diff --git a/InnerEye/ML/configs/classification/CovidHierarchicalModel.py b/InnerEye/ML/configs/classification/CovidHierarchicalModel.py index d7b99c343..b4815f38a 100644 --- a/InnerEye/ML/configs/classification/CovidHierarchicalModel.py +++ b/InnerEye/ML/configs/classification/CovidHierarchicalModel.py @@ -75,7 +75,7 @@ def __init__(self, covid_dataset_id: str = COVID_DATASET_ID, **kwargs: Any): non_image_feature_channels=[], numerical_columns=[], use_mixed_precision=False, - num_dataload_workers=2, + num_dataload_workers=12, multiprocessing_start_method=MultiprocessingStartMethod.fork, train_batch_size=64, optimizer_type=OptimizerType.Adam, @@ -83,8 +83,9 @@ def __init__(self, covid_dataset_id: str = COVID_DATASET_ID, **kwargs: Any): l_rate_scheduler=LRSchedulerType.Step, l_rate_step_gamma=1.0, l_rate_multi_step_milestones=None, - **kwargs) + should_validate=False) # validate only after adding kwargs self.num_classes = 3 + self.add_and_validate(kwargs) def validate(self) -> None: self.l_rate = 1e-5 if self.use_pretrained_model else 1e-4 @@ -132,7 +133,7 @@ def get_model_train_test_dataset_splits(self, dataset_df: pd.DataFrame) -> Datas shuffle=True) # noinspection PyTypeChecker - def get_image_sample_transforms(self) -> ModelTransformsPerExecutionMode: + def get_image_transform(self) -> ModelTransformsPerExecutionMode: config = load_yaml_augmentation_config(path_linear_head_augmentation_cxr) train_transforms = Compose( [DicomPreparation(), create_cxr_transforms_from_config(config, apply_augmentations=True)])