@@ -73,7 +73,7 @@ def __new__(
7373 cat_tensor_shape [1 ] += shard .size ()[1 ]
7474
7575 # in cases of sharding optimizer rowwise, we calculate total tensor size by "concat" on first tensor dimension
76- if len (local_shards ) > 1 and local_shards [0 ].ndim == 1 : # column -wise sharding
76+ if len (local_shards ) > 1 and local_shards [0 ].ndim == 1 : # row -wise sharding
7777 for shard in local_shards [1 :]:
7878 cat_tensor_shape [0 ] += shard .size ()[0 ]
7979
@@ -119,6 +119,7 @@ def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
119119 aten .copy_ .default : cls .handle_copy_ ,
120120 aten .zeros_like .default : cls .handle_zeros_like ,
121121 aten .empty_like .default : cls .handle_empty_like ,
122+ aten .constant_pad_nd .default : cls .handle_constant_pad_nd ,
122123 }
123124
124125 if func in dispatcher :
@@ -279,6 +280,195 @@ def handle_new_empty(args, kwargs):
279280 self_ls .local_offsets (),
280281 )
281282
283+ @staticmethod
284+ # pyre-fixme[3]: Return type must be annotated.
285+ # pyre-fixme[2]: Parameter must be annotated.
286+ def handle_constant_pad_nd (args , kwargs ):
287+ """
288+ Apply constant padding to LocalShardsWrapper.
289+
290+ The padding is based off of the following ideas:
291+ - The resulting wrapper represents the padded version of the logical tensor.
292+ - Each shard is padded based on the sharding type + dimension that is padded.
293+ - For instance, CW shards padded on the left most col will have only padding on the first CW shard.
294+ - Padding the top row will apply to all CW shards.
295+ """
296+ self_lsw = args [0 ]
297+ pad_spec = args [1 ]
298+ pad_value = args [2 ] if len (args ) > 2 else 0.0
299+
300+ if len (self_lsw .local_shards ()) == 0 :
301+ raise NotImplementedError (
302+ "Padding empty LocalShardsWrapper is not supported."
303+ )
304+
305+ local_shards = self_lsw .local_shards ()
306+
307+ if len (local_shards ) == 1 :
308+ padded_shard = torch .nn .functional .pad (
309+ local_shards [0 ], pad_spec , mode = "constant" , value = pad_value
310+ )
311+ return LocalShardsWrapper ([padded_shard ], self_lsw .local_offsets ())
312+
313+ padded_shards = list (local_shards )
314+
315+ if local_shards [0 ].ndim == 2 :
316+ # 2D Column-wise sharding: [pad_left, pad_right, pad_top, pad_bottom]
317+ pad_left , pad_right , pad_top , pad_bottom = (
318+ pad_spec [0 ],
319+ pad_spec [1 ],
320+ pad_spec [2 ],
321+ pad_spec [3 ],
322+ )
323+
324+ if pad_top > 0 :
325+ padded_shards = [
326+ torch .nn .functional .pad (
327+ shard , [0 , 0 , pad_top , 0 ], mode = "constant" , value = pad_value
328+ )
329+ for shard in padded_shards
330+ ]
331+ if pad_bottom > 0 :
332+ padded_shards = [
333+ torch .nn .functional .pad (
334+ shard , [0 , 0 , 0 , pad_bottom ], mode = "constant" , value = pad_value
335+ )
336+ for shard in padded_shards
337+ ]
338+ if pad_left > 0 :
339+ padded_shards [0 ] = torch .nn .functional .pad (
340+ padded_shards [0 ],
341+ [pad_left , 0 , 0 , 0 ],
342+ mode = "constant" ,
343+ value = pad_value ,
344+ )
345+ if pad_right > 0 :
346+ padded_shards [- 1 ] = torch .nn .functional .pad (
347+ padded_shards [- 1 ],
348+ [0 , pad_right , 0 , 0 ],
349+ mode = "constant" ,
350+ value = pad_value ,
351+ )
352+ elif local_shards [0 ].ndim == 1 :
353+ # 1D Row-wise sharding: [pad_top, pad_bottom]
354+ pad_top , pad_bottom = pad_spec [0 ], pad_spec [1 ]
355+
356+ if pad_top > 0 :
357+ padded_shards [0 ] = torch .nn .functional .pad (
358+ padded_shards [0 ], [pad_top , 0 ], mode = "constant" , value = pad_value
359+ )
360+ if pad_bottom > 0 :
361+ padded_shards [- 1 ] = torch .nn .functional .pad (
362+ padded_shards [- 1 ], [0 , pad_bottom ], mode = "constant" , value = pad_value
363+ )
364+ else :
365+ raise NotImplementedError (
366+ f"Padding for { local_shards [0 ].ndim } D tensors is not supported. "
367+ f"Only 1D and 2D tensors are currently supported."
368+ )
369+
370+ # Update offsets and storage metadata
371+ original_storage = self_lsw .storage_metadata ()
372+ updated_offsets , updated_storage = LocalShardsWrapper ._compute_updated_metadata (
373+ original_storage ,
374+ self_lsw .local_offsets (),
375+ pad_spec ,
376+ local_shards [0 ].ndim ,
377+ padded_shards ,
378+ )
379+
380+ result = LocalShardsWrapper (padded_shards , updated_offsets )
381+ result ._storage_meta = updated_storage
382+ return result
383+
384+ @staticmethod
385+ def _compute_updated_metadata (
386+ original_storage : TensorStorageMetadata ,
387+ original_offsets : list [torch .Size ],
388+ pad_spec : list [int ],
389+ ndim : int ,
390+ padded_shards : list [torch .Tensor ],
391+ ) -> tuple [list [tuple [int , ...]], TensorStorageMetadata ]:
392+ """
393+ Compute updated offsets and storage metadata after padding is applied.
394+
395+ Args:
396+ original_storage: Original storage metadata
397+ original_offsets: Original shard offsets
398+ pad_spec: Padding specification
399+ ndim: Number of dimensions (1=RW or 2=CW)
400+ padded_shards: Padded shard tensors
401+
402+ Returns:
403+ Tuple of (updated_offsets, updated_storage_metadata)
404+ """
405+ if ndim == 1 : # 1D RW
406+ pad_top , pad_bottom = pad_spec [0 ], pad_spec [1 ]
407+
408+ updated_offsets = []
409+ for i , offset in enumerate (original_offsets ):
410+ if i == 0 :
411+ # First shard: offset stays the same (absorbs top padding)
412+ updated_offsets .append (tuple (offset ))
413+ else :
414+ # Subsequent shards: shift by top padding amount
415+ new_offset = (offset [0 ] + pad_top ,)
416+ updated_offsets .append (new_offset )
417+
418+ new_global_size = torch .Size (
419+ [original_storage .size [0 ] + pad_top + pad_bottom ]
420+ )
421+
422+ elif ndim == 2 : # 2D CW
423+ pad_left , pad_right , pad_top , pad_bottom = (
424+ pad_spec [0 ],
425+ pad_spec [1 ],
426+ pad_spec [2 ],
427+ pad_spec [3 ],
428+ )
429+
430+ updated_offsets = []
431+ for i , offset in enumerate (original_offsets ):
432+ row_offset = offset [0 ]
433+ col_offset = offset [1 ]
434+
435+ # Top/bottom padding doesn't affect offsets
436+ # Left padding affects column offsets
437+ if i == 0 :
438+ # First shard: column offset stays the same (absorbs left padding)
439+ new_2d_offset = (row_offset , col_offset )
440+ else :
441+ # Subsequent shards: shift column offset by left padding amount
442+ new_2d_offset = (row_offset , col_offset + pad_left )
443+
444+ updated_offsets .append (new_2d_offset )
445+
446+ new_global_size = torch .Size (
447+ [
448+ original_storage .size [0 ] + pad_top + pad_bottom ,
449+ original_storage .size [1 ] + pad_left + pad_right ,
450+ ]
451+ )
452+
453+ else :
454+ raise NotImplementedError (f"Metadata computation for { ndim } D not supported" )
455+
456+ updated_chunks = [
457+ ChunkStorageMetadata (
458+ offsets = torch .Size (offset ),
459+ sizes = shard .size (),
460+ )
461+ for offset , shard in zip (updated_offsets , padded_shards )
462+ ]
463+
464+ updated_storage = TensorStorageMetadata (
465+ properties = original_storage .properties ,
466+ size = new_global_size ,
467+ chunks = updated_chunks ,
468+ )
469+
470+ return updated_offsets , updated_storage
471+
282472 @property
283473 def device (self ) -> torch ._C .device : # type: ignore[override]
284474 return (
0 commit comments