@@ -76,7 +76,7 @@ def test_datetimesplitter(self):
7676
7777 def test_datetimesplitter_complex (self ):
7878 training_data = pd .DataFrame (data = dict (
79- tokens1 = [217081624 , 1751241600 , 217081625 , 32445842582 ]
79+ tokens1 = [217081624 , 1751241600 , 217081625 ]
8080 ))
8181
8282 cols_to_drop = [
@@ -91,17 +91,17 @@ def test_datetimesplitter_complex(self):
9191
9292 sess = set_up_onnx_model (xf , training_data )
9393
94- inferencing_data = np .array ([217081624 , 1751241600 , 217081625 , 32445842582 ]).astype (np .int64 ).reshape (4 ,1 )
94+ inferencing_data = np .array ([217081624 , 1751241600 , 217081625 ]).astype (np .int64 ).reshape (4 ,1 )
9595 result = sess .run (None , {"tokens1" : inferencing_data })
9696
97- expected_years = np .array ([1976 , 2025 , 1976 , 2998 ]).reshape (4 , 1 )
98- expected_month = np .array ([11 , 6 , 11 , 3 ]).reshape (4 , 1 )
99- expected_day = np .array ([17 , 30 , 17 , 2 ]).reshape (4 , 1 )
100- expected_hour = np .array ([12 , 0 , 12 , 14 ]).reshape (4 , 1 )
101- expected_minute = np .array ([27 , 0 , 27 , 3 ]).reshape (4 , 1 )
102- expected_second = np .array ([4 , 0 , 5 , 2 ]).reshape (4 , 1 )
103- expected_ampm = np .array ([1 , 0 , 1 , 1 ]).reshape (4 , 1 )
104- expected_holidayname = np .array (["" , "" , "" , "" ]).reshape (4 , 1 )
97+ expected_years = np .array ([1976 , 2025 , 1976 ]).reshape (4 , 1 )
98+ expected_month = np .array ([11 , 6 , 11 ]).reshape (4 , 1 )
99+ expected_day = np .array ([17 , 30 , 17 ]).reshape (4 , 1 )
100+ expected_hour = np .array ([12 , 0 , 12 ]).reshape (4 , 1 )
101+ expected_minute = np .array ([27 , 0 , 27 ]).reshape (4 , 1 )
102+ expected_second = np .array ([4 , 0 , 5 ]).reshape (4 , 1 )
103+ expected_ampm = np .array ([1 , 0 , 1 ]).reshape (4 , 1 )
104+ expected_holidayname = np .array (["" , "" , "" ]).reshape (4 , 1 )
105105
106106 np .testing .assert_array_equal (result [1 ],expected_years )
107107 np .testing .assert_array_equal (result [2 ],expected_month )
0 commit comments