuRtCEEl61OFhVROdmlMJtSg6IBNzmscQkgZMwu3kpBZp+a5kd/d7LT2CoNQS5vbt7//7D8Xhwh5gScghdJ5Kaqg8MFLVaXe3kAIC4DUmasU6IEkInjRrr5jmXJT+S4d2tmTR584VsS2w1gqvIjk3fbdVdHZTQSSgQtfTNRocl4hTEndzdXJGUzLyCa0SSKMHUM2RGGoZht7u8ur56/uzZy1dvvvv2u+++/e7Fs+ddSqb6H/78H5ZlPBwPp9O4LMZUAcEUYM0wavZI1dcD2tfkj3O/7S21W42aTAFAiPouhRQQYaVVUNOLxNQlcJtraRxwaE4MLDFFInFHJJEQANCs1jKXeVwux4tn0zJmnct4mA+3h9P9NJ/yeCzHU86LgfqaV73myQIBrL6XCODoppoXjnFzvd09f3b98oXV+u7f/lrevl2Z4efL3KdpfjgeGJCFJch2v7t5/mK738cQQ4ghyDwvquqOqpUlDP0ACOOoVWtxDqaq1dXn0/F4OJzuH5ZSmZkGCj2FPkQJIYbd5UU1//DxA7FcXl5ut7supmWcDw+Hu9vbdroQh1zr33788f543G634HA8Hk6ncR5PgPT82cuu7znE03j69de3kQXcu/Sk6MdVDL1iIWenlXV/O1sbV61oDuQG5GsazaPFHaUYuihg3HZkBzRAawA1NGsBQiRoVshtttrCNhyaibWvo9vQZGLtOHtycLSip+FAbQcnI0DzpwcMEjKziOA53J3cCTHFuLvcX99cPL/ajqeTET0sparWWvNCs2NxLUXnueZFa1F074V3ib666F7tu1cXm00fiDEKD11IgYUJEKqjAzKyFSiHaZrtVKpI7DZ7DmJABTyXWpaiuVquXhTMKATpOk49SnAFRrm6fPbVy28+fTy8uXqVZHUed/U623IseRxPx4fD3d08H0GVmVPXpS5GJ4VS6yG+e7/72w8YB5dgfr2JlMImxG3oIQFsrvy6mFlmXPL0/v4TLkUdFvUaOBCMy8On+4fxYdFK2PVCDLXWuvpbQTN2R1wNsdFN3BHB/VYRKqwKFmJq986dSinjeHq4v69rXvrKGedVYn2u0v6u9T/3y9YGF4BkgCQsIe4vL16+efPs5mZ/sQtMOS8x8NXlZRg6I9RqQBi77uL6+jgtd8fTNC85V6IlHo/o3qVGv6AVuoOVNv73I6TfjI5WU68vR0oCprDCu4+Meu1i9+zy+pvnr7959urlxdUmJWlEM1rRDiZgBMNz9rI9IqCt+W2moQ6qpRSWYiHyaj1DfMaDvCUXoPHKyEHixiRzpDaxRkAQZ/egGlSrr9GtxcxYJDw5LL/49Fd7k88KBoezgvPcoT9KTtu/b4SYhp2Vhse6I0OM4jVEq+LaiNREJIiM4u6OEGNIwyb2/cB89eJV3Gw5dsNmt7263u4vTd1NwdQcai15ySyy3+37LgkiEljD6CgycfhckCESIws83rC1/GzGys3Y7cxZdXcwt9pCI0xbD1g1r/VTrTZO82lZHo6Hh/vDw+39eDjU8TSdjvf3D9O8qGOuOs3Lp/vj2w+fDkuREPuu3+2GXdd1QdoecZxnQ1B3W2opmrXmAku1xBTQu9TfH8fjuOQvnCEB3K1U0KKlKpA1D070dYAO4KqqpnUNGWGn5vD2uSNtnFJiBFS1qsWsuhfVUvOC4JZnr6XkRUIopcxLCV23RanuBoQizTsAWhKYV4RCoEBOSMTQqnBCCiH0w7C73Dr43e3tdDq5qqs+dpveFFVuzEKB0d2U0SsRiCARIJmZVVNAe3Q+JWyaGEcEYWIRAAKD1Y0MK4ISmC4TegoSZdj1iVLcXF09u7l5/mK9Xr188er5zbPNMLDIxX73/bff3h9u//2Hv93d3s3zVKyKoDsxITA98mjWNO7VWeVzy44IzI95fiwEDTQNtGKlDoRMziIhsAiYEvMKy3kzTvVGWAJkQhImYgKKZrGmkPrU7ba1VDCdj/PhU3+6G8fjcnyY46dxOmbNXovV6u7ezPEaILTaYiKEGLvtZnNzc/O7b66+enP56uX0cD8dDw+3ty2E9unWFruu6wbTyiyp766fPf/Tn//5+YuXwtIskR7uH4KEt7/++nB/D+ZBAjLmnGuTNVgteQat8+lQpxOZBnByY62QFw682/T9bru/vCyqyzKbOSNZqYvqdDzO4ykvCxIyCbEwc6l1HEc1c7XT8TieTtNpTEN/dXWzGbYVfJrmX37+OYmgFvSnw7HWatGKgqzjmbNOrgFY62avoOBr+/m5mW7e5UMSAvLVy8By0wKsckdrWR0N97aWW6bqtWjJyzxVrcgiKaXNFil+nvX94wv/7i9P38vjeeOtxQRTAu8Cb/qw33ZXuy6bIeJSShRPQoGRzSjwFkMVL8G6ogHqZaKXu+7ZJu4i9wSEFhB7Bgaouap5NjdHdqmLTXdLnqoWDbHfQUqdIHGtPudalqpLsVygVAILzBASkniFOi5WTZCfba//l9d//P3L3w9xRcdNdTkcxttP83w4jffjeFyW0c2YuZgXtVg1cJ1gNn+H4V+WqlPJX3/19etnN1eX+xC7EAMRBoAeDL2i5xzRvJ5OsL3wXMTqWGreRD9xPXnOBQoGJ881l1JLrarrE9xiWpBIEMUB3auV6t4iV4RXEhw2o79cpnGcp+mpNTM+Gc08btT/8Nau+G2bTwIFSf2wud5fP7t+dvPs2Wa3DYHNCqNHCQCec9ac3T0E2W63290mxADgtZZlgYlJmLsYhSSwgFoDUWzFFj6XMn9/srv7Z27Fk0tQMzA7iyHV0gKarEvxqxevv339zcuLq33XB5HGcGReybOM675jsEaMwXn/aU6RDq1C8VJVam0fH2GTwjWvCAU3RCNsASy2AvqtkCc0IIc2nUcHDxah0NlAoWgpXu23MsuVzPslENOuJ9Y5qx7BvQKsxq2rOTsAADoqUHXQUgxQ3cCtaCEzVkKRSEzMgN4YsYgeh3Tz+vWLr3/Xbfe52s9v38pm97zasNmGEBwYiMhboAk2wauaAzo6qIMhAuXAIcS16kdCYuGQ2kexutMinokcrRBrZJjmf1utZjNdy1A1MMPzTH0cp18/ffr5/Yeffnn74f2nh7v7ZZrZ1U3BTELY7vZ96kNIS1FEIITtbnO521/tNpuUIkES6fo0l5L6FD/e/frprtQKSOZYqoM7CGegpfqc65TrUsrjbNHBqzuAFqvUcrmYgggGbkIGM3Oo6GBuYGC1LeuzY55/XtluuY0ztM5mxa2ND0CZrdYl564b+mHoN7vd5U1VP4zTNOWlZK2G4OTq7mgqqBiBOTQLD0JG4H4Yrq9vrq+vr55dHU+n//pf/++720/wZc3vDqoAjjEGDlEjgjpaIfIYmBDMtVYv4A4kMQBic9fWUoE4xRBTCjEikpXK6Cn1yFpqznmZprFm3V/1F1fPrq9fPnv26tXLN8+evbi+vtrvL4bNpu82fUwIAKYphtevXt7ef/v61Vfv33+cprwsEwIxYwhCaEupACaBEbjWupqrfPFAUNd3w2bTDV2IIuRkxfNsYBwEhAkZiZspkYMDgUjEzk0IymxlsZLde2CmENFMlyMQxn4PEkDNgFAsdk4E/SanodtfL1V1PEx37+9Pd+NyKtMhnw5zLSqBwaEstSy1zsXUIFB/dfnyz39+9ac/v/7Tny9ePKcUPvztr+/++tf0449I6P45DCbG+Orlq29+9+0yzw7Qb/rffff9//Zf/svvv//D0A9RxAHevv0lxlRKvft0V8sClxhD6gerdUEAcF3m7GXRPArq5a5roQpmZTneIdR+k1ISRq9WyV1rGR8e8ukEWk+Hgy5LJCQR5oDCQz88e/asS2lZlsPxdHd3ezwcy7xszJY594OzSJnzT58+Cvjldsjz7E8OGAO0ZgeGRATUiMeorW6z5hrRsj69gKNRRAdHcmRDRUQh7xgiCyEaeFE9wlxrJaxgYMqqtfX3imgM4OBlKcfDfH93/+ljNU3bfX95ySlQkuZteW5YH083eFo5nWdbX+y6vvaThr5qq8hdS9Y8g86Cte9ouwlTDohgRjHi1RCHCKRKJJ6Gk4Wrk83TLOU4UL3exsQ0j0sBSAE0ihu5l9OUl1KLeVXwwnmxZcxajQH7zo1lKM4SzWhpaywXyxnyzEQQBgWxAnbKix7mXJaHhz2G77/6D7//5k/7bkXHrebx9u3D+x+mMk9lXPJUtfqaIGs5L2EOjd43jeX+ML57/+6XX3/+4x/+qf7H/yzCIQUKjNog8zWOyr3fbH9382K7TF0K3cPdTwRj4t12gPRp+nAohxmWBqA5MQqu+O/5mAf0NsB2MGQ463Oamq0hd2ZWqzYFxf+AOv5FtfDbQS20GDRAdzYKIAN3u26/i1sqOJ8WBYgpdlGISJe6LJrXOVdmxtSFrosxErFbKTnrzNilRI5BgkoChQrNYrttsP+4fPnyBevZ13G9hBvC3CBJcAAQ5m2/efX85ZvnLy9bxMs54wqxGW8ZtpBdV9OqWrTkWrNqVddzvCQCUIOsa9XPdmHrr2/mobb+xZq/BQBRg7ud2j9vgCewu2hwh1yqaS2mS56XZS5PI+wfixiHJq+03+SruMMZm2kKFVtdBgDOghAEQIMK4NV9qebU/OkdgFugOBGwkDTbXFd1ZEx9f/Xs2bd/+EMatu/efzT3+7s7kUZgkkcnJvKzLROTgUPLW3Y3QCBDQPdwnii3jldaWUVNSgDNhM8e9S1tluFqjRbtro3iB4DtzpRlWabp4+3d337+5d9/+eVvP/3y8cPteJy01iAsTIF5GAZOZd/1z/a70MW7eYzHsRtS30kfpQ8s6H2QXZ/2m77vY9914AB+fxpzruYOalAMTlN+9/F224UYoLu4ev5Pudl2IiKlgDFhFzHG9va5te3YSMdnZ5RVdotgAITu1FBohGY/i+csgabKXswyoYdmWYMIgCSh3+y6YYMcctFQMRfEYkwWAyfBIBSFYpQQhEQAoORKyF23ubq8fvnq9Xa7BcJaSvvd50d4vdasE4cYY+LOK4E5OgtBikzoalpyXggNMMSIjKa1lrKMCwJwC7ZeWduGCCJEzOZESITSd5tXL7766pvv3rz59tWrr549e3l5cbnZbFKXRAK2wrmWFla0221urq+vLq82wxbgvaoRYhAGoIpaTR1JhB/lyOr+VJ1ERF1KfZeCUJA1RwVd3So6kjO1W8TNxMDPUp+ABI5WtKCblcWEJQSklSVkZSEJhBBCCizNi8dKZglls6iVtIkSYLONy1inUxkPi6rHFMAhT3k6zKfbIzrtri6f/e67r//X/+3ln/755ptvu+2mlPn+/a/EtN6YJ7tYjPH1V2/+9PDnJtrmwF9/87vvvv/+d99+O/RDDAERuj7d3t3f399/eP/x/u6uZAXMZorg5A5arGYvC1hmghiwEZdz9lxymanMY51jdi1FWYtZsWWqAFay5bkXkj7huYjZDGnTd4h0exofHh7meSaiq5ubzXaLiMuysFnVWpfsYFmolPIb/67HRwcRqPnEuNNnuuUqW8AWoYpOgEAEZ6YXupFVBloHo2gBPRKkQMgEEmOILTcNXK0udTyU+7v86cP46eP9p49ABFZDn9zqb7hj/9PLAX777W23IhJabRLNymJ5hDKK5y7gpg/TEoiRMaaIF710AqgmqY9XLxbshoc8Hw44YvRl0wdyz+PiboDsQEvWnO3hNM9LVXc1hMqqqAqta1aAXArhzGxmtGSruWqpXgqVCsLVsRhq1jpmW3xeltPdXa/x+W73anMZeRVbmNbxePtw9362kq2oNeADAKBFlGitBZmJJ1zuj4eHh4e7+9tlnjfDZrMbNhfbDgc3XUcMDZnFJHGzvYgvXntgSLEMndZs2w2EnuPH6af3uZ60GoCTULP8dXdTtTY3RER3MDRrfkKATeXRUAXA1uXa07yRz4sLV5rcOgH0x/748XvAEYwJHMg8OHXAW5BLjFvlNBniUpdKXcVNL8KkFaxWyy2njUrtALchXg2baRiwalVFV/AGVAMRILez7eyo8T9AYlr9gJ+VcV8iMZEJVrM7d3JCTiFd7i9fPHvx7Oq6i+EzD3j1fLdajcXcq2qpdVmWaVnGXJZqVc/0Alot5M9TppWHbE8q+EYJUG8aAX9kp57nrbiGljXMSziYtuBIyzmP43g4HU7jyfRzB+Pmq6dfS8Q9z5JXbfXZ9g/WQZi3X9sQjeZK0QQTxbwspqG6CzIwErAoG4QAIWAQYEYyVINKJNL13e5id3Vzs7u6Hna742ma5nx4uL3YbYc+cYwtQhmRuz4RkbUwcq1qpmAOCBDM2N1gNSkFFg4i2t5MG7RoUS21ZK3VqkIL3jtvHGbaZkzMJCzVfZrnjx8+/fLLLz+/ffvzu/c/v3//9t3H43ECb2UUMoOQZ5zh4WHYDq+/evmGXlGkn399fxwnrDPU9ibR0KGG7W7z/ObV9eUVoRDKT/VjrVMzja6l3t7d5+Ph7sPbT+9+9BB//1/+X/t2M4XT5U5urrq+jzHSmQYBal71nItkWtXdsVnat+wuIkQ0MCISjkRopAhuVky5lkYwceYw9MNuf7HdXewuLncXV454e384jfOyFK1OICnR5X5zcTFc7vrLi+3V1b7vOwc8nab379+D0/Pnr56/ePXi2cs55//2L//y9tdfTsejVUUE/iLCw2pVN49R+phciczRKQbsu8gEtZYlpyBFHZhJAgVBq/UUTnkp4FqWMedFHd1MBBWJ2Eup4Nxvrt68+d1/+k//zz/+059fvvjq8vK6S5sQYytwEEhNNWfXAqAs3PVDF2Pf9TGmdtx1MXYpVGv86GDoEogYRFhEkDjE8IgeI1KKkiIzKqGl2EsQd2/OeMwcQkchOjcDvpWJS4AsjBhIOy+LzSezCiIcEsfOSsnjEYk4pdhtQrcD4lJLdY4RHVCXioSpF+Ghv6K9szkxSdcFcsxzPt4+fPjpA4fNmz/+xxff/en6d78fLp8Dh3mc5uluvPs43T4sx8nMnfhxx0ip++brr/vUX11dSQhzXobt5vLyEgiKZiePMQ67zVe/++rhdLx/OP77X//9eDiW+0UCBIFEzqCkFUBJwN1LXRCRhAXJAE2Xw6f3ZTr1/UAkVGsHGEAZwcUTSMfDmthEzDHELpLr8Xh69/bt/eEQY3jx6uU//elPKaW3P/96PB2JOcZweXEZCLCWtvifFAPeqKzrIJla5Fwz3vWV+9fY5LRuA6suyL1ZB7hWXay4GgIyGzo7pMAg0Shx2l5cXA79EJjFip3mw7tfDu/eju9/ne/u8jKnYbu5uCT3sxlPm4t+MSR+3KmffP3v8O8mnHTHlTFOpqp51uUI+Ug2J/G+474PEjixbCLuEgm6qcnmcvvqG+OhS/ejcJVMKilFdG3lfBo6B5qnMuU6Z11KY9BzTBI4MQkCuRohCouq1rLUillNi3mtpMYO4Fiq56J5qWHMhHUZTw+fbheTA+3nfDr35KCm43I6TPeLmTXr73UjA4SWKVcNTNXaDlbr/XE8uNvF1eXF9cXr3319FTutxayiC7lBs1cGCrG7fv6q73jYwvGWx4Nttn5xJds9K9yp2f3JzTAEIUZ1NVtds4noEZVp/gVE6A5mpuqNy4KfVcmfZxF4psU8XgDwSFGlxwIC0QmcAR0ZMBoPSluF/WLbsQbPuHglCF2OO48xiJl7LZazZtCMbsn9ktLXlzdS7Jeq4zyHwFEAsSrkitm4uq2c4cfy5bxB/ZYlg2e6GJ7ldWsRwzEgIyY2REdnly51m6HvuxTWGL9zxWGuqlpV1QCdSQDcXE3reDq8f/9+Ljn1fej6GDoOkfQxZe9RdPeUpgIrZrJ6yALAmtMAZ/8If/LqH6d3pZS7+7sPn95/vPtweXlZrT7+PFuHveeoH3usmRpbxJuEFwBaU+MtcthWu1VAJEc1LY2eUQzFhbghqQSYHbhZr5AJgjcDVrWSSy0F3GKMu4sL5FD1ruTl7tNHcLu4uuq6DgmJqZm81VKrW105NuCrEdvTD8a15DLPaq0GbaOrXPM8z6OW2uQEjC0lBmHNN/Safa66lHo8jbd3dx/effzll7d3d3dTXgLRxW6TQqzFqvqiXg0cXcyaXycL7ffbf/rDd1eXFx8/fsrL0oXQVEApyNCF3aa7uNhLzLvNpxQi4gqbpBD6NARC8YJgp+PhdDjoIxMeUVLAGEgYqdWQzfvErGUKojcSM/jKXW6muiuHqklycTXDJmZJEcklIHkXybuUtvvLYbtvGEzq+mpKAEKwHzrZbfvU7XfDzfX++nKz3/eX+83F5Q4BD8fTx493Nc8hpO9//+311XNEvr2//enHH3784W+Hh/taFvDahnSPt0bVzBr4abVkr8ZkiMyK7KRm6mAo7q7m4pCicJJIlJdSSl2KTrXmamqAChkhJUlx2O+unz/76vvv/+mf//l//e7b7y72110/IAoCmDXLfzSvrrWUxaxIJSbMy9yM1IgohBCjhMCWM6JxaJ8WEkOzr821PiX1I0JgDIJBKAi1QsddkTiEICHGGEGCIimgNa61EDkyOAJhDAZa58ldbUruTsTE7IoOBm6t5UIgIUYJ2JLNMhFR7JKJBUYKXeg2MXVdFDKr8zxepn7Xcbp48f33V6++3t5cSYhzznl8OH789eHdr+PdXZ5mN39qZcFM2+2GSb7/7ruu7+8eHopVA3s4PhCxCMcYrepmv/3qm6/maUld/9MPP97f3bovaBlKdq+Njl2tVtOaFRElBABSVTPXWnRZPC8hJGEWluDETQLGwC0puvGbU0JhLcs8jg2Def78xTfffvv1t9+4+aePt3A8IUAK4eryMhBOh/vfqC0e98kz5dmpmWDho6p6TbNBRKazfEThcWc3NS2KWhwNmTGEoes2qce0kX6ftte765fPX73abzfJ63K6mz7+8vD2p8P7d3WcRAIPuxhCksjIj840/39dzVbw7Ezj6Kq6TDqPoFnQY5BN31UXc+hEOoYO2wKiuLvaXT5H6bF6Z0uhyTITklthqIQe+k4Vc7GmfmAgB2fAKBQDBwrgZNhyZs2qlmqlQq7m6uKQWuZOiBA6pugVdCnVfDye7h8eAvD9cDjlyc4Sa3PPmpeaK8AZ83g87MEdV0/1hnui1eqllPfvf/3rv/3LzbPrr3/3Ter6vutEyAGBmvTd0ZklpC6G5CRTinMMhxhzn0GxHMdotbrV04KBBRnBW4u3Wmm4g5qiISg0pQS4oyqamhkCCAkiVqnC/FSWTI9a5bNceTW4+7KIMfTGxhKHDvCSwzOKz523BQXMSy3oPPumzDGagLtbcQ1mxbwCAFNnXequuq3LKd/hQZtUoywF1Lw6Aayj0c8ly1Mk5jdFzKPP8NNFJjR0HCh0goRQjF26kFLiUpZpGcumU/c2mmmYSq0ZEUpJIaYUh/beHx4e/vf/4//9cDy+fPPm1ZtXL15/lUIsVclBOLAEJPJ2UDXrf2iEkPMn9Ui3XXMAGozahg0tNtFXQyaAaR5/+fWXf//prz9/+Pnq2Y3qWsQ05OX8x9Wb25c/LsFWEGjTLq0TOFzp3tCQQSRCMvfiZCQbECACQbDaEEOsZliidYl6IDer1aZx+fTuw/7q7affvY/DFmPiGLf73Xgcf/7pp4ePt9/94ffh2TNO8VHdTkAM5MS+vnBccwjxcQ+q08P9eP9JV/gIW8DdMo+n08FqjTHFEDgEOBvpM1HJOh/Hdx8+/ftPP/3y/uOnh4fTcdI59ym+eHGz221EeBqX9+9v33+8e3v7MObMjEE4puBu7z9+DIG//ebrP3z33f3d/TSOWkpeptPxwID73XYYNiFKPc7TksdlyVXVlM22/fDH3715frlPgQIY6Xx9sZOnFtdaIS9FqyGCGQIGWV1bAKH5yyGJmzcx5RqBuKaaE5iraZumASJ3Xbft+0gbxp49SqA4OMcCOC6VZCb0jmG77/bb7Ytnz7/+6quXL55dXm43mxikJWjB7ae7j29/He/vyHS/GV6/ehmk++9/+cv/+X/8X//X//m///zzzw6Qc3adyzI/PkhNilTVtJZZ7e7Dfck5hBCiiKyyVTdSZVBAtC5RFNsNaXOxA6dcynGc7eGYLVfzogpjuQjdyxdf/+EPf/7nP/0/vv/dH968fHm53RGyq1tj/gI+5myfY4LmWqyU5eOHd+9+fXt/f0/E/TDEKIiuWqoqSGjLrTkh6mppWJ/wYhxRg0DfpRhTs0JkZgkxpi6kLkQxYlU0IINAxCEge7FcwEESOwoW9FrK8d5rjv0gKUnaOYDVUpe55kohpm5oCcWVkZGFBIUqVNAsDl1KXb8JjKCF6sSX3ebmBuKOQqjllI+3Gk9qmk+3D29/vPvpp/Hurs4ZzBmfPC/mORdz64dhu9vlWu8P9x8/fqqqq0U/UQgSU3r24tluu//662/+/a///vanHz++/+Xh46+nu7nOM4NXreOS55yncXaHEIJIYGZhEnI0z4AYLaTEiFQLEWGzLijFASlI4NDHoEjjOOdlSSndXOz/43/+T6/evA4pHA9HDjIMfYppv9teXVwQoWttNCl4XGTgn6f2rSIEZ4Tz4NQRm41FW8xnAeMaLfWIR7s2Y26zLsXdbre/fr69eb67eXXx7M3m4lm3uUCoy+H9crjNn97Nt++m+1t02mx2u/3Ffn+12eyYIzra2Y3mEXT5n7AWnl5EGEJydcAVCddS6njSeSLAEFKKuhli6gkQAxNZtWV2gxCHtLvuug1wHPpIuVPal4mXaQbTPkVioCBK0PehuUllJFMlwIDOWnRxVzS1al7dq1qulqvmauSwlUASU0ip2/Jwnfq9kGituZTjfLqfT0xym+djLfrkEDUCZ5BGRnpEnRDWpmxll5yHCgQslJflpx/+fdN3l7u9lvL997+/vLp0xxawIi0V2d2sOnbDbu92VctV1VPReej4u9dDJAKf391ZdakOCEYMQZiI3cDN1LhpBhEpBAHAYFpKySUjeIqdq6JbCk9coc/oyxmHwcd7uiJMfnanQCAHMhPzDeKL2L2Jm1dx2FKCClBdCbECl0LsDbSuQIqhAis6IBYIl8C7RP3WPmC6y+OUSz1MltgDtyRrAMK/K2KerrTVqcid1vx1fhoPKR7EmZyYCYUwAHVCAl7yvCyzqq5xJFBV67yMd3fvAfzi8uby8irFQYKEGJB4Xso45VLNnZkjh0Q0E4PEKDEi/abV+OJqSM0ZoFxdXNb3ZH6WIWAbtczz/Ou7X3/65afbTx/H8aimT3/UbxHPx9PHoZkBq4MZtAzcxyLGVpagEyCae3Xh6g5t0myG1cxqbX4LGJgdxAEcFFBzub+7fffLzz/+9d9AwuWLl7EfgrDm/PbHH1NIl5dXm82uD2ck/8kNOlPl0FeR6flpqXU+PJzuPjYEDZDA3WtZxvH0cG+qPgzYd4ROEAzJDYvZeJo+vr/94adf/tu//OtP798fpqVUDcBXF7vLYkHi5eXuYmfCgUkU8DBNzNQl2fSdm3/8eBdDuLl+dnWx3Q8b1bLM8zQejw+Dm3WpM8DDNL2/vf3w6e7heDAtQ5Kr/ebbNy//+ftvXj+/TpFJax4Pz2+u4tm/x83qPNl0rMAK4GaE6DEQ85r8SC0stRWfDq4A0mrZFZ5CNzN3bf6zzkQh9EPad7IXDCQVw+Kk1ZAoxrDpYtz3uz7eXOzfvHr1/fffvXjxfLvrQyDVZRzHh/sHy0uZRnJ7dnn14uWrm6urw3H66eef/vKXv7x9+/Z0vCNOTdH4Gw+PRgVTr2Y6LfM8LSKVFz5bxRM4gwcwILRaUcjMYNtJCEwSYgddKQVBixLGLu1fvX7zxz/9x3/+83/60x//8+sXb7Z9CsRW9ZHp2aDTFdZnbHbhpdR5mu7vPt7ffZrGIyIyB3WoqkstxbQJDl3R1UHNc7V5sZwfRT1EmFLo+9T1vcQEDkAYQgixCzGFECWwAZU1HpaZQ0xBUJSqFfe6AKHEzrCoFp1NUYksxAQkoKpa1AqAYUwsyATCnCS4mHtFc1Rk/P9S9p/LdiRJmiCoxMycHXYpWCB48q6q7tl9/zeYlZbqmq4kkZnBAFzg8kOcmJmqzg/zc4HIrF3ZOXIlCAISOO5ubqb66UcwOB+Cd4gGAojknV90UHWijBDTtE2Z1HR4+HD3048Pb97GvgczmglsnzwVVTNjJueYiMws55xSVOaMYGahCs67Rbe8OL14dn55cX765vLsb3+tf4I4bu+GKZJpTHk/TP04jcOkasTJOxeC946Dg+DZ1ECNi9aAxRwzc6FqFatMypJzMgJErJv6lHl9dnZxcdF27Xa3fXx8nKZJNJu6+QRkclX1TzvkXLvMP7NnnTGRK4nrILP6+pcQiZk+bXtlKOjJhaZebtanFxcn55er88vl2cX67KLuNuiqNO5Vo8tTAAlUyNyhXS4Xm5Nuua6bTsn9wvjl//EHHTthFpViMV5sTVGBqPKhC7UHp0iMCKBJU4wKQL5antXr81AvDMCHSutWUAEwZzMw74AdIAdk86YhaQ4KUgiOxoAmlmOWZDJDAiZmMnurCAKqESCw9754nrGPMU1y2A791e7uur935N9vb+8Oj+nYJCMBO/bBMxIYzGNw+zTK9Mn0uJBHEZHVdL/bfnj/7oe//XW9Wm1W67qqnfdUAFIi5x0iSFYz9nVdDPBiepzitml8E5DZTcJVnfoRDpPuJ0pqhMfoWoJZsGTlVxhLikRJgwMMIYCqSQ7OfXrwz6RxePryhX04bzfFFoaI2FETfGXQRD1Tf+7rSx8uiBcGkBXMlFlFdFLAzOSI2YiUWIEVzcAyYgRswUKdWyUveJf7fcwKSuyNGYrP5P+XIuaXy9sKteQfkZhsKGJpysGgy+ZQPRDEmMchjqOImaGY5pTTNN1cX/35z/8bCH/1u/9WtcsNY+WDSbs5PXv9xVeb/XDx7PLk5DyEGomQPDG5qnYhFFuNJ4n38T5+vKFHwg7iLEfBuacoxlizIQ6q2jCM19fXH64+9A+HPIyfcmKOL/xTLPcR2zlyuctxYAWYARADnf8QzWYGimZUTBWKHhUBGU1BTEQSm/MI6DwGJ2RgJkyas/S79+/eUBXGnH7t3Mk5SZJht33/5mdm//LVZyfn59WinfGxQs0yFRUVOQbMoBYZMAAUJOawHXYPLgTHnpihJN3HcRwGmftL5hJULBRz6g/D3d3Duzfvf3p79e7t+4fdToAUSUDudof889ttPzx/frnsOlc3p2dnyDxOU3GcAUTJcnOzjTET+WmKL59dLhfLtqmXXbNadDklUbh5ePzx6sOfvv/xhzc/393dE9DF6eZ333zxq69ef/P5q7PNkhBQskyLzbPzcFRaqeRht5P9g4JHIhMjREmOnAN2xJ+Qr4vPBRtRsVGRWaoG8w3DnAxBSn0QwBw47z2qWmKjwNw29eXZ6bOL0/N1d7JqV019slk9u7xYrVah8aDa99N4GK6v3l+//5BjWi9Xr7/46uL5q0W3/HBz9+bN2zfv3sacAPzMkAawX8gyCs5fyFAMlbcMkyBM85IFMLQZ1meCGHEc8+1DDK7v2nq16kLl6kWLlac4Ne3is5dffPPNb37/+399/dmXm/VZFfwcF4FAjuaxqpmhmpmikmOPlfNgh7x7fOh3D3HYyTQheVU4jCnrNOUkZk4yK4IQCmRNMg2yH238WMQ4x4tlt9ysfGiRPdgc/+lC7XxgV3YKZmJWBgDPWAUffNDKpZ6G+1HEfLshzdY/ahzifrAcydVctYSMrDRPCdVUCSA4pqoGwyyH8qTLqIERGUEBzVCSWN8781XXIkGUQ4oqKW2vrz787fu7N28hi/cupmifpFiXPRlAckpxmqY4qlnbNNDWTAgGWTIRoRqZNXU4Xa+fXZ4/uzjxTmP/+P7Nj2NKGtM4pv0Yp1h0O2AWR8xM0QUOAZvaJwMxFMCYxTsO3ocQDFAMkxhonmQck/ima1abrmoEsG5aUbm/u3v/4fru9mZ7/5hiHEKVNGPl2rYxIgrhUx/CmdqiAkpmWlqtInVlOla1etwx4Um8V6ABmw9Wcj6ERdeenJ+enJ9uzs+71co1NaHFaW+qRk7zZHmqA59u1ibZyBmF5fl5e3JaL1eurhPSbHyHRwXE/5PJ0oz/I+UiDARDhKKxZb9ylQXNLMoMlqd4iKZGrnbdann5qlqdcmhSTMw1+g4AQYCTABkTlSLG1CgLcy62HUBkiqakikktSp4kixZ9CHpmjyWAyABM0YwY2CFRlLwb+vthe7W7uzrcXw13Nbi1+A93VzFPx2uhEHzb1MxsBillmfVd9sQ6/RidifOwvVAUc87393cfrq6uX1y3bbdZLyuu5yEtOWIEAyNQIvLBN6swravxnnBiNA4JvDs9nfbbdPsQ397AwwFiVAUjAkRVybN5ExRwrkhjkMkzk3MO1cR7/0k+F37k9SLibK2mqmDGOOO3TETMbd1sNusl+3bIJxHO1a0NF5o7U1IAIFMQw6RFNuCZPXFAJjger9lgMgjGgRbeg7psgmbTIGAWDHg2ev4nYu8/lzI4bxm/mFoAwDFpr4QJiyIZaQYZ47Qfx/049WOsHFO5QzHJoR+RWYFjzlfv34FpnMYhplevP1eFummqugLDnJWIkdkFz94R/UPndFwXRMcK8B+BSntynyn6cCvjCVLFKeVpijqKTQKfsPrxCa45skwK68U+/vePv9kACnOm/BLNuD2RQUlGUxU1ATRmZEcmZGjZdMoZomUEBgUicg4tjWN/9e5N1S1effHVarU2NUlx7Htin1ISVURU0WmccioUFMlSVFuliHFWa1fXZQpjqjlOeRoYQQ2wBFjmwiBBRCz4YWk3pyk/bHfvP9y8/3Dz/v31zd39475PWZEZkMSsjzne78aoUWC9XIQQ2Mw7DlQTs6qOMY8pDWPKevBv3oMZIZ1uViU8B5CBQUyGJNcP2w93D/vDgQgvN5uvX7/47ZefffnZs/NN19UeQC2bYqiCf6r6VTWNo+VoIAgOwBRQQVEFWZFnmszRxWhOisCjeqs0lghKBM4zYBGV5jT0EQRDG1xgAhaTONVsz85PXr98cbJsVot62YTlopsxmJyHvr+/f7i7uX982EuGzeZkc3r29VfftKvNfoi3d/fvP3y4e3jICuBCGViDZWYPn7wwJjDHdDMie2Q0VVMkJLXiOA0ISoTmUBSmpDAIQWxHiQbLReUratp6ebq6uHjxq2/+8PVXv/nyy29ONxfsHCEWZjzRkY1X3mY7kiCINEOMabvbXX94f3v7IU0DgSKYGkjOZe6GaAiChqTMYixikis1/0k5hog++KqqyHtAB2rE7OvahZqdJ/bEYMaGhEQO2TM5AocmWNIZDYEoVAgeZMoSZRwSkBsHAIemCMDlCjQbApgiovPOpQSSQQTJE3sCIxNEIvauWVmaZJpMty7U5EElpSEOj4fH9+8f3n3o7x5J4WjP9Ys9zsBEZIqRpymlZGbeOSIrgVwFJGNERxS8b9vaE/eHFtCmlGLKY4yxn8YxDVNMorPIUQAgRwMU9IJJJQOKQsxaueQdBe+brEAcc07ZFEpQGdXZVs2ibaiqavZufzhM47i9f+j3vWYBsJTTYez58SFKCi7IP2pH7IkNA8VOC7RgATRvcFSsGj/mAxx3S0M1QzHLgJm9VY3vlmGx8k0DjrIkGXZJhXBngKaC8SAivm4Wm9PsGuBqefms2ZxS0wK7J2nEP27d//9+zIqVg+jsZgHErvb1quokQwtVlpwQUuof0+4RDet2WW8ulmfPw2KtagBj3a2AXMoNEluc1GLxIEYXKAtRZGLvWL1mAM2mglkhm2bQDGIIBcGqiNDIIWo+4vMIYhYlHyS+295c7e+u9ne34+Nj3rfgbyQ87O/yExKD4B1XlffeA2DKWURyUkmaROdC5hi/96SFKZ5yZfyRUnp8eLjtbsgEpGua4BlMnSGYjKYJiJADuIZC7YJDc46JgwNHXcv9YuwqQFTHcn/AMSMWHxO14zGJZiIyo0DFW6iMnGbvk08+T/Xlk/DYATCRQ+aio3Guqut1t7g8PVuR89u+20+LPtdZK8vBkEAByFCOhRMViT8RoJUMWhNVMWNTQkWkid3WV3uNo4E4y+QECanEeNmniwb+qyIGAOy/5MTUwZkaZnSgyGqkhlG0T3nbT3fbw9J7DL4JoarranVy9vzVV875i4sXOen//l//88P1tSg+u3z+3//l3043p/3hcOiHwzBmEfLsgiPHOJvDADz5Nc07tAE7hFlPNDcSpYb92Fkc+deqaEDsXajrpmuqjuCG5RPGNRohEAIj2nE9AcDTX+ZUe6VC2yaYuTE8LztmoqqE8uQszJJzThNY8IzcVECggCnntNvxgYLDJviuCXVVea4BMI7jbrcbhyGn7Ii846qunKvqugkhMHGM6fb2Zr/fpymZaaEszBJr4M1qs1ktKzhaxTxtXiaSy1DPmLhtWxFlJkQkhJTy7d39j2+v/vSX79++/3Do+yTC7HzdErECmkgWGZNGORyG5D15xq4Km67p6tp5L6L9MI1TRvSieHO3nWLc7g7r1aKpq7oKwTvHrEjbftr3MYmFqj5Zb/7w7Ve/+vzll8/PNl0FaTykwcwsJ0mjW54+EXuLVgIAircbWrndZqJqCTIWYrNzjh2y4zLzRAQw0dmeEh1h7V1XBSaIKikO4357SE4aqtpQN6GPabfdcu6en62fXZzmNMUYc3AGqmbDND0+bm9vb99ffTjsDgCwOT0/Pzs/v3x2+fzlMOWf3r5/8/bt3f1DP0ZDJu+J0Egtk6uqJ7DIDHLGnDBnBCADRjJyhMyOvSmkMRvq0x6BiFnITLKIDlFVh3HoFv7Fi8tvv/7mm29+89UXv728eLXoVgQ4e2fTjI7Zp2rV8rooGsAwTTfXN1c///TT9397++at5dR4yqZZjVGYzBEZGjEQiDMJiJUDIULxXfB8fP+PxPYyeShtjvOhcXWNzIgMCCZYDmYfgnOEGnWKOQ469oyAzhEaElVtx6BDmkRkGnrVopJjdo4A0RKomKJZeetEx15j5rZFV5MI5glcxaF160sa9vs338Vxb8yuiYAm/bC9unl482F83KcxO8dmRXfxlC4GBiaqMed+HNG5XHySEDTnaZrMzLHjqvhrec8kkvth9/Pbn//05z/99a9/vXt4HMY4DuM4xZRFizEooWM205Qli6UI0SwDxiTBu8DkCIMLTSNIHFNRrRWaOoZJe+BFzN1q5b3XnHOMaYrB+Xrl1SxKEtOHx4d+HBdtN4zjpyYUM5m3cC6LbrLgVKDFzXpeEkWf8jGqo5TTpgpJbBIVMcrWJOWYbOi9TKaCSLOBvQAoECgCGpJbbk5W567umvVpaFfqXCxwBRztHeAX7eLxK/z/+phZzimnqFlh1johh0XouIGOm6nJKY9DGh8PcTIBBF6sTpfnz7uTC9e0MU5E7NjV3UIkH5yT3UOKzD5wwXEhM0yOUhU8GBBSgixiYqqowMBIhFgxe2KHDIauOGSLEaKZ5hzHqb8eh7/dXb3d3WzT4ZD7pJFR9vB4yDt9Eo5gMSCmUDlmV1kwMxNISaYYY0w5zS6fNjccMMsvmJuuPbu4WKzXh6F//+F9Hod4srk4P/VM4sBIctxJLh78ISknI2Agj0jkCNsGPdEycFtz08Kyy99fwf2ekrkkGVI+cipMZ6W+ISASoUIUU0njME0xfjS7ewJhaN6nfAht01QheHbBe+990zRt22265eVy3SQVu+H44PuImktUgEICBGMG9B4DGqEaQjKeCj0VZisjcGYMBiAEMXhryDVgkVU9CSMU2vdROgxPRcx/XTqbk39GYgzRwB2NPtWZeouYHsf7aluHEMR01Z0tiUOo2+Xm5euvq1CdnV3e3L7/+w8//uW7v2al3/xK/vu//Y/FcjFOQ9acc1aA4L0Pgd1Mgkb65DvN9CFCAiyaIpun2qWENEDVY66Hmmo5GoDZNU13cnq+OTn9cH1Fv2T1E4EjJEI6xiHaf3UrCBEQqMwMSnOASESeufJBwYYJBwNRsZxRlR1659BUDHPWksFCSsrA7KsQgoMClzA7IkfEROx8aNrO+7puau89IkpOfd8fDgcTIyIfHGHp9xHxF0/F4CnGAbQo263wjqmqqsJTAgARGcfp/vHx6vr2x6sPbz/cJMnsuGu72n1MXQfArGA5xyk7huAJNNfeOXZikMVizCV0VMSG6bDvDw+7fdvWy7Zt26apQl1VrqpvHw+P+yFGqav6/PT0i9evPv/sctM4jzrFmLKYmeYkKbbTJy8MlDEfHBVgheEBAMW36ch0JpptdWZ49WNzgYZmQIHbJjSVF4A48F6mirEObtlVJ5vlvu/fv4+Ux64Oq0U3DMRkdVsj8/5wGPrh5ub+4eFxvx8R/Xq9Pjs7e/78+cnZabvY7N9/eHt19fPPb/aHXgHKjkdEIJIN2X2CxChoxhwpRyJyziHUrFKcvlmyZVSbL/PoCYQgAiqaso6QQuWaZnl58fLbb37zq29/9+zidbfYEPB8Y9B+eSz849o1w2GY3r17//3ff/jx+x+u37/PKVae2CAYALECCpCBAiGB+aAVQG2k0RFUiybwJ01MefNQARGQiJwjH8j70kZAGbYCAKJzzAyQp5z6PB3SMKRptBJFj45wdnNUyXkaQNU5hz44AlI0ERUUY1EA0xTHNPaSgReOXM0MjFCCNpnJOc+OJZukCYiIMU+Hfnvfbx/zFIvS+5/3tlKAESclmnLe7vf9bmsSTZKKAJJzvuk6RC+dAdA4TW/fvf3uu7989+e//PzjT/vdLqY8pjSllNWgJJ4zO8dFhmDFBUsNDHIWH7m8uoHjEDMSpyyiYIhGjMSdqztAJvbOMVHKoiKOuG2a1XJJjsc0TTFOMRoSO/dxnP7Jo0Y0KpI9fRJ1KgIicKl0CglLkUBKfaMIiqZmlM2SoRqOhr2Ym1La7x0jqnjvFm3nnJOkKeY4RUX0dVMt6nZ1Ui3Wvl2SrwXoOD0yAMXjATOvyV+UL3ikhPzTx8xEVATkYwlEXLnaVVizTyHFSHtSia7zvgPEbnnWLk6qUCM5I6FgwXnJElOScfCh0dhQ8MSs5bQzREMmco40a8aCrysxOERWYsRA7ImLnoQYCEhUGcxUp5QOeX/b7z8cHm7GfYaM7BYhnIR2U626xZL4Yzbf0c6fg/fl5DDFnMVHN05THFNKhTo/G14V62nvuW3rzclytW6JbBwPdxJNomciNqKaOY/9zlRd3ZphMc0HfFIQQYXsmbIDYiMWAz5Mpoa7iczAQkWKJStC9OMbQmYGpqI5S8o5i/wDtEFFO0ZERCGEruvapql88N5556u6auq2rRtPDmRKY5QpBhExFTRFsDIBpqItLQZYZGaG2WDmESLNtSuCsZknqRhqogrZM04OkWfz4SMn5ikx+0nc/4tlhQSZ0j8iMTqKA3SG7JzULleYvfQO8uFuVBmjDFN+dek4tKGytl18tjpv23q1bG/urh8e+7fvbsdJmnp99eGmbZubu5vDMAD4UNVV1fjKA+oRrzo2T8WZl+b31mZdtM5VTAHBjuGMx2Fvqc7IeVqsls9fvnp/f/3m6kf+hHFd+nXHxIwmZZakxabUjuPcme8G4BAZzTF5IkfM7DyTJ3bMUcSyZNEMhqooMk9g2QE6ceCSgIIjDM5Xzgd2TEA+1FVzdnqxWKyrugUDDk23WBUEy5fcHFMEqEKoq6auKl9X5EjVDJDQNXXjj4ncpjZlGZM4McfFeheKKZEjJqacsppN07Q/7Le7/eO+75NMQJlc8SgQQAfIM9t0HmqH4NraLxZNU3tkHlUxZlUTMCA00Kx5iDHnfLfbe+fapmmqUCbBy+Vq14/3D7s45aZqTjbr07P1YtFoPoxTjKnMxkrogaVPurZP1iA+LdDSNmHRjSAyu1AF9p5n27oS4atkQISmKjGpB+9Wy64NdWWpO9RcM5ydbs7PNs8vzx4ett//8CNpAkmeya+WTR3W61bi+O7qzc2H2/u7LQBv1qenp+fnFxcnm3XbtaEOivCw3f39hx9+/OlNzLmqanKBnCeknHMW+cgvLkxwIU2cI4fgmipYraomSeMklou03/A4GCv6KkSwDADI7FarzVdf/up3v/3Dr775b69evg6+JWQo6RJHfhKA/eJefTwqEACHfnzz89u//PX7tz/93O+3zOAcBQJmYk8GUB4FopHTyltA8IoyMTvousAf/e7QinWlmKGRR3IM7AEZtGAnoIqgnhwyA4NoHmTq0ziM/eGw2yEZ85JDUNE8TZpFsmAcRQUzs2XygKpJTYzUXM4iKY67x7HfKwaP5ELtK+dYYh50eATJaFB3S1c1YqQ5i5qkIaaD2Eil9yYDUvqItAIAEFLdtIpcdV2K6cOH63c//Tg83qNJ17UuVIa8WK2zcN0uk9rh0P/lz9/9x7//x9/+8rcP796jimRJoklVimLXzCGF4IjIsRvjlAaVrBGSiiRiQkAwR1M/RkTMaoaELjhf+cr7ur04u7x8ftl2LRgcXIjTJKKr1fKzzz5brBZJ8hRj34/jNMZxWrTt03OZq0c8ZkLP/ueloUOcg0hAiJDgOHdUAvNkyEZWbEtBkIicEUfD/ZR200AEnnG9WJ42i65uNeXt4/bDzd0QY71crV1VnwaqW+MgyFpcZ6g4ps8byPHrfRQhIADNiBgWwvUvPrOJhhQnCQMFICAiR14ZlUGRKRLUnhdte0mem+40+BaiWB5JhZDIcybNosjO1QsRccEDmMZRk2qWMlifxRumZplQmV2JK0RFBpxTvouawwwL20h00nifxttht89TRgi+XTbNxWLzfHn2en3x5etfN1V7vFKEEgs4zyaJkMDAsfOOvXeTi+MY+37MSXD2JFEgCxUtWrde+M3Sk69z0v6wy3kkJANxvHZOdw8HM1uAN8iQB5TJDMEYijIROQOZJnBcVWG14IsTyyLpNgtjXS8MivtrnKYJtOytSMXHbqaY4i9S349YDBOzc4zomYP3dVVVVeUK6SdnGAYZp4M8wvYwvvlQ74fn7BrnEmJiJHIIKmjFbx0hEzk0BMxqKoUaiKSIqgYIHqhGqAUqNY/gCNgTz5gK0Tw7PfoH/LKIOa49AzNm949IDEZFRPQOHatzwCSMUfM4DdMoYy9pMqaWXOtcHULXNhX7EHOOcUJER8xgsR+v3rwNDP3UA3HXdlXTeF8xF3qmfur5Un4KlG0l6vcTTzx7qmxKlMonNx4JmLhu6pOTk5Oz03a98I3/tCgrxGU382xQYPZ+KmQYPCZcAhIjOobAFJwLxRx3pmShqjokLoANoTEZESATWImjKN4JHqHxzh/vJjvfLpaL5SpUDbugauxD1bVVCFzsfcHAjIhDCN2ibdsu1DU5LvATMQX2fJQlF5KSiIkCzQUBPoGEYIZE0xT7vr+5vX9/ffuw3SUFFypH5BgDc2BiA0YkR6pQgraayndttVp2PlCam0cDQMcMqFOWKaUx5nGappQAIOyH4H1wrqnrxWIap3j/sEsiq9Vyfbo5uzjbnK2l5zyOJCYKqrPXYLNY8bGDQUT2Hop9GodZukeExHMRQ4UQ4ZGoZEwX5EnNEJGYTU1zShHGoU91aJu66rrO46Li89PFyclys14i2NnJ2rfLtqnapq6apqpCVdFuHLa7w37fI7muWz97/vLy8tnJ6emia5x3WWR7GK5vbn7++c2H62sRC6FCdkiMiCJYDEd/sS+XFzQbGNZ1QNIpxtmJokQSHH28bQ7jACLw3lVVdbJevX795a9/9ftvv/nts8vXy+5E7bjzF3fpf8bnS30PhogqFmPa7/ubm7vrm7uH7T6OY125KrB37D07T3qMDDQARnIenEMPRKxZlMNH7NIAxEiMC+5gBiKaUwIDgoRmQA6OwwsEMUtFuRljnKZx6vfsELRD0xTHHEczLdRcQENkELTMYqKIIpAyxJjiMPTb7XA4uIqC9027aJYdY5bDXRoPeX+P5Fy9II9jf7AUFSTHUXUCSPON/Tgj/vghRM+udlp5n2Pc73dXV+/e//Qjmbx69aJdrLLhEIV9W3fd+mRzf3/3lz9/9+c//fnD1dVhuwueZyPs4/Y5E/EAHLGrCMDGKWtOJZWlSN8NjBEiZUQUQ2BmI3AhsOsWy5cvP3v9+lVdBzMY+mGappjicrl8/fnnm5MTJMySh37s+8Nut3t2eeG9/+fzfx5IkIEce70ZjCm6VCouvUTgyEKpYAyw2JEjkQvsK/RBySVRMvS+ptAB1YAVkkMeiT2yArKRQw7I3pCfrCmOpbQhACgZABSHreMBw+X2f/zN//TJCllKNM7HIYtRSUrPwACsQmae3YKYQJ1OYmkERCBAZjQAEYsJBHzVogEzi8Q0xZlKhMWUwSEDMRCrFpgBsITKz68tKBiCGRNxCM41VVg7DKPIedVZt0oEi7o7Wawul2fPVmfPlmdfvvpVfSxiAOYAcD6iF/OJYaiOnWPHzMygNmKSrCIKqkTYNfV62a5WzXJZK7qJNE6UJN/e3yJK13Jdcb8fEbRuKuLJUw4MSs7YM5dG1COLghRDs2aKyzYeGttXhMS+DgrGs+WAiYiVsgUJZw7fnMT1y1eGCkm2iJVFpO97ybkMDVTUwEqCGkaFwyg3j5tsi8Vq40NEqgv/F9SKurfEA9EsxSjSmQJElbWEgJ6wBmqIG+MKtSIaiJRp5vrNRYw9LaSnFfjp/mtk/wUnxkWhwOZRgqkJZjUFMUgRYhp7mWKvhA1QqFzF6Mcxe8/e6X6/26wXX33+Kg/SVc3V99+nftudrTdnF13XNd3iaZZTXojSaFLJYS5UBbXZulZFxJ5yzco/fFLElNlwCR4C56iuQ7ts6k3rVzU+zU0ACZGJHDpD1dKSYC7udjSXn0XORTN2zuydC+yYaM70BZuyqMA8qfNOa5+ZaUykhmCOwQf2jIHQMxOYqQhSIAwhhFDSaBEJyLNvAnsnqFnFFAjZO0dMoa58HVxVEbOogSETMH3aW5Z5F+qci0sGBipzkw8ESP0Uf3734ed3739+d3O3OxDgulvWdRW8C8xMgKJoamgqmishoCb4pg5dXRlBzhlAi8GMYzfmvB2nQ0xjllEsJhHRQ8kdJefd5B+GGOPddlc3IbTV+nR9enl5/vwiDSeaoj55e5oZ6OLkma+q+UKIq6ZD3zZtE9iDGmCZ+SHADCIW/EGTpDRlKcHeBgjMZM4jgKmMo1zfXOc4gcH52cn56enZqj3b1KtF5bxv2vazz14369OL87P1erVYLAzscNjv90OKULer89OLs/OL87PLxXLpnfPBee+n/eH65vbnn99eXb1/3G4RoYhNSuSzSoYYJaVPaumjsEwzoTYNA1o/DOM4xAg548xpQUK0rLncDWZXN+352cXXX375u9/+5g9/+NcvPv+8qZeqPEPz+FT2zG/ux/mVaeHqFmTosD9sd7tDP6YoiA6RxympCrsK1crWGWNOKaupCwDsgAidM5cTz9Ou45VgVpctMDdGlHIUmXLeOue9QxcC+4rYFWKWShRISSEpTFlzTJYmouBdTexz3OVpIFDHiFQklg5QU4zIAs5rkjgcDvux34/97jBsD92m6ep6vTntTs4BNKNP+X08vEXkqrlA9qCTxj5rlBgJlPCYd2uAx0LtU5o+i3iV2iCBoch+v/vxzY9ottqsQtNFMT3sP3y4Ys/LZXd9/f6v3/3lh79/v9/tJZdi1Qp+/4T/atacxBEH78Fj5aLmp45/jqERKHE1qAVKA0NiX1fr05Mvv/rqm2+/rrwjosI47g8HH/zF5bP1elM3NRGllMZxOBz6rmvqpv64xmCOpFc8YhtUHoOKClmh8REWk14ARGCCwFZiMRHBDAHZh6pu2qZd+DqwpBDC6eakrespU85CqoD12fnzDSh4Xy1WzgUAOiopCAHxEydSmFkLaDTzY2ZLdZ0LCbQjUPN0JWqassZsT3ILU1NDIwRfLlFUU5aYLAqiGN3vZRTnHXkm54Axo6WUYj/YlOrQmqsAJE4YkQGR2GHwJgxYQv0SG9s0aTLJagJQsFQwMC0BJt7VTb1q27OuveR6eck+O49VVTfNol2v2sWi7trQNK7evDx5KmIQkRmPnL0ZMy2QABs4Ju+9c46JfD8N/TROCmKeebVYnmw26/Wq7ZpxzOrd+vRs7Mft9Y2m4XTdwqJLY0LKadqHOjU1sgWUOqdMDMzM7J0ZO8fkeyHHOVBsnZ52TZ0DVD6pIggjBnZJc6nH0dDMsqgY0gj4ZOgBR5lPSUZFVNXD4XB/f59LHGvRAwMcgynQi7VRzTcH0wkhA4uxA0BVsqTF8gAJtWzsXNJmVfTIqZq1yhVgi65D6ch6sAAoQIpQ8obwWL98IqKap3JlYyRCY3LMRw3YsYixgOohBwC2DBkymJGp5Qw5KuRIvL3e3i63p8/PnuecAaYYTWUY9odV3fL5pRcGgbw/7DzWmxX74HxgdjmLqfyytyQr3nyzat+K/6nosW57Wv1PhdhcUCIYiZpIyjlmiYbqKudr/6k0EeBpclXuiMHxFSQDRizh2HM99TTiAhS1LBJFosqUNWaTgtMCZrMIAOQAFVQY1SEFh7VDRlNLWQnZP/HWzARACTF433UtO0fOzcxJKBudiqSUB0BFJFUEg4xqzoeaAY/2Kse1ZEhIbKpJkoogWhTtp+n9zeOP767fvLu+fdhPSbhqqqpum7oOPjAzQgmlEstmCgaOqQ6hCr4KLqtGJjR1xJ7YO6dgZppyjllj1iiQs2VQRI0IhAo6ieSY8upkefns/MXL52fn5+vTszh2mvOR7TLHPdSLDR87SyRiX4GrXWid96B2tFM4BkGVd05NRFLJcdM8Yw9MlgWxBIJgTBCzqKFj3zTdYrHoFk2z8N5xg3z5/EW7Pl0sFsyU4pRS6vd9StY0q/U6vHjx8uzsbLlceh9K82oA+77/8aef/v7999c3N4fD4KoKkVSk6CYlRpCoOcFHyxYMgUIgJkUUoqyWcx5zngA8kUNgODZ/jp2vXKj8oltu1mevXnz2q2+//fabb169fL1anSKxyC+HIv/0KYdWyYZHwnEcr6+v3717d3t3dxgGBQByKhoVhqwZhYRUNSVNSUWVBDJIVOxaRMNIlumjRgGR2NdcdVS1gGBRs2SZJhFFCODQjAQZUBAEcgRIRUOQY8opIaELlasWznt2O3YTgCMwJGJHxd9yTjwB1JTS0E+HQ78dxmEyzcG7tlt069NmfakAKUOKMe7emwJRAK6dr3McNA0qicic+4Wr7S/PSpCc9w93h+1uUQVFWLTNs2eXN9fPTGVzerY+OSlpOfv9/v37q8Wyvfnw/v27d/d3t9MwiEieT2A46k0BDEwtp5yJPTMWd2wktV8QC2ZaBpgRzOJJR6EOTdcsVsvVauV53nJjTCEEACyuiFVVeeclSAjB+6qugnPukwua96ViyI5AAKSgCiiA/HFX+4eNz46RdoVASOyDq5pQd6GpnYoPVd2sAeHxcS9TdIBV4LZb+sobs6s7xwFKuhceEfNjk1H+ECvhlDBLQvGXP/rLhwIAJpoOQ3w8AHPhEBTvcQJ2YTGzerzHEDBUNo6ac4pCGEvDK5rKc4gppmHMUxTNZqoW0xRFFMn5bul5BS4ABjOXpzTst9OhT4cx9VMeo0ZBMEZy7LyvQlg0zXrRni7bi0V7HuoVVJWrmrrt2qZr60Vd1c55QkLB0AX3CSeGCd1sb10MxMkV80GdsQ/n2DESYYnkNeWuri/PTp8/e35y/rxbnYhsgaxqFsy7m6u3D4/D9fUHjWu0HCpQGcAkBCao4xjMAhGQI2ZHgEgOgCVjqFPw27qy9bKqpM2+GlOWnFXNkQ+mxcXGRFWFRFQ5ePZFLXH8zAOxAoqbAUBKqdh/F0cfLBZziEBYIQfnNJA6UiQ1VEEBMCFRgrktZUIuaKmBFCKjqBjMRFUGdIAe0AM6gPJD8zoCOloFwrGImUdIM7hRihg4AjG/RGLSCRsheTAQFYEMlhEEVUCRuQlWwyEf+rg3Mh9CFeqc4mE7jIehsbBuTy+atUp+t/2g3rdNF0JjADlnyQKozLPZx8wgtHJ8gaiZlhkEqMzjLpyFpVgclgjJZgSZTCFJHqdht3t83N7t948GwvyLikxnHHgexdr8j0YGxdaWgEqAk0LB5sQMREBNhxSnnEaRVHKlnSc1TBr7KMGM2bzXKWPO3hmqQ2RDyJINiD0lkCGPQxqTRNDsnGu83yyW5EMVWkRfYr3NLKdpvx/HAZiJDExLrJs27aK+qFxwAFBy/kQyEJLz5IPkNORxGFKWcT+M94+7d++vf3x3ffewT9mQvXPeO3bHtcKI5Mt0BhDNsQvB1T54V3wbcuWcQwyFSEmcVBkAzEQ0i2XFDKxoCJTBYTbJmUBD8BenJ99+/dW3X391enrSNC2hE81WlJ5maqoiHD4hwyKCC+CCkjPyR9mwiEhOSXJSmalQpiqaVfKxiAFTkpzLuq7apm4Xi83JcrVpmg6A1ICcd6HxVeCgG6zrxdr5qj/028f7aZqYKhfqFy9ed4vFer1q25qYDYwIDSymdHt798c//emPf/7z3f3DFKMYIqKkpJpMNccIMOonIaOOqeuqxSKEAIgppV40S46IGoIDFyyTJMsxoaO26U7ONpfPL188f/Hi+WevXrx6+eLl+dlp2y7MQMXmlU0lX/4fAV8zE5Es2UqKLdL+sP/++79/99137969e3x8dM6Rc8RooIdJMSXnHCKqYtbCjdX9lMKo0ZxzlhGy+8hmYOe65Wqx2RgHUzEQTaAqYKrEAhyTKgggeFPMA2NmcoB2mAbJyddttTxx9cZXoc3ZhZDjZCbOMztiRFPLOasaiGoSnVIeY5om09zUfrFatOvTanXuuo0B1hkkjfnwQePkiJGdLVYCaZi2Ytl54EDEc8TaHHn2yZE5jePP3//96uef795fnT97/uLl5enl6evPP0txOj85rUKdVO/vtz/89PPtzY1zeH93fdjtNOecc0qCgERYsHo1NUMHYGA5S4Q455IqENLsHfWEm5kJgAFw2XMRiNFXjhxPedr1B4dMTEyUcj4Moylk1XFKMSXvvanmnGNKYO0nRPiSx1t+WGcIWQUlIzGQGIECoVGxNCsuvaoiWsKKmUslQ8CeXOV8U9UtABBzFojDcHN9Nx16R7RaLl60l2214BA4NES+xEWWzhgM7aOd+rGIKWahH9tmmOPeDIprqMJH/x7Nebjf9td36H1xfABTicn5ql16rloXqgpAVBQ05jEPYMzgPIcaHeY4ZUmiMcco4xSHoT8cpjiKRrMEIC7UzeKs2Zx0Z8/qbk1c5Sn1Dw/D4/3h4fFw93C4fYi7gbJUXHeLk+XqbLN+vuzOFs2m9cuaW+caVzn2DosxM/l5slHYtVmeFhkiMKF3GAI5z6qARH5+46TcXufJOQS0IaUg2aOdLpefv3zx+edfnj/7tmracfiZZVptFsjKtTvc79+8+SkP2xfPTpu6BpzMjF0F1rLzlPmp2cYyhPBcta4ec2ju6hHQ1wFWiVocpsOhR8je+4AIpKYpp5hzIkIQ0aqqwsdZ8pM4qcz2nXPM7L0vFYyqzlVCacsJKqAN8Zqbhr1DLMdEUjUxESMgHwKhR3BkAJYQixWIqkgZNBTThyK2BRNQATIyYgRA/mR2+YuvB4Xq+zSRmTlhM3nwYxGjzXGIX3BaMEkKSsoOPXEtrvHs0TkKPoQQvHdgSszOhbbuGtZlVWdJVaxSCMhODVLKCIW6AcevV5KK58giVc2lyZS5Fy8D0EIUK+mjdIRT5n3ZLKb0uH34cPP+3fu3t/fXMU3/0I+oQdb5R9EUP6I7M5UJnubqs5FeUgOVJDKklEGNGDyBAbNzxGYWh0nFqGrAMSRkhSwiioAEhJpF1Uiy5JxijCkmyZMkMY2SlIjZITsgPvrXWIrjbreTPLAJGyCwqqnm9enlZn1ZhRm9LCSLKeU8THKY9kN/e3u33x2mlPZ9f/ewvb1/vL17GKfEzjumGW3OOQOw6Ry1AsCI7KjyPgRfOccEakpggdmIvGPPjoga85tFm0RTsjHmktJgs2+JohioNHW4vFh9/cXrrz7/7PnFmWfOKZX4RtPiLF7qkJx9/oXKnxywF+NshWekkLPklOOUc35KWC1KelA1lbn6pKLVJXbcNtVqvTrZnKw3m+Vi2Ta+6RbL9cli1XiEcRhy7vt+2G63IcbdbguGq2W3XKxWm9OuW4TaO3dc5YQ5yW67e//+/d///v1PP/986HudHaNMctSczNQkFj3S06ZMhE3ju86Hip2DFGPWXLj9TMHEJ1VFRcS6bi4vL19//tnnX33x2avXz5+9ujy72GzWbV3Plfdsj2nzBE7tE6jBRMDMss4k/5zyfr9/9+7tX//63fff//3h4SHmxM4BMRiqScoGCopIiJLLZNSyaMqS1KhOVQ0AqL8kkNVN07RtNshZzaGKqUwpRe2BkmHNPnAdvFehlDUPZpzHXuOIBq5ZhG7tqibUnmzFDqbhIDny7JYFSMYeUWYXWVMssSzBUbdsFqtV3a18vWDfmpkPlfMB2RkkVWVEF2pft+wr54IPIdSeKyIPmosN5S+aflWN0zjs94d2e3p+cX561p2snz17nlP07MpQ2Yd3P799c3d7P477h7ub/fZRUlI5mmwUfmphQxYEW3SOAy4lJiISmaI+0Y4ACNAxO+9DVaFzSkiMIYRQheIanFRQlZGyZlVQ1WmKAOTYBe+fJkQiv2Rezc0XmhXXT0IgBVAgBbInht2s6AQRmdPdcyFmlZktOV+Rq9RIMiCiqU4pjn2cxjRFEYIpW8yQjR1X5AIiQ5GqWZn/FAnKsQs90kvsWD+Wv+vMHZ1thn+xIec8PGz3H+4oBPIeicxMJYcqe24IPddVCEGaOqdmGjtm513lgqe6BlCNUynLUkzjNA19f9jvpzgBiq9cu9wsTjbL84vlxeXi4nm9WDN5mfLw+DhsH/cP94eb+/37u/Q48GSN69bLy9X6fLW86Jp17ZqAwaFj9i44cqRgBjMzSsqaSAKZPr77iI45eOecZ3ZmUlAMxFnrT1gUiRCTK7baPviTZffi2dmL5882JxfgQtPcSYa2DWrNYrMeDofru2uNu0VHbbsmbwgOqUJOgA6AgQgIFYHQoasI0WMKi1wvVk3uYQJNEstTVysLmInnMAotLj1GTIWy8w9IzBMAQMwI4L2fUXEwegroAgOyymAFtABflTTRAu8jgUN1hMRAAZDVnDPBkk6sMlsEISCU4NISoDFr6ArVeg5ef8L+juOkJzVFmWsdTxMjw/8CiWFUBgoAQJzJgeU8pIyAreeaXdC6bU4Wq9PlZtktq6oBM+d4uVl7phHZtvv7YZ9SjJWzupqSDMPogNHAz10/IEJJlZLZw0yzSpYskrMIGHJxP0BGBAUCRChjx1LzKBX798M0XF1f//Dmx7/9+Lc392/38fBpNF95YMksmiZTyDb7786KqFnkpDPZixRMTHOWmNKUJWbxVbVZrUJVZUkIwOizQRomyZqcR8fsvWSbJPtsDZBjMiRQhSkBRQhZoyTRQ85THqdxGoahA0qqRWkAiIQQp/HD1bvD9o5lcqDMXtWmOD572X/2+e9gMe8OahBTlsMwPvS3j9vr27urqw/bx23McZymfpgdLbC0rSYpRhOxzOJcZvaIzOiZq8o5co6Jiy2CFm6iFEqyc1x4aqumqkJo6lrkZpzioKI5A5MZFl5whXa+Wfzrb3/9L3/49efPn7XBj4ddL6rZrJhWluNYNefUnqCeZqjLikQiB8BZzbIgGGi2OEoeLSVRmSXJRS45I2jzPUCgpvJ1XVd1WG0256cn56cnJ+vVyWa9XjSXFycvP3vWNW7aPz4+Pr599zZmmBTOzi+aplmv1mdnz5ark6pqnQ/EVsyay9syTdP1zc1Pb968efPu7vZesnginMm4AkUSUnSt+LHnRwLvqald3VWIMExRxKrQ1pUD8GmyqU+iwszr9ebrr7/5zW9/8+XXXz27fLbsNrMNgyvZFWX6aIbZTCWrATKXARyWvrpUdoTIzIfD/qeffvjjH//zT3/6zzdvfko5e+/JlTIasqIiIxKSB9WcJKcEZiYKoppgmhI6coGA3JO9PRJ5HyrvMY9oE8IENqocxjEP0wNWq/WFb5tu1dZOcXyEcRjGwzD2vaSJXeXblW8WLoD3xlgRtWAaR9OcRLMhMlMVGgOMMYETdIFD1dSJPa1ONt3JJlQNsQdg04R5sHjI4xSniNXkXU2OnKurepWaSXKqm0PVOl/T1B8TtT9pxpxzm/U6PX/27OWry5cvV+uT9cnJyeZsdm5QEdUppRD8/rB9d/Vwf3Pz+Hif0zwonF0VCYHIMYlKilHBuDSCxMzOiIDZJCewfFwQNeJytVosl91ikc0et1tCrL3v6rrr2rbtUsqmpQxwoYLZRA8gZyncKUBgYmb+iCgXSszR+AVnmSVoIfoBARGSIehHACbnlIq+N+ecy2yMna+q1vtqmnLKPerceIFqHZrK10QcqmpMth8yBkOPTDP3Bo5F9jzVmqURCljSWp9qmPmYkTKUgI860mMRI8PDdnd9yyGwD8QMTAAG2SbeE7rKERIFxBzCYrWSTr2vy5ma46RIpVpNov0w7vthSMkMqqpZnGwuXn929vLV5vJ5uzlxXUvOg5rGXNf1YrlanJ3Fs3483eOjVCm02C3qTR1axx4BZ0EsihEqEaEpKIhYyqaqJQdgEkv4dMIgYgiVDw1zQCRTUVMhJaKj9mpWE5uhioJZHXi9rC7Ol+enq7apBVzbhpyid9A04eL5i7Efv79+Mxzulp0LPp35BWIArAxExakSgp/nMxCQWySHlH1r7Ukf7X66H2M/PDz6h4MN0ySqlhOQeXIAhMCAziyrlYTqf1AolJ25ZL7YLIIihpmqfeRigRFqrdZkqw0CAhtk08jEIWBVUVUp8JQhReMITsSJgKYSWgVgJecS1BDn2oUNGIANqORoIhznLTP6UoxS5xdijlcwAFBTNDyiU58UMRU7BnLGSM45FmT1CoCucc2iXtTV8/XpV2dffPnii7OTs65tYpwSaqDKRDSlyWSQKQJY1WLdGFGhuViRlnwsmcpJDlomJTlOacoppSxEVHuPzgHNjHIsRS/Nll9iKJLGadz1u4fd4+32/ubx7uGwi05m7LP8AQBZLapOIll0trY0+AjT2yxWEgNRiaIxSxZNJuRo2S02m82rF8+brolpGqap34/7fU9DzFly8FTX6nxGHCbBpCFJhYDEYChJI0as4sOuf3N992gYRVJMaZo2bV6tH5qmq6qqkNsly+5x93B7R2lwoM45VeljX7WrnFP5plnkYbt7++FG4OEw5fvH3d3j4/3dwziOiKAqaBYcEztmRnYAkHMSERAHqsYMzAAUnPPOheJWUQIXQRHMMbl51kpIs26wJYcK22U/jqNqPtCsFjOEyrl1U3/27Pyr1y9eXZ7VjHnoY5yyCBR3reLICWBqIpnr7hN4nEroLzEXeM5gRsSMEIHkKMLA4z6AiI58CG61Wrx4drFYLIjAh9B0TeXIM1TBrzfr88vL5y9eMcq77eNut3+4v89KF+PIRMvl6uTsbH2yadsFk0cig1K1qgKoye6we/Pu3Y8///z+w/Vuu9csaGAqptkKi+hj7fIP7z4gGpGpYo6gxnXTOO8BCTQhgqoWRnZKOaWkqkyuadqua49luYiqFJdPFMTZVqCQ2490+BlCzWbTNH24/vCnP/3xT3/8z6urt/vDzodATMWyIedC5FMiA+VyCWjiicgxVo4Duza4CoGFyP3yQvBY3SMWdMAaMUkAXFWV58qZR0EQNNAs8bBP42iALjSuXnHVAYKZEKF33uoKTdKcFKIARBwMkcSIHYeqaoRJq6raXFwuNmfsvAqgAAA5X1VVHXyQGEGj6kTUoPPsq5LlFNq6WTf9Lk79KFlMf/FQnHObkxMievXll5cvX7bdovK18x4IUkopx5xSCKFtG+/dNAz73XYchpxi2SRE1bFrmrZbLlebjWi+/nB92O9MBUCTqoAAIXrXFKR0rjzcar1+/uLFYrkApN1+l1Wcd01VtXXVVE1VVQCYUoksp6quAUBFCrqZs/DMeGDmXz4XFdSMmkHdbLXxiwSjI5hc8BotllIfPxAwhNAtupOTk8VyFcc49tPUHzQLAzIxlcRyxpRlmCJNMYh6Uy5ZBiZgRdJNBlQmSnA8pguJ69NDpryxxeBkFm8dP6amk0ifITN4MTefXdEi4Q6R2Dn2DpM4o7qqjdjVDRJqygaK3kFmU7Iyn/CuotaHsFivTp5dPPvii83zF93m1LcNOjYDlYRGvg4M7KlWWWmM7KzKdWVV5RpHTkVEslgpLhOAaFYTg5QsJshJAcRxzpaGbJOorn955lORLuLT5RsiUlFUFxZmAaQRrA7UtX65qBZd1dY8JlNN43CIeTB03WK1Pr2g0PS7w83DQ9fxYom2alRBhSRTjKgKHLiqPFIlFtQoGym3XJ+6WsiNWYd+6PcHmxKYYaDMlIkdEQAI2ww06j+pLGc7Sp4L6HJxHweH8xNGAvOGAdQX924iI0qEGLxbNrzooG0NWA7RdpPl0cep0uTKPcWSu86MhVyDZMgw/xBAIXYcC+a5c/34FT4u96PSwcjM/plH6DrflGhMZA6VV5f7pABWNbxZLF5unn/7/Ms/fPG7z599frI5J3K7vYjGnNUQqW0QVEk1JkeOQxVmf9ciOHNETKgGJsWv01RVUs7TOPXDIU4xpeycw2VHziliOVRnFT4hIpaSaBqn7fZhu7sf0pAgR7REpJ6gHB7lhTHIajHLmLOIBldmsDPXAI/voZlm0THmPuYxZiOommpzuv781YvPX7748tWLdtEOOV3d3373tx8Pcc+WME15D2igm434MMWY0oT9tFC3qCpgG8Y4aO5D3N/e3/7lr/X7G+c9G0CK+8XeeceOF4uurSpCRmONFkfFBNGMXVTLYxqnHJ9i38cp/vDm/b//51/GmJOoASFiXfFmebpYLIJnEVXJWSTG1E9x38cxTiboalQlRUXH3oeqqpq6qoNDBDAVE0KognfOOXJMPNPPLRd3icbhxapFy3WFjwcapyhqDnndLV9eXHzx+uXlZuXBHm9vDo+Fe0dgBIAlabxUy4Xw8unb4p2vq8Y7Lme8CrJXkOKJnMYkmqU4MhdkkdF1bXN+fvLVF5/9yx9+t14vd9vHx9324fEQ+/1YV7pZdl17fn5+cfli6re7fX93dz+NY9Mtz042z58/O7t4vlitq6qmOfW3UDBL5ypZ8/39w99//OH7H364v3+YhqnUX2JZ9aiNmt+pT1YPFJKhTGMGGgGcZEbyiIGdZ2YVJB4NLKV0c3PzH//xfz08Pj5ud0Mf63/pVqslE4BKyjHGcRgnU3GeQnChrgkwJ5FsqkaEzhERqtk4jnd3d3/97rv/+T//51/+8ufDcCjKCJE8xUlN0UhL40akIETGloOztuK2rrqmCm2Fi5BQD8PB4SdVv6lIjCmNkbI1zIHaRUPQkjvjmovbNkoaHiyPZoZYwgSMQkPNiuo1+C7mDJodZAarQ3AIE1EaY47JDBXZEMHIMYemJkZrXNt1J89edScXgJTGaCy+CmF9QRbj9j2jGiSDAagGR8CADtmF0DTL0+W4S7sPg0yx6AKeykvn/frstF0uXn/99ebsHIxSFBET0JimKY5D3w99v1wuLi8vxsN2/3B/KyIpE4ISJRVPdHZ+/uU33/zm978Tkf/1v/79zc8/9YfDOBz6ftAUia2rF+fn55vNplssurZr2ub84uLzL79k5nfvrn766cdh6A2sa+qmCiEE53wWy9myZmau27ZMYHPKknNKCTxSMdVzHzPtEJRNWBLlTJyAmBDAYKZN2pH0S4SoYHP3ajqnRSKC87xcdhfnZ69ePm/b5d317bTb7W5u+92htIe+Cj4EDj50bSLlJkTJYgqoiAYqqibF5ATZkAooo5ZNZvcmptJkohUGCaEqqFjOmiU/lZgI5KAO1DLVRB6RDSBLTqOI7FWN0fmqFhEEdd5B8L6uiCm7bKYuDilH0UTe1W0d6srVdbdenVyery/O15fnvmsVbcojKZuq5Cgx5UmxB79z1T7w6CgBGZFZjkOCOYuvDLVJI6mCIeYMu4NNk6ECszTNJDbsxnxYLOTieL6YqMgM0zpmZwDMXBoTBRUVKz7RoqpKaFVFdU3s0DmtgqYc99uHq7dv+mGouuWLz789Obs8u3x9Z7Adhpv72/Mzv163vo6SJUY49DhpCg2HegW+moYppSSGMbpsndIItAcYkwxTzEMspjXCHjwjG7KhqIBkEcm5qGeOezLSvOycK0S6jxyUGU6bL7lUqWSEYECkjpN34Bi6Bs5XsF5A14GA3vfJUnzsOe7NUmUZCRGPVVLpX0v5gp7R2JRMQKAA/UeSFRRMxpSIjnzxj0olQ5zJNv9QxThAh8VoktkhZURlC86drjZfXH72qxe//ubFl58/f32+Oa/rNucMkEWmGMesit75rhMCSkLonfNN7euqCpV33pGbgRgVSakEgIHkPEzDod9td9tx6FNKwQdAJSLH7Mj/wqCtvLAGKcXt7vF+e/847PocjYkqr06BfgErFaGTlvkgMAIQIB+hquKEEVWjmiCGtu1Omm612JyuXjw7//L1i1eXF8/PTpqmSaDt1fLm4fHm9o7AICXAQdmnlNU5cUHB9ikjQhUcEY2MsfhmHvrHq/eLfjw7OV02TQih8k5yjHEQSWYBAb3z3WKdYgYRtIwshrm21fLkzB3N7rLIw+P24WFL7Kq6Xi5XbdtUwbVNvei64B0CaJaUpkM/POwOtw97gN04JUYAUAIkKmrAEhFpXOjj6AgheOeLr8FcxBRxEKAC1gF51TZhvWr2wzCMo2RlpNVi9eLy2YtnZ6tl4x0XVrTnyrnZSmS2qDQo7GxfV0+qMWZeLBanJyd1VRFTztk0MSSCDAbTFLf7fjgc8jiQ5jpwW1Vdt7g4P/3s9YvffPvVv/3r7+sq/PjD9z/+/PNhd0hpUokAFoIPISCxiA1jBMPz84vT88uXL19dXjzr1idV0xzVznMBIypZZBzH/WH35t2b77777u/f//DwsI0xMfNx+cjRZfF41n/ytqhY36f9PmZV54m48r4KIRBhTjlOUbKYWbGQKEh/sZWJadruH6fhMPT7od/t+33f9wBaN2G1Xp6fX3TNEswZkKqJWE6Wchz6w3b7cHN9ffXmx93jnaTREYJjAzUzQmUCpnLugCNrgwVP1DaV52VddW297GrXVFb7fYomkeHjLDnGdH1zf3O7rboTXzcOzTF4V4KsG0LTeNA4Sho0jZoETZmMvbNm5brTqjsJTcc2gE1aEoOcOeeVHHACHwEQfYWIzgCYIASTlsna5cn6+Vdh+Txhm1KOu63PzXLVcrWs6o2EfcxRTOfN8+gazD4sTzd54mlPWTjd3X5KuiLEEILzYbFaNYvF1E+Ss5XMHlXJEmN0zM+fP09x6rePt1cfQCFlcYBIxIjdavXy9evf/P73/8f/+/9V0gParnt8uL+7vb2+/rDfH1LOatZ23cvPPvvqq68vLy+btj05O33x8mVM0fsQx2H3cJ9zXLZ1E3xw7B2bBREdp0EEEJCInQMVnSQDgHOOkNjxMQ3qeDmaSRNJJCEAKyiqg9IxGKjOSW9IgIBFVA04O20BhBBOTk4uLy6eXV5UVSvjtL+71ylO+72pOueqptam9lZR8CLF4yirZsQ5kFPUdJIsKYqpoSGISopjnpKmiAqe2HvvvXchUHCFD6QKKVvOec5VBmDyy/oUGiEfsOjv0aImhWQqnAiSASmoIaNjRyH4EKDk1zlGVzy5kJyr25a9a5br5dnm5PKy26xDV5tDSVmyooGmnIZRo1BkN3reOndA7hFzEdMU55DjhACAJNNwIBkBxFK0wygiEjh6N2ruk+wf981OznJ+ei5zlF8xjGEGRGYGxHK5aorI3rmu45MTJUnrBS/apqo9O0Qb43h4uLv96cc3799fLTYn7fKsapebs4scx+H+p91+2O8Pw6H39agKqkGkmuIIjoGW7BuMe40xZxuj7HvbHfRw0L6XoZ/GMaaEJdosmLGYK2QBRMajf9wvAeV/QGIA5rGVHecVx9qhyNNM0DK5VIXcNtRUtGqmszYva2ocTCIHEYrJpiCTmpZwGSJmKhy5YoiIVnwSrPgwWFHZlPndpzoQADE7muDhEYr5hND6SyAG3ChW/LGRQGKUOOU0LuuT16ev/+Xzf/lvv/7XZyfnIDLlibPPaYrTbhwe+2FSo6pa1L7x7EnRYXCOOaAPXHvvCiEGUIyy5nGMKtmxz3na77cP27vbx9vDYZfiVFeNaSbAOnioK5pDAOdOWBXAIEve7R9vH++ud/fbOFAdamrHPJAds4YBwAzVSO0pAJIQGYCREMkMosoY036Kyq5drS5fvPrqV796/eXnL19cnp2uF21xzDXvHIeQwJ9s3nT19ZYeQZRTxnEcdltq2qpuwKqx7yljJY6cH7owIRmwS9Ls921Tv152L54/W62WddO44Nu6AtWcoqrWTfvys8/Pz58hIIIYZ2AjxpPTZ3XTPb0uaLpu65cvP3v58sWzFy+6rjPLptlECcA5RgDNqR+Gu4fd1fVD5T/cb/cpJQB1JauPgUxjnNCY6zp455kJzVQJjanIHoEQCLksrDrwwvE5QJQoOYvkYj3ifFiuNsvNsmoq31RNU4cm+FA75wvn0cigmG2YmWmz/Cixds6dnZ5+9tmr5WLhg5ecTYRAHKH3fpym99c3t9cf7q+vWNPF2frls8svXr/+6ovXX371+ovXr774/OXQ73cPN1fvSgI6likaAI5TvL27P2wfc9bN6fm3v7p49uLVyy++XG3OgCss+YOEhKCiWXJKWXLaH/Zv37397rvv/vjH//z73/++222LL9C8SdlH+HIeJn3S8Wex3Tbe3Y1drhcrWG9C2zWh4inGh8eH/eMw9grGTVOfn59//fWXX//629/+7jfPX7xQTD+/+fuPP/z9/dW7h/u77f6xHwYiWK67ly9f/vbXv3718vP16sRzo2hxmvrD4f7u+urq58e7636/O+x3lycrjy8/3Nxu99sUJwALta/qUHtHAJqjJ2ybsGhCW4euqboq1FXwgdG55MgfcLtl+iTWoO/HP//lx/vrq9//2/PTsws2IchsmQnIoUiWPGqOaIIqFgdIo/NgVZO7C7963q4uFm3jLaoMMR2iRWUjEPTBNUpzKUgAAE3jJfuUiLiqm3b9bHn5NdUnFmHaTbvrK/Ie7ZU3RG2JlgYHBUfgTHNSnJJOMQHi8uysbs+b1fNq/W74n+On5AszkyQimmKSlMxKCiYQYiBnGpIPm83m5OSkqar769uf/vajFbdqAB9CWzUXL55//atf//p3f/jmV79BwpjSZrO+u715+/aND+HN27d3N7fjOIroZnP6b//j//jmV98670NdNXW9fXy4P7t+PD09nJ/HOKy7tgnOEThGdsFU93tLcZqGwVQZ0VRTTIDQNA07ZH7yLQUAQDNWYUmkEZUZgZGZwSE4Q5r5kVR4pICGzMiEVAA5A6JQtWdnl5fPX5yenHpXTYdhf3vf1VXPnFXQlLD4mrgquOA9MarmLAnABefq4FUVbUh9HPthjBkQYpoO28d+txv3veUcnK/rerFYdMtlt1r6tjFmMUwZ8ye+St7V5+vPl6cnx6YaDS2rCESFBDWwr82haUIH5AO5yjmvgAbRnhx7AMhRUzWhbdr1utusQ1MbQXnZrKTyxpz203R/oAEXsKpS8AfDIaVpFBNwCMXMlJiYEInEKE7w+ACHR8i9Wc7AsQqDawfSvt8fdv324XF9aiLpaY2p2EeiRGFxMiOiEaCgmnnnl11HHDYnz0liB4f1etV1LTHGcb99uPtwffP9Dz/+5U9/XKzX69Pzzz7/erVaQbp8v79NaXfYD7vdPtQHdjVz671gUsCK3MKFZSW12hgPwzAOtzfb2+vb3d3u5ubwcN8PfSTU4LGtqEHEbEZEHjy7ylPMPB0dQ46VwpMC6JegxlHbfBwtIQMiUEYbVXoXYtPIeombpa6q2DqpwGyCOOrwwMO2khjQPMxZAsewIdKjk/ncJCrMo6Wi/FEzECA8snZMizsRzfmUZSRVKNT4S+3SfMTELASI3sxAU5YpQdTK3Gm7OVudLtuWGLeHnYhU/WEY+/cffrh/vO/HyK4+WV0umqUn55yvXR2C4wDsyXOBg0xyHKbxcDg8Pj7knCtf5zw9bG/uH68/PN5sD9spTsFVu+HQp8FYz8natvM+lFs753OK5pzGNB2m/nE8HOKICIE4qoLIp50ygjKaJzBAz+jm/8ksd8mAXDXr5Xp1cvbii9dfffPtb37/u9dffHF5ftp2NSFYzjJNRFTXDYT26/e3D7f7+/f3+8cDqVlKqe8R0QXP7IyCIIyKqDgxRwRMginbpNzWjaSTyl+cbqq2jaqeSSVLZkSs27ZqGgBkYiRTzEjI3nftIoTZ8IqZV117ebJ5dXn++sXzF5+96rompThN/dAfVDR4z0ho0lYhsHfkGHG97KYYxZSJeDbEBcYnF/xZYi5ztKTMhW9ZJMglwScDOAAfHHnHaGCQFFxdLTdn3Xrdrpb1oqvbxlfB+UDkCAjQjGeiasE8fF09LTLn3Onp6csXL9arlQ++CJrIzDtf180wjr5aBF8Fppr1i8+ef/PF6199/fVXX75+/dnzy8vz05Pl3e31er3suqauKrUJAGJMh8P+4f5eRSTFplksF6vPX39x8ez5YnPqQpPtGDRhllUk5xjjMI6Hw+Hdu7d/+vOf/vM///jDjz/e3t7GKEcyoh3vx9PLTkXn8bTAioBBkqZJcyrRtaJqOcdxGHOWpmmX3fr87PzVqxdfff3Vy9efLZbLfhyurt5dvXv7979+d3X1br/d7vv9GEckWCyb27sbzSlN6fPPv2rrRb8bt9vtw93t7c3V9Yc3w/4RJTHj+abpGvJsXcPTcEC0tmuaJlTBsYFKYrQ6+LYOXR3qKlSOi2YtmWnMeZjSMKX4UTWWs97f99vt4JiXi5pU0BIpIaoBIKiQAQEiqzphNERFN02wO+zo8UN8yF1bBxCwlPJgkJ0Hx+BQkZ4MTspeZKam2dihY5+i6wcgs2iYs6Shh4Md0AdQO2geYeiH7Lhya0NiDs7ViAEdh25TLZtqBeDa7eN2c3Fe/Ajmsl9klgqU/IvZ8BmwmPnWdds0bdeqyGa9qaoGAIvlSyDqlsvzZ89eff75y88+25ycGtqz5y+y5LZtELHvh34c+93eVId+yDkv1+tnz1+EugaCnCLvuWubzWp5ulmPAzdHpBRUuPifIZrINI4A1ta1975uKsCj9KHMhz75EJgDYxNnwoAMxoAOjIDIwASkCFMNiLHY6ItZElWgtlmsNufnly9Pzy6rpgUj9t7XddV1ddfHiQGRQkDv0TsjUhWJMQ7DQOBBWBtPJcaYPTEDUiFS56QxShzT1GsWkExo0XNVe9CGTRCZiNSQPjHtJOTGLX3geQpjaGBKolapRVU1YQGEiswDekZETTmLxP4QD/vYH/I0qEQi8N6HyldVcESWUpIcNUpxt08G0WAw2pofnVfiZDqMMsYUByGl2hMGh+7IxVOMCYa97R5keyvTPqGOVTNgc4h4MDxsD7uHx+39gz7j/AkSY4hPcxY70iPm4D0kBxxCaNuFr5pKAPIYJvXBO+cJUTXnPKmkNI2H3XYY+r/++Y+qenL2jBAAWAT6Pu62+xC2Va2iiBSIAnEgrtktfAgxOyAxBYlDHg9p7CVOlpMHab2tatq02HoUQQFMaKBGiEzsvXfOf3rwf1LHHAm0T3jMkXWFWEKTyUwzaUKICBnRmAwgpyklUUm4H/DxwfeHRnMLFgDc7G5SuHEmxblILIuV5CVGcABsRgJgAgZ4zEpARD2ysBAUgEoW8rHiQoJfapMAnMaMaubZAHISm9RPFDJ74lGGnz784Ij6oc9ZANzD9v77n/98+3gzJuna9evLLy/Xl+t6sWqWrvMVu3lKUSxHVMaxv7/9cHt3ff1wPaVc1Z1I3G+vH7a3H3Z3D8P+MEUDbG7fvnx8P0qfZHpx+dly6QugWGYAKaUkIoQJsZc0puhUKCWMydJH+SsiEJljqx0BoncOEKLkmHIfoyK6uj27uPjqV7/+ze//8Pt//W9ffv31xeXFcrl0jmZmloioMHFbN+3mdMwQB/3p7z/efLil4mg0TYaYmV3d1D54wqymMSZGVXNRKAtCzpXv76+H3UYvz5iQBVAsx+jIsWdXlUFk8N4jkUI2ACIfXDjqU6AK4dWzC99vV03NZhKHia34ew79IeccmR05T6QGtffnm1VdVa9UjFnMUspDP2zvH3OMlafgHDs203GYEKTIY0TAQMkQ0AdiJo/E4zjdbx/jNDqEwFiz885hCNWiOz09OXl+2S5Xrq6U5tSvQsVHOJrzPMk+PyH3Be/PTk6fPxsWi5aZ4lSKGPQcqrpt2iTGlQ+n68WmC7/95vOvv3j1+uWLZ+dnJyfLxaJlRz649Wp5sjlZLu6zWM55t9u+v7rKOR8Oh1XXXVy+WK+W5+cX3XJN5NWQ0BmBQU4iOY0ppZTS4/bx3du3f/7LX/7P/8//+b//939e39zEnACJ+EmwMxPLYZYXUlFIPV0LM3aNbytHBjKlcX8wTeQxZQGDbrG4PHv12cvXX3/55fPnz9cnG2S+urr58OHD37//29Xbtw+3N/1wKOq8pNFAdvvd2A+xn/pdT0qLbvnh/dXNh6ub6w/j4REserauck1T141T8KvODeNqHHoCa9oqBMdU8hMF1ajQJgAILavFlKaY+yk9DuPNbn9z+3hyPog8JdmS4zr4UDupXSRTRCNks5IEhL7yTEoQhF02s6xDnz9cPf783dvDQ/J1VVWhqbhmrhC9c6FyoeamIQ4sxOg9h4ocF5AaRIkdN73vJreZ/Oq8Wp8QUkVswzD88P2UsoM0Dvv7uzfZ8YpX1WLV1gtc5DzFMYm4hQuLblE/404Enr3+ou66Y3Fpx4GhFJqrmj4JNpmpbZoSzLvollXVzIY6hUhItFqvzi8vLy6fL1frpJJTBIDgQ9O2q83m4vKyPxyG3X633d/f3719++b6w4fH7XZNhIzb7Xa33wNS0zbLRccmjChZ4jhO0xjIIZpnSgjTOBICdW3TNItl+1Q3l07NPtnHmNAzBkbHRihoRoqExODAQNXETATJARsWu4okMmbxvl6fXD578cXF888Xm8sEPE1jn3JiDstVl8VNk6i6KlhwiZ2pwDAACOSswzg+8tB1+UzbtiXydaBVS5UPZjI5DmBd5cZFZ6KenQ8hhNA0bV2Hpqpc3Si7kLFpGvrIUzRJOcckxfVCAdTQxFRBBZOVaAy/9FajgonkPBymYTjsH4f9djjsch6BgYIDY1LBnK0fxu1BVRNIzCkPE0aorGlpucJTzzWPJkOc+j5OQ4wjOqp8R+BxluYixGj7rW7v4PCQ+8dxPPQEO5MD5D6mfc67h8ft9mH7+Ei7Oh2RGJytxkhNRXN5ZKrijL33zETAPjhXVcguTb1Mg+Ux56yiAIjkqro6WTfPzpa355vbh+2f//N/P9zff/vr33R1k1N2RuMku22PcFc1iVytYMzeuQrZA3lkRhZC9mzLRnOTrZ5SFcfGNPCm85vOrTuuPIrBkOyhFxlLlCRXoa4+GfHD04hmLmIQ/7GmOdY5xXcFDdDMcp76dKDM6gcGSyiRUnT9FB77xSFtBNpicmcmiqIoCAqIOhcxogZqBOrQvBmLkCqSEgGTc+x98MRFjWQi5SbT05cr/jD8D98SwJmAosmUAayYBpCRij4e7t/c/PRh9x4QckySsyS43z78/P6H+/19VO2ax2zaD4fTdn2+Oi8T8LpuvCNEMJVsNk6H27t3b9//9OHxwyFGrjrNOe3v+n77MB3u4/A4TCmbpwdROd+szzZnlyYlmUJE4zQNw7DfHx5299tpd0j9kMaYozPzqjVh9Yk0ERGIwbnZ766oREQBnG+btl0tTy9ffP7VN7/7l3/97e9+/+1vf/3s2bO6qRg5F1PUObDLiNj7sET66utv767v/6//+I+Hu8fDdjdNUSUDaGZSQN8sHJNpNBVn5NQ4JZcyWE6H/fbu9vH+7Lw/NG0DCiA5x0mcr5raV8EdzQYQUcwZAKJj/Bhm6ZhXXTcuF3XwTGAmqjJveao5Z8siJMa+BHjUVQh1QB+qrkPiKaX7uwdU7Xf7mZvECDaHLnp23jsfPPORM24oZmX8jszIXHzWUlYCaNquqmofPDOXBpudM2RRsKMLkRka2NHQbzZOmK/FudVyeXpyUtcBEZOLqsZATMGFGmNq2sE0t407WzXPnj07Oz3t2rZk75X7wcxN0ywWbdu2w5S890RUSiVCrJvm7Ox8s14vlkvnKwVSm2nMSXLKU4xj3x+2293Vu3d//etf//TnP/35u+/eXr0bpxEJzQiNZl48lswInvdfZLD8qVOsY1ot6s2qzQqImMdkIOQJmOumXi1PP/vs1etXry4uzuum7vv+cXd48+7q559+/uHH7+9vbyVGtUxIwMW82ixLvz/cXl9fL5f3r27y2F9f/XB7/W73eA8aF21om7CooG4gVErsFk2Tc0ixBjV25f7Q7HxdEsiK4DannPIU0zDkwxAf+v5+f7jf9odDlNkxH1R1OAyPNw83b9+1Tp13zjtmKr4jOcY49jlOmnMap74/7B93Dx92H368v/7b2/3N3hjZcV352vsafeVcCL6qXdeyC06JwHusAjqHOiN0SEQ+UN1Q+1N9erF68XJ1drpoOudD7icz5HbpOLmdE815GtnXjtD5ytdLCByWz0KzCi40zei4Or18Xn206odC2daPMWxqBjxDQVT6BmJW1XGchnEUmbOhRbWE4phZymkYBlNxzrVtq5r7vl8ul6enp2mc7urb7f6w3+/v7++3Dw9d1zlw4zjFlJhdVdehquLoCVFF4jTFcUQOqkqIzGQqiOida5qmqoKqTtMYYxSVnLN99FKe0VF27F3ZsZ+QQjPVQsFFMjYGZDXNWczMeb/enHz19TfffPOri8vnIdT7w+Hx8eH2/n7XHwSRq4oBQBU8G7OV1x8MRHOMfUp71f2u74dp0XV13XjvAKj2FTHWVdXUVUrLnDMYHFN3qKA8oapdVSk5IygF4nwlpjnnHGOerbsMFNgUZ8s8gL0AIy4JKmICNZHDIT7eT/e3w+5hGA5GGhYN+4ZAS3hYjmpDzCknkJiSHJKX4EJXh7rxNWefpiEN0zj2U+ynaWTP1AY2nVl7Mephbw83dn+Ttrfj/mE/7LeQ73u/977n0Gc57Pe7w26/3637s6z50+cCCABqhiU2VxXMENG8Y1eFum6r4A2RSchBE+qm7dhVSBVyaLvFixfPY98HF3568+7dh+vtw927Nz+2dZeHYVGZajDNaRoAyQUzLtnEgcgBODHJQjlnk+RAatIKpfNmKybkVROaih0DcMneMZoMivCnKFAd/fLoPxYqxwpmltL88+8pcx42VIE04YE4ayBkiSYJc/IpV0Psoi6VAoGYZTBFyKbZbNZsGaCpzIZYxmAOwIOxGYoUKyLP1ITggivgbU4xS3Flmq2SylZcFGKffkGH6EEtjSmKWhI0CIEPMvz13XdXhytqG2JmFcvZRhnG6XHYD5KT5Tw+6of88Hh70mxenD43sCrwqgueawMVIzMdp/H9/dXPNz/cHq530xShgqxh6E1iciamU5IpqaLGmGIWAfDeV1VFQEMehv5w93Bz93D39v791f2728PdYTokmQypcuhDs24b99RGIzATMwFZLjuDYWbuTk9ffvnl17/+9W9/94cvv/nm+avPNqenddtGkbg/4CzvtZmbigaAY5zQbLU5+fKbr//1v/+PoR//97//x+N2B4xkooAG5Jrao8uaGKQDJjCBZJDRdIrT3d3D4v31xfPbpq6cr4w4jkMIoarWddMUY/qYsqkIlLRPZy4EZOCjHhwAAIm5hE4yMzsGsGkaZ5NANSUFxXlK63zd1puTk6ppRLWu6nF/QC3+Qsf2rg6eybELlW/bhp1TtWGKu91BcvQBuaounr8wFRmGPPR5GMhXi/W66RZTTLd3d7Tb1YvF+vQ01A3YMQZuLmKKCg5+MXwFIKK2bbu2ZSLAkiWLTEzggByUlCazECp2bpymh4dHTTGOfU6nCCvvOkJ0rnR+vmmatu1OTk4uLi4uLy9L0bNcrOq6IedLtjyIpZymlKY8xjSlPN7e333/t++/++tf//jHP/744w83tzdJhL0PijGCZJgn9p8iMWpIbFLSQp9GY7zZdJfnqzFaTDnlrJMCYh18u15dXLx49dnL1Wq53T6+fffmw4fb65u7Dzf3j4/bvt+bSGBmopwjAvoQqkDeYVf7tgoMkMd+gpyGBwfD+SbUoVkumjoQWcnuGMkcsUNHVtWlOssxZ4GUNSaNxXwpS5Q0TakfxnHM0wT9lA7jtBvjY5/HSfSoHEnT9OHtu+//8481puufnnXrVd02wQdCVNGc4jgM4+Fw2O+H/WHa98Nj398dxsc+9YMnUARUzVPex7yTAQECUc288FRy1xUtF2crQ1XIpaqYqaOuOT3dfPH589/85vN/+7fN+WXVrYMP7WbVxFvo+t3jzaB52G+dMzWhqlvUpyeXv66bjeYU+7137erk1PvqeFZaMZ2aPyqqWvwvsDgQze+UPTw+XL2/ur65maaxFDExpv1+f3d39+791XKzBrCmqdu2KeEhh/3Be7dcLpe/ah/Oz77/8Udm2m8ftw8Pl5eX3rtSJbkQXFWh9zBLGTRNcRoG4OLYAd45x66uqxBCVVVt25TGKWeZxjH9Ip8LBVGJ0DnnPREZQM5ZAYp3UKEYIwoAOxdKzYmIq+Xi888/+x//x//4za9/v96cjCleX79/f/Xu7uZ2OBxQLEtWSWoGqlwU8ME1TVN5Twg5pkN/iClfvX8fQmjbdr1an56drdfrqmldcKWpL6i+gc1/LQc7zbxDMIVP5q9mJinFGAWTgh6TlI0MCAEEdCei2ZygOLcKThWHwR4e5MP7/Hg3TT3WvgnOda0jRDOZokmCQ5IpRouagSff8GpTP+twRZPlcT/2/TiOU56mFMc4kDmXszNhU0gR+sHu7+D6fbr/cNjf7frH+/7xPh5uIe0RJq4mpEl0jGkYhjEeihvv0wUdaTqzbrGkPiKi9369WNVN4xhVs1YYmvp8dfLs5cu6O0XXsauWq/DVt7+9vHj1u98ffvrp53//X//+w08/XX+4TfGdQ3tx1n758rxtOXgjTDkPBgFdYPZETg3HZIcxH4ZhGIY8iUajjJ3n9aJ8CUrZdkNWxRC8ATKyZyMiIFATA/mErvtRRI2Fa4If/xWOuqTZ94LM0EiME4SUqzS1h9wpUM4M6gkcgEvkFSrAQukAACUTtAym8MRStQxafgUBHEHFFGAGfgHRsaurKtQVIqpp9j6LiBxDDQ1LKhOJ4D9kJ5XcechmoqJAiBZoxPz+4YaHB2oXzvsGlEUg5iQyqSkqoopOj/s0Hg5D2JHB5cmzpBkRyyS+JOL2Y383PN6NDwc99DrtxlEnrccBTXKgDBgoNF112i0/f/by+eWr05Pztu2IKY7xcf/49vbN1fXbm7vrq+3Nh/3drt+qRE8lfRoUgT3/Q+WoZklViKuqXi4W7cnZ89eff/P7333729/+6le/fvbyRbtYsXc5S5IS46w4y7mw3GkwMMvM3ITq/PLyD//yr+MYh3ECx+NwiClpSjKNMY6EQXPyIBWrA8skmU0BkuThcHi4u/3w9mcmW25OWlMAquuaAJxzglAc51TmIoYQlT6G8yHiLH4rHpeqZuCc816995JStowFQTfLIsgcGEPwdVM1bSNqQzu0bfN/s/dnvbZtWboY1Ire+xhjFqvYxanixInIjJtFZN6LfW1fgcESYEtI8GJsxItf4FfwwI8B+RUhZAleECCEZQRYYHR9M2/mjbgZGRGn3OVaaxZjjN57K3joY8y19jmRKds8IKQY2rFjn7nmnGsUvWjta1/7vvMplXmutQJCH2O/GfouElLXp+12F1I0A4zTXBXNhu1uu99vtzsCmI+H+Xicj4fUdbcvPxr2VxVR1bNMzrzXpxP7Mi/oyTx/jJTbtcQQWuEPmaXaPM8iZoDjnOeS1Y0BROxwPLNrnieVioRA5i45T9OcEen6+rrf7G9ubp89e/by5Yvnz5+/ePFiv9+n1DelDXU3kcaAyaXMkk/T6eHh7ssvf/uXf/nP/+Uv/+VvfvOb93fvi1RkTF1yDOa6KqACoDWzEAB0AiJTZSa+tPEDOhLGFEIXS9HzeVTQljN3XZcim5Xj8e7u3d3bN2+//e7N+/f3h+NUqgSGFELkSOQIxIGGPvV9SAG2fdgOqU9IXhlw21GCvovYpzD0kclNfN2bzc0cyB3muZ5O4zznJYKpVtRUrYpl03kup3GeZ6nCRSyLTMVydXmiDqmiD/f3X331isxff3e3vb7qhqFxrZr2cyklN43U86RzqWORU0bRjpFpiVybmc0sCm4dYI80EwXwpt8vrgpmTmpQ3cyd3BmAwfv399Pp7Grd1ZUZpH637brUdxQ33X5fyqmMuZRcFEVtyh7r3G+KaVEpNcusuAGyJ+OvIZTLoWJmzeAZF/ksUtWq8vDw8Obtm7u7uyqSmLuuu77a39ze9sMgKuM4juOICK1jj4hSjH3f397e7Leb25ubUivHlOfp+PAgOePQM3LgYE1RMsbQ9YkwhFBrPZ9PxYwoqBggdjH23dp7HYKacUOGponATR+vxomcGUIADo64MAuaBzO4+qIwRBpM0MBcLYRwdXPz6SeffPHjzz/+5KWa3z2cXr/69ssvf3P35q1W2W93XUr9kDiE2KfYd2nou5RSTAQotYqoI4laKSVXccTUD6JmAI4MHJHT0sO6sN7XdMtUWxOZNnTlg1XBqVHwzMHMgWA1z0R0c6tqborVK1lltSynk56OenjQ4xG8YiRyQzdrYDYICeFkIE7AEVIX97vwbMCrIFHzWaapaZe2+WKLf5yqm7qBus+zTud6Pk6nw8PpcH++ezfe3eXje81nsMIpM1fAKlbmMpfxA9mb5v7qhk6w8Dewgf7uEGJMKbV+2cD9tk8fvXi2v34+F393dwxdJgoAOOyuUr8Tg/f3d4fT6bvXr9+9excRNuHa9CoF7Dom5mLgAblLMSYArlXP5+l8GvOkWhm8R+jdAgHthpD6QMjT7FP1mr2ItQ6qEJBCQDcX9w8fDV5UbwgvzMjLj5ZdFcERiBuUCFhNaxFRNXJDNk9EKVFAQgzIpgCGkAELYUavaAJqrk1akBDNSQycAAMEhhQgOURkvXhqxxhCXHvuqMXzrfO/BTrekJjvKfYiOxkERUAqAYwBEgp6qQXEgpUUnMk7NAZnAkIPCAHY1It7KeU8yzTcOGJIsbkwGICDzfN4mseTljkg931KjGJ1qqatuiIcu9vdsx999KM//eKPfvbjP/zii5++fPZy12+qlPfHu9+8/u1ff/nPv/zuy/cP7w7j6Sy5VOsAYtdv+4Qop3LOXi/N796UYKtNReOwefbFFz/52R/90c//4R/80R99/pOfPn/5ot9sY4qiVrX4Ret+6f56bONCXAyWapV+2P7xn/1ZGjZxGJ5/8vFvfvU3r797dTqcSqn349hpTaCIblCRKTISYa7uZGZ5PL7/8le/nKfjj774iZuZ0bDZ1lJUlWJse6Rb2zLXcXMhjxN1XZ+aWJZIKTUmiTEyc2AOzOAApthMYFWJIBCuDMKai9Ram2F8znkaR3fzzebmet/3PbiFJpQXEhMNzNfIFML1s+dX19eb3Q7dp8NhPh3y+RRDvH7xMm022SzXOs9zCAyrrqI7oK1377Ebue0cT4JLdZOW9zoCzNP46vWr0/mssIxQRnfVoxWrc50nud4TInEQrafjoeTp9Zu3VfSTTz7ZbK9efvTR7bNn+91us90OwxBjRArQ4mat85xrLW0vqyYP9/e/+OUv/vlf/dVf/LO/+Oabb+Z5VlMOgWJgdUBzE+JGQlM1AQewZnzhxEFrYn4kxKnY4TSd5nJ7u+82BAxVKkZmJqnl/u79PE5S5O7d3fHhdB6nnIurd4H6PnYxBHIm6FKIKWz3KXWBsW4TXm/C1RCG5FebuAkvVHauxbSaVSnqqqpW1auIqJSqc5bzOB8O4zRlEZXV+NsAxaGaz0VOU87FHIM5O4A2oSniR3FIszmXt4c51+++evVAMXDriURkWDTwwMyqgBk1qM09MjlSAgKE5kdY0M5s4OREDUUITbASiCC0p24OaAYAgm4I6CgIx3fv4a9/YaW+/+Kr7ec/ufn802JjH/I8TaI5UXHSudLpWN6/PhV5/e1Xh7i55hANfC7j5yp/VNfOkdb9qrpI16rC2ip3WZGb6M7heLy7uzscD+Z+td1+/vnnn/7os48+/ezFpz+6ubkh5lKLH7XkWWpVE0DY7Xabvr+9vrq62ueSS6mmcjoeyjyB7rsYS+xqzoAUu27Y7TYp9X1XpR4OBxjPTJFDHPo+9F3XpS5GZnZvwtlWaz0cj6r1UVoJETkgJacgQE0IvpVuBaHJdTQPGjUrsnTFDl3/4vmLFy9fbIYBwOb5fHf/9tV3X3/15W/evX4dkMOnn+23L29urvfX11fXV/1uk/reEUuu0zSfT2Mw2DJ3w8ZMQ4jb3W6/38W+V4CxFlw280X0HRE5cOAmb0Nt4issQrhPkzFOgfvYVuemUqiLx8gSCHnWmud6X/RtNS5i55JnmQs49P3AmwECqVWZDXF2I1QOGjrabMLVJt1su+edbzhzo65LKa25ZdHXICZihMVlquk3Z7Wz21Hl/Ty9n0538+FQxhPYGTy7zeIFVKrqLFMdbWmAaDoxXtWDKCG3XvQWwBRTLmWqNaj1XUwxpRCutttnz1+ENHz36t2rtw8cIDBTSA5ciozjGId0dbMPgUqexzw+bC2PH4FB3/Wx3yQj5467Teg6V5qncnx3d3o4eGHyq5gKdZPae5FJFHvm7bbvNuDMh2Odp1pFkQNx5BDJFLT4qhZ9eYq8tPws4ctTMKa92nqukZDcAqC7jrU+VAwYlOImcsdUIjMhOiE4IRhiJpSAQqRo5qoqVqurcWpGcexMFIDJI2qn1Ed0B4qhuWs5YOsC00VsnwgJ2A1gIec8mjdfghhTNCd3QAhMxggM5ipAYKBZvUJANTRCc3QDDExDIAWvplJNqoD4ph+2211MCYlcdZqnV+9fffPmm7enw7HWROBAASwAOICZV6kxdc+urn7y6ed/9rM//dnnf3j7/EVKMc/z2/s3v/ruN7/86m/+xde/+ubNt+fTwVX6FK5jok0fUhdTzJpNR3kyYQCRQhz21/3z4ebjH/3Rn/35H//8z/7oT/788y++uH32ohs6URWTxZQOcdEzhkvlZokjCKC1crl5SOnFRx9z7Jzo+vntJ5998vVvv3r36s37h4f38/mY52Tq5H3ANKR+GIxQsQICgpb5dPd6Ni0hBsDwjPrNPI/jOfR9z9y6xtx5ERT6sBaJDaBFUF0kxUUFWnN/CBzCIkjkC3SLRDHFEAMiqGqVoipIQISNK+CmIlJKmWcy1VgFMAJR7Pqu6ymmOAw3z55v9/tuWJwluiHJfsfE/X7HqQMzqpWYOTLRB7IWl7OGx0jm8WLMrJZS5hnQG0Zyd/f+m2++vD8+qAOFmPrtdtPvh84Bx3F2KbyKMRnoNDG4EsWb283++vbm5vmz5892u33XdSEEZIbmMyVSSq215FykZlUteT6O49dff/lXf/VXf/VXf/Xbr748PhyYOcTAISAhMjqYecCiqqLm6Ivb1kJmWxv6HoMxs+M5H8e8vZIuRArAiNQ0/KRkkzydJNfxdK45E2gXYUgcU9xu+hQDLcGBxY63u9D1IRLuh+7Zzfb5zbDtsU/o3NeK86i55nmaa84qIqq5ehbL1adZzlMez/l4nktRbPr7BOaWRYu6ABaxqUhRAFQgJyRbulg+0L+paqOYHOfjVAAQ3VsEEwgJAZEIgb3xTBcJSicISztNc0yGCqCIjlAIAVAAw7LwICO6g4IDIjkBgJA5oAGpAZYyvnv3VnV6OA7v70/vX49vX+z2HOEBZLZ8ns7j/YPcv5vuvzuMk2v6FrtNSL0hjmV2KfO/9d98OsyWyFWkigDYqpu5LNBmNo7j+Xw+nU8iMmyHT15+9K/9a//4D/7Bz66fv+y3e8fAzCJScz4eDyYSUyCi/W5PCFf7zXY7OMB4ntyhlLnmXHOuUy7jPJ2nUivHOOy2264Pgc1snM7qzhz7YRuYm79RzhmJRMXcl8DgUZUDACB13cef/uiLP/zZsN00Oe+G2HoTdgZDN9diUoA8xY44ONJuf/XpZ5/fPntRVe8PD6fz6TSeDKzr0ma3jcj90PVDv91vr2+ubm5v+80AgYtoKWKIHONAvKF9S8tDCI2xm2LHMQAFBWoi1q3xjAjdGg/8kq64mFdR0SdG30SUYhg6d3RjrwJquOI1yABmJEriLqWcTpUmwVxLMSLqEm06HjpkWmSommsWIRJH3mzDs1181ocrVhbJtZYqVU2hYQzNco0CEoO7qYoKqFWT0e0B4N79ncl7KQ9SzlonhAlgAsuu1aXWKqVOZX6KxFhrTlQzNiKGZTq5u4vIeRodYC686furzcYBHXmcy7t3b+eSA1uMqRt2BjxOc60FvM55zGWuZZYy1dJLFXCMaTts9hFQgMRhnucxv5+zl/Gk81zOFRT6sN/uX9YXY5kTx+IO6kSEfR9FUATEzDBY6yoxaEjU08WaPjz+riAGVocjIlSGM6mxC8E54CaGPsYYW+7c+gnACS2SRwJmR3cTraXOs6swEDIBsxBVdgU3F6jA6NGBUuIYAVBtVbJsJGDw1v/admRAaCpcT68lYK7gIG7NDIuY1BWAQuoc2BSk6ChlslKtEPiAaZe6ftsZ0kkNFFnjhoeX189e3N6mLhlAEX1/vP/Fb3/xV7/5xdd3r851HDoK5l2tEcSY5kAC0Pf87Pn1xx+9/OjFR1f7G3Ycj4fX71/96rtf/9Pf/otffvPbb7777ng4Qs03Kfxos7nZ73C7ldiNQPfjicaHD58Kp93+ky9++uM/+pM/+JM//5N/9I8+/fyL3e666wfiIGLmjk4cAl3AmyWI8fZQ25ZFgKgtdWs+Try/uf7TP//zH/3kx//4X//Hb1+9/vbLb/75X//1f/L/+k9/89vfTPNU0dPQDX3fbXYcg+JJVZgAtJYyHxG+ix1g6je326v54XCAELlLXd8TEzuB0ypN8rSWbLXWWmd3BFosBZrl1jI/m0a9WWMtxpRSP8SuA0Jbyk+LumBgSjGgM4If7h9ODwcVSSld3eYrubm6oWG77Xe7brPp+x6JilQA8MBxswldAgBjMjBgitynricmDuFRxXoZ+pc4Zn3xScY/TtPpdEKEaTy/efP27bvXb95/dxyPYk4cun738sXL59dfbId4vpumuRxPHGLs+8QhmNtuM3z6o5dX11fbq+vNZteljmNLAbF1UJeS5zlP0yRSG6dXVY6nw2+//vqv/vqv/uIv/+I3v/1trjX1XeDATBjIiYKhI7gbgNjctAy8ef416N5MAVT1UeReDaYsD8cp9febTTIvCO7OaAHUwDkwp46HZ3u52tRa3S0wdSluhiGF1kYkpWRk3Gx8s6X9Zri52r24vX12c7XbBCads0xTPjxMh+PxdDzO41TynItMYlkhC8zZzmOes8xFiXgzdJsh9X0Qqcf7wzlXIxJAJW7KPY7m1Bzqq/kjgbQNegDgxCnFZqrUFMEDIq1a4OxACAEQWzuPgZFVhCbbDoYOENAdQMy89RAgKlhLm5paXSDcMAFCVTcAIwQmDowA5XSynMfXbx7+ZvfNs+vrj68/+eJZ1/l4fH//+t2b374/vj3rUUrRM3gBAuIsepjnqGU6/nvrfFkcv5vVQ5Vqbm3wc4ytFlFrPY/jNI611BDCs9vrn//Zn/3b/86//cc//zl3wziX716/O4+TquZpOh6Prrrfb1OM+6s9IcRAQ99f39xO5+m7716Rg4pMp/Huzbu7h4fDeMw1E4euS13fIfg851JqFWHWwFFSmacJEEsuXd/3202MEQBSSldXV0PfX/TutrvdP/zH/3h3fRVjIqKm5L9gCG4uYlpqnWqeEL3rt12/6fvdsNlsNrvUd+/uH97c34vWLPLyk0+ubq7rXFwtAPVdF2JyJHEfc5lOeZzy6Tyq+tAP291+GDZdF7mprbfe8EZ5RgYkXXwg/SmbwhFbu0EzZptzLqVexhgichd56Kxx5NVAFcXJFmAPQRbrEa01Q55lnqZq1Xc9UUddwI6RkIlCFzEEByfoerjewu0eXvS287PVWuqcVYqBNa3XQMEdXM21OjapPnEsqjabnEEfCO+I7gkPSGfikWgGz2DFXMAbgDDWPEl+jMhw6YIzAzVHXRxbmaGVBY+H++Ph3sw2ff/i2a2pxMDm/tU3357HUww4DJv9/tac7h/up/lskt+9eX9//75KCQwpIAA4BE67NNwm8jGXw+F0f3h4OH0HEK/328T+9u69i/YfX92++Oz5i+08vn3/5utpfCgHJXRkSl0cNBrZufisPhWZcylZRZ72jMIqi0+NoP00VbuEMS0nJSUyQgJJMW/i2fSeKIU4pK5LsUspEnGz93Fn5jCEmEIMROAuVcpczmgqTAiIRqgIM9rsnpUE0A3Jue/6mJK5e9XV4RXB/YOtZSVefk/dJrRVvLmlBjMEAAIkohgdqO0HOhepc/HCgEjUedBkTuiiAXi/2T+7evb86vZqs2P2aR7fPbz/8tXXf/P1r3/7+pujTAJKboSwYQyJDSGxk8OwGUJgMTmNp/f3b9HtMD589earf/ndr//2u7/97v3rwzRmFQYA5qFLu03vm37iCOIK2MQgLlfCMV69ePFZ/YM/+Yd//rM//Yc/+dnPbp6/IAqqXqZZpJqvfiCPhQ+/BDHQypvNvckRAQxWzR2mLnJ6dn1zNTy72d/eXFXLf/23v/j226/OJxlVjkTbqleOgUJKnQoimIqoVD2NSu/CcP3s49NunDAekZkC9n3f9KDVpAlzDf2220duIIcvHUlIBNAspVXNuAFIRIoLQAretAojdx3H1HpVlgYNNXBvm2izFpaqtdZ5mkII5oZAMaQupbjbdTExEbir6hLtciKP5ssqSrx4IBGRLxK9S5RyGfzwOw93ABMTVTmcDm/evXn95tX9/Ztc59h1TB1qBp1NRikxz2c0HSLXMoioA3CI293uxcuPb5/d9pttiHHpvTcT1bb45XnOec65mCoiupnUcjqeXr169fXX33z36tX94dB1fUpxAcAZHcgRGIAjszosokqhsTkWFQg3aDXdx+kNTEgECMpkXWiaApGorffAjIxE0DqdnQlDgMgUFl1MMyOpGCLt9sN+P1ztt9f73dVu13cdgIxTOR7z/f3xzdv393f359NpnrNWKWKzWDEohrnaPEsVE6fYcRc6C0kBqklWL+ZAaERAjg6oCrh44NjS4/bkQEQAblxvWpzWCTAg4RKfOIEjNFwXltoQwMXPuD31gOAr12HV21l6GhoS0xyRGbADdKeElIh7puAGVTRnfTjOd+/1TZ/fX3P+LA3heLy7f/Pu3dd3+X6KFVV1tpLNzGEu9Sg2vnltaznJDERFpKqIqfoSkUJjE51LOZ5O59PpPE5vXr9OKX3++eef/+jT/9q/+q/+/M/+/Cd/8AfF/O7+cDpPogJmFsLQ9whwtd/HGKSKajXV0KePPv64zGUcZ3AYxwmBaykqIlVMLaQYEiMHJuiIQ2dmziFuN9th2HR9z8zqWqVyrcwUQui67vr6uu+a+DUAQOr7zz7/nDhwCIjo2jziYZEuEDHNVeaaJ0RM3abrtsNwlVJHzEXK6XTMNQNA6Ptnuz0jorkUqdPk5iklip0hqUNRr+aOxJG6YRh2u+1m23WNfU7wuK0t8hyLs7Gvj35dfxZSiOnipvxE3h7UfSw+VuyBOCA7UEBUtNZB4YQEASC6m+qULYiBcCSk3lEcKrAQQQpxs91StzVD9r7X643c9LKlymXOUmeRaiaOBgQN9mMOHtQkGNgC0wFWkfM8HvJ0rPlo9eQ6IkxEM9FsUpZuGmuLVnWtqo+t7wDcZOUDU1M697ZnNGaMS60qUqpIrSlyCoGJ3ezwcDfNYwhUi4iAOR1PhzmfpczH86HU4ugxUIxMhADsEIE6CujZT+fy5s37V2+OKfbb7otIhIvrE/fD9ub2RZlvS5VcdJpOhDbELkRCNkPJprNI1bbP2N+PxHyvENDKEuZ2CWg8oDNZDI6AMdQYMURhzq3xYbFWtxBDv+2GLvWBAwJKtRKVyaQYgrlVMHEtjtm8OCihESJgE5B3A3O3xbrrkgovIngN6/9BcxIEj2wACu7mOmUmok3gEDEGByAxcS0lSy6CEBknQgYHryQupezj/pOXH//ok89v9jdD6h3qu3n826//9q9//YvfvP72/XjiTeoCo2RCHPq+79Gnop528Qq6/jyNv/3mtzaWq2GPZMd8+vr+9XcPbw6Hd1Dz0AUOpCrWxSnxAUFEp2rHKqdpmnMRefQbS1338Y8+S5v4yWef7nebMp/PD9xvNqp2PBym8SxSm7p+c727rMKLo5Iv6ia4PkIAAHQAamt2K6yrGUHdb9NHN7sX+50cz7nUUy5357k/Tg4UOAUkybMJmJGIldPUPRwOp/P+PCFHcJvOB0JQUbUG85mTPXv2ctvt09pwAeDEmGIIXQRoyaR48xhFUHcx01oBkGMEjsDRKbS4ExRa5cxMmYlTSjECUC1VxfIs2XMgDMiJuYuh32y9Vy0V3RexEV7dGhTcDXxlc5MvjL4nixkAgCEArE7WH84W5q7vYhem03jO5/N8nsbTdD4HxudX++vrq5RSl3B8eDW55vOpj9F3iVEDw9DHZzc3z5+/uLm53Wx3yNxgRVWrteZScsklzzVPpkqE6F6rlFJrrsfDdHd3OBxPYkbETQKbmxkZk/pyuoiOrQXWIocIbi7qompKi72HXgK1wHS9617eDM+uN/v90Heh6/oUB2IGVDcxFVcztchxu9n2XWR2F5nn0USaHELcd9tN//z5dVPwSykiklQ7Ho+HY35/f3719v6bb17d3R3maTaDwBGQxE0cxFEMjBEpBg6x68PQG+NhHOd5zOrOHFIkIjCFRo4DQERFaCoqTx8OepOyAnYI3kjtrSMSWqQI4EYAAI1+Di1+c2DAiOgIQm6whK8MiNhiOCQwAmQiXQrZIIYMtAOKTJE4EcWmcAPoxBrA3C0Xe3339jwZ47mWMedpUoCQEgUPg8foZg4pZDqd9ymFFVV2N5UqtTbjPWYiQDBXrXOeXr9+/ctf/vLVq9fzNE3T9PzZ7R/+wU//9E//9I/+6B9c3z4TtZyzlJwC7YbODbZDd3tzlWLc7XYq5c2bt8fjXHPpun672W02cHX77nwa7x4eqlo/DDeBBHTKMwYCwKpOId3eXG02mxhT+xNCCMwOKKqImLrU9MeIaBj6LqVLEENEqdv0232TwlvqxkvtGMHNvbqLuyAQcUfUMXdI7AigdRNisgLgRBhi4pYGFSnTpGJEiCF4CECYOIRhuzUjpBRTiomY1UFFce1kwbWLBXDpOnpaLW6yFC2WaXKDuHbqLs+lVP32vX55hmdb3HbI1MYiwmpdz4gBW1jAMfTDsN/sRCfzUusxj0ezmSH2qb+6vonDR1o6zn2XN6EmKqjzXPMkUsytmbYiggOiAxETB2QGA1ezUqranPPpdDgeHk6nwzif51oKWGUuypOVaurgCM2khQ1QL+sbACKmGPou9X3HFBYViRXKR/DWcU7EIQQROZyOUqVt5Zt+SwSIPE3FgUJIA2JBiimHLoUSEnuKgQM7QhXPBQJwLng66fv351fffTf0/ScfP7/a7m+uB6nqZuqh333aba6u3h+nMWdRMOG4U8Wq41jqufosoPZUuuvxWpqeIYdHGOZ7YAyspXQnNwIHR6Yu9l3f7zbbFCMamGjNRVuZAMAAQkSPAbqEIQBTtI5SChy0ZtVatWYpRbQC1raFrbuFeQt+aemiWPKjts/g5bwJ0X4HJ6aL6O5qYMZuoVXEI2OK5oDiyg02JCSCwNZx7aCQBvNAsB82n3z82ccff7bdbgMHNZeqD4eH94e7YxkL6i6FmNCzGEANxEbEGCl2VzsNcazy+v7tfDr3MQLDWeY348P9eMzTWMUg9CEFxOCBj2Y6ZyleAWezWovoY79ou+MhBiaUMk/HB9fqNaPfiNS7198eHu5rKW5Ca6s/LA3Vi7Zg61peHvAiWA9LFuLg3qSSgYiRA+n0fNt9+uxax+nIFBAM6TzNMYTr/Y4Caa7FSNXcHEHGXKZ5ynnalK6Anu9yLXPNs4kAupM7GYj8+LN/AKvxABE2J83mFNDq/Zcn11KLWioRYQjrSa+upWImaiLuFoiaToY7KlkT3m7yWPk8PeAdIXHskXjY7iICMC9RdUNcLnnIIgPutgj+LgN91eR/NAtvJ/j4T3cAF5XzdD6Op2k+z2WupaZNd73bvnx2M3RJtBwe3kuZAwJ3+xSxS5wiD3262u+vrq76zUAcZJVDUZFSa855znMtWcuM5hBCa95wQzOqRQ+H8/F4VnVaINOmi9PoIQ2x9IY7Nq4l4sW9rV2jAfjFlRMAYuSPn+/uP725vtpuhj6GGCgiRW8e84bWDDEJU6DdEIcuEZqSg5Ajpy4MXbfZDNfbzc3NfrPpOQYzm+Z8PE7v78/v7k5v78+v3z28evvueBxFDDF0iTlQk9FdLMebQg+ZgsySc7H5fK6lqDsGckKgtrL6wswjoGVF+gAtwwV6efxz4Wi0GA9XotMHJKdVVAcaeQuQG6+v7UstZwUKhAFJgRwEAAiIgRJSxxgJI2EiooXZbdXd1NzV51KnXNxH89LOcJXoDN6UyR3MusCJ6Wn2uICVKlJLEXH0SDxO51ffvfrqq6+++frrt2/fTtPcdd2nn37yk5/89Oc///mnn32W+r7UOs+z1BoDbfquaa5z4Bjj0Pd5nlM6hhBNnUOiEIl5v792W4LWbtNvaKMIQ54dG2dChqG/vrm9vr7u+yHGtOhvEJqDVHFwfnIQcQyBHsv8iMwUIodIq7Ewrk8fAAAE25MFAgzuAZDB0dCJKBEGTwCOhIEDIgUAC8YctdGDmwA9YWTChQC75uKItjY8PAYxcNlEcJnNH+R+TQkEmphNEwZ/HCpV5N2hfvcAUnHXQwhA2OJeR4fIOHAjgFPA6EQUu9ApzWY5C0B9V0t2najfJu97vHXfkKZQA1TXMtc6l5q1sVbBgS8ZFpj7I6BqZuJinnMez+fz+TiOx3kei5SGUKw9MNCCq3aFAq2vZn0qRDGELsUUmZDNW9MvLB45CyQDiEwEYtIGVZe67TDEEAHB1OecAUM/dH2fttueOZQq46bfkj67ver6ASioUa1eVc/n2urJ5ghIIuYAw7bXKq2uKBaZ993m5fbqXM2lzhS6InWqPq7diLjoc3y/o4cWkhszcwtVnwYxhOiwqhOhGzgQUsDQhdTFro+RI6ibuyA4uCEogiFCIAlkIXhKwIyuSMiuzmBCpIgESNik9p0cCZqBGDUPVOcF511Yve1RLP9CJHD/Hd1J3HeghlMJALuuS5GgI0jBu2QGIgopwNAzByHEDnnHnJBdkwD33bOb208//fyjjz5LqXcA96V7iUIM2y5FSUMIgYSsqr4zC0V6ydu+v95vMEQ9nM7j+XR+AHAPNLud6jzOuY6zOzKk2MU0JAC4H/NJM2PAEKAL6O6OepEnARCph3fvvvvtb3TOxxfvnj9/YS9fJJJ5nl5/+ct3b17XnFE1EFLDZhf4YNmEzczbqk2wejYsuiHQKEWNQYmEIU7n+arjH3/0PAEcTmdTVZGayxHHzW4XQxQMs9W5OhB2iRRRpFid2ZWq5cP96eFuerhXyRwYGI1h021U6jrCMMYQOBBxEx8jERFZtWXdTKXWWgsiUYyN/oKtBiWqIiZqqugQOcBSfDFRAcJhuwXVRCxF3r95P825GojZy0950XE3VDVt+oht6yP0VU38e0DLZRNppYe2A6L5Jfwxs3meTsfDw+H+4fgwzmNTxQghbIfh5mq/3fTj+fjuuzHP47Ob691u2G+H3bYf+th3absdhqFHQlXJOddSl7stKlKlVhdpPKA6l2axl2IgTEjhfB5Pp7OZXUzOHBbGUPO7XPrTmEIIANjKENAaKc3MBAD8MVuAPsUvPnvm5aO+GxiDFi9ZxtOYZVasSBaDN2unSO51LlrB1V0DQBr6q/32ar+72u+3Q5eY3XQ8nE/j9HAc7+5Pb98d3z6c3p/Oh/N0mrOiUxeJEoQERIxCBByCuU+laBVRnaufRzIFK45IMYVATZbc1cS0SXu0LYqJP+i0agMGWy8Z4sLLwycb1bpPNqovAKgBgRtaBbDV1I0BO8TQuGTu4ovNRSCKSBEwOAMAIUeiRrVRAAYggoiECIoI6sbYdmw3JzMBI3dCB2jyWWDrnuS2cmGf0BXaLqoq4zjeHw4OdrXf379/95d/8RevXr8OIVxfXQXm/X7/k5/85Kc//YOXLz/aDFtTLbXkOYtIJA7dEuw6OAForWbWpW6/u9KNDsOmirHjZrdDIlXth37YDF3Xpb5vfd1VasklxrjbXzWVyMAMl7wWseu6JQZc4d7vq4v5grOiKvki4NFu3KLGDoRr1c6XOt4lW3VCRiQHQwDT5R65A1AkcgJqBZfl2bfIo20YDvqE973Ol8cl8oK+LJ2dy78u1YeGwPlThz5XK+fz/O4O5hH7iLyY4ICDOuAQ8dmWrnpKAZndEhijBLYNm3qG+fQmz3fFH1A3snesHecOMutctFStc9ZcLatUMwMEtEbzIjfXalqbBpWCujqqeSumT+N5nM5znkSrmYAqmTOyUfMYcTMQ1woirk+RmBDD6hSBDWhs+JlZVRWHRXfZmowyCoBHD8hIgQBc1KoUYmXu9/vt9fVWPnpxs9/Np1Pn9XbfbXa3wINjKAI557v78XA8mcOLjz7ZbndIXVXkLlHgmkup+f7uPqYI4Wp38+PUDfN0P47nueZTlnOWIgCAMcQ2qVJqtDe4DEWmRU1vIcAsA7HBZEvJ3mDZF5cw10xKGQ0iEjbaYFU3Q0ZGREImZMSAGEOITKRLWyMyBmQMiWIIIlgEsCgwoIeERESBW1uwA5I3Ym+b7gCABNaGpDk42fdk+wISoTkhBsaOKBFVgxazg4OrolsXY0Au5NBhGkKMwBUi8abb3Tx78fLlp7fPXsaY3AGdCJl5KUiBEwQCYg9czeeiXKqpRnANhIkhkpCWOlUpBakAFLcqpobuwEWdNPUMAFqViwXTkCwwYNNwe5ogquZxHB/uzyn1TAktQEWbc56O776b7t5prWiqbbUDb0HMZdZe8ARYJABad0ardzYXQEd0BAJmU98n+vh2F8nP40ZE5zkfH45IBIjmoEQVaBJwVK9WqtSc6zxqPiNiHY/ldCine6uzxwCBhKBOZ3+iv9JgSWJ2QFXNucQ4mxuC19aAIaKq3KBPIkYkAG0cxlxqzlqrq7ZNSVSlSqkCiPvrq8Rh4FBzvrt7fzqN+PotMHV9F5hi31MIbgiETmuXVAOmLsvYk2Xusoms0Kq5VtcKT4KYaZrmaXJ3Wip1y61tLHN3cxUzJcLdbnt7fXV1td1u+82m6/sUUwD0eR7NvJba5oyqVFlugpuSAzi6OTAwBzPIZTqdzvf3D8fjUdXaDGwtw2sVZWGHrTE+YoM09aL5uiCwT5EYZrzapdt9zxzRWNxRXMhb7x6hRcIYMIUQmAIaIxA6EhPGru+2wzD0fYrRDU7TOE3Tw3k8nM73x/HhMB4P43GaS8mEvt/2gAQUkCJxo/wRgAFilYaPV23NOAomgMYcEjvbpaa/kBC9kfMIMcYQ4+NC1kY7rxiaL/jKU6wGG9U3AERABJA1O3cAAQNHgpbN42KTtAoGrJk9EECHxEAtrGmhEqETYiRKSIikaA6qtmJ76AwQzQGACRSWBuPWXKVLj8r3BEmWddndp3n67rvvzufT0Hf3d+9//etfz/P82WefDbt9Sulqv7+9vd3v9yEEdau15lxExNfYi6gpf7j5QoZqbfwOEFZP081mE1M00dil1HWp62JK7Ya3ZkJmHoZNjGkpX65nSE9EUT9MBp4W+WDtreEWfq5z7YI80eNHHhvocGX2teCj0WgWUB4RMToA0qKC9FgYclhd233F3B5/I66/5Ulw424LTGPeZMwWxRFyczBcMvs299Era4YMVQACBiJAEgdDN6Q68CZ5l9wcGdEZjFCRzNAhSE3+kUIF5Gi3nHd47nwGnbPkscpcJZeaS60t1ly76QiRXF2qaBWVCqauZIRCJLWUWnLNueRSs6mAGbozUscRAcVETKrLZHWEml3s6aNpo3/N5przSkMHV0lFX4ehm5mCq4q2Moe5mIpp61GMMe13+0i8CX2d5wTSJ97uNk7buaDl6XA6vb+7m+eJCfb73W63T5EQlRkN1CHnLA/3HFOHDoAxpA3JXO00Vy2Ghky8CPUzAZhF5qfwxdq6R7yuyOt6vqJZAEAEBo6O6A0CRnMXLZp1IY9eyj4Lk5YJ2YHcyQzQRIprNTAAQwRCDBQMKCgKIweCJsS7Io6Lg3aTj19zlstYxdap8EMkxoshWGBnXHw4ilitjpDNPJ9GLDJQhI7RFZh76hK2Yke/3b28efHJ8+cfX+9vAkcwQEQmijFwIAUvalUdANSwiudcudQeXN2KFE7EHSfpvFQRk6rV3RrwFUnFcpaslli7QL0DIKkjqJEruNJlOC3rgLsqAWz7OESs0+nu9XS4f2MqMp77JmsMtDRrgRlCM4VdHgS2mwwIaCuO3mazuzXbj9UE2BFgmxh3XWQv+wEcctXz7dWUqxgUFUBy4mJeRRTy+TTlcSzjcTxwYtI6E0mK4NgCUEDy8CQnw8W5k2OMYqa1FJkNPOYYGFujsoiYWYiYUupiCq3lz11qnaZpGqeSSy3S7oyo1lrnXFI/3Dx79uzm9mq7nc+T/+bXd/d3h+PByPouMvrN8xfdZtvSvzZp2y7XQplWnW8rXOPPrJEAAiA5mruWuTJfKn1qOp3PUuv1do/m8/E8x3NlxlUs9Xz2Mk/EvN3evHj58sWLF/ur/Xa73WyHrouANk3jNE8mFigwEhGBmdUqpWgt7oghEoXm6MshTdP05t2br7/9+vWb14fj0dGJ27ZhZojLMkRLjd8M3NxEtTZqXtvBwA2WDlh4OsREpJZSQQhjoLjpuQu9OKtXQMXmDxxSc8uNzF1KHBgAiTlELrXWw2Ge88Pd4Xg6n+dymvI4l1rU3bsYhiGGFEPqgLiaKTgTqVkVybmOY621liJSxN3QMQA4oS+biEjruabV6g7Uwd0IEVLHqXuUhEeAQBAAGAFwkWFYVzJsrXqMEBwjQGiPGZctFgDEDNwJwQGroYG3WtcS7iI4ejGLSBvijjhiEzpDAGDkxBSBEhIwkpMigIK1m94yP/QAvqYpTs3REcAQFF3XWsHj1oLLpBnn+auvvvzNb35zPBzKPKnb7c3tbre7urq+kquu74h4nqfD8dhXMdMnBZRWpV1oHkwEIRDRdrtpzNbL7j4MwwY3hEjMFEJbVx+BljZ/AyM0TUtbEFxEM1vhTXwazfiTLuvGUOn7IYa1Bvr9Y1mWLv+Gtcty0V1Y7w3yspg8fvIp++GyZz3Wh77/Hm90jw8E356+5+n5oJk1z5ZLB6wHrDchv4hA4BEgMYjT/UzViVIgp2Z9YO5t88A2HAkcA++3m592m+cax7i53vBnVGIez/N0znksZSqSm/ZEe4aXWKoFEbXUBkh7y1sILQSpRaUpK1VVaSF+QAJsLFydas6mZykHmY9Qpqc6ZGZVS9USYqOgurqByLKwQEOlloEAgI3gXLTmWh1RxLVhA0gK0DT+YuqfPesZMDESIRKZ8cNBxvH4/v7teXwwyV3iPvgQbEgSo6F5tlnqUarUcgyciCOAmc/TPB6maRTBGNPAwbGtYFJApfJyYuv+skQ4l7GxXmbr1W1DFoCYaH3i7IjW6jymANKWC25rjS8EJ8BgBlUEZ0CXOoPW4AarQZgDNXYXEnNYOFe4MikJafkPbGDfGsT4imUSGDkvOftyBM0ZoGVCNhcA8clAkhOAo+d5jobcd8xU3RVBFSqiA3vsht3V/vr2+uqm73vRWmRStbvz/f14OOWpqpqBaBulbE5awasXwlkgjDkiGhGFAExGIODqDm0hZAQzRXF3rMLAHQZmEnBjUDQDNZDVivkyR53JU6BAbjLN1eyMCM4OkQKSEy4+hQDgCA1aWSY8tbQSwXH1a3icty3ybhCsAzB6F4gwpYBmDkBV/LzpH47nN+8POc9FXd2BAxiqolStpZRpGiNJYDFFAu4YQgiOjsjoT4NLNZvmeZymAdwBRaSIFakhhL6LCNB24xbldF2XUkJEbxIxpczznOdZa3PccndvxnitsLLd7W5fvHh2ezPPedSCKU7jKQQu83x8eADATaldP8S+R+KnWNeHB17y74ZtrNuNgym0RjAAAGCi7Wbz/OZ22G6udjst4qogFcDP5xFAVQuYAHo/DFdXV7e3t7c3VzdNkmvozHSex2kcXb1PA3JoCvM1Z6nV3VrHAFFwM0QiZhG5u79/++7t8XgsJad+bbh4sjS7ixpItSpSstQitVapYqrgy71arvMDTQJ3EasVkDlQiil1gSgCmrk0yTVCZA6tY5+JUoqEJOriVudcRWut4zgd7k+nMU9F22Ls6pFxSGHoUj/0MXWKOOa5qiIakCsZYKtztT2FAjPzAiouYfdCxgXwSya9PBJsnVNPBK4JIACmJ2BMI321ojQvLBYIgLTm/ry+zdcqdVv8LjrABMCIjBCRGFzRcTFRh4jIgOoAiJFDxxTbLG87F5G5i+uFUNqkFJu4PbeYef1dtvJynh4L+m2Lh9Q8z3d3d6by7Pmz/X6fUmocl9glAMg5n89nUW1Z4GMQ44s4srv7IubUXG3bbVjmHbUuZGZEVGu2HmtiS8TMLdy/kDIeIQ1YmrtgSd/X0fg0SW5IzNoC+yFwvr6jFZh+cAcew6EngcgH37AQX5++8DjF/QnXbcET3GEtuy/Dhtpvfzqb4HJ1Leq6vF3BTpAfaIIUIBJEB61UTqFg2lAfITSiuBkZrksItkWYuE/Di8S30BunIfhGikzn4+l4fx6Pcx6LFjW1lfd80eGjVtasVVoQowaOyAwxlJrFxFuWYouSsLgaYQyRILpRUUUcLyP8w8lvAIbN/XYppzVVRyJEVVsBrEcGoboWqQagCu6OS6RiuZTD8ahVIocYkkJERTWppeTZpmkc51FNQuQYA4G7lFrNDVyt5KyaRWuVDIDm7A4KdS7TeS5FHZCIAZorhDsR8A+snz/EXH/HsQbZfoH46Enw3QaaAhAYI7cvZGzTH8FNShZXKbObJHJcyvjuQGKg1h4YOyx+e5exhwCOFzl6X9C+NXaG36nYW89j+5oiOo1uAgLBOwtWgL0WQY5ITIFda3ad5kJMfcQNx5D67bDZbvrAfn98OI6HcZp+/erLX3z366/evyqlspMpKKJzAHbwKmqTIc3gd3OqwLtBnQRByDWYO0UmbCQ1prDpEKFD3TjsOVCgE1hlU7aqVWBWyBdcGRGZgQMgGaAiKIITMUFAQ8KV59ieCSE+rifLU70wnqnVOC65niNRsyHidVEyZiDCFLChtiLATKUU1TJN50m8GnX9kDoEUUJy1VLLOIJ0EZkhMlBEaUllY5jy5XRqre/evXv9+vXNzXWIXalaREU1xsC0SSESY4BIAH3fD8OQYnLzqrXOucw5T1MpBdyodTOYuRk2q+EUYxfT0HVXu3S9/4x9//ymTJPl2UWm0+lwOPa7/UeffHLNnAI3rMVbsdthoQ017/lFLPACaLe905kpPNkt+67/yRdfxLgNKZzP5z51XYpWy+Hh7u7+4XAwqTkl3O83RNT3/dX19YsXL25vrnf7HXO4xBZtC4al/yi3+lTXdTF1IXYOLKW0p1tVj6fD8XQstQD4InBHi61jaxqvVfKioCCNI97kRN11mVHY0FQNMT6WYMxdKmgNibvImy4MfYopcECHxQLCl6UMV/DH56JTLlMpcy5zLnnOtYoriKEiOTGQgzU2E4KCiRUvucrD6TiXAtScckgUxACROYTEIaSASK3rVprha4vLyZtkI6ATwdrd4k1S9bLfIGBcghhkWLTpAhIhkHsATwgNJXSA1pVGjgjLK4DolwmDTQINwYHdGHFgCoQCBgACVh0ShoAU0ANxH0JkDN74Lk2NHhFA3dUMHRCJCcBd3QksIQktij0KoGC+0neW3cW81Nqa1UIIH3/8sajud1s3e/bs2WYYACCXOWy23Iwea52mSc1iM/do6/VSgFvaOQBAVZsECJq1DHt585NldNnOl01u+YbG9mxrPqyIy+PZfsgqW5brJ6mwqopo2yp+iKOsv+3vCmL8yTsff93T1z/oUFvCmt/9/ktoePlsu96nrzx9Z6vFXq6liry/f//q/k243RIHyICnzA/HztLuehsGEnZ0Q3NrgQGt8IADMGMIlDikiMhay3QeT6eH+/t3d+/fjdOpgjgDMrfV6MJNRkAzk6XaWlycgIgDp1hMTAWh2bYxAhXzk2QIdEObgRNDcoBqJfNcYN4S8yM8Di0aWBz6ENy81VBSiI6oqyZhg4UAEcgMoEg1b7A1cQgUyNxP43kajw3aZo5d2jCGJjXMyDFyv0lESVzAvKjZOI3FCc3VW283UDDTXMo0l1wWSMrNVMFN3FrnrpO5Nj+AH4QtSxr6BJ55fJorVQ4WGM7pSZh+edzuDotY91IUIUQOjASlVClZa3bXirZ0x1jjcJEB2lKAQnAAQ6LHEQWted0R1xzyKWa5UhIeLyRIzuCu6mpuhQEI29alFUxN1J3czA3NXcGqKJm7QukNKcaY+pRSZHc5nB++ev3dv/z2b3/79tt3pwdp3FA1R4VWiWE24lkdijvmnjB1nZNXMCMLocmDkrcqLWKgEAg6gI6wI8RAKbSam7lSH6kLT8J+hFVjGtYaL8ACV6G3PHWlkT/hq61Bnj/GNIiNx7ty51p7IaEBXfIYBMSGfy+ukdBTSCkhoajmXAVCCimE0DpK5pKP44gEHrhLHRKJZV8CJm8o1GVtcfdSZc51zhKNW/o+56wxDF1MxMwcGRGwS10rvZuZVCmllJxLnqWUJaEEAERmdsSASADtTeqWhuH6+bNhO8icyzhOx+P5fJrGKZcGxWpc0m5acvWW4lNrg1vKmJeld/3bm0DWZcKEEG6ubkp2QEghqGmt9XR4IAQtWSW3KkCKqUt9l/oUO+bggKUIkenSRY/NYU7NRFTUAIiZYupi6hCjqKuCqTqVaZ7Heco1E2NMMcYYQliL++7uTRdNZamAm2hzb1h6LdxxWU7JDZ6KEmCrEAUOgRvgR7hs7GtJhmyhApsbSNVSZc5lnPM457k9nFwAoIsJKQaOEJyTgQhZjUwxJgSqReYpz2MZc1Y3R3BmBVYn9VYvIg6BiNwMyBBN1R1B3W1pvYO25TQwwHzRD3q6ijXS7gq3YGgcXgAGiEDDks6huRcAWzg0SE37m6BVoPwyadb0jgAiQAKMxAZgbrQg2ETkkSgRRsRWgDCztsarOxosPqxLNrZQYCMiEKBqy26/x4Zpj1VqzTmP4xg3m37YPH/xoosBERufN5dCTDHGi6VirdUBVGQR+yK8kBkvsYiqikjbIgFw6fGgD4rYP0xnW1LyuxCU3/XOH0BKsDpyEzVg7bHq82Ghh77/PT8IVn4YmvzwrH4HWvPkI4971Rq+PI3AfhjEyBMIEwBE6tuHt9+9/65Lz4IlL5UOczhOmzCg3TIUkOyEwbE5cpPTslM0ghQxUUIIJpbn6Tw+HE8P9w/v3719dTofhBUCha7jEFqD1XJSgG4mUkVVpboBAyGHEKOCScnQGNPu1eSk89t6Aie24YpjHzp0EMtSs8zzlhI9sYGj1efSl1IHNLUtJGJiAEUEszb/HFoFcmleujSLgLnWOpditcyq1cyIYpc2gRMAdSFu+w1y17SXipRaxVXBrWn7ExAjhYDmWqTOeR6neS61VnUHJlRTqUtaY0t90VoN/Xcd+PRYr/HpKy2M9otBwdNh8L1BdQEyTb2WUmt1UQAzWIOY5baB05oK/a7x/3hyH7Z/twFJPxirQWs18TKZY6BNDEPXDSkGCM5asougis7ZPQgJoAcEECu1zqGIAnCInPrYDV0nVn/z+re//PpXr+/ej3PmyJExuKKZKDq4d6BKdVJTBXVTMhMnz6hAtgNEIEXMBgqNk+iABDF6QENovjMpEJlptH6zfbbZhCe8OeZWAEE3Amdzb/KrTx7fynhrE40QPswqlqpwq4YgLQgitDAInBqrfwmLrLG12mhG9ECcupj6wLFKLpqJAneWIhPrw+nEibnrEoY+DQgynw8yFfKm4G5FH5Uuibjrd6nfOkZRqEXKXPI0e4q6FUieYmRmREopNYzBVBet7JJrLbUWkQrWDKOZkcjMS1Yph7v3KYZ+t7mitscH6bo09Gm37aapP4+AFPrOsMmUIWArQDZNPidHXmlgK/OqtST4gtISATF8ONRcTVXcbDNsXrx4Pn7+403f5XGUmt1rDDD0cbfdpdipwuEwTmMGgL7r9vt91/UAgIAi1mRciOKw6UKMKUUEqoKlailSTKDk4+lUakWiYRiy5JgSILRgqG0PKmrmIRB4ZEBGqaK1oIKYrhRvoksx4HIw03bT77Yb4EhIKjKpec7OsLgXCZi5qkurnxeZi+RS51yqqDa9OfMYKCHHlFJKSKElj2hCAJG5Vp3mUy5qTu6hFBE3YzPyphRazREBVBjIW0wTAlDjXLbzaGHAchXmbm4iqmJP9SHb7sREkZAdAyK7BYeI2BFuiBlAzWUN8dsaikQOQEtZZ+mYwbXqRMvYcEaIRAjojouAHiEhMyMDkAMiqoOolnZe4MGRgDKYmiu4ulc3Ag9IARAJL4WNRwC6/ae7isxzPp5OybzWmmJ88eJFCGFoEnOqgMiLa0dERHMvpdS1gEEEgBSYY4wtoV8CnZZVA4aIeFHVXYMLv6SEl0X/gsHBI+KxLDZ/x0rtH0YGvhpBmdGT7/ggdLggNE9xkb8/iLl89u955ek3XF65/K7vRcA//DYzk7pwTdorRerb+7ffvvv2qrM4dXoc8VTCrLtBcD7g1CuTmgbkhCnFGCE2f2EQRwOO4KK11lrzeRpPp8Ph+HB/uLu7f3043ysqpZA22xAieAsWFqTQVLUUU21UPVqUzoMDmKnVgipq9aGOr+rxy/JgCjozAH2cnl2lrZl4EeV5y+mCxDRoBQBVDJqxj4KqGHtgDqk1dfASnLfktjFEA4cQm8iFSK2lVndTrZJXd+agKiF0MaaYAqcEyKfxXOo0zmOppdF6AnPkFGPPQGal1DzlsUgxNZEmAeXgDga6KJ7BygqH7/Ff2sODJ2XQpz/8XqSyoorff/RPQ5+ng1C1mfrJktACemtKAF9FvFvmhwtG8IOs5LG0tH7/B3DROsUuR2g0tmAAjBQ4JA4M7M4CwShSSIH3kTzghKwIhMGaslRpMLwDQCBOsQPE+/PD24d35+lYrXLoyZG1sf6AADEAJoJqbqAEho35TCEkMh/UCWj2IAQYrEmGIgIE1oCze0AEYiZiQ/QQITLw08vjEJBDNZ9FFh2mVQgB1+ewJqaPNbbWzvFUjxKXzMMBcVn0sUUq5ktVuFVyrUmCN64rEGEMw3a73c1jMc41uKFWIFUh0epIw/5quL6hlKSMRbxUYyQAV7emyH4ZRn2/6fstcQADJo4heucpxciBEJvD+YVG6c1oS2oppZRSG+3XDdcWgubxhYimOp/Ph/v79PqNO1zdXHdDz/0Qui70fRiGtBnMPMaIxL7k35cc+1KJWBNQd19WLEJcaUT0QQHWzbTW5gFkoIF5t9t9/Mkn281Q59mkEimRMcH1fhNCLLma2OJGiMGNEBcdMFFwA134u6mdpFQ5n6fTOI/TNJU51/nNu9fv7t5P84SEKSVivoQvLYsiwhACIUSGSk0Aspg2y0Aitza3l2n5IatRDaq4iLgJqJm5IQh4UVVzVzTzKlaL5lxz1aImalXE17I9EqNzNSD3CMCMTERAYEgARIwOyMSBO+gNuGhxldaVA4vIjZk7LLWrhnMHWLfDVght05+a+rSpLgo6vyPtac1HATEsqAx0gBGAWtLTIvZmd4MNhll0vtrA8EUKEi8c7wVHWUtUjIEBgYiJAtFiGAGLd3gzyNC12RCXyQbmF15V+9oG/jm1xpgPg8tGgnk4PPCbN2k7igkRNZPmZkmLa/cI+KPZT1NaUq1rzEcppb7vU0oN5VoybwA1B1VAYv5g4f4vdJiv+8B/iQ/5kwN+UIF6vJz1zb/z7x+e5/fIBL/zUz/86X/Zc768UqW8Pbz59s3XOXnfb+CcKWtwUMZ0uueU1FFFUugsGjAgIWBoKG4Lz00113mazofz8f7h7u7h7uFwfzofxvGoWKkENQ0hARA4gC2S065qpaqrU9vJG52DW0xYJOc6nuv4UE/3cj7qJODdfJ8wXtFmx/3AncRtDpuB+idIzKK8wN4GYSu1OKKpGy/ittDGfmMMMVNYdnFfIozm3KliKm5t4AOiiGALU9xVTKHanMe5nKd8rlIBHJETR2UXRQSoNZc6z2USFWiV7GaWAg4GZiuAjrDOM//hELqM8Dakfxg6wBMK+WMsd9kF1jD66ShVVWstseArP6rxw3CZex8Omb8HiPkhIWw55x8M6+BIgaHfIHPwBGrVj7OIkdkm0PUw7LfdbtPPgbKZqzOQWK2I5pprmXOutZpDiH2IPSCYV8AMLuCM4iRGBITsjDMiRaKOo2NKkFKMzIFD318R15TV1c1RAhRiChJECN0ZC1F2IOSglByTohQ4jnaaTdYtBgm5SxDiJO30mhJMqzIuPLR2o81tBXLx8qDoCTQK5ohITAsCsRYIWicDE19SkwVubSEUuTFu97sXCiF05+M45yw15zwxeLi9vXl2+/lPfry/uX44HM7TSQzEWg7o1azaY62amIahHzaDG7h7CoG2hIghcNczoudSiGqXBlNVVVRT1bpGMbVJl+IiHOPuweFSTVDV8XR69dU3ec6gdvP8Wb8ZAgcgRKaUghs0ycsWHrUWO1xyPl/h9mXoqqoDMJMv2fgqLbqu2WY2jdN0OoO5MVqkEOPt8+e3N9cMEBCYHcHcK4Ki+zjOgcOmH653u+32KsYOgVtRQ9sGDUjIQNGAReA8ljfv7u7vD+M8Hs/Hh+P967evv/rmt+/evy21wlojaDgnETNzCIxIDKjmgRih1Cqtok6ECAEJidlFAOCp6UgVfX8Yv317qI4qzQ3CjUDMc62iSxAj1YtILiKtHWUhEDExxsApRiOcaq02RbUUKhM0/JCZYoxAkPqEgcUgZjWeIFdq6RhTVRctrSkDlh5aJgQ0bDGViCEAMSEgLZs2ERIs7YtPlolWP3KP4AExAEZsbF8m8GyKCIyhYdG0hCZ+iZwCQljUCAAaKoNQAQSx/UF3AozMEdFbhEQcGzXUHczWLAwjMbhrkw/xFhAbILSZ6y2Jay0VjrQsyY/cC1E5nI5v3r6eRLphS8ypT3Wz1V2FYUNEpRQzI6IUE/QQQkAiE5nG0zSPtdRWrk8xDdvtbre7vrrqNpvU9cTcCltN77vVOhbVeQSCpmvxBIGHpci6rCRLLaglqQTrmv00lLDFrOuDxfrviZN+Z4b6d73z7/np0+Oywy2DBT5Ivf+uUOaHeww+mfgAULW+O7z97s1XlfRqd91BCEDkCDlsHu7ZSNVEat9vDMwZgMERAgUyAAInVNMp54fT8f7+3bu7t+/v3xyO97nMptW9mmoFcq7IAZ1gASMc3dVUQKrYY7YKaODqliWfy+muHO/qYdSJyNHtPh8YcIvR082AceBu4KGj7tIFY+4N3k5dR0zkZGju3HaOy0be1GuJkJliDITUGE5NmDSE5vuLrbPNPZraMrYXDEnG6YDgVYpIdWusYWCmSASupZxVF9kvQmAiU12kihERybQt9Q6uQAhMjta6ux+fckMleenxaZth2x0uQUmr5D55+muaAug/iIc+HBf2dDC0t/qlUEywUDK8dYau/Un4+FUX2vgltFoLmuvQ/zCSCR4Z3EmNoKqYK2p1FKhmhjGF1EdiWjKVphKg7gpQVc7j6c3d6199/bfzfD7U8devvn798P4wnmaZ1c2xc7JWCjMBNa3mYt6AaFWoVWjKkCw6gHqpIqIFee0ZIAIDtVzMmBQQkINoQuwcZK4PWU7FdE0ukSjGxDFWM5FqcFGSWUTQl3xo9WSHS563QlTth3ApaKojLfTBFgGoipsT2TpXl7JoW4jJ1Qi6TX8FGDhs+yHn0oSV9zfXP/7pFz/52c9+9OOfUheOc5alQIiP0M+TgeEOZqpVmsZJijHGxMQcmkd4rSW3DUZFRKoDVpWS8zSN0zSWnFUkhECMzUHJXNe2FleRaRzPp2keR681T9PN82f9buPNAYhTI6k2lAzcW7qwjjtvkCzAOsC9pUCPaTR8uJCZWZ7ncZwYESMTpxhit02RKQUOiEiNlT+WPJV5dvAUQ9dttpv9ZtgxB3d2cFWvAgvug8DqYlpyfX/38OXX375+8+Z4Ph4OD3eHd3f37+/u352ns6i0y1bVWisAhBBD61xd84bFpmCRnVFr4B0CqlrJAJDzfAE8a9Xv3h1+8907w6gGUkTFHEDUaxVpN83RDUV0LlV8hdFCCCGGYCF4UAsEhDUwdEUDNiKeNeeRYehDCOgKBu4I5ByZmi6MKjhV0VJyEbmgGW0pawoJaqZVECHEGAydmwh7EwivtcjjQubOIgmgV9uoIToDRnAGZARzK64Onth5aUZY1AxbKxQBMSIv6tYIAApY21whEgdBJ3RFUveAxICBkIGQzB3V1VWryUK5cDdzabaljgauJrrKQQuAmIuqmohbLaUK1Pp4Lap6OB3evn19Gsdu2KTUdZth3m7naZu3WybOObt7jLHvehVNKWEIteRpOo/nc8nZRAkwB56mc5lGVAEzIk7UtOPATdWlIgJ4CJGJAemC7jz+fZnC31/V1/9r+c/3K/0fbgKr/dmTBeF3bxttOvwOQL79bY+/EX/X97Qvu7z+u9q5/0scvtQMHn+FmU7T+TDf8btouQ6xixgQoFKOk9hYS5Wcy7C7qrXWUutQ+q5PIUUL7EYZc57fv397d/fm/v7d3cO7h4d358OhTJPVYi4IUKsZBQwBgZrvjplUk9HLDFVUHbwhw9Seo7tYmSWPMkmdyeoAxqDidarH95pCZy+6KxSPytEireiBuxWpuWSK0cFbS466kqGYeF20pVQFAGJkxOCBzL3WlucCEbsHRBQRB10R7uXL2zapUkQElo5kM/Mm6W7qYmDmJYua4uPnTKS6Oy8pNxpYW8qQDBgR2ERLLe1tl2e1pnYCF4r8gi55w9cXdBWgPdUF81/iEl9DmSUrevxmBAQjAEeCpbkQVhzK4dK65u3ctbWV4art4B+MUm90kMdXvClKr+IX6xFgw1JlnDKUKpMCcUgbjEHNmGT07Nm88Mh85pgBVK3WMptxrQ/Hu7/98m8w500/PNTx67tX/+LX//L1/buCOSbugjmjAaj4LPWsesy1mkcAART1eeIw577jDSFoHc9jMfXYe+wg9GyGVaTk06iVAFsQb8iAiUlrPZR6Mr3YWhFil1IXozmYLTpc/iQavLQS0qqx0LbeFaBasRl80ra0xKO4bHvGhmbmiMCMBOStRx5cARQNCKijDhMzX11fpdQPm/1ue/3io49+9JMfP/voxbDbHc5HpNcNkiRwarvDU54egIqeDoeHu/cOmGLkzRYdBADJQ0CzWvOMSCkUlVJzNrWiNU/j+Xg8Hw/zPKF5iDEwCyo0G7O1Wd8ARXQc54e79/fv3t08+/bTH3/+7KMX+5vrYTtgiyuozYemX6vqQN5wK0VAU1jjFSda99JW7FjQy8fD3OdSxpwjYcSuc4wcW0YSmMC1VJ3H8XS4k5ID4m67vbm+fXbzbLfdpZQQyczUQMRqXeqXjexrZqfz+ZvvXv3ib3/12y+/vHu4OxwfzudDzqNolYZM1VJF1BQBQgj90DtEU1RzrTrnMp7neS55FtcKoN/fiwDGcVRd5sxcypffvf3Fl6/SsHegecqS1dRVwNTaSGEOgaOaTSVXldZn13UpxRRDQHRRCQRdz5sUh1hcZTwdSsnmFmPY7bdD3/RcUBUMWbl3tLmM0zybeS06TiJmyIugHCIzCyKamqpqqQDQCo8UgAiQQpnr+XSezqOugopklkreAFyVMiC31GuVhMfqXl3NHajyhQiPgLg0Xbelz6n1xpIDWHPDAwdEIS7ELXNyAEPah8TMjlUQCdDcstTiIo12o65uK4nN1byaiC+JGoOr+mw6mY5uo+gEUKbpss2L6vF0fPvuTToeu67vur4bhsMwbDbb7WbDxCKCiMPQD8OmzLnre05RVPI0lnmquYApUqg1nw73p4e7fD5M5+fPpe6vn6XNlji4k7vWkk3Fk0OMjGGJEVpmvazRtM6ItuisYkuwJrxPui0WQNeX5fqyvTQtxyUNfcrVWyH9y4X/nWWg9ceXj+EP3v+0Tfox6wbAR1745ev+CyExuniyPiJkaI7VDOp0OmHRmUNwArcBO4/HvDnvprw5z8PVPG23Y78dNsNmM/Tdpot94ATjeD4cvvv6t+/evTqdH8bzw/l0zPNoNTd5TABrIwqYAMkdiupZpzs5vZLDyeYWK0QICTgAR6S4GBa6uw5uCNCBV7AKhmU+lHcYCw86eILZuF5se8Dcq8g4z1UtxhhDZCYEICIDQ4dSi4qqGjN1XVRNTfZczbxJpSKJVAcwre5K6M0SYI0dXQTd1ZyaGYqDuTW16oZBo5rWKggeQyRkB9cq8zwBeEodcwAwqXUaJ1EJkZAJlFR0nudSyiXYNfNaS87Z3Yx5efyIhGSrIOkjOgIXe7RWQl5GuJkDuC5ltdWxhy7Q7LIg2jq63Q1WGdnlMwsl6CIlcAnN/DKIL9qdAECIZl61lYAf45jw3/0n/22oFebZcrEqSByHLXFQs47wZgiRSBwL8hxjQVRRUalF+xCe7a5uN7urbktEG8aXNy/5p/zT8hNnS33Y7656jlHA1GatU9VzruoeCQMgiSMhJe4SDYxucp6m6oaxx9iF2Af1kLOUctIqCBgZkNSAAAKRmU2l/qOf/flus7gNpW747PM/RCJVN2zlVVylGBaY9HJrLuyAFZu6ZFOP+mZt6tOFqWfNX8lXrYhFTNMBpJEcF1CFQB3EA8dh2G131/v97e2z5y8+etFvN+rGof/k4zFRyNe3XubGiRHTT370k8ZgBYCY0s3Hn5ZcADHFtN1sQghuDuiNl17rjNh4M0PXb4hZVONuwn433LzIORPgZhgCsdqiFqNmIuJmhFxFpnGqIkS02e+7q9u0uxn2N/1mCM3Doi3EF8geL+2LizLmcteW5ZFaA1+rX7lr7DZICwkyxvDyo1szC0wxpW4YYpcCEzExgpqWmuep3wzJpHYx7Le7Fy9eXu2vUpdC4HbDW1NSWu2yGJFDMDVHv7q9+uiTl4q6P+7G8Vkpk5kyoTeus9Qq0koJMYau62MMCKhmUiWXOo+lKUo0M05zv7iSSang8vM//4f7q327lq7f/OiLPz5m6YedI+W5ShGTRQi/Tf4QQgzRHHItYqJgRJhSjM0C0K3WSgR9n/oU+kAm9Xw6ljybG4ew2Q5DF7vIRKjqwAHTJiscTsd5zo3El4upOYXFpBOBGlmjUaOsCgDEwMREzVaLuBY5nc4//5M/326X+bK5uvqzf+OfbJmvt/sUU6uw4koPqe7ZzdxjIyw+QdkW0d91f0R4DGK0OS4hMlIk7JCaaERC2nOKTLbufeaeVcTVEc2hiuk61tzdzGtT83AAAHZQ99lsNp3B51LmafqTf/3f2O6v2rUMw/AH/+CPaq0hhBBiil3sUkgppa7vOkZuZb2+77qu7/shdV2IUd2u5+uSs1YBt0CsalOeEHC72VxdX19dX+2u9t1mxyG4iZm4GRK1PYz4UqZuqwtB46nBwgu+bPPLBrAEgnj5jxWJgRgeRQhDCLc3N+0f34PN12+7JLOXVevvCGIuHZqXIGZd/mDFXR7DqUvi7f+VgxivIjfXVxczy83V/uf/5F9jDKkfYowLqGWeMOx42Pa7YXfT767SZpeGIaWuPZ7U9V3smKOry8l2/TN7CUPe1/K85FlrddOl3w4WQiIQAJIBFJOTzPd6vpLj2WZwZ8CIHCEEpISciCNSQGqkRjFRLeIq4IpghF0cXvQ3A/Y+60//lT8d9ut8GbZ/+sd/7g6EzMzNf4BoqcuAeamlmeURc0ohrqDv2iKE3maKe6OtIzoRN38rACfiyIGQzamJDDgAeHVvZh5mBi1JQYQUU0uhtUrO8xrEsDvUWsdxNlWOjEyAYGqllH/wsz8dHvfK7uNPP3eAEAJfuroWRWl4FBtZ/vLHvxFaN9YTJAYeg5h1X7i0DK/g3DJKL4VQbPupr0HMo1rH43j2J+NwQQoBzU1NX3zyWUwXp2TAf/arv2zVi6asD4DI3NAFAgy8YBQG6EiGj+wtAozcWHMEi6+yitQmd0qEHEJTJl7IRtaw4mXhW9ARQkRseqq6qAURtPvggGZ+sa5ZK+m4bJZgbrth++nzT4bUA4BIPR/vS57dF32/y2N4Qn65TMt1fv/wBz+Yqk8/sworffBRh7Vs/+RrsPVkcggcQwwxJSJycBGZ57nW4ipudllcUtfv9zchJgCQWk4P93WeAQBpSWlhPeGG9+Gi7tS0HpuJp6nIIhIKSNz62C6sqzYUHAGtwSvuLYuPKYUYm5hKi0YuF3652mWcX27bk6V1vWvtuTiAN3natkqK6PF4LqUuTXoXbuQ6Yq2p/Yt4o9wyxxgXvTh8RCsvldr2Ky+XXEqZ5rmULIsruPm6Uzwl76y11EW30pfN0kybSMflJj1FMw3ct9vdFz/5YrvZAEDO8+vX347jmZhbQrzSqxYwFlfGgsNat4QlFF5pV+BmsApktbKWLo2pCxOL1rNs0xGRDKA1ry5n2hh8jw8BH8HY9SZd7vCljK2qm832048/7fsBAPI4vv3qq/l0DMREtO5Ty//ZMqoftWAuT5vgey88GfLweGJLHrG+p4khrNa/i6zOMrocLndxBUQfl7B1mIA2zaPG+TXd7Pcfff7jfn0ub1+/HsfzY8F8MT9rmeHSzrPIiSz+rgS+gPZr5IbgoKYA0JxTQozcghVcBUSXkP57UhWX5QDghyvK4016DCm+9wZEvMxxVR2nqenE/K6v+t5Lvzu8+OCHP3j7k6Xvw+98epr/VQ5398BhGHpmBoA8Tm+++mY6nnGdd+0gQAZiYuLY7OXbg1nWuvWpgYOq1pKbu4i5rWidX8bJ9y63cbbEtfiF9t4YBUvAf/kHAqxVjqePFhApUSAgMOh3m9sffZSGDtrcf/NqHM9PSUlrBIjQ2nN8mbIX8saTW4r+eIOf/Lb1PWsU+cGgasv2Y1jZThYfdR981TRawIxWl9K2Bi5JZisdDcP2xYuXLU+WWo8P96VkxMf5/XSV/3sOvPzvSWh7+Rd+OLr9yfX794e+P/3Y3zmmf1ildY9dt91fhbDYgHyfpPP74/fH74/fH78/fn/8/vj98f8Xx/9XTK7fH78/fn/8/vj98fvj98fvj/9fHeE///KfMlEKKXBYfPLsaSPmU/wRPsCClloQ8iqMo03sWZdGGF9B4Uu/4Ur3WhTLHw96BN+e1mjg6S+8lJYBwNHcxHXTbT7df9rHBpGV4+F9KfPTr3sK1j39tscqtTcuy8IA/hDWuuC5+BTiWtp0YKkvfQhlLV9nK3VuhfguQqAfXEy7dnAw1Zi6/dVtKyfVku/fvZ3nCb5/Qr/rl/rlpx88ncfj6atPL+wChrbSBj1ClN+7qvXmtILJStR6ck98VbFs8GbsuqubZyElAHBTrdlNFmrR+tn1dz/W5C9PZ+EjfnDWT6odl7N7Wrxfb4uvhn4rg+mRdNYAasSVHfX08LW69KSDvDVmp66/ef4ydt36+1eNkuUjqiqqsjBp8OnYXR7ZquveqlqPhR5YdbiXdwK0MsuTZ3nh9nsrQi2I+Oo3Aq2VGgme3D5fp+9jEW65MxpiGjbXzBEAzDTnOedca2ls38t9bSdIyxQCd9D1W9bK4dpn8HRN+B6kix8Osw/g9B8e/vRzCxcNLoj4+lsc3A2JQggxdil1bdCK1vF8KrXg987F10ryOt2+N2ra0PrglfXRmy5egc1Iq7XuYrO8Y26d+rSKU39vmsKT7wJ4SmfEJ/S75dmae5e6690+hggA8zR9+92359PpooixVncRVt25y7xxd1y//nLvLpPqUvu+LKy/43H9biD+e4j+DyB9uFQDLvVlBHAzG4bNixcvmxFmzvOb199O5/PKR/TLILvckqcz/7Js0Try2iXgolIYiIOZ5XmSWs0MkVIMzLgw59QQoCkw4zJYHp8JPll2Ws9HawGxtfy6VrweV5t+2Fzfvmz0i1zzu7s3c56a5KGuspFrUWlhFLS/Hteydf8AvEwB/2CUehujl+1puUGXvp5L/czcmzQwOpiamooupc+lHteW8su2tzadmFktZeiGj59/1KcOAErJd/dv5zwxMTRrGvSL5cNSbXO0JoyjhgBhsaDx1kprvnQSrpsYPame+aVetowTxGZOCw4rYWDhobRLrlXnqdaq5kCEMTIRqKo39RLApXtGF1+LYdi+/OijC4U0/M//1/+zXbf5+Oqjm/1Vt4lEoFldDJfN4MLLad/W1J8c3AgxMacYN11PSFXlPE53x/vj6TSNU9P5UlVZxKzcHtk5TBBgYUByTCGkEGLgyMSLr1lT9rLWO99kNNypCX0agtMs5aCHP/305/+Tf/I//YPnfwAAx8P7/+z/8X94/c2vQ+pCCETNpC00wYxmQn+5zYTLH3etVaC5LBGHwBd0CpFXyiS5OzoYNJWIVgFd9rwWsrXp4WZel0gOiPq+IyZXLaVOOdcq5q1tFNukCYFjjGA+j+eXH33+r/43/p3bZx8BwN27d//x//5/++Xf/AJDWPl3iz+aezPIWLc/B18s6BYHEVgkmDBwiCFEDk/1iACgNeM1CXVEZOa0HosPn7qoNP7ycidoWbnbR0TE1nABm3aILP4AtZY8Tx99/sW/8d/5791+9AkAaM2nd7+R6YjEAK6qq+ksEBFzI8YxLmru6yyARcZ/WdnAW+VzWavM4BIY2iVkURUptapI48rM85ynUkoB9xAiMYEDM6WYkKlFmu38zUyKlJxzzrVWEVXVeZpPx+MnX/zhv/U/+B++/OxzAABQsBFAAdjcRSTPp/Pxbjw/zPkkqoCLlzg4mCOCBzYm4EAIpiJM3iVmRnRTtVytTW1EYHREAS2ARhyQGIBMXURERKUCAAdGigZBFWpRJO6HLqSIi6o5uYI1B4a1hVKlkZiLlPHm9pOf/fG/ubt60TaYr77622+/+/LNm1fn88kdG8vRHdv+nBgjITOa+1gtt9lsiuDEHEJsNIbLKm1PCEW4EFCYmJqR4WK6tbAHHGBRjrhsxpcVHxADUQxt7l445IDAZlqlpi5d3zx78fyTjz/5ceP3jOfjX/71f/b23XcXfpgDuOOiQwErTYYIEdX0yZKG7tA8f9pDA1cVqXMez6fD3d3p4X48nXLOVcyBKcTQDcNuu9ntt/urfrMJXaLGhUdctsi1i9TdVRQAQgzNR5IunTGLJauIqoj86ONP/s1/5b/+4vYZAHz77Xf/4f/yf/EX/+yf9n0XQoAmNs9LOoSIjNzswABARZEwxUTNQhKxOVM27QJtDcaLxCItrKx11/UPCGAfHGuAtfznovrYftQ0NFsEvzDCkAiZg5nmnH/2sz/+d//df/9HP/ocAN68/vY/+l/9h7/4638WYk8EoFVFVQQAQ4yBKRIGwsAIgNaGA3MIoUuxKaCYmZuGvtvdPNtc32721/M0fvPrX929fTfl3MXw8sXtpk9Vap7z6TQhwNWu7xMTgpnVshqSIzT3OwRn5thFQ5oEcrWcqwOEFGLgFJgAW9xA6F/87Of/rX/n33vx8ecA8O7uzf/uP/7f/O1Xf7PpNw58yrWoISACMQMitK46MQEApIBIbYyTWwDgwMBt6bfYggQid9eqaB4WOVY3sKpiAETBDEqValJNKlh2o9Dt+x0bTufxPJ6O4+gA291+2GxT38UUU0yRORCHFu4QuMM0nd+9efuzz/7gP/jv/49/8umPAeDu/u3/8f/8H3359d9shi0Sl5KdvEsNygDmwBxNsIw+n/P5NAaE2+vdMAQPYqiKVqqUSVQcnAOHoetiCEyATYvHtdkomzVuLedZDvcnU9v16epq9/z2drsfYgcYwFzv3p/+9m/evX13qtW7Pr74aJ+ij+OplgoaCEIgVtXznM/jPM75H/zRn/77/6P/4PMff7EEMf+X//v/6XZz/Ycvf/rZy4+vX2xT4DoWm6WRah3UL/zC5kDUGMKqTDiktB02N9tdcyd5OB5fvXvz/u7ucDiOx3E+TTmXYlZNxcEAVovaQJCIuhC7boj9puuGLg1d7BNHJmqNnqpgiu4IyIuvCUFTPUO3MMr8Vt5ZhfEfje1Kaplff/vr3/7qL1M/hBCZOYQYQ+QQ1gWMLqJ3LYJhAjcttfXZc1jc4OjCHiPkEBPRYvOopi2ZBljMb1VVW5NFi3JEJJfW7EIhbLYbZtZa53k+jWMu1QyaVV6TZA0pdDG56Xw6IUAtc7uWPI9f/eqX/+Iv/t8cEy5au02c2NrqJ1VsTVOabsfq68IN+wDEGGIKsUspEF/QBUTk1hlEC5mu9ex0XTcMPXNwB1ErUlXtSdrX6HfMgRFJmzFHu02IbiZVq1QVzfM8nk8ikudpWQG1Tsf3+fSWQkQAaR1Gvojit3veaLyNdQeA2PjbS6dYWzwNVkTLRJr4ja8xTOvKWbaEWpt7R8llHKd5msuczTyG0EyfibnrOmK+6DabmYiUXOZpmqd5zrmUKrWeTqf7d3cqkudljLmZ5tG9EncGICWX+TSe35+O78fxUKQ0d7aGm7SVP7EFxpQIwU0roXWJmKF1KVQxUXQMiBDIECtqwTWIcWAVL4uGRgZ35oAcDZMIlFmAeNgOsUvIl75RMIXmorjGde2uzGU+IrhIXuZLre/fv/7qq199/c1vHw73riiiJVd3YI6RuSfoGENEdThVm0UWEcW2DcTEzMyXp3bRLPEV7kKi0ECLpkB08ZJR84vPeZNWW5P7JdIJTCmF2HJvQiJkRIRgpqXkbujz/GkM8cWLTwAGAKhS39+//ubVb1c/jKb5C6qgBuCNREocAiGq2UqNBkRs4W/jQpq5u0qtZZpOh4f3r1/fv3t7uH8/nsecqxphiN1mt7+92d/c7m+eba+u++0mdKkFMYv41AoCu4OoAEDTCEopNYNrWEG+KlJrzSUDeC7LczmfT3/5F//s//Z//U822yGlCIv9+OK7g4SBFtkhABAVJur6npkdgBCbVVhb9EzN3deVjy/B4H+RIKZNrZZTXIIYb8ugQwv3LqlRk8AW1XmaEGmalrk/ns+/+Kt/9v/8T/+Trh8CE7u6qYp6E9EP3EVKzCmgO+ZqBkghphj7PjKRa0sSaxyG6xcfX738+PrFJ+N4/tW/+MtXX391PJ1T5E8/frHZdFLrNM/Hw4kRbq+2QxeY0NRyVtVG6ncyAzAG4EBdnwT4VH0qOufqACnFlEIXIxOqA6FH9hS5rOvYlKe/+fKXf/HLf7rb7gHCw1yKGDoSUmQERHUTs6riAMihKU2yIYNHwhAZCQ0cXLl5CTE7uImhegAEBwMVkyzigBSiG86lFinFa3ab3JDTLu6w2un+4Xg6HOeRQnh2+3x/ddNvh9R3KcQUQhfSMjkJ3X0cz29fvyakOS/7yzxPv/nqX/7iX/7n11c3zGGeZ0fvUopdCB2FFGKIplROMJ3y6eFI4De7TepQaTYyTGwOks0EENYgJvKimuxNnUsXRWxxM86zHB9GMNgN6eb66uOXz69utt0GOQGQvnl9+OUvv/3mm8M46WbT/+jHt5st5flc5lIzoXEKsYocjueH4/nhOJrBOJ4vwzV034Z+k/Y6vOSbz/YfbakrdbZSXRVcF62QJYlCXxz4pJRCRPvt5pr3z4fbRDHL/CDHFzq8k/19uX84379/9/50PM8i1UgdBV3MDMghICamLnabftdvdkO/H/q66XQIXeQAQG5Yq0s1kcW1sjnPNXs9NKCouVbbzTv2pZUXkVLqum4IsWPi5qXMHAIHXDJ+olW2gRCoiZC6IrJfNlQOgCBirZPcECNSi2zczIqLVFUlpqEfmFlU2QKZmDmYiYF5MQfiEGMXU8dMAMCixJEZiLFZ9nJsPUEhBgYzBtxsd0yXa8EQY9f1ISXmsARegAALzs0kTeYeABCAiAIhExFz63ZpYVkMsbksrfu140VtenUkQw54AUKWnkEPQIhrELO03bVaCCERh8huunQ5oqqhAbk3NHD5s2Km7l6kzGVmV0I2X+tqDgbm6os99uISiNj6cnFRAFzI+c2Mu2Vmau7ekCkkpCaaBEttpee+Vd1UdLvZ1lqaHutFspmQmgtg2/VNtYrknCNTDNTFkOaYcy6luEueUurjpRdARU/HSbWkgZComcyBE1MMoReDWlXNFUjVRQ3cq3oX0IkCgbuLSlUlgkjASIQhRnaKhMhgiIlDR+SLMq21BC+6R4dopgaAEJAiMUJAcDYPqq1fVEvJbkYYG3BGhIAciEgZCQkkpScKpCbjdDyPh1JH0dnEapE5Z1cnCkJk6IUhMhpiBiqiuRQ1RXciagJ+HAMRL5DmWjN+zOOXIRmIAjMxBmRGAFVrrRwLEr34D4NbC2KACVWDBIoRQ0AmIGKG4OYmsxTJ87Hk0XzVvEEKqU/dYN5iIAZEVW/aQmbAiwNgZOLFtOHx/5yMjBzA1UBcGUIA7hQ21yLmBkR8onEWEQWKMaTUtY5WZupSSl1PROawCDCAUVs0CM1aAwUG5i42pZwWDbuaBRZCcnDmxxZrZhqGYbffbzZ9SokIOVALYtyMEEOIYREX8TbNu64jCgBOhCmlEGLzI2lRSnviS7H4iQFCCzpbGWhZdpZa/TLb3JcgphVOWtRpi3LbpQC/Pumm8hCXzO2yJofUdd3QvOv7FFq7a5N8CIxDl7rIKbCKHc6lGsQupWbTiQRLVF5D6mKMMXbDZk+hu7p9OY9zsxEw5KJkHpG8G4wRKPUQIxAhObuYSDVD8Mit5RWB0YAXESxCigiIxAEpAAdgJqRIsEk29B2t7cJIlOLQdZuUeqS4pySqYMCIiSMgCLioiauB+yKQCAExIsVAMTAgmqtq1VrBDZs3cNe2rkUFlQABAABJREFUVVfTItUU1QkQOXXgRBSCBHBFNwdXhVyknubDw2meZyDsU7/bbPfbXb/dhBQIIVIcUp9CWGUoMRInjh9/9HFKab0W7Lpuu9vur/YppLnrVZ2JOXEaKPUUU3Ag7Wm76/bXnVYBkyJ5miYMuO+vd5sh3MSwWqIFbnUIaVuPilYROc9zydNYJLsJMqaQGIBLwcOpKk6DYBogJHfQbuDtLqphCBxC/P/Q9WfdsRxJuihmk3tEDgD2QLKm0+teDf//z2gtvUj3SPf0UKwi9wAgMyPC3QY9mEcCm13K5mKzNkFkRka4u9ln33A4zufzUbteX7u1qKWomgGqY+tU6/SeEiCyzOTFGLUCnrk+zHUr0A3dMQzRAfe9BjEjvta23VYiogc+f5geP+mHCUrTdfIiiDPXE08zCGydbi5b29QMsEN0dwUMZCRhotJpQp64zKXOUmudKhUey82666at72FiDEgBFBCOBqSGkx3KNuGeCYfpH8rMxIQUAaoW0SGiTtMAtXMKlyAgJcZESDFADBZiBgiiUAhVRUxGRRBlwi7klDBbSmIWBHeEtMAzM7I8WDF3OGTE7IESJ+E9oYzuwA8zAzmUKlLuG1lOeVhYZCDDY6sJNzCICAoY00lgQiKSjOCh/PwYHjgEpcREwxl4CE33lOnE/JmYM9UvPCJH9lmv3AfeeSjhSHXfWRFjv/O7+TAMqO4PE/SEzRUIY7e0HtwLz8o4p673MQQT045YR+wefeF2HyQBAMJQUkc2d27uDnnJzIiQrZ5p6T0zuRNFuw8XYGcnIAeKEAQTVSYkplKoNUF013Y+H0XuB78v6037GiTE4pbToDw3K7NHW9XdAC2gDwYAkiMrgBBhCSQPNXO3YIQimNgjDhZKEDLhTuQg4gBnLyCAYq4WDkhEEoAiGIEA5A6QYtStuRuTMzEHZxhqOv4wRhDsnpvjWra+tbaa9Qh1CAf1dB4dUUmuGsYIzEri7u4apj5CuSycIyoJw3t7tzsBZwwbiTmHKeJsDMOkJx15AIGDI4iIAGHPrUMI6Oi76JRCQoAJ0lWiI3B4c+9v1D1EZEYWdMD8Z8SA4DB3QAzJKQsxEwMOYDKhRIO0n45EhzAImNCBylSmYz1s09q1uxoiNQ7MgiOGtBWLlKlOSOgBGW2hpvuclIABEd091zsRjaEMRi5MQPBweVfEIGJNy5RpqrVyypCJkBA8soi5V9WJj5ZS94VPiffceTF7mbLf939dxLz9fefp7GLm95gNDADGA3wnkdCISQdE1LQwqfXt4EckFpFSitRa50OdqlQWhLDeCWGeahEmROvejUoEl8rCCWUxIQSDA7FkOhIhMiXCXqXOZtoNQIORWeqMARAKjEYzFWKQQg7UBoHm7jyYObbIDBWDmGNIrynTJ4GCACpGoTf+CkKuUEZMrgIQIBEI0SQ1ENVN2Q2Kw90IIKM2SJgGpwTYFHtggLMICYkwuPfWrblGNA/Nby6n6MQoQMHklsiqrn29rsuy9aY05XbFJQdwRdwsswiSqJorqJbKxKfz6V5cisjj0+PHz5+ezo8E5LlvKSJCGAIQEgpjZamVSol1jW1pZhYIwlLrdDgcp1oleS0QhOCh2hGdPAiUrRE1J5mIAclEqHAlovBoGq/XVcEcJYiRkYVOp+nhwcx6rdPpeDqfj1Ol1prqtaGySDDWudZNS+3vi34AED48dKhfntcS35Dq7ZOd6zyzCGTcbBAEImWWG6JZRKhqC0ToE2pj7STBroJR5/J4PqA3bkd/na+LaG/koBBgw2MfI28QqdPmxIaloxBSADpYhVKCxEhMendUtT1ahH3sND7CjALWu6X3IGams75HWB+OKdNUHxlFeL/kAanu5nUeI/ePYp9OJEe59wbAtTTZaTGZSccEzIPhmk93Pp4WnnAOppHtqID+lYgdIUdRmauDd/7l278Hisi8eIxICyJPU9MdisiyYaytrDowY172SmlcpMboxpIcmoDO4PcAM1NuhZlm2ADYA3Tw1pJVh3vrBe7dhiPS+0yiHPDn0TRqmrciZmyAd+btuNbRJuAbnW3/mJnamWWMh1u4mXm4ZngVjXrMRiBbjgM8kXNUJHK+k8zyk7rb1tYkECSpKydTCIA8YAzAQAapjFRFKP11i9CnTx+kDEMCD2t9aduNSilSPdRNIwKRhIWIHSBnXQaRdNsk2mkEeXAVLjV5PdrW9PRhMQoUJkZiDITwPF+QiAmQmT2AAYlCGN54u7VS2rgkdRzdaLg1GTiGEzEy4Uio02Z9cWuwcx0Dkj2T94KYICSkFEMHpKTRwWCypIGdFAkDSIuqkdzIyeEbnLP7s+2ONLJ896xrDKQYxnlETpBkWWIYRTXiyA2NQU6MnW0z6HiUcTpYCwpnXtR4xhxALdQjXc/UIb+TRAhEkPdpazrfZJ9ERLtDDwzfmoAIdMB8jkcpjwwkyMxehIhYtOu6rlJnM0MiKSXXCCkh4d1jFPdXvvW9ILif+qUUJDT34TB5P/gp50eEu2/QjldBMsjSMy3LnfulAWTIJr/jEb8VMZTxV/kZACADbnfw830R47sfMO7/7d0gePzhfmPyY485ZkQEZJn47q1HsZPsxEAi4rnWQoElMAIlc6nMzOea8VtuDupBiFiEAMzA0Emt97att7a1bb213rqHBUJ3QCsTFeaIqautm3UKIZ6ERdgjUFUdHRwRFIkDCgAJzRNPCKrR7d1OooBgXiIQULf7enEfgWhTdQE37WGenWOyLs0DMQpxFjTmuUeGmkIghBXhzLXFEoAgRaRQEVZV01VtW7d17WqAAaTqOfiPMQCBrrZtvS1t27pZuEN00957b2Y9z1V3twBzVUtW8+4/FHubCAAApZaf//Rzg5fKZb1t/vyy3Ja2BgkerJqLGU1zmSeGcIut2637BhSn82k+HI6HYxXJ/QM8YDSnrqCeGy4hEMk0PTzx4eC2mWtAuq631k37TRVKnQ+zEyLXOj0+nLVLeKv18PHjxw9PRyQFRKRr9u0eTgzDGvA9cRpA4lB145dbi/a9mT6/Xn75+Pnjw8N5nmYRpggCzFYeM/2MkRhwICOZ2WYRFhBIXGo9HGa107o+fvzYzYEFbpu1Bmr5GzxPZlRAlGAKBif36BbV1HlyLOASBnleq0V4YKAZoEf+9+rqYG7+7logqdThgRBuw/mNCN0sXAMl6L62MfZQwIRk9xN30HV9zOyz/Vfy/IGgZNkRwSC27wlI94L97XDOxb/nYN+Pjh2oMDdQYCbcpT3wwysgiRXkgxwyDmu/Ey4QIAGT/AshBreQINL/H9zdHZAZCLK3zWMpEAL3RHR3U71/TMq0xWxLBwN5Z+xnZl9wVk25HfsergFEyLyDUPDHq8khgw9W733YBHc6AgKBjJFfSj4cEQPdw1Td1Hc/xmR+p7dfbj27hgkdgCw7EEKkQaCMxD6cgQBSPGemGXBYBnjD4xOG50/7fJiPx+OHDx/vDqTutm2X5fYCEKUemNC17x50Of5ycKcMacli1BEQPNCAJQSAAtE8WoewcEZByK5uAFBpDAmOwIglMXNBR2eM9PzyMEeAwsM+cDy3KAyTGalauCM4OSR27+reW2gPtx/Wi4MbmIVbEFIStTwMgCLMIgBiFMOYvPgE+T0CwCIg3AI5cIhi3vJ+7ysAIAAdyceM8R4oj5iNwR0VGwceYDjdveX2LxbzeUYKomBCZvzhCUttHXEWXXvoHyIhp8Mo0x0zeF9ewDtSSAy/wTEIHSc90A7TEkEptQKLwwBd/M7uYh4aJRplCr+ZOiLcZ7iI6G826gm4FpF3LRYA7G/5wwvpjuhimhMO3CUxmL1aGtT7Abu8C9LLIibGzuP3zWr/+fF6+zb2H7j/HXZkBnO3QUwg+c4OjHAzue+l41rycpiIyPOpAS8EBREAO1APVAMiOE1CBKvh2sG2MA9jDwh1AAPoKst2e33prfVtMcvsMIw3RWFWn6gWEA4Re9QgDglH2ihHgCM4TEiHw1QYm/rabd3UNBCCEASdwaypbts7e/sYNCY1AAwzDE+akYelrgNHDR9gOyfO3UwdMAoRFE5jV3CIAMv+QF27rjdtC5hSBCEbhGsHNyyVEG2w9N8StUSEEIKDs2ikcazklp5rzQxyXA6ICWa/3RSmw2k6nmcOzml7a/16VQhoqq2XQyM7u6AgBIAiGqCzUAKEzOMqAsZ8wsZxFQ47Qo9AwjOVmBCOoxXVrm2lZWnrsm3Nl40OjQ8uRFxKrTVEIucTIsKCrQsLkSAxIlOFMnUtZX///SU+Yfe4elsv6+/P//jH1/Plb//jb3/+05/lJ54PUBgIPICS0UUWBSm4eAFEqggSjqZEHVXJveQ0hic/fMRPNLN8KfHtZXtWj+5AjmEQTo7oHgGOpqAdSjdp1kmVTLk6VCBspJ29gzsGemD2Shbo2GNT6o52b/qTnqmqxcazlVoA4WRNpANmjFlCKqzc762YuxNRTgBGWrXkHMfNjcMQEOltU4sIM93xiiFWiqHrHa2+umIgeIq5CAndIhd2BLgaAJhaSs1wF5zlfgFpTR0eYaEGAzry2MGOpKu8aXoiMIDA7yBEZDGTUqW090VOSBQImQiYiNDdt23NAiOx+HGe7LoQBnmnh7wLZ3MxIA7CYMLPDABhWsvbaCzBWw8kh8gnHYKHJS2FRzdNr38irlCZACNlauQYimCupmZd482KOcDdfZe/DhE1BYK7axZXuSkDZPmCwkV4+AWbuTOxJb6QDDiEhMTurA5091B9+Pjxbg3pbrfl5fXlt7at83SephmR1DKcUk013DhMYiiewh09ANCJLEpnSvOB1vq2dgjHqTIwAKOUWkrJQeCI6mTiikiIjuHIEk7etnsRI0SpbkPECIcohAdVXW5r156fF8HUenSLbqBv8nCA3GnIDXqz3qyUIQXEMVnBJHAyAwUGZAYKhON4pAEcAszCSIgjCGBIvff3GObcu+MB3MHCPNX3cR68Ifb56OJIfXYAp4yRpAAMTCQ04gcVOkASWutUpznnivnWnCMCj/tHgB1UcHfepXn5d1WN3hPkc0dGYMjp21AAMDMJHY5nFFlbH9ELuxC77pgEETGxv6tU4k79YWaiO345fiCGRu/9ehkFCd3tm5PdnINfpl1mlSMqZra71HY8x2/Fx/135X9iA2DCcey/r67+VREzvt43qwjwyOMaiajkebL/V+7j89zLWYR9+sKUgomu2jatgbMgIK9B3VExTpU+PZUq+LL662Kq0Hp0NQDwwDDom8X1VuSbqfbWMLwgMTkjULipqmGKBgBAKFWCbhqmgYDMBPfFBWEBxHw+zodZtqayqkdXDGEqAnMB0LW9frsubaczZH8b6t5UERHBmZGFAmPpDQATkHEzNetd3QMILVy1IwCiMACDA3jv3V01gjEaRte2XF/dfKI6FwESjWi9e7g4OpKmJAiAkYSZporMER7sh+N8OMy1SqbsMHMVqbUUlr11S6hce9e3giyiW1NtiBJhAOAW29r65svSlwsdH4tuLk51JoKowlEkgph48AMwqKRWFwAw8dwY7g+eFAAIJCGm4b0OYGGmbb6+Ll+/WHKxrzecj0UYVdFa9KbhbVmWw4kPRVhIipSplKkQgqtHxMvzrQi9dUwA4qHhGN22a9u213W9FCEhqMLMcaYZiXGExSuGE0Mt5FPFgesGoQNooAaqgToqiNdT+Vif5kOZJiGhpq25moXFaLIjyBX6ZoHdcTOA4gCOFEQVkQEAG1mHUICgIZMKc0DHAIWm0B30fUU2suM8gICAkACRRATC3RQRMAgiMWm6M0zfj3IiRmA1QOR5ByPC2pAI3vnZe9YjGWgE5PvrPiZ5tyO8bQj5A0QDSgADd/9vqMXbTjbeLJGKIeq+G58ADrZvViBhAW6eO+b+IfLdB0xCtPuLRARgCgwMM08uIiCBXyJGQggmCiRmjvfbHABx1kIEGJjGOMa5u4UIEfiUeo0f7g3cv5a9YiPI4s/G/xE5ETOpIgJwMtOIKLXugIRJAkbYFZ67D3kkUE0AkMhLkkyJKYB2bsaeWpjdSjYsCIE5q0SEIMgvdG9mA6JwqfV+wCRoaropSUcijFRCZsIxWauhAioACGDoQYEI2u22rhuAbBNLCWBzMnNh2uuQWjL2YfBCHMHzKd0f1PzKkADAXPtGRHMt01TnqRKxmyIEIWnvYMBEg8KkHcLBNVEGCPzDTXGPdEKRTFlCyshcDHD3AAcneMMZgxHKVDF1eftILyC554T5RAy6eVYqMaZFd6p3sjIQKO5ZB394RVbsGOiOmbcaNManMa7iXcUPgEillFJrRI/IYN5RGYQ6wkhSg72qyGp4h1gSWIWAQMr0XgATF+kiTYgJKB8TQGYikRqBtU7TVEvB3LWHSIdzBaWbRdKw4o6Y5loKIBqFVH74+zDoh+U/QkV+RGJ2oOX+yd/jPW8/+s7zaX9oc/we2cxnkwb36mT/h/tmeK+A7p8wfw8m3IEYiHdKHyLuWIi4B/8rVClp+tnstW4dAYil8ESMzGw015grF8bZQA10JiLvbmZhDo6Bpm1dr5QNfU9QiAAJIQKSc6DmEcGjds3k832zpHy00fdnGYf7jACiOSzNAWISroITuxqageoP+HiMfChjokoojIhh4JsrBBYUREz4fJAPbGxvCGAGPSIUwE29h6vkmiRg69U6I0khYgnkbr45AuA0Vw1wbR1ciFxYJgQSBkAAZ53mmtBIPsAAAQMRZxhqu3D3P6yzAFdtTTdkB/BSpJSCsdlm2tx6uAcFHkohFERgQiaOGDC5mSE6cM678rDIAily982JAQJTViGVmQGIwDkUSGJr63KLQOjqrbmh3W59ufW2qoq/vLzUGabDgxSZDlMwlWk8akJyfd2Ox3l4CgAAgPi64Eq8CjVldVu277/9PrnXCNLGP32W85EHyq0IUQWRuU4FASvhDFFC2UNBwZv2tffNrJWCx/P54/n4NM8Hpr4soR2XRuYaqC4R4IqhYVtAU1iJN4Hu4BHhfdqCoAMogWO60iBgYsuBYRpq1B1Suz32xhx7YLJJcBAVeA8DTGKyj0kzZ7TjAD/3TKh91af+BTD2AzOy9c9/pQMDAQTw0WNG0jU9d5rITXPwMnJf3IuHN8MTR4Kk5MDYVsbDlnZeUmTnowAE7JyTYQD0Bhtn5QXhbtm7pMxShMfJR7vEnGiU5uFhe4EDACNpnVg4NTNIRBzMIIKZOL0PaIavS+6iWYplb5ybtXYVhGma3sH9uY/vPjZEMQQTCQXH2PHdIkL7BmGqvZQyTUkcQxYpdULiJBFjSmES1kH0lOAwc5GIwMEaUkQcSGu8vU/oW1bO2K9tEOkoJz3J70YiTq6aVt3uzxgRzqW0WqUWFvRobgpGYI1twVgFW7BSAhU8SK2Xy/rln3+/LheupUwHmc9leqj1YZ6mw1TneZ4Pc6ki6BjmgAaJNCegZ5oBlhgQJhFq2pYbSXk8P87z8XiYmMi0u/VwC4MiBFAjSM2boYMnjOlogPQGxOTpFu6u7sNQZGCPCA6hERhGlnyZHBxaqfzheBaidd2W3lbtEZb4zAAFAwLHpJLv9fQ4LO918A6oIeJ7NOZtiWRVnXZkSLzTw4AiyIEcknL5RvtgliLFh/NAMLFk0ico+L5IkcZJDaDmBJDuC6MUIGJzhxB2QWA36KstsqSpT28R2LZpIiqlzMfj0+PD6fxQSgUgsyACLkxIgYBm3XSo7fciBveplzsyA4RmX/JjwQAD5xxoFeFoVwYMk96Y9+Ig9tFY/smdH0NEeaLkq5sNoNrdcq3m+JDZ3e9TIfiRsvO+Cnn/5yN8mbmUQvuQLn8Vi/O7UV8uXiJycydjqQjY1Bu6sR2qzwcOLk2J0HU0jzEJyYPMPV6u7ebqYQ5GgW6xrt12xVmWjobkQfcxKWP6eGFLq6TIjMG38VhhzKGzWyybk0QlEALGCIoqUMBiW31bEQlZ7s9YAAJSAHbz6i6FmVHDe4Tm2NM6I0qgIEopar725sOoIty9a19aA1NgFwwGZMYDcily4gMQYZkc2Bw64Axc6/T0+GH1UP22mSZsUJjZURABw8i4UK0lAfmsmxVhrykDxrA+rV/eyLDu0bW3tpIEEh6Px4cTXIo2wnCOFtvFVrJ2tqmSlJwe4EBWA8wNHTFIiFKi6EDmYN1jbV1Vu4YDMTCTVCozc4lIOoNhRH1sp1LYzYhIu69dX77dnl+WbVUg+PrlK1d7/HiYD4fj6SiTUuG5lsM8HefjtujT01lY3ooYcqMhOENzjG6XlxcOL8hpN6Gtz1UqE5MXAiQRoiKSE/sJgSEIHMEjdGvL0tceWopgmaZaJ3qCbs9fX7a1qV9iUw3sTuaYqafRLQIRRArWiWdjcfTwpEYSZIdJ6EO/EDmFCkCIoB9KzLddLS3pcKymxC4cHRCH2AoxE8AhKGJk2rl7Aq3vfyfcealjl814rYESAwRh4kaDIbIbSg1cPd4WQSQcm5OQ8XYOMP7Z3s8sASCNWQJpeMGMiVUk24UIkQCHxDTcw8JVfesOAEm8zLIjwNAACT0CEc299W7uqSjJDTC9qnC0d8Q8jAKJM+Ezi5isI2n4lRKPIiYXzG72ixG610/3a3FPDC7VRLC3CHljAtNsIRAQLCzM1cnCAN2SJR0BRCScxxgO9mUAAAbkvACYsBSMQA8aPrbIpWAS7swSHfCIXTkOKatSN3eDAIKhbXI3JCQDN1ftc1vvtwYBCViIhZkQ3DYI4GAOZVJkI0QMYQBACmEgQoS2Atii63MYh956X12VSXCqzCDCUopwAVA3eFMep32ch4WZaVgP13DVdVmur1IniM+FqZYiRIrQwZs21W6mbuEBZq56973cx3DvXntAuN+xPSKEHB1BYDimFswd3YioCp3n6eefPkwil8vl++Wi195MI/rOtx4quPymBhNj0Hb+8Ob3Wua/fazxsAcAmgUTgTvwgO4Q3nHAflz7WXsLkUcQ5oGPQbTPIANwWFVGot+Bnhq8FBTigL0wukWAa2h3bdG3sIbew9Ha6kxlOhQAQUC3tiytd2IptR6Oh5zu5U2DYXuTOPv7adG9msv+B/7w2mGV3RZiQDGDzXhXHWbZ4Xv+HzMl0zb/3MzSC0PNfDd2stgNagmZOd5BUznyyV94x2nuiM4Ps653OBAR3WdnIhIQd5+It5+/10OYtGtaNZbuVe0EVkWqEMToI4moIBcqQX5dDUBzj0FXU98c3HIjHaPRZIAkFYN2qNkimrn5AMmSy80UjCBAFOhAQpQi/KlAYZgLGsJEkCYQhEhSSSq8w7T2TdjD00IQ3Uxzfm3gEBUp5eEEIIDoRMkocbXew1TCiQIICuGB6Eg0MxaESAMhQgcwiEqhAJPgx1ka0O08G0RoLA6CLCQHqYih0IGG3WjepOxMzNxo93lEZEg7rvd7cvJ7eiEiEClcaxESwu5BEQGZnhljl8gnJvt2Bwh3cMSBYBNzESoRqOiusMZiyUxg4EJSkQuwRAwiJtSJTudJEHuzMG/Nlmt7fb3dbpsqAsXt1m7XqmrMeDhO3Lm7BQKLTPN0fjgcTzO/R2Jq6rKlBrtb6+brurlHOG1Nt609f/z48eH0cJxPh0JTMQNGEOJCKERCTNnVIfSwa19f15uhCQitcK6H83x8eHr89OnzbdVVQWPZHFBDASCGxxQrVo8T8UOpJ5lIqLN2Mg4woCBGEGEBwghTYCey6OxC/OZHsu9kMGZzAAGh6kguzJjPM+4xphAYqUzBXAqRUhjIGSxS0FAr7P6f+zmAADlec4DUBfFOl8ZdkDdInui7mULc8Yp8Hw3DcIOxoQ4Hu7c6BiGV2IjkAKlH8mHPBUSBFLizgRHQPJpas2hOAOyOoRBo7sYISorWc7BiHqbmEMQkvHtnDBVkEeFSUISKMHMhZkytwY7kAGAyyPZ5Dgxj54C8OtNhzny/JxGh2rU3KyX2cm3IO0cPzUwQhQdJKQDCvKt7T/E3DhAoKZqUTxvuADvuUtEgRgQGxFI4ghCLMAKYqqkhQTgD5ZcY4dbVtHdvPV0Yfee/hVsyptS09zZv17sfScQwYcQggjBbwI24MAFTcBFBqsSFK0l14u6+rDdmPkxVDxMzWNhye9auSFQKHU4FKALQACMkywCiJCIONlyEq7VtuWpbwW1dbrfXlzrPuq3gSgjEiI7uvq5tuS3b1np3D1KzrW1qChEYyUaz+5kZ6VmZvOcI9yDe7d7RPflBMYyiwowJp6l8fjr/7U+fD7V8ey5Icdlum7awHhju6TYkiTtgjtsQCBBtsNBg4A67L/e9Q94f+3wswsHDwwEDjUZZCAAEFEAUlByZt4UfWSc7IwIxmiGOkSnlz+5zHUQAknRqAEzAB8OBhvUDQliYbsv1+vr8+vz98vx9ubzotjA4I0S7GbhEhEh7Ldp6D9BAAJ4Ohw+fnubDgSg1UoCIwsPWgSC5RBDDhc+zMo8IHUrLt1OfmURYhFlygjQGOh5OQJIdBjOmaCDV2tlxiNBw4jHter1el2VprUWE7Ob0b2feTt0z0wAoAJl5YsktdGei+6hiL0by2LpPsug9EpMYM+/FEIw92BBSaDPQOANeLb5trtCDbw/o81S5sLtYACGbZZfro+dLiYey0r0LAiJK6qzk3kA7o9CTFOcBlg4ZSJhtWGGshAJARIFMeaq7I0BlfDyIaZAaRngpgNTRqc73gz8gNFzdizl6EFCytDzA1c0C3UVEJqpMrArox1paxNV82XxdV0H/6ek0V+6hBHBkqQDsGtZVzSDQAokmJCcw1xJNbK318D8+PNY62fdXXTZ1IOYyVWFqjSx6NiKCQETADEhqzqiMTIgpSrhPHu/7WNazDpbVvYdGOHiEG3GUivOB50MpldTDI5LS45BIt7sDBqpnM09VKqIomaoFYZoAogBXYEn4xSEcwkOBIOZZGNiqbUu7XZbLZbktS2uKWInQHUzD1QDiMEugX1+u6wrgGBYsVGehdyQMYWQmLqXGFApNu/Yt+tocXrtDc7+s7bY8fHx8+Ph0sjg4IlCRIpQYpHAQGngPW11v1q7enIPcdbXuxocSkxyeHs7Leljb4uFqyCYexaB3AoppkvO5fn48PD4ejw8HnGktfYv0r0BHRhDB5GmbgiqieitemORf8EloTw6IMDc0JER2cnRkHpZq9x3j/r8cPHtC37vG3Fd8l+PuUR75cneEXVRKQ7Ccc1oIALOksAIiEu8Pjo/f6EPqg37Xlpj/qBx5+3jv9vp3+70PPyqPCLKAbhFYpsMRkT1UvUfrHYx3Nq4DuoNFpPiPhYRDHGp4CQzkoAAHynkGhLmBeoRaRAAkZ68IS7qPDcU0ZIJG7KOJuynL/fMmjt164154Z1IncJzlfYksRvNNRxeYhrOo72f9fLcKhJ3pM/6CAADbYWNMRjekEsaRCNkFJCKr23A3xyD3pJlg4lYwjPCTdxThmloE1x+OGBIkISBwc+vgPcgtousKuoG1WeTh/FgYe9e19cv1eVkuAJaOnW5q22atESOiC2l4771LmZEKYlAoo9EgcWBEqPV1vV1ev/d1IYi+rW29Qdj19dvlUEuhaZrNXc17197UVFXNPbqZao9wJkrt1R9EY2Og9jbiQUj9ESVaheFgFuyACEJYhecq57kcptpbvR7r6TgFOLMkadITv0ciZMiaM13HRx2a++hewLydDvsDfoe7A9KcwCIUzcTCJCgA34TXf2SRREBE8kEs4v6rcLCoACIGjwvQ93JmV0slZhqmfbtdl+vL7fV5uTxvt9e+3Lyt6H0qBAFmGm0NpE4U4cayqXUPcDwcj+KLn05IGBgeDsRTneo8T9MJWVJsCbvCP8XeOYn+A2khcY4kncAuPE9Oyt1iiphy24CIVBtk0QOAqrYs6+12u95ubdu66mC0Eb3dZkSmu3x7VxYkeYUlIrK67b1DgKSlISIBxXsgaFea3QGbCH5Px8k/S8IpCxNBznI3R3d0CL71nJtOU+HBXJYNoHdfW57tO7/I01wHAUYE0VCS0w4xjucoKZFD7GnuQ/KbzRJiOoYMhiBCQvGCBhiGu0UHMQhDOLK8PZMAGqHZoUU6QafHp2dzmiJTd0OMEnas8nB67Ij/vCzftJv7LPH5VE5zXVpzj4qZ3gQ6yJyWeJiIFEIWIPS+LZX46fiAZVo8DOH7tQEaCxUp4RZqXbuTSjgipQLLLAx9V2O8Y1a+P1og570SgL331rrlmQVADKVSmZgLIuOAVxOGsTwe4z4azsoEA4RYajH1KqVRw5GTE7tmPxAc3KE5aEgQ7PBsUmhIkAslc98ttNu2de29zpMIhfu6NN2MHLy1PZFmvCQCAJmnCobMipuGNVV1tb7c1vDL1i7bcmnr6r2BNQwvVGSuc0XhYFbEbnFzvXq7gi7kUSlCX5br67aq0wwTnKf54+N8W6pp2xb0KIIIYQrMdDzMjx8efv756fHDYz3OIbSELqarWvPQIAgpWHEUMb0BqPfZp0rlnbAT3vmtwTu+x5s/ydAC0I7G+H0GP1j3o9D3XTSdVIA0uMN9IpQkNYdBbhkELoTcthnR3c3AHSEQeKzxHcIeKyINYIIoRzFZqN6fsIAxK6OdB40QCL6j0uYQHqbu6hbmQQY8H08fPv+ZiF9evi/X59t6C9sIEtWnhPjT3QOR2IMwcOvMJKVPVafZ5lqmUoQxR6nm3tXXrgBQRI7z9PhwOh1mqGkKOATmQ5blbu6qvW9b0jjuJ2XC2oCcg/P7yDbR45budjhkU6l3CsSIlMEMN8MBvTARcfLnzKz3nsRPRHRL1tRA1wEo9TXhBhDEFAGEYW6m1q3vdmxELKm+xKC8E0kMpQgiH/jTfrqUOpUyEZG7unmEaVBv7eX5++X52+3ly6HSv/35L4fD8dbselsu1+d1vWpb3dTBrffQTX29fGvb8rJdfz+ePx5Pn+bD43R4lFIEXRiLSOFSWMKgbevl8vL9+5e+3ioLhIGbbsuXf/7dbIuwh4cPQKyZxgDASMzubgDG5IBQBAk5SGoRene6706HQsQINAizyEl7AGIPb2ZFZSIpUijCu+q2GBhYq0KfHh+O80xI4bZtvau1nPcGACLHYG5JxpKlKSpAopJ3TMgH1QkRc7T/tvjMgdC1qyIXIgfCSFOcwD9uyjm0x6BdSksIuEfA7SQPBBjcOSJALJK+ijmys+16+fLb368v33TbdL2FLhydwSpBmSQC29bDzbWvt6utSwNsupucHQ8r3vB29PCm/bZtgTyfHh8+fv75l7/MRcLQA0gY475zwG5M9d5hAZOVzMzMEjCM03KxEKEUlpIZhB6WBBdAhsyea90ut+XL16/L7RrhuLcfIiK7G0+O0oswC0shQkZkImEgFi5FqgkhtNbaunbq82EudUqyi3niLmP6lEtvb4vxzfJnLH6A2GnXUhBBw83VzA3RkWCB1fSy+vmgT6dpnokJu8G66XVpy7a13sLNHLp7OgQOK19AFqQsVsMHOW/ELwElOgrhw1rL3RgYnMLNAtwRCnAVJAR2ZVPrlj4nCtiDFMDwfTwrRBYxAIAQCD3CHTzXS6YZMCJEW9dCeK74+fzwf/kffzVk+o9ffblhoWPxjzOdZ7oEr1vXrSW1x9x7gAaYOQOKADNJqe7xfLtOgT+dHj8+HF2Eq7T+26odwQiLMHdj1c0x2CyYIk09KFGVsXN6ZvrpWzOGyVaiUvig6uuy3q6tN/UwJKBCZUapEGgOQEIQYIDhkGN8RhTiKqUQh4d1U1ShMk8zGlzrwbZurmjhakoA5MjABGSBrUPzUPDufVVtRhjzoQaiFL1dVJuBRt/sdl3WZa5TFWYW1t6fn79Ds4Ow/Wl9J30HgR4ZyQFVhIpg5SbdvZnr1pLvLYVKIS4MDI5BhabTVLAQg6OD+9q2S1uufVlsW6EDsIUubVm8IchZTrVWPtd6Pkxt7aQIeD5OUyF0L8yHeXp8fPj809Pp8SxTUaSr9tq1kC7qm0EEMewuyuiBknPTkbv9wysX/CA+JOPUswghAHDIiUKAh8HbRvj2a8LNeo9wZIJs/Dy8OyY7J3CfJvm+K7q7WmCGipgHhrk7ugEgcxDeP8vdyXvMyP842P/jK3Cvw9LAIEGK4RpgbuqWNteIUmudjsfjGZGul6tlcIM6AsAY/SMi360aqI8ukAhYeim9bm2u06FWYQJ3Ndu6tq6bOiFOtWwHNQ3rfj7CVOsQNrxJpnwX9JnZD6iSqvWuSN33172IgV0ZQcOkuDAhcuR3FgO2GgUgIdrufArD38YGdS4plKMt2h0y7vvo3TMDwrSv29aTgp9TPxwnOwLGbhWY0ij34HcMsjwrPVDNzHrrqtbWvm2tvVxur6+X129fJvbCfjwclha3dV1ur6aNCDHC3bR3cA0z1a33m7XLdntZ5m/18HQ4fCjzLEylcC2lylTrpL1fX7/dLt+35VXbhlIQI1wtYLm9kmCR0rYmZUJkd5NkrBsCDG9fQqi1EIZisAj82CjvvdobzpwsUiQGQI9wcxYXllpKRRfCFP8LwqHKExwOU4UA7SqBG3S0sJQR3WsiohHoyJye2/kI5vPs4eDu4TlGeftgQ689ZvyqpuI5QfmXSwUHezj7O/TwIHrPbxsn7b0jTd8bRMZARDWztqy3l9vzl+3yXJgKmoMWsrmgEUtldwzr1h2su1lD6u5dNayhq/q6lIjtiISb9uv12gywPt+uNwbs64rEJLVMk5SCTECpvbpbUr29mAYbLRkn2SnsDOlBjhk9Geb4CbMNUNPbsl6u19uy9N6L3Ic4ETkCyEYLKU3TRahkWpxB5FQpoE7CIjjPBHDVRbUvC5jHNB0yS2FYEuyjHdxlkPCGf729soYkTCPqAXEHoBMr4FUhyaBNU1ZJRyqCVDgncRgR3dwcfFCeiAh3R5937xZj+jkUBExFkisw4nnd3BSAANwBCQWZaao8C5A3sBxdoWJa11Aq3P5wPRreww1BwW+9oZMRZvhLrqNw177RXJ7OTz9//PDp8dTUzxKPBabzfBA/ENbwGREQV4hMot71yewEHnhTM8RJqoa/tI56U/l2POk8z396OpvpdVUmNE8EJyzCHJqaE4EFIJqbI4uMMYV7Fo7q74oY4SI0oU99a9dXvV2aqgI6CUoFmYgKAcXgoiNBoMGACISoFqmlFJH9wGxMMtVgxIlL59ryjmgEWVBgIDGigvQQDQbuiADqCFSYmWotjK0t15ReaLPlsl0va52mIEhbh76svrY6TdHfuXUDCG4GpubKiFypRqm1qnrr5maOFOYE6O7X64XQAI0E6lGogFEpgNbauq6X7XrbbquuWzRQVvfmqtrj8n2t+jQ/RsF6qoc2G7TK9ZePj4/HqSBXoknkeDw8PD1NxxkKbw6IlOYi5mruOloWTKQfDTgGZfBt/83TPYZd3c6otxRrem6fgR4UBgNGJ951AIjDhijcdW0ruJdaUTgAXN3UAIGpMElO9O9IvGqY911cFI4OYWhOkQwWFCJEil0PjIEklMcu0tB9AAD+uGDSPDNV0G4WaSk7GOjeh4MbuKM5cJE6HWqdIWAPPQ4PCpDAnA+nfWlEYMoRY2ydiAhELUeDtZbjNBcRJlbT67J2dSCuUgIRwXR7aWvzD/FwiuM8MaF7Eu/cczi0h/TeH7K8IarKYgkexrsXAKgqYgZwRIYMeTgRDLvZGHTmgOjuRIFBKJSWG2BhupuHmNuQXjmMAQn+t43IVXXdNjONcEyKurwFnWM26QicTgwQGdcM+3bQetu2lQi6bbe1Ldtta7euChZBJEJmy+/ffq2vFWhW87ZdzVREAMK6q2mE0zi+N12bbdfb8zfiuUxnmQ4l9Y6lTGWa6hwRy+3S1gWsS1bwERqKgJWK9vb1999eXy61Hg6H4+l0nKeKJNUEGbmpeTBhrZLgH7236x6MiNzjxwOdTS0yg3AgWs6TwIV5nsrEOM9zilmmqQYBMLZOpqEBUJ0QxaFbdDUdlTcJoTAJkRCmfwRiImAYEV1jMMwQgUdWHxJQDGOPNFXK+lgzPyF2nfW7CgYJWZiQAcDRx0G3VzxjkpIONMM7DzDSIQGIAk232+t2+e7ra4X+8fQAwc+2YMcC1cwDSdUtcwVNEbgwZ58DhNWAvS+vz9a34+nMEKi63dbL1+fn7899WU4Pj8hS58Pp/Hh+fDp9eCrTlBy1t5UAACNMkXcz3DcQGQhZmIU9PHTAy3mqJ5fU3Na1f/v+/Xq9IcQ8TVOtEL5tW1MVQkNmFJbMVAciFKYq7IBt23r3MCxFIKZpqofDQUTM43K7Xa/XZdseH/BwOJSaAUipwUe8Dy1ybrS3KPcKRj00KcXAMdTOzITMhQgDYnNtzdQVcAWAyjTV6dPDREzqvna9rt3Ma5W5lqlWwFi3zdTvOPv+CPDO38MsYirhPFFXWzY31c1DiIhJKtWpng716VgP5LaiApmwEQ1FN2BAxLi/90mZq1sPU/TVzbZu4IZAxJVKQVJz1I6tzef5r3/5659+/qzg19szbM8P3H75fC4EoH1TI8CJEap4+Na2bkClkAgFdbfbuorGgxwc5NX66+vtf/7+/fHh9H/73/7t58+f/vbpf7/e+r//+uW3l5tZqFsQOeLWTQMIACgKciEmrhn+PCws7O2+EFEtVXjSTZbX9vq9Xy6tmwMHT8QzUUESGkym0RwQAWg4AtbC01ymqYqQmXpY6y0AERkNCbnylF0tOaACcI7tUDSOCkeQ8+FsAV/h+kptdWgRGkiGF7htaZ+2+Xptr88LEnFlUxOiuRRXlwhyfw/ECluQhbshMDFJkVqrdjMFc4ddaN67uncAK5UPh3q5XUXAXBhAt23Z1tdtubZbs25gaRCfvfm1r2HIVNjZBWSWqvVQ6OHh/OF8nKhUogJQa52lELAbhLl3826h7uqqpgoRHobeLNRMu4c5WdgPHUzCAr332LXTEcO1eaTMpLA5ndmG/UjWE7BjHjk7UncnJ7QIBHPrvQOgMIDAiOQFyLmSe2QWIxKo2dqWcJ+kCFGAg5na22TXI4gY3vFyPP4IjN8vJTP1PGKgoplbErs9ZYwNFAmQC5J4xLquqtpaN3cPcuAEW4crn0cOiUaQ7zD6BEQgAwDfurfmRYqwmPuydQsopbCIBasTqBI24SsBVmbO0/HNQ+1f40rjWTAF4Du8v28N45UcjHAHN0+YanCiESKpXt57B4C+Weo2zWxdl95Sqhq2Wzt52g1CpDw9VanZh2ZN1bXnmFZEDgecQEiy0Lwb8CAS3SfBPz5gptbRoZuqJZxPwqVOpZLhKttVl2VtJFIAEN0tjyrYYZ6x46cyKJKDA4GFliuVudTKIoRUpMzTQYjNerhntHqyXboZMweGmbXtSre1lJu2TTiEIaNnhAlEUDM/lQMQmf8IwyAiRroMj7SDiACkuwcPOGMQQhWaazlWmecaaUcEIESzEAN0cHI2E0QsSF1j3Tbo6m5hjkwYFN49aSnZ1qXg3yxM3RRTCjPIWyPLegxok1jsYe7mgOz/EooZTI37cDlNrhFgMHzHdw4/zJU8LBydA7wv2/Wl3V5Al4I+iUNApVBBwGLm6gHuhSPUIxzCB7PYO4KLMEas69bUAgiJwxEM2rJsaysIt8srl1Knw3J67dvKhYnImcLjv6/+HHmPe5MtQeILuz1uAroId6MOcvfrbbndbrfrpbc+1TqVOk81wsK0t+6qQM6yP9CROIA2CA/ovZsGBnvaYAvXqWKth3nuquu6ta3d6AqQT5fgMKuM9+SmQbT4AxoTqfoIRgRGQCiBFjBotQCuoOagJqsX0bm2M5IUepilPRwiwiOWre8mjAEja2OPdoudokFpbziMvszAgZhzThYRYR5EICKHw/T0eHw4lKMEmm8em5NKUaJultbl+1//4loCQN03bc17BxARqAQR1hqHP5TydD59fPowzfO3L7+9PH8Ru32c4OPTgZAul2vrPTImTUTdpYmFZwKahm+q13WT4vUEgdQcX7f25fnbra1/+enD/PnD//bh3I+hl2tb13Vpbt3cFNAUCSO9bRO6SppUVrp3asy7ayFtcXvdnr8ul5dtXTuh10rzuc5nKbNwIRo227s8ZV+lXIVrISHgpBFFAKDp1jYwzNqWgQmCFcgd0QmDEarGcYsn5o80ORFVr46Xrqu7MpnwgWBNJ/Hu603pZbXwMpVk1c3z5ACc0tp3lyNC2R+ZhzOCMM+1ejdVwIzHDdfe1w0RFNEf9NS63q43Ct1WAgg1XVq7bstiXSkCyZuFOzlGoJtv3l7gys5N1Qh4KlIKlQl5JhEEdPdmCKtB3zr4ovq8btfeV/eb2qLRNZUaEJomobbB1rh17T/sARGq6g5qXhK/HmbpcD8u3RwpWf1E+8we9xUyxvNEGGlm7wFggxOD+//HACTiO394P/lAe3v59j3cn56eaJqyXLDw3k1Vx8ByX+73jwQwPGjuqHJEZNrXGJ6DB1jG9CSHiYgFGUAigyqQ1eG2rOvW3ay15qntyEoAIj1ZVM12SBchgwaHzCcJkGaweN+6MUnO7ZiLTDNPE7IAE5ca6K/XFTymSZgPBLGLr+CNQvZDmQKwmyPnJjBA4T19KREtYRJCHOJ6yJ07g5gRyNXapsuy9q6YxMwIM++99d6TLbxzMSDCTV13m25ESE3WWIScl4uEOE0TUxXGWioSmPYIQ0CiZEBH13TQetulh7gkIpGX0+E8TY+18MSyvMo/lv+MLVr3wcwBZk7rbkeAUiU8eg818wAzCMzIWiCI3MRcPfUKRNSn41Snkk05hFpfW29hgSg4GUR6Ububq2KYcLhuMhXhAigIlMWqg2XYwvvjEt/cWiOyjsGhle0RXVXdsh2twpVxLnw6znMV7bb0IekSjHTY8Ag2BC4skgJlc121g4EjqJv2RiRIwizMLCRMGB7aNjWrdU4xfwAa5e8OuLPbYq9jwvcI0R8HMINmuFs/5oyS8C1xNF0Qk2pPmc+ROR4dwAi9r9fl8r3dXhmtUHhfwANDhWB4Qqk5BaMTGCT7K7R7bF2Z6Hg8QmBrt770a3vN6OYy0dy6qfb1hm4yzbq17Xo17fPpSEV4moH4D9eDyQpDijt7H4B5FDF3nxgc/F9JF59ta88vL8tt6U2ZaC4yz3WeKriT+4a+rjcMr8IijAQe3rq17mYGAUilSJ3mSZgjvPfGTUT4cDwGYu92vd4ul9euXQpLZSlTkqT3Y30XpDHtA6y8FiiMlTFzzEVEAwC7ejAhEjmAZ35SUAt8aQiXvhg+zDHV+pePx8fjdDzU35+vLy+3dV27KgsjIgtn8aLqGYqBg8YW1s3dLh06U5GczAkydDUSPhzmj0/nv/78eBDYXl+v23pTX50BRAObqpmLMGJk93nfyjAztIAEiANCXU2XcHYXquAQ18tcy88//fLnn36aprpuyz/++evy8uXM+nSoH08VUQrgddm2bW1uwjzVegiCpmvT1rab9qX3trUAdDNgAvD0PbOwdbna7TL3D49S/+3jQzd97V+/3pq2vhFymu9xqgkN0iuTiJk9Qoq/V415RN/s+rJ++cf69ffXy+WmavOM07k+fT7N5wLkUhnTPjTe9nEgRGGqDEJKgeE9NAJECDCadtdQbR4aEAJYLKQbqpIZux4cziEPMzx0hMLIk7DDqqhmHM39TLgJbz3CYFvVXpbbttVZTqepFplPB6hF2xaF411RJkyUUWBj28g4j1JKdVQSCBFBIo8IyzCiMLVtWQQ0QkCwhy9ht7AOgVwEAbVlgp2TGbqZL+uKQaYR4MFoRJv5rak5SCCoAXTeNBBa2NLay7rdet8imsfioAbuEQbgAOZottK68tpb93eN2Y52WOxIR3al+/kz3KfCwCwNvQLJBhiBiJiwh1PqXNNrbPfwRUQHd3cmB0xhYcTQGKdlXei2vX5/VlVG9lMQoRDFXsS4e34wdx9Jh0HuTn8skgEgzNS6IkfAcIF0172CIcQKWFGqA1q4um29Q2uUc1mz9IkBGu0KEqEjgO0jpJQlAgwmAUJqfCJ5cGaYHP7Rww9xE5Ajde99XcP1vMy1cH2jir7vyf742gfo44t+cytPGWSyDVOEOn6ccFB/Yl3b5fV6eb1cb7e29dEhxSiXhmb73VAu7lnwpqnh34snvFuz5++utfbublRkqixEHumHQ4nEaBKJ35f9lIGAgTyMJPF4KFNlQYJ2nepcywSBEYwxgDp3c+1EyJWIyZ2YGd32+wBJaw4PcA2LCLfWDJEiKJRiAmYI1669N3VzIkDofcbCQyNipm29vHhvy3SYap2kzAGld/DkZQ0d3R9vytu9i2z7wTw0rPdurkQwFTnO5TiVQ5VZBCNuyw3Dp0mScgEQPb3owNPtP805EQPD3NwVISwAHZW5EgQxEji4W2vbsjjAYZ6rCBB5pK3W2xOVNzbNCtUAMTL87r8/Yu/uESFiIA6lusfQ/5uNRwRwR2fAra9t2a6v0bdCIVOZOEQAHKepIkLv5r1FOILV1NADsMYGEQTIIlzmeXKDZWveezOVYBEUrg+HY3gHAMJgcNDW1tuV6fL9ezkcjqXyOzu1t8U/HmynMQ8d9rhEhEC79eLeCXisbVtu67IsvXVGKkwEwRBCSMzgBYx1hQDP2CnPofPW0iKfuZxPtZRSiiCiqoK6aiOqzDLXej4d3Wx72dZ1uV6vUqSUIizZn+QHTtFKlsVvNwKgEFQCARDEWlhyCqUOEITBxKPJcAjA5nDtEagZ0nYWeToW4vNUWACeL8uq3psXzlTv4YuSA45aeCqsZtYzBBV6RERwABVE4anIcZ4+PZ4/Px6ejkKhS9iqvji2YAE2AAvco2nhnYhyvDhA0m8RUNKIKMLcm3bUwNaklo+PDw/H43q7tu263C7g/eFcP57nx0MJYLcsSxxUAdGYj1yBe9db+KptC9cieKhSmYBgLnSapdl8KAzabV24t4PIp0N5OU3/OJTvCy7dmwO4ubOn2QIigCPlQvBxtr17zKzby/fLl9++ffuyXF83d60znx/Lw8fj008PZabWNyRAobRlzIPQIYiYhae51qkQQVjXvRsbFOseum3eOqmhB3sUM2md1dh0DqoMAgq1gTp1lc1qd1VXg4PD41R09lfQDaFv2sOhYe1GQHgkmQUqBqgX+gGJYeEIdiKwnB1ZBCBRKcKChWiaa50mEdSwTBt0i7a1yjEdC09FMaKgo6N5rRNAGJCDEoGjbW7dU/UZ5hAWGAiqXy+329IrMgFCCgWJPKC5Lm27LOuiqgAGqEg2rLSIMsHFdMVlK2vv7V4pR6T3azAn4SSJEh44DFcImZCTWNObue0ERMDdCAXTbxcZmQTGdxH3YKvhGRMRu67pfkolwtyX9fL9eVkbOG5bP54Oh2nCPS7OzCL5NAC+p80ObOWd08HYsrtqayhCyIOxGhaBTIIsgBPLgetBPa7b0lrb2hJmlRkzvhEDGSEwNDCiEGNBRNY0oR6Gv7n3j0YQU68IQ63hbhEQCNxXRICan4JBtW2bR3+93WphPM2F72Pj++uNd7WDkES7NSozCwsimhsMrw6PsHAEoeH6QMk38st1+f7l+de///Pr12/X29K7DdkGM4sUEWbe+/BBUI0h0ovWzcw8IH3AhCWZkmvb1uV2vV2J6PX11prN82Gap1InothFUmguRFjfuQ8jAgmVwgAEThCYgKtaqPrWkPg0z4+FV1PvFt16603ban0TQgoqtbJwgehhkL8FkYgDcrIQ6YstnGWcm7Xe3RRzTpa6Oe/aIxauiPxwOFcu0Zv2dnn5frng6XyY5kOpB6RJoyBXqVVgn7a8K1vc7F0FCRAR6mrWrPW2umkhOB3qh9Ph8TSfamHwtm7fvz8T4c/1o9SC6GAG2tV6s2YeQeAeFg1Ak9ME3iMYdntGCmIIMO1d19t1XS557BaRbHsJEXJoslsQQbgT6sj8C/W0rvhvdUxEjETxMThLYc+e9uFE6DaezMRpWKQ1vzx/b7eXufBJTgWrsAtTBEiZltv6/PLaV+99i9BDFarFHLfuV1UjlvkgXApgW3tvNRy6IgC6auXy6fFB2N08EJGLqt2s+7a8Pn+V0+nw9IFFyPQHYcHoFrt4iqCZhWqtRZiIcWiwBsknAnpvl8tlXbdwqLVWFgbw3jrCYRJmLozGxBgeY4uJ8K1t1+ul904EpxNP83Q4HLIlCFcHdOva00aFHh7OiLi0bV3X15dXIJwPc6nlPeaatwoHL+6+XrAgCSJDMHghCKDONHBZhyocgI5gQy5GgbRpfG3bunXt9ng+/nI6Ph2n41T+/vXyX19eLsumaoKYYqvuMVU+H+TxVI9z2bZm27oYVUFCtMTmw6Yyf3x6+Pnp4U+PDw8Tki3rti3mK1BD1jyGMIVrREKZX+bvkZgAjmALVBehkxQUMu9beO8duh0A5lofTydG+PW//qNtF6F4/PDw+XF6OkyV2Qyq4DxVZMbee28UcJgnFN22vqzE4BPj6Xg6Hc/HuQAiuBSaTzMxwcQQvVtvUGsFf5jozw/zpk3NomuHSKxbAXzvD/ehaegedZzXsrX+699/+6//+LtuEI6HAx0fps+fz4+fTqePxyC3a3f3NCwiRDczbRHOwFPh8/E4zxXD+grgi64K7gQmUkm9XRdfttCe6SUSMalVj+JQIYBgDQRgJ7y0tqgGBAe42eTx4TBhENL23PTWTS0oCiKt7BSKiFRAGU1+cIkSJvL0g4LBoEQEZi4VAakyT1Ot80wY2puqX68rhW/FMQ6np1OZpqiibq0UV5/LhObdwUEZwMki1K21aN0z9wgQwd1sXZfojEiBrpnoTRHR3bbWlnXbTBUgkIJkrD5MP/9A1469Qzez97hy1s7Mb5kg7/c5s9T66ra1bVm1d4vkmoyIuDRgKLVOc5EqTAxMMQSJgzKWM1cwcLeIdJYz6820Re/X5+fb8+vrddFu69o+ff5Ij0A4Z1+lroiCMOAI/heDyrdLMVVTTSsDTEZijsYRmYVk4nIgqWEGW5hpa5ubAjMTjxabkIKQA4IRiQKJ0kPKI52REAa/3Rwyr/jOJTTzTA4O196IeJqqSCmlGqGtvKlel/UwlXkSpgr7vPhfEBZyU1YlYhxMQIQR9jBkRZEMDEZGBAIiDoDe9XZZfv/922//+PLrr//89u1la80ssiIpmTk0TSIl66QdUxqYQu+69eZmQFRBSmVA6uqttcvlerm8vLw8E5G5Hw6HrhqpyuF7SZt5yVhKxfdUEkz3z4LB4bnxeUSaP01UzmVaBdlJyYnUIoq1rW22dL1eo0zTdJpYMNFdDkckRPGAIHM3zAgIkbzxkLRuHMasOOQ3Zr1v642ZjnUCZpbkullYaBdEaupAzXHm4hONZ+2Px34+JgBpzzZWkKpZi7AidKzycDo8nueHQzkUNrfetpfXVyJ+fHycA2kImjIlERGAMZCiEDgTFvZBqE317QDbwrpHtHXTthEC8y4cStr+ztkdxM3dnlA9wAIxBuPux4uJ8QAi58MgPLgNATn2jSBmxnd4YViEaW/rcrvYenuY61RmQUboyXhOa30pU52MCAj8WGohCZSte1lXAyyHI5NA10qCyNPUrtfWmvq2Ong9HGvhLZq5w57k64G32+2wbhHIwrD9d8ubAR0hYuqURCQHKG+3DikCWuvrut1uq6lO0zzVMrGA27ZqqIYZEAoh05Cmx5A2hqomf+5wmEspU51qKTmdz73OzTQauoiUaZr8eDgdDqbaexoqbtM0vdtm302U3i2W8WAAoHuYhWogYwQBeDgGoGUemiPErqNCG9uPF1yFaZ7KXKefHg+A5IDPl1vbema/mrlHIHAiFg/HsnI8V9HutRAiqnkwTnN5eDz98vnx88P5VKuA9ta33hXQWdwRIEMrU7g/zDb+Fb0nYsAwjIxB0oJMu7aN3auUuVaE6Nvy+vwVvP3y+cPnD+cPj9N5KuTeNXnDpoDe+9r75sFIFk6EpcjsJRDmqVYm6OphqNuB/eF4KsxzYGFRh27BBI+T/OXpEOgBwbf2HHQLNHdXTwmgmzuNNeSaE+zxACUS8/r8Ok/z4TAfz9PDh+PHnx5OT8d6LuqdG4EFF2YRhF2BGsEFJ5YDyQE51LC7rgpLxx4FyjSRW9jS+9LQ+uRwQJwDJrMJcCKuIlQmLKUzbV2fr7dVFUsBYUE6TlzrXCc1pPa6Xm9bV08HsRWMAklQAIzsD0CsMBEgaLYsmbGGJEIgiJRFTKnTFK4BeL2tvf/+InQsEfbx859/qtOhPp4KIa037T6jxKZrd49NkIzNoqkCdguMIHIKV1dzVWPTLAq0abpzpmZDVbeuaiPsERGCCIBHJQOOEUExKEXxwxMWEXsrT0Q4Rj6A7qDWb7f28nJ9ebncLpdtW931/a9golLLfDg8PJyP5+PpdJqOc51mYQ7O2g4Q3kQwEUwUrraty3a9tuvrty/flufL7bpcL7fb7UYEIlxrAUAzM7UMIYJhgL7PjweV5IfV4q7uHSN7p90VOU88llon5OpJdTEz66bdtLNLsA8KJyJnngAgBloEOTKjGQZA8otzdpTs4YSiKL1VCSjSGw61dym11np+fDgdz72tra+2XZat39bt8XSo5U0H7UMS+nYt7r6t67rczF2kJDaOEcQSydZUi/BgR2BGYCYkseaXy+3LP7/9+//6z99/+/ZyuW5bd4jU56hqRn1aOOGWONKoPAABwNxVrWsDxFqqIwOiut+W5XK5vLw8v76+XC+vpcrhNHfrFh4Q6iM+gRhrRtMBiUx3L6IIyJShDCnt3QACkYlZGE1PZf7grbm7cJ9LcY9lqWD0+n378nX5/nyhUn7589OHj4fjkUtljkBgD7G05aJhwJrC150lhQCQtZoHgBqDq1vfrmvoBTEOp7lOXOT4cEDAUiYHWrauoEBeAKhMxAy4U03GKbiblo2wLIy8PFMIK4yH+fDxOH14OJ2Ph0ORStA8TO16XQDotrWpKaFhOAHNUqhCALCIu4t7AWgJtsGoTAPIAyGit6aqbV0j4uF04jojYt/6WI07ZXN85biXJ8nNNB+M6HcwQGJ5afU0xvZEFgaJnxIgoCATUUjGl4Sr9a7rclmvr70tFCaFSiVyU4XWem/aLcxiPhzm+cDkTCiIQkI0NbV6ua5dIcM3gKdy+PBUlmX77Z9fvn17vlwua5M2oxlfrtemiiJqsS4NKmEzNc87AAh/ZPiMKgWJSWR4xlMmEEXOTxCR1Ox2W9Z10a5MPM/zYZoKkmu33imJjpSpfWiW/nWKxIPdr4ZAx8PpfH6odWKhlEIDZ1CIqzl5ECJ4LSIPp5O7vVwupn1d12mq83zI7AKEsYmNHuXHw394Q7e+QgCyBaGHAICbNjMHG2P2yJwzpmApCLF0s9fb1vR8Opwfzn/79PDp4fy6tO8vr99fbl9fbpe15bFFCEJQGV241lI16kiOi+lQP31++vzx8een88y0XJaXtnl4DwSmUqEgmjMxDRmVm2UULP+g+Q+IHgkkcikFCZxiIuwAChshnQ/HqZbr5TW2cG3HiT89Pvz8+cPj6TBXQtXSlYsq3r5d15fb8vXl9do7iRAyBRzmivVRPSJwuTWwpeu2tNt8qH/6+Ph4OpPSoRw2kJsDMz0eyjThaZJaS31d//3SfO1Ly7CLhOh6uiDuo4A3nxiP6E0D4uE8f/h4Pp2n89Px9GGuxwICoWnrQqUIsyQzyCIoojJPyLWHWLd1leutvK5427jjhHGyig5189YDHSvhibkAMEQlOkzTdDrJw1OUqblfnl+ev329rcsMx1r4MM9lmrjUee2r41WDFnV1b+HhoY4RXCEojDbTfhceAoDc56/uyDlOAYjARJ7TWjqPjXVr67IuCCujzXR+mK+39UH9NB3roeI0aVd27HG7WWxL7xG+xyKau2EAIwC6e+Cw9gRAD9+0u3pYkh3SKy4GxuIwqhvKNLWxJd1fPyz8fUa7/w9EQHdsptrbctteXpeX75eX18tyu2nbAgz2Gxvueb7Wabpeb8fT8XQ+nR7Ox+O5HiYpwowhQKlscgzHnL25mXW11q01dD/WqXe7tbYt6+16u52W0+lIlCZvaV6ZhJ0f4tbG2P7dayhfdyI+OuRpxkS1lOPhADgtrbmq9WaqOfM0t8BgREIg4CFzAAwP2lUfQBgAuT7NAbIWA+BhOodJjYj8uImqqpoqItZ5rlPd1qXdCKCpuqqaimVHkF6AP748ovfetg0AwxwRw4KBMrklGSMAAZIpKBSAZrEs65ffv/397//49e///PbtpVvOwLJhN8ikN2ZubSiAADE5uyPp2c1dTUdADAEgmvnr6+vr5XJ5ebndruu2Is9AQEJciIQShnH3CPQI9DRP/PE11DwYCN0c0CE4ACHw1uy3r8vt+61EO07xdCq1yKHO4PTysgSuy7ZA79tm7iFMUyV2hBB3UXAAsECIyKJoyC8CYrcLIyJ1D8gCX1X7FopI7up+nqZJClcupczm1HztaurdexNV4pJV2vtLydqFBjiW3WeIgHA5zPXz0/njYTozHSeu5IwmBISg6uu2/eO3r9vWjgc5TGWqlUuGPQMLQ3hBnJhukDOgEXVkAV1jDFa7uSsRTaVw4UjW7SCn/TAp2slU6ZEdCqY6xH7vfyhVKAg4zPUJwSEV1buLIhEEuIGprtt2va3X1+Xysi0v4F0EpBALegsz611bV3NEpFomKVIKlyKSkaIu1PQIgtvWzdelv14XAv7weKgTnY6HbbkuF+utXS4SxJdlaapBbA6tKRnZZT1dl+W2lKn2/gOxD3beGLwbxQ76zqhBEQLNord+u922rRFiKVMpUy1VEDWCRUK1944BUxEYXyuoW7jG8OhBJq51nuqcc95sYzDALXva0ZogRBE+n4aPnwX03tet1Tqlq/27T/7H5Y+ZGZvTPcvcRorALJRa12ahgFIYysSEhKncRwRQB9u0ddvUg+jhRE+Hw/lQH2Y+z1VE+PX2uqxEmOZuiJSgVYo6SpHjVB4fT3/65ePHh+NBqG/t5Xpbt1ZrHiSOe4hKIpBmlsUwIZdSSnlnrwCg4B1CM591JxsCQFiAgzATQNvWA9HT4/nT4/HnTx+eHh7mqQojUA9s7OEQl3X9frm93pZb3wBxknKaZiHGIA/X7t40enddzbbDafrLh8en89Pzt7VrfL81J/7psR5rjeiTSAtcAr81f226DeEduUNvnYIkY3F/PCsRkVjqVE8P88PjPB+lzkwCgE4AjFCF81twCDWzbqFOgKIgq4ItbubrLW43uazSdQo5CJw00LE4KjILFaFDYUYMI2Gej8dyPMXxtAJ/v15/W9qX22pqh4d6fjg/PT5Mh8mR9WVBec2ZUDik+ZoGqAFESVVd/OhDJl3VlFQBvBSmIsROANiHJZWr6e3W13V9fr30tRURnItDaT2+fnmZP15Of/7rcT6RlK7dm7bX68vl8vzbV9s6APBUlGDrzRCICuIguYVgBCFzdOsNeldTBwchxvFwUWr+xwQ4MwgJkVAAjYuUDD54t272kUa4OwRhISnuvlyXl+fL1y/PL6/Xbemtq6siONGwgR0HU6Jutqzb+v35ORPdHh4eTw/n4+k0H+o0UZHMPizMEsBqEe4IOBWph+NEfD4cH6/Ll5dLc+/dbrdlWVsRsSSvUWYYEhIOtXeqj0Y02/szJhW+mGUIjBQ7ZOKplvPx4FBb36y3ti7WlaUgkam6B6AjpaENIdBO1x2pF7mr7zP1SGMKSGQo+bYWEWgw1MoAYb1fLpc6Hc4PT6fT8edf/qzLcXv9itC1WefmyKmzGPTedwsmItxMVYkUHJEwnBjZOS89IoKYmIRFiNgD+ro9f3/9+3/9+p//+evvX74uy0ZSEcmTJ2o9IjgrQdpFHO+xmDSBTQoPs5m13l9fr733y+VyW5ZtW00bEtRZjqfpdJ4OxzofKjEGgKq6h7plhaXvOhgIwEC32EIdoGvHdFx2sG6//v7t//H//P+8/Pbr54f46y/H0+P89HQspypFbuu6dGsOHnE6TVOVOlGtRMbgJbwKBwe6S4THEDSOVwQwcZ1mQmIzCFTtaojhvavZc+9NVU9+Oh3neZrneUYqVCfatpdl6dpVrbOaQ9d3OaPjPASk4RCOACIw1Xo81Z8+Pf7bX345F9pevkPf0Dd0qVKriAhfv79+/z/+z9Nx+uufP/3p50/Hea5limjhUYUZ4VhKE0b3rQEQZ9piN3fo7gam6C5MSExgYc1AgSvXGUl8tO6OCDiy/TxpVm4erq3vecz7fSGkMpU6V8g9gilGQt3OE2fMYHJQa+t6e/729dd/3F6fzTZCKwLzXLhAoHfrTVXNIYCJiISJmQuVwod5mo/huFxbj0CeiCmsP9+W//kfX7XH3/7kT6eJ6nQ8n67XS79cvnx7bg4a2D3Ue3dXC1Ja6UVO3z7+9MUiHNLA4p1hN47EJbizj0dMbIIwBBG99eW23q6Lu53Pj/PhMBL+MKONSldfltbZ8DQHIElhDzMLVJSaBDUmISoAFO4BxIwQFBZIAMIBFDjE3ix8Oh6BsJsurZnZtm12POYtiJGGC7vv0M4jIWRhqaVORVg8ATOzjIzs3a63betqAPM8P8y1JNqOwx+Bidxj7b7o+rK2x/Pyp88fnx6Pf/p4ejofzufj6evl779/27amaq0n84g4KzGCOk+fP3/86dPTTx9OleLy+vr1++s/vr2q+8enQxXeXRSpqSqE9nTpxAjiwoXpMM/3IiYiesTqvpiydfBQhGZh3bybO2hr2ks4n46P//bXn37++Ph0PFRhAFd3BLSIpv26rl9er99er2tvmTkd4FTF3a+37dYtlNCBDCT4WOpPD+f//Zdfaj3+/o//+Pr99nJVAPzbn54+PEy6Xd3jofCZ6IBeMZjHGMI9Wu9pMwYIUqS+K8iY6Xg+nB/Px8djPVRH23SzJSa3w1wmIihTD/Nw7da37ptCAw4QN8RF/eq96bJEa6I6s5zncix1Ig4MkQKCtfBUqAgBo/mERep8VJlfe/x+vf77P37/7cvXy/fl8TifH5/+8uc//fLLIxX+/XXVy/q6ttdbS29G3/sQEpaJpYArQcB77PKtiMGgCEYS4ZLOzugW6qpmvS/LurXuFqUQEFvQbem//vMbnc4f/3o7PTwey2wiS6wOvrTt+8vL7fkaHtPpQHNxRpwEEglAAAoQAAjM/K6Jw0m75iw4eRwJQBAiJ8+TCYiSBM1pyy0JG/34ij1pNCGfgN798rp+/3b59vX5el3SA4sRmbgwZkZzAKSbi0VSXPq2BdyW5XZbbuvxcj2eT8fjPE88TbWWWuo0TUckUQ3rzVpjs1p4lsNhnspUjeiyNgNqzde1WwFzuA/jdwLq2wjM/1t20l65kSTgnMHVORmCYEaCZCF4713VymEWqYENfPAEdxiGdnuS2MmSqTLNuRvR0GvsobVIEUHpgzEUHhAR27per9fr9bUIz7UWOPp6SbOU3jHv4w9X90M5lsmqg0rtFLgnxqXlGIOEAziGY+96eb7+8/cvf//7P/75z99fLzczL0BIpJ5DOR0GpvkFJi1jOJHSnV4BAQ5BRGpKmbTXdd221jbVTgTzND09Pfz004ePH5/mubLshERh242O7EdCXOwRCkHoCOqKgWAc7st6++fvX/5f/8d//P5f//XLx9L7x6dPp6enh9OpPiB++vy0arfw3vv5PM+TFCbG4fRDw/tQwik51oPrTTAKTcSsQk3VTN0NI5gpPMz6tqVdQMQ+uxGu5hCqujWHsElN8nJ+RPvsngDpFJHOMqe5fvr48NdfPv3bXz4fBJ+5t6uDOxGQ0OlQnx7Oz5fl5ffftS1PD1N7OiMhMZtDDmCmQocqPJWtlYgwHyrNQIgEZQhZKJADIbxHGHEhDKYhSoOshvf4adrzw2I3Tuya4+b7ahk+6lmRjXITgTEl7BmRRUyhm95en7///o+vv/7XcnlhgWliOVUMNOtZ2jFznRgqYLp3dOvaea5cp8P5wR3X7RKkzF4KGhBwWXq8XhaWb9qPn58O8/Hw8HDs1i8vy7KZk/TArr6prd1g82sLA2Ypn759n07Tz48f7ybXEdF737Yt9fwAkalDkGazgMnD27ZtXZZt2zJnqZRCxCNJiIhYkFR7c4+tdYhAEpJhS0RvHlHJBdl9H0bRjIAsMoJ4iJkS1BUOhGXbHLFpRnSpme2g0b+g9+UvkiJSKxOHWTrophG8mgEEExBS4SF0SEbUnv2BANAdtq7ftd+2LiKl0GGeHk4TsRAxhV9vC5MXSY9pCCBinqb68HD65aePnz88HWfp23JZt+/X5doVED0IAs3czcN3UHyHPfMfB7D77roMoHssbjiyC9AZwYESoDdDt1no6TT/6fPHzx8fBcBUt627mwgZsgKtDpfWL1uzMIEojEehWUiBCoPYiFkhxIJ0FH6a68fzMWDaVn19XQ/OalqKHI9HE/SgDw0/3PRceGJADwtvahJGAoLsZsg5Guf7AUREx9Ph9HCqc0XBbq49JUZRCaVyYQ6H1VxVvSt0K83FANc1HbnAOrVGHjPRsZRzqZOUNGATRqJyPJRpEhFGQQ1wZpCpG902e7m275f12hzr4fT04dPPv3z+6fPDQ7317XVZvrxcnq/rbevuSEiBwAx1pnrgOrPUcCTmH9VJvXVr1HsgoDQszFSriAQCGnZTM9ta610RqUwyH461ikZ8f92+X2+K8tOf/nI+nj/89AHr1HkLDA29buvXr9/b2utpnh+Ppw+P0zzt9bkjBnEQAooT44QVKExVQ83NPTODko4I2bAhMzCmwxQBECPTiHJ9K1/2IJKIyBA27bbe+svLcnldezcCZCEmKoSFsAgxMzJbQDcyswA3865sWdO0ftGX5XZ7eX6utUyTZKd7OBwPx7PUCZBduy2XCW061VoJFSaQRzuh1Gs3N1oWU8N0t8xdCsLHHoK4H42mmf+87yZMXJgLM0t6XZAwR6CZ9b61bSEBYRRh9+gWQlVqYalu3fuGMIaDCSUSgVlyu9IJznGXdicbAgCGqWnc9VpYSHyPYne35Xr58vtv1vunD0+SFG1ENeuKlYWGwAno7cpyI3urZZI2qtDNTVhYCuKIUeiMCAgOt+vyj3/+/p//+euvv3359vw6AiPMIm/JLi8JhDBXVUjhHxNSYHjYYBkl3UfDtzXuGzQCiBAE1ipPHx7+/Kef/+1//O3Pf/p5msRd8+tIGwpEVTfVHxQKaSl2uV3L5Mgc6VJl0Xu/XF6/fP393//zH//x//2vf/5j2jb99Pnp6eFxrsdS5OPHs0UH6Ou6TbVMlRHBLXtr5YIIjIqBnKq1IfPGCAg166rres1kTdXe+hqAZaoM0XsLj942M1uut5eXl9N8qKUiSTNcV6d6gpNjupP7D9ei2rZtba213jP2pgqdjuWnj6dfPp4/nKe5kPjjdqC+rm5BJHrGv/75ZwvQvqk2SnUtoobftn693sj6aeLy6VyKTFNVD12bqREQQVRGQSlFslvp2tZ1AcS5Vi4EBAaDAAvDkzMgAGmQXdzAPFSt9d7U7jTyiGEImV60KfhNT6BADKBhnwjeltvX3/7529//6/nLb7ot0yTotZBtaOC9iBTm6TgJF0R2i9v19vr6xRHlUIVpPszhvNTWpaE5AkqtHz7Yp88fu9m356/eL+fjX86H+vTpyYluCt3Xnp+AKMDWbdvaLZ5fX76/fvn99w+fP33+5dPPjx/ato2T0ux6vT4/Px/63La61UzbHa2BO4Rj731ZFtXuHvNcxxgIGZA8ILKgEyEtbrquHQEAmLimndLuqwQxHIEHhzoN9IiJkIQLMkXsGasRxCQh0zR1M812L6fMu9cWEcGPLuqIKMKlFJKCxDgMKM3dmipGHA+lyEG4cBEpkp6XEWDZa+5woTreNuu2SXkFYpD56cyHwn9+Op4LLmtbtXk4EfZm3ZGkPj6eP396+unTh/Pp2LS/dPva+qs71jplYJQPZS8hFyFGJ+wJiYWbKQLhe5fb/DAWsUaK9QMJKosgFS4CBh5C8fE8/XSeT0UE0FS3db28vgL48eEMXLwcTOYVsIULxEH4w3E+TlOpkwJCgVOz9Wp9C1eYgM/FjkQCsKqti7bNns50SA94kVo/UDm1qM+rfXh5PdwWMF+7RYcQqHwYBKVMFHzn3EdE82GeDxMQqUVSnCOAkTbWZJABUJpVkjubF426Kujq5kAghJVlqnIoZZrqPE1I1Ey7mUEIs9cC80xzIWYI6B5rj9tm62LWVKQ8PT2ejvPffvn857/99fx0WPXy6+/f/t//53/8z//4+uXluqo7pM831JlPD/X4UMtMUhyEy/RDzqiYmmmYIcZwO4XRxGNAGBEimg/hdaZ7qfm2qVn36HV++f6Pr5ePH8/zXB9qYZ4OdT4dZCoWsWxNCXGuj8ylVCBycEAgCqYgDGdHoIIcUKwVAvA+3mxU8giUTo+J22eAaeweWP9dZul+//PwUNW2trZ2bYoBIlJKKSKVsRKksTIQaQB3VwJANnNh7Ira0dJIIcU/RMuuiJmneTpcSp2RBNyi386VTtPjXCsz1Eqn0xTEdtNusFzX1liEWBBwuAZT8oTH8hjs7/tFEEBKEkSIiHIQBaWkdsO0tXbj4VSH7tC7+rJVj1mYSICMCVLWkIwEJNTOqm4WIz1pl3PkIfCu4djtXGD0wTiMiX3btpfn72HGCIfKoZr+pdkS3xNyU3X8/vVmEpqqj3QeQyJ3AHQ3Q7RuCmrqr8/Xf/7j91//8dv376/XdSUSYjTVAEj2ACYzGiEsNBV65O4YGekyqB7Jgxija08mC+S/BWGcpnI+HR8fzo/n8zxPYda2FQKQSEQAaMyoRqDCvQxLJGYDRCoCABjiZG7upsngXza7XS7M/MvPvx2ng0j99PE0z9OnDw/h/XpdkmSAgTkaAzACA2AzQhAeInkPzWhqU/eufVs37d1N3cy9kxSBmYWSM67q7t2Sy6mdEM1AjdXnw0PFCEY0/+N6SSSmq6qqlFKRauHDXI5TmSsLQan8+PGxn+p6vWnTcIbiwRUQ3Lbr7TJPBSHlLrZu/XJbbL1uharEYZ42TS+1wOEcgxHkFBgZ34selEz3KiCMTgHuBI4wLA3uxm45J4Gg0MwlNf1xLh7u7kqGSXbf35HGhAXQ3UK3tt6uz9+WyzNYEwwGpzAw9UYKwRNyqaXUtFvWVENhIOLOiSGPXWiFwYx1mj4F/vWvvwDB99+1FKpzPRznwmEBt2aBfNlaNPdkraltWwuD7bpdXl9fnl+W2+XL//X/3lu/F5e32/Xl9UWtt6mWVOLJcHNKkVPrfVlWAK91GjYNedojEWEgsYdLLSUU0UcOPaY9U85IXQ0AmFHSEzQRnuxAgBlRhIEpzX9sZ5gTUS21Vt22LT+qmTGOof8bfen9MxZg6QiN4MOKORMPmAlPhzrVqbAEkQ4rcoQMmt5ngYQkxCKCiK3Z63WT52u3eKg8CT8e5+NUrpusvTfTgCBmIp7n+ThPcxUi3NRvzVdHkHKe60wk6NFVLVTDwIMQGDOl1AyT6JhQzQ/PWIB6bGaGpOGSVxFp/QJCfKz1w8Px6XysLOgQGtq8rQ0JIAixAAVQJRIROSCeCp3qfJyPMh+oyFO1dWsvX6/X1/W2GlkQorldbzeNOhX5cDp+fjw+nebCiIhSJqT69ACflvb5+/eHy4XWpXV1C0Z+gDlyB/z/R1RijNRHeMrjraEibg5RqKaxPahRt6p2sJjMRbW6F6LKfCj1UKZ5qpmp3t2X3rs7sFCd6PhQHk51rgHQ17Yu68uyXm59WQABPn58KMf5w4fHXz5/OD099tDfvl7+19+//q+/f/n19+frGhaIDFKIKk4HmQ5SJoKsRND/cEXiO9sKIkn/Pm5XIKSTU6aIESKieyzrFu5tWyNiqtw3vXx9ef71y2GSB3ycnqYPHx8///LTy9fX199ftTtPMk31cDweDgcF66aEgAJFEBE7eARQ4QqFHg8q0pauzc2zfhyT1ixc7tOHiBHS8aMSJu5ADACMZJbWetvALYVCTHQ4HmqphaDkFgYQhN0cHTnTiYaoh4x4zBTuIQrdtffbdUEk4oIkSEwEFa0/Hp5OZa5EDJUJJopANbws7Xa9OMDhWKe5Bgoxqtt9jjNwox/RWCQszLWIJNXNgQkL1/AwizBd1ytbIE3ZP7WtX6+/Sa2fHh+OcxXK+yalFOJKaahAPUWJmUMLmDRHS8kpEUUkqReS0oWGlqX4fn6b9fWWgZN+mmtFP3BU5NgVtol3pIr+fjmYlvBDcpI2d1SkMAsTRcDIT3bQZr1v37++/PPXL7///u22bj2PtECkiIiuPV2PE3Ub8tvUIHcQGqeLSKbmcinEUqRIALTWeu+tN3AXxlpkKoWZVPu2rJiTjggkEinJc9zdruBtb07jE/CuG0dHJJYIKgQ4T9PT09Nf/vzL199ff/371/8fW3/aJEmOpeeCZwOgqma+xJJZW/dlk03KHRmZK/P//8N8mXtlRDjDJtldlZ1ZuUSEu9uiCuAs8wFqHh5VdEnJlIqK8HAzUwAH57zv8/7w15f/9//1g2sQCwC9f5yOhwO4lSSXdW1VPdhUt+5m1UERBXESxgJu4K3V1tbaNtU9GsoDzExbi1BGEGCyEBbOgubuDQNLnoWRsNdt/fLl3Dql9C6lOwZMwmhOb27JXxeNuauHOyFOJeeUELz3tm5bLrzc3S10X45r3ZpWk6ZlsWmiecKnp6fr9UoI2i0QVLXVdnk5X1Hd6jwVH8hQSSmJCAOAjtTxXUgBRDTlPMpKobHgw8lv+OpdJ46BO+RmOC9eBV7fWBMtzHTfvRxx5CIGDOgzArr27drXk9VLAj3czQwA6MyYmRmAfMzUCIBq6yO+o/aWp5Kn6e7+OE/ZtPcWrhpupkaMJef3ZY5U7h+OXz4cOPS7949F8Hrxxf07lFQm/PwcsXo4AzAiI/oAWDZdX05PjC+fn011vBQzW9fr+XzysK6JiYlIRhwiUAC6gar23pmp5IKIpqq955SJMEuCgBYRAYRimtq2ae/uSgQpiYettZopYqTEU8nTJImBMYYZe9xHxnkwHrwRqOluAJREiqRNZKdIuhMM8RDBLoqPN92+aF3Xpk6dxcM8IJiIS0LklGQqWSQxsoV7V3cbqjkm3oGUECwwE5ciDJiFTP23z6fn0zZnvl/Kd/eHgSGWcA1joXnKiJwYwU23zc0v1771ICqHQ3q3TClcz6erqXo0i6oVkDwJEogI0a49h8C/wRFZeDevqhqgYZnZhVFdawXEOaf74+Hd/d3xcCAk1wglVEYlYuLIBBndGWXO0/28HMSngV6XaT6+u3s43D+w1csv/NNv0H+LulXdwp/W+tdPn+bp7vv3x9+9e3z/4e7Du7uceLhxkPhwPLxv7bsv94/PL/z5s7ZqBAlyBe8QeVABvyn4ISJMu7VuaRchDUt2rb2ZVYBDycwYFtRNWsvNjkELk6AkdBIsSeaSp1RSSoDUTNfeTlvrCDmVaT6Wx4/L40Oayla36/rr50v98uW0XpsHl+Px+z999/D9u4f3DyVl3/qn317+5c+//o+//PbX3y7na9cY+WEohcoseRbJBGi1KaA6qL5J5AYAuZVmu8937A6+CwGCRtE4coPH1KOrqrVWmTGXBRF6rev5dPqcqfhxepiYvnv/2P/wvT5fl5w7eDpMJBBgt2v6uBwhIIQNii2RUJkHoAiJtLcIi93lvps0PJzgFk48zlr/+07M2w/KQ1uz3hmjJBYqLLLMcyk5EXIYeofXMkiIMRzICRhcnI1sjCTMSVW1g1p02y33DjUcLJAJ54yTQGvdzERYGAcEBFEAsNW29d5rIAYlCgiL4G+9SHhTQLx+MdPYuJBAkIlBmMKi9e4R7i2UkRDA55xLTudt7e5xWJgoJylJiHfK3y4r4hAZRDHwcCLap8437fqbr+G1v7lAvr6hoOEQcMKwlqdEmKUIur8SFAAh6JtsPoCbOod2acKu/GcWRozAoCAiRq61f/ny/Mtff/v06cvLy7l2U48wC7BxTKn20YOBQIThJiMiHDZ8JGDCJFJKmqdSSko55ZJLyRGxbtvlcj2dvLU+Zt0R3mp7eXpBxJyEhHZpxU1vhQBDyfPtiwGA4agiZoEwcGPiw3z47uPH//jP/+F02p6eri8vL//2w5dhfDWNf/6nj+8e56kcCBkRV+qq0qChq2tr6oCaOBCiQjfr63rZtktrdRQxgIiU4ibtBAhGIi4pLZLE3cBXdJ9KEYKI0CEXIE65lFxSSsy8j2n/9nPh2/hvVBzEhO6m2rt2i+BpSiVDnmhWrb20HtrnOU1zPiz5x59+ad16bRpUa+1d1TzAr1sbsbkppePxmFKStKcGxuBOWwD4sL0QAoGjd0ZEYiBE5IbQLHZd4usauZX6b0/K2+PpEXYL0kCAUdwaGHl0c9P1sp6/rKcntDYlXFJmBFVFgpxkkOkJsKt1q910JIxITpJlmufDYU5J3LS13ns17e4qkqac0jSXw+HuuDwuYm1bsoB17SmWKZeZma9bXbdau2HEWAMx7mYBQ+DjbzblUay31iQLYgzFlO44f0JAj728Hve0XeYWsfNr3UaRh0ilJBchwIbYexBGzqIGsXqEcaIypflQ5jkzuhAIARGOkc9Ino0h078dDQDANBT4gmC4i5F2B5XvHoU3nUsAt1A16uoxKOI+njSRnCQRCyDHgGwSjcirndgU40LtiJASCWdGZIhufl03u2xEcD3MhHR3mIEpiANACA9zQWQiUrVt21jNDYTkbjkS+pLI63rtfa29O9gIFQ5199fFMETkEOFv1j4CytAHjRFqBAZQwAjaRqYiPOecWQjILWLPD3FthuRWDSEY+FCW33/4cLeUY0Jwu15qNawv1SV9+PDusbB8uCbtZu1LaHOqDs8vJwp6dziWPJeZmdy19973+FrhpeT3y/x+ygcCCevkHa2G1rAMAQAjgeWb09EMwoU5JSIH1a5dNRSMnTl1S4ZRlZtOBg/EH6dyBEI3BA8JEc6SiMhGDxTQkSElFil39/PDu/nxfToeg3Db+tPav5zX87qpek5yOC6//9P3j79/L0W26/rrl09/+eGn//7Dr3/55fnp2lsACYmw5CRl6GBwIErC1MMiem/2dnAhwIAMxIRDIxFuqgioBEAkTCmnnKVV2sK1NR2QFDdOKU2S5iSZLPRyfqZPitLLYfr+MC//8PtjwG8fH75czxdt3ba26oCfMjPc4ltHrhugMnBOiXDULeShAYaOEIPoGmg4mvBw69HcJn1/9zXo+Y6ubtrBLTHTVEZjKZeSc0rMHGo1PJq7CTgyOaEBeYAjWITzMKmQKSqGIqmDaCi77g52s66OIMimbuoQQYiJKQElSfOUSi4Q8HQ6b30L9LJMI+RhH3rd2jDj3HyjjUUi2HODEIdjUIjcAgDUgxgDrWvFgMf7YwREqLkvWZac5mUR5t51JGwTGjOHOxHmnIjQ3IYhS4DHrk97Gi0T8RCTYsPWuo+c31sr7Hb2V7BuwuLlUG6hcQhAPBok+OYJQ0RhTizEgki7sTONmMMdU4dA4XhaLz/9+PO///DT89OpNrVAdWi9qXmMTFFzxBiFC+G4nnLOKe/3/MjCyzwflvnuuMzzNPDYpWQPv163p6dnxDifr4NUW7f6/OUZPK7X9fHdw7QU4t2kg0SJXwv39q1zBIaOB/ym6wJLLHm6++MfRP8foS3++uMv15eXl2v7H3/51Ls9fbnUTf/5P33/u49385KJaZ56a7zWNqB/A99CLIGxbutat+v11NoaEGGu5gFIgiiJZSIEBJVU5vluOtyzSJgyJtSehZgiYGJKnO4CSp4e7+7eTaUQMoBH0GtNQITCY7yazC2Nyz6Em5qqaY+IGDFVnGjOuUBeILTZds5F8lIC4POXU62Xbduqxrqt5lbKlBlykXC9rhdqLeVUSmEiZoY950Y9HNQxnAdesTc3TQUklZRyClybY48Ge+NwSHo9btCB/Yh8u+ZhSN2FhUUivNVNzQKo1no+n9bTUz1/sfNzYi+HnBDBwiOIaZpzyhkBNOJ8uY701FTSw8NdzgXAc87TNDGTtt7aVre1tc1NCdOUZV6mGWXJ+cCxXc9a125t7DnD2f7pKacXGrs9BhCg3p6olNMyz9M08TdAxRh1zm2oe4sQJdiBxggkRIRuatoRgZmRwE2vtQ61tnCay8yFskhNvF0jwlJKA4GMGCWneZkOx2k5TKGNwoZL3r7qZGLPLgN0AHcFIBjDJiKEYKQBFR730hus583a3/8JNx8wHCRgREQKIHXQ5rh7anBMXGzkme8rbZ9/IiIP3jaYQ6BG663Wtq3NkN8Z3t3PjOzuTHF/LIBi6lvT83UtkyUpj4cMvJj2eno+n05fTpdL7U45kEW8d92uWxBMJY8ApnAPMLWvrjEinHM+5ILMI5emsCRiAEd3JMzEDNBrr9cKhYgiuvdWt+sVIq5lmgJE8oeHhzyXgFgKXy6Xf/3XH//1x1/+7a+/3N8vy/Sf/+n7uw/3j9l8q5tZXFyIpW/V8np4OORk1+uL6UqoRMSUkQQDBPyhpI/T9D6l34RPiUxg9Z57zSyItIcQf3tzFuHDspRJat1Wj2vbuhlPhS106wQRlybN71G+X6Y/LfdHYm1Vw/oInHDQ5lutgZTnOc+Hu/nA83z37sPd+w/L/SMynS+Xzy+n355eni7XAMilHJbj44eHj7//WB6XL0+//fjXn/77f/uff/7XX3746+nLpeow+paUc8qlcCZmBFLVDu5I4BHaom/+FuYhkhMAmyb0JEKEOGRNRkgJmZkAB2tpcI1N1dwDAShIkAQsrPV6vShJp2zox8M8Px4n+cOHeRb5zHB+eV5XNQcQAIGhu32dEEWYOwIECwpyYTGwfht0xE79R3SKwaCNnTCKX3PSv10zN5mJaq9VWwM3IRRJnPII/igpkXP3btHBA8CJyBEJKBAdySFC3IzcuiEwhVCok1KoWUcnM4/QYfPZVSPg/hqI7QTGwEyQhITRNwP9uvP+Te31jRT29lpoB3dxzlnGgIMsILFHEHmAmieRx+NBmBF6ba1kTgOVxgzmpo67JWjHGuzgf2cNxcDxf93+9hHEyMQyfjttCG+Q6DegCIZ7a+a9J4y6JDUxs10nPGTL8ObUJxo6IiR2j967ehArMRNzkiQibrGt/XJZf/3t82+fvmxbBQhiSsy7JAhShI9J1r6/A4rQVNLxsDw83s8lAXgWWebpsMx3h2UqRQpLYhH2iLu7Pk+ZET9/eT69nIdXp67bs8cQDdzpYZozJ0ZAHMqNsZt9Oxe/fVyEt4yKYSER5rvj4Y//8Pvn59N//Jc/rqfTp08vL5f6b3/+zdSJea26/qfff/wwl4ySMuKoUo+I4G6td4BQ1bW2tbbaVT1GcJABjGchSS7znJhQN8lTkpxYCDkogikCdxIfC6VMSTjNZXmYD8dcMhAjxd+uF9wNars0E8YV32KXf7oPQloASSJOFALWTMISScnn88YiZrZer2vV7bqqxpxSySKJVOGN0z7c/TVuAhDDwcyGfWwEWxMihXGYECCSOVjc8ldHlPPf3ia/fkWE9qatUUZkJgwAYCJwV3frfbteLqfn7eUL1vNEngQIIsAJQBLlknJOEeCq3sA8kIglScl5KoQhIsx7EBOEI97S9QgpHE0JQ0wTeA/vvVtr0TsAkERKvExlmoqcK94kaACAxKWku4e7x/fv7u7v+Fvgyv9CyvCKL4D9jf06jB7vsGkz6LWFO3ES5pRSTimSpDQkj02EzIkYyYe8L+eSc0kgyCPtMqCPa3tE4B7i7gADijmo0CPL9rUHg28tPH93p4y9/HT3IR0AYRqZmuFhbgBATDzmibfv4TFI6UyIA5cFe0qdqWnXvtV2uWwnaKvFpfsfWZaCvSmC5xKAblp7j2tUsykvyICDa95q27pvBtXAzZBG0slIQvBOxME7ocTd9evzRoATpyWluPWfJklLymbBiAQhBIk5SWJm931eo70iOGCYNtMuOR1KmY4TC5fEz7k8Pa/8y9Nvn1+eXi7/9Kfv3k3TP94f+c7vpy91iUUORLyQFoKlEGJsz5eomItMyyFiMNSMIRame+FH4QPjFbyHbtoKSXNllL8vLpkppTSXkrNY7xhDTx/igOq+1oiQqrPDMct9yvfTtLA0ps3UaVwtHMgQPZAQk6SSUirHw9393bLMLFJ7+/z09OnL07U1Lvl4eDhOh2Wa7x7vgel8Of/w40//+q//9j//8sNff3l53lyJZc5pklQ4J0k50478dHMcBhUMBB/1wtcvWZY5hC0yunAiYRoU1UGmExEgH0XwUAMQRhD4fiUNc9vadl0lUOiq8OxhLY6HKeflkBUOL/V8brIpoQMTBsaQxoskYkoRGqatKji7MBIxsQQLg4YPnS5GeKCDgyEGEbDcPKjfzvgR9myY0YrUrr2ubd3cXERySomJCIUwJaEgsAzewxp47HwJFicG4kBwM1P2DgbIBE6ghkrRlRANFQKCAANitAaGDNTcycDMm9a1Xy+bt9ZHdiUCw5Aajb0o9rb4/3rpuwMEM+eUpjIxoaoC0TRlD1BHcwqUDEmkzFOeJK7bdWsGYW42jOyIEY4eMWA6EQCBzEIEBGRmCmo2JFEQASCGlJPIyKU78wVvva6xa49ayjxMtba6om1bbrOYcQgN/MPu7L+9KCKap/lwODjQutbrdu5dc+3LYvf39ywiKVXX61afT+en59PlsgbEmO9wSqXklFNOgghu1nurW+utaTcmnEr5+OH+f/sP//j+3QNiCFLOkpOUlJkocKQAWwAclvl4WO6Px19++fTnv/xwOV2ECNx6redBcNX24cO7RZaRy8ScEMF24+HXRyycMMZxzCxMSB577AMxH5bpj3/8+H/8H/+M1v6//+e//Pb5VLv9+89Pl9Z//PXlr5/O//xPH/7xj8vjQ2agkjCnRRKqbmbWe6/dt2ZqiJKZ0EODggmQksg0L8f7h/vE3NcLIyC49xqI4B1tc61VG6KUciDmACSmaUnTkiWLg5AHjRjkr4fiTvqPfSzhpkM/hiPRzFvXrVnuJIU5ISZgCmiBYbCFkEOo9l7bdW3rpQIJDaEfokhalgMx5ZwBoLbuEaWUzILA4KBdjZwQc+aSJgLoWwttaEIMjCAMHgQQPSLM3M3c4taYeTtNcvNtvVwvZwwggHBl5pJzJKlNm5AQEDhod23ObjHiQIEIJYsUkSRmxsBlmhKQ5JRyIpaAQCZktFAMIoIsMpfCQa7KhH1brXdV37Z6Pr9s61V7663VunkEl6Tq81zu7w4vL+uoq8ZbnpI8fvjw8fsPH7//+Pjhw5siZm+EvJnuwj5wvlkrRqs54mvgopltm0eEtpYkLUs5LIdcchYhTCkhhLVOAUZKIsmAOQmLjGCDlCUTCEGYt9ZNu8cIyN2FZ+7u6r1769bUWusksoM435Yv3xZeHj5ILEIpwJtqQIiIByIZEQyvNTqyI6YbIDfCwoE5iTCAu5p76x3MwXrtem16rXppXtv228v55bqVMvld0WtjdKKNCHy9hNnapLdZDCyu1/PF3dM0ORcqDrbW9QqBy1SIUbKEmbq7BpPEzjj++pgR4kS0ELsHIGWWOeW7MjXHF2YiJ4yS5eHh8e7+7rquW7327WrWluOg7QOSIiqRECcEsN4Y8eP7d999fEnyr6fL9ucfn94tx98tx5Lv5jS9O+Dh4XeSErTTnHgpZW12Xa8KePf4ALA3zsODEAViRjgSLYig2hw5UbVetTOhALxGy409OWeZck5JiMjVTI0AE7IESjdSY4DF4shyIMnIYWaACtCBNjVzTJgkF0kYAI6ESDnlOefCJGHWttPp5aeffvzy/MyC7z9+/Id//NP93T0adPfPnz7/9ctv//Vf/ttffvjx86/P1x5pmacy57uSJmEKYhz1MTNEkBpFOBKaWVhwEnxzH5OcM6CYZorEaag99dWIp13hDRwTCUZ6URDkJCUnIe69X9erOXsk5wgwc53naVnmoBCmRCQBHiBEDjh2JKLYyUwUTDSugCN4k4QkMRgAuulwBQZ4UOCr4+DWFHh78MOI04iIwfkdL8C1gQcyEsYwzhARixBEWI4hLvEg4mBxKcAJRALBtSuhhQ/UsHOwIZuPKgmBAYOJPHyXD8JALKB5rLWttZ8331o0g6Gqo8HJtEEf/uYn/9sB//6ocUop5yzCiMADFSMYDqiOQwqClBNlSYKLcKhdqvbWK3gAMhIN5MIrLCv2RvVYlUPUOwip41+4I4J3Jfc3P8/bcOGIULPaYVQUNu/V5tAmvAXDIiKLSM4B3NQjYKttXeu2bWbeu07zVKs+v5zPl9UskJghiDFlPtxN79+/Ox4P05RG83y9rs9P58vpul03RJiX+d3D3fcf33348IgYtEuMSUgQ0XfMHgBiKXku05wKeDw/P4FZ2gW8hIht29YL9/tjeADhME7f7n3fQgh31fguePJAdwOw3rtEEOHDw+Gf/8s/Rmt23sT//ZfT+bT1l5+ezluvPbZaib8DPM6CJUvKJYmUPG3ZmtYIlDxJISQPMPNqO/giCecyLctyEEQJB1MMD60AEdatX3uvrXfikvMRkQcfDgiQb5mKIiTfZibHblHbW3Uepq5KZubq3sy21i4rkSSQCGYhJEBhcPYKHgZhYM3b1retXjfk7PPsJs2cBA+HYy55LpkQu/beNUkmuWlxaFgJAxBTSkKEDojIWZTYwg3AA809fJjrd6yHw9/2YyJCTWvdwKG3miRNU0nHRChqLkJTzr1kFbYOBI4IxCgizFKmeVoWJo7eCSxBBHFKSRIRBoELMSOYqhto9XEjwonCCCK6Nq9br31bt+vlrK0BAkRgRLiphjuIUM6JhcfGO5R8LHw4Hh7ePT68e3e8O/LNqzjWzEAV0C2Rdcx6YV+l+7/3MTRzRJjZ0LYNA6aIIA2S9UBbEYJuNWrbWPZCbT4cHx4elsNhmucsmDEwLEwR3CkCyMM0bq47M2uqzbq6qpv5HtJ5q39v1qS/3cdi3w8ckG87zqu1NHZRz3ApjpwAQIAwD0AXFmJKQhkBArVpvWjrum1brc3UXFvvvW9ZW+2detPwZtozefHK4b3jVle/dgvUtqZclvt75iwdYm3DUD3lNGhhOGiKwzyIA2z59oYMAigAOhDGgAmQdtZvV/KB1szTJCXr9dq0W3SmmErmxECEHCR4UzJZeE8Y7+6XP/3+w3/6D3/49HSepglQSOaS0vHuPk/98fExJWnXYdUiCwNOMv6WXEae8XgYmHFO8jhNj3n7pdkaoaoVe0s9CxH8rVCRACJMe3cD7d3Vh+hnZpmRstscsAQuQCUQI3rvYb6ZrxYXC0DilJMIA6lZaw20IZGXxK5kXcPret2uF7X2cP/w+OHhw/fv52m+PJ9fPp/+/dOvf/75r//2w18/fT6ZgpSclikfpnRMnHnXISOMRK0IIhSIGCDuyCTyzdEvTATCnDNF5gQE7gaDWdJaHavQ+nCFEBGPI5yZjvPyeLxfyuzql/N126BZhsLBeLWe2rbUGu6qSg5QDYLkwE4MWB1Mtbv7OJ5zSr4rigMxEZOkhM6A3SFCh5xn3J5Gq2Y42+CtZdTDe2utVkk5SMZJSxGCQYRCxBC4ZyHuPhbKE4eGdgcEZODMacJUsOSA6HUblRFAAKFHjMJrX7KIqMzkbhhmO8GdmFnM9VLr6bKtLZqCBTqAMBMxWIQaICHHiE+4reJh5X11wexe33mec5kGBJOFxyFtGG7uGELhaOEVAHOilCjAq3ZfgZOVPPNoeMPAZMboz48E7t2H5EiIPjo1OLR1GO464lLdAEbWDEKEgQcMq2RYWCBaYG1Wqw3CaYwe8Yhi+moa2690LJxzSqX4+fL09GRqn788HQ7H+4d7M/zy+Xzd2rwcH9Su6wuAzYXf3S3/25+++/DhccqJCMz6+eXys6TPiC/uAPhwf3i8X6YydvLRxHUESCR8Y2sMNTg4EEISWebp/riA+dCDZEnmflmvo5+s6oS+BwmbmWrd2quIbCgFRl0Rjl39RiQbqbzuEML4pz/9LiOK4pym/l//Zf1y6gCfX1b7nz+728M9C/ldiWXKZZmRJOVpmmFrmAGPy10uEydEdLOmNlKVmFCIWRDALYkAAoaGBkSY1bZdW6/NLaGMJdLN1LS1Kr0RG3EiHmbar6v/1hgfF2qEADPvTdvWemmem661IriGVEtLz/NBJgaxAFfrZpW8SjRHJW9tuzq0Os8Y3rUuy/zu3bv7+/skpK2fzidTb62Zy57HOGzy5qpkDjnJ4S4lkVRKc3BsWofMzLW31nRo3SzsRiN4s40hjHX3+ekzAR0Oh3u/m+aZRSgisdwdD2T3uL402EA3ppCcp2mel6XMc8mzB9i6kjcJ9TAyJ0RBEU4ZEwD0qmvV7drCMacpTxJObr23ptq0a+/VrANEyRkgJcGqvbmGD2W6IwUQ+K2vR4SppDxPZZlTKV+5F6PlcoOvwO4wx9fh0VAcD+RuHkyvCDNjSiWXZZ6ExR22urXWwP3uMJdZmBdis1AxORwOeVreffjw+Pju/uFhKonB0Lp1A/MshCKEqG61180UrXtrfeu9xy0JG24gbt1/UqIbrffGnfn2S5hKFtx1PcxjksngA6+NMCDbxBSAFhbqCDpTnuZpnqcyzXWtv/7ip/Xa68W2TYByRi753V05JE+gDXxbt9OX88L2p0fOjH3T64bP7Qun9P7d/OHh/t137xvk87WGg6qNKRkCDw8E7FuXAwAJkfDbkSjAwJIaQjia9r4BXC7n0+UMAu4KGA7QPapqD08imSEVISYDoEScBIhas3BjtEQwT+U//sNH4P/n83kVog93x+V+KajvPn6nrR3nmQGaT1vva9PN8fD+wzQvjx++W473CGTdLNwiSGiay8fj/e9q/LrWdevXrpvXloqCDNn16+cS4dr7drm+EBJjrXWkfmTm+zzdJZncJrVkPgOxg3W9egTgVX1z2JwlyZxTYHK33uxyuqhruV7R+91ShtUQrZcikJaHd8fj/Uxs1+vTv//407/+5af//tPPP395PtcGON3dz6kkyIQTYnEQ39NCAiNAgwYEFYdrmBAgJO15EfujNUbUxEzOROMyPezj1s2GeoX2BlRGgB2AiTHlUiRnSgRm2mtrHRRLauBUSKxdexMg8iicFinswIFufpsLv67Hr09JxLjcIjJQQkEBjDCKCFfFAOSBcRIXGEaPr6skYPBcXd3JAADcmRCZBXfbBcEeqBiAQcw5I0zQm4/aVDLlCcsMJQfE6GURgBKGkps5DpvMPqkhAjEyc1OQm30AkAO9BygQCDEjA3KAdgMicA81ZME3FQvE347AR1ZOylmSELOrD7XK2APMPHiXCITX7giIjExMKSc2b2rWG5GgwKhZ92i9wID9b8avY6zB7t9FMzCY/W6qHSMI4eY9ir0XgxgYxMSYkzAA7bdjB2K4oVXeFJfg3XrrjQPMlYhYGInU2svL+Xqtp9M1gNZL37bGRCWn3pgIjsv0cHd4d394vFtyYiIAzwmxXppuzWsHoPvj8bDMTOimvsugDAMcTciYKBBcPRDCgW/z+5LzPE9pBJaXyczUDQlNvXclFoodddd77/1t2FgMZDCSjEsYYCCBR/c9LQBS4oeH+yIpuQjLVTf/73/59eV6Vf/0cl5+lp9/fXz3uJT304TSFR2GGYZTuZsP5Xj/rkwTsuPAcIxrsIOba29ar9Y38o7hDCOuMty9a6u9KQBDEBMzQe8jw08t7Fbw/93Z8pUGNLzW3bSSr2tdRTZJicjDVJ1qT7VZa1mLLBihGCbgE8UilEpqJZfE6rArfFr1kkqZDofDqCNTqhHdPaBbIJpZDBtkRFetrRHRnLNIXuYlBa6O176pttZaq7V1QyAAV1D3b3tjY3cqmZP00yUsUkqqvbfqZoOvQ4g5pWkq1CdHQ3ThlPN0vHuY5hlRWtfAFgNHFcruYpgkMjCHuYWq9661dwAisTE6br1u27Vv1TZrrXXTkZMASI6kAbXbdavntZ+v21pbVXtDtNx3M07MzN8u/6FQusnMd9UJBsDra39tw7zGHolIznmeZ0Ja16qqCGglIUFKAlgiWtMKGAfO9+/e//FP//D4/v1UJgRr66VfL97Bw9ANMUZnSBEwfCDMtXUzxDQx7TtG7Khx9ldy5t9p+/Z4g1F1iRAS+F6mDQX9zXs2KJweOPSF4+lwIeaU7h7fffzue3PIx7s8H3LGbX1hQmFKxMfD9Dg7Ur1607Zt53POnt4flizaY4Xu2ya0PBwfP3x4OD48nhoCkJl7oDvUbh4UACPEBhGYOCBU+9sV4xHN+mbdHIQRCAKi9rq12q37yGgDQCYQViANpMBAJE6p5JyE0yTToRv069m1LwVSkrnQNB+W47zW1ratCN/dpYTySO+tNgmwdeutXdb6rGRlefjw3f3j4/HhKJJtNddmaO5BScpU7qbpofR3wSfbah8eHFO2oSV/fTHuXmu7XK4aex8BgoSpSJpQFuQDYWaksBQAI4AcIZA0wJE5FZLUg9ACR4oyBlIgGaIhjWDiAIScEzgxkfb28vTlcjr/+MNffvrx5y9fXrbaRbLksswTZ3LxyA4CQbEPXGPMKG6dB0YSGBzGUr6JG5KIvfocPUNw8xFoqL2bhocQS0qU0rIsMVT04dpbYkYLDCipWGBda7tUpefJ2uHdIiTX1iaSx7Qc5oWcL1Uv3Zr1IQq7PcZDLWwxUKpAHhGDK4qYCouMnknrFTBQEkliSeIMQkL0to65YcnNTG0wpBMLlmBE4vGNRq831E1Aci6MAb06RAAhF5pmLHOkFAAibImZuFfWullvGBFkILu1kAJD0D2sURou9CHiIiGZ8pKnQcML761frpupj0s+euDNmzRWPY8829eZJVIppZQCgB4+AkGScEKkAEcHRzdt1nprtRsglzIj8XJ3sJT6y9q7tVrRQrLQ7S0aju2h4wkAvzkYiYag5wbZMOvaVPuwko36IDxwMJQJkVCSTCkVkXz74zEcmUO98KYVExGtbpfLCYDMwlznafr48eN63Z6fT9fL+vnTizkI5fDorYF1ISylPNzd3x8PDKC1eUdiTEwIVHJalqltHYmOd4dSJvcYbO8h1x1FjKIyckD0rgExlC7EXGuDwIESTCmVqYRHs91111qTlFAYEG7opDeU22F/7dUBaHR6aAB3ImxjopSyCDPnx8fp7v92XA4ziE9z/r/+P//9x0/nBnDd2pdTXxst9x/vH5ba+/V0+fXz2YHfffjDw+P7h/s7FuptNVPCAZLnru16vVitdb327YTRC9M0zVkkAtzVApqHIwUiCzIH7nGBHCgA5AFNrb/lK+wtyX1K4TGUm311OCFkwEKMEDOMKPqN69rqOrXlAEUSZLQl092U7DCrI3GuDlu3ZeJAoB43oBkPP/80zUyiuldlqqraTdUGEtqiNe1lIkoPqUhKpTte27pt59Olbt3MEQkwAnUfGb8pyohpnqfj4VivTbvmJAGwrltEXC+rqQpDqDJxyiXCIgyBkdM8H6Z56Wre1NRdlbxzdEHLxBOKhIV2C/YRoS7sEc2bdd22dVu3bd20dq/mFuMI1Kbh0Hq7bu2ybqfz9fm8fvpy+fzlcrrU2m+fwL7nerwJG4K3fZchrt9nu8NcHYNqPcZGo85AxJRSKWWaplLKQCqN9TeQ5xEBCEnYS557KiUdjvff/eGP//yf/8v7jx8Zab2eP//61+d2beCuzVolCCgJEBE8wltrrTbtGpAScZCoRyBBvC294CZ130NYR3EpkkUyMQOiRfhAAo+WLwIgjIfcd0d8gO+mDzPvvRORIx8e3v3DP//vy/H+90/Pzz//8Pkv/7Wefhbs6BrmCMDil62+6Eq2JbCcuJSyHCZKgVItLuVY/vC779999/uY7qJuTa2bAkk4XNeWkpVSygh8ZEbk3ntvzbq+1pwWcanbua6cMrFQEUBqtapbyqkUBgRH4JxSKZSyAa+thdE0SZ6Oy+NjmhagdLpc++dn03Zccsmck0vi43FWS1qBIOYJkZMc3vd105fz9Xn75bfffntZzzjdfT//b9//4eP3Hwnc1la3rbeOAsjIKadSEvHM8q7Ii/Ol9z5m4m4toH9D647r1l7Oq5iVUuZpmiSnxDORWFCoECa4DZk9hocPJU8JMyWaDhawrpdrWxOGsC8PU0qwFD7cH/iQrSRTiJQllbat18u6bdfPYKen5x/+8tPpdDmU6XC3YC5BqKCGLTgCgRDBAczCwgejFPbhiwgxowgKT/P8jZtPEDEQ3A1scLHd3Qe3qrsJ8+jBDGyimyGi23DJY2/qGuVuBshrb123rRpsmm33B1GYoidKd8uRWLfTi6vjiOllJMJdXLhLQekmWQNzpyFaJ86vzVQPGmqEcUf5e0cP4u072PgNqSQSooDX02b8riH+IGYMMWYQhiEayIlyiZSBiCCb5iTSRCphp9BQBkJiGDZliACGCE9RSmFmB2hqBhHElCVNhVkwnAhr03Adm9XwLbo72KDmAH57SUbEYdsZtRkTJ6H8WsSoO0EDw915sTpyBEqZ53kKSbXHxTfVBuaZZxyOJBoQ0x1tMJjje9ny6vb2nXaqZhZOzBKubvg6lh8SEsIsaZ7nIiKuI8HKPdi/fqvX1xLhvfdatz2YNDAlziknyWpRN71en2vtJU2E6NbdVAinnO+Oh8M8I4D2jogsxJFgRNskKXNBopwzE93yZ81HRygcIxCJkcKhq3rEfiNk7rW5vwEgMQd6Egndc5FymYjGKTAso9/yFfYwzeHEx7HhRrirAXFJwMiEnHI+zBPQ71r/zwRmrQn++0/PVzc7nbbL1USWw+Ed19oasmzC+fHddx+/+/7huCD69XrqrQ61FSIT0gaX0O7arFf0akzG4JABJcJ1qJeJAcldu9XatwgoBm6o6mG9Nm3tm6DBYXoa93t314BQJfUV4cpyLU2SBIcMBFnrpuahIjNOLGGz8P1h8TttGkGpQdRunFNXN1ck7Kqtd6IhyJFXBbF5mMXtAxtwEzdz1xDOh7uK2a9rvV636+W6rqsrACBQ3KQUf4seHvfAhDKVydgkpQDYajW1bd0ggksCoNhzmxIBU8q5zHlaWPK6nVtrpgbuAiAIHMAQI2hu8KgCkRPPiQfJpFWARhbQLGqzVrs2Cw+1MLXevfU+tF+X63o6b0/n9fmlrutAT4/3fphvYNht3i6ZoYbhQTvBV9DfLo6hN19jkDTKBRbZf0Wt9+5qADzSzs0oCaQs05SR6P44v7s/vn9//+H9IwGeOE6fkcEThRGom7oDBxMDABMxCVEf5O3RImKWwDczr11lBxT0lgf/TVE2+CsOeAPaBAG/gr5jv17ubaaxcXj0rtfrdl2rekzL8ofjw/vHuw93qZ++p7h6vbbrqa3X1jZXO2TQImJ5KiK5pGmWgsipGfKypDIZ0Lpul/VqbsyUc24BrQ0GLyUZdskEKNpNW+u1vo226F27KqfETDzwzd6XKefHh3dFppwJmTgh52BpgW1tynC8W2Dwp0iCBVmA0bup9d6cncgkZxUMh+ru3jwoBfIIQlXTpqYRJGmal+Px/ni8761u5/bb83m7XqcpzwsvE2ZmYSpM95zeBV5qPfceEdVUiN7i4XzP5+qOlChx4UnKoZSFeNYuZq7aR+B5BCCIAHIq05IkoWSc5q33rV0jME1lLjglnzLMmVKZkLGprpvWraIDA0G3trXe1svphKaHnMvdgeZsLM310nsNB4agYaEEgJspc0BGBERAEo6A6iRUSv4mdkCSmGMzje6JGQE8Yg8pRSglz/O8HA6MVAl766rq5gPJvF7rMs1TWVKW6gqVnYE4I2XmhGIYca0VmR6W+5myXFeGLoTAkBIjobkbDBtnRASgB2CAm6sHoqNwSkVYCBm0G/pQvJuh2c6a+XrwD2pB4Ej8IEoiidDDuw1BBwXJHqo4fBq4C1sxiJASihAnwTxhEgQP716yZEF2RA1rAE7AGIjmhBDIiMAOU0qcRSPaVhVCw4PIrAEYIwXs0yMkAmYQAgoPdR3j74Ee+VYTM3YHj9ENLkkykxCSuRJwwMhgCLO21eYAQRPJvMyUiiqEx9OXl2qtCFMpu5qJeCCPPcCRHcF8QOv1FelmZrD/MMgijkBmgTD4DhA31zfLJCknRscRYLV/gvB6q8TXxW8j2+JmgUcSYV5IAtgUnp/Ode1tKJDACZwZp5IO8zRN+Tbv34fnbg7hRJgT7wGY7tHVI+zmCXY3cIMA3i1jYB5Dnk/M47wc6iUichsJS+N7GxBpN6ahwfrGK75/LDzQfYzIbys2RGKSLDmzQKCpVreU8Z/+6Q9zprnkh/v7/9f/+d9ezpfr6Xp+vobhnOcpzUVmyUdM5ePv/vj+/bv7Q0awKdP1el3Xqt0RhgRldd04LGF4uPV29do5SZqbuw54J6dA3OqGsZ0uK2Wfuqraum0W2NR7a98MYhBjyJ8HJhcjVBt67VS7VfVNLVpIWCCzQyADA6PiIlw4M9/dP5jKy+lagD5mUghkXmt3CA88X85IfDwuTCNWOlgYAMzHUkd3MLBBRFEz66s7KIoTfT6dPp8u58tVuxKm4VuMHV69Q3hf+wBh3q81ap/z5BlARnCjDvQei+Rp8hZXh6bOgTmVcribjveSJze/XK7X88W1MUJhkSCItmPlAhzImIEwM5dpYk7gWLee08x4dj/1dm7uL9ft5fn8/HI+v1zXtauaqptG69aabl3Xbl1HRYwAgUIpZ2aurW3b9tU8gTgie/ciew/R+loP0I0uN1brmHiq6qhEe0SvbVtXU82WcqJa16mAMIvgXBISZQaK7m2ztlFOGOp9DatZCLJY49atdzUOkVTydDyig3S7tg7mgAgsAkQiiXi3kezwUsA3IhKIiG7aTWmPV0UP0B2eYUyQhQFxvPZbm3ggM50Ackb3+PTpMwvPy2zafv+P//H+/XcpS9/+CO3az5+un/4dn3/Vk+esj48oSS4plUyYCqWcJKHMW0wN89O1f7FPZ3s5bxpk82EWZnRv29pVB3pMkgAJomvv2/laL+tXwkIABXBgCsrEWTiLFIY85ePju4fEj0sSSYjJgRVpM3u5Xmf0d49z3/L1KVrdaLn3sDyLO16vl37pM0IhyjIc/OrhGuTARoQOpIqA893dh/mBj+8fv/tuYo5uGHxt9q+//nZ6en5/f/z+8bDwkpGYIWc8orxHqnbgdb1WvXrPufS3KpIxuLNIgRPIAdN9nh6X4yEl6T3Waz19WbcN0RJi5pCUUXiapnI8oiQlgM2mSYjT+w+Px0VyVMGeGQKoqa7r9uXLed26BxRC4qTg7rDkcvjd74CIsjSMS++X5koYIUYcxIwcGERdwQIMGHhIYIUkyYg2Y6Yk+e1jJswc9PWlDSsuIgw0wrIs8zKXkjHAejK12MXk4AFNtbbemhIzY0oyO0MiIRAKJgZ06+YdzYlRAJEJSBBgZHMQgkUEsjDFniM2+iUm6BYWikCjJxEQxGZNMcZqidef5M2eDK/m3uFCImLwCAdzV3UK4xw8jtpBgzWLkUMqKDIMHISJMQkMZTAjhGor1pKlBAE7gsqBiYCFEBNAYkJhda/ex1YeAOAa4Y5or+hbhFFj7V6eAMcYKpu/JcMCAAAjJeYsafhWGWOfEgQQYGIWEgx001ob5lbMOKfjMmnX9Xxp3kcg1rDSBYyLZUDsNiS43TDc7SaO9b0vRK9eJdzteYjoMFDEjBBuYeNBeKOpwa877P7lYOamfrt0DSeXI1ESTmnviptbuCE6CkmSXESyEJOH6dB0GMBwYYATgaTxAe/3+Fuq3Q006gO85RAYQD661YhkY+SFzDwa8jgugLj3oUZJ9xo7MBo8bx8x5sSSaBAMPGK8N8SAISyEA2VobhCuTHC8m+lPHzGciLbefvz5U0mAbmhG7kxsLImzoZhZ6613ZBqNIibCCO+9rZeXy+nzenmO3hggsYS76mbaxKIDRgSz5FyyJEQw1aadqI8aS1UtcPSrvnXFwc0NP2qbsPDmuja41LrUxlkcUUyYwcMCGmIk9IkCBJkkl4WTVj3Xrig4l1yWZVIzoMtVt9bgfJHEKYm25mawt1NeR963KSSRm3kPNezwbIindV23kRHBQsLEKBzgGvAKtnl9Ib33L79++vTzp3RY0jKllBGwA3AgEeeUynxwJs4T1hKGwYJSgKRbtHV7enq+nM8l88TMSAzoPtbCeIvIBy13F9aNHEpQhdpi3fyy2Xnzp0v79fPl06enL59frtc2oI/gGPtCiQEsZwIioYTHh7vlsLBI+7aIgVue/E3vQgQxbh5frwU3ldr42MaD6r4DNIYgPeK13cjEGODgGmHo5r226/n09CklPh6P1lfvG1hjcCFkIbQ9MR6QPXY/J3Ei20vg/cZI+Dcu0b/pwnrAiLaV5HR75sZ8AtFG9iwREvIuiKR90OQOI63Pzfv1+vT5819/+HNJkst09/DOzD2SQ2kwdZiqy9p862bAIIvMmQW6S+0IiE5CJbvRl3Orl6fVqHmYKqIzDrjLuCbotlUEEukA1NfVVfHmpQIY+63MkpeUl5SLpJyYGRbIHzkfCDF6a1qrTt2HPGTtLUBVm2vVbVx0EhDP00Tem2mvDcyaG4WPVGMgQkqA6PutUTjP8xEy5eXxu7t374okbXpet18+Pf3ll19PT8/udkgId1n2MCyagI+JPyyLB2ztvKmBWf+bw9JdII4o9yjHwMUiqROod9PW161H6yJ715JzKvM0HaY0pSBU64id2VikFC5ZqDdyCAvXrq22c21PL9pNUslzKSl7InbVTEQU49i3Tm6hHgrh6ArBSIKAI5QMgRgZiIGZSGjnwQKOEPu3j5kwcRAkJhs3bQ+ISCL395lLuTseSkoE5KqjRhjUovHhOuBa+6+fPs9zCfBxeUgk5AQ6jCwQhIq4hZnDbvn0oQFBIDALRMw5jYcYCQnYxSNQu7q5uToao0jmfd8yZGIGBou3ayZuUKWI2EGwhMEYEAbQXLU5EXDKKAqs4/QCbxFOiMKUZCCiCASBRmthP8MJiVg45Rg+agAAQhZKRZgZnCEAvZtWNUMQFgAcbSYM0G5mbsMOZNbNkHbENcB4a/YQvzfr3xEgSSqpFEmZmSnAVEcatQ/ARp5mn6ZNt2pm27bJdS1IOZf746Gt6wUrQJhpzhkR9/jAobtFsohxk2utAcY4ucf0ZASwDfdBAESghQEgI+GoYEzr6soojAlTuODOsYC9OLgJrzzANFSdmPZwPvQACIV17bWuHjZq11GbAoMUkSKAYSMgyT3A1U2R3NzCAVGERt4uDPVAjM+FhBlZBkjLzSIISSJA1WDM8WPXx4z9HQBGbC8SjjpplC5EPHTCqt9QO0WKSEFkjAgMYmTJyAQQMrhJvdNAt3GAW9NOGL/7/TtOlA/lhx9++u3nnx8WZt9sfTGU67V9+vSyeZyvl6fnw8PdMk85CQ94j3o/nZ6fvvz8+bcft+t54jTnNE8HiHRZW++ttauFAFBJ5TBNyzRNSer4kF6B8EjuiGCj+L+tlz27Y1jrB/fJAc3dtw0BSklMGJEnI8ij2mhMYEU8hrA4AmTr/unp9Hw+lUXu3z08Ho7HlEnmz1/Ov30+na+XXFJO3LY13EUyBKqax7DYoBnuMxHD8PCudlmd2NyF+bCkm7OSgcnC0EKIbozX/Rnbtu3P//qXv/zwPx6//+7D73/3/d1DmeeWV+8GgCnJPM+W+HD/CGHtetKIbrHVDnC5nF9+/u23tm0f3z/OkiJGpwsAdmqjAwEyMnvE5bJqt1r9fN6ePp2/PJ2fns8v5+1a+9O5P53r07k9X/pWlUDGEAiHNxcxMY0ucJnK4eH47uPHu8dHSel0PW/baq9rH2/DpN2LSTRWEewTFncNN2YVEeY0khFfS5nRSkeixHx3d/f4+PDweD8V6v3a6tbWM4ZF3giDGa1t8f133nv0iqbuPdyYmVPSFjYgjBpb1VrtBr+jGPev2+Dn1TDtEXbbgV/3ZDXv6mwO7KNYIQjEIITEmIXH7To8tt4BYBcUh2vEMMkioqmevnz5if9cazscj8IIA79XN9su63N7+XS9XK5rTIol8UIcl62adkkenCscVoena6tmkTggrHWralsHs0NJKlS71bVfzoMPDgl9EVnmmXZ2DTDRUqb7Zbk7HOZ5nlJhRoLIAYLoapdt/fz88vT8knNCJEnJALqbu0IoU+Ywb5Wk3JVl4XSlVK9F17XWVesaEUnyNM/H5T6XAmPs5hC5TzSH5Pt37w539zmV87b9+48//88///nHn39u63o/pXY/uRnh6FuIKBbih3lpjl+u67Vr69p2i/H+yRBYIXgn8p5k1kiXtdW6QVgzb9VaTQClpDSVeS7Hh8Px3bEsuVlrTTettW3a13DazgJVsF3RGkeAuffwtcu6hrkAzHO6mzKX+bika72c1/Nat7XrtfbLplv1rcfavZkHW5oSJUJG3NXgEG7uQEERaBbd+no53R+fzfRrEXPbmgUdLbqbIUDO5Xh3lGlKwuA+gm7H0GessiAAQPfYWv/y9Hy5JmHinGQu5u6ooVhmgEwk4syrW+/WVMOCeAdK37wxgIOzHTH2NUAiAXQIdwPr3sf8WFCQEBTJaCQYW/+mIvubewDAjbDNCIgWbmZsiqooOpJtEcaV5TZpRsDwgdfCQVLB4QNIiUskA0DT8bcQgCAmJEZ0dzXtTXszBx6KOtyxp2raR8QeDka1qg2BBu2hiTFuyW9/8q+OA0mJRRAH50UHadzMIoBIUpqWpQVe1zrKkTRNUyGayv3xAI6Xax0ZgkSAQR4+ktvM97mhmY9D7PUdAwAYRJuhlb3FsRBSFk7CWYQRzEw9IFBtbwgPH0X8TScGIALdhyEqxsNn7rE7+S0lzkW6waATUaIylzRlJ1BXxD0oCxGFeBd6JQ7wMdoBePMojb8ckTCAXNGGQNxjz4scMZRIPsReeLNUAO3sWgBQVUQScVV9O2gb7wsTM8sQNSE7MSdmYAl0CsfdVhHhTIwEoWGIMS/yvTxIlvfvyp+XyGCF1erFnM4v66dffz11O9bLXb1ft7vj4XBclpwSADtQa63WVXsNN0qTpHmaF/Pq69Om6g5BSCnlnJepLKUkJnNIeYI0wOhMJOPli3xj6LsV/a+/QECsSrW18C2nKwG4aSyBwAIEgC7q3axrb6pNvzyff/v88tvT+bSuR5jywboFZcq5SG7uXls/Xy5TEjdFgAiD0XW7Xen3E3F8ig4BTmggKCzEGAOIPX4rEQV4EL7JbX5d+K3rutW8bofaLJBYUi7BjoNSzYmSl8O9WXdT1xYR27Zezufn56ffPn/BiHfv32MqoOZxu6hpgAAERpAbXNf29OXp5fl8Om2nl/Xl6fJyWk/n7bJp7Xa+1uen8/lamwWKlDynnISBCXZ9NiEnzjnNh3m5fzjeP5Z5svBa61br33dibl46RBglPg43AO2KLY/wW9dzv42MhRweKck8Tff3x7u7w1Qyota6bpdT2y4UHm7DJJgE5yIE7n0La2bdzGEvn1ANmvZa7br2urkaRdyy624Hwd+oEoeo7u2vuI9sGSCHoIFxAkYcIbXjWxBzYKCq3yyTMZrNuBs3TfV6OoH7tm1lmoRpH125UXS9Xi6Xbd20U1DmPM2JotemTZGUCsmCLLt+yME93GqPbu7GBJxScgHoan3T1ruaGiXOh6nM0+tWRkTLPN8fj8d5LlMhZkZgkgSASBp66e3L5fzbp09ZSIXQo5uF9m3bWpvmMlG4tgoKHHOmgjMlmWtZcbtaOlvXjiIyeT5AmQgp3GrtDQAySpnztCDLurUvX55/+uvPv/z627VuTMCMROBmjuGjR4Y8ccpZetDh5eW8tWpm9qrGAkLMWQ45PaR8j8StR6sdo4ObgZuFGnB0NY/gJFISCCjo2reu3cCJPGeE8L5dfYPoG2hHc1JDjd7Ut0oAkjljzJmpJIsW1TevV6ub+2p27XZe7WXTa/VmgULFQjIDR8o0cSGm3e7YlExF+Cb//uaYFzMDYEkCBq2upp0D5ml6//EDl3I9n7fWem29NtM+4PLM7LCjPqt2P/cRXo7CeZ6mQz4c5fiY+X1JNPNSgtPZWt3qWqupZk5EONJsxyFyk/chxBDbhIV5GCBEeOvVKXLKOeWcMyj0i2vVrdZa61fH4n6Dodd7CQ4qHwALe0rEau7dOnljSAI4IOJvFCgQrt4bDN8RZwYMACF2zpAmcIcgj+5d1SLQGMwdhd1N67p178HEwoCETAEc5l3VuruhB0UEkquaiAXfOP7AiBpvbsmjWyssiUmIBAlhWA59WN+b9u7hLCBUDvMMsNY2Ds9hSsuJjsti3S9rUzM354SpJAjuHZvq2t11TzcUkd0DcQPa7QGuECO1SE0DoDDlLEue5pQoorZqrrdW9kjy3D0v9M3ehgAEQaPhrWYRFtEBMJBTluU4mfu6rU0D3CWn6TCVeQqM7kq7DnDfr4lZMI02Vuzn2n6iISHttR8IMVAgDTgrhw3ifuyUM+RBgNhPT4ib2oAiQLUHgDubqe8UhrfmkXit0xidGRNjIJg7ghHbmCYFM2EWInQy0N43wvj4YZ7zh4m22K7LhNbX2vz08vLrr399adqwG4YGd08OZZlzTgmpI4pwWpZD5FzKcZmO5bhs22kzvFYDZM5UZOhU05Q4IIRlOtxhPkqZOGWiPTyklPJqTRwfru0PDcQQv1Nx8LXVXjvFFdS8twgTZmJiYjS31toKW/jpdPm3f/vxz//+269fzh2CJzhv9tvnl2mqHthV3b1rP53OmtNSCouYv5pxxlk17vS76sMGDoIo5Sw5G8RWq5pGBI7268CMQJiOicktgSil999997w+U07dfK015TwaHx7gHk0VHPN8DDfrTbczE9T18stvnz99/vz09LwcDiATlUPAZuYK6OaoDhrk4Bqb2q+/Pv/Lv/zbv//lp99+fT6druu1bVVrs61Ha97V1B0xJMsyL4+PD4fjkguL4EjI8rCU+LDMeV64LMg5AOvat6222vzN2sdbxAdBAPr+cO6w+yGEM0SIfSi8a+eJUJURMIlM03R3f7x/uDvMBcHrej09P13Pz6ZbYiLGYkW1tm3dzi+Eob0OZLSZ+67nBRg5GGs7n2ttjpBQkoQMHSEh7EM9uu2f8TqbfFPWjNylwJHmSQjMmIRG+IBaWFhGAoAB+u+x58ABREkcQapm6tetqnvtyiy7QByBCWZ29k17J4IpwbzQw33msGuDratalJDD0UuSCHle/aWpNo3hLxFiJBEGRwBGFkmpd7Xes9C8zPmNgJSZDst8f7xbpiLC6kYBmbOMqRnABv5crz/9/BO5LY8P2lqtrbbt+XR5mPPdcoBwb1VN+0VzWZaHu+NdUoyq9bxe1nVtaw/HijlcJEnX/ny99NZIZCJRZG399HL+8Zdf/vrLL+fLZZrK/Tx9+PBwOCzqvvXe1D2IkRcpPM0adJenE6/ufeT03l4LH5f58Xi4z3l21G1V68CITMLJgLpHMw3vxH5/t6j7Zb2urW6tAkVZpjxNubC2rlvrvdlotjclVeruXXttnIRxEgFmUOvP5+ffTl++tNPmDlJqojXsueqn5/VS1YE4yRwgTQN6noRSmkSYc/fter4EWJlKKTIfDn8Dh5Rt21AFqugWW61hmpFHIexm27Zdz9dWq3UdXg0iFBJDQA9DCzVVc9W+VYeg65bPfH1ha8th+pAe0nx3BzlfttotpCQCFGYAh72IGXfav58Kme9C9lCz8E5EOeVcMhC08zoGya21v7vB7N8DRo/TbzZARBhNSAwLNe9mgTgSNZTAzKx247WiJMhCKct0YErh4KYeMPoxzE7mAw6s4aCdxXICd629WxgjUoDFTtwZWjV77XB8nWe/2bP+7kIDALK7Z0R2J/qoJ/Z/elj3MIAgTqXMgUtV9RgpV0mYiS1LHhxUta49KTOJIOYkiGhhEeYAiA7AeJP6jFuQwwgP2SExQ4tbSlmW5ZBLYQEzdwvd4WPj66sw+ZuviHAzx53wCSORB3Y0IE9zUTON5kThkovkklkkAMxj2OzCnQgIQxB44HvSzqR1t2Fu2y37ZsOk+fqO+s7IuWH4AJEw3FFhZHCofcWLB4CqerzCcvTvspNGxTNqlYYBgUiUx02ZR2YpDuETYwBjBHjXRgTTLHzM9v7Yz8FgvdfeLcAPhxkPeH9/dzjeTctdme+kHKVMA9jPqYjkaZrDUkoLpqJB1aIpNEcRTpKnaZ5LEUK3vlXdjJFnKUfigjikl8hEKcm35eXbAPPRMQAL3RqhmkQTcCGThNNUWAhDGtgWCr22RF++vPz4068//fz586VHYsqFS5O0mobkPG6FbnatzdpIK0I1jxiAASckZsHRCBypZYyIzDIyHAXcwMy1j9RXMh6irlF9vemNg+T8/nffX2zV8DRNQKTmEBgYPmALHoSUpaRpydNC3lA377XX1cykzHm5x7I4l47dI1rrqs0rYrPk3II/PV///Jef/3//9S8//PDT89N53VoYqEXtrj76QzRyoZfDcn9/fPfu4Xh/KHOWxMTs4a1VYTosi+SiIM2gNWu9997N7O3JP1IVeUAo9gARIAJCYiZi7N3MeoT13hAxJY4A5h3eKkw552nKQuiudWvr5bxdr7VuEYrITbVpGzGf2jaEGI211pq5Y0pwswqZRe+2rnVrzhwCSCkRuIej47gV4BgqIWH8L5c/7r6wQVVkEiYRZGIPBHQP6OoBMLpfY5Nwd4gdYDXcc62He6gGAOrAdRJmAUieoJsaE84JDwWWNAh23UwjkMMzqQhbitbhvO1nCwGM7BBmBoe0K5bEs4VnIcxZ8E1Hebh0pxEfTAhuhFhSLsQSYejRUgX9/PSUAB/M1l4vW8PeT5f1si6qms2sWR8yGI35eGASZAriAmQgamuvvdWGW0fE3tvpdHb3aZpUur2ce9fPn59++/xlayqS75LcH+Zlnonxum2X1ram5ojIiVPmfFf84/Fu7a2fTgTfHJS5jJIgZcUxVBmJYMyEFBZgZj2sNa6tXdfVzICwa5eS0lJSkrQjY6FS6GabW+sVWk8OHAEClAkyGfmlr6vr58vpy3Y5hzZA97j0eFr1aW0vW9t6EENiYA11U61NNeWJWA6HUgS7qoeKSEpS5pSnb91JL8+n6OyXag00GmMA5Stf4bdPjnB6ednW1dQwYh9UpTQkkQ7Qu4YaaYR2jNhqW6/r5Wwv6GEPv/v+/ZyPHz985OPysq7X6bxSaufVWuvebw3Jr3ovQhwE/NuZGOO2PToC1tXF0pLAwrq2tdZ1q62+InwQd1nYGM7CcDlZeEBYmHnsIwMA8JGngEzhum2rtm3cDxGYhDBJmpfl7p2keVCNwAzdYtCZiJE8AHq31jcknGYkMoXYf68HqAWMExcxCw58kwUOsDbu95XbXHnvIr0qrpFImFPaPcDwmsdnrr773jysdUNOqaTD4chSuocD5JxLLghYsQLEYLTW1sPdNE05lZymkkgiqUnr3ezmffXb1dwdcU97CETkIjQt8928PB6WOWVyt9ZV2EcHE25/3IPGQfNNCeNdm1kTFEYGBEUwMHAICiTMUyqe18YORMTTlHd1jqPfjJfujhiADOA4oHUiYX4bwyEC4MhFN0MAEEHcDWxqO39vEEoAxtSSUtr9VsPta7udOhDBY/cr9T6kSl+fsWHo8QDT3tYrox7mreSZ+TggYExOiEzuWnXIo83B3NQUwFqXCAfszUy1B9w9Pvzff/cPNB/TsuT5mKb7nJcsOaUkzOuZT9OvknIu2ZUIpauv7Xy9nLs5cuY8TfN8PByXksL6ed0+PV8alPT+kGgCSgFkvneP3upIEPcqknbgmgSwB6hy6xLdMvmUdG0wNV7rRohK1DfqgmcGCP/8dP710/Onp+uXVSHJICfMpUypSEJGZmKM2NaqtQlwyTsyOsBFaJ5mIunmbk4syIDoiCQ5EdEeetKa9oaMRKGBtuvMAgdF/facpZzf/f53XsDGzYEYw1XVbUSDIbBISkSJJJdpZr32duKw+8OSyqKU8nLH010DxsDe9XK9bpdzM6NU5lVPm/3Lv/7yP/7t53/9tx+fnk8EJLLkObkHr5sjTctdypkFpkmOd8uIhp4PS57mXApJdrPL9QLmLFM41m5b127etfsu1d9fzNDnZWEZ7YpBj6WROo6InKGo6rqGar9cTrVu8zwvCwAkvEHGShFm2rZL2yystnqx3ggARYCoqubePAzDwm2EOvbea6seLgSAbCN308E9WtetKkkUwhQZA7r2CMuRBdKr+n+ExuC3cZABGDBwGcJMSUgEB0AWAFjEArq57x05YNzF5h6hI/Ix3CMwyBxdh40Ah8dKKEZEtnbHxCXRxIG+eWu9b+B9KeU4YWEliASaQilu8E4mzkMrSmFAgRJI6IiSRRC92/i5vrW+0wj7DQZIzFMuA7fMXSaoXi+nrdKnz+emzfTluiWwc+2XrdWuOan11pt3RUPP56LeHVHD1cx7t9bXbbtcL+u61m0Yv1Ekre60NdNP29ZOzy/dfJoP+Xjs1mchRNxq29p6bv3SunoCZgoij4XTH969N4xrrfwtyIOISQRFiCjNMzCZtyGlYg+DCAhGBLPr+RymwgJIGj7fLeV44JQCgKd893CXW9s+fVp7ffHu3heRiWWSglO2JV+pfzl9Pvf623o6u2nK1fGy+dNp+/X5+nLeNoNg5pJeya7bZq0p0pmE7u+Py/G4HA6BHSmInSWI6e1dTLZrtUr91L2BowqBs2m3a+0Gsa1XHXoropTS8F4gs6QUe9qvIoUjsCqqDhSgm0/P19PLtm3GKPM0OxEHJI0r4vVk2lRYnACIDAKY97c3xj1tnG400qGHt1ZVO3bNPXr02nt/SyDc/6iZqnYaOcQEEGQB7vuOx+OHH3lV6EBMQqbQTLdWXQ0iGJmVQLm5dQeWlYZgOoLcIdTd1GJwSVS9W1CA2es9clRlHqaBjCM5MwkHDETp4P1j2BjHeQR/PVHeVP0AQ3oycIpmA4jv6m4ODjDu+8PPTEgsQpK6R+vKQxNIXMq0HOy+KdLW1Fp4qN34U5QTkzgR9TENMrMwNfA+DGhh5t18BLGVnA5lXso0pZKYA9TG+Dv81pnYx3Fxqxe+uYghMEHarRZDEYW7GQFBgFPinJkw5ZymUoQ4dsbcMM3A3jYfaYwIwMPrvOe3vNo690oswhARcVBjPNy+0l1sl165j4EjDIHFMKuNrksAkgOJ78m93zxmO+MHdkhxhPW2MgZjQkwYhhFMSIgxrEA4MLPm1pr20A5uBGABDuiIeVnuv/9jvnsPzCiZZWHOI9qNmYHEAMcEbnT2zH2rW+0NSVJCSXkPkCXqTddtezpdlfHxfUKZAGXk0uwpNX+ru9pHdIgUgRbeu7fmvUVoNIqaoWqszei8tqoMlAgzI4C3Xj8/XX/+fPn0Up+roRgilZwej11nL4WEJKXESL21qsaGPXeWwUEAoHRjPY1lw4jI4kNAT4Q2cCumYYbIAWYO6qCuJMnfkG8BAJmnZV7sbnyQ2tW1q+83hRF+jITugoGAHEBqBuHLlCfMlhcuRymzeRhQ86jmTbX3ThYi68vT+sNf/vrDD7+8vGwBvBwP8zQlYVMFAOT07ruP82FBNGaQTLnwzubKSfLEkk2NWS3MndxB1bVrV+29We/+7eeyQyDeaMv20LfxUGBiZjN1t1o37X3YOVJKAEPKZu7ee6trDWvgLayF2X5Nut0Mdyxoawg7odJMNZxcAqL3aNVq1a3qVnttKgGUkruBh2rz8Nzb4BTETf36Dfxu/ALRzvu6QWWImRD28AgPixhCb8aR9kYEYIE+wj/DkYkCiHn8NwJUAyOEMXCAE/tWVdW3tQqCtqq9a28InhKKjHRXbWvr1VxxtGMdwAF9+OUQWJiQwxwRkohb12Z9l+m82coAGJEQCFGIhIlH3xBKyqVbN9drt+10WU2fr62wn6teqm1N52JESBTdmta4rkW9R6B5dLVL78/bdtrWy3W9ruu2Xt0j5SzJWD2AWmtt63XdUsr39wsKn69ntXa5bB01Wr2qXhQ6pTz6S4ETy/vDcbP+85fPhV8/JIiBye59BU2UJCVGkA4BQAERLgQERAIMqLU1JCwMGGvrLa6YX9bWJdE0pchSMS6hL6Av6MahAj2hF/ZEndStX1q/aD+DVxZDWbs/vVy/fFlP57ZV90DercEYI/jYycPr1re19WYQlFNBSQEdqL8dbOxFjKpbi7aqbu6ohNCgEnIwB4a5ImISwZwCAGhvl+N4KAMMIMA8CDOTCWtiN4+2Nfv51+fDXz+/+9Pv0zIze8kMd9ksbRUxsEgJwg7u4ZQCHME0PGIQAjhxRFcb2WGh0NXWVl/6Cyhs1xrmSVJK+XXGb27bdr2u1zIhIipYIHkQwFhBA81yU10K5iKl5NoimIwQBIV4zmVUV+pwOp0cLiyZAN16mKLrMNlqYG1hTsQiSSShpJFTDUCjtnB0ZKTMxCwC6AoQ0NVwYNKcIzhCxlF6Gyl9vSUn4SREhB6uod10HMYG6Pt0HBIwEg9gLNAOooqIrp5zPt4/5PkgOefT6ct5vdbeg8Igtu4ZpomLCDN1s66qht1hqJytm3Vr3Vo3QjykMudp4pKJaQzkVZv22mrvHfnmBx6ROO5u+lZHgkQlyzJlkYRAZqRGWcQhLGCUZUxQshTh5bBkSQAw6sRhyiCiEdbIgTgcNTvrk3JiSHuvJiJMNRjDd70AEcZQuDsAGIC/BukBQNdRne/AoPDo3UYQBhOjDOUGQnwtLnEPMcJwYpIyHcA4YtVeM10BklsMiAwDBdgOZhvy9NaGqjTUAIJEkCQgQjKnhXhSj2jgVhUVkEba7aXWy1YvrWrdKLyUGQDdO2CUaQoIIEFEMgUg79q6bc01U/CMaXbg0foHUHRovb05+3Ef5iIGhJq27uta67aZKqgrQzdUT5eGa1sprhSYCCcRdz1vly8v2y9f6pdzvzRndkE6lm19qP2oECDCcykXSd51Pa+x2VRqmco0lzRnJnEzizGp569yKiEWCgBratownEbcwA6StqYVkLQ397dDWldV7Q2A9pgUZqLsQurD0efgFq5q2prVZlvzcMwiJKyCKMypqEcNqSCQSpnnkhiBBCFaOz2drtdtPkyH4/Lx/eNckrV2uVxNm+T5d9+9P97fq/e6ref1VFvt3TQY2AKctZtZ76EaChq3KFbrvW91kGHfaGJgpFUPNPZQASHF+J+ESIyAPE1TuNdae+/rugEiEZdiRNyaXK5X7bVtV9cq7IkhCzOxgyOgSBJK4KGtrdfrkL8wYezL1zRirXq59tO5n8/rda1dA0hyhLqRetdO7nWtY1iZiBD9tmC+fhEiM6bEWViQBqB4vD4IdLemzcx9tLAZCVhGWS17mKypOVIglCzCjIC12dqqqRESuQM0q+10qRhh5i+F8+BwgefEiGAR66at+5fn83P1DhlAxlyydwuLRCDMkhgShbmpt95rq9ettvYWQjhuvyCEQhwATHuCvQGEOwElzmWe2ODq+tL0eeuF/aWWS/Nr9bsFSpmA+qluTa/rltQVjUz9utan6/rX8/nUOjA5hFIC8KqxadOtDXE4EqX5UErJ09TNruvWrucVI2MIRkc4B0KKIpJSHnR1SnI/lftpOuT8Srk188vl+uXlVGaKPB85SUoJ0UxNNVwzEw44MyE4MMi7u3cBtH769Py0Pl1/zEt+uJ+X45TXUw397fTy0rctYUhSoo1jQ81uXMEhqkcn8sMSjm2186V9/u3y8rT2iujMEQKQMRjc1MEj5wkwEL03Pb2cAb0sKRVEcQwDfDv/BwAQUzAdIFBzVITQQAw0gkAgCpGUeGQQMQ4lNO18o11CgREEKCxZsuUIH+7rp5fLLz9//vjTr5ypHDMlKnNWnfiS2Y1IHGJPCB5OoYEQMAMnBgYEg4Cw8DCNATP01UBjvXZ148RJ0utAChFZOOc8zaXkiZkCSDXCd6wLEplbQAhjKWmaS0oSFOVwMAzTygBjRirM6NDCAEgyA4A3cFO3Bnufk5q6uXBKLJwy50wYDvtICCGAmRKjEHAEEghBwhjRYugIzuAJPOBNeO3bkp+RCIdgOtRUXX3/w+PZjFfghnYNcyPysd8FuzkClmmeZhQmTqnBs+LaNdR87RaAlCwPEnASMTF3dWvaNsQAb90hAhxG7KCwMCJ6uOoYD7XeunYPy8QiPPp7I/Hi7zsxgpAIhAARGYlxJ5RYRFM1RWVapsLId8ejsOiIPHYYg3cmTiyJhW+PHQKMTSRJIqKbstiH4Tp2V/hXWDvRV4/RqybJfSSBwy5IHMKasVXQbu8bmqA3n0wMaP3rxwCIYRBgrqtDZxIEiR4KMcKnGBDc0YM8emtuHUY3PCUKAg+QjJKRJcw8AsOAApDMwwJr7Zd1u24VLTJj7HDTIEKSMli4mcVV12qny3qpFnlJhwcpM3K69erVXcO0fqshu72kMW5zM3PTcEUwxECiCGqGtkVrLdQIQAATk6qe1vPLtT9d8FKxKiaLdevrtW3X1tauB00llZSnkpnI1ba+WddwF0acEkZoV7txhfYr/GAXYYSHq7qOVJbRj7tNmm3vl30j7gkYAOAdZwSjImIg4MDAVwmxxci7oszlDlkyx3hCwg0Rgdg5h0yUZw4dFCFETEyHw/T+3V05HO7ulsf7gxBcT97ryJywgcgYIqpta+ZGlKSHamA30zELDrMw94Awt6HPH+ZXU/3WbzFKGSQaBh1ACnqTFkOEKYlPedYJEUdY7+kMvfd5moXl9PJyJbBeCWyehJF9v+awSFqmeZomQu5NL3omDA9V7SOrq3ZrapdrP1/q5dIv17ptzRw5vUrfxo3Zeu/cm6SEPGTysLOavnkhiLctcbj6DQABI9D3Yi4AkG7xfnRDaw/v5J7IhnFb93uklLt3DQrDUO26te4WFlErzxnnnOYpOeXNxVQEclerngfG2EdCk2Pvg6WDjAw7v4rcQ318Mr2bfrv8B/IZBQfjAWFkmoW7KiOzZAJ2jG5YqVfkcDhVe76207U+Hm1ZUiZkpq1vp/MJcAUlVV/X/vm6/Xy+XMxkmjkJIgPQEIfqEABlySIMIjmjyKjpazdCcgIIr+EnBwa9G8IPgMG3XyQ9LPPdPL8WMe6+bu3lshUrPLPMcswyJQHXtlW38YE40lD8Yy7l8cPHIHlq/mX79ddfvjj54/vD4WGZ7rInuPS2UajImB4qRseQUHIHBAUAKpzFGq5bP7+066nVq0YkAiIEQWQExgBCQiESANdYR8Roq81cuQIl5+SSwu3bTsze/rcI8xiqWB98hJ3ASIiSUs45pSSSSHggKCKiW1fdswWRKKUUAcQoKbvburXffv385//5F/P28Q8f7t7d5cM0HSGfrt0curu5qTlYMMbgsaq7GnokYARCxOFW6uqhFs0v9RrdTaGLYkJ5k8orIo8PDx+/+7gc7so0pyRusa29rq1t3Qe6HBERS5LjMpfDHBiQ6F36ULb5cnrWbbNwBM9SZinlLpHkPJWIaOu1rpe2XrR1NYxqqt08UAozTSVPxSEC0GkAcPbZdpA7WA81dGXwhCP+xMZ+GjEUqDdFypsuWQCEQ+9dLXYc5yBAILJI7MFbvY+rZYAhIqeUC3LCQUclzKkUEeR81dCga9O2taqbtRZCM+LEJaeUZ0FE92itMr0EQO+h6klgpFPF2J7D0BHCWmu1VzdFhJxSzgII5g6hCEHfuHbHiMfA9MZjARaKkWYHgQimLbJk4czpeLgT5hG82Gr3EQ/OXxvSMFwQOHQOPE0TE3XtZhoeTqxETmpD4cTsAe7gGHQbtO9m1MCUhEkGW909Akg4jbd3TFms6+jxvGGrhFpVq0AI4aobaE0QCKF9ZZApLwzQN+2ttm0Fj0SSOGXJCdO4gyMiELIUCwF1p+zEgWRgQ8woIx0CqUf03i/rdd3akhNnJiE3R0ISQsKcZM4LRfTr9XQ+//J8bljm939c3v9+OhyQUN10LDNr3uu3ULUdiTIKg0EYY4KUIudAi5wFWbYO0fyymauPbiaYt94uW7002DT3EEcTCFWvVeva12tdrxsgisg8zfM0rWlt1+bqTJgT21JM2cKBhPJEyDoEZ4ARYObhA4c0+MtD9guMLBxszEwi3yZy72FgOMK9xsEY++oiZh5JsqNzg5Ly4X5eFtQV6qlt17529w2XjjxJnmO+A6sMPfFIXMT7u+W//PM/fPeHjpKIAFD7ViG6aW117ev2808/lucZCLvaVhunDJAIsxua2khhGW29MYvuXfvQW6mZ9gER/VpTvv7ou+IfkfaQNcSI8JGHV6bCwlNt63rdtu3p6amUIh9EuH6+XggjCy1LkZQ4ibkBQk55ng8P9w9zzmi917bWNaIDRYCpqzlU03Xz06mezu1y7evWttodMA3yozkSMo40e1Xrqp2YRrHfdfRxvjlj3KObAZIjIEAPHBQnDxfmIAJAJkyCwow8JmcYDhqhsYu5W1dEQ2D1YKYIMdfmzjDK2lDzqEqIZSqY5/8/e3+2Y8mSrgdi/2Tmw1orIiMz965dwymew+I5Ekn1EdQQoBsBUl8J/QC6FfpSgPQeAvod+kbQRb+G0IJEtQQ0h2aLLQ6HZJ2qvXfuHCIj1nJ3M/sHXZiviMhdVaTEhgQRKK+orKgYVix3Nzf77fu/AfJUOW+VyIfj4YiJ6HRMaV2Wi6p6FyZGAEkiMQ9sxtzbdo7cqa72khODz2VzN7lhQmwY6i3UwT0jI6O3MAhLI4zIo1pbH9f28eFy/3B5czrc3WJKecj5vGyfPn1eiqqiOjanx2ofVl0DBSMF9KVtd9okSCnxMKQkEoTMu0srSM6H4zRR+Hl5uKzLfa0Z0+twuDpNuHtCuJ0Pt4cjszzdkVL9slnWlr2NaIecTscxMZYtt9p09yctEQ6M4/Fw+9OvOB8+u7xf7f43P3y+PHxY1uNyuG3H4WakgUg4ETsgAJr7ZoXCCR17fLQAEar6+XO53BerjkE7+nqVijJB4kSUCEW9+eYYPiRhoPVxbV5RfBhpvslfAjF7EXP1i4jnpibuKl8ecp7GcRpHzrnHS+z2S33/Bj3It2+ohJgssSRvrVYry7J9fPdxzDRmmaZhvj0NLGmacCnlspRSW6jTjkE+yQ7Q3LFHV4Wbd8/HMNNmba1WLAw0eRv0pSJGRO7uXtWffj0fb4ZxSpJUbb2Ux8+X+48PxRwwOpMiCYtwHhLmxDmR8LqtH9/J46dP7XLpzNBhHOabVzKMDtBaRVCARmgq3JpFKDewZs1a0xYhhED75mn3wkUA6rFUYQiehDCQO+q6s0IcwXdZ85foBQCYhappgMcerxCxP0m9scpERtT9OZu5QWDP7gZCJK2llg0DO2lzzMM0tBaoaq1idYfWjMiZgzhzCAkzikSWnLh05+JuIh5h1qA5oIErQFjTZq6EIUnGIQ9DZiborNjwH+0pI1xbbbUAIHAQUdcRxT41BIQTdVu/ccyDCCuzEBNQmMs1M3fXQ/edGCEyDSmNYyYkpNAGPROdCY3o6pCM3e2+20B12q+rWTNEwoQI6NovO/buNjLuTmqIYQbwRfJAhJtV040SAwS4hquFYbfic02BBljLVralbAt4DGmMNNOIEbZtW6srYAQmSOEyg4ycJiCJTqfi6KKUAOoaq24r3Zd01SCq7mZeIjRzzimllLTo50v5dK6Pyjwfx9u3h5vXxKyq6hHWScXa1VAvKT470wivcrkAZsqZY0BymiYRFguoGkXRekZWRKtRaiwbbIrNd+8QB1ONWnXb6rpsl8tCQtNhymMepzkPS12a6u6sWErp/HbJMuQUxFHDzPemardgdreuIXQg2p2cEop6SiLSM+lfDrP9gxCu3MvYWcy7n/1uR4PICUmEEW0IDFR3UFNttUISJGEZQUbQzbSGaXMnwW++vrtzDOTa6uXy+dxK6tbSOXvTUlZ1BeqIAScWIg6HWqv6ngIT3juxPSRAa1OtzZpq1d+HxOC13fclzQQBuvwNkVn61hIx3G1d135tw31bV2F69eokkiRlSSlchXEc53k6ng63Wbgu56UuD/cPra2ckDNLTha4FH28tIfLdlnqsupWm1kg457tiLFb9mDvPWl3uAbECGha25emnb0Uo2u/PAC6rd8LTQPBbg+Gvoc/AwZaQHOshhFo7q6dzWbR/Rijb8dDMQBQhAPAA5uDBhmJpzl4rA6mbCumTCQHzBRbsehO1oDRB38vyALcIuAKmfU18Ys5ucMwTJhE5jEDoLWiTd0MPSiljpA7AAgTYJpUIbZyftjq52U7r1utdRxylpwlh61lK5di1dEorU6GGCgGHMHqFAjmCAgJmVAM2IIJsF+BTk2WTNPhBBGLq5W6tcVKreYWIX3kRAjSaZwO4yRXJCYALLBqLG4L2ZbNLIhhyEw4iIg5hBvAEGhOeLg5za9eQT7mTyvkeVO8v9SVogwCN9PJYSCWRIBdSIt+NbsWBCaSlJBY1balXR639VLdgJAi+kgmYpIEeUw5TQSizbwBMwhjEmJCM2tV0RyJU+sQ7Ysi5orE9yVyH1hEBIklybSP+uMwDECETNgxVojw6L4s+90N7H4g5ombUxOsRATlvJ4/Pi63N/V1JUo5MQ+jI50f121ZIDMm5uDAAENwgu6LHc0dW0c5m/Y8bXNTt6atFWu11aTb+ryzTCm9+epO4Jvj6dUwTohkastS83C/ra1s1ckRkZlI0MCR+ebN3fH2ZjrO27rkRBT+cd2sVDfLSd6+vpM8fPz8eW2la7nzIDmRm4s0Q7CLrmWNxQ6jJ+JJjDHQrgKQzlaE6AQXEfEEqt6JtIFAEIwm6AHQgZnnHb/3MMJmsNvtQe9uXPOHug9eV2k4tgA1VbPma1h3JbSwpkmWxNICCCCnJK11sqGpFg+tTQO22nJKmVPm1JXcjMiMOTMLuYWaFi3B6BgE3tUDSCBZpnGY53EchiTY0zv3ZsBec+0Lf9nWy3IZPZIYcecsYgAaRKuttWYenKSbmPfgGABwtWAeUkZC1bazmiEokYjknHpuL0D4LvQGJBBEJzJ1M20dJnQD8CQEHtXM1CiACAkIDFqtgZiHnJg5MTJGdAkSGgFRIPrVPaeTx5tZCWQEIgJHbK2pVyIwNS2V1KxuWtZaFkTE4UgWEVC13n/+tK5nD/Ng43k8vH71k18M4wzEAUhJ+pLrgGpo3gXQklIiwnW56GbzPEFY2R4YIY2cEL35w6X99n47V8ynr+e7r6bja0mDNnWvu1Y+9mh3fYEqISIzsnRl+g7sszCCkDEDH6YEJEu3K5fcVb7hHl5NQTGsi9dg39M2j9J83ep5WWkgyjzMo+Q8HuZhni+PxdXVoWpbliXA5mkeRI7T6MQ9poE7+TPQHMPCzKpaBCROBLtPd+TIkgn5pTqpL2C2r4j0tNp3znbvwnbZMCABi0c0RKSBhyOq4aambtuGioAZgwOzumjxVraiBizzdHOTJ0JethXapSXWaTzdkIWsW/PeUnJgps6AFyLVWlqB3VmaANHdWm1Nm5k3tc4/1daTNZ/vy5UCu6eLAuxm53seHu5KzBeWTIEIPfZ5XZdlwVbq4TDlYZjmQ0pjysI05pzmcTzOp2k8MkbDrVT7dP+wLI9plOk4nm5vDem8bA/n7XGpy1q3tdXmyJSHYZymYczMRAhB6NBdOMxMzUUgOUQPf44X59JVlmMWZm4e0EtUQIJeknQ7BOiIqUagAxGwgDluSlXdfae+enj/NXfHHsKAkRES0TwOal6bAUI1Lw5ZBkozB2hp958fOfHp9hgkgdzbXhE7H67rA3qASVVX1VI7OGZwrXyfHxmilNI0T6fDwcG3B621uQcCCmAQYyesEzCkYRox1LRsAefWHpb18fER/ZApneZD2axpFF1KOHCI0CGljMk5KVJzb+7VDQnHEDCIVU1iToxXBXxiZqI8TEg4gw1N7eHRq1bV5irR/dVRUKaUp5SetSOIQORI5ljVa/PSdKubUALkNOSRswjlFADeIOZXdzzOjVIjUiTn5JyVpXHyNETOzuiI3Vqim0qbGwIEEkkahjkML+dyeViW89aqIiIxNHMIBwRkyVM+nqZpmL35/afPrjUlGoYdlU6JAxMysqA7mH6hGhN8uQUgJEQGZEk85GEajod5mqdpnkSkh3R1GqCHB/iudOpJu50PgsAeSL7LULzVrS4Py+XhXJYCQJIHGcdAOp+X5eE8nqYUAyMBQij05L5uwqYWGqDdqW1fWMDB1bSUWqhZsfZiZ8lMh8MI22E+TikNER6Zh2Fwi4/vP69riTAkZw7ObGFBcDidXn/15nAz1+0Qrdi2LZ8+r00JMTHOY045LwtvRIwYSJ3V4Qg+8GypWWytmZbWSIuYORPglVaBjBiMewACISbnANB94iciDEEn6ED6FyYrDtA3z47dcbRPYNcqs7dvuzNE6o7wvWhx09LDFlup62VhSZlzMDdAMMNQxuhe+12QUFptra3blpAHyYzhVlQrhgsjMyu6qZk19QAMxmCCvQ0jNGQehzwOmXHfz4MZ7OD5dYGJUO/tAUdyBo/AgGuCRkfHOJgFicw9dushi924gftW1MLUDDEYMhPlnIeUiDA8rmiCxR76TECdC9VDIrrP6BM8BshMzBjg7q0pIHWxHRMhY6daE4EkzJlSeqkZddPa2kZBSIIR1oWg5ujQXNdWoqy+LV4384LEql6r4VaLts8PD+t2cVfggTPLASSPeZgAyaMDwH2rCtXhyvi2IXPOVKqZVmuAYaEliEJNUavRucQSg+Z8PH01nt5QmtxJdysR2IN3TFtrtX2htujwS1fGuiMRcSLgyDBw+DCIAYW696AclmlI7mG4hIZCn+V36NZhD9rcdW2t1VprrQCYhmE+HstqklakcIC1VMQYJBNAEgpixtDo2CQh7M0TQASgrmPr9OTojkNmtjspv1xgronc167R81O1FzF7ppYFeoAFIgjyAGmCVCCKqQGoSEJkkAFkbCirwqVUFs+DJQJhcEYhJIA+8+ScPchCzUM9WGTMSZg7ZtfcohMUqBcx3oEYc9dm2prWqrWqKnzpd4W7x2PfVcLTdX5ag67/BhHknAKmiFiXrZZWtlZKy0MiFmJuZlGCGZE4sKdhzgS+4Lk2ezhv5/Mlt6xINKhBPF7Kw2W9LK0UbeZAPOQ8TeM45pQY97ZcdBJ/ALZWWTjl/LvaJIRI0SaoEwqjJ3SPIEOKXoTCNeKkI/F7ewGBycgdyJS8R/IYek812PlbFCCEyIGIhMIEyK6BAajALUgDExInIrWmTa0OowT1Bnx0G2jsWiczaKF7ALirWdOuPHWzLzrjPaMNEIPQrwQrB3AkBHIgQArCnm4vzNM4clhtW0N9LO3T5fLpYWTEPMw5peM8mblFJLPIuaFMzpvR0sJMzb25aTgiG4A6hBs6ZGZWt1atVTMlTIFBLGmc8jQz5+4zWbUlRkJmAAwU7I6pLw7CIFSz6lZci1sJzuEQIMRdKTpPLImNiOfDutaHsr5///HTw0N1RxFKiVOmnREVHnC9RwE9u4aYuYcXj01tu5wvj+tWqoXnnAHCm7p3xRwTCxCZW2ut1E29DZPkMSEDCQxTSsHIPfpYf2RIJMRE7Mi4r7wEgpxzHg+H+XS4OR2HcSAi6EsOREfe3D0ghAmEehHz5MmG3WEIEQK9uZWyLevl8bIum0fklNMwAvL5vF4+n1FEJAcDIEaDnfum3lFJi9DoNmaEsCN16t6aKrVooC+CoBBAICjU2ubazJQ5TYfT6TTPh0MtzoKI5rD1HGyPGMbxcDiOo2RG+PqtLevD9x+wWU7CAKEVEx/HHHoI8w0CtIYZmDL4PIoHbNVdHbRpUW1GhMKJhXkP44F+WTukHZ1uFN4VcL2FyqEWgBhEz8T+uHq2BDN2blXX2gR2wKy7SxG5CAdIYAQ6QtvMWtVaawQBEJOkNKAkZ2wAoM67bb9wUMfsW21aa1gkZqKgaAiGhESMTIhoDc3CvQUECSeRPHSlQAjjkGXIaSdXxK7++rIpTkiCLN3Gp4sbETCAAoJEBiIAFBZEqq1q03XbIHwcpiFz93htHX5vjRkTJCLqpIhuqmvWW44NPHCvTjTCkZCJiLzDeADdd58Idq+61tzNAcHUPXmEUyCBI/X3SzAP8zQ8mRL0+OhaNjAiSgA9DYsD2E2t1LZc2uVBzw/RNmLglJbqxMUwVdNte2xaA2KYxleH0+H21Xg4pjRYgLuLCCA0NzNoRuFOWBC2cfDDxKwJVBkUwzJBQGylWd2WFovldPOTYTwebu5Snk3Rm+4eF+E7quS2tbrV+oSQR8Qu2wEkpoSMhJKRAYEN3Zi4e7AFABFNw/D61SuPUIDzVi2iuQtSYOer77DMUyhVuJ3P5w7eHk+3ItO2btt6qWWrdSGPMRVtLcwBHcPAmzkGknAmoN6r0RTmnebs2jZVrVoGjem4tlpf+Pd0UILCI8CegLNOuu01jTu49XraDRCQGMCAjTJKRg8MQggEJE6YJ9eK+aC8braGVubFDYaUamudIfb4eP78UJuFB5JQFky9pY7gquphsZfMEe4UvjtgWVi3rVRtrbbWarUv57Edhukt5h192Tti4R604/Duz1z/Ieec8jhs9x8/l63tqWcearasFzOFiMPhQMyvbm/zODIAoNQGy6bnVUdKvpo9bOrw+bycl3Vdmxowp5yHw/E4zWMeBBk8DHbqwdVEsgIx5WFgkZQl5+cdP4WO9njQj5MWwRzRL0JQN8t/spSJHn8WAD1blsBQPSgsgzuAETTB5lAselo3hWfEASB3X2YABwqiIApOBlxVUSpRSgmGAV1rXe/VbL1s1SxfA97CcLW2U8cRiDoXxloneLVn8oV7n4VaM9tq0VbNo1T1IGAKJO9xEJ1GQ5AJ05iFHL1GXT6X8sMD3AxJmI5AKaXDOAjhMEiDwDFXx4fVPp5rW5Youpd31Pf3PZAjFCGAq+l2ftSygZsP47qteQQkznmcx0O1jgjXaRQA9t7h1wh9gcISokBwNKsFsFAqNDTmQqRbJdfJnQnmcUrDME+HBvLDb9/99bsP//Sf/cvffPv9VhbJNI3DYcgDEweAdXGYXv24oXfnx2Ee0sgwbG1dznq51KYKTOM8EBGstbYAkAA0g3XZPpeHupatbJLokMc0ZhTEhPM0EiNSd0fbfmQJL91GiYiCgBiZUZBTSjnnYRhSEka8RgBdwWgCoGCiHhQPEYAgiOBgYcQ4JBESDqzWaoTtJD3fW9LMEFS2ti11PpoP7uCB0ZqpW8RVI8JAAALEKOEYLaLFdYE33yfOl9tK11LLurgFILs1ToOIuCpAsNCQhZgdvLaOuFVvDUzZKSXG0+H161dvv3otAIwwZgHT0JYZ5zG7zZnQymaNVKu4ZyAMLqNrs8wo2P0DEHdKLxNz9PPovpPuEQZuCM5IjAFg6BDWIrrE5UdsOHd3QO5xPx0d33vk1/ju3m9m5gSB6BhuStp6KgIEEgK1rtkjcERHJkpEmYkYWBFaWHfhcXN3xVDwKhR5GES6BwSYMAVzQCYYkuREkoQYIbynZuYk+115imL6cYO/Q+qMJL1FHtcODREPkgKwK5xLKbXUUgozppQ9XK2Ze9PWtKo2C5Imqsmvyb2qHZLXWmuY96DMK8kLexgo7LY8Dlfpils0taaqbnt5uVMNOhSATABIkSTtMoR9WeyWg7jb2UOYe7cwZ+E0qNTg7CgGAgEMQpIhjQBCnBIhhxPzfLy9e/PT27uvhnFGZgh0D1UFgOZuhuZhrWj9dH787nx+X8oZEIgFQj0QMAWJ0mw0BU6C0zHNNByGYWaSa8QnRqBHYDgxdvPql3Cfu7erXWznijKjCAoQhHiLnYdwZWUw0TjkbozYI0gjwvccAABAZpaUUur5IAIQy/kcTkgZKY/HE+cxiNSirmtRW1NZp7VsmwwDRhCGqTqyo3Q/QmZOktDdAkzNtDPKN6R0TeV8gcSEo3fDQuj3CwG0tnVZzKyTtZHQ90Sw6BI3BbcA4EQSYb7DC73CkYHGGbdjbMVKWYtqWwRBTUttneJqZlrNAQUFmTunr9US3WUfCEWIngJKY48O0Z3Z26VJWtVVf7/Z9fPp7ca4X4Id+xXo3HcRIcS61dZMVYlIVZdlvVwet7KZ6U2pp5sbDUBOEb6U+nBZH5fyuKqRN7RVV3U/r+tW1SI4pWGY5nk+HOY8Cu/57D04YvfqdDBQ6Ez/vFexz2+RIFKUwZfsyKbQKf6+y+t6LgTgcxFDJFcjBmczNMu9H4hsTEpUEBt2s/cQ8sSUhZCoRe+4gyOHpAayFK2+5eThjgREAdbNwJyJRFISYiJ3b7ovbQC9ywVuXpp1d5yXHDIzq6ZFFSuC9URvQmAg3OPZr1u5rrMhQkii4wBgRe3z1n44r4h8bjbkJEEIkJiGJDLl4mheL2sjCDDtctqUmAAovCOMDtHcwWwpzZsNmVEkEPpGJA/j7e2rrWkXbO40u9gpMPCl3xUQBLtiVOLG0QQKMyMpAIWBVipEK7jwJENV+/jh8/vv391/+Lgtl8QwDvk4D6dxmCUNyN2Dyz0AQlLXRUiWYcwTgmwXfbjfHu6X5VIsfByH46ujMAMvsGitoKrr4hu1bV1cjUTymMd5HudBsqSB85iYMSBU0ZxfeqpBD4BERGQkIUnIRILU0wndfdtKpdoN76s2ByDmNKRxGvKQJHUiBID3ZpgZKJPM4xgJFwuvmzJiYpkyDykwzK0bo7qFaXhx24wcHbzU6uCcSDhLToho0DH+bBptqV6drgk4HS3GF7JDUzs/PD58uB9GJUkIgaxlredL2y6PWlviTISJIBCLmi7L+f37xzENdDdOWQiOx/mnP/vmOI1aK0ZAuLYKiDnxq5ujzZNtpZatlHWncUSLA7amSSALjAkYAAKYOeVMzOYKFMLo4bU1V0VXCqAw8AgHdaOeEbXjyU9N/ojrSgQ78xd2jgThdToLAAgAQkxMTBlhh7LcanRJA2B3gWnWAJHTyGnkREjJCDrFlpIwDfuk3ExVASJD6jLO8PCcQHASGhINTD1JGqIbtArtdk8M7rXUaO1JxXydfp82k4IsQtxx9f4ziJglecBSyuWyPj5cWitEOI7ZYa+cfQeEW9OGhrvKUdgsQ4SpltJKqaVU1baXwLSzCQMpgiLCLXRnhLl5mJupNVM1FREgJ+6GobSzJqM7BOPuv7PXMBhIQMKcAiVUq3orJTMdj8eBjm2eyuFY59O2LGvbJOfT6zfT4SQ0BkDTiojDOM3z6Xh8ncc5SDx2YWcpXf/cPdqhbJ8/vf+XH97/yx/e/cZauTncDJLMwoOCMuSDTG+H8XbOx8BUPdQIET32oNFeJ7tZ90xFxCRJ5HmXHBG11q1spRbVyhwMRLBTz82jbK0oAiZC0Og9nFabXs7n9bK4OyDCVQnU8edhHPM45DENQw638+VSNnXMaTwebu9wGKk0khIuTctyLildpuN5CmdCETLrYSDd6BgISURCzVrbU0+1G7n53h18WtKjawC33a3wKsUv6/rDu3dbqeM0zYfD8XREYo/q1rppSQEHVyQiFg9zB7UGnYaLhMMhH30y2PBcSj2XrW6LWWNmBxjHsVQo5azNIlT7XgVxT1DkRJLIKYACvFujPKnjaq2t1ta6vtr8pdwC95qlOxEixm7yff0K9eUaAxB43zTtWxtmPt3ciCQRJsStlKb18fy4rktpVT1+Wn9qAYagtb3/9Pndh0/3j+uyNkNjq3FpFt68IlEex3E6HObjOI25P7WgAU5duHoVViJ0J9K6rYubsaSX+xcEYHAKB1MHCA33Ht8XHkEIQh3l30+QJKWEhKhasDXqqEaf54kCxZIYiAV7cHSoi9GJIsiJjdhJQFL1WM4VsOVcEyGBCzGjDwQziSPnJCJIBK4ImwNA7wt3pyg332pdSi31OdOqg3pqvtXanYyZKEkm7P6bAd5dAHZBo0dPBgxJGcIDfQX74VKX8lk+PQiCQEx5eH1zOhzngcmQzMCBkBORgRo5ZGEOCncgA6QA27SCqRHzNI+HeR7HPA7MYoDDMH311deltdYaXe0yw72PjpccMuiNdnIjN3ZPqIm3ThSUxGglXLflXC7D+XI4rwby+bzVUhPjccpBmIZ0mKfjMBxkSEjmTYPQIIRyymkYsowig9CwnMv7dw/vvvvw4YfP69ZSyofT9Pqr2yTiSOZLrWUrpbQG2NzaMObTzfH27uZ0O8/HLAOlgSQRoGtr4YHd5eVFOS/9lIgYBUVQiHpDOiLUNLpxGETH0Hp5PmGMc2ZhyUy91utGtuZIKCzHw8zBbAZWzFKa8nRzHI4TdjubnlzUTItZMR+8OxiAIxHnlGRInImYPDCQCLMWXVtsSNib3rEPq5fbl4hozWpVFu/kFVCrTbe1urYwbcXBEXNgGLjpuj68f58FE5kepwB3a/NxIggtpdWqzUwbMeecx3FGoLbVsm2lbqoaAaW006FzfitRDIkg3KsiYsoDCZkToEv3UKdGGD12JMzBsfNj3SIA3S1MX55PPOEvL47YTzS+KBMAiIiRAiKnUIuwYA9A6ZZaFEFg4IBaO3aDFERAEByO5ITohA2BPICBEYQpETFGEOQsDHTI/bZAgKlqhBNhEuo2Hle0ad9q/tiMpG9ykKhjMD0H0s169B+gqp8fl/Pj5fG8Rtg0DYjk5kq6S4J2i2SNCHCHAETMuTGhWdTaSqm1ttY6CQF7XANfJ0hV3zattZpjPBUxPRAVA7krmuHqaAp7em7nUHy5g3EQA6GgCGjq2rdqiCKcUyJCJsmcZTzgtkgejq/fHo+3mUcAVDciGcZpyNMwHJCkmiogkqC5W1HVQHIIB1vq4+Py+bxc1tLAsYEQ5F6WgYw43sB4B+MNDTMiQVPskEp/x51TjoTOV4PH6Pv1l6eiql3P0loZMACksxSYUYlUvTVwSeFgTSuUsq1bbeu6llIj4MrhcQRnopwl58SJiSgiVHVby+VSqm9SzCgTSymtVlcFbw7hsqznxzMQyJD2pRg7ZgluHtZDvGK3x95NiDoPAb54OMJdq9fNtG98JJgRBa5iNMvm3Z+ACCBCq7USpt2kn4gjrpraztLsViiUKM1pdFXc2mWztmyq2lJyAJSUxsHXJOFBRECdFeRqBkicIALUgMhZBBgI+oK/U2Fararmam7xo3wuvFopExHiNeAWXn5xv1b0tJ8DiHBEHIbciYrdNafWVmrdaq21NdXejl+2dTlf3n+6//j5camtOUpQOFlvHEpKOc3TYZoO0zzlJIQA6ODe3d66xmC/A12VYFZKcQ9J3lp7aaYszMJXqfgTvzog3A16On3fjHVdJ7kZEoArheK+zwmKbujkLBEEjmRB6tRid2/FK+u2EzOa2rJtbpaEMlMWHgSQDRlSSkGEBEHQE86QER3RO23fm3a/Yy39ir0syggdsZlBD8hE6jZlAQDXwNw+oe3Gf310sUAeCVFNH80uqq4VTMn1OI4N6A5wsmjI94s+Fi0ehtRvLiMxkANAv/oQ1QAClISS4DBhHqxzUQCIeJ5TMlvO5z0BnQgBOnfhpVE/IkjiPAoxjOM4HEcas7IUJBYwgFKb1VK3VSSdSpU0aQAKzoehOwWmnOZxmEQGB9agwLCI5uEBAzJKTiNCLqs/3K8f3j18+vC4LY2IpsN4uptvXs3E9HhZz2ewaK1VpMbsIjRNw/E0H4/zOIzS2RS+Rwe2aq12P40vbov0TiQxIzALMsGubjaDBsEda4mmWkpRDzFj6WhVEJNIIoDoGyB3ARmH4fZ0yijJHKM2uAy34+nrV4fXJxQybVarllo3rZu2zXwKGRmFDRASTYcxz1kmASb3CEdwrNEqbuSxw8HuQHscwRfUvpR5mGSc0jAAoLtarZ0hz9C2danF54MABLrptt2//8FasbYeTjNJ31ciJRmImOisFzcFDOHx5mZOadzWWqs2UwBIid28LmVdLpfLo1tNTO5el83dOQkKAWYEpwhT3a3qa3XbTTE6ozLcPdDd4wt/hauSeM8i2RdjgO6F62bP8B0gBBIRMoOIj9kZsenegxchMzIj33Poa9RwrE77w88QiD0zyF0igwjROGQWdlMEHBJl4kEoMzIEEWXOfSpKTGFqrXo/91q32lTNvlAn9c1Jp16iNtVOWjZT7z3GZSvt8+dlXat65JRFMnNSdUTLiWHPu/I9H6FZt6fIecg5QWBtqr0zpKDm/XIx9AadA0TZ6uW8lNqQpE+85qaugCHCkhgZu4kcoLv3LRR0gdPLtOQAskjNxdtO8Q23JClnAjOFMHNAzNMseUjjLDnfnF7N85ExI5J1WwRJiMmsd92ImIkToidJHlHdipVVL0s9V2Ie727uJjcFpopIMrAMPJ4wH4PH5lQ37Sj4VbPekeedwUwogb53+Txehqf0QqHWtq1b000SBIQHCnMiCUOkGuGmXjXKVq3ZeZDSdCvV1JCkR08FGkUwU06csiBhM1s201aK2lbbeVM/l/PamJJXs1K1NDQHgFLa4+MCjDPMkpm59yV3JbyaNrXatLbm5hC0O1vuTipfMJRdq9ZFmwEApgQpM9OY893t3eGgnFMaBmbuolqwptuDltIckCQNkwfW0sy1b+l20zMLDWaZ0gC1IbXApl4uqzYMF5RhSIfDlFJCIQAw96q6llDvhXc0q8RpHCfMvYlpqt0FSXu26C7j/dKPhAi5W1nQvoXu+oDdGnun2z1PfNdr0P9PSOLj8dCtcjYEYU4pEdEwjEmSmX68//T50+f3nz4+XC4WQClLznkeUYQFRSANPORRJDHTnqK7ezxeGdfU3Re8K74cvLMBqLZtXZ/2MEgoKadhpJQRBQTcg9TdnYN7g1c7PxGRgcOJmieGCEBixH3Lpu5hQOzEyozC5JgoGBx7VmH3Mo/u59Cg1lbXqtoKOiNm4SGRDpSHRBMBYOv7lw4kYgDBEza827rbblX03OUnQhFgtgCKIGIkRqKuz+7df0QQEUB2AAe3rr0BJMkpDeTWarO2bQFN3TY7tOK8XBTmsbWAD1t7qLEGNWDIGZE6gkeMPSNKHQkIkJzFWVrwqrF5JQBmYREm5E507U8KgogEhIh05cR1qcRhzDenQ+Z8Mx1ON7fjOAdnBTRAN29e1rI9Pj4S4KuI4zHmw2G8mW4lhpKtKhOOSQQBajFFYAz1uhSTCBbiYRDSZu+///T++08f399vlyKUpuP45u3t3ZvjdBR3J/EAVavubRx4HvN8GI6n+TiPOQkCaguvDckpA4TV2mqprbTtVX1Z9wsx99UPkUWQwPFKNQiMiP1h6kaK0c3cEHdKAyLuDuto4uSGwcQkiAOR59TmcaXDeDcf3tyONzMytFrbttV1q2stWytrsdnoxIOMlBINMh4nOSQayTC0mXWdWfeHqs1qCzVwQIb40kSBmPM8T7e343ySlCNCWzV3pNYLsVYbkqUczIgBpro8nl0boq6XWbLIMORhGtKQh4EAcVmtNYcwU8RgpjRkSnlgkiTDkAnBSt2W5fHzJ62FAF21TFvT5hCOfS00MEOI1rrewCCsB1wD9HjFiPDuT/pSoQDYuUfXj50MtHNnr5OeP3WVLCIAmTmlxMTCe2CkR7hQGJtp1Y7HNw8F75L5rgLvBi/9QU1MnJIEonogYk6cGROCYDACc8d9IDyIephmbYjqvtW61epN9cssmK4pMAto1kw7v6G1VltVbWa+Fb2cq5oTJ+Ie5QOq3a73OmH3Fi+Eh7dm7qU1qzUBkGqv6XoPDnZPkKtEpTNd3EPVAh0BibrPPRGBpMQineehRgE9/hIpKHqp9aV3nwaqd3ebXoNQzpIE3UPD3J0giIhJiFnykFMWSYwJiRk5CAEZgM0BLKyvUo4O2C3d1FvxbbO1gUs+zqdxGHr/YTW3ztWIdAwa1cB0X3eTsFxFLJ1Q7l2YhEQoCs/Kjufx9USGjYhwopAUKWNONEBytQBszYpDVW9NwWLbam1qrevwO14ViM6EmTsZwtV0q1HNTVtVbwG19RsOjAyGoRZNCQIdqvpWa65psJFDvMMhzVTd1FW1aqtNO/DJP3JM+fLo8ny+JikjIDFl4pvTSd2AKAjCTbVprdZaqPXehgdC0wDsvs941YzvzPquGuO+JWZkCeCqJcwyghsQiyQIROvddPXWXN2JyCOqGnMkSUwMhH1etQ7AqLu5m0PAj4BL2r1VdlonAiAjMz9Nxc/9ze4Fdz3n/jVC5JwAwCMCfZ4nZlKzYUgRvqyLWnv49HndNiAY55ElzccpTyOnJIlZQBIJJ6IdN8Huaf3ku9eRhystplOvoPulApQXhopElMdhmCeSBLDn4Jpp34Gpe1N36KFy2B399JlQQtdp75pMe4WiMRzRkZiQMDwMVF0NvCsfPVyba/XWACwQQBmsG3mAJI6I4m7RqdzIhFc+3/OmGPFLrHs/HUai6OFTfXsUEF2QE50ZTtT98twjwDx8D/ZgZwESC25BJbiCmHMgfFTS1aZWWsTH2lZHkxy7DwU5QjD2lRf2yxoA4IgaWMwjArQRgIiniIyIgCkl2Y2wd4Dqym98HmBDksM8HqbDcZqHYQDm5lB7SEdtzWw1+9waI5A2Ak0SmSljghRaEDyQwUxrbUCYphGAkDjCtfm6NLB1ubTvv/3w6f3DeikQOI7j8Tgfb+f5JqcJWzFkBVIkl0THw3Q65vmQp3FIjNaaVTNwdwV2GQjRtVmtrWxlW9tLsF9yShFsIoDM3JdE7wztwEDowdVJUiZhByeWPGQm3iV27kGEhEzoRMjgbnVZBBO7TzmfxtP49ji+OsphAHSrW10u2/myLWVbyjpu9VgxaEzjNIjMSY5DTNREw5s2r1rb2tbL5XK5bMtS102bUm+FJuD0jJKxyPHuFcBXeZyJxMzKulRVpBI7ugQQ4REY2CUV2nRzfxTUWmTMaZqmIzDKPM4IRJK8FGu6rOvD43m2CBTOwzBPaRqHMQsTu2s5Hm+mthVQs6Za21a2Zd2qVgcP71FvranV2swNwJkJgQIIGZFF1aqpt+ecjsBr0mE36exJaPZMqNzxZNhlmHsYYwAgsSTmEHJVte6KBBwM7sLJmrZatds6EVLvujz9UQTpULUDegAzMdOYmBHQGmEIy5Uiid5rMXdrbTVrautWSmveanvhexEA7qAaW6271sjcA1R9Wcu2bV1O74Cc0jCMaUgOUVU7RE7EhOBBV88kD+vEj6il1dLJ3k+zLeI1ZJIIRZiIe0jkOOamutUKgXlg6RCrYM5ChM3Miwe6CIV3T1LqIegOz5uxgL0c2IMWJDPDkDOTNy8Wxt3c3owQiJh760wNKAgxKAAxdqdi9AA1cAugfTPu6ApVoQSYyDCdbnDmtrVtW2O5B21MHCTqbKatNnU3J2K2nLsojolQECJMW3gwMaEwh3uotfbCJAqRhmGcpjnnAVFz5nGSwyGNktkGrdUdtqqXUlWDAQChk4q6YrPrFAlDEDLTwEhhqnXdIoKR3CNqoJMQGweII4Wbeaj3q4oOLfYVDJA9sDZvRbWomUdEf2SaqnWgkOJln6I/z0+LZRqmcTq5mMdO3aRxICASMXMHr62t67KuaytrNBUeB8pkoR66P1XRkR6MADAKYLBORQVXs+pae7iBtWhVN9cwiEBT6LqVrdRS69Y0ALv3l5pDD2Q08wBT2wn7HmCdF+hwXQ6fCzK4Nl+wr0HdE6A3SJ9gmCdt+9MNhZ2c0aU2iMLIPKTEvWmYk5Rt/Xz/iQjXZSXB0+2RiSWlPIwpJeqE/T19l668g/6H2BkhopMgn7ye+2Xb13JzVaulPnVgiWk8jIfTHCQIO2hxDQmxpkrVezQIROREwnt7jIiYUTpDLUC7jR14EHigd94KSQAAimNP/jJACCACEAQhBw4i7ptBiOimhq00Jy2+NxK73AA8WlXV3hkOYuhGr0zPrtC7zyh1+2cwcwVtyAFs4QDRfcWB915qF0gHAhB2EzBCDhIfBIcpuYuquBXwz+FLcQ0/B1YiYEFhBGDCngUPXTmh0ZncAWEOHoZQlZDDKEKvW9ZB0pBzEhGSvkUGgN2b6+lcEBPTNObTcRrzCAGlmTcvpV2Wi1llAUWqKQmjjckyVTJHN+ngP7madsu2beXEpzHzkMZ05PAWfnksn35YHx/Wjz983pbClKYpHw7T8TSNM6chUNRVAxuyDyMTDnd3t6fTkDMQgLVaLtu6VjUHBMk8zIkFw702XddWti9MO0Wy9PBmcOxpbLEzL/oHEpBIlpRGnPbx1Vu1DQw9EGTorqqA6B6EzVosyjkLHw8jn8bx69PhdBCRUK+Xutwvy/1St9aabpdSLsVrJErz4UYO2VLUrjO1PcO2Bwru0oq+j04AGTQHCz91xhGRU5ackSR2ewnqdtRmYQ4OKCzDNA9DsgG3tV4ez+aqpTUmQEoDJE7DNE/HG/Co5ihSthUBul87kgzhMg6IsMsEmQR89CkJQ3MttSCZWzLrvPXoTsPmQOd9BAIwUc+aRhbiVAGWcPAv0It99kCAPXXkuu258mGvfoyAnZXgsWOXiAQUjBhBiB2zCQgP2nE0ADLsgpTuwAxXL1NCZCYE1N58ICbmQYihP97ItIcOIyJdLYb28EXbAy1+pE6KADMvtTkQi3c5m7nVZqW01gwAiERyZu5erLz77UZ0dTcz7v55HZ5CCPTdzdksInpLplvOE31BHegePSnxNI/mHgDu0YNnYe9OoKqbKTEEgfjuMMPQI2XM7EtSDAIhMKIwBuxpL7vc1J0IAMPdcac7CwS5gQHuBDvotEwKQA/UQHNw0ABDV43m0fY4bU/MI4I0oiADHjE4upmvg5rXjhMFkRsihgc5JmZJz/ySvsAjZwBorcJTSlGfyFIahmEYBuY2Tnkc0zimzAKFAEAtStVlrW54GDIAtma1NlNDBxFMIjlhZiTELEjgblpbEKechZMMWTCpGbW1sQWahwchyDAQUxLIo5AIAKm7Ny/VWlVr6mbdwKMPA7x67+4UjIhrqveLFZyEu9FRhBGiUJd9ISNEWGu1rmVdWinhzsyJB0JAM1DzViOcmHf5me+tzp5s7mbhimHdgM87mNm0bOoOTBIOpdS11nXdSm3dWyWHIIOZd8F1vx2d19VRwx1d6EXMj5QjLw7qg/upvdSD056aRwidnHQtYgC6WOUqd9+Rwtz3HlxreXx0JLBmkvhwPKQkcs1xIGZEcLyKoaA3cvcdAl3pHwFd6vIExkBX2HcXHNPnzRgSSc7DPAElhM6ejF7BmJmosihXZtRw72Y68YJBx4LChEQpsGpXF/ZuOniEgjen4l5qFLWqvlslEhJBd0nZdWoRiBgAzQKbOaF21QT0bQOC77KrfXRBIEISSUnwx/gfUS8IwBExAnuCDEIQou+4umm4mjfX2EkB5OGEgCRA0r2v3CxUqzVTraEWUAGNiFiAJACQ0BEMotPBPHYPpI4xR4Cah4ODU+cVA7KaExMAU9/9dcWeE5K8UPQQ0TDmaR7GaWCkba11Cy1UNl224qADShC5SNeAaaJK4bybLrVAjTDTamWpq4BI6CRZZIRwb615a9Zqq2rqEdTxYcTdShssehwvQx7oeByT5JubeZ4kollttdR1aZelqAYJZ0+IKJkBwzQ6kPfylghlCUdEAnNvFmHh0Ym+10AuEc7zNOVxFGaPULNt20wdq0fgOEwDS2tUIqA1UNWy2ehpPMyv5rc/vRm+Os3jzMa2er3Xx3fnxw8X3dwNtnNZp9KWRi6n+Ybn9FDPdSvVzs0bRqQAYsYh2TzocSrL5gCqiGPAoJyfK+WIsNq2ywaoHVIvW1nXbSm1qKmjI6VxuHvz9nQ6utLj40Ud2raypMQpp3wYD3ev375+89Xp5o4Qp+Pxcn68nB/Xy3lblvL5ASPqtkKPOvNozGgNrIFWMOdAVb2cz+u6Kjgx53lkIrMGgJfLZVvXVgp4kFBi6f8gZ4xIiIjPPjFPbL29UvGXtQteCVsYsXvRQAd1u+YxntTLhEjeHYjCMUCoP9mUrtxb4m5g05sP16D5XfpIKBkRGbx7xHePvoAvbbhwx7xTogEYECEcn1PfIcJr1XWttYUky3kAxFpaKc0siNIwDHkYJQ+A2Jqq7jReN0MAkSp7fQL7styx7aAIV3XoKxWRSGJmxHgBuftOxyGY55FZ8jDUZt7zFAgtrJamph5GjMDUyaNdjojuaFabPQEAfXuUmHKixLS3BK15KLrhDvZhgDAmTpOkkSgFsAX2NDIKRhJAiUALdOsODuZew1aLLdDB0Bt6s8LVtV4ul60WjQjkvj7FtRP51E911WYWGCo8QmRhlq6rDiRIkoXJQfMwvOjOdd9nHoZBks2HPM0sCcLd/Sr+rW3bKgLROBJRrXVbtroW9xjHfDqON4eBGbRVNyX0LlAEzPPpNB4OlMZtra7voT1gq2iOAJLzeDylKadEwpEkAKkUDdCtmjZDje7r4+6EKCK4i3rhCjq6qb5U9ERvtgZw17XutxLCW6tlW9dluZRtbbUh4TDkvb8DEE1BFLhniHbhWvNi27qqal/K3T3cuq9r7MwsV7V13VQjpQwBpdRtq+tWSlXraAAqe/Ssx+73HRDh8SSw8j3L0gGgI09Pj4xfTa+hZ/gx9c7JtaUD/Zntnzz9+3RPgcDD+z6jYyq7eMmj1mqmPSo654yILDvtrp/r/hd2ri1eXSOgR0/3UiDQyAwJGRggOoBxvRHdB/X6hf4H0iBpYmaACOt9pN2xMA2aSyvctLWnm+hd7Qo93VQkZSTKDs1Ca1M1AHWDarFWu9RYmnfwjoAQ9+jcnNIeTtcZYwBO6FegioKwR/mamzkEShdAuYdHczeLnNOQ88siJhwwgJEyi0i3ru99rn6z3DtN08MAFHr2qjETCaBzDxKiRPt1Mw1vghjdkc6JwpEIKSFLL6g8vKlrVejOI4Dhvtty7urLsIAA4J56A72GUifClBDQW7g5AXbeXz8RFjoc5/k480Ba27Ity2NtK7uihZMwITkGJSYhF1LCxhRMQWjhmzVFNbQN7RwteQzRiCxlYebRUSZKI/PAgXj+vLXNt1oBDXJLRxtmGscRg7LIaR4PiRPn45SRfF3btm7b2kppahpd9NB3fR3LJrrGDb8oYjQFaEDnf6MhBSQGEczSs4PTNAw343Scp3kWFjNbt21tW9vMzJM0NwcOhBCCMTFgCAIPIDOON/n49jS8PkGW1ny5lPtPj+/f3d9/fGxqDlFNmysm5JF5Fhyw1Vpt86iIxswdlEfMHpOTG7lcamtQWdfTygM9+VSAgzXT0hADabeTm8ZZ56gb1RYGlvJwPN3evro1I6B8Pq9FZBplnsfD6fjq7s3rV69vb+/G+QhI1H0vhixJ3GNrqmUBD0kjEpMIiEQrHS7AiECyiKbaTIGRRIZxTCn39uu6bK02bU2hIHcrWmIiIGDGJJxeBtp9eVwpMPFiwuqlzO6wHhFk4GC9eXOdfggRnND3hKtuz0AinDqoH9EHg+8JIl2tjdwx5R7DBgC2x0kidbnnF5Nmz3KGAAJMiZFICMdxfCHlBXdQA+seg94CoW5VVa90tEFSTikHhJo7qNruZxo9H4Sph+UAXDUaAOToDt0MDHo/lllEELrEtWtBrE8v/X3mLIAkqeu2Owsw3LxVNW/EREIQqbsKQs9Tr1arfUFZiCBwwiAM6EJ8bxFK4V0g4kiICXkgHpATUPfM3Gdoh6Doq40EYoDtiTrewmqEBSE5o0t4NNNadS2ltOp4BUivy3bXL9jVehJ60QZh0pwgp0RIbn0tQARMIim9gMeRUh6GYczDYGHjNOaBCM3Mm0EzMIc+PROhZGHhulQ3HTLlJG/uTrfHacocYRewhk5IkjmNeTwcjzd3w3xQoK2AB5sjelAAEhJLymkcxzymJND7/kFg1o2fepXS/zQBEz15xMYODUe3RHuBKkVE09a0ATGiAEJEuDWtdVsu67Ks69KtU1LOeRyTpE7hhnAAAqMrZRUAmqquy1Jr7Yp0BHC3XUe7p33v7oq7IHz3JXJVU7Po4U2dauSuEBWxp6jvX7kW6r0fA7+DxPjuc7c/87GDT/1bQBEvb+KLUnYHyrHTu69qJmEOALyGvffLCAiSeJ8md5+MnXHydFXhBVv4afsEVzYVM3d7l861wk5DfQIA9/dDzCIpp2Fglj3pNmwvQ1VFlYkAEAnUwq279na4A4m5x1OxCAORBmBzagENw8KwmZ/XdilWzaJz0ZizJOKrzvAKCweAdp/HnfD6VBDH7hXATNj7Pp1h03ty8GUR42EREgB7qWRuT/ZL6r0pvJvV9hQ39KAdMncPIDRwRYOAAGse5kiOGMxIlCKCKJAjEAIIAQM7tBEBhILE/cwIr92+vptB4t4hR+yjMSII6Co1xqcGy35fCCVLHoWYomnVtm3bdoYwkiSMHObIwUwsBIS+J1HTHtSAV98aI0sUFKtXtgogwgQcLDilhIJuAMAPvlhrDmDeapVtq+PaEEiQ53HkOSdMSbi1Wre6rkWbuzt2lor0Ef2MwWLvX744ZE0VGoCApBgYOUnkHElAiLMMY5rm6XA7T4cp5URIoI4SullpJSzAfGrJSCAaJsuZM8mQaByFjgw3xCemiZRiWbcPD/ffvn//m+/fvf/8qVoFDGWLCfLrnN6kOlYlu+C58kYJsjBzwiDToJnggHybhtfTtmjb/GILsPNhD1HpJ2jNQ0MyiaQsiaf57tXd+WYleh/wMR5MJKU8pXHCBsNkN69e1XmaEt0cD6+/evPq9ZubV2/GaUbmXTnLMs3HbtR2Zr58MK26nc8icjgdU04KaA7WrQ/IDQCEKUnPWM7DMIxTZ9pf2/xtBURwR/AebKMKESmnYRieUSXoLaB9+nqa/uJaxux4DPcAAYieTwAOzx4MfaohxnBCsLCAuMIZ4UGGEdFbQt2EOyIIKSfqMIwHNu8apw6KMgJjD+zCPe6cCJk5uhofkEVSSjSOp9OJRZ7mWeJEnANALWrbOtCCAClnEQkgVXeoAaGmPVJd3at6uAv1bVkYhLshQmJhJAJ0B+hQJdCTfAN3HgF2Fae6xl6uSQ9yIUop9qAZNOtExVoaIrIkQcxDZib3qFaa1vrCtTO6eXBrxt2LMQAcQwmcsJtqQgDlNJCMQHy19wgi70kx1hULRGnISAz8ZC5hPbMwTBA4MYdZ7UbQbq1L2nz3nqNrag4gqqkHIKQdNUVA1whCzCzE1J1j1H1/k09zMhGP0zwdjmnIqC3lSRJ3pnBzsGiAwpyymEgax5ERl7iI4Ns3p1c380/e3o0p1XW9LNoJsWkaxuN8c3N69ermePcaAB8/Pd7fr58ft23R5Jhg58c2NTHPRDyklDrnyVF9ICtQq7m6R3DPB+olGEXXXGGQIQ8yzJIHfC6UvZRt2y6eBhEH4AAwb2Vdzw+ft1IiIqU8zXMeMjH3XlUDU/AW1tzdo19Ps6itLctaypbzkFISkWcy/R5V0cyMe2wcglGstokAAQAASURBVEPvuz4Nv14bMPR0Vo/w6KGiALAbFNWdNH6l9bxov0LPRugwwt7R6ij83imGIKCIeNZaA8SuH3+Keu9SeSYiFkFEEQkPD40IwO7W3z2eejn4rBu4LnQI0LMvEK65HkTYIaIehBIOiB4B3VkNAET7mvO8yenuh8xCLETdFDmFuapqU6QWEawuHg4WSIJATIkpCbEQUgIeQBKTBIW6ClSM6tEIwqEtRR8uW2vq4UyYUrJplJSgiwDcoLuEBChgMBP1+N1rVjigELNwHqQXG01NHaq6qrWX6eIeYW6qRqy7xxb6y9u0Cw6diBMSyf4OmMPB1R0CGYJcYasA0WWh4BbASJxIMNABm3dLZEDCxOwQ1UPNkToo0YUVvXrt44ZYJA1DZqK9GN2lI4TdUp9aD3L5opBxoOgvBACqvq0FGuE8BoU2IAghECGkbrIXCDTkgQgkpzTkbd0MI1tzt6KVyooJE3FAY4Y8pIkk/BjBZWuNfJwkDezmZW2LFCFB4DHLmEcmBotavGytlArIJJKxm0IQMsbOh/NdN/bluch6qIBAG3gCyugJfMBIHoRp9PFAcTA9lG2AShsghtkC67pdlli02sbkto7KFDYkPo4Zx0GGVFPUrJWhGHNdFOhhWb9//OGvL9++0w/3/AgnBweTaHe13pXz8fHCa/H6iT432YaBUyImjQDjUHEVa4P7TLwl2Fwah7qPFvQFI65jtv2DAEXyOMI0T/M8trKm3ox09wASPpxOo42JYpynYZpyToIA2lt63h3iJaeB0Nytqi4FfQFz1wpWIATQkZE4d/oYI2SdUFDdJAv1xgzSANPx9tbc1XQYxrAK1qBpB1cDXBKlF60xiO5s3nYC6G7R+9wIx16TB16X1r5ea7h13msPHkJiYMBu27pDq902CsDD4bq932t6QHD0vSXiDr1/j+5A4Ox7PU+EL/YW0adGbd6nPZYf+SlGhHmYBe72IW6q7k7MXX/hHl41WrXw1lkD6q3qtlW37iiVPHdLGkOEsOgemRHgZn0ORwBm7sRDJAzqE4iaq5v2HQ4TMskeYwPo3r0Twc1Kqd1GCZ0oOBK6ed10XWpZn+3tYY+8U7Xus+MARmHQSVuOFiQCAwsnRsR9UwQeYA6sDs2oKTEbsBCDuTVrtRW1gtDtcNEdMdjdtq0s29pt0dTU3fCKwHXFAeyrKwT5fm/3FafjMwiOHSNwb2Yt/DlvSCTd3b35yU9+Yd6aLnevD8PA2mrdrE6eeAu4Od0sW6kppbtXNwjw+f6e0O5eHV7fHl+/OnHAw6fPD4/LvG2GOB2mw/F4c3M6nY6Hw6E1azbWmsJyvdkGhEQoRCnxMKTxMM6naZqGlBMhBrhqaGul1G3ZrFmvs5AQCPsK6QFNbSvbNB+/+dnfuHv9VUrpusC4autegoFA4GFe61qWpZbV1ViyJJGUiMUBNLy6dtVU1dZa1abgrq3Wy3J+fFyWpdaqat273F0vl8vlfF6Wy7pu27bV2m3RwBXUQ9W2rZZS1HbMs+tbWmsA3oj5Gttn7r2IuVLIAADaS1J/ROfhcmLqfHxGxD1Qqt/6K9+rf3KFKPFKYHnusHv3WbgWV4hAHt6bVT0XATAoCKEX/Xv/pW8MoFsGxB520v/MNQqh1wZ9fDtEQOdd72HCV04MYlf+9l+OiNjRGH9a/gMRmYApdEeJKBAJuoQZr5ygrnxhAkcARmbMHoPAlGkr2Iq2UlczZimtccq0Owcb7iZ0aMgoIkjo9FzE7DQ6cAUEADchmHNKBNpgTM9u3RGh2mqp/ak2M2SEnSjfr0E/L2di7DsA7HJ962ROAKAIVO0RLtBb+YCAe6lKgB7YNzQGnQmM5tbUqjkS2k7JA3Dbh8GV/tfNw81MIZyYmKypCBGRETbXaupf1MruV29UgHD3WqrXIOw+05iIUhLi7vRf1cERck6ZRZLs7znMwFqrAVa1SCUFCqwsEJAxEhBz8jQAER1OKY8E5K3W5bImEvBIJH0p0qp1K908iZhIgHbOYm/nBjkAuLZaSm3tpR0JyPqq4gTM6C08BUhpTMaEHOOc5faEUyv8CIC7WZRgBT3HsgxbWaubfgQQDaE4UH4zn24Pp3kaiaRos8L88TtYs5NcLvXD+eN7//Dh+Am+8l5zAMPl68v7mx9arlVtjbLQ6uwjD4KMQAFh4BrewJ0AMxKRDLTWy7qdS17iagYFiJQ4hIq3trlRq4Vx3aoqhObM85wSUy3rcu6WIDzNI8AA0UCglMvlIdAq52QI2s2tWYgnYkIRHsfx5hVzMi9MEbaZYiDymNMwM1GYeaucuZWhbBsAeJhqJRIkGubDLVEaUlkv1rZyOZ/vP22X1YtFGEmQXPN3AcKjlVLWhdX60xtX9UHvNxNR+A4Fm7k2baVZtbj6ze07NeooKewsD6JO1g1wiwbqvru79qo+wqP1qFli9ahqHiHQzTUZTR0IkUIEOpPGn6Ytd0AvrTvFXs6PflVZu8e21W0r4zj2DSsCm8Xz9s9CzWrnYGgzM3Bozbe1mBkC5pwP8wRDFiaIaK01jx1zMgMIYqwpmWtKfd7ALiwg6ifV9zV7uzhoZwfvKZDu2lpZi6pqs1pUi0pKbla2cnk8r5ftyZMg9jdsqp1wqhjKYLHzG9AgDegHAhIA2j3aoc+hAepUGpYGLAWYJA+1ta2WZb2oF+kkbqOepFi2en58vGxLZxD0BlgnJrhbIGH37/Duj8FXmH9nM1pfo7u8BiKuwS9PqrFhyN/85BdJ8tu3b1XX6ZiYMdSsRSu+XPTx87qVZh4iNI4DAGzrKgnfvD6eDsPArLXdf3pY1lrDgSXnPIzDOI4pCRHVqrd3y89/UbdSwT0RCgJCz0gHGdI4pTTkXVGFe/BCa02L9vYEwDXU4MrTMItWWx7nN199/fVPfz4M04tiuVNwGxiws7W2XR5LWSE0Jc5D4pSaaTW33SWoqTVr2kop67ot63a5rOva1rWWrdViZrVWZh7HodXy6ePHx8+fL5fLtpZatbUe2xWuXqquq24F6v5WDIoBbi8q+dZHzx86lmWx6/NiZsu6PJwfA8NNJXF/hDv+SojcN6gsTLTLiJ4XM7bOlUAEBHICACN9bvvu5N9d4xwAhEy9r43gvdGEiFeE9dr16rl5XRdjPRMC+7TisDukILfWtm0tbXvmkF0bQw4BoWZ9LKu7qe7M1j5GPboLYHN3ExZOIdKrlU7GwGjhTWwLqxge6ED+akB5Mx8yfmvb+7Wu57Way2VAScTChJm8i+uBOCRTHjIAC++Q2j4pQivUmIQIEcYkb24nprm0+vbVMclVvBlealnWpTVLWSUxEoAbBgAh9dZyeFfrutooMgojopop7tg4uEOnjYN7MLIgcwA01ebRUxQVyXsPH10JLKxoaxYBTmbh0RgpXIiy5JySMAF4KetmHmaEkCV5eEbBAVJKDlC0llZeug/3RBd3b6oe1hOHW9EId5CBEqdMlIiwtVJaCeSsIyHM49AThFNixClnqXVb1rO5lrJCC8NKCCUxGLWFymbEdch080pSpq1WdV3WhQIpMJN4U3Asa1mWVbXt216H2HfZ4QCh+8ZZa1mWbd3qS7mF/Ef/4X9EDWhBtmCJoGiITgAU45BuToecJQI6Ga1Pk+5RSitbraVpa2GNwJlxHvKrm+NpPox5AOSt1hbhmSMxspSTfpMvl1eXy88vbavdIJUJTzfzT376djwNxVrx1kIBMUvemXexR0KaOwQREAel4Krbp+3T3/3F3z1Ox34mnIbT6587oJmjgXR/WMLsPp705k0t60II03FOQ0YkpJQkIYJHA/BElEV4GEg4EASh66DyODliSJFc5kOxsqluIjifRh6GQOY85PGwFzHaRm1aayvF3AmJmJlTTwA4mN20Yq2o1u1yfrz/tC2LFQ1zIH/zi7/Iw9zPJQ3j61/8mYeTJES+iof23QwAEBJdBTl2zQ8y9aemM0b07de1iIGdIU7EIhHeWnO1iMB9k9W9T3altgMZhGoEBCMIIgshoEF/zV28571js8sU0JEDEMHf/OyXKQ/7YjlOP/vTvwkQ4zgSs/f5yowIRQSR3UJNa63NaicVIKCZ19LMHAFSStM0DjlLYojQpru5YkT0qZ9AmMcpi/AVbNpVqZ3QEAFETMTQPTCvss5a6vlyvpwvj4/npiosKedpnITZPVqr27L+8ld/Pk77YpnT+JOf/JIQUxIi7IoVQusdGwV0kGEYb06ncUiIDnuaTxcRgDo2hapAPByPt5yyqtVWt7KZq3T+pVM4OMS6ldPpbitb7OB39/HZuxIEIMIQoE0DgCV15lAPGO+Zo12MGhAIEW5m9Zuv/ySn/b6IpLvb18Mw3L16ZV45E2FP5g1r0KqXomad/Y3MFACmKolvb6YhC7i3Wt88rrVpICGziLAwsyB2K/ouZeoeID1ZDHCPKg5i6gvNE6AQAXvGWrc8ekLY4spvh+7e6yL5cLo5HE9PSIxIurv9qo9tImZAa7oNh6YNEVhE8ogk3cnEdtKJ2tPI22pZ1/V82bZNW3HtfYFwd0TKObXWHu7vl/O51KpN9w3srlvyWttaaquq3mVS0pN0ALoGAPaxem3YuLl+aQb9d/7O3zmdTv3z+XD823/3PwCEeZrykDsJd+fdImB3kaFdbg1XtWiHZIgIsPuf70dc9QG9iMEXIKq5hndCxbWO7BAS7PBH9KR77y2x6xmEBSCxdPrF3koBRCRVXdflz37159O8Py+Sp7uf/goIvaNjZm7dotjNIMLBdpi5Ne07bDdnoWmUIUtKlFLOw0gddFRtW9GmHmDd5cdRUR6X+v2H+w/3j58f1605MYPsmuKBdocgYA7OnHMPhOnvu09cT9WhEDHhPOabw5yEq+rP/8afz4dDP5dpmP7Wn/zKLZgTi/QLAP4Uvb1PzuZOiElkYO5Ajpo1hGAiIHEAd3V18OjPFQsAdteibvEbRA7oDgHeLRta9wMMROZBhBHQnQmzpJTykBIS9Zra3Tv7bUz5NIxTGlJO6nq43L2+fZtSfprHvnnzy4hAwFZtu63nN9v9V0tbmzDngYc5TYc8HkdKqKbdByHlfDgcpmEQwY6e9iHRWlmXS9MKCAFuoIghTGCgBa2Bt8iJb28nFtxKq83UABwYSZAzJ+h+GbWWptadDnaPInhihsEuomhlK7/85Z+P4/MGBv+rX/99DADrASsQu4NV54j1EHl8omXsK2nsQdZ7lzi8zzFMJLIbMuFuzRIdDQbE8NAeOGC+g3AICMDCOSdiunLZ9kX6aqgXTwyR67SABOjh6u0wHH726udTmgDATev2qFpil8jtziE7zNcXvCuBq+tq9ud85/nDzuVH7PBp7Htbjh3S6uuR7xJc3i90Z57sYsf+p/aswf4CO74bHerYZQcd+Otbuf0epWGeb95wGgBAW73cf2hl3fejv3t0xLffjd6qjytYGNe+6FXI8MVvdej5Oqu++A5cqX17z+pZxrmrkF7w9a5X91mTCNeXBUCAPE6nV28kZwBotX7++L5sW5+Ln34Fr9XTftnCr4qM6IBT7E3rvXeGuyYLnr4Oz2/2ikJcz+6Jkdfv//Vd4z7mrpd0V4iYmekT/3cvFPZ9lQ/T9Pqrr/MwAoBqO58/tVqeqAgQgFdVUgD0jHDhJ4u+p6u4X17fXTzoRSG4j5br9cVdmOCuv6smxOf/7uvRHqtKV6bUM/X76YZeh0XkPNyc7kTS0wDYyZ7g10t3fdy878uvl/c6ZpBQuNccERGmPbF1f5b2dwBXnOzFjdoJn/utiL37gV8M0uv9fx5OL876ercjEPcQc7raeJjpul3UGl5HakfpYm/sICIB7nTAeHp/cG3FdkDRrpaJO4d3f+tE1Imo+2Lu8fxW92In7GnwXts6PzqHpwfr+mdfPGoAh8Phl7/85eFwAIBtW7/77tvlct4H/ZUp+/RSV3LtE+8Ef/Tv9Zq9pNg+/+J1MOz/vvjlL392vyPwPLiffhGvL369nvtNjXC3aZzfvP1qGEYAMK3b+ZPWNfbp4sVlf/mCcH3++8XHq1E5XgOkrr9+1WnC9T8QQObeJRPa2UP9kl2v3NN16nMEXh/d53O6/kx/dJio5yR4xDBOt6/e9v1YaeX9pw/rtl7XjR+NzeuNjmfMbFdIXmcxeJoi9/t/hdf6e3l+XF88KF1XFU8vfH3QerAtPs2KeL22vfGHhMg7QNcThCxJOh5u+rOv1h4vn2rbADA83MLUtHn3temukdQ1cS84wYi4OxV9ec794enL6NOI2KeBaw2CiCIdcPWnaeF6/k/75+ui9HTL9iv68vKGu4/j9Pruq3zdJ2N88TN/PP54/PH44/HH44/HH48/Hv9+HPRv/5E/Hn88/nj88fjj8cfjj8cfj///O+T/8U/+CcC1DdCZo7utDsATdPkES/cGEZGIAEKHXwF+BPlcMS+6Usxg7w3Abl/4Ao26wqpXcPXa/I7re7pitteuyY51dxT+cDj+9KffjOMIO0OiRXQSwBdw6hXj+h3Q9A8c8eKn8Eto6+mfp+8D7Mj9v+21n8HLF1/ZYVEMAGTidFU2Wimrmb78G9c3Fj96lR+/6o/e4P7N3//e/jAK93u+c72i+MV3+/t/+XsRxDKME+2sJnDbYeDemn/uOfQGJe29htjh6y+A5y/fU1zvwNNFeEZ1v3hrV4R87+O9+I3fuZFfNFKez3U3KwdEeHLwadv28N277XwJAEWoiI5ISMIypESIzR2ZdhN3ZgBo2lotpWxhxozCzJJ6/5GuraunhAnYGY/+7IIS3sOpiSkCzQOZ0zimYUxDRqGXjQn84t7smLmrtrJpa2rOSebjkZMAwKb6/eV8KSt4A/M+GB2g62C66w4gdNfB7riDXb3bcfe4osHClBOK7HEP0P3Qnj7rb3BHkAmfb8a1XXudDtxDzWrVslkrrgpuENA55SKYEwB6rV6rl+LzfPrFz38xTRMAmLb18VFredFm+cOj+t/4mP6/8wz/oZ/5g6j2dTp7fokXvxIRKQ/zzSu+UhZgnzDdu+/r7prBqds50u/uPK+9H/CudrxGg0lPmHarPQbcAxETyyiy54dcf/2pORRfPCIAEW7a+b2BSJJSl1r1hvMX1wP3O4tA/7YL+e/f4R7ajX6fO3r7t547e/B7zxuflpSnBkkt5Xy5qDYWGXKeprknNf54DP3uggPXl/ji9X//T738Wep6aUQAWLf12+++PS9nvk4zxCQ59eCSiNDddXRf34Up54SIVxvSnVjRn2MiksSE2GUiT7w98zB9kT3Xp7M+U3UWujBEWFXofmDCKfdpMyIAezhkqaoW4YB7glgSPs7HN6+/fmonyf/uP/1PYW9Sg1MEuZMF7yLyPasDKbzHM0SYD8Pw6tUtCj+WS2m1O4N5NwgnBKTd6q3zjlIK8No2c0VGyTwMQrs1amBg5yXsvk+BPSLFLCAA92TCcLWw5j0MsoZVbMXqWv+Dv/s/+E/+k//Vn/3ZnwFAWCvLvdXF0AmBEAgwdm8j7730H42xa4rli+GCEECB/IRRvSxi6LpU/GgAdTZK/M70iS/+ylMdeKUHdL6meWhAkAHJnObXJBkAStl++9t/8fh43+UoBICAAfSjIgZf/MldLf079WE/kT80s8cf+vqLRwKvUyTB7kxjO6nlSgMCwAgEIAhwt2aH4+3PfvG3xvkIAG6xXLQWN1dEEEndkD8AWlMAHLJwT6runngGPaDmamMa/YpdeTPXrvh+d/Zau2e9Xsvtnn2ExEbke7PeAwKJGHaTmwi3rvfpzhrXtnxffwUhhaOai8DhJCIEAA/fvfs//+//83/9D/+xAT4wfSe8iQyc7463v3j7Ng/507rwPP3k57949farw/FkYZ8+fXj/7rtvf/Ov6/Z4M6fT8XC6eT1MR6SUUp6mIbGgOyMMDF7Kev8Ja51RRqIEYa2cLw/unsfRgy6LyuHm7d/409d/8ou7n/1suBm1m3i7YXiCPQvCAXvthu7b5/sPv/5X9+8/PJ6X49s3f/Ef/uXx9SsAeLec//P/5u//o9/8FZ4/xLZQA3esTgQyhkzjfLi7Babz5bwtl7pcwnW37yAmZHaSIKaUT8fhp2/l9sTDAJIDyYGMGCPYg9wMzF37BCdIGLAzSBBIeMgDE6NHbJs9Pi4/fP/pr//V+d239f6Tbwu5j4I3B767pa/eBmL94cP67ffrX/+m/Pf/4n/8v/lf/2///Fd/DgDr4+O/+K/+y0/f/4ZEnuMwnrdh+2ZoX2Lp6Zvwu1P/jxkoP3ou9hf2H3/9qQLYK/HnQg0Anmg0T6/g1/9xV236+qd/8hf/k//5zeuv95cKNy+1Ltv2cF4/btvWKg3p8Prmq+PhJo8Zuj//i63nXijaWtunas1RkMacj27bdv718vj98ni/rG3TzOn1q9Mvb169vn2dxlECCK4JKfiUsdgrUAQAsLY9PjxczuuyqKTx9Zu3x8PM7IAeZtjzpxGh2zOgAzLhiMC//wr++3P8aKekGh8/1q1YDwN+IuEhAiMgQXer+oKc9HID3H1ZsIdgxHfffv/3/8E//Hz/6XR7+unPf/bnf+svXt3dmepOp3x6D/sw6Z8/5T/+Dmpw/cqVqPXFWfRJOme5vR1zRgD47fe//c/+D//ZP/zHf38aJ2FxhGGeXn11d3N7M8+jt/rp06eHz58fz5fSCmIcjvM3X79Nwg+PD8t5WVctRbV2casPQ767u0nCtayIME+DiETgWtr9/WVdq12pThbWTIOQBxmm6Xg6oPrlw2doepqm25ub11+9mQ5Tl9qjweOny7e//u7z/UOLBhJ5Tsfj+Pb2+D/82/+j//h/8b/85id/0s9R/t7f+3sAQMGA4OxG5qyRHCVISFiIiYDDwqtas1Af8vDq7hVmfqxLsUbdi8Acoj8RBEKc0jTmIedxHAJs3S7qSoJp5GnKnDiebEa0xx5fbUeRI8DUw4CdwLAHi4WqV7PiWqJuUVZbLxsAXi6X600Mq7WUzTAAgQm6tyEABFonF/1odP3Our8XMY4S14fwxWZlL2Loi/GDANCjEH9fERPQC8TryHpRxDiCBWiERjgpSki6Dk0ze7xcPjx+dtqlJggY0LU/z3vuL4oY7u+h/92XtfkXHrs/OvzfWMTsr9aZqHFlnMKuMNmv6BW26x+g1kptmL4yG/tLOdTqy1JrLbWWraxEeDgcWtP37z+o2ul4GKd5zGM3SN3tunoK0ZXL15/Fl/Sv/Qo/FTEETLtOvD8vREjiRA7wbGpLJD0lIQLc1MGf4BDoaSYQiNyHgja9XJZhoGG6FckAsF4uf/Vf/+N/8n/5e5SHh5z+WmTLw3GYf3L3Nm11nMYflrPnfN709OlhPpwC/OHx/uMP3/32r/+l1eXt7Xw5Hj99OnOakXMexpvjUQjLsnLYaUyiWh7ucV1HiwFwYtRaHs6fzGyaZzX89GlLpztzroYfH1c+HpwJmFiAI8Qd9wtFAcREA9H26eMPf/XX77/97v7z+c0vtz/9O/+9fulKa799//Gf//o3/PAtbAsYN8qrjMDTGOM000kyCC7npVwu5fLo1igLJSYSRiZDRiLmIXQcJXnQPENWJ3RA2NUFBOEO2hUuGJCY0GGvTzGIJQ/es7mibLou6+V8/3B//vBD/f5be/xM2iaKuyO/vvH7+0J4+fj54Tffnv/5X9kw8Lad+7loLfff//bdv/wXlAVpj/i5Do3nJ7HbMfSv0Msp4Itn9vcXMS9XB/7dImZfQna3ye49DDu2tRcxezSPI8BOw49wV621QISWXZIdbtoet/Xj48MPD48/fH58d16WUnCeXvtPfmX61VRHFo4nu2HACIIAdK3l/vHx19Ua5lvON8N46+3z46f/5vzp1+f7+/O5PrYkw9vL68u6fdPsdj4MsSNrjh7kRgERZP3ZJ2CCbbl8+OGHz/cP53PLw9zaz9fbE5EhKrhReAfcNShEJA95OEx7QvD/L459MnhmcP93RYAiwsOrtrXPVOMxsQCAe5Tiy2JMwAxIyNQbC8AIRIC7ggXgeey90FFgIEcQhkXZ7N13H/7B//3v//a3v3799vVf/J2//fbNTw7H285E75LAa/kL8PuKmHi5nd5LZI8vi5jrGhB9r/z0WwDw8PD4f/2//Zf/xf/p/3i8OeRxDKb55vD2Z1/dvb49zqO39vHDx8/3nx7Ol1JLYMzT+NWbOyZ8eHhYL2stZoYEHB6uLQnd3BxEqJaVGU+nOaVkjpdNP326LEu1XeamFuYYwIQDD/N4PB0yIqyVLUaSeZqOr26GaURmcIgWn394+PU//82n9/fFK6YYb4bb2/mbu+OA8j/7n/7HT7dMpjz0nWsvpZ3VSSI5ZuLEO3gYGOoNqqMGByPVtaISCY1p6Mtb2JV0TAhCnGRIecg5cQogSwMZk0BmFukysb4ZdgOLQAwPvKqBoj9SwI3AAFwhCFFc3CIa+oqBpIGY5uEppieAHLLB2ALiKYoVAPZItOhgxtV4ogOivwsvYyA5cuD+EL58KhieB+jLwxHjCQu5vht4KmJ+z28ggCE2AA4QNECCwPxUkwRx5ION5pwMu08WAnCvHZ4qBoInDQw4wZPE5Qu1wf48/X7y0x9CYvYJd391RwAGDLO6rhbOIsgUDoAkxLzT8BEQTbXSMqVjkFyvRISHadu29d277/7FX/2zpuUnP/nJ5bz8w3/0jx4eLl+/fXt39/rV7evb21c3tzc3N7c3N8fD4TCOIyKp7nq2fl5d+fm0BX15uZ/SdN0NQhGQ9LqhDIjdXNyJABE94JpaELgHY+JumrNHFtTz+fzu3XfTlO7eTuOYAcAQlkzlZnz15vXr+eDInqdXx5tv3r755Z/8fJin07o+1rq19Yd3v0FkSZQSH6b0Jz//Zkj89es74vT5YVmrRjhxeNBa2rsf3kerX7063Qw5DzMALZ8fNlXNOZBKyiYOkqvauSkv6/Hh8vCvfv2bf/RfL+HDPM83x1e3p4HY1hJNu34HiadhvD3OsKyfvv90/vi4ni912Z42ehPwr/jgw12eDcdmMm3H2/Pdmza/QjxyGoeBiAObQmteVzcNxiAi2NVbwO6pEVCyTGmC8eCDBBtFiDog6zgY8Q47dzPjHlV31fohIvaIdIgYp3R7ml7fvPrmrf3wp/rtb+P+IyyX7O2QYqQlxyemT8eb9PpNev3V5c9/dZgPT3Ap4i7a5qvc9Yvl5PpA9lEU8PxcP4Ox/+bV7+XWl/Yi5mUzpZcpv1PEdMkG9c3MPkr75x32A0QOR3kOGnQr6+NvPr3/5+++/xcfP/z288Pny7qtDY6nr8Hatj3kcWJi9xrR20aCkMBdbFvP331490/UfH71N4f5qzS+1/rD48d/cLn/bX2086qfm2P+rtaPy/qzz59/MY4nEAPegC4IKo7o5MYa5NBbhbgtj+++++3nzw/b1oZ5Xra/PhwPAQ1BGYPQEDWCmiYZ725f/ezu9c/T6xPn9OXV+4PNjn/nAxHce0Cw9UyJPCTew+D+P3+1ax9M3Za6fj5//uHDuyTpb/7sb6ZZ4Dr55G7uT3v6ybWIeZJTfVFF4ZNYDiCAgIASaaBp/fzp/l//s3/6z//pP7l7ezcmevjLv7Sf/5yJAhDBnrZpfeTQ7qgOcP2feI5b39969IjrF1rG6wDvoyzkharIzbfz1h50EyUBEnHk2urlcvZW0N3VhjTe3mQzM3BX//DuUatqawiQZTrcHO5u7ohoeTy3sllTL8rAiThFZsjqwJQOhzwMEICttuVydvDxMFImJUcGAb45HX7xq68mkcvD+fK4fvx88fvzdBg52Fa73F+sBkMSAyJMNlCV+mjlov7CK1JEBDv83r2L9mCYIGHOIikhMzoGKEgQ5TFlAmqtte7zA8AdwEUMiOh7aKJuWrE7iAIxMjAQAyFREAUi0e7SDkj9Nj3RGPpC4ohIGBGGaMhO4GgIwKHJNUDMWH6cNxTIAWgIgRRIPbTmyScFkeLqnfB8m6+/2odd7CLua2Trix+y39mk9ZeKfXZ8hh+vy388t3++fGQA0DG63wcSkANgevHaBDSAzM45kK8+3tRn4GsFA47P9KIgfEJiXp5Y/DsVMf1NO14vCQAhrufzuw/fl1LmmyNLak0lDTen23EYu7LfkRRbVVDK/uPrBERUavn229+8//Ddr3/9Vx8/ffpH//AfPz5evnrz9u7uze1exNy+fv367ZvXX3/99ddf/+R0OqWUqNvT7Ve0D5HfVdV9MXd49+3a70pA0FM7sTf9IyCcYndz35kA3Ys09s1z7/+qOz238JLw65vhp19NX32VDzczD5SG4zR9/fb1L/7Gz4bj8bSu7+4/f/v9u/W8ABJTytOchmEUmMbh1d1X5vhwMXUHQA9CTAG+VfXatmojBxJAYAlgwJwSBJcmpbWttlZ1bcbY7h8e6rL+q3ffn7XNNzfHm9PD6ZgA6sPFthIezDyM42me19NxBAj1sHj49Dl/vNe2E61ywNctWoGpEmOyYSoyrzw2ykbigKCKEakna5o5ckvoiOyIAYFhhI3cHcEYJFmakEPWS1qW6bK5pOXr1+V4UhkcE/b+MEV0wML92lOBACB0F8BEdDOneebxAOkANx9jOWO7cCzY7nGphG2eaZxSGuUXP5vG/Lzd392B+sfvKWKen4t/tyLmJaXlS6Tz+XPsbR0PoCfoBq+j9ouvUG/y9yAY+iIHyrScP/31/ff/7f33/8/PH757fNzWZg2Eon54P5bykSQRIVEL7ObrQjSgA7atnj88fPw1QWJ8BZU20Nbebcv3bXvUOpq6tXPAZVtXhPv1/EnkQMkwbcAPTE0CwdE8qVEzAsTE3Ory+f77y+Vc1TTG9x/eP16GCCVwIUBUiM2C1Y7j/HPAaZzefNER+f/mUUv78OHT/f3D+XwehuFnP//69vaUUsI/MN39m4/eULhs53f3H97f//D+4/ubw82fXHsWAMCEzMjUaXw7Q4yuCBD+gSKGMQL6VITECIhNtWy1LSuUOiAMPcAiYs9DQvzR5buOMIQndB2fP39iZOLz5/tffzoz+tFOOsDVQQGCmDkNg+TkHlspWgtHhAYRZ2ZzMbe1lsu5lEtxdSGB0SdGCskoSqOFbVsxVxF0xm0z1Lo1sCDENAwJkQnqdiluDZ04pHu5SODA6eZ0GlOqpfl527SpGgoTWNu0qHLKwxAQjAgCOZS2RdflS7O73nHpHQ6E6F620FXouDs/QwQ4YtA8Tj/9+ptE/On+/mF5VF+1KQBh7O48QQgQe3ggIBhYz92O59aEqQIQMwWEqpravldDhIimGp0N43uj19WwqVigQwB2ngvunM2X98yBDEgRnsIKAxwBekXSucbUOYnwIgP2el938AQBufdMrj41T8Mlepj8F4NhH1kE+zde9kWpQzEvImqf0JHee3PY41cCAUievw+AQBgE0d9wPJ3sbnHTP2IvzqAjSE8n8cXE3Uf98x//fWXVjybwwKDojTNGEhLEAeHzsvzVf/tPHz7ff/2zb1IazpflcDjlX/2tKU8Q4IBO2J3E4kd/IkKSnNLpeDwCxrffffvbb//63bt3n95/MvXPH38Yp4OkkWVgTofD4au3b/7sT//0L//yL3/1q1998803p9NJRCJCtXXOyo+KmOuc9bwW+YtZrDPKn34SryAtIhCwP215djaxR3gfGkMe3tx9Pc6p95IAQIbh7he/eFjX4+nmcLgdp1dCYlrv7l5987Ofzq9up/PFU3q8XABwnOZpHKYhuenF1DTWouZYW7h3W/VMaczI83xjskkeFaBe1v8Xaf/VJUlypQmCl4iIEmPOgiZBghUK1dU9uzu9u+fM4/70fdmH7q4qVBV4ZiKRQZ0ZVyLk3rsPau7hCWCqz8zo8YjwcDc3VzNVEbny3Y9YjATs6srPFkXzOBz2MeWUNSoKONH1dl+qQOxnoW6aOQIftocyDOPuUIahFKlCODs/s5xs7M9nzfPVQtJwv77LjUspnt6KIs3+ML/bzLutR7O5wHGkD3eKnIgTY2ITT+RCKFofegXtWlSmKhMpqllBGB2kapbmz+WZF49e0uLt+9nbD+3tWtt2948/PXz+2bG9yKECJCUUmpJsYBraCIBmikCk4AAcQTI1x1ZVNCev0oTM2KWDlRhYKwk2Vo7qeW2rRc2PYemPQ8I+NVGfjoIffv6pZLETO+30nSdj/S/HxlM1Av7g34dW0fSr9dOW+S+e52kjYLqN/yY+ISlub99ur7/Jh7cUN65YS56bAD4e9t9sD38SKey1boxdKZIBMbjGjMuoVsw5mvtZ45BT1+1vsm6qBv38IvoLGLPGd4qHqtqaHg7dezAOFXIQooG4eBIDE/Mp05jAjCsfmEoVjo5jMTRwpaylZzIgRCE0y5Y7hWD03Pm5lKSqf/3S/693ef7mcTz2v/3NH//49bcfPnw8O1v9b//b//PnP//xcrX0Hh/f5P/pk+jJswrNSkz9+nD77duvb7d3RSRU4an78KduETxAvA9/EAyeTEqPrIUTCnPybCNAULCYMwI/u3hWgf3iH37+y3/4T+erc8YHntNpCf5U+NqTvx8Oe/Lv9LniJyjmU+k8LaFTX/7xhxHReQ81NU3Vtk21aHwTiDEXSTmTWmBGxAJSVEsuuSQRLUVTn03KeMzxUOIxV8GrWSlpGEdAqZqQkxzToaimYoihbhYhkHNsxXJM49DHcXCV821VN4HJQ7Ld3f6AsNluun4kR1Vw5FkVChvUrlkF52rcHUUFmUXt2Odjn56mdrjHNe4T7GpgpyqEYPowQUAmrnw9ny0Cu3FMQ4qUIqhNnWB4rIzwhBOAguIppRUQHj2LdEorRAQwEzN58P+aZgBRNSNkQDQEJSuoE/uXBBAmnHPamOsPKwpANAI90dxQTBGMH4sYnbL+HlyUTmf6w5X9BGScuCKf3qZPE9RfjYEJpZiq89OoUMk5m548c+khzh6eTH/4MO8+fGJ/LXd/GB+GpgT2abz8jVP49CwAT1/VibIy6U7wr37qsWH0V88JD28yEKjmchz7mw9vv/3D726vr+9uPsxmCyR+8eozU2FCMbDTHaAI+hfMRwVEdM67+XxxeXVV19Xt7fXbN99rlkA+E1nORbEI5KLk3Jv54vr6en843Nzc/OQnP3n9+vXV1bPZbEaERO7ECsVPV5BoIrRPICwBAp9G8eRa9ulaPrA+H/83JVtMZ//pgBN93rXNrG79Y4M/1M2zr36cyXkf5vXian6FRe/vrpkcsiMfqhradpi1c0a/OjubtU3lXU7JI6th2y5StqpKhpWvqsViuTo7H7rjOCZJqXp22VbumDOI1u1sVjfNYhbTCMd9v93d3q1lyEuet+gtF/OhqhrzPvhKVLpDPxwP6XiUOJqaSPYeGQqXaubBsE2Sbu5vx5pTzqfLa0YirIJToJx3oeR2c0PDmFCj476qclNr24Yos5sNaOGLWivfZHBJZYyjGngvqwt63arMKXVhOC5urs+//37+/kZmDS2cOc4vKqWgvsIpjxLNHkoZhBNZHWkSNTg0JfMoBMVAkTlIPcPqvFQlUbJRrQCC+NB6qPGvhsz/oWMauQ+xNo9jHwzwKVcMn4y6vx5BD8sEAJxM8h4f9Anrnxa5x9/ylzX+D45S8nG9OdzdSlpjOnpzjMQIucSuO8SSEYoLAlHJFdFoBsVVZi5FIpzNmivnmyrUGK0cNjnfOTMMjQgpsEMyUE7FNNuQwUwL0wiKxVjQiZIJuKIsmVQdZOfJHOaA6olES4xZFQmcIQmgWjFJ4Jxr2LHDx/H2f/54im/9T44xxpvrmz99/e2fvv3u6tnlz3/2488/fzVfzP8P/b7HLkvRvOs2N5sP7+/frPcb7+vLcqlPprJHQBgfPsenS+d/eEx6PjMYhvjx493t7c6gOr94+dWPf/7lj368WCyIaNIW/K2f/ouN89Mzgr+1KP3PLwESgQMXXPCu8o6ZSpGcUxoGNLO6dp6mssg5DIFT4OJZnRVRSdrlsSQJwTnvgEDUyLESG0IWOYVdIpUipjGj5DFJkVN1oWBJBIsADjasCwDaMAzF1HmHzJPjJDGBR8sADtETm4XGA2nsx2zydAy5qVmAYHhiJhFO1Eh7KD0VJ3tA79g5b2JiApM1KRMrgdqnCsYeWe3T6ZqaIiq5yfJ+osALqrHh02mDpsXHppYUMBEgFyQxLQ6MTEBJjUwnO180xSmb8BFUA2AANsA8KeEKAJi56d3ECaZHcpPX5ylVdkJMwGwSCxmC0QPC8fROOHVqniDEjwgNIzpmx+yIAEBKGXLqDvsYIxGFKrTtzHtvp2b4IwyIaMjTKDA0ePAwPr2YiZqpSGKIiIJggPSwwXyKltoD+kKfypRPjTl4iC3GT9uhT195/PTTIDGwKacMpxUfxEru97vbt2//+JtfffOHX79/8+ZPf6wvnz//yc/+7rPPX9eBfcWas5kiEkMxED7BaKe3SIyKGSPPF6u/+7tfbDd3f/zDb++vr8nBrGouVufB+RjzkEofy1jKfrvpuu79+/e/+tW//virr375y1/+1//6v/70pz+9vLz0vkoxFdEJuOVTYgyp2inM5uENnMpuQAA5NTqnV/foQTpJVRnQACYXaZ2+MVU5E+3j1Fg8HVXdfv6TX1Tzq1zy3DWvZs/y8bhdr7vDcHO3mSkqOQDfNIummj27erZcLIJzpchydqYGzWw+xKLmY5b5crlcrS4vlu/efP/+40eJ4z/84ucvnp2zoeV0vlzO27YK7tgdq/6Ybm6/v74ed93r1YsXoW5CCLO5Y6fEQJRjjn0ch1FV0FMVHBMOuXejLNpzgbg53H+8+/D+7jov6lxO7SQgkqYazxZCtas8L5az4765/94drgEUfGvwjJo2NxVapK7Hkv1ZY87XqD6NstuUlHNbD42LblTsaKe424b1TbO7mx3vdHTxG9cjMrfma/Xe2KECmShJYTVTBHAKpAAKZI41cPZs3kRjv4f+UNU+tHNcnMdy0d+abJLrDxqHFH08NCaPYWNwas08Fhx6WmEeUNHHSeJx/AECngLbCRCMTRAAAQ0xIRpOmjs8SU/A8MGa/MHe+ARvnjI+VQENaVIdwjRi1dAMaEpgnSqcaZ06mZmiTebUT/ZHWmzYx349IESEEogELI55LDIeI4It2lA5o2E0NLNpm5hVLahjj+wroplrzxCSppT3e8pQ3LiTEsUIRwKUzhFCi4XJuAAlUgmGiF7RETAxh8ZVKlyi5mKm4ADZI5v5lE3AY0BgMSMwdWc+LNvZF7P5S+/qv72i21+VJk8fZ48zz2mDYQ+D7m8RCj8dqkXyWPpj3G3HwKnrckyfEItP3g9PBT+IJzHuXx4px+v1x/e3bzbdbRf7Bi1LeqzJpgkUEadN8fQp/rCXBI843w/QvomzhUakAptN9+tff/ub33x7sxlfXq7m56/OL182zcwx5qyPONZDNfMJ4PlkYP+pbTC9tafv4uPe8SlK/XjyT18qgoICKKIiKKlYMskljUN/7BCNFKvGkwMfXNPWIgVBPYFUdR409znHPI4x5eTrECpfNZWrHHsiJkcNs3O+kmLdoe+PfTkFDUA7mzXzlghjHMuYuzFFHrpdz955x847x87AUkwAWLlaRPfx0PdDsRRq155V6Eyox+oHTRj3N6u200qrJxjMxMBwOsdSVEFzFhVDm1LFJirB6WcJYEooV1FQUCv0QJQ5bY/1tPMnIEIyNAV5RNKmWoOJgEmMDMgqNCFRNAUTIDAEZAD+IXZhBlpUk1hBUAUoZqqWDQjIGYKIIKKFAN6hOEN4MEA2RGR2RMRA9IkX9pf3Oem0pXqoX6YOFSIBSi4xpxjTMPS7/f725naMY6iqs/Pz158FX1enGEIChFO4A53q+KmU/+sCXCdUgwCfIEMPFJ1PlZQ+vPWKcCLPPFxhhOkXwgOd8IS+PNlVGk6T7Q/v/YnAAISWxu64vbl+++ab3/3uD//+79dvvrv7cC2iKcYvvvjCO3JMzABFwYRAAYR+iMSYiuShxMIQNEc2C8QNh9YFYmxD1YTg2WERI1QGEU2SurHfbjd3d3d3d7fb7SbndOy6X/7iF1fPnhES0UTgtZLzNIIRJ+rQSSdGSAYmZqaGn9jO09xCiFPDiE8lpZ1IP3Di/E9IzIk9M2XSnl4LYgEf1cVcSCx504ygbhz7Dx/uqi5W7UIV0RyhpSEPFKllx2ExP0fmqq7Zp9lspJhCqJmdmeWcx3GUOOacyxQzr5rUhlKSShdTMhDkAiTIVIVqNpstF1jX+0PXpwwIcYjH3cFA5qsFko6x64euDF13JNDB7AxplSApK/BTMNAIhFCAxJAmUxIpSUo0VQAHWkiKS4niAKW3IliUilEuMEYbes1ZPVnJUCKNg5cc9ofQjz4lLgVFeLvj7Z5SwpN0AlEfViVTAJtawzS1j4GQ3PQ1UYmxo2FfQ+2ac54/A3c2spXQpPU7266pG4bk9SlgYn9zJvuPDgUDEcUJGjavQqZoqEiFUQ1AVERLgZI1T4nuj4MGAAGZMThmBARjMj6FF+E0w50y7E7Y9smJ4dFz/eGvvzxpJj9rL5bzVyqA2JOvhBoHLSdmKwy0aqvam+IAkA3VFFRQlRCJq2WYv1ouv2hWryGM89ULksiUkbiiOQXy1BIIGxKK89GRohGKM2VVKJBHyXEcxbl6sayr1hxjYc7IwM4jopWQUcCBA6Np46IVh8WyvXjVLK9cvURX/QX/YgJoH1Dn/53jKSo+jUIwAFSTUkRMAAQBmR0hG5xin6OOTevOz9qLVXu+aNumCt4/NhkR//qOQEQ0sGJapBQRMPNESExEo+Q+x6GkJDlbZolZk/4QpX6skicXD3wocv+DwwAQiQiS6PGYPry7/v3vv/3D12/HQ2wXrsuchOAUv4SPb8MjeP8fcqL/xrfoh2vJ30IQp3sXgdEApEjsRnQECq5AZaSmJWV2NKua+Wx+fr40FTKKITqt0rFs7/a7chzG3rIBo6+d884Hb2CqOAlpkRlEJGoeUo7RwFxw7Nk5N3VgcsxSCoI573wV2qYJhmqITs3Es2sqn1XMVEzAGdXkWgesMKL5H7wkp2AEoKb46HNnDx8KVsxMJBUGoqpGpJyLFhnHlFNWtImmPe1vp3YeGoCYnoL8TE2UAaeQOHugqJqRARJO6sopB+wEIhEhkmMG5oLARGa+nFZfgTLp7dmRTbqYT00csbEvYy+GDoFO0fKTXs2xqMYUERDaBsQXRBVNOYuIijrvZm3b1C1zIHJFUR9R5tMJn/6hJ7UwAnrnAUCKHo7H6+ub2/u7aem9/nidc16erX70k5+cPXux8JWWrKKn/d+0wTdEwFMN8pfaQENTMkFlfOx+fTqbqU0GYFP8oSKc5NYPb+/0BQDAk7fNEzu+037yxG8HghMFSU8AP05bWkJDy+Pu/vvf/usf/+1ff/Mvv3rz/ZtuP2DJaSxljIzknIfJYQUMQdGATCaR4uMAMy063OVjj2Ozu7//7re/ef/1NzrExlUmCgYpxoIpjUlKQS01G9W+Cm4UELD15vbfft1/vL7505/+3P1/Dv/4j7988eKqaRsRSykd9t0YYxGpan92tqzr2gDRGIBVLZUsJlPxwuwcMT9urAmR3emkwdAbmTkFBOCHxqCpSVHPn7qBwzB+/afvv/7mjaS84Po4P7REWTAL3rz5qO5ucXZRN61DLDl9fPvROf/s2bOL84vFatlUFQCjIRGr2n5/OHTH7cbd3a2bplaC+/u7NPaH7abkvNluHTMCZMlDHBTp+fNXdGmfX7588eLV1fPnmzG+ff/u+u7eO49qmtLl1fnrLz9XLL/57b9+uH4z7ndOy81186MvP1tc/JfZ5fz5q/NnV6vgH2R3ImE8tNu7UAZCRL/jVHJm9UsrmilEBIuDv4409gUHCaxS6JhKN5RuHFRHZnK+BuYuoR9DXbcDeHXAda5mBSxzEHJQB6wCGqmgGSsYqTkAMGAzN1U2ikZeoSqUFUy05DSE/kA5+tAYBF0+r5bP9OIn3fvfA31N6bsjWPkBWHoKDH+y6TTQ00bHPo3l0zhRUFEtuYhaUUIzr0qqIGiA4ljUZMh9n3Zd3h3j9jgOWWxKD0UgMEJtAq/m1bzxbYWzxi1mtQ9eJ2LmlBCnZgZZUQ2KnNwCiMF7nDLZJn8GfHLWdTP78qt/PG+q/vA+lyN4Nq4yt6KVRIeFPBCjIRUkQyQwNnVmgFBcU4WLy+b8eXv+maVEWeL6VYm7DLiqz4VrRHuYKE6qPQQgdMxBcumP+7S5267fZrTL5sVs9fxseVnTDCOSEjoGAjMlAxQwxQwmjBoczxq/XHJdG4JVLeAnZaLClMz1QC394bJrJ0D4yer6qZxBMCi57PptFw9ZomO/nJ97VxXJqaSYx0EOz16u5O9/3HhaLc8+//zV+fnqMRYU8C8a5adJVsFGGQ7jYXfYFJHW1VXdVlUzSnH1vJmdhXDbp5g1Z0n6qYbAB9zlEYB5AGcerR8/YX6n+fbUUkQkhjzG6w8fvv362z/88U/ffv+RsKrPyrfv1hev16tnZ7NZRYhGJxcrIvqEssOpTfD4jFNp+FSv9HCK0wx+AudPJ33q2H5aYRCRPRM7VRjH3HdjcLyYtW1oyFdR8j6NWmzeLF+cP3/+7NJMGUKe52W1GHfjd/nteIi7bGKCc2MGZiCwnEvOmrOaDozOBHLKUJSBgI2IRLTvBzNJ45hTSjkjgDdQILXoi7DHUFHbclOHtvbRyAfvKmfMVHthNFQhUPqBJMXBRNt9alI7HQpWpnaQSRZEsGAqlrKoSFFVPbFYJ8Hlg1ofzEBFTxjYg2KmIAAJO6SJ7PowfpgIiATJpkw4AGQmZMcOCAMKAriKi0GeIlYToAApsakjck/MK81ABVSAHCMZGk+a8akiUzBTBcSpCDFTnaR5uegktBU9wcVTHBUAneBiOo09g0f+BDzcxCp67Pvbm9uPHz+8fff++vZms91sN5vNZsPMz+OL86tnokLMIGoPgCAZkBo96GfAFFTgkzvA4zA4sXvwL74M8JeTwem/+hQ+/OS7/AmKfFqX26lUBUPSiU5mD48hEIfqIWPeH2/f3b755ub7b/Y3W+erxlEhkBw393e31x9fbe6rWQNEjAhwCtN7emYlD5v7b7d3N841NzebP3/9249v3qR+YINiICJjjIBQclZRNUGAgIwOgTEVSXncbsbD7qAln63mRYaf/OSLi4slIcQYt9tD141jkrqpxvFyPm8AAM0x1iLWx75oNlBCdOwce8eMiKpqSOicERsREjOxQ3IwRV0TIiqoqklRRT8374EAYBiGb77+06//7Y+e3WWzdOewrKsi3SF298etOgcQSlJUS3E47PeImGLZ77rZYj6fz9p5O4zx/fv3h65HnjQmFvvu4vzMmTjnUkrDOB4P+xSjlDLdroaQcwakqglV0/i6Rs8WoZSSc54ajzoJ0QmV+eQcExyJFiuKGmZ1VVfn54vFomU+FTGGpqAoKXQHMsu1RV+nq+emVxSzIKW2IiJLggA5nBV2OlugupiKOe6DzwhSeUJwQ8SQXGiJK2nquGiLlWKW6xock6mzIhM7HQFxykw2nUBXxcnRScmZIwHQQMVZKZG6YxEyatwQjSq/eJZml5naTHMFP65eqAvwf+EoqXSbru/iOJqKMgCISTExyEhiBkn7Id8f02Yf7w9jl0SmnHYEQnOobaDzRXU2D2czt5yF5Ty64LIaglVgASwgmEIUGIp1qRhjaH07C4tFqNw0/JX+AlFGV6qL0n5pdgYS0ZMRKZCBr2YtGeMEI+hUwjFhIKrRTC2lgNnaIS12h0DKGF7rzCfcZoUSlsq1TaAzMxhkgSmmHomDr8Ty0Tb3ubofNVmx/hkuXlT4isLcBLRoESEgHzwDWi4qkMGUSdmDeRlc6WUch8sVPFucNRUAgIgc40G0eB8ch4CekX8AukwmTqY64fMPWAROmKHZmIftsNl290PsvQvRtAp1zjGmcRjHfn/shi5pNsKsut3tb+/uVyJ1UzvP/GT7Mc1+YlIkdanbDPd3h7u77U3KqeZ63i5XqyviAM6FauZ9g7jPKcUYnyqt6CHUEQmQHzRKjxHjjzAKPjIGpt8LiEAEKaaPHz5+//2b6+vb+92xqsN2sI/r/mZ9PA5pmbVMfrgPx0TIJTx54E6KlIdoYftUL8EnogI9fuOUR37SsUy7tic32bQMIqFDcFoki4wYMVhdeTBMMXOo5s3ycnV10Z6lFO/NM+LlYpWwWTebfdOmFUTJzp0WDVVJMY5DyUmlGAoiECMxgyMGMgWQUkopCEZEwYfJmwWRTUGKEKPz5JhC4KrmUDMAtstayKIUc5hFFbQY6g+ZSA4YbYL/HxoOhgQGVhQBTpJ1UUMqWTKLYwEAYkfOoZaTbmYilphOVluTAwKoEiIwIKJlATInPL2/p8fqpMgmR3ya3xCn3o5jh2isqQJVx7mCPmsxBEIsQAJg6twp5nV6JYhI7NgH8g4ZwBSVwDkwQ0Y2NSQkCnXjnSeDImLk2IuZeXY+1IR+4neLihnqQyI4wSTbApheIBghsiNR6cbuz2+//x//7X98883X9/ebw2Hfj0NKWU1XqxUSek8EQKo0lQmqZOYESM0A9eQlrCQZKfw1wfZJWf9YlCA8iMYffPemwO0JIsIHWodNrblT//7JA08vxWxSk0/x2jq5/J2sdMxjqSjXlDuOzkYHufY4b6iqgho5R1bGP/zu18q0uDgPdbW6vAx1lUv+lET6cMR4fPPmX95+/zuian0X//zdx5ubu77rci6iiohiaggqqion/3tUw8kSCSsOaqBKh93mn/75v9/ef/jpn7949XK1nBORDMPQdeV4BB+qzXq1WHhEIXSMrRboxy7nUbQAABExO++9ERYVRSIX0NXIDbs2+LZ2VeNDYDcVrxlVzVT04mxxdlnX4ABg6Ptvf/+H3/3br68uLt2z1111ZqXs9tddOiTUaj5n4hLz/e1tSbFpamO8vr797vu3/TjO2vpHX36eSv7tH/4wxvTi9evZrBXJdeDXL5+fLWeLthmHvu/2/U3//t374+Fwsv5jAjPLsmhny2ZWDXPY77PaxdVFaBrPrgzxsF7HGL9/+44aV80Wn3/14yApgNQMr169uHz2LPZDO6vryhE/IJdEQ9MMTd32AKrDDLvLZXz2Wl3tDyNkLUQE0IgCxEjHTGhuBUlwU+mW8tZACjdMTjWNKEXqJs3qLs8Sz3HhoKi5QA7dcHT9XtoGK28ChqZsiTE7ACDMxEoIpEzCRUXBCFoSkbjvhy564fD5vb+8cIuFm1/Ufgmz5/3issxqq59SOPHx5v/B0vUXmo5pW2WIRnrUw/f7+/fb7WYYohhTMRizDiK9FCWsXKVKh6jHqMcoQ5ZYtNiEU4InqxhmAVeNv1zU88bVns10jNGjPKv8RaBVcGCwHWU9ppt+wCa8+OLyxctV2zKRMzVAPYkxH44u6x9vx7tbqv0r5wKjiyVvu72RLhfzOnhjTZCOhz4lAQNmaqpAxKX4cSjH+5gxgxsrpgWb10WJLomOx6BAYMbMdV2pwXGMMZWiAGg+oGQZdnjct3t5VUD22/oe3VahqYqMOQ7DsT8w49nZqnI+DakUETNzjqqqABxS3h27zWb78y8ufvr84mzeAEDM6ePdTczjfLacN7NZ1VYuMLvHZR4QRaVPw1jGIglRnSPHwXON5lR1n46bcXPf3R37I6HvxSpf5ZJSjGlMm5vt+6/ffvzzx/v3d3VV70b76nr95VdfvHj9/PLyfD6bef5Bp2fMw+Z4e7v/+HH77mb/cb2/H2JPBovZxesXPz1bvgh+xq5yXJNy6lLsPvkqAQIiIQNN3jA8bcDxoeCCSV306ZU9fK4GhMAIcUwf3998+HDTD1ENilHMeBhl1+VDl45D0pJLySWnUkpMSUUJIXjXNnUIAR84l2YTZRX5VD8pTWc24Uw2lX+Ap4gXMgBEpScCO1MrUSybd6GtZ5lDGsf19oBms1ljaMc4VrPFol2etaugbjgcDtdbVaXFVcO+8eHibHX+7Hmfxvv9TZEsqiLWdd04ZFUyAcvm0fmqDuSIUVGziqgULd77SXCacimlTOUakdWelou6nTlfkw9A3oJzZ7CkNmy3x5jTOGSxUjKa8g+LGHfiMNgPnT0mJAYmKwIFJStFUiqEmZgMCZlBJkkXwkRA0MlvDA0f3AUJkE9pKSaTazxNb7CpgqI9QHRMSMSIaHp68z1aTUQKGWwkUE+joSICASSFB2uhT3MYgnMoDoHN2MCAmNDRROJyAM7VyOxDICQogsjIzia2L1PNnollCoR6qMIMCNEBMiHDpNGaSMKOnHN9N3z/9s2vf/3rf/7VP//5z38uqeScY06IWDcNEoiUHGMeR0mZkZjYxCTGYXeUcSwAGawAgBUnebZY+rZ9mp/yV8cTpPxvdNMnpHT6xsQWxB/itfbDH7TH9q59+qohGINWlBvOrdNFjatZvWibuvJ1cG3jEL0PdEyyu7/58ObPdx/fffb5Z6uzFVOTH6SET4+Yhjc33/zx+18xV92BNoc8xCGlLCKGOBkW6IlodrIRQT0xhhwxkwNENbQSbz98GPvjcX///mp2fk5NDUiaIhwPTBS6fd3Okf3IDIZBC6Q0lhKllFObkhw7VrRsRRGJA7uFc+eOV97Nat80IThiMlSwglrMROSL1y9/9OXVYt4AAJhZSlRyw1w5J6ZDisexS5LCvG6bKjCpqEk2K95TVt3uNjf393frdVNXUkYiXN/f5qJ1Wzuy+WJ2ebZ4+exitZgH73ZbI8KiJaY4xOHBrRE9c1vXIQQx6cdeDzvw1WK5aGdzMuh3h367OXRd98Hqs9nl5dnZ1bMFG2sq/TG4auhT3w1FEPCTjB9wopY50mk8B3SNNTOpZ8A1JhNDA8wAgDGBLwTmlmXMOfa55wLmTVcEjicbBTMXlE1AiRTbwGIuadV37fWNETNgXiwfDLlSIPMeAdkLOyEUhYlnaEVl6A+74dgN+4OuDyUrffzgVysXmmZJit5T46qzNlT8YKj4f+JAQBSDPstmGD/uuy5nxxGgL7LPsokxIVZVC+SiYCwQFZLImHNRUwQEdAwebYd2qLjrShMcg2rJMY4zMplXUHusGQF2Me9zGU2DZyKcgmYemB9/iYCPpXx/f3h7c1zO6qYOPoQoeL9DIz3D0jSIZinZIUIcQVXZSQviCEVgSLbvUxI1io13q3kVyIk0uUgsUzaFOKcNsCF2qcQsWQyQnKKKRLXkK1yeM4AwDhZ2yUYoUnKU2OWBBTlXESRJLkXUAEGYIInuunGzO643h/1ZXYpMr0VE9t3hMB6zqoqAGtQWEDy7x3mpqHSx2/e7Lu6KJsdYh9lidlG5VtSOqT+Mx8PYdfEIRgLo2OU8jl3qt/Hu/ebNt+9u390et0fvfIZvd914t9l+fv/qiy9fP3t+dbZc1FVAJAUZy7A93r2//e7D+s3N/sOmuz+MhzENksu83yK7VGTRno9DlByhCIqeiNlP7xmFqTuhIqeoE4DyQDMUsyJFJ4EIopuusykg9gS3t/dv3374eH03xqSAapZy2e/7u7vd9cd7D4JQNOecxxjjMIylCCJUwc/nTVNX7DwgFhEAmFLYvCcmhImgQ25aN6c6HoyIGZAnwxAyRftUzyEiIxOwFJWiiGxAMauULICAOqQxjamkjGJtXWuYzV2bU3KCla8+e/lysVj2YuvD7hB3WozYTZ79CuY8G6OaMFAVXBU8oGW1yXlftSiSqRFScI6JpKholinea0ooUMwCGhOAM0IffFXXapZyjinHMadR9KlPDDk2QWA9uTYgTtblZIgKdnINAwXLuYAlMyTnpi6gqlpRY1I1zWKmRmAnv6mJ5j/xC6bu4YTS2INCxKbZ4MGWAyfnOi0wxRgExue+qrQcxrgrkpnUUwRQMC0Pi+XDHzgVMaBOMoiqIhYkdBQIWcWYOVS1Y2dAUjTlgQDbqmLvfPBMRHqi8Ylks1PMFQGhq4jh8SUjGrIj77z3h4/dr/7lV//tv//3b77++ng8LhfLtm05MRPNl4u2aeIw7Dbbw2abzq9mi4V3XgwO3XDz7Te7u/sEJZtlULQSNF+9+mx2+SI0P9QH4kPr6gGGeZjzHrnrJwq+Ej306GAy9Hswr3nEGk8JK1Pf6sQuBoJJfIYwmdsxaCCtubTOZoFlPn/54uXz5y+a+psDH0Kg4F2Nzg855aOlbjjshu5gJpPP7and9umyQCzp/fbmm7s3dd1ampcwp7oCRFOgwMagaMVO/gaekAQmJuSk2wZFdq52jtgZUjqO33/z7vodzuewWPHZWXAYxs6buX4H9SyH2dH8EC2pCSGCWilihgwBENVUoAgUBUB0js5q91nAc8SGyE9T0jRHKVo2STEN/S//H//LPwBcAEBdha8+f6nH8fXLz5fzcyKXcsRAjavPL89n80XwrIJXlyvR7L3bHY/9eNh32+Owz8Xd3lSL+fzybKWAJtk5/OXf/fTliyvSTGBExISiQkRnZ6u6rkG1pBKH2Db1q5cvl4s5gsUc42Hrmnk9Xzl2Gsu4P6ZxPOwOY4xn5L/4bPXy2eV5xeW4e7ft7j6uU5RhGNbbYX5Jj2RYUmuTtNFc8c5oMcyqLUa4L/W+ECt4gYrIeSI1g5SFQBsYM/SpdP0wbvdz05fzpiUePBfHaExD9Lfb+rjz85lToH1Xtp3bj2FzGPZdPlsaIFjBcSATcozslT0Woz5yzKGokQ0Bbja327v7w253d3fXDr1+d3ke6lCgWq5NBcYj7e5eX11WD8Z9D8c0r5z6xngaJ6di4fEBEyxJhD7gYuZT67NnohIJGMAIRlQxOxbbSTJUMFLArCYgCuVkkIokgGCgZhBVIfu+mApIAcniqWPsAWpVAsmSq9p/fnm2fHX+6svL5XnjeQqbIzNS/IHZd87lerP504fbRTvW9aJuagE9dEfDcoh9VbNjNqMULWcQUZJxAJsYVGpiLA6FKDnvlC2TEzQBBSuICSEhg+FIxE1tdQAxQDRiMNPUmJpDCACkhuy4rs25gmCt8GLZOIRZg46sNKjCAIhETJgVZ3VYtbPLJX75alVVnzgxSUufR+oJTi1rJGbH7rG7ISpd7O72t3e798dhbyqL2dlnr36yml+A0hDHIeaYRU3U0nG8N7U4DIf74f5Nd/9+f/9x0x2SostGd+vdoY9/fv/u+XcXP/v5l1/95IsvfvT6/Hzlfcga98P99frtn9/9/mbzfkiHqFFATYqUEsfjdvNRc+nCuqRy3N9qGirPbVXRA2MBDayAJi0liWY1xcm/2uwkbQSMOXdjl3NBBO+4ravgmMyKyhDTN19/992f313fbMYkU1ZcisP2fvPxTfXdnPN+WTkALSX14zAe+yHFbGDOc9OGqgquqtg5QnKOfHB1cHUdnJtCWqa+FhNPgYfI5IidkSOYrP8UvIFNSTDAzLO2rbzvj52kEqqgZr6qiFlEc8kppuP+cHN9/ers8sdXry+aVezG434XgGdV/V/+0y93/fDvX39zs7/n4CuPVd2oStU0xL6uW1QqfXZAi6ZlwpRTEpVSimQzzTkf9ocxjJ4dMxORGqSYU4piOuZmvmw5aSqdGhAyoWtCRYAl7dOQhm133HfyUCgDgCPvDE3Lox/aw3CaBrsCAQJNwdWemIsqihDRVHrQ1AAyYJo0wSfnoAdXk2ndRZoSaxQUdQJ2TvCvmalO+ahTRs8kOxExUr70YU5YWTKxAWxAAEYtUEAVVOwHtkpmKjLm1GUgAUMqzISOAOHEWhZVFZGSYh66DhDmbs4nozSbng2Z0DBLyTlpVsZTYODksyIgigYFcy9jTH/4wx/+5V9+9bvf/e6w3xMRMzNPzrAYQmCkvus29+u729vnF1eztnU+qGg6HtcfPmyur8FDIcygUJIvYxOC5AT/0fHYPX9si9rD/ExwagbBY+EymQJ+smSauLf/+3FJCMJggaAmrUkqRE/UNvPXr768/mJ9fvn1bn9QUIXcVAGQD0fEkg7r++39fRoHs8XffN5Uyt129/F+s1pxha0Ssid2NHGzFa2oJBExJTWGiS8xnfJEWDY2C2SOAVCzSD/k8Sj9QYejk9hWPqTBmeDgtGnL/DxDPY7QFcyTQz4bETgxEbWhjFGjWlJQBBc4iW8zoVk3le9qZqJqAqBZyhjHF8/PSjldl8r7V1fn8qq7OltxqLtUVKSahxBwNq+Dp5wGM2sbR+wAcUgEJKF2rz9/2VRh2bRtXXOoUim7w8EkLxez1XLe7e7HoSuprO/v1ut1Sun84gIB0zgOh26bhAw8MhOJneBmb+iblhBTGoeh67rjYbc/HL25pt8nuOD5clWyWabjbohJY4zDaGr8SH5DAzYlwtI2AIHrRSs8+3gnmFNwydcltBBqDh7y4Ld3CljOHAJ0KZYUu64DldTN6qoxDGY6qb6qMbXHgck5Mxw7lwSHiDkTUu46DQ610PFQj7FVY+KxDgVAY+I+z7tkhIdVte+Pcjge+353PDQpzT+8XQT3rJTZrNE0Wkmmsqgblk8T2V+MB/groPLTcUocAnTk2+CbAISTCoIQZ8zZQeuhNx1EkxUENkSd4ORJFg0wEYmnpn5UNSxkoCJk4sFqwqFYl9QV9awSoJ5XV6/PLz67PLuYVTVLyTohjyeB+dPtvjkSplF0X0RyqZEocAESsgxKyI7ZucZBRWaEBMEXZpl2/VYMzRAzOeEKEU2NTQCKmRmSMavnTCyTKsNsmsHVUIvCNNUTOFMCQHJAJEQKQKgVAwTHiChCoGBAE5pXFKPwmPyQ6tdXoQoPLUvTJLEbjmkYYj2IFARwlXPOefIIaGACqmDFShf77XGX4jCmPF9cel8HrqfkXjNTS0WGUjSl1O279W338c1x+2EYjrkkQ4ciJXYH2e9Ey/3mZkz7Pm0H2zwbLqqmLjZuu7u79fv393/aHe7FsoEBspmBiFjsuo2VkvwBFCT1hIn9hH2crktM6d2Hu83dvkgqJRfJCMZMjASTBwzgmNO+28cYwcx7t2jbtgrBUS6yPRy/+frPb95+vN/scjHiwI5E8nZ9997Hpevy4exiNfOMMXaH/eF2vT12Q5ECaM6j9+yrqqpC2zTzebtazZeztmlr7x0xGpiKIcBk9uGZJgogE4P5ibPanM2bs8aBAwAimrVtU1e5lJRGdoTE3jkAKGNSNSYWke1mvdttHdHz8ysH1B2PVmI9a569evVxc/+v3/yxG7pUyhSHw97Vbc1eHDsUxAo8cmgqAkuSDM0I0IiQTCHGqCJUN0x84msaiFksRkloUEplTNEMgvdNRbOm9oTDkVFAYy6xPA1YcOxZwYzR5NFI85SBO+3emYh98HVVNS2QiykVlamP5ZyfKLHMFkJAoCwiJqfE8pMJ95SVRZNmVcUMDNmmuAnTYmYmYiYCAMimJkXSmMz7ZVVdsnPAGcpGFBVMSczEVFWLFdFPZrgipTtsu8PWuDIkRGHizMrOEzICDPuDFC3F0pj6rvPBEdoJ5TRDABd8tZg55O6Qh6HHYp6dMCeTPJaiBmiilovcr9fffvfnX/3rv/3qV7+6ub1Zrpazdk7MpZRhGDw7XUqh0vXdbbh79/795cXVxeVl8CGOfX/cH3fb2B/mZ8s6+GRStKAUKOWvWjE2sV0+Ce/gMY7JHmoVAJuKGzagk3HoSQeAPzQuNZjYT6j04OMyFTdmAKCEEkjnbLWzCpWNNaMPi1df/Gy7Ly9/+83Ner1ZfxxjX9WrJtCi8Qhyf3N9/e7tV7/4u/nlBTzmsD95HaXofjseNmXm26qaoxG7XDVczI2AUWTMJeVccnaIla/JeTwxWk+2PWxKmh2Ac1Z5DI6Kkppq4vEImaWMBdQEzZcQ6svKUcVjhGGQgQkvQlNTJeL6kovsox1L6dXUkSOaMc/INWpwSl4CNZ70MsYqjMJPPDyc44vFrJvVDorkPhdFr/OmrQISWRy7/e6IiBfni7qq2fsx100bPlu8/MXf//J8tSqH49D1x37Y7HeqeRz7w35XV7hf3+62691m//Hj9XfffUvEr1+/XswW+/VurbfHzX7sh7ub63GcN4vGvBuTJEMOgdAdt4f17c1uu9nv9zvzAv7N/N2Kw6t2wRagsEbKCCURgXP8KaPHyMTpOKc0n/vQ1rOz9tjPv/7I2/tEOLahP1/oYubaGfWjff9ehcrLzLO6L/1eU4yDjPF+HQTQVoDLgdiwooZdK6b7Hk2wDJPbgebB9ntGKvMaTVw3LLaHy+2RVY6LcGz9MZBGoe0IRkgLTWNKuS9lL5KHfrz94EhejYerUJV+7B3vzs/x1WefNlyPh56UeX9Vwjwy36fmNqgZMGoTUhO2gPdFxcA7t6yDd1i4gMt5iClbARUjsikjbnKUwMcnUzBByyc+vDKiB2fMo9ohF7Vc11jVVXsxO3+5OLtsHKuKnGhjBqanwK/HM64D/+h5C6lRROLkPTn2hJ7ZgyvszHlwzjzhFG3nGJ2bwucAxSYc29QEilCa1tcpshCR0BHiKbJxkrU/mIEj4MkqA8EmGws8qRrswRbFT9LRie5oZmA8zfBqUAyyYMx2vrLH3CQzTWk8HLY5pjpUWSIyhLbywRMRARUQRaubZtYuq3ru+i6NSYqlMeVUmpkLoapc5ZFGGUveGcYYh/3+sF4f72/740bJvBlNjLpcNJUiuYgO7FPG/UC3l4dFPa+Ncjccun7Xx61iQjAQUBFVYCMwzbEbtEAZHTvHwGiCCV16lAPtj4f/9i//9PU3b6Yc6pQTmXnv6qpq69YHj4ip5GN/HOOYS3JEi7ZdzGbzWSvFbtabb759+/HDzX5/VKw5uFAHQ91srmH86PMHG565r75s27rru+v7u2/+9Obmbj3EMZc0GTl4z4tZe3V5/vrV8x99+TlenZfc+hCAqRSN42CleCZPEBiDc44dIaugqoHp2csXyxeXVdsAADPN2noxa/pxVJjkDQAwdV/AswuND5U/DIfNfh3zuFzMP3v+mpBiPCoJ1dXdsD/2+7vNXRezr3zdVHUTmrbllMY+aVICQh/IE5opmRFwcAiOibVoHAYQnfzaTBXNfPDOBT+r0fOYiqmpKjORx8DcBBcIuyo03h+R3Q9Htzvxjx73F5/WtlPaw4QxVD7M6lYR8kQ+BgM0IgeEVjIhVL52RLmULDlKLqYKZAAIE/+JCNDUEBWQyHhKUJpgF5UCCsUmp33koqFIMPRjrL1bse89NJJZBBRUwARErehJ0jMdKqU77jb3N1kDIAfHzjtmT84Rcsl5OB7TmERJREsq88VsuVpwoCHGXDKYNfM2zGtEKDmlccRiFAI2lZr2w7GPYxFJqQxD+vP37/7HP//Lb377u3fvPhQt5xeuqipELKWkmJQkx4gA4zgeDoePtzdXNx+fPX9epHTb++1hl0tix03TVvNWEGN/6MZOi/6FHhCQnxhCnuIW4CEA8snXJy9IFHisXR4qnh98/njlf7BfnQjLhOrBaoKWoSIiQAQHUPmqms2qz78cf/rzX9zcfry5v+4PsW3HKtQ+OCE7bNfr2+vDbnsxDOQf0dcfNJIZXcWzZf288av98VByAlRkBAUi8t6ZqZRkqqoCxo7dhNOiKZp5Mo/mUTyfmPq5QBQ0oTyiOWJARmMzzN6Ghriqw8y5hDiyaRUDA+VsKs4ZNjTztYmZZNEyk+RJTEmB7LSnmrbpCKbgiPhJQJX34dmL57nLUnTMmnOJlgGzGRC6JHm/35dcRNIVXDx/ffa8ag4p+7b+h//0D8vZbPPh4/rmtqj4nuvgyWS/XYPGw/Z+vV7f365v79bdkNvWI7pJJY5Es/nCO6dmMSevwXM1a2tftbO6AcXsQ900i7NVL9p3OQ79zYcPH5tqe3U5cygCRSB1cYxpiCVNObkPV0aQhBkJwDN4Q8g0Dnw4eDSVkBuQAB6R+wj7UZTsrA8VrhQi+gNXBfI4xMPxQI59v6+GI4s5MQcuo1dAnPp3JVkaMUZKmS1MUg1VkeOB4oApoM71xQVRAMxWNImOUgYpCcy894S1w3mJy/16ZSxdpqY9zpd/QSZRANVTRis9uf9IH25/eIJjAgCDIqnzo3Nbg3VRBJwTMJJ3dAY4mO1S6svU65wG3Q8Uf49v42TmgAiAyg9+H8mgExM1MXY+cFvV81A1rKWoTPvFh2ryL2ZkxtWMLheYTADNew5MgZmZ0BM58wGCw4qVMdm0dg9RJ1N1pOCcD+gYjLhMRTkqArnJE5n500zwRAIAn4SJgDAF6OmpojED1EmGOkms7ZTmCSe6pKqaeTCvyqy118cBoyr9cNwf7mMfvfNqRU2QLJe+rVtCGnPOKgIGRFU1a5pFjtkMh2HoukNw1WS7jiZaxpKOAv04dMPQ9V13PPZdB4FbIqdYREvMElPJY44RDZL5yPNxgLZdBnAa45BTFEmqipM2rxhM3twIYEUVRIHAIzCgqRWx9Oi6Mozjt2/+9O9/+H0dAoGVnBxiXVeLtj2fz9s6eCZDC5oBE2oE0dLFoQyQ25Rsc7/dbbbd8ZjGET2xy4iFCZEyaOoP43pdFgvvj9V6t33/8ebbN+9u1tsxppyi5JGsVJ7Ol3NNx8bp1aqZVyQleh/AORGL46ClOARGY1DPHJxncmaooiKFmyDyxK0blMicIyAMdcXsRAwJtRRQoMDElHKJMalhqJqLy2e1D8O46+PxWIZcxgLZyCZxjYgUKczEnqf7hIAAoaiYSMq5qJDnKoSmqjXL3hQUfPDO+5wTKLBnCly1NSIMQ5RSEADQqaipMhgTtS7MXHVwoXqQX5yGDJRiAqIoctrzEyKiAuiElkyuqExcOW+gnWbIIyAYsUAF5iZXeY+hYq6QExGaRpmcmIiQCZmmfCVQACYyP8UJixoIajHJImBqHsyhC4oMflG07HapqWers7OqaUrnYqQMkAUKqoLYBEWeDhE5Hna3Hz9uD8XMn81ndVOTZyRS1f543NxcD31EDuzrqqqJnk8er+PQDf1QSsklz86WyJhTzOOAxQKBZzS0MR43223X94dDt9+Pf/zjd//0T//y/fdvxKSdN845QBCd9gNSig7dMHVKU8l3282bj++X52fnh3m328T9mhvfNOfzi6vZaumb5rhb97t9/EEKNhk6Qwd4khoaoJ4yTpVO6VSnCVlgulrTLnTq303vtyHAiZx+UpDhpB5+mMNQH/aDjFYzNwQVo0dUQMCA3ISqntXVy5fP/vN/+U939x/+9df/dr8D7/vFnMgHYByHw357v19v+kM3Ow/IjE+JwgDBuauzsy+fv/rq5Y+0VLvrXXfsxphEjIBrH+bzOue03VsZk2oxQe8x8KR6IzRjgsqjc8ATS050yrEwMBGsfXU+mwUmyRkN4oBUrGmqtm7bGrWU1A+7YdjHQZiaxeJ8deYvrpLh3d0mdcMwSsYDBmCPkyxTCGyyZmTHbEzu0d4+1M3Lr37qwmrou67r66Ff7za3t3eM2jx7SUhDN9yvtx8+3H/5lX7x43/4/NXz5fNX6OjZ8+dQMvPUmRTPeL5ceM/b9f1xvxn6437frbf9mGm+fF77sNn2m/Vxv16j6dWLF46wHzo1Aeaqqp8/e71cXlRVawrH8353cXlxdbn8+JHeftjuDvvtzfv3+O5qdb6YZZGkcH88HPoujsM+juVhxJiRasXJL8pYY8cRqB9652m+MBRpa2mW4OdsLWnQkApZbBurwmV2tRdePN9DpRD7NGI81Id1c/3RGcGYxFVyfi4mttWS9mNOCZMhmGfwXj0lnOXcjxtzKWG0gmf67DVwU7qb0vVdoKOMRzRxvFgtXjTN68+fX80aF4uMalSDb62prQqPegs7dXdOyriHssCelAiTRg8nt7lHiakADUqbYmuxmsAjZNAarEKZoc4IO4JUQG1yuJo2CacNHxKfEtMMTAzJCIHJCNWMitkIVMwD+oa9MCuAmk6OWPDIHDsBSJ/ASzM1zWrRJloKFSbHmBjZIXqHlafgMGBJY7+7X2/W2/VmF1PywbVtfbZcnJ2vlqtV3cw9ewMuamYFwVAVrQDIgxkmTQrRB2DeHtBZQQBEBTgF6NrDt6f+v8Hpp06MAzNVULUiOSWpvD2SLouUY7fZH+40WgRKcey7Y99vl6tF21QA0I8R0bXzFXIVQjufX6SxSE7dcESiYkaEMXWq0SRJGcd0HIYhJylFo+QxmxRiZCAVk5h1jDkOaQplrOfxuB+rJapL7HVyV1PVkxp3ksMS4SQf8OyYmNFMi4gUzZpzyo9Ff5Gy7Tfb7v6M5nUI5MX50LRhMfNnMzxrofVYV5WvV4gYxzGnmFMqxbKNIupBPYEnI8uS+gJYPM4W7bMXy7NaauqL9O9v3vQpv/14fX27vd913ZjM0FRQSgBFREfqUMiSpSH1h5wG5zxXFRGhGqOZahQtORFSFTQE8xxMIeUcc368LqoyDMc4dkgu1O1sOXehKlJ4GAVEYzQzE0BihAqpNggxq0qMw3A47G73t5v1na/d+dVZGU1M1TSm6IIDwtBU5oAKYLGxH1NOx743tLZpFvPm8vzCiiFYSiXMGmIuVBCJzZx3s6ZS0CF2xUZCQtWYIDKXunjgGv3c14uqaULFT8LMnGNGQ2ECP3X2Ck4WaqcLPa2LRMTBOTPxCDzZZyA5VyNgSQIqUBTMUItHWNZtVD2UlKaO65QJCACoE3cSzbQUNDWQk+5KTBHJEJCcYSNYiaY8JoVmwY48pgFGgAKYEDJhppM37MOhWsZhv77/+Pb9XgvHZ88Wixk5MrCS8tAfD5vNMIzRiEOzWJ618ybmsdYKAcxk7DsilJRCHQJRJlJNKJlNBEQlxtgdDtv7++3t7fH9+/fXH28Oh251vmjb1jk+RQeaERFPzuOqZJZTWt/dz9rZs6srk5RjpyUSAyIbM7oQmtbH0dg9MloeZhQ2cg/de4NJjP1wWeiB7PJQnJxE+Q9xVxMOPNlMTY/ik0z8RIW2B6ovIgIbBqKauXLoplAHIDVKMZeU4tH227WZzBfLV5/9KImrPIAjpImsnzAPuTukoW9XS/Lucf2YjiqEL54/l8P2YrHa7zRHGbqYxkzM81m7Ol9evliqyfvru/XtplsfSk5QMU/h9tOmgafwWEJDVS0pJzEhD8giamoeuSZfCEUkxaSp5JTCGHxdqUHXla5PXR64Ck0dAl00sy8ZvD9cp+5WhrXKgK64gK4K7B0wYEW+8uh8RaGtW34g97Fz7epiUdh1+zDvZzmGxuV4KCk658Y+dt2w2exzwdmq73s183UzN7JxHPPYj3FEtNmsJcJYx5jidrMhxLoKdT1rFwwup6yEmAQlS1Jrm+b561dV8Pfru/1+28e+yvn87PzVi88q36jhcehn84VrK/E8mIaK07EHy9v9Rks8DmOf0qEfDmNUg4L8NJUdBWgsvj96K5q6oqoNE844Z2MPSpgNNEMSZIfOQIsrqc7mgXC+3DMe5TBwLpa42/mP7xhc6jsB7cxG0dQl65MH46BUEsUBBgJ1ZFLI9lAIijcHwMU1zrWFOIukYbSxa1GeNdWqnb2eL19fPVvUofSx9wUr0qryIiFFfOLhYQ9cl8eb729wv56iMgaqUMSyWBQppujIBw4V1Q6l2EJp5XkskNUG/fScJ8D6IQQEABhs0kE6gkBWARBoNhYxLZay1UrRSE4ly1RtwUOa0l/HJWrRnDVlUQIVIUUUcISMxlAgq6Qypv6436yvP1zf3Nzf3G37MTHTfFZfXiyvnl09f/Hy/OJqvlhWdcMuTEoLMwM4JdXZqfQCsU+Jjaci5kT4nx5CMEFcYGqnvZIB2PRypk2U2mSUWaTkpG3zySjKTIp0pXQMDErjmESHrLv1IdQ1q+kwJuea8/OX7ezchZoQvfOS4uGwHYZjPx6cd6Yx5aNqMlUtagJojMBmICoqmUGRVUFF7LSRNOuOsd7yfh3qBXDtPUDJWYpMfjQmAA8zpp58lclAixYTLElzLrnkGNOjxBrRHEnlZFbTrAkOITjfVn5WUcUSEGqGRY3zZe29zymkGMdxjEmGbIAyJGvrUDlyoCJRMpQReIbn88vnZ76hkMuw2a6v7zffv79e77pRUIyQeArYAcaq8vO2Ws2qecVoOY+9ERZ2LntiN2GEYpiyDsMoCs4l70PtPYLlNNTnw+T8CgBmViSrFc+BmSdY0Nfe0FKOYpJSJuTF7Ozi7PnZ8rKpZ7nkIikPx9jvu8MmjkdXcbtoxVsqOZYoKGICD8a1070FCrmIiKJDclzVYTZrpKgLLmkpIIxAgTw7FXAeCZXImsYRBxEDgSKaUo5DUqQ8Ritae19XNT2xiHNtPRNFR1TSZD0+lpzNbPI1LWIGEgCIJsNgDM55Zi2FCRZti0B9HG1IZejUREuum/ryxQtxqPu1pF6xGFieTEjIphgmUbQCKGYgWS0JFkECILUCIkpoZtnSKCNI3VtEHfc5HbKZJ2EsCMlJ8lzcY1abmaR82O0+vvn+fYlEZcjDihhNJI7RVIJD8brZ7nN/LKCLbtWN/QIW7bwxkG63L+OoKbumWs1mQaTPOydiaTTUyaBdJA1Dv9ttjsfOu7BcLM9Wq9m8JWa1k+irqipPrqkqz6wiuR838bbxVffFj84X8xC8Vn4oSfJI1d6cU0dDimr26GkJk7wI6UQdwgfvoqn+QDMwOdF40YiI2E+GIkRTGIPqRJmXRw0XnkqgaQ5SAkMEnj6AHNKp78gMYIbAxBLH/XZz2K6P+/u7u9vv3304HLv/+3/9f//077u724+79U2/u4OSZlW9DOB0gNybFUB+CsMAQFtXP//iMx4P3ahjd0xDin2JMc7m7YvL1c/+7otf/uevyOMf//j297/902+6b7r+WLIoMzMwTUbWaMgGDOpyKn2foygGYpSEOaVxPDp2AQDNJGvqJKcuKqDjBpHBxCwjJAYGMwHKVAk3rlmFerBuK2Mq5ahsdV1zcOzQL6qmqUPbwozPlwvnHgziADKAMHNTLZpQe3d5cbaaN7vtNo3pLm6OfTeMyflZTPD2/W00yDYqFWJDzdoPgejF82eien93f3t3d7fdV1V4/er1bHl+HO1mvfv+zbsU47yZNfOZq9xyPnv+2WvvXSHdj8fbj2s1YOfOzs5nzUINQ3cUxH3qF2fLL/D12cUiHwenVrSsd9vdfrfvjmPJyuSqmW+X9GB2h6qcIw972N4VG1IJ1gScNy40bo9U1B1G65MZmihBCYZ2yGVkUSWF5zN/MVsezR913EsH8VhdvzWlrvSR8fbe1kPcvP/YSPrJ5fkloe+PaEUH7ypfe5e6YxdjEpPgEZwcE1hO+3XZ3sCum2n/JWS3bF41q6vZatEuQl13LfSmPhvFOD/slrdr90SdNMWPP0Axj5frh6gMPDD17OSNmZJIyk5LS7qq8XzmzhdV7dClIgiDWBYsplhsnFIspmX+MVcOEFEcYu25dlgxeDTSYmbJbMzaxTgjbfLsuUCxqe375BztlHzy1MzGzLLkSZGDIgYgYrXzZg6R85iGfr++u3n/5s31h+v7+8399rA9Dn0fc86BeTmvry4vXr9++fkXn33xo89fvHh+fnHWtA0ZAZ6MoOyE3YIqlBOFBvQxwGSyTZsED4pqIGXSkk4ojsIE4wGImagVUTMEJDXL2dITH2VEc1yqqlTGCJBVi3W7/WZzKJPdRE4lhNmYu9XyWd0sET1YVk373X0uMex8qDkERkwimZAc155c8BqcOvQwBaYpkNOTzzijD1SyjON42Nrh1s0XvDhz5BHEdELvxVQFkBicAQjo5HKqQkmLFpBsOZeY0zCM+pDGFpheLNrj1erq/GzezjyxQzQ1MpGUB0OC2gUfckFiBSJfNc7XwEt0zVDMHe7W+6bynqCUYkVkLJCp5rOrxerF2cV+v7v5eLO+vu22+zIW72pPTnGiOaLzvJq1zy/OPnt++ex8GcgkD4ZkTJNxdSogwEphFOz6NCTJRQGwcuTQ0Eo4u0iPuWmI5Nh5F6oKAA/bPVdhcT53wVVtVYqmmIOvX7/8/Cc/+ukXn31xfrY6Hu6HfqtxL7lHSYxGjrhyAOYKmEKRXERSSvEQNRVW8uQqV7GbGpzAziGRgYrlrGlMw2g51NVsXnkOmsFM0nhwtT+/WIjCfj+MfbFkKUnfj1j0uDvGmJldXf+wiHGhQgEtSAYArKyIWRWMQc2KmhmcpgdEJg5VVeVgqMTkCQisoCkKlGxatBQ/ay5WK6vcvvS9jclSMUE1wlNwkChNM6MhGqAAZmVRJMMsEFW9aDQrImokyinrKDn2KfcFiMgYxZygEyT5tN0isrrWWauzBhKoo0yQCN3Eo2GEpg7oyA+jCj5mL7HnEKqSs2qJg/THo3dsIqgqKarZ2FdKVnLMaTweD5vt5vb2drfbEVHbztp2VleVoaqIioKB937RtM8uL71z+8Ph0B37rj+ut4f1eljNeB5QRVVKycPQgXOKFsdeTPDJVTlVK/hgTQCGgPTgbQeTzScSIgOgKYiWkgTRABiRJ9EYoZyk7ZNN+tQ9mqojU1AtpeQcPaJvZ8E7z845BzalHaXd+u67b37//vvvbq7f36436/3Qnl/+/X/+X0PbfP/2+3d//uOHbzTu1rXjQMAgAOUhV/wHW0vHvJzNK+/ffthe326GPjqk0NbnZ7PnV+2rZ+1nzxtfOR0u+s3u7Xcfh8OYinE+nfw0rU7IEAqKgMpJAgdwSi0vKqUUAgLQKbHRRGSyXyYCVEBwBkikVZN8LYKCSFXlqjoBlJhzHAxKStn5wIEQzKpRgTk09GRLn1J6//HD/e0mOFjOmll9tljMJF+A6W28yyUrKHvXzGYA+O7Dx213AC+usrr2noxyWbZt3TTENI7xfrPe7/fM1L9+3SzOfFO7ehyl9Cm2Vog8Bl/Q7vYbVbm+vf5we/3h+mOK6frm+nz1bJxlNdweDzfr24831/v+QI7aWTOUUvpxd9yP/bDdbg/jEK0IO4dVekLqRzBWYRGQYjrxVx15Z46AFCxTEqGiqABADpkwlEyaMymSq70nCgGoEueiyZjrsUeF3uUj8iH1hxh3JRew0bE6h6YuJigFY6HKYyzRSJxTx2DZ9ptSSt/flXGtMLakta9m1exVs5rXMzSWAqNnZUYWJ+rGo+uP+ESd9FgBTESN/zjOBqb2kwiW4k0Wnrjm84bOZ3yxCMEh9paEl0n7ZH2xKBZ/qIWcftnUYWKEQFgTNQSB1DGLwaiooKMIpDJmTcXkITPuf3JiAEUllpxFEWyK/J7aNqDS73fv3n7/9vvv3nz35/XdJubSj3nfx2M/9t2IBk1w1zf7m5vtx5v19e3d55+/+vyzF1fPL5dnq6pujQIAKUxVC+gUCmAwkdFORJfJcvTB61UVSlZRMcmmoiYGYEAGMOmei5gBEJGZToEAj20LQqic1V4ZCiCoac4pDn1Mo1qefGlDGoigpLGq58w1Go390HWbMXY0SKi5nTUhEKKAEVpgYI8aXK4q70MaopYipAYERoBowVNgVE9NcMHIFwyKDjDBpHw1VRPRE7w9RWgKmmEBkKJawBRzljGN4xMkhhDbiueVawLXgSp2qDaOMZU0aolCGbm4nDlWaaISnCQs3tGoJmhAk78vPuT8ZMnDcNwdj37V8BjL/jgcjkNMIgruwQZtuqUJofI0r93ZvJ43vqiUVBQICRjNzGK2DN6cROOYpR9zPyYVDYyejED6YZBHiIwAHaFnZhaF2I9ONVydVW3FiKgkqTR1s5yvZu0MwWI8Hvf3sVuzjloGgkI45dCboCkhMSOqliy5SM4myoTkyVWeAD2UyW+lSOnGXqQAATosmkWJuPa1pwpNs5TMbCGw6BRnBCJaAHIuJFpKUVPnPLkfeDE7YA+TPZda8B44kDOxYCBZVCyDYVHNIlkFnQt13ZqQYzWVdDQxDwmdUlEE8N7N2uby7Exrf91vtqmLKRdVAjAyQ5qGTgEoIgpk5A2dPMQZZlXMBYuYWENAdcV1FVWGJDlHLWmKgiVTMGEztk9Wl97z82dt/vmzumqHDtowC6Gh0Kri0I2gUnusSkkcElA9WyxXy9liXrez4PzQ9VJkjGl9v845kWo6HnfbHZhhIHPUd8Ph0N3drT98uH737sP9em8AVVOFKjBzkYmdLKDmCVeL+VdfftnUzfXt7fX1TR5S7sfD/e1+FijPAsjk6JfTaAeMOZYUS8nwFx7ZYAZChIAGWhDYEZuRKhiYOQQmJgdiJcXYd313KDkqgPehqdu6qkNw7D05BxNPFxVOrD1UsTyx/O+vK2L/2efzyiNWkwF/it1xt3n7pz/80//v//u73/76w8frfZ/UzX/yj//L8vLVZz/58dnnn6+uLiCNt2oUoxmic+TY6HGT+Wm6V4Uxys394bfffHzzZid9XMzaF1ezq2ez82fBue5w/6aqQkN6uaquLs6OhxT7WIaiSBUyGnhkp86MpKgZeB8Izbyf/J4wBHBegTQLEdbVrGUEmSN5qs8Lcl92KR50EHGNLi7ibBlTwTIGR1yxgOVSSi6mqS9qvjS50gLDUHB2dPP5/rO9PCyWh8PhV//8T3/+7vuL8+VnL1/Yl1/M2zrlWEoe01ikVE2zgrBYnTPz+49v7caqmT+7mL98eRmcy6WMKSYpgYOvAzLvu2PfHX0VrvYHv7zYduP6sOmHgSts60Am613/u69/s9tudpv1Yb/tj4fj4fjPv/rn9f1+uThTw/V+d7u+f3/7UdCev3pGgOvb27jvuOjQ9/fruz4lrDy4SjDer7f5Ab1AADJiCtws2IJ3TtVj70lQoEJHZgVI1KFNLhSADAgEygaExZQFGVyr7MgVl4EkYh49Rk/B0Qo9Xy68mTbV4L3nOqB3xpTJgFR8U8/Rx8Sg5UjbD5JTn2+FemNqfDMLq4VrZ1S7bJIHwr5FAgZwpmmIZRwt6yOv/9F76hHVsNNrfEqbfajp4eQnLiVYXjh9sQgjyqyh84YuFt4xZk19tJmjmaOap3VCRCfTiGm/B9NAJDREIFNW82AN0cw7IzoWVLUeMYChqBW1YiaPvPwJJXpyPCmNRC0Xy8UM1ayAOQY11Zz0+nrzq1/99k9ff7Nb36PC6ux80daiToW1cCkqSIdehrS+2ey++e77F8/Pf/zjz3/2sx//4u9/cfniJXtGRFFQM0VSAwCUR17Lacc6WVMZEhGKmhWRMlE3i56Mek9sGFQAEQMEJgMrRYac52byWMTUTJXTZL2gCpuxgAiIaRYwdUwEZey2aehs8u5xrQoMw7HIYDYKEvkZYM3MIAjiSJFBg3ftItSzOHTD5K2HCEDqHDWVb+pQN2G1qJ6dt5dtvXAOyEY6mepOxB9TFcsoRMxGoLmYSkrFFJgqkTKOMT3hxABYVhklHsaugNUuqGp/7FIuSuh81YA2lpvYEwyTTirmDGBVFdRgHNKm62NRRQJyjBY855zevH9/PG5u7s5iSTeHoTcuLihbYTqZ4JuYFhADiajJgTiQLJKLJjVECAwIqDJpPIjAe4SasaAWLAxIpmgFtHyKhkQEJpgM79U0i6tw2bTz5WIIseLAhnVokbDr9m/ffzfu63i4wTLMKgITh8YIVkqOacwmAOxhilg20UkXVdd1VdWhqlStkIhkAejHMZWRAH3l5zwf0khMgMgOm6pyFFSSqOUch1FzTCXlnAqTA6icc3U7o5yLiUy0sscixoDVtOSkWRgUeUpZYDMELYhkBkU1F0lFmU0NgYiJQVTzgGqBlU/NDjBAN/U1iJgdEU+gJRLaFHoIkyWupWICBkxADpAQwKbsnGIGGJqwXLQvnl0sQtiNcciHiCVjEWSY5isqhsXw01aMGRdz/+xyLqXdH0AyK1YWZgC+CYpS2CKpXjYrY+/r+uxsFUJlZjGlruu2+/1ut+9TbNrGE0pM3X5PiKMV8LTrD+v1frM5HA79GJOa0ilREIkQhUwgx0xmVeUr7+ez2Ww+H1I+dAOvN6o6dsfxuNOGuPJV22g2VRQzFDFADDVVzSMYgwDEAFDiOMThOOx3ADyfP2uaRQie2AlhLunYH/r9YX+7OWzud7t1ir2ChRBm7aJt523ThKpxoSLv2ZHzFBw6NgJLw7jfbHd3d7ubd6v5/GK1pPNzBCBEYkzj+OHtm69//7s//ObXf/jdb6/vDgVp/jyga5rlxdmLz9xqKWaHu+vgWA+H86vn87OL0M6AWU+RaE8zrTAX1w9wvz3sjvs5+9m8Xp3Xs6UzHvfDaNfrynvDSjC1Z262q4cYUxIuBgQOiQlVbconILTaO0UojBM8BQRIqGZFCht5pCnXnbmiehYBej0WgyzmjaBurKpSLCqpaCzdtuv2ceixZNMSi5CIMzSVEkeJI+RyOHaPveS+737/u1//5te/ffnieX/40pNdnq9yGveH7Wa73h/3WfLEJBvzcHN3F0ts5iGWs6rG1NSlH8bBAWLbtkgoJt3Q3d3fI9NuGNuLY5fkbncfY0KWRdvUlTset3/609d3Nzfj0IOUwBjj+P7j+zFKU7UK1I3joe82h62vq1VaVT6w96GpuaiYhqYR71wdwFVioao/mXeJ98ery+0XX8R86bUAsQKLeTNjKTjl5YCqB+CHoBgDAygMgHA0JGMAnuToWorEMkDqfc4oLHk+xrZ2UAqG0HlvoRqpDhAQUVFUTLVBBU9aMJU+jmk82CANh+UFzS91/ixyU8Qsp5I6KBkNkUAdFqZBQeerxE8de6cMnukGnCi/+DiaHsuYx0JBpZScLKUK9HIekrPAOG+obR0RhURVpDbDQniu3KhxVAN9GvozEVs8Uc3UOpwxtgQzxrmfJgU1RW0CB67MsBRNokU++e7Zp4+nhxqUAjlDKpPgX80KmSsEVvRu2795f//u41rj2FbVZN8VuAQunoOYZoOY1WLCrtB6u9nt98f+2Mes9EWXVxfP6mYOJzobKCDYtKe2h1zYCX0pKeXJH1VFiAiJDXiCxnUCbwAA+EEAooyFrC/5UNLM9FQoG5haKZrGkgqKKYghEXjHZAyKk4eoypjjmIsCuMwZjHKOAgkpTq5kuVgpHoUlkRRAQPZczZ2foTnJmkCRAZ1Hj1Q7v2jr1cXsYtlczZtl42q0JBltysR7YATig7+EgBUwlSKSs5iiIymqKUop+hgAqQBFZIjJsM9ipTYEzICFWImNHAFL0m7s85iO3dAN/XEcRcUHx+yJ/Xbf9wJCQTATGjCL2bEfRUtSy1I23TgUFXRAU/jPCThCUEJgULICEkviYcx9kigCBrUnRlQjIIdeiUOD7Dz6Bs04OEeoJjCvkJ9EQPIUwuI8qoCopCwpQykMUIewWiwI3TD07z+88xKfL+vWpVXDjWuZySOwSD72w/4YjYzZEyMAM4NzpsbEoQm+8uwZipIjQ+e9Q7JcIho65wkIFQFMiqgo0uSF4mMuXZfiICbGROicR578Ntg7Rwgm7P0PkBhVLEVTHMoYc2R0jMFNJrxysoMBMMsiuRRCG4aYU5SSwQqDEUHtiR9ch0VBcj7uD5JCjmW6bRCQ2DuiSTdrWqSIyCSBYUJCJFTA6UtmTV29fH71s68++8df/JjB/v0PX4/DcQgafRYiAgEz1ZxczJztQWyDAEzITOB8JuoVBvVFnfP1qqkDShkPBHDezENV++DmyzkBHbt+6Lp3Hz68vf54c30j3xkz15VnIlPz3t8cD+RoiONmf9jvo5qbL5ZIbhhGhIkhxo64GKZhRNOZZzAZxp6DB+e5mVHboBa1DBoDadtUvFiUgmOfALhuGjUDX7nFCh8mZUT0HkHjbv3h3Zvv/vz178HcVz/5x8+/+NnLl6+bqiqW+/3+zTffvvnTn959+6fbjx/2+02Ko03tjLptm9lstqjreaiaUNdVUy2W7dXlvK09qh22+w9v369vb4bd+ovPP//ZT36GD4oFNDse9n/43e9+8++/+fDu42Hf5wzVcvb81WfPX33mmpmiBz+bX7788T/+3569eC6HfTtbPPvix83y0rhSNWLP7okfiTHIDHRGzoWW2tZVMxSX9znlfQ9d8iTsiDnEwjTH2SVt9jhmSMUYgf205KQHfzJ0TIqYzDJM4vyCVkAwlgSIVAIwMJgH8qmPIsfj8TB0ZUjtTM4JAoED6frDbvNhvH033Lyz/lAxVKgI5lBVyIgJTUrpB+iG4RGJGcfhz3/+9t///d/W98/TeKwcHp9fgcput3v/4f2Hm9u7zV4KRFVR2+63Yx6PI8XSmcV520ARBnv3/v1isXz16tUYYz+O++5gt3aIMewPo8LdZl1KER1Lnl+cLXNOXX/shiOaNU04XyxW81UxWe/WJd0ZOhcCeT6/OK/bum7qWTu7PD93gJYl9sN+vx9yUgZgj1x/9dWXzRTNBxDb5sMvfvb1i8tacy0WCitQxyYowYTNSEgN8oTSAzxiCASICEIncjgp+ExkagZCpZDQuHfrm3pz3+73OowHkT37dRusajnMkVDK6KMt/DAT1zjjIsPueCzxwCjLy/qrv0uvfrS7eGm+yuNQ+kM5bmwcJhgDjbPiIZbjyy/+X6F+XCyfqJNsKgXwB8GKj8RcBEJTTSmNQ4xDAtHVrNaaQXNVE9UOiChySG6umhCPBAfAezEUw4co4QlIYaLau2XFF4EWzirUmrDxbGCqxVWwrGbouWakXGSMOXoXkGjqNTwWMU95PGAGJVNOmAoYqNK0Ec9okrNs+zIIm6+bENoqMDtTIzUym0KxsqEAs2+YxEC6DG/e3x+7fH/fffXTu5//8h+ev3pV1w05N3WGJqHVVPjxdBCmMa839/d3N9fX70XicrWYLRZVvfTVnPzc0JdiOkm9iAyRyBxE0qPGex3nU5gKAKhql8bd0PWxiBkiMbmKvfcOHBIKkoJBySoEzM7Eo6IUkGzG4J3zgRBBSi5ZNKNkBmUERwFdizQD9VIwmyChC1S1LtRc1b6ZNbPlvD1fzGY1msQcs4moFDMEAjKYynIAtIwiKllEjIzVoBTLRUtCKZ9SB0w1Jen7lLKVDEihqdtmMWuJBAyR2bFmGbp+u959vLlZbzb7rou5GJNvZrPFVc50KJyozgAEUowDoXOeA4vRmLTr0zhmZCZiMoRJum9CqI6p8sioOfZHyNs+HsYyZAWDxmFwROS8cz6MoarrULkqUOuc93VVI1pOw4tVHdxpQBCic66qqrZuR0yGMAzD3e1dTiMxsw+zWSMJ7u5ut9c3H7/zn18t/u7HL2avLpkgEGUAjKlfb/d3a/U11RVi8N7VVW3kEySchE2kAqWYiioRzWYz5yjFIY0pDTmnnFNGh8nnyOjIoKLAqNnGPqVoTHVoHNdAYiYlZVFg9K7xTT1rH7l9UxEDD4nOUZVAGbEy4Sk/yFQRyBDNoIii2TjGkiOBMQIROKYqeK+uqBVEFEPkIlpymZQjaMBInp1zTIiqKqKgMol+CYDAUBWKYso107OL8x89u/jFjz7/xU+//PJnP44lz4fRHzq936R+tCnGSk1YC2v5xBIBM0gJupHWo7sd3TFzn11UbGuqmzZUiEaOsF4sq1AhSi56c3cXS9rtdh/evfvzu3e3N7cpJUCs68r7QEze+3pTE2IuZRjjsRtEwIdQieScAADRCGHSO+ecUUVUkSjUdWhayoih5rqtSJZnq9XZajaftbO5q9oiCDTkLGoQi3TF6mLyaSKTNHbb9cfvvv3t13/47Z9+/1sAnzIg+tVy5QA39zdvv/v29//+b9998/X1uzeb+7tjd8g5Ihqzq6o6hDr4hl1NXIW6Xsybq6tV/OJZW/v+2K1vNu/ffOwOe09ysVyC6uQADSZxGNZ3N1//8Y9//MPXNzebrhcxbOfLz7744vXnn1dtA4iOuK6qdrUEG6T2TT1vFosQ6gwkkktKJYRP0sSi611a72OR4oI2K/CtDjj2OYt0yiNaQQJ2TFS5ebO4stmOirJFKKLmEEBVi4IRkjP2RIZwcnpWg4IKlJWSZEWknBSFTD1Gl0tUzXEsRaIZpnTc3vuiXRePu+3x7n3c3shhSyW74ArjBCpHTGbMamYy5XXbJy6DqRaROI7dfr+9ub0GK8wYx7Fo8VVYrRZqHOqZAXLls2QkrdtQN5ULjhyDqBZRUPa8WK2+/OrLdt5WIXCosW4SYJhVADhvmto7z9DvNY5jSalt6qury7/76U+uLp45rg774e2bD4fjvqqrs8uLz778/Or51WyxmM1m87oJ5KyUHPMwDqnkDKLIyO6nP/lR05wWfnH+eH6xbdsarVbwGdWgdyIkAZQMSbwBF5gakdO+HRnMKSFaYRACA2OFupAzNCYlM1bXbV1bC3PORWIcYzqm1GnOKaEfgcjK0OYBUx9IZ8GhC1RaqlsOM718LV/+XXn5xXh2WbwvedDhIMeFxkGLmSIqZ6OjwOHZlYTqU5UCp+i2J+2kKdBkqlwmo4FJkzexZkxVY8w5axPYMRH5ug6uDci0oDlXYTYTPuYU0tHw41AOEfXUCTrZNQWms9a/nIeXrVt6YFBn5ohUpcklGxpVGShpzkMehhRjJueYEMBsUnMq6A+RGDDQYpKsFFUDJVUp4giBcrEsQM6HqqpJ6xDqUNFEM0RiTi6LL5h0cjwBM4glj30ahzKOpQC358+ons3m5kNlBjAVLo48s3POe+fYT1Hv/bFjcCXp8dANXe/8PTrfzM6Wl59Vs3PCGoEnXquSASWAjmXj800lc3woYkT1GIdd36dkYOTQo0OqOTgmRsCs8P+n67+eJcmSNE9MySFm5vSyiEhamVlV3T3dPdiFQEawKxDBCv5wACuQeVjIYrd7prd5sWTBLnFm7BBVxYPdiMgCZP0p2JVwczM/R4/q9/2+qlqXwFcFMgWsqrKA9wyJFiWNipVsUtGqQ/OOiRhj67p12GyDzqYjBAjbVbtuGu8CAs9J+rFuuC5FUA5VWBU/aMIMF7P8UpLioj589k2Yiqp8Ejp/etUKpSAAcIVal2+Vik4pLSOtnNLlcD4+Hu7fvzudjlNKc5Fk4Fb7ra05XuHmVcCpwoOmS67SBGq7brduVk2Mw+XxAZNVUFp8YYgQGNmhQ+48MdgywVHTfprOc5mSmFpyEB1554P3UbJpJo0Uo8MYQAOSAVSdTT4xb56vseoSmg0AYprmefYUY0TAqjAN+f7+oQzzA4PMN5+9WFXdmyoztOw2Pl7FZuv8pUi1uZpi9M7x8j8YmoGqVauSc53nySHrqgNCUNJi85DyggZ2VFxJCKRi1WHjpWLNVpIQVyBgJDOVWkRUgE2YTXMp+osGpgMTACEypmUh0FqrmIrKMl9gQiJaaCtZLM1JpTTBLWTDEDg2MRgKYCZPYiG2PrbGAKq2VM6MbWDHDgBEIMsS+IeOwJESVK1qucA0X11f/Te//fY//sWv//K7L1+9fNFsdscp335Tb3rlnx7kaQIKgChWBaniklD/6QE7XeDnJ/j9Pb7pfaYuVZzHtG/K1ZpWTRNaFxxhaDJYTtMwnA7nw/F8OJ0vjw8Pb96+Hfp+CaqfcmHm5wG44adpOy5ITEUEYkJEWqIfABBUtZpqEeHQ3rz6YrO7OZXXwOcQ290mfv3tr7/+6uUqhhACuYbF1Lie+8PxeDj3h37QEPMHvUIp5fD49k+//5e/+7v/6ff/9s+H9+8dNwKBuH314rOZT//0v/wv//6//f0f/vUfnx7eG1ST6jQRimN0TgOp1XnqxynrmM07d73r5HLdwXAk/elPP75/+3h6yt7R51/cdm3bNG1sGud9Kelyenzz8w9/+P0f/vSnn/rLlAXQu/X++uvvvv3qm6+6VUNYI5a5jJfT/dPTO52nnclNSWxVlVNO/eXUmFZ5vpYpld//9P53P77px558iduADZwvVaV06+zi8wpioMipaQyZ7mbHRJd3oqmAGRqaVbGFmIPLXkRSiRQFFWtWQeWsJsRQ5ixGMhMYQzT0yOSdSxDGPP/0x9+hWe7HOvYy9SDZgTIiLmdehFx1kFqzNA6sFQ7LKP75KYsxfvXVl/fv32/W7XrdzWk6ng4xeO/d7Yub25evED2QRwzsPfuADKIF2YJnQrMqoIpIbdtcX18T0ctXL1LORCiA2UAMldD7sOna4Xz+4+///fj+veYKopuu++7rX/0P/8P/9dff/cZz/P771//P//E/93/44zD1t+72b//2P/zVX//1ZruNMRLgAgABUxGRpV+uWixfX+267rmIQQMqyIW8RyITJwrqyRySAzJjRW+wZLMYWSEUQmQwNgKwQiBohuYAWkZnLMSFOXssRFhkPk9p/rE8Hm265GkaSs0KCA4BCCo7TJ3Pm66Gne82q+4Fdruwu5uuXqarV1O3zRAMuFkFWnW22WjJKqZmRlAAGGy93nLzaZz0i0bMJ03M84L9kfPzLOYUJI2Rc+BUNGfxDto2rDdN2zUxBOd4vV9JlWnIq9NkYThXWx1nB1gWhBLowjTvPL7ahV/frL65ancNq4iJSC1SS6qWqk2FT7Odp2I9noa0mpum5Q96TTAjM/oIGv30hkW1iCatBsqigrUWIodA3vFm1ZQucpkiw7rp2tDsVus5z8M8TbmmApeUnvpzn0qRqiKoUKtNc7kM6TCMq2HM6GNFRg7exabpumbVxdh678h5HzhI0c1qv13frNvrn378/scf//DD/Q+H00O72Xz7V//tyy9/s99+Hr0nmVQrMDKM0Q6t3rf28xY2Dp5jOqpIP02ncUB1jqIjZvVcmYDRoYBlqUW0qpRiaQaoGAwRib2aMwUpAmr6ofe1YBcUVRxAF/z1tuMXsOcyXdCp23VtdL6qpSKP7873h/6yHa82brVS3JS6NgtoZgoIqqZgKogYgmNHwCxVSxZTBUB8Fp3bRxwJmgWTFUjLvnHWmFCZp5Qv43z/8NgPo6qllIfLeR6GOl2slhVRcHDJamrInd+8ii9fNf1g9k/T41zSYIE3q/2Xr24+u74azod8/Jknm1WSYFZmR6vWtR4awpUDkJrnLFmNIAvMonMpKlWqFUfB16RlFjeVdJnIOxd9iDHE2GiVfrjQ5irn5/uiqmma+/OlzqIVFyWl9+y9885Jrof+dDxeDg9HzTnH0F91SaSq5Swd2cqHz66u/ua77wq4f/v57eMw5JLzyMS0sIWcZ60GQKI2D/NwvCCAA2tiNIV5SuNlKqk6IvQuUwG1mkGKZ3OmBOqk1KnvQS04DMgeUM2mkmaRKvX940Mp5VMRo2W2mtEWbwsCgMkirF7uJRKSc46ZbVGTq4AawQf0k6EqAJEPEYEtV2bnvFMCR+SAWMHAuAIDqBmJUSWuBKaEFiCTgZZKqtHDZ5vm2xdX331289Xd1Xq3EddGaO5e8quHYb/+18YdSpUF/oNFuAj9wjEgilNyx9G9u8DbwTSCCORZAmkxVGQjmLUcT6dx7Pvz4/n8eDgfLv15HKfL5XI4HlPK3jvnfFZw5JDIzGqpImJmROiCR8TlU/gYlsTMzOC8Q35OlvNte3X3stte49tHMQBkH2K33rarHaGi8y42UFXHOZV0ulweH58eLn2739cPFrg0Tz/98ff//o//9Y///q9vX/9UxuJ9fv/u9ar7txf7m6D0L3/3//nxd/98ePdTmQcOjpkCAzoOnrxj77kWyyXlIU0ZzJHbhkjKkvM0Pr79+f7nIWe43rVX+/3d3YvVeudDg+wkjeNwOT09Pd4/PD6dUwVgDJHBMbPV0j/df9+f35Lm49O71z/868Pj2zqn3XrLALvjgxCP0/T05o3cviy/+cvnaynl9ePh9dOhSF51Ro1p0MkETNbeYgvP5y0Fx9C01QcS8ShYeslVCQQUDVQB0FABRQXRQAqqgKFKnVDNeBbUpSMAVcsAJgEbdhFjwwBkpcy5Dgcr2abRcgatRMR+SRhRVahIBqYqgmbVmFhbj/ZJd7Varf7mr/+Ddxy8i97H4GP0MYSmaWLTxti50CIHM3IuNF1LTFWyggAIqJgoAhCy965pGgDYbDZmGkJQwLmIIYUYvXcO6fWPP/x+nufzGWtt2W1ic3d9/d03v/rtb39tSv2YiHFK0zSOc5pC8NdXu5cvXzZtW0uxupghlt0cFaBoTXXo2sa5Dxt/ETyeeBjDKsRASIYEDGgGUiVXzJKJXPTRMbAtAazsCMhUTXNVQQVGh9goEkAxMoVZSDBSd1VWV0dusqCbsl36PE61VBNgxOAJ2ii4Sk0zFHLYpfWLtHtRr17K5qY0u4KxZkUjDM75YBwXQrzYIuY3T+aaFvl/P8VaP2BP6PlDWNIWkRRQnbPGuRy5mg65gAOqFtEF5FTVCBofgmfvvJIbKl71tXN9AJMPmDgEIdCG7XrNr27il7erbXRpziXXUqkKVeM+STphltzPdWI8DmU7171aXPAw8OHN/f83Y1ShmmawxSUqolwd58jcUblpHHVBxtw4Wntad4FcLBIvI6VSVLmffMPl0MuYoQpT45q23V7trl7cbva7dtXFRXTJoY3NZt2u103XxqYhJiBGNlRyvF15osZ773CaLo+P7w4Pjw+PTy5uAXz40sX1xtuAUETM0dji/crer/FhhWeGT+OkcUx9nwIDOG8OAVELqiEai3GpWNQqWBUTEzCsSoikKCaKWUhMCRnZGTtznryzQOoFrGVYt3R15UeqY4tWuQ0tAk45l3Gchqm/iM55GMNuQ01FIgJ8Nh+o2EKzYSakZy2iqgEZkgEjLWCuX7wIITBEB54Mah4vx1ztkuR4GR8eny7DVKrlXNI8QsnRcsMWgw9ERobRX11dxRef2+rzSzxd3v8wH1ikAuBq1Vzv13dX6xWmu00zrf1Y3SVTmYwANq2/WofOq7eKpaac51QAoM+5zzmXbLVWtFIxq7paaYl9QWCiwBxDaJqoVc7n0+blJ1E/PE8t61hGUwIzZmYgENAsJZd5GNM8ASgSCmqSOs5pnFPtBNQQbe3dr+52pdw2rA/nSzbLasWM2DWrrmm8j4QIOcs0pnNoyGC3Xi+J4vNcTl1TiwTnAWHWkrUWKSnXUhWRAVnF5mEyEW6jOZDnc5mpSiopl/xLvL2T6ay1gpZFoYUAZOBgcfACGDBi9N57t+CRPKMtOFjVsmCPqpr32yYQUioVTIggOG59bDFMZawiVQuw2YK2FHRGjMRWIouzqqV27F9eXX9zs7kJEMpYL4fCBF1o3erVvvv65vjl7ubB/3wcDmmavBmXbNMYU6JPF0MVY9LQlzqWRARo5Kh6b8SgpHOdz5enn16/fvvu9cP9m5RGx4xMYJBFqqksuc8GpkBEwUdEACqai5QqopozAiyRpcTovPvQfmWpJUQvhUKMTbde72/a9d6QS5Vac8l+mObLMDm0toO4ciClH4bD8XS+XM795XA6Xvdn+dC9GPvLv/7X//LPf/e/Pj0+aIEYgnOhzuOb73//n489Fz2/+Vnny/WugZ2fSi2iDpEdxUDR++BCTpLHWryiluur7V/8+ldfffliu28PTw8hUPAQEO7udt/95ruvv/vNen+LvgXSqppyTvOc55wLJAAwJKIxj69f/w7dRMETAVrtL4fXb354enqch7EJzZvv/3272XPweU7H9/fpN/9x+k//F4DPAKCKHKbxOI1NNPKsiGZYkZk0NNZ18JzCCkiEzpsBMiNWHB5xSODUUGypmg2hooIVErGawASQKrGgCmCugOTQajVJ84Bg2mAgc0XMhOcp1AxWyZSdKmFVb0DIjEgLOkTA1KCaVRNT4eysVtFPqP7tdvvf/Xf/59/+9jdMyPiM4FteSEzkkDyyR2RERlqo7dVAzYQAmJmQDBYTK5zPpzdvD6Xkm+ub2ESHwEyddyZ6OR3efv/99//27+9//Mmrtl23jrF1jhFrzqd+en//7v3D+6fHh5zLw+P993/646uXd+uu8Q7zPEsVMqDn1HIwxKq11lEcfBqNpVl//gGfDs3Vervt2i7GGBxzrXK+jP2YLSlyWK9WMXoHNTjqYnTMYFZqnUoWUw7smIKRoRupFmQxLoSOW+uubHsn6wfrLwaE7FhR0NiFsO5C21jjJ2pzDVKa0bbJtjk3MjpUFiYTBW8VzBoE9mpeCi7u3opWGEWDfeywfBKXLHrbXyaDARoaMi4eXDMmCwE2nSu9U5RLLr3aYFQwr2d1UKPHtvFtbGLTxabbbHC7yg2DByn4nDyABgw1EK1a3G7dZt+smGuuFcw5Js/O8zSU/tA/zuWYKjHthrqfNCu0APYMDib4hLeBX1yLmSBUXr4npBVo9lxaD97OJWjT+KTREa1cXcXarBoxdM7Xis77kt11Y8ezP1ymZETr9eb29uXXX3757Vfffvur25sb72JwMfomhtA0Pgb2Dh0qaNZcSyrLqa1tuPti122+Dp0gp/f3b9+8ef/zH3+wUtc8b15utzE3VKUKw9zyaeUOnT81bqYP/XEVmHuZzhVicNEUVECLmlYgBjGsggKkRADigplTySJFUlbA6r04tiX3OrJfu25NXYuRzRlqxZBcmFbzRDJ2mAoXC7kYMZQ6R5IhzadLTdkNpdlgXDc+OkSngKpFDMw5cszLeE9UzZQAgZmWjJyM9RdIeCIK0fvoFHQYL0+ny/E8nIZ5mErKkoomgVoNpQaoLZtDcyCEhoHXu+7rrz/zLz9/yKs0DMwMhIqGjE0XY+tNK0Bdr8L1zaYTR730c89A+3X76rbdtGwlHe+fUs6XadJaDvN4ytmyopoDq4RFAEn0w9cAEQkwBrdZtSZyPh1fXi71g0GBiJrQeB/SWKRWQGQzKFCnUiRVrWSwXnWr1cpEVbIxXvrL+XzW/d7MpmnSPF5H+duvNn/z1W6udpnrZSqnKXETr1/drtYdkknVeS4p1TIXB7iKPjgGgLnUQz9V1Rj8OM8/vnv/5unw7nwWNFkySQkMrKTMau1q07iQiywyDweBK7VdXHDZz0WM5QuIfZRiwYes5A8WdXAEMfgQ/DJJW+JsyBSNDECrZasRjNrgPGUHngTq5Fy4WnspjWZKWSMrswIgMKoiogM076SJEgyQaRubr17sPtt3TZnk/FQ6lhjYrYILoQ2vds2316vLdfO+wGwSiECoBvp8jeGDvkfMpqRzEpHMYJ0zNMxzqVnP/SMKlen88PDmd3/645u3b87HJ0Lb766atkXAUkTUxAxFF8qt2rOEEUiX05uZLkN3tY+7mqkqgDoXQvQhhoIFiBaWELHzznvvgndg2vfD4XSODtXMh2Ea5/f379/fvzsfz/1wmeexlF8grnM+vnt9efeaTTbBt8EzOVGt/dPPjweqFrVuGr7ad4j6dJ4gF0fMjhqPMXB0TAbRo0RuAn/28uq3v/7661997lv2Hrf77XBJnvCzL1588+tff/7Vt81qb+gBsqlKyVozgRE9YyRYrB/6+zc/gpyQFVHBZJ7H0/Ew9v08TgnJ5tOl60IMWurwdBxv7/RD8rOoTnmayhxaE8QhCRYtFcgDoBEa8+IBRyQwVED0TY1riGvLZ8NxGdrah8QEBADUQlLBlIkMoEAtCrUak4AjM62lAlowVRAVAy2uTlQzITChcyjGqUI1siXYYTHMfjjAmxmqcAWotXwyKECM8Ysvvrja7xeEA9KSGomLIGMZ0QAy0sLvMQUzWEituojpmAgQSi7ny/n+/v2//PM/nc/nFy9erLpOxbz367aTUh7vH37/u39/8/330+ncsdusV1fr9bppArPUcrmcD4eliTiIyDBc7t+9e7x/l3/1FW5XIBlEwD5mnZshmlaoFUU+ji40z+ndj/Ob13m6knGLmxW3jfcBq7jzQP2sQ0IOtN/7NjoQ5whDQGJEIBFIGVQhOmBWYEWn5KtRLjgjQ/D1lOcZU2VWNmNVfGaMEHWxoXYFwSeKOdl0nk92nidX2kxxDO3kfENIFNgmj5HUoapJBjNAxkqYCNPedNXAh6zBZfv/338hKKgKaGWuBNQEipGBcKo6zfk8a066bjiiOgZyGNtmvanEccxqgJGpdZhVq5EBEILHJWEGBXBSqUUezuM0JiBUJvH2ONT3Q36acl/UZTle5tN5HqaubdgUn4G3qs9wpV9chVWwrJAqVXVBvc3IlwipYzOcspsr15RzAVUhZlqtgwHkrEmLQ4vOmk28auLnN6Sxpaur1YsXN19//vLzF69ub7brlSPvKQTXeO+8W0JhlLSqlDoN/fFYinAMsW3bzeb6KuR8df/u9mq3u3/7eDkc7kked3ZN29u9tVGtCmt2OAINhacyfhL3qULJVmb1oAVk1oKOjZ1nYF6maR5AgQ3YmEHAstVcbJwrowWDNrjOhRU0HYS1xjX4CI7FLR7XQpYbTK5OrQ2FLjkMGdFjUdnnhGZDKpcxz2KTWXKwFteskJ2pAREwETOhmapJEalqRsv0AWUxM/0ZhLCqTCnPuRzP/dv7x+OpT7lUBeaoSilbrcqgnoAJ/UI+BEWAbeTPb7b+dpMP8ETCJEgGqOSw69qmiWZSalZQH7iJLXA9Hc6OddfQ9SZuN7Eml4axpDzXkmq5zGOfC1ZgxYBoRAsTVJ5VLgpgoBACqwqaTinVUj/uLwjE7Jm8WVURWsiDVQVlkcR7x95FF7yojv0gAMM0D8NQairi0jSUNESsm7W/3m2J3Wkol6mc5+y65vbzu9W6AzQRy1lrNRBggABKYGY1i/bVFDFEN8zz9283f3hz/y8/v3scBnBYqjwjJdUYMPoQQ6yajTC0TWQj4ab7c9gdljMYAThANkME5CVCSdUMFMwBtCGE6HNKolVrQS3IngEJHZqaVKvAJtGRRSSqdXxsqH11zdtV1zBNI4QAziEhI5LZkixG3lHnfUMQxe2a9avrm86FfHw46Xy1ibhbOzmjAVC56aa/eMH8VfMQYhpLE7wDtcK/+rpbNx8soyKXfhz6s9dyFfnFhkT0zfncH+Wn+vQa8ni6f3h4/+ObN5f+wojr1dr54JzPKZdSRUzVSq1myBTMoFZBRBE1WzKHmFABlBQX61YpiQiZMTbBMYUY1EykTtPUX3oX2i7Gq+0G0sZhOZ/PgWyzbmutc0rn0+mH7//48O59SjmViiDOfUqcJtBoZets10QXfOsYkUq1cajHYXLkXl3v99umaTGX3JdawQCJ2BiVrDpAQ4lOsMXYdV98efvtr7/+9te/8tE1jf/+T38U0RjCF99+/dV3v3nx+Vc+dCqAZCACNRHUpqW2oXk2UUtz6Y/94d07r6e2A3amYlWkoepaV7kFME8aNEVTJA0d7TrnPj1kqpLUZmE3C8lhRkIVdqy5lJTEe2AGJDJFRVEAA0yAFIEjyKQmsEwCaBmOGJCZmCGQ956QFxQXqTCCRwMEtzATgBYOAlhlqx7NsVu0/8WgqJg+JzHgcwADLTF+KpBVUcHkz0ITzUxERHTJ6gYBAFh6gYvdRJedqRb4IAr8WEsoQJGqzMH7eRx++uGH//J3f/c//j/+769fv97tdk3ToEJwbtV2JnI+nc7H4+Vw9Gbbbn2129/tr6+22yZ4MxmHfhwutWQzBdBaytBfhstFS35eQ3lphpuCLQJ9BGXEQPTRJFxLujz8/PTz77jc6LCdVm3Xtk1sAWmecx7m8TgBuVYn7hoBTWAXVULywYvhlEsxQ/bIziEBugJuqDBMNhWckcr5OPzwoE9TzGDGY5acswG2zrdAwsFiq8jDMB9Obx/fPg0Uq2+42a7WN223b5oNt612jXiuqFqqpYqq6FiREvL0xV5vO+g8fKAqqSEpGCHqB8nmsyQGCMXApBSzipYteDJkcuh8NjwOSco0HC9rz60PinYpMzjuNqem7Rof+z4Fpk3kcZYkIogesWUfuSmFni6lWl/n9PbHp7HP6HxFmswuSR771M+liGmW02F4XPnj7aoNLgRyiCBmS5LSJ9wVgIFlgLnAdCGdIqYGBofHBlJHWEmCK7X2908PRSuu5hWqXzUIBE/TPPWWiiO3ipvbu7vrV1+s7l7w9TXttrzp2lWzaVzjITA6AsbKpiSGaohqUiCl+Xx8fPvzPE/tdrXarsEGQww0bzq+3q42Xfd4HIbj+f7HH6+h+wIatyNvBWqtScaSz0V5Bd+lX1yMglXQagVE5qk608aD94t9lheauBkYIomqlSLjXMcxt0xt276IqxfNdk3RVXAKnI20gAqImogDi9G1AWJJzCCM4oMVr+w5hKY5vXs6nPrxfJmHlMc87fq4v226DbE3iuTZMaFUqUXyLPKcFoj23JlVNPuoh6sil3549/h06OfH4+Xx6VhyaYKPsW27dVUqltQKmhGB8xQdBAcmmnMizfuWY0fvj1Ow0VEmLEjVeVh3bde0MvTDlE7DmEq6u9p7cv0K0erW68pD1zhxuLvajMMkpmPK85zmVEzAGSI69o6X2ksRBaA+xy+gyszgGR1T8O6jKxmXdgI4Jq8IJiZFSxHvXIweGaspOPZNKKWO/VyrpVnmOaV8SaWOc1/mRCSN4wg1snGoa4aXm+jasO60jYWdQ3IADEhghCKWZslJSlFCiB2H4DxV3P3Vt5/94f60/Zc//PP3r18/Pg3jrFXYwHsfiH0ILgYyQ6bYNeiJ1Lfdn7uTbtYuVTxNJEYMjoD5Q0C7AQiCI3C0xJeKStGaWYUcMfCz5dK0Zdivwq4LsuJac5a+gfLFi2uK7d1+lWYKPrLzTH6JHjBVqdWTdZ4bJF94xd2+21rW+3OSiWCx2aWj4qjZu3L4+gZW3+4uV1lyF7xzqFDnq+/2XfPxLIZoGIlvOiyAay5jypb7y7G/PKYyX6bz0/l0vD+dRWTdrUyt5GIK8zSlnGsVM0MFAxWppWRVWQJHlib10pu3ZaIqNZdiaqVk0eqCM1ViZEcAVmuehkvTtCDFEzSeUKGWPI4jgdSSp7EfLpcyj6CFQBxZIPS/iEsmxC7QvnV+FX0M0REBisLoOAIE33796sV63WQZz70R46IGZwNP2DhqAwew3JJEWu/W+33nPSoIAK82q29/893VzT6E+PU3f/Hqyy82uz2xU1FUKfN0OT5N/Tl6XK3CIDVn1aqSiqWZikVDh1AMHCIFBuc0iqkhoGOMbEhQPbYe+eOybGZStVY1Lmp5qszgg0PSUmrKYgAOAIEUQcAUQMAyEjSMDRQQVfNLTNOCfF7w7UBM7EJAJEwFQBY6yPOHuOT1EQKgmoAIPIemPO9viAhE8AzW/JQV/vGli1EB/kw8DvCh/f/MmnheqJetB563zF8ceD78NYEBIgJoranKw/v3//yP//Rf//7v//1f//XNw33jfPCeAYJzXWxAbRxHrcUBrZrWIa5ic3t1dbvfdzE6IkfPV4kIzrkmhCYGz6R5LtMgdcnp/fBml5RhUxPVGD9x+E21TFYm1kxaNEEFqwbE3pkFxIbMoDrJXBdQg5Zaq1gesajNuQqij61zz0HxDAxDTu9Pl0vSKqW/zI9vcHwSnaHoLFYMiFAQikmWylVEZRqGaUxTklGhOk9hZd1eup20O27X2rSVOWvVkiFlUkXnFGg2HOsX+rcvALoPN+xTP8M+fPT43BxT1AqqDAKgTgGypctcxxSJVtH3VJNWWGIFC01ib6c8mNKhts247xpWA7DWc8jKC96e0LEXpcdzydrzAfKcju8uZZY2BEUeRPpqQ5GigEQGMI35dJweH4cu8n7nXSAA+f+lxAAgWsDS0AD4RHBube50jNKHmmKFgriObt1aG4mVula7tnRh1oJUJp2mMheKXXPd3ry8+eK7r/avPqPtDroojpGMoZImQkUTAFJDw+UZR6uljPP5eHzz+qdxuGyvN9f5ylNxPkIaneToIHpC0DSX44MeYprWW/XOh4KgoJCLzqOl6RepvM+AQVDVUqoWEYcEicwBB79QXRGJxBRRGGqVusRaSyS+is3Ldv0yrDrlmmZJBaqaosGCOzVAZE8EBlrV0eLASdB4jDvfMPusUlTTcZiGJLVoFcfEFLrNEvtIBFDFtKgUEwVagAKmomKov9TF1FoPx/Pbd4+PfT71Uz/MaODJYQB+djrpc7woGiM6xuBRwUbTNE/nw0P02+Ew5st7zWePiYO1zqDOaein8/lwPh/7XmVmq1edg5drB3q7Di0TKRhy264MaBznYkUEVVAFCJg8M3vvPBE7VUERUlFRUWYwc2pACETuI75LxKZpnlNGZO/JqvLCAQRgx+yZbGk1mCxaEMV5rtM8T+mSmqpQ2GP0XRMdE6FW0hwRYxNDA8FyEGVgckwckNhs4QOMtY5UEjkO5LxHIqB29XJ702y3j1nOWZ/6wdEU2hAsYEVUNYRiAp7IOwrOCGqRUj91lQDA/fbrF6ehlHdzNmTXOGMsiUQIzAiFyCFqLRVNStZaTKppRSVWZmaHyqT7xv3qbv/qeo2aLsP5zft3bajffr6/edXkeqtWHQdmz+wNSERKLtOQSHnjdyy+ngvOGKCd+jT46HzwHEA1j4fczymNIOnFXj7b3GJZLRscYoWa+OaFa8PzlZDbr7afX92tNnCe53N/OB36sc/nw/n48PPUP1qaaxWpwN579Jr1+HhQs5yzAXjvHRMTI0DNqeZMhLjoHRaYLpmCmtVaS855nlMp1UybaTI0513VSkTOM4HO42V0brwc8nDWMns274gQpmks8+Q9o9ab/WYdeZrncU6XOQX3AbIPwEzrTbvfda4J7NmzOWYmd73jV7eubbav7l4hwbuHd8fLIGqlShVBx76J6ybsusaikBYBXl+tvLPXr3/ox3O3artV9x//D38TGo/Em/3Lqxc3HBjQVCpaHi+nNz9+//D+tXew23bnMs1apFok3rXN7brb7cD5BaoMaM/kU7NnSI9zKDXPycg+hQ+YgWaTDFJQBNQEnbqo5FVEclJEW8R8hiBGAiBoBQEahGgZRUUXcIKJGS27Mxk6cI5CAEKo1RgBCJjNkZnKkuBEuCygKmqiVTRLYRYPTpEX2Vc11QUaAR+4ImpgSgBMjBwc+19CCD8AdZ5/iQBitthVAAzBCGCpfRfp2WLxwyVDlVyu+XI+/+mPf/qf/9//03/9+78fhzEAaZWiCo4rQkozmpnWJadPRHKeEezm6urF3d2qbUOM+912t9sG79lx9OFqv//q8y/ubm4kT+ene11+9oObeLl8FbGijPRRd8VMXdft91cvX3623+3AzLEPsWWOiNy10sZBVNsmRs+eCBFEdJrTue/HKc25svfr2K2ij4EdMyDLdKn3359ev09pKmOfxxNLKs47MDUiF0Jg57lKnqaLlCRieUow55BqYzYzaD6m+b2em+o6Dg3GVpFyLVIz1gJmQK4ojEX6+DeS/hbg5uNj9kkTA8+R00uWGFo1SQQag2f0jiLlenpz7E/jluyLXROVchM6EFIowpLNCC8pX8ZKmK7CZeOp4RCYo9NoRgAOCYD7Wcd3Z7vXitXUKFuHHNkcgwN2CMvy4RiJQESHIT3cX9pIXbNrPdtziBPYL0poJtl049X6OMl7TMcV5kZLVPVWGAojXzVru+1IoqLefY7Xe7fFNCVx48yzVHEurFa3d6vP78LtlrYRvaFVZ2a1Sp2LiaFHdGTLCmeOMXhXS730w8Pj4ccff76cn24uGyvTtguuWdVzX84XSYNpIlIpOPR6Otj5jPOKVw5DMEJTBxUKe/h04icgZ+hMQa1KqSBCjiYGcp4ceDQkZgYPQFCBSsYqHtE1fL2Kn++3r1brrToacx7OZZxAbRmGKHA1NHJcPYE4KUGgMR7MVW0FY9u0W3ZCioxa6/FU61hHxGGVm47X2+gd02J3NEJzqABioktKSa1ajcSc2oeGcsnl4f3Tmzf3fca5mqlnBClapnlWrUY1F6sKtqREEJIL3gkhTOV4Of/TP/8T/vT0ftDD8Zgv98HG1Qo3TobHt2+G8zhO9w/3h9PZYUn96e5m//VvXjWOq0kxmIdagRw3MfJUCAgY0WMRMu9cbEMXQwieiT8a9HRRbi54UBWVIhA+ntRKLY+H4/F42q33bWwhoENgxgUZgkQOoIrMwziNKU+Z2E1zGabUj5d9Z23btGG9Xu2jQ9N+SP04JUIjRy5DkVpnWISlS49dBKSkMo5aEqo452NKLngki9v9tttu2vbl3d2Lp2H9+u04lW23s4zHcBz6fs5JNXEbXSAjm3N6fHp8enr6M3fS1y+2707p9VEoQwhxKXUYjAkMoTISAYGCVq1Za0YTBmMzB+pMHKg3WbNeN3jXMRp2ALjFdosvVnazIXQdoBIyokdyZiCiecaBBSp3jiHTPJkmc1KTiJVas+SsOYmijNPw9PiOsL662zXO1zKJLrn1stCHP/oTnHO7zT5fz7EYns/nfsgZ81zHfnh6/344PTgzQFaORAGBRXQcp5xzyYWY2rZrYqRAQKhSq9RSMgDGJnrnmR3x4kyqueQ5pWmecs4immtFx7GJYBrYe++ZqeY5z72WiaFEh46BQM2UcJGFGxGGpiFH5ticU+ebpiX62CJbjIRYs4lIJXPO2kjr1Wr/6u5qe7ffv7j0w89v314u0zjlaS5VhAMgcGDfOIeOam0UqWlZ63z/9vXj433TxFefvbr72//w6qvP2vUqrva+CchCKFotTcPp8Pj655/fvX2b5vRM3kUEMs8YHUcmj+AW0CcuSFREJsBnABqxgTyDMD+dxZZZyrNBFojBefCNOg9mKIKlgrEhAyyxugC6tDv9krphVY1VFxXKklWM9nF+xsAIjkzQjAQxq5ppMUFEZEB6JsarLjm8RmZ+4V8aK+BCeSUEJDZTMDBVUsBlB3o+rf3ZUflZYwxLm2cxyz6TTvHTTmpqzwT3D3ofA4Lz8fS73/3+H//hH3737797fHhsY4ze98MgUszQTIoYmhnY0mwRrVOaUkqARgg1Z3RkIqBqJmCKAI65WQJ/LmdN/TPcHpcleoFeSC1VUgFEqc9ffkIMjrroNo1bR6qlAlTUtLApiSw4k6pQZjUC74gQQcmS1cnqjFKZvFcXTRp0jKxGWA61f5uOP83jkKax5JEMLKwie8fo2QMjEIpp0QK5ajXLhWphEWfqVUXACghSQkfkyQUgNlUyRVNVrYq51DmVfNhrSX9+a5ZIaKNlRKECpp7UQTUrRBaMQLFMdZrS1J/Hfq6TOsPlkSbgRWJOaAzMxqRCiB4wIDKAQ2yZq0FZnm6CYgpFi9YkmRFXLnjnPPOSjSxiVU1wMbuYqpVSpzHNQ5JcTd0vtLyfXo5026Tr1TCX3mgIWr2YF+aCiAasDcv12nsMSLi5krZRZyWVTDVTVTRG8hw9BqpUs06UqxPP1WlNQ3+sNfFiYXTBOWLC6lCYxim/e3f44eeff/jxTX86TsNAopsmrrvufBwvD095GLUUAigGU7LTRe+P9XrtVi35AECy+O+NflmSwZI4i8sDx2Amqcxs5MShkPOMigb0bDkXQkPHFJzbdn4f/ZrJlVrSlIZL6kc0W8ouIy/owZkJMChLJVWv5gWoMAF6H0LTAG1E0nA+z+PUZ6lZNClWdEzOMYKZoAnZUhvZ8/piaou64M+6ZGZWK1Zx5iKxITqCyBCZWkcVMFVQ0VpEFdQ8ELJzgCiIYz+Mf/x9DQ+jUE5J5+OK68ttvGo5nZ/G4+E8pcP5lEohFpmGBla//uzFdt2dpnway3HSJICOXHBCrC6QL1MqRc0z7lpug/NMhLSo2glRDWoVEa2AKlVzii587MQYWJFSpC4CUDRbZCQEAGKCFQykiuWKVRcufSkyjnM/jrnE7XazXq/W6zUjzGOqRnUplhbdqKqZiGQ1VSQFEAGtRXMCrQQQzKgk1SKSBSzsTsUJqIBZzUVKRUNmds4RUzURM2TgwLGNAiK5ljnbL9p97m4XUzUfGBmcj14RYGCzyGSEMwEyBM8KppKlFofgGT2hM2WpzmqQHOrsU4+TWDl1mH/92ardhaZCPWQhNTBTMVW1bIYqVkuZ56wiI/U6WzpUml3Lu6Gv59MZ5no69dSuObb9mF+/q1qTiqFOr3/4vu8PLiCiWim3v7n962/TdvehiNlflSJ1KLFQaBP6JHIoU8rjXMasiMQgXMmrGoLBnPI0DWVKhKSpWrfCNTnvwaDM+XA4iMlmu+m6LoTAnghBtOZSUk7TNJdSFnne6XRpUm4aH7vQNCFGDyaqNThYtT66BqyqZBPXbbZMYS41S1FIBSW7AK3r4ma1ueYPllEpej6kh/cTOGeE1cR7Wrf56y83L1+++vyzb2KzTz++fjqNb94+nfp5SlXNHDhVRnAm5hx0bayAYDKPl2Gcc64GMJxPu91qs19dvbpa75pck+EQfCwiw+Xw8O7d69dv3rx+fz6PfZ9KrgDGDsiZacnZjRdFtqyogIRMS9okEQEsC3URrQYCn1YyRCWqRIJYmFyM3LTUBAweWNRMazVjdU4AzFQQ0C1BLGRIJojZAMQULJAtId1oy6wVBNEQjcmYRKAq1FRUy1RL9A4ZmbEstZFhVVy2dxZd4tjAUAw+GEIUFE3B1BAMmcAh8J8Tr56HQvSRRWIGqmAGaAvCUcVEtS4TnMUag4iIvMiSf/zhh//8n/9ff//3f394fOza5uWLV2Ly808/DWPlZYNXRQBiQgAwqCr9NB7Ox8fD4eHxcfOwcW3z8HA8Hg7zPJacUWEa+sv5cn464MzRgVoxMCICRFVTEam1zDlPEyDVD6wIAGXLTnpKB5iS5iJmGUmZjUgVymRS1Kp6pnUbnCfTWqV6y52rHqpj9DJg8oaxIKdiY/9Q6qPBmWAmm61OVXE2sgAtBQauasXQMwOTqRIIQaVlJQVkIFrskaCgSSVpAWbXxNY5R+BKlTHNc01QZivTp0DFZdq7jPoADVRFbJpZq/fQOfMEqGi1DtN8eBrOlzTNdZ7qPNt5qA+neZqFAQNR6xnUGq3XZFebsGr9q23rCJ5OU62lY0bDolZAhYUdbFxki7l4B7hrwspTyziXklLqs0yCCojG5IBQCWkROVupWiow6JLv+oskGCbbhHrT1lRVCK16yIBKYKRiZgaUGwftNrJjHwwBpIrUCiBAigImUtI4Dgc6Qi2D923jGnTNNA33b3+apt770LbNerNp28hMC8zw6XD+3Z/e/Pvvfv7+x4fpMqShWBKUsmnjPMrDm8N0GjUvEi/MCqdUfzpMqxVsto0LiFpzLqmUIvqx1a9qJasUo2bJRzCtUFMZy4TFiaMQw/NYjaqAilVk9N510dYNRVVKaR7LNFyGoU/DyIbIZN6hF/LIRqBkoEVUJDtJsczNPCFund+x99SE0rWbLl4aN+fKTJFdw+wdMuOzXaqaLGM9AiZAAK2EQlpIC36cUTrnbjarz292s3IqNs8ZAbro1l282rYVwJ8HOo3HMtdqos6QjJ0qVMB+Gqf55wzvKzhCbFnXu/jF9WYd8PTUP13G+2GeSmLi1jmYs6/pbutevdz2lY+TPp3TeUpzSdm02zY3AmmGlCVLJZCWxaOaLA8HIJF33szmZFXIMEhVzbjvnPsw4yemdtXENphJmkerGpgDd2ysuUjSBfbhl/gAAjSrVYcpD0NO2ZyLsY3sDECRiNi7EBAM2CkyAZmWKrmUWs3qYmZHcMTEjEgYPTctgZYyTMNZ7988WHz7bnr39ueH+/vHp95mI3P9ZZxLMibyCAQu8P5q1zbN4e1j4PDLXF43TOOcqgqikgmYAgExMTEZIy2kaCY180RASISB0CEEAK/gwRypWDqOR+dHJ8O6wdv9Ljo/n/L5rJNJriZVa9GUqyqAkZqUkhBKoOrEaCYu4WJ1GmGcxCGkSWtlv91jy1m7NNbTSfI0/vGH+9PxoWmY0ayIri6/zc8YDyR0McRVF0FiktgMiDwOl8vpmOdZihkZgwEjMVHwxIiMBiYitWarqqJi1sQ2+EDAjp1VyymbWS55aceoSprTNKecs6p67wFgHueaS83OAZbVBhB9CG3XbDYdY5bKtWYplZmbZk0cR5n6JEOqc06lZAZsXWcYPnLSmXDVhG0XgZ0AJBFy4D13q/buxd3ti9uUOVc5nsanwzBnyxWqIaIdztkZ1gbbiMs2bJZTLtPlMo5zrooIP//4483L68+/+8yxTvOl1iRcpnN69+bH1z//9Pbt+8en45w0JRFRBgiBogOVMk8gxXBJpGVy7JhIFpgQ0OItkiK5mMifnWGQlZwQV+cwBFimoaBohmZoClYRKiEukXRLDwGENTYQO6wzSbGsassQSIEMHDKYeTF7TtMFMRKxLMW0VDHHVkXYYNHri4IAKqAYFDUDRVA0VFWyZQVbUmQA1JDNHBirWBKdf0m6lJJrGtUWFiyBLfWVLmFDqFW1itRFWLfIfBERiVMup8vlX/7ln/7hv/yXH7//vmvidnd3d/dinKeH+/fjhLa0D0zAwBEZPIfNqNSp5lTylOa+7ymn0/HQX845zVpzVU3T2J+P/engNZrHpYh5DjtaxkmlljlN/WUeLx8jFAjEYx/gwat6CSaJVJQMkJBdMUwJ6mxW1QVyTfQGVYpXcQ4XTxChkgllFA3F3JhgHs5WD2QjmSw6bRUoKFjrYstiM9/4dr3eb1YrxzrPx/unUkcm8wr0vKMvw0jTxR5pgCZMLjAzk0DNklNRwj+LsF4Q/rjQPmDBYM9Yc3YQPQTPjCAVZMjjcTyc0nGow6wpw5j0NEkqQkCRDAgQtGMNBC7Qug3XXSOiR5sc2D74lcOh1Mksk3SBXnZNRBpHNtXGs2PKoDNAJXARtxSYXSAiMJEKijVLGus8pBTJNc5gGV9++r4ggCdtXGWnNYASKy4SEFBwqBWtEmnjzTmHQKKLMNYADVBVJM3pfDiBh2Gc2m4VfRN9E10c+v6Hn34YhkuIYb3urq623aphQkARKU/H0+sf3717+/D0dJr6UrOWUkudd51n5fNxqnNaGHECIIB9sfeXtD3ii2sXHXvTUrUUFfnFxRiooAqaLQQTEDDJpWrNUhCyMenCr3PLuWThVlAbNTI5Ec02j3M/jMM45nEgNXKEIbBqQCZCQ1RQ0Vq1QM1BcUs1kzkgpg4DaxvWTYzRI2dkiEQNUiBkhCImBWo1VUNCBiTGJdCHgQiIfhFcERzd7buvbjdJaZjK8VTNbL1u9pvuZt9VAzMtKQ+9qUgRmWsdUxURBTCVks9zBTFm55ouOAxdjI2Dg8g4T6dhyCq7JjbOdWQd2srpqgHAqAEVmBj7uWZDixHQQeFSdEhJZXaQyYpWUDU1I7IQwAyYrFRUQHUMzrUNf3QlE1GMIcaABiJVS0FzKkGFQEFVaylE6Diyc55IpEqdUqJcUM2H2MXYAJnUUmuttZRSEFSKKwZoJLXmXHLJRVUBiR0RLfU8EQIxOkZTg5pTno4P7yb8+XX/7v39NE055VM9o9CcsjG268a3AQItgCsCbHxoffwzd9I//uH1aeJxDJr9XKoAtEbggngyRqMF2kkOadt0RVVm9SrerFFYITuy4twF6u8vj4/m9h4/43g7S6n53Ty/n8rDXIZUS9JpTpfzWKqy80hoVhrW68ZumnDdrFDy42mck3O0ad2OrGHXre5e6Ga7efMOqtRUpks/j1OZ54geESkpJ/tYKStANiloro1xtYoxmOTDw5un+59LmgFgmRqEhuMqxHV0jkWzSbVUc6nzPKWUx2lerdY3++uuW63X6zlNT6dD3/dA6D2H4M1gnueScxVxzoXYENI8pXFOQ59LStG3pdb1ZnN7d0dY24ZynlKe8pyia5t2Jepnq4+jvjn0p8uplCmSv+vg877IB0df07rf/Oqaxs+MuKhOpSqZj/Tll1e3L/axDY+Hw8PTw+ncj7OI+aKUquUqeT49NnTT0Hbl2s63nQ/RiVYt2bSC6jQOP/744/5u991ffr3qmvEyDkPNiY8Pw88/vP3+T98/3D9d+hnQKyAYeIJN5JVHyWnsCzGQI3DkgyMABCqyIDBpmZlokTTVkkQ/ARYAnVEwF9T5Sk4BsRYPgAiGCIRGjCTMH4XN1VABvOkayi2S0fhkJZuKkBrqEuSOVsWVApVyqjWLCqtYlWomgGgC0zRXQC1FqiwWaAI0gwxQBIqqKaAZAwSsTpAN0YAMkEDZjKvIJddePwAITGsaztPpSRbCo1tGjAZgjIZaRYpKUVERqVpNFMwMCIkfD8d/+d3v/+s//G9/+tMftNbffveXrz57hURv3917ZjOraobPk+xiSEu2ngETQCBuPHmuUnWScRimaZCSFURU8zwMl6eh32+bPfrIi4dLFZZET0RlAsZM+MmbBEBYG37s3I+Ne2oYPY/Amb35xjWrOEz801GkgCNaB7rd+OBlGkat5lwIwTeNF9XLeR4nmWc3VTdln4eC5egsqzGDZyBDUMAiFWaphXx0W7e5vnvx9Vefvbq+nk/nf/kv/zBOKYgA2GKtKLrMJsOSy2OI2dAMnHfe8apxFrii+Og+KeGXiaUCKgFgrVXGUi4pp9nIirMNoydAo5JVKo4Z353y41BSpaqoRsbkTBk1qUSCdWMMwGRstUxpLJqn7FSvNk4J78fKRSvI3vPXm9iSewQ4T2kuck41GRZEiOGm9Te7TRuiVRqn8njopdZLL09h3qyc97xCZkarCvJJ4bvUnSJqVcmMPRmxoWkxrVjFVCqoqVVRjxzMeWTH5JaKutScLr3+jKfT5NvWxxA8O8dMfB7Gn968G8cpNn6zaq6v1l3rmRSsqqZpmk7nMV/GkqYh2azYVz3n+XblbtooRRYAmIKKoRHPBk9jfXdK7w8hkl85A8Va8BdYpUUkxqCkgiLIjADLRJmUVakKZFDGYozkPHrPTOa5RipeAYuUrNNYhiEN45inHqUwM9cuAjAxEyzRNlWKShHJnuhmHZSz4AVZXVhb5C40wTfAEwJEhA6hASCxuVguUkUUnhXGz6EShMYabZkMPj9j3tHL6/abl91c7XxRLlYNrnbxat9db9simnIYBndwNNaaSz0Pc86y/HgXGUEZZCoVVE1YxHI2D84oGvlsmlUBsHH+unP7JkCdpvk8smUJTBYDVWU0UA9MGJkLgVWZtIAlhQqsgApmhmS0wAjEFMtiTvbqAnwUKxFgZBedI0FFNQI1zVKooGcCgMWu7HBxsUE2nWquwobRhU1sdz52JY0ppWkapv48nA+M6k3URxEstaQyVcnV0LnQ+EAEWpJBJR8sEFgBECSVnC+X87tD/uHHp/v7M7ILIc79XGapIu1qtVlv2t1KyQzs/HTIU3JEXdsw/cKddH86pBrZ9i1aLRkN0BkQCZICCqhDis4HdrFKriXlmUSCQQCIYIQmrMqWUGcEYW/oTUy1lDnPU5rmOsxSkvZjOp7GVKvzgZmRQD1sgIAxNKhoWXJRi0yBnAcLDKENLVvXBHEUMZmXm11YhXYdXTDgWW877z8sZKo6pWmcxxm6UkvOKU19fzmM/QVVCQGJXAir9Wq17tjzR0I5EznniFTEUpocM4DutptXX7wstfzuD79/eHootS7Z7c8q0WdVCC7DAkY2VjVnZuM4Xi7DNM9qGmOsuZnynKpVBaw6zWkpSsail6znbCVbx7aNKPqJPh49f/5qw+OVMVfVKVVB44ZvX+62m1ZBT5fD0/FpmFIqC59t0ZlCVc0C2UjQ+YVeRqYCYGiKojhO5f790+uf3r798a1kffv+4Xjq57n253J+mk+HxzQnWfzKAETYRn657263bhXVkxog2JKXUnlRHojWqmqEiJ7JSpVSteqfzfkZgAHZkNRQ1NAEAcgx0CKUNUQlVKYlztyEQL2zbm32EpnQFMfz0t0wVCAEQ2XUagUMqyxBXbRMdswWFSpMY86wIDpNAJZhhSJUsAKQPswenC3xXeAAST8MgCJTKxoKcPo4UVKteTxP50cxWJJgEVHBaIlpN5FaTOriCapSVZ55IGLw8P7Nv/7Lv/z+D79L83h3ffXdN1+9fPni/vGJ0ZwjZhYAZm5XzTNORrSkJKWaCHnnYiDnatVU8vl8GofBM23a6J2Lgafxcjkfb3etmYOlDlIFROZF8Py8z9ufHZLFbFI9aU1a1WQkKETmqvO15cyapMwATBpACwJWqBMKMAWnwUkEASspT7WfYcx+qnEeQUoCUREUIQC2haIvWg0a31zvNl98/vKbX3315VefX63WB+IQIyE6tCVNsCqYakVEQkUyYjUQUxKpJgTIjprGr2rTtn92GlMVE138ypKlpipZy6xF6wSSyRqCgFSQvAttR3ElJFQmKQCOyRN5tMAQPEbChsyroYoqpJxzqirFO951HhyNWtTQFNdAAQwAqtkoeip1EMtG6KgL3EV/swor71ICLNgz5uVUXkstWUomiI7YyDz90mMNqmCiVitIQSAENTIkJagAC5FRQVVlYRQthS76ENDLbDqM0yFVPgwuNj76GBmdqcowpsenS84lBp46n4dL1zrP5kgIC5i0oPuo+zWlapcs86BJQJJrrsl94B/ZAhZAKgZ9kuMgjxfZRMcdR3aM7Ih/eS2mqBVLMURVRwBGDpEBqBolIzBiBQIjNlxcg2zoFZ0BgtWslyGf+jymIlI8VARDLVKK+FwzAlVDqFalljJPxL7t1q5hAUKHHGnK5BZlNSITtJ5XnhtkVVCxhWUJBICEhIsgHgmZaIkm/nghwdGLfTO86LLIoVEUnwX31831vrvetKnKlPOhH4PncYZS6miac1238Xq3joFLyf2Un/o5C/ngm+iQyBCR0XlqGocFCAHNGMnUhim7KeVuhQ5iS+SYfchWq0NGaBWLg6rGvHTCn7dBVUME79gAcuYx25hRDTr2q5XjD3fGzKRIzZWN7XnyrVVqrihCi3iJaBEn8RKlmgjELBWYM1blXOHSz5fT+Xw4TOdD6g/RU+MctliVimhRqOCMGLh1Yc2oRZNKrVpyxmlC7wyJgHma6uEyvX86PR6HLLTY7GupaoaIIYQmhCQ5zXnqhzwlKfWZbvmxiEE3B4K9ldZ4qqQKHgABipAoCgJF7FxYh1hFp5TICAwaQG8AWAwKQmm9u91tb3arK+fXTIBqWFZruGu5EZqq5WTDSMeNplKR3ZI2tnbuhvg20E1DYpqoHSf2SRuYW5wjTCwD1TnqaDTvWuVVvLm6U+kiSajiZ2m/WrW/5MScL0+Hw2Tz47F/fLw/Ho95nlWUAIDRx9CtV1fX182qrVXnaRpPwzzOZta0bdM0tdbD6QgozsPt3e6//W/+dlHs/vDjj33fT9NUa8k1o0FBFqlglufknIshbJpVbBwR1SIPD48//vCj976NnKu9f7yczicECJyGoSr6oYKBxKZdGdbSrpxbr9fNL/p93tF+1+DdihyrWU6qBNT61dUqODj2w9Ph6el0TLUUhVIKIDStW3Vht4r7dbxeh5tdfHHdBrZxGE6XEamIWRUtCeGU370+/u6ffnj9p/e/+90fHg9Pqupc08ZrqzV6F6K/FMtm3vPVpvv2s+sXe08wg5ViJqAGlUgdygKpV9NagQAJGFRIBFR+2R83WNoKUO3ZSI0kSCKMjlEJDEiNSAlowcwqEDAZMzQtxAYMEJjmo9UZnx20DOZEXAYzxaKGamxAxB7MFKRWkVzQ1HsCh8sBBQFkOQXAs+9ZBRYv0qLrIwRQZfLchbiVGktcL6JjAAAVSeNluhwAP5iyEZY83GeItVQzRVgC0JbCiUQ153J8evzhx++fnh6vr3bfffP1r776fLVq3759O08DE4cQ5lqaJn7x5Wf7/c47llTOp9PlfO7PF+85BMdMIjIN09Pj49hfNuvO+5dd066atqR0Oh7y3ZV0cUlMUlVExBCISEREpC4YrE96BZiy9ZOeJzUAq0wKTOyY+5PrJ76c3DAaktYqCKWLohXIgKgyGpGKuKnwZaRjX4akRXUcqRTOYnOpqaIiK6osAWqE15vub//iu7/8m7/87i9+061Xw/HUXy45ZzBlUEQxQESTDwO6BSa5YMRVSppU6jLDhHXXbrrW8S/KM60mxZQBQEsxFUCqwOcklHXCukLrHMau2e2i34V4vVkf5x/fny5D9oSeXfS+CWHVNpEpSKWcdRpTmqcpa02MNXgXVwGZ45xLqVSABJ/6ebL0dkiPU7lUKYYI2AC21aCIjGMhnCfJc2Gtjbd1R+uVNqFEXxtvMUJFaAJ8qscWbU9VqMXSrFQX9y6KklYydWgfrA0qWq0sOcfYdK1bUX/q38855xmRmrZtutiuA5CmeSqpaDVayK4550GdsovkAnUtd8E3Ld9txfvsmvSn+3KZdExu9K6C9wwUmDwZ4ULeEYMkOMxwGuyyhn3nvWfnahMd0cfNElS1ZgGrWtF5ZI8uILMhZkAhNkKv5hWtqEI2AHWoROodEVIpcuzL05BrhcCuCy44AkMAlVpVQZ/buZBz7i+jC43b+Ri3TVyRa5UdzUVIK6ihOUfrxm/bEJlnUxUTM6AF2b2QCACMgNiQDBaID3xck2/3ob5sq8huBY5zKrjetPttc7fvxqKnUtvz6IMHHKXULFCJrrfdb3716tXtFqyc+/Hn98fTUBX8qmvb1jGYc9I28ILaORWcJaX5PNpD73fnChuIK9+0kVoxhVXFYrVgRYOgUpKpo1UNzgXnKXjHiGJAZsxoZrlqP+uhLyq6jnB73fkPKdZSpT/3l8Ml+oYJ0dSIRDWVqqKM2HoXg2fmEBwSEVsuAYBOw/xwGp4us4g+Phwf7+8P9++n/kBl3K3jZr3xDRgzOk/qGJG58aFz3ZqxClZJkGWq05DK1DZ+vWqYYkp1qNN50lOfcxIpgEbOeQPz7JBQiszDOAzDNIxpTrWWcRxEP02T3TdfNWQNajOdw/2bOgzPizojCzGw3zbhehU20SejpnJbgmbzSIQqUIlLdHLdNN/st7e7jS+1sayQyOVNq42zK6SiVCvOmYeBSxVAQOd8bCL5tfAGdetFTGETzmfL98lD7+xMcoE8cCmtVedt00HbBQh7oJYlu1L8XOiuQf98Y2qtl74/HJ4SdufzcLmc5mlYFAAGQEyxbdtVG0IAg7kfp3GsuXp2q9V6s1nvdrtxHKc0Amhs3HbX3d5dN113Pp1iCOM4ni/95Xyac0IEFS2lDEN/OBwE5PZmd/fy5vb2qtT684+vh374wx/+CAZfffUZEgFFci2AVdNhnkTnGUAMnXcNdlLiyvvdbrPedPwB4IOIwWETiRjM0KMDJtf5ED2oqZHv1nG1Bd8Ak1PcrMOXn21f3K1vtqvtJq5bv1v7m10glePJr46hadvNWOZiYsAOI8NweJiPdLl/nM9ncuZacWEdncXo2Ls8p6qwiv7mevXN19df3DZWB6k5KRR5Vp4TkxrkIqXoXAwMIoNVJHVN/NSGXfCQyGQLReEZ1GLPXAUANdRFHvtBl7lIVBCBPXqPgDiNlJPV3upz4gnGjuOa/EoBNXjDGazaUuyoWqkmVawaoEFA9GRIQIZghOANHKIC1Yp5Vs0gi86Gl1QbM0LXurAmjujbTxuMqpY0p2lEZgBYFPLITLZspGKqS1WDiICGSGqa5vnxcHz37s3Dw0Ot9fPPvv72m6+v97sqdRqHaRwc03rVRZHr6/13X3/94sVd8K6k/PT4+P7t+9dlKZfneZqi8+M4Ptw/DMNwfb0P3kfvQa1MKaV5CflaShYzI6KlMaWqVZ4T0X5x3Mdp5uPFhyb0E2lxUBeEMhLylPGppzmDQY19uQzYeEZwBLAkn5qyKBdzU7Zzj3MCMZoT5eStoko2FTAjUEJpCLdNuNt0n11t7tYxWimXw9O7t0/v3qZxBNVnarIpmTkEQAQCIVAEWwJoEcCEqhEaATFi/EWrnxlXK95uHTcOAGsAiagOB4Ip5VI1qTlUrsheHWgX8a5ruHUc7NInqGoKiyijIqpiqkiCZGiEIdCGvYsOvS9oKkIErXcRWVSPcz4UfZzrpVhRQDBPFk2jgi9KcyaGIHXrYb0KceV3W3e99ddb3u/9dsfBcy28XrH71B0HFMOimAvOCbnghzQYAgU0QRSEiiBLHtTSEyYmx0rSFz2lAqqeOVJVoCmZgdYqnmi39g2RQwls0WHjoHXQBlwF3rRus3bbzih4jq7Y+OahTIPOk0zJiNDwA2/imQ5molDEUtFcDZCYART5FyPLBeBSiyIYoyohO1p+2lAVVWhBVxgY1br0CtWRoUcCMGdzlacx3/cZqm6C27VNjKxVTUltyVtCQwTEXCQXVUbFCGHtVztFn3Iac0m1iAohBEdNRO+X44aKmCoQwzLGBQMDIgWCD/6BXwBvHNN25eu+UZOmJXCQCrZxvVuv7/abw1T4YRBAIIjBb2N0hLXm3br59ovb33x954ON4/Tz+8PhklNhdn69asFk1dWb1BSzaUr90wBzqqiPU6b3Q8/tXZivY9ytfQgBxKqWYrNJJcEUQF2o4nygGFwMnomWbHQmMNVcrZkqYBKRXUfbdfOp6H8eWYpgZecckWfniBWg1CoAnkhUl5MPL/nwSLnq4/Hy45uHzWq968LlfDg/nY9PfZnGAJkd93NxnXATKUTHLvjowzrGVdN0WqepzjknhKKqksUHH5pVVarWz9lS0jxJmqtV8OgIluGe1pzBNA1THuc8pzzPKaV5nvSX7qT/23/6nCh62j3d47/+4/nNT9M812wmDsB7F5v9rv38xrcOe6iFANu15JhSmco8WnVUdx6+WMX/sN/drLrh6SGVi8bJQt1tKLQMzgOhoTeLqmtVBa1AjE0D6CCZE2moqEKX8PCQHvoDlATFa9rCPHClligG37XWbAg6Ag5SM+RkKdkm4IcbU6Ve+svheKhcxnEueTYtCIAEpkDOrdZd07Ql59zn0+lUc2mc3++vPvvs1YsXL25vr+8f7t++fT1OQ7dqYhtymRoNL+9uN+sNIvX9+ObN6znNbdcRYU75p59/+rv/9e9U7eXLF3/9N3/569/8ahyn/1nx9ev7f/vXfxv6qYnx5WefvXz11b7kOU/zOJT+Usap1FSNiBrvA6O1XXN1vd/t1+7DSqZmpZRpmoHMDEwdOW+eKEtK6sP+6+/++n7w7T/8yYWnVeu++3L/3/+fvv7tNzf7bdM2jtC8s8aDiPR900+1n23OUCuIqGhxhF2c0eg3n13Jyyv2BOyVmneP56ZjY8pFBLjt4t2L7bff3Xz7+RpllFpLpVws5VxqVRNRrXUR9JmIgKac89jibte4D1U/IjnvnHdG9ozmNODFg1JQZAmtRccLRXB5NG1h1YE9Z5OtNpQ22jtZaHLO8eYqdLfsNmJc3WSaADJARVMqRcdZa1VaXNLeIWNdVkoEJMAl7Ig4zXY6wGwACQEwABFBUSBGHyl0IAFdwE9YO7MqUmolAzAQrQDAaghWS7El+J1gMWw55wCs1Ho8n374/oeffvhxHPpV13337bfffPON8+50Op2Ox6EfnKOr3TbG8Orly7/65ttXL19671PKh/11x+Hy+CQpP90/7DfrwH6apvf39+M4/MVXv726uqq5TMNwqAf4AKT5WAcvkKOPZc3yhx//iQgNY/twWCfpnA81Qy1QsqoaEohiUpQKi4fIoxKILUzk6IhQDUShGpRqJQcpptVMCc2TSjBFyGJ5KQ13bXy1332+bWMZh7c/9k9vppTv7w9PD8fpfAaphAQIImJgjskRcwjArARE7LwHACnVniVDtZpYzh+paiHQyxddlA2GxpBMtE6lnufTPcA8TAlDJacEijlJPfesJWzbl9t4s72aswz9dD7PT6f5eBlOk00JRMAhbKjuG7zdd03jCrhzkvfncZ4zA3aB19ENuf7cj09zmQo6wR1zQGO2yGVl1FWICdtI24bbbdx9ttvdrffXcdNxdBID+RiRsIpu9+HjBoNqVI2z4FwoZReInlH4QIwKkFUV0RgN2ZiQnOPISDLIlOwylJzr1Tbut3G/bxHpdCkiuG3WV6v4+SZsAqIVAmVSZmM258w7jAEDWdvSeh+36+iRW+3/dOlzX869E/PVAM05EKfPpEdavsyoSMqkBFJr0Vo+5nOZWS0qRYMHJvJuSRtQqaAARmZQmQydgGCdTTOIqHMEGIAhV+lzeZjKu6FAEVn7V80+boLWWUqps4gqoFcAqVoFyAUOLXBjrtW4nQXe9/2749APk5TiCYMjclqh1KITWC2LnsAUTKQqAAKReb/gYxSXFJ8PXyiI3q1aDxxcG6FtS6VI7bZd3V7t8tMw5HIapyqyXbW/+erzxrunp6cXN5svX+1//avb9dqb6XeXl/1YpoRV0VDNFPRuCVPr+/n9u8P9/ePx/um+n97+6Wl/qr9W/+vg9te3m/2aFKyWIhepqYphViUWhRgwBI7eEyGY2IcepqsmhmNUUVp3vmvCx/ErMTVd23QNCTqELsQYAjtXVEsqi2Yi5zyglVrYOTFNRU2llKc0zcPQX23a4MhKzlnNHKLOgqdUIOUmdl2I3WrbrTZNd9U0a++bfjjNp8OoYeXMOQ8qLrTteifFpF7yXDQrFsCCJiZWFZEcllLGS8+Oc0pSFASsWk0lp/JnAZDffn6H5L1vI+Wf/iBtlCbEYjCDYLB2E25vm5evmjbAqo11MieYx3I49nLJ/SzmYL3tdvvNatU0kUYsZgmwIOkSTgGohkuInwIgkRIJOrAgApBFitWqWRUSuGKlaAZxuZSSS83ZwLEz9ZYgp1JKkopSK0liGLGLcKcQP5yS53kex1E9lVxUyjImIEID8CGsNuumbRe+S3R+13RX+93N9dXdi7vbu9ub25sq1TlHRKv1qu2aWkstqYm+iTHGtl9NuczjNG82m9g0zOx8+P3v/zjNU7tq91f7r776Yp7nH77/+XSeLufpeDy9ffu+6VZXdy/bzeYynFWljoNalTqpEXoiQABkhBAoxl/uQYvr0p5NvUxEz3QepCa2u7vt+uXDuN1ub67WX91s/vbXt//Hv3rx66/3XesdQ1mAhCC1gndhtfJXyqpuOT9VKbXkmmcT5U0kCuSckcsQlGT9tnPBFzED67p4fbW6venubluoaqKmsQjNuZZSRKuqmKFUzUVrraYplTxO6fZ25/0vj5b2afZiQAsj9Jm4AkjPcBVdRLUf8DTPwBlDJIwtxRbIEQCqAhLFFXU7dnsDR342zYAVUMAESoE4UxUmZKSlUYKiSyyaEhoxsEMmmkerVaVgTiaKwEQfBkRIz+Nq/2f6UfgIk1KDpeRaLDVVBVQW4x8+z6cVAErJl0v/9u3bp6en6P3dzc0Xn312td+nOZ/Pl1prCD760DTdZtV99uLFy/317WbLzs9urtO07VZ31zcpzVrr5Xzp2uMwXMyka9sXd3c3tzfDZSCAsR8cM/Nziu1Sviy/FxEDQERe8tY/vIio9U0X1tG3yF4ZTUBJxdQWEQajd4DAIAZiVapoZQKmiJ4MwESlFLEqtVpVrOoMg3PoadW12eGclcwa767Xzctdd916LvP0VMaaL+P8dBiGftYsDASEAiiqDoC9Z+9DDMhsZEQcfABA4ecWU7GaRf0vIMvO09V1E2AFLiiQVq0jZxac3Nywc2gFQayCakHOFQp59W2Mq21rhH3vn44ueACQOc9DKUMyVZjIqrmm88yOQ3RY6kFKqc55RJzBBtVRVdQ6pMbRljASAKtjC6gdUsu0ia5d8f62++zr7fWrzXofm4bICqEhsaKpuK77pU4RSJVFuAqJBAVGQl2o0rQ0ywRBEITBGIEJHNdM/Vz6qdYiDeOLfXx12+23TS5axjxlJcGIbt/5m47ADLQCouIS/YbBcfTsHcZAoXOOOE1aB+kfpkNfx7kIGhLUiqjECykKjAxo6arYM6ZA9Zcn5OdienEbIhoyIX3M5kRRsGoFZNm4JBsUBAPk4Mgh8lT0MpfLnM9z1Sw++F7DhpvAhJSkTlgNmKRaP5c5V1M05WI4F5n7cUjyeLicL5NWcYieyBMRoxFkXZK4nt/eEnQmamgAqIpmBqr4y2tRszmXMRf2ThApOOfYARtCP9fH0/j24XS+DF3jXu63f/XbzwO7P1DdrOK69Zsu3Oxb53Cz8XOSOWOulqWqmWdkRkaapnS3b99ct2+2zY8/P/7ww9Pp/VEiY4NXt+163TYUmAHMI4uYLm+bCJjJMzvHuKz4YMsK6ggCU/QkCsGzd/ypOY7oHIfgqEIk18UYfFBAMIneq+hy+CkiVoCfyZkEoLnI8TJWKcd1u9+uOu89BR8xcDSHx7GM0MfCa+FrXlkgragVGOQ05YfTOJyGmaXzEINfYVQMRNaEZhXi2oeNDwFU6nInAB0QaJ4mIhIDEFt0/lbN5M80lw71xgBqtWnun46XIemLl3fg3X1/D17XN3zzefPy627d8TxYnZLN0B+nSnXMI16MiNubW7q7eWpwtNRTBbItO2c2jnjJmNGSlJznNOdpSgYSo+PGQxMUKRWxXF1OWm2qoZyx9thi05ZVW5pGDVyRWMd5fhrOl8twkDIqijZltPk4ff51+u//WuPVsr1AFalSjUS1IiwVDDChEYWmWW+33vvz5eyQPvvyy1d3ty/vbtquFTQXPSAuUi9mv9ls1uu1qczTVHIlZCaUmkW1qswlN6vu7uVLMfjsyy8fHx9qlWkc1aRp4/XN9eef52lfVeHNmzeG0O62627/7Hc1US0q2Z7zRosUEm9VepH5OYwHgBCddzFG9kDEAMEwKDv2q9hd+c11dc3VdnW77+jLq//0H77+21/ffPNZu2vRrGgWybmqqEqttZRqBo3zzpvj4IgAGxGXMhQphgKYkYy9d90aIv3h9T62B5FHRF23cbuO0RNbrTWhQWy6FmNTrYqYVQRjZhXIcxUVYq1Sx7levbwNIXz48mvRVLUSoAN+zrpXcwCOzaO55R4BKizJRrScy5eCYpHksjcOgExGzqopMDrjoCEiefIA6oGAliLJFFW8qftIEVMDU9DFqIqKCOjIMY+NzZOlEaaLiUL52MtQqFVVLCB5/tS9wA9NHEAEU0RcoihwqX/wQ2VGhIjPSpRSxnE8HA4ppZcv7r7++uubq2tCfHp6OhyPbRNf3t25pm3bbtt217tdANQ5o5PU98eHp5rL1198IaaImFN6//5drvn26qpdr25vrzebtVVJY2yb2DSBnSP+gNJ2bgEHI8CCJScN3vuPp7Ho6asXrUyr9S6iozlJKibiq1i1qirVlJC9iwSsxWqtpSYm7NZtiA6Ja5Ghn4fLMDylOhW/EGbMCBlonUo4nUGlrqK/2jRXq9gFgpJzgVJKHbPNlSo69MBohKQVAJAsxBibEJtIjswUkbwLBGSEYqCgWfJY5pX7tCoz42oTnEXlUAVKzqmasgS2jWdj7mvNqSpqYLeixlGwAmjStNis42bnd/t2t22uts2uvbz24+vH6dCX01zHXAex66S7raJZdMQ+MPBU9DGP51yz6TrwNfo1QABFMGVAAgfQetqswnbXdJtwdd1e3zT7PbnW2CkiEwIuIF9CdvCLA4whCIHwYqpAx0CqJkaCvhJnoBmhQJWFukhWCHux+0s+Dtkj7rbhuxfdl3erdRsuQxn9+L4v42k8q+atakSGZFCrwofy1gXvm+C9R0KwqhHh1T7On9nxmOF+HlWnoTBRqab6wdAAyEZsQIaoqEJVWXBhYX848RP6wC4QkBqIASMw4DJvZTMrtUqpCtVMoYJHbr1rW9e0DaK/DPk0lDSXkmvOck7yfiyhi7ddiB6cK4AKTGOtT8N8GTIhb1i6lMvleHz3/jKUNJY65UC+je08CwEheEBnLIYCCkRGnsCsFDNVXBokJAsD0/6/jP1Xj2TLliaILWVmW7iHh0hxxL236t6qxnRjmk32CwcD/gyC/5MP/B0EqIDuZk13VV1xRKqIcLH3NluCD+YRmacHIMYRJ3EiMiPCtzJb61ufiK9ii6b6y+Pzrx++5DIY8+IRwCPrF62Xy9N/+deP//RPfz2dzn/88f7f/sN3//7ffh/qj48fBKC2tq6bVmagsBXBSmYRSoYeffIcjI0Fx/Hm/mH63Q9vDve/PK//+c9/+/U//fO/Ln4+3EoCuNvfjMIRphabxrr6+dIiHEGYgJkDfL2sZpZeLDojQrrfPPpLiNt1rwwPAhhKmlIey8DIa1MEnIepr6FMQYzIhESIlBMSZmZAsLVtcFkpJZG0m+b9QIOE6fb5eFq+fLZ0mm/O353i7laH6ZLzwMLHp0//+q9/Pj9+HClud+P7dw/DLj1fDJnvD4ffvas/3B3XxapBNWjaDSrcQ601BUBOjBjIAsRdtfitT8x/+s8N0ILr334+/u3jdjxxOSAFPK8Wqmnbnpbjr094bmj1YluzhS5LO1XbGkQjFzoD/Wz16fmz6Gqnp0PU3VjA6flsT+ZH80v1dann8/n5+eRg01yGufA8oJCaxlbxsniNGgMuebgUYHl6Bvq0xuGTjNH0vMXyZXv6tB4/1HZsYurLEZ5/PdW8/Mf6m6COeDVbN4swIpAkSJJL5pQCsW5tzOnN3d0ffvz+3ds7IPz18fFyOUfg8/OpNWOScRxTSuu61nULcyaO0GWpy7astQJzWrfTZWlmwzyXy3lZ1y+PXx4fv/RvvL+/p4dhXbfPH355enp8fn7ExLVV7y9TbxuEEgaBRWNroDWrXr6FyKATAwiJwDvlkQuVXZ5uOY/rtkisP74d3o/3/+O/efunH29uRkUwM2/aWq3NPDAikFkYgAiEPLMzYWA4mKMpVgU1h1DO6Huaxh2/ff/ww4/rr583cHtzt7+ZBgZ09dCgjmkLJkSi7iQPSQQCM7G7EUczQ2xDzvQVvnCLFu4c3N1R5TrgBwIgBLpeNIQADGJk6kxZ6MxARAgiIA4QdCKDaEHdujAxiKBn7OHzhIzQA2JfgouuDtwAgR4RoF2TiQTEBBG7vZyf4ZG9eWx+zT9Si8ticgkZAX8jHIGXmQwicy9imAgR+hwaemjRy4b00pu6meWc33/33e9++H6/mwHgcrm02m5ubg63nMqQJGfAwswAGIEeprouC0S8ffeWhE6ny+Vy/vzlMxLe39/dv31zeziUUrTW5VyYutlNdMTl9c9OVuyoDCT5FokRwpsRHnYxTYoSW/KmoMZNfWu1mao5EYsAASu4kXlpwjhMmFICIKcQ1dJinCKYBswUrDUimEpem5hu2nDKqSRmxoBo2sx827StLaqhBzMjIRAIcEpIDElIEiQyQgcMYRgKJEZ0jAAD3BRlhfEbMiwSpsIxihOTBQQph3tzaxjWdetqbmDkPbqYPdzDSKCMPFI3I6AhcxEekjCDEPz65Evzj8/bufnTppnJV48G4f68tZ/WpUXclHwn8g5oDGtmFuZA3FOvEw0Dj5NM+zIfht0+j3MC6Q4+9DLZC0Qi+bomB4ACVcdowLUncnAfBxpDZVpFakCDAIhEDICbw3G1T8/rZa37Ob27S9/f5/eHNLCw++2On8/wdKpHgsuWqvEojuiuoY6OhAqqYewKGO5tM0PMnPazHG7Lp8Wen9u5GhO4h/aBLhhBJIYiNGTOwhHQWmzVt29j3xFYUBIyB3L3xOmm3tHBj6auZhYa4IQgCXJKQ2IRAefNvJqLQB44eLCUnxrMm+8HGTilUti9SVKFZ6fPW4TaBVf68syX9fPT82VRdNHgwJRzmsZhmvJYdjmnTQCjErvjSwYaQu9I+mNsbv3j9XnxiNXs0tQlAMM8AF3BT+vyL389/dOfPxzPyzykP/3h4d/949u/+2F3Oq3zJOtpe3x8+vRpuJmQQLSu5krMjBTEEeSIEB7QGKEMUnKe5vFc/e1fPn1Z6/l82gzOaz1dLkUSJIbYPEwdtHeS7q1BZSSiCFu3Fm4hIdK5SZ4EobOpvtlcOispEY9DGVMmIlPXpgFQhsxCAY7ovVZ1d0IQSsIsQh66WW3u1SKAyjBMowjZxeyy+pfzdvaajnGqaf9lSzmXnIaSrF2WZdlqOy/reWnOo1NSt900DKl8/3D7px/eAsjjZT2tulTd1FRVDRTCrLOXwtXRUYjl2wcGQP6v/7d/RTSX7bLVT5+gGT7qlxC41AVSfF4+/vTxy3/5XyynCrGBYtQUa4ZtiCW8JSP/54+f/7l+1lTF63zZ/jiW73fvkqWPz/q3c/uwxnGzum6n8/rl8eRhu73tDrA7SBmIvPq26PPZNwiM0iitYwX4pOdl/WXZTuMtSLqon5b2fNGzRphJq7Sc7fHL8/PTyfTF7A6RhVnEEcJd22baCDHnzLnkXFRVVbdtLUTTkOexJMF1Wx8fPz89X5jyLz9/XFfdzaNIDovj5eiqiVGY63Y+Le14fF6aGdKmn3/5+PH4fLysayA8HZ9/+vmnf/7nu5ubm8vlPI7ju7d/aFUxtGn98OvPS10oZzcN8zC1ukbUnInBm5M3r5VbO3fUoW9+ZtZaDYRwbHXDjHm4k+Emz4fm+Onnf90e//KP35eCD79/l+cx1GqtGkCqvjbziJRyyimlFBFb3dTC1Tx0be1c19N6ubR189aaeoMhnx5Ww3T73Q/v/newT2mu6/KHt9NhHKBhW5AiB2LTAG9mYGbmjSE8JQYKjzDbmq1bPZ9X2S9ur89/YCgCiEdyTAEc0WM64Brbh51igo7oRMbdcyYIgQKBupc/ogaDMVSkFGSO4STgGcEEIhBBMJgAKaA/wYQYERbmiAHiCIHmoAYaGEQkAtNM0xwkqmCLqhNghLeIJ/IB0uxmv1GMXmX5zHitGwA6GQUlzFRbmL2UOQgApppSmueZc/79jz98//5NTqnWzT1yLrfTXSlFcmq1nr48rUvA7a2wkAgzBwQnvrk9pJKRZavb6XhMJf/wu99//+79PE1CHPN8LqfWNMyaWgQQMeK1s8c+W0Ls3cu3nBgMA119fV4hgNGBTEkbrlUvy7K1pg4RFCHu0aoiehkpZ1wWxEBTROPkxE43TGkuU9qB0fm8VQNI0gJYxNyMqEacWwNiIQr3tbZrwCogYhADsosg50QEbu6xts0CgollKmPhcXAmDXALWKsGbUNW+mqmjN1RJrpWBckjtq1eluW8rJetNQcLNEDviVnU40/MwgycCaXAvBeiKec0zWWe02E+Tj+ffvm8fj7rr0v78LwiEQMBYDO4aHuudUry+/3wfpA719B6sbqZcSRJUjIPmSUFl0gj5onTmKSk6PmRSABwrdM7cPdyXRxojfSoab1ALD4oEEPTCHRiiIw+sAkqoQCJJANZt3g+tS+Pl9r0h++mH9+X2z2NyRm9JNzflml1fVzPTc8tNqNxyIQcrj1QyyzYNl1qTkEUBuZEwVPVoERc2LE1hwbhEI3dICJcEEr23SyHfdpNQgDbpsdTPZ6afqtNpCAGySSCAK6t19UBgB5h5uYW4MCBAkSQhQszOXSPJcm4P2QruBoFyQL0vPna/EZwnEZDMJSmaR3qE8ZyXj6v50v8mjNv9eIWRNm5tDRCKfu0f7jZHw5v55Er8GZnwgqhPWAAkboDJ3TXCLNmm1l95fcgURnLtNuN40zMJTQQifOX0/nPn778/HTa7aff/XD7H/7dj//uHx5u5tguW2Z/rutff/p1FL+9ycTDuq7qlRMgUXj24D5FjagIngADU+A4jvn73/3o5WZr9W4vN7c3yFh1xYgeDAKYiZAZDUDNtnY1D1dTDOiJdl3gNyQGMAK9Rqpd90pISIPINA2ZpG22bW3bKhGXIQsLCSL1NkBb3ThQChEjRSCGXOMmiZhKliTc1q2u6s5mctm8rdtx/UDpC0KMg9zdTPf78nCzmxP95c9/+/DpdFH8/Hz6dJDv3h5+98P3b2/nf/9vfj/v9//0559//vQUaI7XJb3k3Kofz0vdqqmbupBkSd9SL+S//ctzoBlVZwDMwdi2i9VoZuxUVkeol/OR6MKk5EI2UZvIWEyEEyVv4E3r2i5km23tkqgFGJIhK7gBGFAQIBulEdxIBuaS0jBkTICAvlUPAqZp2PK8Ra5VYbUnX/mcGo3vZBpoj+KDFPebinWxvelw9rf7SPwamojzlG52yZBdIbEKaRLKKXMuiLyum3sTgWmWYaI8AFIzv2zr83I5sQwA9eZmHMpwPJ5+/vmXbb0wwc1+LMJufjyvp9OxOnHKl2X98OHT6XRSbebRtvXTx8//7b/+y93dwZ3vbspuHnDHl9Obp+OX0/F507q7OTCAe/NQt819AxWPVhfjKNtCtW6v8+QAMLdmfeWIWo15LKlQHgGhbafzp7/q6ee70XclTzkQWrXWWrPArbXT5QKO04ATppwTYkTUZi0smuml1af18vl8fL4sS2vbprZaSZen1e/f5Pu3f9gdxmnaHx+/DHFO7LXqsnKmLiJuQeaOZtZ0Q3fh2v373aw2XdbteFrpcHmh6AIBjAgzwoQ8IicE7lsqBAFwoARJEAUnF1Kh6PIXMgekzpPtNqbIrEHeAKqDOoYDBjIQ9MQ1FAyCwL6XEYAQQiADOmJYcgBH8mv5FIho9GIZChAATmiM2LUSZ4gnn258W+03o/GXVGi6LnsQnRPQ06rpGl8Cr4gN0VDKmzcPHvDdu7e3NzfM1C90zun29naeZ2Y6HY+nz1/MTFLKQ7a4CkeFZbrZ5VIu2woEy7apO0YQojcNgZJyydkjam3rtnWSjTD3AqtjRUQURIa/gZT60JmDQXtKQWYQQySoGNYNjd1IG6parchCKSVnNPfQaJuTARMV5iGlMU838yGMkE7ntVWAnpgTAM1iaZaqAtbMTOHmBhAixADAQdfJIJdJkLBtW+vjLAimyIPk0YaJmA0hLIgrOco8CX9LVuqaJnylNDOLsAhlhkzBBgJMLCVJFkzsoA7dhhApERKgIGfOQxomGUeaJ55mmedL/rD8+lyPm9baABkQmkM1DffCcDunt7tyG61V23CjBplwN6a7m3m3kzIhl8gj5JEkC0vysMB40VV1egjiby4NBSalvIJoiAIDsCIieuYXMTBSICExkYSLK2kD00gMD7fp7X3ez1hyoGMpfHPI+8WkbKZe3RVRcsqJjSA4wAQjLKyZEQQhKIQiGMVSvdmLN5aZeVzzxwAwLAnuBr6Z0n6SMSOhm/UI6t/YEUEAIjATMYZ7T1ELh+hKJH8xL4qeUx8JKCNLIAUiAifIOx4GBCvVuDVfWmzqFsiJkNkwaSEfZx+isjXVx0stFcBWRJRCIClykEBCzgMDQlgnFlEYekQ0d/BrOr1172N0N4jfRI4Q0TCkac5DycI8ETuSoUBaT00bwtt3h3/4u7d//P3tD+9mCn8ucLMbnh8vn748TRl//7uHcWJ1CIRA7Vb4FADOgNAn0wRXD/NxLN99991w8z6Yd4M/7HUojdkBWkSXQkRCGgYxR4ZABHW7hgD0Mv0KEoMwdb4PxFdUqSeYJuTUYW/v+FpPbCQRIuk9GgcDgUvgmDkJE0IgUicLsiSReSxFcDn72syAHaQ1Pbf2dKkWHtqmQdb7Hfvt2/2baRiKpA103ezL86ItPKKU6XAr3725A87Pp/NpuVx0g6rhDkFM4uyEeA3ZJpScc/46FgcA2d+COVXPIZBnwQTm3szrykMZ3t3fTGNfUYnYEpYEN17LciStARB5n27fDjL51k6xnoUvUxZnjwz72+G73TA3WhW8ed3qZdlHWBnTPOf5MM4FMjTU2hYF5UwjfVGtT2GX6OnNW9tt+U5mOZS7AiuPDVZV0wXrCdcf5v37+TBfEXIRujvkVotBykzPH30sMZR0SRkwqfr5fErJb++HN+/Gce+UF8emcUY4l1x3+3EeZ6L3l1P985///Ne//ZUJbg9zzu8R5Hx8en6+LMcaPMS031b98MvH4/E0jJnArerz4/G//dN/e7y9uXu4n8ex1eM879+9f0iZ/vbrr+t2FJIs5LEF1ohm2lq9LC2eni9tGy6XUpu9uhJEXON+2BncABpypDISy7Y+Lccvdv4Jlo+gmwGtlwTB5q16W9WeL+vnx6dQuJnstgEGi6DWremm1mrYBrb48vny9On5fL7YulhbnHH78Gh/jPu/+4e7+7sf7u7uPv78l49/+SddHy+LC8qQiSyaVQMAZjPbtsWaBgB6N1zxZm1b2/myycOiL0hMQrpFfktwI2mQLAzEgXiVPLNjN8gSEApCQ3JkvqoegTqriTLziJy5MZtF6HVaCOEUPTMbEJGR0B2MIxwYgHoaHnE4WUifsvYsG+BAxBZRN19X1+oAyCVJFohwg7piPPmwj9OpmX5VW7ibdS+cl5FNh83cFcKFCPmrj2JfGqZ5/v3vfgdI97e3Yy74wvlNKe12883NDQF4UyRG4WE3lWk8LZcWikKcJE9jygkYNXpIjn7+/Knk1LbDbrcbx1GYkaBVvVzOl2XJOYvIteF9KbaCCLrE/Ws3xiXth/wAwsgFeHRM4kBpAzlKU3OxhnWDWk24kcRQJBVEDGNHN8QQjMSScxrn3e72HoCUiz0f19NZa3VVa1bBLaCTYV2sW/bkQrmwQzgYiqcpyoTjTEhYNzJjJO5lSc6cZ+SCzAUBKQgFUMbdfvdVl4zXmhG6rTlRLnl/2McCsZLq81KfkaKMedoPeR4oU7QWQCycSuIixICmmIMLpQHHGW/u0sP7+f33y/ufLn/55fy3D+cvx3VtquFjoIkr45uZHw785r48yOCbcLK11XHMh8P08HCbsiz1knLkMfKAnIRIomeef503viSIwut1wcQy5KK7sXKlkkEkOTJHSR4ELdwpWDJzIkyBwiBZ0lzSkPF2ksOIQ8GcCINc8EbgcLbdRNvmwI7i4yzzQFKiKDQXNyCt4p4iCImBPfhS6XSx07kuy+baws0M7coZBQGYhG6nfDfnuVCWIAigyImzCL0EDUIAOIJTp9FEBDqwczh1RwUMw8AADQtzdwoyEucCkglWCkgeE1pjb+KVvJGZVdXawJkNqTKp5DTP4wG9BjRNIxM6NhOmNI8wDZiSYrhum8XzEVqTjaqBupmBu5mDWk88U4egjuAys7C81pdEWApPA2eJnDGl5MKLpzIOMo67O/z739//6e8e3tyX3YTgctiP37+/P5/aX//yt18/P31+uhxud8Mw5pKRF2EnYgxRTx4EkAlDEN1pUR6H8vbNeEvztLsZkpb4kP2RY+FwsGtUmyCmoZgD9BJTFQKlJH4dVWJPcUd3bz2L4+s9RkLCQL45EQrwkECQJNGQJTGGK2HkxEkE50GQEiZE7AaLgchCo6Qppf1uLAifPsNmYcCBCcDMfGmttYa1wcZHouNQLnfrTaGH3TilZDIowkXrXz+vm/70w/v4+z8e3t7ePhxuPnx5+nB8anXT5uECgB6YRHwIU8NgJhiG9G0sr/zH/3i7rP7pcXPEu/dTmVnNz+f25UOdyvhv/uHdza047AEuiCZYEt4sz/GXf/1yPFUucvcw//0fHuYZ2/mpHZ/0+HSTIg0oM90NwyR5c1FD0LDaat1HeBqkFC4jFQ4BA3OrgEYZs6Xj098+tNV4uqEcUWtWHIiHIZXZNIEHhG6eNLL7QOkNDukFHsdIXDMvGuuQlts9PtwNn2+nWuNSHVwT8WE/vH03fffdzeFepCiRp2K3t3meeX8zIfLdXfny+fzTL8fj8WzWEPWy7LNMIjAMtDPa1NbL8/PTenp+Xpc1J8yZOXERHDKPhfYzT6MjnhB53smyyrosl2UZsvCUiFouUQYCQiQntJRUkgJouL5eFY/Y1NbqKImJSEJyIcnq+vz46/L0EdtzgWrgYLCtWwQD++Z2XNfH8/nD8zEqtMpeMdSHIt7BizB3984A1whDARlYcsGIFEauIEzzLO6DLunxF90uy1pNULQxYKy1GgCl66DEzQMgDNy9Z0/VZtvVbf+VDAsFcUQoiAmZexYiBgEwIiMxsiAlEEIG6AkqHAAIFt7NcJGBBT1RJ6z5tWEJBsNQjBYAGIJAFF2efe3u4ApHIBMR9OFcd6eDCIuo1hbQDQEoJRx2eRwlPOoW63PUrekW1n7TWCJgvEiUXjaiK/cFX35b/6ur8T/zMAz3d7eIPJSMEK3WbV1rrZ1+m1PSWk2bmgZG1Xbelsfj0/P5pOBFGIUcoOo16SLct3U9H4+pz7QQAWK323lJJWci6tO4V0JMF2XB/+pFBCX5VByEUBzYnVwDU8Y0cNNwp5ciBrQBcZRCnBARTKGJQ4WkUZCzlGHYzbd3xNKIasRp3RgxESvx1xPVKU6EmYUQAdncqnoIUU4yDWW3Z2Gp1V2JuVPhmUWGgVLquqsITB6QPA8zfivpgRe10gsQQyJpSNPt2MxDQKvmIUtKRrFWXaqLBjOnLJQFOSIC3SFjKjzOMu3z/q7d3I839+PDw/jw8/DpcTlva1PrUyD3OEz5+zfDw21+GIU1jXtS12HiYShlGJrGuYIBpIHLyCKIhPStV0+/R3/7BQQQxpy5TJkoY04gAk5EkVgdvam9aH644wVCNCSeh6QemYPQr+zzgIQ4Ix1GvtulE2pEVDNzjUCEPigli6hNUbVaUEgQXdS/XPTxuS4XDfUpIQBvLSyQibPwKHS/k+/v8tt92g00JEjYh8Q0TcTfbDCdjBEGBgAaYRgK4f2pBOphaO4eju7IMGCapBQWNG3hm8OK1JjUJLB7CZlWreIrkjpeuDQXTmWaAg9qtXFCDhUqSTjNxcfizO4RbmrLaXFXxoxI0Zl0XRfpPaS4p1BFRPTY+K9HggjCkCSETRhLIiW8eICk6XBHg/3hx/sf3u/mgQk9iIYxfff+cL7Up+dHYFo0VpM53+QxPAJgQw6EEO8W/4QAjLis9vx8flzWapF308PhZhrR1xpbBd2uVWSARyA6EXGgGQaSeYAHMxP1SUwQMwMQICgExteAnn44BMTAjCKMCQZMRCyM3bDe3ZlwLlKyEPYHjwEBQADAAVKS3TTc7HfTOKKrIW4e1aOGq6lqc28QRgiA1GXIl2WdOd3MwzTG0elsYQ4n0/XxGKm8+X6TPAwljVPJRfIokjmMPdABJA2TF4gANwibp8zfIjH/l//zHz99XP7Tf/pUHf/4b76/fdhZyIdfjv/f/89fp1z+5//pD29/dwi6ACygDZ0Q5o9/eYzzp19gGe/uf//7+//9v/27212Kz5+WTx+fPyeE9WYv030qb29wnoNSGEL1aGrbBgDccw+8hqs7hqMrkaE4rJfzuWxR2ngAFKqPBq7uYEEtWI2jIVTDrVKtHC1hfY0ZdWvL+fPz49+qeVW7u8364/35XGvz9efPgfhw+/CHv3/7p3989/BmEg6G4HCWUspbRBzKwJIg6Hjc3vzl8a9//fTXn35ptZ4v62E/vv3uDSM8Pl1++fX5X/76y68fj96WknBIOA9ceHpzv/vj33/39t3NMKdcSs6XCAca1S7H4+P5dNlNMuZpnDRlBMxbBfWQQmncD6nMEwo7vqCX5nFa2unScCjjkMs0pGkXRMtyPj4+6/lzRktz2TZz97apuVGm1f14ro/Py+Pz5s2jZdtiWc77Oc/7nAsLZVejiknzDnZpGNOchItIdpet+eFm1u358fFv5+V4WT9UfWp2qi0vLoujemzVHIyTpyxDGUrOiOwerTY0QyYkRszDMH4D9/WSozvdBThDVz4TJAFhZCIhSsSCLMKEBEwO0YgcOjYV5u7oRCBdI4lEkBAyKMAWsWlEeAIU7OxjAUDwnqbYaTWIREwIGNBHIl7X1i6qF4RKmTMWOhzSvJOAuJx8uSgBJYYsX6XvfVLBxL3Z6RUMXP2E5TqmepFg929h5tzZcdEN53Vr7XQ8Xc6XnIub61aPT49Pj18uy5mYP3zbpR/RAAEAAElEQVT+8Hh6/vDp4/F8aqp5Gps2iHa+XFTbbj9hIDOqtrZtK5+bVvf4/v3bLPL27u5mnoT5OvTqhuJf//daY72sYlry4zz+QhlAKCgFiiN7QLOtG/ibgVYyRTNAAGbH3lQ7e026JD0xKDFDKml3u5ecK9jS6nRe2lq9OSNXNxaaswxJMmNOVHIm7EbG4UHmQrgvfEvDQx6KWOuCrx5YQESUM0oCIkBA8LAGuIZMgN/K+DH6BUBEogBYt61aTTt+GG7e/njTAY/n4/a3vx0fn7ZmLnNBopQFEgUFAUMgOURCNOSSZW55n/d3+bvvp7//cjie2rKtTRXDIRAjUQR7nRIepjQN0/f5ngSJfV3axw/r42n5cqwzJhnSsEssAGgvVgMOvSCmTl+Ib4+DOSRFGpCZuSREdgVwR+wZ0uTIAKwGVRUBmfOQcZpkrVpV1zVqToWCwhGioN6UeL8vGSQ8Tqf6/KSxRW26Klxc1s238+o9RyrYabgoPV7suFjdfGSZb7IFbM3CQ1imId/txrud3M94O8F+jGGEKRECjY1uDsjy9WgiMBRbBaYAhdDw6hGOhCgkSQytuUYLb8FC+zQdxrEQrR6nal9qnEIW53AGBwZHD1vbCnpUrILPPKwhHDyWRDeDNjJwNhwEsxANRbM0AIZwQlddtmcyHDFJui4/Fo4RcI2SIQAEh1AIBVCAr7z+wOh23xGhprgFPy++uRzefvdA8rvvxzc3iKHrWoOYE71/v3eAzde6BZSpwSjT2zzGulXVptYYgikRUL8DmsfT8fRf/+Vvv37eqs93737/cNhzOQRkj6zNwFqmIEQPu8YFBJqRhwd6B4VfTfuEiJHBI3olGV+9LgPdqUGOvEvjMGBAyWk/7yhgO19qXdwoJd6PJSU2U48IcGbJJSORqg0lv324u7/b52HY1rMRNvCLtXNbl3pRa8JYkgjyMJXhMMEgl23Zkt/ejEFxPC/ukcpU1Z4ev9Dl9PDl0zxMClamPB/mKDmlyRSezxdrVjBllpJSuK6X834q/E2lLD+8GyX8l5m3hveT3O/GiBFO+LF8HLPcFrodOkYUmASDAIc6pjHZmPwwp7vdcBjTYUgwljyUyMm8MSJgQALMCIRgEOHhDgkhwjGQUCQhjU5DQApjdBA3PTXcj+RS3t4Cj7VulshTsjS1VBoO1grClFg5N0gawz1wetkqTduyrcfNWgANw3x/P37//UFNkRQIf/+7uz/87v7H72/3N7nVxVXJARPP0yzMIiIiSdJhP+QsOVHT7Xhcn59P05jevbu5uRlTYm3tw8fPY3a5LTnnu9v9YT/uRnn35ubv/+7t7f2I7AGhvoRrgEcsYVury/n0tJvs5pBLSSJDrdzM1NGQkshcQEhf05LdfVnb86WGNXWqKCWZrrW6ffn0S1web2hNAJLIDaAn0xCFgWugY5EMBGMpImzmW9NiOVpsW7us9bi006UuKwbIMOTCecwDAG9sA0W7PC5sapVQ5ykXmCbmDBgG2Fw5IBwjhGAsaSgjkbhHS61q27RVtTBn/o3nDWCfBPeCBKEnV9OVDtBDCjswI9dJMRpAADsQ9ChcUIRgIREicgSIQDO0BhYQ9ZpgTAEiLP2eA+wNiwE6XkOauqwIEd1Ma9MNyEGIckZMWMYYJicG9z7zgiSYRb6NUMFvXv3QsNdHBBEWZj3hyV8cMzowc50auJnatqzrsmzbZubH52O0dnr6cjkd3VXDPn/5jMRPz09r3QCwbdtyPhMiuE/jeDPNiaWIjGWYhyEnCcRUZJ4fSsn7cSwiGL8BYPAb25hv3UgQgmnLfOYcIB5AgQQoARji0KMgHGwgV/JgcAjQzsAOT8Blcz+fuXmYklpzCExcpmna7cbxvOalpRoW4iSJp5yHLIlBhLJIZ31ZuHqYI3lSLx4D4CBpCA8PhQgmZ2LihMRABNdYcABsAN/2+9+YxgAQEWDPEdPQEJIyFiSstdXn7ctxeTrWYRw4J86JMzsjkPfIYuoTEGF0YMA08LzDwyE/vIFt9abNzMANgyhyu+jzl8e6btUqGOzKhFnM2rnVT8+Xp+fVgnMZx3kcxkziAHp9o1/9E+G/fyEEYwiHcLgACyB1xb+7WoQjA3EYhYN5IBolSxTCgAC1+rKhGZpDmAEEYStg+0xrgnPz48Ufn8NWN62rwtlsqb5dqtVG5gApSJZGjyddawDinPN+lyWBWgOMzDyN+W4/3MwyFx+LDdnHEnNGIlSleaZvNHDQzU1NAByg9cogIsAxsMdMEIATBWPgQMNNGaaStLZTrV82e25saSBO4YiohMrg6G41zg6rxIlgI6SgIgnHvKVwU1TIgoMQlVSFN9WIwCAAcnCHoCAMZiAKQu8hF9il310mCQ5ew+tX/CK8x3pX5nBgC6gGSwPDYXezn3K+3cGYNmv1Ys0JkDjndHvH3/14WDca5hsaDml6K8W8fqoKHspoWSQRIKJHNI3Tujw+PT0/Xki2WG9iO6HOwgOkXdskHLsE0T08PNw0vDXsYWmESNCtePoeogqOAVeawrdM2Cz3399+96d3dzeHoQzhPpbh/uaWA09Pz3Vd3JoI7eaBmc20h/yKpGEcmVnNxlLePdzfz+OUCBh297c3iLgpX7ay36layiIiJJzGXHZll3APbRpkOuycccxJkWg+bBY+ZGJaEDEMi4z78QCHrF7y3NTjC1qzXRqmXIZcXNvpxPvDyPJNEfPP/+Xp86fl48/rtkXCz4+/GODu+Ngun7BK/V/+80+fPnw0XxGNiVLKknefP54uJyeTAQSrfvrwYXkmX87r6Xi+LBQNivixHflZn7eKubZol62tzTTCncLHudy/fdgd7tL4BmUyY4pAMjvnuP8Ixfj3fwpMuqzGbvvZ9g91Kit49QujjaMkgiDFu39wmb9ZzALQAjVAAjQX+u67/TTJd9/vifDu7uZwO5XkYCuDC3+NcGQCISD08LVk/OG7saSHCPyXf/34159+bm179/5mt8vzyO/ezlXf3N5NW/NcytuH24e73e3NsN/leSLJDcAcgh3V3QwYt3Hg8wkv5+fzWb/nNze7PGRXFQ/wgCBGADYVbK9IjAesVZ9PW1vp+bTBYwwnv4UDoDx/+RyXRxCbEsogkgCMuig3OYzEME27MmYph2kvRHVbI8IjnY7bzx+/fHx8fjq3VSMwC9MobcqXXZachJkTUz0+ZaZc8mG+Gb77IeptQRUPCm/Nzmtt2iAs5zTPcymlz4DcfKvb8/l0POlm1bXGKxsWoe+P9KJ+7lu6eWgHbIMxgJ0cO+OTuiUeOjISMwF6ixBSSSyJiVq4N9VWqVbkPmhHEAdxzM4YYMYODhQBGNdGV4FQuKegoTnU6q6RM40T5NWdDNCAgBOzBJIieJaUfsuEh6tH30sh04nHABjh5tVUVTv+oao9w6g7TjBRkgRh1pq2Zmp1az///NOUk7et1U0Ym8fT45fOPKaIbdsuT3j8+HkYy5zLzfvxsN8PZRAgIcosTGzUvauIr1jQtd16JR0zc/RRl6duHvP6rLhSOGE4IXR+I4IiMAR0JB0RjMJTQIQ5aM9YdOwmMqRhG22XZtToWB4fv+wAmfM4zmUYJGUiFiROWEqahzLkJOiIABFqtrW2tra5uiG1rdWlLkeh1jNLa1sQImURTBINjcA6XuFhGm0J2+AbhDywJ+pcqd1ECILN/PR5iYbTzoDodGm//Lr88utiEXfvp8ObmzJnEorOPkWEIMAAxIgu4SRCD+JMxAPOToEj9MFHIGm6PFWw9utl++nDl81gulOWtK31+Hj6/OsjAb5/9+7N2/ub3b6UjGSO1u0F6Cuvl15mo68HgiqpclpD1Fg0IYRV81pdtwAIGXv0A2APLAxEhaagqmprlU3ZInmQq4FrQIPmgoQBywbNcCeiyaxhU7uYVwttAY4MjMRAKZAdANAz035I726G3YwolcVT4iHLNMCQvGRPxXOGkqKkYAhrNBR+RWHDI8zdAg2hR+w6EBJEmFmEW2gwAWKSoTDdTLubaRSmp3X55Xj59WwnKOP+beGxLUvYCXRJFpkQQVbjc+QLUWVKwszI2Ag1QoNBmIfMnBkRjpt7DTAGLJIoiZOwY0IXVMQwBGQiogDu1wIVwqpp/TZrLNatXtZKiQmZCCyS8QTpZhhvJ5EUC9S6gRmsSoroTB5At/dscSjlYTq8LfNb5FVjWBuoNgbzDJAsibjDuunWVmSbZjrsypsbErtA28ruJjHYtlNdIqyjuhFuYbW1Za2qzkxJhGUQpq4B3LYlDJikY7DE9FrHTLvxH//DP9Bdm8okRKaWU77b3ybkbVmttTBDCukeMS/acxIZcuEkgFhSPkzTRJxbLfNQh7L7cauAm0VbFQOyCDApRySURBPoflum8JS4Ed+94TEVKJMTvW1/J+YDBGjNFHOKu1lGc6a0Va2i4XEzzlMpidi08RnmN7tvczrkz3+Vp0f69DlqszzoVhVczyc7XZAFfv1U1+bmKonHaZrm3ZD2yhnLQ8a2u3k/7e8ii2YwyoaFeBLdaHAQNhoUSoPSEDasyu5IYQ7aGAeT91Hew/gO0w6DIDywwuywe4cc/OZ3AYQ//wywwbjH+Y3c3AtlT5VaMCVOiBI0v0cZv24vFETAAAGBFDnD3W3Z7+StzUQwlJISIRlFEAIRQnfMxSAK5iA0AGOmYUgQZV0fLhf9y1//djyej8fT9jDf79NQ5pTx7dv9pp5SR2Km/ZRygvDNoQXYC+EjAHka5fvv3gqXZXlCDEZITFySJ4TA6ETz8Ngg89fQVHdf13Y6LRsEEhvHHCXfVkmutdq2XariQPMAzAwe3QY3BU6cEkkwC6Uhialp9a2qnvX5cvn10+nT8/m4qgKlxCUxIyT1Sk3IE2UGRzcGLGnkMu0SQ7uwXcgaoWvTNHBtyfXauLg5CRIiCoohYzA6Y9BvGmMgRu4muQzMDoDdZ6uPnvsybBDgDhC9mQgHt6t7HCMCUZE0jTiMQbwCaoB7mDmaAYNfg2UsOsSqDR0JJID6cCcAHK98SqJubOhIyGWIsWKSMAxJLhlTilJwGiUcIMz0K/0FALBDGnz1x0XqhQMQhIG/Ov2/AiERVyxEXlw1c87TNN3e3tbaCNDMGLHkhFnUXT0QUVIK8yWtmSUF5MA8jmUc9ofDUAoZ9EE6IDqCIwATIETPffT4Vkp9rWjoaub7bcFvjdomKMHAHg0iMK4cTEBEBuwidyAHBgVroRrh5M6gbBtGs2gRRG3dzs8nlmGY9ow9CgmuBj/COUlOkhNzYIRrz3FutVpTN0QMXWM9tRM0LyCMoVYvhE5eOCd2QcDX7QTNoC6wXcB/M+YHeCXIBguN87hM61Msp9P6+bmuDY5nfz6ulwr7w3D/fn//bpenBAyvU6he8XYzfcCefkGATBzkSEjIhP1GdSBlcJnOg3xJp9U+PC7+Jcy5ruq1grU3d9Obd9P773bznJnJ0eHrnfS1ivnvwBgk4iQ8ZC7JLAEn93BYDTo9oOtOPFw1yCIQgSJaM2vaNr2c8TTEegMDuq+bWw3wZY2mZNfTwxbswIyOrMgxQNhIiCEESAV4GhpHkVo1S9zO8v0bPuyBhSRhzpKEs5AwiQAnFAERy+wQrMyc+VuMzBVcIRSCu6ECYXTL4B6kBgBIIpnTLHkad1mSNv94XH55ujytHuNut78tw3w5nqpbW76ENSB3oA344rQSKAQLMjFhIjdEI0QRyokzJ4BIYRQRIEScckoZiTGC0AgdBDNeTVE0wLvJFEWEgutXBpOZPZ8vn48nJ2wRLLiGNUeWtKeyZxZc3TrwpM1WQBUyIBnLDEwiGKBfnh/dli9fzm1VYcgcTTeGIMzuaNaY/XAzTEO+2ZX9DtDPdX2OlMx028LaldDXAwsi+tPf2XgB1+ndNYasWXM1IYHAgE5Euh5MHvJ3f/9O52NCwQAzS5L30z5zMrUwB/eXEDlkYiLEQOxgLiEgppR2eRgcZdnyNvjNvMMwEUNCCwpMRI6wkhm5gOW2lfNJmjmzpIGHqeXBWYIIiagZrxfYlqlNuW3ibTUPx3Vr+TBCxDyOJQkBhem8Trff3XeD7WsR89OX98fnp4/nI0C9gVlwNisnhVOwAF/okNIOAGU3z2/e3N4/7A4H+vw4PRKt2+H3f7r/4e3NQ04Dmqurxqa4nfHymSSG272Ps9GkLj0xEDGFo9ctCc37eRj3Mh5QRgeJaKwnkgvKA2Xn+T1C5LJHF0n7PL7hh78fy0EXxeYCLgxcGGmPPLwuCz1eJDFHkFBQRM6E+GLmChDg3sdZjNizhruUlZzICQHBAcy0MqWHh+m758PhZr5czufzebmcypv7/W7cH0ozsABEzkmEgbxZM7Mtwnpn1Z0HhPD+9jAN33/39vK3n/6MeCFEVwMERgYARGIWjIiMQ8rfFDGxrevpdGZXpBSJeReBLJJylrpyrZWbFSeCwAByJMJuc9EiFLA2+/T8eDmvp+flsrRqvli7aAPgnKGw5FyGMsxDnjJOrKNgTnmehmnajdNhnA5MYJWCA9cGoYiBAgWYiJRiW9vT8wkiypCFGRBUW9MNwkviktOr2R0RJZGUMWVMGYgjutkeAQQhIqdERKpu4ebAAIkRwPuAAsIIuAjPWW72Pu+A5WhglIyFkSAQ3AMAr1hIa25oRkEB4SRxdUB0RwANN2MmCUehlDKh+Lq1TG59QDaQCPskD/fU1lW35XKq/iIXRyIRSSmnnPnF7K6TLbpxX3f+7hgMM+ecARAQhIkAKMDcOY3TfHN7/6bV5qZojUIBTAGBiCT1ciPMrSkB9lgTQIAkCNBUSY0CvZt9Ute6XCO5yaPP5q67elwdxl6YyF83TA9slbYlGQo3CFAA77wSDOCrp2yXnaKFNMV1E20AIeCJnNsS0FonYpPDdt7WfBEqVltbN61bj71GIRJCunZ07ta01lY3rc00AiiU60oYbpuuQokQDXUhctJMOZEII/mVRoJmRusCl2ewr1z4K2+4864gUpK7Nwd0PD23j4/Lv/zl04eP9XwmkfTwdnr3+8MPf3d48/1Uhs6zQbySH66XFLxv+BjBAT1Xz6OnNnVepQe6qkTep3KYaBhPy/LTrx+ORwPnw7784cfp+9/d/t0/7L77MZUxIDyMr0PVa4kEARAOv70sQITDyPs54b5UqoDF1JuLkRBap9Gr19awGbtLAJHCZYut6rbUZp6ZTnORBrpeVJshnTY4bd4cSqJxLLudHAYuwYmMJDCFS+DVEzMDz4vy/bGudePYbkb/7l73YzBWZizCIiwkjNzhVaYgcmRVRw13lq8tTGAYRUOnQHE0pOj8esRggr4wC4EkLtM0D8Pshqel/fTx/PPjZcW0K3z3MO52++ecHuu2ffDtsujgKmnDtGJs1JQ4gQASeKII8UhgPdRwpIwOA2JFV2KRlEvKRZjI1GLbKKDkKdhbLAqb+RYapEga13bs1bHX9OPT008fPq/q42VCZhduuZbcDoPPTBSqocIgBOA9vgPBg7ABnAkfT0/1r3/+l8tlbfXzNGzfvckpSdja2kLggETg+ymlH+/dggCI1OH5fEFd19rqdn7C2HaFsgSAITgTUBJGNgcPQCQKBO3Z4WZghgY9x9I1rkELAACcaHc/7WPy5miAmESSFCImQsLoUGT0lDkhTiy9GGqqaqrmwYAjp64LGcdgHxhaYmCSQHQABw1PqAGWrfFKYBUKpvkwToeYZuXUXB0CEZNH0Z2YhtfV203ooqrVqtqm6mDEQIQc2Gfy7x6+z0P+WsSM9//DRr/il2eW+vCHP93dvdGN6OPjh/UUmfff/93Du+8CeZzn2/uHm9vDtN8t8ivf/szLVu5/P779frovaWQLgzAwhO3ix48ARvsdlMlxDEhhhCBEOYJcK4YLAUtmmYCyOm3L8/rpvP589BWEBqYRMRJmb+t23JZfj0/bxzVVV2CHTDbP+fb+MAzpZQR4rWOu5v7h7gQQ0vtmQUJwd/MIBwgEp+472b8JohO+AcAAHMIiYhimw215/93N6YglI4IiuAggUwY06OWvYbiZhpm/cBEc3N0DFURTwrHMSdK2PbbqjBBuPSyjG9QzxjUfCenVhTA8Wm3bsqEBCTD2nQoR0Tyqum1mEbJpi4jFyXlMCIjVbTOr6pe1nc/rctm2pdvHADPt8zBTGLgkmYddyQMTZYEp+ZAoSZr20ziNeRg4JwxHDDPz1mzb3Kt7OKI22KpttdXaAEE6UB3u4CkJIXuiaRq+ZY8TMjMwEzOyYAQSAQDyCxoWABYOED1W0AHQESLIKRzcCZw4KBMmIaIwd4RA6CNi8Ah3tLAeLmeOYRgUAd6D6YVQACkg3LE3gU6ImJII4o3lej8Y6DxakUCmaRrKu31blq1e8Ko6et1jiEU6EoOI0Q0vIOh6+3XjO+wBkIj4WsSAO5iTBybKA02I2qzV1euGXgE8iJCYJSFeW1VXwwCG7syARtgA3TsPETqhGByAwM0ggNyvplf4igNdi5hvaTqvG4yHmBew4kQe2oVdCN3MPajfie4WqM6q1AzNEIzDGA20mquCdyses23dzmdB3tbNtgW8CYEwySClSOrKNAew8P52AgBQEAVRQkkjooUzhTAHaWUy2gx9QxFEpAAAAqJQg22Buv4GifHOv7gS/YmwDHk+TLfv9s/n9ePzetoAhOZ5/MMfD3/3D7dvv5/2N8KpX7dvSyGAb/kDfa50Vbx9la5EgIcBRxnx5q68/e7mtOhlc4zGmN48zL/7w+F3fzg8vC3TDgLNHQEEOjaP7i/BYOHetTFf1zCEknAcwMcQBwM0ZYocyYQIwdWxGa4EgFSVzMgdA7kMw6DoJMFDjbIo1FZbY8VyabCYOUUZaN6N0/5mHNOIXtiTBGWPDMjdP1uCx9ll2lvTCrZMWW93PiUnECJMXJgyUaIghCAIQkeyXl72eI9vizIC5EAOTEFMRIERBNgRGUQmZCaRKefb3bybJ0Ru7g0hCg0T7x5iul2nXQkCq6KfhYyAPThEuDAPRJagZBRmMBREdEhgY+GxyDgkctg7Ant1LCntdvM8ZEKk2lZ1Cij7HSVqkKtdtg29GQgpOJmPY34lkHpE1bpsW76sFoScIK0Qp4IlSyLnpX5RPI1DJdDuowje41OMoIIdt+X04cPpdNqEXTAhjkTUqnlYD/mMCGaYRvGehRtqcd4u+nx5Xrfq7blkzZyZEEERTQCYkYnNoZmDv4zr1TzMwywUrgGXGqFfJdaEUkhGMgxwEGIWxnTthnuDT33Ehj0qV4gEe1ZFQ2/uCEbmKJSFHEWssWNCYGRkAgLvjjWOrmVdQ9smHCRyc5D9beSBEbEt5ooQJXBOJeOACCM4QVvNXF09FExDzVuEo/c1D28OB0lf2ePyP/4f/6dffvnXE3zJo/2H/9P//PbdH8LaP//X//bL8pEk/8N/+D/83R//B3cm4pSEhZgJp4sPk3uC8Z6GN1Q6y6ZFR+yTwXCP4MACJA4JIJEwQAJiAILw0ObtEgbhooaXtX3828e//b//H/bnf3pzfr6/e8NVAUOqXZ4un/75bz/9y8f/5/n//qsyUhmS7Eb68fuHf/vv/vTDD3+62d8IvxZl6B61NTUXCEISJGYkwSuUHmhG4QjggBGgnexJSNiladF3RwBsQZdhtj/+8W5b52lI85i0tePxpOHm3sIjgAIYSYilZzQ6mZv2uwiUfSU+GyV3nwZsIsIVIQQTc+exhJuDG3R3r6+q3VC1popGQjIwZWZBdNPzsh3Pm6+WG0AxZqvHxkD7mQDhtFxOy3JZamvugQgkOe93PM8lFWEBQHetQ0r3N7cE/Hy6RPjNPJYhkXCapzIXymhQzba6PtfT03Z83M7nuq4RkPJoHsu6REROaZjKPI/M1LQBeJYJgazhzf43M8tuQ0Y9F4ClP669IOgcWwe7mmgRaVityk4JhIX64L+1aM2sOjRFd3KgBtgASwCGW6iFYRigWRgERLi5h6FjSjIkmSglIARwD9caDgEinCWPUxlud6V5rfBJ4eKA8zDeHb731j59Os/j14IMu0VVJwlfaTEE+FJOATAEMLv7K/n35ZoGIMaVchdIIcxEyFwiERhDOBK/MHheSqM+2uilQE5G4KYeICIJuWMI3f78ZeKFL9YjYOAQL+qpfjZeyuzXa0KSMY2Up2BWb96LakAMsOvOZG7gjqr9HScSihpW3dV6DFjHnMArWNX1dGxrXavVs6DPAyOnMpZcUklCENauLDRCSihIV9ZTJiAIMMXAnDgnCgYIo+uRGFDn6CA4QRhGA7DXRTm6PtY6JtcRdYeINOC73x2mfXnzw93xadtWLUXevd/d3pd5n1J6qX6uY51v/nxNX+2TwQ7F99Lwyl/pFrrGxR8eWNKb9+93f/zTm8vZmGS/K+/fDXf3eRjATB0Bri0KAgTElWmBAWEWZuH+jZtqMFmSllONsjEkk8RQ0Hmg1sVMzaEqLxueVtgqquE4pjfv78Y7bJjLkHHOFWJrU3XQGDdk604/e5xuSr7Z8ZAQI9CVjNghAVFgOAKCS6J02CVEAN8SauYKaA4eiA6MTmjEERjKaMJGUcGbupmubtvrDAYBBKEQjSIlpYxE0c2TEJmCu8MUIsF+5LeH8W4/shi73L6dIQgPNN0b3/wSw2mQ6Q40tSk+3KTLSYIOUxnzMDAb5ZKEgMO4NRoLCMC+8JxlHCQF6sh506qRU76/2U2lIMa6rg7VCff3+zwkx3Ftw+mMWltPz9jv+OFhSi8EUkIcSh6KMAWGEXB41eXzplX8XAHackxcD04pR4T2joGJxgyEBraEtrATgpZcSulpjm6qEcpJiLi6NzM1h2suRZjjZb18+rBeLpuw3eySzRDA7o3Q4SqKAH9RUHdmcpiFq6lZGCICOlGXYL1U5tHtcczAr34y6OYN3ImoE+ORCIAjvFlUbQSEhAFgqIYNADelguAxRMRS1yNtq1kQFpLERXgUKYkTK+doathd0suYYWB1bdpaO7tVBGVgwwG4EBUhzMCYQpgDUEPVam2babPuT0k45PzViwhA9g/zcRt5SGkqhzfv7t7+CNCeL6c8zxbEw37c3zONAAzwojnjFMhBgTygTMQTIlEvYhiRAdPutY/B6BU+A3BP6ANAQHKrbmraWngLXC7rh3/9a/z5z7cFrZTPf/1LhLXHx/X5+bQsf77U/9ffnv9lcUrzbpoeDsP5eEyZiOYh/06m+fV43EPV1AyIBMUJX4CVLi6lqyuAR/RwXnJCJOS+ToUHRG+mLXjhBG/eDtaSBGUmU1sXq67qWl0jgpGEJLMkERGJwG6X0swDwmIhBwM3w5SbSKRrSp73bG3oDFe3CPNvKuW+03l0MwgQRkb3ttTqHz8/ffz1US+NCeajMEW7tCJydxsp0WVdt1a1GQKWnEpO48i7udzdzmVIAO7atC5DSu/udgCc0NaqwtSLDGbIGUm86rJcTufnx+XpqZ7P2+myLgsAzhMToaqK0DDkeRqncUQG3ALBh5IJyRqUwr+JfgbsjgtIXchDr8KZ664R1wvUPTItAgAzMRAHgDuAoRtQ0CD5br/38H0phYGigeuVixegEc3NwADMw7WXKuAOIULYZ3jgFj37jUW4pLGkfT7strZ+Oh0vdQWHIvnucIum2zLm9JXY20f55h5dFHkVAgcAvprEdBgmIvphvkxyAroRBHawFZDgWgOxhAVGdyIH696oeC2YXnxZiYQDg+y6nr6wcQDDMYKgG6d3i2PoliddwdD34+7a+S0SE0AaqcEIsA+UFs0BCAX7Rg2BZAEehB5oVw85DginalA1WjPdWlM1BgwmaWuAmdm21bot4SZEIlyEMxNjty90gCBCYc5OQoAkRCFoQpCFck4iwoTWnVvC3QMjgPrWh4Bu14Lst4QYD3jxJAS8HjExzrthGMr+ZlfXqm0Tgd1+yIV7ZE6vdl40cN+msPXK5vXj2tu8Mll6LDsTUoKZpAzp5qY8vJladSbKiec55YwIza8Wlv26I3gAvMBQnd/ei5hvn5buVCDEIkgFLEckNAXQXk+BY+f2MjoLhdE40Js9HYIUmQTHjBwmuygNLcqgPDRBgWkXu0luJpjEU7ce6PUVA2EQ+LU4IycJQg4HciIXADKk3qpHQBhiNz1Ak3BGJPRQretgWwa/bjCJ6eFm/OHNbpqmIaVMSBHhCogsDIx2LWJ4v5u/fzPvp0K+QZGHYZqE4xA8R5pOKFtONSGMkWLa42cUxbybogyTsLMwCjqHk6mtCgy4yzJmKVkMgI3mZmqeuezHaUgZybYaUoYgmA+cRg5Oq+bhUmojBHKN3QJ33xXJr2GWlJLkLIlRGEUwyNCXcHNtBn6pJ0YjKSMkEQJgdfCA7MGoRCDcpkGZYx5xGpHIumdnRLQ+7HZv1poaAEoWBFRfVZvqGVxTl19QV9rbSx5Cx/Z6hQ2IV5GdAfR1QL3j0qZu3xSXyJSEC6XAwMTcV5p+RxD2cKsX/V8gBBogBgS5kwN3/UAEBBBb+NrWcxwvrQZhkyGL5YQD8cQ5IwkxiKRxjCxcBBnBI8zMGngltm7QR5SYhyCgcCTrkgkBMkqCoUgN1N3hNe7qtYh5fPrnx6e/PH75NKz5y8enh7uzMFqD8Lxc6l/+9dex/PXd+3fjNLgZYBARmEMzUOsLKAZCT/ELvAJRwACdcIjXEUlAl9b1TxwU2RrUpS5GmYZDygLbYpcjsJy+/PLT52dt9fbyCWw7ijwf25dPT59OAdm2PWUeP32q/+U//8R49/7tv5+m69LSSf7e9aGIJMxUmKj7zvcxBaIAoof2RFwAJyTqAsuACAQHh27sUxF9GBwEyZACwUPdq2r11lwBIomEg6u2RsRXHM7B1TwwEBpZ01jDiTkoWRITCWZECkBmCIJw9OYa+PUmi97DcCJJPBCxgy3b6ctx2f7yl5///Ndfz8/VLVLiJMgQ+7m8fbvu50GYSuLDzTwPeTemceJp4N1cDocdsyxbXS6XJVQy8cjMabJJj8vjabXTOiQ6UDq8VcG6buv56fHThy/L87Nb0822TZmohA2SZhmGLPNunOahlAQQYBxdUNTdhqPBNw9Mbxj6pAKvYT6IiMwUDmoREQQAQREIESzIwIQZgswsHBMSIw3C9/uRf3eDBIdbzGVRfzRzRCZGDjJ3QIOICAvoUwtwdzTPAyJEQqL+eHKHhVgk5zQMuQAad3ZwIDllTt1bpstAXooY32pbt5agA7fXzhoBhKAT7l6Ls2+RmC5iCgAkJ0f3fpYCoKvI+XqiADyCwi0AmJjkCvwgGkZA9FBHMLMAFIY+fI9AQrryd5mJwsPVFNRMA4CRIihe1sx+LOZwrum4jUPeEZbqCgB8tUlzAATr+i6M6OprN1O3VXVTa+bbauu51bYpqTUAKiKeaq3rui1LBQ/KA4iAuoMCA0QfSIYwBgpieJ+jgiNAybybx1ISIai11qyXQX2n9ZcxcCCYeev7/mvN3xsVi5dCI15qYyQnChwyD4LQ8W3uKvEO3xq8SFC/hkfAy5rVV5PotgIv1VGnyvSiJqh3wow+TlAGDu9Ur0AyBMLguDKHA67Y2IsxzFWk13MGX0qd/kuInQbHnXNCuUdObqvGtkQzAAVxJMXQBMrkwYxpIp6p81MrcePUmBugBprHGkSAJBKJXTgSgiDQyxF1VRZgIGkvFgPQlU0xGoYRBAWwQbKQ5qxG3bYGAiESREhIjsS1xDLp+uB2JV0ORf70421q78dxHpJkCgwzbwGOwp19QUIsaRrmwzwL81a1RE48bVnaqE3UYQNYCVRmGrLQYfabgpWlFBzyfsAQYiMIgmAzaYoYMEjOkkQkMHbO7k6AHJlhZGTK6uGHu1FBMVeQGsUSVjZq0Z3xIGq6e5dkeNkwEVkkpZRLKkVyYiBqHo7KaW2uQUs1O68OhDdlxyy6NQ9TU6YQonnkd29HcxBJJQGimmv3DGjm4GEdTwwDJEF0cDVDbPsZac773ThNZSjEr/5ZvQdE78krSIDgjETEwJBQW7XammlDb7W213uMiIe8n8c7M6CIhCBEzAJI3v1QQBEdBQhZkmAIgHhYjQVcmTGBFEqJCmGJum22XOrzCRZgjmIWoAZoMAEIEgvRbryZJYRI0MMDxEAgCJFLSUVKjklwEpkt1NtS61ahEUZmJqAEiCSBUKG2ttW2+TcpClLXR9MLM0Hg8en4/OXLMIyIcnf/lmVZLtvj49Ph9mYYknvni2Col5StxbYuy+W834+S5Cqvx6tuEIDgFT7tJVt33Lm2MYYCAOBNPUgQCCNajW2DMdZWf/74S61Vio0ZAwqYRmtew6PWVLdLOz0uv1h7c/ep1faywYA203adSwD2DoN6Glx4dNLLS+5gOHhf8hwcOsh5tS55kS1FQ3TiuNZifq2TXt1NAIlZCDA6KGxdnMJx9Ry4qh/RozukEYcwMCESIEFwXw8NzIIU6NsuGdShenfks+a16aZt3dbtsqyn83q+VGuRREQoS0jCpg0xj0PZjcNuHqYhTRnHieYxTVMqgoCQCD0lmEbpCUYcUpgr+xnUrKFr3XQ7EkVUtXVZjqfL6SJCiJzykIRzyUNJjJATizBCaFNAh54ijQBgAa2zRF8P54UQwz1FuSt3rogFIl3jUxACrCd4YK/yyALDgQDZmSlPw5ByvrnJSJhyNX86LWf3RpSICAIC1KDzaxzA+WrNC9EtxcN6y43hAUwkLCXxTFhUtekKoYwAIIKp29VcHXFfr0t8zU7qKEEfUva/6l9xs66yfkVivhYx10+urr/wyh7oCGVAdwm9pjN3PRFfY0P65inMjtdstG/RrCvCxdIjmiPiGuPtvUBEe0l9ej0Wd78s6/F0cRpleMne9oCeTwAYwVcCq/cBiIN7qLuFeahZc6sWzYEtSK225u5b3Wprqo2gR04SOIJFb6EAgwgFCR0Iwf3qCojMknMeJ2Zu61I31aoYHoki6FoAg0OARajGVuObNfl6POB+bZroZSTUWUEIzMjCSBLonXQVryf+9Zn79qf1Nvcq6PitfAjgem9T/w8RnVBZunK6L3XdtBp6I9dHSC9V0bcQz9Us9luzOwB2GC32W7upbSOcA9CkOYKDBzpREBBHlA7fESUxEUociRrjhrgFN2RFcSAPQOqWkuyCSqDg3odjce3XOykNNNABkaETzVwjFMMZgyNEQdSlOZlya6TKHuJOFoAOZBCBWpNieu2US+Lv73eyHcowlSQCBmHm1SG6eREwkjBLKmkc8xiAZ1EOzxKauIlVVDUyNwxMxPM4sog5xgaBiJloJ5iQOycHJBzMGQKFEmEiEsAAEHCnANtoPWtglBEl593sGk0hDC0KFOYCpYH0JwXN9jtmfhFbRKzNlqYpZ3FTg6sskbhT4FMCDTA3UwNAJk6icNXAO3MkJhTyAEDrrDc1rU3NFFSZiFgQkYmQSKgrvT1z8EzCPE+SMyAYhNM17i0sLDw0XN3Qg4OJPZEAQd90GD2AvDcwL3cyAWUex3SjHOguYEwonAHZsMdjaaAhGhASZAJGEHOiaABOwAlEqBBlJ/FQEAJjCkFipkTIAB7QwCswA0Nn3QAzMDESp0zIgC2AUwrhxJAIEwmTeTQz29w3wuDIRIlJiAhTQgIAk44XvLyECIdS3r9/GwGX8+njhw+H29uU8j/+4z8ejytSMrMXAkOYeTfpujkcAk5Pj19yzrf3+zIMSNdFA15ZathJcwFXzeI35DXAIEnsRVwDSTVqBTW0QAdrvp4uW6vOIsMwj+NN+O1cD6qKlMFwXar4ErydL6/KEXff1lbXBhjdsrO7XTu4mvZALwQkBgjsvwkZADE8zA0DCJhZiLB7ggVAhLpZeCA4MjIRA2YHDo7IiCg9m9W0B4i9ogzBgYjMrxgdEBBiAAIREAkQBaNH9LzxuHKW4vVYVq3nbeMwC4GwPI13gCnlaRgOu3HghIHjUEQAUW/26fu3u3cP+8Nu173tIUytbRvmFOvqy2XtWihJeX9zQ4xqaroZuCScd0UzMRhEPT1+yNsFcErg0bbQWso0lJzkJmcZhyyIZg0gmrraampIICy50IsiybpT2fWBIRDBXCiXJJJet9LOLEFCEQq8uiGiX28PAGxh4BABEiyWMo+73Z7zDnn08NZOl2WjLZFLwoRMFE7koFQDmgEACPepFna9j/e5cXg0FaSccuJdkXsP/PL001I/mS+JkaBkygAY4K9Ckq+37rX8uo7CoGtisY8izc2bat02M6NvXxCA2LzfJPjt1tgLm29CGpCIJV2dyLvTcRdqEyLKV/02M3cbmH6kxFdwCXuQHAQgMJKHh5m+FjGvSIy1y/Hj8fOfwS7jPKeSifDqcQwAgB6ogWqkhtagpy1Lz+8MDAN3dBIQQRFg2ZqbhfWcaCbCRJII5ar5AwQKZERChmACRm/qVdWBUhpICnExt9NlWy9LhAlh9NayezQjeURV3bZYVjsvZl+rmJcoiP7UXvvUAIgg6wif9ndw1QN5oPbigq73W9/L/WUV6+Oe3pC9Eu6v9UinyVyfaWAAQSLow7LXMqVTgbt+IOL6wzpIfGUqYUT3gniBm74WMTeb3p8up/V8pBE5KaSaymVM58RbYmDpjUFnz0BJIOwCTbAJGYBr9ORdAGDAjIDhlqjlVIU6XNiNJpD64WisVU7LpJ7IISUfJhNRCINweDlrEWCB7uKR1JN6qkbNoDaqjS9nfEph03KdegII4+2UYTdISd09JhzcUy+siAiFeoWVOCUeHDCJQ4tULRp1YaHDFa5glCSZjCKFelvWGgElJ0EReImNZUIqgRwmEYIgiI5hDrXVtjzVT7+eiKXQzZQSyxCQWh+8dk8nUAOPCPOmbZ1a72EBAFTty/Pp18ejOa3NGI0YWGQYSo9cxTIpmVtQYDRFwjEDAlF4Ykg9UhFUXd3dgyNSbXq+XOq2EUJJadrtckogTIwiHA4oZEhYkACYW1izcCRKSTqNxd3MoplvrYKFBimnIRcnjgDmNI3JmDdrdAUP+yJGQiXTQO4OBqEQACF9SEmIRBFoahuYd6y4D8EFUjecERCAZJgaoyHn+WaXOYMi8pBGESH0xBhUFQkYuxMoACUmSSnJHICjSrWLtnNEAAFKkBhhQ2wY3RgRwQMoCIOIk0iBMtqwG26EviH27vY3zAmQTG2/3yMRAI1j+eHHH9dFL0sdhpGvobjYC9KU0v2bNykNdTPA/mjab1uW14YPf7MFfNNvICIjZxZU6N4nXpuruQUSDeMkOZWBck4oKXFLGAVD0MmaLscN1oRF6zeman0yCCgswIg9dLnTAt3CewcbrjUCHAIJuLtpXEdeXfaHRMhXA1j0oLgCNoEExB09EA/qXbiwIII7dp9WeAnfQuoUk2sf/TKN6JYu1+UAws2ttWatmVo3ens9T2pWVbsMEQnzsj0+n5pGhA8pDSTCPA6ZJSLafi/7XdrPeT+nLNy0qXacmrqrW60VAHMulHJKJSBO58taV/eoaurh4ARmVrflFO4oAFYzR2QaC5fMzJT4pQGAF52Gu5pSAIt0Q34I/+8KVrgiMa9TpBfJjAeYISJcOazRiSIARB6BbtfJDFnEpgZoVCCzTLtRTR8fH2urrh6GgUAEggEY3kFARwNiIuTu2QYRYWZKQO7hHuhiUZuvtJnZeXnc2hPSmnIZ827Iu3CvdTPTl9nzy132zev6le49ZQauYdZa3bZNVXv1ktKLxRx1tm5cb67fnqJwt15kRfQk2q80nN8+Nd/OqnoZDS9FzJU0e20bkJkDkRytS7RErtOx6z0WEIpRCRcmYnJGNgDsVghIcL1UHUDqU/eecltIsgWnyMUWbUaISGh+3ZW7hIuZWYgFuTMh+lwRrlo8xACGCHBGD+qFiqm7qTY1tx6u1FGeuHJBIwLMqctz9Fum4jeX5+uJ/XqeO76E/ey+oDD+ihv/b3j9r/8lXiHZ/nD3dOm4JnddTzB8BYR6UfSbT68fX7eW/vKAVa16xbSm8ZwHz6XKcBnyaUznImsSAEIFNgfVCAASFjHyBaNCRASaczXelMIT80CAYVXZLTMzurMDuiNTFPZEIQQEuGxyXjMg5SFuUHO0sBU6zgcUHUq3JmxjMeHNw82jGayNlyrHzFxof3vh9JK5QTRl0ZIpSY/mhGA3jnjhxjF3ZyICoQBAzCTCGcIhvAdBAFoAWhCikAshQgmlSnGxiIIpgQgG90W651MRe7A5gyMGEaCFgyqrszUEZ1PxlIKBSKAbRFuAA0gne2hI05gs0cvV8YhNfWm+OpABhpM5mwNiSUMSggZoSIEYAaZgwRJM0MEYdwMAAmPUiCtvctt0rc3VE+OV1EXOhBSAahAh4MLITNe11sPcwam3u2bu4Y7QTYLCHIIwAEXc49w2CxglC0mknL5xHkdAIRFKAH280tclAqCe6seMcB1RWMcSiRAABQoicjABk1MQVwRjTnk3pzIiIGJCIQTkRp28ggTB4eFB4YQe5NFXOAaibsPpARyB7lgdNyJjCkBkRGZkRrkC+QWQ1H3Iw29SrN9//4O7f//j79yDUVhEUkaUcSZ3MgMizimZWUewRdK8u2HOd7d121opIkIRFcABHQFe6UAR/tuhUn+KXz71IIjEEma1bnq56FatqaoN8/z9794Axp2fGNoG3tqm28W2RoLoUauy52k44DcbDBGVnMZhBAmjl1G2GzggeCdAdGPZHrDMwtgtyxCJA68DBkIEcIVAvML8BBwRwNcGCAPIusclBKIzETNBUJ9jRR/0MRPSi2vqVRXi4RZXHwtAAAPztq2bthoa2tS/wce75xICaVB1fD6v9a8/WfPT8UTgw5C7rTNxAHJOwgTh2toW1tQ0womIKUWIOaoRQJCHmqt6M3t6Ws6XU9NWzasHAswJEEqxYrXZ9mxV97PMw5gSR+i6XtaIkgsLE4UkZinMiTMSYkqcEjFTOHXJyVcA45VfEN4hhKsoycNd+/b/4vhNBIwA6C2QAhgBmTHALutpqTU32DkP02SxPj7/+vj0q1kFiDAVB0khZN71PCQWgUh9quIQrs0Bg40CAFzDdLus+um0bgiu/sXh4tYSjPvd3TTetubn86Vuq6q+Fsp9YKSm3LQDPBFh5qZN6wauTOiqtVZVBYAOkyAiiyAAIfrXSuZao0HneZqpGgR0RkvYi2EdvuAEXW/zUiC8cKJ75BsxUfQfHt4pFxhXSdg12CmlYRyGYXgtYphkmveHu9vDw66MQzCHC2iBGIn2QAkxwj3cyAORPBAiiLijj7SrvJy5fKmXs7Ua5oCdjuYRwCxJWAQkAzP2KR4Yhr+opjAQg5lKkQAOp6ha4wJhgkEliTB11e8VGenzneDebkvqdfPXzf+lM4CvdQR+LR362fKX4uObv7vOAl8W975hvaBRvyUQXiu/7o75MsgDuz7j0JOcr+/iOsHuRVt0CQgC9QnaFTN64cZ0sOP6Uq+n9cMWf96/+eeRPs2lTdlLiswtw8JkwHSx9PFMn4/5wxNblP1hHhKgH8lWaG7O1aelpvNKHjKkIREibsQbpy3ImyczaGol6d1Ubye7neFc0z89TR+OpXlKhe52IVS35YQOYxmFSzBF1KinQ9n+8Nbvd2vmE8uGAJpxEdpnuT+k/HAZsv12s2QIRmBGBAoHv2Im1PXX3QOAQCsRFwRMGYU7xRIAMNx7eDMKs5AQEpilVNjMXtpO6MFBAYAcSIFg6O4a0K0cHBxiV5AeEhANycgrKV8jOR3DCQKoC/kRLVg9hiivRQwScc5pGDkPlBNBCtO1bm4tQUsU26YAkUtCpvDm1qx20/HsDuu2EUG+epaFqp2Wtm1mgTnn3VAyU7i1zaM/3N5he2RhIQjA7v7dm7G11i6FICIS6WPJAHBEJ1CApbUPj8/mcT/t5iQlj+MwvW782B2p6FoMxeuDc514BwISEkoB8OhB5NRF10Ig0m3S1T1Cu9qSppGwm3m6KoQBCCMIkxAziFuAqnvbVjVdevDlZTtXXcBaJnYIC3WtzTZCz4kihIiKpCSJUURSkhzA5Jr4m/0FQKbdDgA7tRCsb6O9mRVEAeAI6P1o7zyYeShDTlnVWmvdO3LbtIuWmeiaGAz04h//EpnzQiqO6KRBR+j65BC0nHjaz3W3MyJI5fDwBonSMbxeEIKzDCXd7mW+eRjGXRYcx7I/7N68vU/5BVZCeDVQxSvuC/EbdBeh0yHcuxVH2LVzfNlssd864Q5XjgD0QOQXWkLHyq9OqXAdiV8/rvZqEXj9evR30O1prkWMf/WxBofuw32dGfy2r+zjFXAABzKwtR7PqzXTagLcBSvXwC+K2nxZ9SQ1AhIzQBCiMDqSNiTE7prTmuOmTHVrejptx9O6aatuNVAY0VnI82auTV3dYcgpgtVi29an55O7T+M0DEMpzJmp71RBL2cu3MENTTEMvz2Yfn764/HVNzagp2pHt85FQAKKl/N8JXVEJw01qOAKrWhdTVezZd2e1+3UM67VLTCQogMxTJR68k9cBwN4rWcBIBgJuSfBNtVT1ZXABFaABuEEmCUJ82Vba12a1uv3fd0rf4PERIS7qWrTBuF9YPGya17/fb/ufNUEXvfNb4VLnUvTwc7+evkUXqgvAESvk63XSAF4LYPiKl3tPwoA+iDtiigidIBafhtmKZSEC2MmzB4YkSJSeAoQALEwi7AX2xUCMHdz6Ho+IEYWZiamMOoqdzAHcERMLN0JHqlTYZABAci7EeTLG+jTf3fQZq5qjoDRTaSydOcM7tt+r2MIgJlEWJTpv4uw/t/yev3F13rlfyMM89+/rhz1r8iKf/PT4es8/f/fO4kX1Oq/fxMRXtuqfpqH57E87spln2xMnDEkFDCAJAAZkjvUxqsJLFINGQo2sE1Vk+K0tnxZwIHVc+JANKIunQ+NbAbN2ug1Jxs8GoALYFZMFE6GuBqS0VYFA4BTwhSEEI7BGl3TrwEVrrMecMgG7FQCc3xj2ctMwhJdl4jSIy8BoRcxXelxpVOGxVXohMjSH23odzQ6RjhAj2VGBBQGTGYE7viCs3l3acMrIEcB1/UYuWdr5EQiCQg5AUFP8eR+LSM6DbzbRjICMkWm30h5mbD3pi/2Xh6BplCrBaI2u3qPdlABwMwgCFwROSKEKbEQMQSo+bLpuik4cM6ckiTW2qA3IehhXTbbHbQpAOFlzVH3y7q5O3NKOWdBRL6O3hAUwCMuTR8vq5klFIKMmeK39D6CYApkCI/mzdEFOiedCYERiTFhz6zuLTFQIINQdA/AiOvsg4SySGIWEUbQCpdwIhqESUSYGAGNAlBbW9QuZlrbauDrdlHb/n/s/dmvbEuaJwh9g5mtwd33dMY7RMSNITNqyKquLOhuCiT+AZ7pJxA8gAQtJKALIf4JEBIIxFO/INQSL0i8IlU3Kih1q3OIrIrMrsyMjOnGHc85e3D3tZaZfQMPttz3PjeioLOr1CqkWLp333P33sd9LV/LzD77fb8hUlPbkCOImboxUQrBXAkxxObxpqICUB2kmgQoT5fL4C4ATVRFvs6ZdGbmts8NW+u3BaivUmUMAZBQapnnWa2ACzZSSYghdMwBMbSy0c3bpnBlQLkhNkUfgjsj9UN3eXP5+jvfOtoM013hEHY7ZCxzMCPuui3F57P31H/0rR+8+uCjl89vhrFX0KvnH46bk77aXURqzVrNCDDQWntYO3FXN3cL2BQfBASurirqQIiBuAHMqwvdOrRWy/o23VhrczeMbNXatM/IYFWmrL8vZqc3h7VWWhEZ87aHW/eNHkMMyAoSQnhqdqdqKmpEgKRo1TwvWcW4xXaItZVbTIvXuQoClOpztk0fuxQjkYlbNXDnQIDBXSVrlUUUa5FpqtPis0IxLAYxYCJOCGSSuG16mGNUk3ma7h6Ob9/em8PVFQOllDrCDjEhMhGYmVQxNDQ0tbxYlx+fMWzeKkxPVk/CNsc4NVYkIYUQ6bR6nyo9dwdxNzAIykAdWyKxMtV6dCuERsTtGVWxAkqhCQTbjsNADdTX9OP2gubGEEMgCm7gVrQuDkroAZ2QAqDVRfCgWtQXc3HQ83DBU4p1e4QaErNCAxzAlSKDUuicNBA2Mg4ZgIgYnPRrJ+pQa2g/RkXySulbqTCrmNsamRzJoJWtJ1p0a2iu2Ev7ZliRv/YRI4C0Iqp1ANfP9dQFc9eq9agLgxVEDg5URdSO7tkcxaqZqgsCBmYAqCKAUDm2JqCUko8HKQUMms7UVBE8Rg4pxRDphLcFotXaxsgasRrXTYKDmVqtFb3ZqYG7IAAYESNx8yBVMAVwJIohGECt9DhaznfHVugEn/Ba/HSx56/QoorXtcsa+fmx+9Mozk/CjeD8Ou3T83MTCVsv8cnrN5zNTmUqIiB4Ew4AnMBIW5nsJ8ToSWtyfcqAXUMtMQMW0Ao5ATq3epwAPIANQS+GWi9p0cyphoBdEBDJIBYMAm9cdqM7QgrAwcArogCAIzmKAzrULuRdP10MeextAP8h8cc3sWpnHsnZ3WUrgB67OUYkVnJhyT3JrlPEWswmgyw0l36fLx/y7r7sruDlrqb+NF6YKQQCYkBupgBrqEMTkq5LDhKio55abQTeVmXEkwhDm7OJKRgRt91oU/O0Nh7iEwY9rIDgGmpi7ZfIMVLjhOLqTOuG1nxuHaAlQwMgoCEhcQohPRb97mRCVskFLTSuZKLISG5uTSQRiTqE6B7RmFxRqosJooXAhOgWHNCMVLWIz0VNFRB20HccQ5/czVXAAEOTkLQ+uK8QIJAjmmuupYp3iTg2ty0gIXE3wgpgIsdaj6Ii0i0zoKjzrhZ9fMwcsQSsGMnBpjKpaggWuGNKgVrPITATIJ7I94CKIG5SpblOkQWOXdz0YRN4YGIgM5vJyR0SbWLoQuia+F5NQ5DIWNXUi3mtKmrVwYmJY6AQAKKBAXDgSGSi1qyd1WXJorYQzg5erFz2rGN9WsSs6CdAK2IbgkLQQskdG9QPJ8x1bco34QEZgqq6qDYzFjRXbUxHXJECqapq5kQQY2h4HSECI+CKfHDkzdX21Xc+frC5fI4eOF7tQhcdjiBb2mxeGf6NF4t2uw8//u6r1x+9eHnT9WmpmeOu67rzAhOYIwdEA0KOzVQNwdaZhhjdAQI0PMDbw+0GDmtCBK4AfJvf1is+sQQRiBuzg4iQPFhrKABAY0O2jdVpPkKAVfLpq926Ozq5etuXOrgZQmAGdLAgfffY52Pm3bi93l1CiBxjTGwKCy2qFjkmDiOHgOju1YxdiMEhisYiMUoMITGyKQJxycTrWo9qgArqJuKqEdwR9eTBhqpcKpORcYMoA2AQgSVjziyaAEmtE02iSSSWwmaECCIuAgAgDKYwTdDlJ1Qld5FaayGK4Ng+ZjxBFO6ACE6t7QKnFOi21hLACr+bASApzku+87sl17nmvdni2LZEAOZajBS5Ody7oRuqgjdjAUdocRDNlceIpAHVYEKtECEKyGZ1nm5LWeZa53wvUr5hR3KqY1a7GwdgRnDGwO7IjIAQvEmVT+u0WTVFQw7xXMo5uJmrnBwOT7t7XdW8a83VZAUIQMxrhJuBirTZDRGb9XAraAgDrX8GQ2gaTVMFd6k156WWx+rSzWXJZVoC9S6B2A1qqSKq7ujmotVOTGQlglMRo9ySjExqXeZsaogMBlJtjU0Gtkgt6dnU1asRoRkDuWjb1jQbZENwQBWVUtzNlAjBwJgQ3GLQENQB3EoTh+NpFyu1Pn50p48TTBvyewJXHwky7xUJrRhYv7/mCZyGKTzVWK4F37lMWdtAZ/R2xQla9QIr47eF851wmraJWrl5vnaSmnG443mz4qbnUyRO/fi62/xAa5zrJcFb04fMOXFJqIQAjMWpmjPprpPeFFGIvQvqZFHVjSgURFYzJCM2IvXVixwBGTECEqBGqn0oPRVWZdbrHraRxTqVJJpMSQN4SwxoRYUjAYPHY8ZjBcXrYiHrkGW7yLPJrwruFH/XYTyPfdNqUjA4YtOnneh0rc9rjSrVwnls5VMjEUVgRmAHU62iVcVMHYFAG2fMfTVnb14KDs2UgBxsHXSOKwLfNGDARo3XCGsrr6kETyi7wkmvug7HM2PydDEoGevsNTuiN+QV0QEXFWaOXQRgBFQ3UTdFzarVHBwJU2StUUWZSNxrFVM112o1iy8lRyZmQjczcW8yFBBDNmU0RFJwA5C29W6sGmFfliLq4IsUB49EhGqkVasTONpcF4Qigrt5UtXTpWjJh1z2iXtCpdUuT92lidNEizqSMSCoqLU7o+AZrGgRAfTQBewAoq3IDYCqqFWzgrh6oeFpoCA6oQcmoiBm1YydupgcrAt0Uhv5yZ9FG9hhLiqqCkVclQhE3bLOHc32hEkS1rdZ28Xh1DM+zanNdPlJh7gNzlVD5RUxEA2dsnltfNkT5+G8uXEzLaUAuFskisQExIRoTc2FgEzdxfD8k486Lm+9iFu8uRgudt2LTWDnsXuW+o+xh7QZx8tu2MQUKMDgPdLm7AxLRMOwudhdOnkzMmtyBvCVOXraACMAtB1eUww0NJLhVFSBAXrjLgA0TVGbjU52re0K1yWNfA0JXPvthIy48nGkbYLXTUdraaobUBPBNmowEQOC2XbcBl5bY11KH716PX/7u06BAscQHKBWNTUEYsTE1HAsdRAwRwsIgXHNmUF2b/peqkoKiNJ4VBEMtJBa5BD73tgteeMzOIGJeHEGiIGTKZcKpVopPRFfXF4QUuo7xFQlznMolQhB23UZIGIiNINlxv6JI7yZztN02FephxAqtf5CC7gVb9TU1cK/mW2brRBwYAQ0RTdyJwFQuj34nbmJLkUngdLyPZAYDUEAAZtB9lpbWrXGE0VgRkAUNzmFTTADERFgaIxAZmKoMt3uPzejrJpLzjmvBer66HhLFiForZDGymz0a10xNvDW+wc4o+FNdA0c6irCBz/rtLGJKgENXEWb2i4wU2spqkopDh5CCB44BACT+kTC3XS97ogECoBrLoGooa1zJYDneT7uH6bjwU4Tmaku83E+PASO6AZEIjLnSUWICR1WyZ0jAggigJsaIiKzN+J5kXkpZkAUTvwVN9OqWMBQA3SBaOVMCiJDWwpdTcW8ujk6Mpu5VFGVWdvSAoE51ZpSiJEJwR6LT1DkKjpN87zM9qRSRhOw4sDnAgUIHmuT01zaftcBTl1uO/vntu+0rt1avrivOI0/KWKgeTG0meTUs3yvzWjtXdayxtx1vd0rlqNu7thYeyJasko588dD2l69/LsCz/fvvjgev5yXL2/1S4avGN4RH4lmChVRAA3NGGqHFiGzF7LsqNoDAARa94hIBmSI6/Lsa+lFAIxA7MgKpO5ZhUzQDMDaKqlNRkQqrlXUqXpSH012bqNr59QB984XjjfANyHebIaL67S5fv66i7v1tpjm+bhM9xx7Ok1uzfF4xa5aV/4MnyK2JzkEAQtA5O5VFpEq1dyRsXUobZ21VwjGte2iQgRmOhOgEJAbHatp+09F6mMvmNCp8Zjc7HQ2AGDu6Gqm9bwbQ1CUCcpByyCuJBncZM2BUSTuh6G32GNAIBTWasd9VtUucQicaVX/M3NK0QkZJLKoqqgdpoNLSTEwAlhLtzV3cwNCTpSYA0RyhKomLsyg5qLlMM8PhyyqHDgm7gPHGGOXHGDTUyGykg+TTC67/b2cxr5Ivd+/u5u+vhiuOaQUB3LFttk3E5dJpmrZ0UHNStPtoKtrVs1WisaYdpeXjKHyPANUlFb6iE3V9hzAEQQrKgOuVvhuSmCBMXAMjgkQCB0NpKA7enUwJAInqaaqxaTaUkp2p4AjYYdIrqaqYk83MBAAhpUO0pJx1z80lgyesuTeQztP/zbyIDGzeeeu1sR4fsJRgR2APboXMwZwokgc2jyOtO7/AQEpcM/xBSIlgUFUhlev+922Y4uRKEXueug2EPrTGRqAMzhAv7J5AGIcnr38Xoxhza2idV087afOZL/2LFHzgmmbrgY9neiWLV61oVPv8Q9gTSc4MRdgHXWmenJ9xlMR03ZczQCYVqqCN1IftDZEK2KabBsddtcfx7gmcg/j9gc//Hu77c6g2QcQQEPm14sJjxt6WJ2G3VpoMBMGQgZq0DOcKClNY3CacdtIRXVTbxduYILuATGEEGJEoGZ5UqqYOZ1Cm4nbLWwolKs1z0lDhIDkbrXki1ffDWndjQ3D9vu/8/vm3qUNcwCy1en9XMTEsGra3VV1hYERORACuaHbGutCgG5apZhVZHNy5waHBTQCQfS1pOGACK5WVbSKOEBgckRxq6ZiLUyq0bobDxkTc8cBkUxM1Ku5qaraD374++O4Oy0w6frFK2JOseMQ2iNs7V5qdVdoNbtoY/a3yVTVRKr76o2x+ri0AmF9VAkRba13FABCCARgas1KwsE5cOvVAjSvO+e2qXzapQuEgNr86RDBXEXNDMDrsoyHZ9evPoor0g9dP37wnb+BSJvtZUwJAEQl51lNWlG1uvH52TvBmzldIGpFTBXNVc0avyEQMTqYKyF0McTEKbWxoG0Y8ompY2Zi3kp85JY30J41bWsYE8UUYuQQaO2hnYxtzVHUcsmvP/lh6tfxgpzC9lWb8x9Lll8vYs4bw5Uw3JCVE0ttLWLOA2tlcT0WMSt3eE0Ubb/mK2x2+qUTZft09721Mk5k3kboXfd37u6qJrV//h2O630JIV3dfAx0ldLH8+HO5R3IG7CvwG+Bj0gTcmGqkSSiR8AEGiEzFacC1LyeT4QAdCR3MDgXMQ2ccGxMWzQGZWgtNTQmVYQIwS2pdeZBndVcQapR9U5sY7YzHUU7xx7DgHyBfB3CZZd2QxrGvttejvF0LRRSf/WRm1Ls2mYNYDUVXD/0hprA2uHBVTOGIQSmAITgVrWqiKk5IAPD+ltwmsAR3EUFAAI3AWXj2TymaJy94U5smbXp3zakuGp/7HGdaJRts/7iAw7dabxsv/293w+B+81VDAmlNvKtuuWqjtR3fTfE1HMKGImk6PGYzbzvWs5ac6kFYhq6RCEYeDEtVQGgC6FjTrHlRZuvp2hmgMCRYgiMkR1BTFXXkFkRmOaSHmYRTV1MKXZMMYXYRSASN5Fa56K1mMn1q79xnpOZwibduPm2v4yxN0BzM1cETCGYaajHotlAgZrNNICjmyuZBpPkMabd5nIcxq5LIUTC5A6MKXhMnihAF8cQkhvCyT4JyBihaaS0UYcDO7jV7CqA6ECOrKqCi1juLFdbsi4A2PE2YAdAojrGads/e5I1BOiezwP7N3399eNxAJ//OZVFj+VRYwG3nzz2gBvh5qRNXEd6+x83NNVa6pLdnVMkDoSta9XMVfhUXT3OMk8KLzCteb4XySse+AgDvlfEnP70Xkf98Y/+5N9f+3vvv+4TZuC5h7SOqvMM9vh7p2LK/bwjPF89AABw6Lr+kjgCgNRyfHhX83zSQDzSEN1PabtPXuL8+bcfnaloJ/3n+dwfr+r8yTy5cydJC+KpgXg6Tm94/nqu//z8Qmeio1lI/XjxjGMCgJynN19/Ok0HavMLnj7h86NyKghP26PTZ4lnKgueS+fTQmFwAn5PP8F1vcLz+T25gJPS4bwo+ZP3PdV4p07paavWzmYYd8+ef9B1AwCoyDIdpZYTPfn8NtDajqdb/WSb8LiwOZw/w8fS+jwW8MybeHzK1q28nT+lpx/U00dx/RxO5w8nvsXpWhv/RkLqtlfXISYAqGW5f/tlWSbmFbk6kYJPGNJ7z8p779O+3XaL53t4+luN7oInW+bHJ//8qD+ZMtbPZCWUmT/eQHrcKjyOprandne31I+Xz162msxNLO9d89nN4K9z/KaL/I0/ffxE8Df8wnksvP+Txxnl6VA53393d6fYx801hdS+IerSikQVcAEv4BWgNs/CFs7RwqBXMuNaFp1sjfCcWnk6D/z1i8S1GjtTh1aUCponqAOdE7fBm1UfeTMgdnanZooOGFqIJ2FoPLEQiMOaOmJayvHWJDfTo6cfm7/3H3jyyJ8e5HV8nUfwr33yp7ntPJsgnheWJ/fp16/96X08z1qPpe7pvw4UutBftDm5lvn+7aclH4nC+lSecKD22DaewYmLi61VCGuptL5Fuz2rlxiAt1nDnc7eHPjkFJ8spojNbuw0cPxUHquJmIHT2gGBFdRaqcq2srDcu367u3wdYg8AanXKe7UaWpLd+pbryAV39TXMbj1pXz9pt3VuRKTAK7u0YRYOJwgAGueVT8P96Yr5OA+3UX7uwp6fgvXKHis5BWjCjxVUMzOm2Mctn6xi0P3XHu/fHr89fnv89vjt8dvjt8dvj3/tD/r//Su/PX57/Pb47fHb47fHb4/fHv/6HeGPfvQjAFiB2va934DIPgWNV8Su2ccBgltLjLEzqOOrPSet+N4JF2yvTdT44nbqZeAj7L32SuAJ9ohn7AkeoWxvBILtdvvxhx8PwwAA87x89sUXh+O0IlzwBMQ6wXPMlGLcjOPV5UWMXErNy5ynyc1S13XDMGy3QDQv+ZjlULQqAkei0HpbZBVlgXKMaEPfpb4PsWs+ZquhosmJx6mlylzEkWI3MIffhDM/NqPcPKWw2wwxMADUWu/v70spTxHG/784Gvbbdd3FxUWMEQCmafrlL3952O+bY0SKARFEG4d15YWcIF3wk1Ugr0EBLrq67MD7LcDzDcYTk7w9R6qNF3zuRz3CsswrRbrUCuCxiR7dzbyqPXUaBGjpkW5mu93uW9/61jiOAJCX+auvvjgeD4BoTWXifoZLT8/6e11VapJ9X1NwkcjWY82hPWPb5zbgmWexfiiN5YBreMLKRlq5f6arGuYMuntrOL73obSEHrfNZvfBy4/6bgCAZZm/+vLTeT60TvxZeWMG+iSfoGVlnPU4iM3SCle1sJ1Odu3zwfl/iZACEiMjAoA2TUUjyz8RMLfMXFqlpCvejthw5XaNp6HSAo9bQrXqZrv74INvDcPYPjH7Nael0zs8Hu83477ZyXj69Tc+2f+CV/1mP+npa37j9/w003lzODzJ44mo61Kj3+UiX99Oc67Nxo1o7Rd7Y9SZmigicgjETNii/9amRktzBHcTkVoll8bjRmoRRRxCfOIQuD4veOK5NfG7WsuWBmaOMarqPE+lFFMFxNCcTgCIKDSKd60itdYqIma2224+/uiDcegBIJf69vZuzrl1OrDdOang3uzP1x6FKzRmOjiakxuDI7PHzpEd3NRMqmtzyTBt3ujNQNysKbbVfBFV92bTzbwGY3lzozrZjbauL2IIIaYUU4whsEg9HA61VlgtFKKb1Zp32/E89muRu7tDXupTaUdrejx2oN5v3//a8ThTnJ8bP5HIAaF1TB5fDNY+OHEgZubQNCIndsba/VnXCARs/iCNxwFrG3olPqsx0zA0wQDM0/yrX/3qsD8wNw9vBXBzekogA2i6l9Vgm9bYO8WmuoAWALh2oZTQmkvbGlfnTV4Q3Qkc3cV9MccYN9vNMPQpRaY1QUXNl6z7Y83V3CGg9Vy7RKnv1fwwLaWImxNRDBHAReo4DC9ev+r7E43s3/tf/S9XwprBGjdPp072kwYcrHIMbn6hgJhS2G5HZiolL8t8PCy1Nhd5NANCijFxDJQChna1Bq6M1EUG8FxL4zq2kWPqIu7WzMogtKxhQADy1boQEU5TmHuWOi3z7/8bf/9/8j/6d3/n+78DAJ998cX/6d//P//on/3p0PcpxrhaZbdXaF7zOo79hy+f/+2/+bv/zf/6v/ns5vKrL7/87Gc//cWf/anm8upbH33rB7/z3b/ze9ANv/jq7Z99+u5Hnx2/niOOz9J41W12A8tQ3ob7n8Fnf3oTlu9/99sffvytq5ffGncXgUnLMu0fyryXZZqO+/39/Rdv7n7yxV3h8eVH393srlahJqzPFzS7TgN3UNUi8vrZ5b/1d793c7kFgPv7+3/yT/7JZ599llLi98Ou/ss8/rrv66tVT/3www//wT/4B8+ePQOAT3/5y//t/+Z//Yd/8IebzXBzcfHy5iow3R0OD8fpuOSiyu2BW2s570K4GMex67ouVdHbw34upXWd+TSyESFwSwkCZm6BtcykVY/TVEWaDjo2QvSaCArjMDy7vDSAr97eOujzq3FIQcSOS7k9LHOu2Mg3iGpWpS45L7n8/d//e//eP/xf/PCHPwSAr7764v/6H/z7P/6zPzaORfyYcxGjU2Jom/+gEW/dEYGIYkqNmtr3/bObmxhTLnlZpnmZiuQTGQQQmSkhkqqcaaAGAOjIHhhTF/oUxpT6LnYxuuOc65LLtNRaqzQ2sVqzoCTirusih0DooOpZLJvnv/O3fv+/99/+dz/51g8A4MsvPv0P/i//+5/+5EfPn+36PlSVKlYFc/ZpKnkxUQAEjo4IpghOjpRSurgYYmCVWqvk3IpMMzVVF/WWSc7useP+Mg4jb7vg6odDPU6SFweA1CMRmCoSxJRChBhVxY+HlfkYAkRyNZuzluquYIqmxExdB2b1OE1/5/d+/3/wP/yH3/veD9uDtyxZRJ8WGG5PrXdxjQIBaAawLa2sLQBtiLWva9TV6Xk+f4WndN0njA5vfJF2ux5t/FaKQ5MBAIBZs6801cYXt1JKLqXkXGodh+HDD18NQw8AX99O/7f/x5/+5advh5GHjruOkd2sihRZ5jJPy/7AyBdXV8N2G1OPIQiSmJYqiJYCQMnz/d3+zdvbz7+cj0cADyl0l5vt5cXlzU3f960sNVA1raIhxt32Ona9O9dap2lW0xB4u9k+f3YzTcc///N//uUXny/HiZguLq77fkSkrusudztTvbt99+7dm7dfv3nY3y/z8l/5e7/3P/0f//d/9wffBYC3t/f/93/0j3/yi1/1fRcJyFWX43T3TkW423JMwGQmNR/dlENgAyi513IJEsdNefaBdNtiXo7TfPe2HvY+S8nlmLMzDtuxI8S8kBmH+JD1Z/fHYy1dCtsBL0dPARywVpmmJedSqtRSa84AMXWXl5fPX7969fz59dXV5uH+3Y9+9Edff/2WeEz9tt9c1Vpu3/zy9/+Nv/0P/+f/szb27+4O//gf/cmnv/g6ppS6lGIiBynZVdvmBVcvEqSV4QJntnd7Kpq5GD1htjmY4Sp/Q2LGgMirUzshgIsKxdhttv12N24vAndSXauKKKiTQ2CKMXIkYqQIITkzUEAzrSW7GwcWscMxb7fp+z94tt0mAPjVp7/6P/7v/g9/8kd/vNlsxogdTGC2aKzOxmhI0DIATBEMEUNMcbNBRpUjifROvYcRuGt2Q0yHFGsfeehCoARmotNcQi3PQAcXFrmv+rNF04tnf/vv/q3vff+TD18+32wGkZpLnZf6888P/+mP3/3qy1kNLuL83d39xy+6V9/+1l78T/70Z59/cStV+tQ9u3pGoHe3b37wO9/7d/67/51vf/JJG4bhP/wP/9E6HM2b3WG7AatB0NmLEoEDhRADR2Iws66LV1cXMVIpZZqmh4djyYKI7qjiiJxSF1KkLnBsVmdmWiPxZuwAfFrmrOrYAm9Q1Ws1V0U3Roihhdw2NhkSNH+65j1jVXUpS5mrAxwOh3Ylh8Pxj/7pj/+jf/xPtttxTH0XQgA2a1kNKOqq9epy9zuffOfy4mIp1VSPt/e3v/j06x//mS5LZ/XZ9VVdZkO+u73/1Rdv/rOfHz6dB7raxAvrF9iQ7ea5e/MWfvbT12m+HOPl5W5z/cpO+6paluV4KMf7/f27d2/efPb5m7/82dcz7ybYXF4DmJ7RLm8ftzW1hUmVXAq45yrtWkopn3/++S9/+cvdbneuN//LP/4LFDHLsuz3e0TMuRHGYb/f/+Ef/sF/8gd/CAAvLrbfevmi68L94XC7P7x7OGR5ovQAAICO4Nnlbtv3KcUs9e3Dw5Rz26OvXtOIgaiLIXILs0IgpkAhsFQ9TpNUAaQQwpASImatpgbgm2F89ezGHH711Rsi+/bry92QliK3++WLd4cp18SxbUmryGGaihoAuMp+v29neDwe/uzP/uQ//o//McRhEbs7HpciLXO7rX8tZeyUYo3M3PddE6ON4/jixYuU0rIs83w8zocqC6A18AOBCU9FjNlKkAMHdAweEw592gxpO3Rjl7oYVf1wmA9TPi41lypqIqtoodYaOIybMXEkB/OqMCtm5NL1YZrX8TIvh7/8yY/+5Ef/0YtnF30XRWqplissi81TXWYtAoAYe0JCE3BAopBS2u76QFhLKaXmrK1iMzMRF7EiYOZs1g+8e562F2GT2MTvH8pxkrK4AaREyO4miEAcY8KhMxG/v7MqwIFigERgblMxMUAAV6iFEKhLWGu9uwWpejjdl3YCqk/SxxysRbrZ6VEmP+2e1UAdFXBVQgHAKbnhPSDNnxQu7309vUXbUJ2sZtYiZgWh3x8+7QxNTdVqVVFZcpnneV6WvCxtr3y6L/XPf/b1H//zz3a7sNmEoY8UXa1IXerxMO/30+09I9+8eLG9ukz9iDEJURWdSyG0Tc9Y5sObN+9+9dnnf/Wz/e0dkseh2z67vH714vVHH2132+a/keucay4iKfXXN6/6YevOOdf94aAqMcary4uHRff7hz/68V/8/Oc/nR72RHR5/WwctyHEoR+uLnYm8ubrL7/66ouvPv/87vYWjkciOByO67WU8pNfffmjv/zZ0KWIBnWRw8N8+8ZEw3jBafDA6rXOBzCJqQvmtEwXdfrA5m67O3xwfxyuJtXDw8PDF5/N797JfslzmWuFFHZXlz0jH/fBLPX9u0X/2Vd3S6lp010MfjmUFBSccpH9/jjNy5JFl/UOhv7i5cuPPvn2d169fnFxuXnz5ov/5J/8v7/+6i1AR91Fv32W86yHn2udz2O/LPWzT7/+yV98mroudV0rYrRkVzvxbom4BUG1+WDNAjihyCs8QI+SQidyjADYAFVyDwCEhogYGAG8asUQus1u2E2bXU5pNGcVUDFySIQxcOqMIyM7sWMwZkBGU6k5uzuHUKvePyw3N/btb6/P2OFw+OM/+uP/5//rH12m3bajHo5oNmsSjB65JRuZVMkZVBgpDX1/eUkR6/LApY6GWw9bjL0ju9fA90OXNz1vhxhpkOq57A8zlXwDNqJGt/tqf5Vt/OiDvqehg56qlE0tZc7lOOWf/+zuD370xU9+8UCuz7vj8fLd/PE2u9xn/dGP/uRnP/2i5jp2w6vnrxHkyy9+tczTf+t4PA+u0I0DAgZsrsWO4MgAAGLirnZyK2XmmFJKKcYI7kvOIWCMIaUUYwohEcVaxAHdQMTcMYZIIVCkEDmmiGAiNTFfXWyBIEyHLMXXpFg0bR5WaloJoIuMAFXUV343tzQDZjJTKNnAFbzv+jMIj0Rdl/qh77qu7/tt6gIGVRcFMShVRbDr++3lbnN1EbcDpcCiQ5aXikD8jEOPVpapqOs0xVIuwG+6gNuetj11lBw6hj4GHscxUUodUeCTcyu1GGGmZk/LIcYYu65z7mKM4WS3408o6OvUr02gz/EJ4kJEfd9fXV19+OGHu93u13Hyvy4d+0yP/2v+rb82ArTf7z///POu654a9213OwQY+q7rB0x96Pvrboz91vn2OM2NSL8iEgZDiuNmm7oI4Ay+GUYOQU7tHkKOgVJMYxe7FBMFUXlYFlFRRwg8bDatx5FivBh7RDwsOZdipsCURdyRAvcp7Xab3djBVJJg6GrP6WqzGYchhLTk/PW7d/cPD0V0s900DBbagxi7rt/GcdepCzCHjLCKz9tmX00DB3cnphhC6lYXnK7r3ExE3I2Zu66LiVu+sxq4oxu5ASO2tok3+2J0Th4TDUMa+zj0XQqBEKrWWlWqgSJBCATISkBMHGNMMe62G0aucxVzojT0Ydhsb26uQlwp/TGF65cXly+uMPaCASkFUiHtknXcyQhLVSBOw8DMKgqAMcbmaKMi6EgYUhe8dXy9NYygCoq6q4w9X23jpmdEr6BdTxgML1p5gYhALGZeMqBTIKIAKYqDh0iBiIGYYZucIowjgOM8Yc3oivNxCeFIOJ4pfbhmesO51jBfxaGnsgPPAls4tQMQHQGJiTkEPvcwn0po/Kwae7+IWcUjDkDuBqbuDtT03QTnxt/qeOgOiKaIDU10Z0cIqiGEGKObhZNcHwAQIDJ0ARJ5JA/kgdCQgzOnBKmzrmPkGAI3e1qECACIghiIh5iYkDYXdXe432wlVyLoxn63vbi+un714tXuaicix+l4e1drzYGaOTcFJnfyELoU1SjFkEIgdAKPgfvUwVDNAUxMKyVG1JyPKkU1M/kwJtFxCbTdjGfvLmRO24v+4ioyYlnKPJtCFweKQP0GUu8xqGugSAip65Mrz8fnOX5SoevTV5HeRFTEOQAwVLBFq7hyinEc47iLDMG0c99ttzD4dcEH0euLzSZK0Fv0hZCdqIsqFVWLxerFOIYXN1evn1+/eHY1jtvqXCFeXF5LFYMBecAUwWWCtBmHFn8GAMQ0bNLmogshEAOSugElOplGrWlQ3BI63OEx0twd1kaRr17iSACM1iUeLyIzliplsXlWUUMOSNC6sAHRwepyNK01T12/Sf2GQo9EIYahx65r1vnqIKpSirZGsJmbrG1BqVAOKBs6z//MtBmHXdxsxq5PHJEJgDxiiGFIFNiIliUfbg+ScyTqxn7cjhSgoDKVsULvHEOMQBE8BLa+64bBN30k2E4GBqReHTMHDSl1yZGfAV6+fHWxu+hTzyESBQwe1FP0ruu6btiN+YKmm4TD0EPaetyi1b7rt0MUwj6GLqAoApIhPdUhhhgjAQZibGAMOBKYGxiYNftaJKK1hRhTDMFMVZUZ21rdYDRVC9z8/tDUzds8QUAYInddRwS1lhSoH0YHz7WsAUUIAGQOZq5JVZgAIhMYuBdDR1hdKJqjhhkFU1WNfsoHPk1kFDikwCnEFPu+TxTMzIEoJlFfSrm82I7bIaYgYKISzDaAygHRd4Gje13mXM3yEqQO4CODRcZIwMDWLFgoppiSNYu2tYI5odB0sqNvu/IQWuOaiGjduD2CzAANZHZzwnX+PN0VIuq6brvdPnv27Orq6l/PIubXzwERU0r7/T6lJ3bdxF0/9sPQ9T3GrhhHD10XNxQvxVPsbaUUNetMGFK42GxC4CoViDfIUboqJqZmHjj0XepSTJEjUUACwSDi6NTyWRK6g6qlGMdxRAJx8FYQI85V3MAAOcbUdbHruDhyQQ7kvq7/sQPEYRhKrXY8Pr0Wd1B3dUxIzJRiMmsQxRrKiIiqWmGtVJjXdgKtmZeKCq2LEUJwx1PAPal6LatmGaHF0q2gHaEHDim0Dn7i1olRL7mWXNVwNWNo7WmCSJy6lFJCxwrihsgcI49jHIYnkzLhMKR+7NADOgcKCIpSCDUkZgNDxRA32w2HoLVdEZlZLiJi6oDIMbR08tXHRc2jsZqDaddhlwIzmgkidR2GCGvBqgjgxKyiWg1aXBJi6pDYGw3ElYiw7zH1MG4AAUPCMmPNKOqpm0NMT5/Pp70bb65lCECPRUwTnDq442krwS3WqW2cuQ3C95/txgZ6wq47PQinXsFJcdoAH2yR83QSnuLT2embB713PLkQCIyRPJIzOIMxECM0JFqIAwVEYuJAHJmQyIEcjNTAHKoiOBOlmPp+KGNuRcwwjptxs91sx2GcpiOAiVSpVcFVpOTMFJk7RIgxBOcUQyuTECGEtcpD8xAoRupSiLGlaVUiD5FS4r6LbhLjkzkZgNxR1UUszzodsZbEgZiBGRgpBccAkRCQYxdEuJQe+YKoc9nbFAzdVfxgcpQyz/Nk4t1mgzEoYnUH9yHQZju6hcvF2fD18+uO8nyfZRFyxJY4CRQ4QESBuhnGi11/sYtDT0R2KLqIxBg3m5FodO4NI3hdYowxPrmDTsE4KgUAUG2pdmvngpAZqXWTHLC5PPuKuZyM8AHh5JKIhBAQu443Q+RANAOo1GoIDgzMGAIBuCmrmKg0b1+yGgJyQORI7MhkqOIVFFylipbF1rza9f0R3FVQC7g84oiIEBlToBioS2lIAxFVdSLqhhhi9EhzJMh1IWCi2HepTyFSQmeOadEgTtwSlhADBw5KbEjohrqyBcVgAecYNt3Yb7avt+OzVy+vri67rieiFbUkplbLd7FPPJKngAW6ow8ZOkeMHPrAIhYRXKXUspRSqj5dfUIbwU+9Kmxl6pq5Na5ijGtiMji0rSSc0nSZGVbxNxJziok5IpA3E2lzdQvMXUzMFIg4IDKr1sY8Cw29ACcEYmRm4GaDSlqlERfP0+46F7WMaGas+B7brtmpMp3OLHQxINgw9hfPnhPzw2FKMQ5jUMuHw/0OLZDv+g773pV6DmQuS66kWAubsiu6mqqb0doJwnXKeyxYkE8pSuvP2nfPk9tpsjpJ9t3B0Z8YMp+AxqdCMUSMMQ6n4zdWDH+t4zwQ/2Ve5BvHbzylnPMwDCml87yMiEiJeKDQK8T7WavrJaVA3XZz0fejIxI6tgIavQs8DoMDzrmwVEuaRIpoFRXVGONuO0Zm1VJrXSSrCiH0MSIBEQcObp6rBGaO3PiJxAEd1H0uompF3QCBgmOohlVAFUV0mhczi6maATN3Kc3zfL5HAKDm05wf9pNiQA5ujquh82O4NGLLm3UAVxPNSkQxRSJUi0jovnqdWMtGoJb+7bXmkgUdEAiZ3ElNkCEAteBGptCCMs1VROe8zEtxiAAMiK2rgYjcuB/mqi5VRIVZzc4ms+f7B2BOpkzcoukqos9VFdxdFHLxgMBMMZEDSNWcc611yc1sD5k5xBiIwc3ATCsixgSJKCAxu6FlsRb1miKpQa7uBoERcfU5b/FKVYwZh4HcoYpLdQFjx54xEFoFAGCG1AMiJIFupK6nU8LRe9cEK1XlvefT13aOOTRG4uqfuqoFnnCTny7Advqr2OiCZw4mnOjHAKvTbmtzPkkCetqZMoPG5fZ1Cjj55jUyBL63W0D0QB4JGOHM314HiCM4mDarzkaTTxSCmYu71VKlsmQG0yWbWoypHwZAiF2XUh9CRMRaysPD/u7u7nA4LHkx8FpNjXKRcbgIITFRK7I5hBX9JkJEUUGkvu9223Ecx8CsKmDc9anPaWJagyDPRCQAF9X9fX3zlUpGmWE+MkAYRiQSqRSgDyGk4E5mWN21iC9znWaxwpBl+rJCPIAd87FOb/Rwl+8nA+axB9c8H8mkm/ZpM3ZjjzxczNZR+uDD1wzzV+X2sBxNRUvNc66lMiMnSrEfxzQMGGIVO0ixw2LTdChaiXAYE8dOPKoxYmsTnsE3VZtE9w4BAFXUmxUpMSE7hkDRnVRbExjagD1BMHDKM3MAJAZuQTcNTXMwcTcLTI3REgKlxOAoBYVMxN0cvQajCCVQcgZzmRbBBVwRHEDB1LWiakP+8LwvVkVUI3+MtnB3l+I1o8RIw+XuMjAdpoNpTYbJIWBIAXykREEQuaOQuEtdioFiVpvca0saQiJ0VPGyVGWsoFiKitybTWYq1oXYURwvrz749kcvP3h5fXOduuQOIqonS3AkipGY0dQOBQ7W+dS/LIwGbBiaY4zKvBz3c75/OBym6dx+BYBARKcw1VXTwcRI2CgbeNpltmLFTE+MekMMeFqeY4zb7ZYobMax64YUO0J2oPYIEGEIDOiiBQliF6fj8Tgdc6ktG20l3KETtEACJCQCTMnMnJs+qJn8BgTwkCISVanfhAoa+okIhIF5O46XF/31zdXNq1cc4/3+6O6bYehTaG7fDB4ZmUkNTE2req7IENwDOoIaNAlBi0CC83L13rFOhL95X/UbD7M13ez/S2nSXieEEEKAf2VFzHv/+Zc8fuMphRB+7RNoZPaIGB1CVazqDhhi3BABODERAbsTOKAHohiTORCnpEIttqJtR8woxL7rzGCaoZoWATdkjkSE5EwcYgBHA0Gmai3dNiIRBWsCMoE2Z/azBM80Vc4aHJMDZkFomDqHoR/d4HBcgB5j381sXupxWjAkjml1KzY3Xm8lnvih4HCOBD0bhqlK6yLq2b9upa/jqpxojSVoDvdqZuiA5CZ2Sop0p+aV72agauYCzRS6VfiEhIyOtapVUzVwJAoAXorkXPyJCAvdGTwSEIKqlWoiJtWJQAxEgEJ76t3cVV1Ea9FSRMQRObrHhACo6tqiYNAdHIFOQid3cLAWTQyOiGZgyAEAQSq4na3AGjrViNUGAI7ObXU3sNrMPE8QBnqIyPGbo/83P6XrV1sxmG+AIm1XvAaDPKq82rFyk1Z67ypka23gs8aBAsPJJfZcxPwLzuLJiHjvNOgbfwVd0aqreTVFcUMiV6lSilYxNQBU1XXTrWaqXqvXqjUv1QkMVQFwGMc2k8c+dUMfY0JCVV2W6Xg8zvM857mqEi3zIrkqeNhsueu6EGOLIK61LstSa8u/s9a+CoEbKmgWGEGknjBpbLKyxyup2b78Qn7xM/SKoO4CKUoIiFDUEscIoWNwqFUsF7KypLxAyUUro3PJQ/KLxN7F8WKTZgsLiWAXo4HNdbZapRQdOiSKMXYxGBISuIIYO4SQoEMZLQRpzw+40zDEfsMUtMhBdVkmK8tepQBBSiH2UT3mwm1MPTnMbDE9EgZABFOARtkkBzYPZgGRvY04IOZIoc2EtIqHVqiQCJiJAgMFWse5GSLESNg28wEiOyIyUECv4G5GZIEFbfHKaz2uFdpcYg6GbmBKJi7m7kYADqYqucoy5zDc1HoDMABAI4qLirqnvn/2/EWMDO9wPu5dxarF4IkhbULuMAN4CClgx9AHBotT5FpVDKIDOLhBNp3dlSBFgEA4BDNVcBENBBi52wxX19dX11fDOHBgsyYjXc01CSGQI0JWni2qxrTEaa7JM6qymaiqa6ZlyTmXKmJPV59w9mYFc7fWrU+OjghV2izTuny4gjPrVOoxBoQWrEspdTc3m9324uLycre93Iy7vus5xBBCjMnclnnKNVcphoYE796+nee55lprdW2ArakpgmMTAoYYQ+IQASiGRMTuCIS0xvvBMcVcSmCmp+Mfcd0IIIRAN1eXP/zBdz786NX26ho47Ke51IIAz64vtzFEczUVr7OXqkXzgksZi6YuDkwpoKFVU3UAQHJwR3VvZR1zyzFuUZftneG9ifGkdTutU0+KoLNJYduTnUwMvzFizlzFltr1L1nEnF+1ney/ipf65tGu4vx4vP+2DdgkROZIKXEXuY8BEzNRjCFyK6XNDBp2ZQ4xdgAe2BG8intrQDjO2Q5zNRNRF0dAQ2QkADBCRo6EFNlF4WFBNXcbgCHExgl3UkAwo3A3pZDxMMfFBgzMXh3cMCD3fZ/6xMzp9mEB7M4IlpnnIvNSOZVgoOYG5s3mf+1onEMrDRA4cAwhxHWKr1Kl1radP5tdQku9tBXdPKV3rGI2sJb4aGWpC3FAxMBgjogpxMCSi4qWgGFdVhEZgissNbu4GYQYu0SI9bA/7B+OIit5vM2njBQDqcD+kKejLks1AUY2Q1B3NdEK1fNiUhA9AoC5iJipW6AY1MiXJasKgiG5C7ijK6ZEO+KYUNoGSVun3BrjxwCqmpg3nXubYxrCHAITQZfMHUBJzENoYYmk6prB65qw8f7QR0d0OwuEwGnNt1gffAJ2bvA/MWHL8DwhKu4u0pRDoioqqie3U4Am/3ZVrXWlTxNRl9IwjhcXF40B1ihdrVX1jRF2mgkICdCBCKiV7szMrPo+F8fMpEhZhAM7mTZdralWyTXn3CaEvCxzCsTEzLVKqQWsokmuhdwSUQxhd3kxbscqhSL34xC7SIzNtL6UknM+Ho9zzu4YU64CKY7juOmHYRgGQlSV/X5/++7d8XAsObeFtpZaa0XE1HUxUA5hno8ITowhML/vbuHzrD/7ifxnP+YUvEt5SLQdhQNJFKtIHUgMVt2WWmqdzae6kzmq5CKBwij9K7y8GrbzhqetTM+n/c1dfphF6iT1Vsuixd3RQKsaVJOS6/z1F9W07A8ZMGwvOMaw1VC0VNGWJpgSp02A6Et9EDFbDMtsVgAYWqIypTQH5DUhYb0Wd7AMNoMxMVFosrdV2gxOZgGRwJGAmVNM1A3IIbRFixp4pw6Oa/YOA6FXUTcFAGYKzQMZHFHdjBC7GBQRTd01dYBBq0xFzEDcCU3WsBUwO7kM1CpLrjnnKrmUZSnTw/7h7bt3B/nevz1/F+CqXUs2XdxHwrjZvPz4o37oSsD8lR9vb0PNA8nlEF7sAlLMhhlYwNBLBBCQhdwZ1VzB0dHM5yrHQEZIMQ5XY4BOEsNxnovGDuPAITHS46j1Jmhc45kBXdmrux+kr+rAvC1wPB7d95AziUATqCK4CRMzv5dh33h5bZiv1sUcAqCLkBkDARG1VLSmDzz5Maw4W0ppGIary6uXrz64uX623V0M/RhDp6qHw8TMN9fPOPDxeLy7v/367VdOfnN906Xu8HBAwPu7+7wsDcsgxhi4H4a+71NM7lhKNQMEMvNaFQgpBGZ0c25J4U92/A6g7mJWRQFwGDbPn7/45JPvfvTRa0rJgHY7qSKmejH2HXXoACH6MMDVpS+9dKNANCU0Zk4pdePoG0kS3EHZPblF9NDSjpiZGQlbvg4itp0KnNJwTg3vp8qb9g+eRoSvEaznOMT3F/4nVQ6c//Bf7Gj7Pni80f8qjn/BCT097fNh5mrgQETUBUzBCQQa+QMCo/Nqo47YVP5ghMiBGCFFIEQ1R6K+i1Xh3b6UYkyxBW+5mwGthiiE1HJGgK16rlrF+dR+TAQpmAOaYwjsENWBA2+G1MWGdSgRpRhjSuMQzSmmB+LuTCB1aLlrVsWcdNWkOCCAAJyAST8RP73xCWKMrSUqIqZmYITEwNyMMU5JW+vfVl9pMwCnfT26u1SptaoGRWohPyHEEKWKt0qtfdMN2zZFVd2gefcTsVqd5zJNyxmGbZ4drXxShZK1FG12BmcM1cxKFjN0IyJiBDvt+cARWjqYm4iaGjGAgqqKeK2QCsfYgq0Y0dXAxERbHDkYQMtCgiba8BZXBgDOKxOjSQQc3PmE62gFqa5ipvbNOvnJNuHxOE91a8scTzAvAaE7ip+a56oqWrVKLaWWknOV9TBTqVpESq0ll1rXVbzruovLyw9ev3727OZit0sprpDybz5WJpw7OAH5irO2G8BP5jEzXabDcX/vGjWe9o+mbarRqmYCbtNhr1ryMjOTqIiKqEotJWdUS8yBKTA30SkycCQO64SZUmpMr1rrPE2qEDtg7sbxuNlsL8zaQlCrHQ6H/X7fDKv6vg/MxKxqORdm1sAl55JLKbVtXr7h1mMmMt3XwzvfjErDHCBoHFCZ0SADmMtkOaguthQ8SDrqRbYLARbyQuGIxJSQ0zjGMUa+CDbM8WG+vVc9dmgaQDBU7m6XqmXKeaq5HOQoItNxjkmp42HHPSVRXHItGUUsMFECQxXJUquJo9fAgBRj6mLqgUJonzw8jbA306w6EUaEUyvTz7M6uTEQNw4JB44JuoFT12KRIrfGs3lrehMRsruLSzUV65q5SRsBa2wxAzKzKSKRmacODTCXIrUBgoEcgGB1EjrPT1CrLkuZ5zwvy3HJx/3h/nC8m5eD2SnFuq2V4I4ARCHFruu6LsXA7mZSUaFHfjbEFENRW8SmUkUNHBYxQgcmN0AMnLoInEQiuCAEgtCFxDyIChgEi11MI3MCM61SVdOpigBY3QdMpVjZy3K/ZBALsScANymmGbWSKpoRABKmGDebYRyGp0MmmBkCoK0ca14TqA3cVz4BrYmG7RlFbLnO3pbocRi+/e1vf/LJd7/7ve/f3DyPIdUqh/30i1/88sc//rGI/I3f+RvXNzeq8vbN2z/4wz+kSP/gv/EPnj9/AYa7zcUvf/6Lt2/f5LwgWOrDbru5urneNF5n1f3+OM85z2WueVlmA0g4oKKUMi+Lu/GTHYy7F5WlCkMF4MvLm5cvP375+uOrm2fHeVGxLnZjHwLxmBJDrybeb+n5q/G7Gpbqm52P1wV61ODU9wO8vB5N+qkDwQIektcRvF/J/M4hAGDJC3IiYpMqVdpmZeX1UnOrQrQGZjcx5old86gFNW8OVv4eWelpc+ppZfCfC0OHtvlt6uUmimibToBVDvZ+Z6kVU09qW3//v090HydhBkBbgk4b3xVFfwJHnYa+r6u+tqTxgD2rlWMWAGQmqiUyE62BfY0LvlppIRMqIRI5ROaBQyIvEUqEHLFENgdpIIY3GxAKzCkGxSiASOrkiozojNZHv+yAibNFx5RSDIyMTthEstbOM1cjppS6Ti11mxj6p/wewpYXieB4KkPBzRTAazmRKpoTx/oRreimu6qoiaoikYM7EDMgIuBZ5GaGp9IGmmoT1mC8Fnd7qkCQMISYkqkhoZ77vKJm2sLteJ2GzaqoguRFpDwm2Lv5UvO0ZPPULKw4UOTghupkqG4g6tOhdgN1XRdiIFcAJSACDH0MoVE7gYia/4WpSrWSdclaWUI04nTZ9cQwzTUXr6II4CUgYuviV3FH59CYya37sd5KdzBXZHdGABQDUVBzMa/VqzzaE/pKxPBH0so5QQjX/2u3rwlIEEAdRKTUknOupZRapdRaS6l5WZZ5muZlbseSl3nOx3lecs651FpLre4emJ89e/Y7P/jBD77/ve9//3s36Xp9/mFlzz0ZztiY/c31yhkY2NyCssXQOODnISNS9/e3t2++KtuuS6EtfQ2lpjV0B6vUaXrwu1XW5KcwSxWpubgqtSTwLhKjgQ2bod91TWSeUnd9fV2l7o8PRCQipSpyKiXv9/uuG8bNlolC4Lws0zQty+LuXdcPfWrNYnO4f9g/7PfoXkueDvvjNC1zKUVKrrXKOfnZGWUb8nUnm0FjtyBsAm4v0jjynBekonac51SXapN0B7lY/HWFG2XWDhcob0p9eJi/LvNFmV5cHQMfuZtinylP5DUOmtwJj8y/OBTR43F6UBGUUGvN89FBHSNEInZWZCdyZgBEV1BwUNAGrnPgYUjMwzhsUzeKNWjQAe1s/2ZmIrnmGV3dGM80gtPupcVrEiEHCBFjx/3QDZux67Yp9nElzAEzhRAQCdHcqmk2ra7aLP2sLfDN2coB3FWVelJVRDARKNW8mBFgB9w5BV/Ti7xFTJItyADBvSIE6jzgbkjp2YsX3zkHc8LJWgDdJC8Pt+9sGTAvyaQDJbAAEJGHlIYUrJaitfc8V8nVihBaIA5AgdOQLrZ9TM/dulqm+ZjIQNUIY4jDAMgY+tCNgaJXXZZlin2INVrnzXjOzF2t5jkfvsz7r2sG5E03Xo+RE3swR3dyDMjEzMMQiJDDzdXurLKEcxHDgI3WgYgi4r527Wm9mWsJ0wZiIye23V7XdR9//PH3v//9Dz/6eLu9BIdlyW4gop9++und7R05fetb3755dqOiX37xpbh87wff2242l5fXaLRMxcQPh3uREgIHjoEDIjbProZ8nkI7RQGwViTMObfa/+mqjQCMGJEix5T6ftyFfsxOD3O5uz+WUgk5hdTHzhOAGBOocUnb5fJlTrViOBTa3x4NcVnm2yyeIYnX8sbxaDyYa623tBygqvXoSKo6HQ6lKBGbSJn3UJeA61zT3M5OxC7zlfX2WD88Vgxrj86+8f1vFAT/ovLl8funrSgCAEHrcMAqgAV1d0cHOFXjrSRqX9Z+1qk4PuFsrfFBqx3d+W3WmDlruqJ1D4xPTvmbFwhn9iskhgBqUsQdgJlIpUFqJ340AZE3i1El1MAtokwqkxUHsKLkEskiYyZ2QwM3g0CEQCmELoYKkRUc0cARGdm7aBedvtzYkLjyqNgjMTP2ASKtiH0VO8zy5mHOYlW8CAAEovDeLUP0x3UKsRkSEMCJV7F+lwnAmlUMMzFzA+palrl7szRpvF5q0dmNlaVVVX19fcKG7rmDKTChVNF1D4LEFFN0pMpSS9Uia3+0KiDFxBgQ2IHN3FukoDxhw53QDTvJBIADBmIidKQioEded24OgSlwy7U2NyCk1IUQSE3RoO87NxQRraYCrQVLjBSRYhMwYCs+rIXTMRJiiGCAqi1BGQCgkZ5VmqCAmkslsjuuiXnEwAmDYajI4f0H7dy9PT3WsD7OpwcTsA2FWquolKq5lJyXZcm55JLzMi/LMs/zdDweDofD4Xg4HA6NvTcveS6liqqvHOFmWPflmzeH43GapxADAlxsdyGlllQPbqfTwHUcIQLhidHrRCGE1gVotcijMEpK0ZqtknPbu5ibAbpzC1ZEN5G6qIkIcdOAUgtzd46k5FKrmla1QEyBUh+222G7Hbs+MfMgw3a7vbq6ymVxgFq1G3Z9t+m6BACNBxMCl5xrrYAw9P3Q9xfbTYyxiuZS5nkuJWuttSxlySVLLVqrNEzu8aYE0psBXl/E8TKFnhTHsU+blAai2KlaFZ+qTkewCdMRh6xetZhObgvY5DZDnXme9iUXnYe41JynRaoJcA0BuhiH3hDnvIiZh8hgBIpe3DK4EbXOQyNHt6kSVX3JGYxURYtZdatg4OFMfkNDUmTDJ5ISaMiliDIDAJ60R+tjBd4s4tzRQQwEUIk9RRoG7lJkjiv5j+nUdnMABmMAQVfwZvV0khdBm09U1bT1QByWeYFaJc/zvK8F1QNgZE6AvDITXFUllyVXFdGWO8/MMUFo/giwTleJqGfsEKAshzdfe5d03scyD6DMEMDdPIsjulYXATE0x2pYHQ3JmQBJEpc+dF0cEGjxmB1FsJICK7gThdSlFDCwo5lnt8VsUD+FilPjHWstS5nv6vy1LN6Plxf9eL2jy22HS29I2bC0Hl0IIXBv0PXpKak/tGl3NRkkNLeyVHdtTCRwXH2R/WT97etsLKI5V6b4wQcfvXr1oTo8POxV3dTaVvX+/uEXv/hFyXWel3/7v/Zv7S52MaW7t3d/8ed/aQrf+/b3NpuL59cvrFpkPkwPpSz7/bFIdYB5WaSKuzfAS8RaS8xU3FxFTMUee1sAAEy0CfFqGDfjxXazo9Tdl/yTX30eI037Y8nFxCKGsRs347jbjt0whCGK0izdVH2pmutD1Xel1rqULJqNFsPZoAIr9O7OeuzhuOPjZT9Wg1xqLrfud+5oplZzF3w3dkSsBqpg1vrg0LbteOJ4Aja8cF37zxPbN+DwX0c1fuOBJx0EnmK+EcAJPQZgciQTq3Ot1aq5oCuhoYOuKayEyEjrQG9dAni0lCemFDE2Q1xCdCcwBGACRiR3b16t1ozD8Tedc+OGUyBgbNpUa45AAKxEbmztUXtSJTVbj5N0DhyQEROvzIlqRJ4iEwAoYOOPoCoCDon6FI6CJ0WKM2MMdNHzsxFejnI5ctxtPIzFANB7xshA4OpW1N/t85zLUurdg+ynJVc51WfrqminWvHE6j63wNZllAiJEJAALEQOKVBL5/BWjwA2iihWF3QgREZAqbYsuSy1FrE1wQMRW5seKUKICK5jFwNhCOzuCB4DcUqc1A+LV5eqnlUVgZEDMDpF4ATI6iqO6qTnNn8jEnaJU0qugUSMlQJ0PfVDkMpIULKHSDExkZlaXpa8FDVD4tRFDuSLM/N2uzWDh4d9oxoj0maI4wXfvIzDhs1ciqoZEoQQQsLUMSOwABZFNhVccd/g4FALugOyMTlFIAbHlfYYE7ph7IkCbTZ0li22R641iU51AzSCMKxhBS3X13PJh8PheJymecmlNLN8qXWZl/3hsN8/PDzc3d/fPdzfPxweDvvj8Xic52NVwxBC6rpx7PouhU5EyvH45t2727vb27t3CO6iP/zh7w5dJ9D8AuDEcD+Dnths9U7oJ7hxcHOP/MQqghD7xGOftmPf99FXsrG5G6C7m6giWkoMyCk1BZGvZNuQUoiqejgcixQgDIm7sb+5uf7gw1fXNzcp9aLOCw19//LFi3EzvHz1SgxCHIiSOzEnIsyliJBKJaZx3KQQYgiXu12MYcn1OM3M+2l/mMWbwM4MRE3FWp/xEYHqArzedZ88v+mfj7wFiMhofanRNv1OC9w++LsjvDt4mblbYFnqOE1R82fs7wAOQDPQgljnQ314q4Ed3R3YiEIIKW6HYfPsWQhxmucyH20ZvOyhHNHnGCSyB+aIrCaq4uIupuI1q+os4qoq1WpVMAhMA3DMB1sDvCsH53C2IQNYEznAmrJ6naSaPZC5g3mbRdzFDJxjMJ3BB4KExEAGyAgIhoaIgBiACUJqPJyA4GqmYqWoKsCJ6tIY6WogZrjnfTks9/uvbz+/e3u/n7IoURgBopu5ASMEopQCxxQ4AKJpzSUfjtP+sBMp61qJuGW8DLRljHWZvvpcGVwLad2icsDgtpT69f3iHIq6OQOMRpCjLeRZQVa/+fJOloE9EnSycJnBKs6WlQ8GBShxAEqiUFUJaqTKaIh+skZ3QFMTqVnKLHmvi8aBnu/0oxfp9cur6SGU0N05FmwpNEaO1U3gvYiPsIqSwB1c3cG9Nj+u0Hr2J8k7QGAEYF/9e9gNlyzHueSsx2Pez9M855zz0A2vXr3eXVxeXF4i8Rdffb3Z7n5vPsYuvnr9stTlzVdv+jh88Oyjy10fQ9934zBsSs3LPBXJRUoVPUyTqabAMaQYOyZkYm3xBCcN+DfQiz6lT15+cPfJ94bd5cXlVejDPh/ruwqu88OhLNmqslPiNAzj7uJi3F0MFztxfLg/Hg7znOuScy651KKlmjo4qkNFFyd1BkAi7aNoV7eLvjuWfsh9YHJwMTMxFXUCi60AaF17fEJGeVzVTyvieTn5z1Os/PrR/krbwzWC23nKVNelLNmtms9zfbib5jkvooLmgVfO42l+b75f6iupx57wjpm5S13qUooxEJIbg5JDCjSm1MWQWjWzXsVvOMnE8GpHH1yQhVXEsbK6RB0djcjNERvc3iB4bTsbh7a2ees6O7RICgpEoVuZsa0l3D5PMwQPTIEJBNThXAv0kZ9tw8ut3SS43nbb5xtM47Gouif0pmVd50eCt/fL7T5PSz3MVdW/cVHmZq4ODo3DSXBupmHD+lspwwCwEqfadIToIbBbBAZ1Nait9HInAG4U+RCIKT1K8QEaq4WCh4QhdshhlQgTBmZAVwpmzgDWpjozMXYmIgqR00CxdyCxSiES8RM8rfF7zEKLX0Igxthh6mkYSAIsfSQwZCQCM1HxZak5q3nDYk/9m1OvWVVVDRBiou0m7i7DuGEKPu8lL82LEJkpRYod4qrPBGJwAzNAWsEVdzBHZGiwPD/eX0cADhDBu76RpR7vC1Ez6HgKfrTu6UosEtFlWfaHw93d3eE45VJyzkvOpeR5Xo6H4/39/f3d7e3t27uHu8P+4ThNeWlAzUIxbC+vu4ZmbDdD36tq6LuHu/u727c///SXm3EIzFfXlxyClKJqrhpi3IxjjOk87HGtYYgciJwCBWB3CIGfXAj1XdpthquLXd8nW6mIaq4tA0tV1FiVOPBmGFJiIgiBU4wppj51UiXFULRwF7uhG3fb65vLF69ejNutG0KW1A87ovFi89ykSKM6BBHIi4g0mzRd5rmWnPMitboqAuZcRDRXyUvNSy1FVAGAEQNRbPIg6Knvh8fqMgS7vqSXL7b982dhl7B3kXm5w1r6Lk6Is+mt6FvRLNIpg8AuZ6jTXwX4GnEBqoAV0WCxozcHBeYQQkzU966G0PDIDhwJJJBnNDbSKSRkNjdXAURkJCYPAAII5lJqKVYbf0sUHJMR0oLzfZaFA+V8MND3kZjTNvO0C4BVH/+N33FTMy+qlRi6nsdd6voEwObgYitAiMRMgZEJQqCQuJEPSi5Viom0YCwKCEiEQdSPWad6/PzN55/+6udff/7p3dvb/XEWo9BtAIIUdXVGSsyboeu6PvUdhWCmU57vb+9fvds8FjEE20AXgTYEQaVMe0eIjIhgTmqWRck1EmAXlYMBgoi7CVqlRn7SqpJNF4S+lG2gruRQK7uSalEUt4ocMAExEhM6ekEoka0L0AXsAjIjGqSAgZHAwdQ1B6yXW7q57HbbUXKtSEfwQo5orpWtllKW+qQvDnDykgVTa8A86CqSbC0zR3RwZ4LYBURsjkoOrAbzVL/88u6f//nP7w9yWJb94XB/d/f61avnrz748ONv/c3f+73jkv/qr356u3/4+vbdq9fP/+bf+uF2M/zzP/vLd1++O95PPY7LlGtRwsAUTFVqJYjq4BiQMBB1IfR970BuGbSgq5s2SonIe6mTu2HzX/3h336xuU5XuwXsy3dvH5Z3xZNJPdzd5WkBA1CTqjGk7fZy3F1tL26q+Vdf3z7sp1xV3ZHJwbWKqKm4A2GXnLiR77ohqmEtECa9fHtIqf/286uLPnrJKlaVmNChyRvM3M4hGv702V/5q4AtOal5PXKL4nrqefUbUY33jm/2mxgbDcbAply/Pty+Oxzvl+Xt/fHLr+7vHw5zrgoWU6S4Jn811oADNk2Rgq+JMitx05lOtnAxRgY2Y1N223bp2cXFzcX2Zre9GMexSyGElTtJ753VtsO/8xrvXtPPj7Q4taAJMzzLjx3dWuVk0BzJ7LQ4rnrjVT4M4I4E0SlA4ARIGNiTgyPaqvlZVSoCKA5mhAABedPFVzfDBxscLY19d3254X5Ix5qrQgufI4+MQ2IA/GyYI4dqpUhT6z+yNX3N+RR3bSfaADUkbrGIp0rOG+HFEdVczcgBCfu+62ICQFVdZBJ18giQCFOIHKMRcoyRiNxWIlWjxyADBY8dj0OKgREcULFDqjpXsVJRcrDKqJEdEIwxRR76tNml2IFhpWylTimtfEUAMPN50f1URSbCTgw4cIycmEAAFVMIHk1bLpJBKTpnydUUkMDnXFgRzMz1/uFexKapVnEOPA50cRM3Ww6oedL9bcnZQohd4gAYEJjdvMljXSuoursDI8UQAoYe/GTKxKF1AUAEpknMPPYEzYgT7NfHAjyCAOv60oobNZuW+euv3ry7vT087EupTLiUcnd4uL2/e3d7e3d7d3d7e397d3f39nDY52XW5ivsLiKbvr9+dvPs9QcXNzfb3a4fenBYluX23Vv6RTg+3P/4n/+ZaH3+6oW0zFKRksswDh+8en1xsWvdIn8yAxABMxiQG4fgRO+5dY9Df3mxe35z3fedqtZacslmigTIwMHVJC9zDHx5dTn2fXOfaAZWAbARfDZhuHx2tbu+3Fxsx+1m2GyIuCwanEeKG4SQmAM5gYjPc52mMh3zPOeS835/2O/3Dw8PyzSVnFUE0Vur0ZxKlWlaQC2mSMghdCl5P1iIKezw6vpZCHF9xihKd+O7l/1wddFtRhjTsfC9lGXeD3zvdHA4kBxpqWTCFNE/8yqWPxW8O11TU+EzAiEGBEJHN9JKpdgyLQ8PvinOSBHck8LGXbzOnCKQzouGDjcDx0hmDmon4piYmpoTQuTohua2lFL0LTMScc5LET133E/3DR53K3i2DAPCxspvhHR2Q63uDmnodzeXz18+H4ZBRZelHo+TihFjiJACM6F4lTbnckhdrCKHw/10nGKfYowcQuDEManW/WH/y09/9p/+8R/87Cd/lfcHqdnMiWOnxQGXKasIAUWAPWIMgYYEMQDiPE93b969/mBXyrIWMYgbph1TR9hmE2emfhCAuykfl1yKpMFudsNue502G691un0rJTdckN2r1mUpi5gfcuSwT7wh34pvIo9EiZCtoU6ORH2MfQhm1bR0bNsOdx30HTJjJYaxuxz7vu9CjMiVIo/jMIx9YDZ3AakgmdVQNaurLtP8cNzLiaQMAKEl/qpD8+M5bXsB3NAcwJ2cCUMIw5CIQxUjjl23rdXe3d5Nh+WLz76qiovq3X7/xeefLbk+HI43V1effPe7b9/dfvHlm6XKu7v7Z8+vP/nku5txd/d20uoI7ICx67txUJCQE4bglcRczMycAJm5i6GP0YAyiyjiGqHmp1Dcx1ms77pPPv547Acb4lf728/f/uow3at3LjLND3lZwFzFaimEIWtdVKtCNXx7d39/XIoYIMUuEZMBiEERAeSOGJnVCiBD6KBLQt3BwxcPZdMfr8ZhEyixB2jrPjSQoTWHAeAJhxpOZfx7VQk1M/tvequcfvqE2PvrP32vgllHFzVE7ZDnX/7qV7/44ssvH/Zf7ac3h7I/LsuymEpqFpwpcYjEARDFvFFDBVrIaxuR6KsREcfIrUiJJmxKKmOIN9vN65vrTz744ONXL/sXz5kjuP+6PCMSXA58PcavSxChNQOWGdHBkXF1cnMAW6G2JquBjrBjHhjDKt52bdxIBkZGICO67JHIhx7U/H42Zhy4lUUrj7JRSwDJAcVpqYEKhUUjShbL4rWqm3GAPlJidl+D+kRVTQH8G4ZqiA0/wGYg/wROa/KT9o01SBsAVFXImUMIHChQIgASVclGjl3cprjtul0IPRPHELu+Y2awRiqEE8fXgBzZQyAEtVrKMs3Hg8kEUqDU6EpkfY8iYBWEPDIFYvJVuAzWzvpxa2kG02zHg+JYY2D1QIgtMA2AQAndWhPMVvNLNXcgDMhI6G7SxNNiWmutlrMx42YTLi54s8O+JyYGhW2XgkkRq7NDBRczBQNbJq3FVxnrKbKNGJAcsQkvsYlA3NzVTV3FgRrR1d3fK2IevXnPd2Rl8mIu9W5/+OLrr37+80/v7+7BnBAD07QsX92+fXt/e79/eLi/f3i4v7u/ffvm6/3DXrQSYtd1hNjCoVLfjRfb7eXFZrtLKRLRsN1wCqWWL9zefvHZz375i3/2Z386z3noegKopV5eXuw222HoOby/oydoxvQBqDEHnjpFBOaL7fbq4mLsew5sLXPNPYSwuxi7IYToDlqWmZE22w0RLTk3BiGok3lbpMd+c/Py5urFs24zYghFLS95OYooEIWYYuy70EdmFjWjXGymxdyLiJVc5mmZDtM8zcuylJLBPDBxCBySqM9LIcDUDylFTM4hGZKr9jHudpccVtIlupFV1Gw6mQWmPlbj20UORxm4xKQ8emCKiqImkgGObtV0Mlgan4oQvVn5IwFQEyI6oIAj1gmPgKX23EeKATlQSo7boDksD+RNVaAKHBCJMSRIjg7ejM84mwiaoxqqirm6VzEjZ/PKAULkp/PZWWnR6hdqcv2TEIGamgNYwasqAMQYh3HcXlyM4yC5AM5zzo7Q9WnsUxeTmeXZHqZ5utuHQDeXOzBxChijALlBcGTmru8VsYruD8e3b9599fUby9lNESkEVQBHKCW7KiGZm4ghomWGEDAErbnWvdt8Fls1/ig1Mg8ixBjGcXN5Wc3v5S7PdV89Rhgp9jERBxVZVGqt7VFUtSyyVF2qqmnPMnpMkcZAPZMplGJqYsSK6o5d7FNMZrIs5Xg4pjRECmBGBCpqUgksMLXOKCIaeKn1/rDfzwdDCQkCOJntSvVSdJohL/Bk7Q/q1CQycO59ICCuoBihReTAIfVx2G4DxyI2jNtXrz6qRfwv/wocpsO+GwZIvVTd7w9v3rz97PMvupRevnr1yXe/++d/8bP7+/uHh+Oc9XdeffT82QfT0Q8P0/b6Om6Gm4HTMX39xo/1GMeRTHKRWlVEI7VmYUwxqAFhs6NSqSrVpZz2w6epi2PYXl8cSz7UucyH6XA3He4IdwTgKICipgpG0ZgBghmKmwLE0A8JAqgbYkyRQ0AiqerThMTb62tiKkck8n47duNIqUfyt8e5+/phFzDq9sUudQzg4oDubCpVShVxaLYn/pRNgWCtf4dggI7IvLqs0pOaf+3xn7GWxzrmSS/qPZzGHZkwsIKr6P3x8JO/+Mk//fO/+OXb21uFurtSYllmmGaaj8E9DkMaN3HonUMxq62IcVBzQF57R6tkcu1gMlg0IRWoNahG1Q9ubqbf/WEAfnnzokuD1IKnFsv5EKeHEo+SmOIQQkALRLFP4MHNGalLkRANQEVFiqhX0c7xJsaXXffBpt8wg7qqF20uKirOFSIxb0e8uYAPnkF1+8uv/etMhfHBkG0NDkVHR5iqfX6XlyN0pt0ksWAau8RsBvOUza1LNCTeJ3k45tvDMi3FrDCIPZEnwJqdxClyjBwjm7aEt0ejeXcEMLPG8mstbUO0EDAAU8BADMBOTGYx9TdXr6+vX19fvdqOl103dDHGGJpwgAg5rIRncy0qBsboWkueHm7ffPnZL39x3C+elaom8L7HbYylej7IbB6QQGA+FEdxrKJFs5vgealX9flg0177YAHNzBWsFGNETsGNrFapzZhPnQyjRwNiJghN/qxqtboUkOK1eMk27ujqebi8YiYPDF3aXo7jRxdpf7/81S+/vL07ggGSxx6QXdWRGmuHKBAHBDcTYD5pu5zAWQ1qdRFjImeoGcxAzKs9Dv7WRnpSxzgCrHFWiPM8//wXv/jzn/70J3/502Upr54/H/veVO6PD5+/+ephnoAwDF2vm7RMBiBaVRSY3N0caq1VakvrdgQBs5KbW/Gw3bz+6ENiKHk6LPMf/8mPvvziqw9efbDbbMFBRfcvDheXF12XgBpH19cRSw00BAR2J3qCwqYQbq6uri727jYdj4fjYclFVC4udzfPrq9vNsyCINDCJNXv7vdfffnlu9v7OYsVCWpdDMPF0O36fjsMVzsLYb+Ur9/e3t/PyyTgoe/HYexH0E4jh+AGtegxy/1xOTwcp+PhuD/WLC3Owo2lAgJ13TiOYzduWlkA5v1mN/Y9IkopThFMhxSHza5luQMAaRkOn4V3f/nQXcTuGcYP8tu6fP7pfPcw9bFcXIRnH2zSoNYtZrqUYBAcwCCBdqCEDIpG6q0HR2rOpIYhNnl/Fs1LpWMXh9hvhuFi7FPyuGF0qQsIclqApYIZoBFggIQQEpt2tXrNVsVr87aWZju9GuzW6oA8jI+Ea0RsUQ+r7q89XQ2eISRGbhJ2QiCFauDOwJFiDCnFHg1jUKbAHC6uLne7TQr9lJe3S/3Vu6/+/Kc/U5Vvf/jh6xc3z69ebpD201xVlQMN4/bmhpeFvz5yGLeby4vt5Yz7krM5FAWdawu+CQEjITmBqKoXMTCLiCl2m5uL59cX8VRMt7+4aLOzonHcjs9unr16bqK5lGWZpkyGqERZNT/c1XmaprmW2nzAq1pRz4aGAdEHxg8Cf9iF60jF4NPFblVmrxIYLNiIIY0hdl6O+4c85bfv7uvz53kzDmTavMuP07Fp9CKTqR/285dfv7s/HvaHPQS92Ma06G6xT6pArj/N5VIkvGd2Rx3ASnSBNYEAEBVUARSQnJlCxJiAE4REBLEfx+1Wi4xjb6IxIKEbgKpO03x7d/f555/fXF9eX15955NPvv87v/v1128vrl/0m8t+d80cX3/n8HC3T+NAXYjcQccZraJnNw8dzjPnHEUS4Tikrus4diZGIXFQVQdiRwNGikDhSQAkIgQygrLMeTpqXrTkPBG4n0HRJoFmM0eOsUewyBy7LkAQUXdwIkNCIidHZuJAMTAjx8Y6cHVHJAGv2d64fN4dBoYu7HYDqzli8xwyNXVX/BcgMd+YeWFVZcOvH9/AWn69iHn6m8SMKQK4uEop77568/kvPv3Vm9t97FI34jCIiE1HePeWag3jmHa7brfDrisAsrrsgBogsog2APxsXufu6NZgGKjZ52zHY52W5xfX33r1gYgTRST99csQg33lowYkjkRMEAJ0aWBuYqI4Dn1gVtNaa85LrUVq3Zh/iPytTf/t5xebEOYpz4vMxUpt7DfIapH8uucXPb5OLuY1Ql/8oBIEisLicCSYHRE8F3vzYEf2BB5Y/eixy2MKALAs4m4pUhewZ5qX/PbhWOuSSDxaAaX32xYcqFkxhsCGoLYWMWe7l1PPG5kICc1X8bO6iRmAIZITx2EzbK9uXn308sW3Xjz/aLe57lIfmQGdEJgwMMUUiBHcxDTXKirgKnleYrccF1Mqi7oiA3cc+oBdAifFuXGJ2BRrzWLZvKjlqqpFz1eDzeC6mekrtIjHKpiiuyEYiphWbaylpiciBDMi5yabdzUTl6JSzMTBMQYaN9wPXOYCyBfD5fPx+pr6t3j/+S/ffTVpKW7uHJEDEHvosQuwNlcdmyWOCjTbX3BQB9HGxDRANINaoYqJQSmPEms4GcH4CR1rSL+7TdP0+Zdf/tmf//mP/+IvfvnpZ+AESJe7jWndT4dDngvYMIxx6DmGnOfUJyJSqKquKgDQDGLqyYql1GK1ElHXD0SYum6z3W5329tl+dnPf/72zbv9/vj65eubq+tz2+HXyWKto+RAT3wJHgdyDDFyKDU39U8ui5kj4jgMlxe7wJXJAoKplVzzkqXIfn88TMWLdki021x2w7jddeOWUp/NDkXf7pfb+ynPypR22HlyEJdqpNXE66yHY767Px4fDnWe2mu6+iqmoUjEXdqMw257edna5VJriF2IXUpJk6hBzYu6ypMWP5rQ8uD7r6dlSVF7DsutHQ8PZX9PBwpVUr9NRB26MSlTZGYkBwiucQ2oanIICoTBHdXQ9TTYTNRVDKpkiQ7eDzH2KXSDxCAqtmCit9GmKMTWDHPcAxqAG1EAZg9qQVXVVNgcV7slgFDRsHZ9eJzPHMzQjMxXFwhEIkZuCCfTOUIUCFrgidS6HKfp4Z5BmYlJUAsSDh1uNgmgS2TOdJiXn//q82maRCyE8MHLV9txW/BBcyFEikPsh2rgFIjjdrO52O6sZmnZ9aYVLATqew6RIyMjkaM5RWenwCGOES7j8OJ6l04ImQMKsRIDEDtGRzZQc3F3QiQGJHBUsZxzzXOZ5yWLFHVzVati5mhtj82+ifxBFz4Z01Uf79W/2Neq6OiEHIDZwYvaIpCriZSjzZMWsRSj5AwIIYV3d3tEGvs+zxlV8/3DFEl71pp3btCFpdCF+WtRrfrWvX8itgCAELstQLNKPTMTHVHABMAIIDBhiIpxUWRAwJCNDtMEtUSCbtc/v7ncXG7vi4nUUsv+8PDFF5+9fv3i1cuX3/rOt//+v1nuHg4XlxeXN9eVukkcd1eJIjAoA5CHuH0+jN32Aroxbm+Hw1FrDeTBnUGbj7l75c6DM2jPrIE9BvEgabxCXm+Mmh3yfH/YPzzc5+McgYLRsp+WJc+Hg9SCTR8CihxSypFSuITQdR0wg7hnqSJF2ixoZi7C4CVPxNwAdTkcuOQ0lhgiqR0RvzyUlJZ+7BUxgKfQ2nHWBCvnSr0tGqse7zSn4SMzbF0hfiP9pcEwTya59370OAUicgghRgcHkWgIc/HjwkVSHLfDCEN/PBxqKfpwsGXWnF0EHHg06BIRmyPb2lREbYwSJEdAbnQTB3NkEAIEEHMKVf0wLYdpKdJ0wfTrJB51PFQ6CFnLs0CPIe62/TD2MXbjsL26vEgxSM3Lko/TseQMtVzU/K1SP9qmjz6+gsBffHl/r3osWl3YDBwYldkF+S5T/lK9qE56WfWK7MIoCYLzxFERAbxWuxV4QOc2/2FFLNxoNoAAwOjg6iqqxXQil10HPfvhqIEEnyh6moVGjBwCawtkMvLmAgfubojeUsBSDBRIjZpMplZRUUQhipw23fbi8ub19fMPr59/uLt+OfYXiGwitS5gGgInABcgRzNv7jVVxESk1JptnuTh4TgdFoKQYh+RmYpAye7FvQJFCg5UFsl1Vs1i2UzL/GhMwAE3F7i5wMjkClqrA7lFAAQwVxcRNQkRQiSOAYkkqRq4ooqDkxhaUSsCaowYUhi6GJjM4Hhw7uOzzbPvXD1/YTg+1H+KjOq1WlHjQhSAIwwMAzIC1mLgRD0jwjKrGoT/D19/9mzJkaX3Ymtw95j2cKacMFahqprdbKp5qcGkazKTyUz/s0ym92u6FI2SmmST7Kka1VVATmfce8fg7mvQQ+yTSFT1vWHAA4BE4gQiwn35Wt/3+wK5Qy1WRcyqqbmyKppDVSsZlhk+VTH4rHA/3906Bg2cl/ruw8f//g//8B//03/629/+9jTnpm1D25zyJjKoK7axj/12v2PiMne1lu377Xh4UskiUuv68tRaas1LzUvJ2dzmaXb3rusCs5tqrX3Xjyndfvj49PCk1Qjoi1dvrq5udrv9J6Hr6vFeG3tr8KQTuJ+F+Z++GnPL81yWxQnWCQWt6Rzn1YQChRQwBg5I0EOtvtt8fGhHEcZA+76/ubl69c2bm9evYretxnPWKWuuUJXUmamh2HHqMURDFNWy1Om0HB9PDw/H+TSyVVPVWl2NkJrUIBBz6Lth6Dfb7c7AVXWeR3BQ85QSxFhLKXl+enx4uL8XqefN0l3EShGWZV6OR70NI83ozLSb5gR27HpWgdQQYEjcNJGZFYHd1uTLlbtIDj1hYFonrLjm4SC6G4ApiAjGLJIrb2DbN7rpK8Z6jO2ofaHenRkUoLJX9oImrgbmhAQYkBCdObg7IK3/hVBRoaZEnz0XqBVyAWBAwhDOlksOEBh5TYEkRGZwaloipmk83n74Ucrh6mZ38/KSXH2+R0LWBiACYOSaoiFKWU6Hx8f7Ph5v9oDWdk1bOiMGN2IWkyylqEDA3aa72HbzgSc3E6m6Npm4JaZAzNTE1KQ+NUNqt05BqrZUXqb86nIb4/NYk8hjxNS0IfRu3fFkVX5c5hnpacqjk2EgR1mWBWwpJWfVCiKkJqYG5ggQ1hYU4hDDF136dtPtNn3rsOWlW2QVVHYpNIj18Wk+UbKCCB59MVDVInr/dBLzdtO7eQjpYjNM00wqeH/PNW/bSIyN2Y54AkwGoVo1gLAaSn/aZUJqdwBwxusgwrmIUXBFMHIgIg6MHBWSQyAOwAmR2q559er6cr/99a9+QU03/eFDkaJaRaGUAuDb7ZC6zRfHEh8OhjQ7vzuMRfRJVIgSQUAjA6YQu9R67EcpmjBOJhIZyNWlaq1SFaEGaBoubIpiXgGqQmOhv0T6VF2eCQ5ehRS60LYhH8dTnUueci3lbGV2xVDNQOrCaClydAoGINXkmRj/k/nZap6R2LWamptQJlfRmBAQNdxRjKG0zVSl7qJuO05NXCUcAIYISHB20Kzu2s8mQj91YgDof8Ha86cXrf8GndeI9fc5d0rUXI0AouE2tV/evHz8+tvd1bRsdv0vfqExHohPpU4PT1PJOVfnBbtCqaWItuaQOfDqbbbnquv8WaOhK6IiOgOqOrETVbWn4/Hj/f2Hu7vddts34V/qxPjTrI+TxMZSXKOx0N3BgYhjSl0/tG2SEpjZwBNRF8M202CK5DNqAbu18lHzQUsVZTubOEksZqTCUIWqJq3RPRGaYzAYMN00zA6jeBbPCgZnsi+Yghu5IlFIERBVtJaSy0JQNqnuOtwPrWoElZWX/ela/1c/N6fW4+AZpY8IsMp5nhPH1mwKA11rYHcgwpi4Sf3u4uXl9Zv95athd53aLXAjoqJgBrR6N9eZmIHa6rTCUvR0POb5qMv0dDgdT/O81CZGCgGYBLxIORWbFYpDdGByZoxOiORCpvp5U4kI2paallBRFcDA1U1cqzuaVl+WkmvtOYAzOqETEwB4XeMt16aTOSK2bYohxJCGPqKjFABHwp6gAaE6zTLOETxFhuKm6OpoYAacUKoDo5k7r39CzqDq0AAgiJroGh3lJu4OyGDmJUPJPyMrfSro179YlWTH4/iP//T9f/vbv//dDz/cPj1BTAj+OI9GvmkCRwYijoFiBPA1bsDBVzsFma5dVXetUsbj8fH+zhBCSiUXd5tCJCJwk1q1ViZOIa2UlFVPk1JjBqUqoITAZybZulY9PwT8k6PLp7eLiSOH9XS/YhVNzQ3Wk3/AkALHEDfd3DVNijFFjdxcXL+4evny8uZ1t70oQnXMhyWPY60F3EJgjqENsSEKbiTiUnVZ6jwu07jM81JyacnQnYkiMxC5YQqRObRt07btph+coJYCYMs0mwkhEFJkBrd5Oo3jcQ1GWC8zE5ECZZITThpzBIRNE4dSogg93qtkHXpIbctNlzgyOUJHQIgtsRrdmzh4IoiEFUgRbZ1ZEzuzEtn6DPIsY/AmhDZ2ocEKKGkrm0G9FSXQ6pLZcoKJbQSYHVY9ga+yubVrzrSOMs0prPaZ54fDIfQXl8PVSyc3dAFXcyga1GLw9USEuM6AQwgppMYAp7mIHas7xQhq9w9HNwhtt6/UDLaU+nR/mo8LVCLluuh0XB4fx0D9acxVLAR0BzUgps12uLm5kDdXOD/4fNAyLaU6ekxN27epTSGgSXHzpkkvX7/65rs/i93wePekp9shfxhS4J8KMl/M8+rKFmURL3mqeYypIEGIoXNGcjOTCq6EbkxovGoMz45K4hC4SXG3afurXbMfeDtE8w2NV1PO6gS+Je+9doe5J2hT4K6VxDVAyXM5zeXuMKnnpYSYInHbthwYlgrjyCpNiikGZI8izZpNRGxkDWjzcwFpaLodwPP5YDWM0uqJWO1JSIhhbZwFJkaK1HTdbr+/2bb9169fv3755//635wW+f7DQy6Lu6UU97vt9eXV1dUlpo6a5lD19vF+FuEYFXyqJSBcdG1LCFUYOcZQCol1wBaa1qLAmswQ3aNAFYw1pcIi5pbMuBIV82y8uUY+K+EZaUjNtmklNENsd922VKtZFyzowVTUqoMhAdPKWlUCC+QxhqCOnJGRnNDwpz6mu9RsDqDupqA1ECpU41AdS2oRd0yC9jSP+GpAuOw2Q8tE50gu/DQqQvDn8PGfVtpP7ea1bfMvlCyfBDH/K52YFfOopgjVRAIyiN5sL/4P/+5/+83X3z7kvLQdv3q1mN3fvLgdNu/N3v2BPx7HYtg6RWREVmQ6e5vPDx1Xbxqs0X3rmGkV8jx7s5mK1Lv7u3/+4fd//9tXTQzffvma/qQZU8Xvj8vHx6XfhF1PqSczPTw9TeOpaYdaNcWo0poseVmWeQylDOptqU85P4r87scygd0+zk9jmYrW6j+l5GrxnB0ADNihI2gIooM7FAAP/mWbdh5/GPHeSBHcgcBoTZwGiAAxhXbTG+JpXNykKgaErgm7TfPy+tLEpGrbpE+OHndX0VJqKQUA1qydUtQBQkjMRAhrTw0AHJ0IkFgNctEq5oYxcheHfnt9/fKrm1dfbXY3MQ0KXIss0+IqTfSUQmpiCAERbM3bJgox2Kh3d7dPD3de5se7u2mecxV1Fw/EjM7zbMfJxgpKHrT0MQy7hpDM2yVPx+MxxM8JcWuGSzBBd2BmRLBFBURMc7bTaSligZkcqhixUyB1yLNVUVi3WsTYpKuLzdD3MSRi0JxVsO+apt0+TlWPH8OH26fHR0HpN+nkUCcBNTcXg5J9PFrjEBsgBlVR9TWlhwljgBQcAXJlV0AgZAjR1UEVtNrnYZaffxTrEidV3n348Nf/+W/+5m//9rQs7XabNtuYYnWfpfRtYEQ3k1qXeS7L8vHdu9u3Px6PBxEJIaxcCldAwlrL3f3HotI/PrRdl2JCgJXDuXrpyJEQ37x+07f99eXVq1evY4pLyQ+PT2YwbPq2a9s2hcDPVYyvDqw/vQgphJBS4sSAsKodRVVVSxUp5sxAtGJdiXFFqkfGGKjp2t319fbmZdzsBcLpME1S5lKnXK16whhS0zRt4oAOkquCSi1lznUuWiuYMyAjUmBok6UAwABo5ogcQkyR25QwUO66WuY8TS5itSChu7hWKbOU5VN16avy2w1UdDrNd0+dNhf9RTe0AwVcshwel/Eh73vaXXSbl0OiyECEF8DIdBma2WEqMq+7JqIyCbEgGUUMyZkdEVxBF1tyfaylLDqOO0ovFt+JXVjqYE+WTZZSZEErXTg0dBvolsuEuoCt6KYVTrpSw1eLpP/89Wr6/qtf/3ridH84no6nZTzWZSp1IcgNV8J1VkwAcRg2Ny9epm7T9DtI/SnDcsfFSy313Q85L/KHu9vdRb24Lqr17dt3dz+Ore8uu67nvoz0u99+vH0/Z/EQw8XF0MXojl0/fPXFlx37NT7t6dT6CLY8zkspfHF1vdluYyQr8zSOILrf7l+/efF//b/9X65fvvrtP/zu3T/+t4e/f1Kpn7Tw1expnh/GaQuwCcFUSDGgN+De9Rg7alp3QEYGH5JbxFK5Kvs5ElnAgRzalC52m/3Vrr68vN9vj307iQ4c3xxHy9LWfKVlU6ZuPHaMTXMZhi3dbAvx4+PhI9aG9FGt1qK0AnOCrpudGddKoojAoMltTUHVJjniJuvOMHzOieGmg/VEAL7yPuC5u7lmGBIgAxHSKkMJybe7/Vdfffnt66vLoXn96sU3v/zVx6fTy5e/e/PmdSS6vNx/9913r9+8GoYuO1MKFmh2G6swERAqYwwhdW0fYlCQLMfT8vQ03t8dliUjE/KaQ8+I5GzmCihMhbWCi5h7ChqxBMN2A59EZIRtjA2zi8qSfS5cveNGuy06pzjnuohVAMe1wb92VsCaQF0KKbJpCEyg5r5qWtRUXfQZC+LsGhxCNVdxdVOrsVnQD2JJYPCwb8OqSi5VRRWIQ6AYMAYyCHoOygUid0Bc+y9EYEbPQbh/WsF8WpSfb/PnKhv3M9jYlJGBgppMx9M0TiGGm5fXL7oOhoF2+0Xk0KSPDH8w6SKXf/rnx1IDrUmrgSiYGaCtfhxmQsTVGUFnNtGKNQEDpBAgBI3RazlOp9v7u3cf3795dfPFq+s/tVm5e6k6Z+FGV9Oim5eSy2K1GhEPXYtWG9RWCpu0qhfiVuUu50ddljJNbqe5zkVlnYmf8fJoDurFARwwMg0UWsRIwICM3kXfNRqtPk2WITTEAlQNHIAA1ljtNnCfgiDmzGUdaQMhrudIXK1I+LN7AVUT0VoV8UwJFzUEcDozQT//5atd/ZOJHii07W63e3l9/eXNzReXl6/6bk/UlKqlyLLMjNamFAKFwCEggKMjEQNQBD+Rj+Ph4f4jSD2NY1UTt5xrUSZKjJaFBSIyhsDEGhP1PadIasyTLnlE/pkxjjAQBcPn8acjKFjxwpqrqqmaVwFEV69AQIEVPC9FVYkcMfT9dre9+ObrN30bj8fDaTxOk2Cgi4uGQ5yXkqelPh1Op9NJirOnhsWgLGVF09Tq06ROHhK7Qy4iAqZnLhwCmoErgCMTICMyMGOQtUj8l0oAOGPHq8jd3d3vfv/7f/z++3cfb6lvd8MQN4MDLKdTVVlbjGdUiPnpePzw49vbd++nw1FKgRWB8BzMqSLj8WhmpebNZrff7pomIWKMkZgihyY1fdtthu1m2O42m4vdZdd1VfRwHEV8XpZ+6Dfbvu2aGNdMsP+1xisxhxDOeZ64xoOZqomIipitce9rX9cRnMgCQ9eFbtsO+13aDMo0l/o4j1PJYi5q6NAE7to1JCcAQVVRqVqLiTBCZGoTi3IAIyBuGzcXNV3JXKpVlzyHsswhBTdxVZMqKuMRmCDPi5TJNIPXz58NPvMqq6mURaSmFJfES9c5YjefLktpRjSKTZpZNbowWI9AiD2TOfDquHFDMCVyAkJgBAYPZsksBYx92w3tdru7is1r8xdzvTqOF8U2oY1MZlFyKZMWLXLSQ4ttS9TgwlDBFjeFZx9AOA/tRM4JAJ9upG3bb3/1C0vtP/3hrfi7acqLLOqBQEBmsCIC4CGG2FowD6Xi06mqT+Ooat6+uy853358zIuE+LjZ7l68GN3t7vb9eJoCbFPPTUwlxx//cAhpphC6vjVBgtW0SC51iB6vuvhmZ/PNOC0/HkpS/sUvvt3ttrXM0+GR8oHcY8DIGFIIMXIMRAExrQOs9V7MbM4yljonLYii1jh2VUKQ1i2zLxwU0MFj8K4HQJgKqDJBJAf0CipQdYjhpgsvu9A3AQOKG5vcoFxhJc+dLXurvc6pjskoWh9BAlthGhJ0CYbGn9BmqotTBjSUHbohRABydxV3B1MEZ0cAFCZgagFbg8/9foE4rl/+MxxqXUAIgM7wKCTCSETAwMlTa9c3N//6L/7iX3/31W6Im81m2F1obH7zr37d77auenmx//V3v3z9+iUS5XmhyP2236s2Ym3bUmAB7QK/GIaLpt/F5v7Dw//nh7/53T98/+7txyq6vdg3m467SCEAIgGdE38ZCRylAFoMKUAAQw8RPhP2hkDgNh6fHj9+eLx/yGr9ZttfDJcXsEg5Tqclz7VWqVnLDMW0Kph00beR59REBwZzqVKkSikle1VyIAc0Z4IUKAVcwTysypCbZQxU2JEiW8VadZ5qrvW01CxKxE2iNmGXWJAETczAn58ABXBEIlMTPocV/NFa/KmC+Ukrd/416z8CERWRWoqBhxiapl3G+e379z+8/cPHhw+pb37x619f7drQsCW+fnl1HeCqT7GP76fxdHsPgZwQA1HgZ9CmAwJFREQwOme+o6/FbSIkDDGwExYTdal5GfM4LqelzuYWmP6o6kIEJlypb4BnXu3aHZdalnk6Hp4akIsuXpJvA0dRK/VjrQ+5/rDk05MuplnM1/cAmZDcQQzW1ANABDQAooAUGQmZMTHHQBiUyzyogcYQh4Xirfts7oaG4Iju4LYO9ZwRAjMalVIOpwX90VQPpymXn04wvlI7xVVcyd3BHM5bDZ0VT5+EnO5rpIcBUZO6lhJRt929/OKLX75488319RebzWUInVSf52leZqm1S7RqaZiByQEh4CoRJmI4PbHVOc9HdBOrGMgIT9NEbuhtFwNx07UdAQJ732rf6bClELAKFQHk83M8PxfAtRsFAd2tihNgE5IjLSYZNDToBGq+ZK26BoOBgatWdA+Mfdtevfjim69/9W/+8i/c8l//p39//Pjj4+EpNHGz2zqalMW1TE14WMLH03EuNTZtT6HUItURUdV1NmDvNqQKuZgrEnIK3CR2h3nRUh0RYoLQADG6QiUKfK6z/7QCWP/msiz/+E//9Hd//w/vP96q+eXlVXexF8JlWczNBBmIDTSXXEudlsPD/e2P7+8+ftRlRhNEBHBROYNQQaXUGkrbKAN2TXN5ebndbjabbd/3Xdd1bdc2bZO6lFLkEDgGIjcYp3lZ8tOBuq7Z7jfb3Xa/2/Zdl5gR0cwBzP1nN7J+PkSfapdVd7ry59VM3BkBiZnYAQS8ANQYjZum33fNtvGEx7KMJR/nsapQCAQUCVPkbZ+6ruEUxFREXItrDeipi9E7lrygWBFyik1U1en0nBiVaxWd5xEQmjZNy7xMp7xMtSx1PoCbSJ2nI3oJn8kVCDEypRCAosQgyVXEp3vTisOboW9fysXNklX9NPm7dKhW+7qwCaMJwsnt5CBA6n5SiQQckABb8NZ8kLo1vxS52A+711/1v/y6++7bPafX7+4uf/d2eDrF6QSpWogSSMGkVJ1mU91EGoam7dgjKsLJ8sl1Tetac1lDCOZaV8fmc0HWd82vf/HV0HVWZXkaH/EBKA3DEKlABqmTOXJo97vLoduaxbv7eZpP8yzzIrksKksteVlE1QFj3++urt4whcPhIQS+efGyHzYxcRF9OmSgMmzaJeM84ThanqVJdZluo9xd0/hyn/Krq6fZfhipcvs//G/+Yjd0dx9/fLy1XcxapOni48P9//w//4fY7W7f35X7u2YKSHuE89QCHES9AMxqs0NP3BJtEMnNy1LAptBkipUpdmG4bDFgOLlr7GLfIrVeqCw+jq3rCyzX9Xh1srYcqgHWEqZjnOewzFG1IWQTIEMEKhOPT/QYU9ddBOi38UYoL1JARvAH007njHVm75mQgqLRGnxqIGeGmSMYu7P/XNgLzKtW/tPhxs+nID5LCDDASv8mJ/YYfTMML1+++OKL15sucgzViWN688UXm91FCqHv2suLXYg8z+M85zbxxXYQ9SLWd11sm5B4SGGfmn3TXnT9QPzuZv/0sZ8PMWfYNNy2MQydc6jV3YGBIloDFM2CzAZUQuytDQvvNn3gT0UMcGAO5OBSS5nGUpUwxJ6alEJsQg8zh3Eal1zmWRRznWYvpUsbDLwEDhoYzNwqQAEPiLbKz4kQKERqmxQDMTGCV1VGaJs4JNpG7JjYsc718DDOOc+juHLTtEPbDU3qG5aAolqr+DMa45krh4pkTpGJfr4m42fXZ27Sn2ZRROggK2U4phia2G+GKvo0Tr97+/a3v/9tt+0215exbU0fXR1N3eTian/9+uWw34bjSQOtjVontHN0MTiBswOup7zP6icAQmCAhAiMELgEysXFpJqoCYD/i7QbJgxr9XGuBFZZiblIXpbD4dC6vNR2F8MvHBPQnfmTOzJDTMwe3SkCgUeEYB7UwFzNgYnbuKofIuFA1OBqE6AYOEbiSIHgZoOXDQ0hHC3kSZZn9CkhoDplcQQ3IwQmMqOqOC1qNpvquNRSf9ZWNgezVToFnyJx8JN8G57FWW6qCgho3nTdfnfVNDuHZtjeXFzcbDYXTewIAxhIrcs8LfMEoErBNKiQooIRETITMYdzFWhal7LMiK4qjshriKyJg5tDoJBCDIEoWtcsTWvM4uiO5uQU8HNiLwCAMxiBrYw4J8LQEEdSdFtTeMDPO6eoqK52c0JCcBcgTJth//LF62++/qXV4+9+23yMmhvCQFJ1nhcxddPSsHRJjmQVkZHcKSAQuDngOdECnE3QhXBNq2Jyx1ptnrxWTy1wOsdumoLr2iX7F940PJePfjwef/tP3//un/+5qg7b7YsXL4ary+p2Gk9QcqgWmcncS82nMZdyf3d7uHuYjyc0ZYI1pr7hEEJIMbVt1/b9sN3u9vvLq6ub65urq8uLi4vdbtf3Q9d1aYVBUsBP6FERFVO1KgKuRYqYrsnYZVO3XZ9iBPiJR/zpUtV5no7HIxAsZZnnpZ4zok2kVqlmKz0ciVZlUUXWpg3NsOkvt80mefBpmk/LvJTF0VviJnCk0DXtfts1TeOEuWrOJq4OyoGGobU2NlAOXk91kpJdqZRyPB7HcS651lJLlZyXELhpm1JrXqayTDUv1au7gpmUCawg/tzNR8iMSGwJNbqSWT0ReEqDhd2+SwPGuOhRPc91sXyhQuDJYTEXkeB4aT4AJLNGpavYmfdAg+NOYW92JXJRmx1yO2z59etuu7u8uOzbLknBHz/IUqTq2lXUtZNaJBZPalhibnBmfEQ+uc0uhsoEgTBEM7NcdZnrp2aMiZTjIT/cyunB5oPlCbRGblKIphEsCUPTdbvLiyYNeZTTab5/XPIiwJ7n6fHhblkWAA4cmBswJn8ibkrVftPEtm+GAdDrkuds7kYc1cs06TzXspRIyzK+a+xuSUesp/FU0HnXbyx1myZ1AVqylr2mlA2t6v2Hh1P+W6NmOs2h1EvCqQR93voRIRAxoiFWwAIoSD1g5xakKNigVqIWTIzcx4iR+yhEPCQaEDdiiRRZGi0XWrZL3kBmQqmKUtqaU81cCztQjICgAcwNy4KnA7hz33GbGtMe1diqwWK2NW0hx6SjexO9IY++0q0CoePq63wmJP/R2eWcgQnPcktzN7C1n0trQhW6n7N/DAjDyu0iRAR1zUs9zHIqttvtu83WRdz0eDweDmKqirRJ7avtALMUlD7GbddfXu2HLiW3NtKQ0i5ctvyXv/zi6re//f7h8eDE1DRx2CwGDw/HZakBsWXYhtCjNzIRu7T9CTYfc/zyxbZJ/PxgiJhDm/rtpt30eEvleMxLRo6cUuzatu+CuyxlOU7ydMrF56cn213tNtCEOONCgGRoDtWghYBNpI4SxxATpSa2TUpNiBzOSSxAqBElsfSsbbCGsE714/F+XnIeLXA7tPv9sN+2XdclR1fFnF30rN07D44djJCJ2/THJ8ufNDOfPEpnoTDCOSEP1WzMc9W6H5p22++uL4pDIXr/ePybf/gtR95eXD8+jo93D2VZmHG73bx8/ZIYU0ohpYnR0AUNUBXN0IAQCCquTmD7VMKsm8MKbHYEEEE0WBE3gZHP0NB/cV9Zf0k4B36ZgymYmwJAKcvT0VLJ49yErnvTDb2hqm+IbzYbDFvoGgtB1agKzzmMczpOVAuCc+TmcksxalWu0rjGdc7k4G6KXJpWN2m/gWTpAvqPJ/hY5/vii4MiVvUMmm1ZFRRnKTewQcwqmk1FJ8FiZP5T+2Kt7VbNJyGyg7rjWt85uIGBIaIqYDU1BcLNrv3iy6/3+xfLAsR9isnVypzdCDEsS8nTWPNM5AK8jE5aJHCMayBqgJTQzRVrrjXXUiqii4ibNU2z2XTo5iWDKgIxYdtw7LhtBLnUulQVUahSiennmphzeWOFQIERU6JmQzFxKSZuENlNZe0eEhLyGmeQQgB3LcoeA1IM1DYppubLyyAvu+uL4ZRxzHo/HxNLTBT6ocNuu2wI56pWTYkxBMqLxhgvLrZtHxEUC7SIzA6hOvgy+zzbdBQ1x8AkiAXAQRYv+Zl09Sffy1rBmOrD/f1vv//+7YcPw3azvb56/ebV7vISmKfTaUssp6knlmVG0eU4fvz44e72fjmOLrZ6s2NIbdv2fb/b7S4vL6+vr69uXlxdXe0uLrbb3XYzdH3fNk1aiZGfApIM1iUUcQ0oX/1SaA5mNs+LiJyO42YYbq6v9ttt37YY+I+++lrr3d3dDz/8QIFEZVwWVeUQAbyWUuoiRoaEzEBqbg7CAftNe3Fz1V9eYRdn06JLlcVBAnOTeNu3m67ddP1mGJi5iCLCElyDoXub+Ppiw+49K8kyPsp4fFpyHk/T4emYc3YnN1d1FUkplKUR0VoWWWaVgigIBm6gFVTA5DNusgMYkRMiJdYYK1eqXsp4OL2ntHBzHbouEWyqflnEBHZOTCGbHgUetLSAV4AJYGe6M9uJbVG2wBvA3rEH7wBSrun2Ad/d+zejX177b76ub278xSX//T/D3/+O3n/kecRaKTY6uCOEsrTzdFlYurZ26djsZixjfpq0xNV7xF6lzlmOT1nkfC/Hx6e//p/+p3/8+394d3z4+HTMT5M7aWvmjAqMHCO0XdpdDoTt8enpNJZSNMR4ed2XJU3ToSwlchy6fr/bdc2AGJwC7i77/WZz0ceORQqwxURm6AC1qFqe52U8ZJBS5snnx7+b/uD5KatO1SwjKr7753+OZMvpYRqP45iXRaSCmcMHM09FNQDNnN58W+vzvRBh14QhxhSDEy0G0aEhagGSSBQByiZJvcOKIXdkhNWC5t5147JZjkOZm1oal+QYFUMJ5O6qYMqu6E4OyHSOxw2kolgWkwrT5DF6G53DalkHwwb8Feklyxe9TdEWrgUgCy7GQAEN0ZRcxcQUncAIPx8mBz+Pj1Y8vqPrSm1A8vOkBtGx2jknkxAJ/YycsxhFdZyXRTw2fYjRGKW6lOpugTDFGNsO6/j28HS6f5oR4OrqZRP2fdM3qWkoMkFqhub1zb57cdk+PB5yFkGmth8XeRfj4TSCSDAZsA5QBs4hovbQAQnSEH++bzJxE5uhS32HgcwN1bxWKQtKdlcwxXGkeY5FkMryeBj7+z713G57FSZiYieuztAYcQgxpJBCaii13LQcIzPzs1aXXNBmhiV5JpdaZVnyPE45l2LIbcAKXlXmRROmJjYJW47qwdTPegqH888o3sZ/GRXzvECfFaMrmAAIENBpXRznucwUKMYYY/Ph48OHu/uPdw8fPz6GSPe3D17tD9//8zye2r558+bV1dVF5NBwihwNsLiDr2N2JEIn9DMRzZ+p2z9DudMKOyOsq0SGUQByrTlXVYN/6RbOopvnfsy6aJ8FdKoCZTbNKlKNjRuktpS921cxXA1Nc73HlFQUpwXpxEUjZgYi8EDcpEgpiVeoytUQDMydQQUqhrlHC5G60GHa1diL/piwZnhCn93F3RxEHAiYV3QlAbBDAMA108KA/ecBKsRMzLBa3VbW3TMN0A0UFNFJIRojhhhCTO1mc/Xi5s3V9eu8OECMzZCaLgQ+5xQwSxMjKoAGAhMpsyrRqtEJITRtE0JgJinKnCKnWhfwNVt4//LFFbjdffgwn07gGCM1fQiNEhdRr1WK6BpHyDGFmD61ylR9OtbpJIjEAZvITcepIQpITqi0YlLZkIAwRMRAzkwUOZpbkUIQECAwbzdDH/jV5cX4uJeDHZdynKZiutkwh5iaJoWGdtpjOuUyh5q4mUIFLF3Xvnx90zXx9HS0UppASFpDzarL4susau7gJbsbSEEAM3ER9//lTkwpZTydPnz48P7jh2mZXr345vWb1y+ur7e7XQhhaZpUZeRHmeZqTo4uMh1Oy2lkom2/advU9d12s93tdvuL/dXV1fX19fX19dX1zcXFRb/ZdG2XUlyTBFbRu4Ob+mrZsjVuek2KIHdSNURbMdA+z0VkGk9zXmq9qa9fvkgp/NEtiMjj4+PH29sQ2RGqKhGts3X1NQHCDf0sFjJzgBBTg2HYbtuhr0yWRbWaCa15LoQp0nZod0PbNgEQEVUFuyaYhlkEV7eNGVg1yWWZxtPhdBpPx/F4HFWEQ6IVHFJpmUatRVVVxKSAVSAFV3cFLa7FTT6RYd1hTTRElFxWbxE7sFqd85EdiBtgophaDBeCAaz3NiJAkcV1r1oIE3FPuEPaAuyQNo4bx86hcUvgTIRF4P7J/vDWLy9q4Pybr2W/kd/80to+AjETvn9nBzFw9ABNg66hFNAiRKcQXrbtPaUHLrOo1CpmSF5F6mR5EtPz6jeeTv/1r//mb/7Lfy6JM3jJ6sAnqCVwcnPT2RQoTtNCBNOSl1KqCgUMAS0G5ogY1s02ESQ00wzIIXaBOedZbTFTrUIoAFBrNUfR6oqjCYi5kExpvmeZVWxGQkobFL7/eJQ65vGxLPNSQQRNEKwwjeZZzAtSwfJwWupzwDgTbduwbUKTGJGqWwHQs2nDg2ljHsCIgBbiYwwhJMnRtDHqTPp86mXpTBtQUkQDVAQ/90ueTa3sePaBGDoTwJpaXosV8hIsRKYEGMECIiSywWUXsRIuqJPBBHg0ODpNhotRNiQDV8MYkcPnB5jgbiuqgGg9wq4tSgMCBAMwR3NUQHZAA3YDrSVP0zLPXRMIycylFjMjImJMkYa2j5GblAJH8DDePrz/x7/72//29+Nxev3yFU3/x+4v/+ziy5dDbMyqgw9taG72uyEtS5mXUsQrhOO47Np0//A4Ho7l9Ajz0eSe6D5AQNmCxXKay3S0T3Y+XDPkOLQNt41FpiZuOJHbkrPmeZRFqtTTGGrZxsCI+eHx3siXOuyu0mY3dJvY9MRBV785E4XIgSlG4AQcHWk1ReOK4nJxB1HQ6l5Ns9apzqdFakYOwQDwUUykLru8vbjYbrfDpusDsxrIsxpX1atIqdqEn1Zl/PkF5zijVR8aCBgAz9I+8zxNj0/34+Hw4e37fwjff/zw8Lf//W9v39+SYN+0WHE5Lrfv78bxeHmze3FzlYB6TD3E6LwSGNWdABISEso6I/GVSb2WG34eMwIiYyDsOGqpU16qewVcVA+H8elwyrm2HM6BUT8x+iAQRqLElJgCIQExrV4TBEIjNPBaZNLlYY1Ul3qNPkBA6Ia24a7RufhcVv4iORGuYaQcqqOrLlWXKnN2M4zRgxmAKtVYnSuFGACTVAb9q8av1R+qPYg9KjwBHhDzM1PZkWHtsYEyAmEVdeafaKpEa6WYVvLHmsqn6k7E5g6uog5KrG2XUmq6dntx+eLFzVe73c1+d427ELiJqeOQkCNSIIxqcLnpS11KWaQuLlWrVK3qCu7E3K4BnClJ8e1wsd8dH+4/AtnF5fbNm5d//md/5qZ/81/+y8ePHxAhBE+tGyzTMubqomSOiBwCxhRD/AkOWYvfv1tu3y/7l7TpU9dzmzisOZwr9MK9UQRNCIniQJwI1seKoqKMSEHdOeDF5W7f7a9uvvrDj3ePp/c/3k6340ht7LqLuNt1KbXml7tQYjlInaosWQ9TSc242QzffPtFR/xjlrnUBFZRSqijleNiVr0bGI3y5Pm0jsOckxk6MXyeZvmJZ01EOed3b9/++OOP4zRSDJfXly9evrjcbvuui8Q9QLi4eFC7XRZxC8wxRAQIgTfdsN1uLi4vb66vX7589eLFi8ury/1+v9lsuq5vmiamFEOk55hyPzuTzolfq2WPiVcH6nloujKjDd0QkXKWaZkPT+PD3eM8nvbbYbPt/qiIMbNpmo7HY2wCMTtATGkFxiARIDmRAdU1gwPIMIY0JHYOHUBUBVNdUQvEMXJAdzSLjJGRwNyd0VPgTd+7eZ7yMs53pWrJ4+PD/e3H4+PjeDxO47TMs0kBB15pYRiYUGs1EVMFVwBjdHcFq2sBZFps1WOuz8V8WeR4yCJWSyqlIWCgCF4FbJSpTrdLzDXtr9rNBba9xaZAu4RWS5D6NSkiBOYYKBEmokTcGETRKBqkAoABuogen+B7peOR3n5ID3+Jv/ll+eKl/dm3sYlh1+PfoP/eyuMDqnFIlkBr1ZqTLJ3wJfKL1B1IhfAoT9UKY3AjUF1P9Os1Lfnvf/f7//qPv+9vXqauQwORpdw/osM2JnM/5JmH41y57XY1WzVVX3KthwNJUdBIlKrWeZ6OaDXOARKnChRV/OnxloK3KUZmQjCnslRx8rO3wCNTSrsYgzkr93X6gbwOYWfOx+Px8ZAf7+5KnoG6ENoUUhfCEBIizaXMUo5SjvP4KW8oEO5avhhCikyGtmoUkR2xAAbExq1R7SR3kzdSm0CJLTKQEgMEsIjI6ATOq4HNPylQCFZ5oCOgu8laywKBAxqjOxiCi5iakBqIQlDEig7oAahl2Lg5WiY4gt67PEB4oEhGwRIYLQ1Q0+DPiphnIj46kDu6G5iCrnpORFpjbQDPjRkzyjkfng6P9w8BAWN0tUAUA4XIa5hqk2KTUtskQrbiQ6Do4mVeTk9Tm+bTU5knFdWqS1lEBGEdr+g58E/VRKDk6NKSVqjmWXVGX2JQJppLHXM+Hmwa/wgWAcQcmsRNdCaI3PRdQqAJc861VtNKroEAkNCtTOOoTmI2500pYW9MIcUGmxZDAiIIvGq9AMNqNXQDh9V9t0qn2SR5dasoYlXKIqQC7GpYVj8FgJpWL9UWwQsf+i6l1KZoMahpFamKNWLfBP6TccyzIOasgUFCe9aPrqD7pmm3wzYvWWqZptM4PXy4vT8dnxj9ar/dbzfbvmPGJnIJlJgTc0J2goZjF1MfiJoUYwocWFe9DvpaxDw7mdHB0M86HnJgwhDIAJjPtBiz42k6HI7zPA/xrBP/dAsEEBhXTXQMGJkISWMwdAay1fUG6IJZ9GFaCEBUGsLOvEm5P06hVB2zHWedFqu2BhyjGqnzXDHoCkQroioGRlDNwF1BgUCcBTgIZMdFf+lygfpE9sB+i3hveAd6QspEGXBBFGY0ICBCEAGp8omhDgDMvNtdXF5cuqOrm1VVXeFEZrrmzTZNt9m0+8vtzYur65sXl9evX7568+L6i4uLqxiaFNqQGib2c7TAWYkvUnKZS5lLzjUXEakiZkpEKaYYYwxRer25elHmuSzTsngKMXIIRAYQQowxIXmMkBoTrQB0DoUxIEJzPINGP2386jKLzsLggQHZDbQUNzAlbNyvBEX4AdNMrWEDGFyfPwADQWaiCqDMPGypiznsZhjEUsR4mZpNar7i4bV3l0K9eUC0FJfGplonWB6L3TI1YL8o0qBuRCY3RBgJPwCbh+oq5KlhFV+qltlDoBg9oQG6VjD9PO3xp6uU8vH29u7+HgD6vtsMQ9c0YKbLgg5eJTokYiIKMQ7bzVUpx5cvdutzvby6vrl+cfPixYuX11dXu/2uH4aUIlPAMyID3M+9SYfnXCpYG6MAKxvyU773uduI7uvKyixIFEtd5vEYGE+n8eJiH+LPJkpmVkpZlsUxcYyIGM4d0FUYFdQpC4jIWimdJq0Sq8G0UEArbqVUzQZGHAJ5sAplqcu0hFVCjIQU3ACdUVmKT8c8ySGP4/h0/3B7d3h8nOdRal2NIatmnRGJEdGllBXHReDETqhuFSybC1jFFY712b0sixwOS5mrihGn6CzOxUjRxKXYydyIAAkorTeYGrWEunFp3SJaUGD0lfqHYU2jUWQxBFBBc5fqopAzHA80zagKpVhifXldv3mFARutgdDdSB/XvEXmYCaNlV7qrtarmE5pUx3Lsqw7vT/vip+eSxX58HT44fbxgvutUhcZjUyQzAy8Vj2dFstO3WnYBsJgZgYK7rlkq4CIzGxaitTjqWaaIsWm1ZY7EJ1kBLLahCaFwOxIi7BCQIxMjGSIgRkpDu3uDXBUUq8ThW0tOi3Hw0kfj7VWaVpskJGoJY4xRSQQLS5F6ufJz4iQAqaIHAlWLaQDMDmjAajDuhUE1baUvtYuYNNQjIhOq3KTcIXRnzGtfEYx0qpz+EQ/8hUBui44RLZOe9d8OrdgVcEFVIjXhs46cojuDNahN6gJpYEYAZ48TMhCRMywprF8KmLW/5KZEgI5rKcGMHVXR8QQEJDWIB0AQFDTaV5ub2/fdlyWqdtsIfabvt/th7ZNtKrmAzMRAwGAku22w6+++wbcHh4P/bDZXe2Nacq1+jieTtN4muZ5WZacS85FpNaqRazUmvOScy7LbGVk1NjEbjeIh6eDf3iqt092M5r8xFVanVQcUuQUjcAIuUupSdw3KedlmnmembDMueQitZJLdZgBoZYyHZfTcVt1MGr3DRE7k2IQR1fAdckUczMwWTEz4GvWRnJPjq1ztIZNTQlUZndpsHG3ZV5qkdP9+Ng9HS52N9cX16+uNtueY3AIJZAam8d+aPkzmd/POzHP1Qx4NQXywCGGGDnu95e/+PZX1/ub4+PT3f19nT8GhItdD351sUv77ebNq0tiXE6vj8eh69uLYUghCmFs0tAP0LXSNtgkU82L1Goc2InQERBWFc6KilE460OFqAI4IcXEIZGKqI3jeHw6juO0bRtE4s8S7ZCwCdgmTBHXOiZQYEymhE4GWAkagICo6o9VUJRFIkAqZlXLNAmCTYsVOxuJKAAjaMYswSeKDIn9+asyVRdwd88CY8anifczp+QOjdh19Y34C4fJ8UThCeFJ9cH5jpo7Dg/IE+Az280KkjAG+imcr0nNm5dvvvzym2ma5ykXWioWw6JVpNQQm367e/ny5S9+8c1XX3/x+vXLy+vrzW4/DLu+H9qmT7FLsQkhEtFqniYIuEaxgKlXNVHRKipSRc1dETFwQEQ3PxwO4KZa5vl0f1fnafrhD3+YpxOC398/5DwTowNx5PMED9kdRA3MxbyIVKn2vPMzwhBgF6BHDoZ1rguYCyAxt/iq8r9ZQqnp/9W2b0NQt7osuSwmSoCBKEZ2phloxriEXoH/acS3Czbd9rsb3pu8AvpS2puD71A7NxYlBGpScT/O5fF4+ng85uOhnZfE9K9KcYbM6ZbC7yS8Nb1v7BS1BHnSOplVs8aMDaGCmS8TLIt+Ulx/+kwAoEp9eHw8TdPQD0MMKYSal6d5QjWqCmZoUEthCsOwiTFsttthu0HEly9fXl5e7ff7zWbbd13btCHGEFY33Kpgc8AV/LR+kgRrqDKc9Yarec3A7byRrwb9M+taFUOkzWZvAtPpNC/5cDyN47jZDiH8NFRag9zdHOw5YsTXUHcKISGlqjxOqqWIVBWb5vx09Ky4SOHkRl5NajZHwhAduVYZJUO9PwRCgBSbrt8QpyI4nXQ+6fEx5/EwHR6PD3fHx/vj01PNhYmblMDB3BDPE2czl6ory47QSB2xuhaEimjnFJfwk+7K1OdZjk95enQE3OwxEC8CUjEyRYSGrcp8nFRrPnm5iMNLisTcuaosrjOCMBIH4hqx6RRYU9KQMCgi8OIsmUwInUiwVPzwFqeRD0/By/Jv/tXpmy/yr77CmLphaAy8avn4QcsSiCBGKbKp0o9Pe4Q32ytN8dSNxdVqOdNfP9sqDWBxPFXB8QhMvNkPbd/3u4QYTMdxgjGrBpUguqaQrL1zQARk5+ghGDhKsdOc0TQQ9aIeh+DgiGY+65RnIAqAbMROibjlkJiCm0odmxQ3223XN6nhfHoqucxyXKoXIwhd4NgMmxgbcxciiCkgp6qxisMKl3h+xxyqeQVHIuJASOiAAZGRmME4IwS1FlHUFdQALURgCCq8tmPPJTuumlpm4DVdHB0RgRFjgFUbqLZGx7qDOqyOTidaW5UGKuRK4DFVRym1qqlhBGxdO7eGcCAbTG8hvYc0+toA/xnCJ/x0W+tH6r6eHdB89VacxTDnjhAYYBE7nubbu8dSyv5SL1/1Xdtvhl3bNOfOLriKFZVaap7LuJTUDxc3N9i2xGHW+v7+fs6FAKbxNI3jNE/znFe34/ntIWaiwNBFarjhnhM1u3b3Yi9TxQ8a7eTFliL6s9OYOxP1Xb/b7faXFwjYbDcxxaBKS3JiJCJkRDYA9+JqZrXmEbTUZZRaHcnUDSzpBTatcRJkAwJzNENZLZe6FnngaB4cwiogcohGLcQBV60EmWNwIxe0okVrOSzz42F6fMrLdHl9sdlvY5NsRSQ/T6k+vz6Fpn5SyLu7mIATBmJwAYcQ+90FhSbEHlPnMcXNcPnyalrmusxtk169fGEqpSyHw4EQmq7LqmPJBZyatNvvoW0UfJnnpYpUATorusGfOzGflMUETu4IevaChZiS1IwOKlprrbWsC9zn6p7IeNXzqz03LfcdDy2nEMBxdcw5gDL2BpfF01Tz0zLW2lVhQEB295oXFPEluwHGBmKCFRxrRqpeDNdyiiI4EsuZ/IHoal4qOXBkXjNB1KBKrNYCDkB74iuHSeQJ8I70A8X3nB6JCoE4uNliXsNKFzhfzDwMw267c6fVcLxylYiQSHe73S9/8d133/36N7/5zddff3V9fbndb5uuDyEhIFNkToEThzO1GAlWlwCtMwgwQ3MHNRfVFbdl7mBeShlPk+raxvcVgJZzHk/L6fgIYKoG7sRgFmJoOUDgFGOCnAEVmYgM3ZDsk8IpRry5al7fdJshYuQRTcRytd7gtdCfF/53OS4aPyoBgqDL2hoGCA7JoTUfxHalvHh8hH/6Xpm7d/evj7lT2HN8GeNN9esx78Q6ohSYYuQ2xiZp000hjdv94/U4zkupgqX0AGSeq70O6VW3uw9w0PlJ66Gx9ygXm3yLZdHioKYkCrWA5E8Hy09fv6vZPC+naRKxzWbDKTGi5KKlughWRXdGAsRhGLbMTZPc7erqOoZwfX293W67rk+pYWJeqRNnX6D7c2rAZ0eLM5KC4BkWeu5c+vmLgTXU3dUc1PV5oRWxaV4Q9TSO87L0w88nSg5qukZnwzrZe07mqmLTIuoIbmWaS8kimrOOWcV5qZWiIZuCFTVkRDIOCGaKaqVOaKAWOHadEMWl+vE4398/PN0/zseH8enxdLhfxqc8j+6aYgJAAANbcy8MwN1QipgprFYPMoDqWgnq2q8MIYbwk7jvPKV1V3Ew02LKuEoTwRAZIoG4LjKL6YxetHgYSLxxaV0aLWgFEdkwaEAzXBvgqXFAYLYY0RTFyCupojvWAscTWQ0NuMnSJ33zZvnqFSK048JSQ56wLGAaAXsKO7fLJWfO2FMO7VPaWC2HKkVXfchPu4u5F6lTWXg6xRCa0DWx65omBkatlCw2A2BwTzWTGyA6ERthFdOqIsWsAnjgmPrGVaXORWvOI1DA2CBw1gyuuE5LEzIBETNFwmjupoVQzTCGrutfEHSOh1ihG+pG1N1EZgprrplUreJqSAB+hsX/0e6CiMQcmSgau5lX1wKeEI1QkCtBAcxgyV3MkxkYEnpAYEYEcIJz14XJmQCdQRicEKBt4OICQqB5gnm2ZTFRR2THZ9Q5raANcycyY3MGcgCw6mYOFYAdG4AeNAI4+ERklDJwtSgx/rwT43ieGq0fij1jSM7kLnJHfxbrOBFwdAzF8DjXaXmsEPYvv07NwGEACKLrZibLkud5Pp7Gp8Px/v7pw3E5CsxOdalPP74L7z4EADTRUkyq+TlocF0jurbd7ba77Wa3GdomIWFkTyRDo7tBT4tNrTzC4YfTe+SfQobd3dWYeLfdvn716ukXv3zY3a8ZhlqFgaIhAgVMTBGIKMx1yV5VvYKIaXFQVSnTqc6H/uJFe3FFzRa4ceQz9MMUbJ2yrKFOAFbdUQxtFWQ7MncUETCSqwGrhwAYGBi0TuP7j+8//Gjv3r+9fnn95stX+6vLpm85BjVBiqr2+Tv22eXP3TkzESDyGKpqETtveJHDi8ubF5fXv/xatJZaSsllmVet0un4tJjHzWMtxYFux9Pt4XhX5yXi5W4IbTcv8zyOS8lzKTGtsQk/+QsczAHWoO2zScmdAFMMqqHOFBxj4Bh47RU9pyqcX7Im4FdXcXrZpC61berb0CVqQkvPt+mJo0I31XQ74phFDdSJEYkAWc3XWgEBggGKuRZwNRUGixhTimEzYIraisxFT7OWauDmrmKUArWJ2wQp1FI111yLmrthRArundkW/VrLS403bfshhVumE4IoULQaoOGfTvnu4GZozkQhRE0GCDECWETEr7/6+v/8P/6f/vIv/+qrr7+5uroMiWOMIQZCXum27rgCgOi8B649esKzL1sBHYhWCOt6GKi1LmU5HJ7ev3337u3btz/+eHv7fhpPIlWk5mWep+KuZ5UGmEhKEfs+NLFRF17GgNi0yck5a2p/qsiaJnz9i/3p6YI5VYZIgbJorVeL/4+H8O8k/dri4uyT/HlAawLH1DRt4xCqBdVQM0+Z+Gn7238c/p//D2b63//+d3r/uM1l494nbnLhhyPXym1D2x3tNrjdepfibtNcXe3b9pVqPh6Xdx/mH39cfvi9Pz1uT/UL7v6HNy8hBJH3Y8mPbfdji7+N9b+cjv/x/uOPZS6EIrCKnvznVYyZncbpeBpLVQ5xt9szB1KwXMkBkSnSWhnG1Oy327bt+BymBUyU2jaGyMTn9BJfU8Q+rY5EiCuyilZhkZ8VY/Cs7QYkYgTwle+O4ORkpqrFRN2oVjkep/vHx7uHh1qbcZ7qipH4o1JMRVXOLOBzehKL2vE0i1EIwdTKNNVSqpiqizMQUlUMjqyKpg7IXmXmEGKgEBDcyd2KmJTH26lWneZymubj4XQ6HubjYRmPZTlKGU0WRF1LVikquraaWDgAsKmBO662VzNwMRfHsyGLI4eYPn0vxNh1Ydgkz14ziVQQiebgZFWNQQMzgICZVh0fbZ4kTircgPYEAzi6ETirBxWqNeYZ0gnb3lIrsbEmOZFV4kVQbcXtKgjdfQj/71P/dKCYpn9Hx69eLd++vnTsEodlwrLUh0cU6SmAQ1XHIlrqRM233IdQfufTKA4AeqaTrs/FSpnLcpREZWnGMDMmdLIUCd0oDrur6hGgXWbMixJ530cAkKy1LOM0Sc4RaNfvX1x/BQC3d+9ynkUWqiHFFjEUDWrEkZESc0pN3zW7EDszUlF1kqqHp7EJIYW2aRJRG9LQdhfbzf7ufjgcbsf5sZRJtbBKTm3gVGsWUycGDp9GyUQYYmhTapvkHIt4rToWCSLRIQIwgCMvCNEggTfoZg4Kq+MnuAcCQlqFu+4oSMDAYIhG6Ljd4Le/gtTi3Tu4+0i1mBTnCLAO39Z5Kyrh2l0/H4zBEY3PxldcMDhQsLpOboXoMcQHb8amqZvBw09T/tUvAisGyz5h5Z9dvLBGfKeWY6LQpBi7Nsa2M4pZkcCnYlPRp1Oe8pOZz/MyT/O8LPM8z9NymqfjNE3zvJQsBhAbZlsXCAcDlzU+GQGYzoBtJhqG9upye315cXWx77sWCSNjYu8StI13RU6xPNrtH47TZhv5MwipmYF7E+Nut3v9+nWMcTyN8zy5OYQYWmAk40jMzkCBmNlyxmpkTgRgVedjcZtUIC9Yc9pkbDccGgc62ydtfQJG61EEHNzZABwUz/Im9ODQGGipLuqBjUFZyjKeHh4esyx3x8PjeKqmr9Uub67atqlaY1t+pu953uMBgIhEZJ2Uj8uExP1mE5rOmAWwmIm7ETFxkyJjjNZiKRZSOZ2Oh6enuS7AQlHQcim30927x8cPeSzIl21shg7AlxSR3NCAHBnQVzO0nQtaQuTzRktmruru5BrcGSERtSk2KcXAf8qJ6SL98lWfvt3Gtm+a1LWhjdxEYgRffV5NhGr2OBeR8Q/gYgwYkaIDrzwYwzXYhAzo3GQ3J2QMITAjBQM0ZGLmoByUzXD9WR0DIxKtgWCAAuiOYmoGDIbu5taib8Q3ZIPCDmJH/BBpAT4xBMV9i+H5ntxNpZpVYoiRzDhwZMI2xs1m+LPffPdv/+2//ou/+IvLi+u2bx1sVYcDgIqagbm7r1Z0oudK1Vf6n7ujr/5AAAB0USm1nE6nh4fHD+/f//CHH96/e3d/d3s8POY81jKbVrMqNZsrITqgmzGBihI2bd+GNmRbsixNmwzNMcf4k6cnBNpv25uLHjAsBlWFM96If7f4X438ZwLXJNXlr4r8AsHaGJvUx9ggsTuJYhFfihaBKeP7WybcL3MqZRBPCBAZaoXTaKpgFVJCc2C2EDF11O9hMwDB0HSl+JzlVKpwxOPYx/Yytjz08CbAaV6m6dtSf8HxdWqGEP9Gyo+Et+j+6eX87BKR4/F4Op3cseu61DTEfI7IIFqN964mIiml7Xbbtb27AUKgFY/LZ8ocnXUdeC5UnlNb6ZNm/VNVC8+/8Ln34qZqpioiquJVcs7TPFZV4qYoHI5lzrOtR/VVUAl/fJm7AyIzxxibJjZNiMkR56UUAaRgapKzrv0aIEAnBkRDBzBzckMAN9HKwTyxGSoZaJUl1ynnKU/TPI7zOI/TNC/TmOe5LrNJdlvAM4KYEjiIuOmqyGNTJeQ1ens91+PzUUFB3YCdOUXA+PlmGZvQDQkN55FLrlKdVWF1BAKgkZGbA5mC1hlkLFI8JuWItiHcGBra2twnUNYKJoAuBMjBQ/KUAN0ksyqYoCuC4VJwfGLE7ubGY5q6qC9eLF+9olqa+3uqhVTx0YJD735lKmpTzkLYI0dMI4YT0RF+qmAAwM2kZjAdun7Tb4hITW3NujTltnv5+iY0W6NUio+nzEyXVz0zTOM4jUc3ElrYsWn3Xb83MwqPmuelTuKmkIBbMUCKIXZtPwzDpus2bbNjTiouUqUmk+omABxix4QhpdR0Xbfr2iE1XdsOD4/tOD6UciREEVnUS1nmKkVdrPpnE6Xn1G02YiOvaKAAZkE9kgfnFc5ekGaECJ4AGjM3J3NGD4SRHAgV3NAEDNYhEZNHorahpoEUITIExAAo4J9C/xzAwQDQ0QjI3dARFB0QjNDJoQIWRDGs5oo4hXRqumO7OUGTi0rb+GcbTQgU1t/Yzt/i2aLkawoBY0xpu9t3/TY2XYyxibzpIzUJUoyRIXYPx+kw/zielsPh9Ph4OB6P4zSXUlztLEwJFFPo2jQMm75rurbddHHbRgZZxtMyjcuSVe25zY59115dXVztLy73+yZFVWGAFDgF4ojU+ZedTpw+zKd9v0nPnBg3W9NMEDHGeHlxoaol52lyVTXw0CQMwUIAJg/AgVNKOmdbCpnFEAMyOpBVebpb8kKl4MXS7K+52zo3glTdTddMJTMABAvsAQDQ1S0LiJqZ+WoPMDUTs+qWXbPLXPOy1FJU7XiaCUPfhbbtNkMIXKtIlT/Ngvm0YIrI3f3d4/3j0+GJkC+vr4eLC94MGsKk8pSXu9Mh5xKRWZEN6lJOp9N0PB6PT8s8r3ROMJnm6fb48O7p8e34FPrNS/JtEwbqpS7tY5NJOWIIa/Hkq/ErrC0WNBfzWkmqV1czJ3Opwa2JoW9S3zVNSjGEP0IMd034zVe713AT2i7GlCIFZg6EAI5GTKGJuugp0eFhEncQC/E8/A9rzICjI5/nsGZESESYVuwgkYI9LUgFkViNxNnJwM8CeSDISgqYNZlHiDXgAlnIHN0c1BCAAKlHHFz3jj3Rx0iPTXM0v4z59RbST0NXq7JUWYgpRnIjjKFr083lxTdff/UXf/4X33339c3NngnAyspcJgRzc1Q861+Iz9xhdENzdHeTFS6C6i5gbmZqyzQ9PDy8//Dh7Y8/vH379v27D0+Hx7IsOU8lT6VM4JUZ1jbP+aXz8+kgcnOxu/AgFG0qIzFkmYsgs32yW6AjF4wWQ9+CejzOlxP91ci/mf1boa5qtgWkfpnlCwOgcFY6BcYmAAJW9aou6ucY73XABsishGu4BjJ6YKsV8oLT5G1HHP1p8vFHQDRUlwpLaSmmL7/NV9fj3d0kVWttMXZ//pfh4UD//t9fvXu37/sv0P4C43+Mzf+d6/+XbAQQ+lx2CQBQqzw9PR2PY4hht993bRdCOHt4EM20VpFaWSQ1TRMjE9aqZu7kASIzh8AhBlphyetS674WKoi4DtTd1li1T9DJcxT9OnRSkSXneZpOx9M4jstpPBwfHx4fzX27v4ztBrABsN1+c3Gxa9qWfm4WhVVHg0whxqZt+01q26ZrU9tRSEXUazavfo4AIQiMSM81lgM58FqErcwadTFAEUVEtVJknPNxXI7jeDwex+O8jPM8lZJN1FTRzV3AC7iI2GrxAEekdbZ2jp9d+RJECEggqGqitRBE9UhpfQs+LV8hUjvE1HBs4eFWahFRSeBtCg0TuJnouX3LVNWfcj5orRAB8CrQDiMbsin5mhbiCC5o4qpadT2UhkhNzwY8j6SGZICuSH488H/86y7LZdfOf8nL1aV+9Zr+3V+lEEMVrwbjkVQG4EuDU56DqzH25qeQxiadygKfCEAA7iZSU2y+eP3t5fXL0zyjeSKkKvM877vhl9/98ubNV4SxFD0exxjSy1cvHPzt248P9w/j4bjMU8kV3A9zzss4LuNSZrPiywxzSWlou10/XAyby93++uLypu92kVoEWIEmqlXXIgY9MAK4K3tITWNtOwzDxcXFi6un14fDh8PhvcxHd51Knst0KOVYZcnjZ4fk9Z1bCUYu5ll9Ea/iES2RN2RASMhONENA8giSwBu3NUcXARkxBABEQ6uW1cgg1th4m4CYHm8B3Y/3UCcix7jiUx0IwBHcCWCN/zF3NUPLaKtXdcV6mBmYWRabQrxrNrfD5TRcFeB6WizGz5PHziIsBMRnqb27IWNqUgyJuOn73fXV9Wa7D6kLIRB5yyamU65VtdhpqqAGx8N0Os3TPJdcZa0kQkhtTF3Tdc0wtNuh22+G7dBt+m7TNds+IdTpeFyZBLXqcxEDbUq77bDdDEPfxMBagQCbmJiCIRDBkPT6ZvvVF5dD6j8HLayUbiJi4r7tm+akquM4jqcTAO42m5QCIkQCDMCBJSYNScPiooEpUkgUoFodZ5mOsztqJReyys3OQ6qAZmtmj557YOYITu6mpmK1ShVRUzFTU9FaJatm02yaiTykhqkxk0rhVOS05FJllbzQn2QnravAuhea2el0ev/hw/u3b2vV3cXFxc317tXL/vIiDH0KBCbLPJ6yQPHoQatM05jnOWch4t22J/Ba5ixyKuVhmUfQlryaulkATMxNoETIJljcwczMVAEIUkImBLdafJpQhJ0iISROgZqu2ffd9eX2Yrdp2+ZzieL5DQu82w9p3mPqiBMRAKIDqLu4IlL1KFYXDUUR1dl8PfAG92if8rpXofHqo0ciJg74rB42MVyRgau9ConAVg29A4A6mAIaAiRkTORrRrrb6olTQENiwujQqqNaH+jqspkb0kxfvWq6dK76za3IXHUOoYnpjO3p23ix33755ZerDibFeDgcl2Wxc+cUAAAJ19cyxphSCiEGDu6oujp+HNyRwFyzSM55npfHp6ePHz68e/f+3fu3tx9vH56elnl2V9EsdTbNiBKCrw1BFRPAdaJacjWFYdh2m5S6OJdRvYzz0ay2n8+THFCBFSOE6N7M+Ork/3byrxZL5u42uyBaihgNyR1doAI4Aa9+J0VVzNW1mgmYMjgCGrERqAMwU5OwbSAyqFkVGGevCngwRVB1EzQlc2SCNgFYDc3CcQESAAixiYEQ2lrxNG4iXzZt3fV/28MPp8PdeG8/r/jNvJQ6z7OabrdbAGyahtdODCASqmrOZZVthRCapkGkUnxlNJiSGYuImiIhcQDHNeFR18+TKQRm4hAwnHmT8DzENhWptdZal2WZpul0Oh6eDk+PT4eHx/v729u7WyB88er1zasvX7768mK/Ixoudpu2bX0di32W8MrM3Wa7vby+uL7a7LaxaWKTYkpApOai5grmzsTEzBTWMdea0AWE9jw0MDezNQbOpIhKqfNcjvNyOM6H43Q8jMsx56nURUXcP42sxdejl5sZgCMh03qEQFwFQATA9KzUoZWDZ66GSIn4j8oyB6BITReIIM9lLKZFq7mGYOtPuQ5oCZixgo8rgCZgi+ErwgtgBgvgBA6AlchjqhzOzmonIXKiJbXJfKi1MWEwBDdCzxl++CEwDy+vKLD8mz+X7S5/+yXWGh7vKWf7faUiCXCjepPnQSsGJqw/APxhdQn8rL5cJ2ap64au7ea8mAqYaJVlOjXzYCYp8dBvwLBrI1HcbjeqthkWycYQU+jnWOZlmufjNI9FiqxPSKvKU9UKhCGlWnvRamroyBQDB0rJTKqI1KoqZuIubuqITozgkSKHLjRdajZdv+26YTzcLsf7MZdJ8mk5TiUv85OdVW3gAKJe1KCas4p4ESviVaBFaAj64P2KQAI3AAGckRuEFr05hxecJ6wr6IDMBUAIgcgompg93aMVKBPUDOiwlsHPOstz+BcAnuONfBU8GZ7hdK5gYGqm7mKoQM6Rm4adFLPYz5pkAczxrHZAPKviPTVhv9/3wyZyO2x2N5cvhmHHMTmAarEyT/N4KpPUAgAxJqLggDGm3a4bhpvNZjNshmHo+77ru6ZrU9fEtgld5CZwYAhMgUCtTkNzGtv+cKylIiETIWFiblKMkcyqVHFTooBI5rQUy6Yl1Mj+8ma7aTYpnnfNM27YbP0WmQjUTsfj7ceP9w/3McYYOW42GDlwwkgco4QsIUgIUqqqhpiG7QULTPy4nE7z+CSSzUWtDnunbrsy0dzcVd3UTQzU3VDBTYtqrjmXUqQUVTFRkWp1Tc9mgm7oN9dXbd8peGAMTRBEdQfAFGL6DER2dlDTOYeImQFgyfn+/v777393//BIHC6vr7791Xff/dlv/uxf//mX28vLSLchfrx7ylojR2ybi74BM3Dr2ub66hLd7u9u//Gfv/9weuTpROAeYy21nCY2gCUn9UYE1apIzlmkmjkReWpiCiEwlKKHI7q1TT8MXewaSqxgl9vtV29evH5xNfTt+jP/TBCHtGB3hI3UziorQDXLWnO1UryqGYvOFe9quNO2WDpDT50IAyCtra+1gbAuI4GBCdcoLXRn9BgACSq4GZDbiuVYgRgAbrCmRgITBDRid2JVEgfVNW/QVsSfexS4KLBhglcN3LTg3e7bbd9+ese06lTtFBBiSImRESNh5LTpd0O/j9zkOf/w+x8/fvw4TmPOuVYNIQzDkFIioqZJw2bo+q5pEiJXUV1jWxiZUK3mvBwPh9u7u48fP378cPv09DRP07Is4DWEVTVvyEau4Irr5udsxETqJqZ6Oo3LUtrUv7i62V9cVV1yXZ5Odwy07y/Cc+o7wjqXdixwleGrk31x0FenmrJmgspkMdbY5ZScqXWLqiRO7siE7lScyChEtIDoaBJK5aqkBurICA6QZ0TgrgNKBgTTDO/fQy3OAdVDVioVSlbNqtW6rnvxBV9ejENrpvWff0vTlPpWry7w9r4aj9cv+c3NN68vfnF79/37/+AVPg2U3KyKlFrcrGnSbr9njueFFnBVIbl5KeVTs5aZRQQRn09uKlKXskzL7OBt2wPQMudcqogBYIqxbVPft13bQIqBEdxMVbTmOZ/G8XQ8HY6H4+k4jeM0TeM4PT0+3d/e3t3efrx9TzEcTscQm1/9+ldff/2mSalrUts2qlJqTTEwn01PIabLFy/ffFtevLwZthtiRl5Z4q7uIlqlqvnaDGEOvEITidbui8JqZTqPtqSUvJQ8j9PpOB9Py2Fcjqf5eMzzlOskVsAquK/FiTusRY/Z6v9YV6G1RRWZIq19p3Ueiqu262xINndATE1s2vQpP8XcRczcOGA30G4fXexpyqeijCiBwhlF5uvMqjoJwkIogQbA3yvuHTvkFgFQM/PSdTU2RgmdkoirZcISm5LaFvlGdAfaVg3uhARubhU/vk3/4T+AFBs2y29+NW27+u3r3fyvklc4neC0qHhUucmmQhpwRt16aURxLbE+dS6RU+oJ4zzP8fg0Tkeo2iSFIvMyyt2Hv/v7/z7W8tWbb4Zuk3MRHQ9PBxGb57IsRaUCADIDYpVSpJg7cmAMxNUlm4/TImJzrodpfppPTxf7V5cXbzbbfdenCFEBQN0EqpoIrswXN/dVoAngmFK324amabdte3Hr35/mMVudlqclj8vp0bQ+V/y2iI5ZBCuwFfVadTavhhEpAgzmHUEL3rglgABUKJyYAwuTRXBzNEBbFX4BIiMhkZOim4kuFW1hKwhKtjp14KyzfEZyAQA60Jq9A04AhK5rmezuBKuHRRED+KbMl2W61Hr0cMiz5OlzPVwAUwBEJ3ZzkdU/HIi3w7C72Deh7bp+06U2UYhrSyBaUOVOA5omcEgpxpRiisMwXFzs9vv9fr/fbIe+77u2GVJIkRNTIAhoCA6u4ObuVdm7ZkXgiMg594yAz2naoCZmTg6Ga/UAOeusVUK2UqJbwp8RYld18DoKISJzm8bT3d3t23dv10w205u+62MIHMOq9EAiAy9aD+MUa4n9MISG+pZrnuZTKbODOmhgjujUtgSUS9VcTaqaCq5RSOjg6lq0zHVeylJqFZMzQATM0ckxIlLXN5uNI7hK1jwvZeXchsTEfwwg/1TQrCWa1Losy3Ec7x8e1TTnpW+b1zfXvftN16W8abOkrLnRttvEmAidEAiwbdJ+t8nL4svcxxiR2ZAMLJfx/uHpuBRzmSc9jTjNJioll3mutYJDCAG6lvuu73tELIgReR/jvu83lxdxaA39cr//9ssv3rx6MQyDq8PPW0pV8Xak94+wSC1aiuhSy1JyLpKzFvECCFna43j14fTVIpt1rs8EtEYXO/kn4wdBYEoRmHC168E5DxyAANwABWlFTzq4r+1KWMdGhuAhrt4UIoRwNgOtEicUQnE3QC6WqnYMcWBqY3vVpvjZW4bOgZomdKmNRCv75mJ/dXX5cr+7TrHLWeY5Pz483T/cPz0dDocTOG62Q0oJEfu+u7m57vrWXJGJOaXUdt3aUHT3KrUeHu/f//jDu3dv727v5mVez/yR3dXmsuQ8lTK7lUBOaGv/ZdUJAbiKZPecKwI3cWh4ay5FFsKQ52Xo9kzh81eLEMlgyPrtU3n1uOBYqqgEtMBIDITV3MjBXcEZ7ZnC4EiOAT8V2uhGSUJVFmN3DM+2nKbBboCLS3/zJYSED3dweMTTUfNSFsUlh2WEZbJlwX4IaYMxClnNubp4KUgIIaBIRaybLb9+8+K712+Gfv/X/7X5LELBANYg1BWZMwxDCCmXYqqEREQceL3fEMKzh8DNiJndnc81seec7+7u1HS3uyCOp+OUSwVDUVuJ+9vtcLHf7HfbECgv0zJP0zSeDqenp8Px6fB0PEzztLZkSqmHp8Pthw8fP368vfsQY+j6ruRpM7RXVztCBPN5ngmw74euaT7hFZh52O22l5f9btv2/WrS1TX6BYwiseEKLGamEGIIzMzITADmXs18zR0VydNUZcnjcTo8ng6H6XCcDlMexzzNtS5q2UGJDD+T8Z81ymc6zFokxRBSoIDE5PhcIREC4TP+0dENbLMdXr1+8eLFdYzxZ7+fOxFSpKajpkNqMBcfVcW0IWAEQCADAK+OBmQhLKl5BPwhy4XCHqBBbImsaQ77/Rwbm5VL6aUg0YzNHGlumhiClUUkXWnp3Xgt08FgPuLvvo8pDa+/wKYp331Vr/f1N7/gUvnjI2bx2/s4zQ2hG1bzBhVQRA0+gYfPHwtxaIiDSC1lkVq9yuxuVaa6+En1h98ZYhe6uq3jNB7H8fh0zKUCgK1dBQNRWPI8nu6X5STyLMlHo9W4TOhuteTx9KSlLvOU83Jjr7v+VT9suj7WovNcloXnmXJGkSqq7uDPPQsANTXHhNQiN4ahulUppsWk/AQhBKjmRQ3NCd1tjVGx4nBCbAG34B1AA9aAgys6gFE1nJEiQkKPuJY7CODAAduWA4M7GurKaa4Fra5TSMfPdrbnTsz6BwIAEJ/FuOf5MDo4gPO6qHEAGGq+mMfr09PB490yg3webQHBXMhhFQpjLa7iKAGwS82265sYE5OVsXohbVOT+hTbzaZtLtoU2xTbphn6rmljTKFpY9e2qUkpRg7MzAyQ0AkqibqruIKZm6zi3uqu5ujeto17omcOO6zR73IWQ5oj4no80FxqrotSztN4ur2nran81CID/6mIWR1F0zTd39/9+OMfVLXmMn05ffnmi91uS0QYiKhRAMnzoczff/zR1MZaXu2vrtohDJ0+PeQ8qq3MMR7IQ7gKSKfxOJ9mkarukgIEAg7EhEwVoIgtVbIXc10XR0YyUDMVF1vfF/WSSx4P7DbnUt3Zz4/1j8qXtaux0n3BnJiatu03vZulFGVZ6umES26qbgwpNv3VFcW0v75u2hbxWSckVWoZ59P4cDfeP+hppjnzPNd6erwbi1OjBiKLLDUvJS8l51rOKmNMKQBu2v6m7ZsUJDUMsG27y8uLmy9etdtB0S8u9t998+0Xr17vNptxnPEcz3u+5urff6x/9/1pnOu8LPM85bzUUmqtWmsRzwastivy1VQup3y1osEQIJATn4WTjuf2YyDqGiDEKiAaBdCczJBcHLLDDJgRheisHkdQQjU1U3ZoBRNaRAzqwczVqpiQK2MhzoGrgUw1HpbwsPA+Umx+yuQFIKImdcOwvdhebrpNCiFx06bNF2++ffP626urV6kZROe269uu5+MpZ/34/v50GmPklZa2v9h98/VXIfGHD2+B4MWLN69evXr1+jViW0sG0MjBwZdpmk7HkiewmlKDgdVQip4OT6fjk1oJ7H3XUACTqmoiJuIi5oburlXKImVRYkKOibiLMrSXXbMj+pQ1hqsIhAljkeb+hHeHezF1GAL3KGyqBB0Hw1Ue66vGxyM7kyEakRABEXFwRm8RkdgxEjUEbG5m0LZ+eYXffI3/9n9HNy/CkunH3/t//v8tb3+47UVz3I/QzSG2PSPBfOT3ZbgLc98db/YAiPMC0xKrUNNht48XV9uX15dYX7y42O+G+Ky4Pn8j57ksrSeTnEsthVaBbIoIuLZhbLWKIQJ4SnGV8wKim0stj48PWSpzDKkdp0nEUmjzUt6+eytS9rvNqxfXX331JgS6u/tw9/HD3e3tw/3D4XCYxrlKBcCmSesYy1RFqoqYmgUH88A49E2T6OnpMJ2mvOT9dr/b7W2z+UllQ8QpAXOu1Zd5XRUNV8yFUYDYIAcm4sAhpriyEEOMa0FWqqgYmI6n0/g4jf9/2v57x7IsS/PEltjinHOVCTdz9xApOrOyq7ob7AEBgiCfgk87D0CQw8YQHMxMF7tEVoYOlyauOGLLtfjHvmbuEVndAwzAg0AgwsI9/Ipz9l57re/7ffuH48PDaf+4jONymuZxySHVkkULaEVqEgRseoVmuCRkaNMiajF5ltv5FREEUJtogQBQRBCpH3oPHkhvX9787b/9m9//m9/1/bNpvFW4fCZIkLIFvzK1aFhqX6128wABAABJREFUypAZPBEjMapIC3Ez7Bz3myL6Lp1WmncoDvQFGOiGcHMzsU3vP5o5Sg5kXfC0rPzoPOS8zCawNbazClQyqSqzgtZlwh9/8P/j/xtByq6Pv/0qfvmlKq+nbJXwf/qf5XQgNFVVShWsJ9JjrdLciJ/pe4gtsz13+gGyyhRDznmRXHNND3fO9TeXr2JIHz6++/Dx3YcP7+Z5bAOXVqq1z1k0ibZ5CBKjtW7oVt5vrLlkOxhyRcppejxN+/3hY8qH2xfdbrfbbdcIfDgux+NyOMynw3I8TTmVqpBzXeKY4pzSKDmhSg5jSLEA1Kb6BrJsP8MQPuECCJAQBQmVQSppYD4SPiA4AK/UqThQV4pT4UrR4gmIGQySb1D3KgAs/VY7T1iwZopJI4jaWhFQEASbjBee7/EnAFL7p/MYiBqJ02BjxaMQVQIi4Kq95IvpEFI+gX9b0OgvDsoGoRjioXm8rC0pnsJEVS3ReuhfXOwG70HFGNP7ruu6vvPD0K2GYdX7oeuHzvedd57ZoDHIbJ6wT6pwJtqiFK1FW6q2aPNT12Y6USBENqbJ4kSkglRpTu1SYgEBQwaATK21SkxLjEEwpymEw+TBf4odgLM1qJmEmMg626/61Xro+35ZlmWZ94+PnbO15tWw8r4zzECYallynHMSkammWfMAhUgrQRGRZWRDtU6G82qgTGZcSBJkAEHCzqC3ZC1bRiRJIGVOoSZNtRYHFhEUpEgttcBCx9OxigJgyTFOszd0HMfttAboS/0rWe/Tw/NU0FALQvDOqKgzBFprSjUnKMUBonOd79i7YegVYFnmnJKo5JSWeXr4+PHdmzcf370L+6OeZpomDWHJUBQ7AAOorFgypog5UcktZM8wd4g7719dXq5WXZhmKYUR+7673F5sL3eCurvY3Vy9uNhedF0XQvys3gYACDF/9/P9P/7Lm5RLTDEuc8mx5qK1Ss1FNFUwokV0WzRVaYAoAigEc886GDSeoCMhrBlBFFGlaq2IYBCtkkFCbehQSABZoSqUFmqjcP5LFBByrqpaqWloJRcZS42k2ZAgomOuSrXilOLdrAMiFpji5jlzhO1u8+Lm8ovL3eWqW1ljHDtnh/X60rqe0FRRYt7tLmJMQCxVl2lBItWq7cPseuc8oNaqIIIAhhpAxqCIAhtmpic5KiMiOUdkKFcFLfN4Oh4OANV7toZBIedca8sUbbMTbIuAVK1ZVRSF2JAKS0WRTwcYJDLe+64b2PYQIJSHWP5Xw5M3L529Fb2dyxCKhSzQWsdAhM19IMzAjERCDERIAobUGCEQ4gBwp0CIHRtPZGvlsODhAOstrFdw+4pef1mdGQ3MKYSHx93D4fJ+7OYgy4TzaATtZo29LcaEGKAkRBDQGhZIyflue3Fxc3N1fbm1nzPiVLWFqCOmnEXSEpYcI+i5W4CIzxUMIBjmUsuyLCLinTfW0Ke+ErVYiVJKLcqeEXFZluNxP54OKS6+s9bgzz//9OanH9++efNw/zDPU8liDDvnh1VvjUXElCIi9kN/BdfOu9VqhYjLNH549/bHH386HEdUfP3y9auXr8rlhXdP3QsEZqw17x8nBTnDLxCQkBiNI+uNsUzExhjnXPHee++cs84RMSMaS0xcAuZlGvcPx/uP8+FQYixLKCGUVEQFUM6GPQR62l7argrUyKznP4KQiUwzoj9vQC0nSkHI8tAN1lvX2a9/8+Wf/vTH3/7m667rfrGEacP/IRvqBrsRRKKTxCI1KqiARWAEVBEisMTWkutV9EjTPeg96CWAR3LICsSqVAs0JRYwSeVafI4551DrCfBA1lFFLF0TyImqCB72+C9/toPvf/OKNhv58iv6Xc9L4f1R/umfUCsKCGiGMqMcEcYG/vllUxkRFaGFuotIlZqrpFqi1Kolz/r4eP/27c/OdXcP7+7u3t/dfViWkbjBSdr4rUV6t53bACAR1NpZctYAWevtyvtV1QJQlzAdT3f+Du8+Xl1e+Is1dv2QvGYPwdJMUnNY5mMqIcQlxFOIUwyj5EQgUkLKs6iQcc6vakFvB/oMPt5oAc1nAApitHNSRJW4Eo6ge9RV68do7VVBK4uCUkE+WQZkABSoK20SOkBsPlbAM0wdoX2rinDujAPAWeP4qcdFT9MlBMLzv7RfWZGUSSpIFs3F5Ozy5LAY7umXIwtDKN66q936uh9WxMtp/PbNT5ALVFn33R9+9/WrmxeG0VvTe+ets9ZZ0y62TIaQseG2G9O2yjNyUgChqhRsDRhoNhNSfJ4ZnS2GolJqSSGGFFOOqeYqJZcquTIa7wZRRi41SwhTjEER8lLKnMUXeI5OQiB8IochAeBmvf76N1+lHFer4fFxX0uuUt68/fl4PH7x8vXl7pK9l1TCvJRc15u1cXZ3fcmdP8RZlyAG0Zk8RZHsV7y+6i9ebrLtF2/TZqgxKVC/6l3nrDHEqCqn8XgMpzrVJKllsKlITDGXUrUuMRTFYXUyxhoEghJTun947LxDuLzM5SnY+pO1pw3vicg5Z86NYyVQRDWEbFBJU8mxFmUidkhcVR/u7x/2+x9//HGeJu8dE6vKu/fv//yXv/zw3Q+Hx33dH3E6UYxaQJjBOXKWidRag2KJElGtRUC7zq16f3mx+fL1q/V6ddg/no6neZ5SrUy2dz0aWnfrznaGHVHr8J8tw+0txLD8+N03f/mnf/TOEVGLXCFtqdzIDIaABKgigIiiKhokRFpY4grH10PdXlp6Yao1cZZpjIcpj3MpgIKObUfsrDMKmBPXCq0ZLmL0yclHZ7SNqEqSUCSDBtVZ4CjyUMtJNVX2gC+8vSqwI4Eg84fTBLEsNl08XqTiAADA2+7l9W/mY1kNK+888/kpFaHTaXrc7wHR++7m9sVmu3756vaL16+++OL1436fc0aAfhiGYVitV1rl1etbUN3tdtvtbrPdeO8BsNaSUrS26/pVP6yqFq3RO24hWVpLmOd5nJkBxFqTMkPOUVWcM8zERKCMaNhYQm7SVFCpqsuyHA7H3fZUn4p+ZHarbr1eXQlvTA5kfrDuv990P2/7rzf+P6T6f3lPvz3NViq3A2n7flRBKmJuQYKtGgIgIESmyhAB7wD+DFCJv7bupXWXp8k+POo//UVfvda/+zu4fgE3r/SrL8tVd0rT/Q8/XfzL92761h5OUqPWQqKE0h+G4F1MoUJBy1BifPNtufb4H/84DNuXt7c3N1fWfg66BSIy1kBKx9Mx5ZJjKjlrVVVtqrKn967M7JxbwvLh/Ycq5eLiYrvZDquh77sXL66L6uXlZSny+HBEqF3nAXTo++Ph8f7+PsVlteqMwZ9//PnHH3/86ccf9vu91GqNXa9WhLhMsgC2iZVz9vb2thUZ3nsV/fH777/79tv/7z/8wzSFF9c3IvL73/0upZuhdwAMAAjKWvJy+PD+7TieVM/yWmON76z1xjjDRNAIvt53rus777uu6/uuH1w/DMO6W60YJUynw+Pd6eEuTbNFZBEWqSCKeiY0YhNu6rlQAiJu6+hZDdNkL88al0bMlqqiVVWA1FsehtXucndxvfvDH37/xz/84csvvvDOfVZaioiUImTYdZ21Oqyk6wJWOEEsQWvVSmBRSVpSECEZYxyLCJuIMFc4ATjUbUr93UMPmOZFRJiIVWBehqwCnIosIWGtj0jIxlaygE8uWyMicv8R/vkf+xdXnV+X29/QzWsTK/z0BtaDEpDWKjJi3aPuiRZtvB/6zG+hqrXUGlMm5oaWbRbIClKkmArjuP/2uz8zmVSmGIO1hNirisBnaTFnhCC0g1WFptPlUlh1cN22H9be97vd9Xi6//Dh+9P+7s//9Pc5HjX96fLqKiUIs5RQ43yajh8Pjx/GeR/SXCUVKSUlrQW1iqScF5Hq/QrWyjD0/fZ5lIwABtEgebZsmFGY0Bo+G/4VYoWjyhpqLzCoZpAi2ql2WoRxUj+CPShea/0K5KJWnvdYrRApqtaEUNt0FBXPvYoGMH6aICmegcitA/hU1jzRs2olBMuEyG3EForOiCPwQlyNgV9mvxsi9M5e7ja3u4sdu6Nzd/uHCIVVe8uvXlz+7suX1pIz7K2xbNgYQoYngiuqnMvyM7HufNuqCio8wWAUFBq/HpAAUZqNtJYmuU4555xjCDHFM2oQpIpqUUMVlU0byuSa01JiAsQ8x3Cco13JZ4A4wLY3tmYM9H335Zdfem9vb2/2j/vxdHx4ePz4/v08TXcfP5aYL7e7KlJLJaKhH2zvulVHxuSUhJSdBedqmIXUcl2ZvOGcje09+rUP3ioZ13eds9YQotRaaIEqOZdYS5Ja1LTVh4ztjDPed93QGSYpJamQ5mmCj3cfnaP14Gutf92JaeOk0rwPpahq5/2q70rO1nDXedc5JagqgCCqOaXH/f7Hn37+/ocfvvnmm3maNpvNarVarVb7/f7nn9/e39/lmLkWm4vkIqWCGnLGMFprmAnRl1JCWGKMMaUmFWeivu9WqyHFEEKAQIrIzH03rNar3W43DCtrG9v217IeKWU+HOb9Pa9XnfNM2Cb4jHAuyxFIFbM6BqQW8Xju5kWmY+/iZrBuS+Jk4QByPC2jalRRgI6ws9xZdgAM7Ag7BRYRUFIh5HaLIhISVa1zlanUSeWkelI4qOy1RAGucFmwS3lTVEqtovEQFkhj0PT68FUqKwAAYLbb1eXl9sa7zlhDRCqaS81ZHh4eFGBZlhYZ6JxbrVZE5Ly7mW9yzoTYD4Nz3hgjtV7fvGh43eZXYmYFyLmM03I6TTGlzylbTXZaSnnSpbbU1aoKtSozOeutNSqoQqrMbJgMIjeSR8k1xjCOp2ma5CkEjoj9sBpcv3qMNKZDlp8Qv+m773fr6Xo1ZPnbTK+AeJqo5Of2L6pqfQJMf9YWbv6YCeEbhH8E+HuAyPxVyX+M8e8QvyjShUhv30Jc5De/g6sX6dX1sl2duJtBYFqW79+uEKAlo4pIDHg4Yu8zlOQtEGOtEhf8+BG/+d52drPMG9Tnc2Wt9TSO+/3+eDrN85JKLeUc3yDleXgEbdZMhMRUpT4+Pnzz7TcpxdevX79+9dJYY4xZr9cp11LKMscYF8kS41JKsZa7zi0LiUqMoSRMMYWQTuN0Oo2EAJ2qDsZwK1mctf0wbLebzWa3Xm9EZL/fl5J//OHHx8fHv/8v/5BLTb/Pt7e3x+NxWcJ2M7QihhC9QZY0Hx/uP7xPKVQpTOicG9a9dRYIQaFqJSLrvbe+88577/t+vd1d3Nze3L7cDr1BKDEs4zifjmUJ5DwqEAhBC6hrZvEqUhCBmuSFmojOfLIV4KeQTRHRJ0dsLVlVyaAHZ4xZDavLy8urq+vt9qLv+1/Boprzv3UiySB2qipxyjnXMddSKoooqhHg5/gcUEXNhJEogMyintXm1B32HaBNrU+sKEJLxFhAMYmaqgkxMQeCplZklRbno6I1RXz/gf/LP9Dmkl9/BV99iYeHGuYWu62qBTUgLkzJUEUBlF+H2akggjGu7wfnrIqAwhKXKjWmCEAppcd8j0BItekyjXEqtYFuzjv0eSNvAgIVabPuGYCRvXWu73tjuHOD9rVz7+f58cPHn0UDg7y4viF2Uk0MuExjCo/z9OH+/qdxOSjW88gLiAhBpUpWVGOs2l4cOtfRZ8HvTzZPMsSIZJgdgKiCSqmQqqQqJ8Ee6qDQKTjQHgABC/ADuiM4yXpdobIpXLcpeajAjAQIFaASkRAmMRmxqiWonRbbyGqtZEEAaXQCBjKADAIQE2pmwuZUAoACtLA5dt1e6CA4CWXRBi7/VMQYw9677XZ3dXk1ECvo7nK35MWzeqxbby9WjlgJkUgIS1P2tYqhiSXxKcdVn1SSIIpnf2vrKT1B9RERsALUWmIMyzJN4zjP8zzPKWUVAVRkIkONUQZAICAllaC5ZikiOWopqpDnMD6evOmfT5aqqiq1VkQRQQCwzr5+/er29kVOOYRlnqY3P/389//577//7vu379/d3d1//erLYRiYqO+6GpXZAAIatIMTRFWSXGvXqSFbFj/e94+G3crNYKux7GuLMpZSi6qUlNI8ncJ0SstUc2REZ6jrOt/1q/Xm4vJyWK0M+xjTw93D8bgPUzikSevsLX7x8gWifJpYfnY1l/jj4+PxeKy17LZbRjgdjtbZ1Wq9WW+aranWsoTlcX/85z//y//wP/y//ss//uP7d+9yzhcXFzcvXnzxxRe5lMfHhxCiMabrfM4JVDIoMxrDxhnvXdd1fe9VdRqn4+lYHh9TTvM8T/MUwtL3Xam1UbiMMcTU9d2rV68uLy8779kYxKduPNFzpUyIg6WdM1vHnafmUDVETM2rCYYRVEuSTUIbFZKqCILaSjYyTlh6FSoJcdJyr/Ut1HuoI0gl9UQ9Q2/AETJZp9ATcq0lKIs6Y4wClkQg1lBR3Ie0T3Vf6klkUgggGbQHuK14tRTOlUQhlIw4J3w46fspxPfjv0/1+b0YNoZto2TgU785hPD27buHx8d1wzXc3HRdV0oFAGvdxYVv2wGfm2kGETeipdnXREQppRJD2D/u37578/HD2493H0/HQ0oTaq0FVWUJKcbERM5aNsTcDlVkje06t9lsrLEplZKlVmRiY4y1RgCKlJRTinFexrBMz88LEw/9OoHnt/fhh8fxON9X8czbzvNmXYCjdIlslzKkpGd+yRlxBk9K61bBtJWJEd4g/veI/wnxR9QZtZP070v6v1X6P1f9WorbP8rf/339+W29vV1+9+W+fnW8ucS+0+uLsOlCb1y1IJBJimg9HGrqysUmb1fBGlukn4Pbj/B//38CVj7dm80FlrPbIsb49u3bn9+8ORxPVdR3PRKVlKUUrW1SrU+lGyGySF2W8vHjx3/6p38cx3EcTyJ1tV5vNjvDZp7j3d398Tiexgmq5pwQEVF2u03fO2ftMAwgdbvb7na7vu/ncUIQY4xzdr1e3dzc3N7evnz58vb25c3tzW530fn+4e7hf/3P//nbb7/5+Yeff3775u2bt2ztze00z8vpNE7TVOrOgQUAQ7jq3NobC1XiNB/3KQUi9N5pWrExRWrOJeesAMYYY6xlNsawsxdXL774/b9xxr68vjFIILWmmJalxOgQGJlQiUABqorUXCXXGtvGbK03bIhIW9QBfrq9VauIlFK1CkhDR2QAsGhVzqd3JgNAIeR5+QzaifhEdjwb61rGCjseNj7FGudQkzZUGoGyAotiLVrnjFAZInOCGlWi1FDqUqMR7AQMtBmjYIUWv4yqqJgYI1aGyigMYhuTBJ7aASnLt98LMqrAq5tSknz7nT4+iFQBTUjZWrHMRi0IYKGzOOF5hwFrzHa3e/XyZecsKuRUjqeDQXM4HVMTXCkoKAo9eTRb96U1M1sd047ZgIhQi55xPDEm1THXOi1hf7H74sX17xi561dZ5hCO7z6EOIft5nK12jrXM7qUc5VTqfvH/Xf3j+8EK7Pt+3XnVt4NxAYNECAUBVViZPoFxEMA2owYkA0+yYoBQGupQkWgyFTwkcArOEGn1QOy4dF2b+3wBvlhTjugxZsF6bcdXAE6VVYhlNasyEpHcid1CxgD5UUdN5I8CIsKoYoCCpBR58EN6gYoAvsHqoUMFmnBL7iveMfd3ebqnvxDSqcpLMdTmefPwbCGyLQVD5hzVTW8u7rosvOMVDNrNlqeBbdPRm/SZw1LW8FaJkJb3xDxs5pTAVujptaaa0k5hxSXJczTGMIcQ4gxLEuoVZjZWuO8Z9Mi8Uiq5Jo1xix1lgoKVa0oSdW0zOPx2HVDreXTFyMiUgDOOygb7rq+bbdSJaW4Wa2awTKmP5+O44eHu37pjTFKaJ3zfbdaD97ZxCxkkT1bj855LphDeXif4hS4X6pfeJX6bbW9EEVUhFprSjGNpyPUsuk7v92uhn67Xq/W635Yr9fb3eWFc74Wvb9/OD3sa4olRWPBEFom/rTpf7paNaCqIYRlWXJOqmqM6bqu5Gyt7bquOUVTSoAwL8ubN2/+/Oc//5d/+Ic///nPp9MJAKZpijE2PGNKqbEPmNAwGcMqzGysM845713Xua7rmobAeWeMKaW0k2W7aVpfR0Q2m83ty9urq6urq6vNZvPpKf+rixBWlneed577jo1BS2QYLQMBWkZnUFSXWHtUSZpUiwqgOsUhwfpUlBYNByHWuOTTFJdlLvmkkhANoUWwKIwEBg1SRwQVUyFWGLzvmRzYzujQU8zpzYN8rOmx6CyiCgTqQHvAyyJXVdYRvChVyUxTlftQf8oJjil91iNrbfZncisAtA82LGGap3maY0wAMAwrEbHWtq4MEalKjjEjWusUIKbSmCJtP4g5TeP0eH//9u3Pjw8fxvEQwlRLZNTOs6rOIcWYiNh7T63uNNYYYkbvnbUdE7WeLDMba4lNI3lUBamlliw1q346wRChs85YL0CRedr2EdR0ZmV56Doicxrq3vOA0D2NsJ/lNM9/k3MHWCtAUH2L+D8j/E+ME5Fado42Av9llmstl6LrEuvDx3o6yelY6pJ2WHpjb1/J5S5sh9B7EzKV2iKjIMUWWyWGo6GkYAHqtKTjY4ZsuNia6ekVpZTevX/3zXffHfYHY93t69d91+ecai6NPf18ZzZMqRQJMRyP+/u7j/vDYRj63W73xRdfdN3QTqi1FNU6dA6kweS0713fW5G1NabvndS63e4uLq42m51W2ayGy8uLly9fvnr16uXLly9fvnz9+vX19fV2t7PW5VTiHA3bHPP93cOHDx+Px+OwXj+/+Bjj86KsIjnFHILkpDnXFEsMhEqSIyozp5JTKiklUWE25xgEJGBKIQ7bXXz9BQN0ztpmWaq15FyMadDtlnqkUkpJtcZSU5sAEyIY11QyzQsrKlrbstpQOLWlMD0VMYisOacU07Isp+P48eN91//Ue//FzeXQ/1IWc35nDdMKiOB77tfWH1KOWLIWUQIkUAPADb2FJMwLmUfKvQCAsqqv0gugkgM0rcjCoiiCaAE8YgGMSr2KbdybNtxuHkYkraKHA3z3LarAxVZQ5PEgp0NLkxFkw86z8ZytIBDg565EJMvOm75z/brfbFZrS6bk6rhPS1XhKYSUS9HzLyZqlSByiwQ5u/WqaimlNhF1VayYpVbQWGvMeQzhOE/7FBYC7rutqBCRaJmWGOb4uD9s1hd9v+67gYhFEp7HglpqBq2lmMIESYgYUKXknGKt+SnP69MDbGu1tXJVap55bqG9CErMAlwrizAtlQ5Sfa29oCckZyfnHti+rfA2SF+qLcBIfY/OYo9qVU2bLrMJPOzN5QOuJ3S+Lj6QyycnCaCC0pm5TQiGwTnsesgFmBQ0A86ABzCP7O/dcN9fPm5v92iPp9Oc9llOWn/pTkJiUQopH8YpLwGg7q4vEVYljZKWOB7itPV9x86cU4JVEernoocqTbeDn8DcrE+8JdAKtZac8zwvx9Nhf3i8f7w/nU4hLKrqrGMmAGRmZuuc7TpvrUNjc5FYljQHDVOdT+H4aNhuXnzhu7XUEuM0Tqd+2XzeiRERqQJnbBNihZxVRJqkyhjz4ubmP/5Ht9tduL7/85//8ubNm3T/frParLebzW63u7y4ub2xhvcP+8K133QqEOfUhX1d3h3f3aecZ7BveX3fXYbNdfUrBFKVUlOpueaMAJ1xX7y4+frrL1/e3lxdXa5Wa2KLZIg5pTIdx9P+EObTfDqo5vVu8/VXr3/z9ZerYcBfti6fOzHNeSEihg0Th1JEdFitOu+ttTnn4/FonVsNwzwt33373XfffjtOo3XuxYsXzx9LCMFa25SAtUoujeYMbBrZ3HXeOmeJqNbKzLvd7vLy8tWrV+1bXq1W7ffe3NxcXV2tW3HWdW1Q1Sqt1rTHT/Xu0x1GuPZ40dOu58Eba9AZbEWMOQdKYFE9MWgqIcsp1AvCtVWv6FLFx2U91cLTDOBL4hjtvGyq7A3N1hakAliqVNWCGAEiUFFYAJhwa93F2vsND2vcrXGaFpEcY0ypGMUtwIXCheotwJcgLwC2AD2CIVwYTqp3Rd9m7DJl+fX3Qk/tJkW0RKqSMrXTagjxeBxzLgDgnFNV772qphSncRLVvu9Dyh/u7vf7wzRNOWdAyClN83w8PO4f7ubpkHOUmlSKZVwNHhCXJYaQjLF9j4hqDPvOW8tEYJhVIOYaliQCfe/bV4nnY4SWmkWKtcZZS780W+ngw6vLTAAv1yZEqtUZvWTuAD7meZfGlzU7AACtCvV8dKPzAwcgSARgRTPoPcoblQ+AM9Hamav16tX17hLp+8fT5jD+9lR3pSqAlgSP9+SNvXvhvnhJ3unFNm03adXLtJgoJJVRwRiw5FFKXuYpl1iWkBfV0ZrgLHtxq/45aDDn/OH9h+++/fbj3f1qvVltt865Ukotvyhi2ncnorWWZZ6XJbQk3WWZx/F0Op2G1ZrYeOeuLi8vtjtjDCiUklPJKacq0mTChKgiCHR5tVxfvbjc7v7mj7//wx/+zR/+8IdXr15tt9v1et33PSKknB8f9z/98Obbb3/48P7j8TjNc0gx1yItqrbvOlUt+dOinHL++PHu3fv7eQoiwMSWLYEQkJTSxvCo0iwvpIJN+qVVsuYQSghaqrfWEw9d771HZgEoIohyBvhLqSWXkmpNtZZmaW3dXGYBAgRtbtA29Jdaai1VK2jbi2uRDIqQZIk8jSMyLzHvD+Pbt3cl57/7m99eXmzPhYu2mrS1bKoICBCokic3mG4wOZRasKpmUAJ1gEyGXSdkctDF5B8YFtUExEprhNI6/yBewQoiqpIqPIEVBADIAXTIwJihoEgLtmr1NhHiPMO336hhAJVc6hIqaVYA5A35C+IBqoWGYPtkg2Eyq247+A0WUyNiZxz3zrL2dl4nqYw0hpyKogLiuTfATUPaWD4iJZcl5xBiLCnXqgkC1aQ1lZSqZICCSIFPOUeRvF69cN0AqGy4CpQ0j0vKtXQxrobU+cEa49325sXvnN/My7GUiIQqdUnHWnMDeWoVUmDlzyMgWWWdyzZlLgWlKpv2aDCBIltFMiRWalEtfMyVsfQFHANZN1s7IU6ljkucU/pLho74drCD456gV7QqFgm5G4frh+1v7+xVULMKh/EA61nX5YgooKT4lLxCZ2URalWtWXSscKfmDfV3/eXp4vW4ebEMuynJnChyUGOB+fOukml2fxEJOY/TiCAXZmVQc0wxxJJTrQVUsBXm7QDWPMxnifB5aKSK8jz+VJGSU4kppBhyWMI8z6fT6bB/2B/3p9MhpoBAxpq+633nnfXt6G+dYzaIrEo5ldO4nB73y/5hevhwvHu3Glb/pltfOFdKWtI8LsdV3P0yb+gMenoua1qDjwgbU6Hr+67r2dgslZhzTR/ef1hS4GC2l5eb9eb1y9fWGhAcTzMKEZrNsHXRw0OcS5nmdErhgfCQuShXl6AxrrVWERCx1ljvNpvdy1evv/7qy+urS+d8TDllqaIp1pRSDHOME5FcXFx89cXL33z99cvb277rf6WEf95mnin+LdiWmb33zOSsbRjfd+/epZwuLy8fHx8/fPyw3+9Bdej7rutaFwcRY4y1VkRgplpL6+i0asO5pgz8dG02mxcvXmw2m6bVaBDkvu8vLi6+/PLLFy9e7Ha79j8HgCaZ/G9cBNAbWltaOxo8WYPeoGW0BgyjZXKMSbQoRENRdCoSSSoLKdgqOKdhyQWWRWWodVXKZckHxCOYiSSgLFIDaSCMTIWNoqZ2ixIjM1gDncEewSsl9KhrBavYKdwgvAC8RroCuAZcqRpVAgCCgjCpHFWORaen/OG/vlS1lTMKME3TPM+1inPu8fFxGHpm7rputVp579tGO0+TqHZ9H1P+cH9/PB7nOdRaALRV+dN4HKdTXBbVAlIQRIlapMA8LynXNj5QrXwOjmJEFYEYS05lngMR9z0icq01pYwItRSVgqjWkLW/ZBGponfw+oo2vQvLMC67/Wysu1mvN7VE0hNqtgaykJ6xwtzUFAAAIKDNDKlMgeAj4nuEI4Iy73r/ctN/sR163827y/HhuP/+p+Px5BWMCubI+8P6zYdlt519n2LC02xEyVnoHEZFFWAiBFMKlpKmJcfMVSbmRzMswL3oRuB5Jau1zvN8OBz2+30VXeZlvVqXUmoVFH02+D1NNbRWiTG2EKW+74whkRrCEsLS9ytr7YaJ2Qxd30xGc5jHaYopNdlfLUVEmKnz3Wa96Zz94x//+B/+w7//m7/50+XlReuM7vf7w2H/8e7uzZu3337zw/v3H8fTNIcFEFfrNRlz8/L2y6++urq+RqSc8/M6VkWnUEISNJ0fNgJgbNCaAUShQUxrM008jXvaN6MimkuJS1ymJUxL2yKIDRI1YFI9DxFUpEizi2oLfGuN8iJSqhRCFsVSikiutdZaas0iVVTa5FClVqmgCEVj4GmeK+C8pMNx/vBxf315+WRRPN9k8DSHbJxVRSBEZLCeho2tRUrVuORatahWBUVi2zGZanIhs0dQFAfYIawqdKAOtANFQKvKeMaKSKvlFFiJiNlaANSctaX2gsJzuHguEqOoSPtdBAUpABRVUamKFRrL7RcPu2V7ub2+3t4Obs1qJWNpmDZBJmfYM0cSZUXFBvEhZm7FDBM/0d742VIMAE8DC1CpIJUIQbXkZZke9qg5h+32tXVWVQCk1FQlltoi7msu2VsnUthY7/tcsqpUKaXknEKtqSnVmI1Bw2oM++dn3wjscr1MNVUtZ05uy5JAZUAkiyCiVbRmrVQnzHtQR2qYF8QgkkoRkVL1vtK7hO+DXli5RmQDRSEAVekOvD12N/NwU5C98ymfcpkFApQCigCKSmfVZ801hZJqUBjJPVr/nvqfebPfvMhXX6TVZUQ75/lYcKpQmcj8QnRlsIWcMGNrbC5zmEbCAiVcbjcCxNaRYSBqH2Ub1uA5K61pprCqlqq1Sq01l5xznOdxf3g87A+Hx9Nhfzjsj6fTcZpPIsU6Xq3Wlxe7ru8B0VrbD0PbRcm050eKlNO4fLjff3j77u7nn+7fvXn8+Obm9sXl737fX+1SDXOaxnjcpPl5i3k6H/NTM+BMYQdQJVIF0NqaybuL3b/7u7/dbdcXF+t//qd//pd/+SbFiArrfv3V66+HodciP+e39/ePAHx9/brfrHnVl4uX0/5+P05TqBG4IohkQDbGOTcYY1r7EACyYhaIuU5LPE7L/f3jEpIxZlniw93Hj3cfUw7b3fpv//ZPv//tb169fLEe+ifh1y8ufML1NpZ/CKGUslqtmKiWIrXEGGOMh8Ph/v7u5vZ2HMd5mpFoNaysdc651qaqtYYQmPlpDQdjyNoOkdoIr9UuXddvt5urq+vXr1//5je/ub29Xa/X1tpWPBFRq2+6rmsa3vbz5+tfbcO0RcMgekbH5A1ZS96gM89FDFpGrGAKJmMSUlCIVXORasWJ9iAtSnGtcCmaFSNQUJ1LXRTmogvSDDITBmuTxawcCI9sIpGAci44l1AUjklO8/YY11EGwQ3QtcoFwIaoQ7LcFNS1QhWArBpUgrZceIFfj8lae6vZOYiJck7v379/+/bt6XQCwO12u1oNfd8Pw7BarbquaxOlJiw11iqA1NJ5Zwy3T6/k3HnXeeMdxuBrTqCVEZjBMi3LUlLJuaxWHVtbS24ivNqii2ottaaY53mx1q3XWqssS5imiZkEimplVstkzGdjS1WoQs6411eqUGK4OqYvP4YA/Pp6MyxTGTro+7SGBBFr4pJ9jHhWvWEFrQBVqxClwR0tv0P9WLXk2ht7tR4uVp6h+HV3/eUfXz7O82l+GKcXVRogy8Z49d3bMM73334HtfY/P2yXZHqvxsrppCkBg1aBKdUq87yEnBHxaN3HUoPK6yncHIIvn6e+E7OxxiFSDCksURt2VqRBe+lp19Amga+CRJvtxnmzu7zohi6XFGPo+sEaC2i8c+vV2hguObvJlJxLSqmU8/SnCgBqLZ1328368urq4uJytVqllH/88Yfvvvv+m2/+8t0PP/z088/v3r2/v7sHoJvbl73vhvVqc7ldbzZffPXVv/t3/+725iUhxZw/oZWQ0Ax2uNgAse/8uA5hSmHOOdaaqqTStl7Ep+LgjOBQgCqyLPHweHz35p1hXpagCoCEzEDcQm61tqNdRVAmamix5rQotWDJKCgCKZ/9laL1KcJYQaWoqjSnOqoqJprmuQhaJ7QUwHB/f0jp04ifSImAkBHOKwbyufYyFtcXHpBKARVISy4VkqoF6smjcWySshGgRfWOxIAaVASwqj3AGgEAWJVVzn1BUGkzIDbgOyRDJmvNWrNKRVESRUVFLNwqlfOzXQQWgFFqyNM7pD3XBQWwlRtPRYx1r26+2L9K283OOVeyHNMkIjEsS5hTiimlXFIFAgIGLoqlQIxK83OhUlOOTxVhVYUquYlokNCx77sVAsS0VK0xHAmNs2vRQSDXWqoUEVEMmBWWmvM8EUgtIS0xTEuYUgqlZq1FRQitdda5rnODQSsZOr9BPLuTrMJlluuie8W5TaQYyTzZhvkcrKGixUpmEaIDKEPpEbNqzhmk9ozZG7F2Qvmw5FvSa2JWjapBaUzumPxUnWDnOmOx0LTTeFA5gTbsnpAQAmCppYag5VD0Y8EHu3noXjy47b1Zp+HCb66QfJ3CchwfD8dxXgCAmPGzUZ9RFa211pxBc0rLPJ9SBsiWdJzjHPIcUkU1lREJmRQRheAsimlYOk25hFiWJYYwL8sc4jKOx/3h8XA4nvbT6TiOpzGloFCdsxteafO+AZwhBGyQTLNaiEIWSVkOY/jwcHz/cNiflmPSxH11q2JsQoqKS6njssxx+WUn5pMetu0755epKlUrCAA2u/KL6ytryTB6Y3Iux/3Yd523brPabrbri4ur+/vHaZlSqr7f8Hrnu63alfQXMI10PHFMcua2a5XKrfOKIrWmlI2h/eG4Xq0QsVbZ74/zvCDSEsLD3f3hdMy1dp3zvnO+a2nNoIr66/zn9n6aCMZaG2I4HA/BGts4nYR8VhZLjHEcx9PpNIcZES8uLqxz6/UmpfjmzZtpmtqn0KpVa6Wt0V3XDcPgvW/yms1mc3V1/fLlq9evX3/55ZfX19dtivRcrLQX87yNtxr6ear4XytiAIARmOAMyUKFc2TdWev9rPmuRJE4ICfRUqWIKqjRZkLRpupvk/IKmgAiUASOgEFhEYhFE0jGEohGhRkgplJUoChhIQk0hYsx91m3SluENeCAaptknamoRtWkGkFPAJNAUKj/qsznl3cbNzJa11lrRWQJIcbw8MDW2uY8es5L4hbT3s5ohs/2D6LWZss5pxiklvZnEqJ11hAyKQA2ZmEDWMPZ1y21DQZSTjHHmEKM3td5Xk7H8eHhQVW9c2S06pJzrDWKlM/fECKSMXY1KDME5yCtF9+Te3Hzgqfjnf/5gcyPfRfRGO18yV2KrlSuSqIgFaWS1KaiEIKZcAbUCt6YTedX3gGTOttf7Ay543r16OxFzChSAajk9f3jLizDdCxEb6ckbC9XQ6dQU4JSsBasFZNyqT5mlWosO9UtgFPsWjb80xZDRN75vus73zFxCjEu0XvPBkUE9JPp5Xz3AogqMW82a9/b1apnphjDEpaNCHE7nbXMSEkxLtM8Ho/7/b7125ZlUdH2dTtniOn+7v5f/uVf9vtDjPHbb7/59ttv//LNNz/++OPb9+/2+0OMYbe7vLq53lys+2642G2vb26url9st1tVDSEuS/g8nE+AyHarLfWrvuwucw4phpSWlOacl5RDqbk27ZCcH0AR0arG9bXqeBzf/vzWGh7HsVYhZrIGDCmCiAhUUUFC7wYkUK2l5hSTikopBRKgVIHc/JVaBOTp+KrPnfYm/FDQKppL4VyJm9mppFR+9dDoWdWrrSGCT61bYvIDqVJJzaojJUERyaXWokytAmIByAKB5AR6B+oBOwAL4J4scgTC2kanDQolAABMynyGfTRDOIo2x6xCbtw+hAQ4ATwwvCM4EARTvrd4siiExGD403JGxL0f+m5FxFI1NwlBKTlFqRURDRuWqqqt13WeWqhWfTbutpBWUEVV1KchJ7MzxN66zeoSAcb5sKS51BjjKcYREABT1SJSEcFZNoaRpGrMuZSScoopzykvpUQVJeLODc521jvneu96UpNCtXZ4Hr8igiW2xpA1aM1TfjsREzIStxhDAAVmQZQKEFVGoQOBKJRSSbVzxiKRc4nK+1xeLOU3XgyBggbUOcMpw5RVFb3rPInzgzEdgFUlQAVqGFKMQpPio+Cjurt+e/AXp/XL0W4COjHegq2p5BBjiLkWATFMbH5BijFSc05pnqZquOaUUxpPk9TsPR+mcL8/vL+/d5595/q+d9YyUpXauNo5pZRSiGmal/1x3u8Pj/uHw2G/LOMSQskNvg9aAUCdc5vtdr0euq5jpv3xNC9xt9sZ63MqIJiwxay5LDgn2U/h7vF0nDOtL263V31nX7y46i5fF+4z1iB8msu0xPr88D89K8+7LJxbyG3RP8cqtY4mSO6c+/rrL51z1nXv330MS2KmZsfs+5Xzfpnn/eOhFp121xcXV6vNdrW9NDnL4wMfT2OIMaaaY8k5x1hLySWnFGOI0+lyvRosk4oYNu2YMy/zOE7jOIaQRSnE+vO7jwq8hHJ1ebEd+oYP+tUGCQDGmO122/d9zvndu3fj8eCsef3q1e3NzdXFxTD0RGwMM5vj8RRDBICXL29fvnr9xRdfnE4nEXnz5k37ZJrP1Fiy1qxW68vLi5sXN5vN1nm3Xm9eXL9ovordbjcMQ+ODwRNtT54whZ8XLm3/+LwN818pZVAURbWIUD33wbVxkBSIIAvkAlkxGhONlFSqaGnrZdtRVAkACRVQgRTQAgxsK3fCVM/5m6VKrUkzYgKNgBFrREwgSXLJkXMasgyKK0ZPrTsngloJAEEAkqFJ4SB6jzo2mxRgG9h+tiSf1RVtzm3YMJvdbvenP/3p+vr63bt3d3f3j48Px+Nxv9+3KV4Dm9JTDg1xI0PSmbZ0nsdpo0IhCqiAVmfMajV4ZypCLrWKlCIhRiv6NALQUkoIMcwxLDGlXGrOuRjeMzIhTdO8Wa+9J+Uwxf00nVJYnjNHEImNNWxRUbKWoCnUkgqv19vbr2Q8Hukf3wgcHG6t77xfEe20bkpdx7IKsY9LF6NdkpPKMa9LNZYQiIANc2fYWZutjcrzfDyGYKxZ9f1XuYLUAqBSXQoX3nzdr34c/P/Dzz2Z/9Nu+5tS/OFopdISUSpDHBRuAQuhY7qwvDP86LoPvDpsduVs0QLDvF6tNpvNNM5VoXUo1+t1530puUo5gxgQ4Nk0AmCNXa1WLhvrjEidlrmbp6oVEUQlxLgsS4pxPJ4eHx4+fHz/8HC/f9yfxnGeJkRab9abzWa33Yaw/Kf/9J9SSk3ifTwex3Gczp6+aK0dhv7ly1dfvH7129/99vbm5dX19W57UWq9+3gXYvTGb9arz7R9UmpWkGHV992u884YUpVSUozTEqcQxhhDjCmmlGJqZ4xaa8mVkI0x8zy9+fknJjoe9zklMmy9JSKVWiFXzULVWbfdXVjrUo5hnmo51pxrKVpVkQQaXaieyxepCq1ncX4igBiAsZ0/kYmNcz0bXypY6z5//NsBsmBu0IRzraEKioQADL6niyvPBgBkPpZaagwxLpMDqSDCWAFUlRUAYAL4iEqIBUFVK5yNuB7AtmRKhIIgKApFBKoUlQK1QD3fA00VceaTER0Iv2f61tG/9PBgEYhOjJNFk8XF4j7rXKpqynleQsqJGIFEtaW4i2XT+wGITXZzjrmkKqUt3e1jbzomVWOtQ6UqtZRUalZUQmet7bxb9evNcAmqbDqaHo6nu5JDTiciRQKBIrV677fbbecHqVBqzWlRKeWsNygAYo0dus3l7qbvVsSGiEGpZNBamP1z96ISLoOb111Ze+jdeYhAhHyuZxCbpawJXbESF3Ch8L7liZZqALH36Bx3Hmp+cyjbKP8+FWt0ZZSxPEoqOUxxwZo3xvesa+sGZCqoBdCiEGeio/IHpQ/g3lN3ctu6e1HX13V1TWT7mGvMMk4xpiXmKrXrmNViNuZXnBgppZZcc1ZCw8TUjDwVGY/j/MObd8DiHK1W/eXF5dD33PJgQwwp5RTHcXp4eLx/PHx8ODw+Hk7j4XQ6zvOplNJ2VkveWee9N86TcUAmFZGUc4ydl2FYlyIApRQBETLWdiYLjXM6TGFcchQcVuvVZnNxebnb7cSupgwh2TmZmE2prJ/tMHoGl/7rKo2nIkZa/5SI1qs1vmQR3G0uPny46/o+hEAj51pr1RDC6XREIBBVgIoozEUkpLzEsMwhhFBzKCnVZmJNMcaYQgQph8fbx/UgtRi2McZpmg+H4zTN8xLCEqpgKnr3cGyRluMUrnc7P6yaKfdXRUyTVmw2m+1223Xd3Yf3yyyr1WpYrVbrtffeWodIKaV5nqdpEpHLq+uvvvrqyy+/fHx83G637VAOAMzNyQB9311eXr589fLrL7++vLx03q/X68uLq4uLy4uLC+87eIoEf65X2jTkeXj0iwrlqdb5lbn60ycPIApFIFcFAAERQSNYGSsDEESBmGGpOhNb5gSlZem2A5TS2TCBcsZlAxIDIhswBpna1665ilQVbUfvApABkkJUjbXkXFG0U/SAloAAimAECKgJtNYaiSZrT0RH1ZOUpZQkVT7BUOC5dnnqrBgiMsYaa40xF5e7m5ubl7e3d/f3Hz5+eLh/OBwO4zguyxxCTCm3Hn7OucYAWhGFCIkYqb05RWLmhlslIgDvOvEirCDlCZiv+iRglyLN1T/HuMQYcq0t9BJEJKZ0Op3YMAOKGDQhpZhSLOWzUzIRGUfGATJUqIq1SskxzdPdw2E5nX4Yl49L/CZljzQQbq25ZLxyfIG4Y9w5Wnd26Mqq1JVKViEpDQfe4FEAYNkwaJr2pyUI687bTE9qPgWj2hfZVDUKD0wGcUkFUsEqCKhEBSAxBebMJhqaHBVnS2eCxQdGtljw01sZhmGzXh+H0xxiDCGl5LzbbDeNGJNyllIFlBAbyL99d8NqKMU0ZtG8zP08n30ASjHF0/E4Hk/Hw+H+7u7du7d3dx8f7u9P47gsCxNtttuXL19u1utSyps3b969exdjLKUiwjmZkXi9XhtjfOcvLi+sNapKTKq6hOV4OH37zbcxxtsXL794/eq5E4MIbXpfShYxrvPrVW+sQYRSY8ohxDnGEEIMIcxLKLk0uUnNVUUdUec6by0xbbcbNmQcjfMYwxKXuaVTIKNfDRcvbr0f5mkCeAxLqrlKrYrSYmzO85lzGkrLtVFAZDINh45kiQyzd653vne+M8ZR+SS2e1p1QURrVSZ99vR98i2jkkG/YgGTs1OA+Vik5hRmaB1/QkEUQFCtCAsAIxgCq7D6rHaJCPik+0kKRSSnXFGkVFvKplQvgiIAUFUrYCUNSJOlt4b+yZm/ePphRUeLDFAQK4Pj6iKc0VdP28cS4zzPxpJ1bBxxi7Qgg4Z7gDVoKGlKSwjzEmeR6qwB1JxDrDnlQGi8W3d+bY0H1VRiCKd5OiDKZr1eD5uh29Zac6kxLkRUpaQ0IiobCwgiVWopOSbEWqSUnFJMOebcNNoZQIzh55ZkFUBgYoeKYjKRe8LlghCFtQsbX3uLlqmlSJxlMc86zIb/BstAzcCeeRGRlGsWQ9ytBu578i7HdJjSu1I+Zvkql1esG5A11E4zlwQpuDj3EPuafMthAy4AC9lH239k97biB3V31KX+0m+/sOtLcoOpAlEkL8s0jfMypZxL8gZcb4Wds+Zzg4KpOauIYe6dM4NIKcuUVAEJDuP0j3/+y4f7d96Zy+3m1cuX283aMKtIyrmUAqr3Dw9/+cs3P/z09v3d47wENlhKWZYJQIeh77reW0ayFrAKLCHFlGKKiNq7zhpfiuZUSmmlf7VOyK1y0dNpGadQAcl15FfQbcRvA68gWkglnHCcjcKaed0IUfDciPnlFvvrxmbT9iO2pl+VQsQ31zed6zo/xFyO4/EwjvOynKY5hJhTlpLiMj7WMo0H/7BKqXy4uz+eTiHlkrO2RIVaWrxRo9KV2JU4nQ6Px+O+lBpimqfp8WEfU0YyxJaIAek0pVz2h1N4//HxcrtV5n/7d3/6vILBp1OjMWa32/3hD3+IIWiVw/4x5/xw/5BT3mxPu+3GGJNzur+7Px6O1nfb7ebi4qK1UtqmC3D2ZnvvrDXb7eb25cuvvv7q97/73fX1tbXWOe+sM8YSnWWGf12sPFcq+jSle65gPn/Nv+rEaGOYCaSqWFQEqkAmsKSZwTEIURQYk4xFRgBDmFCLaq21ShVgQQJkAFXRlneK2vz8SppRz8dxUSAFEAHVVvUoigIIkSAKmCpYpVQVBS2ghSAAnhCiSM15sfaxWx27blFNOaXpVEqUM2fys7GF74Z+cN5ZY5gNG0Ii7/x6u7bW/e63v0k5Tc1sPc3TNE3TdDqN4zieTuM0jeM4jtO4LFNKS8mxDYmqthcltX3AhpGYCA0TEdYiJdecioo6662zyzIvoSnEY4yp5KqCxOycXQ3Der3uh74hpJ8stefN6PP8ekRk49h6IFYRMKwIUpe7d/uf398/HMcff3r7eDzF08RFVkxbx5feXDp3ad3OuouV35phi3wJeFMxhkUf925ZACTVcsrpopYrBo85z3fjHAKmK0MZkICZDSBCKVBFjgeXwyvQvuLtfdzlamJU4rhazdYcOt478+DcI9MRZUZICDOUsQSupwyfwH1d361Wq67vYy4xxpSS7/zuYgeqpZYYmmQht5NMLsxsnLPIQxWHoCHGaRqnaaq1NmxtkOV4OD7c38/T9Pj4+P79+w8fPjw83M/zXEph5hCjtfb169fPtXuLxW7WJOec885Yy8Y0FODDw+MS4v5x73xXSzkeTu/ef+h95233HAAHAMQ09N4w7B/vTgesEqTuVuuV77t+6Afqc12VUkquIcRpWkqthg0CalUEtQi997vtxlpTSp7m6fHh/uPdh3fv3tynudRUpDjfrTbb69vXXbfeP+5L1tPhADgDtDLgTN1+qmCaVBWZENmgccSejSfjDDXPYuf84H2HSAKV+Fm1Cipaq9aq57P+2XgMSHieS9VmcQPT4+rKAKlWLUlKCADEvQMGJSqEWSGpImIEWAAngJPKCWAFoEAJaAYcARaFCLLkOkoqgKR6rfJHqTcinSgDCEA0MFq+8/zTYL/vzV88fXAmWqNMRURBDRZPnCNa+2kpq7VO8zzO42rojSMmss5YchadIc/GsTEVJOQwzqeH/WPKCzOmMh/zmNLpNB4M95vh8mJ7efPiq86vck6Hw92799+WPG+3275bWepjCojnFq9IznlWFe97ZCNal2UKYYHzdEoaRU8Eaq21Zm59FNZcllpLCMlQt93eWOMLM5F9fi9iKG583Hi0bKi1xc9DfiL4BaoQEckwqgNSq1qhEtcKbMzmcmeHlRKNHHOX9qF+X/Q26Y2TFcIVyox1gSpp3jy87WVx072pi2GoYoPiHay+7W7fwvCQdRTM7Ljf2H7jjeMYyxLyNIVxOkzTYZrmZUSo68HYzhS2ztvPtxjTzm6gog0FUAqAAAEQhpTefPh4GPdD5w+r8XQMq6G3hglBVZ332+0GwIjQNMYff3x7OE2rVU+MOSViSFm7KJ2tKUkpmossKQFIjAsbvtzsmK09nGLMbEzTB5gsSQ5TqO8+PNw9HqZ5EWSnnMDOamvE05TqFJbD+PCYRLwxw+d0SJUziuC/ps/Qp37MeQ9EYObVyjFzLXocp1jKHNI0z+M0hZBKKaoiksOSl2WEw32Iab8/TPOSi1Qp2oDFUtvAs0qtpYb59Hj/sZQcY44pxZRDCPO0iKDzvfO99V0VSKXGVMY5HE/z/jBdvrhqkaf/6jUMw1dffVVLIaSPH9/nFKuIKIzTFFMEhVzSx/v7aV5WxKXUlNI4jsuytAKo67rVathszsvrdru5ub199erVF198sdvtmImpyWs+NWD+1XbLX//DrzQWbaH61WdeRFNRLoAELZGKEDMBEUSCgBAFTknGJEdRoxpUi0qpUkqtpi6Ow9BXaxDI5byZg88V4OyyaH5GRBRi1DaO0ebjbI5gaKRZhIQ4Ic4Kk8oIOopOqgso1OpLqUTSIAEAUCkjpqff/2mDIeo6N/RdC91rx20AsM44a5yziOCcMcz90NWLi5xzjKnxYKZpnud5msZxGud5imFOMcSY2pVTziWVWlQLojJh1zlnLTPXUkS1VlFF65yxJo91aeig1LpFaK2x1vV9t96s15vVat17a6wla9DwOZXkzHj67CslZmYLxAriVTar/uZiHUL++O7j+/vH/TQea5mlQinHrI8ZPiZeWbN23dp3G/Eb5y4sXhvzkpiqeSCaAKsKIZD1tu+3q77veIGwQJkITkSZSLtBb2+16zBHqIWoDFVfMzlElbpHrYOP5CeDR8OPDvaG92yOjCfSgFpQqopkLVb16UBPRN763nfee8RxWZZxGkMIqSTDhoiNc4AITI31yczEZIxh27WhSc4lhjjPc05ZVduYT1VzTs1ZeTweD4dDoy61ZhgRxRhzzn3fr9fry8vLNhlsHVNrrbHGOS+gbTI1T5MC3H38iEghhLDEGNL15fXpdArhkybGWnv94vrFi+swH0OYp9MRoZYSV3VN25WxRvVcpjORMYaJve8IqRYBFQPS9369Xg9DTwTTPCHIvIyE0E5ZCuq8X6+3u4urrtukpCd/ImNbroSCPH2sTdSBBNTyIA0zGcumI9ux7dk6Q2yNs847542xiERsvLe/WJOf7jqF5z4MwFMewbkHycAW+jUjKmQNE5Zaak3YXHGI0vQ3ABGAECzADLAgLAojwAngDcAHgAeACTQrLCqjZAN0DaCgX6tW1YhQEE8G9p4fO/N+MD+s7ZvevHM0G7ZsGaApGx2qAidPxv0ScguIyNa63verddd5z+QddRY7YzvnPDDWWuYwr7vHEGeFPIV9rcs0H2qOJaVxvBv61W6z89YaxsZIF6KW4kPYcj2tMc4aV2qsJakqs2EFAWnCOannSbs2MzdawDYI4kYEiDEYElBkMpY9cxcpfj6gQMP2YuMv11WNwNMw419RM0Jr0IBBpvZNoCBBKs0NRMyKzFbtap1R3hd5W+XfSl6pbjXflLmERyG5TrTR6OORS0QAQTMBP9Dqvbt6j6tRU1F11jl2JmSIpxzisoTjPB2meb/M0zLnNHsLjlfOEgG3Uf7zSzStIsk5zyKHx/vTaZzmKAiETgDGEItWVa5p2t9PhMAMznHnu9uXL29vv9jtbo1ZxcT/8M8/7R8+pCjOW2LAAiHMRMFZ23nX9V3XOe8tMSFI5z0D1yrjae5c1w1d33V934um8cPD/WH+cHc4TEuu1fQDdhtNNc0JVMoY4uM4P9yP94+1kjM9PX83Tz7DzxiLnyYd57+3/6YKKoot8YWIyBjT9S7XAglDiiHM0zjGmKoIsTHW1JpjCPM8hRBzTJALlfPworbnsdmspdZaTqfjDz9+7z68r1VzKSllVbBsjfUlswIWETbFGGZjrdosaQzpfn/Mnx3InssIERERY0wLYbm6vt4/PByOh+PxcDye9vv9x/u7eZpKqeM4xpRsznd3dy2rJcZojHn9+vWrV69vbl7sdrvVarDW9H3fsHV93yNgrU+Ss/Oio39d//31T/76Fzxfnw+VVCBVDUWpKlRlAXpKnsMzEbEmgUOGY5J9KaaWRTW140UuGXUe/I8vdqfLHbnuYpp/98Pbq/3JilbQoFJVDREDIQAyQKlaKoiIKCiqClYV1QI6qxyl3ot8APlQ6/talioO5EL0lciKaJUiI7DoIZesGonaavG8+SNi592q78jwOayIm2ESlnk6HQ7zPI/jeBpPRaRz3jpvnDPG7Hbbi4sLZlLAKq1rl2spOZcUU1iW0zgeDofTaT9N+xhnqQURnHUAUkoBQkEAJGMdMqWUlxBiLgpqjHHWeNv5rhuGfrVebXarYeid5VXvhs46zxUyJVLFz95KU0QiExEba7CzZrD+crPZrbe5fr8sY5qZs92aTa1SspRSHkt+DIWX2cBiDa2YLw1fOHfRO6uaa/qANYv0bLcX15e3N7u1XztU7fbCJ44TUDFcd1f5v/vv5OUtpYUOe/f+zXYamSkSfgD8kXFkPIGMNZ9qOeW85FhCAEbyTN54z8gOhVbDJ7w9Ihq2xljDRkHnMMOe3717C6hd17mWcoXITIQIbVegJpBEQFGpM1HOaZnnVho6a533q/W6O3T35W5ZlmbJRsRmzWukg5YgYZible90OpVSrLXnx1Y1pRRCaHkI0zjWWq1zqhpTNmy22wtiXpaldYDae/G++/o3v73fR4T68f3bGOf9/bKMx3lalbQz1oQYUkq1aik158pkZBgQKCyhloJaw2rljHGG+lVvmWspcVnmeQkh1irWmt4Pq9Vmvdo4v3LuyLZxEfGcRfCsVwNs1C9mbs4vto7PFYxn4wyTMdY6a41tYvXemPVqaJX9077f1mYQBWweKgV8UtdRIwmCECFZIrYWzXzS0xFiLrUWybWqWGgqOogAFYAQ1gCJICpOgPcA/yPCn0E+AiygoFoBEsAt6P8RsVcYFCziyHjn6IeO3g78cWUfB7Mf7GxZmTtCS6CqqYiqGGRQE5z53M3HzEO/3mwvttvNbre5vN503kslUsfQGXLGdsYwIl1s6vXudcwhlWl//KBSw7wc6P54engT/ml/eHt///1282IYtrWWw+kjoHbRGiZgRRTnfZeGELqYliJBFaVUBK5aRRURCEkBFUS0EqAxxrJhJgXIuapEVLceusvt5aq/7PxFrTRj+fz84qy9urq6fnF9OE4xZQHWs+2w7aDwJEpuEQbIxMBESNQU3dOSi0xzyIrGOgJa79bW0uGQP0jei1xW6TG8jI9DKbqsu3XXMfmaSCoIVKUTuj31sxkydgLVoqyd9VL1w5sY8qniIefHuJzCEpZZamYGy8YasAalANEvYqxNe+1Sa6p5PB5Pp1PKQtZYsAKgoqloypCXvBxPOUUmMZac8ynDy5dfvngxdMN2vbl0foXoc0EgcGQJodRCAkSai2DKohJSIkZDWEpFxBiTIdN3/bZuRbRUSbncPx4fjtNxjLEIGUPEipQEQsw55nB/mD4+jh8+yDJ2hhuN49PG/zRR+m/vu00WjtqgBwAAzbLkfVpSiGHaP94/PtzP8xJCOk2zQEWQGMI4HttCUKtokdoSoADkCY4jKqqaUnx8fCAygGcAGpEZ+p6IKtLZCqgKYJsgVmqNqUzLUkX+9Res2qb+zrnNZjPd3BwOh8f9w/39g7FunKZ5DgBKxM57RDwcDk0C5r1/+fLlbrf76quvbm5umkG6IXMaAwbxXLX8ctRw/vR+NTD61fV5gQj/dXeSAKQioQgVURJCbJHrqueSUhSSwFRxynqs1Uo9qo4Kl41HkWFReOi6+8sL3Wzj4XT1/r4HLaIzwUfixRI7ZjIEBtVBqU3gK7XpfatKKaUstc61jFqPIgeVsdaxVJDagRhAA8CqmBKozFVPKgtAgjaO+tzHC410TIzMSHRGgpaSS0rjNN7f39/d3d/d38WUvPO+630/9H3fd13XdX3fO++NMUzErgOHAFpzDUOwzquiSK01Si1FtErNKddawhJizCIKqLkUqJhSKqUAADN754fOD93QdX0/NKHUaui9tdR75xwZBpAzRoGJP/9+sNkkQJCYyXg2q74DgHFenIFXF8O8LFUhlzqHfFqW/Wka57CEuMQ8pngU3SP0xvTBGmSqMte6lLpWdG4YNtdXN7uV1XC8P2AMygegj4Rby3Pny6pDj7nG095NgRPCCfSRdA9wVDiJTDlNKc8hSi1WoXPUW+sBPRC3bh8zfPZmEImJrbVMmHOe5+l4PHZD14XOem+aGYzOlXNKqdQiIkxg2bB3yxIar2WapmVZmrB9GHrvfa215MzMwzB0nW8866aL2m63zCwiLVHS+6YXb6Kls2e6KQjnaRpPp5QznaMoZbVatyTdZZ7HcXwuYqy1V1cvvvx60Zo6y2/f/nR4vBsPj8c9h2lnnA0xlpxFEVRFgNmmuVfAZV5KzlrrPAwINcWw3qzCMt/dfXh8vJ/GMcUoRcgaZzvvemPcM4OqVRttCWgrIlCLXG7MNmuMs85Z25H1bDq2jo1lQmPYWOOc9c4Pw7DZbl+/fvkpkRuAGhWmHSDxrK951ozC88wcgZmYwBKyBWWhWXNJRXKW6hQMggcKIABQAJo5cQZkwA+AfwH8Z9ADqIBaAA/gELYAXyq8AvBEo4EfBv6uo+86fNvzsee54+IZmFiBQQlVEdioKjIQc9PFfurDEFHfrzar3Xq92e12Ny8u+77PSSQzVItqiZw5I2Gw72qpKZbJsKlVpGotYsgep4/TeJ/i9LB/uxo2iBxidK5b9b23HtUAkGXnWp4uUnMkiQipnh/WVlwCwBNo11nbUtNrFQBBNL3fbNfXl9sXvd8idCHWzxtKAGCMuby6urq6SrmUWhpY/5cTDHxe1M/p7k2qp0pP615t4DhAZvZMYtwj2Pdi76W8lNxrdXXpahUsWLaAvqqKAqvMiiP5mbqCrgqVmFVzZcwi+TSOc7jP9ZDzqeZYsuZEqAjcMrfbQ/wrppoRraoVQRvuaZ4nEbDYiVQgS8aSsVW4xnw6xbCMCLVqKaVMc1qvd8fjIkhLKOvN1cX1lHNCVGM8G3JOjaW+d86xMYQqpWYRSSASQyl1saH3PQKv15pymeawhHA4zjFXa0zXO9t1ZrWlfqjES67zHKfD4fTw8fDhnYdy+cWL3XZtzCdNzDmcqSVBPL3NTy2B1jY7dzNbxS7n0S+qc5YDpjDtH+/evfnx/bufp+k0TyHm1HVuNXQAMqWUUi4NENush9KUqme3SLvbQSHnQiTMjEjGMFFjRBWks/vknOupJIJVoUqpf2V/fb6eNSjM3Pe9tXZYrbYXu8vL69VqTUzb7V0DxpAxJedlWZZlubm5acFG19fXL168eObfn1etdkLS548IAX7xp8P/Vvny1z/8/Hr+uaqmqktRLFpZ6Rc3oLYjWhYIAovoWIEVPoI+Ityeu9ugglBZ0OdhPWeZmE8qIHrH+A/efOw9eofGsjknozdiQFvQay4lxbAspzkuJWatXHWteqn6b1QvAdfIPaFFLIhjSMecf0D4mfBIXM7M6V9yYrTpqUjaHFag1JpyCkt43D++f//+p59++umnnx73+1IqABrrnHO+6/u+G4a+7zrf9Z33rQnvrCWkKhLCcjwex9Nhmh7DMpfcRLhQcgkxTPNcckWC0+mkACllBGgDrKHv10O/GlZ9N3S+74dhPQx975p3ErnpDoQIWlfoE1+hdRBrFqiorGRQEbRuBvd/+NNv/vS7L0KIKeeUSwhxXOb9YXx/9/j+4fHd4+HhcDqOy7SkUyqHXCgVAgCkohpEfdGa0brN9Zd/0xn5YYyH5eNUERD/hWBexvn7P8fj+4K6pHgaj2Oc51qnUk45TaXMVUKVVGssMtfKFldrv/K2V+lq6RKYAqwypfx53a2gSNS6AqrSWLTtadVxlCoISExs2JApOc/TXGsygtZ26/W6lOq9T7mO43g8HXcXO29933XOeakCqpv1pmGT+r5rRek5TUIkxDiOY5sX5pwbHNI555yzznnvvXdP8ahtQsPW2NWwWq1X1phfdWKIyPfdzYvblXe79YBaltPh3f33YZn29xvrbJE29rRECIqIfGQjojGkkotI3Ts/jof1et33PsTw4f27+/uPp/FQclZRBDbkiawI5FxSCjlFkaptXVAAYkRLbJgskzHGGXbWeme9sZ6sJ2PZ2GbDZUZm9r67uNze3t7+5uuv/vQ3f+j7/rwmwFOaGp/zsRWhdcGZnlyy56w/1BYg6MlYNL36sewfQlhCllRFeqJNg7ApGAFRWBRGJUE6IEygBbBHcKA7wBvA10B/q/h/FX2NVA38uKL/z7X984o+MEwEahARnAoWkCIKAP5s0TnTORCazvW5UCbivhtWq+0wbDab3fX19WrVp1RTkLRATQxqWpTtuYRVMOy3m2vvVtv1i6vt67fvv/vpwz/f3f90GO9P8/7+QYGYyO7WL3bry+wrQmGyRNawx/MZuMLzQRsUQItQY/y0l2St7TpPyDHGKmKIN+vd61e/e3Hx0psVgslZCZc2cXheetnY3e7i8urycDyGsICgPtOUnuLv2qbQpL5tQdeGcNZCKMaS9d51vfdeFUpIMadQ9X2l99V+IdBpIQJnsDgS22XbLbXWKgT1BDiRT9iDEsQYT/sSQ5o9GVsER8CP0zjncL5xnEdEBFGgs6cen8u482VQCkN1JETqjXYGVJEYCQS0IjIAiWCtUCrkolJzKinG4Lvj/cPeuK4qjPPSr4br25uYMqL6rnPeOObOm9W6846JVKXEFKpWQGUERuPY9K5frTar7c46SyECGURfBcg4473pOrVDNMNJTJ7rNIbj4Xg87MfxyB13vR1W3XNLWc9pz6XFMDWY6dP46Gy3fpY0txkBoaqiCgBCk6hZy4RaSyolqUqRHE7zNHMIHTPlWiXXXEXlCQKpZ/TgZz6Jpw1CFUCRAJGZGAj13KPVM2FHq2pRBSYevBm8+XVo6lNx8KylhXP4C7tGeemH1lB5cf2ida0vLi5CCM656+vrL7/8suFeLi4uVqvVs2X66Rk7D4+ea5f/zYHRf/v61RTp+RKAJBCKUgUpn9M62oEMBKAIZNUsGkRJ9Q7gI8CXIJcgRpGLbkLOc8pzWIfEpeW+1kKtvNOKoAhtFCeERTEzZaEKUEQSUSSYVapUIzKoXim+AnyNsCUyAIngCLAHeJT6VuFnpnukAFJBReBX3bH26bVCua37pdacc4yxRVwtyzLP8/FwGKc5pywKSMgtYe95V3PenbOHXVO51lJCXGJYUpxyim3YVEVrqY1mkFNBlmkcW6Be33XW2867YejXQz/0q74b+m7o+2E19L4z1gCREhaVerZcGDT2F50YVRGtIO29CCqgVmvMej0wGanSsgZTjEsMp9N8/+Lyw+P+7ePjx/1pf5wexmU/hWmOaUkp1yyqVbgWrWU8Hk+nOYMxRGPCY5Sp1Fnr/wLwXQzp7c/x8WNhDKJzznPOcy0hlZBzyCWXRvWCqpARjLKWKoVShgiaRSwqq4T0iXL7dAvS04PfCEbyJIDTUoqIEDNXEpb2G0U0pWwsIZHzvu870dhKilJK57oWRX55eZlTEhE23HVd1/nmTVPVeZ4fHh72+/1+v5+nqXXI2vC367pmKWs/wSf6NhFZY5z3fddZNrXWGMdxHMunUTIisu/6wRst4cPby5+dDdP08PAhzCdrraKyYWN8E1IAoFQtVXIqzX3GxoRl9N5byymnw+FxmseUo6qgth4La4WwhKo6TVOM4dwDbnYUtszesDPGtTg7w95ab6031hE7bL5Tw8aQc6Yfut1u9/LViy++/OK3v/nq9RevvHe/XBmeY+A+/bChUhvTpR0kFUAR0SJbNB7JUClQEuSZsUISyKoGwAD0ABuFXtEBOIAd4G8BBkALsFK6BHgJ8DXA70D/AAqM33Tmz2v+88Z+P9CMWgEsgkMkAnoyMJQiyIDc6H8g+knN8/yCnfOdX3nfO9sROWOcteitLlQTa01Yi+QW0SBFoTZBd+fWl1vD4Kzp2LAznogfju/n5ZBrJjLedaWmtirzOV7X0VmkKE0KQ2QRQRtYWQtBy/+gKqWUBApLmEXUGAeo1jhneiavioilUft+RSETBQViJsOsZ2rOry96FmPjeWEXBCJynSEhopYEjapSY4oxjqXeC/5U3KuCGws7BQRUpIhmxO6BNFN1qAFgRLsIxZDCHOZpCsu8lITWF3JLqYuULIUBGQ2xJWbU2uKJztyfX04NjIHqsA5GOkPlsluZWoUyUkGRkoFAoBYsSmA7J9qlKAzqEF3XAXNI6Xg8HsbJD+bGvgAyxrlu6PvOr7xd93636TtvkEQ155IUBImsYcedQUPI1KAZTNx6ZQJatapUBCGzCD8GCmOWkMNxGffHZRxVi3HG9cZ25jlySFWXGMdpZiJrre88swEFkVpKaWhgwyyiCoB63ocQUFUR0DD3XX95cfni+vrq6vLh4XGa5piWutQYQ4wTEVvrmY0IqkBtqWItAQIVAAj5TAInwCaGM0zEQITEwAzGoDXABrilUFWqAAS9tdv1+vZy4+yn0dgz4PXzsuC5+Giz+TaY32w2LQn8dDodDodSStd1u93u5uamaQybGfizwkXbfArOBS3+tQvpf8f1+a3/+c9VIalGURbVeu7EtPfUpnmI2HpatYqIBNWPCO9BH6VcEXqloZTXp/Hqw52E4JflclxckVrrjYKfYwSqSpVrESmiWSGpJKlJalJJVWLJ9clffQG8BVgRdQiEmgBOqu9Av1N5o/JAeCKMRJmwqqpoUS2fEcibpaJKBQR8KgBbSVhVAKAlPl5eXqqqtYdpnkMIOeUlhrHKuYtz7tByE0si0bnhrq2sKHoOrmkv4cxqB0C2BgG8d0PvvXO+67rOdd51ne+d77thvdoOw6rz3lk2RgFylVq0ihaF0tipz3eTnqtXBCBQrLXdw03EVBBFarOoCRuz4nXvh4vt7svXL/+4LOOynKblMM73h+nheHzYnw7H6Tgup3mZlwCQP77/+fvvVl9+9cV2PTyMyynmJcVDTe9BMRX8+NCyYmuzialmgKJaQItgBQRmRGhjIzSUC4S51izVVXXsWRkk5vzLCei5CUtExhAgNdn+er0i4lxKLaXdbIZYqjSe9zhNAnWzrEVkGAYRzDm3FM9VL8x8eXnxxz/+4dXLl7VWQLDWAEApZVmWlnLw/t27u7u70+mU0jm9GRGZOYRwVgeLxJSe2zPM5Kzv+85ZW0ud53kJ8TSenjsxIppSybmwQWNt3/edd6CaQlQphgmav8u0umsAoBhiLrmWWkUBsGSuKU2GEKHWEuOcS0YFRpIG/QcsOR/3+1Ty4XiYlrlIVSJSS0Rke8Odtc4Yb4y15lzQWOvZWCRug0lrTeftdre5vb1++er2iy9f396+uLq63GzX/Fl3vEHe2roAoqqCcI7JBgAQFMWnHjYiYEE1oMbi0BNddw4NacgU78eccr0G2gG8QL1BfQF6AbBB/QLpNUJW7ARWAGuAHegl1gHAIP5o4X/Z8X/e2veOE5EnQAIGYAJiQgVSkiq1VCja/OOIKBVLllJU5fmMR8ZYa71lL5WO+whC24vBd6xQiWqEmmsKMcQYS80tPBMRCRlUDbvLzS2zXQ9X2/X1h/sfPj78eBjvQppVokJFPFe61lpbTBsAPYFoQ9tXRGupsREIAQAqlhJjnKVKSAFUneud6w6He4u9d9WwBQREOT8bT49KKeXh4XD/cMi5ErNBFNRSAc6hPSoqbVUiIvisoEEEcHa9XcVY55QaEkRFYot2y/kA8E02F5mvHPoqBjFmPGT8QOZnspnLBbJiPQqekuzn8TDPxyWElAwRVqiaRMVaSwQpl6rAoIbUMlvDAvIsFvh8zzIO1ZH0LCtLZTAefVW7FDjFHHIuUgvlghkFW7JVrlJU2TpFPIxjSPHh4X5algqgbJn7lpEqtdYMhSAagGKAKmAVKUrATAjESIAsAjXlogmJPFuDhhS01JhDFinIEVyCoUbIU05jSPNSYkDNJevD/fv7hw85p6eHX0KIy7Iwca21ihrDzVYqtdITw6fVBASCv0SAtGbMer25vX35+99PxpjdxcXd/f3hcJiXJTdYKppadV5CSvWc192m7KQEZ7AeIiLDuSPHjG2ESIa4/WXZWmOsM8Za0zs/9N3FdnNzdfXVq5vPZ8nwdHT7fBz2ecXQ9MjOucbBe+4EqKpzbhiGpqFpJ9HPuy/waX4En4+Q/v90KUARSAJWAOX8LD0VMe3FgChUaTlxmkEfCN+q/qzSS00sQ0n1eICa8bDXlOZxiqVqFVTYZsEswCKkJaVSGiVPstYMUlSzahKRUlHAA60RHCoCRoR7hHvV9wA/q34P+h7ghFAQXfsCoU2S4FcyJX26nt+dgrZ40b7vd7sdAFhrt9tt48TM0zQvyxKWEGKDQ5ZSSkkN9P78pWIratr91L6V86ATELE5aYyz3vvVqt9u18MwdF3nvHOWrLHOmM4Pm2HVdb01xjAQ1bP0igRVELWJeH7RKEPExhtHOiv7EEUhFznDXc9oEDLE5Kjvuq2urmpJpYSY5iUep3l/Gh8Ox/1h3B+nwzidpmmJOVeo8fTD999Y696+efv+Yb8fx8cljLmUnE0u9Pn9hyCEQKB4lnwTgWEkQmfIIBlCg+iIOmNWnessWdRV3zVL3fmtfLZKI2Kp5Xg8OOeJsOt6AGhiFGycGCBrbSTKOVfJ8zwjNqVLCSGcTqdxHDvnmi+s6wcEjCk+k36maToej/f39x8+fHj//v3+8XEJocl+8YmWBE8PabP5iAgb07KCvXXOOiYqpdSa52UJ4VOKda11PJ7uPu5Z0+Hh/WG/TzEZZmuM1JJqBlBirlz1fHymEELJRVuiEgAglXOVLSpSJINKG400811JaZ5mEYg1z/OcclJFYmvAsmG2g7GdNa1waRJhy8ZZa9lYJrbe9b0fhn6zXV1fXbx6dfvy1e3N7YvdxabvvHPmV3fZ0xd0Xmv06SE6f1+NYqAASqqgFZQAFZmo7yxsTSk4KUaV0yxWoFPYKQCAAR0ALkB7kC8VScEpOEWPahEsQmS8M/T9mr/d2jdru1hEQkvEBERCCMigAkgIQlqkjY0JgBhVUSp8yoIAAABq3x+xCi1LMZy9L11PxhKCImgR0CmlspScSy3P87ln03nv1hebW5V63hXYHk4fmUzOIabZcv88vnletEVKKUFBEKnhlVVLQ/m0W0YBpdZcEgCI1iWM47zv3FbFeD+waUNMpM82u1rrPC3zvIgokWlnMfpUsD1Z087vmpqS/VmoQYZEsy5LrtUwA6BqRVWpdVJ5U9z/j70/67UsydIDsTWY2R7OcCefIzIiM6tYLKoodoGUCDS7JbJb6AYkQNKT/oLepV8iSGhIetSbHgU0BEiA1EJ3g6C6RVapiqyqnCMjwj083O98ztmTma219GB7n3s9IrIykywQIpAG9zuce4Y92LDsW9/6vtNMTzOas9ZcpvUdb69o/bXYGN1h8ii083yHtk+pzzkTKnOCYu+tAOA8MTqyMq9yCK5yFDwhoqrlXIKYh/viagcVQ6BcMbXOuGag2kUbo/QxDhKzaLFXcuRjjodxENX1uh1T/vKrN5LT7v52GgfDIj7WsAuOvUNjzQ7MERMhMoAzZENGInZch2pN6EVBDJWAiCuuGAhylmkcpj6Kmgv19snFy98TbMd9lC5iTKwJLe3v7/7V7ZdPL5qu+5+XM1HVUgvgnReRcZpg1iEk55xHL6KIWlyiZtG0pV7JzEzEEOqmefHy5fbk5Pd+//dvb+9vb2+vr68OXZdSHrrhfre/urz56u27e+mKEyZxsQteyGvzzIWIhMRIxauBaa4CcY598KGuw6ptt+vV2XZ7cXry5Pzs6fnZDz75qK7rh8XlUfx7XDKPeaVjL4dHqExd19vttjztWIRWdni2iOp+OKs8rGXfnnR+2/YNKPL4uBmUtFk2o5lBWCatZZCYiUEBPBAsI+yAvgL7qeqkcmHSptF2gv0uGHg1l3NQC4Y1cg0YjJwSqWGSKiaSTLPlm9oCfSTVAWginkBuAfamV2av1d6qvgW9ARjAIpEqcsGFABjRrJRr2zdCPYSHc8SSpvS+MOxKHPPs2bNhGLqu7/uu7/u+7/ph6Pt+HMZxGMteLcYppSRZZjmcAl7b8f3n7CchsyshDIe6Wq/a9Xq12a7btq0q77xjRCYkpOBDWzWeHZqZZMlRMRpkQJtldGfDSHp0v5jYOefLwn6UMlSdzfoK56Kwmwt2AWBIFLxnpqauzrbrj56dTykN49j1YzcMfTfs+3HXjVf74fOf/uh61+/7ft933aEfx1jU8qFMqIiAQMhlbiQuZ42MxmQO0Tn0zgJbxdTWbt3UJ+vmbLtZ1aFy9PGzZ5U/Bv2IWFxzoGjL9n33+svXd/f7F123PTktlu9Fgq6EO8xF2SVZkr7vS4UwAHR9T3RzfX1dxAbiFPuu77tD13V93w1D33Xdfr8vRde73W6/30/jqCozPRXgUdc4zgZHcWdiZu88ExtYTilnyykfYRgASCleX13+/Kef72/f311/fX359ubqOlTVyclZ1+9SnNRERcUkwqRZEVFEVQ2LGQUAzJL6szKizWMBCNkRg2nfdQY0xknQYopmAMTOVZ6dc55D611g553zxeOEqFCQvXMuBL/Zrp89e/L06cXFk4vzi9PT05PtZt2u6lB5xAJfPp4WZhYi2pzcn9WTrRT+Y5k9l+4AAGCKJr7kOEPA0zP0DPeQJ7R3vfZik4EC1AinAGS2AqjM2MAABSCadggT4W3Nr7f+5yfh6qTKFTsDB0ZIPGuilGo9wGIgAwxzzy9yiGyA38xb2Dzi1UAFplF2d0OKuV1XoeaqIuDU9Ua9mIlKLsWqWVLx7FRTU0uSAzcnq2dg5F0TXDPGw9AddnjdhG1JLKhallIPr6qS8qiWC2SulsyKj9USY2HRTC9hTcppGKduTAcfVs4qNFBYsgOP9sM5i2YlYnZqUcoi8EBnMCiHQQREWDpuuZdGiEpE2TRrNomevK8qn7LjvUaRG4XPlZtEd96fV+tQXUzrV/fkdze3+53d7xo1m9Y8ejwQSQjVesXJiWrKRTbETAwJvXfecVuHuvLBk2MksKJDKx/awTjvyDtkNAYjMC48DtOccpymlKesYmqMDC7kmOM0GgBYndI03BzGoTvs7vI0EQIRG1dEzhOxKeQJRFVQAYEBHAADMFqxd6hWxJUYzpKsSJ4CG1pKEqcxDdmAQnX6JHL1pKoJpkQpUuo5d6T9ON53+8uby7cpxsedzJZCIctqRZXUuQLwikjJ7fEDJPMB/xQImd2qqrbb7VN92vdD13V3d3fjMGSRw/5w+f7yy9dfOefeX153wxhjVmBDXHjTZRtU5BCK9gozF6Mj772rQqiaqm2b9brdbtZn2+3Zyfbi9ORsu9muV6cnW/frHKHhw4DjGNAcMZvHsM23Beu+EVv8W2tFrlcUMixBTNl2lgtms8YWIHgiIZsMb1Q/R+wBTsBqySYZwXwWZ4DMHqkGWiG2OVYTBlVv5uPkc/QiXoVVS38upz0Z7NV2YLdmN6A3Bpdmb9UuzW7ABgBEYEAHQDNbF76LnvRBO15tA0NEh1gsqNq2FdGU4jTFGMdpHIdxKCDZOIzj8us0jXGaUsoppZxzlizFOWwJkuYNEDE7LomJUIfVql21bbtu66rygZlpVtsEZOJAAdQkxZxH1VExAauRFLLBt6JYICrOZVyCGLQyO8xr3gchaUn5mQIYIwICE3kGV3mk2gBE8hTzFGOKqR+nXTd8/vV1139xOKTsAepQIeSmKmwwBROxpFpsFMEMEYmA0YjRI3jGynEIrg7cBNdWYb2qt6vVyWZ1utms6iowPntyEZYgxsxSyikViiaoat/3w3Bzc3s7jePZ2cVmu6nrmueNhENAy6nvDl3XE0GMCQBFJMa4u78f+qFp2t3drYouQUx3OOwPh33XdV13KNnbcRyLToyKLnHLHMeYlYr/0tmLSjAtJhPM5JiYsBTn2ywAt7RpHF9/8fnPfvyj4XA79buUBu+riyfPqhDg0g5mWWKp7TGFbEW686j1cRzYugTfR9VdADBCAJVpHMwwmyhjztEMiLxjH3wVfMWhYeeZy7EyMyERe67qar1uT0+3T59efPTRi2fPnpxdnG+366ZufHBMCPig1HBsC+6iYEq4yC6Wkgi0hw0BHqM+QEMTLJ7TzFjVZOYlN0DUUbrvpcC2XLgsCj3ACpEJEtFIOBIOhL2n2xW/PQ9fb0PXeGQKpZzGykchgiGgKYiAiJmWilHDbAKmYnMA+sE8ZqoqqqJKWRPm3sxMyUNNofJc126zqTVnOACCiZTdmiqCGpoxIlZQQbNat5v16nS9Ols3J/eHy67fadZx7JCYiA/d3TB2KU1lURdNBgKz3ZLMziFLQWmpe54PtJiwyZhkMhPDufCs1BY93JSjE7vzQCR5BFNmtiNITx/clgWCQSUCNUBiIu9IRHKOZEZUdtWSshyyvM8+ZDfa6nk437TPePuiVxtuu4OwaJ1NVVBYMyI69OCRTMZJjwAdoXPsmSrvqspXwQdPTACmkktx0gfzmHN+Nn5WhZRtnCRj2vd51w3DMBmrQ0AU1KxTlCljjkgEkjTmOPVj143dXmMMJbUCPRI7Ro/GmkxxyqxAQiBogpLNkiBQcH5wrjJiKyJjhqSARTndNGsGZi+QhjH2ncMqQKoxDnmn8ZZhQhsyWIvCiyoMInnvvPPsHCxZgGNsUVC5ElyUe4oLDFNefUzcmJkaEnHxHz45OTVVAx267urFs4snF6enp198+eart29vbu8PQ84K7AJxEUIucgbIyI6dd74KoWnrtm7WbbPZrE5ONyen29OTzcl2s1mt103T1pVjAlF8tOO372rHtfOhL5oh4hGP+cYq+6vCl+WR+Tv8m7XHn7Ls4/WDAVPUB0zFlGxRwF3OpjxjsUen4JwaJtEe8Q3RLWKDwAUBKBxqUxEjwIBUq1SSqpECcQCo1IJpAPAGztTBgwltBNur3YHcmN2D7sx6gBEgAiiCL6MckXEWIJjhl29CMA8b7ccxAQIBPYSSzjlVU6lWbRZZq6ScJeWUYk4pphjjFGOaYowxTymmGJc4JidVLTempKJpps8wUXHxc6EqVS/OsSNGYqACQSCCoWXJ45jykONB8qAoENjYDAvlyETgcUciYmQ2BAPDOeSzciMBwbEnnCnrWKCZUpVX6uMt26zvQXMcQlxVdd20662dxrzdbs/Ptu9udjd33a4bpnESFUJQkXEa+n7cHfp+nFLOIlLmWmJwjgJzHcKqCeu22a6azarZrtv1ut2u1qtV09RNcERo52cnhaECRU216/tiGoCYRYZ+uLm5UYOhG+5O705PT+u6npcvQFMoZIMscbNZFUn9OMXD/nB7c5NSHvq+qSoTjTH1fdd3wzj2c+gZY0rlmOciFJzJcLNt5FG5nRZiJPPMf5qds2aAmIgcmhlTVVfHITP0/U9//Fc//qu/3K7r7bo5P9t6R5Kn6+vLKcaUM8byIiZ0S8yEs0aC2VwUjFRyGQYAIAswZLObSI4JCRwoU0rZwNhVnn1VNSHUzlcl84WIxenDQMnj+qR9+fL5D3/4yccfvXz+7OLkdFNVjQ++hCYq5TaaGthx2BiUtKlKVmJ2XJiehZqpx9KHOYmKRX8BkYpkjZmWGtAQ8OyirZvKVVN/P90M8TDJrdgXGV6iXSCuCZlpCjR6GjxMjNHBuOLxvIorr0QVkBGozDSXGfmhQvrWlObkKRpkMYmaVQptmR5xLlU1SUqSXGa0kv+EcQS5l5jyuq2c4ydPT5umdle7bj9oUhObi2YLlZkK68xylilO/XDYX3zv+u7r91df7A53h/3ubnejION0uN9fTWksvBowU5Xlsupx1n08q897DSjFp9msMCgYkACNmIkeKhPNTCSpauVXZBqniErOOUCa+XdHNQJCMDWT4ky1oMXGzG1bAcSujzJGZo7jVHDlmPIh5XfeGVXankwnTzanT2JO6eYqVSFJKxINBXRiIAYAQkEo7ncKwERV8HXlZstcR8eo32wu6S8w6vHcXcGoYkyI1vdjP2RlN0XNIoAQvPNUKJlZUkLM6hXRGkxoKjpWEM0ZIjZEnpAAPGnDEBA8giqOmSajjBBNouooOqmJGSuiCADrAuxBVlAww5l7BuxMvfXBDg14wJShG+0QeNq0jKumr/LzkzY4/uBGzsYzHyyr31hizcyASvp/3qsTABAuqCaUVY3Ju4B1uZ26apqqCnVVt+3q5PTk9HTz9t3l5c1h309qBAtVk5gcc5GxbKtq1TTrTbtp282q3W7X25PNdrverterVduEKnjvCFV0GodvYCP4rcXy+Ph3/vzthkt66695zt9UO37Wd+74dbFP0jk0ADoC7mXPOHsjgSdSBwaQATq0YXbFnKe8sq8saLUD9abesjNwiB4gAHpEj8gAbMAPQYwlgNFsD7Y36wEHmCcHQvBIrqSEip/2b3Cm3zi7MnngvHEsNQUGzGYMZgDBzFR0lkIsVd9S0JfiQptz4Z3mrLpwiHEO78p1KvOfoyJRw1wilxKEI6IBAmjWbKOSEmWmbJQBVKG4DliRlf5Gjr/AYuUxXgK+5UYSc3Ek1QVFn6GFOdGvoGaIhmqAaAhlM8SOiaiurK5Du2pePB3u90PXj1NKpsIEOeWuO+x3h9v7/b7vp5hjSpJFTQiVGSvvm7peN/Vm1W7Xq8263azbdtW0dROq4JxDAM3JPzKBU9VuGA6HPqYU46y9e9gfUso55jhO0zBUVfVAMxBTUSQIngmx5LhiTF3X7e/vD4fusNs5ZhNNKY8zZlYCTTlmjgr0SUSIjEiMjIS82M8U1KcKoVhrFWC2kAtwiVOJPSBmldPTU1784QGAzJrgnl5cnJ9tm6Yyk67bu7D3VROqBghMlIgQeLaUMFwK/rWkFUoJZBlrOmNENmNEmtUwI9hk6pwaIHJwTbFeCaFmH4iZuPRq8Y6qyp2cn7x8+eKTTz7+/R9+79XLZ6en67quABlKwkNUlqTVd7RlQ1DWRTMq2ZAi9LAslnNvXHbZi5gvGiKwYwqOnRogBdh3mEe5zZaEBsMrpMYBMU4eJo+Tg0SYUKEmatgFqgx5XnyBqAhIAWCBXWdOmqoBGIOqakogKkD64UC3rDnnlHNMTKCG4JCAHQA4UR2nGMzVlWvWYZtXzrvUZ0lmhlQkXYiLNqaZSdaUZdWcrNvTptp4DlV4e7e/3PW3w7Tvx/sYe5FYGEO2FGSUupHSR46TxIfrBBNxKQuAAmrAQxnBw5mY5hxFhNk7whh6QGNmJFKdiXgwD+uyZiKIPAanHVHTVKrWDynFOIqNYwnuLeU8Ze0B98QrZocIkrOmjGqOrPIgJWKFhdtdrg2zMwRzjuvgS6qcqRAxHvDgRSj4McMHnGiOCQ/dYchyf7cbo1LtFNgHTx6bmoMzrww5yQTZ6RgIAHyVwLRWyUTWtIGh8dw4CowVQU1QgXoCMJzET0YRZJLcp6mPuU+WlBCdIghILsn4sjoV/wMAYwQix/G03j9t9quKd32vcCPc+y1/7+VFW7uxP/ytT583tX90b8zMoJT4UwG7sqmWjNIjwpSIgOk8ac/iADBPLItCO6qYgZkWq1Qz1bqqnzx5sl5vnz179vH3Xr19e/nLL79+e3l7t+tiyo7Zh1BVddvW21W7WbfbzWq7Xm02601bt3VV16Guipi85zmYNCnblBmGfbxLpse5sO+cHP7/sBVn5scrfQFRiiUulX08zJsKXLD3hXiCROgRAZBRVMHA8jzdzRWYwFyukiAqQLaFKQwARXjnuAoDwPy4KoACCoAiKQADFhYpARS+VsFNF2iFAEABVVH1A5Vb+IbJZdl0lnzY4mwIAGWxLB9LsyIQFKUMx2zeA1SqpjYHNvPXJcJW0KIj+1BMiIWTSXMmtHzoo7Bcs4IJmBBpXbF3XnLOoAldMp3r6XKxx3iEnIGpiZbcR2HWGCghsyurSSFUlPXPEIjJAEALnubmMLAcDkAR1RA1USkK9Ju2XdfNiyeoM2hhCJBT6rr+sD/c7/ddP0xZpinFaUhpNIlMUFVVHeomVHVdNU1V13VVex+8I0dkapJTmoqUp85UElEdhvHQ9TENfTd0h27ohhRjTjLh0AGimnOu6O6XcsUsSkx1XYUqpJirEFKK4zD0fbe/vzvsCGC2MRHJZambb8VSqFE21kxMc3jpCu1zUdnAguO2bVtVVQk8CZGYimItEjnviRwgvnz5qqqqci5t0/ydP/hb6+b01UfPQ/C3d7fvL9/d3O1ubu/FwFc1OTSRIqpbYkizYhOvoEogMHePOZdhJYVX/LkUQFUsa4aMBhrAeed8XbdNtapD63zF3iERsBGBc7DZNE+fnX/00YtPv//Jq5fPnlxst5u6qghRdCYoiBQ1WYWHfMQ8XmA5bTwuRVQqb0uqg5TmcLwgWWUqmOPkAkU6N78hO9icUN3600gxqgiROaHQMY8MQBoxZlAwy6oxCTNWYCy2MPAUUIlMVYsRKhIgIDs2xZy1vKOqTJPknNClnNJxvKhZUf1PiZnASAA8OWuc22wb9tR33TD2Y+18cJvTummrw93YH2KaVBVJyZBNCRHQrDijocdi/B58td2cXd2+ubx5c3nzOk4dz/sLnVVZj5PZMesGcyKh7DiKZQEhM3kTk5xVBFSJjLEM7ofNl5mlOOUckdgHXzUtMc7bSyY7dqqyibFCplUiVzyEAZAck0PJGvzYad7t+mGIWRSJsqiaMRGhSh6m7noHUVUsdo4MPSsvyBSggeUMTq1qgvMOEJnJe2bC0on52C8KHA8zTedxfOmmaULJexNK+XDoYjJnlThPIOyxrrjxFkxJBByr5yyKaN4jEYu1hT9cV9zWvvFckXkQr9lpJhNQyOaSYTKZNA0ZhyRDhiykwGKYQHMRPzIEMVMoxAAtWSKTi4v8yVlsm/Eu96uY1pOvnfv0xUkdeH+vZ23llgBTVYtJjffesSscWBExorL7ghlGExHKeS46pzL9BF/UWFQLKATHlI5KOZxCO3Bt7ZumXa1X2+36ZHu22pydv7++urkbx4mZQ1W17Wq9ak827Xpdb1bNqmnatqmD946do5KPx0KSNCi7Oinr2IfbmHLA8+78351WTuW7kRh4QGLgIVqYs2jl5AnRFX4KgqhJMXSAh1fAPDVDYQlKyX6UsOZRxdCHiMoxrCllR8ClFgJLTdkcv5SP+PVITAGdl899iNUWrwZduEizCM8Ronp8VAUuL9djQQceBzEwU7tKUF5OiKiotAMU2orODE8oRUhlwTVQojI9sxmIIcyqjHocBfNNUU1xTNOAXKHzi5LqTHifr0RZXZYEARGZgZaSc+JHQczDPV2QbkMs1jDkw6LzhggGkvO0Xg8nm74/GWNMonGK49DFsUtTD6YhBO/9XMVXee+DC0xEuCxwKlnSJCk+LDCqU4x930+x7w5d3w8xRjBgRCyfOAyJqABeIkXKQ5Ap53R/f39zczNN4+3t3X6/77tu6HubF1J7xA2at7PHDcYj4NUx+cK2KUFNeUHTNNvtdrPZNE3D7I7IzcwuQnLOMTsk2mw2x41K09Tf/8EPNptnT59fgEnVVFnzoT/EOJCDVVvHNOQppiw56xxlLlmbmX0BWkhnuBBiiiWaqWlehK2ogG3eVW1dr9pmXYe28jWzJ8fsiD3Ubdhu26dPTz/6+MXHH714+erF+dm2bX3whKV2Wmf5MzAjQEV4yEgu7ZhYgyJKcBwZdmRawLdIDqCqhGU+mAeoiAGCDxiCs5qSWBRS8OwaYM6oijmJqQqqWgItRh0AqMUnb3EbOm5wisoXGRMYY/GqRIIyBE1Vs2Q5TioAUOxCYs6cEI0VTJGkTqy2YiQk1GxdP1Ti/SZ4zwXaF1PNyCQlZ6tLqGZmiOQ41BWy88GH0pEQiTlUvu7HXZIxayq3TmeNVDgONpzZMAUBdMTecQi+JXSmkFJKOTI5nGmaD5fYwESkeDAxU13XTFY0DwuwO493JDADkzJ9GBsvwTuiIWFVubYJ0+T7waWsyMbO1XXVtvVq1VSVU5nG7j6lEcA0T0yGjs2oBDHH2QIQkXFmBCIizkoczOiZmeEoLG/zxPtBc33fK6OLjrIMw5gVEu7NBwV1xI4gOAyglTPnkCsCJcc4eyHVVVWHqgrtqmpXVeWINGIaYexlGtI4mpRcGgiYoEsA2SAZiTk1EoVokhFKIImGJpCyiIIgZZMcp5Ot+8FHVge7D3jfNPebpwT25LTNcdzHPg+9PZQm5t1uf3Nz4533vtDpHRF57wtlz1TxEQHW1ESEmZu2aQwYqRCaj6tRuWYiQgjkHGJJQpiBMVDbrp67arU5/eijj+7v99M0EaH3oWnbtmnaxgfPJZM3s/ZMzUCy4LLRsGWXL9ny7MH0aIFJKaXU933btvDvSEPEIvXmnDuul0vvU519iObkfAG8oGT0oWzmi9sYuJl+baygpLpEPnOupQQHYAawUDYMAPhxFIgP3x7rPNGjGQCLAOSjku9jeQQur7VFoHA5FxNTUV2IbjCndJbM+bGU/diL5kjtuL7rsjaC2axGUFag2bfE7NFedA7HcNZsKBORGcCsbS9iOS3ZES1LSraCl5tlBQHVYrOuea7oXi6SSO4P9/3+vlmdOOYZ8JpTRQZoWEYEls+aaSsARfjcHvuXYIkwzBCMkAzRsBSQqygk1VKeQ0QFJyPnmrb1Vb01UdMUp2loxr4eukpSKuA7IBIBlnWyyA4CAhZepiw6lg+Z4pyKzerhcNiPwyBZgvPoKfjgCklOZWbu0Lx5NTQV2e92v/zsl1VV3d/f3dzcDMOQcj7yTY/slZIgIioVTuzc8hN7Jkc85/nKE0rQVmybwtJ43sWCGcxSQzRXVD2OnkNVvXj1vWY9rVa1WXK1a7fN+dPt1eWzy8v39zc3+93+cOj6bpimKSURUVOY7RRNwcpGunDlFVDn1I2qiokzUTUxZBfqVVWvm9Wmqld1aDwHx56JkLEK1K7Ck+dn3//+q4+/9+Llq2dnZ9u6WrTXEUELSmdgwEjAiIBZVFMhpz8gylguHRIASn6QPZoBrbkADrFYfMyD5DhEtHCRzYq6OgCXXTh5nhMqzhlSCWyF56wWZLCSmGUtBBswhZxBDamojzIYlU5uhJhRRCylsoiS9w5RY0Z9xCEzNZEkKUpkAZzDRolEEGq3PlnXTeOcu7m5i6M4DGQ0DOM0xZjEMgo6Ii1cN1jGfxlzCojkQticnbjKb1ari4uz67vd+3133Q23w3SY0hDzmCTKnB0o4C4yH2MTJnKOqxCa4BvvWjMap9G5wXHF7I+btQ8mSFORySxUoWJESVFUS2BUUn245D1VVCWDmXN+nvUAEdUHt9k27NhXddfFcUxIvF6vttv12elJVTmVPAwdpwlpcQvBef6fN3Vm5Mk5B3VQ1SxqKqBKaI7JMTl2OBPGy37PRObA/djcfndIjFQ5pzJNoxa+Enhk8hya4FcN1+Rawhp9ZcGhVJ6btlmtmtV61bR1qHzdhnpdeQSNvU6d9hxHNw1OcyITBCnBlVJxDmJDNmAFTEaChOwQmQxBIGXLCtkgiqQITY3PVkMd3ClTv14fzus4JtK4G0aUESSCzYvlXGI9DBoeJKfKxPGwrqgW+q2ZSlZRdcxFaBkQXKaCtx8NzMqrmOaEt80bcQRAR0iNr+rmZLO+ON3mlBHROfZFY5yJaFm9DUQ1i8wDWGGWRlsM+ZJIzDnlfCx+F5Gu6w6Hw1dffTWOI/wNtcephLkrf0gT/s5X/fXPOQZ8ZdK/ubm5vb1drVbHqlEzyzlPMbKParDM2iUJPid14VEQg6WgYimPBtNHn/sQvM857kdBDHwriFmYNnR8/5nfgUsi/AjJwvw2BoBQkl6UU0ypOJk/vHPJUSJi0XShmc4Nx4lJl9zDssLPgVH561w7B8tWf060LBGIHpk/hWAMAIBEc2q87OLURCQXx/ksImqgCKKa9Zizz2PWKYlkgKg5ShynYZr6GB/QC5Hc7e52N5cqqllCUyY7MoMSsMwC10gLg1VhSQ7CcVO72Ecd/83lGIWDI2IKBvlBfX6WQjQAYAIwVFVAUVJlyDOxE6CUewuKlYuzpOMJAUklm0QohaYPzXAxQdtsNgBFK48XUFYfH3iJpxXUVEJwsUgix4iIbdOWEugiUrBEJnMQU6wQSxDDVKrWHZMjcoV8fYxyELEI/jZNU5UC7w9KB+ZkYRaJMT2+L8SuXm+jpRAIMbuK6nXYnrZPnp48u764v7nb3+93u/1+dzgcDn0/xphSKpaimouUjYpBNshqs3BiOVtkQDU0IwNiX1Xrulk3zTqExntXoK+qCqu22m7b8/PNy1dPvv+Dj16+enJ2flo3HlRnUEMASvay9NOlSJoQ53jh0XSRUppiJHRM5V7OaWGaA8RZLwURRaHMiXTcXdgyvSioGBggzzxyMDAxRC36fioimiVnMVGAnCVHQYAEasJY9EWSmYFzYIbzxgihCCnkLCnPjmREyAxqmrNleRj7ZpamOI6jIwQ1Zs8kaS7WoZR1e7pR1eGQcsqWEIH6/RQnydlAEVBw8TFY8IRyNXHZkxFTU9d8gt7RytG6qc7GeC/Qk0/GWS2nnKax+KYZEfoCdQJAQWIoOApEJRitmZu6qrarKoTGdPXk2UkI7oM5eRyHbu+Y23bN7LBs8VRKjsIAhXQGPnPOMRIxOQ9EyKX2zhCxrgOz81Xdtulw6M2gXdWrVVUFJoKcZzogEVqR0n6Yr+cdLS7xDGHBDhXRGI0RCA1MzObNYc45xRynmB6NFwBwt7e7xpNbhRotpdHUmLJzgZ1rAm3XdLYNrYeVw7WjlrH2VFe+beu2bVarJlSeHHEgVzm0nPtRmJSrUFFY15omTB3qyARICigGBiCIwhyQOQMqoTGCGQmAggpFgSgaFTU7RHXpxnM+PX2KF5thdHe3+3evv0z9PWl0bN/gudKDBFxdVcUgHkXEzIpSESKYas6yRLWUUkYcc06IaCqIUGBhmHcSCMxCjubqAyr4uoiKSZlX102AJiyhK4JK1lS28AYIxGYIVr5q4X2Cqc1ZbEg5j+M0xfg4iNntdm/fvh3HcbVa0WPk7d+4PX6fJY2Cx8d/279+452LEPuLFy8eKZDqMA6HLhp03qdfFcTMJQpYcg4LEVhsmfEfgpjHH2sP0MwHZzdHECXLO0csM9cJZlx7YdI8Pon58dljLadUKmkfoUpWVrsjM4aX+tgPMjWlY5V9zKy8eRy2M6x9XMaWRFJZ8udY4dHhAHGxloEyxatITKmsu6YKhMTIZCY55xTjNI79FLsxDTGnpJJMBfM49bv9fd8fRGd5e0lpf3tz8/XbaRhWm9P1dls3Kw4VIOUkBlbOEBAB5qRq2YERMZipJAIkXxFTWVMWhtMMA4mIRjUxRDNAQ0MkZUJAmQlDlnOchi5NY8pjmmKcJhWdFzeYK7M+vDc4bw5SNEnHG0+I3rtV21QVh8BNXY3jSEdob5kmS+lg4QGVYHHBvySn6B03dX1xeg6AbqmHPsIwy88luKFCaSsxDZEjPMIwzHyspebjmzyELyVORVTTnNI0jfvdbr/bHW0HTCGJjcmQNAR0VdjWm9XKn5+vX758NvVTHKduX/SC729v73a7Q98PwzBNYxymOMaYcip2ujmPWVJKScVMEQ0Z2RdbYgreN97XRFXRREEGX/Hp2fqjl88/+uj5R6+ePn12enrerlbBOcRiBaGFQUwlgQVaELG5hz9opS3fs0jX9Xf3h1irZ6+mBT9gnMdoEWAkdoYoMoN5vAQ3gIvIvAIpFXCgILnzXkARgFFBoXB+CsFQyzdClMjMBdCD4jjkfMn5FoyhJLNsmiSmaZiyJECEukJDmyIUifnjPDYOU3/oUEEqZRZmx+xiGqcp7/fj/d1ARFM35iiH68ms0KyP+6MHXPbRNsxm8omCARmAShYBtBD4hNvmdPt0c+ZefbI+Oa9doClNN9d3Qz9YIcDWwXvPjCWMNsMUVcWAUNTiJAiurtrVar1ebT79/ot2NfOuVGQchv1uVxJtjgMzA9I81HWmicuctM6FC0TESuRVyDlaaq2IuKp81bqmTo4tpeQcgqZp6tg5AwfsVEVzlpwQrFC4rTjSmSEAIR1nRFAhBO+YADVnkzl9NoPMWcZx6LvDOAyP51v3H/yj/6BydNb6QCAxGhh75yrHlVtv2ouLk+2qqj02jlrHtaPKcRVcVYWqDnUVnGdDAAZiMs15PGgcNRc5JrCcLB3QJoZIlAu3sszsjgMyKaIiGREYogAYmlJWiKK5wNFikq0Kq5OT5y5sUw7bu71bX7RPri768fkP/6huV+VMqqr66KOPnOMQ6rquqqoKwZdJMKUEAMyOmBBNRXPOIgqIPMO/XBICZoKIrtRLIxASEjp2wXlXkouEQFCqtcSkPMLH6b7MiDpnqhGg+MEaFKpUuXdl/ZrlzZYgZjw5PXFLhYL3/smTJyJS7B7/XQliVHW1Wjnnnj596hcNj/V6/Xf/+O8bQF03zvljIILfDGLwUWYHde67Mxi2VMj8+iAGvhXE4K8OYuD4zR49fz4ck5ynYfy7f/zH6/W6PNc5VywFljQ/HNenx4PKHgVJ+DiIAYOioDWP2oUTU36dyd36cFD26C7MGLKJ6KIuk8ys8EodglnK0xCnfpq6mIYpjWlm95mRxTT1/f73fvBHTTOPFx+a0xfflyx12zarzWq9rpuWQw1IOYuZHaPKBfleAE5iAJAcCdD5QMwLLFNuRlGBERXVpKYliAEFQ0BiBECVWVYspxTGPsepbKNzFrO5mqIgQfDQ92zmepadp+azVz901Ww0WFXhk48/YiIDkZzGacw5P+6dS+av3KljUFyueo6xFL5PasZY6ormeuiFpVuC1nJkRfl2vvslspkNDbGAMVw8X3FxnFlAoJnyZGZIxd8+9V1/d7/73scPxF5m3KwcAFQBQwDnveMaoTVQUNWskiUO8dB1+/3+/n6333fDMAxDjFMcYyrIjJpoKRORlFOWEsQgITHgXOjGFIidI89MyBA8N3U4O92+fPH85Yunz55dnJy0vkKmEm2Lzl6oBEo2y8UaPJofRLQKWle+6IkCwKpZ/9Ef/LGIVaFx7KD4VRJxQUWLxzUBkjOcBzsuz1nGTeHcQBFFhzmJuIiBKcxONSXgsdkVpPyREJ0jIpxJOEIIQA4QwbQ4lpZ+YSlL3+dpzGkSRKwqBrKUpr/33/0H69W2nEvdVD/4vZdg0NS192Gu/SVXcqTOu6qpmBhkJUlzymZQ8mhzdetxkjlONqVLl8lIEYCsoMAmknNKAmi+gtPz+qNPT84uVqHimNLtzd0wjgbmmEK1BDHISKxqcUo5iyFkScMwmYLj0LTtdrO9eHJSN2E5l9UP/tYfAljdNuvtyenpE3Z+GrucJ1Mx1WKqk0uScqmpRCJXVd57ZFcGAxIVB1DnQ07SHfYppSJVwUTIDilgsbHUYuJmuAQxS8qwUOXmIAbNmNB7ptkMZ4Z8tXD+RKdxHLru0x/+rXoxGQUA/LM//3NCcDQXhC+3dlaadd65IqhFyIi0wICzP/dRDKgsPmazksQxcWcGKoVfdhQ6WmYVfACXcIH7j2WACyOgnERx0ENiM8pZpnFMKamqr1cnT174qgaAlFJxMJnnm3kSAZihj2OO7+HoHh/JcQE6PrRMf2X2o2VFn590XM7xGwmX40E/mj9tYaPa3HuPT1ymUlV2rm3bwu9LKe12u+OOH/4daeWsVbVA+iWOGYbh7ZvX3eGwrPdzpmf58mH7MDCy44V6/JRvf+6vOaxvvezbb2fffKAEGyq6Xm9efPRRMeYVkeJU/Di8+y3aEZl++PZBV3jcqb7zwB/lRD40kUA4jj5VKYTPIwWmvEI0N/Xq6ZOXVdUAQI5Td3eZxmHJkziaUaVZqHT5XPzGBV4WrZkY9E1O5kwDPoY9D+d4HD8lJprHyaJWbMdR86iQFBcH14djmf+bC02zvWAfACClvN8fpmkqH3+shPpmWy7rw2piMEeTM1fDyhnhwxwwfz0e1eOb/ugZx5P71guPV+DxHUaYOcqiOeeqri7Oz0IIACBq46RSXMYIZyeGR+yfeackMttLZjkywx8IWXM30eMWYF4vHk4Cj7TZ+fyKv4TnhcXjXaGyzMdvy2S1nP7DDPdwVc2MCL2b5VWGcfj6/ZtDv6eHeO4RsXb+df74Dzr/oyQs2HeMA3v8+AwEwoJvPNzghfxW3ueDCRweNlFmCnNxoBYOGgKCqa7Xm5cvPmrqFgDilK4vd+Mw0QITLaHxfFLz/LZc+tLjl8gZHvXgh9H0rZ/weKnnjRCB91TVznkmwpJSKbwfXHZQy1HggvPO411nEaO52t97d5S9mabx5vLd0PdzTtR5JDSVh1c/XORlJVdblkF66Nl4HCpLGc3CXZuL5eehsXC57WGGt4dzxuNqD8t6ikfm0PEKleNQFZG6bi6ePgvVInD/N7W//137Xftd+137Xftd+137Xfu32f6d2eX/rv2u/a79rv2u/a79rv2uPW7uJ5/93MBM7BGQNMPBaEUGoqA4JnnOgzJjqIgIzEyypWQzifNRwqY0ImAHXBjZCjmCLu7RBahcuOqIDMzoHQZPZhZjKbtAW6pU5MHx9+ETtpv1x9971bbN8uCRIikp55yOLc86mzbjfuzYez/Dpt475+lXCMrNsN5vmzj4le2buNejvNMDip5Sur+/neJEj1y78NFzjkD1MZu3vAN8x9v95kdmHwKcj/C8x5kQsznNvPSU+RlHGLOu6tPT8wKPD0P/+vWbw2H/7XTSr7gkYGbOu7ptq6py3iOiZoFSKsJcRKdn0V+DnNM0DjklMPAuNKvWO8+qYKBgSWRMMecMx3SFgZVaKkIspEsqHfQI4y6MFVVRqUM4Pz1dzmV48/rNYX9gZixGz98pUvqQSLAjrkqLUyM9olockeBv3giAwppz3ocQfLWUtxJ9E3gHzDmP4xRTUpkJufOdn0ujF6KWSKirk7NTHwIAxJSvbrtxSh+mU4+HD9/A9ZfEMS6jW+0h90pLB/iQNbV8eUCnl7RSeWBJacwdy2zm3NCsb6UiGtM0jV1Ok2lm5+p6Ta5Wc00dLk7bKvzb1oEsHENYWEA4J5sfxumxPQLMj+3DXAzaNx8HiHG6vb4exn6mJC16KrDoGy4lbGWGxnlCm4X28AjhP+SNkJ0PddMyUREKnMY+piiqizJHUYImRHLM3ocseuj6YYwpiff+5HRTVQHnsTYCQt2uVK3b7adpVBMAYHLltjVNe3pxUcbLOMX319ddP8w8MzDnXFU3RZyDmY9pBFHNOaU4TdMgOSGaquYkBsCLJA8iFuZNEaM69rf5EiDNfRGRHHsfADCmJLO/piEyAFiROkzJzIpUIS9CfHMyZ8mSGsCqbZ5dXFRVAIAp5av7Qz+mD9kHDyldxuMYX9jwkotqAhE5H6i4HC03b875Pc6YLJ1hGWAlB7OMoEXYc/nReCERGmDSYvT4KIuKxQ2l+NlYXbmzTRu8A4CY9Xafp6jL/PONXvod7QMm4oeH+2vbr3pn++D7h0vCr3jzct2qQGcb7/0Mwbj/zf/p/6hZ0yg55bwkVVXMIpBC5cyRgKU46v7epkkBbL3hZy9D01BMetjl68s89EW9mjh4BCzln5JyCHpyxm1tgXUa7f4ShhGJGR1QEENIiU2ZkKqG1ls6P3XPL2oTeftuv9vHrC4LFGmrYTDJYDTrpUlWkfTf+/t//L/6X/8v/+Bv/xDmGTumOI3TeDgc7m7vbm5urq6vb66ub25uuq6XLGDGTFVVbzab84uL5y+ePXv2/OLJk5PT09Vqi99in5T5HwCO2ojHr799ezSTAwCAlprV2Ym0FHe48ub397f/9J/9V1+9+dJXwZUCjXl8EgMQzSrDhW9DqDhXLZZp9fHq+M316Vf0jDn3vOhBLUHio+zszL0qZFsBUcim2TQ/SsOqWM5pmqbvfe/T/+if/CfPnr0AgNev3/xn/9n/7k//9E+qqnI+LHWGjz59EYgABIBCeMynF2c//Nt/++XHH59dnHvn+sMAiM1qtV6vt6tVXQcuDHbV+9vrrz772e7mBgTOzp/98G//nWen56sUMeugdtPtv7h8e3fYSUwioool903ErgmhrkPTUKjAsSpITpJFVCXnlNI0jn1/+OTVq//0H//jF8+eAcCb12/+D//b//2f/emfrdYrRJqmMaU0k1OW1DgAPDiPACAaIwZywbnWV3Wo2qZuqqqpgvdcPN4BodzBQkUxBEVk733TnJyfP3v16tmLl09fPN+cnoa6JuaSu56JjkB3993nX3z5/vKyP3RqWle1YzY1zSmnQaYYpyn243ToX37vo3/0n/yTJ8+fAcD1Xfd//S//4hdfXlXeMS+sDijR0+IqWYIMmH9gJgCUYjKXJtVsiEzsfUXIs1FvlofFG7FUy2qhqsxdbQlkTR1Z44gZDFVAs4Ajv27ayntCyzl1Q3/5/qsvf/mXd1df5rhbb04/+cHfa08/mWT7g08++p/+R3/w6tn6tx6Iv3ocPIwFgKPRzOOWRadx7Ich51y4d47RO1eFynmHRQAQAAAUTFUXknghMRDArIwyL0q0uEzM1wQB4Pbm+v/xf//Pf/mLnzpfqsOBmL3ziKRmKckUxyxJwAQwm2cObVOvm3q9buqqOGqhm5cvJPauas+fvPj+D/6grZvDzeXV1198+fmPry6/PvT9FMWUqqranqzbtvEhbFbbJ0+e3x/G/+9f/PgXn7+9vjlcPHny7/+H/+CTj1+iwO72+vXnPwfHn/7hH8Ux/6v/9p+/+eKXQ+qIadNsm6ryTD/8g7/1H/2n/5NnL18CwPurm//zf/5/+4uf/owJCY1MTk5PPvrk91598umrV5+s11swUIUsOvTD3d3N1fuv3r7+6WF/zajjON7edTnLalW1bV03DROnJOMw7feHcZyKhF8WQXZV3foQiJidC55Xm8350+cGfHl5fX93Pxz2KupDA4Zx7A+7u9uryxxz1a6bpl6tQ1U577go3RGicx6JwPC/8we//7/4n/2PP371AgCu7g7/l3/6L3/y+r1zvFCVrKghoKEjqh033q1r1zgMrJqn/rCbplEkV1VzdvG0bppiWiFqWSyJ5WzZ5nhYrWgqIyFn0xhTzJINBUhnCytDBFcUWgwdWkNakTmmqHQdcVJzKASz3AUheuJAXKLPH7w8/x/9wz98cb4FgLt9/n/9yc3nX4/hyNBFKOxifDSPLV3z0WbmgWj/mwUxv8Ezl3rMR5HUzHguL314h9k4Nun3XtT/5L//5Nn5zIV3/82/+BMRzaPkJEmLGbZqUh2BBWqvgQUhjn2+vYJhUEQ9OXMffVqv1xSj3d2mr74c9/dZDZC5aiokKkG1xOg9PH0eTjZUexkO8vbLfEhAUJEDV2UDSKMTI2JuN3zxxL98Hr73ogFJn39xd307jYmnyVLMYy/DZI/iAAPIABGV9vvDw/VYaE6PMQhVncZx6LucUk65lFKHEN6///r9+7dPnzx99vz5+cWT7enZer1t2qYKlfee3VGdE74FUvzrNV0O/uH2AcCy3QLEBzvKaZrevPny5z//cVU3c8lSifSJHGAhWXOpQgUj1GJFVioPFnnGo8z3bxrE2ELshwcobRGNhQcyqSpoxqSWTLNotKJDVMSgNKY49L2ZHeVtDof9n/zJn/zX//U/ZQch1MzuWJY8f/pc5zDzAlUlxvj05Yt9jPs4Pev7umniFAEw3O3ONht8eg7rFh3nnLuuu/r6zZc//cv99TWC7/f9+uQUUz5MEyQZza4P+6/efXW3v8tTUjNCX3Quyflqqqga7H4nRBkgi+YYc8yiklKKcRq6brfbxXH6H/zDf1gOdb/b//P/zz//L/+b/2qNK2Ia85ghP95LLTjZLB5TtMwcokeunG991dT1qmnaul41oQ6h8sF7512RDZ8nC0Nbgph2e36xu7o5XN92u/vzZ882Z6fNesU+EDvEYtuh93e79+/ev3nz1X63kyx1VTGRiWiKOg0yjjmmqR+n/cGZxnEqh9qP8We/fPvnP3ndVsE7PjLqCgQ0b+KKYHkxf2MKIRCRmE5xOBzup2lQU+f8ql2HUBWNmVKXsaAraIYlcBQo9bmmMOuAgIlHazw6BiAV1ZSzY940TRWCYy8i3dB99dXnP/3Lf/n16x+Ph/fbzfnvX+v2yTDa0ySh//e//9sNwd+4qRZ51iSycISJhmF4f3l1c319d3c/TZEImdExVCG0TVM3dd3Uq/X6ZHtaNw3PUlGlPzzGn77RvrkNnabhq9ef/eKn/7KqvGNHBkzkfSiFljlLTFPWLGAKqBCIQxXqtm3Wm1XT1M4XgYiitoLsg69XQO7s4tU0wfXl4avXl5/99CdffvGzt5fXXT8x8na7efXq2enZSVXV56cXbHa37z7/5V/+7Gef3dzs94dX3//9p3XFrHhz+fVnn/0Eg2+fvohj+vyXP/35j/7idn/NzM8unm+3m6oO2/NNyrGcy6Hr/uwvfvRP/8WfhuA8A0O+uLi46vJOUPz6Qp1DTlkPh+H27vby/bt3X/3yqy9+0u3eM8kwDO+vdinlzaZerZq2bZldjLnvxt39fhxGEZOcowixX222oW6IHDt2Dk9OT19+bzDwb776+uryqru7zSn70JpC7Pf3N9d3b17DFGF1Etar7UnVNN55YkJVcI6ruibinBXAuv4fl3Ppp/TT15d/8pPX3hfVwrmSBQAQMBA1jtaVP238uuLWq+XhcHczToOpNM26j1q3bS6lwmIxS8yQskWFwr9VtSRiAEQuF32drJNCVCpxTAliPBoiqpFH2zht2ALzoPR2wiFrwEw2K6YzkiOqkE1tSiln+Uf/3u+VcxmjfP51/6NfdpUvRhmlZOdhu074GOCc4bqHfrrseX/tOFoqd7577dRH7/NBparpN4KY4y47icVJzHSa5Pg+DhOxETvvSb1lKeX2rGpAqhWrd0LEjBJHcN6YYbPhOngfmBlTTKs1pBwlCxG3jXeezDglGjoMgderzWbj20o9xbt1F/dGdcueAmdQy0aKaAHbrd+e19vzan3iSfKTp4Zu3Pcw9DoOiYojhoAPZAg5a4oJILVtQ4swHSIxV9wEH9qm3Z6eP/34eyml1HeHq/fvu+4gIl13uLq8KoJsh8Ph8urqpz/9+cl2s9lsN9uTiydPPvroo6fPnp+fn5+cbJvVap7W51DUZv1qA3ikN/+btblkuPyykL8REIkcPMoHLeeC3vsi9+l4DmLotwtiHtqvPbhjmELKv1EQgwhqYIqsYPo4iEFEFfHeHz8Xiaq6Ygd13VQhOB9K/SoiLsUoAIvWraiKiPfcNHVVBe88Idft6uTJM1Sdbne16pMQzpomI9xO4+XNZXf1zsfuJGCo15tVrWm8O9xex5JbwclSs2rYU5bsOLT11lcNeu9CqCo/5Xh1e3t7OEzjMMWoMRX9uKK4ksYxT1FyfiiOwbnEV0wQ0KFjc+WS26NalLnTlMJcLN6KhMiZeVDN0zSodpKaKq8ba4nWIbjg2TlHUJQlilINqk673buUu9ubq7dvzl88e/rxqycvX54/e96sNgCcYuoO3f3dTRw6zMlptpxyTllVUoKUOUWn4hEr53LTbOvGPYSPSjgxTY7RM8wlGXO3mnMlROCopIMheG7b2ntvAIcexv6uT8OUxsp7an1bhaoKiJRSNgVmZ0opWc6Wk4mJgiiSQNEE9QBYdDmNpQj6MohhQhumqTcLwZ8gehfCarPenp52+zNLPaAfp+iHIbtokH8LRPs3ajPOWjI2h8Ph3bt3+/2+FM87Hy4vr/7sz/7sF7/4xfvLq77vAYwR2FkVXNu2m83m9Oz04+997w/+4A+///1Pnj9/tl6timgYGAOwzS73sOQP5z5TwvcjOOmYz07bl89Oi4zYrOfqiiTwnHxDArCSm3QGNAmYC65qfNWGasXMaAlUGYm9C01wzu338W4/vr3Gd3e86+B+N/3yq9v73WEV+KXqs2cXRARkRgYIIcD5OX36qfvk4/b0vF41kEUQmRz6ljmE4INn9/LVybjf0lc9O3750cnFs2f1yfr5D16GpZRXTcdxnMbRuxU55whM9HC4v7+93t/druqmbVZpmq4v33397t3V5fv7uxswa6rGkRDg2RZSzlXtKh88e0IEZqsq2mCsa0mScp5yZhc225OqbpBYzVQiI3omJG6qsGoqTE2aUlGedZ6l8kPbTMQ+hKowCUqmyoCIvPdt0xBiN0wfJAIRvOPKe+8X+4lZOqFgHlhUAYwYmX0gckFXbQiOmeq6bZrgvSuawoRSuhsykJqoIYCIEqCaIZlDbHyVFPpso2I2LPWtCECkCKBGFWLrrHHmiUFhhchZgwHNZUnF395IchZNSaM8RB2I4Ekr1oqIyZCMlirDOYihI7h8NIBVOD70GCP5VW0OX8qLvs0YKN3jAfukx8SID9Jsj4MYIzB05tke46ROJ4Ml+1D03IBNlYSNEZ1D55AZTNAFUwPvwHsGYIRQBd+0qW6maogJ1Hs8WUOzQnKYEh52SEht5StXV8GkJt9OwQzripkZEgl4JCPSCuuVC20dah8qz4btKozRxEAl52TsxDkgpqp2SBhTZqI40uPFsqRLEYDZhcqFqoZZEeP5k/Mn4zgAQd93V5dXl5eX79+/v7y8vLy8HIZBxHa7/f6wv7u73e3u3r97d3Fxfnp2dnJyut6s67oOVeVdYGZbarb/tRJKD7el1MrPCiKiwzDc394h4cWTi1BVsKx/vLT5NeXBJYihhyAG5yCG/k2DGFiq1R6CGHwcxOCcDbDidIGGqLZ42qABoCofFUuXk32QDmNm79k7x44R6QG5X4KYLFKmB+8cIpqITKNOg29rAp1yNFSWxJoTYJ6mcXcb93eYogcITI4RTUyzmAAaEzbkibcpp5Qmz9VmfV43Gw7eVSEEt+sPt/f3Ocah78dhtJxLvj1nkRTTNOWU5FF+5EgAKhntWfCJ6LuDGJjLLmlOlVFGEICYZTTrVWqRyWwyE7Ok1lRYeQ6+eAXirKUQ4zQlGfp+d7+7v73f3d3e3T3b7TdnFz40Kea729v7q+vDzXXuDhgnjrlY1WHOJOJFXDF1I8zeFdPmci4qMo33Q3flbG0+lEmPFlHHchJMAA6NkBAEKzBiBGTvGUBTjn0cDxppCFh7bWuqqxZCReyr0KjSMMRhiFM/xaxZs4IQgZEr+q4qAKCApqZkziTn6SCy723wvlm17MPGCIDYVd5Xnr0ztJSmKfWGndp4rOH+m205y36/f/PmzY9+9ON3776eYiSidrW5v9/9+Kc//fKLL29ub/u+V1U0RYpFut6H0Dbty1ev3rz56u/9vT/6B3//3/MfvfLsiYOBO5ZQ6LHHz70CEeTxpxNhXYW2qaoqMDtTw1lVb4FqzcrcwYTBI5Dz5sRVGGrylQ/eMSMSqIBaMUsA0JSGMWs39MM4pSxTzPtuuN/3WvPpNMnseAwIKMBc8dkToJqDXzXtqg4oOSNZkjyl7EkBMDi/Wtfbk7brWlUoOGLhrB3HvqrGKU1jrELlmTyhqg59v7+/u72+DN7H9dh3w9dvX799+/Xt7c3Y70hi8a1w7JqmCTkTIxqmKSKgmTFi09RV5YuetsuJXGjrygVvBlmymIAKmBIaE7pZV1PBMoOxwzq4tg5oUHK5ZioKWpgrDheeFtpiIQLLoGYqQvhUzFxxcQjHApODwWL3ioyM6BwzharyVVX74JiLKVBZCdAQQA3VsCRi0RyBWhHSIccuGWoSyJANBGCWip/pYhQQg4PgwCEmBS8gZl6RFIwW0xAtujkli/UwWBCAQRmFZxcOWCSZliT4LAoFsOAo3yZY/pogZvkg+M4gZn78QT2Hjs89jgx42OMWyoGBAaqgMn0goODypAAqpgX6LXajIKBZ0Ay47AntSGhTxZxxGi0EbLZVXWHw4DgJDXXgJ6fh7ByqVUqS727yNIDDhEKgCCSuUYeANSCgJkDCyntyTjy6CgELsFZWYiM054iLr2jOZoyEzIyErJof+XOXM5Gc9/d7VV21q7ptHtddhVARu1CF7cn5+cXzT384Dn232+1vr6/3h8M0jrv7u/fvvr6/u/vFz37+c/1p0Qs/OT19+vTpq1evnr948eTps9V6jcyLp/mvBIcXIvA37qM9oA5IAA/O233Xf/7ZF3/2p39e1eF/+B//h0+fPf1VHcIWMOevryj7EJ7+Ru/Bbz04L73f7mUf8qzK11lp6huvn7v6rz4gO4pXgB2FLMD0qIawDJH5L2WciuRx6HoUlw/c3RLROEbftPe7O0Ubyd333dQfZBqk8LaHqY6RGbd15VwVEL3DiLhTOEzTcLgvsqpM4EHZMgJqjtM49oeu2x+mcSzjwAxERHJKMeUUi2nIfCpmRYl4FqjFwqqbQzuA4+q0vEBNAbQ4qSEUUX01Q1E0nbIMMe/7cRcOq7rerlabtt6s6yZ4V3SyrPisGYhMh8M49Ve311+8fr199vnJxdPTs2cAeHd11d/d69BbjAjAhlQSNkjkkB0jmBnIYst9nHpynm5v373/+vNxva1CDYBMzM4TcgGuC9rHDpkQyeqqtrzN622oVikOkoYc+zjuR82SDpL2wVsTfFOfrFab9Xqrhvd3+x3uIfWSBpEBIbNzSBUiAzghFc2aRzNTcCnuD/uvu/5yiveVP7l4smpab4z9OMUcBSbgBIRiQ9I9SCN6MPtg+f+bauM4vnv39Y9+9KN/9s/+37/4xS/2h73z7smTF3XbAtLLV68unjxJKeUsIlGk7/v93d3d3d3d6y/f/OIXn/3or37y5stfrmpa1Xx+fl4VS3AAs5lAcaQALHNXWdge5gw1S6KQlHI2EyT05i3pFKdpmsZxlCyE4NhVVd20m3pz4dsVGwNozAcArIID0jTGrATUVHVDrqtwquCqshumiZ0Fh94VTeQ5megUUSlawCqdPbf2gsmvCbec0FJMgN1huLnqQg1xFF+zKhOHZtsOXbx8d9jd6cn5cL5+laZ0HC85pXGM3o9M4MmrakzTfr97f/k2S26bVdcNX3z55dX7913fSRw8ZI8izgCUmRCcqkwxxnE0A+9dqEJdNwC0jDxDJjCTnGIqjIFYhUpSBCCVlFMc+i5Oo/POIznS4KkKPicRM8kpJVVAQiAmRMg5xykaQIwxPbIcWfRQAHG2VkYApFkBEsHKEDcQVTOlQqcHUEIknosHABTBXJE/LcacYCBWBOQBgJmJmZ3zzoGaN8imporF2n7ZIJkhzQ7PMIcTRVpXM5gWCT5CUkNBA8gMmSHjMei3IrsqYFSY4wXvIIBFUFQA5nn/g+XGHn39jYOYbxvCzBe18E0X1jIAzFo+8IADfbDamGFxMbIPzJOcZjMzgQwI6BYLSzXNiqbgZ24eIBTVWQVSVcmmYoxQBVitytY8XJzyDz6Bp89zu5Uken3Ft5d0dx11hEocqZ179kA5+AQumZqAQjFiJzPMGVJEyYwAImTmCLnUQJkpLEDD0cikUNaPZ9J1/Y/+8q/2u/35+fl2u23btqpr5x0iiIjzLlTBh+BDWMEazp+8lHTY7/t+GIbh9ubm7Pzs8uuvLy+v+q4zs2ma3n/9bux7SQlMq1KOdRTRI0J2tMAej3T/HgMfjxk8BX2h+TqKximN43h/t3/z5dsf/dVP/sV/+ydPn1/8/X/4958++7Ud49c3ewiTl7KAh6/zD/bws8EsRfT45Q8/LO9mj/7ywQfZIpz77Sd8+8BKwhPNHIIrMpxoZhAFdTkMAyBkz64yq/qdi3voKvPBO8fBjdPEU8wVGyAZUJLUjzmbQaWiTOTJBbBg4J0jplGAs4CZStKcTAQdF6RDRNI0jX0/dN0wDLDY/eScJadxHLu+G7ruaKEAj+KTxxd0edAWL6eCa8IxuEEApDn8m6WaDQQ0iUwxjhMP4zjGaYjNlNt1U9dVqJ0P5DwVGUozkSlNfXew3e76fr+9uXvyvK9CNewP2g+cIqsSogNiQ4aFPk2LApaCwgdJbJU8dPf7+0uQqapqBFqCGARTQmAuQUxJ2FoKQfMhpb5encYkkgaTSfMQ45AnI5vWbd2Gugnr4ELTtACYpimNGH1OPEjemyQ1YmzrEJwPhhyj7A9DnMYsME13h/3X+/3X3XBbV31Tf8x8At6JqJUKRgJAVcuqEWEyiH/T6aRChZH7+/svv3z9i1/84rPPPvvss18eun1V11nw2fPn5+fnTduCzc8UiSrD4XB/dXn5lr7e7/rr69vb692qCZ/98R9+/PKiDug5EFWw+CfoAz4P31HRNHcjUANVM1QzJQAzijHe3O7v90M/JDGqQhU8h0Bt5g36BnzQ4LIBjIMlAEt5GrqDiLKrVuv3ZzfXYHT7/ub+8vL+7naYMqArCtqmpbvOW3xRZsKqEZSolkxyMRUoFBA05dI3GAms8nx+uh7C1O8MzCCqTfoAkBmIFO8dnX9IkmMch+7+7kZVg6+7rn//9Vc3NzdxGkFSRVYxakWOERkRTJLEMQ7DCAZmwbkCaGBhwBMUG5moGcYxZskIWrzFDGKKU4xjmqY0jWoOHBMTzDkfNJ0nASAERlqs2VJKapCL3vWHd6as9ExLAIGFq6IE4ACYdNnUgarGFE0yEwKTIjr2ZLQUX8Bs2YDzqgIA8w6ZuCS4ight4BmsK3T+2WlJlzoALRlQIDAsfrKqhoIKWkT8ZocrgW9G/GU+0CJ5/ODHC0vE/de03ziIgUfBCjy8+/Fx/ebj34EO2AfvozPM9vgZbjG9QyR03jMBiCbNmjOoQcUlBUsERHMcY0Al9kNIlU9np/DsafPqWfO9j/CTj6enz+LqVJPw5fvw+c/hL/887t/mk1hTdCts9s7vqN0DH5wbNPcxm6lTBvTRYawpDs6Q41jnRGZcXKaOEF+JEYrEqGP3GLq8vb39L/6f/8UvfvazFy9eXjy52Gw2J9vt6dnpar2u6mp7ss35YrNdh6ou5d3EvN1u1+utmr14+eqHv/eDYbe/u7sbh14M7m5vP/vss/6wP9zvbi6vT88ukLnQ/Eo4PNuiOO+9r+s6VME79wBMlPsxgw1WckHHiz7sx7dfvfvlL7/4xc8/+/GPf/6Ln//y9edv/u7f+zvjMH3jBs7h/1LzQvPIWfiC39Gw4BliCDinzREZrQyasog+9FJELI6UALOL9vwPURFtmUahBL9qBcbTR9r5JeIt8rZgBiblpY+Dufl5diwsNDMjxpXDhiGwTRmuJhtzwUFMDIncttk8q+uzbl+Now0e65a3Jw0CACr5pm3JZKrWvdF0d4g5U1gBFpwOui72BoFQPcSseRrHrldRAs/sfVMZOwMQtZwlxxj7oe/2OaUUp5xyTElmV+Tu9vrjnNLxdsyx6qP7Umr/VcUe8rtERIaEqARUXKGLCjUgFBehgucZWDbRmFOKQxz3/f5uV62bZrNebVbttm6aqqpwthk04yxpUhsOByPyod5uThrv3dZhnCAly4JiDoBsVrqVwqgFy4iCqIvtd7krkqcUu3EEs4nALSL6ACZE5hiZyDlCBDTNo4vTfhgPq3EEYMk9YUSIIGPMsYN88z549JXbrtpTSUJMSOp8DlWs42jaWR5in9m265OT9Tb4EA6djod+311OwzgMd/34tu+vusOdZozT3mRkv/LE3nnnAyIX7jAoMBar8+8aAb++HUP0b7weRfJud/j663c///kvvvjii77vmbltVu16vT3Znp6dPXn6ZLVawyxqbATKbDmN3f7w5s1XlW9fv36zuz8M3fj6yy+//Pzp6bpqQxvqFZIvL7CHhP88ho+ypsejQ0OC2ULKlBjNofZxurm+f38bh7ym6vS0empunYDiFMZ928Z6XdfOZdND1+9vbu7vdjd9fx1jryrMvmlXhKzTpJIRoB+nrIG4EYkiUpJTVurIDEw1pzgO+3F3QKNm82momAFWjX92XtfrZrOtHaN3sqrs4mQNT9bjaCrB0eZ0s+VFrsIMVNEMmR0h5SQxxpBSTtM49ACAwPtDd3d7tbvfpRRRJROodwSeggMAyTJNU4zRRGd30MIbAMu52OaKAmYVURvHaGChcgimkkVhGoZpHEWiSFLJAEzoxLKiACMxAxGAIqB33gc3C6bnMhMVFeBHmztTMmM0JvSMfi4hmZ/JBh7Bl7gESETGYYjTmFKqpujCUIV61ayYPYCWKBVNEcAxEXuwUntakBwTEQNwCMDokDJKyrNFbPHNEARFVEVyTECe0BMqgoBKErU5ow3IQpAN5MGBDgogiCZo9AhcUYASpP3a8fPAU5lHzqNx9R1DTR/SRrhg1QDwQSzyKIL64IHHQIyaqZSi2Md/cEBASMSOmJxzaJqzSBTNJahEnjOyujiOIrmCqonZ0DS5bfHJRfP7P9h88rE9fxpPTsW3MkZsaqcRb6+kmWBzADY4UbdX35Dz4AgJjDrJgNY2rm19HcgzE7Cq5GQpajbM89o6n7iqFr+opfj34UyGvv/Jj3/8p//iT549e35+frberE8229Oz0812027Wp2enT55enJ6crNbruqqI2AVf11UVmlBVIVR15U9W64vz85yzArx/967vujtXKHvbUFXMXDw5Zmgo5yiCKcWJClbp2LHzznHJmRbgaDbOUJWcC/qyu92/+fLt5599+bOfffbZL3752S+/fPf15e52/71Pvif5bwYe14ebbwrAhe2tplQ6E8MD/GIAhiozsWXuNmgLFbn8jI8JPUdL4QU4KWEVGDKAIDF+x/KiH3bX8irP0HhoHTqEm8kMgKAwhdU53mw2F6v12e5dPfTinGo2APK1bJMAOueFvYpN/XS4vc+q66dGzEn0ME6HQ2cGbSBX/FdEi8lv2Q/mnCEly2ZZm1CdrtaaskMcx2FEmNQsZyisjZxM5PF4xQ+jMyjBJSMiA6ItujG4SBxJYTxIAWln5BGKL/WsroJqlk1VNI1pGGM3Tt0Uu3Ea2rhu67aum+CDc1pibzQF1JyHw94BuHbFzpN3xARZUBTFQIofngmA2MM1/7CZapI8ibBkA3IAWGhPCAKgGVCNZmxJLQHGNEwxpqRILsUup95kBJ1ApzTK7u4y+Ha7eb7enFd1y46m2KfU5bzP6TaON2O/77uEmir+aNuiD5SnlIab7v7tNPbjtB/TTZx2ceqYDtNwNw63AUXzgACMjMYAZEoE5J33ztN3x/G/eTt2yjmKmKbp8vLy9es3r1+/ubq6LiophFTXTdOuVqtV265X63UR0UciJvCOVPK47lX5+upuHBKoB6Cr9++//ur19z9+8eT8KfHEFIptN4Asn3uEZr/ZiIAJmZEIpMhooUOu0Z+AF7FWYDVmJ5OqJtSR7w8V+7aq6kDBp2mSmxu5uZ3u93fjeK+aEcm5QEhs2TtXtytyYbU9aVYrjUPdrgww5YyIWbKkQfrpsMduCHlwjoJzEbTLyDknIjST3e4WEYZhzGIE7Bxji6Jes3+gVyzXloi998zeNEqhzcdpGnsDQ8Oh74f+MPSHOE2oqkwYQuB5z5VyTjHmmE3tWBEkORXQgREoeAVSAJU8G8E7nDEf06Hv4zgCGDtCBnRgZODAVb4CNqwMUC2VHQfMDmgiqipW8oWPhw2BMqgnrhgrTyXzupAgAA08Q+2wYmQCfXQRVDTGRMgShNkBFOWFWdNJgRV90UwoehWqBmYE4FGJVEwJBAqaInMYzACQ1YyQPAGhAkhWjapSHKgAoCSw56rAb4x/W9JZJYOkBaEAfMQz+1VIy+Oy57/+mfNhfIC4PAp4bJksH73H49zS8R3mv6lZQWL0QyQGPDCRqzwzokKKEscYhwhi7MgRecfekTggyuwt1Bwa5oDI2axvG3v1kfv0k+r3flA9f5rbGogkac4JzKxe+VefrE8I/FuAG8u9NdEYzQF6CMGBd8iBnjxZrVeBSDcNtS2kMauO4zROitOUVcyMzNBMc86oqGZZcoopp6xLNCeqfd9fX9/EGK+vr6sqlPKWUIW6aVab1fZkc3JycnJysl5t6rpebdZnZ6enp2enpyd13TBZ8K6pG+ccAVRVdX5+frLdvnz16vziSbtZsQ+qWlIholpSp+M4jH13P01ZRNUcu7qum6b8r+u6DiEgkqTp5uru7et3n3/+xWc///ynP/nZm9df3dzc73aHcYzjEE2RkL9zRluYP484uo9v/fFpy1/MwLAIjhSzUAHLZtlUVGV24UPSOR4TMHToqOxxF4BnMXvCUrFftpCogMqgBb1UAnvECStpfXOIGeXxuZTQc/ZsPjo4lzQHACJ6R9mA0MiUZ9kIYcb16cn25HT7tV8nCc6mKV3vumlUO33mVQAh53y3P1ze3N5e3bjgnXPsfZfGfZbLw86Az1du47BdFO3QQRGqScOYx0nRKMnzs7NNVXdP+q7r9ofdoTv0/aHv+77vD/vdvXMn65V7JIT4EMSYqVkx0/NVCFVgZiuOgrk4puWiymU2OzwTERnNeWwEw8UdGR0Xeo3qNOVxGLtpuusOt02zaZtN267bZtM0IXhg8lXVblYUnEzjPqc8DXW9atumCiEETwoWk0zZIKvgHFMZ0vzvAyim5MXRlFDKqokIRIYoSFqSGllmOQwEzFlS1pgyAImMIpOkgSAGMrDUHe5CaPfdTXs4MUZmHMZd31139++7+68Pu/fdftd1Gc0cxjqowpjGu/3d293tG7WU85DzQVJENc2x766cD0G2IsnySAZopEYgSOAr11a++baw02/cFjjEbPakAzCzruu++PLLzz775eX7q64bkcj7Cmxi5uAr7yskRqBiX+x8wa4wxUk0Aoa2PTk7e4oQKi+H3e76/buhu0+xBzp49K6uCUwhIYgBATAqPYyU5bYgITt0Hr0HABRRQVasQ3v25JNP8Rxu77q+20/ju8PukKYxp8lyNkPiarM+e/HsVVtv2vVTAZrk3igvvtoeASSNjqhareqmqZvWOZKYak8JcD+Ma7SQhqm/jTq8vwyTvGxPnjveTLs46dfiwq4/XO+i7VP8yx8T4f3VQXoY++gciWcB0Nyf9MMx/ToXKDgfQh0qb1HAQCWnGKdpAMTgAxTr6TgOfW9ZzTtWrRwCCDBkyTlmFUED4pL00BTHwk4JVV03LZKLWbp+jFniNBaBhJxSljz0h2kaHFOoaqqIXOEGwwpWksggZLUce9WsqikZISIJIolqTDk9Wl8QjE09aWCoPbWVC4zeAKEUAwEBeYbAWHlyTODdarWqQqhLwbZqAVoKn4WRkMEjGaIYZ+NsqCIKxqA0q9CoqtC8bGcrLvcqDMTsHBhKBCjm16hjyjFmiQDoQsXEbt59iKmUesPH3d/UTMSIDA3nBUMBYMFwy2ryq8MY+EYQc/zlYX4EgJlRY3rs4vawUj1Wbj3i9PPBIRwLsx/yBlZyDCKPneMAwHHx+XKMAJJzjpJTNsmESARmYgbEGAI1DfkKV1vXtq6pcN3K6SY/fw6ffup/8Cm8fBlPtsmRpkRDx0PHuzudRmhW3j8F1kw1YnSb5GtxK/Nrc6fCu6yu5qdPt3Xtpml0qFWtKsJBXaUqrEo5upwh5yI/uuBdD9WJc2OiVduuVi0ziaRhyMMwmCoSOud85auqattmvd60bVvX9Wq1Pjk9ubi4eP7s2enpSdPUdRNK6W1VVaZycnra1M3Ljz5abbeFUgU2Jx1VJBOBWU4xmsUYh2GYpghmzvumrpq2bZu2bpu2aeqmOey6Lz9//dO/+sVf/MVf/vQnP//8l19cXV9PY8xZAUkFUso5x8c35t+8mUHWHFMCjQYjQkZSZCBwgKhiUgJbI4NAx00hogIZUsmEiarNbH9DQcpsCmqWTTIU1ruqIimjFj3NrHlUSb8mqwqgBlFsyEAEUVDNGodnzpvCXW+tJx8CkJui+m4KMVNOus8xs/a9X8zv+mk69EPXDbVa8ROPKU2aDlMPyO20aqpgzLOIJs4LtUoGAwNjwHXTtlVzstpM49j1234Y+rEfh34YxsNhf3d//9HLB4fhYyMk9t4Reu9DVdVN3bQNs9PZlk9yzllzaSqiMvuW40yHKKbUC1OPyBAMTMyimYhMpkNKY0r9NHbTuB6brmmaqnbBr7dYn54452Xo4zSkOI7TGHXTNm3jgydHjgHQGDWLZgFRBDVdkpAf3AMFK5i2LHEyIBrxnFUAA1VceByIYKiQspiB6aQaTSJqZihm7ONhf3N3/97X9SSR2aXY9d314fZyf/uu273vu/00WlW3fX/fd7cp6/39+/39VX+4ZqdiKcVRUrYMArE7XBpIiCsDm4a9pBFNSnlIU1cXZyenJ1u/uL7/642PQvUovFoR6fvh8vLy9Zevv3rz1W63SykhIBGXfW2x6y2YI8ylg74Q5FTzOMk0ZUSuQr1uBa0/7Pd3dzfT1MV4SHLtVVdu69gBTAgCQAi+JCPniX5xfs5Z7naHq9tdW9feO0Bk75XaDG0ySHmI4/3YXU79dRz3KY05R8ti6NCvMmR2dLbV9fZisz0Z0rkLQAzOs68CmE2DY8Bm3TZt0zS19w4MGUEIxmy1QJqG/e3bXT989VU3GG11VTPD1SXGUaumj/H6dicKfXrtXYBkHtoEAMjKlaLLgMr+cf0rEThCz+SZzblieS6ScorOeWCHpiBZckzTaFmzhewo5eAFK8bK4ap1aoiAznPThFCx8+i8966qq2a1WiP7ccr7rr+88V13MMl162pnfc55mnKMvvLB+arx5FElqyNHXjOJuJiyCVmhIAEIIqoCgmip6fkAiWFQD+LJKrbC3fGAhGg2eyIzQmDwjIxk7KqqDt7XoUammLXYJi+zLDCiAqgVoUcFNRMFU5rd7M0kaYopxVh0q2KeUh5TNkN2ziNUkDU4BxtABzmiZA+CRB4ymdJsCppgStZHHc8+oMWUvJRqmXkAlqjhMVDy146f8vRHGHVJjOrjIOahLsnAZknheatspgaP1FXLW5bA1wxxCWLswyBmcTp9fCSuqhszNZUpptinPE2miZ0QIpFMObtINVZVAydnjh2eP/EnW26Cbddwdlo9f6bf+8QuLgbnd6pZUbP4cWjubuGrL223Tz6wq8k90/opr6vWrNlM/jyFfXajNhOsqHbb07WoXl9rmgbyyqLtloQqtXoc1DsEGFKcNBkSEhOAMyPnpAgnlDOp6/rTTz+5vboyAFVNKeWcC/2uiLTGcYzjtLvbFyIVE7N3JycnH3/06uWrVy9evGDPd7d37PjZs6cvXrz46KOPz588qZsWAEFEoVga5JTSXPdIFELQpsmqqppiGsbxcNjfAfhiauD9arU6PT3b7w4//qsf/8Wf//gv/uIv37x+2/e9qTCBok5xmmKcYOqHe9X813abv64do1achXxBVac4df1NSjt0B++kriiUHAFACevNFBSzOlz6HmLJyLMZqopY+W+maBkxlV4oZpJQkmlSVWWUgMqqmkWnlGPcHytHcNZlhyJWWtKACKaqfYQpw100NUuq5xX94VntUD+/HRrvLOW7frzppubucDHeUxyHjNG3eRxcjONUMhua1ZKqL5iDmeZsakEToVUp+yQYDGYvYDMwICieBTgLsgEzOOIqhHbVqKiYZpGcZRiGrju8fPWybdvjdS47M/KuWjVN2zZNUzdN0zRN2xBSTKnoyhT5f1XJqWw7pzhNKaaS2RaxXEhlBiaWtSR7RXXWVkMkQBgl5SEPedr1XeurKgRf+Yuc6tOTTfAMkCVPQzccDn1/aJq2bVarZrVqV772ZB6SyBg1JhAoahQfWjtb8VZAE9DCnz9ek4csopbjLGttEW6XpJZNouQppxFEHAIYJLF+uL++eS1om9h7X0uOw+H6/vJyf3s1HK6nOIhx3e/fXX6dRGPOV1dvu+4upR7QVCXFlEbNETTHA17GuOOuAgLLOU4j0hiCaxs8O62/99HFRy/Oq+Dht25l1iyUB4P5TGmapvfv333xxZevX7++vLwahmmmeKmVJGRhNElxW7A5AgIDMkzJdvv+/v4w9pNmIQQT6bpuf9gnGVI6DIfo497Vz8i3QBnBEAjNF11DMw+4wJoAwxR/9st3/+qvvjjdnp2frs/Oqza0mdaHPn/xy5+//er1/u5dGvdoAmBGpTCYfV3XmzNEd333ecx37faPVpvVOTwZRyfSkZNmVZlB75AM23XrPec0qaVQ1eQ9gDNyBm4ch93t5eX1/edf3NxbFQ4rh0aXX4S4b9tKkO4mUarGzOt2u22btmnWrQ91rb4V4pSlOX3Cbr4vCFAIPWzi0NB7IiuGHSCCkhEUTU3FslhOIIrGYKZgTHRa80lDq8DMJqjE3NahaavVSbNar1btpm7aKlRIPEW7Pwzvr+7u73dj36sxN+59iiSqUZSYK1t552onyjlrIk2TYrQcxSSZCIHNJeymWcu4+AC8QDACYRAP4iCTIis5KszcubKDSrFCUYkyYvZIzvnAzrFHAHD0wKOB2cNckkiU47psJbxQySmNQ9+P41Ba1w/dMHVTjFnMrHHubFU/Od16yFi3ZFYzBe8YQdKkucBRU84pjkPeHfRpZXl6PAZmMKb8thB75TfeR9OjIKYoZS17sZJkLxOIzhA9ls/DYwpeVVKOKaecxQyQmZiLKYsr+XkEtJLggwXRKZx3WXicc3OoqGqiMecoKRPKamNVBXUAAstJmpqenLum5ZSpbujJU3eypaaWzQpPtu7sTC4uZL2K3g9AYshAnjiAwdinscvM0bXcbHBd1et6o1bnA+Se8oAkVLP3tV+f+GFKV3cy5JzFchLwXK2YMPhgZllVRTROikwGJMqosx7K8UxC8M+fP/300+9ZyUEWz6Sccs6FEiE5p7JFTlkkT1OSTjTltqrbpt1stobw+vUb7/1ms3UubLYnm80WATVLjGPKSSSnnFKMAOi9QyQVQcQigpTrIJIlp5SzikzjaACHw2Ho+8NhuL296bp9nEZEbZqqqpyq5ZSmGMeRh6xNw//66Pg3uheSmIrIMPSX15fDeMXVYdXY2TYwBU+MiIqGKMuEDjojfoCApgRApiYqWTWLiYBktAyYEApnAiWZZNCkmtVBrkyOQQxM468PyEwhgU0ClhUBHFjr+dkqBLS7PhlhivEAPE1Tl02hdoB9HiXlkAoBN8YYs2o2S6pRJMYUp2hhygYgGUxSf4iOnWcpopCL3YEVnvOjcrKSUQjmYOYDmRrEGFfr9dnZhTtOygjM7Mi1q/bk4uz84mK1XjtXDI6CitIwpJQAgYiD92AW45SmGOtYIG7N2QQla8wqKoBZTbNaluKKkO2Y5QAT0QQwRRhw6tzomdk7ZX46xdVmRUSMZilmEclRximPY5qmlFPTtN4HYsLgCVFjMtFvl8IwAqMi5OJ0cCSY2qxHQvPj8/UhZgQzhYwaVaPImNIIkot4vqjZtL/fvVe0KGPwteQch7vD/nbo91McU04K2o+H91dfDdOgqrvd9Tju1ZKVcnIlFdVsYlE1xUhYOSJCQ80iGonUe2trONnQesXM3zyj36YZzLUckiHe39++efPmyy+/vLq82u87EUGYdwJlt3isry0DpghOGKAa9sN4dXXz/v3l7vZ2Gg4mWfMYp/3d3X3fH8Zp14/q7dAMGf2K/GzrQFYRJLAGrTaooAgAAoxT/OKry5/84qunF3GM0egE/Lat/Zjj7c27m8svpuEONHr2xFyqNpm5qsN6uxKDbhj7CYbhtqr9dnu6Woc4vTOcqqYSsRQFFUNwznNOQgx1xVXlHbjKe65DnmR32L2/vPzq7e1d8iGG4NDd36xhdBqVaN/lBFUSAsXA6JmMJBiiOHB+IdI9DHKVKHHMccgeyxJuoiqoOWlKkpKJcFmjRECkLK0xJ1NeO/dsHc7XwXsYQZCwDWGzbc+en21Ot027DaFiIgPKgt2wOjtpD4ezOExTlEEwi64bv2NSySmCROc9MBEQZFQw0SwaR5kmyZkcs3PknJmJRl2Ec46NEDxjxVCxBVQHwmYEyDCbwNBCPF5IHDMBoPQcJi7oipaaKIPirzKNMeWUC/JjWuKanGJO0zgOXdcVdnCc0pTSENMw5X6cxnGsHePZJthUe3TNNBobMYNzYDqMOo06DZYjg/LQ6/2N7J+CpOPp6NzmbQsUCP6b7a8fX4/TPQpmOatKyimZSinbtuM5m4mKyrwJRCRTkbIgF51i9uX6e+e9c6FIixEV3c/jBy6H/SESM3WjQTLsQRITtbU9f0EX53C6AQbrdhY8vHhh2xNzAVcrOj/D9RrqWuva6gbrCnwQ7zKxFSMqF2i9hZMTXrc5juKoryp/er5dtRuwk2kMXT/dS7oZ4hQByTUqXEM3xuu7/vpmAABUQ2NmIseBtZWAaKFy0yBTtHHCKbLF43iZh4xz7uRk+/z5U+eK5QiKSIyTiCBwCQRnIss0jsM4xZhiqprq6dOn52fnm+025ex8tV6vP/n+Dz79wQ/X6y0iqeg0xf1+3w/dFMeUomQhRF9VzjkqhbNq3vvNZlPX9bRaxRhzSuM0jePYHQ5d36UxOc/Pnl2kOJ6ebqYp5pykRNwqMU79uP/o44uq+tfYWX7Q4xAM5qnWUs77w/7tu3e77uuqHc+3VPOm9Wtf185xUpMMWcQkAk1g6ZiUN0HNpiooAiImKgJZTDNgAlBgMAPJNiMxSUhSUEExyQJj5HG8ET1qRcDMg3nUUIvCSqHSGCI4Qk/o0AjMDLPoNE2TYZKkdXt/9kPMufv6C3TVKaDkHKc4xZRFslk0xZQPh/6wOzTslGiKaebwajJfVPBKIwUAKUIChkSEAEhQwE2ZdYOzmoLFlMcpxpyOaT5EClW1qtYnZ+fPX778+NOP2/U6xSTZ1Gwaxjz0UQUQHKBDREA1ROZmtV5t0BUtFvImNk1pHIdhvB+ncYwyTiiSzNQKi0bKtAIIUPi5MWcAEDPX1MMU1cAxB+eEiUQsZZN+iNPYdfv7u7pt19vT1XrTVq0LXpgNVHKpaJ9vMyE4h8EBoZDBEq/MhYeFAwDGaIjA5IgQmQFMVXO2pBjBomlSyUdwQxP0PQOKyODZSUqSBo07ouw9AbqoMMX+8vJN190zc5y6nHtEJaoL1QRpUk2So4hhJlJHRASkonlKdciEyhgh7yzv4LdHLq1wmcAIQdVEZZqmYejfvn37+ee//OrNm93+kCUjIjFaXsrqYN4iMrEBShEoQ0EFU9nt91+9ffPll5/3+zuTyTvU1Hf7++ur1f3dfdffJVOTw/7QCTZVU4XgHRBBDbQG2ABsEQBgXspjzO/f33z55v2Uo0IyBHVnzzYiqDkPZqlerZnRMYNBmhIiAVccQtV6II7TiSS9ub1C5JevPm3a1TQckpiaH6RUSRgQsOcQ6iq4ddvUwXkEH1zVrLsDDsr3fby63+36fKrZrRoDrlenF6d1TPHz99e7OAITs5p19zuSJMRcNW1o2qpePTtfS57HvprGse+7+652aNl77wNXhsyWIyUiJtIkpSeTgYgimIqM/ZCCVVifVO68DRxgn7MRtJ63TfXkdLM6PVGqAUlMzMTQNW3l6vbJU3LgpphuDwcB/OLL7X7f7Q+7Qz+gS6vcVKvWAGOM4zSmPk39ELtOzVxTc1U1TWNg2mu0kml5VGuKWHtuK9d4qhgdKcNMMjM1BZufjXNdkKpJVjBlzgY46+BZNtOi2qdFUHMcc4qqIilO0ziO/XjohqEbx74fhqEfcsxg5ph9VTXkMDjLaUxTTDpV0Hm8JaD60Jkn57h1wXTqB5kGzSOj1bVHHW/7fR66RxXjtpATZ1fRpUhjmermnBc+/PLhQgNLigcJwHCxahmHvusPhxSnmSZtKlliylmS5FyYo3MxF8JRsrUQwYidd8GFEKqqqeu2XVVVxRyI6JhzEp0LLh8zSRzD6Lw2a/Ge2PzJFj/+Hj1/qudbY4Bur57xyRPabKFqoG1svbKqMR+S8+IdEqlZRlTC5RqwVJXUNTqnYFkkE/HmrG7a1X5X7yNfHeLlvd3tNCXzzoBhqw5AstiUICsgUHAUijyGmhoiubomJkUSUR2nLDmpij6q0RLRvh8Oh75p6hDC/4+0//ixJNnSPMFDhKjqJcacRsTLRzKLZGZNDQpDgJnpBubfnsUAs+heVS+6ukhXskci4kV4uBu7RImIHDILvU7iZWajyYXBFuZwuKmrisqRc77v94UYEFmNiSnwuo+xmUlrKzBKRMAh9+nq6nqz2a6u6RcvX97e3Lx4+Wq73bl7WcrazzifzufzcSlTa9XNmWgNFk7pkmmyYlvXypsDqyTiyz83T7NWTSFsd5v99c7BaqlqAgDEGJlNZV7OX3/zKuX0v/Wl/E9/LlIpr7UeT+fHwzEvBY33GfsAgcxSaGYiKiImFX0BkI+PJrqtDRZdW53NTNxF3RpABVRAc7/IYqyaNcXWoiqYqwjMlZd5MvunnVZfGjPc3cAByAHNvIrNRTqGFJgDmtRq0KRiSHLzRtSOjx+Sw3ChUKqoWhMUZVUAXKZ5mhbeiAA8PR9KWboUi2nc7Louqxl/DgRZRwGIBhfPyOfcEP80gtTPytyPqyXw1dXV3e2Lu5cvbu5ud/t96jrAxVFAzQGbam2NiICptobmtTU3i4EChRhjjinGTE4iUkqeJp+XVKrV2pWWpBUVU1FtKzpYbQ2gdjNwdVszBRzWvGEgS5oyupvCSu5aAxOktfX9AVtNMRGsnl1A+vJ95ITC2JiQGXjN117Vv2QAq/1zNVUBEyA5oYI3swJWXKubIOplun554prJ1CoUbEKkrYE08OomSEzkoFZrPR4el2XMOZm21oq7OzCsTCoUMxNRQEd3AiR2WnsmCiIyT8fnxx9/+J7f3G3rX//l/5FV4u4ibRzHx8f7H3744Y9//OP7D+/neV5rWRFrrbXWVNQuGnT8yP10XcWQpq3pOJ6enu7vH35apgOBbDfRWjmd5+fn8/39w+F40+0CheAwq3VuPVgAR7eonsH3QC+RnTgDBgBg5r4f+r5HBHVw7ClsYx5ibQiOiJw3qcsxRRMVO4MZhUQcEYEi9dvtMpXzdAwxvpSvAg2Qt8FQPIm3ECYzIw4hxsgQAhtgadKsRRHDIG7c7cNw7fzBfUkwZySkLXf95uo61IX5IG0cTyeV5ZwYHVozREwpdv0w7K6//uqtyKW4NLNWS5vHeUyMrrlzC+AEaASA7tq0VTMRgJUHYGiO7mvQFrm52LxUr/ZYGjDTNvYVz5PNUE/Fi6BZAwCkEDiG3MXY5xjN0YljpE3HXfInLaVU4LWmCIg0L0uZ5jaVOs+tFAcQJo0R/GNr4rLHf95fiLDLYcixixwD0sX1gJ98PY7oCIC6MglEZKnFTcyUuQGyA6yHPjdQFam11rYsi7Tq1lpdlnkqy1TnpS5Lq0tZSl0KIm36fhhS7noFOs2tEOAawlpKXeY6JxAZGzgiTdwTkCppY60p8S5EZEBp2uqXvJb16laZ3OpdXcf9P18h/3QR8zPqtLo0mZcyzdM8jeP5dD4da1kuQzETEWm1ibTV8GCm7o7mMYRNP+TUcQzIAZDWkAyOMaZYS2+mZkPOHkL8dEJfJdh/2onZbct2R1//It/exj51V3t482a5vdLdYBFRGxP7MJSuU44egnEwZAUqiALIAIakBE5AayMc3B2auzSttUlzEA39Zuj64f093t/Ld9/L+wddGgH6kGzoNBFQ5m2fTwMUAXUwtMXUi7ZZy1G0GgO4YWAm0tbmWopIu2yCAAAwT/Pf/93v/9P/+F9219th0+cciUmkAWIMKYYuxRyICcFNwaHvut1+O2w2ueuAw+l8zv3w53/+5y9fvRz6fp7nVdQK4KWU8TzO52lZJpWGgBYI1FE9ImMkRzT31qRJExUAiDlfYAnuKlIRKEbmsg5BiTGmlFLourTpeyIQKV9/9SZ/UcR8mnf8I33Vpf332UuEH7UwH/8UAS69UEdpsCyuZhHtOY5BtSxLCCzuoioiLsbm+Cmg0i8eW1dvqysZXMHV0BSgODRARTcUBwFsTs2wCauBK4jY0nwZ/6SG8XVYarCCeg0RmNxF0MEoqsNidpz0XfTbnnd94G0kkyrWWjWPFoeR9L7ZDssrEXAzQDPH2lKtexFwl6UspW0M5lK+++GH0/m8v9o1ot3tiIS1Sgzoa5w9faFbtTUoxHhldhKCq5uJO7mT25cLO6X08vXrr3/xze2rF5vNpix1WWqp1dQZSaXVUmqtKUR1mKSaWqvVzYgohdh3nSSJTWIIkanrA6ftIJ0buzuiupk2bVVabfNc5nkqS1GRpiImzSSI5NylnGPKARnAXRUZTWwV1Nh60FadD89tOs+H56Ef9sM2XCBDXzoUDGwBmCNjjsQh8GqOJwAicFADW2EUCEQGYGBNpLS2tFZba2ZGhMCsqx+OkBkiW8AKBm4Iq75IxNQcSDXYmusks7RmksxNRAFIZRXO46o7ETMkRAOXjzcKAJFrbR8+/DRNp+//+NuE/v/+f/w38PoN/DOff0Ymv86GHC5esHo6Hd+9e/fDD9//9P7d8/Nzq27mpbRSyjwvy1Jqq9LWVyesX8gXHaKZlbrMyzgtx3E+LNNTIO273k1LheNp/vGnn7653/5ifz1shn6jubMUJSAFU6i6zOq6wzBxDyleEWUAGIbhr/7VvzofHkXHq/312ze/fvP6N3c3r8G8i4k5Quyw24XNYNJwEZNGISFxqy0Qxa5T93k6ncbnw+E+8F0MG4pDytF4nMeziaSUYkiEUMQOcy1LafMpod3sH7fb/f7Fm9eSb75/ZqaXr/ddn6cFoCe+vu5U97fHQynn4+nwJBSZQuSUENEPpxBO/b788vGpNvn4iLlIg6Us88zE7g4eVNE0Arg0VR2lWanSahURUEeHSBRjyjGq2tNxun+Wc23vxxZz96u36azt3fw46emHp3BayNEQMTKkELo+pZRjTjnBkJbj4WSykJcm81QLFPAQYCkAOI3LMi06z1KKSjP32c3diZGYtVaTpu5f0vqJMHWp63MKTAjmprbSVlYgtxmhojVXQwNEqXWeRm+1hshIvmoqoakUWWpZlmWZSylVpUrRdVhUZzdNHCPwNuCmT0uAvu+/evt6u92a8/FcRB7ZlRjdUdVdPTI6aD2dllY1wr6Pt9thyIwWupSuNgM4Bg4fh8TrGoCPDiXyFWOIttYs+HPZ3OfvFwXMRx0MIiCpaavtfD4/Pj4fDodxOs3TWOa51bLycE1VVczEVc1X77q4Gaj3/SZwTHmgkImDmhmSOJpYs0XNAP2iBQYnDmvgmLmq/SN30jdfx5tb/pf/Kr1+HbrIm0Gvr3E7YJfWHAlGVI7OrESASI7mIAYNXABWaqACGKyMH0U0A2+ISOyOXBuVloF7CtmJm0ORUMSqIpE7KFFIIUaAPnddBiMHNYcm6rVYmbRObtVXCRWCo7tbM6trpffpSlprDw+PP/7wbpx3w7bPORChuQISU2TOKaQc09DlLqcup91+d/fqbrvfxS6b01Jrv9m8eftmf7UXac/PzyJNRdWsLMvpeCjzZNIQPIaAHhTJQrhwQdaXfwDGSy5binElepZ5cfUyL7XOj4+H5+fjNE19n9eRXwwcAjEDc0gpEP2jxt3nH9iXVAn/2fN1+W5flDSw0gbUrIFWcIMl6FzqWNxYApOAi5mIuDoboZM4OMKqmSInU2+qYmqwpj2SCVgxbw4C7mAICt4cVEHEdJ0yi7UGq1brn/sgQCTsGAlgTaJ3MzJFR0XilG63MW1IYJ6KHuepCoWnD4vqaTwRJnEwwKaKre7LUltzDiPA8XzC02Hf7ogwhphyt66TOk6n1pZ5Gvrebm6ZGS+tU1yHKPO8PB4e1XTT77vcp5CIsI2nMk/SmtfdJ1U/h3h1fX17d7vdbpF4HKcmTc3IMYSgIujOl5BIX1tFF42+m5o0aQBQW0sxDn0OkQIHjgE0IGJgCESBmIABYJrmh4fH83lclVi11Sq1iOy2+5y7EBIjOTirRgJfzziiqxxV1VqttRYpi9aZtHWxY8Wf7+tmtgAsIaSUUgjOvPozgBjcUY2MEHS1FZi7mFXTIq1IXfd1R1qJqQYATBTCGkJiCM0NV1O/KJoyYkDEEFIAJ0IOvDpVIBMARe4AAjC20ELITVZP/uVJ/9gBAVWZ52OpJ3y29+9/XeufwiH/qWftH/8M1zmdqJ7P5/v7hx9/fPfDjz8+PDyezmfX2JqVlfBfLp0YvbTA8aOfjBDJAURlKdO0nJdyNiupp9ur4Te/egWi4D/mPjaVpktItd+EfuCUlLCCqJSxncfxedK2pVy6q477X1AAAIjMN1e7l3dX2nh/ffv6zdvbV2+77XVfyovXv2gOFiOmFFKqZeEYAYBjdgylihGlfpNyDjmr6dPzfaDw6vXbbugaF28NMLqriphQTIwMTZwJjclV53kkDrv+rt/u3v7im6vr7d1V4ABh0m5IGCMyb3b9/tS7NjPuNjtO2ZBEpcp0mT//bOG769p2aLIWWeQAGBhNtLpN41JrU8O6FFVbI+w9h5BjADDR8ySHcfpwrj+dtN/QbofUodf2vOjv3qfHkRQMyTNbF3kztNQ1Tmno4MW2ynkuS3Fta9uhSuNauRQwmKelTIstxVpzV3cXsVap1cQhXLrPq9Tj85W4mZqKggPhGgIgbuYQEBBRDRro7E2smUk9T+P9k9fSxUSI1tRNDJppkaXUZVnmRVwhMTIEUEAFaEjY59CH3CGa6Fgo92mzTTnzOLZlmeZ5nJZpWWYRSYY1JXRFN2yLjONIypL3CZ2Tq4tgWWotFVT/pMty6cS4mQGS42pf/LRk/vHb+/LqWMFisBJPaqvjeXw+HB6fHg6HwzSfyzK3WrW1VU5pqmYCrpe3vImprBqZEKMTYcyUOuKgIoCIIQGCW1PTJrXWZc3bjAhEbOZmsjZjvvzVwr/569vbO/yrv+KXL9RlYVpSLhyAKAEgQHFsgouiIQYCB1AEdVBER0MHx1WzbwyGru6mhkAUuz6nLs4jzmWYlhg6Dn3c3sbrEy0Ux1HQte9C36UuDmqeYk3Bm4vBRS8iorV5aaDVCZTRA7mrBPRALheD1hctMhWVUpeAYPMMnwZcZuhG6Njn7uZ6/+rF7e3N/vbF7e2ru93tdbfbptgRUuCQYxSpx2kqpapqq3Vax3ynk4t0KfZdxr4LkQEBCA3REJEoBO5iBPBSq7sHolZbCMUd6lQePjz89OHp/f3T4+MDInC4TTlKa7O1skwA6truXr7Sj23Y9T15EbwjfiSVr6MeBCLCS9DFitYl+Fi0urMTO6C5NpEq0PxiKXIwdknaCJ1R3AVV0JxMHdyw+qr2FQAHZzNovorNwI2oBVNvIALqvE41CVYQpKAhm7qyGhkCEOsXMrFLEvZqByFzBkyBN4l68KZqFch9IL3r8tXN7uVN/83GYw/PePyulJ/Ox/mwvF4qmeLTO+/eOJEiLW0Jy/mrZdyZ8Gb7bat/ONyf7vvXX7+5vX3xF7/5C0De73YBvBwPTx/en8t4dXPz9u1XKTF4WP9H3dStPj5/+B/+x/9wnMZvvvrFN2+/+cXXf0YM5+d34+EBAPS2d73cF2Lquj73gyPVUo6nU62VmCOzSDDTnNMluhLMVxDMyrwGRwACEhERba05QYRAZGCoRdyAyIY+v7je3+yv9ldX87z84dvvnp8PDtBUyjzVWqq0q5ubnAfiiIjgTkkDAkRjVRV1MVd3VHIXa6JtmQVESuo2YTD7DO4zd9UKVkKwnJyDEpnpRbwMyMFptaSJml44WtW0mVy2JDNnJjOXJkgYM8fIMVEIqAJqIIIqpBrd10I9dl3MOeYuMrObO6iZgTs6qOiCAQ2kmQKVsqg1NEO0S/oIKiAiBSYEUiLFfz6w6/Pr+B/9kCis66FWeXh4+uGHd99//8O7dx9Ox/MyFzOTZkuptbS1UPNV0YC08gyJiENYz9ZN2lzO03Ja2hwyvXrx8q/+1S/+m//Xv/Em/7/h30tbbu72wy4PW+g30g8aCLVarWM5vZ8en473z61uQ992cN3f/ttVEGcq83TUct5u+OXt7uXbu/2Lm8Z93L389V/93+7eflPmh3k5z2U5NZ0jNYyUOsO41KoAIfU5d9c3L8u0PDx+YIq/+s1f7W6ufzp+PxVZGmkxt2fUuImbvu+uh0TUB9yXUh+Pp6m0ev8OQvfrf/EbawrjQevcdxJS0FZUZEj04ma32+R+2L/56jccusen59PpMI2jI+bd9np/Ez5a3z8l260bo6mYEsWwzt5FdBrHeV7MSNbgUrcyT4msS+TKplhEn8/L/XP7cOS9U5Fo0AGhUVTqKtIizUQyqwCyBdekLQtY8GKnNp+LFA2UUnBwEymtJhNc5qXOC7aKamsYr1+wSeauquKmsNqhP54jTW2aptPxJBxSCtxlJGyu6JYhoKGaF2+z1qXObTpPj4/HH95bLZuhJ8JWFpUKIOBC64qSFrq0u77Z7be7riOzeTyYeu6GSAFN53mR01HAns6H9vx4/9Px/ml8msvj+Xz/dHBRSNttYGm7lENEC26t1hltngJqk6YA9HQ8L3Oty8guX9Qx/lGbjusUiS6s5o8jpH+miLGPuktza6rjPD49Pz0dns/TudZFVd0B0WkN4zEWdDRGQHRHMDe3ZkZuhjGF0Pc8DKHrgRiaICKnjglBlkAeAwFYk0LtY2i4u180MT9LHgi/+Cbd3vpXr/3mutX57LYQKxIDsoE6LAbVsa2AFgXENXBhdXGsU4ILkx7QwNXdDEiIOOfIMZfm5ymMc8gbdmSKHjpKAxt5RLrehP11Tl0qTThgykCJOzUVnNx01soGBIaX33l94FYhOVT50i8eAl3vutvrPneZQ7jYed3dwYgQQwrpard79eru7ZvXX33z9vb1y83NrtsOYehjzIkCOmhrS5nH8VxKWd1Dy7KUMjdprkoCQckgw6oWYHBGDMwxpJT7riPEWEtr4mbSxB1VdBzHD/cPv/vdtx8eHmstV/t93/dXV3v8JCkwUDD6p7xJPzeU+P9yJ2ad5aGBE636S2miVbUarE5pAmcwdiUwUwNTdidr4KBoEsgxOhMYOAo4AiqCIYETOa2hHKRoAEYrohxY3RRcVcCd1AOgAYY/WQT25apAWLl2tAocvQqC9RFjoNn80PSm+YZmsEc7L/M8H8/nbhnB5LjMcH1zGpfj8QQn2Ty9fyULRRpSIpV5HP10rK2l1L15fZ27frPZtGn8MJ5dBU3XeYqq1rKoGhEDuFs7HJ++/cPf3z8+1mkmx5v9bQB7frg/Pb0PKc7z59kYEsWcQ0oA2JpM01RLzTlBjGaKAJEZmNdoDiICRObAhLRChsRaa6bqfonHRWRHdCAxd9EYnTgMm/7m7iZPy7sPH3ieOYRgGohSDE216zozL62lgIBsGCAYASAbkjoriIMoEpGiazG3Ko2QM+k/6sQ0swbewKs7mYGZIyJZRPLPqmIzNwFvl/SCS6iBu+uaaQ5r1f3RpoFAhOzMMYYQAmBmSoFjSrnPOecYY1intO5KRARrE7ktSQLFatScHKi1Ga2h28djogMCkiM7kq0S7X/+s3aIf6b9B/h86DJr4/jTu3d//8fv/vbD+28Ph/dlOYpUbaE1W7kHIlVV1Nx0MZ3dFvLuY+IBNpFayzSexumwLOec4Ve/fvlv/+2v/t2/+zWZzOPjPM5/8S++ef1mv91oDI1AVOoylfn4PD/9dH56HI8nqVuu2zjcm34SwptKBZcudcNmkzYbzLkWcOquXv35sLsr53fT6fF0OkY6kPdNjNPG3Uo5EgJDTKHrdpsRz+fjcSyLAiBHwoyYkKIjuRVXA2VUJw+Bckob5BgrNq9qPqTuxdtf9qG341Hr3KCIFS9lPB0TU46EEDbD5u7mZeo2hDGFtOk3Yo4xppi+NI0y4Uf5m4Ixgq8x94TkLlLrMi8qrmqqFlzRnJwjWUA1q65am5Tm84JxhnmR2mqMASESEgCrrXoURiaEAM5moYosZjpLmdWaBaBIpF7QDDWDkomYGKnjRzSDu7srgCHQqj0iJmb+dClmXpdaltJlREYtRcHn1gBwCB07q1lVKdbmaZ4fHs/3H8b7e2vVSh9TQBdwQ9SAkCJhJDUMXcoRu0CblIJDaFVqu5AoCGPf3+ZctBUph3F+Ok1zk24z3KQESCh2m3cv725fvLhNOSDEFPNpPDI4GIp4VV9Jz46o0nRVX3yx+FcTw0UKg7aaovFzEfNFYwY+UlvwogJq2qZSTufT4XQ4nU9zmatUvSTx2qe//1F+S0iGlxLJCIyYY+QQiSMRI9Aqw7vEzQKs+lcAMNUmGsyirUCKjyfiL5d62O/bpheyRZdR5hNYoxw4RKRqYAojQgWEFV7vThdQwiVzwQDEbS3xjB3WYzs4EHqKTMTTJMY+jtQNvCxQqi6tGtRuoF0fX99tbvcpbGkZFWLteun6ROha6JwgqIKoNgQEVOaPUU8xSgiC0L68ni6HX/7idn56A5icAgCvFhpDopC2292LVy9ev3719s2b29vrzW7LOSpZcyu1zPOCaxG2cpikuhshpBhS2m6HbtnVUkotyxqzTnEN+UUMxCnklLrcbbp+1UbOWOZlFhFVXUo5nI4fPrz/7vtvH5+eu5zvbq/fvH7x1VevVCq4MoOZtFJu725j/N/gTrqMKC9nhfVsaW5ueHk61/lCra0sBbRKA/iYj3MhmwESQkMsaIQ41LipceOU3N1NwKqbuLuhK2FDL14LS1MF0LW0VrVmamYAhX1MWAg8AoQLl/bje/nSiTFfRZoibRbONfUFfdICptTn6vjb98cfnvH9ll70YduNbRSuTc3e1TprfZjrzWl6+/4BY7R2uF4OWxbYRnl2EwkiXE0UndNmuxs22zR0HGk4XwHZHnbb3VWgNE3Th4fvS5lT2sSQKPDpfCyHn+YPP7137Ll7sX+VA324fz4fTnEzvFpEPtbKiMgxUAyqJuq1ttZaDMFZ1ZWQeM1rBEBiXiVYhIE5cUQAqa2WunBwhxxj4hQSo3MBxkVrAVNUU3FR16blNJ1O4ynlHhFWyzoDutjpdEaiYcgxkPuaeEBEzuygCsFBlTyRRm9sbowUKNEKVfritqwi5lqXpSALIoKaI2LUyBwQoylJddWL8RxBmTwmcme1Bqtf6Ys8eVOQCpiIMHLqQ9+ntEndLqchp5xjzjkRgtRWyuwOahpTzMwdOajW2mLqZgvVGTnWJehyBlvWBAf4mCOMCJeo7n/UiVmn9+gOIOgVoALKeuha1YsO5qRraNTz42+/+8O//+7bvz0cjq2OKxDShKS4FGmtiBbVpgK1RCn31q7I+4A9k4Obq9RlHk/H8XBYxvP1Ff2rf/nyr//6xasXnmP4b//bvwAPX3/99uqaQvqJ5LHKoZTj6fE4HZ7L83MZJ20VjK0+Wz2By8dnDJggMHHqPHSLsS06jVWUOV6F7RWlV2k49bvj1dXx7vpQa1WjWsdp/Mm8Bd5k7rocCen5eDCi5/Nz7LuOu6vhZunPiEvPlqNJq8e2lCJOOQ53Ie8oX20zg+HV/vqb19+8vHmxjx2jLjYfnu/vv//uj/qHR/jQlvl4rk26q5vn3R6Rud9uU9/X2uZ5tiKfEPdIFAMDk6mYNIwxEKUYU0z80ZfiarVUaQrmMUBOYdPxtuMuAmgxsxAwhRCQrel8fp5HjWmIYMkxexQwZNp2edvxEJ0JCYHdXU2bmzgoBoNkqlDYOaMohYAoSITkoCZipo4YLMCa305EBJxjSuEzJt1dm6HhJqVMeB6nc5mfyuLE++EqUtY1PdZNznX88Dw/PNo8o0tbLMb+ar/tu8SrdidnJhKXKm1cpvF4wkWDQh3PZSmLmgWkIV3d3n3zza8V/Pc/fOujpgFfXeUXX70OKZyfn0nsJu/vbvevvrlGpruH8/37p/v3P9V5GlJABCPr+uH169vxeHr37t2yzJ+mMOvR3lzMP0aNuK3SELrEg39RwPgnaSYCkLuK6VyWw+l4OJ1O0zjXpUprKiJtzahabUmmqiLgzoQOBiauYq2ie4jEBExKUMEBjcgVgdCBHB0V8WObxG11OqxggstG91E0cSliNpva5cYwgyyozc1AcdU6XrQ/AIgMEN2C+zoCd5VAaBR9nXHSJyq+IxgSOgEwu6OX5rBgayyN6wLTJKfjMs1tGELK8Wof91cpJcPmnDRl3QyQmSBxjxHNwUSaurtVRAMiYoOYYgifLe+XKwl0fZVe3OSmUQxFEDxwl7thu7u9uXn54tWbly9e3t1e3Qx9h4CistRl1Q2Uiw/FAcBNTc3V1tyoEEIkopQT4OJO6Akx+DpuaW2atcmMzBxOMSGzrflUoqXWWmtrrbSmpsy06fPV9dXLl3cv7m5ubq6WeTRtIZBZWxhTSv/7MOrun1XlH2/Dehwmpj/Zt+Dzvf98OgUEiEZXJV5P+Uo5q5mLgDVwRbCVTd/Ai8uM2lgAV56D2fqS1xL0lLCaFwJF1J838j9KdlZhL6jaUo2QlLOsqwShAbZq91NR18cjvh7in+07duoCDX0ejZsGwoypq60t44nqo8lJg0I2J4/o++hdsOyNXWOIKebIwWPshh6tgbUUUynLeBx//93fn87PXdp23aYbds+HR2tT0JGXez/+4fxhmGM+np4P5wWLvD6c5YtMqzVQ80tNNSK6mUhzcCbmS+ESKKxUK3AA4LhWmyupEwCieVQNhu7EtkY2Ihi4ipsSOIKvYpiQUkAmpDVlqdZ2Ok+G1ExzZARD8khABOhOjrzCtgHImAORGzsyBPxszvp8Z8xcpNVKSEgI5kCEbsYsRGpK0nz94erbMjcAR3IO63wMwJ0/ykQQAmEfwybnIeVNypuu2+Rhl/OQQmRkBJcmtVYxdQBzEFFQAxdQaVW1KWJIqTcEAhNvVtVdHPziabu8cn82R/5HHwUoAGeAEWxxqObr/uIOBiiqc2sn9G93w/2rF8t+h/PSLUucZ51PMI0+L7bURZxqo1b86hp2w5TDKcJElq2KurdS63Iq04m8vLrtvv66+4tf7775mofuMHThL/58CDzstwNSXaZa6qnZ/Tw/np8O82nSqWm1y+pqM7TpyzgYRHAkMVoE5mbWWm3FLEDoiDpM24CJeBPDVYq3rVQVq8upD6nJaGu2hQMj5pQB7OnppxTDyxdv4z5O8/noRZuMy1IXc/dmSDHknDe82+2vu65nilf7q9uXX93evbjZ7bvI5vV8eNj3H9NzQ28/PavHaRwR2QlXjj4JuIpJ+9TqR4CwRkCZmSn45TStIioyj0srRWpbQ67BDAKmEPpM2y70GcmbujJgQGZzkKbliGJDpMxp3FQCGAUw0nYb+8Q9NUJrJOCawJdEuUt9lwC188AhQURkn1Vc1VXXF+alNCZcVxwigBkFzimmFL9skKM5ibGILvX5/U8fjs8PpWDu7AUMw94c0IkJ0MG1EWjfR0L2ADFi38ehSwjOTBgImQNRm6Usc5nrTAs5emtuDswpd5ur/ZvXb/78z34NSO6QabPspe+Hr3/xpu/ifD65WMfDsB12L7qi2iSeT5UxulJrCIQVacjDzd3LlFPK+U+6+p+AK+v+8LHDAvBlWNEXXuqPDRlsKlNdTtN4PB1O5/O8TK1WFVkjEXy19qmB26XdfDnBGqq5qqsxQiSI3qgcfTThgBSImGIk0wuizFHQ3ZRUACAwIToiqVqrS2vzl8bkkHONUQiNgANlQESM6tEsuKuCuBtBdguqBA6M5qqyMJGknaRIzokQCJncndlWGMHH6AdVd0OCiB7KIqdnefhpOc0V7qLtQgo6dE4BY6AcsTIE1wSYYuq2IbITtaWMpZYitiI3OGFMkdfL+uJFhmDoxX1Wrcvs53MN1N3cvn5xe/urv/yLF1+96bZdTNFUT8eDLlWWYrVKa65ipjNYBXP/6Bg1dzMGCoEjc6SYifrUBcYIGKqxixU5yXFa6nmal1rNgVPshmHYbra7LSIuZWmqFPnq+urP//zXCHB9c/P27evrmz0RNCm1LIHJrM3zXMryJzTl/+XPZRu9CCBt5ZEhIRMTEXPIOXVd13U55wxBQ7B19LuKkW3lE6GjQTbczfzyHF4e475Caq4OhuBMimjuqqDVrYIXNiFxvEQ3ezC1heWpa8rtYKbgzUC+aFx+0i1dpGRC1VDMJ22dzClQx4xMx6KlyXkpS20PB30eMmN8sUm7fQ4bOioPji8Id7e3213fZdyFcCPAOjWemGyb+G2vw17v8DzIGeROxEJtLBojW4q2SFuWJ79/9/TT3/ztf7l/fJdC3myubm/fyDJhwNvr9NV+eRm/xef3E+5LvT5XHJ8fXn+4r+1TxYzm6IC4VrcxI0AIAVzmZWqlOCAzxxhjiIEZkRw8EHddR0iqoqJaJQKQSZBAwuJBSzRBMg/mIEqmmVFCSMSROYcYOJh7UWutiFiluToutaVERMBMMQYiQLOA2KfIISAhhEQQwY3VyQAM/We9i8thR9Rq048dPWICMwvKxA5G5mCOrrAebj8m6TpFAjRVd3BguqhVeEjpdru52V9dD9tNTHn9ImYwaLVNp3Eax2kam1RwF5UqVebFprOWKs0bhBI6YEohcT+ol4ZaK5grIoGjGbq4g7aqX6TywhfwckMQwBn8EfwJ7Kg6VlnExYHcDbG5zSanm6vx//5/ufo3f9mXhrXaXHya7PTk55OOk811rP68lHE6Swz57o52myXx2SuUBapZq1KXZyun6w2//T//8le/6n79i7QbDqaLCg/dVaCmi9SljMf7pdw3e1fq0zLOVoB8IGTx6sqMQlrx04pBAEBROE8tjMu2LNgvDouBt1oQkjuDshsZZg2MbpEs0qbPO5HTos+lHubxVJaxI1Rtj+9+nxF/+fVfdJvtVOZlnj/cn5ZRInPu+n53td3ebG7urq7vrq+v97t9v9kO21233Ug/nFP0FPdxs9nu7168efPLX7/5s794/dvf/de//Yf37+9F6vFwH3MEJjMrtTWZ1dunExICMBMTAlxoUapSa2mtlHmZxvl8PNciAISIDgJIgb3PtBm474ibqzY0R2E2j+rBas/0cr9PG++CvJxxBAIOXQ8xQDRdZW6GioAjJ5k2AUtdjAk2+17QHo+2TIssc10khxCIKQICIyEy1bJUqYiUQ7dC1z8Z+nCFJkkrp9N8eP72H/7uj/cfDlW6q+tMHVO8gNpigD50VymmzcDM4E1qYGJCaU1qqdKqKxDlPrVSnx+fpqmIM3CMKV3tdm9fvfzqzeuv3rz55vWbX9x9RY43qXt+M1aBFMPtPkWGUsrSbDHywHFL9Xw6T/PD0/P7D0/zacxdphQ18HBF3WYXAu2u9t3QfyrI1uaEmZsDOqACgBPByp6gT/6QS1aAIThd3Ak+l3I4nQ7n0+l8npZFlurSSM3NaI0xUENVuMgmab31F+6MY0CKZD15pyM81XYKBkSp7/dXYbMhFg/sCs1RGyEyczAVJgcXJGy1jufTPHb2BbgvdH3L0ZiRkDgEd3RM5kk0qqmZggPB1pW1GbgANWtQzhCi06CBCDBeOr3uKxWVDIkQ0fECOkcmZERaIdMrmVEJVchaxJgT1562fWgzWitLMXMDR7LAuDYI0R0dEJgJiaNw+NOmRYzx5asXyy+/qRLn2U7HgpCurl6+ffv667evb1/eYUQVLcus06JL8aVSlSBCpgZWyde8vEsFowpq7mANnRnJmENkJAA3UQIMUd21icylzvNUlkmaEsac++3m6mofU5TalrIgwu5qd7Xfp5Q222G7HQBkmuo8j63WGMjdRNtqoP9fX8TAxz4AARDgylBf+4KOhAgrnYs5hBAxxhAULgX4SkIwQDNwMKAKqeFWeGc0qEZzdQREQzJEQW9g7VN+DqIC2UeOtAE6ekTl1RK3Jif//Pf0S6y2u6/JSyjm4m5WNHCfGBGK2ixam4oBUMfDbrh7eXczdC7F+X0bThoMPA2do891oVattZPU1vQppbpPww3u7m5SItd5mY7mzhHRG8qCa/4loJmUWp6eD0+Ph91mZ0pzEbKSUrsZ6Je37XazYKxWrwiiSW7TsU0n1y86MbjGNlLf9Vf7q1oXJiiTlGWZpwmJc8opJUT8lJrEiFYrr4c0NWiNAXqjjUeCYJQSojArex9g49JJzVLU2j5QzbFPIYTkgQoRmjUHTjEQqWptxoxmH8UppsykhBEhIIGRIaBThEuP+GePFyIzUUAkBMCLtc1Rbb1HwADkYc3B8cuaUDU18HVchsgGCg5MgTgF6mPe5e6m6+764arrO46r+AHVVFubxunx8el0PC7LJCaBWUSmeVrGcz2epFQ3otTH3Q12CdZAmpjAsqiaXoosM1jzU0QM/oma3y9tGDu7Ppq+N30s7bjUUUEpZEIkEoRCNG43dneVHTZNWYSK0LLAfPJpgnnxpU3VD0s5L5O4UZeHSDu3XiTMrRVVVeyH1Ic9Y3z5ir7+Ct+8pqGbU1hi4MAR1ObTOJ7m6fCw1Cfx56bnVlRr9pbJEltmdHIg108bv6pPy3IaZ8GUSxMVdzEUBbFW3Mid0AJaMCE1AIMAQIwhbDiuOWQCrM4OyaXNoAu3U/LjJua7/ZXUt1JwTCdGyF0edtfb/dV2u99srobNVb+9Gra7bugxBkUs7hHQOMbUbXabYbcfNte76xe76xfffff9ux//eDo+N6kmlQkTm2dM6XMUDBF1OXddVtWLYa+1Vtncx3Gep6U2c+AQs4G30laScWBPwVIgVyP2Pvv1AHVHOcPN0G6G+vradle+z/48ylOFxQwjBQwdNgQTcyNHtiGmAa/aHWMbctL9daxqP3xYtt3RCz2HGmKOIaSIIRATi+q0LOoWQuw3m6vtftcPTJf+JbqTNFvGaZTjw4en9z+dnp8t5LCDhJgZOUIO3rEKa42mitsU0H0q6u5NpJm3Uhcpo1QMtGMMxPvtVQ71XLQR09Dzftftd33f9xBoLCd9j454nlMTEbc616Wai6jPAj8JFITYwePh+A+/+/bbb3/48P6+ldb3PedOAsXN+Hg4kBYD4MBfapVWCOnqMvo8MANb7UrgfGnRgyHY6tIwN1Gr0kqrrTV3Z6QUAgMCqiIqgDAZ82ogWKORDNTVQC+UJSaIpD1B1AWms7opcOg2EACDO7prWDXWoo7IzhGlgM4zk7uWeT4dng+vSNpnZ2Loe88BUuKA7iBqCMSmSWqWZioOzhGvQanVxXUGVik6HzB1CHcYkBQiwHpgUyQDcAIKRCFQCMgExM7kKdjQ635rt3cURh56DKi2zFhot+/Dlg+7rpznx/vTcpqgKRgJdIcRp3OTuro0CZiRjCJR+BI1CAAwbLZ/9W/+7S+/fgPUN8F51lpMBLvcXfddp0oOrVSdFqzSUeDMgGLcxFoCD4EqgQOsGQWmcgnPU2Px4ALWaqsmTaQRQupyCDGFGCju9v0M9tTm4zKfxvM4nZ+eHkKMKcTamoFtt5vbq+suJ1UVrY8P901qawuCg8c1YvnLHKj/lR9CZMJIEcHEmppqU0WC6L6a28zF3AFjiCGio9nHCGn42Olzc2luApgQtl67pmro5MiCIAgNoTqUZlrci6Osoda4dohFfQYv7I1AV2wCrsmqX+4slxOyuxsaIdA6enVoVWF1XkYiRHcYuv7V69f/4pdf/bu/+uYXV5ym94diXG95juM4ierxPB6OTaaz1llEzAN1ebjdvnh1jbf7utlOWuXwYxrvOTGjN5Wmpuachs3u6mqeE++GLN+8+YWh/+6P34I8/Opm+eaV/foN3G7cHNLBPpxr7+a+bKExfNbEEFFKMYQ1rnwo8zRNp3k8l7mUpeYup5Sur65DCNN4rrOY1NXwTBwSJzLXZRnQrpCuYkph4OQGqIDNgYIP1HZtStOzN32dqdt0sUshJuLcNt3NkAUw9BshHqWJG6/nXHM1E4cG1lqNIL0RACyK4DhwdKL0GfJweXhCDjGHmOIqVXZf3aburqt8JJARMwCZAqwD9DWdjQg5IBGBoXNKOXJH3Pf5uuuuQ9q6p9awqQJUBxVptZTT8Xz/0/vT6VRrUVMmEm3TNJV5knE2daaQnGlo1FCsubVIzDGzyKUMBjc1dxMDkZ9PlFbZIDpAA59cD9bupf20tMe5PE/LCQiHzZ5TZsaARowEEMkdnNk1YYa42wW4C2aswKJS5Ea0mBkCIXboW2vXtfFc56ZigKa3sryMXPfX2ucj+vsuyW47BGZddDwdDw8yHsYyPzU5Gs5qppLK3J2PMUC62YUhAqh+ybcXaQ/Pz+8fH24o7ZsiABE6kpg3bSqCqiRGai5uzUEQMBAlxwzITNttn/b9i1IPT88/WIRNzC+3TtPfYj683Ly+2v7F11/9qtZibTJVA0YOIccUGJFFbV5mc80tYc4E3gBHQNeQA0Wi2xd3V1e7X/7qz3569/5v/ua//v63f//9d7+bx1PfJSQqfbre9Z9S35l5u9lc7XalLLKmY1SiEJ1QgAwjRA4Ucr9xVbMGWAEdQQkagTewEOj2inZDut71OcI3L+2rW//6xq5v/MXGPxzV3y/3ZyjLjJxiF2Lwis0ZuOebfRhe3Q58NyQYehqGUJu//9B++4enF7vv/vj+3DxRyttN16cuUJrn5f3j/VJLF/PQD7v95m57/clpBW5YRzk/HM/T4fmxlaXP3f7Vm7uvvn7z8nZ/NTBaAsu6NB21TbWMSZo4aK3VoVZFJHRXJOdAKaZ+uN1evdjuWfHpcD43WVKgxA5weP+h/eGn72prJg7AEIroh3nW+bSrx6yCkJ4g/M5gZNp1fB6Xf/juw8PTSUUChV6NSmuI1aWPNaMejs9qPzO/EzqSExl/zGIBNL+wNeGiIkH6pOInRwNo5mqAzCl3RLFLaqbaVohVU2nr8oSViuNrHm4zbS5ComQtegpW0RbS5jqDGVNkCbhMzsEVIMW1aaFNEAhDkkrzsTYppU7zeDoen796AbXOn4uYmFogQCCHNRkQwANI8qm3xU0AnZ13oOQFXEW5aTWb0dnJee0yfRQCOYKvUiEzVDUzI8RAEMhytusrLBJm609TSIzXG94kz6ybZF2kty960BpsPmBps0lxUI2Em0zSI6O7A7OCOTNyWG1Xn3d9Ys7DFaghZ4ewU1QFEQc1NCmnU0AEh44j7roQArprKdoqawsOOUSlNRlRV+apirooiJJ6UEQ1AzTABgDuwTEARmJKGXOXGdE7XhISTmVppmYiiivbxx3MZJnlPJ6WZaq1AHhKnFJaIy2RgD8+TZ8/n6kvH71+n81Ja2S0i8osqwB3RbwqAeVo5NZq8dYiemJkvtgd10klInxSkLuBGQi6JC8MszoasDE4NjdBEwR1EARHVwJX/NyNVBOxYtbclcAInFZh3D+WX1zYkIIX4Aahk0OHlhPEyM6ACjM4M2+Gfr/b7IY+BV3qUuuyi+Hc+P04P5+K22VTLFKrCTFterjN3YA0AlGVJKPpOYMrOQNWgAZsENIGeahm5o6B02azlxVLvMyoSurSuFYyC1oZAABdzNrPphaAiMwcQ2DmvsM5cK2zm0sTbUo9d7nb769Sigw2q6wDY7JGxDEBm0tZCAQZQ7arOGx6zgwAUICcMAQYXDbzOTt81acrDhR74kAM6jb1wYFC7kf1H05yamYE6A7iYAaIhiZVQb0jQicFdowNQAAVzL/sXRBwxJgxdCHEAI6qF7CDmyMamXvgFJCICdHB1zRwR0YKzAGAWZ0h5tTF0CF3Oe5it6XQGXC7xCSIgUptpbQyr/mYpuoi1lyatFJqXctmIKTg63veNRCElIcumRw3tDsAANCdSURBVFZH83nNYlC3dUoNpv/k7FXAZm1PUn4qy/e1/lDkuepZtISUmHOMFJgYFE3QxEwAyD0iRSYk9hAMiFeKdJHsnpgVkRw6t8ElqUAVsrXfCYTKTDGlSZqeDietk8tWJcxnGY9tOtV5nLSdVRdFFcFliU+P+N23UyT/l7+5TteBfPlyd1G1cZzG87y7dqQQYgwpemvqLioqBaShCEpzUWsKCoSMmIB6xMzOhBA4WOxi6iDoZggph2UekR+421Cfd5sN7DYuvcjKOXJgJ29Sp4JuroSWAiHENQZWRAoCOnEKOacup812u9ldYeCQWLR9ePe91iK1fHSrXS4ohHB1df3ixctpmlpriMgxpmFwopirbM2dOeSu27jKdBwiTtc72OxSn0MK5JYJdJMBnDbJcvCXO7gdfJ/KPpw5lImgA4lGTZwcgnokdy/gkIj3XXi1oas+dIljZCSShp3F0FyX5e7mavItpM1ms+1iHzyez2MedtMydhy7lDZdvOqH8HEEw+ib6NmXp+P98fGxlBnzkIcuDwmggYwJLGvJ08jHh+3xSUqJHRTgUdwBFAmICdmQgIhjTnmz2exudjfBwAVhKR7IyE3LeDwff3w6PT69n44KcNvtxPH78SjT8UU97sQz9k+U/o7pHMJtiqW0dx+O41yBsev6QMhERXQudRpnJam1in7u9rmr1LHNB1Z2vqhZ18QT89W1ExE5cLwo8cDBXdxa01KbiaEjAyGCERC7gjlaIABboxnXiGzVZgpkwABOhMExrXu4NENSYnRah+Go6ktxA6gMq/9VFZGAo7iO02kq52k5TePpPJ7Ox6/1y3ES44KA0sjJjMWQSZiXzMfBRnBxxMBpAENeqmmF2NAseIjEjEDYHKqv0x4AcAIzFSzFprmVBdBCIAhsw+D9Nm6v+epFmmZx0Yy478N+S31UjiF+vb27jt+8DofDbj7Np2M9nPT54H0Pzxs7nmWapUoVcw4cQuDARPRJtlqr/PDu6eGnHwxWfnEaNtvrqxtUPbx70mnJxJv91fWbN93VHgI3a+fpZGVGbdn4CjuG4OAiWmpZ6xgXJXU0QEcGWG+SSpUV4QmOFJxYiDjSLqRuv7m9u6siS6ulllrK8XA4mh0Px+cP9/M4Ph8e1WSz2ez329vb65xj12VmEmnMP2v3OV2+gNYhJXyU7K5WN1cHEZ3m8elwX0tJnAIxIkWiTC24kVaqdRutZC8gropGH7c8NwBzclofWpdos9mBbEYyxYgBFMUu4THBICmQowVoDItLAzADE1WUlZDv6E4EAYPHgJ9nyWtXEQDQDdyaktilLmP0bgNvbmzb4bnS4+RnclMd5+Xp8fn9t3bw6Xff/tbt9Muvciz03d/r7z9oAGPyEAgIzDwihEDL+HC0Z5tvH7e3KW0yY9L2uEykCsBGyTimzTyKPh2fljqKlSoLIW5zV2u/PI/vFm8PtEnMyCPkM+SJ8b2E+4bt50IScLjwQji0GPAjvtMBIse+G3a7fd/l5L6419Zara02AomO5G51UW8H9K6n15lf7PIVQkRoEITIMMRAQ5mdOO2GgtGxcwO3RaDVPiJy4vAw1/u6tHlpgRAx+sUqh2pNCpr0ToET5F4iI7BdZEyfM0cQnYKHDDFTiqwGWry5yqruBydwBw0JeW26MDEgUkTKxJmIAdiMmGKKXQgJPITQhZyAycBtbc4CrSNmRkzRdjsPoStlKWt2O9b19KFRACiGEEIgBCYfhn67297cXNe6qFe1ur5lL2Pej7PTn1fJBihmY5vejeffn05/X+qPimcOnoc8bPJ2gJgcXFyaSVEpruKGRhE4OS4YMJliUANTjdL27sy5EhFhQ1AKLQbPMAMoIK4hgtrGVp7m6f10+tFa0flEFpcJ5gnq4mCVsQEZOC+Vjofw+9/Xf/8/HFLo+q7vcuzjR0/qxwXjTUE8Uery0G+2qe9hKbqeWszAXB0NaGWbuzcUBSOEI1FkDAzIDmZqyJT2koYJg8xKi6l9h/E+b65y36fMzEBgTApgpricplaGDVx55hCxS6GPIX9UHxp6M/VqgYiJnfn1n/0CUhBHBfz7//k/Pz89UIhvj6N8HL/GmO7uXr59+800TW6Wuy7ljnI2hFLFnTjkEPoUO1ddpmfW0z4t17ld9TWRhdATyiYuLtWX0jPsUhhIuJ7bucxHXU4MbRNx24UcKJEZigRXREut9s020tKiZbJjhXExkxih6zT86lV+8eJ2Tm813FAY2CNWmk5nzt20nCN4BOvAdil+8linwC+v+tsNf5iPp8PTUtU5nNtE50fxqZziiwjcFnx6xMPzcDgShyEMU4ozoSB73hoHcCUXAokp525gCtNptLk+Hw6HUs+BOWCOJmV6Pjz8+OH93x8exfDPdndO/LvxGWWJqD1QDxbYV2JyhICE237TKIpWzmF7s4+5p/Oy23avXr4Jvjy8f6+in1xjrm0+fjg/fFvzOgBABxeztTRf6eIp9BgNCd1NzZpYE1mp9CuKfz2OqIm6Ahr4eoa11fNo2kAatYYq4IbuvCZoAhGzUbKIEnokThQZ2ARdKoiau1lFMiJEJidqrcznp/N8XNq0lFnKYrp8ApACQEgrzmLFwq9gX0FYCGfCCbEhkIMaAmJRciNyQEgJUl7JpOigDishzdzFDcxIBOfFSwECTiHEyF3HMdNmB9ttrFWkKplnphw5BoyB+qu439HNlYwjTic6nfh4bMeTnyc6nuz52A7nehpxHGUa0Rr1Q4gpfnL0LEv53R9++P1v/84dUpe3+/2bt2+u7m5TyoZepBkoLEtYlpJYABREvVKAEEKGtIE+YgJCdauX29VcFM1wFYMghrBiMNY0ulprq6LNHACIMaWYAgFRUx2XaZoDI0wn1qbzNM3n83g6Hc/PhBhjMBsAgIiIAzGR6p/MkhxWPsYa8vOZurTmhwGQu7dmS5VpqctSAjg5AQIDdsgdeodCIrsu1hpFHFzRCNarAbjQfpwu+xlerMG+JhnRKuMydycHFOfZcLUKXFyua3wXEIE4KAAQGAEQsUfGeAlP//KKHAghMWwi9AlypBz4xRZ/eQfEsDyZmjmCmkzn8/M9fvCza/nbP55ynL66LZ1BEsVikzggdYk5IDimQH0MSct8fCha/dxivx/6LqPRPAXTHBKiNDUu06zzcZpKW8TaeTpF4kgIsReF01xN7Bw1s2sy68wJZ9FJftaHXT3qTMTMHDjG2HVd13UhRhUhZCZeQ60rMzl4E6tVagVfUdTepLq2oxr2/RtDcah1cSBNg3OAkIEYmxJDzNlCL9CZGDVFMGUnog68c2M1FSkOBtCJZrcAGFxU5uDWQeryhiEuoItUIVBW++I0BitaJhoGh+BoQArIiMaI4fJQUGbexNgTBaaIFDh0HDrijMQIDBCYQqBEHNyJOISYmcKFTHXhhKKTEkaimFI3DGt22TIv0xoe0lRExBwYEdzcGgDEEHLOKWUD5UAcwQ1B4eIgNLB/rIJ3dZ21PM6nP56Pvz+fv236gZPEmPs+9T0ErmAmTbVVLbO2xbU5IISEniEIujebUat6NRvcAmIP0AAZyQgF4UzQGI4IBRzMRFWknJf5cT49LOOjlmbTgpZbDa2yCyI0xApo7kEqPj3Sjz/C93+UlOT9Q3t5J7DTpp8fsRD4Zj+8ut3eXA1dF1qrpVQADIF9FeYDrIo2v3TX1F1A7YLRQUYHUAUn5xAwC/DioTUGF5WKVcWhac0txoCBPLDniOjo1ZvYjIiIMXBATiFAjMS07nXm3tRFV7YRUb/ZvHj96pfl8Th9+/2Py/3jfDo+Pj63j0L4EMLu6u7lq29qWRBxGIaUMiZeiewAHGJmzgGTu9Z663LOfhjgNNCBrToiemUs7h5RE1FemwO1VavTYVnO0UpgG9gBDbRK5NZHT2jJZWhLnM82z9PSjqM+nd01bPMmxj6H5ClBgALUGpoAFQWFPnccLLgGrVFqRPv0Ug5MN9t8NQSQ0spMlDEyEbi1ukhV1ITWZjs/8nzOJjHGjtlT3sTeUufD3kN0a+aqZF0O+82Ozc6PT2WaC1hzncclkYcOaZm9TPMyPp7P4nQXd8jhXCprk8BAzAaBYMVgJ0MGzjFFM/HqaEjO5IweAvf9EJ1jzMyf7eLSyuHh+w8//l3uAgf+GM/OQJFCx9ylVDWUxgkA11zt2rRJszVyt61uajETA7f1rwKQG5mhGaiANlRhVbKVz4pMFAkSABmu2vtVNourybXIChw3VZVKDDEnimyIVYrWybWQt8CeAqWf63tCF3bkHsydilM1Ua9mxbAKNLe2AIFxIgD0CWkOoUAUZkgbh2AKYlDdmiOCi2tRA4dgRrVwa4Gp69LQdX3XdcyGaInQO3I1uDSoiRwROAZPZDnYprO6xfYiqFATqBKmBY8nPZzl6VA/fCjffz+Tw9ND6vr4KdNunJa/+dvf/sf/8D8R4Wa/efX6Ncf4q9/8Og/DcHMFgFLaYVl++t3vikotJSd6fXd1u9vklLpAzIYBkQMxcwfuriIu4k3d1gwZMDCK3HWZGLrWxnmpx7PWimuBsTpk1aq0Nch6JQbLxz2syymEmxjCsN90fQeIohdoovrPeHAf4ZGmpoSX4eRKaDUzRAoA6OSmBGGz3YWQymTz3JZlBtWeeBcIE5DjdhiabcbTyaGuuTF2cTqjXTKvCQGyh43yldCmgZkji5HUoGbOSticDmJVMUFMHGICJnYEJXOaoT1d9kBc05EJ+Qtj9+XFKwY9wXXnb/f45y/w1S70KaeAHOzHs03Nn4tXIFcZD8/PbXqonTM/67DZbEuXdlH/+hfnPsvvD/FUIKAwOgLtNvnrN/su4cN4mp4OcKrcT8vNXc59gtRnykNmq+XwvBzlOD+fW6ve1PXx6SETmUnoOsdBaVa+9zByZxywx7FDIptcyifLKBGFwDGFEAIzEWHO6fr6dl7mDx8+mKiDq4qZtSbjNB8O59PjsYwnBVAwrfNKFzdzW2zO9nIy5mLPz+jE+xB2Q9x1OwimQoBPHs4eKkYE7TWq6VEbkd2Z1GIOBMjVVVqFecRlCqVQW4K2SKHL17sNbDCcm71Xa4ytZ1k9nJcSxoHFSAQaOQMhRUhdCCETZPToRjF2Xd51/ZBiF2NOMXNMFDrixBSIAq0cW2dctzUmjpFwTShzFXFTt1VP7ua6sqtqXUpZ5uWSgFZFSmtrQlQr8zyd1FzNSynPh+fSzlUmQCF2ABRx/1jE/HzMB66i7bCM78+HP4zHP5T6DuMppTRs8nbDKZu0U6ta5iateStgQqjITNg4GgfCYECj+eReEC1GJWYOkSgG6AGCwmz+LPKj6wnEWpUy1TJPrZ6X8dSmUYsjArqbd2hrId/AG7kyJhF6uLeHx2Bw45QOJ394mpjqbfvs5+v7+C9+80rL2+H2KmV/eng/Nu032y53XuY1TArNEY3RBcCAlNhpzWCXlXmvrSJwDAOit6oAOXLPsUvddrU8q7S5LTMYAvRdiPsuhhiJapPT49N4nsbzON0tABRiTj2nGMIasgNuDs29iZZFi4T+xdevftO+vn98Pk3v/vN/eP/+w6cihigMw9XN7VcIzoG7lEIIHFZzxHo0ZARGIDWQba/SY+EozrowWGLUJq24VwDriAJhcudSCYpM57aMoNLcm3lTd9AlJb/p4q4Dohql+OEw1+N5XI6jnSYUDzUfOEaJcfTjUyvH8rCUzitHBQrmnVMWIjWrIovK/GntB8Jtn/ZdjOSRadt3cbu9GoYh50jaowVwRKfMjF3YModeuuR9txv23eaKNlcYk5kgKQdK5B34/PDw/t1PpZXuq5epZ/vxbLV0LeRaF4RN4C5E8TCkDXEYyoKGETA6BaAAHkyTSkJShwDAbm4i1ZfTwUppi2gfRDQy9/2mHzafpvy1zD/98Nvvfvsfh20fc0LkEFPMm5h3OatHNVkWZzNQdWnaatPWTARVQddEPVEVR8dAzozM5ADaSJXd2IxdA/haaQETIjNBIAimaILSXIsuTU1nMxVtrclKPDRXcQyx64eQkjEJGcfYx02HnZpK1f3mijl8WvshQMIVZ++y5pM4LE4jJCMzjmcgp+xEEHRCnkPfMJoH4N6NpOmiXtwFicEvQpDafKk4zrSU4BCZYwghMBE4AoZAAIhADo6AbuRCCMgEFJzZQ8Qu80f8CZqHKjjNdp7i8RR/ugvbHrTqj9/PIXyOtBORp6fn+/uHrs8UubW2LOXx8UmqnM5jrdXNj6fxj+/eHQ9Hr/V26Idv3u5vr7zrrN8tG6ANBaaQIqVETMHMRaw0VXF3vfBxsEUKgTAyrx2UQKsxG91ALzEhpZSyzFKb1OqqjBhytsBN+AKbM9dLWDJ8xLv8Cc7F0VcyBiKs2Mt1qLRiUclUl3FqtebElDotIlKenw8uQvurjHyaKshSpS3NRA3WTGS7yGy+bC6wU7TQG+8v+GkVsIo6kzb31R+Jq4zdAQ3IAAHW0485FEAlUIKPYyLCP1X3XA6Pmwj/8iX85Wv/16/h1RXESIvy+1F/HGERXQQcGNBE9DwvP6KkYRt2LzYvr+B6GPrlX/Mf++58/j62AwRSBiOH2CWPuZEvSvNSARdSEoql05SCQgxq3UpcErN2ttJcpYk9n86JKAXuUgxpSDFEOqY0db0SN1DtI0SGC5QLAABUdZ7naZqgd4DIAIgYc+6HzbDd1qW4WynLNI5N0jiXUWQhkpwpRgObytLMKSZ3NJcGUQ3m2g7jXAQcBoYuc7xJrqYZwsHxjDgjErFSVLdnJHYdxMw8MfcxzAbuzrXSeIbTCctMbiHlqLGnkAJllZnTHMLPb/oaaEe5wxCA2BGBOYTQkW8i7RCyKcXQDcNu6DddN6Tc5ZRCSBQScWAKRIyADrh6EdYHGZhW5KiZKpGpul6kcmsEXlDluGr+A3NsrVGrTsUR3QFWaI7pUhfzNs4oOrVWAOxLidg/9XHTuYz38/GH5fyDLD8BHALVHDgFJ2hSfTzXstRW1MXQhUCZnJFXBIUjuavKyWEmUOYhsDOTY6wVHsaziqZYiZ5cf3J5hiZSdJlanavK0pbFSgPhFf8CsOaOG3oFq+AOzq2G01HmOaRhl/tQBMdFDRC/GCWnGF+/vD083knOU50f/vD7uDv94jd/3g8dMymRmzkCr6t4NQUA6Jo2C2ZgF3KUu7mIIGIzV4uYiEKMHEMMFANFIgBvtSLamndThapgNYRmoqBKblSrvnn1gvcDhwBIVbSqFYNFbKoqBsgh7q5f/uLX3xyeT08/3d7sQrhslu7QGjTBGAIAi5I7mBmunIeLQUZgbeYzmimKo7ia40p/XZNRgEOIMUQkEvVxatrK8TDPczMekBb0yS2aFEBjaVEMdSYYXSavE9TGBglzIMjBgEvVZZnl6dmezsd57kBjRsx9yjebFBhpfYLVv3CNuZmURUsJ7n1g6HMe+qu+67tE1oJLk7aYewyCgIZAvJ5FK6MzrpFmIo3JEkcWszLX5+fzwwd12by5zhRpmvF0whGDlH6ed6rXjoK0IyTCGwpAYYOQENiNXToBQOxjVOYh8cYCKCM4LZNLIwUr+fD83CIDQAgRP7/H2nS6Pz3/aLbph02IHcImhAQqLsUcgNDMalERbU21ibcG2kgFRLWpmzk58lqDhhVFy26sQtqCWkQLCAGIaAUjEyCbu6hAXXQZtc4ipUmrbqIqbmIryhwvwbK2RvepM2JOfe5DIgfQotvNdaAvihhQXwsYw7W2EExH3BUKOYgxLEBOYSEEwIW4clBkcGRgFViaLGYVAFaXuRo0gXHS48mOJxonbkZOq+Jw5SICsV9wrmuYgCMzEyKQOrg6OjKwIxCagTsBJHbqMEXeDrwbeDfEMsF/+Y/Hj2RxWAuBFGm37W7ubl+8fPX29ZsYwu/+4Q/u1uYakLbD9vB0+Ie/+fvn9w+7EOJuX2Yp++cpxbK/1reCL6BD6FLoAoUcCRBVjdhKba02MwOwKnOZiSjn5IAcUwAUVVclN0N3MZFayzyNY5mmeTwHhO3QpxBqrU+Hx2WZRZqphRjcHAGJmCkQfm73IQADRaRIHDmuZYH7+r8XVrZ7K8vh4UFqub7ZdjG1FA386emBzN/e3YacHu6fzofnaT4temxUM1szEafovAJC1n8MHcGYNWTgHVKHBg6TwxmhgTW0BgABwz6BOJAJrn5bX+1h5npGndgLu6OvzxB+jqpcu1GX08xNj//PX+L/9c/81bV2AwrZTyN/P9K5ehMB80CMGD3ghP5d1dt9fvvLb776s190L6/6/PzL62VI9W+f/GmhnEMgRFMD/P4woaNacGZHUnU5Hus855wkp3nudkO6GW53G/HyFKwc1c6LTK5MvOswMw+UriLkuNt2su9OyEwa+z7mYQg5f+r2tdY+fPjw4w8/3NzcbLfbvusosJgh87DZlHkq4ziP49PjY+zyuVZJOb6464hy3zcVf36qTVI3BCc6lVdDvIs0kDyxHZocxqOYRS23fW6Rr6kX7GqACR0J2KMZTWxRVWRmlG0O15hMsEhISCwAU7PSKBIHR6+xjbtzHfDaXu5Ou20jw5zg4/g1MO426XqX1tXnhsRd4hc53nXhhrBXoRC6Ydht+t0wdCnnEEPkQCEQMyN9ZCqtUaerPMTVXFXF9KLgtYtraN1zDfxyiBMV0Sa61FaWZapLLUWktlpXh+DpfMJVjkwNoMEKS7TL44Wgfzp9RVE5nw8/js/fteU92bGLLUboApHJcj7VpsfT0oohckBkNCIDdIIQOAI1FW/Qajsjti7GgEyMAKQaPzyc/9N/+uMyT1+97a53Y+B78idqYtXrDFJNtZkYGjOkABGATd1MzSr6Ql7dSAVroVICUN7f3vQDQTw7t27ohs1nhgdT6Pt9yvtZ8OHp8Xfffki7u6vrm5zeADGFqJ8UzQjMjABoiohOCAHdg1uS6Cbm5qKi5txUkplVhD6Gbb+7urm9vbu7Y6Lj09P5cH8+vF/mqQgj92lzFUK2Bof748OH5/fvPrS/+A188+b27poCn2qdiizNithcW22yvvCuXr/9K9avdv727vp6t/u4XuT+/umPf3yXYmCmFdGwRhKB22caibm7NwbE1vk04Blwija1poyySRAjm3JMaz9d9NjqPD09nhYJuO04RHYgj4EMXJaxcWvELfMSYkuRt0xpk3a+45CHDTevH07HcZnl/FCeZ5GOIFGKAXYBhgApIDKygyKETy+y2tqH9x8e7j+QyC4FTLHr0lWXU87a0Jqdi8yqfchAtMyzuAUjB67mOs5Ij6peyszgV0Pu0cMy1cf7+nQfU0jjyJTyccT7Z7FZdAlVd6W+aSqBr3RGiG/QgPEKLIMRajAaqgWkTXJPfJOYIu7JTCpLM9VArPP5j99/3yU2WdaUk48PjhFWxhIo54j9dui6fYw75uTmBDUgGph6cWtmQKgcBbGiNQNpLo7IOWNiDAGJXDQSbWKMzj4rNongAYHIFG12EwFVcDfS5svczkdbZreqZkIgiErohICExIyRQ8YuGXARAcSOc+6HzW5g4jbJZnPD/JluH+YzoAMJAIEJYXSkSp1ALOwGWJEcsRIBUEFqTAaI7tFAFSaHCqDwyVnuQQSm0Q7P8vwgx4OGZACG2BCbu7mDXzoyl9BkBEdaaRSgBrWxWkRkQA9+4ZgSeYweEgw95sTM8ftXc9fDiun5WMRADNhl3vTdfrO53u/7bpjnOi/LPC3m9nxe3v/0/n/+h9+e3j+86Ae8urouha/2V0PfqYe7l8EdVEya1BLAiInMAUGZTMmNwMzUWq2XfMYQmENGIlGlZtqs6VKWaZqWZallqaWYamTGmFYflzRZlgUBzbzrO20KQETsZPilz9LdRK2JB3Owj6KYC6QEHESsLksZT20aJ2/G8bHC49PD09NzAD+eTyLx/nA8PZ+Wuhgq9xgB1U0AGPhPvEPuIAAz2Ay6xknMTqPxaDqZN3cn4OwWYQGvbm098aEBurvNaKdghVe9wp+QIQHgAiNFgCHC13v4s2vsN8jJBdthQTds6uru4AzAhEzkblOzUPW2tmmRD2fKnl91w27Xv9pPT5POxlUJ3VVtmSs4povUG9DcS2lUl2mhEInn86ZvN3aVMKtFxLf7eNNzMWpGrhjNO9GsEHNm7pGqexRFUTTAL11hrdb7+/sff/yxtVZK2W02wDTO8zSezSyGIAja6vl4DCVXdSPG3FMMoe9dhOeFUTj3ESgo9Rl6kuTNoC1ST8XHpfo8L0O/2eTAONxQjnEC1qaLtKZ6duzMVDVq671uoVZrrJVVtem8qFXLTIyeuW4Q962o5omhpdDQlNk/Mzxw08fdEC5tUYuBt128y+lFDnviASHktNntrnfb/XY7dH2XUmDilZe7HpOkiaqqqqipkog1MQEAN2DCFai4ymPMRFpttdRS5mVelmVZyuXbvNS51mK6YsvVtKkubgVQOFhKa/jUxxVAhKTws/Vibkstz+fjD+Pz917vic4cGzu6qizVvC1Vl7GoQAzRAyMZ4tqBBvfmCs1rAzUF5kzQBxyYUq3+4bH81795+O//u38Yz6e/+tc3v/zG7m7GIRVq1avLEkzIgdGZHBkiOrvhCrQGEwQldAdUZWlBFID6rt92G3c+K0JIKab8mdaN6BSBEygjNAZAkTrNZV6AkEJQEVAGMvRLcb3Gi9qaOnqR0NHaFl41924CWAg9EGhOAJ5y2l1fdzl3OXcpIKgazGWuZSriQKMZikARmc9jDsnU5iax78dF5ipL1SYiKq220kqrs9U5mLz96uU3r17knD4ufCtlmadRY0DCVf2OvE7IgQEIjdDJHNCEjEkirm25at5cBYOl4CmgNF2pvVXqVOcyzdO8OOU+tJQqyGgeElL0VpbRaiFWzdqx5o46Djn0QLuYumHDS5urTceTXmfXLC1WB8uhEECbe3X0FNlVJ5ln/aRWqrV9+PDwcP8Iql0MwBQJEN1cq7RWWl2E3AXIheeKTZW0ymIjnRVDCNnU5nkOYKXvNuhxOvv5oNMpSpL7B4VEpyk26QNsY8whUteFwTXGq90AxJueQOXKrUcLbslx0SC5u9vvJacmGpfQwK1G8CYOlVjAp3FsLW66EL/MtEIIrCFoCJBS2AybYbjOeR8wua84mNLaAu1stYIigQcyInGsIWCfcsxd2G4hJVuRs02GGO62G9Y23ks9L9QagSGwuovIorK4mimqYi1WJ5QKboYgiMrkRE5EyEDoiJS43/aOUafFAJlzCv3Q7QKH4i2l/ku6fXi+d3Jgd2LEPoROcmchGsaKqA6VcM02MMcK0JD0Uu/AmnisQAZO7g7AhN2sPp3s+b7e/wTPD3h1kxAaUSUqwBdQFiA5ADi5E62OW0RHFMFp4tYQiIgwB+RgzEIoQE6oSJ6chkFzTxwU8FOAOCBCYF9jcMEscbze7O/2aVyWHz/c/3h//9MP7373h2//8x9+Pz0eXu12UxlV5nO7/ebly9f08sV2SNuNEk+lnKQ6ARJF5j6sJlNOAFobGIIxImADBIjIgUNiaMLT0motx+fD8XgspZgoIYYQU84mOk/T6XSep2WZi5qpe7fpd7uKgByCqn65+bt5XZZ5nNFZoiMyInFgIl7FAFpqmRdopY3nD4fnU5HvZ7k/nk7PzxHhD9/+Iac4T6M0Q06ciJJTdCNZOWYGdGHXrQ5rhJHrT4ZN4+Bohieg0cNsXgzFzUENm6IWt0beiJu7ri4RcENvDAXAFdAvIRRfbDAXTAwSMLkojxUX4Fixo0pFSCM5wEpGMs1o+4DofjIdH4//9b/87Xc/PN6++Or5daKvqLfh6/04npf/+AN8mCiwI4CAEVIkTIwpWkBER1GfWlNbyDmGw7sEuyHebLo/u4v/9hf9yz27p4eT/u0P5+ksYZ7BTILPMSIMYuFx8qdDmea6xnmulyIij4+PP/z4Y2ttnudxu60i7z68r2XZ9V0EzyGAeZnG1gRCBkJdU6wMRESqqGptzRADSiMAX1Crt2KlwFJU5xHP3OfxZmu523HgbnDh8zLV0/FUlmOOiqZ14TZ1ZRzqPC5NpsXKVJo8i5viDQCz7VO77nynPMNiWpbW5ojLZy4sEGEXaZPJ3cGJccNwHeg22N4lEFLX5/1ue3N7c3N1c3W93242/dAh4jIv0zzP87SUAhcYJhKgAhOs0QMcGMX4Mj1fVWKtzcu0zPM8j9M0z/OyLHMppdZWy1LbLFrcBEDdVqtEWylb9NHc5IBI6AaMTNzWTOmPVbhKO8/T/enw/XT4IcJTjCORKNMCCwUzI1FAQQYKSAxA4OSrfl1aXVRbcQAOKe+62He8zXzNYRif7b/+l/f//X/3u//v/+fv5+l8vH+1/J/6v/5L726Tr/LfmsBCXHMO3cDJlcx8ZVciGgEEJvdVKpAcEWLizJTEsCkIECJ9HiepwyS6OHDuX7zc9sONUSK36XTqdj2FSKwe7AIpU3TAFVkGaw1zQSw7ka/0BtEV/gOi3sTXhKNpGudlyl23v7ndbndXtzf3P737wz/87scf33344Ye5VA4x5WHYXC1If/iH7x6fphcfDsP1nnIygFqamQYEU6l1efrw7tvf/V3U8S9/dfvNV28/5aYRQo7UZwoBEaGBGRASIzESBIRAHtACOqICKaN1jr17MiN3DJ6ip2SR1G1FNGhpdZmmZS7qnhPtt0zZeV5MqaNA2uo0zXVZ2UbbDXWRQ46UYowpptwlYpZdH19dUfj6+vV1nhVKE6nluJw+PODiU99vyE2n4+2rs7TLObm29tP904f7A5lFDoLerI5tNOfpNEmpq5NYm6OCteRN5rme2/mhTsq82e2JuSwluHGdVTVO5zCPQZqqHr79wSDqAru+e/n29e0mVtOXwL/C6IE9urmXqqjauQYEIpqUdgtpzFc3VxOBnk7hOAogNokBmvvJbDQoQCHnYdcP2y19PL0SQoyYM6XIKaXcbbe7691wN6Q+EtR6fnx6d5gmrce2LGZAhBwY3NXakDevX73Z3ryI+72GMLdq0oLW66776sWtzeP3Pj3V51omkcYhNfdpKcdWzlJENYJH94zAOSqTIxqzr2vZ10WpTUrq/OpmG9MQnsdSNXBMEBJGplBR1ynA5yJmOkVGC6ghAhI5h5gU0TkIkrgroCNe7IsAAuirUoXAL9Gy68QAzMGQLkotXL3AaiZqIm4CIMgrY23li9L65RcbCxvEabIffpgPz1WcmLnvQu48pfb/5+u/fizLsjRPbIktjrjClMuQWZlZ3VXsqe7BDHuAIQk+EvyT+cQnAhQgAVZVZ1VWZkSGcmXi2lVHbLHW4sMx9/CsGdDgTwFEhB+75+69xPd9P+eF2YIDHxAMizAQEyN9FqpGiN4xAZRpGvfHw92u5ebq6mbbbcoVHqdy/unNh/vH+/1hHg8m1Woq83Au8xTDeDodb287QwieY3Bt4OCdd8F7MGAgLAK1QhaUCgKAWIogIJAhMxGgScnzPAzj6TSdzqIKZsyevQFSqvV4PJ0Ox3lKJdWihZiriC2/uo8j+c9GF1pTnqcJDIly0QWLjAufS0U1pzyc6jzbcjmM6TTlcZxMrZru9nvnWESJnMMQzDtwBmxYnzq1T8IYAwBV0hH0FuxM4okNaCRMBhmlksoCPqFaFqQaPoGAKz0VMYu5TQz01yf4X/nxBKXCjztYN3izxcbprsrdoMeBc0YRQ7CG5XmPv7/GwPB2Tw9znesjD+J6T3lr5vq2+9sXrgNMFTYnDA7dkoy/aJYMFwGRQzTVXAuYOSBmYK6rLt5s6Lc3/j+9xi8umQHvj9ggfdihDjRXOxyknCQyGuBcy3HQksvnT7XQBpxzy/DfzEQk51KrMGJkZ86bKiKZ4cdgk4+iIjBnqGqWiyCCiBqSKYIVsVwVsmDOIiQlgwOeptYkEMxoqeThdDydjzvvEtlZU2+p0bSRLFIbmVXmFhM0ChGeb+CLrb6+qM+9+dkKlZLncZ5H8Fl+LWIQwCEGRhVE8o5WVro84FSz4tQ0hYlrk6fxHBwFj47NsRKRSEUTRvRM4IiAlgRDYWQRV0EYDbCqlqpTLnVKOZdhHIfhNI7naRjGaZymlNJcSi6llpJVZtFkVsCWl0rABElJxXSpAJbV1ZIqvwh7f2XZqtacDvN4m6fbkh6YB6BsApJQSgEyAGfAsBA65QlSZQs/flmoOlFipuCw93ThacO4Aounw+nf/uXuv/3j3S8/zDmVv6zON2v4zRetrRmroihKC+oRGBBgQa4oqIE9OTKcQ2MUqU7VVXWKZMRA1TArVAMFws+nSqqaai2mTRv7sLm8CnO1w5ymafB9JOeBGYRBCYnMgAAM/eIZVEGtaiCmy8QNCYGBPkFsVLSUOs9pHMdxGLpu1ay3ITbAnLJsL4/7/SG/+3DY74Go61aOGI1Oh+nxcD6eT6vri26zouAkV1Mhq3keT4fD/uH24f3bVYRxXif5NYyImda9v9zGRSVTClUFA0ZiIggMjafA6kEAQEzYLAIFYZfARAsZszIvMbCIBKpqYFUQMMTerVb9et1x8Ay1FolgilU9KrqlShVVVfSMLlKI4AIQAhZgtQbsMmhHVF2Yazmd85Sn437eDyG2PYKV8fT8q+cLOHdpwtA1vtt0PanhAbASMJvRU8InMqOhirU+XmxXaHgaB3i83x0fq4r5ENfr1dUFqdbzcDwNdjy6NLUg3oBO2dCLby+vt+tvv332/KJYJXIxdOQ5Y0lpTvtBU2IwF5zrVtncejDlsLpYP6b59pefJ9GF8RcjZxUaZ0gFBcAxsNfPJsqwYIwZgUgMSpE5ZUeJjNBDzWkaz+fzcRiOKSUwICJxTAaaJXhPnnzkhTKNqEwaCWOA4KyQiMypjNN80lI5xAQwljyVPEkR0WqqiMwemYRZl8S9ZZhoaAoqJlUALMbQrXoFnudqhs55Qof/C9MrALhaOqPCfjICwCUxiMRgGXs87X+edHkAwGiERqiMpoC8NNCL3Q9BDMR73qzbm+vm+bMml2CgJdWcrSqyAwBTqaYLVJIBFAAVDcCB+v0h/+EPH/7yl8M4AhKvNrFfU9tJ20GM1Heh75s2BufDnL0hs/t1CYOI3nkCGg9DHd7Oh3nYneD3dvPi9Tcvv0ZofvrLu6BL6w4pTQ85H4/7xzGl1cUH/87uj+1ms726ev7i+asvX19dXYXGe/a1yJDG4Xy2XBrjBtkzE1MBU5NFk+cRcxqG03E8Hsr5LNOsiOy8b2I1m6Uch/PDbj8ez4ogYqVKMGVm8mywMHXnWsrnlFGRkudJixSB41jm9GTfUFuqDgkgPZhH9k0vFC9cVvaFWEoW1VoqIJKCFAA0dgsFmZ5254tMwQANAcRcnRVmULAKymCkHgS12gLFRFWoglWpmKGBV0SBhTOxqK+rgcrTMPtphfD5DxIANATnEf7v38NhhP/d73QV9c93+O6Eh4zHAXNGj3bZ2H98af/nv+dNR//0nt/tqWbgSO0zfPacvnnmn7ey3sa/vZKvX/lT4sjgrGJNKZfTRIeJD4mrQeTaBt0E6QM2kWPkNsZVGzatbfu07UobwANcB7zq+OdD88fb1b+8mf/ww8Pd4eycdY1uV5MJgKpD/MTXDCG8fv36b37zN5vNuuu6pmlKqb5pypwiKuWkUtkgtGshdyilmJgHH7hpIlVPc5pLLbnaQmAKzplHxMn8ZFmhMkhj2Ap1Obdl9nV0MgRhzkM97c+7hw9iDeoXnPsIm961DlcOKxviXOM03EgI+OwSXm3gq3XtzOYD74umeR5xnLDN5TNLjxnYMvbwBA1BP2d3++FwPj0alH7dqtQ0T+/evmli3F5s1+tV33cxNsGHEGKMjXfE6IVxWVksJV0pRVWRXFVItRbVXOppGA7Hw/l8HM/HeZrmeU4plVJqrVWqSgUoYFUlqVZVBRDEReCnALQsuZ/mOmo5lTxDLfXTs5jWNO3ydGf1QDAyVgIkITUqUg2AmZcgHVhyL0QAq2HFouCXbUzg6JlbtA50TXwF1mqC/cP03R/v3/40dPFZ6+t4zLs7y0MHwgRIZIitgpdqBopWbXExEjAhM0XnHTgVTYsTTFmRBcx0Ik2K9al8Qfh0wahZKcVUuy60qxVQR2PeT+ecapUNg7enDhENnhDi5BDBAaguOqNSai0qspzMC/YbdEmXN1VJaZ7GcTyfx24VQiTnxpQF+er583nO9w/ncazTPKepzOMoFVI2Gs81D9N531+ufRsBUUqZx+Pj7e2bn35SkVevX10/u8jqT+OvhnHv6fqyef2id84DQK2lVK1FwIwRuoY2fWyckeZa6zQLqrboqDoBytnMjEgACxJ6F5HQpAB4x74Jrlt163W/3vREGCyVOWOuwsirjSAjU4Bksq9zia33aM4VZK5CKaf5NOX9LFONTrabF5WCg+n24XQ+HD/cV99EA0vj8OXuVSl5eZbYNC+/+k06jy3ieZ6G3UMhiF3jvY/IkisYQDHM5fnFzf/m7/5+1fZ3d7c//PBdHY/74dizu7m+/vr3v6u1/us//su7u8fhOOs0dWwR0QGSN/bxer0Kv/nd9m++MhYfQtesXAjCOjzu77/7Yd4fncO4XvcvX1lou3NWc13f6cMDPjzCnNfPVn3bxhjmXNJuX06D5ZprHVM5j0k+SyUwAzGsiuNcc93vj8XhQxN8H1nL/LC/Ow2HnCeRugBAGJHMQMwM2v39VFM2XIhrnnDlEYK30y4Np9v3b3YPd/M0moCTWpBmVUGgEE0NSlU1BRYjUVBQW9DLTx09qpqZmqAKMvvNJra9plwBSQmX8+vfU6zRM3HlWDlWC2aMAiBmDsVQDNVgyY9ZxpcMQGaEhmhI4GAhbuHHkAcVAPLBdX1cb0O7d6cTnI717jZvL2u/ciEuoW62pATCguhBAyAzPJ/lpx9Pf/hvD/u9qvFq26w23K2k6zFEapvQtc2qb9bb7t37nLPxZ4xRRHTsCXnOOQ3HeSxWrW16ovgsrBywV1gBvYp+rn5NDsxONQ8pfRjG4939cfqFmNbb9YsXL75+//XrV6+ub64vLi5W636ep59/+aXO6Vm/2TZ9dJ68k5aBmJlErJQ8ng6PD/f73f1wOKQsHCKSKyJzSofj8fFxfzyc8pR89MvkCol8CM451SoCi5P+r+59MLCqudYCc7IxSc0iIqSGZgzg2GHwzjEjtrFu3KzsM7s0p6nkoorMCA7AGxRQJANGIAJj1Y8n5yL6MEQhKGzVVBwaKDj7yCgwNAKh5WIpRKhGFZwhG+KCs4Ylrv7jfxP+PTh7Gf0xwST0/SORx799obXa+wO8PeJQbT/CVAEAeg/Pe/j2Cp5doDG92BIUpADxYtreNC+fNxdNbEdfO7zcaJIlo1y1gBSoUoekj5MmRU/SBb1sbR0hBI0RQ+A2WOsr01KYGQM2AfsYYvQj4tuzq+D3ozOrfQJ21npuYmybSJ/pFfCJefv0w8zeefDqrRCRIjGARzYgFV3QFVC1VMeiqlWk5JRNrWHvjAMgA6kRIV00jgNpxSuHX4XyHE6b8QMfxWoo59NheoThMGcT0DGWCi50XUPBkzcXfOtd9Oyha/VqBZedXjRgWQvVKnmaplGb7Lz8O96QIRibNgKdWVOqX4oaMMhzur+/f9w9zGl2jjebTdc2PvgYYtt268325vpmtV4F7xfnPwEiIQGBUamL/EVSrfM8DeNwPp+Ox+PptJ+H0zxPOaVcioiY2WJLRKIliheswJKdtbydC29LEYCk2oJukmpaQEQ/n8TM024eb1X2aCNaRSUUZ0KSVcyEhBz5SOBQVYEEQQyroZgQGiM4csQWwFq0HqHX4obh/PDh9P7t+bDTJlwQQkkP44nzHKV4TwVBzJwZm6EtOWEgiAoEyIu6C1HVlESwVCwC1ZanqgYFQGGxF32u7wEzETB1TME7IQeUa0nVwFSXwGhUBiFRWhadi0yIydA79VKLy5lqLiKin0bpH5HqueR8zKaVAEQEwELTznNOOSsAex+bpmt7RF6ESDWP43kEdKgzQmKcNbfk3ThMt+/f7u7uDo+7vl+tVut+tRUtKS+dDwCAd3x9tRpOW1Urpc5JaK6sFVQcaARqCVoHDopSdZJBSkMMUDOLsVY1RDMxWUA+RqoOAEQZwKXs3YxurMEBm4DWNJ1VOXQdNb0LAetZTo/ZcrcKqE+BOlI5J8ljzcNcp+w614eX2MQqsW1IZZymYa4sKvM8n6ejfBzEErmuX20ur1rHNp78NBSt0QfPTjAtSfsLLrDt46uvXlxfXPU9y/x490Pj6hA9XXftFy+eH6c0F7k/DcOUINeZIBIGwsDqUUv0cHEZn79yDYYYYtv52KAnt3mc50JtR4zNxcXm628gtLY/qWC/Wg/Rr3+5zh6fPXu27lfMfDoNj0WioVM0Qsd4/fy5D+HTS6ZAolQFNck8D2oZlBxR68m0DNNpzvNTHQxGC/zSDBVwnu8fd8dhmEs1AOc4OjcHnhyfHOZp2O0fz3Mq1cwMczbvKIQuNn3blaLz4WBzEkMQU9GFSW+qyzcelobRFsSciIKPgQyVUl1Ax/b5BPZjEdNcCHMJcWQ3CzOSKWXBJJbRsj0ZnWk58gzAgMwQdDm22BSzmpgiuMWGUmqoGoyc74giTju8vZM//WkU889frq5vmu3WN9HQqlmFp8EOAKAqpYS7B3n3Jt3d11SpabVfUb+x0OiThsOo7+PNy1Wa6nCu/Nn3HxGJHZFDIjHVknaHPf7wl/NcHucyznMZDtcs24uuWcFN3xWDn8/TiRoDezge73a78/mUy9TE5ubq5uXLV19/9cXf/of/8J//8z+IyZ/+9Mc0jPrVN3Zx5Yh8E51bxaaNjbecz+fD7u72w/u3jw8P8ykBcOu81prStNvtPrx9t7u9m8fJFJx5dMTofAihjc67KoUFYxOatuFPO0sC77nxgCUh+1W/8l0EJQJonrQAiLZYmRVJXU4rOgOF6tsxZkw5iSIttaZ5HD3ik2vfqXI2JlYiYzZCc6hEBoFQHFZAMRBQUVRDMyABrsYVK8IRsSLQEu9ACAAZFtIEggqCEaBH58D9dR2jAKCEhVwCfhS7HT7qNAGOsz5OOIgGNo+IAsfBtq087/GyRyDnvcTmfnOlz15snXMnRS3lJkopMBQajbJx18Jvt7nzNZUlFJgQnPfmnmIcq6GhCRRRJDVUoAyewIjOWyp/u+Xhhf/l9UUSN5wPjsy56GLcxG6z3X7ip+SU3r17++OPP1xfX2+329VqVWp9eHjQUi7a0ICBaBUrOs9Acy1ZU4Y0s+VxJNUy5TlPwzR4xKZZRXQRhExYZe3w66678bQyuER57uuF2zUHhfnDhfXhWM55907npjIiEBiRejQHNEFjwUcHGxdu4nEb5h5LQKPCY4IplzFNY53m2mrTQv1sSoYIyAaN2kqlr9WZxcub7urGkdXhfPrw4d35dFKo3vmu75zjWioAMLvLy6tvvvnm5auXV5eXfd8TsXPsnEMARphL2T0ezuM0Vx3GeX84nY7H0/FwPh/m6ZznOedcq5ipcy7GxvlAWERUdQYDWtIU+cnSRKD6JJT5rEQ2Q4VPe3HVPE8P83QrdQ86magBGToEQjETm2tlBwRMBkBqH3O4BVTVqlYy8WzEjK4haFDdPNb794fbt4fhWLS6tlk5xprOUjAnX7ILkcGk1KIKjhdsOREZkQGZgYKKVKml1qQpQcqSqxZVBWJapkJKaMRMn4+U7YnECQI112TjNAx5GpUdgjkmAKcoRb09WVAV1CgwE3vHFEFrSIkT5zTnIkWswgJ9RTPTeU7DcNo92OPD/X6/01q2l9cGOE/T4XG3e9wJSL9p1xerZcY6DkOeHgHIemL1VIBzRWjm8/7Nzz/N0/zq5cvnL16uL6/YBZOsIp8uGe/ds5vLeTyejud9TvM4jMNsIiS1atHJILvSUB/JYXE6gWRQNZkREpEtrVYtaBUQhBiBvCnOM6ZZUt5Hb1fX4WLt1pFgTofbB8C4ctumi03sFcp5LjNMdR0lC1RVUM1cEuRkOdUyF+dbRgnRrdfdZtN2LQZXilXRKjAL5uU9g8VinVPNM7iGCSKSIgdgqzYez+M4GhMDBsOKBUL1nXQrvNi4Z9uAxbuIPRmZTNP0/u72/e4BioaneYIREiMyQQUrKgLQuOh8VKLC4IN3m1X/8jm2jZLF9aa7uRJinQYRc5u4oouX377qh82zZ8/a0NVcBe/h3S07f7G5uLq5fvX65X/429+vP7rGzNDUqTqpT1FzqqoKWWFCA9OFNQcLvfmpCDYAM9SpaN49IpKqGgATBebGuYYxkoGUNGVBhyGaapbExP1ms7q6bi+v5zm//cuP5/QgRUwFn2BnuKRYEBERgKIJVdVxSs00kwvAzhANTJ5QN0tz/ZkmZpYcOMdYyNcsVKtpUjdb26BzrGIGy6wSbbnVgFTRqqEBE5naXLioApEZgmie3HAOuz0OScdshzPujzP+03H3KC+/yN98s/3t766e3XjPmdDMytL5LSGTJcM0wXmA8xmnBNMsVcjHBhByzuOYTochhOnFsTLBPP+1owcAAGPTtLFPczkeTqdxHN+82Q3TQ8oi9eHurcvDl+v40ofnm7W68Frwrbr3FM6naZqn/X4/zycAeP/23S9vfnn75ufj6bhadc7zD3/5TlK6WXXRoZn1sH4W1qtNt+q6Mk3TI5ScpvNweDwcdkckf+UcBX8czg+3t/v7h+l4JiBmj4gf95HsnGPmJbxuvV6vN+tPRQwgEBETsFUDcCAVQdAhMhEwPcnis6hoFZEkmkXUANhRQAdOq+GCWNQKRrIgiMWW7pcMzMgEtQII1uoW5IXaQv4yZxbUfAYn4CtwBVYYHZQOJgYEVDMroGoZSMDMlABgsXmyc+zos49mES0qkiBVpEnsYdDF7Nt5bJgDQUCNZC1ZMCjJSoborPVGHr2rgTIlO+xWwE7mzAYBFVDRKFf3OIVT8uzweV+uW209mKIYViC15QbEaktYV1UFBVJgMTQwtNKAvWhOv7vq/+7LNgv9/D6nIuyjj20TXLvq6WOwkqpOUxqGsW27EIJzrpQynE9WS0srx+xUSYygmkGsRSRLndTKMt0UUasFdY7OXUa9bmzFlaxusUZnX7X8VcNXIJcoK54jCp0HGCLYyiUcbZwCZGyN6KsoV6RY6yD1IUEFt4p9iObb3EMNc6kVjub31R0MT6G12IfYWwiRPwtWAkIMAI1IW3NTqm+a7vrmeRdbLfn9G/3++/Nu99B20a9c8J4d1yILRIH5sNs9eO9MNefcNE0IYQGBicg8z8fj4fFwHOY8jOk8TafTeTgfp2HIeSopLSsnImLCEJxzJFIXnQuaMQMufz69QUu6EeECzVhu+s9PMdVa8qGWHdgJIZmwKi3QSC0gYlLURMRXJkKqT3UsmiGoogKgMGHneeVdR+DyNB0ezx/ePt59OI5DQeS+75nwlFwpkjOWghqASdEZG7kQnKdFnosLgU3VzKqaCaiSKOWqc61FQYxZCQ1pAdq6v2KNMXPTrttuw9wYsFStpWgpCOgRo/cUnFWqhAkhG1QryzVUn7ZizMQhBLCntBoVNVQEqDWfTqfT6bR/fKg1d0132O8Z8OXrqV+taq3DcJrTRAyxjcEFBCt5KozeIwB4BwRV0pi1YMmSJ8e0WvfPnj+7vL50jCknSeM0zZ/WFszUNTE4nqZx97C7u99N48xIrII1OYahC33nNh23XFkGkklgfprGgaGBGaqRgQIKGlTEUuBwqMfDfD6evZNxjvVZE667oNWkABCqMJojFEIwURMzUEWrKAo1ScmiRuhcaLTpMHTarhFX/c1pdXXdrB/cKUkR+5TS+fSOSZ1Px3G/89JpFScaDFxRMG0VEHAhuwfiwJbTeRpZ8tlB3XbR1h21LVt9uL19c7t73D/OJXty4Dw8UdowsFs1TR8cpJSOR1eKhEkcUHC+iVpFRM1xBckiZRhK1XH3UFUbh2T28mK1io4d55KnOQ/TtOxrc84iAoBEn6fcEoIzYykqkEWqKpotId1Ey+0Ei4MYDBRMzQRADUFF8lyX387SVBTmwi4zehQGBTFDQmQxy6IRqV+vr29uNs9eDMO0v72fjgcrVVV48dwva5mlOWNStFotlXwazr5pyXv2UUTUFAWqaF2MEp/9uA+302qdm5Ux0TTicMbxzGS+7533qqIqJsamy3YBFFAFtYAK4jImFctqpYIIomCZcRjxYa+/3KcPe/3wiOORP7xP//an49UN/93f3RC20YeLjWNfRWczIWQFqFVrBTNH3PgICsAOV93q9aubfh3Op/Hu7rB/uDvNuemKD1DKp6yTpbo0Ne3Xq6+//LZk+cO//Nvhzbvj46Pt9++Gs0ndv/nxWZ3/07P17y7XN6s+Xlz+/tmrn5T/n+8fTj+/b2KI3muOWZOC7B7vh/E8p2m97ld99+anH6Oj0+l13/ksFTtaX/SvXj1fNV0aznI8HNvGs09z/uXN22pQvfNNc//wcLi9mw4nLLXtNy4ERasgYIvy+Ula672/urq6vr7y3n+sYWDJ1mVTLJMmmcowlijgHJljIEYAqCJVaq45lXmepioLqY70457N0IysiogUKqWdkWb2zOQcmJOKZbaaoGSsBaSoooE376wjXRe7Ptt2srYgqVWy+xYGttqgISXRdNaSrJIjB01QZkMwJvTB+fBZ5g3iUpwtZFBGNIHHgXqCPtpN5wgaByBlItMNa0NKBpKhFsBcvStKMIM8fsg/ngfnw3945a9XXA2rajEbZ37zED+c3WTNq03+33+bfnddVx4QIFUoxkgE5IEaNLV6BqmGDgHJJgQUJUTr+Py61//yZVBohtTdnqoLT7uT0Haf1klE3LZd361iaLzzRLTMoFRrVg0ATrQF2DCoaSvlKPM555pnLAnNlFEI1myXHf/2wn+75etQsaQvXC6mr6i+oHoD85amhpODYjOgOtJzEO8YLtfNt+yA+DVUUvkwTR+qfpdocmFDPPuwlRjKzI94mukHbHe+k9gMl5ft5otnYaNIm67hj8+CQIQRrKk5lOwBY9euv/ji1XrVT6fhfNyriYFut9svvnj95Vdft20/jnNKc8kJCJoQU84Pj49TStv1uu26UDIR1SqnYRin8Xg83u8ez+OUi8xzGofznCatWbSa6QLf8N577wA0TfM8j7VkJCWH7AhZYDE7GWg1QMUn0BzgcrbqrwR7MDEZTI5EI1KB4quimZhJlSUbHABNq0ipzGqsRvY0zWTHFgOvuua6727adqvZjocPt28f3v1yvL89pTl7324vOgI4PmJKkrIWUQUhLw0RIoSAyAiIarrEWC44PRADZcQIiLnanEuuWqqj7C2YI/bOuSeY7ccT2cXt1cuLUUJ/aeRY8pNzAyE67mNwjhFEk0/ej8zzMI3TWKZcpsTMMXjv2DEH57FBAFhoWGA2juNPP/304cOH/eNOau3b7rA/oGmapy+//CrECCbE6L0HkI+3FIXYXl5eI2Hfr4hompKNk7En5373278JTdN3LaHN4yHP0zydri8vaq2fzmQzG4fpl1/e/eUvP9/fP+YsMXYOEdLkPLWbbb+i9agrN6/0HOAAcHKs3ncAARVMUcGBVcWqWlTKaZDb23H3MA7HMXoQbEPE59erVRf7TQfqHAvobOoQswvI6CkEIF8qV4U05VyFnO82fRNW64v16sqaS1s3/b5evPpic7sbdFdzQQTFZZILAABSyvn+7vDmF1r3RsyzBCIaxsbxul9R3yvjwvFdex7ubvX4mI/DdBraEGlzCe3mMdfv/tsf/vz+7jycmKmNsY2+cdiohbmuXHi93b7sWj+cpl/ezoYApqTIyEzApMQFYNLiiPXdrkzzw/2HolqvPnTr/mUIB4A///zL+/1pnMvhOBwPh/M473b79+/f//Tjj2me/u5vf395cfF0JpMnIClZtCydLZIPLrZx5X1kt+jCTVSlllJTyVVEEBUQiBkRPi4NEZa5IuNT2ceky79WSyo1AHTdarO52Kw3BNR2bQi+pGRiS8KrISz4VyVEpmKatZY0udMBHQNT03a6VDr0lOugUv9qEnMalbyKca66P8CH93D3AUuitgPvGAxErBR76pQMdDkxCko1UFs6z6KYsokgCkmxeZbzLLu5PO5tmvk8wOMk/AG6tyKFXr86bLexiSFGD0gIy0CFzcgMxVCAnxLvHDpHwbngvHORKJj4WqRkAlT56/3+8p1pu/brb79xHAsg+PDTT7/szqfb3W0ax+nhPjrMV+skdJyk68z7dtV0L4wnF1b96vHV6+k8HE/7x93uOJ5yTsfD/uH+TspGa1Xk8/l073EsMwQcpnOtWSWY1JpLybmkPA3Tbr+vgJfTGEwPj4+nwwFyieS6pkHvhjRXFXTIC3qHGcHMTBZU08cPRsXSlNI0OS0k1ea5TO48h6SMpOyAPRHhcl4mKanmUspy6BA5AkJ8OuHVUATzBFXNBZPK7crFEDxFEMpTncc6jwvPW8hDs6ZNCw3jdcavjnY9QMygYEOAhNYUQAdVLE16Psg8maD4BnlrtGRZIfHCCf4khCdwTIhL1jAwghoeEmyDbTtrPdSKc4AxggN4FmzNRmq1QAUjUlZNgvejfb+r//g+eR9LXv/uZbxcoXOEbN5j5wSM3x6b+9Gj2eNgv7uWyw4ADBHVlisA4Wn9YAAKZmiyKNkJwEHZBvzd5Xie/XfvcKy+aYL3gZxDok9WXu/9zc3z16+/WK36to0h+KYGU8tpJvJYUlS5hPy104ByqOMe5yNIteqgAGgl0sAc+Xrrf3fNv13rM56tpm99KQbPrVxW2dLQ2+y0kooqgAmCRI5Xbe+b7qK7BHKbdDjP6f0IQ+GT2AAA6o7aHKXta4EqDwV+gGZHnXMr6q/C1bUPHaS0ceg+fi5E3IRV49aTsVZAMEbuu3a9XlmtPnp2HJt4cXX58vXrb779zWZ9mXMptarmnNM8z+M4jtOYclbVOeelVC21DuO4PxyOp+PpdDgNY8k1l5LSVGsGqwCKYES4cBvMpJYyT/M8zWCVnWLkfzeMUVpKYFwccY45Rmtj/Gzap4iJcWauwIaVTZzqEhdstiSnqNacAFTZlFUQkNAQwAEtSPLmIsYNIKV0Oh4+7B7ud/flfMwAEAKyFzR0jpFYVKtW4MpRHRiROC9P8BBR02XHIwZLnhshkpnlormKIjP74PsmhOhz8MH7yM7/OndipmbNq0vfb5l9E4uUcuecmKKKQ+yb6BjF+cCOkRjQTCbVUnKuWWutjkMIzvHyf/KhitSS0ul0+vDhw93tBynFzLQKE8fgELAJYXt5UXNeUvbNVFSWJAbvAzMjoffBTM2Wpkiiay+2q6ZtzSyleRpO0zSmktNngmsAqzVP0/nw+PD4cHt4PJQCbVsYydLsQxC3EYJcpPrqffVcAcrCcwNANCUwRwTIAioi01QOx7w7nB8P8zBU7xEec7epXwlfNs3mmbEhePK+OJ+RtO2ZMFBgoKW+NMQaouFFZPR97/pN025rs57DOl4O/uam2Wybh9OIRN4F58Jnaz6FedbjKZdckc/ZhMilcdXEq6ZtvV8iK5iM81zf345ImoVT3vqucMyuvdsff/7x558/3Nac2yau+n6z7rZ92wDwabpqmlfPLp+t2liTHPdVUEWBxFQkl6nWvdQRrBK27J65xlUZp1MF09OprFfX203J5f6Xt28eHs9zmYuaoYocDseS8/3dh+fPrud5/nRXPq1wTG0Jp1QgcuioaXi17rq2cd4hmqjklMbhfNg/TuOiwTda9FJP4xAEIEM1QDUBExBRURETqWryq4UVgJliDKEJZQQlA8KnuBcEYwJmIGdO0DEgVqkpp5QmYkZ2yASCJk8Gxc/vfWfIir6KpMHevbU//8n+9GfbPxo5YybvnIpNYyqlqoguAjYzFVMxNDJkQKfGVUAVljzpWkxAlUWUPfuuodNsaZY0688/T3/4l7uLS3/z/Pn2MnAIiOjYofpaA6CrCrnUVEUUIjnRtN8/jLObZ5uHjOaCa4P3zNVw0l9JME93dojN1c3N8xevt8+ef/HNb/7pn//wx++/+8vbN+dxyKU8Cn+3L0MaoB7C3dQN0H/5xeXrV8//5neMIaVyOBzevv3l3/7tj7+8/WX/+LjdbFZ9v+77lzfPVOswDGMehjTOkq++fw5gN9tLneb37z7c3d4/7vbn4VyqmHOKWEXmeZKce/adb7oYC0IqOVvtYhNjjDF4H8BqSvObN7+Qb19/+3f9GgCg1np43B93+6YlMsM86wR5cKMgkKJDF5gdM5ICVFND5ODVTKvq04jOzBahN+fszkc+K+eznFe2WnHfxTb2AG6e6zCMh8N+muZaten4GcZLcheOX8341WSXk2HVkTSTsBgpQLE86XSQaV/HQYtp7KmJ6BwakCGBMdivkb2IuKB1mXFRMSrYqchQxbM1hCKZDV532rN+2cGVBwKrAssmlgCOM/7TW/z/vg//7d6Rc6PCcS7/9bfw4orI0TPWy3C8Xjd0e/3dffi//MH944/5//T38J+/0lcX0LLNSWs2c0WXOHBktLqUMQiGXAFRDJ3NL/3dN0143bohtdQE8l5FpPxa9TdN8+2336ZUY/S8KNkBX35B0zTvdgd4eL863b2y4z84vuJ6KuOx1oMPytRiRNSR1CLHbXN5Eb+4oZtY1tNRYIaA2airc6fF0wiQq6AZKwf1UH2tLcpmRetnYfuVkZMxlvOoJ2DGVomMVxiC8SybPaK2fE/yIHHvQqDYYejYR0YHeQMzf6z8HbuL7vKi346HMtdcZS7TXFOtqeZU1KxpOyC8fnZ9/fz59bMX1xfPEJkDNdGlPD/c3795++anH386nc+qcjyfl9VmKWVOaRzHYRxryVryNE0pzaLVTJbl+sINZQKzOk01p3kaxpIykRIuQ2tkRuSP+q+AAATKUlDEYgyN48vNxeJ5gSfagXq/iNC9Fq8UwcRQVCuAAqKJ5jmXWpiNyZaiGpgoUggLBWvFFKZpOJ7uj6cPp9PhdPQ5WdP4gjCnAwLGxnU9AolARS/cCC1MECYDD3UplBXIlAzAkAgJVaxWy8WqADnfdeurzc3FWrpGo8cQeufbT5elGAyAk/Or1eqyX7fON969efPjeRzyNGlOzeW2iaGgYyQmdI6cJ+/dcBrmeUopp2Q+5xhC0zTOudiEnNMwjof94XQ4gOjz5889u2EYSq3vP9wS+/VmJVaZvIjWkksuIkKAjomZXQhLlw2AoYmsLtVsJjWPBUXV0pyG4ZxyRu/Qu08J16qaypjzSeuZbPQ4AyqJEpBpJSMmBOCUayHwK981LS2KJ4uqiFQYtAnMzgmgTZoO03ga05yLQKGYjMoRmz38Zo4vm/XNi75lzbMCmmsVFLwGMHMRjQV4ZkfeIYEj8N5T27nQIIfs4jE03LZ5tXHdygNVA4lN07btp00fI66cXyHxOB9zeXuaqip17qLv2tV200T9eDIDu7LzSD5wICYO3Qywq5bn/Hj/cHo8cAhd319ebp8/u/7y5fPOu3Q4rRieP99ebtuGxFk2F8k7Ii7TPA3TL+8//H9++OFuHH3fPd9sfr+9vln11DpkGA77ab87/UL7Um8P590wn6YM7LcXVy3Q3g55nvNUx9Ne5JNdHJSexgRQodZiKtXQwMcWrq77ZzdXq/WKHalKmubd/d3PMmg6pDSJiC16hgU0AmiEWqgimFUyJbUlz53MEFFUz8N4PB45xFqr9xybODAYmjEiIwEhoTIDsTEzcIMOkXwMzLw4XD4JZ2mR5ixc5E9FzJiAJnw88DzxL2/yjz/bz2/dbufUBAyZSKrNI+VCJmhmjGCLTdpg6VERF3o8mukiltBqPuBq62N0vgmkOA01Ja2F9of600/HFy/br77pvYtgxXH1HsBqSXmaqhiQpxARDLqVjw1UmWSmNGOtwoyOnHeO2BDJ/toFs6Q6kXP9eu273lzYD+PD+fTL3a2oVqAR3J36XDjNAppafrhE98LHKw6bdbjYbDab1cV2tVn3X335xePuoWmab7/+ertZf/HihZkQY9F8ms/tqi+57B92OuZ8Gt6+eff+7e3d/f3pNACR80EBqohUAbGAFJmZKKsUESUNTdO2bQiemXU596dhc9h/GsNKleF0Gk5n9b0jWhLp2NQpIoAKWlE1ZedoQfA9mShBtC6XPyz7ymWeq6DFoKAaV3Epk51x9gqkYm7OIU1uHmmeVdVqQVRiQRZCs0qQo50cnD1MXmX5u0yGM7YWCWEy42UgqIvgJyJ4+CyumxCCw+ggOPIOgQhRZ4Gs5sk6Z4GtcdgjrBhWHgKBKYguPayZwGm2Hx7ouwe6HQIy/+utrRr95krXYaEqW+gqYDrreJ7d92/tcKJVtKno//AtfLEFD+BRyhLmsKTjoAAaAAlYrYRInoxRI5TrkH9/2RC70dlZbUxWn3oJAADn3Gazuby88p4QTaUCOw7teZyHqVQmh9JhfRbxdbQJYHB0bLyZ61gBZNBqgftt2F64qw21JFikOrvoffWelTwGc6GiqXjDYKHRCKVJ2jewfkXr1379lSHSCZw/twE3AZ5FnStG79jDzO3JWvSd5txXQgwuuIjQ1tygxDr3kj8rYvzl+ub5xYvxuM9jPqWU5yGNY2kaMPPer9a9Dy40DRLVKqXWEFwIzXrTtbUpJT/uH5HQzNg553y1YssexcwAiRb0MWgttebFCoUIiGgERACmIlpLySnJE9dx2bPDIhZhT8hAhMgGwCYOAcVp48K271+8uA7Bf2pgVNEw+LAhC0VbAAelmhVUVROzKiaiBbQQKZIhABEDO0dGH7tCq3U8Pg6Pd2nYl3mYxrYWDk0bkHJNYEDM7NFMVBXRkBRAFUUNVMuS8iwComCmxOCD0cLeJimiatS0q7a/ur58tukluCm03PQvQntF9PQsxNx2q81Wby4vL/u1Rx4Pe0duGqf3P/9ccrZaNtvtwg3x3iN+fK116aql1pLmvKiOvPchBGIaxmEYBkbcrlYvnz8PPux2u8P5fD4Pt3d37z9cseN1v0ViqVVqqaUAgDrn1LEZIqgIIDjP5MgBA1qepzxPKZVUSq4VmF3T+ubzNFVDrMjFuxq4eMxmhbQu0FmGCMvWIecGMlyiCwFBtWjOICJEQh5CJB9YgXOpWrXmKtWqYjZOhYYqq4M+nGWowL3vOwljUikYMmiNyIABOw/Be0IgdECOnHPsHMeG2ClgolAdZ+bKbIZQasmlELOafLosF2suVM3zfB6n++PZTJ+Jr1KkVHHeUJFBAxlSzQToLbYcPTSuEIy5jruH+Txoka71jQ8Lz227Wa/X/dCGRrNzUMfT6XRIvsHtFXU9O589Daa35/O//vLml/1+vb1Ir+TV+vJZ33VXa3QwjecyDPMwnod5Gqc051LEsXfOEbu2bZlg3blXzz/7vgCIgQCyc46IaxW1JzxrnWsZa+1EHalDMGJhVsKKVkCySTUl+DTqRwQBRVIwWhzYH89ZQiR0i47wPIxNNy2Gf/ZMjtAjBWbnGBmYjRnJG/GiKSNk51wMjfO8tL70UcZvTwuhzyYxjyedstWKpzP85af64QGLrbjxkEvJdZpqSVZzFImgiIjgwEBEEqASOUA2I1WrRWWJ1DSVaj7yatWtV04FmWQcpAqR8wZ0v5v+8sP+2T/Hw2PDlIKTtvWOE2h+3I0AuFo3PjAjrXrXNupCEdWUFVljBCL0HoCA0RH+elmaWakyTul4Oh+Hs5EDpnbdrzebtml9iMVndc3cbblbzV2pJrsk7358+8ef3zZNXG02L16++M3f/ObF8xf/2//xfyTEcRwMNDaxa7ttv17ammLpOJ1STQBgRQ53+/3twy8/vX3zy9t3H25PpyHGJvQrMygiAMhICGiqtZRsIqoUXN/3/bp3zi14ASmlLqCZj1FkqjKPcxpmuOiRnZInJ6uWGyUirAizgAE2zEhEgHXBj4CZc2pkyotBAtAAKmGJvgTSZ11sfDDlPOZTmY19u1o79qtuSxa0TIzGzEp4NrlDpUDew6mx0cPMtg8wNaoFMUNvTb9Zw9qda86+olM0IyTCHrElDPhZEdN47Dx0HpxDQWIAUVaVBmzlcNs6VSpJDKqAVlMxEAUiVcVSYUr2OOqYrA8Cjg6Vfj7oD2+lzfW6066l0nrH9vuLO6o8nLt/eUP/1z/Iv72t50T/09/A72503Zglqgrw1CCAIZrVXOmcAgGsWwWCVDA6+c8vxxcbeJOanwf8KTtR/GzaZ7XWnMsiXXviwylWHauOBXJxVLmp/Qo6dM3UVTUJphi1qBStGR2uW+4jsydBV1xTG6+xRWiIGnNNDhFdYxSQI4YAEbmtGIOFS/OXLl6DFC/FsLlpHWyxzXqqOldExdmAoTR63pZpW0RVlFV4KuOekEJNbS30cXYZOFxvX7x+9lWeQkm7YTim6TieDn3XBE/rVb/dbk7nU8nlcfeI5vaPp7ZpN9v1PG+YcZ4mVWGiVd+/eP6y71e11pTzOM/LfXk6HQFgnhMtzFP4NdzEyBBQtYpKSklKZUZC94mzhIzeowtP8bpIYEZSnAk5L+uu++abl19++7xp/MfvC83Jp7JuWvQuAQmw0MQGCFqlarEkUIHgIwLbiAwNDSAIOgVRrXnWkoa799PDLeWJpUhG0dY360AuS5VSQUEEF9wuCFiBYlVUDLMo14JSUZXA2DE7x00waqTOlc9azZD8en0V2+fXV9d9W02nsGri9ndh9RW6uDxL48NXNy+uu83zq0vH7ngecikiut/tv//z97Ft3v3Nb1++en15ebm52K7WvXfOYlhm44TAzNM4zuOU50SG1kHfdcw8DKeUppvLi1XXv3z+3HnnPKPjd3M6DcPt3a0PHsHF2MoT/qqqSinzQmojIkRkx4qOHXvPojaO0zAM+/3RELfbbd+v4nrb9ptPQngiiJH7zq163zU0UBab2Qo/7RLzgoSYxnOwUsQJgFVMSU+HDKb9SpuWXSAfHRgE5x05MkZQNUvFxlJV5HAs9w/n3d6NL3m7ttgpAhZQsMrBnA9u3VHTATMCLaIORCRC7w1JEBWYQaFmmecyTWkcp/M5G6bT+dfpharNpQ5zyuNwGOehViIUwFrqcT4UVZOKpERAAFANDZWdeQYPA+Gt2H7MVEofQh8bVtvfP3i06fXLftVCpDLLcfeQD4fbx2Ns+9Xvfh9fv+R2Uxo6tuEQw87hDkEQy6pf/803z37/m9Xlmj2kYZgfH8f3d6fbe6rC1VofXeycc4B8eXW5Xb3++7/96r//L//lYrv5+CyQCmZlTw07DOIAcs1Jqh12j5LS/vG+aWPwgR0awDwMp/OplgKgT0JOe1KkLQy9JfYWDRg+GlPxSbWrBqmUNOecMzOZGTJycAbBN8GHwOSQA7IjDsieiJGRkImJ2XkX3BJ0CABqS+SC2Wd6OAC321twOI/+dLb7XR5mQt81FMyXCdM8j6WK1EXxzUwMQEQKvCjGnwDYsmh+bRkyoYGx4/W63W5CLRWgThMYaqnAjOOkb98O//zPd+/eeMbSRNxsQtc1waXbh6JqTeOIkBFjhBDARRKFUqBEqO2C29Wqi+j41/RhJAoxsuNxns/jGLteF6y2qlTRqmCIzNwGXjceo0ktOU/zXE8D7vYPu900Dt4RI4bwarNex4utqKSctFbHoYmdD6HB1jdxTuM8TiWnouLQN03XdCvvow/ZMXMIIqIi3ntsGl8EkRRAVIoUb+hD8CGoaimlllJLrbWIyKcPhghjYB9YwMiUEfpAa0/E3sdYAM+5piJglqUWVRMtVZYhkCNUWM7nRV5em2CrbWzVts47ctWIihSrRazW7DiEtjHkuYALlTyqhxn1kaCQAeAxwkwghhPiOWFJaNm10Dxbr6P3Q81HKwcopSoyo+sdd8zxV+v7kw1vGU3j4o6rCqKICh6h9ThHBCVSUpSlgvkIuTMzmLKdM07VKJiBDjPcHvXHe92atpcWgI0cR92G+est/8PrME74l/f638522aMYqMLXl+bJmMCeNPikQAqgRkLBAAUrgSpgdPbFVj2XfZogYZ5dyulT7oUBqKqqiJIhAigqgAqIqIoAVoriWdtrWDkvE6mCeTNwIGqCUslBt3Jh09Hl1oilnyQLAhN65Aa4EdcCRgBajlpkBSdAzqzBSg4L59mfJ5rmC/CIHINFD3eZiobEPSN4aLt02AxHl1OBnK2kQgqepPoqn3pkZr/urq42zw/bsnucCHYpnYbhsJ76btUFz96zmZ7PJxGZzlPbPbRNt91uzudt8G6ax8Pjbp4Gdj4Gv+57MUs5k3MGVmsZR14+v+UKBABc+qclOxa0FhGpUoqZsiMzhirLQpIZncPgERlpweMKSkEwRGIfud9St8VPIFsROJ7g4Q6OjF3gVcsuipkxIIMRLWgNBAqIrCBmaqSAKOir+aI8zfX4eELR8eFYjxOpkWLNtVYxZGSPAEAgtiBDBEwJAQ2kSJGiAGak6hCcIyZizz468iRo1aCiX1Iu0LnI7MWKIMT2ollfNetvfPsS6SnDIzj34vKy9Kvtui+l7A+HcZqGYTru93fv3zGTZ0rjcL9abbbb7eVFv+q8D4tPJPigUa3WmkutVYpIEQBQ1XmaTPXq4nK9WhGi1OocN01oYqwq+8OhaZpVt0YkqaoLT1iXQ70u2jJEJOGizjnnvaui5/N42B/u7u8RkRFjv1r5EJvmMyE8xRj6vr3Yrtarbs80WzVVYEZ0CKWWeVY5n88e6nluNx0zuKI2pgImTc9AbEQLURaRwUgNq0AV+whbwJrleBj3e57mUJWcAwBUESRlj771YdNw0wEGU7KqS6RyUcm5qIialCpzhZ9+nt6/Pz0+TvNcRZUcIAt+bGFyrR/2jx+G07Zru67fpGxq6vCsgik3pZIKExCBR3VSyUyEtIImHcEmMS3Y+lDIeyIRyXOahmk4j/26r1AxZzmd8/2jvL/P/YqfPderC9BuMnzI5T7XwWhGDgqzUW6irnrcbpFNa1Ufuelc0yKdkSqzI6JSi1lV1Rj8zdXm+nLj3SfyMwFF5N6FVXDMVJxLmSetpRY9Hk+nYWAmx8wOiVBqnYaxLGycJQzn1xICl+pCn/L7n9DCukTRGJhqLjXlnFJiploKgLngic0vdRJ74kDsiQKxI2LkpxQuXNax8LS6WrLtVVXtrycxDw/gmccYpjmmQuiwcQ2TR/UxYilTyVWygTFR5EVNzwAeResTYExUFYgIDFURwJgsRuo3cbWNaS4CvJXgGsgFRUQl3T3M0zB5FhDpO//s+erysluv45yhVGU2sFxFUkLnOLrg2ZsBmICWKmJQS8lzKjmVT8/jnLu6urSaqtRxnkPbq+rxcHp42O33h/E8Qko++lUolyuVSAVjlVbyBmatc5rzmObp+++/u7v9sPrX1Waz2W7XxDxNoyN3sb7pV6vYND46H7Dx3Hrfhaa53Fyvry+unl1cP/NN8+7du+M4FtWaCgB0bcfIccpkqI5FYM5Zl3Wg2ZyyqljNUouUJ2Xu8izeu5sXFw/PNsKmZW5Quoid56bz7cVGmc9jejyOu4fhcRxrKWPOY6row3p7FdqWSQ0M0UiErLaen11etZZkmqwqOuzNrTOeKxzKlIp2m96HppHKPlNQjZKiHgBOxWql0SBX0gI541CxZqbUBt9erPymDVnc/VzP5zRmNeca3we/ivHXHT8AgpEBGbAaFnnKjS8VqiAYeNLIWB2RMpCoiSiIGCCYQFGcMyalrAgVtGot5QT2S6s3wV73sq1aswqC+dBE+u9eZ1N4e69/fIf/jz/xhwPuB/wffqN/9wquVrT4UhRJkQEdEXfMAAaQ1SrjEsaBqvSwn9/d1v1o07jXT7tkgI+5YU8TQAIgQzICdWqx4qo6suYFdZFldKCIXtm5wBAoOsIALhqtNnT9tTUbLgI5cT2bFCEyQywAqcI0wzzrPENOVqqp2eIbafowz/7DL24YCkQNjjrMPtxDm/2VC1cu+IImMsA80PhAXKKPXRMFOavykvzz6YLxfRs3fXdu4u4p1mzYD+MqNE6tljIPw/F82jP7tumapo2hWfX9w/3WeUppHobT/nHf9atpOPdth8ygalJqSSnN0zSO0zjnpGZP6c7LykPNQFRFalGrAEa0wCJNddHzIjM6x96hISIqoKqhZKvFwEAxT3I/1we1p/VrLnZ3X//8x/Pp8fZyo//wn65f3ARuZmAxr1YBlcQ80gVCNKOnWwzEVJV8qe50lHl8pKp6qFiYXEABrTXnmmqq6HxoCGR6ij01ImUCwo+ZGmCIGJzzro2+YxcJCKySjiJqSzg9UBFIUud8Gsbd5WX86qtn/fZ1XL1mf4PoP55jfLHta6kxunpKOU3n0/Hx8eF0OhKad6QlP9y9++5PB1VbrTdX1zevXn9xdXXZtj0zMVGIsRMopZioiZaUS0q1VE98cXEVvLu9ux3nyXkG1e1mPecyjdPj4/7magg+qIGqIAEjLZA1A1XVIlVLghmJ2DkvqsM4Hc/D8XhUVTSjGDcvXzvnPzkTiSjGdr3aXl3fPFzs3oU7tTMYoCqTitaU57Hk43BClYc99E237htzvoKYgpgTc1kJKpBhqSgCRWDKkkU9IyOaUiSbz/NpT+MA8+whACBkISRwjsB58g1yW9SLsFSrRUuVlHUe0zhNaS7Hc77fy/c/Dv/6x92HD0NKECP3G7e96Ng9aWLGNP/L259/PD78z//xv75+9iKep8N5gNNxN4yTpdZr61x0LjgEUoYEIA7YzFSLL7XJpfd83TYgMJZcavXOE/H5PMbdnll9mttJ2wySgJ35WSDXXPSQytuHx/ePx1rRgbdkw3n6cP94dbcr3pHW+1/e1v1xbWjoAXgJiFyiEHKu5/Ooefj5xr9++fy3OX38XFyM27a9adsuem+N1ZxzHGqepEylpDIn0VlVEfQpl0kXYASDY1jklvBRE/N0LkLFBbECiKCKBbAAkFoVyaVM88RMOSVVDTECuhC9d54pEDsET0uGCNCSGghIiB+z8JYseENd4COfe5MAnBQG9RlizQBmiKIGBOYdh+Bj5BBIckEAz8AOmIyQAJ0B1Fp1uXMAmZGMiigAOochUtu6pvMAlguExgQwmC+lTqPNk5yPs+asRbrOj5PLOTJ7F8JqFafEp8P9NI4zQy3OyLz3aYZStFR5YhKxgU2fp/cxc9u2CvDL27fnuXzxVR2ndDqd5nGquYCIA22gdjatIKpzNTSCUTVw8XUuw3hIecppvp+nh91908T1eu0cpzwz+lV333Wr2DY+sCfrg7tsu81qs1pvjMNQ8pTznHMqpS429jmzY++9AyRRLZJV5pynacpWT6fz6XQylRgcg5qKllxz+dTxM1PfNX0fsWRSW3loHK1aH/tIHWeDmqVl6ZxNDOcslkuaEymqIQIvgS9qaiZo4sF651qTwYwdbi76EIKKPpzTeHs+51Q1InsKRI7FYC5K6EbTnC1nmzKWDDpjTVQyoHJLDoNrIvUd+QSnTCBcKzNHwtb7xnv/WZbyrwXAMsyvtVbR3WQ/HqAo6CI5X+JwgQDpScmjoABSIVeoAmrmQNFATOcCtwN+GG2SKoY1KxipueDpeg2/ewH//W+DMX5/ix/O8P3O3VzhFy9xHQNwC+iReFnykRhX1SKWsWawrDnZecKfHuDnHdydZMpqJcFfF/7/i6cCWnRIQGpUBeusNdTFvyfkxAMgITv0DhBEK7qeL7+F7StTgPMj3H8H6YE0Wa2YREstVcwEHVIBmiccBygTEkDXWsn2eItjDtC2ninBGFvnLmDVi+PaNJnqnNyxJhjOZy3c6I23EJBB6a8ehNh5H5oQWmZfaz0P0+7xkUMUk/P5PAzHcTimlBAwNk0M0Tt/aNrHx94x1VpySWmea823t+9rrc6HUut5OO1Ph93jfn/Yn07HaR6rlKdEZxUzNVG1uiTkg9kinWEmNWB7IiEuph5TkMXZwFaKpAQ1O0cMJAXOBc4GH7FWhrW43U6/++Pjui8XF20Tm4u+hr5iUKzktCu1rWVTUlMKi4jArJgVMrCrlQBVy0y5hlI6R+tt711QPecsueTqYmg7Aj9hATBiY6/khb24CgiExMTec+O4cS4gsAhWwVJBdXH4W1Wdk57TUJFiqG2HgJ5dh9whNoviApYpbPTOkWP0wfV9e319+fXXXzGBaW2C315cTGkC093u8fHhbjifhvP56urq4vKq71ch+AXz7dlVq6Cacy4pg5h7UkhQrZpSRgrO+8ttM87zh7vxdDqP49C2EYCebid8ShMmNFExRJS6oNRKKVW01FpKXRieBLa5ugxEXYyfbPwiOo5pGHOpWM3linNFNhMHhKAqUxrHGaZpINW7R/Ie54qgdhgrqTYzUIBiGpw5w3Guc5ZUZK4qZl3rgvMIHAPmVB/3affYrnsIDQBAEkGwKUgz51hmYTdMCSQ2sScMYvZ42P/80/nu4XEa62ko+6N8uCv3OzNory672PvrF90333zRNE9rPkUoHnXd9K+fX796PT8e5Y4/DMMkGhWjUWMYFEKF6LDzrnE+cGRArCX7KlxZeUXtlOu43wNg23WxaeY5n09j3zgQACPGwLF3zcr5CC6wi5r0OKXznB2HTbfZ9qsudvvj6f39Q7tde4DTaSqnEciNqRaxZRmooABYSk4pDWfYPewO+181l4QUfBND513jnDMDAkYEYiqMgmAipZa6qMrACICRmH8N2rdFdbl8+eCJhrjMWunjSKYAZDMSSaVMaRrH4JhLKWAYQiBG55nZMXlEh8AEjhakE9HC0wAEMYXFv2NgC+TIPoc/AgC4rg2OXHQBARpfxkmHYQajvm1A0PvQtkWqWIXgkRCkSq2L6hi1ogqoLkI8MoOqisDOoQ/sPDlP7B2yVUmq5BvH3olqFbNsIlSrpMJjcord1dWX64t1d05VP/z0w/3d7UAgTePOg/jgS4acbZ5q18TLy0tHEnxi4l9dMACI+Ljf//TmX0PT/8e//09NbIfTgGbB+zb4CNqBhunkz6oYGHqJDkLjfAuxbVpXaqo1pzxP8zRN43A+GgATOhfH8xyarmkbkzwdH7mUjY9dbHzbiw8T2cPx+MtPP43D2LVtCJF8CI2P0ROjgCUpY5mPw+k0Dpbw7fv3anJ9uV2t2sY7QtO/nsSAAal6M8/sEYPX1vtuta4+PE7pMM7D4ViSxNhcbN0EPBSihICRqAEMtc5StFQxFTKtpU6lqKR5yptN9/rZzdXFBkx/uT28e0yH4zwNEzippqgwDwjZz+i16DTKPOs8W8mmFURABaMH662uF4qBZckp11oUlB17H4IPjt2v7qRle7BsMckMVWqVKckP2UTgi7V9sYIuQBZrCcijIyJcNpVmilWpCoooA6w9INEJnSIeku2yjqgZVQqbsAhaS+T58iL8H/4hvHyp/+/vpuMkoXEjhBM1Y7Nq1lvfdOQ8WoH0aPOgYyq15lzSKQ/n8n4nf34vf9qHfxtXu0IMGIDo8ziij6ULwsKKWmBRSggEajWVOs93aTxqqJMaDNxX9uSZArN3FIxc8d+gfUPcXWgBfdjLX36gN3/yaYRSVLT4eNpsZXvdXN00ffZ14PNRD++1zrVvFU10BAcANRi5Ife5axrvmwps0nDhcJzcHvUwlZ8Pc9uE/27lXkbPNC8HFHz6whAiIzknQMOcH/Yno7txrrv9bk7T4+P9MBzmeQaEIjFnz8zn0TsK/GTZUDMoNUuVD+/fuRiq6DCej+fz8XQap6mUUkSW8b2ZgeoCIVym3KqVFv0eMxGRAaAjFgATgVpBFUoRNSHWUm0eRdVcR+QMSQF/3SUz86rvnWvu76fbd8frqyb6df8f6qoXrurEq66ncTWe2v3OnQ6WkokBsnE0DsreTCGNhkUbSzcXdHF9ERsFWLxWWaE4ZgAkUMTKXl0UF7NvagcMFmJomSJCo0I5acppylaqiBpz08aVIZRyHoZ6d9ihl5fPt9E3plByKalUKUwecYlTegoXM6O26b744nXXda9fvhjGM5HznkMMp9P++++//+67P3//5z+/ffPu++/+9Yfv+fL62c3N82fPnm/WG+/DIkRShTKnkrIjZMcI4JxfbbbkGdBicOu+P535w+3dPM3jNHZzRFgCTxwvORCOnaOIILo0FiYiuVSD4rxjv1zTdRjOJaV101z0vfsY2plSfvPmw/ffv7l9//Dh/rw7l+Os3kMEWiJfT2kcZkl5ArF3dzjnuj6MDJaOORCaw6loCBCdtQzTMJ/HNKYyFQF2FxfNtu8JnYjOebjf6y8f0MiFAIY6lQo1NzC7kLiTuR7udjX6i2++/pvLq42L4f1d+b/9v3bfff9TKibKQME0grt48aLbXK6evdi8+vLiP/3D369W/fIssWu++t235Ev/4pJ6705QSnp/Ou72hyDLBLmaKptG79arsO7addd1PrQcCSGxVXDehThOeB6YcHN50fVdUZtTadtgPs4u+n7VUOTtBq+v/Pai2VyezCk5IF53q5uL5svXr9frdprT/f3u9RevQ9t632QcHs7D/nQeaxGxXCsSt23HxCVXYk6pjnP+FEKICI7IEyKoShERVVFU8MwcPZuSAQMlkGJoukRL86eNMMBnuZMAAApQACrYxzk1GlpVKGAkhdPkRvaOovcmlZC88+yImJgY0T1tz4GZPLPj4A3xUzjvr37qp/82fsq8eCpitr0jJMdmoAuOMA1JhNi8Y2R2bReZCY2ia0rB434upRD5jyzZT2e7wtKVMsXIIXgAK6VOKQ9DPp3mKrTykRyH6GrxmbIYiWouOE46nPU8KAdJSXPRnCzNalVLqqqJvEiBWq1Wib7pmjUx9N0hxl87/ipyOB5vb2/fvnsH5Ij91eUNGm779brvbb1aSfOicc/a9Yr9KDCmMstoDgOz5xCDj5FFY8ieECewsRap1RhFLGfheY4pWJmnxwea5ozsyIkPM/GJbD9Nu/sHMnTsHflSJ9UamBAsqwx53o/T4XRKOQPj6XRqYvCOENVi8IxWq1T5/H5hQ4/cMnsw1mqIY66nWd8P08NxGPYHVNuutkihC+6ya1HRXNh6ig4WgVl1YKpoPhTRLKlUKeaQN117ve1A6uk8th7JpKRsRcXUSE0tAZI4yTxNlpLlDE9/NVxIL5BqmUoaU4peU1V0bruNDbf9qttuVqu+jcF9joJa1uumCqSERgBmeM76/QGHCghw2UBRbUmDWXDQCYISkpqhKBigY2oCbSIC4lwhK4wVz5mmCrmaiRgYCiw6IG709RaCR09wnLAN/OLSt8EBsiloXSwcRc9zHaZ8mudjHg75eCgPR/npvv7zG/llwnM09Qvn9a9GSvZxnLm4aRTMVAAE0Ax00SOkoc5z1jxUs4FToYBMREAIzqkPxbqLkBIYKLClDLfv6ac/83QGgxraevVCuk2+epEvrrPkTZ2adILDLYxJNAkbkiExWHYGVFODtDRT4qx6VHIzun2Ft7P96Qyd4nXB1rBDFPq1hxGR83zcnx+P4/E8judpOpyGIrvTOHd7p5pPp0POc6kJEFxVxFqVqDAaI9DijkWEeabhPDB79l7UUk5TmsZpKrUawFMyHTyJ8pbK1EDgCTSDROAcMbMZo5ihidSUZBnMlapmxs5qtZwNcUEFgZmofSaIAzMQ3+D1s3VJagipFEFDT4TBcQS7PB3jmzfzLz8O+51MYxFNoSnrS1xtun4VvV+RtkQJbAKHvul8EiCvltXA+3BxccXg6jm1XQ6NuYAUxAVDJVTvORB4FdQKkqxmkMpqXqEljEgXanXOafGORBbvPbPPuU5TyrmoCn/2li03gQKwc5t1aNvu8uqiiiykR0A7n46bzcXF9mKz6ld9/8OPP+73h9PxsZQ8j+Nme7Ferdu2C84RkYGammcnonNKC9kohia2IXoXPA/jaGpVdJ6neW4cB2RWUWZmM6nO+SWvkpZ0sie9Fi9RfY4QCdE537bN5WZzsV65j8Leec4///zuz3/+ef94en93PpxlSMCiSaxWUNVTSnPSWpIJ7g44l3oYqfHkjc370wRFjblGp6uAJelcoSpVJOe568N22zj2w1yO98P7XY7fDbc7CQGIrJh4kLWvjrXS6TAe336Yui6JvnqZ1EX7y8/lD/92+rc/HxSd8023Cl300bf9evP82cXzFxdXl+u+W31KUW+a5utvv3Scum0PBERimqc0n+bZI5tqqrnWirW6zI21XcE++95JDxaQFNkcqclcdRZxwV89f9Y0zePD7vF0UtTKNM55JbbyHB1xKfE8xHA8Hs6nYShS29hcXV5+9eUrdvjzmx/3+8c0pXVsmZ0yD7WepQoROoaqiLSMwxEh5/zweNw9nkqRT+8YozEagaIBWAUTRFskr2zszQNUhKqkaIKgBEZLeu/HNJNlabh8u1Vhmb7oksm0nIYIqgBmpZaU5nnyaOqZHXvvHDsGXN4dRmQiZvKePTmHTAqgtS4ZT/br0AcB6enP50XM5XoZ/0xFClM2SXkqpbjAYtEBUNu2V5fb4AOTOx7mw2GY5+Q9AJAuUZgGqlZKMgMTco7bJobgS63HU7m/H3d38/1dNnBG1PWNC65paTwtCq0CVcfRffhwdPxD0/mxlv1hTLk61xoIGMwzQVKpYmqGxsyr9TpE3j4+dF1gxo9fmPmnn35688ubZRXx048/zUP629/9bfMy3N/ftlaeOf+6639zecUOf5mPu3G4TYdkpz6Mq7ZbdW3TxCaGEDg6l7sm5XXOKec55TLnUqQIJA/SBW4w9Iogdipp0vpQ82FOcy2db2JoHLnz8TBPGD0r01zScRrudvvDOJqBd07VSi055ZycXwh4Cw3rY22LgA5cg6FzSKApy2HM+2G6n+r9lPbncTgc2fRiNWz69Wa13m7Ci5aRKDbiQnWOCZ0BqIpIngccHnMuROw8s4NKMuc8m4yNk8bbJDVnEa1ZZQIAJZbGBEvRKiZqxsABOVCIEFiqTKex3u2s1g5dEzebb7fPXb+NMcTgg6euCfxrEbMsh0xUycwxNQEBZC6QRB8z3CacFOasEes4SwVbtbgKyEhL5Y+MXRs3wOsGqypBVUURVwpNE8+TMSqSmKrWWseCIXM7ryP/T19hiG7VchvAhwLpoNNhzjDOMA1lOg3jOZ/P+TTI48nuT3Z7xp8P9udHmBFvnrkuODXTz8Lu7ElaVkWWG1kRni5URRE0IRKiipgVpJQiOoVcGVARqmqaPZR1r3H/CMc9jEfTaPOZhwcebt08SuzL6qV+8dvm7/9rvXl1mwTLWJtuE7uYjORnG/aQMzSEzAZABpEpeI9NlBDUA4OhUi3ucaL3M7/TpoPwXmwjeoG0QtaPz5Lr/O7ulx/efvfh9ni7+3Aex2Gcxknd8di0tHj/VRUJiYGYaEn6ATBd3F2ioqUWqaoGqrS0YYampiL1qasB/OiH/Hi8LVG5BKhPIf3EEKJHxJQkl1qy5FLnWQgRYFmNkCqoADEtadZLfsGn70uVchweYl/+5//jbwPlGMaLywysuSJYC9AzXR2P6R//6faf//HutK/zKFV0veYvvt5+8eX6i6+22+cvri9vQhi15L6f4opwUnCIzM6HzWb7zde/iS5wlTZq0x9cLByIvFhhFZqnKsVqzlKdqQeIwfeeWyOP3DL1Yudhup0zxNj0q75pWkSexnQ+zSmJCDh+esuWX4maqpoRLL+CECPWWqrmBesodHX5rAnd69ev/+7v/v6HH3747rvv/vTnP334cLt7+BBcc339/Orq2dXFdd/17JnQxRDGnPeHvQFOOa3a/vnVC+/5/vH+OExiBmZpTvOcm86RUS7J9CkP3hCI2XnPziHgkwGHiB065zwxxObi+urF85fPn11vN+tfJzFz/umHt//2xx/GUY6n6TTplMlSZpKBwAyngiJAaIZ0Vsil5gqbVXO96X1sK+CQVFWjM+sIlJUieKUA7J0PLjQUAierSexxN33Yzc5B4zEGjA1frePrqz56Pg7lbj/9/P7Qr6xfPQ5TV4F++Pn+7ft5fybfxC70QB1wRGZEAJR5Gt++S6uL+5ye9HBNjN988drr2EafUzJLBClCbcCYURxV762iVsxi81x24wCaPFijGhxRiC5GH0OudT+O193Vs1evQ/Af7u4e7u7vHh8j4wqhJ2wRg2SEEg6Pfbc6DvPbd2+HKV/12+2m316tREvK0+kkeZpktVIEc1wCS+MXHKPBzMjeO1VJKc3TkMbz1x8eUs4f7xdDFbLCgEyIZgomoKJiWsnEoSGjC87Y0ARMEWyJxvtYt/xaxCgstBqwZRH59I8AFUAVgAyekuWDuiaGEAI7h0gKZIgI7J0LvvU+eB8AsEpZZP8iAvaUkrr8xRe3NSJ9zuZzXbuELFSfhNkQwASkWq3qvDpHIVCMwTsHSmYmIipVSIgWnC8DAJIQqRmYACE554ioZKlaT4d8POTxXIEsjpP3EFad9+QcESMxmEnKab/XWkb2WNDmonNWQA/IplbLcn0gEYaIzmOpMzKHAPHXFHXIuXz4cPf27TuKLZATOTryANi0bde20jYBHfvGuDPvnTkPwdu51iJa5jwRqmgJISyz7RAC0ZKCUcU0IikYkjqEtg2rJqyMVbTkwrPUuVSpxMzOLaKqeZrYMwAqwJjzcRzP05RL8TG0bQzBEaGaikiVSkagCwD8s24MCYBVLVd5HMrDcbx/HI9zTYgg4pil2v481FojWdf3my400ceAMVJsAxOLSKllLrJTPB8gGZCBIjCDc1aLssO2i9uKHTfFUCSnVMYhiwIxOcexcUhIjjiybzm2ru2Jrdbz1IGBa5SbZrXtLm82z180661zTAgq0kT/76DcTym5AEyLMoQATTIQISAIwKw4VDxnm9TQ4ax40UJwAACesQkUqzNEQw0BKwIY5orDjMNsnTdmM1s4gYpJuZS2c5GdF5cGO5/qXCxlrbnmWeZZ5lHHsZ4GfRxtP8JuwkPCIePDBA8TUSRiCo5S1X8nh7FffxZ0/NN62BCUsBILOWMCEzBENdK6COy1FksTQCY2ThPNA6TRCEGzk9nJrFhqG+XVV/XL3+v11wdq/vTuh/F8+LKjV7Z+efFVHG2cpA6HUM07C6gtIzpPHMFFcU7IGFQr5sz7hA8Zj0YCtFN5EKmIa8BPL1nO8/v7n3569+f9oZzGvWIFsnmeNFlK6D0uOZmevQscgndMy8e2CO6WtRSqGUgpNWetRQCRPRPTQtH6uLyWj6/AIvrDheqFT2ZGMfi1UHwK0jQwfWr8BREriIJUYLOc6jjC6ViGIYt8dI2ZKuRujd9++XzdQcm74E4uFkUkcgg9QANcFStwoVidClT0MTbNqm3XTRNWK756hl1Ppi5EaraKhyJYydG62Vxur9erjWdqu9j4EGLjfEZOhqDmq/hanGSuhbR60KAWC4RknAVyLZqH7384vnt/Pp6l3dJHCpUANMyB0X8eFQFPWUZLrLsSPrlKRbSUknOuuYKqI79abbq26dq+bfoYGlEB0w/vb+d5eny8L6WWVDabbb/qaykAxOwQUc1UhQj6tiXCVPI4LxJOyzmnlEPXIaKqllxUaq2SRQzBOe9j9DHGJsboecnsattutaK+f/nFl1989dXLF88vNmv3UQyrqjmleZ5zQTXwvlG1KgCWPy6ZhZBiCN55R8EHdt5i02+vrlbtChYVJ2TvIDYMqr2fZxpXekQQIgJUdspeFeE818Mpi+oq4HYdbq76dReVVhXcMA/H03g61Smdfvjh3W6fU7V3d7vdfsoFXRMAg4FXo1JknKf9AYbpPOfadM/n+enid8wX625ad4AEgqtVfPFsOw6vrjcXwE4IZrQiVXJJuc6zTpOkqVopVqWgAJRczVmpIqJ1EdhXkWGaH49nRHSMe0eByIPRMMBw9iF0HFMpHx73zMFtr5rGOwd5LvM8ztPw7t27kss4nM/DeT8Op2kei065pnFGw1wlpXQ6D8P5fLD6/v4x5/rpHWM0R+bZmJERdIHNIRKgABk5XcLM1YHJU1Xy/6eIWYbgQEuzYgpgIIa6qPqJFraa8975wD4svEsmRnKOF/xIw8yApKJVF1TUU1f/17uj/5UfR64aAhK7QC4wu08ZcoJEPjCSTdN0Llaznk6pVkF6misuMjxcdlnBqdgky9rBTK0ULdVSopI9GINYmVNpwLrAjkPwIQRT1VpE5nGc5xGAUD2LcakEgqRMZmBIbMQuNtSvnI/24fZn50E1h2CflPC11sfD8d37DwXY+dh2q8uL6TRNbYyGUMUeplMeUy603l7g9uL66qaxPOZpOp/TOJ7Op8NRmDkE3zYNM1UptWZVCd6t1y0S1ppJpUHo2G9Ca4A2zfPp/9fefzZZlhxZgqASM7vsUWfBkoIUqgB0o2u6dnZkyV/fDz09Kyu7O7PSO1Nd3Y0iADIzIiPC6SOXmJmq7ge7z90jE9VT821HJA2Rjojn7o/ca0T16NFzdp1oMoLgPHI/9JrzlKYudFVdI9hxnPbDKKohuK6rF4tu0bVdUzlHpV0jo6DmbM/luhGQklqMcd/3b2/3N7tDvx+Y8Gy7bNsO8WLX99++/3C/32OaYL1YvDzfttVmVS26tmpqABv64dALaiLMk8lBlHIeTShwaCoFqzvp1nLVUnd25qsgGncPx3ff3fZ9rDzVtWsaX7dV1dRNW9dt1bRNt6hA9Xi7136qxOqqWpxvu+12udnWbUNEahpjDOG50SBYERdDLPp1REAOEckxrj1ftdgwIviPR3h70G+O+f2IX+/hF2fweglnDXYMNZmZPUxoGLqFD9mOx2GStItyiOrJSvlf7CT71csw5Lcf6XqgP9zZ/YBmAGog4MACKxikjPuJP/buduJdIgPb+Ox8XjWGFQVfYthPXeAAAMmQoDgtAxEhkDNyhs7QZwziFB1XCMEHNSWzpEKMxiJePVrroEIlzagZHKAjz8QhxMrFq1f2y3+VP/vVXv0//eG7/8f/7d9//PjxzcuLX11u/ubscv3Cvb85DDcDjocFyGXtz9sQFrVSKxSUKJuxahYaEzxE2GcTEIXcq9yqjKBLg3j6MFMa3334w3fvfx9TnS03HXdLn2WSqKJECVUBiZumqpsqBIcIOScAdcwlQmVnPtDkstmU8iSS1QzQATp2WMQ1n3jbOIexj8pVBqpqlo2Iss+ImCWLKiA7Yuc9zUwDjdlEQMEoZ9WUTZLZzW2f0hxhEmPd+UWqF+t2u2YmZKwZeyYhZMRgJssL/PVfb8+uOE6SI0jEpl5eXrxcb7pmYYuzm3q7W6xjVR+CT94N8P2YbCRXXV2+3J5dSkrjcRrHwTtlrsh1BikJpxwkB9UaqPahEvJphEOvN/t483C82Y13D/Fwn799e/zPv7/tpXnRSRa5u7sPjl+/enm2vey6lffVY9A/c6wKBVtn3G+McUpTSimnXLpCs0hOKaU0TVNwzasXb5j46vzyT9/86d27t9cfb+/uPux3D8vF+vLllWMXc3YhnG83APDx/sY5BIsiNo1DPLkNpJhizGaAxKUSkWMch7Efh5iSAYSmWV1cmGekyoeAzN5g8+Kqraqvvvrqq6+/fv3q1Xa1ekRivOezs8WLF5tDL3Wfm7aepianWjUSYE7JDxMAdm3bNl3bdFXlyOl63b56/XK1WCAAEfrAziGjSZZxTP5mN/G78XhvGtM0NEEZsndAjickBQDnu8Xi5auL16/OtudLUzxk34y6OI79EP/wp3+Eb76JGfZDHPojE3pmh4RiaUpR4jj0u91D1rjf93V3OQyPUv1qktCS4+Dbpqn8+fbsizdfTZMqYEKY0JKkHOM4xv44Hfdjvz+OfS/TMMU4Zh1imoY0Wm4Doabv332nYvd3uynm4LwAHHJWEYlJQEvBNiCpaZ/zZrlmJiLoj4f9cdf3/dAP//Pf/cdltxSVJPk4jf0YD2MaxxTHpKKIJKLTFMdplNh/vN+nPKcwRBAcVp68I3ZUSuJqJsZqaMqmycQhaCHjz2UhsDmKmetJZbqWXbFU8gsRi06i8QQIhoRIzvngg/fesUciAEb2LtShquu6cY7NICcZY0xTFJlU5BTBIDy+4g9TyFMQU7ULBVBA9oo8ISkyEimyEiszE0JKJXnNx2NUmROo8oGIijcTFBsgRHlq5hanyqbeDBHEIIlkkQSgROyc895LTtmKn7yKoDEblTVsiEAMjpDYOY8+QLdw620VKst5jDl7j88tRwoEchzimIF4itk+3Fz//T/9Y12F9x8/HB4erB/uge77uBz6pVxW6wVVzrsATVuqcznHcq2yStYU45RTzJKcc0TgPTN7Usdgxj5VFRioCDrv2DkkUUs55Wkqpruh8lVV5ZyGGIdpQsYq+K6puqZq61AFVwphBqoKpnnWRy/LBWASPSaRmG4O4zc3h/v90eV0uW4/v1hdnW8oNB/u9/uh/xDT3ZiQh/o4cj2oowjmJavIfn8YpjGDjSaRYASVHO+H/ma/r2qMU54UF9uzrl5evb5qukpk3D302+VZ30+hhqbhtvNtW9VNU9d1Heqqbqq6NtH+/Jj6ycbsnG82y2rR1nXlPRNiVgFl5udc2E+GnUhcgTEQLgO1Hj0BImSDg+CYaTI4ChwT3o/w+QqOAjkrF4o6gXOurKpJ9BDtGG0ZICg8enshKogdI3y307+/wf/wTj8eoXBxCKhxsKnNE0blXmivPqGjCs9a/XppZPDdA/TmvaOiZPfD1iQCKLL5hABmCFlVVMBMARLiiDz5KpI571ljg1aREClAhpA9akMa4hFvv5f3f0phQzcftZ9A/dQ1cfMaXn09Ls+/+e7jf/n93//+7/7z+w8fbm4u01dfXLQ/31L7x+z3I9IBzgDEgAM76iJ3Cg6tICRkillwFJi0uG+SOJdClVyVm9ZOB4xoPk73x/GWeOMrt1yHmJuUBCATsBlaNiHLyRIrmCKaZAE0cOjc7CCB6M1IMqiYieUsWAIUe0RetGj1Pu56RWYCABDhUXF73qSs+KJyyYzMUHJKSVM0mUvJRiQ5q2RSeRIhDFV4+fp1CPei8LCPjpJjdcTec/DMngFzu4Gf/3r1+svaVDRZHChNVZoYcBQ+Qshhhe25VPXoCEEZQhTMhnVVNURuv9+Pw34cD4vOQliGUANAlmlKbhpdmnyOPicc+3zcp9u7+P62/3DXf7wfbu/H3e10czN9fzuZh3D3kJVqos1qdXZ2+fLlm7ZdEn2CxKjp7NNrpgrFizhOMecoORdf6xjTFGOMKadsasE3F+cvHHvvq7qqmfz19U3fD/vDHV6bdz6NcdE2dVWVp00pxjiyc01dLbrmuD+k03OqWkHTRYSZC3wPojFOKlp3Xd21hojeEfuKXGC63Gx++atf/fznPzs/O3smRgI++KuXZ1989epwzP0g4yTTGOM05hxVdOzHsN/nrFXVtG27XCyritUyO58E+yhgWgxvRdHEcoaYaBISYzMSARE1k7kNmIqvPXMIddu0q0W9aJVdUs1IRg65yhr3t/dT1GyYBGIWcuGEqZIpi+SYpB9lHIf7h4e7u0M+HfyqNsXUD5N3SuyLKNd6XRfB5mQWUbOISFQxNJSYp+E4DX0c+2GchikdhnjYT2MxlyLW2B+Oo2mqg2ub2jlOkqepNJPl8p6OpyuZpinGcRj63QPvj7u+H+4fduOUQwiAZAhRJUYZphxjliSiVuRwEDHlBHk8TlGepWPM4PkpiDGatV7A1IzBGFQRDQocMmOjnwYxZeXOi7rEG1ja2QB4tqUurDcsjvVMxFTUZ1zlQxWqzofgHJvZFGNMaYoxp2gqZkp//gQxhScqbhluuXmTRaeo7AbAncKEqOSy8845xeLcxx6J1UBEVNmKu5OKmSLOisPsgilmMQJLoqKGyEzkGL3DiVSK1h8AATBBEX4m4kISY+dDU5F36iCJTlMGEs9QOReCqyoOFS7X/vJF4wOMI8UUVfJzd3FEdN57z1klie4Phz/88U8fb+8ds8QJJQcEAjD76N+H5u1yuVqtN5vVdr1Zb7bbc3d5iaA55xinfuz74/7Y99M0qKl3bGZNU1VVRY5ztkPWPh9FbJym/ThJVk25H6YYk6lWwa9X63bR+eBTijHGnHPbVG1b1XWogvfMxRaGijcAqFgWy4/RpajuYrobJ5K8G9P7++FwHK86d7FZ/OVXL794dankvr1pb/t+MLp+GL6ZYP9x+OMht9VD7Rkdp5T3+wM7urzYGHNyLM72eXh3P/2nP7jru1YEXbddvvrF+es3r9+cdZ3PeRgG+eozSxlcAB8gBHCOPDtGJgtgDsAZ2HYRQZUyIjFUbAQmCeY22meH1vOJN4ORpe0CUI0AAmHFpEijwBBzklx7MKLR4JsjXA/wj/fw+RJqZzvRinTtQCjvZBqijVlGhj5CnzCLGYEKioGAMYFjzBmv9/jNPf5ph3cDICkgIGDjYBLwiPtE4qhq+cWGvr6QX17aX11yivz//Ef+w67aOxrUZqvkT7AYnAsihKaWRVLO0ziYRrA8guwB7oK/Y5XgWuCazWFGSYzJUQ6WvSbYX8d/+ttpf+jdCm+u+f0tj25aX0r3xi0u99n+7u9//7f/+W/v9rfHfp+/jzXb6/PlguDvH/p9L7W4l8yM7Ln21Wrwi2xMCjX6QL4Y7wqAIXjiKoTQLqrNWbesussL9k9+Q85DaDF4F0KlwAaYkzCnNKIkE5E4SUwHx8iO2REhsCPvKHgORTKcidnXNTP7EOo4pZizaFYxFDGaoxIEBlK0eWN73PMYsSQzpeed2emc7pmI5ZSnKeZspmRmikKMvqLFwm02brVYODdnMG27/Itf/evvWvhP//P/cv39O5FdXeeLbb3ZVosl1625kMMCP1stmdS5rFmHA377T9P/5//19mG3P38x8Bq+XNbVFk1ztkDmwSmQqcE4Rt0dBOI07Pt+b2eurrdt45gqyf0QYXfUh7v8cDfcXfd3t/3d9XBzP93s8u4ox2jDkMde+l6nyCnG4Ztv29v789Xq66++ev36sy+++LptF88jmDkJFCmLRRVyzpqzimjOKUXJOcYcY4oxpinFMcaYUkpZsqP68uJVHdrVavv+/bt37767vbu7vX0vYoSO4CzHDADHY48Ah+O42axevbjynsfjcHt/XxR+JAsCsHMVFgNIX7fdcDw+PNwbAMQEU2ZAz46cc5ULi/bNmze/+e1v/uLnP1+07fN1X9XhzRcvJvl6GGwYZZp0HPM4pmmI4xD3u72/vj0eBxVT9AouKaWU+6l/2I2FI0+EbeOdZxNTtZR0GKbdw85D7NYE6A2L6g8WHW5iDlXtqtqQDmM8TOM05t1uOgx5TDRmN8ScshmxoGVQVIhJQ7YaPXEwkOLhSQ7JReTwWMxQ0cOQbx4GsFHVREu9r7iWWyraq6aAuujal5eX66utpzPTlOOYU4pJpyTjIClbNri9P/zTn97Ffr/uvC38er2sghe1oR/vbvlwGGKUwjdTUAHNMd7f31YeVad+HIch7vbj3UNvAIBFrArtJK1RGmwATi2iRbnjqWG04MhEhEzoCAGdmZrJSdML0EokqgBQkkezxyZDgB8FMTB3WJelTTMHvNC/Z6MlFDE1InSh6hbLddt2Vd2oan88FivZmGKRECsqMXMaZM+/lpjK9FNw3J2dfx2z9P20P96HIMH3oWIkrSryAYkUipo8M5JnNu/NLM2fGQVmSjOKgmQTBUMomz+gQ2LnzDkhmvGmgsA7IucpVE4kEIJpco4XXcvBZZQpRoRsYm1FTe3qugrB+aCrjd9sQ6ioH6jveej75+k+My8W7Xq9csPUj3FM0g/HfjiWCxyIguPSMIUI/uG+u+/WD5vt4Xwcp+1m1bVNFTwSuRAq05gmNYspZ80507wTk8PAwJTVcspxSlOMwxRTjClO4zhOU1QV5i7UoWlqZio7MqKF4Joq1FUIwTnHjsgRPubzBvrckzuJ3hyG68OwZBAFRAjOLdp6tajXi2q98Ip0GNx20XZt++Egu5imY7obkyNjMCPMOfX92HUNLVfrdXt2UdVtVVfkIY/g98Le1+1qe/nyxYvXLy7Ou6piyWHZgay9gWNXpDK1UDDBEDJLRslkaOxrJiBjAMxkWVKKoIJgoIiEip+yxz+JZ2wmgxOBJ0C0Y7actc+iJsEBEE5ig8Bhwn2EQ7RFAPLQVNYFNLA4xX6UKeXEGgWyEJignZqdARRAAPuI3+/x7Q4fJpjyqT3PEAlDTZvWLZ0Pjd+s/MsNfLnS1wvtangQdsGz84BoMvN4ng8xFRFiUAAVVc0gSaYEWdBMEEbn7qv6rmtcQy73IIPLkVL0mh2aScpxVMXx5mM/yhE6Ow4S0dcXuv0SNm8y1w+7/pu33737/l2SjATj2N8+3H9zfbtoqjtfx+0FAvYkNxQbX7NrhKuJnBpizEnH/X7aHw5RBJg9s/ce2YOvXLt0zQJPSAwisCPniBmUjVAIhZ05h+YYDRBJJOWcUxIEKGou7NAxpUAxuiLzMOchQM4FE8xZs6CAACiQESM7mrXuEIiAgAyovAFCDqEKIXjvTY2IEFAVSj28EEdUCyANjrGqcbF0i5XrOqqe8a68by7Of7a/29/d/Kf/8p93+91759PVZXd23qw3Vbfkqs3tglbrerHAzgtVVEHgmsYsQxRzGBqsF1gvOEay3JA1wCLG/Rj19i4M6CpQGUSSqsu5Ph7c/h6Ph3x7I/f3srvP+13c38vxwMOxm7TjijtPDXDOGEeIk/VZDuO0H491VZ2fn798+fLq6uVms/mhoFKhQaZUDiRRyzmnlCTlPP9JqSi0pJRTkpRSTCkVlSmuQ0er4nngCICZPny8Ph57kRTTlHJGRBETlYd9H6pqsWy6tq3riplEJKVUWloRkclhjc4Fr8rOK4KINlVTuSKgwUTkiCrPTVU1VVX5wD9o5TPI4kQ9IBIrsALnsq0IglKNvgOHWWKOYJgILaYppSlLjHFKaQKQKmARpDQFEcsicYrLQJummTKPUceoMUrKCgBERN4rcR8FjpOYpKhD0qgkWCnkpGkSMTMBFTACE9NsllTR5kDIEIEcOEZ+OvmnmL/9/u6//ON7MxC1nE1EgHJBy0TBSmcOwWa99BQCU7Op2yoQVmCqCiIgWUVBga5vdoiprXGYNuR4ve5C8KrQ99Pd7cNh349DGqc0RolRco7M5AiG/nAtsR+moR9TzFFK3svPguACeZYWHmZ27DyGwLZYL59a3wEA6NQbRHSiowEA4ez5DidqFszqZWZaqjnwZ4OYeVOZTSGfghiiUz8RMznvQ902zaLrliEEBMgpjsMwDP00jlkTnepHpxf/c+NHol3u6sWvYsr7/X4Y3i8WfdftV4swJWya4AOpZc0KgMTkgq9bQmQfY0qjqAECMQTHBiTZUrasZQMEAzZwiIXBbuzUshHxLG3lKATUxrHrcgqmUwi4XjcuUMyp78XETHG19Iu2ruvWeQac6hbrjqrKITlVHIf4TOsOvHPn2+2rF1eHftgd+od93w9jFAUoAIyllMtNNoOYUt7vj+N4fX/37dvvFl27Wi7Wy+V6s1qtVsvVghgPx2M/jpKSSXZOJxakqQFq2oYBTQ0wieSUpmHsh3FIKRcPcgCoqxCqUKAHQgzOBx9C2a2dd8xcZBiIGFHh0bJxHlOWd/f927v+y1XdBP/6bKGSL5dV2/h+6m93yIhxGCuVtgD6pmYUs00F1i8ROaCxU3LdYvXmxbljun+4T1MMDtu2Pdtuz84vzq9eLJYtKuRJVAkBHBtiQeDAMsxdrUXQiACclXDboHQ0g6qhmeOgGMwMICkBo/8kjnmGzFgpIRAhGZEl1bs+TWK9qBJ4gyJIngmEQRSuJ7zP1ARcAqFnUzgO0zCkmCx7AyMC40d3U5sNMqPgwwhvD/ahNwVDBkAwBTBdVv5nb5q//Ly5eFFvN7xqNFhOO7m5l3//nX53Tx9H7AWBgB7Zu09v3nJKUxzVGNFExFRZzKJRNFJk5lz7h3b5cLler345Qry//aCHvcupVu0QfYrWH9SSZpgO+32ekvLD8qI6u1h88Vd08Waa8u3N7cPd3TSOdV0T4DSNonb98CC8Xb56U4ew9L6O/fHu+7eWMjki6oOLBLI/xOkwXT/cfrzuU0LvvffsQkoSpywJND/1WCMSkyNkyXkc8u7++HA/HA8xRSRquPIAoMJTwpL9p5RzBoxABMMARMjF4tg5Zu+KSHtWySZZRdVAwVnhBxNjFjMrk4dmtQcEZhdCXVeVDy6nDDCJ5BhPipFiYEaExMaeQs3LFW/Pw3JNoSoVuscRAC41X93ftX/6Y/72m7txOnYLXi79al11K246W65oe+7OzvnsDFfLpglnx75uFxdVc/7ZZ/jyJayWUHlEROWabA18mPLH+/tjuvm2Ww2vP7usai+RVfHhXv7wh/jx3fsPHz/e3MTDEUQ8UVuHTbc5f/nZedutQ1e7UDvvVTiNdDzm+8Ph/e3N2/ffhuD/6pe//Ovf/Zvz8/MfS0KWsvg0TVoyxVyShKI9lkocIylLzpbFJBtoaXlWE82qZpKAoV51Z/Sauna5Xm5ubm9ubm4BdMzJsXM+aEz3uyMgKWicEhI6djlHkwKamooAILFDJjCtnN9UFQLWIdRtW1e1I0YAkiwSD/d333/77bZuFoV6ehrDkP/xH27/9m/fi3IUG0fph2mY+mmaUsopS0ySJpsmk5Tud72qmGZRERXJMUvSPCFOAAnmkxTAQE2lrjaDq2tWtH6IxdnazJDQEMdsd/txTN55Z+CUPAbvaqbRhKbRYpap0OcqAmRUlDEOSdPM9kRUlAIoPH6WwzD97X/69v/+//69c86AVUwsG00A+qTVRoSIy+5we3P47OX2q6+uXpwvF50LnoCACZyflVRCWCyWXx+HNykpMjZtYCYVjTEdj0PfT0M/Hft46PMwpGlK4zD1/XjYHz5+/32hCThDRxWyY+dUYZzGBKlUb8EEABhd5ahd+Latutp/+eqyOhlAwknhoNhDIwAgU5HbnQMUfPzyOC/pxOwF/GEQM5/DRohghf+ICLOoAgKgr6q6WbSLVdutvK/MIMXxuL/v+/049Kl4AsydcLMU8PP08RGPOUH5n4Q4brl6kXN2rhsGfHF1GA7JRI/jGCpGsphMQM2gqlzwtS1JsuU49cM+5xFAkYAIJcM0CZEZOO+wqqsQasc1AFaV1k2eppQz1g21Td3UtXOck5qh96ziVdl7rRvnAnoFJjVpEGG7bRZt41xTgJy2hariEFiFqwpCFb0Lj/UkZl527fl23TR1VVXeub13x3HKKRei8XMQSkAh65ATDj0/PIQqLNpmtVhutuvz87PLfNE09dn5ZdN2u93DNAwqlpIQawglv2UAzJKhh6y5gLtl4wUAIvLBM1OMMcbovW/buqnruqpCCN4VD1VyjorMF5Qs9dkQsyHmw5SPUZfeXWyWhLL0WAeHAKrmGAmAVFnVoXkqjuJkBIiOHXrPIYTNZn119eLlyxdffv6ya6tjP8SUVK2q6rOz7Wq1bJvGMYlkVUVjLOH58z6Jx7eGpfZalHUJEPUJbEQiLg4XRkaU6VMkBhGZoGgxAhgBECGTMSuATVkmAUN0XGApcIpJIZtN2foEMZugIquPQAiiM2sgZesjHCfsI3nUdJJFMgMBiBn6BJMCEfiyHRGo4XbBr1+2X37WXly4tjZJ+bBL72/yH76X//i9fTgqeHPOKm+I8Jh7lKGq0zQNwyCZkUwkg4JTlCwMUDmGtnJt1TfNfnU+ff7aO9y1Gz0eGkJCDIhxGA4313k4EGRkRtewb5Nv+OIF/uwvbLM9xPRwf388HnPOzjmqsazbu92Om/r1xcX5+fmqbXE47tlu9vd9FDscR6NxzH28H3bT4ePd8Xg8wIRVaNpuuVzWdet941xLXD2SyE4JpZikGDUWviskQDZLYFCSKHakyiLZZqQa5rAW7DGOYc6MjsmpgWRVKRYqaGLKSOSIEETKXmczVgylYZILhxRm+p6q5iw5FzUTIAJ24CuqG+5WbrXm9dY1HbATomc7qYFkPh54t4ObW3n/YdrvJvZQ19S0Y91S1Vi3gPWaNlvebmmzbpcLQF0fj01dVynx/gHefiN3d5YySnYq8qc/pZubdDhGtaHtUttUdU39zg6H8e13+4c7vX6f73fcj51CUzWrxeJiu3lxfv7q6uLNdnvWreuqqbx3oJwnHoa86w/Xt9ffvf/WMf/8q6+++uKr1XIJPxqmllOKUyzUQMmac04x5ZyLrmDOuZjBqagW9Z2T+peZaTZTIHDBtasFOwreBe+CKagYUkByy8VyGicVOBwHJEtxmKZULMFmWXc9+YmXnIOIPZFzhOjZoWPJGcaJsJQLbdg9vP3um1XbXl5e1nWNJ4gspfzx4/7bb24VOCvEZGOMY+ynNJ1uMaloEkvZcioizlqqziqUhTQXsZH8aWKOfcwPfXIOpwzTlI6DpDyfc2NKu+MwRgyefPCIrEJxsnFKk2RFIybP3jlqqqrr2sVi5asKgYjIOQcAOWdyEjWEyj86ck8xfff93R++ufZ1zS6ogKEYT4hKGAidw8DEiDQMMg2T5Fg3rnLgXMculP3HoREAojrPbbvSorFO6AMSgYkVO+AY8zjGYczHQcZRY9LjYby/33/8cPOWqQ5HA0YOwVfOB3Iu57w/HIdpyBrVsqE5x1VVL7rFar1erbquqX/51edtU30y1RDnlqJyt8oHfVT5ePz7vFhnai0+hSwFdUF4CnwICpxVfoBm+5Dg66rp2m5RNa3zlRqM4zAcD4fdbhgPkpOBnnqEntbBD87E/8pw3gcmR8RXlzYNmdE75+8e7sVyypEIEmVCcFwtFmdN6Dy7lMb97nYcjwoiUsBMSRGmCcfBiN1iVS26qg4tAmhLJmiCqtou/HrTrFYLJEtJwATUm4EKIWZTVUXvnOucozoEPjuv6zpIJjBDoroF713BcryvFotVt1jxSVgJCYN3i7aq66qp66apF/vDw+E49GOcYko5ZxH9RLOY5iYxiCk/7Pd9P9ze337/4f3Z++3XX331u9/9brlafPj48cO779+9fRfHMQRAICLnfXDeqel+f1ATMRXVLGIKjtk575wz1cPxMAxjXVfe4aJri3yO965oYbrig06EorPi/rM3VjlCxIeozP58tWqcQuwD06Jp14u1d+E47SXf5JgcWuWBPTrng/d1Uy2X7XK1WK1W2+328nz74nxzdb5p20rVCvfKO1dVFXFxwRAAI/gRqG2AzxS4nnHF52SlTN4Sxp/+8vS9xwmIiA7RM5a4zcwYwDsIhA4BAAIgkDE7My39pFmNBEE1GzRmYqrZxgj95Lx33le10ZDHKeWPe3jrYOlIc5FvAiYq3XEIUHmqPWoCQXAEnsExXW7DxWUbFvXNbvr9n8Z//Lb/9kP6/j7vBohGxNo1iYjEGGA2QHicMqo6DcNwOEjw5FAko5kYgYF36DrfQBvqSkLVh3ZaX/muTr6hnOrVogtVTdDfP9z+0x8P97sK/bJbXF1d+EV3NM/LZff6ajI5fvt2d3iIMZ5ACHLsTOVw2DfLjj11q8VitbapHvrDforvbt73aZJ6P2R7uOsPd8fhfm9EzcV6vTjbbLaXl5cXl1ebs7Nuua6aBc1iu2Cq4xj744gAOSN7qxpqlQF17IccBwCHwKXhgIiUDfX5QaLFgC9nTTGCxWIZQcQ0B8Kmlq1IlgNAEZAhQ52drNGg6AWKiJnGmIqbuxaRibnt0UKF3dIt12F7US1XFBpzPgMgnYRVAEBy3j3c39ze7g/9FBXQAbJI6AceBqQ7Qxbv1YdcB6lqaOrcdXHRHTfLs826Ow789i10/1FcMAVLYtMIf/yn/R/+8DCOsDlrLi42V5dnBvntt/HD/ugdrVc1wXKxvHrx5mq5vdqevdxsrtari/X6bL08b9sm1OSKEqehCamamMQ47fsjgC3armuauq5nLRZ42rELZjxNsRAARDQniTHmlCWnrCoimlVEVQrvHOfSHJxAhJJaGKF5z4tVS2AOgWPKVVg75Mb5KQ7HfuzH4eOH63487o+7cZpKEKMioFoUPyQlxWyIxYtAiSZLUTPEiZEcQeWpDX48wtvvvmnq5vMvvliu1nU155YqOgzjfr8XIDUCJFMlMiIwExExK5A2smPAgEKqiqWxmoTREbIZg1ZmMpd7ZtEpuDvELHkxkoiOabb4VJXDsZ+mAVAftydTUMViegFo3dK3bbVad9vNar1ZLZZrH7yIEaH3PsX0sHt4eCD21i0bPvGuVO04pWlKGlqPDEzADtkBIaADcIAegAFRTIY47Q/9w/1utwrLpWtqKiIqBdg2kCJoSlQEPbBwBBHJOazYa3DaBFHIxqIMxjHZMOb7u8P37z7u9oMB+BDatg2hAqJxmu7uH/aHwzAOWZOB1XXYbDbr9Xq9XnddUzN/+fXPF23zbH8ng+IoQJ/yWsp3n58Ep/MA5i4kM3sq6sxSCfPWD7M7pCkYk/O+6brNZr2tm9Y5zjkfjvvj8Xg8HuI0qGRVJUQDLgDMaZ8tL/OcKAZQTCUNtbSMPu9OYmICYuL1aq2voej+3tze9mM/xTGlKUuWDHW9OD97uezWdQiSx93udhgPoinFaRjGGHNKGCcYelDF4vPuPYMplmIYMwAsl3W3rNrOmYnkpqnBUWNGEgu+NxJbCI6Ym5rqym22IVScoxFiqLhuqFkAIqXgmxoWXdputu6EXhKAc9RU3pCDD967yrsq+GM1DMM4jIX9JikXYNtOuFjpf1cRjSkfR9gfj8e+X65WVdO+fPWmajoVePvd97v9MWXJSWKWtmmq2gNAt+zWaXMcxizmK1EBQqwqP2PCcQqV/+Uvf1HXwTNLTv1wEMnMeKqrMSKClc60p+GZ18uu69oxym7KXcMOVKaYGuc41FVHvkEvAuA8X11uzxyzd1VVNXW9WHSb7XK9Xq026/VytVy0y65dtFUVPGLJm5l5lv1OKQEYonuct08tbHgqTz57vMx1IgJAApPnk/008Ee0ciYqHCBHaIaMEBx4AkYABQVwJZc0RFADIzVD04xKxg6SWFITkSGmbMCzAolOWT8cIACawnWDNVtg8AxMAID7CVqHly0eI0RDLoAvI4NdP+Qo4/1D/+7D+A/fjm9v8/1oCtQ2sKglOPSOxSkizubsz6+CFktkIyjlZCMjRnRERIzoOVTFafxuSImCuUXdMm7W0NTqaOL64fqwS77hpjo/b37+RWibh9vjgIAK/TRc39/ePdxN02Rq5KlcvaySY5Q4gmST1PeHqe9vD8f3u/3767v9cLBQp2zjPuqYwazpms3lxdXrl6+vXl6dX27Wm26xcKECfCqfm1nOkiQzCRC7CmoldI68IuaJTCSbGgAZmqGV8BVmYhEicpnAZpZiFlVTQQJij+yIwKDkZCSGj9yiU2+DFoq/Fb9IAERIadaGOKGZ4ByEGtqFW2+r9dZvznzdArEU1h0+w7RVcz/s+3FvKL5yVVvHnLKErCQJNOqp0G/FO8B5DVW/WsnVha6Wx1Cxc8BOkcAQsuk0pdvb8cOHyaxpmrrrGuecmVVVzUhNc75Zny2X7Xp7tr18tb54uT17sVptu2bVtF1dVd4D/6hOVMaL55NJ/0zCqaopxmkaS3e/iOY8W3tIlkL5LY3XWqhDOqsJIhBBqQYpQjlNyJGn0JkBqPbjmCIh0mKxqLMT0RhjRFaFGFNMURVSSsfj0bFDJgSU2bUGrfSgIhjOhWJPVHn2dQAGSXw4HHb73eHYxxiDd8QMAM7RZtNcvVjmwup2zgxSLi5yY4q5HHcqNsV87PtpspQBwRix2JcDMRiZBrNUihnFjVJB+qiiecoAamNEtbItWUwxxnKhFAAIkZiYvfPcdtVi0azX3Xa93J6tzrar5WrZLhbOOVFDAOfcOE23N9Xdql2uhqurc38iwptBVlVTAWMsyDQDOywYC7AqzkEBY9NUi0XTNnUInhBtblEmI4YZvYYS1xMSWVH8RkIoLX/AYMX3nRnQIXoDVuXLs83F2bofJjP1npu29d4Z4BjTfn/o+2EYY9asYHUVVqvlYrHoujZ4x6YXZ8vnlb6yVcPM/50/4g/mqj57/Hny/+NAZ7Y7g7ntsOToVdV1zVnbrdtuycQpjX1/2O/uj4f9MPaaM5Y+/vmYKXFKgRUQ/gz1BX64VE7DEaAigEIdqsvzizo0Tdvd3t3t9rspDgC5MA3aZnF29mLZrSvvzFLf76apzzJO0zSO0zSlnGEare+lH2QaSqvYJJKqmtvWtW1gx6tVGypUm1TNh4Wjuq3XZn48xnHop7gTi3MrBPu65rbFUCG1VIV6vVk2rfdBEUlzlRJMU3pxdRX8bGGPCIzgigMDcXF8bSo/dM0wTP0YhzEOY+znmCtnESvB3ywkOgPaWWx3GO4edvvDQdTW681ytR5ifP/xmhAdcwhusVicnW/Oz7cXl5er9QqJ2m4ngjlLmqJnzikN46Aqb9589n/+P/13r169nIb++7fv/u7v/vbm5iMTEhFzUfsxM6Cip3y6SVXwr16cX12ef/vu5nrfy3RoMZNMleMMBK6OVEUOmanbtJ+//qzbrNn7qqm7tll03WLZdYumrpsQvCN2TI6KT4ZJ6XpQovLC5bh4RqMqD+oPNd5mqL9o8OMJhyQqMTEWl154QmKe7C1mfx5CRiyNd0zoGT2VRhUrhHg8RfNUyqwGyEYAUfAREZmmGFMiIsmqkkfR7wX3E7zbW+etddA4qJ1VTM4hISw9fb2CfYJRUZTEUFTv7qb//n+8nsSOQx4mHaMlNSIIDAEBzSRDyo5FgegHfmNIGIJvmrqpg/cMxaSMkMg8GpMSGLvgqkqn+PYf/tDV3dV2Q8su4nhIGmu/n/IxySBKpFqxO1tkwHcfP9zudu1tM6bhu2+/+3hzPU6jWYHNTlJMCCxiQ7/7+OEwDA93dx/fvrv5+PHu4baPk7APvlqE7uzq8mxzvn1xefbm1cWLq6vt+XqxCiEA4BjjlOSxpjoz8BioeA0aAmPoXL3Apqumo41DHkeZxiR5bnrAOT5FYg7z8Ko2jWOMWVQQ2IXA7JHAzFAZUHMGpRkCLSYEZlh8pwohQ0SIUURFTY0MFAidx6rBbsnrrT+/qJdrDhWQUyhtA6bP2UoKkuVoOLRLtznvprwEr+OkUwJJmBNZJlBDQ1ACxKyapxzv0v7wgcttLDUZJEOvCAo5Z5smWy5DCDURHg5H7+j8/GqzXv/mr377xWefrVbLbrkM3TK0y6puva8cOyZmBjOQT6kFj7vvLAk6Z5L8Y59UM01xmsZh7pAQlZRjTJJzqR9pMZUREclSYj7VksqXPhAym9GOmcFAgatFvTah4XhHZL5acajcnpq6Wq3Xzb7ZHx5SSgg0jtP19XXfj8VIshQfba7fGqIhoWNynrEKFTZoXATDvAuELonG/KR31XXVr3/9pmnGVCqMRJJhnGTop+NhiDEDoIjFKd3d7755m1MaAQUQEMttIVMGRdVs6ko3tUHRUJNkSVKackI1FY+A7BFmyx3J2cDAMYaqauq6WbSLRb3drl9cnV1dnJ2fb9arRdtUVRXYB+ZHvWScpmmz7PaHvu/z11++aR5LMAjsEBwAKaDYXEpzAGQGatmymBojVF3z2auLn3958fUXVxfbtnLKVtT9EcwDMkDxclcrDBAiRgICJQSBgnqoqoEiJkAEZCJPrupqV71Yq4haQlR2jIgGqBYuthvRjRqrkZoRgmMkIkBTTZomSYPZo9Rlaa88QeYlwXhWQpqDLH3cK2Yy0olTeopsYV4zhGCAqmpEQOSrZrlaL5eb1eKCOUzjdNjtdg83ff8Qp0FyRFDHaGgAoOWFbXbDfrYQnq+K+Uth2Pwg3nIAUNy0mX3lnfeVD9V6vT4cDjFNiFJYL1XdrJbbtu68YwCNcZvzmPKYUopTSkmyaIw6jNIf0/4h7h6ODw8PU+wBs1lOOTvHbVcTyTgZYmiarm3Wy3aLEIZj6vvjMD6kNAAIMbDzwZOvLASqQtW23WazrmpPJIiEVolgTOn87DyEp+iSCB0TeWeGTODmdlAXQgh1qsZYjZMPLoxTjIXRL7nsnM9YKQqgInd397//+78Xs8VicX1zO03pxCGI4zRmUR/8xcXF69dvQhXquvl4fdv3cb8/PNzdx3F8eHhYLLqrq8uf/ezrv/7rv3716uX7d29znKoqIOLJuZdp5rfO4/GDhOBeXp6/eXl5f5hupulhSEeZWGP70H/34dbIR1ffHkdatFdn669/8fXZ+QU556tQ11Vdh6auQuVcgbPV1Er780zSLeHISbSjJFZP8KDZn492P211+69VKxERPt2aC0m9uJQiIBPy7FFqhorzkfY0awnMoQLZaWEhAGRBATUxECyRmJgdMw4JHkbzaLXHwFARVA4CQxtgGYwIykafxJJYEj1GuevjIZ6yYCR2EBx6Z4SKClk0Z82qVNTYni0YIqpCaOq6abx3jExIRZLfGIHR2JDYsQ8563H/kHlsgHWSu9sHQTWCfuxvb+5znFTS7cF982E5ZfnD2z/d3N37+zDG8cP3799/+DiOY8E60ACJzCxLPu4P79++vbm9uds9PNzv9rf3Q99Hycihqdv1evvq/MXLqxeXL15uLy8X59vlcrVsusp5MxhjmlKeUnwenpaWRQUDMnLgiADQBQ6BUgNjT8c+H/cnk+6SCessAkNE3oe6brBouU4pSbJZqY4RCczQyCwDmKqBlZJHYYMXL0hVRTQxM1TUkzYKM5GDuqFuyZuzsDnzq62vGzBIBlJmnqrKsw+CiOxxsWpevXnZ9327CHcPd/th6MccR4uj5ClLVBOwDGIolgVy1jEOk2nGOa5AKw7wgAoRCRl9CLLb7UNw0xQvLs5fv/7s5z/72a//6l+/fv2mbZpQV+g8Oo8n0afHMdOzqJxdM+VnPghAoXDLfljDnT9ajOM49sXOvYAuORbpj6KgYSqSi8zFHMScPN+LnAcUpFAfozxHDL5OPgXnRGOMSQ2IKjc3jhWhLiVCkXQ4HmJKsxDEaSEXsRAicJ4xeIcVBiYozhGM5EqnAj7HxwBC8K9eXTJOYqiACpizToOM4zQcx5QEgFRtGtP765uUJ9G02/cpSgl4mdiMTFCEFdlMSuuhkYqSKIho1oQGDBS8r1rvHIIlUBUFR9w0TbdYrJbL5XqxWrXbs9XVxdn52XqzWrVt7ZmYyJCfVOwRc53a0GxWU4z66sVl5Z/IsKVbGNGgiDcagmhJwxya91Z77urw8nLx5tXq1YvV+bZdtQE1gioYkhEAG7jSi1qAytnx2RDgkXRfagNY2loRBFCMDQiYzVcekVQJYC7cFOECJAfIhhUCqxlYgaJEJCdJqpNp/FGr5dM+8C8YehJd/+FPF/VhRHAukKtC1dTtYrFcN3VH7FOK+8Nu/3C3299O4xEsIyjTTL081ar+118b/nmOjAMjMDstNAw+bNZ+sVjmc8maAARBkYDZOVd5doQMYE0d1LJKLHL5qiqmIppFp0mP+3x3e/jw/sNuf59zb5ABkQiITTVVMdd1dXn5Yru5XHZrphCnNI3jFI8xHmMeVTMUcjNoFarlct22i7quHZOaEBJRAEDRtFicPcJ9UDq6mIN3BoUnDmaqpezM7LzzdWiaakoppjwO07EfhnGcYkxZikbmY5h3c3P37/7dv/8P/+H/u9luPPmU0sXFJRGXHlnH7Lxvu+WXX319cXFxcXn53Xfvvv3m7bffvr2/u9sd9sfD8c1nr//br7783e/+1VdffVnX9bd/+uPhsE8pAijz3KHEDg2UCAtN5rEQE7x/eXH2xZsXt8cpq+3v9ocjQtJvb47/09/+/u+/+Tb61q9W26vzV69f/uyrL882G52b/4FKI2tpHlICK9kvAsBcvZqn3kkAHqxE6LMMIwLAJ66Hj8zWmQZjT2Wm03MhABR923LdPyEHQylvFpuvuafvWTRdWMJgqpIVSAkUQdHUISDbKV1AJCQjUUtS7MaAsZQlLBomwCEZZSi8OQbzDIGACQxQFKJJVtBidCTAhIXtwYzEwDSjRAagc3dE2Ur0ObWXEOvKN3VVBe88IxoRkjtJglHJVMk5BhPHlCRf3z68/3j3sH+43z/c7+6BYL1eLjo/+rQfvv/jh38ck97cHIaY7c73fX/97v3h/iFN0TGXuU0DqdgwjMf+eLu7B4RhGlMSzOpdWCw2m7Pzi5cvX79+88VnX1xdXTbrTdU07DwaSJJjP6aUxhT7cdqk6fHDqELOlqIaZCRnJ+YekfqWm4a6BbeD1DVXh9Qf4jBIHDUlPfmZi5kxu+CDd02u8pRiyklEDIqbBBGgGhqUgLAYRhYau6qaZEVULhMhoyiIGJB5j3WD3YLXZ+Hisl6ufagBMU8xmal3zgCzqJzIvzDLKyxfvXoz/CUtFxfX19/f3t/cHe93x0N/iMfDOO6HcZjylHLMMWsWl01VvGSPGhnFRFM0FadWZ7NkoqpZ4P7hMAzH99+/224u/vXv6v/L//WXf/3Xf/361ReL5bKQwYAQQLHsnwal1laWiMJJ9Q8F4NR/iKfTEmZe2eMieVxu0xSHYWQig2I4qpKTFshTTSQXVTU90XCLhkpRlZkLoLO/lRGaoiIaE9Wh2iw3h/5we7sXQeeWANP1zbcfb98N41gWuIHlPJnllE6NOjjXTYkxBIcUnA++ciE4cg6JASvCQMTOcQjBhfBYG2dybViuunNgB0C5MG7aKecsKasaAqlizrrddKk0DNvH3f6oYgDGDGYkiIAESmYCIABsJiZUamaQhQwYQ123603XdSE4c+wcurrpNpvNZrs+225X60XbVU1b1VVofAjOu8InR1QDyypWTgkO7EPbLmpJks/W60e6wuzPbIRa6quKZqhKCIza1rxeVpfb1csXZy/OF5dn1aoDZ4NlYQAuMjZFzQWtINeFAGuoVpT+rZxgM8ehKLSRIUARuDKVqJZACrNWCQGRiwRL2bnVyGAy48K1ndtUQU0zYEZ6XoG1WVTmJF/3fLP+0c4/g0jwWBWeN3wqP6NgCuZcaNpF122Wy7NQLxB8Sun6+vp4uD8c7qdpUMkIilwkfQ0M9BkN5sfjk+4knSumc1j/aZ3AMboSRpVDjYl9KIkUFFdeKHqIc0n8lD1gAJCSZhkgGOisDmM5w7SG9bJfdPVuv5qmg2okJiiSbjlmWbRtc/Xi5WZ93tQdo1eRlFKWKaVhSqNKtsJRFwuu6harumqcc4ioqiWrBwSDXDdLds9633FmmJfedzPVopqMhMyFJ52rUEQWxqrynkNwwzhOMeWcJZ8MisGmGD98vP7w8bpr62W37Nq2DhXzXPUzgJR1GKf73cFXdYw5pdz3/X6/3+8PwzgC4maz/ou/+Itf/vKX6/W6Pxxub25urq/jNCEWiqtzTEhgClbO02dxAzOvlt2Lq7OvxuR8uF3u+/0+j8cGJq0lsreqajfrV198/vlnr88vLpZtp7OpskLJV0pxZp6eMxuXTpIAZY6XUggAoJI9zd0CEj7NoFObwgyWmD0hMfjDZrc/P4iRef6MCFh+TU/yS+VjF5FnNAVURkUwOpWkFCAjMMwdeFyQXCOF4ooMYiAnxPMU2xukWRq4JDh5NmAtZUd0jKXuX2I+mImR8+fXGSWYpaefPghRCKGu66oqLqxKiOyY0CGxIcMMVJmBAFtKqT/E46G/vvn4/sOH9x/eV1X4xS++AlscrI9x2PfjmATIKZIaj/20u7lL48iEjlhUCwEyiyTRLDmKFr+RbtG0oVku1tvz84vLq6sXL69evnzx4sVqs6amASJNmqeYpjRNU8ppyinmmE9i3mWIWBZFUUYgZGAzM0LwARyBKbrAxMEF9BX6QxqOaRwgx8K80ywppoinezhzOVXUxMBOmZaqqRWyLqBK+ZlS2dQCFKKimogKoHoPTcPdkhYr3py51cY1HQHJLEEKgMxcYuVnNDIiruvldgtffrVYLV88PHx+v7+77293x0N/GPb7vn/Y98c+DsM0jWNMMUoSkKyaBSQSjCYxJVFltTqrRe1TEomcs6gMdd2s1+cvXrz+6qufffHll8vFFhyBqGq2OY/+ZFvFU3RzWlB6Kt+d8Pt/Hso0tZRSmqJy4U+Uk7/cOFQxyVmzlN4kLeK+eSZdFPHvx1OHUIGUTIv4WfB+2S0AYOiHmJNBHsbh/uF2v98BWAjBu8DFJ5vm0uEMoJExofMUgqurUNVVXVehqn2onAtFP6jyIVQV+gD8XH2YiGvvOnQOgFhVNSuxhQxg5TwvzFBy/hgF2Vehurm9m8YkYoSzMm8WK85QQAXEKpiUgCWy6JAC18vF4uxyuVw1TUWVD8GFpulWq/VqvVyvV13XVLVjx4WijIrlhQ0AzdTEdMbGCIkcO1SnuQr1s0ZLBGAwJmNSLNoZDq2t3GrRnm/ai/Pu5cX65cuzs2XdVNoEZMwogMhYmjcBi6CMUbEbUgAzmmszAEAIVuDKufgEIIhGs8/UiQCFAGgEyHii2eoclJSl95hB6lz0mRGsT/ZpLXDQc/Hbkr7CE+L+mGeWXzhVRWfJ7fkUQHbO+VA3TbdYbptmWVWdAY99PB53+93H4/E+TkfVPEt8I2FBDP/8wfHsFf/FwzmuzEARbF52iPPxUY4KANCZrlAiGDtxN5DM0IpRNgJbCVCVPQXnm6pdr5bj2A/jPksEMDHJOalmIqlCWC5XVd0SMgIXQMosm2Z5dsVNgAqEQrMqwXyRTQzN8EeTDJGIHTMyq2ohFJsZkBIZEztVdZrFRZe94+C5a5txmsYpxjhNY5piSimL5CLXZQDTMEnMh/2+VH+Y2XtX17UYfPPt2//+3/0PTVtP43B7e/fu3fvr6+uHu10V3Gefvf7Nr3/929/+9vPPvxCV9x++/+Mf/unt27fTODqiwM4752g+zg2AZx37U3CA6LzbbJa/cv7l1fnhMA79EKfBQ143vOzqdr1ebtbbs03Xtp44ZQMjgBOthLEgjfMqBZxBAiq1SzOzUuye22WRHjPEU71TnuaYnnLHWY3xafoVJz9QQCD9c1MSAKjU9TyxY0A+1YKtlFIRsOy8RdfL0BwZApzqTSUKKe9LEdEhkScWTIhaeI2lncFKfFLOCbCC44MVbi4A8CkMQgJCIoLS2kszZdVKcFOyMztxF3SWJXjCorz3dV1VlWPnyobCRIjOwCmSGBalUVFJKCOMu+nw0O/ujjcPx4+7w8c21TlejCPvj/3d7e7j+5uUY7tug3eQSZNqSqXlUSQPw6AiwzRGE3CubupuuVgtl+vNerNeb5brzXq7WW8Xy0VTN6GuiejQ9xInM7SkmooAuehjSeM5UxtO1BIDBHLOAUEWQVTmosSNDrFD8lVVt9y0rj+4/pDTCHGynCWmXvaZafYvFFWRnDSZAnHZtQ1AAaVss+Vuos3dwafIU1Qtq5opeW1a3mz9asPdihYrrFslZ4UtU6pU3ntANqxDCI/FDgT2btl1jcOzzTKO4zjEvk+HIQ7jGPvj8bjb94d9HA/jeOzHfpjyOKEksuwsJ8l7lSNANASAShSixhQ1DijJwOJ2vfn6Z7/87W9//cWXX7WLBSCc5nBpzLNT+FtSBpsPPCiBVtlfFZER4CS7ZKevPwAt5xRakpRUtMQqpcV97lqXgmjo4xApBTs7LVc7JUeGZKyGpGCAnryvmBHB7nb317fXt3fXh+NOJTchsPPeB+eYqJzkXCKosoSJyXlXhVA3dV03VVVXoamqpvZVQKyY27atmlbIRyN9RJUAsvIkjMXh3FCVVBgeY9xCRSLsVuuff12v1+eXZ5fX19e73X4cJzNQQcnl5FcDKx4IzFQwCCJzDMG7uuqWi2617hbLuq1cVeS4nHfFGbkq4lyIiKem9JKq0WllFJ6NgZXijZlCVs7Kz7I7RHVgnswRkGX1bG2FL7btz756/eb12eV5t1nWXetrD0yJQU+QiJoiUIlF8lxDKoGvgdF8/AKokeKpOgPPfwoB1JDUSAEFilCo+blaWd54efcIj/E0ng5FKKK0z4IGM1ADKb9zwunxWfv0c/JAuVFU/oplc0IzEFFAcqFu2tX27MVqtem6TtV2+/1u9/Bw/zD0e5HeNBIqOQA1RCu40Scoy4+qWY8J848e/0F0NQ/nOJiBFETlVHhAm3tooTgfm83TbnbsBSNAIzMy00KkftTQRyLCEBw2dZOlG8cuS7LSACTZTJiBHVWhInamAFrcFnA+X8uTFCRAHzP+YhlAiGxgJslAjTxzeBRVszlnTUkyA6iKaWlANMb5PRIWSdnSCMOMwTsKnqrgpolHF/3EcUopYUqSs2YDMcs5Q37y//RMdV3X/bDb7b97944ZVWQYht3DbhwmBTg/W//VX/7lv/k3//qrr77suub9h++/+eZPb9++vbu5Ec3e8SllNRNVlSwpFxz++X0jqOpwUYXNepmyFGcTQutq1zX1YrlomioEj0A5iQic9OTKmV+OrNKM9hR1zHP2lM2cJgqWpo1PZ9FT5G5QWk3mP8/m0PxQwVV0TpDm9PD5cxU/bYwJqWiNKBMEAnSEAFl0SjKlnLKQmZB6BiMgAoPZvjgnyApSoqjCUM4qUtihz2ULypFcIquTEJPNwdBpQYLOdaNiQG3zCqbCPiFUAkRyE2QSySmnZwU1IGb2jp1nZgM5XXEs/JJiZ19EVKcY+/G4O97fH+52/X0/HVKaJtD7u5tpGu73093t/ub9TcpxMRxD8JgQrWCh7DyhY8JMSE3XNsuF975ru812e7bdnJ2dbTbr5WK16BZt0zrvESyrTimlMeWyU2czOdXCTpbp8sTrLfclZo0eApIymxHQXHDLaqUsUvKAWccQiZ3DNOE4yDCkNKWYoiiCcuHIq6qomEHhcJ+CGAPUssHy3NlWtmwAEiBAZueACFwF3QoWa+tW0HTqKwMyUSzCKGaINGONolk0P9vniChUVQgOug5ENEuKOiVNOedpGofjcewPaeqnqR9iP04yRZTEIF6S5LRT7YkishFWhiSmki1NJBkIdL1affb5l59/9ubi4oKdBy0bpZWWuseJhc8gSwDDkyZP8cOjGcYuaQCe/vxwmFmOOY1TZgIAU5mvalnNhbdaEJhSalKTrI9BzKl/zkzUQGbRl+KLg0iEwfFy0anmcTzEqVJdpabiQtZ13vEMcj0LYqwQv5xz3oeqqk4iy1UIVXDBETrv2uWyWq6TqyZ4UiFUszGm4xBptim3kq0AnMI+1QL/I7vVqvFVW4X6fLvZ73fDOM3t3hn0VMcob8wVz0ZCZnCOgvch1E1T/vjKc/DkCjGrTA4uFWkAAyixxAyoz3VwAKP5is4NvDrn1Z9U1XMW0JQTO2JCbSt3tW0+f7H6+s3Z61dnm1VoKvYMhLnQWkxUFBUwYxFRcvM2NXcPK8w5lqApAGEBpcp+VGaVcgl1ABS1AFECoGYZAQAYYDaMg7kX8BHWOT0JgoGVOPdp+zZLWaaYmbOcUjSaT3d93EtPS6tcH5hjgEJZQCYmDlXTLLtu0zRb55oYdRiONzcfH+5vdrv7HHtCJQaHhIiz98xMXSYol8HAfmBO92wnfzbmj5RS0avOz89KxxysqIeVIgKeTi+bIeLSz1ps8OyxWcPKXdITWEol8yh5rs3dK0DovG8dK5x8aws/CIthJMKp83EmeeKnQNZJKH6mdUDBgeZYp2Q0/hG9MLMpjv3Qq4FjLuz94os7B6lqqIpioAqW0BRBCdW5kvkHx1wHH+s4jjyOcZoSTBJ/tMsk0XTs98f+R98BAGgZPnv96v/43/0f/uZv/u35xdkw9H/84x//4R/+4frjh344Bu8QSUQgmkpSy6ZFZDzGaXysXBhYFlEVZudrt3QNIEhWImyC854dI4FJimZoSo/6QohgaprhUVTR5ruHBnNLCKoB6ZMSb5m9T8mTAoiqPOtxewpi5iVuZrMR0rxpmlIJYkrpQ+VpkonaOA67fabxAcmZKaI5ooopeyKElHVIehglZiCDUBqweQ5iVGEUmCKMJ2ys1I+SPEXjp6rZPzsMQH74AMz9kDAXkohAWJAEEShFUQFEkTyOg+qz3y4R6DxXy98VVLMmKVptkkuL7DAc9/vD4WHf7w5DP+QszCFn/e7bb4lgnGwcc4yjQH64GwjQgAjIeReqqm2qpmlqR91isdiuVqv1erU+W2+2681qtWq7NtTBsQcENcslds855ZzFTiEazEVeADDKWaYpp/h0Xww05j6J1jAhublCDVks5xithAzGkjFnzFHF0FfOOVaBagR3yP1Bj0dJA+QxzWpkj5vHn22QBBMScMA1OAeIgA7QJ1dJqEKoKFRWd9AsE1cZyFLGEinkLCWGIiCbcpLU9/tjf5DTfSl1U0JAD+AKDhdqdWXaFjErSVGK3q2mLCaCJmhCKpLzZJaYhZjYhZMGAZs5MEKA4F3dNgWBK6VHNDwhLjRPwafZqACPAUyJnxmA5wiGEADoiar4wzhGVcdh7I89zUHMrGp3imFK5jM7u8xhzOkAhkePMp2lTbVEP/rYzYUI6Ig2q1VbNy8vXxyPu2E6xpiyKcxwP+GJ8fC4bpDJOU9uxjec9469Y8dMxOBqX5+d+81l9M2gpKdqmYgcjof73f3cxDDHtZ/k+uU8dM6HgJ7d2Xa7Wi7iNOUsBiYCczVSAQCJH7siCAmZy5GKRAUmJyJkVEZ7DnCVmAWhcCaoFJCe7RnzmQKPIQTAidf3lN2pyjAeAXZxTIy+bf161X79+flXn11ebatFEEzHJKBITAakBgJiIMWFkcg7KnYz+LRXl4K6AqAJnXC8Iss0Ty2jQoSCObFXMFExlQRASG6GDmguopwMkui0KpAQRSWnJPn5nqzDOB37wczco5maGRbI8NMJWXgOJzEZAiJywdWh7Rbdcr1cbIJvcobrj7f3DzeHw11/vI/xoBKL/hsipbmw81TTmsNHI9B/YRAzj5RS3/fjOD2v8jsiVw6B4vv0vHxbAK35RedK5IxaFUwIjeYAZIZPCZGATt1qMPdbnaYOzqU00xKJl5D4qTrxjHsxX9byaEHCypuaA2lXMovnSExdN198/QsA8L5yTKflPuee83FrZlKqVjLLLZz4cIXLqao5n6xEpxSnmFIqtqBzFdrs6Rwvb9fmtmHH1NbVarH4zW9+/W//5r/9+ue/bBarw37vQrM+u/zZL//y6tXrugoheHaMCKpZNRfiTs75i6//oq5nMSLn/GZzBYDOsXPeB89UGufQO0eFXySlAoP4HEfBMjWeQNAi9W6P0VHJgVBnrGsOYvhRLaAEmmqfBjFwgl2e5sDTXLASxBgAmIqkHDebS+fmtdEtFr/+V/9NEgP2iFTqXkwUGGtPBJDFpmxDkiyZzByYd+gIsFQOFaPClC0JSOG8GYipzERsRChKSZBLoXmOtkuO9TiL4DSrAU6FMUCdTdKQ5paxIimMiETOB0AQld/+9nddtyhPUVXVmzevuPCuGO202mb2pampZtGcc0zTNIz9cDgc9sfhMAzDNKU8iuZkMpmKKKrOTCDREh4SEbHjUIW2quqmaet6sVwuzzbr9XqzWq8Xy2W3aOrGBYdMZiCSp1RMdHKWLFnLaf+4mopqFBhk0XGaXl5dhpP0eNssf/WLf8uOu3ZZVzURGRZ2dRZJZobIZqQCJRs2ICaH4MAwJR37OPTpeJzGMY1DTllKplOK/E/ZDp768c0AgRmdw6om77Hk995zCD5UIVTsvfkKqhrYG/PM2TJDlVkWusjoZUnDePj5579r6sXzDY5OYUPZfvjRKcZ7q2szKYG3zjMXi0O5lpPelMmYidgVY9pn+hk/GHaaVT8MX04DH7/i4/KZH3n8Oz37yU+G9/7s/FwlP4YRM0IAUIKYR7p5+fmTwK3O3jbw6VY9k2Ued3AgPEUBxCJ5iv04DeM0ZSkaM6XI8pjMnzBIQmJHxERY3CZmihsCorXbzeWXX66uLuu2rp/6E4DZrdfrlDPPP/x0ZZ4HMUTo2Puqclz8sNDmfdtO+O580QuzjwvnmD7tnSrnlxkUX+vTmfGDTzQzt05o2eN3bT4NytPNZrXr9eZxH1suF3/zN/8GUbsmdG1oW//iYvWLzy9fXqxXy7ryBJphlo8q24qCzK6JAEieidkxPwYxj2Bc2bNxXjMzQbIsGyskgVIJKe9ZpZxWYFiYhoiFEDyLHf4giEFEVck5rs5eOz+3i3dd+5tf/4WB1VX1uEwKU7FAi89DwJl79hTEMLH3dd0tlu1itWiXhDyN8XjY391Vfd/ldG6WmJQAcDZ8wcfY4jlKNB/sPwpW/itBTM55mqbf/OZXXdc9Poglovm0LmWPL/ODJ3/+GvAUfTzekPLXR37ks/97qsbP0+cZ0n96/BO22+N7MHz27x+8E0AknDtuYpzubq6nsZ+D6NMJ8zSXZ7y17LHPC292gpbmLzNSe/qLPTaWPrtOP6jklRvPROy467rz87Ou65xzkvOx74e+n8ZRROYmFnp8hqdQqG7a7dlVqCqY+RCHnBLOudGpc2bmrz/7GH/2Tv2zt+70jx/+wA/+fSrZP/uuffKtT77MK/J0fczU+dC0iyKmPA7D9+++PRz2gCUeL+4hgCehAjuZr5YnKN/CE8I2w252ukdPsfzjLJqRmOelLvvkI/1wBj2tI3ucl3MP1OP3TrpBsFgsXr16XeLLlPJ+v59ixNNneXZVnv1vjmpKBScXPffH5HguYs+f9dm0mmVqEQl5brpn5sKfcsWsovhtPQGk82R9HGA/+OiPd9RM1ULwq+XCewcAU+w/XH87jAeeKQaPP/gUgJSd7bRE5jtT/lUifiknrJxCeoCnVfzJ9IHTgVEa8PGRvoSPIeQsumNz5QFPUYA9e6ZTwUZU2mpxcfZZFZ5ESP8F45NV+/iOy3ufK0KnCPd/y9P+r78uwL/0OXPOx8MxxXha6E81gMcn+uHu8+zqP/vZx1d+/o3TPQBAxMeJWibR/Cv4w/UzP/zU3/F4zM03hJwPdc2hJuc9U8C5eptz7vs+pfT483/uysxP9HhyP7/nz3D5+b19ukw/fabTLz7zavvx+HPnydOlenrcDJxzdVOXY77vh2++/W6/P/DstoHBu6bywc/mMY+/+5zk9Oyq4uPc+uS9/7m38zza+8H7e3xOMziFLI///fjylmKGqZnzoW7X7DwAjOP0/fuPx2NfqLaf/sKPr8zzO3cSVSt7EzsmBkSb3UKiSC4Ffnx6O0/P/89c9P8No2x4Xde+fHlV1/X8Aj9YDj+Nn8ZP46fx0/hp/DR+Gv+7GP8cZPrT+Gn8NH4aP42fxk/jp/H/1+OnIOan8dP4afw0fho/jZ/G/y7H/w9Pa34hAlh3UQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "execution_count": 17 + } + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "markdown", + "source": [ + "## The End\n", + "\n", + "通过上述的内容,就使用 `@jit.to_static` 完成了动转静并使用该模型进行了预测,如果想了解更多关于动转静的内容,可以参考 [动态图转静态图](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/04_dygraph_to_static/index_cn.html)。" + ], + "metadata": { + "collapsed": false + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "py35-paddle1.2.0" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/docs/practices/jit/index_cn.rst b/docs/practices/jit/index_cn.rst new file mode 100644 index 00000000000..be6d4b4afc5 --- /dev/null +++ b/docs/practices/jit/index_cn.rst @@ -0,0 +1,13 @@ +################ +动转静 +################ + +这里提供了一篇动转静的示例: + + - `使用动转静完成以图搜图 <./image_search_with_jit.html>`_ : 介绍使用 PaddlePaddle 通过动转静完成以图搜图。 + +.. toctree:: + :hidden: + :titlesonly: + + image_search_with_jit.ipynb \ No newline at end of file From 5483cf7b493051d9e79749e214d4811cc0e9b258 Mon Sep 17 00:00:00 2001 From: andyjpaddle <87074272+andyjpaddle@users.noreply.github.com> Date: Mon, 6 Dec 2021 09:43:16 +0800 Subject: [PATCH 35/35] add diff chinese doc (#4122) * add diff chinese doc, test=develop * update diff doc * add isclose diff to tensor ch doc * fix args description * fix some note * add some note * add some note * add some note --- docs/api/paddle/Overview_cn.rst | 1 + docs/api/paddle/Tensor/Overview_en.rst | 2 + docs/api/paddle/Tensor_cn.rst | 18 +++++++++ docs/api/paddle/diff_cn.rst | 54 ++++++++++++++++++++++++++ 4 files changed, 75 insertions(+) create mode 100644 docs/api/paddle/diff_cn.rst diff --git a/docs/api/paddle/Overview_cn.rst b/docs/api/paddle/Overview_cn.rst index d34f0c32de5..62a1377748e 100755 --- a/docs/api/paddle/Overview_cn.rst +++ b/docs/api/paddle/Overview_cn.rst @@ -113,6 +113,7 @@ tensor数学操作 " :ref:`paddle.diagonal ` ", "根据给定的轴 axis 返回输入 Tensor 的局部视图" " :ref:`paddle.trunc ` ", "对输入 Tensor 每个元素的小数部分进行截断" " :ref:`paddle.log1p ` ", "该OP计算Log1p(加一的自然对数)结果" + " :ref:`paddle.diff ` ", "沿着指定维度对输入Tensor计算n阶的前向差值" " :ref:`paddle.rad2deg ` ", "将元素从弧度的角度转换为度" " :ref:`paddle.deg2rad ` ", "将元素从度的角度转换为弧度" diff --git a/docs/api/paddle/Tensor/Overview_en.rst b/docs/api/paddle/Tensor/Overview_en.rst index d78dd3e9883..2e5b70819b8 100644 --- a/docs/api/paddle/Tensor/Overview_en.rst +++ b/docs/api/paddle/Tensor/Overview_en.rst @@ -114,6 +114,7 @@ Methods dist divide dot + diff eigvals equal equal_all @@ -144,6 +145,7 @@ Methods index_sample index_select inverse + isclose is_empty is_tensor isfinite diff --git a/docs/api/paddle/Tensor_cn.rst b/docs/api/paddle/Tensor_cn.rst index ef5717b3eb5..a38bd8f8038 100755 --- a/docs/api/paddle/Tensor_cn.rst +++ b/docs/api/paddle/Tensor_cn.rst @@ -280,6 +280,15 @@ allclose(y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None) 请参考 :ref:`cn_api_tensor_allclose` +isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None) +::::::::: + +返回:计算后的Tensor + +返回类型:Tensor + +请参考 :ref:`cn_api_tensor_isclose` + any(axis=None, keepdim=False, name=None) ::::::::: @@ -768,6 +777,15 @@ dot(y, name=None) 请参考 :ref:`cn_api_paddle_tensor_linalg_dot` +diff(x, n=1, axis=-1, prepend=None, append=None, name=None) +::::::::: + +返回:计算后的Tensor + +返回类型:Tensor + +请参考 :ref:`cn_api_tensor_diff` + equal(y, name=None) ::::::::: diff --git a/docs/api/paddle/diff_cn.rst b/docs/api/paddle/diff_cn.rst new file mode 100644 index 00000000000..53bd5f30243 --- /dev/null +++ b/docs/api/paddle/diff_cn.rst @@ -0,0 +1,54 @@ +.. _cn_api_tensor_diff: + +diff +------------------------------- + +.. py:function:: paddle.diff(x, n=1, axis=-1, prepend=None, append=None, name=None) + +沿着指定轴计算输入Tensor的n阶前向差值,一阶的前向差值计算公式如下: + +.. math:: + out[i] = x[i+1] - x[i] + +.. note:: + 高阶的前向差值可以通过递归的方式进行计算,目前只支持 n=1。 + +参数: +::::::::: + + - **x** (Tensor) - 待计算前向差值的输入 `Tensor`。 + - **n** (int, 可选) - 需要计算前向差值的次数,目前仅支持 `n=1`,默认值为1。 + - **axis** (int, 可选) - 沿着哪一维度计算前向差值,默认值为-1,也即最后一个维度。 + - **prepend** (Tensor, 可选) - 在计算前向差值之前,沿着指定维度axis附加到输入x的前面,它的维度需要和输入一致,并且除了axis维外,其他维度的形状也要和输入一致,默认值为None。 + - **append** (Tensor, 可选) - 在计算前向差值之前,沿着指定维度axis附加到输入x的后面,它的维度需要和输入一致,并且除了axis维外,其他维度的形状也要和输入一致,默认值为None。 + - **name** (str,可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。 + +返回 +::::::::: +前向差值计算后的Tensor,数据类型和输入一致。 + +代码示例: +::::::::: + +.. code-block:: python + + import paddle + x = paddle.to_tensor([1, 4, 5, 2]) + out = paddle.diff(x) + print(out) + # out: + # [3, 1, -3] + y = paddle.to_tensor([7, 9]) + out = paddle.diff(x, append=y) + print(out) + # out: + # [3, 1, -3, 5, 2] + z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) + out = paddle.diff(z, axis=0) + print(out) + # out: + # [[3, 3, 3]] + out = paddle.diff(z, axis=1) + print(out) + # out: + # [[1, 1], [1, 1]] \ No newline at end of file

0=_J*cJ)M6Yt`&Xd8_E+j;f^?T^M2Z(Pe5io zi6Y9yD`>pBPJU?0u|1<&WvA)cyS*#q^{>8`YTNZiilZZC_W0*_K0VvMa_=_N)DI9` z`UW~A+&0^2qu{x>9RE})iHyt~pu7&j0SE1z4Xz*7tTvs-p1O|iDzOZEdyYqNr&q@$ z-S7PZkY4@T9@==tMlN7VQP*7(nj`qHoI3uB$>6bSywCv)Qisw`g5bA5-wOKcpQ6-3 zSzTVkvHhXo25w&Km9$d@W{j&Siib<0FOhAB?{`C({qn0!!Z)m7%L1u6neZOX{pY=h z^-PWuq7y>`!ZIw0~XFJfn!5&Z$vH3Op5j~TPar2{IiQ6~?#9dD}f z0Z9fHg(3R}+Hii_`NJ*x7F-g#YaPv7EBrU0PP2F(f3PU_`MZP#aqKr;ua;$C4S#Q z_&xVw2~z;mNQnE!c5Ew7yZ+iitH^QtC}S zsc#%MJLamqTN2TG`(yARqpb}<%@GVHS5IiheUk5u`{!)#43JcD`A??5r`Ho~;Wb`lI#lD?D0ZoPuWS;n2(N8& z-rL{9>=QaWJ1Lxli#0rBuIC?7E;6nDTQcP)rj4z!|L%Y&|8Hgh+88@JJtGuXZ}^GZ zk~MMcn9)CWN=aJ-jue+Zk)DV<#W4lnh)gRgQ-HRk-|*61nR z*cI9{&TvgzHfTJ(q_8oYrT1TOG@@O{MG(xScFNqCU+aeQ0~k!dc6aQ;1k|LGnSTV1Fq1ysW9gf67}Z7e zsOQ%-b}tig(FSFwD`k`m@4Gj!^|VrOz~)Cx@vCaoGylHp9XsAn6gOZA z#c)P@bkmK>&lAj2SRCrZQJC^zTXbVV|grtk{Ldgk{rz&=Hf*vT{(>1pJJRT>>6VQmB<9i@=RDA88Lm!`rH`($mbw-XV^}r6B-A+{d1Z! zm#(qn#O#NAUjlKxDtT{sw?S@VQI;tm@T!5oD%=STcU`QRi^H}C3+y~2??9kgIwEJ| z#!TG2AD-=H9bo$jQ?*3|0`D{pfvI1ler;}CG|c;e-a>`VF~ciqs%$d_gaV> zT;KbqRpp?$Q3aex@pt`dZ?#~@B>G#&vmfj*@C>-voH#N*nZC!lScxN|%=bOZVy>Kt zjmSK(2^yCXD#Rroed)@|J^x{C-(TD5(;GGTfEWCDwhDePg!(Il0{|5`ukjGM)&Hcu z_SyUBd`v-IJ!V?U5&VGW_WBkyzq5ZXs{VD8bjIdV&1WX0b);PaJNgGWe{wN!b`quV z=DGf5gi_*y@h3?*1*4tpM5R-6(rhgw9LjT>+Pn?$4yz#hoxNS!LB^RW{Hwz*#EnSsx|7>4|_48;4$0r&-B zQsw(LFoj#(ZZtz}_G#PvGK+njalkvXZswve}t1_T5M;&8xHH zkbc7Tp7Ib)^Po(W#WeITYuJc1dPTa+zvKdF@0u<(OyoTZJ`p!#p&eH9&j0<&K@^Kq zEd{sP?7ZIqP!IbUa~)}&(z6Ws`%Wxo<8*RoT&j_b#PhmklNQ;(=D$wq7H5OaG-UVU zte?-4y_UHwBG=MeWwUwkoFpE+F5^Apw`JEP$5>+WAj-x7igDCSbF2Q;PJh3KrHc9B zvt+4h@~|uZbkpG4QD@%RB0CzxFqO9zc;c!^?Z^Z2`ac6QgydQqqxvac}b;qS8 zT1Xzj{&aYARZgp4_;+yk;qs^5mVcwa4_}Tt`f6b&au^HP8zwB#5=FPu77Z#+^NEWl zi;Qm4y1Hl&Mt-13lxap1g6gP}j)G@2xNzC8xwRr$3Vo@53-Td-{i1Ednb z;9>2VrRwgmvvALd8~UF4CrBc9Ts8sQWDWRi;@@NIB`5kktu8@Wi0b#D_sqr7e_+wi zoy0dd9)H&-eiXk~UFgTVTj`_IG|#2Hzfja3SONR>w1D61{#19r3&5&w9>|JV?ry2A8ON^~ zUCE^!Rhd?R4C_S5UYQ!i&lDbpn{vU64_m#ld^U$n;xB)eM zZ(D%-Z&1Zo`q+9D_%{BN{BUj7b#x}S{hKqVTio)^SXXXICA@Su(z;4?943lb}?B~x)_|*Eq2t73w zR6+3w=D#I2{)W!~kHjINz+dtJN2<+z zEQt{nnd{v5G3SAO98X)V*0JX zfj{O8Rp}IREyRhSs%AK+rxtkz{#BE}#lK`&uE}V333WGVw&rc8hz+~8pS<50Y271L z@7nS<`6w#Wa$OYG5kd;}as&(9t7YD*3tddBG3l8b&evf$x>l~;pN+*GtOp-4hBzxt zS)TJ|xSULIXji@c2j?D}dFmFwm#S&b>(d7>lj6K-6R;$X_q+Q{K(fT*qC1*bST{hI*HMsx zgqv{Uc2lD_MlUy>^@LpMwY)s){h?EEmKab~oyc%dpeE+xhd?tw&In>G=T9Etgeqd$ zU?#qwA6jsnzerjg9%Td9@Opf!0gi4DiSQ5}zRduB%B3OR^AC9C$(L1PjqG>AAJ zkE9;-X}?I_p0MN%JgGQWPNoIvNjnfg$nXe+engtIQSbCH+9a1TlvOo8bVbd_e7gT8 z$p2>Og-Fak$u|wT4mV~VThMnz<0H(8D`F<;G zOWmHvM7Uu(oHg$%8sgpdYvHhC%61Wh<9Hj~jfFR%qgA*0b0?BKv^(Q6b`&m4#7aw>D(Ru11K3gU09nx)3@k@8T_^!NU z#}4ZmsVu67K(1qWpnQPFmWgj?a#RpuNW4SEh2m1r43gumWb}Mw`3F5XgqwX+jYT!U z5T~x<2Sx{+XW*5m`AWjrlIS2K-ej$);D_Sh{2w?=g?}htmKt^si#re)w`Dd-{S{x$ z`~_TFy*ef~6ODSw8=qHE+Apc#$4c$7NrQ}H`*@teC;9we0U$t%U)}oZZi0*rXZ4WHNV= zmHo5tbvjPNA%bh~x(%fKDS7geZvGwAQ)d7lRJ^AW7>`bTgS!5fF4HQG*$veU1`p!C z_vA2Pm)c6-UBTk&E_9p&z{uO=?qp@+l@5H?p7bF{YVMaf5xJlYyIyGP)p9Yf84c-O zVgQ(B{`Pn0S^U1U#ViIUr7zg5SILjE0-`MZey!MO1OuDCdwA|(O$4X3p)UG5KP|>h zbCGv>QgYjNC;L=vGb$-^l;lX`R$}qL5d%eQ6js-lEjZt#X5~Y~_8oF^zc7L;V{#hM z0Q^8~Eu?SckhH+N8QDm!B2udP@$zXu^U>0j#V6I|Um{)qy z$zLp~UiAkJH{;evv1aJbu_~8;zLz1_C-Hn4Y$nQPndQ+iX*>-`kVT{5(K zlfH^A?4I#>y%~p(5lJ`UFws%0`n09;_;ymj?-XcttJK8u-&Z7R=K;SzzUMhM+Ua2* z%>{G@q=zq4fmN3*uW*a?d=BR;HWy%TW?{h{(69K!#dMf6$&>?26DNHL9*eN4;aB2r zn{*BIf*>;Emj&Dl=l}TdD65%nOtrK6IX9ZN}1 z5N-fq8Yf5jYZDsP9>ao6RVD}M(b})$fp&CNC&1e>L8r%<^Hv1RD^&d0qE4s_kpo;k zlz_c$a1iqp-B{}QUJ8|Gby@SnotU&6-H6G)@E`_dEA*L0zWofUsMP;5F1G_B{KrSg zDT-PPZwI?STQ65ClA-5b7(24%QUgs*5jQ`y7~I6+igARDocsRo{}f%PIsj|p875VB ze$bSyQ}_j~GnOdo1&8SNS_8&O?Rq;qm#SV`_dVN99WH!l@l}$lJCL%M?2^P%sYYul zUj+tCY_A0wQS`)MR$T3$GHSpNX*W}4vnta zc9@h?!m`_e?tiObo+7@XB!_tPy^!^OA0!{x38QUTvtO1c?hVQXkul;T@3C3dWnYQ| zSgv)BQ$j^zh$(-Hon4Ba;$L%Wz0B^K6CX4ZZs}p!x4N9ohq+rasbOBpJ2`E+)C||* zp`l5`hu;8UDO;HA-_qJT9GuYAyc?cZ^RoAzrh28lC1wvMl|8~I2cbU!BXzI;GA0{u z*2xtj0tutEDmU%!)>~ayy~1-Uq(;L&n^Gb*INeS-UwrX%bm?cy(ciEo&Wfu+A)pW% z`EX?$0bd>8F5Ad$V%cx0Zw{{?^(yku&J1n@U%lxn$bYa2^QfowxY#|enDcfLTaS75Gxb}1-5t_6*77YXM@?v*rfGYv>A?$8kudoA=H$#s?nrKs|6J2BWX~y z4Zhu1@oVzlVxq@}FWZa>;p5@K%Iem!6=gpY`>3*)o3|4Mh_AD3zTz_e5tR!{z6u!n zyxKLwfb?3u`(CdRI$Avduvpp3aj&(wL@nwkAqvqU)=ku&bQ2_g9pqog+S+_(JzIh; z++cDzfAe26Cj%yz6e1_YBs%5TOoLPs4AwVS6KT2Rrv`%3P~vT3EPz&zqpFuUp8a_FirD=mN1qay zOg;E4!RQxhD`K1O230d$1_Ew>+|GKsf|$9G5uv3`z+E0(Io?Rn_mYnPF|eqb7gE6u zTc}}aAjs^37--UZ&;6;3fE{yQrT`+bkWsqAW%|-DxblLZw$s6&rtFU zlhi^=2^O}X+b!BkwU?U4q4euJq?V5C-)VX6HiAD)1~TCBMbz-%^o{Wu2TwQ&pG+B^ z*ayY1KW>nC5KP=BL~{Fezb0-&cKZB?z-dT5ScFc-4BD#e zXk!4@+tU6fW`~a0mWm+e9mS?BA+s8eP>Zy!`CipUN`%UE_ULgq^4%IbTeOGeuQocV z@Y8jBAF8yPV^mv(P;8h(47+c#e-Lm`0+ksMs47fb+%ax&QDAy~oyerJ*`vYY$kEIf zd;a*c7^APIYh9eKr8~LsNaDJSuadiDte;!}q{+P=z~YE|HqLwWCDbNaex4*&D>@|6 zZ*)Me&9{An1GH4&GXd40oqlywIjML{8!9i{gw>RN5D9G9IgUIVnidk>7At#wf93ZC zK8J|tk!9I94A4cXt~7XQSKNs#k~fLT@+ZVd#W}j}2rDbtNDNw9FSMv)IKWlIBn375 zY*$)paUC~%W@Dyj2#6@XJ-ev~?0NA80=14NJ{rMIU>?lH9~N1Bc#dXh&*vvBI%m@F zlou7})X5Bm4kkP06EE#pq{tLx9{#=@x%AU{#^fq|LTeK_&FDFX*-UBi1Pf35{fhmAEL_Z+XaPTv77GPl@9w{#r+STO>+`TQV9pSWhzX59b zA2Eq;X4OE-IAJgH3OCZ#f@rv=G6dV|BJu1tH0j&fDa&cVF}c8Yfg=|SD%-vvN4Sdf zDi(do3UoX$qE1wR4-%b++dTO^B|6oZQowdfU?|DM)P0e7y@CA$deV(J^*!+{@50VR z@R`m2WUxRyGpb}A?yfz{p*y8=H8o=fiQP!rR)M=v%DsR2j)ZTdic)T~Wyl00B{<*q zHkvpfCbMV29p;EJ2F?oKT+O$5sR&RFhrh*kSyQ zB(NIvaY{w}KD_F@-mf^iS2`#prnfn1A07R0Op|KB=^0zJv(`SDv$jpQpwAc=@z+n$ zyQy)>ri=d!Eqi?-?Hib8LWvIL+&yq`wiLWPIS61Wslk3_vdB@* z4T4le8#Ry|7inVZDANhk>N?oIn;C215;G}Et-Vx#HShDSh~S55=6mwj4~NzJ_Z0`k z2{5i(dGsS-Q8uW}Rw)+~IU5O%3Of3zIY1yHJitZb z^Huro#gMW?f>*GnJG>4wvgL&gn9o|gcL;?@q!TFgEslx@2T>{F>5`T_d7?*M9_A(3hmBnp0#niNT zGZ4{9ZUr;SsFauGFY^=H+GF`enHRpnCOVtf{Vf7RHX@sEOFuY6%qdrb;{{P!X>TH| zqY@TlX0Zaovh@Wr7sb0^6Pl?X2ln1aJ(60K2t>PGj3a0YH_2nn;e?0lY~lyCxYF&e z*CNcLpd$M0%m#UQ{UkEwMpQ5V>McgvrdV9)D0{(->l?M{Ng%ZKc36JuFgNaf>(kvq zJ`Uko9Y1p2?7M`V#vKsI2W+Da(qPP>{a)Q&O#2ycxD<~V=g0HzM?N6sdj0L(3n97! zIT$s*H&uItWjdYPV*rNB8(D&!?+L`n zTMbI~i9g8K!#ZLgds=L%6QwKnjY!-r<+~WukAB}8|NHWe zbzaZ>EQT6?Qh1j&3tm4Un!6UO5cN8IjpvA<=M2|Fvv3ml*-%4p`pZhcE|b;TNas1m zUa(HWaT+J(Jv~%NY^Z{aN72SYhKGeH!b+cDz<{-_4$bKm;Px>tn7k`!slB!b}`3nzN0z z?DrY2w=VSqt!-sW6RyzCjr*7Il+z%q^*@F*JZMFK4F64B9tnKNINB;I@F+WcRseB! ztb24smwkBskL(0qpT4-lk!o2#Wl--t)yEBRnNl0&p(uWTc?d-gAbs056k1q-U5_mV-pEfsN!bVZJlkM75ZEky zaNz^Qn1O^TG{HNm4S9xuS!^}n^5kgC$ANx}WM7n%<^iDR7jwgRz;&?HKs9xHZAUlK zAP+g`Rh~*;@8aPYNuUD13Eu> zV_q_kA%$zu`>h+)15AEfcv>BF5Q7*Rzj@sI^Q z8Ib~#u?K29JP#9LV=VR7(dc@0S0vdMQ&`Dkl=m&4nTwS6FKE7o5c+jd0VqdKv4d8g z6@~j7q&aMzhGGJw5i=7xvgsLP-E^G{i;px#Y7rlg&h>XQk$BcP2t2x9H(1LxqS57t z3!+iT*~*F5K9ikh=A6-Im|ng93=<8Ez)9|i1i*b=S!6d=4W(lp(bRS#?DiNfkMW2w zphgY4TfbH~f1NB$O&&+bp&2r3acZ#PGo|a_sja6!e8L)Tfh;P^%&q&h{F|_t=N21O z^^aLJH99mgCZK(Dd@F&~=0o5JGcA$%4Q@w2_~FBo*INh-0C5my(vY@=&2+!PII^M&{#C z`~8q$b!iuGjB!N$Nh%6ClJ99{eWlkbIB1%pJaNwDcQcgD{iXEj77AW0)+~=bTcLaR znF+lhQ1bVAgbAPqT7EKFy6mkY(hbS<9s`(q_1{mmHwtDOc9F&knl>P{+k(?wh6NE@ z7I*T3O34LNrdqJqD!xQ^i~IKXsFlFIY#BU*J9Ip3{aq{6T44Q7Y(k5RcqsX3ykP`T z&t?TA_oe(1uK_%I}DaIc^w3E^$d!J z4ZrClR}x{y1V{_tIA>^u{n|xe-(|!fvXRfjsGfflf{uw#tX?}Qx2uAS4Ax}J4vHv+ zY%An8No@~n6^OZ@RXlBvdg5x{Mnd)@6<0!M@zLj6=IJ^PruV56?G*;X1vx;kQ`oAL2aS1;`cMlxLH zH6DYy6#w@bwUmAG{mhZy7k?ITi=saIZTn=<5t;7SrA8y^s;v=xvRK-29+0N z^$k>`AwqQJd1qo^W4Q++d0^y6M67fU^$I4-XksZ_Pwr}P_LbL}S8VwGG~WkdAp;Du zPvf7X$TKPt`HIRN*1GdNlJz}+pBX%31J#Zto2DY_-wWp}A8$;Tn0s-D_@~bOgu$?> zS=97>q$1)mQEJ=Ciol+#c6O*GN^_&Mi+_x_I02LlkOIj4x0-@(G}luGk2%_-D{`g) z98_l`fE117(EW0Nz!ckP`n6e_dCECtA)euDb))8Dy6^3N_KPvz%|tnxZ@z_}1Y-74 zcR$imkC~Ln`4ris6G}P1WhJ2TkHP^#;s-$4NfmCQHW=W{srR}2;S!E~fBusb5Nxo_ ztbe)Ug>+QC>ft)*0q*na&7*?i@**sYR+(3J9tY|&!3GgY?#$5^RUu}{u$HQl5pUj7 z$BfZ*)K7JD+uh%S_SZgOv3*%WW%*#;DXWG%slII%+BTU5e$Qlv*-opE%$s?+hU}Z= zX_PD;wp=}Lqk^JjLOs42)LEWH7f|eGXK6FTS|fXw%dAbR2yr}5d2Is^N9JDT<%3O+dYahYE?nT zBr9>$kw(yGs+zi7bn)YxCrRmTgFd`}pe*f&4(wRn zeYp*!(Zwg0HROg};S}FPZ6jOs5*+TPg>8DN>y;9GmB3Rfeo9mLV7x@tGAgDNHR%uu z%9U4tHHcwqXpd1zg#^3-H6rhGDRrqypSJ_oFj~7i6^D@R{W~F)_aqyt(uYaPqzKX z&Dl$%|FqhC+vx%z++;D-VwqX0sEZGZ3)MySCz?wL!bmm22R`DP(Y#%4^xIX2*Ind+ zJU5;Az62>FW|%W68T%uOkaI;@sU4WtW-FS~>piPhFpD9K$#Dqq)tabFhv_N`lu^Sj^N zjJy)NC{pRoNk9p@T<{;WK}S!{nRiRqX#FU15A~d6!KB!Fql8)NrFj?%j?KRP-zZAT z*$;4Yi6gf1Y&~ZI<@zQ#nyB%G_>$KV+DB9z4Q{pXE7?bS=XD!C%ot*%CrA@=(Vv~w zy*!xp&NG|jILe#(??@$og^?kSnb9cG${2%3`S1M-?Jyp3mSFeZTe;A5-Zk%ld|RA< z@U#j_?bn~UtGs`65j0I{15Y50YCE)MhU>C#y-Es`ihrteh4Q?DNHy6Te0eFoTl=`7 zI7pj$P10PPwqQ!$j!s2c53|@PVrAnxIyA54-KPmL&*g@0eKxqqTHar}#u1+^0NNZ= zty{4apzpDuUfX z*Ei)|x)T`2>c)j$Xn7V7Df`*`YDOXL;$J!<8ZX{f<4g_3c}Md~E;7gI`V?HTGd3uV z9I8zmFNN@LsP3_sJxf|_>tPqOlv~u|SWgYVG`hFoFTgpE{@x~ub^0Ro7l*IP2Cktx zFN5S~rv`}^-cLQDNg6MnKa4@s{^W@gp7P$PL|>JxK*B9k{}AcPeeioW_)=w;oX{Xx zTpq%4tF~&Z^NX8BESu{Y*8|~jr<;?h^{>iVrS{EOSL+6upYaVFzlqTU0m82g z=khCvY`hq^-UC%(0dtcW-otZUU%LY89clkN-Wv+|zPN9S6-xh)F#ZcT+*QuPbV;LVzf#|PaW^n}$f3DjEa^n45weh#&U&(Mts z37BauRnEt*GF5<V^(l&cPcTyyn8I%Q6X+KeY#sNst$!n;+K; zGcQ%FLDsq?a%b|nexdtGN8fhdAxTtV{q6vnm7}8zXN38nO@GDxzw$>bJ^UTcLU5f| zeG6{HaBXz3hxubyJSQg=#oWPYi!9=}8y{cCV60l8F@B_)+UL&zCpP=PAx?MUiQ_{7e)kJSC%9HqEvLq=p@nvo+(U;O zfk)DM32(n_bT%*A;{V4T7>p!kAH)*B?(9&bQXuYbMN^({e>`ZX?WX)LiVb6KAI8JPNNiQ*A^!mk7(O_m0+J-H?#2eOhm(aU+J#nhVdmjVac|2gv3LSzGWlLF%G!z0M(H9r1^YT|yK zEq`rhiLw_b#8;2K2Ya9L=Evb{zq37U^p4%G=}I` z8h-Fy1#k2}a zKPmbdsw@n9OuCgNnLK{>UK*bfQFkx201huDDQc~L#Z^I!GtwIcUV_c9Bfed(-!HxQ<0{JOp{a9HlB&XOrf=*twxdhU<6 zn%6TKYvc}qG7k#nzmBps1-6gOX>fBDj{@&S=K68}eFAJgPlzig7RUTjh3k*EZ;7!=Hgbwv``Y;vjSGw;AOF>3}ADzhC}DjVv36F#JK7N4E(2 zp8hz0&W-h&#yWIz?1b7~JDCC*fSf4j#MyXGrriZ}La&kb8LnGnJWcxRPFT8sT9YuE zwy-kav}G=jI_jv{0Th??H?BD8=MLt_KK8L-V!Rt(m`5COL@=E06e~V2ll1-Xe?J&b z8D-;SnWUABi42P3@9uymgX*2}GE(n<|NDcvc99^BFcMDlYBh0G9Ne?>`peY)@-P2# z@$9?IO)~YlkRUu6G0W;=#G!{C8o25&{HDqBr`-(Go%m=^jFYg^Hoi1aT-zPhKm5Z# z)GPen@|L%h&wlo^<(6A+DF+>NQ0(YxOFNlF7bA2l{qWYezBTSvU%h&DFz(Xx^{;<@ z=n#-$mG(*Nw9O}(LGekPv=zh7cjNv4ZIX`G&u2dKnULgIzI=J0<<7MXw9l+rv!XpV z%b4Y`&h_^W`cqFmHJEqXrQhI*C!Sco``zybT=S55fBDN_K3;4Wo|JU39l1mA_bN@@ z{nng$=9$GsCK+nmm$35qiMYF3>vunlN8jd3lP(k{{@jWF$xq>;2pnkEkUp7AH`NeaABDDeC-@J^zb zoV7XeiE%@>gF+q5o!qI6ZR8vJL#Lk_1I7c%x+65Q zl^~fAE163%yW`Gb|36$aJn_q4Fr5CqFUj||QwL7F)i_o^oY8djr;HJi+{b}N zn{x}*e_}AXe`VMbBgVxUEIYEJp9%z%`;ebKZ?l$)plUC zqr|pyFKmi$r#aqtI9Q!Q2{v1ePQobBXnxgIR~^}+(QP2!rEcwaHUJ|4C4T$%?NyEI zuDfn{(vzN4X>4PWmXXBD2TR?p`k?58VOrh6~ZGf2eAMm?vr029@8=UleLM>Eu4&~ycXJAyh!i+}3Vc&9Le#L5CE|oLe}t;=iaHQ2o(;EsVi-Pl!?5i+<}B z{wN>WZ%r7B#D?2?GmAL@M=|qiCZxn9KO?JFM#4&w8}nfh_1#}EauGNwV5Owx1s`Ws z3Ru9H;YqSwmY~D57)$|&^EeoWyTm_Ykko}yyP&NgT^#pa*AqskeVKW@uKb(Bpsl#bs_0_}1 zglAqpDFVy7S5>pTJj}b8wbcVj;S)~Pj)8%>R(rS?4$6~kR<`ovZyc));F}~Ruva}2 zFK@xse&e85X*+-JRqxp|Mn2+^d_*`G5LvOIHGyJ3W+-hlz) z+|4O4_PSaBnvtUnRq5w#oYVuW$JEQ0{_nZo)!Y+SLRh*vR^r_NvrMMacwgksy?AJX z7@o>6CFY;AJL*$%#)4ADy#r%DtiQgj0Z!6ds*lgv)dF@x#zK?Mdj^5RN2!S~g&qQd zTf7>)LK3_}c2@RLoPa9+gy98~QrP2_t$2CY-@R(5OvR51PS-7wU(oJY^+3C+K@bRx42fQ_&c9;57jlCW8J}=mSN9qhryNWd^LXI-5Fynm*2H(*RZ&_ zSj&DL$VRcWbeHmVLk|5iqe#IpBTkWUQI;qdmdsOjEG?#dprILNhv1pfL<7shDYKOO zXFcm#g$t$X4R3fu%^ZVe54b($V8fHL#7`-c*b{=d6-TcH8v zc{;P-`QX7dT|19ErMs6`g8?UsBc+lNghKrzKk_4$pPypskU(1s%pQZyC}D;byzYCH zTPq^eQ@tsEFN$%)a(zY$;r9Gnrfsh@2bS_1U-$M`g3r;9dYRqUmW)K|C=9K&EhCO+ zb#iaK`8jFCneDbro&s;%ht(rsIKQFOO2-i7%!K#9|NXTcM3^$|ZwH(4sLP;uYZv&T zBOIM4AiQa(kAl~@*w#S#w#S|E!50_0PUt_yrD1fKKF(0^r+@mV)mCuyPT5icZ|UI6 z>06fOGfZ%eb3NooT48i zPd;^6iIsKjx}0u%aL=%Be@>;ud?PR|X8>HcZvC*4VnUI@hz~lwKKUujUhsrfc>7Dy z8ejZGL}m;w!m@OI{QS?DC0t`zAz0LjNJ*FS4rkz^SS@7fc*9*6PD@EkgndMAkqu7d}2TI@#Oblxy*dEDc(bUbwre&}TiZN+l(4Y@~wU(SHK ze(RRZu!T-(FGhq?9CNo-!e-Sq!DS_QI3;~=4l1!Xc4I8Zg%ReP_}yXVTX)2o96GP0 zt@HtOD8Dui?89N?U{+WLqGHHT^3^^-d*b#X8kUnTCQysV~-#mQ$6|bnn z1@js9ph?jg+gP=#-$MoOFsZ*!PpQrFnPkhSbZ%YT66T~D7arjhakD=bb#5F7K#8L0UU zhGyR7g*2X&eqP?Buv(?|-3w22vFhLec5TCvt%?oA;Espll`edf5i~WZxaDkF8V#X^ zBr4UVtbZ&hisJ&SD%H<@ugK5aAN5)7v|$VU;<`;cUDIIfE2F}s?c0fW2{YSx?X}m| z((`Fq@_sh1ahTr0>oTVBDH|Qvc&gvDUX*N#)$jlQ@7E{b_$lEG5H2&66v~}Dch>S{ z`Him*@v^MhY%zu0EWVjh3JFD;V*1lR{nMqiTGnjuF=dJ3)#dNnwQF#3fBeUPTnCVu zVK%dBjDFnX9#=D`W}_{07N(x9s8X8MtLyAO^%vk{{4@seya(5ZNat=%k;Ik<^TGUzAYW20ppgf2I>bcICD3r zz{7Q_!5|GP_w~(WQ&4AY|aQ5mRisH2|FF2)a&%S$yzx(@l4DWo`Rm0XT zTZaQtqA;|l#iDIsJSm5%t%-t6K035_e+@FMu^2npgvD@+65vX3Ogb<6a$p|{GjZ_D zwv(bDCY{-xgZsztt1gF8!0B)X76+_gM3=-`f8KeIuKWQWEf=#@kqCKFE)V9~h>0Zb zU=-nh$g;L8|K`f!-h1*Ho$V*ZO1yV?WCs7|#>)Q4bL=q+3=A*n%^cTv#R-Z5hl?@R*4-E%%ZCJl4sHPqfLf1w4zUm$C zuDToaHf&g53jN4P*AKVcbo20cv06X%sh1BIJw7Mh#uzaw|H=s6A|&tGyF2yAKqJV- z@9y(Y3mYROP+Wu0J@?%+yz3o*Kb(Kz1;YigvX_w{ie@qC)aO79BJ0vVXo$}HGl0A+ z2a^cDB6||IZZmMN6wQSjWG>1epiK{DFe&CAdhMOH^ZNKH%J2Wc2ZtN3zhU^|FL~N< zRs^a;2WH>OOLfB0ozj4?VtNxBtvM)UJKufeWn@utQP}-U0_(@N?WH|fWb5ggl zf0ja!v{zpFrr~g4UV7P6hSMH-R?%)DMwf-GqF5V)%+@DAKHwfd+!_UYNBZSP^iBWy zNcQ@DB8G^IFM3=Jf_tK%-}LbtiUwzAP~4V5ad(U(>(=Kx*{M0VkFg?ubrLr`;F)UP zdHbEi8(;H3hx5*O)bP|Ro<6M4{`-T8(+!hs*qHM6XZHP*>4%T7E;+`VeE2>6cvO1I z2-d(7J9l#md^!aPhUqfVXc>K|$MurT5;4Si{~WHV&yBCpC`@|4`w};bPZ>EZ=6== zF|*zZMyKg~((*eb&g>@T!9jMdz*C~lZaTEftR-cG>-tb)zVu7KbXZzisybUr-p(vD z#fXy0$>2JEPIz~H8os-w_F!_|F7+_` zY23*K?H6U4G9}Y~{jN{vYkIkNxs9_lV8P4j=k{1LS}+21KaiH9sBR8D{I2i%t}=L_ z4~4Po1Xh>TiXa>rP|W5xJo19J8s)raQ-{Ch+2SZ^aZHrVd@3 z&f+Mu4#Ly7D7VfXaC*CN1}16cK|5zx=zARoE+x6)Nykas^cUs?dI#&78TTG|cO1Ca zD?i}M`E=pW{oK#hHj!`s=5Mb4!&uhz?z$?E6D~|&cJLizgl9AT`or($G<$d3F0`$8 zfI*F-ua9ujPvP@V>sN{9KXVG4Kon?w;h(=s;h{C-L0BR{ML=3EAu&SJVD>mKUN3@`e?t;&%E4{>_6%3O@9N=yuif zeAi^Achf05hWiifA71~re^ZPTkuSdZ@xxP}@$}(QYtGJ7gyC!vScwu?ZYH_bjBqd@ zBb)mPvEs?hcRrH5keSvMQ{oY%!>tl!jeyy0L?u9zcEi|9xCPfiGW%j{*fiXD!^exk z8|#rYPmwFjoo*8oPi4n-4baa5v zB=(lg!?icxG`#ii-Znh?v5y(f%MAFQ)Ng&-l)-}AwBwXo+I4G`@fZGIneB){iBX90 zWUrb2{mZG>wHd6&S(g&d68EN@rh7vS1CL%jZwP^M&cXiStyf-Ib$kBvzjAoiGoKxN z^8HocISpQBI?!Wx3={@cf{j%Z2GD&ma{TG5|Hp9V8K(`Oxc%l~OP0tPtQVrJuMf`W zrpG+)1Mf@s2wsP>e18A#;Aq84Do|a-mkD&8JXFV0v$=ctQlR?*L5hEzt-~jAmzwQP zA8v=2)+(psJ<`M-jn2Cu7j8Z(`uHxGVNjzWpZxXi<+SH?*Vv} zW^54~E4CQVh{gzC2_AbmY1798LX&;%gxpzQ*3E6Sq37<2$?+ z0s_9U7P9#}|Fn$G|Icx^AKWL)^cm$h4tTD8y*=~mPC=#&Spt6Z%{LEMhKIl8B`>Kl z)V^U83zUh*or0sT#w_sUU0htOgX^56O@6Qp-z=$FQ@oz*{EZ73!puk;yF1+eZYOm+ zOwW>Z>CjSIX}C@++<5oKH@>mLAM9s!*`3Z(XyXjSKbXo|?Yb=C;4~i6T5Ul2qlBqL zE7T0`bpCY-V~qCTL3=Ke&E*2 z*44|ta}G_!slR%vch{|-`!2or$!xS4cb8AG>DyLK{OAAtpCu_cX489Q~Wo z#LT_?oV5BSMOqq0D%(LAbM$ri*aG2`fLzN|+FbhQKKHq`#lft-^9qDb9sD_Waqh|n z*E2X)q^P^4_1=L_#|Yue2Ha}69X5qq3Fkj^3Yc`fva32TEXj@FWv2M#ETi@kpA%~ztM^kgkktO)yyRxE<-b47#{RI=Pd{yV z?pHiFFZ;HdWyhqzw!E|5$FBWY4W17~VWi7!$#QS$4nz?HcWo5pYp(gw@W&af?}|co z`l+W4e~^K4W0YP@fyMFOD304RdvEEv8CT5moO8~OLO-6Sxfm-m26OMd_eB_ZPn4?6 z))FuS-_mmE)NFd{nMtbP7v)=>g~OLZUI=4yXhblL-)G%2>mJcZ^1{EQ)jUVdtFX0E z=*Ys6kB4=kpSr*EUGE$YMj3x%2K|#l&+9&R-Eh;*H;uFN5vD)&sk=+qc<+1O7v(<7 zsP>yZS&1UNy=KzyyZ_$dKvof$dEhR(DBp37G5_}4?-*{r_2%KWTpOeCe)5yIXDQq* z5l}W~IooYDC}6}-j*xRvW}(gE-+J4vHSjvY-bx2X4@Q-J`}U?@W3Bh>-4m<&!J;o( zAByn=?ZHInN1So`@PYS#pbknoIkW0}gWKNZc~1-or{tM{MCiCS#)1!g;Qg5azc_mq z-#$DLVTyr=&~xs&kFI6<3>f+v3owQKfgCJ|=ITON+Z@A#E@^eZ9XU);du~mb)dOcl zP&+-itY5!jxcYq`h;VUt84or^=+mF}$LO>@`L?HzEJWDY5@XL-r(alw@bn=31tIAS(v$%|0^*4gJdY5snafU&6O%5QE3wDD&F02D>OM`(n)4llD(< zs%IgxQTV^0-?#T38&|RU}>)Yf~AU;vFab!^@SI z1U^GoJaVR_7fvaqxP4{KPiEjL=2a<=g~O=i1mYMRzF!KyxZqi+CJO^&k`#Z%lj=+W zct}$$%1>VePz6n05|`_H$E|+u@Xx<{3(HdhnV(Wx#_`ai{nh@7Lqq*RI47KuxM7Sm z9u+U~-FNsqulqxF%8`Fs9$5X{aHX+t-He}^y)F~3c&*uO``LZ7onL*-Hi~nX-i&cO z^>A_G$P=EyGp_Wh^%Pj}%9#DpkJgfJW0iCzt0eE#HC~ih2JM|Yca}0k!DE1+bb%>d zU!C7GyeU==6ti^tSZ+$QE>Ajsab{H8H62&q#jCHezT2B}P1*AecZc{fymQ7jOWiNI z$9Kz>`bs+UNg98W2^(ysz{0?9E7#}&Ob{(vUZf5&%>pWTzbFUBK%r%!qBK6n24=U3k*-&rmXN1vi2>uP_`P3tzE_|%`i z-DgQyQV(ZK?4|XtSXp9aBL@d{)5hSryR?UP)#md0azTG$j^ZxPJIXN}Ffv%t!HC5* zJ?dfh1HQ7FKGV3le@=lDfda=@fiI~i%Oy)x%S=oJrV_RyjJ0xI2NY#b@sLy49lUk; z(C(u1hIN^#j_=YeV}I(UmkpbsF$+`%2Pq^sf;n`Up)bf-UxtT=? zYGHUAqinrBGxZPLcmFtW2A6|TwrbgR7~f4detdXsmMUBR{(`T1K`DcnjG6XUBu|Z{ z@PlEv@6DikSqusr^PSN;3@`XZpNdepc6jV#9y|PtSd?$O<<{ZmTW+qU_7uD2)VcPx z=e`n!(Xd~?(TL6Hs?Io@MOhDnEVs>bi^43ICk60B2G0K|cfi@fn zW6bhy$~a@h)$f1b@Z`%b9nM=?96ovbCx?%I?4wacuPz3+Aq?`q`|rz&hke8Cx7{^- z@IC*KS^2$T#(Re|9&y@m)}ziGuE^(ep77XLpFKu?-g%3m(8#D+gjuX9{ktEyFW3FU1HqjY{uP|zJ8f{``Aa3-fA~WmEG7SA*Iql^kyBXT@Yk;&9&_PihVvs( zT$QZ=@BI6B4(C4loTB}K1N(+MZrd}w?lrHC0+D@K5k#K$^rsJB@x13|P~2C`_^l8) z>7*UO|Mn7I_U$_`oN?w^nNi=H!;o$-BLxBO^2?u=dTz)dw{`f`-S-YFpSmxD;r66` zWIk{7>=;TumceZt?DRc@;hI`gyf#YwsTqJDmFJZlxex%-G}f#fMW`io+AY_wJAP_$wm0EPF4QNtpgESf6F=!P0=IC=sq`J!@n(Z5cVGLpUt8sL{Ismf z^cnuF##wpXYPggFTjPAr&2nQ32Ylg538GwD?rr?xz_DbPgSR>gQ}6c6OKA|^<#ilo z!$EbeIDuooZ^ujDdE|F>oV4gPj)muy0<0WM`WdP1^`?Ls7diRFb6|RQm{=cxXFL(c zHLmXcJS|^--~XmiT0(C|ly$ykq^$DmbL0cK2{X>ZM;Iqw+_XQ+ z$4STU&b5Daytq!wKXt3ar?8~!_~~6cnOQb5Wmfq+zw8Lnwhz`@7#fZlw8iURSoLU^#FsDZwkY<2K2UF!U2Mu&&JvMK?#?ZA%^n*AOGWj ztat|$I?IA=BHrp0H1<^mGYN;o|)Kq!GlNq5Bf#K#6jR=dyj7F>FO4j%@bS!6P_h4pLH)rOS@-CNe z!TZz_ckoaSZHtg%5WVWEch(H?GoSISVvz62VKQfC=9qE9c>r6tZX0gQpm_65w+xSq zf^9Xy{sVi5eaX9N^Ty${lTWL&0?V z4G5QA_LSjKQOvC}xa5);B+ffOg7+==sjDz&!7=8BS{W#;1SyE|M!r^_P z$2tSx^8S=_a9B>i)|X0mudX)sF|?n%hcgAznaYjAJg@$R8;8pjPZ_z%m`a?lchoAP zylafHlyz4fN>_ag56hOH`ZL=t5R{q1PI<3Ow)mBj_?penv%~0MRR)B3O8A<=puCTt zP)zztHwtdaR!i_1JC%gDuE`;s@;YCn#+%$d*N_9QQu1Iwe;;zEY&@i9*-P6uMvZlV zlbL^GR^giZ`SJr-O1)}Gbb`2|RcO)ou9k7p%r6Dw$}A(dC)R;emdlEh-tuz_x;?oR zF=L^4iU6J`-AiBk(mI9R*vs|U+2uUc`&4iT13q9^yXv#?bA5+Dg~d1Fjqk>u9)Di& zf)`ZUmLr@#Z%nY1+;{@E%a{*7n4Y^V{&ua>X*26fwy+$W zB8Vmq3bdVp{9+rL{-<3jt!C{#!<_-dHx%!Rg=n5%;mcsu%U@o~HiL~k(r6zv({|*h-}sH+DEJHtU$@xM0xGezigHt;A z#!bWL{y7Cs1PUBi1->Mw2t{5ov(NR}vj{--&h^xY@1y6iBj>Q^?F_@q;20)ic86uL z51jEbdwDUHV!#37`25!%oHrxG4VuZNK- zMSv|qILi5oPloNz*#IB9X1L?7dxmE`^NLbN9i&&=2_kT&QkjiU^QH`k>6u+NSe=sD zlD`h)bo#GB^G@3XVi36?R^F3>=hoo=sI$)+9`o1>%F=Dwo&EFMcbr^H$=@6LY~Qgh z7SdCPzkKaq#E5a%K**t7UU%Jfs$R1ij3@WqXLZBjO2eY6?I2{S{_9@%`dExF3{B6d zL4lvK!{ELt1_^Z9m{k^wi{k-6WBV*;+0=Dm==YaV#nLSX9s~85Z&S^}YXj*FhVOs> z2Xeou+D+TJ3_=F=&DqC)FsnG8@r-9i7`QY7=bMu6+8RtQy6EEIe{T&!1c+y4V9{JX z=&7gv@}|GJvIIH(>$E8R1X&hjeL-5w{nw`*&d90&TRM7xF}TTZ%fOcGrC0avr_L;p z?vhKMlzKisIOI^mDEn3>+?jJ5KK$WphQ&u;H0=D+ox|p>n?vIaV(OOFC!4YYVfkdLOW{2iHo-ml1tyr|16v` zTWf;qIb16DC~@hJwR}krz7Z7 zz`7jyrv6I&5Pup@XK&c(x&>`8Z{CTk>~U^+68;dY+JRXX__hHx^5Szz*53DECWxIsKhcSub&Alk^7THXG@f2yR6e#DO(b2tO zSoZ#-Kl-E9&-52{CYPcIIk<6n@rz$vd)d)wT0imH%Pc#&PkYG^FX`a%z2E!2WgO9$ zOiXD9aa{+iR?Ny{t$;2jzH= zq*Kn@bKo-kng(drwBYBaabw8*cTRy5hXTh>fyWaGgQM700va4piHirn({CrIB;d3ECRknb=MBU;0~5M8X1JNO%Jx{yJbrbXSn$4ch$CuwRwM%q0VG*%6=(Ofm83DZZ&)58sGW-;Yfk*2qT|4 zN`a9V&Dir8TtOqR(jRpo?~^q6wUE48>8nxFFfcCh`d!q%dN->N<{g#Kb!6sS{(?y$ zH6tD%GY}OFRA4d&RGG>FpFxv{aX@^$74A22m}sK%gnvfyuLNUR^*PCeTjpQ0>PKeN zao);Q_bx957f%MF!g4PsX^Kkpk$Xp-2={4SwGsYF(05H89*F;Pc%EyulUEvd<0r?@ zP0Oi(hxh{yJo^qle?L2j%jy6!1e}ePcy*1L)fbK~ix(!pyNeOx`PnKbpRtweaYwzn z+$rkH0fQn!;phXwq&J2%J>=!*nwD@jSzzXv!exx1P+3Y2jxo)6>~3kb@j%|LoBVJ# zdu#lKYuAZ_+;x*qKF^JB;{u;PL0=kUmGmxY-Qn(9?chVvJC^J86w(KCO%vt9*Tun; zQx}sX?RvX|=k`mBKCabHT-T-X=`_N*)!`l1xOM%f_o*L_(oVzp8;-kYbu_ly1K+OO zOa8^h#k$17yJ33fm-bliowSVuKV`TTVtKjlgW|!k?7rQ!e~Z_L+bOs45XZloHwe?u zIevZEwc4paI_NXD4NRRlIJ&Ege%EwTt~jt=Q#YmgG<@!#Q{Y6P!0}Vyi(mO6NY!mN zxs$NjizmDon`HGO61zqVw3pUE)QkuS&WkI|i|xfX%iGGnm)u|@O%F=V04R_KM1!Ds zOn^n$OgrY%pWUE{g8y5;^;@;X%OFUJGSj+i*RI;DQ#c2gzBeOjW}<9N&A`iHW@BCR z8-|t2B1?qJ3ay}-cLr0MN>VdDPITXT+UX@o+@8JD25|WuzGg<+p?VH@$|~#{w9ULL zpJGc1cRISgRg`8pt6$TVa_ZvT)d77t^s;PCIEyJbj2^!2YM&E}sf#t;w{tCnqgWf1 zz)^ooq~PLiK(*q*w_CyMa@<{TqP#LJfWd%r$t6!t{zn!L>Z2{prh~68@)4};pEp~w zbLY-Vs|~chbX{LY2yNYU*9R!cwf8>dsf)Ifmw?v;MJv>87!VG&@*6&S!Ov`sG8lob zzyA8_kBw{Nt8R;ni`9P(mi>tx{aG3-H!LLsN4wcixPRZct>ng=ZyavC>BgK3ap`c{ zS&tgdjIrU7ci%DG9-PXhzWNKrY3xB`u>LZ4a|#^o6RSJKj5m3&W@M`VohSWw?8Dx< zK**1~Fs_!9Q?yIrPF!itWBi!5m3fN#s0di5-f%}4F|^gXc=?nmoj#2hDTn!UESuj_ zcC+C6dEqAA5!@h`M=)m9Dm*|*K$lzi!?mwEKu`HeqdrwhrRF(*fi{LIC#cn`fyACD zPQCF{{H^`dyKqjLX}B7QlEC6 zfA!tgIu5@k6L3ure(9CTsXI3{?n>J#=hRqu~haJi=V)Gj$Euy`6OOaZR&^>E30-qua65O=;G!8*bk_P3Hl# zojlX$4wtrZ>ae~G7vE{X;6E0eX;}ML)2M0D_)F&kbBf>U`geMGNsCVMHGb|5dkVAR z$m5cZlh)M=`)VAd<;c`sR>Kf3{c4A3J0gl>2%`T z9V@Kk=Jz=TzK|(!{1o^JmAsPUYdH(d17WD#OaL3-`|Q^->lp^KK7$~I#*2#Kv_K#a zKSj>VO~GXG?PWh+UJ4RNIrGwk;i7;^MXc3} zltIyJMhFj18O=Q086eF3mIb@wD_Ihb^*=%b!JkH;G2OUgAyMiOT(5`{d@%dGPd+&( z|zASBgJFf%X^2a6{2{S!F=+2MY{!lulXFx|C;$C!Dm4C5~1Qy!zFzu2mK43J->e zE3@hXZrWIw{GKfpqj1Aj7`&9D?@+oM4~M~Y8u|F)s|`4xbg>eEFvz&Xm}I%2)guzjLLC&lK6xr76Vz^d$-XmqI-2bCou{R@kh+fn|BUJbjG{`pA>T zS9vK?c_z^-PhcF*5%m>Ec~1W5{H4#sA*seNWyUX^^FX52kNK_slC1EEzg^0ZcDw>G zT6p=rBLyeWXZ1`()de7bd8)JxDvx6sM*_aEJw@Zxx$o%0-@-RP*WvD5hr2h=#5X+` zZD(*Qaeg{~$9MjY|4i=KN0GQSfKX(b6;)U1a^DcY0 z%^2Fp+iBdpd}E{WfP5i6*Kq40KMdVB+;Bt57maJ@N4u6Sgu$0VxR;TGu{sa<9o}PA z<5m&*@oa@5I>5`SFV0wO+!WUIv5k;H+V~_)e2<@%DL+$ug?WZYhx5awX|p)z?z8-DkzPP-aLmo*LNpFYdm>8AcpqYPy>9v$9gx~pU3!td(7KgGB6Hmt5w!)jVd z*X0UZU4B1L%V|8i4EHG<{waL^#<|mh!9TsP_Ujk&w(Gp=I}M-0Umf1{c5l3-X@B3l zjA?#xoV;^4r@+IR0-qBF{#XR}g0}oKzQ|IIOu|8ImXh}%>Q3=A7;u=7Lvsv(6eE|H zoC0Uo*a0e(c*-7y3w#3*1=8T^Zf28$X+SfWnmMJYnq8*UQLZRf?i5za9y}=j7?&A) z$}we-gWFh-k=Yo)JxeQJxfvr0vg7mr={Nb*YdqOGpT0|-)^0Vhj6%rB*s`QNr?Yb# z*JlQIW)LyptB=9ilKHT0$Eb3W}9I?kT6_6zI^(83s=3 zKEPm=GS(z4mZ?(sL)E-Z|HOV)*v)?)t`w;LnXZB(M<0%x^_$$BTcV$iJZSV+`c`r& zw)$SuWO_S(nOtL-aLT+ib%CxBX=bkS$_{45C8GSEt7|9k%m|gN%BZFJ%AkNN4y+_L zZcyY$m=#*-XGImfH90I5PL}TXOuJ|K@;_7Hp#To5C?}V{LP%M&s{x-NclE<}TR7Kd z_?~O(q>)xUo{D!1lTKc))3{3~eP63GuHNj zb)6Ot#zJGIac&xpKU>z$NGm`2p>Z}&sEcQD{PvI=C&>xM)|MfRAI2E_o+;!GBI|Lj z%X0^#X^W-~PcHwA0;!fxQUy( zu3y8P#!d6fCoSApJ7snm`uu7qk9gNKUYVS5uJNAY$lrab+qm;}9%;mN_%we3p8a$= z(>ipXj+1m6Kh4kIIH+^C4;b>hi|_m$-}v;iJJ)5qcia?~u+BS8FMKtOPTS#C!2D-U zfrkMF{xQe-996ns=-LAxL8>I8yxbT9R!4E7=y^$nVH*4{OwRXFU6zxJlZIl130Qh; za5NiCF{eYBXe`aV8A=&zIQ0hpz4nB`)})ojXUkfd>V)t^aVP2=Cmvvp%CEowCeUn#9A#CLB5OR37-*M`t#KAwgR+{%BMEM4uoONk`C9mX!yVFt*|jH|>a?(yNa)=kynJ zRDb>Do4)CrN?6kd(xEwA!VJLmt5wGPsTAF zFrO~GRn`m@iW%eZ*0DH-OAi%SKb2?(_b4)=q#9HD1u&ru2J!o?6$BGJ%*gkOf@D9T zUA2F;$w)J8!QuCK7sIgeadC06+CUusEgoNGbi}```s%S+zgZ1;8rEfi^-$c{U&ej| z$A-tRTzAeL-)B^Ix;Orew@dHhXMpu>YX{rD;uWtbzHa3g`GKt9P_OBJVer+Z9r)7X z^~PZ1l6VGiO20$Nj2R5MCI#eQO`C?*^$<_CF%IyzJ667~KiJyC`6^ETH~y1Pc4iEv zm^2c7zT3Og^mE5g^K_c7e?PkmgKy^- z<{3@7&Lf`Tf+2-7wob=wVV$;d=({-Z$O>d0G692*Erimzzz179>+f(tAAN&y1U*ey zm_+hUkY$8xL+PaFtb!m1fdRfr2Ym=`E^-7IWQe7urAi}h<4Rs*oM9j`3BkzX{ZxiJ zcrVFGWHfS}&k**OJvcfmNj=CPaDp=&92}@03scv2U3d4U`82HCMOeEjorU!?*j-QQ zUDIc2JB+`bG{*|>`1yTKffJPipEnA8y|AIOm(fdqI7}le#^WOnaV8u z_-VcDXJ4C{>j>ZbgR4BfngE>)!f;YQjQv}_F1f&|N#h6^*5_gr7l1TX9`i1E)TuEv-Uecrbwa%nDre6~+s6QXYJTOJ@+% zuKE=R4{-H0H0YH9+FCn1?2licgwrqm(l6EE@9;oN4{wMu!>Pym9YGEZ_$sgawJ>;4 z+zreGP1`q0aLc>#@sHm)+;{(d1>=J;80^lz_#gO&ZyX*$AV|AYs;a-le>myaE_~j+ z?nT4-&*vuvS{N#xjNQz%Z+*!7nE&*v@f}Wwtv)+0i%*z-SJ9PGqEdFNFV3o)B$dA& zDZ>KftJ@e^X^x~9HY+E6y3&g?J74)m0h*%C*^6#(yV>#-FJycd%0DYla9rh>)j{I5 z$z0n5lGgAus_@E=uW?PB_q5M7dT6LkVjicJ)=YH9-Bjo$EXJ`uq2N-}jXfNBisFXoeaA`rZuMPQ=UE*m9E=W^cKY1m(lw0LX*^HkrhajAH>bdf zPJz!qiGCr20I>=aoiPS4wk5&_4wmPh)x~tZ=opE?lfq}9q-3=cCLSYl_kznKzGqXx z#-xO`g33T(F!Ombv+4#k3aVLC`Q>S*jUiKTSw=BwWf(9xX{DnGTAmF@cwpA$;-A)Y z41Dlkvp(RX%bLKtCyL_oat?<(X=^_9wz29g`e05ZUx@Gu59uk%W(v@x>jO9OE()_c z!I6bo8Vnu2Xk%c&>=zdotF8YaW(0=*p*YIl1mM3R!he`bwR9 zg3FLJE;m0~PNMRnkNNnUH_Kn;&6ep?pe2+BtS%?Mgy#}b%k)Q!LY^w7_N-Tu;FVW- zEdQutP|Ny(ZYN_d>D))9U7f(IpClOLrnpM%c`USnoj7;&#y46}S2JN8K587Goa1l8 zr2q**_P)cz{^*bXsKx`|k``x0ldqZhk_+VoOm1xJu|E}mn!&Ef&*BFz-A;Y)uqjyh z8|!}PhkmH=ZyqmC=QAc48yH~CYBF3?o*9gdfxfM7j5N;3|Kfb2%UIWA!RqpiwN@?2 zODR;oF-V@Kt+Ly7m}h=;Vgxr4VEmcJH_n~bU7HwpjDN;xW7=Q-bojLVu7k1KckCH4 zoYc=zlqs)_=-O)Pz-oBnv_Hl8tG?>1Y8(fba*cizTe60JVq7;Fpk1a8PGlWzU`$6( zvI^stuL6Nf7I089<=F(1%U25+2*@prFF*a$KV9Eww>prcczd^;*<+>OPyN(S)r>ow z)LC6A{mO*DRV3a|D=xIT$p8o9Dwm&pL8kBx_m;7{9_WB3P1DuwE1j^Zlb%~0F6>xw zO>^<>R;OE?rk~wAZRefe=M*^6De&o>=5twFFQD@C>8r!J?0e72b;I%lBXh-gSc?rf ztoUA50}RIE;x`DoFh~wVk`DuM$9ynX@%_T{%j=T9XYVoXPAflur;`^fOppVc1Is1O zC7oxMdU#{du0bj~A0mN)IrO-@u3lH!@OZ8QTda>+UvZX!-31J3#=_r%xN3piITsag^d+jLb zlv@{?8j$*sI`9oJ(!#}n#P9-U;~-ueDA%1q09-}`>4hoNAgCV7W^_?50}MDW#sz8N ztbNUF+S;=-0N~my5IPOG(!dd&xEAyXXM_Xg7~qvnxHBLU^lV>{ z2A=j@GDav9?C!_l!ON@=Tq*aKxh*a(7A(dhpSAmnulVv|U)uAg2$PpZ_`2indxm|1 zy>k8kswK_~!81fCWqu__oiz)=Ro|GqIR%bE0bOJ4GNYkTKj+3@2CDG2DD~dSa%QWK z%u0``yf39dCvPdvfC@VTWz6cg-_ddD{TMEPJMq0_e+H)B$4U=uDb+LBm2XtN&A#Ua zDEMF%OPpxgWq3&X5!d8j8znMjtz_z5*a$cEsWbr)cw>C{V!}oP0X#<-C+ZA5`WKC6 zceE6SPvL8nNW2#BsD{}hbXt;7#A9ryEI)V zOi)l<$rRdeI`)Fw`L)0C+v>d^{^1|4HqhU-gM5~oTS>uSFD>JWv6}-^T5<>f4N>69 zU)l|PvK2qsflQ!(Fy_buZ?c&%?TzkeuK#h3gMO!M@Z1@e+UYN3F7KT>$pZ&z!52?< zQWy9Mhl_Mm2Zw$Snl{ol{X49mr+N7wEc{q;50-WsKJ_09hOoJtQ{dr1f#a^g&xY?$ zr)>f;1kO^$lJ&xH$Xu4vdtosU11GDs*-Qt*bRLXIJS(Pwv6VFn6NV%|rX(F01PhE7 zW9=E%W@zrbm8I{0~x{uXA67*mm z$?O$9xNo%N-;uJP{VbnRJBph!oKn7S-TK1s`WO(d&491Y>ar&^I261u&oZgAGXR*a zMI(5*AD%JugQ4B-A*aF1T`VB}foV&{{j1 zd56E{W!-+BIr#{k$|YzKEW7>0D_1*IKS`N4nzfIjytueneXR$vrjdKMbkd|H>#J!U*9 zT&vP}cly$=^O&wQ3Uc0o$}bJ$p&SXI_}0CFjgay?gDF}3WB!@aL17l1tKMJ0X7H>Tu0c_CM;Je=~>azc{36uHKW&9x3zWW55BAdN`g@3 z1^L8wRo7Ip>4Q({2Y4aZW1fB8#%PL+w8AM+lw~mRIQ*~Sfx&r}{-4`*xyr$(xh}Wk zj15+!*)I%VThFAm1X)_?%*NY}XDp778e(b_RwOK7sn8y4ft2Pu8)4+ zP8j;3t9GQ=E0e6L{VC$)J#;lYZeoGccmB(N`7gC)@l}}-XZY%Nn1Ht#dD~rVBY=zYtPF6z zk9J2RVGIFQ(da9d;*;;Z18{ORt)_G@1m{0<3d|{RTq$t;6nOlx1iK7y1fMXJBP=sA zPzg|zsvkLUYnE;yj03}%1tq=jK|< zfJTW%L-g8|OWog=!Fg+F1HYRy%YH`&7t6Rln!)KKx#0h_EV)wOQ=&va5C!!$*&Ant zgym%R&#SM2gfjc~?2&(G1`@N#W}PYRwnXfXGD`7&Z)k+x6kV{@WBrDsUm4h%!9_dO z3{L8VuJ(9qD}F|T*F~6NShynPQ+(mh0HEJ!>-|ZmP0*deLf)cf;%>dw3eu(99)YQhKhN@bI9mF~z{H@?*8kgXy)AII zSN#b=2722KuFL>>UfKc91PMYOVL+cD2vFp$I6+7Cqs+hW{qGx|{6!82Tq%KS=gytO z-@NI~!~3uK@NjR^KI;>=4h!ou6BL}#GXLe!WWg+a5U>6<2G4)z6etSlCwVc2?nmN`bk)I!aU3hwPe49!|*|Ct}NHD zcQxI0gbQ}UFtsGeQ__dmCfzua;JGm<;G;=|uU0?`ALGYINEAHWF}Rg7ZUZ~O@{~V0 zDu2p|VN{+fZl((JqtMQk{cxRk6 zlkS`qaEvv^pK1E8i!kkBJfZaeyMOoZsw^^%Iv9tPD~?h}&gr~xk$>98RvfsvPSXcqf*sZjqFgqh+X=$kxc74SeO}3v{k>_AITN{-F4wxn?ygQuota5CeDBfh9umAe5 zFJr!m3Vn|O0G^BlzG7g1zy0xKiGTZV|81Swpx=o5$;OJ%D@o8$B>oBay@L9 z%w#YNLotxryL)#A9LlBd!T)WTk3n_k&Yi_v4Xy??iuxH*bhd`!V%Qk(JsCU?WKhE3 zEIStN6I`33Fe;C7Xkhidc??XvaxqGb8gn!|Y{pu=fl0plHa+DxN+=7j{Ft~nc=9`G z_OBwOn7LMun%PcW%xZ&G_011qb6j>BLd?QD&K}RCNO=AUtcgzn!%FIT&bF<=XZ^5Y zCOj^OaD>;IqfU7iLTwM7zARSMr$pgCGXwqlD0cSEZ(5hZD)ENd^&0{&WtmVB=b-e|0y z_XMW4->_k0+W+ohFS-#5lgW zx@NfV?mLri)>l$fcrxfvWL6f`TTGnRh&XR{zS+uYNPA@%Ss;4N}RtCilWynu1dhPl%tfUa9Y_ zVmjR+B#;Y(H>-m@~Lv?5HT}^6bP>4YHa*0h}rn|ylx3?4?5DPensJqaZn<+Sx?re_ySh-a!A1{z=`Dlyl@bPS z+pNrRKA6JWFu)^2Pz)J!8GOkt6t&*N-*oGCaMxB01P)eHrZLHEFGZ2TL7PzYUh|sQ z)Hwy{L1{EQum0`8f+K~O^3P5C!L;lt4Lkoo_x*oYX5&6h!|&=k@OL`*u219rgFpC# zwO?I3lL?*OW93|LuM?(^m{?-yw_46Q2mkHA{kJ;!&O2e^iE*D?YB@i{7KNUX$TkLw z`O7k!Zej+l$t2pK`;|7Mh--63BnQ~-+O@0F!_x{y@0(e6#(w+j;oIi{G5#|$SYcr$ zpYtg6D+lW`Zjh(+D+V=N067yeaD}J-HlQDUALWpi_sa)YI3gYU_iCB}H39Lpyr^`s2GCxv0LC|(f8Y0#<}=cMs@qyu5L zXJzTr3%>eaW;yn`!{fu$dO5dN!MFmj(qe?lxFy!p)1s)=>`ZV32Oi*`5k`+eVwRSD zpL)7e-6Jrj_JLM)M~9wi8pXs!Ax%k{Nt2{&vNU>o?%S^Y_^|dbUmqHbC!$Li&30Ia zfKj@GU@4geJ_6_&sm~cv{=?O0K!g9GtSDHBq8q?r%L!jI0m+c%51;q9U3KZ;fQpc~2 zGP*qm0gCR9wAHgRpdHel5rUMqIRedBKkZ9~{ZF}UI5UFGrtSGu9RtL{D4Ica!Seq@ zF{-34hxg|bf)SGLh@s@1bIy)3uAa74tQ{T^q2}vjc|JD-)uRnMF-E9M%|6FipWV9WwNI$tC1Ms@!J#%qs*b@A|F6lQ0?~@}eaSIu| z(tt%T^xY8r-L*Hv5ISBFL2TpZZ7~=f9M0Hw^6=~{o;f@!{b%Vh=MUR_IRfRORH^g)Ib{f*#oZU%kZ0+tVF?|gvn z*m3Ic%x64(*!INq|2MuV(p7pxbmm(iud`-bgaB-{U;sXE?-_y{^av6yXy0BNk8&4?@{t5e$Cab!6e7|v=Wv41@;wX(-Q@21x>`SQ-EnDMqoG7Qx8%h+tge+ee0r+f$nPSjxKoJ1Gt12YKn8I59RqI9;5uk- z>bef{wcjL#8FTn@mS?*x^*8HFN$j#aA32EPPU$zhF749NQq|Y9!vz@>EY&vqYNna; z*7WE$frHD6vOaj$GpDRhUjd(kpQcgQ8yy;F?L@{ib~euHE)BV?!@4eAXLo5hN;O(L z-^N6dFYZ`D!Z5;7!lmJqqd)kBn^hJZ<(-j)a;;2Cvcu~viFbgY^b}=&v-pfER#{N; zjrVZr6XPk|^4fx7hFyCx0y)FLEIVb}<$yYu8U1hm=5MaD^>?S;>&J`@me2phPy9r^ zi*R5>;Lu0kF(Km}CF6oa7SYyInzbK}b2q2JoC3#>0>@Q>FX4@#WgM+{eUyGGoB*WW zxi5rCIG$zA;e*50C>~G0>?y<3zUT?VnkYc_#4pE^xIRpjGH5o{?C9lLf`pN5%m5T_ z2hwm+nAwFCoiMAl5iE8^$EF#~c&onccL)Kgj|w< zgrgu67FVK?uFvcbm}bx;HkH6wLkFogI1x^%Y6mlOzWd$pAMX9o4-N-5WIti#4wI_u zBLrt|`A9yBrDsyH{qclQa2OU!P!4_=u1PLLud@e|`%sqRA4;zvL~l5p&$&agbifz_@brEdd+>G7$EqAFWHi~?^qGAHhpEA`wX^z`Ka{8v+OBN zx$6>M%bFQG(k@ls^sBQ@IdxdGW%F<_eRf^w<$YO6dsz7qBuY>5u8r?s^@!A9?&cI2 zDR5K(Tcx;FPtWU-{$2eJ&q#k?q38$u7sy1L2Os z_WmbpfZ+vsQ&zHK$a8Xy@3g3tT_N&~u#!unIOTi8^6q*q^Xf4TQ`Wun>!j~`Feb-e zb%9ad?-Y_Mfsw@ZS_iUsMt#*Y;cX=Fa5SvI$bLe(7S6j;)dpyxeeu1xR+_|7B8>r- z15*@U97UIsDvcRJGnEtr&t{*wqHQ%g@`wKMyFXOd`5SJ-T73uKY^GV!&Ld16C@Jc} zQQXWtw=!qNo!L(_+h*6zidz=l@a3WCNH2^6B&|A|@uuL}I?(6CNH1+G!HrAfFJ7EI z>~OQ4jd8$=fL*(Gm63#jgc8|p(Pb;gRxOGd<=;%Qd_FBE&*I`@!BWQR)8!ivaq8i+ z9S$ux@tp8!+6w#}{7iA+?`KLj!xBRZ#hB9<(TKtefAsZ?e%*Fm1!2-qc3th9Mbk^* z8A+T;VEH=ww$s<)p$*KkQ{K_fox*O3`VCoaM+w*8^u>0ReoD0y;`KQz^C<6a^rDnI zJHeN2yh~Pw_-veb3OJ?S@^^ieal!06rC&Yaz%XFjgs(;P7SCV#m0ziS@A?L(?&=^9 z*EDVVHqAP|63u_+6qr-sxKQBuDexJOOIXS*N_b%epC~9104YgWL(R~{zp!v<*qT#; zPrdEN;qYJmMV3EDx!$yG9858h3}DG#iph$-n0vDXF3cB`ad&vvm>`2<(rpY=r1Wqb z0zaI5OtW9UC|Ak1Ciy5~wIov+@JRa2$wvvq(8IyTtB@ZDuBu4VS)RQ$dDLMnzc36s zS>g<~!ojG#0iW6LS{Fd;Vw1+Bv=wvns{TA~HwR zuy=X=a4^E>o@m#H6SojLt~2l?z1gOkIZvsF3XLe;AqX5WV|5ceo=851QR)e$(nREl z;%_Nw(k8uutJ;VH7$G=w3Q_X2d_Co!eDULln}74ShWkHqZP9BPiIN^XTMXi>^6Z(d zgYv3mf;HteOZ-cj9R&mV;5VK+jZ`C?QtBIK3q`4e0i^0Oqp!T$n=_cy00Reg(=Xx& ztIIK9%cC6iuDT~JWw%#)6b`9^`jhMwVAh3N;WVemW52!i74qsXsi zc+mGoMV&!w%?Ga;w(D-Yv!7AlUl|XZT3Bxh99)}H0W)`V3d|@l70&9tNWUB30i9IW z&2#!-y<0QC4&M1HZ4_eZ#_;5kHEG5fZ;CYD8l|TCbl#otG5gkwcX?SVdBXGZ6yHhz zT>vEi%kYU&3`bqNJQ^tRI)>0Cq#ik!l) zaIWGDRvA_q3S2Wfl%aV5Rk1OEZZM z)uOa;co#+Dg)e+zDe=-%GSHTC<(c#R*}8@`y@T8MH+(ozlCI2_v7I}2mU65y zA1U?iz+w~v&!xY42TLAKB5Ad~IDT-H$AG}`TcMyo!uLmi^haxjNB2vH18EqCnzr)6 zMR@m(zKff?IR)kvI6f3O?h5>Pk}sKx@D>J=dJ=vpA(+hG%roC{VBhe`zj@1W=q+y> z_C_kInbeHym;^_N%tO+Lk+}O47Drk1Oljk9rsF=#UIJdhGUk9=*mxKR&+_Ews3bnPS7imMv8-_*!RX2*d@LbP@ld2F@cwoj*fSgmlRo+KONN!L5gMZRc&uK?^W>%U(#7cmL;9($zE1DL>(9OLBZ!oK#$*(@C zUxmj{5x3ewo7w+OmS?nR1*DXNz&RWmRk`t3M+^-8vV@oTwbMADt60h|Lx%db)6P_q z~`()Qq0r1YaNs0SPqt`7c`J%){C z)qY&>NodDhK^0N?2goMzJGCuY(Z`)<5Y9!%DV2n9(1}H16dGbVkjt#QZ*| zKvAIj;e*g(+>@^7c&8}{`s>(d_0v*t-E);ON-xu2^=pCE>pTm<-{i?XFpgY-S$ry` zc%LZb3S@x854{tTBq-^^7s?4)JH&wJkUN{M%fSTCb*xXNr8>SDRMI#U)~!B-|_*eoYn zP|mGPkaz0fVC=E{+md@ro+*v;sEdo=r&PcF+rPbLai=rH@>?08e16N{%{)uvTj0Ia z8=kH7!QHb9J}%{Wro3BbuZ_D6;oE8XrB#;u@p9Ah`KRT>6TZG*@5}`Uy-`+Qm-A$- zIA}co{lEYBwUUC8-zV_HA3e~9A%uaX516wQp0caoE6>cfK4K4Tw<{O<4mZmkAja5C%8NZ_zNb+k(4B`OCP?nN! ze)7e`g)je+$fU6VM<66<8Um?lHCX}04O;3 zl%3!bW&u%N>Rk5>qE6#CaUtJF4bo6sPII9qpS#S2@?)~^evp% z4FBtuuNXEy;>_XV=bRfOhuOllG117LK`-gYTKEkxbmj{_)feFv$4^;Tz42$(Hv_9s zFIw=Y+~vKwCw^`4Ekz~HhRyly5FzuVt9b#CY{!-9b9N*l{DUg2h z=^dh<@e;23DZZk=rms~WEq}rijz`q;^JvZ^kLmuMxOiQk`{2{z3%{Adzn(E5 z2o*~CRllk;JcFCOd9(62;+vp2k-1ex3K@Z_RCv}qTOlXL&k>qb9YfFX9>P8a<+|&x zs~JLyhCSlXdCqf+ZWI!Vt65445G9F1VWyg&QbmEbmz*Mk*42NCh@U;(stspgs-MN* zWw=wM;o#z&CQhOK)nEP9BWI4llR`9g6dudi85}6p6hrC2Qzm7e(c1#;L+pv4;wwEE_FCJ9U_UZA%9Kug*9)$eRDa92d`s=Urnpn&C|=UY zgZ|Hd{`2clRpmDnY%$TPaV^rbJY0~xhFdNT${BYx-3on zzx?GduhZt0LGkb9?2I>7b6CNl&APn*^q>AyZRuc4VhnKLq1ko)R9jQjeWunq28=S4 z_gB91l}C&^VCjRF^6Q7%)RqZnCV*jP-+L&YK|mSKPH?t^dI(bnqnrNdz4lJqi?7e3 zThmy7;^5BT;T1UlnNwg+f#X7f=y5Y{^$?2t&8uEf3{Y0H78upKCgxnc*D?!EWfoIDJBD1A{%9JU5U3YE0{ zvph%qVLss^1t*;3Xu3+9aEel3m!#I!4L;#&V_NVU_6TMCU0qfQZzU2QO&_o|ldarV z?7;TSO<{xQ5-;Ca^|A7n)SrAx;wZI*P&k1RMJ;s80{Mii3+0@`miw~(-boi&s_1Yu z{&k5nvow}ru;(8K{P;%Dfm$+X9%~TF-Hf*|&0|?OlA-IG?9oTv(p7_pEeU1lsG`%3 zv_$aJ_T}Q2bue-u)}43WHS9Qf+i=!7rwr#m=B(lD^G+SMo}6t->+>1S;ep})y`Rdb zE+5G3&EC8gd-4U2efe_7fniU!3+>)}D9S)S@t74w`}gOQka&LXYY*n#KNy~KAP0dS z%uHiW$h2*Ta_?&(hht}38>18h!v3sGqGbCLheIvBPuVpeHW{uN!F*qM(*8uQPuxPZ z`oqENaF(g8-;h(%lScTa4Vy|h-L!S%a8eYnZJW0bn=@t|J`ls#-j!j`{n;|KZrgCq zqb?ZU`_2yzr)1U9fB1i1T0%MARxhgeKYxK<@7aW`pS8DGL!jWQqtRqEa$wft@TSAr zCUa;wI9&aqtA;;$-5(CiTlNp9JtFnkmamlL{E@XWx^7)_>hO(Mym;8WHfOaML&6(I z&WjmzDM!)m{?H+wyKhj8Ry*;o7VcNad+s#NtEXY&dS*}jLv`RZo?tYr#?6WWvz(TX zw=%6Wg$1kY2e#Q!@{%Rg z6k)TZW?0Sc3r9ocGA@`gZY4}!7g!uWC%xHHN}W15dE8-nU^GpoQKzO)!?FUviRJb} zd+#}MQ~%HY?9bMrgu=lAV`*t=_~9S^;Uh4oeWLN|vKrrpU4`W5Sn-{v^E9l^v-;lY zR>SH#^nG>vbvuinmZ9G2*!2gu>(*t!0d1vg_?-sa_DiGOY1q`?Wq=13H!XvInx^3% z3x;%EM}0`2<)nquI@_$mBj;n00Z+Qvdr`0;iUx7G+X){^)X+jV5uGQK265R|4!zsEdS_ z?4#luB#jO!v8gqtFSHV*zVtduGqEhi=1N!u+)_%DKVU1|*8#F^KX{HxrFhSNv=PYi zCZPQFJR6t@*X7(&$oMo1gNI0k$CzR1E84Xim#)v^1;Ynln z#w@I=FHwg}IV+;hBYqGk5m?oal@1DNp z{Vm?*K_B-*q~rE)!L1HGQX6djT;@$#(Q|qf=QH=@8`cN%T;-Ezq^cvC68Hi zMgnx2(nnsi2Ay*rMau~rZEG9}nH3$=F;R!Rr3}!)zD;6WV z{fUxXM1{@#f@PF{bd|HbW}(M&WQrdS1$h<@uURfIqT`O~-AkzREKhQk?q~267RMtj zFvh~ez>~;d0nnc;#$6vTz15oI#*5QIm5x!S`o ze?37e9{Fg<{Havc3kf{t5?t}|@pJl$x(ShnKdCB1)v2B<;aGN_<>5+^7^5oRXkZv& zOHpW4{1^r{a9wu1M_}@N8g2$y3AkjaJ+}c+xXu7Ej-YJSGs)aVRYT3v$XtUWI0>ur zXK{^-HYtUpFpD6W_8GApanN5FchU+991rwLe`XX~Va(CDR=N2gx{4qV^T!s*`aUH` z_0I^Px?lCA{NUmowmI@O@8{T0s}~Ee&YsZf&-!^X)XNb5lhpd_+VGHZ*?SHQi=2Jw zy(`04-m`8vZGXP*5Tn8W&)%DW>2(wbyFD`+jdsbFEZJJD8OxGa*~W{EZ45$y0Tag% zAdo+V7`RUYA%AX`OA?YN2_Y;=NCWFhL|f8t@d`ROukKAXRO#%ab&3+9%$S;oZM^i7z_oQiAHsaCF5gPH@Xf{U-tyndR? zav3k5Gk&JkzgcJLpYcZHVmUMad^UYDz?t4K%a(PM&q*iYXZrM0*kXRZ>k@DM%u`tU z?-_jv9go?*(EI1$%b6CZA6^mz9hj(%Ep5$U0fA`HHhCym!R z#q+;T{+xiB9uJvO6Z;$!spfMHkGLi#jc@{1Jo{d=6-Ir|yZ%1sHTwO(`Ufs8Jf4DE zg4oz6lz`ulTJmX}(2`j=4%d|eX zU=lrCmdBUGO+Vk_m+~Z>z^9eoDT+d#U~s(i9GLKH_qnHgmd4e2SEM8B!vM=& z+@*iO=f(VlAzFSr0S~4p7!70MmsbmD`_`sFw29~gYU2)y{Nj9%GD;WA!2LjRSso|nx@Ot* zOC}=e(F|`g0Lc&-F3fbJ(`A0mI2rfZ+%tU>UNbNKGfu*7`sK5Xhm5v+o@Hc`xk*M| zBV}3+_bhJr6(@sedh<&r$2?4%dCI7Ie3y0ubo$HeB%QsR-n%doo;YmWxH0l`AHJ&h zGT<`tT9^Ob-~HV%x+lFeuguqX%acr%`n_Z9XDLI3}&8Z-uLwn_2aJy zEx*9#KVesp=BH0<;?v3};zST-Wnx+lhi+4KWn3&U{ zBSdj;xfP`a{JOfvz$6S33$yNVM*>Y|p~h~e#y2c7s8q--%*||c&U^E@dc<%2X$JhH z=SK9W0BXk1IHUdYJ?|N>b(cIk@s$y_7Jb&`y}s3VOKgBT3o-~bUQ!_A)D)IGqI1u0 zKxRUkRf_Bz{A-F)zv5;>8Hv4hrOQ{7OMW2*{)8($u%=WeHc#>NvkL3>|D`0Rw;pR7 zAw}E$oKYYrRM`%)_#^(b4gYFa<&&;{`@zT>YGbq^>WpAxjDCT5gbBO)M~v``G=4Tj zRRf6~+o;iZlpVzV#sHX1dFZZsyuiUeCb=ius zuQ8LxmI>X%WeF?zFY6g!cH8g=cL1#lxy-=t&)%sDknQh8vA)-D(Dy(*{C!gBmBsQo z;0OqK9qR1UNz`};*7wtF2l*WJN6DS|%N)p*c-FY9zS(y;d3QxvBX_G;uZ}aST~XEF z^jfB%O-x}t6KZN{_DSnfisPOStbpX$uwVh z;e~Oo_y<1lfl!w>ZPFm&de6L*S@Kvpt@3LXJoC=5jGOeya2aTEQDC42aV?!+dg-O% zXIixYF1X-=^75Cze1xGgZRRgLVas64Slx2VEn&3Gefv7=vgwR(`iw7wE|cxK>00Ag z)E)ZRoEP-FC(GTT zwf;z>q!a>5Jp01v4_$-h!4-beld{H*NhXgmI2l&s*U6{wdC#~3r@jVo!&EhOD-|93 z9#*~fqBh@&8mpQSa)q8R?|yd$G1ZDQ9;fH5E$Z*rzYu!ewXF$2AKt()tf)U$N5FAuH5r_k#Iatr& zL)$>ULuR%QU8Q&qqB*EXkfF74b3}oxd)tQ3Il*fBhacgg#p0c|Roj`3jCM@F zP+PEZ?3V05T78;rtMx3*k&6Vxre*TSb0-tkF8Z4;wg|zumn}V$%DiJwE=!iay7V4; zIHxS^F5NV8%~SN!@629td-?XazEL)8f3i&En3FA?{cQ1J6$^Nt{4nfFJ9xyteBf(N zHMTC{C%y_IMY?_;^?_ee4SX^r3KX$wy6_iazbztHT2v?pLbJ&}qL!_e(Q@hUaapdy zF2`cF=e=w7T!z94z7zW|e({UJ45(JFHEt*RZ+zn$BdzJP?nl!}|Nl;x@bcb--SqQ0 z`$F&e?y+sBo_cE0Lb&_XWt0>~SWcM}{hQ9R<(15i;hC2!-2d?({}BwUOuXlc3(xSR zi}4eN&oWT1*n1|p``q&=GwEzSy#4KOFK>P8Ta7xh!fxIP!}MM{)2LM-1Ey7bj~UZi zxz_GAX18|j+Ax6kj(5Bx(wj~=GJ0wbEMB}gESLB8_69uhmL{tICru)NpQkI6ngg~4 zEuJe35UvcXrvRigA65D@efmF>yJ>WJe0$G5!cnl!YnfBy5I53B8J3cTxG?f`qE&0nBpLgDQag^I-mt7Xt?2YS{-;?#C7J?S%{dT0U;civ%C_&GZ zm)3r73eIdBTG97ie2uH~OnT${-P!JB$k%c7ocSmS@|)Fiy+SzC$h=!dkJ9saI|Xy* z|I5Gp%VC^R*q%P|iBEhY+JNs`tyl9yfl>+-Y(t;<%xB87Wy^|X{OVV~T0ZiTkBrbM zY0|#8DbS|C^P|B2W8h;(@Zbze z>^qen!T=A^i!uw4cf;bHdpP_8m)1RQ{7B1Iy1E+HjAugAr=RcnocCwqXPhP+)9RXj zz9-CjH#GdBocM`rcsAo1rvWF*BBNkZ<40|bfKf(c81j&P$xK7sjt(_YO!%{0=0`km zt90{`N~PZoJcIWbS>hy;TjfaoOkDuuM|>b|TrP zX|MG5^i#A`V0U7q?vN?7%j?d2W0^8-M*04w-!BiWS&f}b7)AEOA9wr-<+K+rDO))G z;j-lym(Kp}!Pr-A7}~xFKHzmAxa=FE-dhFAcHyd?jFzjwGGE4#@s&}LIn>I#lXzE)O{2AP&wpR_q*R6tMIOBD*%yp=@OUbyNtBVzRvTxWwvDOWQL`w%#*bD(j{Fj zi$|w<#<k=3IEL4x67i2}e5UJP%w(QRY&H(3M)tWjm1h zH!oH5T}`*F;*@E#Os*Eo9Gbt{8CvQW2hUWuT+-P4`RAV>%x9(x1oqR9Jx2%b;_q?Q~f|iec>|^Eq?|*+B^XKZi47S@3JpDi# zdJ2H_KkKZs;`lj*G9Ui%hsy`h@DP?bEL*lLG&iKXaBT;(XU`tVKk;z&`^#Vca-8vQ zTH{(SakaiZD$aT~%zDya#`{yB`c$+>&$ZXt&ONHm_G8=fC_Nc}g-JSbatnz}y5R~L zJZ{i3c@l#4sgU43?|DzOzr@dc+pbN4HU*v^1@<2U@1%x_l7`agNqCmAgi((*WI9ZP znfY|Vp$^@1Z`t;RXD*fi06+jqL_t)){&!jP*-wW-B76xoO-!+Z2@MzydR%r)F>eyC z&UjqW5&Me2XPOHoJK0FjyK%y`V7K0w=$Th*HpcVQIwKP#jJS-%b97FoG2eKnbLTaf z=SX5g)YDqFn1bdi&ZlGGy=7e^b6no#?pP-$#I-qJ%)_5(mN)y z(wuyKR)y4+`6v?MQNQ?y2RGo2Ae(+nqDR6_7ygZSK8E8#rW3p>948X`MWU8pix3Gr z^NT!)V*2!pJFid4&v#&&g+CGB$IQooR(^?hX8#m8#!FmD&f|z+LQn?l#2whxaAT{5 z=_l#<+Xs5&siw={7CP2mz_)nf9W?UAx-?9N-5`Z8s)Oz>UB@0%#=rQb5uSMXJ>+C1 zi<9Jys;toWk(~FoJ1{AbeP*3p)jrLV*7s;-w5xsnDm{3#i)=6TUi$?FR?$9bL>+W~ z(I5F8ME_x&3Qqv`Bk@l2wNJ7ywS5nA-$S2u(n&8Uv!_fe-@51<Dt~tu5I;nT!#^M`Z*-4-f(M|J2440Ts>{lldq(tEzVel) zlveu4T*wf(;^*_SWy>P%%9Sgh!ob__=!BUrXl)%m4<`;f?@yOUf_}QZqJCRtmFY>` zR3&!L`DZ`-*0)w>|nz zrruRjnL^WKx}>*peRjoO##yFc+PjJ^PG0)U1p2J7K@0ea`_iRLLls(o&#{-O`iFn` z2f+qhRoT5<&6Oe4<(QE4v(CTtr7uPO$#|Q;xVw6;@Z#8Gj}1DQuXQdnm-#21y?g!H zpZ!_n<*IFOZ*MT5?|kPwgP}AZ>5zhmtjj=ZKm9cE6(8$Eft2)7&EN7_Uozv?g~$Ij zo#}Pi{=6&H@_X>?cm*G7EV$i4xSmOGnCV(Pn|NF%&QqmwfG@^jyFmx*@sI*8)3qyAe-Q7xeNk|MG z0yDsX)X?4CHFU@2^Zl)R@84&wS!bO&>%5B`DnN0A-zC16Kv+*)4R99Es7{q_jkHp}QVAe_QzE zBr%GVfVrm9IeYOQzfz#2drPNEsW}uB-hZi*^*Y8Z92NY>VX^?N;M3mgynp-QGD7Go z8CBej4lK5vRxX3o(|oNG^OvK%1Sk6>^3(CNcA6OBD;ElH4S3)ZhcC z#R>b@SvWW>|MbFsvdRpKH`l)#QKC>UYw$^|epD$z*N9wS9d83bn|UT{fyImcNfKHs zzh~QLaMCTOv;_*P`VJd*u25dPPoa&?(|uzn zW2~DEei$49Ye}atms<$IIU0}g^c!_L;Xb|!F@q@4mB z0o{${#Hg-vJArJ9!&Uy@RTYFQj;Z^o5ha+^@i=;Dn;yaI5 z=Z*;Z8Rp&(?~GzTceWD#el@^xt@VLVs3J*oul>pflJoVcDL%Jt&QTnt8eKALZMW`j zcUuchE-$V>FfXcQs`a~5;){`kz112ea`+l-gb0(_df!}-ydv;j_YH4$2jkME7geGh zgHPqW&z>UqB6m#warpuil-oo7L}= zJ0%Z}y`!y|WkWRyk}_Lx=K> zVtj-s$EY>8B7TSLny~4;p-9^8gnA+S8;S1z1NC3oKJ@(F{vE8O1wxH3{}<0IL)xxx z39y-%BoET{I{w!#{9mR(H2;GMz>7jzQ&ipCbwguw61E5RKvMNNd(y)OC#*Ug?V5eM zARBY{V+L0U%7E0bnL5#Er^km8<=`7@V;Z*dZfZy&F{CiqA1HdQdl7N}A(4x{JQ^`kV387PUtu+nYxa-HF_sSQ2`m?iKQ z=eG}F_oozmCKRo*U&IRSv&3p}p>h|Yvshl2F^&7{V3|;K$5MfPcRK}rt3zc14gkk+ z$mn95iRCIe%mg#~e_nUPI(0uKzD2hg>NhBB+*nS1g^{Au3hHRXGde;T}AB1^_P}vnE16tI1zN>A;uK zQwa|Omx&!ouwn%7p4ork6QPTE{=$W`8W4Dqy{YiWYB>VN)daWyIE65 z2e^J?O>;}MHFUi|vB{8jC9d$|GO`cI&IUil5r%Q7a4u14Fs7s?pq-f1f2LQMRc}ok zc@vxU{w|E~(?eIO68`tAhCb}}=M_pA47i$2DhCV3?tkL_vmB~QsK7M@;e3tzE8Lw> zE`?$?d2H#V_VD;V;s=mC!UPKwjz7GhJN}u7zmnQD7F`b8o863u9_mW??-eeG$U8cj z5zj+C?Rvcj@5M6ARV}Hnr0sE0@P3?xZX&7&v~0FI^TppT6!HI8&5-_U*?P^jWJ5f{ zFe`hX|I-}OKJ<20A(E*fc4~>4t?q%FcIB?$z2iU z=8O4vYNl+m!ZWG-zlHT!0dEC-*9b-nj$pa4(LeXGN(3>#G)rldB;v@>>4V?z>?`e} z`(Ove>rd)UK5k#cJ!osN?tn-Z%jHr*>MnMz_ZQRhd%L+tqGOiC3MuX^PmbM3S$h%= z6xiL0C{Sf;!^&Ih9*~>ReDg8b%Vb$kAlc&U$LagSK?xK7f7+X}k^7cRjjwL|G~pnX z!4uD9K)ey8;GE0OUA|bi`8zlI-j_1BKWXK_r)l8nFcM`@v-(j6ZRoXG2>e7@k-w>s$VcVLH`tEJO-w>#Ihd);WpDDM zh;HsA_~E!Z+qY9^HnPDbCCXy;_rdeIFjSX-zUaNz<;xJ8Pb^brb3qV*gJxer>yC|% zXagG?aJyj8_er45cUMk|$re&T@)1+oR@1)O|2f54F-fj{ue!&?45<)GUy+rtDT>c- zu|;L-@jqp#`P|_|gVK0RrDU0b5xdtf3!zLKt@d9C%q8+~Gu-?d=Bd`D^&?Ml22v3a zWZE^gBy|ys&%u@;<}BIO4%xIXzSkL@^Q(S0-Nc_vVH1}rExhlpLW}giU~gTW?5gb) zbzF@cG$f&PU2!-#nnsbIezz0L(#d8>HWvkmqutrUjTJiTVfNbbbi z7jF1Qq2s?3r2J#bpyS;tDQ$FrMhu34t0>v2=yr|;uX#*x?=0L#{(4jsu1k-(sX*nE zUm9SrWut`Kn{tw3AjSR#mqI_bDvs2^kBLEJ_ZI4@nP_JKQPl3DZ_?M8W6)`> z7r#5|02ZKwY5VUMI5d(roEzoJ^wjim_$2VvSd^ZYf!c(qOoqUgsO2?fYqllW(NhN9 zoGlk=*OZ1rE zNH^+top_`7JB2&K|Cye1USVg zp#jKP_Sa5P#HZJyz;iMed|Q&ZLCE4C&#K7X&Ex&qh?&8n4KE}oDtLv3;KNqx%-tGI z->ldnXDl!-qraq0_}k473I^c-yxL#yiF7Bp{QwN#TcKq)$LHYr-{IhPz>Dw1w!l{; zSk_2vV{blL1H!J>OXqJL<{Tqzd43cLj-Ofo5&~@Ixv^Xc;MU&zBh|)x7o*X@m8*E= zw@#E?AO0ETO@^>rGs|4o6{jw=?$Ym)akS&N;l�Zswf~f-p(i+CgdL(iw`eQmT^` z`g(-2SEHUce>%~Y(3T1O1B;_pu6qZ(D4YA*WN7*}?GD(Rc^GuM2-G(XguVQaVIRFk z5f+<*>&t&lu#Z<95NhGB2lX`%)-OAqE`$(2)aI~nTh!%m58G&kIBoU8C2u@O zgWKirgON{9OUHX(=xmJxRBkhd62WMp+c=I^PI9lIOuUB4B_!6~atFm3H`d!86zwQ~ zEI)e+{;M4_aBD+ zP#t!r1~cK7){(mLq&#ioe(1|nj&kl?RM64TllnWltrL-sbRQ6z(j>S~7v_9k58yUt zBrW^?*M1Z%dHrCGO4Z-gLmqp3d$+$smZh}{3!IYrBz4%2Ax-`=xC4w6q7r>1@y5K7 zh_7_tv2-^-h6rXJfxmG+GM9Ojx}qM=zwspl`Z&h!p4cp-vf<`m+%*Sq&r^jKlQgoR zuxy8UIjCRfgu&%IBqy@7cbrBJ%^%{R!Zkag2T;*GS{SnSN>vWVg02fH<9y2a6$3{m zSnL^6M3N*8U6xkBMNiavR^aBr&sRC(55eLN!`EdL{?|P(sG-EtXaurXdy+ zyOj%`?16LG{X?L)Kw`N}e7Gx`WE*I>H9UD_b#1>iM$+2CbtX3rPCB&DL9Rl%ef4fcFX%YVS% zXvo=iU$?kkj*>GaGDH1>E#knRI#?MgMe&nW)e72J)6X3U;-h>G;4OE!f$e|sV&1Xw zs*lsD_sI~6tH6EsxWHWJXLCG~&9s8EVJ{yDHP@Qk|{h^(E4`b8%W=V?mCaji*RgZ@i&VtXTAuJ7h!KOh+4Ag4^pP{De3l zZ;HXyT*UKjeElD_SBs2|`aTPF8%x~q;+7rFMP1W=@!txD&nY;j{A?=8HXJb&)QIsFa_(*2 z*H;jK-)+!Jh9#HAVCf0+`8VU>Ja83P*(@y@Xq3Z+SQJ{@DdM%qwDevrY5igykhq*z z_c`j2N7gF>kF6Luv6npL+%etV`3;wGvyR7a9?Hh3i?A*`9(OZLX zcG|q^Fh4I_pA)fMSv~m$Mm}5k*HBKYzV*J(nqG z2z6ARvUBhvvY0#Mk2}2*nUh2GdS#&&j%V&?FKT*UPq^wZ zN$L5lmLsbWS5WDuWGy#P4v3f9*$J$=^`#)n2Ei9?oQogh`8#@UZjRaFuT9%IqAC1@;pn9` zPDCiKqUu%lHDQd7eR^~CE3i^N-|NTs8m_3nm+<9GEG=?Zffl?jw}pF-K6E09=X_VA zj>H_hMDvf&Nc(a@M7l|{e?@ZF)38qK&_k?Q@gIaWdMcVuO5(OVTo8OyTg5zMuVk%T_vQsXTi28U90wo{;iW19T9p?wFc z|LU42--PG+sFOloN?%*OAY1GXn>WN{(8%;8j>Hh4OgAjzq~3MZ)P1izf&u5PS|QSyXyVD8f8eBd7-YP zzqtuINEx$QIQ~T^dwCc9$>Y$ zH?N%k;ts!Fi0tDntIzgbyj~ZpoA-~{oPuARJK~f+6pc(0Jx@L`Pn{1jZSPRF<_zV- zN$cr*c(&91e9q%VA;wBu+n|5-$_l{-Jh8MYNxW1+%!HjIiBYf;J^eZGT0CZX4;{54 zE3ShgKt-L5$6d?~(O}-$1{fz=)u~P=HJU{1P`OQY=)h>0)@v@%%8^Gu&E69WEn`)F zisCsYdFeVGJG=$;T!uRyoF_B)d#JlF&ELwE}YA<-aPFOrtODUkFL>8|Cv)J!Gn<2saqtbhq zxHirRMWbMjV?@G8E!XQnA?oZ;jSRm1OE(mnbSWn&kfz5{b!-K?>^#f>!S3ua}0_|LFA_kp_u8jY^GvH`qj$XW#dmAhuG1RCGqW97UpCRq#__rNUCXZ06LUES3P;N8d#Wngcp+OlLOLgg`^ufs`EPc- z1Fj?R1eP_f1D+)~3n3@~hib|qsqHPeM4h9q+x32l9GaC&_Qt6~X7r>DiW}79Om(?O zNsq^+WwvLs;TcDg{kQ|c<@fnKAHw)E-`{#+`8H@yCq3?DKm7DqlukENe?}|%rcoKg_X>E-Rc$KaXpK6tNTRZvij`%TPgvQ@Wv7%BAZL6FaG9~ z{DC8+oJ-98VzuE%Nd{M)zwv!XyGBARcRTr>-gS&YIM=s*8_%oY25%q1f!+5XR)&c> z{NjJ>x}1}P@6j*2F&y77@tQM7zrB>GZYtBSsn>OmB|Dd|${w7- z{yarh`UmNi?Em)&ffuL^`8Wgb2X+Iyxw7Nme{RI-fMiFn-Cv6u^)wba-BHwYBa<$p z;*AOwH?^byXI_wuVXb6}DX_jtTgxcU*xBZmQ_NZkb@P`rh3sQ+rAe7{KJuXX6l1OU z$%i+nU`0&xfsg0ZD(Rou+S7v0TJQSs4RfQ{^@(BGI7{5lFOso0Et@r!uYI|xXBxF8o{O4#J|l$Cmy5d z;*{!j3WV;EgPf+nH2S1-w!_^j#8Mbc_pAH$9B?);>z4P)^$DYh?PlJ{~+2dyZ|Eq%x z09SV=HJ)^-sH5SumtU!~t{S7Qu$f3dDUwitZi`+jiD*;H0CYo8;~u0Xrx!B`Nv$iO>&n!Po{!!eO$;6DhvZ2dHLkm# zl8qK`wf`)X2D_h3ynI-MmFOQ6O18vN+8cxMY|wYjh@59?-HnS^w7DnV5Xs)Y|K8i! zt*@1xYf)U_DD^PCCf(+^$JLOO+;a7X7p)1y)Rm57aVzsOazo_;j+(FH+a0MsQ_1EL z-od2$__tg)nkm^hMOQcxLmzvk%63y#bJ`G;4JUa=b7#1I`PA7+Fp07Cj)j~@vuioXAQe09x-Dh z&lGvOM4Lw7JEqXmD9hwV%Rh`JxTTob`MY*=GgUT1=-Z654C6e{Y1#cV{^03&l}eVI zSrDWAQyq@1nzQ9`g?p=+zfGIZDN!Q&mo;ppu1G0X$~V7WpU*XCiNla;n_f)&zYdi>^!)ZoX+C#d#9*Em4IPF${ADeIQ zztDcO0P=p$@vW^|vvj!~ZGJ86qxc=^!4*a4Kj4k%twaLz8qU(JEDzD|;?9qPa0mj<3Qz*(AXSBxvwXPs_BET;Uipp-m13Ov2%C z6>Ns+bmz}nn=5ZPQ6Sxmg_57F1O@6)6IRZ(-ItUT2L|UQn!(ve>XAtR=O??O6uHsa zFzvy9oz~8erbzFBohWAJq-*!5Nj8uUTfIT~;Mu*N`s7mLC7HgKWH8MD^Zv^atohBM zY^l6I%lcMx(IMyG2pXbhqmKLSkNY`}m2_dOS&FSALjYC_5z)IMnAvyK=p3l{e%bZK zfdHGr^$L+M)mf!}6zl0;MAPnSl49!}OJ}>NlUT3aU6&n3AQafv)Nm)-ic{Xr6P!Eb zd}!7%(EFh%o`iyxC%U`$s<}azwp=drTH8)hsv{^p`5K@sECO-H`!gpJl*)b#&7kQP zH1>)f>+O78lX@`b6t_@rH%7akbfI2QBR+l#7l)XL1>49=jhW57a=b12ALT=dxx0PS z@=pA;li4Z#$=d`6$BI+RmDRoj^rF$XOs&pcJ6mNxo?qkh>wGkqJ? z?Vn$n7;rcn&gkzf;KlfRm$3RvFPvjz;N+qvoAY^o)ONY-L3p-TQyG|Xzd+#0}IDO*|$VJU^Q(pS(GT-VS!9m3~w_O zdJNWS?Pr-B`8UuMd`TCjCgo38|%lxV_V#hhOcLg3_qCs8}tiJC2UVDKy1 z?fGUlV-=&gfD7!;&qIy)3CES}(}Q<$>oLDj2WEu4tZ4Zma&b;?WYzZP1-I!3y7Nmr z%uT{wi1hMU2m3WunR#iJV9d!7LQ?wiqWp!2N_)qmAO1&HFu|edoy!-3=@I?qHg9h5vTW3CH-}4fKIEdJd|EJ-wT`djIBzO6=r`B01(l?4d%UiJ zp)v5&&ekH`6luMzZd~s?n`6jq{--EV8w~L8C2Gtw;ASJF0Qt3vqQZhfB~eX9{tq zM`(frFh(OFZQQCWp-D(~JhTew!sRb$AU`p51Cg#?CG-lKztf za5LO3W1}0)!4AX-4*z;Dqf^;BJtZaC=z;Ym<@qqFaLda)w}KIlw&r@%ru_WH7ZDD> zlWQN&ilij+a&wOxeIGAup1xEcv`WTqqeaYITU(S`$jKU87hKu& zEgji{9G04wif@<8Nn05(LC}32C8ROTd!3m9M|}R}D_u%!&U|Ne^~Z%L(0y871(+Y# zenjSM;(4ddZx{MMVtA;q%?G?pnko8rb$~a)0qKDFY)HrLWk*n5mID&~Rv6~Crln0E zYU!-!59N3b`ch(z3LqG=)_ZNBG<-<#{`jq)xXC=_px*kb0|%hJ^MCO;N6 zO1YH*=9uV(45P`Foxva*r|mg1H!>kh>Vx8Y{UG#08&1!8vo&9Q^i+!{!9{#ah!K!3tox+Q{@r}T zB{SFzarEqVe?P<1aME;G)vgowuR?3cUIs|ML6k!y46R)2=LB%J99Vf$8akMzt^^j) zh-rz(sdEtXEBFXe-^Iob`*3Y?rm$?!5OKXP6&>D4s=L?qW%Q>WExDX7;0MzB#=`li zLUe25X&YY_M@Qxk>1!z!6^(1 zfa7ElDr$zD--%XV9f;-K0ar$Y>?2f_M6SmjQ4*!dSf565&IbST?dH*jz$M3Q!>*1uV$=&qcoGk8^9~vwAZ{IG%_rb^~ijVf$AooQnGdht?xRU*d zt6x<3S(@KKXs_1v;S!wh;!KH3`F>c*xr54riZB{vSt-q4Wc*GBcPR9eo(4)3rUiFHv&Al1{GPFEba}ai(GKTq;}{;ito82xuGTLX71?bG!RpYJPqc4e_6p_qMKh2lpqW0Jko!8j&f<4ej3 zj>n2O>R-YwnGBY%YEO#oR{jmatGkhCC-L`z=UZCEY6a8Y2Ouud)B%%c>gf=5y+V}` z*O_W?uBnx{5l%-l$2@eI)oW+TOYq^;0rUp?fO8qf9P@%j#%;js<-?~1Gn!@Y8qlnW zvP#ck3Mcxh^5fZ)wiR{7HO6dQj>dyrNpyElrU03N*6W=FHcTu9*peO6kHMB;e7*aG zkzX3$bCQja%-5jINYXALSR+^h+z2@(!#-|+c4|+f+=o1WRIPfWJPm%6%YsZ|^gxrF zGfxeWLIWPfq19wc7RM1_%AS(nXA9!P8uPQpyAjA_TbP`Mi05_2lYT-X%i!sY7i;?7 z4OERDdwMJrK)um_X2{VNno0a2Gn8U-t@+KhHT|e;vV-hWLE>}v%e*=0fARGkRC}Dw z&j~5L#xHtm5%Rjf8*Y2S&~jD*nctbGJ=>>k6R!EgJs+tu`Rk)!JK2hpIO`ua%{%bW;)jkwPFTai;fjkeik>`wCNbs#3#kZe1@niqc-sxu+k@$ zezEft5%|0AnBR4qHvl(cUalenW>G^65OT2mKlR;TRl`=$(M;y%dXa!~UcA$4yjpG( z&rIxmVvOOwdp!+<)SoN~?btUZqnqsb#ic_H3+~u~J9<@LB*;H+f8dOh^B7ILG!boP zj@AEQ7Ca?47< zXKvC)i>TW}!hxUNH1tip=N?@{BIVP<+?`}{T!^s_qUcJ>ezF8V65IH!k*K#o3GM%z zY3BM%Njxb4SvZgmEOAv|wvcPZ30Z8;G^M=mschbo{3gMbAB4|R4&9EN8o`V0++KP) zEzQyrrApUPHuyZSe>*2N$^r6=R)_qzNaRN0!IYEasXoZG5)-=`FF!y!N2*o;6nfH9pxKl1uCR6mf3XHvNa{GPJg; zwaVW^jQpJ?XYtks#kY4CAZ?ZWAFQK~fjJvdpcwUovZ;>EK@K&bbt8GcLk(f3n(2^) zI6e!ZW8b^Ox}|{+eP~LFZoywB!w)ViWr!jrvdJXvy_a)CQ(MHT+0W-1YAT#E&0l-c=ELp&N*vE4?ZfIcs^ZqO7XgQok_7 zikZidn>c<8-&}4!nD=3?AOA#uOLSA!w?D=@?IX=-3Ng~DX1JWI*og{N=D=?a8&t;p z*en!P+cIZBcw|FYW{OklCe?J;=eQNoEc}ba6stXfLXcbmX5YKBQ8uPr>P>WSRD}4l z%y#%nXL;oIqtrxSGJfZPR111Hn_2=gQ)Gwa1i9P<`|BefFnRRSU9!Sy$Q8s-!Y$bRNnwQcpH_!1M@*$`tWGjkj8fM zA=4UnP>D)juruU|>GaqFpAzZd_L(-z+G`t=7?^W-{?6}w9qdu5m0MenweLKWzD;MR z3s-P?p$g}lR0tw2_wq~fio0@%Ui;@U0JP@bE!s7N6<#zt{V-?! z5&t7jHBK4xqLJwDRU>2UO;P!`^Re&B55&K@eie8tD#hYNo$B;%bY>={boa7E2xaPM z9@;=!ILNH|&A?H)84J~qjFFpQdow6mD!cXYM(nHD;l7s|J1ltO#>&^rh8A-6)KEki zcQ%BqH%Eesp|Fi!E?%G*Bk~*jPtAqi&wkfsIt|b>)HV^io9k~^x4o$)1Ma_Pw@->6 zP8@MEeiQA4?b)|t{=^16V`p}966uM$f^K{OQvnK=L7Z*yDvd)abefHy zwyrH=B=8K+!_w4o^~f?y4d<6b>W#%bep;a==~lT990vEe==Yi9rx}ivC8k!BWpCw^ zxxsl3#FhqDh@3k`{zs)*j`ujZ%8{*CBHgOJML zO8SY%r4NdVHbkia&7QrS&@?FT>O}>3Qq3 ztd^rxnQdK4YRhFcRq?i2m_ki>!J2etAvPyMa&m@gJ1=B8b>kp>u~A=iZO2PU51N)Pn|$O&k*r{*+wp5g-s_ip|FHys zx5Fvct5Cqsh#wWAO^EqSl7@wIqCq`asqw~h=jP^S)z&LBYVJukvO066NWHs5+asU6 zVFg_lRr1(*SvZthSHxgK(vP}z0Us0qb zIHe}wIQ{adQ0j|I?=^U2O5ZgR9;uYJ`*MiI`kwFc%nkv1%6hJJ#xbBhQ})6a;^bK( zutNwyR}`gIOmtB=OTta2+8u$}_*RJC$_v>4<|q>Xsio{5*D=Cw;o-mNg8MP(A|8~A zGMwu~@lqkRueC)?40xgjS-wT`6PxO$aszHG$>FZ6gIQheoqc!wV#JpZoBHmb$(}!d z)$F*AG3q}&;XExc1=`H%MeLWm3#snyJ}yy4_gIo z6v!u6&o=+j^?sx9;C&hV#fwPT!rdDizpiA`8|J<7&#YBAMdZy`k+HTx;lBOFCpt+x z+rPx*LSjDU6{V}2ADq$6no%m=WTxK)IMs_Yu42}#-BR5res}wob^@mOpl5U=lp#|; z#0}H^7P!0wCAb`NP!|t2s)fhjzd#DY&q6+XE*if0jOLJ0hA5Tu=!uEX)ufBi0-ca8 zp8gwXQu?L6QkQic`xi1^K-UzACr#C5bP0jDT5i-P1Qsdh&pRQFV@pl90M(uWRTX?z ztN_#H|{V3PraM`y0 z)G_S?h>P!%$r#Qr{J*stSEs`=L^+e!A}0)Lizi8sBmrqpJDDchsvMs2x!0L)3aKC* zi`!Q$wrW3qY_I3dno%);H99&@`p)*OnL`;QL%pz!?Pe#Ybk#Rsxux)J0TCX>b8^K) z2UQ1oG{~6}VcUgzfL8ISau8amKfsiz1>ISh^>)$StexJ)eV>BZ0IRDU{~M0W`|B5{ zZXMjCSDE{ZGs^cTu(o{^9WBBX&E;u!=Ilp%OfVhN8-`@vmB_+b8>m;?%L=U*TYg(< z7XW^2sc3Y6C8w}y&5F^~beK)>R&!SFBCNZ?z~}?=B?Zw4B8tIcTdqF{DcGINH(Jp- z2}qh@=yvT{UF%AeAxzgl)bmwNOmrxQFe?4}eEXJ8oL-=sH!I!En6i%|^4)PTKWTj%YKh(uj}jN3x{*0=II#=6YSn-Zw_k zI;H~mJgs+*yJdV`F2^VC{0b|@xOWG3zGC=gU_t7-_>phRhgIL9f+f$nG76E7EU=Ts zsI?m5x8g~E2kyHNUp)R=mfzG2f_5G!Dtr>v+?66>6L35+3o4T9D)CganwT@Ec|N#j zsX%}7bF?w)tZOsTHNpSLWC*J8Sme}t6m)!=^{^SgQ=_o>L^ZR}X2U@9&T!T!w`IB3 z5hK7*i(+;qAJl>`W~fleR+3d5r9W^sV77LfbsW!qZR@s~dIsb?{c`s*nZ2=ML$I8C zZN26)2&HFs)6d#5y5zZ;dYo<~xd+ng`kWH-=1|fM_J;1vN^~rmP(EeA?f=kZw~PPK zO>L@dcg(;njc!N?`0PnDC$Xv^z40)eAIs%k?BU4` zi)!51dtV9kuZfhXxcU+EVvH@O|1w05eywb3Vt-{(>#(ypiZrBmU81e8iO#UoNco)p zTMs!|*?S-(4mgafVw@Dad>Li<(ke{|wle_UJd-h;rV0b{Z*|tu_@=fJ;ulH8;64gk zW27W;jkO>B^54^V@5GK|JaIrEbI5q`1+UsUP6l5G9AM;LKg+l9W;cJ4CiV#r&|x8| zbz#|~Bvn4GIpN#DY0jx)gWd3!ErC%wh(@_+!VSr;JMqI?<9u`ipP*Xz--kX4S2-u? zc5xP|$)e{B3O@(bmz_NGdx?tv-?!uzx&jT-vsJnC+edHc*;sDC27l3kfL zbz`CUmgr^SKO3Wn8t_Sp3*nd&K=j4ldir)D!Tyuk+G<66o2>?8oy&056gjJ9eADis zX(U!7@4uSWRcG`+>F9g6 zT;tzubx9w^_dD|5F-_MjRdTAzuAQ{$T>WEj$sw|5wfSYyBU+O^CY5=wGfYf96T2Oi z?vVDx`0{k{>47lc`;MB;KD!|G0Uc~NhMOVA?aOcD)y_pU*VHTi8*WOUi>Tj|7Fv)( zqsq4$n!ngcSzimt7PVIqd2h=YSu1paMW88zNQgs~;ti+5!BnI2Jnu(ix4q$dHK)Nu zn^RTf(EYfm(fBc}Q{?Q>U4N)C=OVdeA5o?Igdp=4dOh>RuyaT1NLLzWg|`mHyxB2> z!+E~fvYj}Hj{;L&@#dK;a2wXXCNb|&{k-nIIfDU`TrAxrxAe3=kKqqhvWVY<#E*p- zvd<|s9ma4f00yo7TRVo-S#!j{T?&Vs3(plIa_g z`btix!rr4GvqoVSrGXYcYyKFVd~dt|8VNJm{~C!vWoHs#TpiLeLbfQMHB$~4?yAw! z{C%~LEh+rRs6YtXV9l7ikZ-`maVp<5I(-ygATxeTX4UOa$iXxqb5=Mis8_4+ZsxPF zB3`1ksr?L-%ikMwdSQU-S~O&c-+^}in*>B%UDg_RYcQ5hCX~o&LZFHxhMy*um!AtZ z2XOCCwZJwkzR^BNYQOs!<=;~~`x9BF=R5-0BQcYEQbp;x5Z%rQY420TiQiabCtJ9H zYE&3CMiuuWZY+v8-=6Z$viKZEquPfiytrCK(JE_bV~rY{E79x+1g5Y!Crb1r%&t}> zzs-|l(&)O1*Q2SApM$%fks7fZQg!+A^k>UAzBT*_mKt{D+LpfsB#JT(E1Lo44z~iIi{L~G{v`0rlasP6DyWIwEG(1<*0@dCwTHTmFjG0G z?ViOHQQ&7Yv&TK7R5~C}PphPTOU5mEb#%WG(|pJ#uOyM*@=({>e^F2eX7%0}4_E8M zVa@K;NQXLZOlY>X*}Z~G58!q*L@+uMwoj`ynf{J&lRst$j8#+KfG&8eudHu^ny zr5}UCNNENyb+i+=KT&=Z9ziqrmty=k^TSFr~cpU=1KA_{*hL$(Ztf zZ5I^doqOLnH)@G#n!CF=^WwTr`UT3j3#zqRtIH`U`mdE{s zZ3NX`GLf}11XfYMMc&V96B?CLWJR?;d?(W+9fa$p3*mnEcAfuZru}#-^~hJhjx%>1 z>Fya+PSK>8A8Z#pJ!;SnGY)}jb6cz?NpOXh3KaIipS-<{K*#^>VJKV*?w{Nem#m)n z1_z8RcjS>3xvsI}YHLuuN5GlHpw>O7E7&E)iN^u5R}hjwe#rLBUMH|IEtDI%vmmNQ zdwYGC;mV2$8W=v%3g2g&c$j-X zx0C&1%x!Hz2owGA>7=GRvkgM)e=T<+d^4RNsrfN&i7iqGr=;+`Sy=!xvEkRch!!FQ zG0pD{UC8!4JA_r&4O?*kP{%>peH%UjJo|wc{dNh6HP)ok3&n3nXSr1X^vuuEQ_Ob* zU*KSuZqX5bQgS?q!WNMvI^U0`vbx>%^`cYsquUUwv==1|v<;C*Isc?A9mU1|@i9x3 z8hNTzPkZL%@(N=*vJa9R??x(u_Tiuf&(w>kcK3NUOrhsOMJ_Vsj&^KL2im&ZSM9cf zs7?u=p&!$!7&gSelu)2f6=}jCIII;|K1i%8f=x?uhAOlsJ@9ONO5#$mUmUN_27bs? z3_8~93p&)`1o)Whv&K|&v zbB^wcteBKTOtE#s+XZ^m52QAM$(5Q*bgXx+M{idh6v#4TE$QB=H{p~+*EJh|YIfE| zlT1cfu~)>{-fY0c`sy^fc-BU^MUJo3kQR{!Jthpf+)G!54+9%=nz|Ho<{|$N00lw% zzRK=0eVluVRim$c47ZUov_8|w#WK|991)1bov}$lvMw~09CzsFLj6940QliS@{0cm z15Yx$9-<#GF6x@n)b>#8-a6K;W98UmtUmkM&&IZ(sC(#=lXdShCH8$TPUvZYdPFYA#A3Xxl>@EP{3oo)Ed)(oD81o?+QL-s6Ag? zKk=2J&-A`$nPk@g>aYGP-aUicFd0o5Muh`f9Ct-soIG<~Yx&|XgRXXf>8%gT>rriP z_xqDS`IEq*x3@QJ@`%5}1o1Mhc_a>zaqH*l{4)HRggspxX{&37Ne3_S7FWyp@sEEz zm|QLAONV5jW85Nr(oR_UES=O?uuXXMn~d_G|M{QCmI&?E7|;5A``h0h+bk4bc$}J= zeQ$m1TO*xy>{f#hfB3_(U?jb5TfPfd=HEQDPJjOS=a)bI(?1P?(WgH3saRApPU7fY zV|@x*jPKntS|{eSbm`KlTj!19mfwqQMnR1*6(GFteea98!e9R7Uj`0YW@(so%)4Pt zH=5oVFa4WweHM?5GdgVa`{;O0n9Z=}^Jp0D_cjIE6!_T`*nbQ>W04af4G78h)JdLG zHkfHwabglzJBgS}1-}S-Fr9;RWL@qJ-m$G*eeG4{)YDI4fA>-Bdt@b1rWDwZJ)yPl z9c9*Ghj7%~xL`<}4BAO3B#1~(x}1EHr+bD~?W`-ps;Q&;#ESF~>gJw5{N$#`F(kJw z;B4N4s{7Dx_7$UIK1dqS+Ol<1+3>_;L172=M;?2G7341R?kNvF_(1vL@*l*YFbk$n zA;FWtIQu1MV|+M}#;sVjqV$X(TMnH&D+b}cFqCdQ@6d`q6Vx8| zns2ybL+M_*x*WqGebmlvWzJwfM>6dUy;Y{gWeV2N$8a`$M;EpMTmqwVx+QYVPJu^x zq^F?6T0N_~hl118`_~st?v?4Rw7VT4&V6z|Y+CC)Dwb7ap2OjPFu1)8X8$lG-iM(c!5)=e(d$1#Dwm62GR3g_VRKXtMAgcn?aV5HC8 z{M_fuq_yiy&#}jAaY*qpX>Ff2RGy^`c+r5$QD_8gz)0UC%daRqC)|ht2ij7kU&q$L zsjoS=OlHN#xSk}in2L?YqhmXP#9i9lId%nexE>W%K12>_Z)L+Te~db0U^&fw}5| zhsuhpuPHCa^8UQJvq@hEdTWDR!sS5iSCXE=s~DkGZLO&7+W|^}I*Ln|d!iW|ZZ8GBWJ;i=?{5v`C{Xv9M zU-;se%8%#YTxLu^3=NjaoZ_&xtX{Vo`x*BA{bk&w%AoMsVuTY0j*fcw?iP-Gql`3^ zqScUX)Z*$De>KFsb$;F&`>evb3d6GMOp}w(NDC;z2CaDX^+0gaLS`eGVat^Cktvi0 z7hinwNSzr^<~Hh&FqvUjy=8uz{-(<~rpbH~_A{YfGj8H1+^iRw1{pB(_v~z$WY4PC z3c3uFjJ8)gS5~$7ZhFJhdF-2(*foOsXMgr*p`GXUDg^>E-H!cg?B&(OK_*z3#!-;( z9(kRNs4DdCcUQn6Gv*4hxS3v9Nw1`h<&j}j#ofz#G2V$Mo)|}e3D>y7aWB0>17WG1 z=!&t=uHITs1u8O`9!Zv~`ohyrK(5G3Q<=&poy}u^I&rYvo>lLe@s?lh1M5L8IoqCE z9lE5G&(hs=Sq81~_i8k_Ekc~KJknWury9P`;%}XMuDco# zO=mjOD=aYFc4K^n5ZXZa)nENp?0_sBDR(pNe^>q4ewwgGzc=&zS|7ss z;6VnLsW4@o96dI>oOk{&L|WCnRHK`9=*)7|F^j@j-42Y3?PMRi%(x8y;4o_P3S*!Gbsw34{sbUG;}lo{OxXD?(3fd^`pQrS0yWlLk%_TouvpO!j9V#tN%x z_Mlp=;WC-PZp!=!0uWgFaty1zW6^Lp==Ph-ijV#+s^JsMK?q7ZZo8!%$`*v}U-)X- zddr=q9~{|L&P29OhzFUxI}nQa6Z+@nlWp4?dOXL2%TGUv|H9t5?Q z)%C+zHQ2oI$+G>@%PKQXoe!g4I|FO)JJ@cq3W>InU44(^|DdPaF{Gn*512ldok-sg zVzM`$N!Gphtu8|d0&F`S2n!VSbWyfrP#N9yt#6iQ^LB@=2(a(#uJpo{p<%HJiScVb8Wc?>-u5i zfx1J&R5~7fs2szwg-DCablTu}R^natAK1kN@<;t;)#^LLK;1AC!9yN?1dW7&GLdpj z*v15sNx+=rjwvTHahW)8PSleVgB(P?k33Tt>n-0wHOdwD_Rj%N0Visqf#Ek#yBKjJ zOm}T7BaAFjWX%1m>h#|I;`Q-M;V?-W96!ge$xE>cI|r1I@@!UEiwkaxDc3E z^{(wc1eZ>%xnebbB%bdzO~m(^2X4_P`Fx-_%URn(y<0B*WN>9R9D7`~_C0B0e6M7@ z>|<0Vma$BD+3y%nXFr-QXt?K**7hDi|3d?pOoaM`x$995uzVn^I zz-PTEJP|kNhx)maZ`(1A`Q|r~xL6+X&boG$-*P4H-WBF}x7@-PcH*n>z&f@a3QOm_ z&(oH^%Qiw+^t1ei38#6Fm*@GDFcZw^_w;`z_ve%LnZR$yX;a|mfdc!Ffp@IdBAv`2 zzr)O|VEgE4>Od8bhIGJecCgaTnBK_*Oy;(mj%?bbX)w=Kg>Ctdu3)8lE>h;xQ58R^ zY~hUW9t?FI&+6!`8M9)4qQU@@*N)8DBrbmI%#ulB?cBo`rb%YX><^wcJuDpe9^Mxn zqWdBHVSwE8sO4k${m5(1>^bF#`A5Y0@9w`JWYwAkWfy0AA4W$$4cNY{JHbX{Ydi<%U z9lCSg*b?BKiLDmx?_c)-6WNENjA|0-mYjMz2KLS_V>|0HdxHZEZtRU8V9)*@gcMuX z-Ct(0x;_(Tet39S*@LFR&bwDbXQ%^HI0-F-gV_?W^NLH$rW>v+yU1@GGzhEnHiM3sQnRkmM$Lt(8PAxt%d$77@&fH9xS;H!H6wyUnLWg$MGakc%%;3;Mj1N!WR z`JWCRhk%Er8e)RBnI~7&6%N$x8q&o@d-k>yZ@&5Bv1iY{h3PI^6WBh0Uu+8?yn}et zRC|ba&3Dwn1daGk5(Y5DxS8z<9=kQjH5oj*r8^oUY$7PL5b7-WpYJN2CmdIeJmM$a zLGdZha*%a6nI4@iN-#hf5Wel71C;`Ga#h>)Q_Dy@pl$22J@^(EZ6=z&t%XKq6N;!l zb2+KCkE(4BID7}u)<|TN6H3k3=i253tbx&ahtDl1zu*k|#95*6vS*0nKX+qP3V4HP zPH8h_+m;RGYv28kvf+U>z^UKZAbm$qkNv#J`Oo(k4c@$M)B0CG#{&|IJvVUWS>|25 zqdfFG_H`}HL@`_w=kz;J@6sZf2kTBI!@G=(E@|OiW<(=z?|a|-VzpVORTp*MiktEE z^YT5zBl1uAX~s95cqM-JhcfE!dw0cF=1m-B)Krz0@s*j9`ExI|O!^nU_{CUBmGMd@ z%sjNOa?UyD1a1n(Wuk=Tin@Y*S9M((mYEk1_p<--AOCT{7mjMsGHT-HinlfcRO8n& z{s%w!!N}V^&aSGeL6^?*m|h&b#MksP@@`uY&t=P&MH&SWGJ7)PGIgqbn?|P)LcxNo z_A-q!y{;;28^D!g-?e98{g^gR)gi6;CXB>sf84VUn{C5A-!jKZ3-NGoxWbQYGfiBZ zem+Y}!+n-Hww%(%`crsgxLOu6$L6myj;rnFZMvf{lIxWk5Z^#!&XsS40*2d8+%s>x zS2&{3#%&BKlrazM%y#y+x4kX4bLgitz2B0!*}fFQs70YbMZ<~WZkWzA`D~l8J&SwN zMp!!UO`3#f`=?ETHU$nS3hX}yKITvi43f|1=wO^KG4S#m9gxf(Ouo#OEAPWFl~Wm% z&N}t9a>U{D8K5T8fo`P}+goNaP=;M@I<_O|%+E(P`H(|qVqgwN3%}^VoVA(R$lWKW zZNjJXB-nVWWSi%BI_(#+H{D6*lGB&ODvzDzk-fdB#XnT0BE5D{Jss(<67_|Pj*3-# zjn6Frhi$Bmj%Q%lgSxso55vIrz;M0t<*#5uC?4@}26-sG^TFAfVA z9KmWU7U@~JU9j-TVBl3b_jtFk#&3E%Z{DX&oKTjY^`f#EBWoTPrtrahdr%LbiWb0h z=pfT?Txshn^VF9tEysD%Dqa`H&L(0EW|;HHS*d^Go8K-QZoZ)` z`qej-IVYb+DX1~j_rqBTs9rfp2Nc30s18JA1(JlLsQ?k3eZvh~;|3VfyRP*d-aI>y z8DHlB8t<(%0Y83foJ=Du>(G1P#iJ|WK0}jm#)XlNS-)`gHVyO+=Ol;vWMt(PKfT36 zf1iyX_tt~3p=smc0z+vd?~Wzn29_~t6Q>FsB2fAMZa{rRg5w67UM z|C*-eTl1<6wQYG%>Br*y6Ks*%%~q6MJ3L_mdn6q_*m0N}Cqo=_^iga_x;s`EpWr)# z=ZE>OFl*M9rS7|~c^GEC;18POn2dektmMH!@AjVJ$`$XFO&E!5elr#81N%2{`9AV0d+rf(oXa2^roVTYVOOh-BNN-q*Kpru$W(b&gr7#rvP?|*+V z*fMi6z?p}1kinO^c9r}*wqmKy@2aZvhhOHT8&}?Crd5#r=_gL+pT^k~G*~w>_U5U2yk(X-lwt4d>kHvTZ*OnpqyEdBpG?wP0eEW2e>5Ti41FNHGFBxz(DGrlhCE@84hatjcXph zn_k*^8K%<+qxGoZMKyNaCqMbgk@$&+4E4u8_OWO$?zgv1$ha#o@F+r8_7w~WPiL5U z>x8W!NI{E&rT4z~y-`=GHgB6yFrXa;o$XeEko7Iz2`6!hNbR3C1=bmkch##lpFZFvXlv6Cj2 z#V4E?$CPy=95CM5NLD)nANEtjSgDqFB73svLCJtYMD=n8fl$MQv6|Q08}9^Q-F`wj zXgUVwL=M$)Hf2ZHLQmulK!q2~D`n?7 z_V$ZUi&>oX@>i8fOJC_ZWx(ZPpM2+zexAV>rXQ0y;Dc)a>IcgD+wLw$yyllm*PC7k zEVn$kiu{wEVWOA!X3R_%=r;oz&(9=IBYHeOU0%&Nqr-nv9vLt1O&C5m{qs5RqvPg# zhI`kIE_;U8(E9sye$DXF&!gkhN&;7>Fm)OugQPF*&>Ezk!(b!dg~q=UDsbD%V-~wD}d1sD8Gz_PJdSgRati5d+z1U6;I;{EBYAj8s&0- zvkZLtXMdD={v?_jp6w->UEh5c51;>U_U;5)*P^-;{&VMnnTw!+at;_AKvYzm;|;+n ziDpm}ll1pVq~q6_la+L*SNH1Gu1wuYw<~Q{Cw}R~NGJVu91|0VIK?U800@Z8UJw~& zkQwfH?*0D1{k;3!m(!ORQLX{rI_G(-o~m8DcI~RCs&>_`D#DSznSeVtH&<%T4nAY3 zBopWe*j96`o{HBrHg2o5@R$T3*#7#j|9Y)ldzX)^qCRh*vqxC36vM+0omOh$!3S#K zR_WoiKi{OnnP;9^e6z2+^T5Un##sX3tp*dq3F8Dp^gCD$T?BQwsAyZ!Zyp=l5Go0b zR*7jP*ne;Gfw1VBR6-y)ajf{Fok2s})8)Z``n`a@jX#aMZFDU)!kWJ6u=ZnjUA0Ak zR>H6T>aW&>g~rglL2^MW6wmE4nf?>_C3j9kG^XGfAJT8vFe=_4U9C-L~poThoC0pb8DKchOlruOZR1gjgqpI;qqc-I3 z>RnNxuYo{LJzsU^Cx=^3eO*+c18U%45XfBwr{NtPiJt~OjiFa3s@Fg=_)1MWZxx;} z{t%@5i7+$Hu$NDFNL~owpfV5~S9H^vMX+~x+RnlaX3}{`1HQzs!C-#tKZK0~*b%PM z58e`kfgn69w9A5TR|Y)rnFv^x!793nHk~NHz$fv_L#c>Mz@Sv;F50%JF`~=Ltd-TQ z%2M~w8pAl?G(gUq!E%Xn*}uIas`AS-Sb=W=?O8QnJ*Kg0618cLC zwLQtKz@Ol&1oN9zM`zUgYlJ?IY(rO4DzcQuN8WqlhYpG zaP1y}Ccrc6Vb6iF+;`Wu=?n|2@T#<_ZfQeGNDt814)V))>>E%I1y-2)n?L^EJ%MXC z=ZJgsugToB=^(e=lS3<`C3M`ej~|}(w3BjWi`27?y`EKfZxCu=xS^%X=UwKJ{c=DGe zEBI~X$v0*2T)gRkhqx_Yi)ER-a4!{Vx;$l-FhWqYl1oT+?H9gS{U&5s^|V)z2kjRY$CCNx}0*EF!uz4~2C0GvmOF0}ne6>^%WKZE4>btclgmQn_rgP+RLjyJb=Ly*tlM2d*C$uDx>D z`SvTLCO$Td)gX%)!>y6(hN{8@2%j{<9p1uv0y9<{Q=E?9alv;-Rc`onTob%#^fFSw zb3#Yi`H5ieZ*jt4LMu2l5xS+-X^-8DXd}kyFn;3+$g;FMyl_o^3Qu($2`B6qW$@?K zs5IUyocbRR#}Dkt{q3&tGkHRwubc(93;i4<=UHMO1D3PREufCKi|IvAWzg@12;gzw)x0&M+z=5haD$f0wZeJ%=Z>(RF zI#%sN;;M7%cK->6ceJ&Y>g3p#tH=cxKe)A{3u*k1J@)wFt3;fAl@IIP+?+km1BwJLgD+PQ^n`EfO3wc)`vZmBXMy1Nn=?Ui!UL_&UA ztsZg9gUCc{(O&ch2(7{4ufL_r-=tlK^WkPXpPjF^SbRdDbGA^5~+2!4bvYU@@+=jP^W4?SUvFh!W}ef||8KUV(Xq9Si1fu?~KdXpPy zaf-P8^$b;gyy`r#@lPI{qE1+p7TT@0_hgCF*+2B550x;82Er(Ve(~WUh@;=O2K>PT z!lXQ3dF7QgsX!Bfpi4ldJwbRyJNSO!ZTh$$3?nURFw*CKVzvsJ0O4*wbn|a`d}5l` z#=&krI!v*Rtqdk#dP2u){H9HtYTJi2v&JUZnA-O59~k`Fl5PY+|V#l*(OjT;NTc~F6~ zpBV>c9C+AsV6O`BR$O*u)qTaTs1EJSieTF5Wm%DTTCl;A!@YJz;N16_&l#TZUw&`c zZ~NBT7fx+`We#G~s4?9*YYZ8kl|A3pn8)1)oTtWT+y-9x8xMtxZ-h>(^ty`?bG*1G zomL!U+~DNDFzM9b)L0V88^1wfcbE_ByDn0!BaaR;4rNRe4H! z;5)7K0vSh+gB1hJHo}<_{IeWuyt->eR-ls475F0_rlTit3xTgY*RxtxtG5Z;mSy^N zStVI9H=iW45)nu%_uCV;GYCxvxMIzIeB5%+e6U7#$LmZONFNzVpvb9wEf(F0E^z%ZirAi{-54<~5=2b2td1vLRuOo5C)4~^%DTjDf-#~U^LfXxq znTIV0x~*ZiQOBlUtA2Et0IKewY2K)3i>vDDint{h$KjpV1fj`X@#`C?Ky|MmCa~J1 zY;VeTqP4kN@xTZshvasKyKlQ|xb~Xshp%k9Ds9!4Tw0M+&=(wfYG9m|%P3Aceqx*) z&LOA~c9vx;)*=Cth>^$6u!! z`nBp~CwXlC5IpR;wn`|RfI;9OFisoqgj}lXaDgMlSdI2>MYH)S-n4rf&$N3_byXRN z>wy=Hz329>6JTiqm`otBgC&4j1tnBlF}1h&mw)+}YqeXwvGN)OP!tr72HUuO{`n1#PRY)Y_@9x8Zi5w>{^Ccq_exdgF=~#NcAk;0ihdJ|Vk} z^qhi!>Zzwz+UK5o?(mtc3S0wz$m`B z3|sj&J>|IdGeqa41<^4RNjv|>Zsv`IR}Pu za=S7SE?=&rbLisF|NPGvFKvI2=aWx9xxxw8cu2)voo8%6a38$%(C3bNG-I zgiu;xd0(Ny2A2l83_+?!T$OOb;+u4h6{&<5te59*s}z%+L%gZEwo^yGyQ zsSI@%HK;XEPgIiz>?XI;7_pDPi*)97+TAcq{ifgB-FC-m`=9C`xGoM+r`^-b zdaL71Eg6#o>53~Q5%FhCCP=Fc z@?MiF1wW<*uV)cQ+)GU`PU4SvgjbyWuxIAs%Yh#FjrLe~$EHh-NqwjfV$46cdPYEJ zYrDsKH-=aBjI-*Kc>cxlH)%6866Ke$TK%p@Ls|re(Qj7{#JuXOn}!d6^zVjC9&_n1 z_qd~nmuH3Q$;Ur=xctkP4wqhW$#B!1H%0ilb6B61_??0G&DBJjLmp#%Yt{EOQBpty z8$jHyI1NzIgA63=rAE4n>cUZA@_@{kk^ZqA?OpaOn6jc>$9unp7kq|L8|PwL5pT7s|r_yiv- zrS^%t2b|Dk1sY*znM5U=!-Dz4qF& zO@=UN=<@3A114GsgoJpL5Kc%(C!rS}wpD)l_uhPLel)+~pLToycAG9!G|-+PY~#1R z>{Q`RfZ!`SY%u_XhxUy(-DrYG9%(8tG!#Dh$xqgViL2p+!C~@7U337Qm2+1LzVVH3 ztg;r5wuVFK2=>Za-8Xq-^&JlMm{hP`LfwGNO$DwnWV-CxR^Ck@xV^w$c?T}4Q#3M^ zl?fJQMIn8vImsrW>!Ndq??Zj?q&-UBbK@y*CFPJ7AoCtM?F2$y^0 zyo~SY6|WxAvsS%ahn)x&FJXjZ@4)0$;0RFGu9d47-{F@YVIG`4oMB3Zmp`1zL#e7e zm=4RNiC6}a+->u0H=CIb-;*Dh={Vmy?r9p^-5s7hx0_u| zK*D`!@V=Yw5pLucxUn9Js@{!o#jnCL@@`j$C3vi1Rbmjw?8ZH&TUaM>M05NIpQ~P} zJyi-)j`tW>jaE&wWLTOL{CB0EFUxA>E~|)RH44C#DO$#NSlUdx+izw+yf|>5I-ji7 zcTo0N`s%MgRgb&s8XxThKXt9mRE4Q{;(7uzs-;if!Nqg@%y#>g8hq+2*n94|YdH6d z=L}ys>)hPjaq#ez<4>$r&l65KaX9u#Pae*_;N0Q*uU$D@f6KKsiR#Qx2aa`q4P0$r``Xvm3OP7NSi2kM{_MsBzTzD*2Q+xBvJ-IGjIwA|d;%#vCJQ)brI5+6}_s zQden`IQ)>GI^zIA69V|@YzO6NGRK4hjRunekAM8*3%)0F;8Iq$lPD{2Xf%29b3gZU zb-kPkCf|zH{=P;It^e|0{>w^39%xml3$zN*!zh#f?xfSE%c|dnwcoV6!|%^-oE;Zj z$M3NFi#zk5abU)QZ$Ah2o&Z0Nl=8t72(5T%bn@igK5YVz)k}jyvUH7ma+i6U;6xzg zTm99s7}O;y;Ug=_8k1VZ=U0*77}bX>Esa%h?y5oD*l>}J4YW#Fo#3QOzc@hgk-uNe^__y97vVl}JTN%=pO%K1T`%TVAXP;^UY$s)qRM0Kw$Xq4YUj zukf3cD0R^YdnQQmQAW6AE?wI=ARk{7GDZ7+Lrf4lvr)0xH{^3DF_ zAI&4ZBW#ruXX+65eLJSc(e@apz?0wdodn7Led8~Q2u8Sebr)x(;# zTXO4y?LbkXk4Dh~&7;~3G!iwody{G(`it)RHsmc|QXby~dWt3)&igpgH~Lk+C;5?= z_)hXBms4hv?$jI;6;9#olyYI!ES5m=`8;&z61_m5*8BG7#Q_kVu}m)$&Nzu^sU zSoCWlqy>=sMB2kk)5Km%r+4@Wz6=2u-Gr!(8#k7aLwGv%)KeGl@kS3pifJ0CIWtzJ z`H4@6hnoOt&-~onTQ~6Dd5Y)j7BXm<6 z2W!RLimWg~sg-#`rGw~99@r+(X?Gr^O?a2LUR@WrPs=9^Q^h7IiYt$8yyHvTaB$04 z`+N6Ho2Bp5Vc*Ezc-c(b(k4_-o2JJK^>6;>Z&uLK`1kHD7I&irN^m~r6S&w<^o^|v4QeKFP;NCRNFmQEqA zu|0?YnZNAP&cKPd5g|3g=JNEVJELO0+GvZg6=VOk_yMU$!{HC25n|%bfNNS!UjI_7 z(&A@8m~rXY2sIuOT+#qnCh?aU^a-~*9S1UM(m|RHNK*jNWGS=UK~=;gouWq}QdX7Mg8OIkQ-gB+ke^tU4?I$a z@hBlT^v8)+wN)UQkVo}%vCQu$J6$E(hMs$oT~qPe9~s}Q={Sotn*1WZo19U%V<(3) z5UP{6N-XZ!RYVX}*vN)&HvJj=!|2;rVpe?%6F=_y8w2V)T8ulXsH{}W z!U0cB(t=Mww#$|>_F*BX+L`R^4z9EWCPf!8O%)Qx?>rvjj_DS$ngaw*=mc26 z_sL^?7EQGi@-=NLfq1YVf(GxE8JmF7WlJC-ICzA6X9$1bn2y_U{0J{#8xMh!AyD$` zIOX{bewwc7IPGp)2~|w5E{h|rHdfR7kTQN~6W7Dt@mr|v_;6S)ZPN$cHBD>=Jxt?~ z76Ff%d;6h{Y2lB%c}Q)Zfv;)%kstYy^7GRN;BgZ`!8Z^1akqfSEg$So8%~o0R-R3^ zbh`Yd+4+ErpJz{I8m`l4KM>RL+J>WX%47Spo1QK+upF*axLOGJ zE?(Q>cn8yb<8J>>L;U_8xTOJ3I$+!I>u*9DU>k>bVQrdTafErt19b*1;!VdD4;=Vu zH@`N*8sD^gI(#XP=`ikTd>zK_bf^7h?imMW9C+|J(Bqp2FNG=01SMmlG>KX19oGwM zq*U!2U&2Qk&n;Vr;qE(zfc^MYo16p@>$^yMcW+{N4ASp)zh-+;$RMGqc8CLV9EQ!tA( zDYr@k%!Fv~Ri5#i&THWclG?MM4!Pk2wwu0$7oG44m@l zL0bH5E4>8(-wCRH*Wd7;dEqK)G3R2oa1Mam>OL5pmZ=wQWJu?gpLN4=)b%0E|5j;>J&_ z{Y%wcEmE~o;j31GovO@TPg*#~AytkkoOvtFCpapeP>(htIIBGwTWG?%b0jXl?1JHj z8*fMxk-_iQ2w^L--#8jeJJL@?S19wBR=IW!H{E_iCLXO0j`bC;Rnd|%$Q?0`D~BW9 zW2)%&-KgM%@Y)L>I%t0F%*18SM+zG!fwd5TMVd0m*I;yZCOGST3FuU;f7Z?(s4uk< ztxmLXA{>t!P8easJ2xSvP1hyw;W1SF931-AEbm=@9lzs(Z{fOWn#R}e zPOok8;1x$2@GhkjOn-CSoi@AS;pq5qgKJne+SuTx!y1-9Tx^Da)7a_p=bnzwJu@>7 z%s8-jIk1-nctTMch798hh?Ar+;C;CJlS6(As}XKP7MAg zVwFZKe;ST%STs7_5Q!s&QGJs9KXznJO%?|pZl=`pgD>EV4OcZz@tB55#H2MgaN-pV zzlk6(JzZJ67HI+}?QR$~%GHQg<2t5iV2JLW5m<{Zjc1UI_{Z5}ZUh?qjt8af?lh$_ zrad;~4U3}{QuGu`p!aV^@X#KR;s+YICsE>-4xX}?XHsR%mpty~=a~L(9(W%+g=kkK z|J6A(-U&`+IU%?5T`9(k+P@B|%3U00ik{Kqets8Grpz;8w1dXPitJMiI3Xl8BFx<~ z+?GN9!9Vf3VZ+N_9-lE0!*l|KK{?ow5%-hMRB-WY0ygcw|CkRjq{vi0MO;z6m|ntK z)qdpFq#PwRiT40goke>Db3oOp>cdWDtM^pD`gSW!JsTm$(Ee1%b_wfzU)loAI>;Ib z#x=GP@Or>&m($h`+lSlkxN*4k_M3+t+wu)>$)47ni;`VFb!zuQ+RBB%AH3m!^eH=r z)oEW=uh~)G_ReS~?TF^kE>BHnP3Q}5f_Z&8lYF2JLHufBLBE7RG)!nhRH@qss?HM; zrwv$xMl~-(SxJS4?ZR`ie{um3Ug^y{LfLp913VUMUWyX528_y*8 zey#h%)pU;is`4LkdbbyvI<PJowRtDM5xG+hMvx4!kQ!%zIgPt*zH z)i(tv10H^9dAJGa_Ep>K+$YG3V*-ExP6#G|3n#!kFF;u1ldi{@p?T_ETL0-k{iose zuYY}Mq z!Dq?!pnb0lRdY)^<0IA!Ii#fgcYn%me@|5!AOO z{>p6hUtX(g%Z3AYZX31;ds_Ccy?A4IMV&JbE|egVyrH3p1o+RyObW6D^^jEaTwS<% zFV-PdHiUD>wELf1c1G%EzyF*$pbk|%O6Bpr)f1mZd*YS{evEpiZSeh8+cD)Ipn}n+ z`>QsDE8m@iITteNwh#e6AM3DgRfP7ntA_1sa|PM*2v^&84r}*WAJ~<{maXZs=A`2UhhRl(v9uA;i&IFA62QwmoP8Wgn4iYpU_?z z@FSikcx=wc_x5K$1kH4t-tH>H(6Gpg#r*T!H`DtG9$6N30r#$5; zB}C58&)4;5t|hbIo#}MZF>T;*0{*}IcmJ*gev=kxawb5h)3i4p@4xU1zfh;JyUMJM zlkXd*Y3ui;>2{oNWOux__XPiq!i39z^MDZALNng0uf6@CdD-^T^coj_6W*OZ@74s@ z(K&wrZU&t4cc`F44NYz=Jzx$TI^1O7BzlJ?`X2DE^P~>o>t}KupfYi-T+`M(rmf*T z1(Qx2H*Q?aD;(lqeDTG@C6`=M_0-jY3>^4j(n!7U@0Y&=`5d+#kG4jNsy$SJH*l-CQMKHenaG`M zR*wQ*g^vS96A5J!w+z*DD>nJl^;H99IG2~@X=u^95WM9fLeb6vx)TO$@E0%i#0V{u z)p|5_8g<26a8zD`ch|zG;#9B_l`k|^hT@wBb{YBtmlid=OlOsMgUgYoz>4QVTdeV? z5qO`tg%wNz?RE=pn6mR4VOtvGp?z>CJ$ztjAoM%G2~P}iIpuAca`FWHeVsG2dWPF zo+hTgk4XjWfm{#n#&6&EuN@t0-y(d)@m-DWYJFf6yrrt{o6FzMv^mRjkfwX!S1wyK zY`%B%ur>SJS7sv4O(nZ>sOQdXjai=WcvbF;*MBTu*qrZnYzwuU_oXX@SA&%HXYxT5 zz12{Uv=qIeMPD^iG15Q61;$KS=$>Ljvm@;h{F8^TG`vsJ;`LB6@@!C#hfLf2U2o-2rjupMQSsw>NR%P(25tS(*1v zh$a|2wcKhv0}nGzcc)PS`Ehug_=HJ!qAP>uzxdM+Jd9O$!Xw(P?z;cnm1z#MW2S{k z@ui6`_Q?PD|Nh^HjT<+XR)MhQhj{q&oib>VzPvZhO-sK!81UDA?bqsre}bB3FwGzFxTpQR(^~lDU;gD1{GDas+yJ~V0fRs4l#}iqgol^3+QP?o002M$Nkl2fFHN2hj7y zT$A`eqpA95fA(jK^~KE!;yB>Y;e>zj7k^PV9GEz8y1jTNAWWupzDyLjvd$!vNhK3H zZeQSb^1r-F8-JPR727k-s{)w)%s4RPz+U0N-V@-{AJJlD>M*+WC&c+Q0a1a>Ai-Y- zQp?jwtjem%U5`C{Sn<+RhGp9qhFjD5-<10?cbch8Lv2-k!(_kO>Zwk&kWUSmsG5`U zZoBoiQcp8Oy=Kxu7VJ0psV;QVxNqCKZMfm48>_Lh+ORfw5)_*MaU`0&Qn3#q;QgeV ziJiFoB774lYn3R$4xeX$a&Av&|MlE8d+XP4E!Fw)0F&**y0zON8sPua@y{S<9C)~LKzp}zz}AEJ z9?&h?)uxYvQxC3tz^8SqrY_%>xxqz$o`ht5MZQDV$?e*;GFm%n_qUta%WWCuPO#Ol zl~(t&hdImcJMtB;hAhVSyTf;#z5;zCO=CI*l6H8^hsj~Wnpl&8y!LqUiLbzrl-7Ej z%&V}9Fosov6}{lRj+vXX%k!c2gKyJiU3^Fu*j5+qi+0~N!Gxcu-R@5R*Z=xoFADJZ z+3MH0;GJol^^za{{5rh-AE-Tzr`-f9X%M^!@xT4szrC1d!>F(FPq5-g*d=&Va~Id? z@K#z0c7$T^PJ<_~cUb`N~2!3p<#RS1qPd&BLCyYv0Trh1r zIp2Ng1b#-?QX}5pHt1`5+uiSMydqG4?Q35f{@@S(pz5f}C-=$|c=24lZPRhRt0Va4 zj&^1Hqd)qi#gAY7#a}EpVSa9IZupzO`J3VGZ-0B)#+g6;(?4DObmIU)o>9-F^Qu?9 zs`zfQ#!9&fB;`Ob|NFoH`=ZgRxNppLg^YTto}t%7ij{jeL6`(mAHXYHXFI58%FxXQ z%GQH!^~b9Jul&ldRC-{m%$v#SC9dIZ^hqB?2jc)tTq%1vuIEjFvVn>TN%Mrl}9u?|tvEJtx|~ z;`@J~8Y*ELFRL~ySB@%h_Mb0An6^jT-tH2*Lrv|mj9TUw()fMsqaR6Uuwppn#ivA7 z?Zk8%qgqj`?;A9hk)^oNWaj;b>#s{EyRJICh0t1^Vmg)8X$-fUy^V^$f#$k&#Ls!o zbB1;6_rV%Hc=6-<8?LQ}`kJe+DYYpbw+8lyf8>XU#~<_f%0IfmV=LY|mAqE5C%hO5 zo8XL}u-Z$XC{8YycRau|S_!q+KZ5|qb9C=qzUC2dPCX9teq=ExxZvzHj;3^}}aA_37%Ip7o-W$MOY}Z5p1jJ|>F1 zIvOrG;2H}A;LOZ8@W|zW=0yAYPkQnN?S{*@n|8zpX~L2j2Ysvf*5uPetV#8vul5G^QN*orJ7>@SzAx?Q%61?CIN zvcya?SRvpLA6%{-rj?Q@lgWb|@^ls8Oc8x4r3nkzQsWh}Y&yU19mupmvvjC&fBK5? z(EnO1JUn*H>Q92}laxDBj3l$C(AC2J8&Kv-+_;pt*#fhRbrPQgL6tdeY~4@ZT1DLB zzUk(#qdVCYPjFS(V9MGTgH}T-C+Xt$>-r!ik)lp=s;nC_2qG{t`GL|eIjz96_$mx1 zs)c*Zn{E%1dP5_)byM>I@_K(D*kW#z=QFHI5onAHz`}SdnBCAm8e6{(Fj;5NLjBW3 zko0k+?Cfn3Rat4Tl3m*@UmKdqfl%MG7KCZz57~^RMM0eu8%+)jE4`Q&z!QQQA=bI? zhbUb)h|E4;*c38N(AxQVDAiw(RUD>Iuy+>MJNbKG%RVKCWK@4?^7DD4?c6gs z{8%e$c;Vlu0kiCGfu_OObM{^|L%G5~MuPfxEa#H_|E0!sqK`bf?@sQ(z(FnDTsnq|j2ETibRqF*_8 zg$gavwx35dvFtQ<*9HxFD$~ka;~in_*+47oz+3a^8$mj*6~i5C>`jtq^3gRx>$8Tt ztI~S?y`K_zQeC5ioqhp8$V#T-1O9;0OLalD&D-nt)@vy+Z&5u{={B zin0yo3JSEsJ!W043vPep6u0}7mA?bs?%a-)7gY9^lL)h9@)j@(^CXrkmPU;RT)M-2 zH-ntt%|Jb83g;?vUXI$lA19ISXW4&!Vfv)$OJJAQv`rN_4qHb za>IewC{4) z<*Qc&A`9Byyr5VRf`_>=q%`gU6!Rn+EXqXTcH;69rrc8WN9~ z-3l+t+}>Bccc9Efit6kirZ-xPUf#9za*Wjf_~KCgLUTD95dv#;V_h*v%T+K^IA^*2m^|Xmg3ZM zbD59*A3Bv&CzrmLvtM^e?Z2a0f@k%9zBh2M26vN=({Y)>#)ilxgu7dO1QHp3|7Cq9 z8)3!fbLiKwGbrXBj5h0>a7^k= z$7<^57B~KmjUKqQjEwFD%10?H+t0XM%puE;fazAEUe+shGTk5e6t4rVjBb|cfV+7c zzn#9mzs@q|k(3$VUiYK+rcqMn97?JGUM+K$z^A`=?QT9gNV{%K;rCgtd2eQ@ukyDh zPV3xTj;*UCaEczz?{Sk0^`~xghQgUvKAg6zn?NA&J0G;ag?rR5){6W}28Be~lm6fg zq~JQhohhTc*qDx9LgX|H|01Q6Xeuk(FY!0W%Lq52Wz_S!QH?hnq8ma8*fkt_2{N+$8j$F5q>f!{{Cs@lxG8?mI-SaT$c zM~RsJ2KUlu7HFti+uC{iEUcKfnUjEk=G0kZBU?_$5Tu;l0Yy1<#6w+}nQWa&8DH`kC`RzD9Z zBT2Y!d%q2@W6C}mLhiJ;*$@u`pfs1?j8%!sWuL|sSZ?d92B0#qKQ^kV3AeH{Y;RHQ zo_#o;%uonj`&E}#g9giYJjC*!GcP5U>gV5%dxg6^vo1JVm3G9J?cHg{jt@pMWql%G ztST=KJbna8K;;3)XIY;HFe^%)ypH&`u>Tlgu&?gs7N2?hye@^}WStF>N{ zo+rENv<3v~jk)v#FVZKvy&YIX0b|QA2U*G zy94+guAluaqdP|B$vd@Ai|f~#?CR1|g<9+#J&4SGs(hI$a@Bwz0L zl%C~Xi(mG5+`GCehj;DohpS|emS!WZ9KLGH)Zf3^hhyc4Yu%9k79)lK#^}o}Z0*-h zf3~!JT|~E)OVLZ4vU0nc@~UHol^3j|M!PBJ{}lQjlGDMlki ziKq9!bIXV{V0O?lyRRcr5 zX{3Zzss+T!Z=@I{q6j*hRAS2?6du14l106QKr}CqCecJCG68~^<(-hq0uZ7 z`}Q7Kk{GsI^58IvxLTWs39em{3-c-}Y!cvM@#+*b3 zKg|K3qSN%duMPI#4b?j5YTRx!$aDl@W1J78)k;_w<0bkH-+8K=O)xcTjYEkV&@#0n zO+w$UN9*N8A@J=nM}rW21CTbsz~r)X9dM0e_;cH^Z)f(PN)g z0f*0wkx90}>hjeFih$MeQ+A`o+t@gW3daT=q$pbK!i!n%RP379 z&HB_;We+cKkZWi0+@o#tQ7QHdLYxJf(|Assc{_3JI>CtE#{-2M=$5>mK#f!FrKCwj zQ{Kk)%@}4IzNn(1AbYF_M`NkvOPsP`wn-G+ZjC5N2gO(fxl5;k&fP)0CmoVek|T0? z`b3D5m$h#1;tWyA@wjwNKT!I!EFu8z`u9)rT^DU~S=jvET6EBDr<7@_fYR#Y2D&;Nb;Zz|UWc6lR%B?r%B# zx1BzFk(uSe6i>jBuO2SV)s^P0T;=c3O;?&HYj={$!d(0E=pRg~;_`)DCS!yy&TN8` z2vfy>pF5tEOfoKK>(vbEOV}yOrSVmk%h@KB*)Hp2N<|%jZ+fZL?r!`I> zd(|e*lLMgHL790)YU+Opx)^dJA;c&aU>`MSx2cpDor!kSrHUp4*c5k?)2;Gk04?aVA@m!*<2Xl5yPl9iE z_rBv!rVvukZdB+GO(EFbEzk_PrA&ac{OHcA4>4~=Q)b2Ww+bG&w8Q!2Kg>o+m3Fw~A!+P(fSx&1$N=_nKo@hTLD1<^Mt>Nu{t(R@fx?rw z;WDK=dUJ&avB-NfjFg%0_a7@^%g3`^yJ$RFq5aMRK zowMR#nd#E^2Pi01M#=e&#cG2@bn`Hq7&0XBBDwAO*RM{DGU7;CTA#mG*x%t?z_4sf z@@mDL5Ig>*L+1cuZwDG1v-o1FHB@w`(1v;GZn!)B#^z?M0F#KIZNQ5=$3GtOON4tT zywt~Y=WE2Onjw=Jr0{0{+=wLti3Nk&a&kQ%e)M`q)BnkPJ4R{V3~fqx;Re>&5;M#e zXjcpLbX>i2+T}eOaVFnFUVF+jJ{){{^A~?+X)Cm{Kg3;wJF(S{v9D;d z#i)pi-fFe!y$|JERIic(d2=A#&I!^w>biZ8b&@=C>{;D&Ti?GC=0b^1kl*A7QZY8| zDCM6$`Ic8pQgI4)=VJ{Ts0(`?}Mn8tQ;3hP1_eHt!{?9VAU!^Kj*llro#pAC-;rpPDKwANpF=--VY{~Jm z^v(GbJMaoqoXCu;sE3wx7Bc;{OK}#Ze{m9L>kCmGw>ma1?_csfJ6;BM0ci89x43Pt zp$^?m?`31^ERPTJfOY}aNM!JZX+x4no$BAYKaRUW|`5k&vN zicf$hzY&Y6TI6oD{A9RMtCkFU>E@nK6 z>V=5_Ww{{j|F=#J8zHS8T#~R?bgPLbGX zu>GdjbY|JWZBEXTzom)ikC~|Jo-Y;u)crrHA~YJO5pg*Xr|?N^!X0}w-rAbSO9 zp$+ff#Z)H{FmuuIks5wQllnvDNrBk(3sElpRk4=6@u4yxFe*&xHe`zVb)w(2D}LK$ zkfwrnNC@X?PjK!l+eUm4xCnZhc_dad05;$_;H7KRRb{9<=8iyTP#)!G%H%V}?{%aI1DFa^NMp@!)LFf6Q zL09KjUXAbJ1s`>unf7}HYd-j4(WW$imm1J>^e5&$0LYP37&-M=S?LAXv18=F;aI4= zc>P!#3-6$_qL%j@)tBPz=*4}Bk91V-=5U0Wi*7NH-=~L^s4?<~o}4QFG_8>t#eYng zee`ku8}N>;*+Pqm)2lY!!f{TD7H8cSJ5eT;$$~V%mwtmxv}uc6t{|`Pnfx5Iz$Kji zi`>C+Tg}|qAyJW4@1;-ceDhZ6@+<>Y7)bNr!G3+=(Gdr$A7G-_b61m6hmTjY#woPS)vaI z#l&QdkPaDJ?xT%~lVoIjUxRjrZH%#eOi(Ac=gm>Yr z>$q(ieLd4^Iars*C5XUZG~V_V6k2n*jnRfHHZ<@30Ea4oKS?S_uU?lw|D*MFnVDS7 z=fGa^zIocMVdIm&ZkkT0w7BM1DZq*lLjs6EJ!ZQ}VtIi4@Ul|ycE01EB?m&!glx}U zQszL)#g)L*nrxAV+Sa^;a#6WiGY(UR{8Hx^rGR%jM+FzQr~gp8JyZIh#Z(jUd+uak z5eylNDl2P9Jf3t>uYP&-v@~GBHB8yW7I1Xr{%h_Ypp@qD*T-%vuB1XqZrgZMbi-Gy zF>RsRdHu&(6Q)O%0qepq0H|8HS+=sd!KAdvDL&J0XZJ-W=4~Y&*}Z5OR^Y$i>Ztd7 z^zOij5`Cll&7jPtuTrsAxf+)TgE9=6Ke#54M%3x4>{L9RTtzGji15U{OPK)ixs2b7 ze+vYa5Sp;#$D<7+i=)^-)|hvgXi`BH1qMJ0e()}usC=bNikBz+hDDG1oVt#Y#cWrJOy_zV1$B|QTYQRIC{i~G!A*-Dac-K`wN0|E&6VfQ}dfmZH@RElY?z-dcuPwgg z_CYmX$tv@Zgw_dEt5#I>v=m#*%zKUX%#HBs4nd(cqB9$0xC%PRXuGWZR8@iR@R-9s zAdvH79~U>kq73$}f-ZK=&8?nQVVc9Zosm0GNkIN>AnGxbAkl9dRR1j9?{QT&@tK^J zMk1%Y`NV_!P257bgZ(RO4JrWj`tz36@t0!dP?{^3D^&Yiqc&wGx;ZUlLm6vQa)6U2 zCgqE&@YOc7#F&283i~o%pp(d6K*%|DdQ;;N*#G~Pa?^i#Gqv<=a9O~ASyF$1FKXv4 zrN1Gm2*b8upTh5iKhY??-I{N|DZ?xbDq@gI#h=Wrk`>2vVwvE@v`qZD-1WT`k$;k+A^ZN+#a++8^Kn>Z94FzDv<3Wc2gI{R*3A}i{^{Jh!v z`)hxA`NJk4z`RUp@`Y~K&WE)bnmA6KKQIu)HG{J9&7s+|mBeIjH^tihXdP`JdA&$& z1mWgT!m6F>GhyN;X@Axr=1RZq5njaa)?DEzR`U?Mjocpfv7ww1yl0;NaYS+B~W9%CtRkMp1hl~oM+zP;=ypntOY=aZimRzI_>mZf@9Pr}wea0!5`fg!;Y*MLZ zoIcJ8Mr}A7`Q+4F1KihgTsKr(PIqFUf1;!xOp|!3t}8fY%b0ZRNqVGq4Mm%ZvPPj1|up#-nx!Uy{MG^wBy zU65zC2k{ua4!~Oe`7gA@DtHvJs#8cl1$T=G5-vFKNbQ`o?`H}sfM?XFvmh-Ji)&ah zSsc**n^xUz*B;~U!*w?5DVW}{cq&}lbQ4XSzrP6_y*gDa=W!0Z%g?v9e46%2ZJS_-P;=y}UgNbPRy-i5avcjNhyh%N+ObW=~yD*B>4 zw?B_o7-9+w8BLNCow(})*IHE5r7m)#n%iKDG8&It6{6bgtISeH4v8ee&(*m3no)m5 z;JD=zxi7c4*3ZVd8kHffrKl`SxD{>o`CoM7Mg2l9*!!=&j&5WG?CtDk;E|RrL%L*a z`#o~f(kp#%y}>HzwW22Z_7DG^v%yHN@X){z39Jz3;WVHmCu9=JNh|!QORy?XrY5S_s0QGckKSLj~Z2& zFSMaI$Wy@P)G%AwFxS%2Cy!|s#JvY(C%nQ{?yiz;3V{rU%e8&y!Iopcg-$5xaS}HK z(-Aek=QsY;cCH1_#u(v*ON5d6*)eQLmDD{=?mm~SbNXHK|8CkVa<5cf+X@%Sl!_O< zv!;H9TLB<0Hn%WMP)Djmrou)ZM8cGHz~+|~Og=*&Ehc>Yt6`S$v;F3?DJ1#|nFj;N zEtI(B|q*Sne@ zvZijddL2xrG@Wn#up!usI(?0NSgVw65kwmOTztYSqJIE3qKCU@Ft=ppS=T#t+c+F8 zqueoFz_dZL7k;ZtF_(sif$L+*DMi$&i)GG%@+(fDl;-MFPLTcB%^F$gHAl;T9pw%P z@!OHXIz>$zX^t-}^0;M*-kAi9{$Cm}g?PeYcuo(*%>GodfrehV;G=ELm^QZZ>ZCpC zD>YC2o}t&3EU6Bjg?20&*aZw3d!ej$FI#||XCS_oO|`LgfI?3-58Fju9E7s515 z$TZux0ERX}Lu|v{@>(H}@T;K9)$#9=Asy5WesuM|ix@=7;&y|w*2_X=?jDr=oZ^>Z zk4D{dd&y<)T(*E|Th)@c?*22srscY+3h6Z8HFfFCdN+=?4-2fxFe&!sI5{T*tt=2-w8zS{3-tXLrTTwXQ%z?_*OnBW=?UwnXHg9t0Q zy$dN*@UUXZ%d>64fAk4s}?KdSExtguSGnT9JNuib9YiDugrasM5>Gz~m zz08BTGEu~*K`mGd0(UCa9WR>L=;>I_U$`owB14|A;O?Pw>f}PLT>7ZrqTC)ac6af% z!D@L7NsEFHHB=Ff5qnZMPwHBC1p>RG2EguQ)}Np4naVHk*IVvxP%pH|JTbmah$(K( zRN#(}j_OXQdl}&nNSerO3AMH!QR|rna z^OYjIz~zge1m>hBox9y{3t$O=Tw`mmX==-IvcQZ8Zo#bt{p&OV4*3LOV038 z-2Rd#?cW_fmusxV?xm4MC4&&}(9Fu0OXd;5%eiqLVz>KwrYYn}o7g2jygJaIX0@Uo zgg6>mp9LmF!_u8w-5S?xve`u22;VK$>gTZ=-XEJ}OMiL;rV*Gr&E@i;e3Ll@%3dw3 zk`fx-;OSVuoPQxBQD*u>w6m?q=4HwF509<&-*#h4?8^=Y0zv!`-;}lYA0O`Adu|{U zd!L6gPAGmY@0yEmuX$Kdfo~_k%jmxAOetnR>W@{&4f=4c-pUS_11bPq?w5!ucw8Fy zI3m-W)|H}!rEzX_8x_8zoLbQ0JBCZ}D*WT55}a0p@(ZLkf_KVfRsGy~p)5@Jg3Y8N zYoD9}vlcFn?;jIkLc?Lf4>Hbk#XW>gqbpMmCVxe(s#565f{NUKnXf$ojm(&meYhBxM3ib#Z& z{IS%@*d{yV7_W9{mJ~{98c+@wSXpf@Y8StcS58asyQ%{{E?MQ zwlv|Kqw0hBgDc@0^B`*lw6vpS7%x^@fXgGFMmX`{S)PEPzFahAro?R+QO_;9nTy}B4zH2=@hlwfUQresy z*uDe3Uj*llJ)j?VwAc}?-_pxE3JLc8ff+EBGfUhRC%bRt=@g&aj=Lp!*{hy znA0`0EdSt2h81V9-o}w6;0_dfD`=nP)m-JOR2=;#!foDp#$|H9cE(jQoR!GKGicIE zf4mgA6~a7n9ODQ(TJ6a*V|2=>zv08y$mS935`Z^V&D4O>hmC@5z$k=oa3Oq^MLU96 zZNg)TxzVk3s1|%wn_5tQG2>b{?DV}e#ZgDSv9`^Wa@bWHK33~(1dtpSv>Y}#);ub9 zJ7C%{HHkEjqIJC8baclA4*+qu!}qWj;j%mjX>oB3m9A*+sbi0T`sPO>uIL9q6BMFW zbM?juCP5!|xGOdL5^k7giw1xo(a`(0cP@~_(Nzw)q2)Sd$JlKj&ZxP_tw~~<%4`!_&Kz*wzZdvk>J5ik zXfD&_@C#j(%!7Y{(G~(~bLr;EDWeX3OLTC15XDsbqiEOud&%lP9^Ux4=DdX=Y~pNu z(4wbopU3b-C2i}Vfa?8_$t5s3+0D|#llg>XS~2MTQ*P<438xiKi44Bjps$R;-(H7I zm2@UC?MPq3D&0q$ShdOk6Y%W1weh_f*D=bcdL>7L-w`VsQvA1QM8c0o&Q~xY8Cd7{ zD|N5e{X9&j;(^STTxMTI>SgYfybKAvUohS`kMi+ zQiRs`_E<~uk_8uffLGQ7n7df#@u=;Q1MR#FB6YH5&y>#GE27osx7CLi_q({rsoi=z zyUW6^-?80b>VJ4f+|xr45mljo<@Dx7KYoD=V=PjXS2->sPIM7Qz?pzQsdbQ6 z_dl*(zjb)cE>{flofPDD4w`WMykL};PBXiafic)$?}ZC4!8oeY%*#;=&sb0gr>Qu# z%O|^i5QEragI7we8ZN1>`I9v~W7V_xAnl8i$+awXNjM2V+I4-PtOrr@Fe|tg%%Z9A zu~?+t0vjuPL2pYdPEZ8w+pBb*H#l&}8Xf2D!|VNubqXIWM9LD4NwGpbD_(w?XfV18%olavS9bJuR0+1KL*D?sb~SkaG7W+u|5g{-|l zJ1*9%!0k*i%Pq_?tU!i4$lmA3AfN!D$gr%uq*%Ey3>)#DrjnaT(AJQ9hvl?|h1%mI zJbmC}Za7))%+b>XGx)ggD;qerqvHW|du6)dVrE6FkfGp6B%@{618RRopFR6u3_0_E zYz)ste|vXDAi)?p>o2jR#5=r-@ht(U9}qds`a zJ8KZhExkN+^KKS0R192vw^_rf>OGJyis#b|h8&R%R}`7<37cymSKpIxAN%rl*1u+Y zYpUq0{DhUQdW7~*^A3vBqU!pnNbb6U-=ghR-obspqTaf*6M`!0V8yV4-wZo$C=rU!O zNm915$V=4h+0|sFiKL1DuxH)%dx+95Ccw_2n|eNFru6mlPAQoNJ_nNT-pAW_yO^-l z3k^%3<}s{SM?r6?E+b_L9(u?;b(STKCUHoB&EB0g1?Y$mey6m8ed#h8UDO&dfkfcq zyr;7QOFSm7h6q=$=+|e(R8NWFVt4Ej{OTtqvq1nZW^K2cW6z_|ef;_8$acZ#AP>$H z=AL~4#q7=@FVN@9uImMr6EPvJz72sFryLf_8&$9bC7#Orehmwp%y>JS{8i666h1)gA-d zVppEBsykuXVY);Yb&JhH`@)(FQs7vQDlF$)a7w|afCf<3<}-KFwZg+&SN7-_)@6y0 zL;js=H#(dR5+IBP-;}$ZaQEbD`EsGu)UoSX1Va_Gz21V9o>8#5Y97->st|fc$QwsM4+EJe# z$r3RZ25qX^e%ahbl#JdVZXTb*e!*#dmCIAp_B%$N^vgA8bMLI1Gmt8kh4wBAIOLyW ze>h=yE>rtRH2|B=K<}0ZST^;`lu0+_$ObjWp~v2fzdXy9MLBU6ikqIA+MH%78g#s; z0%BZ@6d?t%L90Zow!1*+LE$G0jz~`J0>N)P_duDHejiaE)>JMP(1bCP`isuI-?(c9 zuvthlND?KhWzfr>Yt#PUhddfW?ynQ9b8b{Pmi+h!ecD()Y3|&!$1%l-J>M@B*%I&X z;xqV798SA#ZsDtrMid*ujWd6Yj5}1&>ybYV_E1jm8EnJSEk=rXUZkXM`a5j+g2AGy z>v#uE?q;uLQu!xwIcbTr2RG`e8)kJ-ai_$;Fh0PxoZR0OMvU}lyWew;Bo>qlmwxf; z(}5er{k}YTvT;rOUQ*YC3PV?6)%_Z85PoXyDeOA0-*jZs8!Cn@#hNZ>5(|NVj~2<3 zZ~2JOg*qkAzUFA_PJeddl+0nj=OBJ z5HBg%wmg0d$7Pe?MCyh}tsxs@XqpYe8MO{{e6am{3Efm~uyggh;`aWi)hj!KaT%q! z29B3v*rwx6hxwWrIzSZOaj&(>-@r`h>TtK6x0t^Z-l+(i2N8TuYjij^Ha3I;caE_& zz%+nZKd3xKNN~?M_%Q zZwqC1Jutg$>W%Vo8l&$WY0h2UZ9qKAxcYSzNh_)l^sW#2gNmowQtoI^GV(~$ttGH` z3Q2>I&aN*r7#(lRH+4^0OyV+X`ntO@UaVJAK>F8&A^WHMiUE!jHm2*LZP5#j;=Pcy z)Lai5j}$DT17R3E;l5Knjyk>7>_?u&D((ptBcj^V*_3AIYu)zc7rqr1Hvh6r_B=87 zluU3a`#E6U_={PmII6E!9*C$aRUaCN28#2{2&7u6PCzpe2MqC=n)R|bzjf;b6u*j-gC7F5)t)E zr}0M;4AsoF-s;=GUu{qH1YG?>XI{!$!IYh#{+P3WdszNav!k@>iTp7S!{})Y1g5ye zZqP`kv()`syOseHV!lZV{XN%C|D`=tvcxU69$*4{U*?=L>f>$r*#%Sd2H zIhHU=s}0|{;hE2&45*@qeNHl|BiIHkERa`UOO|Cb#Z*n-T?3o-4Z26j9 z1en%ZIEf+f+ZWCG{(DSukgF08dRc20VzI=x)1f&lXY`p|<6cN4C3sJK?7sOTTa8A~ z3u`H;ex!b+_@x!-G%XYz_EPiijf&!5lBLzUqE+cysie8X2Lcs zkE%^b>t$^9%S_qoAI>Z7nWWN8g^QT~s+=*iZ~pedUx|yx_qX%-2Y?A41QGohak`%sMxz$WYXBHfd4o2RAOhF{r0625c)C84{Bi2=l^( z7TuNs1q@yt)l@ob;{Mcb?cZSZ;@9pNREL(Cy8-^yrVw^9oYrF{&A~nJ<<-;RDf2TS zAr%AQ@#@K(5pV0ijx*Xu3)E@ZbwiM8U$)?eS5%k0B zv-%C0EG{R|Yu0XK_jzE8J{|8mr_FCJWD20ooDF^$UTY)Xn_^j_YWlMYT;2h(cInJ2QEqhAA%59GA%9-@2{k zQldD&7_FUyb|N3HDbR(=U^f+H1pBYL#0aW1TSS<)9n|QB{ulC(MOd`#k5BxFYo5nF zGPIiS-Y(2G3$V@Wzc|1?8|-{C_@FT3jVItL!zgG-qW2cqsta-6iWm&-_D)U;Q&{iz zO^c+b`k}2umpgcFUzn*cLnLdH7hf!IP_!syypv^SYgG{~VDe^S4xQIw%d-A@K0 zkwv&(=7yr@OFr=F>YMJJuFH{O4sWL%PzhPb-40v!FK?a}CyTA!TH$nWZld2Aq5dZ=qMKP*nQxFz?%%(q5%YHmi1rV;VHa6RM_&zO(~k zbhB;f;uO)aB1T(5Ob+-ruJ6ifJiS`l8${>>@&b{A4Igq+u~bp}fT#~3TLA&*_#Bt9 zm%}xRt|h33HNX5`r@)W3O{~@Et3%}6ZUsBN0=8o>FTR7)IrL>S!+GlR%bfhC&!m8S_^H1c)gW^ z<2+@~x_q+av)}7%t1>2a8l*DMX*aPQioiA<6nVKYO6TMnaJF{!n^L5r3_`}lfAs{W zO0$+ara6ztjb?vCDSB_*7&8%UKvf{eg+)2``2@h~V*8uUX?2Q7am$;Hxc5B#VqYP%2bba!hcjf4ZKJb$OUlJnUmR6j<5OLq zUplRC)}6avP>&Bp`@5e4qw@}ux#@Ft%r-rfPIwfN>220& zksb?|R$kb8Qt3aHxexAPxBVgRaYC@LEQAwoVH)8svGohjrJNKP?fxy807D{j**$C~sVlS-(=1Fd&W zzlvvKX(%+igrF1#luPz-pG%4M$nDw!OWq>RR-erZyv{}d*Bs?m!S>^ndwRM!TZMMG zhZHYOlR&~6lXe^uS;Xo+`hiuxjl$xl6?8#F)X7EhmTV_S#^5z#7n=lFj^s5Us)OetA_ zy58%&_*W^EJ&$8Dk#7K1K6;XtS1X5H6-m26k^T+qOQ&Ix$=0Lzn(T|?o&1GsK{^T| zfRwi!s?)0FD?1+JpPz1p{bjZ}N4Fy|gd#T(s(966HK*Inz(?APGK!;spmt~E{`5vn zV%ZDhCh6V4SM=KBTTB9;JWqh+s>17~?iTY*Klx9N3zh4_FPsc#y<;vCvasREgI+Gv z*(V7e4v9kA0LOJHaQOIL)6jKl*<$)-xQ}s!3@K)YdIp3Y*xN*$kVnumaIJZDGe#M# zS(GT<`q`IpX!*7&0tbx~h_+O=S~hfDI5;*Se|yaGHc_u>FYKguV#kYrYM#PS_PA?3 z{yu{sPk*T^2em@=c?U;r6xGnk5I(*FN@127>f{qfa2xdx|NKBnF(Iz=YUGDt$==gU zSGn~hX8Bs1>b~r9!oc|5u}_(+symu&652w~Wv>`t_0WrpDG3$s5!cVl-}*upJ%jN6 z-86_fY#{#4IR6@=;X_PZvDcq7c^Q^#FjKN1F6nPAb~D10TGbSmz#gs-?4d|0n1pTpbd==sL&MSGFH!B{Z@X@a$@U3S7JB3y*ZzG;HHuRNfgoj?59e%H-xd*9HI)oF_v@f>A&K|0NRoko~ z2Hb8&mX{e>3hF7Qwq6tT>AC#4H+`%qaCb)E6Unl_SfV7NtO`}=yK%kT14bVC`|!o` z=Cmtw)fyGx3sBD_fq&w%oC_XMMYc-ue?m2Ckl zOxgEIFDEO(o|6ycFopr^>f%v|cjFYXf9`VJ)CzNZ=p*i0GYPNoUSh9*PO(k|^q%Lo zg`gUTTjHjxoM4mt^|(62ordF9q|JXh!hp^Hl>D`7byPs|;?J+x2~UHouk#=WeMb2k z3xrk-^?Pf^87F%)Uqeh%-y(XsC1sVIQ(it3$+!8O(y7Wr)g>|r-1;5Oxf;J>MP_ws zSZDLDVe}Ga>9!l$V`*AQERHb#y`W-~mum>_*zuIN4pg$pU+HGbqtli8BJAn#I*7I2 z>!J-N5g(-bR7P($OWo(KUQL3>uUQ{j3kJ{@_mMK?Pk7$>2KpAZm&^0`tMuVv{9BxD zn2H+rME9M@Y^>(0b%Xge%?oO)H2VEG!I4_y6xC$}2HuF%DYOzTa4R!v^7{)IeglR3 zG$LK{7S>YIhnnYwyrfTa1dms#fhyt=dIVMeRM(+O>CVO2vp#BVt9w3Nb_Q%jf$X z&p(jkxQ^WSbzj%}JkQs8Nc`m?zvAs@UzpDw7$P$yA5R8ND?L+R`_`lMVq1k{WaW|n z+noCokJsMNM!kKT*-n*Jh}z$-uEv2n5q^6&Z9XlI(e{M?V9b8tcqoQ2zHqAPJZ+fG zg9^pY;VWx9I1sPLzI@K2qR^+;r_r}+6?J;!OT;>!O#Yw_L|STd-~5g+)mJ})exF(S zd(r!L2wgp~71^DYkLTsZHr0#Z$K=Ou{0$zVQx7jTR7CDC1D_9V)2GS5Db#W>pu!+I zUa$)AS94Blnw0|#Vy4J=4tu%(9E#7|S=9LUJ?Hle-u(-f7wkOPhe6GRww*5%*%pW7 zo`!YGsT3?Fd9J%iB)+6jv9nDODMsJ>q_v;8cS+h*;HX$3TlGg~Erw2nS?S~vno<4B z(3cU*#rWL=)5r(iJb00jP;T|iE%#yS@Ym~P5lQkN>7kK3CI8k?JLwTnx8;Ez?`ht)c4xPr$uvuqqDz8`)|o^{aOr}Ou`@%7u- zM&Wn_Cv8r$FKw<3QK~dAz%R(=KHKqN>r#z>QE&K`dSX5`D?z9pwrRTE=h!Lr%>f6Yj`k^h< zX;nzeXu;cP`+c+Q&Szsfny*JNhqy(`H)MWlZYlT9dz08B{E1XcPqH|OMbQlANY1}X z9!kJYa!z{sL*oe=YH50|@EswF(a>moGGRot68G$JfC>P@+>hg5rn>ES;M37jJ;mM8 zeWXw1yAo#{|G6leL!VZK8OvAWP=!|`{+ds^gip&>wAuREaqDD7`Gv>R>f4pQS+2NV z8W92ieK>LcG1jtd`N>9deL4$0c&&`Dc`r-*W;ll4Q*dR8XDq%|=5mxV- zuH9?!Rr!`C?K>PY$x$L3ebCx&O=UGUzHsgoj=7IuJu^8EFoNlw4l9K<-+X3!RNj(} z>~q48*x^S_@LyeEJ#;s;ZnUr1Pnh1|dr&@J-@OW`a;hA2xJ6uD3U*G63biwbAS>m& zjQi8~9&xYwycxB7HlCX7-OEH+E zX|emRoY2L5iI)%}2+`((^49K>th<@GMx!jx!_gO}u3v>%SzA4yLFyQu0qGtEq|gMv zL%wk@1@sPl3mH(%?zqqhH3?9)iw-7|VenIahB1(*3OrEulN)J5paK}dhQd4p45_81 zrFwUH)SK{np#H{fjnh_x$N}Az zK4wu-GcKdM;B!1M`C-1^zUwVN zMx!1>;51c=Od?2V>ixu~Na%K2@m)Eo&(SEr4bI>uANSY(VbxS!e37F{{CUEVjP$vW zMa$Xlynf0p&Hz^U3VC(FWCKIdNxsj$O0N}x(c8jPxpv-KAd@K;<;Utn*>Yp0G;hPF z+-Ahls$R2OZurp~due=PGfL!jfW|*{Y1Gs%w|lHo&^G^?uuz+vz?0?oaD66t!7_wSHBK%N%znW*^|TjG18oLH`a z@EfA=V!V!i&dUs4Ml!k+^-k4JlL_~~1+G>{a*jAH7t73h4~i0SxA2=hjCYq04$;Sf z7Q!y=8$~7Yr#anP@)h2^kV44T%Fx{qcbcvPsnxkv;<~GtF-+p$*mL5Y&yIfUD}hA7 zA*L>_ka)F<Tg{M{-iwJzeEw=<$8T~^zf9WB`>4J#&ycE9*>F-AD`WLApgScpLF6*G z!hdkuEuI_R(h{n6sB%aNL{6*qR*jEx$hKzGriO)J58y;K}th_zm zIAnS{T@`C6(lDen)vdXOmpG{Ded1ha)^hvfk}JY18~SU;m5~q%_f^!Ha2dBRso33X z@ehXXoTZaxY1`U*Zpd`4%X}=__^)6~gCcbJ4ZEJ{>CA&#&Bc-1%QzVmRt^OS)v@Ls zN5hrP+9-!B`&{B3))oz~6>WnRjg~(xrn!VN(qk!f)x&xmE!unNQn1UR4XK-ymskpu z`=;$8LM@UtXPur>8p=xwQW?@R8XXDnF^keLrdHH#af?hBPEXeZ!Eoria%=zW&`AZ1 z&cwjg=#HR*KPl%V@@}}ASTZ-zUa}$Y#%soK3w(d^jRC6ylAd?}cJt@enN{gk`~$gI z(+YVie;qOFZ~v^ePmiNajlOU*=jt-%X@Y`AxC?!3mJ`B;_N<0&by+<1y`potD{R6) z*hJbrr<na}?oL#QjOekoe1H3a!|SCW8Uim%Mb0c;!0tN7G#4XLK&q+ zb3Ry;-GqcjtPd40*;hc|x3H2}p|xVijFL>H5`9^ovx0zcQcDiIpTtK@BdtC+>sGxt zOQE^`_5lCIs`0xeQsO#-%cDPEc#Pf7y}zb^oBE~4T7>B{=au_DBzMN10eBXZL44Yj zK>U>fuAAOu@Lk;T3=;)O^>*C5mM4}HToUAOs~#n|r`o2OK0tAgzg+zA`T=aF^;QGt zrRT9~O_lxepK*n`Koj6dh?%NAdHhPb>h>E03i8rpo=^B=!w1!as+MrI{1QkKF98Ec zFd-{-hn#p{j;RzkSW3gM@-$#l_6U3F;GrgGs_XOP&1TD2ornBxd9E#c(Uo~cTz@_+ z{rm3m#v<`j)N%U-vv{e1lME*lXv*GIy`}AI0~WZe7%`1>k{x0UsCK#T;doq_wobZn zOUzp5{AKZDpfL<*CE_n-STfs$SwlR`Jq=!2WWPDe${!M9y6zLPp)lR?E z&n$D~-(}^9N)uM5tuG(>H;bW@^fpQ>Z84!}M&`f%5S2$nQ`4c>RMirW`wy!axARow zU`s+xL5+OTbT?ZZ?J-*6PKf}F1k3xf%U+>@`9FUA_`Fnj8{x6bS}W2G+G*}U@;ACH z&bpxG&UX9(_lSH5frKVlNs;hh-8j8+c9AnyDT`An$ICFpkmj{p`eu>%qzWy!-mlDR&Yjc+gZz-aDVhwClk}*BURYTw*`-drJY7L25FQ z%#_owCwTc|g-UG_S5nikdr22{==gg6KU|QYXI;++TZpYhS%K~ISNFl)YFun~t({(h zj}ECgeJ|q?*1J-!=spy9g~*8|m?GkEwA<|3U6H`*wpT6h!z6AAG(>e+c`uNK75(m8 z;b&fhw7~&kM?pp>cg%R+IUSJ!ZErzJl_%fZ&jO6=$ETn7=-jI>fBNM--W>b1Ce6?L z-O2$uXH~Zn$-P(#a4X|JDWE5nHp$Xia%JzVj%v&680IL}b|`>3`PK4o%V0Gz`_aha z?*q4WXig}A-;bwX%cFoO^}EI4%GPd@Y*J91z)cj??P?urn7OTXVq7YEs&!~H7`+M8+oDQ^+aN6*h^%arPp`LtZGewu)Z%Pi6x5@X7CLN}D zg?{N{e=D%j@RE!e?}}4poU>^xPdw8R`za2$+BsGGd%M(FjHjus*58o4yzD0s|9)yP zh8OZuE%QkUs7lrLmvptugDg_-ZDhvEs`+iTnC*O{waWM58jBjzJ)uhQ%4_7g_giQ; z;IUsq5IQ|*zQG%Fsd-6o#4a3#`2j;&qBhHO6tDYFnl;;@^TN3{z5+9;-KJ7Hw7k>| zBk%O|V{8oCIS0l5k56$i)y1 z%_9sb{BZDed$}ADXM7t8K0KB&Vd{8WgNc&~6zrM;Ia?3 zTvXrZ{>(DYlY^}#d@@zE}=9nRpZ+OlfN+H%leO=-z%WMN@}jG`c>SqSLsNz!hENN^*fcQWlc|Jzj4+9k2b^*?PYDIa2D+`VvW+ z^w2D|8UJ^gyuRrRlL3Z}XQ=;Kdc^Z(%Z@ZsuQcV^qeSWyiuvSG1>ZeQnj9!M<%g=r z>F%P^!%9N0ljx?bJ(`8oWE_nivn?O2{jhYW5ER9&qO6&HJE{(8?zTP5J^9EQ=ZYgu zKhHA=QY1NHTO-Y`olyQ-m4**Dogf-|eTy59#*Z@WNAe$lhS&f^hr^5|ck}-6T6?XO zcp9Hj+N?8=+*nzXP~&;ThY-)BI@EbbOsfjQYDmsW*UL0XlzuI?eE&#Ny*4P2VPtzD z*OEyWGN9tb?wC3yy>+*{+n_t1WB!-FJKstcc`mAmJ_sczo*;f+V)eN+$G44z*X>Z{ zjq7L~v%SdrX5~WbnL=fo_wV;_bd2~L4hVm#l>+T6(^D5) zI!Q{Zj3PZFFuB+F@Xf{mS`-Q+Gu9w%FOA($JBo!FA zbR6r5=vh*xak=w1H&q$&<11AwP+H};=b|zLUeW$ybRt|plmWRl)>rTBLX)fPWIM6* z1!JIjkVfPGnX$KyYUn`zMJQ4kqGtT)3bhg+q^p#ZU8ZC-cC!B}uf1dpv{zBxR^CK4 zDy#el>Dt5<5!RP*kjlnbJ{BP67y5EAOc7!7@6^UrsosgB z`mZ}*aGQWSCed|5>goJAEUH5)Xlg&wla}BbMa@tjcfMRoA;9IJNuKWSdNM;z2aqT#0?=NAqA`slDF-u@zTB3? zd922f;2v<%iOzyuxB9LZcKqACo*LM0hST~2CEHf&UGH9`adl<9Q_Q|t5N!i=$H~D= zm$iJmUBZ>-$BwH09xU{Kp!Th0kHnrqU{XA@HuVdXnc^4J7&1^ylJaqa0Ue5ij|4n*^ z#TbgxoU8bl0BlUHV31j_X*fev7}1j;8v!nx8rDBAJhGcUKLWbHBR7cazu&t3nLf_sz zen6a1iI0q?*7c9eA^F4AI&rp{JHDBJ$jMtgzn|7&cuntiHzUlvvLlc~wd83>39O*G zJS!8cjG}?ghDiB2S{~L83uUvX$*ub2JYIy;DA&Rp{#0F9k4<({#GqJjkS;B+e6+{->BPNp{Car4A^Wlq>I^w9A#(DO4RQ{bUD104}Z1YZb-aN zjmVcq1L43%|D4;P6l zto+Fa-8*7ALVj^_8z}|jgokHW{x#s-eP;`J@~70>x*i7bv1NBvO{ouWmKZLgN)yCq z%oe#H?Vt0nB&XiQ1@=O?`5_8aWA)vFYv$c6GsBo#)7W$|$^p}0=JD@K^(*9!v+zw>8oWsc4grbaRPnmiUwqo!!@ z(|;}-scw!kDb7CG`FltPE)O0}P;*tosgytCz7(L7aJ^h0x-o^EnEE6xG@Z95Ggj1x z9*~FXpmnlVmEu`ebHT16$j=w;Wm)wd+bo=8?LEYDwM~>rsxj-jMsgyk{jv%BK&q0qU%!L+6xX*nzW=07puHd@&!pm$-->t;tvu+JgX{XcaKIAq+!+6=V-#7AvFRC-dOaiIH)TN_Bliya- zYM*PqFYSm0T7024)V=@w#Bi8QF2S!PUavvbZSobJJnu#9nRehxVkp*_wKHL^q{a%=bbzxRG#RAO-ch#>nx!`_55X&?6xFa4GKm4NWKJW0HW1Bh?V3w zTcqHONSwp1zR@&p3bhcij?^>epKnxfT(5ljWck9LtS|8|>QjBEOzD ze}WJpZ9TFX^2#)3NGj%y0T&OMIXBh$1B1sNc|2Fgt@bS_PYIzjq?^#gztMjqhQQ=| za^mJeizCNBM8vf*MpBQE$SlY4yb7?(qMs(sr*2}fhG(813d;8DDBH`<$E{2A`_Zgp zee0lW+j!wR3>)oCtZmx%ad8qIVZZqn&7Uno`|Z!?4HvKNTD#(F*T0%QKQte@Ex&K~ z7HIk!Xqu{tLV;~)p-Ik}_b?I$tpU2!PKZU?Db8yla0bi@qP zDhf5ooo3y;*wA>`b)aRk`u@t?>uRX%ENBaklieI?c%~B3~g z14RGyy+TprkK%8F2mE^FUA(g8*GkMYilvx8{%_`MAIyu}@TP&%sy@%Q&`VZ?gP3{p z&hZ2UU?amHkm$<&nD1+g8*5_$;(mg|xaSqC+2UbZg3ay~)eMC2xI>9^=h}lB?tw8d zg8LY{-L951^}**yUF6$Cm-e!b6PHuySN-#@6H`c|LzCx6x`-mzz^3CI@TMTbms|Gw zFsY^<<^N)QJh2zK_z_TB{e$+L12`zq?{uuISU^2-LPAW8b*E6(@$D`@Yj@+xA@X#V zeTxH1c}smG6O)VQd8$qU0j&@vlh#x}|;=j|%uimgNgZPIxGzI6%p_eIQf&4F(r!-GD@2JPn*u4$D z8AM+*%6<5>`v&rHq3-*5ozg8?ll%i|y4Czo@15wPJSV$huFf7ytOTtfp1+IX7Mt!x zBi;GaYy)X&X<7=?POSjZx2q47WO?+*JXQ_&qX4b8C7lP{(hoft_XkOv)_X_I&3MUa zdWQ}+05Pk;n=(F7&TaM#@A4Us9cQ1~WX5OR!fza7?o7P~#K+s){bM9@BdO0C9+m;T z>W`^uA^@yE{W7?=nYV2FZaQDuDpk?aFsbMK#!?yT8C1&LD}vWl*@^Pha2(yxAOz(# z?MAJNoR^NJ7W$v;q=9zFV~m5Yldu6`W>P^L14a2z9*%J^xda~bBT86@oIkXh`Ix47 z-sKC{<~4Vtkh)ew!3MwBN8KBJM!Mh+26^;&oWLBZ%g!tymDpTiBr{v6LKF6;bZjot za^Y%I%M>he1Gfa$1YGfgj|Anp?A6Y+Lk|K&CE@Nz2{2>(-5i0gp#YfeS^J{*IFhPt z&%VTM-uHRF-4b9AP!}rgztR+hb-8K4C@j;kLn;5MGu-si{-6O~(y-2RFzF+>Owu&&w1^UnK(Ll}Q^dUbczgQgcqC|5rG3xk8HVtTut`IS%)7Ewi zJVR(hF1ZBrLB6b6P`R70=mvAsvZ}>qWG_?;2Bk)6BF=~Hfnb-Vv~$NkG1`LUmq*$! zpi#!W%-(t2Gz{Mw%T^P{mz=D*nZ0a(;fR|Ck00m6)C>SZF%AE0c2yu z&Y|Qg0iKFXrE@PUhvFI}LE1dPCe!9{4{R`@Gj?%bOUiY*#Ye58pUa~_fp7#M~z4KX7_I|uJUA!Y4~%Oa6aTNa(G<>r|D93 zB`OBkh!63y!~7>EQ<(86?*PVh$K|(X5Frr_nYQ=kL)*(YfdiTdGM}*akzJfo7efA7oR2w z!-OQSl~A@QK+SVyhdAthO=OaEQU;kxj0cWZ_v7BHaz$w@_txo*io7~XOL8P7QHVL( zB2cG1%xV3^^&r}<(ECfv%M3nzk02RNZ_{B;lh?!+#ikiUeJk(Q5u{t!(Mxb8#-@A2 zFGHD?j?upimJS*G72zg()DgCK++8GynVBEABU74x{WA+^ApJd3f^$dcjZ{4*Hy`Dn z$gOJQMRKnx&Au1@o=(A+N))hrYlF#KhBssjJ|FG(rYrm9oo>EPgSsgG_jBSit?fr` zCU%7`P%u;1>t}rQ53Ch*ID1UGObckL*W+hW0EosD zQ4luuzYh&=*tyFMo=*YWhM|_LM?HU%gZ` z%pW1xans5!uYL<`MPlWOd(!ig~g7EhG@LfdpLI zU8Q-Jg2^CoY>$zLU3U?AF32Z6Jze9_C92~g51lpz+32ZbOX#8CwQ`S`R_{i>qABmk zs*zXLmvU zh78!*XawBZEFYOLH=&i*J2YkF+Yjp(A&#H(Gh=$-KJO#*&L3Es-1UP^-uHqu?nhh4 zOVD71LjEq);sV&)Al|JzjV9WC*H-0>8)2%tYD1ON`M*+1jraNajC*`i^ zu>#d!fo-ZEBxNZaa7i^{6`39bOXX;A+>4A!7G5XbeeKIqxeuT08bR@GPnN_{>zO!L zq$+C0&U>hsUapLoK_NB{Ta@zCW$us}K?;m<8_-ixSZ#dSzO_qama814RzoV%@1bA9 z{DVe9ws)Ql;EN-T)-y(v41(S+D)U}-r@p2j6F{eVN|W6?)EIv7aEXeNQm}1f&mZZd z7|KbK6T_Zf`{KL5|JcnI?W=G>Vhd0mw<|2VPkE>;=T+mgwTY%ZSoI~sO`4zAbjamQ z+d|?6wbS9OX_Ec;RWz$W+S?zG%OXNA=V0U^Tjb!hX0ul=Kqyp7pKLZFze z$JRdSxAMqskUSx~^1`q1WWa$V3#J+l;-gqYVumOK=Dj8{zq_Bj9f?2rhCCNMiEY2L z?XSN${w8~s{|V330iQLtGRQm+snDR;UpO?3VTbsoE{ha@dbsox`fkQppo`-Lzx=gUV z9{owK_Uv%)XCd+GPcP^pKXW|8?F!LCCjy$2b%Hb1e1XzN?=3vBV)-b!%5(06)=D{m zgV`g>&{UhP{PY%ZTRq|S@144~u(I-tpHE5O&6K8YNAA$OkV3|SrUEyq^I^8Of$21JyxVU(zqlSfXfqis;yDD z#&EaSw}N;Fw{B6<7)6_Q^)%k@Gx{Sz@wvJTVx9F6Lyc%ST#xqS-;d58LXlS=AwEVQ#Ws8Bk)=g{$R`J$!Aue9sKQRGaH4 z-?N&@LNBt`S0Ug|h}9zw=krItAOgrmfH8rIHtb|g0h8%-huQ1fvdy8eS3|G^=kcY# zgrjeM7H5c;88yszowyG!yMNZy6y9!N$WaPFUp^ zZz-4Kj?hky=Y5A=cPW%N%Lmlz-*L&c`+`SGOwvu>SE`7JW8XOO91 zqpR5J_0PlZI_3{0{YNR;j2q>$40KZN+0rRwE}CJm($Z~Ox@0`jL&ei-e~cZx=}q{* zMz$tjYVizG+cr3k&Z4bAN8D)B4|atc?J2j# z*7SC%RF>fu!IBXzR1MgyhQT<^$%k!;C7RPO!h>frZ=IAEQ;=BS4Z?on?!C?I0yFRY zd4I1^m+1kdL=cmPQG|2|@AjmBsuJz2po$S`jT&2gMxst5cP@V(^mKoc)Z9Phd5U3b z!p37+8qKXQTi?Bon_8kbr&H33W6IcimoIx93EUl#Jx$h*Z~GK&-_@^^jYrIT#VfeB zA1)(1iQ=;qFE22E#>2{e4ZMH(ISSg$eOY5YnMhZBo6CCjb%9g+gtiy^laH7aIvuf{ ze{Nt_Tg>hQFT)!eO^JzbX*jG;;U^3N%Vt}zTX>$A>I~7_ZTpznyAyh-ourrDp3nmv?FV?lDWI@lELxqc` zmi90Erd>!=5N@H?*<-bAS}fNqG=1`9-a)dI#uWY+ZxS+y zPUh?}WU?7Udy*?FPG(*ft!5K`a6%LT(#&bopV>Dzx~763{~&KDq=jKC^;2;?*ulrc z@ay|RO)5s~ZtYh+1W8X+^JrEEhS|$IGRQbT5_ahz{EDIZh98#okLI(f9ueB^; z0~|}NAfuQgw?6pwUNb?nUipCP&aLQ9w~|o$RqUwRMQ+(kW36qJ>d8A58f6J(>hieTAmQ6 z3VHCjH(eVNQbl^4NWoqK#aEbSR3&_m>5iYRQ#KR+HxbKo9MH|+SjR4wK8;cR!9^*{ z&G!e$7qypeixTG9i(2DyXF2HO92BwF<8!x`>u5)N0d1-E91*Wgk%0K3kSnqLpV>Oi zuA`X~X%`L)-ns(s+dd3s!pdlZKP@85qn;2<2CiK zEnv}m*$ZNy#hw|KI=zeKij){7GAYYQy~QT5aK^#Mst?TtZFsZRI&7Fz=XKay&YR;NW%RIQ=QmbUazD!)S$Y`CahWw^ze~ zP|An2Q@$OKeQajF#ETyPdn(vs=9I( zgJ<3S&D~F@JtDr6%WiA)93B>XyQ#tfPB({+C@~4`81ZFMwzey)@?c*omqjUf)@e!7 zQXK&y;`kIjF1SEP3J?U_F5(9@p=?P+HL>jDuFuBU#}1O-#lYz)BFGv@9%lB$f~pt7 z=)vbWw&h+MvTEzON8%kAI>^j23~;|7^I_TipvJ1pL3HS4BYf3`hCQ(vND8aXhwity z)I=dIk!)>de>X3e+Wj!qqnqcWDWmA1djxqh&`jBnw^O4xC)vKc=Z z4VJLv+iMl z@{;{3cLKhuWc)##w!L=o=#3_)B-hQLMAvVDBCiTb(k{cWIV@8G=$xljpv3Fm&8wsU zO`O^pDr6tEZHKeyQO<8*0j6_=mZ61Tt?WXmu9oWdi)8Yb-V8x53~$Q)N!jy2O%q{c zlIDCvUr^4SLE$$2=pesOT1oLYgd|D2=FK7CddLyj1q?-|8P1Z%thEKhH-ca^5&{E+{3~(o;OJUZ;?LTbyl0T5!p)3Fi!RmH*8Y;N}PM zV`5MU$&z66%XxknEyUm;1u(FZez!2Dqa_fus?ZTkv?oGA){QN+Bez;d08S4u^)1O$143@j< z6yzwf&3(yTlG>+1{iwb7mCoB+Rn>WZ%^GF7t*xSRno()rm3dAqM$DvpxPM#jzg>#9@gL{uva3=A4qAEne^Xz|sMmld$>BKTuVU*GXD|h~s8h`w=yA$8~|FRDLA1 zDMwy5ygyhVbjf?y&_a|gXwT`*OJxIG{|E?1x8SrGB>wmNI^Bl&C3UxWjb@Cv?bD52 z=T^W?k)EBzhasi+4_Ke`EC~B^APT;+_2Bmcv23Ufj5QPY`0!pGxkyCl4u8xxXor}G zqhgoS_MXbGoi)T!NjBq_W;yy3^|IXMYNY4lvqU-HloIvk{2L$J3aL<>nt{TV7AZ zApg3zB;T$kn|f~j;Ba%NCR-l6nxr%bX~geo-$G#pha@);FRxuBFxmHP4USZ|cYGww zMc8EAFOPxjNB__{niJD+(OJ$cOCZ5Y$E^NjEoA59VH_yYB=$|v(lh#e&hZ^Zt_S3L za(X`;4OrEiUp|==8Zq;4l)1mqFyqYWQ^2sSP(gFO?Ulf6JHT`jwq|w(5$6v17GbUi zH&K)Iv9rJU7qjH)ypUJzyWVssl3ds^!~6|PQwc%wo$S|$u{gQdl4q%K9ghkqu~qERZkA>{u+)pG0qm-^5T9gG>Y56#8nemFRiQPfk)V9gG{-`z zXE@9IB{40ke*TVi;^N(^7UuXM{T$)OjtPT3%i6Xb$$f|_6dK7kfX~@!mabehWB^m8oPe}`JMA-@HDB(oZw7jw z&N}W7{+T_KvAOvcBU|DgblDsl2!EP{a(x&E^GHTtUT$7oD8ba%aDi5G zAGzh6orua^EZ#dtalq*ds~vf_@8AjH9OUuE?#Sbs)nDdx35G!_M)K<@x`EPZ2%$Kk zV>={0EtWs&Q`z5X!kJcVWB1kl0~|tKH^wdtKhNPV8Oq0H3|MW}4L7nO zw&#BA4hsGD96)rsTwrR>;pl}D4~_Fisfy>o04yM}D9}3fJShA{!1A{XE7DqMI`}W* zDvUN+se1IYKcE^MBx~<-9m>J!G4`b=D)~o7K_!Q7SG@olr^`v z!$=2mLOOao__Oy_3^36wp|&-ln6H47rSeomlfdNQ(z1G29!XWNgSoHccK ztcitwugb?%nI==PY%kY$?HR)im#^4YJr*?FIpA$B3tmV3uw=IOGOa~mMQr?I{s_Y< z+-P%$&qeN?rBy1WYB=Dv>%1tnK8>#wjd26;6fchmz+VFwBJ>~k$U zaHBmD3jvoSHWvg{C?*hL8uxn<>5_Ze+T7)0!G1E}&g>T4HiqirCTTJn1_4qla3QKes{xK+rSZTfP?&}`-{QD#yJ3GQ<@}HROz4%}i_a7>K;eoYbbVm`f z;6nFK=V9~BAFFY+vmfkNNY>*EIDsm8k#|L9aS*OoXWl(rRb8C`^N@i!<8NSqD;V1H zW+&AAmQb-yG+cLvPwc&oCd?c4I=eVkmEX=K0H)=RMX$ zJ^>Dh0YaVFw38Cs#dr(+8snTj?H*nS!M)|%`}qmS%~9y} zxRdZ87sr1E-m|FFu2UySlfwjg!MM_QwOh9MO$kWAMIz=r@gr($OV+D~;ETzrWNm>x zICmc8u^tZp>N*MfGqqMsGX2tvq+(2Jr^T3y$<`_GIUyTtwELwl_&M>+vwGWYQwS~_ zOjR_&CbP}w35~UXariyHjuK~^R6W0Gc)iM@Ij-8*dC=hnj#256t716JO%ZVd8S^ZV zd5vVuXhtOT7}~GM9(3JpLFM__1-JVKIJTw|R$x5Z+_~q1J|4?L)R1Y{&yqjJA&d8$Ih7I!>;r&Z!<1$L$n%TV}O1zinM? z@fh_!&9v7v6%lunae*Bh0MADj;0JAh%lM$DJR#Y2PuZ%Nt6n&B!JkCEm8I#Fn~Lk&|?w;{9`z zFb8MNvjE7QKcUImPoXFXW@3PjLc`f5m+_l~1w)?H|FL{%D~o8m#|CnrW-%3*Z_@8t zr4D5}OPo%~8K5?wvtRqe)huo+gQ>8*;-WPggoeBLzKje}_sx|7M#CTC8^ChGg-e8D zpvwnLsaazE?1?bN_gJ zFW*y?!s$#UHzG-Ef{Ax4wxXk=awbgH(G*lU>UY=&StH@9>F9s4|K+2sWX=n0lCAab z9ylucIB8$bgYnB9&>x91{?=44{q2h{S@Mq?2$%SRC7oCB@65Q^C9^YtAA8>Eh76WB zbEV2cYhfyqD{1EXl}AT`^y)Ln7CB>%GKYWd#hc(uA_^z#4QzE&l*Q~usB0Vk4kXeE zp)ki74m%S{z2vx> zJT(-BXq{#z&jvUyCSqpeMA;Vx6r{@jX7MQy!zjh_3Kh-PyC`lS>q~ZjGv!|G<=J8P zALs*$7L*!hul@j3fPIO)r9st)(ZbUq&d3+?>`XKR5pyyx?gA(GSdLsw&~KZ)gXeMz z9}@zq#|~v*vq>BlCZdwQ8q6^tG2&uE^P<^qt(Cj^A6!&ktaTcAqXQoW=#()4C`*E} z?&$hy#eE}XV>{3x<4L^P&A+N&vz)7{PQSW`S=zh$Afi<-+)aD}Y;S1qj{F`oby>vN z`LnC!vn88~#YWO9N*AL!J6{^E^0oM(<;{tuW!>*jD5pEVRzKgY-Sh+TN;5vln%qnU zom0Y23^3pOB7F0cPgHj+Ekbg8?mw>5Ty>`UheO!$FWw9K!_Bv5<25%IHHMc$zXtG& zgzpa6?Xt;@x7E_r|33m%JKw~=L61ax*>$EgpyXzdLxxWvL1|$5pVAO~8~M-pVBv>W z+{l{}=7a$zr1xWH8pyxKB6U;E4hMFhvP%v2>j7A2*Gk<2$Q;$X?xt~>xF=Io32<)X z;r$s?yoK=ZOModeT8QTQK?54sTx(m!;-*jL%=2gd55qt_zxVT}v(C&mvA|i4w+-6a zb&8is1PY-Q`g>h=@0z(j8ewtE<}K58IWq_UgC6jp>5FnUe{b-e5#<=p3j=S9Wl4zo zJ^77gMO{91qVnkoz)k5$w`OJOv?y_<-z2ZLn1c&*B9^ak};s*G_ML+dFDznNab*_r5O!*?}5Z4`)ET?waeS-H(0Tbk+kOP@iPV zrqSt=3+^^OFk89b_udcGU{wQj(hPA$1HPl7R#C&7Qtd<5=J46}?BiBjtD_es3S1=N z&D*ll;rPSmt=ZKu@F-(Bsnx2$jW||j6D5NEmaHB>I)nd#l)-J8VZHUXeba+N7eNTG zOp5H;^Wo|Abhx&$pAow|@WT=2Z$7$rb(Y^Hf4AIn>-5?`du^>i*c$dt-}Ft>J*)u5 zeIUv-0q(^wdC~NZ-|&r@slOyV+E#tkuh`8lIQkCzoD&Ne0eaBH(Nd{GkXLS0^w3vv@=}z2S!IBaCgX za<7&A@Zu4V_>u@RmliFXQZ8qvj$U%f#hJvoEjy00+K*p1-dr==d$YsAgxPBA8by!Zx1c^%=@t%X9>AQbF4DzXR3?e{K$_L%D_-^_~p&-?8n=>IVm|%B^Ao5 z1Y@V&rh@9LYTG$?(VgFgzsn%UE%GL6D9yP*QD2~O=S|(HdhU%|9Z@$DU)zV<*9xMA zR~jbbYGpfJpu16S$!y~lXC9lbGW(fbFfJz5_Dz81KV(FiPurtUn~3ub^y*h6n<$j{ z1DOE0dRHbC9SPEo(@yOqDjLvX(y@T`X@frPPdJ*Z9|Yl3r~Kotb`TeLA+29-Z?QS$ z_bz0r9xTdTw)9)-hd$)ui!Ux^Q$Gfdvc>+&ul&l|T285=M4H%a<&-UM*RfVE`kl?d z^O?+?Ht{?)o~5p^DaKZ$?Fg_#j>1hzbMYHx9BpW^D%)Gzn+~{JVeakdlxIpH#mAX( ztKh!>E_3 z3@!=}<=d9@4}S22r6hs1y3NQNgTIUg2Kh1RjNXsrm>@;@$}6udMT%l04Qc-T&;NWW z{XO2Y;roVf_=dt|1s?w#OTcGttMsu>;1D1xg_W{BLsak;xEs zg#t&B#z*{;ewV9b2^M0&?%ut-WFNa0&~1g?#0YouPCRZ4EhaoDtHyVJ=rj3lBEbZW zBNkSo$pDR`c~AuBXI|&HPbM>`ZBCbR(Kf9-lXXnKb^a*L>hO1d=XX{Z|G9y)d7!P> zdEsdV9uKu0=Hoq|&wk2uQR5eM~E-#|9%bS!)*BXRkWVZL3`f(w!S^ zOgMVUT#g2a$4Hlve|6aL3iL|@KODnQhtMLOt}`cF`Bo;@f7UrLyu&;FrBa87+Q2vx1~e8;w@K{P+;5t4O#uwxml6cff5F!XTZ8J9jLsU#lIngv#mk~ zWF6hb*_p6?Yu3&~*Z4Htrs=Zfd*xjBy{0Qacx4!GfG5~uYAClSRVS`IP|Y1vof)NE zA*Iu+i_Zp_%c8U0{LpmO2R=M)*qUv0m)>o}jZ{tOE|ZB76D^GV?bxw%IxmwRU;Tt9 zX7c1{b~e0y`gjB+UlUo9NV{Vt4n51&nohPgNLST63>>a zw}fB!zyJMfyCER}?@tdu%?ukfZ2kK0zx`X&qaOXJ>cG!A=iJmQ^)YoZpPsV)eoyL+ zx@16LTRo9?f(BvY^wW2ifCBgJw~qk;9GVPNOR1yiuex^4pJi}6KLgq$;(yQ3KPGY1 zJ2;h}K?H5e3r+%r@=b7^A-(FVD>Ep5Flmj|pS#~Z$2}hP$QpPEb5?fL%||CsjLC!x zGjXNez&Cc8tVB@zQ0*SsmsP2qyLRRd!2_w6$7}UIfYWPU^~Y&@nanznt&FkH&P2qM zGa+_<>S0K!x}i-f>`@moIYseNC;SNt(I(X@T%3x?v2IRY4s;>0hkNXxNMDe)t1b^; zWjxBZAi3?zh|QFx5@`7Z|g-<m$`gI&es<^4o|YJM~PrqEuYXK{Zf(>TD1!*u%G{3vQxc%T3L=hv2beJn+e5<%J4_ex9p#@3#I z5TBokU}Gu)-%28-*A6_&2t^q@rP_)kdf@B4!;1#1?P#EI>er3Uwk$6%FHc|fRbN%- zf%V_`L=mR^dS{v!CLdg?_Oz!xt@ur5z)w32C{EG`YeK~Y1-Dgkw(_B*n0%o8+I>i2 zrL>{{o3on{4&$7ae`5;#;?8NnTV;nnd9$kly%Zm5@awXa7s^yCTvq3w{p@EKKha^^ zKKe|6IG=AN)RuMQp~;2IBf}{pGGT^GUtLbCXn#ohUarwH-%H)KhhUL4)+Afyd-3c*tcQbwoVdtT*s?U4%Il#n3+vFogF zlo1`N!O~!$@ft`pR)+FyaMTGIbPbvsrOU`Pday3%(m^}JuA?ykXsiZZ1KI6aWd*Bq zFxc8^rGwC^!E4~}EoOh7ty+JVfgDX}FaTbC_0=`V*17uR3~u2JchQgm5S=$=@X%T8 z361Av23YzO@`e}3U}oS)Uv*en5jJbcPg*7?D3rDl>F^j^%HS~LxEuk2Nz&o1Gs=Y8 zu_f@*OjZyytd1L$i|q^ETOmt=iAk7EIVcc;(2M=0B7^t+DWznOL&w;BEqq=R=9fe>WiK!->DfX@Jc9`x_dz+kH- z{_(r@*4skkiIoO4p;4WY9ysM`+q>I^m9s5_@S_#=k}B(!3=MuCk;5-a1+Yp*e#U#+kjU1^>t7sylzN^Z0md}RM-{|A?hx%dtmr2wb zYZmzQQxsu+HRX#D58h6<)4U^lPKS8S_m0a?f2nUKxVr?-E-dLfw@(>&79O0w-{h+a zUSli;hrcn1;t4l8P0CU{DZo#C>Qigw7{0!Zol;|k8$3GTpd^qr_=!(x#Rohw7O_pj zx+ISbK)FGeF}?F-3=qedZ^fK^Ll$w-mpmB@Y;87v8GB3&JoA~)EViM;BQKP!rq%H@ z^cWM`P=<^<^3-FAFmC?6%1VCPopF%@Cyd--ypvaV3oy1Llf~2nE3_U4ukq5Ef3k}_ zlC_#HdBZPt2mhGPgSsIN=bCNZMuYU1mX?YS%D6u(C!YB58>7inCM}HZKl`&kyP9`n zy0RCpJn&teRnFp~A3quwS{StOW1lPrz35{%ZT-&Aq=h!oN;N<4cz{P8zw^_1_1bQvzd?S~s-`YQ;j)OJP^k4t$f30?C$A^g-Mw;X~yDTW% z=yDmMNiQ;vwxI4SN8A4?|8}oDGxc4&>D@5eFq#>3NRzV8sKSIgjfgy>T@kM|uptgbVoHx2pm=p7a>3a4bg14}R>q7tw}z&} zfTZDDndUZNXpmsdp1Zx$Y+G-O)1i16u-$3t0L=n=_c&|SusS?`-Kpsi zgz0R002Hp{0HgDeKKlCd937TU$l#&lYvry8$&b#(888D0rA@d2k8*B+VJM_JB|?CX z%>Zu@r}**bckg@OHv{6Cbp#-CXz0sUq|jqR0!`?xt?^YZn4d=hmB1T2#&10kB+Tdh ztlSq^!s^p$h5P8Vk`?j7nZS8Rh#&G`hV}KC03mo7sCCK)1DDYlJR43KgGc8-{ipx5 z1OUQVm%9Og00__W@^T4P1d=!8e3di|yap3_#0R+GRxjYjLxYRi_@3QWP83-}oG?Pp z{CwVAz=2b_;5WRxBTNv!q@!HjWUCI@PNrU|BZMn-bspISNn0q@g1mD8?Fy4XT!@@Zo}(}ic- zQ@%M9GVRZHQ^rw(ss*Y>XmdW=1z@Q#RS(n;3XUpLa5IZ@-JGl(P;yM$+*ODikw9T**otTe);DZFyQhEukGur@tPLE6^9M3Z8*mJ@XHG` zg5w~#H~grdDrVDPb|DB%{-j%dl}PFTh8wa)7#mjUH(u$*oXFkcJusE;g*|*v&EMif zNN>Ay(eG`q_4lqH)c4rJzP!A=ibEgOeIUWzmTLXG{%X_@oc_#awSI-q`YVQC8-Ctx zo4q_My2cUbnt$OJexdq!{k&CV%DA*mj8kwZ8zxi5MJGHi#G>3$R!o@cclD#(=rlSTFv*TILAd@R7 zu&oHolk!178!qX}6MSR@JfO@Pd&v?M=^iJW4)Kj~&MuQ*j7iFrP2Mmu4wtj(?#4*67(N(h)eB0Ov74WGYxB_cjSS#SGdWCLas*?Hv*=>7 zn_NLLlV|X~(#p@JW|U0sm%j9+wUr-T#(FfEpyaP%(k1|P~PJot6m4j1WU)^&k1Xd~Xbh-Z89 zKfa-C+dg46=oc%k908(@osfy*#P)S%yU&0!zp`P|bnc~ho4zZ`@W$}dpf2B? zkM6YP32z88gd}I*&@5ld!60g t(R|FO-C=3OG_Pei3-6DeO5!H z$tV*BJ&bn~PlOKq>hQL$aF}Jrr>@5YOp_O#2SSGd&O`=-UPhYujOU%6JezS|S;3_=T+T)H|<=TyMgLiKEb>ZLy*+y`oiL21nYRT_myn zi5l-}kMinm(3h}8s0jm;oE0Kj35c=q1Cw~&?-$@H`qOz}&rQFx`w`y$qnyWzvsG=E zUNQXJ=5`ab{#1YGT|dR${Z#>fiXUk;{2V8DhZ*mUhgQq&fMSdn`c4WQ1%U!>JcX;r z9r1gtLKlAu{7?PVPt|x#X@QpoT#vq><4~%W!^F7~FH^x&&ObAnQ ztd1LNq}l1h(T|;0c!gGz1#p^h{SW`)KTH%C%+B8y8J<;N6~#$tIhnD-Okt-1D-Ry{smP!L$*#(>K1_>TV*#*iNo7rlTAG z@U2(9jjw2E(>Sc48w>G^%;r2h1I!rVeqbX-Ci@`ze64xYy^n@uZilDg0*_Ib6 zlw><{2Ge=Kzow%C*8Hpuo72Ar^z-(LhHevGj{MYL{>p~TDNmgr^|*IDfbD#U&&>v} zF5sEl=1uz8x#)<2%il~KxmSW*W_JYT++vw>Qr;F?@RuR~!6|*^{e9o}eI+CP@-P2# zU4W+^I4Z*E8^BZIT_CM|)o~LBjB?Z#$XR4B?MXeAUvgv9?_Ieo)6OHCTxlXnc{6jK zmB;$eItNa24%~SP{AXlDIuD{#1UHR~u~pOgaqk+ci@kIt^MOW~25fbal5P8qa24=1PrzLFzp$>$hEVhA{(JAOatgcd&bs*l`fP)X50YwKw z!L-H4Kw{uPD#&XZjRI%erRGi0zgz}lLQXO~2Y zlm5|T*#;LHHf|gj%)qlLiksDU+oMD3=-k4OIP!#;l7vTDpv{n4WmI8c@+4wiV3+g# zch6);kOD3Gluh%CAAX?I?5ROjIkb^qoxT+lWrXJjatgMNSzN-Bcjudg5rPrn5Mz#|49TWDen=cj&n??-xeKv1Y#Kro;@&rJe9LNQ>wiyQ}5CihEIeZ>ElxiCbk|@;MEN)De9Do2sp%5&j>~aM+P1bn$cqd z;32tb-&y%%DSwk6E(EiZ>Y}{8dvBlK^WMLo9(MoxPM0k$7vJH*|2Ew9DZ!{`s=~Ut zt8rko^itv}>y=pOraj6?--ZM4Pm{M+(b|>w7E^`L#pbCx2Qv<7$+&#**B=u0DHi%qpSv=4 zn!pubf6Z_kci{KvV=2FOjV&)Pm-1sfH{Vn(Yx;lZwT%Z>BPmdfIBSh@#5iD#HEBS3N1s)H{?Z21`Sy;+ zra_*?HId<_aeTv13ZXD#F@K*Iv$D^0TsC@5q~M#06$=rKUwmUa;}dxD%81we1WU%l zCutkU;57bH>g=Lxd7vWaN1V=wvNowr(NrIl9llaFO=ytg>}J4AM>@nsCq-46d(eWW zHcfxq?a#g=zj^rQ!;Q91myKRFBTTs{KlL3S`B{82LDTYY=da^6o!-eR>MEX)N0gKD zCf`_yuv0}HCEs}%@hn7Le);9)Hd&*cQOe2J>YE9a*JoEIT=?$`0Th32r*X&&SorOt zAz!uPt!%WZhS3i8ME38v!j-iN8~IZw*yL|vCg0Tk&U-~%|5@k2DZqh~NP#C1rE^?# zJZVj7RJmwl<50$3{&w)-*q*J?F&bTWQW~WJNvAGc$HAs3YPdRy?l8m!Zw8LitKsS# z=6G$9vzlta)M@CfdKJ{5#Yju~IyK6ifsuj7BMgn;gq!JSY=fs{Ss^tL8GI?N;Lybu z&p<`N(&16mZ42YC^Q7FtK`2;?fFvH_z>KQ%-6l2Uw*=Pkg7L{c-)CPr);wCwkS83! zfYl09ITE4miamb9s#?Ksuj=$FZUk`ojoT2%-_tzBi+&$zjY%1bt1xAUk8J#)fP#}x z;S^-bunxX)3YTv)`*t0OtE{BMe-4LUe((_l4AutzIbCLL;nCSk$KXcTQ#aripYX)? z81&h~@tTmPzS)vRxKdBxP)6uC$S}$m?c!UNX*$~m1E0D9hT<*0bettq{^%wktD^)k z{$LqlW}D%|4-Y!ECxhbGKlSUUrOTGH+P;#V1aF?U1+UNNomOe>$pHH6qwM3qG3`(7 zL2nywZ8bG!;ibga&0U8B%2OXpjpiPcmeE$zwsaE8K6N5))k1x!cF(^W|A^%q?}zhL zlm%Q>qj+@x02g=Tgt*^%ui}e4y;V_@q{}RlTCIgVN8Ax!z)28&<8KJKZqN^ANfx{b zOqh8ei?Z*J509dO4_e||bQgM1i9Z6$r_wIhUE`|ljaD!b1&-ttG6 zK39Kl=UpGU6GnltgHE4Hsb#=YikPMy9mWkjpupghmBd~|@Xl?_0V7Rg5Sr2JoiX`< zNBGDeUXP3Q@YojQ{tmaa=W^_}clB2XQD(cy9t4Z64_`WF+rk+jvJSgXbROtT9oZ z?eM@`W2Fg{UcCh`uJXcX3ckFW;+wjhW2BS^zSHHmHk-T>O>wLkZEY%UFWesu2 zH+T%zZa{6K%K^VkoS3A6!-bHJk)S~u4Ee2hUnoaAU7UOGdI44%9x}L3|EY8G#V8ka zEiW$@4UWi?6@B9#3^|Ex$sdi~A8B`RGM&$QS^rt*z$wCklTd*tIOa)1(|~;=T_d#0 zW5$|-WKd;v2s#jrPiJ7D@veaiV+@8mknV_uGjM~q6Jt5yPI9yK`y zJAMZL#WT6GZ2@ugXfC14YJ7LTT@GkunpWW+bc69wH1Wn6sLo&GF`yb4@W122C60*; zgRyc}-gqQmUDk6N97n(#O1yzveBpSiTuqk1PXU(}JknPF2CdGAcX5=hbksS6dY`>> z9H5ltDD(W`0xKQ?MY;?j!3u!*jBxm*1KtDxp^l$ALjd8gE*O~XzR(`j8)0m)9`#mS zbPm3ZvzNZeAiaJ2ZmasgEA%|<;SbFqzAgD3^ogHQu|7MeNrQ=Mx9O-snzPr^`a&u+VEFTM!bd2U-8n^y89?cZiL8P z_T#A@B0uUrxQbq%olAEVq$rx3LEZ344-zax@mQ^sl0T1qE{lj0$+Fp8|PM&C_-Fn$~VjaiK!4RG*($xB{RY2k%D8ta`Sw<2ow zQy*y>ue?c*g4*Q( z2bn?smzI`lT(PJio-jDb5O&4M&ky{-4?tC8j`74fXycu6r;Tmx>Vk;^e3w?+wy~qb z!h}T(I4O>3HxWV3k>-4y1%nnei3$c%j>a`zrLjPiQpHVk_BOa~ljr#f0++*NN z4Dd-qJCIMZwTTLsuWdYAS$49YK8v30p$jhA93U^Su?mb2@;^8H@ERY`sXXuj zAMwOHe@eD8P>x;RCQAr9aEb#DH|3R0V6g4VAmv?|G2j?+@X)|y6`+L}Y2qJ2fMDT# z6@^<}Bd8Hhl%Mpimf$nKGVSo$>%DzfJKi-d9y=JGcX#dK&Xz3%ycJ#Hq z2-y6kKB|-bh?m!TFML6$Z&KgDh%+~zOx*|pS0r~}yeod;7<~Z{rt(uSYI)LFOjHc_ zpo`L8sH)Caq>4Kdk*`mtX%Tpru<%Xar0-(5^)LEreb1hZL6jwZk;z1gqc|Opun$%r z-TqzHY&)%tX;rq(-_MeBRn808j^BQrzP_&e*d9CdZRj!1=o3w>>Mt4Z@+Y7ALH(~? zRA{77!>jK#)*D}q&y+gnrp2XXqd{DKJwstJ#>*>XXMiysPwmu#Q<{`1vVlbdepayI zG6skP6yQD)I542*Hl zxF-LUEi#8Og}+r!3YOJVd@+{U*@j+uV(=0!6DlSe@MCVsGA41*p-hau=#Y0$kDJN? zkKm&qGRl<9)5@Xq)Xrn$8UEpCkBQ>Jg^%PZ6EhTWe(H&OsxG6I0!g7Xp>JYGUhslV zacw1E{Z{9@yy240|4D;q^3bN=<&VFM<9u$yPHg)nXnSy#F8|$73E0g zQJ=_OlySRe@ShT{{*#C7#83xprEdiv-DGo@-kD%Ri}b(!+rPc&>v|xsCJ@Q{b0dE9 zjJ-S$>Td!^ZM1$2;`FF0FQcf%lXr9<7#sXQba>#i^DXp z;Re%bC`;}x*UJBb-iB@Z;4l#3B|$@6bQ#FRvxSm?LQoLadBN*`8ozf2oOzb7`(s(@s$_bBn1B17Dj+}u@a%$EP3<60E&n5(F1tX5AVv# zQ1A~OK2-U?;DU<^PT2O;nd7C{ho?MdMqZ+umAbR0dd#5Kop%imoKR6y>_h3+mh&gX zYIU6cAq$HDD^%!Sf7PE;XUHd@xTq4bo2M=%>NROn1zAEZh&EP zdls|>Id`3fU!>P?aB|mV!eU|*71}?FBq6*UtNw8;+!Z!nPs!hr_eB{b2i-^Me<-(} zxe?wlY`2?x@T>b_@ZHZ*1{koy+rKkTuR-}SbAN9AsIi6VzL6r}={~&zXFvK$ z`K098Vy^#%%NYLjr$4<`7|}a7l#nKA)D;gU!41sb`9 z8#@@hAj?P}-_VFJ{H13iV`*ur^5(tMWy8}uAmQ#Yh|S+>y31b0Bd;0b=6NuVk)OaC z-{4S=;@g47&4|-C+#55k$V$J%xWO26jhii_NYA8$Ftn1voaZ;uB5ietzxeV?NhM=- zo$7kqw)EE4jUwXn{L{SdJhv@b^fTzULOnP9(5qg$gP;wWrt1p3-zmdP^Mo4?>5)l$ zrv`tf`6>-{RlW6y)A-xXwg}^CKRCGIM}sq6)A8YGUNj%j$B5fu z9dF%U=fKI#fs;sq*CC|ix018yY~oYA)95yB+FZAkQ(O&b2A%*KrK%ISF^c$yqWoPI zCFW3+K5-~WR?#UV_srm;fgXr*RQMBqVa`BblYvmD4G53u|X$9D0bvuCy<)q7UhZ9hGH9lI4tVkccS@3_Xs)fg+7>eDT$D{a#86~%l_Y8{HURP(Ewr3Eydj_}O z#)mF>RUX|@;-i^S%DMp(UzC-O*)aqIbx)j#r`+(ufQzpl{%m0kobXGJU#BSyEPpm5 z98blE7cI)qpllFR=3wxd5JhOQ%HYgAV=!PECs>c3vN8X^pFH%0$HgfFJUF55u6ngLINa<^^*LP@F)vHZy^PU2^brL3vSrPT{5=h zB3V|Ku5SH*-=4Ftj&Ee(1xvBuH}{_3%$c%h&z?Cmd+%xD=&Xyg2z~>?H?D1C&pr2| zJq*V(woo8I7d6_pr^Wjn#4@>y%aZ*$KqlHCt63~;2r$^Z1pTS~@P~#_*cctN0}3Q{ zf>ws(uo(u~c%5`NB-F|@Mt?3C#DGA<{=oK#6~cFvfxbgQJcMyDuY1CYXFqP-rU3D6 zNyxaZxrL1% z9~c;j8B^Pn`MRROyxKc5F^zl7upZ*EUbXk7u z(s$zsOSg2_m|j2WYuhnRKKU-qbX%|O^oeh_71QY!rZm^q&$PlYy?(x%f2KE%;c4_2 z*DOo=xAV3PQ^PY}$L>(zxk`cmF##U7ZIULso9++4hPlFnE--{k_iQ_eZ5i4U`)5u? z>+C>fC!r9!9HHB5N!GKhYaW`{ud)2bA;1Cdyz{vOmVwYKvZ9k|I$A$gKXPZky=#6m z0+oZvZ7kE;hb1^_@N$V~b|fAGCmgS~8>Q12BEEvPa9ncSMYtWxR{ZZlFmuLUA@yvQ zl`RDi2V_fXTDJtG2Kd*W%|6}>v3m7QfL*%j|g;{aB4Iy$9g56B=TZtyz zS=SR;j%GP5S9GFwn&dxBr>DPklR>o;^p5Y|uHJIzJ$J|K?K%WIdPDGb2P%ItbH?D~ z)M{|A{?=LvURWWYI6*!-JA=%l2N*`5!C-o%v%lcytcEnP)07@Y&lxararRi+H~=eP zI>YVKJGK3;dT{pJy0uKg(blMyRp3{^%>lqX?8xudB&M%L|)D|EM2-Zwg-4Ekf;3~eDEQ$0zi7_ zEXtB4gQ0|2vGU<^E2}u}yyKow0vrlm@4NpVV1JXDlw~mkq4KJWvi71l(};)0wxFvP zm%{L(0;rl=hG-DA${PQlKns#YyKhJnO;|T{39F%xbes%p$Ta!BlW5qW(R|&3QpJh< z+xQr-B3BVhbfRB2E{I0oK_dU6ao9k3w$I8}f7`ZwOhSr2MSxLQtr}L#-hyko))TNB zC{MQpX0Kn{Y14)AUa=NBVB+bHyehM9e$~I??2EbcR?`|td=AME9}csRuuxRg(i5+m zph3P!k1)c~UGb=XyT`9|w_mD#c*Q^asbq-lKkXYbPP?w`3w<>9UD=0Z>4lX~`aPSr zeXDqS(3#7>U3#k#7snS5!V=%tzV@|G%eGw>@k`v(-NxDS`7WGxI^Wai@4Mx9OwhDp zil+)}A5Fq>eAF0j9@-k0xohm(g_-$V){J9#(p$eAm&|u6{)U^@nf1)u^og^Aj^mL= z;XMVPETj4O_%0mBV@-zZPCwmkV}6DS)3lmQm-t&(meqK=HNG1^S20+wY-@(6Lcp?` zN5b+waWNm?HEp-?lTOCX^a;avY36(S2}A!jZS~ugCh@c^S)R1TGu>GxZT&Q9OH59QwRNLP)&_VdQ>19 zg`XMF;3DEp$N$rx{ABq$%8310l6EpP)1$<>g*|sGmoG0P(81LNkE5yg9`7y&Jz=_c zxf|Myv8Q>|CFgWVu`HgnUERH9x>tscj+B*;tt?+;miD$=ZidZ8ut#Ve+Q|L#lyd?Y zGRN*|rH8AmsW!9s`iCEQ;$pu$R3SfJ;~7N>Fn7_O<>%Nt=Kb(<=gz5v8L^$=*JQ`( z((oJDyEMWK@a31k1R;5I%qF{hP{BR5`*!Ab<=amXVQqpqoqV zZoTDJ;<5K1KNS|zc8tUOTplZP?cneJdIxZ^l3u8dHb(GSfW zkSw1w;wpU(*#CfNckWNT;rbiOX6U4HLPeE~o~t$n4jhPbSw|{+oLzS*y>MRef(zr2 zDQDFc@W06+L8gE7(Z|c0r=TH)IG(HYE+XFEd+mur?8tKacWy8D-McK74&MBY-ttpt zon7WqPnI`?bnD-?1^f_dq$}^{XPhd8>9)-J{Dhh;K6ZRMkRh5u5K=ld@Ayx;8*)Vy z>Ds^0?BA7SBiFVT1p)8EB zn%MSZJkx3_3bZ2}K?gn3Z3LoK*ut+*^(K<<5h0v-!(>O=im&h@uO?lzT|BitH7}GB zZG4R{aLP8hs=%~SR@-_2jCA&?ZbJ&3^`A6t_oU};;fQ*x1qxb=w0>>o*VRM{@)_5D z&~W!jyChn{(0!@xx)M&%Tn8r8*0*Qp*Kyk?@lz3Mzi+>sXQsFu-euY1Yai|GZ7SBY zZ6to;n1X?RZT!q_PK9}v!8~j;S$6Yqtap5N zEYq0I_~PdH=$15B#90Q@>TkI9CN0F#G27L0D%+F3NfYga>6W=z#Thwmr<-^QGx2PK z!!j(x%}?XIFom7(J4zdYJNYN`-I1MmXZekjcpEm=7@lbi+fm#sbHXy7Zt0%w$aI>_ zBW?Y%Ued4Ko`utnqdWZ)FYUHF^NNJcPsVAd&+ts^d*YjUWSoxOp}=#Q0=r&-x3g$E z2YDPnQ$E8G47`h4HZGaQ=>*P2K)&o?W)3&34>~&Q-M5vQ=82btaA3KO6LOziu@V87{ag%QJ#um6ZD((;c3EAUHkQ5c+jq|FvSh~e zvS9w)^2YPeE5|XzKL@w*>A3>mKA5|c2M5Yx;2gGiztRt`i-(8Gnui`Oi-7qmuHia` z8PS=*+Hc;Rav7(3&%f~eawtpSm}*vKtQtCC1>ESMfG;90y+_Et@UlzGDMuV$mLtFo z4jdE*i}h0O^AFg+obb}i%VL;|ISBUaSQ`B#d-@m8pT|AR2)Z)Vz&>uytTJof+%kyp z+RXstp>jCLfH=@#2CEGQSjBMJAqSQDbLW+98-~gehb&>BMd+RAK{0{0v#05}r4g_z ztwgfzqQ1C_jtmOPh)FRRz!orQj*`Z|KI*OAp<1h5T~#~({8LVinczbXUP7F)vKMvd ze*d)$svA%!NOtqi0YW&NsdMdh2)NEn%$hYbg!PRuWj!bpjy~q-SZ=5iz*PZatYS#p z)eg3~Ii&m2m%dycMPW0O^fKWdi1v~iAL&|9^rE?a0R6igN zv1fe0{TG*c3l|7BaJ9U_P%w^nLBmA|#RndAAOk~XsBGgZ6Wq$+N)l(?#cdvSc=kDG zqrBLMd|krE{w>=x$_ZhA_wMhOQD}YEIcEj)7nq0g`c$bSMO?vum(-NzdI;z0e=Dw z#aG^I+D4F#wnjVDk0)3?Y}>gnT832?koP8i0N4riGe7H1Ta)gv@wD9;81Zks$2Mj8lku8r8%S`# z$vk)sKl7;hMTE&XL1%u%GvY?PNt7s;l|XomKhCJS-3CDvhC9aq06+jqL_t)h%Qg>Q zgw=Ag^b=LCetgY|Z2+p6SD29rF{%;Upk(vD`&ibMeXjkmwsnzAw}*cgAf;_U#H_UNhEal!a*?+0UESck}sCjWFCoWS^`c>9!&dn^QPA~&}5l)PsOeMZam-H=`u|_UdCy|&9u@X)3?(mo%G9e>6fsj zYm7fr@HX7-R@TSBz(AbI;)&eSA=7G`ch+tCo0m#&PoY<^RtY1m%*(y~3f<0}zn#PL zJkZV+V;b>LfcB(z709lB@Z@lXf5TLoyDH5+$|{$I=gH(=FQx*;LwMbv?7n)-X?ya( zK9$?9lJf+AmDO%%Na0;Yw=3{mo$yU~KbPX?wP8u$q>o$Tyi44}{?aeopk+^!bkI(> zVN>0{r^z}r&s}X2kF>MgiA%nVmvJ&)+ith3#NRSWr%Z4BgqiL(jP^I4X)@1Dmu*e| zjGuAaVd*FQtgFPUou_^oH}go`gs1V{@@e$*Jz?nAPT%%7tYbP9crH?4mkRLFrTOvm zS7+<^uzL|;MS?wI26W3EEF1ru|5IkIU004r0Cj12UoWS~Z{AckeUatq zx872E7({yU>m%KR96BOXXooNW*n^!RCCvnaR|s(+5Fas}t24vSmWoXuC#P?{`s-yK z!qdULul?-GvX;H;;#>EK!@SUe^}uECf#0LxWj+UP9V+vmT7wUVcMNSU8$bWKvYrFj zWcUuEoWltA4}9}F1WcAH@lFpB`9H0rKp-=pE?|#QhH1pz2VrpCZMT-E2pDx1m-5c- zpI$aHh;BewE#x}`q5nzBzXpE=%N}NNCswW~`#`IeANpYFVTtz0Fw5Av(hUi(jBn*s z_ovpC0kqWncd_5>NfaAny=5j##8<3%r1aczSJ}eM^$@EQEYAcLQgt5S9Dgb@#FIK| zI>9ItbdmnyHO5|iaMwsLt2PQpxr7D5%PchKXPm@d!7<7^B7;0ujzRHq42p{hm;v`@ z#~?!LN+)4Rqe?rv-O^1Sy_DO%_%mTJ&SD@x`KTky0chU)U4|&Foe8f6008gc0CMH! zFYYUAnZ;j>u+AX?WdRD8OU_#wdG*>R5U~45Cl1HKWE^wI!3gynsx!uNMew(-W)Xfm z+a9dX*(gjxT_E#MxOLydBR)qB4wOY60%W~H58KjS2>mbTV5jx#*F{^Hi{fCqs|ygM zsmQYT!ujQrbI&Q$VLE&9d)cLzgn%w{)JGkkd+I5r4;m`yd(ZX+ZCnM;7n-P_ zMB26ux_0-Kla4%sEgoE1w`FU&{Gu0>nfUd&`dw^e_KYfv_BS+K=JGAP zlmmW7&px$uqfD_Ksyd4SO(_#&i?Hm{Ia-I`uar^f!QyKnhJ#~7|H=D-2K?8b#w{tr zPn#EXU)30Hw`U;F(@3V@(>$6qKcbajwKa)b*y7N57+wYI8q+%U-Fwt+57xQLx~iP3 z!kGTd>G7!G6F|fGk*1b$d)tWR=*B1DzXFf)9f_UH;?J@193>KvN6Hme0 zf`n~^W@a+pw=-|%fmc*O%$`#@-6+Kr;K%8kx_Cl(x1_iyP^N`q&~#1NBVW=Rwe>p3+pPxr)YXHz|J&4aB> zbHx=`gl*j_wy^Ti5~s*h=`vfBeVMUOd=OygV`egCG209P(!#-q-Fa z@wPozQh18}JKph*IPu)`4qWx&!Fb~DO1%{F%~yCHp6J#%^Y%%a8s4s>4AVc|8MhtJ za83GU-0HjQeluTf&G*A~M_8Fo`e+hXy0e|+`!kg_(`9(t&y;RQI3^6!WP1JDI2e{D z<7eEo4R5=R*DhbW6OM5cR@xcXu{#uaE>d9E3Gnh%a7x`UI({fJMf?QAqntI4n@^Mv zjDs<{I6Mvw@%p>ITedv-aM=u}H^L@F!?r27&@pd-AzP2&+KZnvm(D^u^D6sDx6A+} z14TZ3w9Z<#KTazG?=YYOQ%24>j5i9LK42ry#E z8dy=1z*6%;bdT?l7-Sl$VQ z_gZck^j_xcC;H2@QD}t_**)qtXaFHiMDoW|sKiMVa7>Ls@a~p~W73)Trd;m1?x*gl zfG9^Lq6wOG#?xqX7@zT-**Rd}#X%P&T>QZU<|F7y*`$~C7Rkmqm4D%$WuH9|-la2f zyGY-Uup9A*NjL6F3HGr|69oP!kE<9AQ@NpkA6LiC!_Rgi1GG)02Tt=Fsi)>Invbey z&iqgsh-)7Ti!wr<%qH~CV5P+LdMa|{i+33!U)oMTf-8#%+ZHEloN z+u;fP2l-8fv-4rcH%VKNF8=zxyE>tlHXpOqpdQMvkQ~8>@Y<&k4%xy$*Z6)C-Nt)o zTQ=b^*g9*^S7|NoQI^Jz)@L7KyrzuXZOY=GZ6aV1kGSz3aq-8-BWMxJ+KDf$Ad4>l zYvRTon8i=cr@<#0X6+tHgNnC{ zDCjw>+g1vg#z#0Z)ln}$0=W{Fv$d`c@Pu_|c%6BccW@?ILEag91>7sIyfTD(1xN9A zR@qr!;b;=qd{6u`pEjyf<7C*>xb640JL9Llqpo7b&* z+PdkI=E6%jDfGH!OL{51yGp^Cbx*B#w%pUm-JamR_HIQ;V_H|j<(_`=F^vj@wlOcw z``-7yI3LJ3DuLem*0)AIcsINU+&WwCZ3Y7a1CgHx+6i05f+z2LCX6%r3h&}GI5-$* z&p2yup4O!}$t!p-xl8a>Dp_8iwn^IQm-PL9?snRAXS%7dGkj;+nP1xGlWxnUyIsDi zc(lWx$(=A0P8V*1nP=MV^gHs)@b4FvakSg<+U_02F}!0s6nL&v04Zb_8NY|% zk}8Ab3~&8Le8&)8nONk8BabW3LxVb>fplV|3Ir2i8dsdr5e0O?EAw69#ms(SRPzaV=A{8( zbacK8To^q11^m{#(K9UE{HO(YM#sbG#u$L&-gWkE<5k@4 z44JxF?pYvWmkJO6kQ7t_s1#7n-Ud@OgC+mv=%Zo~S1BRRT?%aEf>=no@x;%%a#e!^ zV?RsKhd=(YGJeCi$c5~rXGEZ^#0`aw$r`-KlKjkDMF+IN<+9tros^MhATFI$LI{sM z{g+5{}+pCZnM<|W@!YzG6xgsp%n;(G9BbkX@esA0~Sy#Rr z&v%#YySLst!XsdtdCZ6_)Jr4$lR0v~yv(CG>Cb-?4o<+8J`tZ;diV9$auEqY(%F10 zv$rvbn(o-Hz`J|-dxtq0)^yH-qW~C2x*m^h4zwXi*wgK)`?e=mrJ#r*X4HExQi+O( zUg|;|$EkQ%xlFJ+qKE9a+YiD)sSF_A$OQQiHx)e6WCDdy-5>0W4?k53<3&2^ zsY$!-{$c(8J8AxBVCT0JEezUA8;efO2RUk6RrlfCwPdkP8_(}dde!&_?F?fMnzX07 zBe40Qrdu&_(+1+tM%a``NVW~V>f`rdNzy+942KHw8q|mcQFi_KOPIPFk-Wj==~jH7 z4II-%+IT0PU>bZ9WTX~3gKWPM&bw`uoWv%SEA}q*Pj)*QN2OFnTF|ByN|UD<2rKF? zoCf|_nV>Z#O4~lr{>jHa&3;Q$`>YbnpuNt^tDf=-G`9@7oZ7xD``SpvPr}tsSQ+-; zv4tV5hd8j*tx@iMS77_pr#=;eoiptog6piXLcXWRd)=o?y%p@89TtXY2ZsHIx{3Km>^xh6@yEAUv{z2jGxVyrg_@ws1pT2$}ruGgdr>n zF9aO3=BYnAstNhDahpxPhg*LW;oob1c*bnIG-3emV(D{4P@q#tZQ^>^Uo2lI-UQ3g zndYe3l0G^rr3yfJDxdi&JcI}McO#5X??s>^#kh(B1yB@*VfNRw;kVNyu9;^$za7D9hwDyUjQdQmGG4+ne{u1#+=e^%uk9JZ zS$4yPS=R;N*nu$(t%=_%JX&8_KEpKTv5_`5_u?0pS?8R|cjCc+E-j{=(5~tk12VdP zxxm7|3PHGSZ-W0xG!jq}VENg`_eN*r_Yo$9Tj<7%f}YuLJ5Pjo4fVM4C3o8%Gl{eO(PJ?(aP z1ECElP;BrNsQB|msY(H*TAoaXE!O&1m^zxkN!u`u{%st>bGQCUfi49j1uNY#o-`%% zJ;N3Hbie%NFE3x`CK&B2ue>q@cbBcd@r`c`VNn50fl50C#dcoi^K2ORL_5Ro{%i$8 zmwr3z?hoz)#}U#x-$PSXF?{ z>qzsPQ;1jSHBF{BO~TN&4z#@$#uW@+Z|7{cv-Z-tgbSTiF!0tc+`Sx977z>@18E4&gH#2}PhYyy{J=OTf z3Ifrn7YrvCqY}@6{<3J7u5kJk|EWN*Kn8 zJQ+hMzRXy@E)alwLc4j?l>p`$-uTOKAT}|>ImR++%ixu54h9hy zTf9Wa^uf{l628?R?BYFaoOMu|p|9W98`}Q!kEUN%gL7*^MWjWwA<-)7ho#oe0I}K_5GxwmGait^v`EJy3(*`Q# z31b%8efJT@03NsqM_j{`6c$X=4Ac|QD2(-&VYpSkIKz!2>MMdG4Y36g^<9(3FA)M~ z;%iK6z8dRDYH4|=UpdC*#3QgG}Fn`EP9L*PURPv0}&c%Q^c-%6vvEz%p<;Mt^$6(NM>cUI#XElX<}QvoZ|_{|z0=z%AJ z*ztYY7eqYESo1MW+xS}Xw2ZnVc{|E(=avqZDeZJu`qVHB<$K!p8D5v_p61{E-QSJ9 z)6TlOC*I}hb$qR9-}08Xgh1!)wsIl>x?o_q*R6;B;%`6EvBRcDf^A%1_c^iuW#g6|c-+x40{`>UPC}Vfy)~ zJaIN$Kf`@AzNepjg+i`}-MLg=f#3RaZ@V|fxIH54GH1qJ@!+9`F4LEW!VtE5+!eU5 zxZ(J;`>GALvxj!7(qaMNkLkNqPb`AGStU;3q}H)r162cK8Uxy)YN z%tOInC5;LiPpY^6Et7cJ22^IKNRSR$Zu8J>ypHKmphJNU1$Gw->^cFyMG==MD#X)m z@*rr0u*0Ae2XpCX$Ip^ph2Uw31q=puxG@`UD&FmIL*&Nxq;EXpF}2;WY*q*_zB^Dg zgK~7z4pgiUuKhIwn=|buY92&cWgF7e0WV;a1*vL2xMLYCNkUjLKC|xQB zln=sTnKd{?)+!$?6KQlf%U7q&p)-4?WnRgOATP`l3*hPCCqy&z5C6*Oj`zi(i_ePre&kWP02A{=83cD48d0mDv7P2*fN)<|YV4pM%-`=uDf7P= z12u$AaIm1OVS1V8xBRr7`2L!9Yx{LO1g$UHP{6DyYuigW(Qq4>;m42pNA~8U`}^UN zi5goJGwqb1XMBBH9+LpJM>jmp(@^n+uncbJn`y*dx8FZDgyK*;6>lWqkue#a}?Gx3&sA1J_0-b z^y7(ihLVABHQ|n6f0}o~C;R9Soa=jTeUV1d_9R@U1r|Ik4x({ z9**a-ezyuJpu42sef}yP+$--4ze4-#U;p~ZtMXnouXbH$-T}1p)1g3z0v!rG$0_hb zN(j$FDI5=B`naf!W#_yEhl&k@B)b>;5<>(qo<7VBI~MVTaIBDGJO&qqTKfEmhlk!_ z90&|Bj`At7up7qAcLZzq`3gUl;S*g3uFm8OkDcDYmf03$1&tsbNK~evvY!YlDfAH0 ze90#EMTg+c-s7Bs4W`n#;w28^&8xz=>C8j$;fbG-0yJ?cIq|?Lmikv15oY>$R1S>A z>Eq%&#=ibgW(W=9S$1MX+&V)mLt=JpM*vV=5y9DNyblcJL%=q^k~r>(SUjD1d1q4}-`< zp;RRZ%%L-6Mjw*_AZhsN2rvW$EDEL39Rwh-F<=zlH6EUkKem-+eHdSN5Z+)@)LHa! zhw{hv*p#iYWk7`GN)wB(AYEx8IN;$I%9hAdd_}m@s4k)Al|Aj|A2>>@z@NNDUm?jl zG${wzueQBWdC~lr#04jI^4TNIm)OPM{DP?eVi{*`j_(aY&z#~pw z9;)XG2cr1hcmO33j1puswvWCMhj;`9et3q7*?REzPkbVQZ&5!L)$lazX-3F|5HHd- zVeu~Th(0w9k@OOFbxhh74zKucch~m@smZ*yuawBrVOMla5TLV7$1Au8U4U)V$)bn` zHD3F(NM=03@f_oulk}!DPJoXaubUP!j0O}I&g$oykK&t=G{_M|2*;F=|F7ww;{1h<7yPa>w z6Nk3j_x}ka9a0e2?ZIve!Isf?jkdGi9!#eZ?-bT8neHU7_&! z^FROdI1n!BC7jQF?sIW zc`nppAkz8iP@qGB4h4P)3dl3=Vgn--Ob>$v{~?wKvm;aJ;OPuDK^%?i?lF^mAi7J2xeKPEZC_SgsR`Df(_%=D8i&}uT^t+aE#DT8xboyZZi-saT#PvSI?^EoPPiRu#yiL@=QWaMCM;a3C;@lRwM7 zoyoN*)XW%V7*}vLz8HltXezw)j=1Cl)8mqBrf4CaOT}Sy5c(#Vu^sc><@HqRC>1%X z%@gt^!nbLnhIFNT(ln z*--$#0P+i=CTfF*sX`*CTbZsgm+!0n;e`BPgsd;hW6O%!S7@QX^)*IAk9sq`eqqam zM^@F3#vivQG;u~zPMIdt3qxaie&aE0(rvnU_(h?nax31&$;ZFINtm>C%42?}H(Zm9 ztnZ0) zDa@p?b+??p{x}%vl|})}vTJhYwQX0rOoX82UTK9b1u=ytmtiYNDm*3(muKfP=*%bW z%=4LS<7IxeZ{mx=Pkc1GT}FMy6<35`?s*mm&Kk zzHsv~JOyLj`u|UuHXX!4oGhb{v(a9&rrUC1 z@QwGt0}sRjc82?;;4UuW>b>;dFkqPQESE|N!`;Gh(@i(UUGc{C1ba`i_mq2;HJ-@t z%)DnZn71&@vtv3G=un_Tf!&D$aPhmyIJUt!jj;!QvXx}8jg*7 z3_&^GVd97eEbJz}f@R$cS@UBwjC{=_ln!?O3e3PjXOA1f$ux3w*c#o86Jg}hH*+P} zFohW5MZCnFktyt21{h1;P3P>W3JC2Q7ntPNWj;J1%u@!1IN?~1`j{PXkZQ-7%^ewH z4>L&gPzMuSmlgsSgSr&RWv{*9rgFrxh_zIXa^TGJCV6YFri!yk3dl&n#yS&P5c!&e{c*b!DK0_!Ga3dH^5I*5mX=B_(U^wkzg1gSg zhqsa*O@32`apU3d_6vspNaK4K%f3w;;lP>DjsFCBny=Te1s?7R2X^cYk9ZZ{ICyn| zQiMDbZy#F#=Te9)ea+65GZs*=RVsL_3TOsGL81^ z3XG;EsZ#_{RU+btA-1g+S)MwiZfpClZEjqFoTxwnj^Bt*S}2dJNNlzOU;;DhAli|$ zmy~r(!I|=ogKu18Xui=%h^!q#7=kmj(tqo=EqoKS0Wz#BNX%DQFny#IPQW7H5W0CE zhAyM#!!rV{w2g21w9O;(5y1wIxP)KeP~&>!zW$@s=P+=z#VPV_XeG?d*SLlWXB%x& zJPZpza#oiW)c|c=u`m|#>HBCyBh=?M+9%k?pWje7--h1@kpU?#f)?jpYs}Ir)ed(c zQgKjWS^H=E2XM5UG=O+&s))F~4<|-L1Xpf6-QO@XF*6Hme${W%rm;m(-kpD= zekgzfk|y7^6^xw4cGlWiPTw`sKq2bZTW^gpg((F*uW|E4bC+%_NE+|jYp;!E?85Us zP1~J*JF?s9#4*!}i_51~A}FLQ6sjz62KVHXPYzpw(q+}|z4m}Tg;V!Pi<^REmen-B z`J2BPC!*&Jy!qslaWn57;kh&Y%(qPk^GZM6E*tmoHn%D$sC)Xl^>+5zXGb~}6kZAE zesk%TX_KDTrT4sBc7WMP?YSTRb+3EfBrf7<{yw%> zaW@Yi%~TqOXXmFwfer;a6nG9(05)?Mnc#9{p=ACUWRxs|0b=luKk;xdLWodM2nGqE zdwi%2(b>;nrm@$VPbCNj41N#}6ulixP0EjhnH-@uuf2WFDArR_oe^@6ckKPf?r~Na zIPl9vuLHJF;~Fvi6AoT5Bve`{5KGUXFN2(diSfGelUY_^SK$(J5HKy9=`_{GhxZUZ6lM{Kx+nV7(*!I7 zdvsgvzzhf>u)qw)AWC8dej$@r5EcBwPeGJ{Ul<{*Izx?#J+5Ys&}vy!Y6NU(7PH>Q z4|u?AvJ7MmC$3knK@`%fAQEEy=)j5FHfXqpx{h#hm%!rKcugk5JML#U4UDRkj{Lk8 zK$=E<(>`o;;$?hc$(T^SJm{{Gm+3joE7h4 zg-0kI@C|xLda?7nF&uxs_1^gQ{A$IMzN4wvz)5Kv<98m44iyeUAn#D>fty$LMM;3; z;g+NEO_De7(G-M_qxLW6z#q6&vhl40UwZgWQW}()D$=B}{YBIi^sLqG)qbHw<2}*` zcDv?>Vg&BmwxwvQ(FQ5K^~GaYGWylewgVkZTRVg1UB6nN#;bAg6Hdgp?Nyj$it*h? z1}q@1`!p2oo#H{!=z^HV*lU@d;ozQI$6dDo^@-L|V*hML^CwQNmXJ?!7DL-F91 z2+>BOrKtS*F*lR-Md77Q3ai?lGVguw|M{Q)8B657=ly~UE(n3n!|R;!beXl+j5(X? z4DJ8sYFGs(XJr-S-~8q`7f*`!J5|8aWFF@I!x-_>Wc*sE6CrGRU6|ntl?sMm{pwd^ zzqF^5Uvb41F_Uas1wfb9o42@$W5RK!+8Jw4UH_+l`loWqC6@%QiD%}WZO8XrZL)4s z==MF!?REiA*#EU(`?XlEZhd*hUn(P9itd4fpa1;lgEqo2%=EfFE#9T(fA(j87H0`q zmkQvX=x-e=h$|F3L!Qgvvo5Sx6*w+uS130RS75l};q7mKdngi&V?Dj$4R0uKdefU? z)?I~zd+tpu4%*jWe|_Ms@U1fFPyXajVqd-KtuOI%ONMvBThD*+2Y(Ps2E)@>CT}EA z0dU)Gw-vW^c!#}L)R~WUnz(10j@_X^hXNf6JXa}DIoDl*o#QNwkSuKoUT}u8XED>3 z0-XYjoEn^L4>O+Kqg%L2jn&Zzdfh_^Ihzq=odspdad1?2&I&ONvn5j&oE`7emDxG;0xXPjvqNFx|=HlAfus0<;LaLcRI z7XIQ545A{HN186m*l#&EL&p%XaU=BgSVj~hWo$E9L)YnZB5N~ipx}fd@Gr_io$<%Q zZr&B~5poDOzc^icf*EX-0o{+UE)Ra_V`a<3kCvW(#1zWdg`gcWsqLVlw^ zGmsj$f}1DkPcW;RLcU4}2ijQr-^7*SulJ*a3j?u6+WQDAp2jZ}6qb#`1=hrutd=+a zn{?sDkMU!02N!XRZ5+TcIHoXe_$YU(i?fj{PEqQ}B5<>QF+H>a z!;L2i%s0RjmSu_ZMgGtfoV?XRoO&Rv^A4-MA6XeiUOKLATUOIl1LmokBn|HYkP`si`f(dtx(&nCRQVu5$}GNQ3&Eh znF!Ywcj5T0<~LM5fK6Je|+IuCE@M@Ue2FAB9Oz{Iwmu_(b zetfS{4WxsP@ePZQ-%sFyzqmAY6EO9+T;fNaM!#X(GhQ0;6^^ijuzo8TH6iqQ)EN0O z^J5q*G2C)c>BYB*QZ2SUfKPN~0h4$;#gK0hPFrI>)z5EQJmdS0I%xc%Z+=ga#CKDY z)b^QA#=!>?LL0)Px+AOFkJ$T1JoHUVFb(1#IM0#;)=Tjpj&f1!a6W_db(v*!Yrm(<9vqZ0>J& zcK6krmq!22@BB`=_uhL$IQQMzP~#YGdTj+m5029E2t>Z@Zp zwnE`#n`q&jX#zm=llW-w3}c?cjEW#Qz`#H#H4OJ$01tlizI9<_ z-6TETtFEF&8Yz6AcG_v>XMW~q;;KFAknu0P@WN2)cu1jeGQIez*jch(tloUZ(KIR*vOe`U z9}g>3Dd9nUwhh~fCh<+0?TotW!0b?UV-X~mz(4aXyqp!?=#VgC`1s8>&(+iEvO}P%LP*>1#J3kD`9DEIQ zMv<7fJ(O(%Nw0g=>ayvt|Dmk^#HUJGyQYlw3(46`xbfzx*F%rt|0uE)#rbv@6zz5Swo>zBLO8|38x{1(B^lM$&6=w znRM|K6*CAx!W17~u?1nfhoHFXHx}0pn%2kfQX2u^G8o(Zq76*qV|qg=6W^ivxy(Kk zkmfI0T{!`+L;YQ4!|c9tz!g7Nx{f*toXIor752_B2{&y^+>`^Cl*o4OXIRT;xcapa>IQKL{A#%HWa72;7Cmalz^cG7u>qz(1_lQ4V6=i+a)48igs~-#GxEc? zf4e;Xo_CiOU%#e2GHY(x$R6m*l)+@dG)8Ak+ByTMjMp&EWC8mXzaa>~g~>NEM;VOb zG^I8NRGBUPn%I#s@svg6sbhB6u?auNG3w-o%{qNGX_a5Zgm|i1G z3=yEtT~Q$uBwz(1fhpuz;VNB>gQgthYuIEQ;@f6iHDLU$>=PG`${k^)5r(fbxROR# zz8eqlkfGYfHBJ&vThr7-r1QNE*LMj^nZw^Oag2&?(ubl+z?9cz^zqKCaD5u3()Kj? zvE)5hQUs2sO?=G5$CVa>)!*|0Ofzi;{=}s|CvN>tdGbRaE;DTW(Ap*B&b0T?fP$H9 z+N?lgA3Mp$zV?-}?C<_hS#|3jWd`)whybtJh9F>!#DRZkfXoyWSeA-lYiKw16yG$f zJ4UDv_oMei7yZTG_7f`vs%C|_v?B2alwzq_5we-=O)_x~VYz7Q&A(qT?1KCUEo}82orhptk7RyschEbj#-9mb4tm zUKu{)Sq8rnunHK_7ZDCt@fU~*3%HiagX>ffxMHHWi>36`*F5Mu#>$m72=I$9eL?9~ zfDha%t~#H6V-6rzb85M(pTD&f#Fg0n%3pwwO#xh9Lwrx3V z%L-8Gub=MrlY*6Dns%5lg`r@kQPA=|;c5RMlW`KiT31cIH1LICJZD{fqJ0qN-guv> zW-2W4O1Q>#$#~)}zM2d-AIsAg8V%P!;rhNaOy(hM^U~<&qtQ=1HTos)zGv9f_`WCJ zrcHO+!qBbJZF|sUy39j6(Z9E?p5Gk;ypXoG7?`)6yC4Ak9Pr}T6 zGEV02d&hJr(4jzw0=p9hcC7#}=M?NP131oc1Og9=nuvSI5e{SuV5YV_^gvnjl`oeg zPF-5Yf9kbm#l7Dt4?p@4opBuuh7pF2IO52%fMr-+464zY%djKZ)cvqzWB-njJHg>J z>s)$;hIr1vKrrYb5XhW42*E%He+n+$9C9|c`bmW2?fbyY)3HKkU62|}5lkFD?!$H9 zc93!T>jX=(MuQ|azpqT6H^0nVvZTTmmnPpaWnu*K ziFF&w))kMGhaXzbRVy60#p&Y1;C|TR{mSTVx0iC)oh;#3upqt+xsU*2`8}{quD9-6 zt^Tp68V)^$m|6#v6Q+BDRTR^vjh793%r4tr^~%zJB+Qe9!)RA=fXVq)tIAsLa^0J2 zVP-I66N72Qs`PfX#ahbhY3_TeHK)E*qR5I^yvjncD_}FUyzl<9kXfPmo@`5bRrDyd zu3NE!CF~<*PiX_Z#~*w!=(yMZ2gKm-lKg26OpB?|VLLP*jri*IOr~8f1v`~6!{B48 zZRBg2=I^(>}$Xt?F05tV5w7Iu*1j&Rt9=4O<`?$&eo(D&}W zyFBlNlgj)>i=yogf9exu)jxf>>=Du@br`d}3YrMrv~vY&_i@)G} zV%A1_P(W6FaEPGWH;{}hi&sW164`?Xr(6gGM-jYVEqG{KUAfXkqD@&!JV)*Sx_w`UJO#fV=gtiSORB6Q?&6 z3gE?=6cgb2B=;Ua%mG+Oa@f^$+7i*qmd741_p)bl@xJ?&J;1M98rT<6XCAyM?wo=Z zr~Qwy<)xQ;jQp)%zK8MYD4^zZ0F=tQM%eW%!yfkU57Ynkt$w1c`r!X9n^!D{D8dFN z^pApqZ!(*K{Im8GR1|vi)USz}i1$!SSol~W)d(y0-E`dc4Ih4YKRpBysIR&Rj5>nl>`Xx&ZhSDce7gwWee|PLw=t;Hts-LyvYx8xU^mx zMLA*&BOme-U-PSHxrna@kKNFuP~*2Z)mX1-Qdl!y+dtYd^lJNMTh?~WY@2piJ54)I zx-)L(kvO!&^>ewrOQ}78%`_T?xpw}4^;drtv+`ayXI$}0_`=X_nl$F=zW8r{``hL6 z%P)^`)43$OEl4JArb~DU#2TmCd;L~w$S-z}%@&CR*n8csD@Pg8hkQd=F--YY9 z=+#4bqDLO^S+i!AZJg|$48fi- z{AZkca@ptLL*Njr&=B|}PLwfbjS*xvb4uz>58hw)L89<=_8t1$(*Xm&;%NvPuuj zMA<=}w76wHAnsFl+*M zdDSalSq?=RBdukEy0HTW`QO6nws)cE`03aDblGR`y{ga-Jv`Vi1W@9vL^%Fu=yx*r zxt<2yf-z)EleVVt=isl>W*9+M+kJG;g@mlqClrJh`RgNvKNZjL3IHBBaTpk4qm!hf^FdwKHZOx^E z&pYIKWfr*J&9zAH|IFvgD-h_!H>(-ZzYuAQiq>C%~o(4x!B*bL>%} zAd#l`qF7r^-bWmGKv}@IV14#a??*^3pcpROPTTECqU(rpF)%~yY|>~R#c zWtUtU-;W14dbWY>Hxy*#4Zv7IF}{9Xxs8L7zIo4G<1P9?X{>Z*mrO0x~Ht;{hHgx z%Q1T_C`TQ#g!aOX0Q66N;I@cw=W!H-_uhV6*~ZNQmf7<=r0vk=Ez#y?OzSE8(%w|y zY}oKr9IlBfiY@Tl%B-3F3nSS5&%Er->_U^NJN2rsLhK7-K&>`0xrCsit3r8>_tZqrY|*-DV)pEE+)B zg1ZkPvagF99(&7lzSn+~n*DqSeb~LO?BU>ukwzI2g1m4kfAoVpq0)=FoQ+A8nthCUMZ#*yn1drp@5 z@iA_U%dJRlni!rY%c0$dp*u~sAIlv!OLFaDm~E;f_vR zhJ1L=>@xS*V@lWHU@+Ns<{OydzUr#0f&uUfnmz_x(j9}3gH8@q?$wsjg{LU%$@w7!v{m469%Y}8;5M6?ygQkR-+RmEvX_Dz<>@6% z#X*!00pOEY{YSa)@yE(xmtImfZrWJ7opn9z(DKh$UtRY2_D$vVGtZ2f!MMwwwBsm5 zJXlSkxCbHmfD6tq-`?=g<&hPSly2ZY_|%hS&_OV&14cuNh$n(e41CZa2RK-fC`&|< z$%kf;jzO<7G%*BA(8e=n8+ipl)W?{IoU!*^Iz6~-SujstU*pNRU;OufFXx*j7w9(I7gAK0EqtdM;Gr_ZWDxr5nNXHzyZiz@8-)Twd2g2=s*3ewVGh_G9Ut01os z?MdbqcZB?fZGCxglXx7>gyse=E328?P%;8DJVuLN-jrfn`;B;K5K{_p^za z<;PJTc+alSJZ6s+;yr=ay?)|;)m2|XAlwp%K&@cL_+uacSh@b@TgswMo68Y*+%nnr zT)OYfa~ybQy(rL7cg_$-J&PGM8>L>h@a=3N$^`9fgo6&dn3Z0~jQY(e7?x3%V5Wev znmW6k_H!@a*~8#lZ%^nhcTpyQM-%wo$zeiM6hJ<}O{TMsQ?9;Xp+rhK*u>(ZHO z%kNDS_agkS;k4oF5Ul<7M(|6f%QoX4$+J+}4Y5VzKe!I*YEHu58-?7_C~hbO?^l<* zKl_>T-|m!z002M$Nkl(i`iIcY@NAhdp&gj)_3oU6OGMFziG^@ zFX!93XVnvITKa%HX&b8_c{utZ>(VrSm#5MW_N5)IUOqRjF>~N<`lF#ZnR%KV(Ze=|2#zHTuV1ewt3Nw50wOSo=_R8hKo$8uXoT)}A!dJ+!jI zl=ns$HV=E53eDc1{*kt4TKg*7r8{Eun;5PAOZW>f!m**faHUJo1{`d|bq2gD6KeZ5 zU*H%f4%*=DQhCn=i5YhkJg!RVjR&;~?LfDyPsB22@Fj-*A^6A69~B9B)w1XiKKV5D zB+c~OZrbkczPp2KdzrSEPe1!9jR%K0yFD;45bxHx-|QCJx&6A=lzD*J`3TPnxzb4! zb7|h--8;fBB0P&fnOEkU<#$Z; z`Z(`&KkKZsVn4fONZv$SlXb1_lXdyEuYD~P%3i&uzx|%P(1|CW80Ayhe9bl2Ol~nq z#kHr)OMmh5l=yFb>svuP72TQEJj~zrVmz;cvyQyduZ@#sFmJE*vs`Y8XqUl$+Islr zH@_KmBz}(3#x-pD^5t=5VV1%6dk{Q?2khn6h+R=fQK-&OhXNf6bSUsFP+->y@Q&Lu zMRd~Ye`U7xg56@~38qhhkkhVX$tL2Y0*wdVjXCHu>(F zk>!|Uj%GG(pK^5XjF=I0u<)w4r=D7iQ1(FCpQX>IpLPb!NpIP-aZ7n}^%{h<`zi%g9JgoB@M1+z7)pDH6TKcD>6XG1uXJ6!Q7s|~LD zY8<%pd>D*Tm}JmpAe>%qxbeF3ts8GHuYAQT%7F(hi82WL>@&|P_uX@U`O4R>Df{eq zKnzUMSVnXlW>q>$?YZ+7mh+ZgP@Z~nT_`2iKDr`=(Owu+52b@+j(8*uL&{*c^WAc4 z^z~m_=K!p~gJl;pSSkY?logg_f~^Y~eebEa&etOheesK53_DDc!C+m_Y>MflPN1*MW*IN!h`na<10RvHY3hOeqtJkaxI-hpdIn>dX zpy>?Gt5AV))G^1E#R%3ajbyx3g3O#VpC$f#mxB*GGU#Dht(QK&v3|bqRVXYTc<`aJ zFT(7Rj&eC~kY8~yd*S=-Z!ad6c zoT_ZzZn4!`;yWx=6?W#f(0fyr0P{qUOj)~H|WM)$5^F8xlS z6`9uS^JoqVz|nv_7ofTgcUOYSQoN`WXSoTpQ{X+6CE^~BehR*<{Q!>b581rJr@bkp zkMWFfD90$zxQ~K6Hr-Ls+SN8HKW(qB4A3206oNYTF(@1fj`{{RF0xc1Y@PF}@K0KM zK|cbwl(=ncY@8+Y!mKGM4+1W(88z6lJu` zk_&6MH?{sOk3@v3^qcASE^x2=QW$>U``%Xu2M42{^t-TcdgB}47$>&>;xGPU`M?K0 zP=5Qje>;R|`)=ukdL9BW_-8=a}GFaq-0$M?a+iZ(r_rEKZIome0q&K!I0* z(0*80#<3g&0|POR*e5G+dM%m<_8I1>_6nfFkY1X$J3My6Ptvruzgl0G!9Mg?fAv@6 zz(Ma)_xd;MjPKIe zE8PrtWrC9+)`2wkTDgBmVejeqhMUF{=pC z*0heJ){O$XTOmAE|AjAnVJM8eYR(h$O|SAmC5t$lpKZZa7oMIk9OHCMhXNf6bSSVp zQDBz~@N~!UR6H^}{K;W?xK_+;@G6t2;N1n6H_aoXh9}B&mNahLwv|C+zjEdor(^F+ zhs!`qyk2JCH*Q>yX7+pKJGZlpm3_he)273mF{{jABlEXr&65cEEaj%7er)9<3=CB` zcZsJR`P@0PSdz@L=Gn8#3gEb`&Vj+l@cZw(2cdU0ihvE_w~{5hkFeDCsxN;jW*@Wj zKl7|J%kjq@4`?a2f=fRFk;2Y&_QZ~G4b_JAYf&O>WhwSh z2stVh-0!}2&FZqpg88NEq!VIQ!8Ew#+rM*L`RC7nuAFe(vD}-wlrlP-A#XY!^tj~W z7jVz&KbL>|*Dr9Y?2F34-~h@3gt~@_fU+@|D-@q_{0T5H_m@W>d;q#amsnE@v(Xwb zqY(q2e@D=#4RV&(K`#f`h|7<{_H>xtKA1QKcI!9N!vs@Zf$I>0j59MbQZIe!OJnv! zAzQ&{aBwgfF7MuTkd+zKb~ap-T6k&ctjR;nZaO=lP%blNUCDGQ96C7r$Y2TM1XegG zNLshzuaK<>ImOi0cREzqD`yvMP^PKe(6hJ3dX@Q%LppSiI+Ib z6l%+?BvY6SmM1q`R%g;(K_Fb+Ygt16@sEEzghpqI#92m3=F)cPyN`J|^W!Rj2OnG( zv+&bcralc}V>7fpg#G7-ZrxNK|KgXZH|mr&=aqJ&&csK%ced1TkO~RLrPlETo3j0; z+*hyUH+eB{gWEA(~@Teo3U-D*N$mP_a?W?odWf#JLtJUb~2IOjq)G&9uvlSK>?wu|9!N7uEb?BLsO=