Skip to content

[libc][math] Refactor acos implementation to header-only in src/__support/math folder. #148409

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions libc/shared/math.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

#include "libc_common.h"

#include "math/acos.h"
#include "math/exp.h"
#include "math/exp10.h"
#include "math/exp10f.h"
Expand Down
23 changes: 23 additions & 0 deletions libc/shared/math/acos.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
//===-- Shared acos function ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SHARED_MATH_ACOS_H
#define LLVM_LIBC_SHARED_MATH_ACOS_H

#include "shared/libc_common.h"
#include "src/__support/math/acos.h"

namespace LIBC_NAMESPACE_DECL {
namespace shared {

using math::acos;

} // namespace shared
} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_SHARED_MATH_ACOS_H
33 changes: 33 additions & 0 deletions libc/src/__support/math/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,36 @@
add_header_library(
acos
HDRS
acos.h
DEPENDS
.asin_utils
libc.src.__support.math.asin_utils
libc.src.__support.FPUtil.double_double
libc.src.__support.FPUtil.dyadic_float
libc.src.__support.FPUtil.fenv_impl
libc.src.__support.FPUtil.fp_bits
libc.src.__support.FPUtil.multiply_add
libc.src.__support.FPUtil.polyeval
libc.src.__support.FPUtil.sqrt
libc.src.__support.macros.optimization
libc.src.__support.macros.properties.types
libc.src.__support.macros.properties.cpu_features
)

add_header_library(
asin_utils
HDRS
asin_utils.h
DEPENDS
libc.src.__support.integer_literals
libc.src.__support.FPUtil.double_double
libc.src.__support.FPUtil.dyadic_float
libc.src.__support.FPUtil.multiply_add
libc.src.__support.FPUtil.nearest_integer
libc.src.__support.FPUtil.polyeval
libc.src.__support.macros.optimization
)

add_header_library(
exp_float_constants
HDRS
Expand Down
285 changes: 285 additions & 0 deletions libc/src/__support/math/acos.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
//===-- Implementation header for acos --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H
#define LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H

#include "asin_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA

namespace LIBC_NAMESPACE_DECL {

namespace math {

using DoubleDouble = fputil::DoubleDouble;
using Float128 = fputil::DyadicFloat<128>;

static constexpr double acos(double x) {
using FPBits = fputil::FPBits<double>;

FPBits xbits(x);
int x_exp = xbits.get_biased_exponent();

// |x| < 0.5.
if (x_exp < FPBits::EXP_BIAS - 1) {
// |x| < 2^-55.
if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 55)) {
// When |x| < 2^-55, acos(x) = pi/2
#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS)
return PI_OVER_TWO.hi;
#else
// Force the evaluation and prevent constant propagation so that it
// is rounded correctly for FE_UPWARD rounding mode.
return (xbits.abs().get_val() + 0x1.0p-160) + PI_OVER_TWO.hi;
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}

#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
// acos(x) = pi/2 - asin(x)
// = pi/2 - x * P(x^2)
double p = asin_eval(x * x);
return PI_OVER_TWO.hi + fputil::multiply_add(-x, p, PI_OVER_TWO.lo);
#else
unsigned idx = 0;
DoubleDouble x_sq = fputil::exact_mult(x, x);
double err = xbits.abs().get_val() * 0x1.0p-51;
// Polynomial approximation:
// p ~ asin(x)/x
DoubleDouble p = asin_eval(x_sq, idx, err);
// asin(x) ~ x * p
DoubleDouble r0 = fputil::exact_mult(x, p.hi);
// acos(x) = pi/2 - asin(x)
// ~ pi/2 - x * p
// = pi/2 - x * (p.hi + p.lo)
double r_hi = fputil::multiply_add(-x, p.hi, PI_OVER_TWO.hi);
// Use Dekker's 2SUM algorithm to compute the lower part.
double r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
r_lo = fputil::multiply_add(-x, p.lo, r_lo + PI_OVER_TWO.lo);

// Ziv's accuracy test.

double r_upper = r_hi + (r_lo + err);
double r_lower = r_hi + (r_lo - err);

if (LIBC_LIKELY(r_upper == r_lower))
return r_upper;

// Ziv's accuracy test failed, perform 128-bit calculation.

// Recalculate mod 1/64.
idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6));

// Get x^2 - idx/64 exactly. When FMA is available, double-double
// multiplication will be correct for all rounding modes. Otherwise we use
// Float128 directly.
Float128 x_f128(x);

#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// u = x^2 - idx/64
Float128 u_hi(
fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi));
Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo));
#else
Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128);
Float128 u = fputil::quick_add(
x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6)));
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

Float128 p_f128 = asin_eval(u, idx);
// Flip the sign of x_f128 to perform subtraction.
x_f128.sign = x_f128.sign.negate();
Float128 r =
fputil::quick_add(PI_OVER_TWO_F128, fputil::quick_mul(x_f128, p_f128));

return static_cast<double>(r);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
// |x| >= 0.5

double x_abs = xbits.abs().get_val();

// Maintaining the sign:
constexpr double SIGN[2] = {1.0, -1.0};
double x_sign = SIGN[xbits.is_neg()];
// |x| >= 1
if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) {
// x = +-1, asin(x) = +- pi/2
if (x_abs == 1.0) {
// x = 1, acos(x) = 0,
// x = -1, acos(x) = pi
return x == 1.0 ? 0.0 : fputil::multiply_add(-x_sign, PI.hi, PI.lo);
}
// |x| > 1, return NaN.
if (xbits.is_quiet_nan())
return x;

// Set domain error for non-NaN input.
if (!xbits.is_nan())
fputil::set_errno_if_required(EDOM);

fputil::raise_except_if_required(FE_INVALID);
return FPBits::quiet_nan().get_val();
}

// When |x| >= 0.5, we perform range reduction as follow:
//
// When 0.5 <= x < 1, let:
// y = acos(x)
// We will use the double angle formula:
// cos(2y) = 1 - 2 sin^2(y)
// and the complement angle identity:
// x = cos(y) = 1 - 2 sin^2 (y/2)
// So:
// sin(y/2) = sqrt( (1 - x)/2 )
// And hence:
// y/2 = asin( sqrt( (1 - x)/2 ) )
// Equivalently:
// acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
// Let u = (1 - x)/2, then:
// acos(x) = 2 * asin( sqrt(u) )
// Moreover, since 0.5 <= x < 1:
// 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
// And hence we can reuse the same polynomial approximation of asin(x) when
// |x| <= 0.5:
// acos(x) ~ 2 * sqrt(u) * P(u).
//
// When -1 < x <= -0.5, we reduce to the previous case using the formula:
// acos(x) = pi - acos(-x)
// = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
// ~ pi - 2 * sqrt(u) * P(u),
// where u = (1 - |x|)/2.

// u = (1 - |x|)/2
double u = fputil::multiply_add(x_abs, -0.5, 0.5);
// v_hi + v_lo ~ sqrt(u).
// Let:
// h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
// Then:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// ~ v_hi + h / (2 * v_hi)
// So we can use:
// v_lo = h / (2 * v_hi).
double v_hi = fputil::sqrt<double>(u);

#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
constexpr DoubleDouble CONST_TERM[2] = {{0.0, 0.0}, PI};
DoubleDouble const_term = CONST_TERM[xbits.is_neg()];

double p = asin_eval(u);
double scale = x_sign * 2.0 * v_hi;
double r = const_term.hi + fputil::multiply_add(scale, p, const_term.lo);
return r;
#else

#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double h = fputil::multiply_add(v_hi, -v_hi, u);
#else
DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi);
double h = (u - v_hi_sq.hi) - v_hi_sq.lo;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE

// Scale v_lo and v_hi by 2 from the formula:
// vh = v_hi * 2
// vl = 2*v_lo = h / v_hi.
double vh = v_hi * 2.0;
double vl = h / v_hi;

// Polynomial approximation:
// p ~ asin(sqrt(u))/sqrt(u)
unsigned idx = 0;
double err = vh * 0x1.0p-51;

DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err);

// Perform computations in double-double arithmetic:
// asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p);

double r_hi = 0, r_lo = 0;
if (xbits.is_pos()) {
r_hi = r0.hi;
r_lo = r0.lo;
} else {
DoubleDouble r = fputil::exact_add(PI.hi, -r0.hi);
r_hi = r.hi;
r_lo = (PI.lo - r0.lo) + r.lo;
}

// Ziv's accuracy test.

double r_upper = r_hi + (r_lo + err);
double r_lower = r_hi + (r_lo - err);

if (LIBC_LIKELY(r_upper == r_lower))
return r_upper;

// Ziv's accuracy test failed, we redo the computations in Float128.
// Recalculate mod 1/64.
idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6));

// After the first step of Newton-Raphson approximating v = sqrt(u), we have
// that:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// v_lo = h / (2 * v_hi)
// With error:
// sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
// = -h^2 / (2*v * (sqrt(u) + v)^2).
// Since:
// (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
// we can add another correction term to (v_hi + v_lo) that is:
// v_ll = -h^2 / (2*v_hi * 4u)
// = -v_lo * (h / 4u)
// = -vl * (h / 8u),
// making the errors:
// sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
// well beyond 128-bit precision needed.

// Get the rounding error of vl = 2 * v_lo ~ h / vh
// Get full product of vh * vl
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi;
#else
DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl);
double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// vll = 2*v_ll = -vl * (h / (4u)).
double t = h * (-0.25) / u;
double vll = fputil::multiply_add(vl, t, vl_lo);
// m_v = -(v_hi + v_lo + v_ll).
Float128 m_v = fputil::quick_add(
Float128(vh), fputil::quick_add(Float128(vl), Float128(vll)));
m_v.sign = xbits.sign();

// Perform computations in Float128:
// acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1,
// = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5.
Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u));

Float128 p_f128 = asin_eval(y_f128, idx);
Float128 r_f128 = fputil::quick_mul(m_v, p_f128);

if (xbits.is_neg())
r_f128 = fputil::quick_add(PI_F128, r_f128);

return static_cast<double>(r_f128);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}

} // namespace math

} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ACOS_H
Loading
Loading